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PREFACE

The material presented is intended to serve as a basis for a critical study of the fun-
damentals of elasticity and several branches of solid mechanics, including advanced
mechanics of materials, theories of plates and shells, composite materials, plasticity
theory, finite element, and other numerical methods as well as nanomechanics and
biomechanics. In the 21st century, the transcendent and translational technologies
include nanotechnology, microelectronics, information technology, and biotechnol-
ogy as well as the enabling and supporting mechanical and civil infrastructure
systems and smart materials. These technologies are the primary drivers of the
century and the new economy in a modern society.

Chapter 1 includes, for ready reference, new trends, research needs, and certain
mathematic preliminaries. Depending on the background of the reader, this material
may be used either as required reading or as reference material. The main content of
the book begins with the theory of deformation in Chapter 2. Although the majority
of the book is focused on stress–strain theory, the concept of deformation with large
strains (Cauchy strain tensor and Green–Saint-Venant strain tensor) is included. The
theory of stress is presented in Chapter 3. The relations among different stress mea-
sures, namely, Cauchy stress tensor, first- and second-order Piola–Kirchhoff stress
tensors, are described. Molecular dynamics (MD) views a material body as a col-
lection of a huge but finite number of different kinds of atoms. It is emphasized that
MD is the heart of nanoscience and technology, and it deals with material properties
and behavior at the atomistic scale. The differential equations of motion of MD are
introduced. The readers may see the similarity and the difference between a contin-
uum theory and an atomistic theory clearly. The theories of deformation and stress
are treated separately to emphasize their independence of one another and also
to emphasize their mathematical similarity. By so doing, one can clearly see that

xvii



xviii PREFACE

these theories depend only on approximations related to modeling of a continuous
medium, and that they are independent of material behavior. The theories of defor-
mation and stress are united in Chapter 4 by the introduction of three-dimensional
stress–strain–temperature relations (constitutive relations). The constitutive rela-
tions in MD, through interatomic potentials, are introduced. The force–position
relation between atoms is nonlinear and nonlocal, which is contrary to the situation
in continuum theories. Contrary to continuum theories, temperature in MD is not
an independent variable. Instead, it is derivable from the velocities of atoms. The
treatment of temperature in molecular dynamics is incorporated in Chapter 4. Also
the constitutive equations for soft biological tissues are included. The readers can
see that not only soft biological tissue can undergo large strains but also exert an
active stress, which is the fundamental difference between lifeless material and liv-
ing biological tissue. The significance of active stress is demonstrated through an
example in Chapter 6. The major portion of Chapter 4 is devoted to linearly elastic
materials. However, discussions of nonlinear constitutive relations, micromorphic
theory, and concurrent atomistic/continuum theory are presented in Appendices
4B, 4C, and 4D, respectively. Chapters 5 and 6 treat the plane theory of elasticity,
in rectangular and polar coordinates, respectively. Chapter 7 presents the three-
dimensional problem of prismatic bars subjected to end loads. Material on thermal
stresses is incorporated in a logical manner in the topics of Chapters 4, 5, and 6.

General solutions of elasticity are presented in Chapter 8. Extensive use is made
of appendixes for more advanced topics such as complex variables (Appendix 5B)
and stress–couple theory (Appendixes 5A and 6A). In addition, in each chapter,
examples and problems are given, along with explanatory notes, references, and a
bibliography for further study.

As presented, the book is valuable as a text for students and as a reference for
practicing engineers/scientists. The material presented here may be used for several
different types of courses. For example, a semester course for senior engineering
students may include topics from Chapter 2 (Sections 2-1 through 2-16), Chapter 3
(Sections 3-1 through 3-8), Chapter 4 (Sections 4-1 through 4-7 and Sections 4-9
through 4-12), Chapter 5 (Sections 5-1 through 5-7), as much as possible from
Chapter 6 (from Sections 6-1 through Section 6-6), and considerable problem solv-
ing. A quarter course for seniors could cover similar material from Chapters 2
through 5, with less emphasis on the examples and problem solving. A course for
first-year graduate students in civil and mechanical engineering and related engi-
neering fields can include Chapters 1 through 6, with selected materials from the
appendixes and/or Chapters 7 and 8. A follow-up graduate course can include most
of the appendix material in Chapters 2 to 6, and the topics in Chapters 7 and 8,
with specialized topics of interest for further study by individual students.

Special thanks are due to the publisher including Bob Argentieri, Dan Magers,
and the production team for their interest, cooperation, and help in publishing this
book in a timely fashion, to James Chen for the checking and proofreading of the
manuscript, as well as to Mike Plesniak of George Washington University and Jon
Martin of NIST for providing an environment and culture conductive for scholarly
pursuit.



CHAPTER 1

INTRODUCTORY CONCEPTS
AND MATHEMATICS

PART I INTRODUCTION

1-1 Trends and Scopes

In the 21st century, the transcendent and translational technologies include nan-
otechnology, microelectronics, information technology, and biotechnology as well
as the enabling and supporting mechanical and civil infrastructure systems and
smart materials. These technologies are the primary drivers of the century and the
new economy in a modern society. Mechanics forms the backbone and basis of
these transcendent and translational technologies (Chong, 2004, 2010). Papers on
the applications of the theory of elasticity to engineering problems form a significant
part of the technical literature in solid mechanics (e.g. Dvorak, 1999; Oden, 2006).
Many of the solutions presented in current papers employ numerical methods and
require the use of high-speed digital computers. This trend is expected to continue
into the foreseeable future, particularly with the widespread use of microcomputers
and minicomputers as well as the increased availability of supercomputers (Londer,
1985; Fosdick, 1996). For example, finite element methods have been applied to
a wide range of problems such as plane problems, problems of plates and shells,
and general three-dimensional problems, including linear and nonlinear behavior,
and isotropic and anisotropic materials. Furthermore, through the use of computers,
engineers have been able to consider the optimization of large engineering systems
(Atrek et al., 1984; Zienkiewicz and Taylor, 2005; Kirsch, 1993; Tsompanakis et al.,
2008) such as the space shuttle. In addition, computers have played a powerful role

1Elasticity in Engineering Mechanics, Third Edition          Arthur P. Boresi, Ken P. Chong and James D. Lee
Copyright © 2011 John Wiley & Sons, Inc.



2 INTRODUCTORY CONCEPTS AND MATHEMATICS

in the fields of computer-aided design (CAD) and computer-aided manufacturing
(CAM) (Ellis and Semenkov, 1983; Lamit, 2007) as well as in virtual testing and
simulation-based engineering science (Fosdick, 1996; Yang and Pan, 2004; Oden,
2000, 2006).

At the request of one of the authors (Chong), Moon et al. (2003) conducted an
in-depth National Science Foundation (NSF) workshop on the research needs of
solid mechanics. The following are the recommendations.

Unranked overall priorities in solid mechanics research (Moon et al., 2003)

1. Modeling multiscale problems:
(i) Bridging the micro-nano-molecular scale

(ii) Macroscale dynamics of complex machines and systems
2. New experimental methods:

(i) Micro-nano-atomic scales
(ii) Coupling between new physical phenomena and model simulations

3. Micro- and nanomechanics:
(i) Constitutive models of failure initiation and evolution

(ii) Biocell mechanics
(iii) Force measurements in the nano- to femtonewton regime

4. Tribology, contact mechanics:
(i) Search for a grand theory of friction and adhesion

(ii) Molecular-atomic-based models
(iii) Extension of microscale models to macroapplications

5. Smart, active, self-diagnosis and self-healing materials:
(i) Microelectromechanical systems (MEMS)/Nanoelectromechanical sys-

tems (NEMS) and biomaterials
(ii) Fundamental models

(iii) Increased actuator capability
(iv) Application to large-scale devices and systems

6. Nucleation of cracks and other defects:
(i) Electronic materials

(ii) Nanomaterials
7. Optimization methods in solid mechanics:

(i) Synthesis of materials by design
(ii) Electronic materials

(iii) Optimum design of biomaterials
8. Nonclassical materials:

(i) Foams, granular materials, nanocarbon tubes, smart materials
9. Energy-related solid mechanics:

(i) High-temperature materials and coatings
(ii) Fuel cells
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10. Advanced material processing:

(i) High-speed machining

(ii) Electronic and nanodevices, biodevices, biomaterials

11. Education in mechanics:

(i) Need for multidisciplinary education between solid mechanics, physics,
chemistry, and biology

(ii) New mathematical skills in statistical mechanics and optimization
methodology

12. Problems related to Homeland Security (Postworkshop; added by the editor)

(i) Ability of infrastructure to withstand destructive attacks

(ii) New safety technology for civilian aircraft

(iii) New sensors and robotics

(iv) New coatings for fire-resistant structures

(v) New biochemical filters

In addition to finite element methods, older techniques such as finite difference
methods have also found applications in elasticity problems. More generally, the
broad subject of approximation methods has received considerable attention in the
field of elasticity. In particular, the boundary element method has been widely
applied because of certain advantages it possesses in two- and three-dimensional
problems and in infinite domain problems (Brebbia, 1988). In addition, other varia-
tions of the finite element method have been employed because of their efficiency.
For example, finite strip, finite layer, and finite prism methods (Cheung and Tham,
1997) have been used for rectangular regions, and finite strip methods have been
applied to nonrectangular regions by Yang and Chong (1984). This increased inter-
est in approximate methods is due mainly to the enhanced capabilities of both
mainframe and personal digital computers and their widespread use. Because this
development will undoubtedly continue, the authors (Boresi, Chong, and Saigal)
treat the topic of approximation methods in elasticity in a second book (Boresi
et al., 2002), with particular emphasis on numerical stress analysis through the use
of finite differences and finite elements, as well as boundary element and meshless
methods.

However, in spite of the widespread use of approximate methods in elastic-
ity (Boresi et al., 2002), the basic concepts of elasticity are fundamental and
remain essential for the understanding and interpretation of numerical stress analy-
sis. Accordingly, the present book devotes attention to the theories of deformation
and of stress, the stress–strain relations (constitutive relations), nano- and bio-
mechanics, and the fundamental boundary value problems of elasticity. Extensive
use of index notation is made. However, general tensor notation is used sparingly,
primarily in appendices.

In recent years, researchers from mechanics and other diverse disciplines have
been drawn into vigorous efforts to develop smart or intelligent structures that can
monitor their own condition, detect impending failure, control damage, and adapt
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to changing environments (Rogers and Rogers, 1992). The potential applications
of such smart materials/systems are abundant: design of smart aircraft skin embed-
ded with fiber-optic sensors (Udd, 1995) to detect structural flaws, bridges with
sensoring/actuating elements to counter violent vibrations, flying microelectrome-
chanical systems (Trimmer, 1990) with remote control for surveying and rescue
missions, and stealth submarine vehicles with swimming muscles made of special
polymers. Such a multidisciplinary infrastructural systems research front, repre-
sented by material scientists, physicists, chemists, biologists, and engineers of
diverse fields—mechanical, electrical, civil, control, computer, aeronautical, and
so on—has collectively created a new entity defined by the interface of these
research elements. Smart structures/materials are generally created through syn-
thesis by combining sensoring, processing, and actuating elements integrated with
conventional structural materials such as steel, concrete, or composites. Some of
these structures/materials currently being researched or in use are listed below
(Chong et al., 1990, 1994; Chong and Davis, 2000):

• Piezoelectric composites, which convert electric current to (or from) mechan-
ical forces

• Shape memory alloys, which can generate force through changing the tem-
perature across a transition state

• Electrorheological (ER) and magnetorheological (MR) fluids, which can
change from liquid to solid (or the reverse) in electric and magnetic fields,
respectively, altering basic material properties dramatically

• Bio-inspired sensors and nanotechnologies, e.g., graphenes and nanotubes

The science and technology of nanometer-scale materials, nanostructure-based
devices, and their applications in numerous areas, such as functionally graded mate-
rials, molecular-electronics, quantum computers, sensors, molecular machines, and
drug delivery systems—to name just a few, form the realm of nanotechnology
(Srivastava et al., 2007). At nanometer length scale, the material systems con-
cerned may be downsized to reach the limit of tens to hundreds of atoms, where
many new physical phenomena are being discovered. Modeling of nanomateri-
als involving phenomena with multiple length/time scales has attracted enormous
attention from the scientific research community. This is evidenced in the works
of Belytschko et al. (2002), Belytschko and Xiao (2003), Liu et al. (2004), Arroyo
and Belytschko (2005), Srivastava et al. (2007), Wagner et al. (2008), Masud and
Kannan (2009), and the host of references mentioned therein. As a matter of fact,
the traditional material models based on continuum descriptions are inadequate at
the nanoscale, even at the microscale. Therefore, simulation techniques based on
descriptions at the atomic scale, such as molecular dynamics (MD), has become an
increasingly important computational toolbox. However, MD simulations on even
the largest supercomputers (Abraham et al., 2002), although enough for the study of
some nanoscale phenomena, are still far too small to treat the micro-to-macroscale
interactions that must be captured in the simulation of any real device (Wagner
et al., 2008).
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Bioscience and technology has contributed much to our understanding of human
health since the birth of continuum biomechanics in the mid-1960s (Fung, 1967,
1983, 1990, 1993, 1995). Nevertheless, it has yet to reach its full potential as a
consistent contributor to the improvement of health-care delivery. This is due to the
fact that most biological materials are very complicated hierachical structures. In the
most recent review paper, Meyers et al. (2008) describe the defining characteristics,
namely, hierarchy, multifunctionality, self-healing, and self-organization of biolog-
ical tissues in detail, and point out that the new frontiers of material and structure
design reside in the synthesis of bioinspired materials, which involve nanoscale
self-assembly of the components and the development of hierarchical structures.
For example the amazing multiscale bones structure—from amino acids, tropocol-
lagen, mineralized collagen fibrils, fibril arrays, fiber patterns, osteon and Haversian
canal, and bone tissue to macroscopic bone—makes bones remarkably resistant to
fracture (Ritchie et al., 2009). The multiscale bone structure of trabecular bone and
cortical bone from nanoscale to macroscale is illustrated in Figure 1-1.1. (Courtesy
of I. Jasiuk and E. Hamed, University of Illinois – Urbana). Although much signif-
icant progress has been made in the field of bioscience and technology, especially
in biomechanics, there exist many open problems related to elasticity, including
molecular and cell biomechanics, biomechanics of development, biomechanics of
growth and remodeling, injury biomechanics and rehabilitation, functional tissue
engineering, muscle mechanics and active stress, solid–fluid interactions, and ther-
mal treatment (Humphrey, 2002).

Current research activities aim at understanding, synthesizing, and processing
material systems that behave like biological systems. Smart structures/materials
basically possess their own sensors (nervous system), processor (brain system),
and actuators (muscular systems), thus mimicking biological systems (Rogers and
Rogers, 1992). Sensors used in smart structures/materials include optical fibers,
micro-cantilevers, corrosion sensors, and other environmental sensors and sensing
particles. Examples of actuators include shape memory alloys that would return
to their original shape when heated, hydraulic systems, and piezoelectric ceramic
polymer composites. The processor or control aspects of smart structures/materials
are based on microchip, computer software, and hardware systems.

Recently, Huang from Northwestern University and his collaborators developed
the stretchable silicon based on the wrinkling of the thin films on a prestretched sub-
strate. This is important to the development of stretchable electronics and sensors
such as the three-dimensional eye-shaped sensors. One of their papers was pub-
lished in Science in 2006 (Khang et al., 2006). The basic idea is to make straight
silicon ribbons wavy. A prestretched polymer Polydimethylsiloxane (PDMS) is
used to peel silicon ribbons away from the substrate, and releasing the prestretch
leads to buckled, wavy silicon ribbons.

In the past, engineers and material scientists have been involved extensively
with the characterization of given materials. With the availability of advanced
computing, along with new developments in material sciences, researchers can
now characterize processes, design, and manufacture materials with desirable per-
formance and properties. Using nanotechnology (Reed and Kirk, 1989; Timp, 1999;
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Figure 1-1.1

Chong, 2004), engineers and scientists can build designer materials molecule by
molecule via self-assembly, etc. One of the challenges is to model short-term
microscale material behavior through mesoscale and macroscale behavior into
long-term structural systems performance (Fig. 1-1.2). Accelerated tests to sim-
ulate various environmental forces and impacts are needed. Supercomputers and/or
workstations used in parallel are useful tools to (a) solve this multiscale and size-
effect problem by taking into account the large number of variables and unknowns
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MATERIALS STRUCTURES INFRASTRUCTURE

Nanolevel ∼ microlevel ∼ mesolevel ∼ macro-
level

∼ systems
integration

Molecular Scale Microns Meters Up to km Scale

nanomechanics micromechanics mesomechanics beams bridge systems
self-assembly microstructures interfacial structures columns lifelines
nanofabrication smart materials composites plates airplanes

Figure 1-1.2 Scales in materials and structures.

to project microbehavior into infrastructure systems performance and (b) to model
or extrapolate short-term test results into long-term life-cycle behavior.

According to Eugene Wong, the former engineering director of the National
Science Foundation, the transcendent technologies of our time are

• Microelectronics—Moore’s law: doubling the capabilities every 2 years for
the past 30 years; unlimited scalability

• Information technology: confluence of computing and communications

• Biotechnology: molecular secrets of life

These technologies and nanotechnology are mainly responsible for the tremen-
dous economic developments. Engineering mechanics is related to all these tech-
nologies based on the experience of the authors. The first small step in many of
these research activities and technologies involves the study of deformation and
stress in materials, along with the associated stress–strain relations.

In this book following the example of modern continuum mechanics and the
example of A. E. Love (Love, 2009), we treat the theories of deformation and of
stress separately, in this manner clearly noting their mathematical similarities and
their physical differences. Continuum mechanics concepts such as couple stress and
body couple are introduced into the theory of stress in the appendices of Chapters 3,
5, and 6. These effects are introduced into the theory in a direct way and present no
particular problem. The notations of stress and of strain are based on the concept
of a continuum, that is, a continuous distribution of matter in the region (space) of
interest. In the mathematical physics sense, this means that the volume or region
under examination is sufficiently filled with matter (dense) that concepts such as
mass density, momentum, stress, energy, and so forth are defined at all points in the
region by appropriate mathematical limiting processes (see Chapter 3, Section 3-1).

1-2 Theory of Elasticity

The theory of elasticity, in contrast to the general theory of continuum mechanics
(Eringen, 1980), is an ad hoc theory designed to treat explicity a special response
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of materials to applied forces—namely, the elastic response, in which the stress
at every point P in a material body (continuum) depends at all times solely on
the simultaneous deformation in the immediate neighborhood of the point P (see
Chapter 4, Section 4-1). In general, the relation between stress and deformation
is a nonlinear one, and the corresponding theory is called the nonlinear theory
of elasticity (Green and Adkins, 1970). However, if the relationship of the stress
and the deformation is linear, the material is said to be linearly elastic, and the
corresponding theory is called the linear theory of elasticity .

The major part of this book treats the linear theory of elasticity. Although
ad hoc in form, this theory of elasticity plays an important conceptual role in the
study of nonelastic types of material responses. For example, often in problems
involving plasticity or creep of materials, the method of successive elastic solu-
tions is employed (Mendelson, 1983). Consequently, the theory of elasticity finds
application in fields that treat inelastic response.

1-3 Numerical Stress Analysis

The solution of an elasticity problem generally requires the description of the
response of a material body (computer chips, machine part, structural element, or
mechanical system) to a given excitation (such as force). In an engineering sense,
this description is usually required in numerical form, the objective being to assure
the designer or engineer that the response of the system will not violate design
requirements. These requirements may include the consideration of deterministic
and probabilistic concepts (Thoft-Christensen and Baker, 1982; Wen, 1984; Yao,
1985). In a broad sense the numerical results are predictions as to whether the
system will perform as desired. The solution to the elasticity problem may be
obtained by a direct numerical process (numerical stress analysis) or in the form
of a general solution (which ordinarily requires further numerical evaluation; see
Section 1-4).

The usual methods of numerical stress analysis recast the mathematically posed
elasticity problem into a direct numerical analysis. For example, in finite difference
methods, derivatives are approximated by algebraic expressions; this transforms
the differential boundary value problem of elasticity into an algebraic boundary
value problem requiring the numerical solution of a set of simultaneous algebraic
equations. In finite element methods, trial function approximations of displace-
ment components, stress components, and so on are employed in conjunction with
energy methods (Chapter 4, Section 4-21) and matrix methods (Section 1-28), again
to transform the elasticity boundary value problem into a system of simultaneous
algebraic equations. However, because finite element methods may be applied to
individual pieces (elements) of the body, each element may be given distinct mate-
rial properties, thus achieving very general descriptions of a body as a whole.
This feature of the finite element method is very attractive to the practicing stress
analyst. In addition, the application of finite elements leads to many interesting
mathematical questions concerning accuracy of approximation, convergence of the
results, attainment of bounds on the exact answer, and so on. Today, finite element
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methods are perhaps the principal method of numerical stress analysis employed to
solve elasticity problems in engineering (Zienkiewicz and Taylor, 2005). By their
nature, methods of numerical stress analysis (Boresi et al., 2002) yield approximate
solutions to the exact elasticity solution.

1-4 General Solution of the Elasticity Problem

Plane Elasticity. Two classical plane problems have been studied extensively:
plane strain and plane stress (see Chapter 5). If the state of plane isotropic elasticity
is referred to the (x, y) plane, then plane elasticity is characterized by the conditions
that the stress and strain are independent of coordinate z, and shear stress τxz, τyz

(hence, shear strains γxz, γyz) are zero. In addition, for plane strain the extensional
strain εz equals 0, and for plane stress we have σz = 0. For plane strain problems
the equations represent exact solutions to physical problems, whereas for plane
stress problems, the usual solutions are only approximations to physical problems.
Mathematically, the problems of plane stress and plane strain are identical (see
Chapter 5).

One general method of solution of the plane problem rests on the reduction of
the elasticity equations to the solution of certain equations in the complex plane
(Muskhelishvili, 1975).1 Ordinarily, the method requires mapping of the given
region into a suitable region in the complex plane. A second general method rests
on the introduction of a single scalar biharmonic function, the Airy stress function,
which must be chosen suitably to satisfy boundary conditions (see Chapter 5).

Three-Dimensional Elasticity. In contrast to the problem of plane elasticity,
the construction of general solutions of the three-dimensional equations of elasticity
has not as yet been completely achieved. Many so-called general solutions are really
particular forms of solutions of the three-dimensional field equations of elasticity
in terms of arbitrary, ad hoc functions. Particular examples of general solutions
are employed in Chapter 8 and in Appendix 5B. In many of these examples,
the functions and the form of solution are determined in part by the differential
equations and in part by the physical features of the problem. A general solution of
the elasticity equations may also be constructed in terms of biharmonic functions
(see Appendix 5B). Because there is no apparent reason for one form of general
solution to be readily obtainable from another, a number of investigators have
attempted to extend the generality of solution form and show relations among
known solutions (Sternberg, 1960; Naghdi and Hsu, 1961; Stippes, 1967).

1-5 Experimental Stress Analysis

Material properties that enter into the stress–strain relations (constitutive relations;
see Section 4-4) must be obtained experimentally (Schreiber et al., 1973; Chong
and Smith, 1984). In addition, other material properties, such as ultimate strength

1See also Appendix 5B.
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and fracture toughness, as well as nonmaterial quantities such as residual stresses,
have to be determined by physical tests.

For bodies that possess intricately shaped boundaries, general analytical (closed-
form) solutions become extremely difficult to obtain. In such cases one must
invariably resort to approximate methods, principally to numerical methods or to
experimental methods. In the latter, several techniques such as photoelasticity, the
Moiré method, strain gage methods, fracture gages, optical fibers, and so forth
have been developed to a fine art (Dove and Adams, 1964; Dally and Riley, 2005;
Rogers and Rogers, 1992; Ruud and Green, 1984). In addition, certain analogies
based on a similarity between the equations of elasticity and the equations that
describe readily studied physical systems are employed to obtain estimates of solu-
tions or to gain insight into the nature of mathematical solutions (see Chapter 7,
Section 7-9, for the membrane analogy in torsion). In this book we do not treat
experimental methods but rather refer to the extensive modern literature available.2

1-6 Boundary Value Problems of Elasticity

The solution of the equations of elasticity involves the determination of a stress or
strain state in the interior of a region R subject to a given state of stress or strain
(or displacement) on the boundary B of R (see Chapter 4, Section 4-15). Subject
to certain restrictions on the nature of the solution and of region R and the form
of the boundary conditions, the solution of boundary value problems of elasticity
may be shown to exist (see Chapter 4, Section 4-16). Under broader conditions,
existence and uniqueness of the elasticity boundary value problem are not ensured.
In general, the question of existence and uniqueness (Knops and Payne, 1971)
rests on the theory of systems of partial differential equations of three independent
variables.

In particular forms the boundary value problem of elasticity may be reduced
to that of seeking a single scalar function f of three independent variables, say
(x, y, z); that is, f = f (x, y, z) such that the stress field of strain field derived from
f satisfies the boundary conditions on B. In particular for the Laplace equation,
three types of boundary value problems occur frequently in elasticity: the Dirichlet
problem, the Neumann problem, and the mixed problem. Let h(x, y) be a given
function that is defined on B, the bounding surface of a simply connected region
R. Then the Dirichlet problem for the Laplace equation is that of determining a
function f = f (x, y) that

1. is continuous on R + B,
2. is harmonic on R, and
3. is identical to h(x, y) on B.

2Experimental Mechanics and Experimental Techniques , both journals of the Society for Experimen-
tal Mechanics (SEM), contain a wealth of information on experimental techniques. In addition, the
American Society for Testing and Materials (ASTM) publishes the Journal of Testing and Evaluation ,
the Geotechnical Testing Journal , and other journals.
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The Dirichlet problem has been shown to possess a unique solution (Greenspan,
1965). However, analytical determination of f (x, y) is very much more difficult to
achieve than is the establishment of its existence. Indeed, except for special forms
of boundary B (such as the rectangle, the circle, or regions that can be mapped
onto rectangular or circular regions), the problems of determining f (x, y) do not
surrender to existing analytical techniques.

The Neumann boundary value problem for the Laplace equation is that of deter-
mining a function f (x, y) that

1. is defined and continuous on R + B,

2. is harmonic on R, and

3. has an outwardly directed normal derivative ∂f/∂n such that ∂f/∂n = g(x, y)

on B, where g(x, y) is defined and continuous on B.

Without an additional requirement [namely, that f (x, y) has a prescribed value
for at least one point of B], the solution of the Neumann problem is not well
posed because otherwise the Neumann problem has a one-parameter infinity of
solutions.

The mixed problem overcomes the difficulty of the Neumann problem. Again,
let g(x, y) be a continuous function on B ′ of R and let h(x, y) be bounded and
continuous on B ′′ of R, where B = B ′ + B ′′ denotes the boundary of region R.
Then the mixed problem for the Laplace equation is that of determining a function
f (x, y) such that it

1. is defined and continuous on R + B,

2. is harmonic on R,

3. is identical with g(x, y), on B ′, and

4. has outwardly directed normal derivative ∂f/∂n = h(x, y) on B ′′.

It has been shown that certain mixed problems have unique solutions3

(Greenspan, 1965). Because, in general, the solutions of the Dirichlet and mixed
problems cannot be given in closed form, methods of approximate solutions of
these problems are presented in another book by the authors (Boresi et al., 2002).
More generally, these approximate methods may be applied to most boundary
value problems of elasticity.

PART II PRELIMINARY CONCEPTS

In Part II of this chapter we set down some concepts that are useful in following
the developments in the text proper and in the appendices.

3These remarks are restricted to simply connected regions.
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1-7 Brief Summary of Vector Algebra

In this text a boldface letter denotes a vector quantity unless an explicit statement
to the contrary is given; thus, A denotes a vector. Frequently, we denote a vector
by the set of its projections (Ax, Ay, Az) on rectangular Cartesian axes (x, y, z).
Thus,

A = (Ax, Ay, Az) (1-7.1)

The magnitude of a vector A is denoted by

|A| = A = (A2
x + A2

y + A2
z)

1/2 (1-7.2)

We may also express a vector in terms of its components with respect to (x, y, z)
axes. For example,

A = iAx + jAy + kAz (1-7.3)

where iAx, jAy, kAz are components of A with respect to axes (x, y, z), and i, j, k,
are unit vectors directed along positive (x, y, z) axes, respectively. In general, the
symbols i, j, k denote unit vectors.

Vector quantities obey the associative law of vector addition:

A + (B + C) = (A + B) + C = A + B + C (1-7.4)

and the commutative law of vector addition:

A + B = B + A A + B + C = B + A + C = B + C + A (1-7.5)

Symbolically, we may represent a vector quantity by an arrow (Fig. 1-7.1) with
the understanding that the addition of any two arrows (vectors) must obey the
commutative law [Eq. (1-7.5)].

The scalar product of two vectors A, B is defined to be

A · B = AxBx + AyBy + AzBz (1-7.6)

Figure 1-7.1
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where the symbol · is a conventional notation for the scalar product. By the above
definition, it follows that the scalar product of vectors is commutative; that is,

A · B = B · A (1-7.7)

A useful property of the scalar product of two vectors is

A · B = AB cos θ (1-7.8)

where A and B denote the magnitudes of vectors A and B, respectively, and the
angle θ denotes the angle formed by vectors A and B (Fig. 1-7.2).

If B is a unit vector in the x direction, Eqs. (1-7.3) and (1-7.8) yield Ax =
A cos α, where α is the direction angle between the vector A and the positive
x axis. Similarly, Ay = A cos β, Az = A cos γ , where β, γ denote direction angles
between the vector A and the y axis and the z axis, respectively. Substitution of
these expressions into Eq. (1-7.2) yields the relation

cos2 α + cos2 β + cos2 γ = 1 (1-7.9)

Thus, the direction cosines of vector A are not independent . They must satisfy
Eq. (1-7.9).

The scalar product law of vectors has other properties in common with the
product of numbers. For example,

A · (B + C) = A · B + A · C (1-7.10)

(A + B) · (C + D) = (A + B) · C + (A + B) · D

= A · C + B · C + A · D + B · D (1-7.11)

Figure 1-7.2
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The vector product of two vectors A and B is defined to be a third vector C
whose magnitude is given by the relation

C = AB sin θ (1-7.12)

The direction of vector C is perpendicular to the plane formed by vectors A
and B. The sense of C is such that the three vectors A, B, C form a right-handed
or left-handed system according to whether the coordinate system (x, y, z) is right
handed or left handed (see Fig. 1-7.3).

Symbolically, we denote the vector product of A and B in the form

C = A × B (1-7.13)

where × denotes vector product (or cross product). In determinant notation,
Eq. (1-7.13) may be written as

C =
∣∣∣∣∣∣

i j k
Ax Ay Az

Bx By Bz

∣∣∣∣∣∣ (1-7.13a)

where (Ax, Ay, Az), (Bx, By, Bz) denotes (i, j, k) projections of vectors (A, B),
respectively.

The vector product of vectors has the following property:

A × B = −B × A (1-7.14)

Accordingly, the vector product of vectors is not commutative.
The vector product also has the following properties:

R × (A + B) = R × A + R × B

(A + B) × R = A × R + B × R (1-7.15)

(A + B) × (C + D) = (A + B) × C + (A + B) × D

= A × C + B × C + A × D + B × D (1-7.16)

The scalar triple product of three vectors A, B, C is defined by the relation

A · (B × C) = Ax(ByCz − BzCy) + Ay(BzCx − BxCz)

+ Az(BxCy − ByCx) (1-7.17)

In determinant notation, the scalar triple product is

A · (B × C) =

∣∣∣∣∣∣∣
Ax Ay Az

Bx By Bz

Cx Cy Cz

∣∣∣∣∣∣∣
(1-7.18)
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Because only the sign of a determinant changes when two rows are inter-
changed, two consecutive transpositions of rows leave a determinant unchanged.
Consequently,

A · (B × C) = C · (A × B) = B · (C × A) (1-7.19)

Another useful property is the relation

(A × B) · C = A · (B × C) (1-7.20)

The vector triple product of three vectors A, B, C is defined as

A × (B × C) = B(A · C) − C(A · B) (1-7.21)

Furthermore,

(A × B) · (C × D) = A · B × (C × D) = A · [C(B · D) − (B · C)D]

= (A · C)(B · D) − (A · D)(B · C) (1-7.22)

Equation (1-7.22) follows from Eqs. (1-7.20) and (1-7.21).

1-8 Scalar Point Functions

Any scalar function f (x, y, z) that is defined at all points in a region of space is
called a scalar point function . Conceivably, the function f may depend on time,
but if it does, attention can be confined to conditions at a particular instant. The
region of space in which f is defined is called a scalar field. It is assumed that f

is differentiable in this scalar field . Physical examples of scalar point functions are
the mass density of a compressible medium, the temperature in a body, the flux
density in a nuclear reactor, and the potential in an electrostatic field.

Consider the rate of change of the function f in various directions at some point
P : (x, y, z) in the scalar field for which f is defined. Let (x, y, z) take increments
(dx, dy, dz). Then the function f takes an increment:

df = ∂f

∂x
dx + ∂f

∂y
dy + ∂f

∂z
dz (1-8.1)

Consider the infinitesimal vector i dx + j dy + k dz, where (i, j, k) are unit vectors
in the (x, y, z) directions, respectively. Its magnitude is ds = (dx2 + dy2 + dz2)1/2,
and its direction cosines are

cos α = dx

ds
cos β = dy

ds
cos γ = dz

ds

The vector i (dx/ds) + j (dy/ds) + k (dz/ds) is a unit vector in the direction of
i dx + j dy + k dz, as division of a vector by a scalar alters only the magnitude of
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the vector. Dividing Eq. (1-8.1) by ds , we obtain

df

ds
= ∂f

∂x

dx

ds
+ ∂f

∂y

dy

ds
+ ∂f

∂z

dz

ds

or

df

ds
= ∂f

∂x
cos α + ∂f

∂y
cos β + ∂f

∂z
cos γ (1-8.2)

From Eq. (1-8.2) it is apparent that df/ds depends on the direction of ds; that
is, it depends on the direction (α, β, γ ). For this reason df/ds is known as the
directional derivative of f in the direction (α, β, γ ). It represents the rate of change
of f in the direction (α, β, γ ). For example, if α = 0, β = γ = π/2,

df

ds
= ∂f

∂x

This is the rate of change of f in the direction of the x axis.

Maximum Value of the Directional Derivative. Gradient. By definition of
the scalar product of two vectors, Eq. (1-8.2) may be written in the form

df

ds
= n · grad f (1-8.3)

where n = i cos α + j cos β + k cos γ is a unit vector in the direction (α, β, γ ), and

grad f = i
∂f

∂x
+ j

∂f

∂y
+ k

∂f

∂z
(1-8.4)

is a vector point function (see Section 1-10) of (x, y, z) called the gradient of the
scalar function f . Because n is a unit vector, Eq. (1-8.3) shows that |grad f | is the
maximum value of df/ds at the point P : (x, y, z) and that the direction of grad f

is the direction in which f (x, y, z) increases most rapidly. Equation (1-8.3) also
shows that the directional derivative of f in any direction is the component of the
vector grad f in that direction.

The equation f (x, y, z) = C defines a family of surfaces, one surface for each
value of the constant C. These are called level surfaces of the function f . If n
is tangent to a level surface, the directional derivative of f in the direction of n
is zero, as f is constant along a level surface. Consequently, by Eq. (1-8.3), the
vector n must be perpendicular to the vector grad f when n is tangent to a level
surface. Accordingly, the vector grad f at the point P : (x, y, z) is normal to the
level surface of f through the point P : (x, y, z).

A symbolic vector operator, called del or nabla , is defined as follows:

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
(1-8.5)
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By Eqs. (1-8.3), (1-8.4), and (1-8.5),

grad f = ∇f

and
df

ds
= n · ∇f

By definition,

∇ · ∇ = ∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
(1-8.6)

Consequently, the Laplace equation may be written symbolically as

∇2f = ∂2f

∂x2
+ ∂2f

∂y2
+ ∂2f

∂z2
= 0 (1-8.7)

For this reason the symbolic operator ∇2 is called the Laplacian .

1-9 Vector Fields

Assume that for each point P : (x, y, z) in a region there exists a vector point
function q(x, y, z). This vector point function is called a vector field. It may be
represented at each point in the region by a vector with length equal to the mag-
nitude of q and drawn in the direction of q. For example, for each point in a
flowing fluid there corresponds a vector q that represents the velocity of the parti-
cle of fluid at that point. This vector point function is called the velocity field of
the fluid. Another example of a vector field is the displacement vector function for
the particles of a deformable body. Electric and magnetic field intensities are also
vector fields. A vector field is often simply called a “vector.”

In any continuous vector field there exists a system of curves such that the
vectors along a curve are everywhere tangent to the curve; that is, the vector field
consists exclusively of tangent vectors to the curves. These curves are called the
vector lines (or field lines) of the field. The vector lines of a velocity field are called
stream lines. The vector lines in an electrostatic or magnetostatic field are known
as lines of force. In general, the vector function q may depend on (x, y, z) and t ,
where t denotes time. If q depends on time, the field is said to be unsteady or
nonstationary ; that is, the field varies with time. For a steady field , q = q(x, y, z).
For example, if a velocity field changes with time (i.e., if the flow is unsteady),
the stream lines may change with time.

A vector field q = iu + jv + kw is defined by expressing the projections
(u, v, w) as functions of (x, y, z). If (dx, dy, dz) is an infinitesimal vector
in the direction of the vector q, the direction cosines of this vector are
dx/ds = u/q, dy/ds = v/q, and dz/ds = w/q. Consequently, the differential
equations of the system of vector lines of the field are

ds

q
= dx

u
= dy

v
= dz

w
(1-9.1)
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In Eq. (1-9.1) the components (u, v, w) are functions of (x, y, z). The finite
equations of the system of vector lines are obtained by integrating Eq. (1-9.1).
The theory of integration of differential equations of this type is explained in most
books on differential equations (Morris and Brown, 1964; Ince, 2009).

If a given vector field q is the gradient of a scalar field f (i.e., if q = grad f ),
the scalar function f is called a potential function for the vector field, and the
vector field is called a potential field. Because grad f is perpendicular to the level
surfaces of f , it follows that the vector lines of a potential field are everywhere
normal to the level surfaces of the potential function.

1-10 Differentiation of Vectors

An infinitesimal increment dR of a vector R need not be collinear with the vector R
(Fig. 1-10.1). Consequently, in general, the vector R + dR differs from the vector R
not only in magnitude but also in direction. It would be misleading to denote the
magnitude of the vector dR by dR, as dR denotes the increment of the magnitude
R. Accordingly, the magnitude of dR is denoted by |dR| or by another symbol,
such as ds. The magnitude of the vector R + dR is R + dR. Figure 1-10.1 shows
that |R + dR| ≤ R + |dR|. Hence, dR ≤ |dR|.

If the vector R is a function of a scalar t (where t may or may not denote time),
dR/dt is defined to be a vector in the direction of dR, with magnitude ds/dt

(where ds = |dR|).
Vectors obey the same rules of differentiation as scalars. This fact may be

demonstrated by the � method that is used for deriving differentiation formulas

Figure 1-10.1
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in scalar calculus. For example, consider the derivative of the vector function
Q = uR, where u is a scalar function of t and R is a vector function of t . If t takes
an increment �t , R and u takes increments �R and �u. Hence,

Q + �Q = (u + �u)(R + �R)

Subtracting Q = uR and dividing by �t , we obtain

�Q
�t

= R
�u

�t
+ u

�R
�t

+ �u
�R
�t

As �t → 0, �u → 0, �Q/�t → dQ/dt , �u/�t → du/dt , and �R/�t →
dR/dt . Hence,

dQ
dt

= R
du

dt
+ u

dR
dt

(1-10.1)

Equation (1-10.1) has the same form as the formula for the derivative of the product
of two scalars.

Let R = iu + jv + kw be a single vector (not a vector field) where (i, j, k)

are unit vectors and (u, v, w) are the (i, j, k) projections of R, respectively. Let
(u, v, w) take increments (du, dv, dw). Then because (i, j, k) are constants, R takes
the increment dR = i du + j dv + k dw where, in general, dR is not collinear with
R. If (u, v, w) are functions of the single variable t ,

dR
dt

= i
du

dt
+ j

dv

dt
+ k

dw

dt
(1-10.2)

Hence, dR/dt is a vector in the direction of dR, with magnitude [(du/dt)2 +
(dv/dt)2 + (dw/dt)2]1/2.

If R is the position of a moving particle P measured from a fixed point
O (Fig. 1-10.2), dR/dt is the velocity vector q of the particle. Likewise,

Figure 1-10.2
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dq/dt = d2R/dt2 is the acceleration vector of the particle. Hence, the vector form
of Newton’s second law is

F = m
d2R
dt2

(1-10.3)

1-11 Differentiation of a Scalar Field

Let Q(x, y, z; t) be a scalar point function in a flowing fluid (such as temperature,
density, a velocity projection, etc.). Then

dQ = ∂Q

∂x
dx + ∂Q

∂y
dy + ∂Q

∂z
dz + ∂Q

∂t
dt (1-11.1)

Here (dx, dy, dz, dt) are arbitrary increments of coordinates (x, y, z) and time t .
[In deformation theory, x, y, z are called spatial (Eulerian) coordinates ; see
Chapter 2.]

Let (dx, dy, dz) be the displacement that a particle of fluid experiences during
a time interval dt. Then dx/dt = u, dy/dt = v, and dz/dt = w, where (u, v, w) is
the velocity field. Hence, on dividing Eq. (1-11.1) by dt , we get

dQ

dt
= u

∂Q

∂x
+ v

∂Q

∂y
+ w

∂Q

∂z
+ ∂Q

∂t
(1-11.2)

or, in vector notation,
dQ

dt
= q · grad Q + ∂Q

dt
(1-11.3)

where q is the velocity field. Although Eq. (1-11.2) is derived for a scalar
point function in a flowing fluid, it remains valid for any scalar point function
Q(x, y, z; t).

The distinction between ∂Q/∂t and dQ/dt is very important. The partial deriva-
tive ∂Q/∂t denotes the rate of change of Q at a fixed point of space as the fluid
flows by. For steady flow, ∂Q/∂t = 0. In contrast, dQ/dt denotes the rate of change
of Q for a certain particle of fluid. For example, if Q is temperature, we deter-
mine ∂Q/∂t by holding the thermometer still. To determine dQ/dt , we must move
the thermometer so that it coincides continuously with the same particle of fluid.
This procedure, of course, is not feasible, but we do not need to make measure-
ments with moving instruments because Eq. (1-11.2) gives the relation between
the derivative dQ/dt and the derivative ∂Q/∂t .

1-12 Differentiation of a Vector Field

If Q(x, y, z, t) is a vector field, Eq. (1-11.2) remains valid; that is,

dQ
dt

= u
∂Q
∂x

+ v
∂Q
∂y

+ w
∂Q
∂z

+ ∂Q
∂t

(1-12.1)
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This follows from the fact that Eq. (1-11.2) is valid for each of the components of
the vector Q. Equation (1-12.1) may be written in the form

dQ
dt

= (q · ∇)Q + ∂Q
t

(1-12.2)

If Q = q, dQ/dt is the acceleration vector a. Consequently,

a = dq
dt

= u
∂q
∂x

+ v
∂q
∂y

+ w
∂q
∂z

+ ∂q
∂t

(1-12.3)

or
a = (q · ∇)q + ∂q

∂t
(1-12.4)

Thus, the acceleration field is derived from the velocity field.

1-13 Curl of a Vector Field

Let q = iu + jv + kw be a vector field. Then ∇ × q is a vector field that is denoted
by curl q. Hence, by Eq. (1-7.13),

curl q = ∇ × q =

∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z
u v w

∣∣∣∣∣∣∣∣
(1-13.1)

or

curl q = i
(

∂w

∂y
− ∂v

∂z

)
+ j

(
∂u

∂z
− ∂w

∂x

)
+ k

(
∂v

∂x
− ∂u

∂y

)
(1-13.2)

It can be shown that the vector field curl q is independent of the choice of
coordinates. A physical significance is later attributed to curl q if q denotes the
velocity of a fluid. Curl q may also be related to the rotation of a volume element
of a deformable body (see Chapter 2).

1-14 Eulerian Continuity Equation for Fluids

Let q = iu + jv + kw be an unsteady velocity field of a compressible fluid. Let us
consider the rate of mass flow out of a space cell dx dy dz = dV fixed with respect
to (x, y, z) axes (see Fig. 1-14.1). The mass that flows in through the face AB
during a time interval dt is ρu dy dz dt , where ρ is the mass density. The mass
that flows out through the face CD during dt is {ρu + [∂(ρu)/∂x] dx} dy dz dt .
Similar expressions are obtained for the mass flows out of the other pairs of faces.
Accordingly, the net mass that passes out of the cell dV during dt is

[
∂(ρu)

∂x
+ ∂(ρv)

∂y
+ ∂(ρw)

∂z

]
dV dt (a)
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Figure 1-14.1

With the differential operator ∇ [see Eq. (1-8.5)] this may be written as

∇ · (ρq) dV dt (b)

The product ρq is called current density.
If a(x, y, z; t) is any vector field, ∇ · a is called the divergence of the field.

Accordingly, the notation div a is sometimes used to denote ∇ · a. Note that div a
is a scalar. Accordingly, by Eq. (b), the mass that flows out of the volume element
dV during dt is

dV dt div(ρq) (c)

The name “divergence” originates in this physical idea.
Because mass is conserved in the velocity field of a fluid, the mass that passes

into the fixed cell dV during time dt equals the increase of mass in the cell during
dt. Now, the mass in the cell at the time t is ρ dV . Consequently, the increase of
mass during dt is

∂ρ

∂t
dV dt (d)

Because Eq. (d) must be the negative of Eq. (c), we obtain

∂ρ

∂t
+ div(ρq) = 0 (1-14.1)
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Equation (1-14.1) is known as the Eulerian4 continuity equation for fluids. Any
real velocity field must conform to this relation. For steady flow, the term ∂ρ/∂t

disappears.
For an incompressible fluid, ρ = constant. Consequently, the Eulerian form of

the continuity equation for an incompressible fluid takes the simpler form:

div q = 0 or
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (1-14.2)

This is valid even for unsteady flow of an incompressible fluid. Liquids may
usually be considered to be incompressible except in the study of compression
waves.

The case in which the velocity q is the gradient of a scalar function has great
theoretical importance, that is, the case where

q = −grad φ (1-14.3)

where φ(x, y, z; t) is a scalar function. The flow is then said to be irrotational or
derivable from a potential function φ. Then the velocity component in the direction
of a unit vector n is

qn = q · n = −n · grad φ (1-14.4)

Hence, by Eq. (1-8.3),

qn = −dφ

ds
(1-14.5)

That is, qn is equal to the negative of the directional derivative of φ in the direc-
tion n.

Equation (1-14.3) may be written

u = −∂φ

∂x
v = −∂φ

∂y
w = −∂φ

∂z

Accordingly, by Eq. (1-14.2) the continuity equation for irrotational flow of an
incompressible fluid is

∇2φ = 0 (1-14.6)

Thus, the continuity equation for irrotational flow of an incompressible fluid
reduces to the Laplace equation (see Section 1-8). A general expression for the
Laplace equation in orthogonal curvilinear coordinates in three-dimensional space
is derived in Section 1-22.

4This form of the equation of continuity is referred to as the spatial form in modern continuum
mechanics (see Chapter 2).
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1-15 Divergence Theorem

Let a(x, y, z) be any continuous and differentiable vector field. We may regard
a as current density in a hypothetical fluid. Then, by Eq. (c) of Section 1-14,
div a dx dy dz is the net rate at which fluid flows out of the fixed space element
dx dy dz. Hence, if R is a given fixed region of space that is bounded by a surface S,
the net rate at which fluid passes out of R is

∫∫∫
R

div a dx dy dz

This must also be the rate at which fluid passes through the surface S. If dS is
an element of area of this surface with outward-directed unit normal n, the rate of
flow through dS is a · n dS. Hence,

∫∫∫
R

div a dx dy dz =
∫∫
S

a · n dS (1-15.1)

Thus, a volume integral is transformed into a surface integral.
Equation (1-15.1) is known as the divergence theorem (also Gauss’s theorem).

It is purely mathematical; the reference to flow is simply an artifice to facilitate the
derivation. Rigorous mathematical derivations of the theorem are given in books
on advanced calculus (Goursat, 2005).

If (U, V, W ) are the components of the vector a, Eq. (1-15.1) may be expressed
in scalar form:

∫∫∫
R

(
∂U

∂x
+ ∂V

∂y
+ ∂W

∂z

)
dx dy dz =

∫∫
S

(Un1 + V n2 + Wn3) dS =
∫∫
S

an dS

(1-15.2)

where an denotes the projection of a in the direction of n, and (n1, n2, n3) are
the direction cosines of the unit vector n; the functions (U, V, W ) are unrestricted,
aside from the requirements of continuity and differentiability. The surface S may
consist of a finite number of smooth parts that are joined together along edges. If
the vector n is directed inward, the sign of the right side of Eq. (1-15.2) is reversed.

Many useful results can be obtained by giving special forms to the functions
(U, V, W ). For example, if U = AB , V = W = 0, we obtain

∫∫∫
R

A
∂B

∂x
dx dy dz = −

∫∫∫
R

B
∂A

∂x
dx dy dz +

∫∫
S

ABn1 dS (1-15.3)

Corresponding results for y and z are obtained by setting V = AB , U = W = 0,
and so on. These equations are similar in form to the formula for integration by
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parts of a single integral. Alternatively, if we take V = W = 0, Eq. (1-15.2) yields
∫∫∫

R

∂U

∂x
dx dy dz =

∫∫
R

Un1 dS (1-15.3a)

Similar results are obtained for U = W = 0 and U = V = 0. Equation (1.15.3a)
is called Gauss’s theorem. More generally, Gauss’s theorem may be written in
the form ∫

V

∂Fi

∂xi

dV =
∫

S

Fini dS i = 1, 2, 3 (1-15.3b)

where Fi = Fi(x1, x2, x3), V denotes volume, S denotes surface of volume V with
unit normal vector n : (n1, n2, n3), and x1 ≡ x, x2 ≡ y, and x3 ≡ z.

Another useful relation may be obtained as follows: Let a be the product of a
scalar φ and a vector A; that is,

a = φA

Then
div a = φ div A + ∂φ

∂x
Ax + ∂φ

∂y
Ay + ∂φ

∂z
Az (1-15.4)

or
div a = φ div A + (grad φ) · A

Accordingly, Eq. (1-15.1) yields
∫∫
S

φAn dS =
∫∫∫

R

[φ div A + (grad φ) · A] dV (1-15.5)

If, furthermore, the vector A is representable as the gradient of a scalar function
ψ(A = grad ψ), then by Eq. (1-14.5), An = dψ/dn and

div A = ∂2ψ

∂x2
+ ∂2ψ

∂y2
+ ∂2ψ

∂z2
= ∇2ψ

Hence, for A = grad ψ , Eq. (1-15.5) becomes
∫∫
S

φ
∂ψ

∂n
dS =

∫∫∫
R

[
φ∇2ψ + (grad φ) · (grad ψ)

]
dV (1-15.6)

Equation (1-15.6) holds for any two functions φ and ψ that are finite, continuous,
and twice differentiable in R.

If we subtract from Eq. (1-15.6) the equation obtained by interchanging φ and
ψ , we obtain∫∫

S

(
φ

∂ψ

∂n
− ψ

∂φ

∂n

)
dS =

∫∫∫
R

(
φ∇2ψ − ψ∇2φ

)
dV (1-15.7)
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Both Eqs. (1-15.6) and (1-15.7) are referred to as Green’s theorem. They find
extensive use in mathematical physics.

The above results are useful in transformations from volume to surface integrals
and vice versa.

1-16 Divergence Theorem in Two Dimensions

The two-dimensional analog of Eq. (1-15.2) is

∫∫
R

(
∂U

∂x
+ ∂V

∂y

)
dx dy =

∮
C

(Un1 + V n2) ds (1-16.1)

where U and V are any continuous and differentiable functions of (x, y). Here R

denotes a region of the (x, y) plane, and C is the curve that bounds the region R

(Fig. 1-16.1). The unit normal vector (n1, n2) is directed outward. The element of
arc length of the curve C is denoted by ds. The circle on the integral sign shows
that the integration extends completely around the curve C, in the counterclockwise
sense.

Referring to the figure, we have n1 = cos α, and n2 = sin α. Hence, n1 ds = dy,
and n2 ds = −dx, where (dx, dy) is the displacement along the curve C, corre-
sponding to the increment ds. Hence, by Eq. (1-16.1),

∫∫
R

(
∂U

∂x
+ ∂V

∂y

)
dx dy =

∮
C

(U dy − V dx) (1-16.2)

Figure 1-16.1
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This relation is sometimes called Green’s theorem of the plane. Another form
of Green’s theorem is obtained by the substitution U = v, V = −u. Then

∫∫
R

(
∂v

∂x
− ∂u

∂y

)
dx dy =

∮
C

(u dx + v dy) (1-16.3)

With U = AB, V = 0, Eq. (1-16.2) yields
∫∫
R

A
∂B

∂x
dx dy = −

∫∫
R

B
∂A

∂x
dx dy +

∮
C

AB dy (1-16.4)

Furthermore, analogous to the three-dimensional development of Eqs. (1-15.6) and
(1-15.7), we have

∮
C

φ
∂ψ

∂n
ds =

∫∫
R

[
φ∇2ψ + (grad φ) · (grad ψ)

]
dx dy (1-16.5)

∮
C

(
φ

∂ψ

∂n
− ψ

∂φ

∂n

)
ds =

∫∫
R

(
φ∇2ψ − ψ∇2φ

)
dx dy (1-16.6)

where (φ, ψ) are functions of (x, y) only.

1-17 Line and Surface Integrals (Application of Scalar Product)

Line Integral. Consider a vector F defined at each point on a curve C

(Fig. 1-17.1). The vector F forms an angle α with the tangent to the curve C

at point P . In general, the vector F may vary in magnitude and direction along
the curve. Let s be an arc length measured along the curve. The length of an
infinitesimal element of the curve at point P is ds. The vector ds with magnitude
ds is directed along the tangent line to the curve at point P (Fig. 1-17.1).

By Eq. (1-7.8), the projection of the vector F along the tangent to the curve is
F · ds = F(cos α) ds. The integral

∫
C

F · ds =
∫

C

F(cos α) ds (1-17.1)

Figure 1-17.1
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is called the line integral of the vector F along the curve C. The C in Eq. (1-17.1)
denotes integration along the curve C. By Eq. (1-17.1) it is apparent that the line
integral of a vector is the integral of the tangential component of the vector taken
along a path.

The line integral Eq. (1-17.1) finds numerous applications in physical problems.
For example, if F denotes a force that acts on a particle P that travels along curve
C, the line integral of the tangential component of F from point O to point A

represents the work performed by the force F as the particle travels from O to A.
If F denotes the electric field intensity, that is, the force that acts on a unit charge
in an electric field, the line integral between any two points represents the potential
difference between the two points. If F denotes the velocity at any point in a fluid,
the line integral taken around a closed path in the fluid represents the circulation
of the fluid.

Surface Integral. In Section 1-15 it was shown that the volume of fluid that
passes through a surface S in a unit time is

∫∫
S

q · n dS =
∫∫
S

qn dS (1-17.2)

where q is the velocity field and n is the unit normal to the surface. This integral
is called the surface integral of the vector q. Accordingly, the expression surface
integral of a vector denotes the integral of the normal component of the vector
over a surface.

1-18 Stokes’s Theorem

Equation (1-16.3) may be written as
∮

C

q · dr =
∫∫
R

n · curl q dS (1-18.1)

where dr = (dx, dy), q denotes the vector (u, v, w), and n now denotes the unit
normal to the plane area R [directed in the positive z direction, if the coordinates
(x, y, z) are right handed]. Although Eq. (1-18.1) has been proven only if R is a
region in the (x, y) plane, it remains valid if R is any plane area in space with any
orientation, for Eq. (1-18.1) is invariant under a coordinate transformation; that is,
Eq. (1-18.1) does not depend on the choice of coordinates.

Our result may be generalized still further. The curve C need not be a plane
curve; it may be any closed space curve, and R may be any surface S that caps
this curve. Any capping surface of the curve C may be divided into infinitesimal
cells. Each cell is a plane element of area. Consequently, Eq. (1-18.1) applies for
any one of the cells. We may then sum Eq. (1-18.1) over all cells. Then the right
side of the equation simply becomes the surface integral of curl q over the entire
capping surface S of curve C. On the left side we have the sum of line integrals of
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q about the boundaries of the cells. However, the line integrals over the boundaries
of contiguous cells cancel, as any inner boundary of a cell is described twice, only
in the positive sense and once in the negative sense. Consequently, only the line
integral on the outer boundary C remains.

Accordingly, we have Stokes’s theorem: The line integral of a vector field about
any closed curve equals the surface integral of the normal component of the curl of
the vector over any capping surface.

If q is a velocity field, then curl q is called the vorticity vector. Consequently,
in the terminology of fluid mechanics Stokes’s theorem is expressed as follows:
The circulation on any closed curve equals the flux of vorticity through the loop.

1-19 Exact Differential

Let M(x, y) and N(x, y) be two functions of x and y such that M, N, ∂M/∂y,
and ∂N/∂x are continuous and single valued at every point of a simply connected5

region. The differential expression M dx + N dy is said to be exact if there exists
a function f (x, y) such that df = M dx + N dy. Now, by definition,

df = ∂f

∂x
dx + ∂f

∂y
dy (1-19.1)

Consequently, if M dx + N dy is exact, M = ∂f/∂x, and N = ∂f/∂y. Therefore,

∂M

∂y
= ∂N

∂x
or

∂N

∂x
− ∂M

∂y
= 0 (1-19.2)

Accordingly, Eq. (1-19.2) is a necessary condition for M dx + N dy to be an exact
differential.

Equation (1-19.2) is also a sufficient condition. Assume that Eq. (1-19.2) is
satisfied. Set

F(x, y) =
∫

M dx

where integration is performed with respect to x. Then ∂F/∂x = M and

∂2F

∂x∂y
= ∂M

∂y
= ∂N

∂x

Therefore,
∂

∂x

(
N − ∂F

∂y

)
= 0 or N = ∂F

∂y
+ g(y)

Set f (x, y) = F(x, y) + ∫ g(y) dy. Then N = ∂f/∂y and M = ∂F/∂x = ∂f/∂x.
Hence, M dx + N dy = df ; that is, M dx + N dy is an exact differential.

5A simply connected region has the property that any closed curve drawn on it can, by continuous
deformation, be shrunk to a point without crossing the boundary of the region. For the significance
of simple connectivity, see Courant (1992), Vol. II.
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If f = f (x, y, z), df = P (x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz where
P = ∂f/∂x, Q = ∂f/∂y, and R = ∂f/∂z, an argument analogous to the two-
dimensional case leads to the necessary and sufficient conditions that df be an
exact differential in the form

∂Q

∂x
− ∂P

∂y
= 0

∂R

∂y
− ∂Q

∂z
= 0

∂P

∂z
− ∂R

∂x
= 0 (1-19.3)

1-20 Orthogonal Curvilinear Coordiantes
in Three-Dimensional Space

Let three independent scalar functions (u, v, w) be defined in terms of three inde-
pendent variables (x, y, z) as follows:

u = U(x, y, z) v = V (x, y, z) w = W(x, y, z) (1-20.1)

By independent functions, we mean that Eqs. (1-20.1) yield unique solutions for
(x, y, z):

x = X(u, v, w), y = Y(u, v, w), z = Z(u, v, w) (1-20.2)

For example, if (x, y, z) represents rectangular Cartesian coordinates, and (u, v, w)
represents cylindrical coordinates, Eq. (1-20.2) is of the form

x = u cos v y = u sin v z = w (1-20.3)

If (u, v, w) represents spherical coordinates, Eq. (1-20.2) is of the form

x = u sin v cos w y = u sin v sin w z = u cos v (1-20.4)

If (u, v, w) are assigned constant values, Eq. (1-20.1) becomes

U0(x, y, z) = const = u0

V0(x, y, z) = const = v0

W0(x, y, z) = const = w0

(1-20.5)

Equations (1-20.5) represent three surfaces in space, called coordinate surfaces.
The intersection of any two of these surfaces (say, U0 = u0 and V0 = v0) deter-
mines a curve in space, the w curvilinear coordinate line. The u and v curvilinear
coordinate lines are defined similarly. The three surface U0 = u0, V0 = v0, and
W0 = w0 intersect at a point in space. Hence, a point in space is associated with
each triplet (ui, vi, wi).

If the three systems of surfaces defined by triplets (ui, vi, wi) are mutually
perpendicular (i.e., if the curvilinear coordinate lines through any point are mutually
perpendicular), the curvilinear coordinate system is said to be orthogonal.
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A very special case of an orthogonal curvilinear coordinate system is the rect-
angular Cartesian coordinate system. For rectangular coordinates,

x = u y = v z = w

Hence, three coordinate surfaces are the mutually perpendicular planes:

x = u0 y = v0 z = w0

The intersection of any two of these planes is a coordinate line; for example,
the intersection of planes x = u0, y = v0 determines a z coordinate line. Cylin-
drical coordinates [Eq. (1-20.3)] and spherical coordinate [Eq. (1-20.4)] are also
examples of orthogonal curvilinear coordinate systems. Another example is elliptic
coordinates.

1-21 Expression for Differential Length in Orthogonal
Curvilinear Coordinates

Let (i, j, k) be unit vectors along (x, y, z) axes, respectively. Let (u, v, w) be a
system of orthogonal curvilinear coordinates. Let v and w be constant. Then at any
point the tangent vector to the u coordinate line is

U = xui + yuj + zuk (1-21.1)

where the u subscript denotes partial differentiation. Similarly, tangent vectors to
the v and w coordinate lines are

V = xvi + yvj + zvk W = xwi + ywj + zwk (1-21.2)

Vectors U, V, W are mutually perpendicular. Hence, by the scalar product defini-
tion of two vectors,

U · V = V · W = W · U = 0 (1-21.3)

Also, if (h1, h2, h3) are the magnitudes of the lengths of vectors (U, V, W),
respectively, the scalar product definition yields

h2
1 = U · U h2

2 = V · V h2
3 = W · W (1-21.4)

Hence, by Eqs. (1-20.2), (1-21.1), (1-21.2), and (1-21.4), h1 = h1(u, v, w),

h2 = h2(u, v, w), and h3 = h3(u, v, w).
Consider a line element PQ , where P = P (x, y, z) and Q = Q(x + dx,

y + dy, z + dz). The differential length ds of the line element PQ is given by the
relation

ds2 = dx2 + dy2 + dz2 (1-21.5)
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By Eq. (1-20.2),
dx = xu du + xv dv + xw dw

dy = yu du + yv dv + yw dw (1-21.6)

dz = zu du + zv dv + zw dw

Substituting Eqs. (1-21.6) into Eq. (1-21.5) and utilizing Eqs. (1-21.2), (1-21.3),
and (1-21.4), we obtain

ds2 = h2
1 du2 + h2

2 dv2 + h2
3 dw2 (1-21.7)

Equation (1-21.7) expresses the differential length ds in terms of the orthogo-
nal curvilinear coordinates (u, v, w). The coefficients (h1, h2, h3) are called Lamé
coefficients. The Lamé coefficients are equal in magnitude to the lengths of the
vectors (U, V, W) tangent to (u, v, w) coordinate lines, respectively. The quanti-
ties (h2

1, h2
2, h2

3) are known as the components of the metric tensor of space (Synge
and Schild, 1978).

1-22 Gradient and Laplacian in Orthogonal Curvilinear Coordinates

Consider the infinitesimal parallelepiped whose diagonal is the line element ds. The
faces of the parallelepiped coincide with the planes u = constant, v = constant,
w = constant (Fig. 1-22.1).

The gradient u, (∇u) has the direction normal to the surface u = constant;
that is, the direction of U or the direction of the unit vector U/|U| = U/h1 [see

Figure 1-22.1
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Eq. (1-21.4)]. The magnitude of ∇u is equal to the derivative of u in this direction.
Hence, by Eq. (1-21.7), with v and w constant, the magnitude of ∇u is

du

ds
= 1

h1
(1-22.1)

Hence, the gradient vector is

∇u = 1

h2
1

U (1-22.2)

Similarly, the gradient of v and w are

∇v = 1

h2
2

V ∇w = 1

h2
3

W (1-22.3)

By the definition of ∇ and by the rule for partial differentiation, that is,

∂f

∂x
= ∂f

∂u

∂u

∂x
+ ∂f

∂v

∂v

∂x
+ ∂f

∂w

∂w

∂x

if f (u, v, w) is any scalar point function, then the gradient of f is

∇f = ∂f

∂u
∇u + ∂f

∂v
∇v + ∂f

∂w
∇w (1-22.4)

Substituting Eqs. (1-22.2) and (1-22.3) into Eq. (1-22.4), we obtain

∇f = 1

h1

∂f

∂u
u + 1

h2

∂f

∂v
v + 1

h3

∂f

∂w
w (1-22.5)

where (u, v, w) are unit vectors in the directions of (U, V, W), respectively; that is,

u = U
h1

v = V
h2

w = W
h3

(1-22.6)

Equation (1-22.5) represents the gradient of a scalar in orthogonal curvilinear
coordinates. Consequently, by Eq. (1-22.5), the expression for the operator ∇ in
orthogonal curvilinear coordinates is

∇ = 1

h1
u

∂

∂u
+ 1

h2
v

∂

∂v
+ 1

h3
w

∂

∂w
(1-22.7)

To derive the expression for the Laplacian ∇2, we first derive the expression for
the divergence of a vector field, Q = (Q1, Q2, Q3), that is, ∇ · Q, in orthogonal
curvilinear coordinates.

Consider again the infinitesimal parallelepiped of Fig. 1-22.1. The lengths of its
edges are h1 du, h2 dv, and h3 dw, and its volume is h1h2h3 du dv dw. To facilitate
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the calculation of the divergence of Q, we use Green’s theorem for transforming
volume integrals into surface integrals:∫∫∫

through
volume

(∇ · Q) dV =
∫∫

over
bounding
surface

Q · n dS (1-22.8)

The contribution of the surface OABC , Fig. (1-22.1), to the integral over the
surface of the parallelepiped taken in the direction of the outward normal is
−Q1h2 dv h3 dw. The contribution of the surface DEFG is

Q1h2h3 dv dw + ∂

∂u
(Q1h2h3) du dv dw

Hence, the net contribution of the coordinate surfaces perpendicular to u coordinate
lines is

∂

∂u
(Q1h2h3) du dv dw (1-22.9)

Similarly, the contributions of the coordinate surfaces perpendicular to v and w

coordinate lines, respectively, are

∂

∂v
(Q2h1h3) du dv dw

∂

∂w
(Q3h1h2) du dv dw (1-22.10)

Because the volume of the infinitesimal parallelepiped, Fig. 1-22.1, is infinites-
imal,

lim
v→0

∫∫∫
(∇ · Q) dV → ∇ · Q h1h2h3 du dv dw (1-22.11)

Consequently, by Eqs. (1-22.8) to (1-22.11),

∇ · Q = 1

h1h2h3

[
∂

∂u
(Q1h2h3) + ∂

∂v
(Q2h1h3) + ∂

∂w
(Q3h1h2)

]
= div Q

(1-22.12)

Equation (1-22.12) represents the formula for the divergence of a vector field
Q in terms of general three-dimensional orthogonal curvilinear coordinates.

Setting ∇f = Q and noting by Eq. (1-22.5) that Q1 = (1/h1)(∂f/∂u),
Q2 = (1/h2)(∂f/∂v), and Q3 = (1/h3)(∂f/∂w), we obtain, by Eqs. (1-22.6) and
(1-22.12),

∇2f = ∇ · ∇f = 1

h1h2h3

[
∂

∂u

(
h2h3

h1

∂f

∂u

)
+ ∂

∂v

(
h1h3

h2

∂f

∂v

)
+ ∂

∂w

(
h1h2

h3

∂f

∂w

)]

(1-22.13)
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Equation (1-22.13) represents the Laplacian of a scalar function f (u, v, w) in
general three-dimensional orthogonal curvilinear coordinates. Hence, the Laplace
equation ∇2f = 0 in general three-dimensional orthogonal curvilinear coordinates
is obtained by setting the right-hand side of Eq. (1-22.13) equal to zero.

For plane (two-dimensional) orthogonal curvilinear coordinates, h3 = 1 and
∂/∂w = 0.

PART III ELEMENTS OF TENSOR ALGEBRA

1-23 Index Notation: Summation Convention

Gibbs vector notation may be considered to replace and extend conventional scalar
notation. For example, the scalar representation (Fx, Fy, Fz) of a force with respect
to rectangular Cartesian axes is fully replaced by the vector notation F. Likewise,
index notation may be considered to replace and extend Gibbs vector notation.
Thus, the vector F may be represented by the symbol Fi , where the subscript
(index) i is understood to take values 1, 2, 3 (or the values x, y, z). Hence, the
notation Fi is equivalent to (F1, F2, F3) or to (Fx, Fy, Fz), where subscripts (1, 2, 3)
or subscripts (x, y, z) denote projections of the force along rectangular Cartesian
coordinate axes (1, 2, 3) or (x, y, z).

Restricting ourselves to rectangular Cartesian coordinates, we indicate coordi-
nates by indices (1, 2, 3) instead of letters (x, y, z). For example, the coordinate of
a general point X in (x, y, z) space are denoted by xi = (x1, x2, x3) or more briefly
by xi , with the understanding that i takes the values (1, 2, 3). The coordinates of
a specific point P are denoted by pi , the letter p identifying the point and the
index i, the separate coordinates (see Fig. 1-23.1). Similarly, axes (x, y, z) may
be denoted by (x1, x2, x3), or simply by xi . Axes xi may also be denoted by the
notations (01, 02, 03) or (1, 2, 3).

The direction cosines of a line L with respect to axes xi are denoted by α1, α2, α3

or briefly by αi . Any other letter may replace α. For example, the direction cosines
of line L may also be denoted by βi , by mi , by ni , and so on.

The sum of two vectors qi, ri is qi + ri . The scalar product of two vectors
uα, vα is [see Eq. (1-7.6)]

u · v = u1v1 + u2v2 + u3v3 =
3∑

α=1

uαvα (1-23.1)

Equation (1-23.1) may be simplified by the use of conventional summation
notation. For example, we may write Eq. (1-23.1) in the form

u · v = uαvα (1-23.2)

with the understanding that the repeated Greek index α implies summation over
the values (1, 2, 3). Accordingly, if mα and nα denote the direction cosines of two
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Figure 1-23.1

unit vectors directed along two lines M and N in (x, y, z) space, by the scalar
product of vectors, the angle θ between lines M and N is given by the relation
[see Eq. (1-7.8) and the discussion following it]

cos θ = mαnα (1-23.3)

If lines M and N coincide, θ = 0. Then Eq. (1-23.3) yields (with mα = nα)

m2
1 + m2

2 + m3
3 = 1 (1-23.4)

Accordingly, the sum of the squares of the direction cosines of a directed line in
(x, y, z) space is equal to 1 [see Eq. (1-7.9)].

In general, a repeated index that is to be summed will be denoted by a Greek
letter. We thus avoid the necessity of using some special notation for a repeated
index that is not summed. Because the operation of summing is independent of the
Greek index used to denote the summation process, the following representations
of cos θ are equivalent [see Eq. (1-23.3)]:

cos θ = mαnα = mβnβ = mγ nγ = · · ·

as each of the representations denotes m1n1 + m2n2 + m3n3. Accordingly, a
repeated Greek index is called a summing index or a dummy index. An index
that appears only once in a general term is called a free index. Thus, in the term
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Aαββ , the index β is a dummy index and the index α is a free index, the value of
α being independent of the values of β. For example, if we assign the value 1 to
α, the term Aαββ represents the sum A111 + A122 + A133.

If a repeated index is not to be summed, we denote it by a Latin letter
(a, b, c, . . . , z). Thus, mini denotes any element of the set (m1n1, m2n2, m3n3),
depending on the values assigned to i. For example, if i = 2, then mini denotes
the element m2n2.

If several dummy indexes occur in a general term, summation is implied for
each index separately. For example,

xiαβyαβ = xi1βy1β + xi2βy2β + xi3βy3β

= xi11y11 + xi12y12 + xi13y13

+ xi21y21 + xi22y22 + xi23y23

+ xi31y31 + xi32y32 + xi33y33

Thus, for every value of the free index i, there are nine terms in the sum xiαβyαβ .
In modern algebra, the range of the index is often extended from (1, 2, 3) to

(1, 2, 3, . . . , n). Thus, we may write

Aiαxα = Ai1x1 + Ai2x2 + · · · + Ainxn

where the summing index α takes values (1, 2, 3, . . . , n).
To avoid confusion, an index already appearing in a general term as a free index

should not be used as a dummy index, as no meaning is given indexes that appear
more than twice. Thus, notations such as Aββxβ should be avoided. For example,
if x = Aαyα and yi = Biαzα , the expression for x in terms of (z1, z2, z3) is written

x = AαBαβzβ

not in the meaningless form
x = AαBααzα

Rectangular Arrays. A set of numbers arranged in the following form is called
a rectangular array : ⎡

⎢⎢⎢⎣
a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

...
...

...
. . .

...

am1 am2 am3 · · · amn

⎤
⎥⎥⎥⎦ (1-23.5)

where, in general, m 	= n.
More generally, such an array of numbers is called a matrix. In the study

of matrix theory, extensive rules are laid down for the multiplication of matri-
ces (Section 1-28). However, the role of products in matrix theory is to a large
extent replaced by summation convention. A typical element of an array is denoted
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by aij, the index i referring to the ith row of the array and the index j to the j th
column. For brevity, the entire array [Eq. (1-23.5)] is denoted by

[aij] (1-23.6)

If m = n, the array is called a square array. In the theory of continuous media,
we are concerned primarily with square arrays.

If the arrays [aij], [bij], [cij], . . . all have the same number of rows and the same
number of columns, a linear combination [hij], of [aij], [bij], [cij], . . . is defined by
the elements

hij = Aaij + Bbij + Ccij + · · · (1-23.7)

where A, B, C, . . . are arbitrary constants independent of i and j. In particular, the
sum [aij + bij + cij] of the three arrays [aij], [bij], and [cij] has the typical element
aij + bij + cij.

A square array [aij] is said to be symmetric if
aij = aji (1-23.8)

for all pairs of values of i, j ; a square array is said to be skew symmetric or
antisymmetric if

aij = −aji (1-23.9)

for all pairs of i, j . For an antisymmetric array, it follows, by Eq. (1-23.9), that
aii = ajj = 0.

An arbitrary square array (neither symmetric nor antisymmetric) may be repre-
sented as the sum of a symmetric array and an antisymmetric array. For example,
any two numbers r and s can always be written in the form

r = 1
2 (x + y) s = 1

2 (x − y)

by letting
x = r + s y = r − s

Hence, we may express a typical element of the arbitrary square array [aij] in
the form

aij = 1
2 (aij + aij) + 1

2 (aji − aji)

= 1
2 (aij + aji) + 1

2 (aij − aji)

or
aij = cij + dij (1-23.10)

where
cij = 1

2 (aij + aji) = cji
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denotes the elements of a symmetric square array, and

dij = 1
2 (aij − aji) = −dji

denotes the elements of an antisymmetric square array.

1-24 Transformation of Tensors under Rotation of Rectangular
Cartesian Coordinate System

In this section we consider briefly some tensor transformations and properties that
are important in the theory of deformable media. For simplicity, we restrict our
discussion to rectangular Cartesian coordinates. Accordingly, the results presented
here are special cases of more general tensor transformations (Synge and Schild,
1978; Spain, 2003).

Let (x, y, z) and (X, Y, Z) denote two right-handed rectangular Cartesian coordi-
nate systems with common origin (Fig. 1-24.1). The cosines of the angles between
the six coordinate axes may be represented in tabular form (Table 1-24.1). Each
entry in Table 1-24.1 is the cosine of the angle between the two coordinate axes

Figure 1-24.1
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TABLE 1-24.1

x y z

X a11 a12 a13

Y a21 a22 a23

Z a31 a32 a33

designated at the top of its column and left of its row. For example, a23 denotes
the cosine of the angle between the Y axis and the z axis; that is, aαβ represents
the direction cosines of the angle between the axes designated by the row α and
the column β of Table 1-24.1. Because the elements of Table 1-24.1 are direction
cosines, they satisfy the following relations (Eisenhart, 2005):

a2
1β + a2

2β + a2
3β = 1 β = 1, 2, 3

a2
α1 + a2

α2 + a2
α3 = 1 α = 1, 2, 3

(1-24.1)

Equation (1-24.1) signifies that the sum of the squares of the elements of any
row or column of Table 1-24.1 is 1. Furthermore, because the axes (X, Y, Z) are
mutually perpendicular, we have

aα1aβ1 + aα2aβ2 + aα3aβ3 = 0 α, β = 1, 2, 3 α 	= β (1-24.2)

Similarly, because (x, y, z) are mutually perpendicular, we have further

a1βa1α + a2βa2α + a3βa3α = 0 α, β = 1, 2, 3 α 	= β (1-24.3)

Equations (1-24.2) and (1-24.3) signify that the sum of the products of correspond-
ing elements in any two rows or any two columns in Table 1-24.1 is zero. In other
words, they express the orthogonality of axes (X, Y, Z) and the orthogonality of
axes (x, y, z). For this reason, they are called orthogonality relations.

Another important relation between the coefficients of Table 1-24.1 may be
obtained as follows. Noting that the direction cosines of a unit vector with respect
to (x, y, z) axes are identical to the projections of the unit vector on the coordinate
axes, we regard the direction cosines (a11, a12, a13) as the components on (x, y, z)
axes of a unit vector in the X direction. Similarly, (a21, a22, a23) and (a31, a32, a33)
represent unit vectors in the Y direction and the Z direction, respectively. Hence,
by the vector product of vectors [see Eq. (1-7.13)], if the two coordinate systems
(x, y, z) and (X, Y, Z) are both right handed (or both left handed), we obtain the
vector relation

(a11, a12, a13) = (a21, a22, a23) × (a31, a32, a33)

or, in scalar notation,
a11 = a22a33 − a23a32

a12 = a31a23 − a21a33

a13 = a21a32 − a22a31

(1-24.4)
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Similar relations hold for (a21, a22, a23), . . . , (a13, a23, a33). In index notation, the
entire set of relations may be written

akr = aipajq − aiqajp (1-24.5)

where (i, j, k), the first indexes of each direction cosine, may take any cyclic order
of 1, 2, 3, 1, 2, . . . , and where (p, q, r), the second indexes of each direction cosine,
take independently any cyclic order of 1, 2, 3, 1, 2, . . . . For example, let (i, j, k)
be (2, 3, 1) and let (p, q, r) be (2, 3, 1). Then Eq. (1-24.5) yields

a11 = a22a33 − a23a32

Similarly, (i, j, k) = (1, 2, 3), (p, q, r) = (3, 1, 2) yields

a32 = a13a21 − a11a23

Equations (1-24.5) are also referred to as orthogonality relations, as they express
the orthogonality of axes (x, y, z) and of axes (X, Y, Z).

In view of Eqs. (1-24.4), the second equation of Eqs. (1-24.1), with α = 1, may
be written

a11(a22a33 − a23a32) + a12(a31a23 − a21a33) + a13(a21a32 − a22a31) = 1

Similar expressions hold for α = 2, 3; β = 1, 2, 3.
In determinant notation, the above equation may be written in the form

det aαβ =
∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = 1 (1-24.6)

where det denotes determinant. If the coordinate system is left handed, it may be
shown that det aαβ = −1. Consequently, we have the following theorem:

Theorem 1-24.1. Any one of the direction cosines of a set of right-handed
(left-handed) rectangular Cartesian axes measured with respect to a second set
of right-handed (left-handed) rectangular Cartesian axes is equal to its cofactor
(the negative of its cofactor) in the determinant formed from the square array of
direction cosines [see Eqs. (1-24.4) and (1-24.6)]. Furthermore, the numerical
value of the determinant is 1( −1).

In the following, we consider right-handed coordinate systems only.
Let the coordinates of a point P be (x, y, z) with respect to axes (x, y, z). Then,

with respect to (X, Y, Z) axes, the coordinates of P may be expressed in terms of
coordinates (x, y, z) by the equations

X = a11x + a12y + a13z

Y = a21x + a22y + a23z

Z = a31x + a32y + a33z

(1-24.7)
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For (X, Y, Z) axes with origin at (a10, a20, a30), Eqs. (1-24.7) may be generalized
by the substitution X = X − a10, Y = Y − a20, and Z = Z − a30.

Conversely, with respect to (x, y, z) axes, the coordinates of P expressed in
terms of (X, Y, Z) are given by the relations (because det aαβ = 1)

x = a11X + a21Y + a31Z

y = a12X + a22Y + a32Z

z = a13X + a23Y + a33Z

(1-24.8)

With the summation notation introduced in Section 1-23, Eq. (1-24.7) becomes

Xα = aα1x1 + aα2x2 + aα3x3 α = 1, 2, 3 (1-24.9)

or
Xα = aαβxβ α, β = 1, 2, 3

Similarly, Eq. (1-24.8) may be written

xβ = a1βX1 + a2βX2 + a3βX3 β = 1, 2, 3

xβ = aαβXα α, β = 1, 2, 3 (1-24.10)

For given values of α and β, the value of ααβ in Eq. (1-24.9) is identical to the
value of aαβ in Eq. (1-24.10). This follows from the definition of the entries in
Table 1-24.1.

With the understanding that α, β take values 1, 2, 3, Eqs. (1-24.9) and (1-24.10)
are written

Xα = aαβxβ (1-24.11)

and

xβ = aαβXα (1-24.12)

Because a repeated Greek index is always summed, it may be replaced by any
convenient letter, as noted in Section 1-23. Accordingly, the following forms for
Eq. (1-24.11) are all equivalent:

Xα = aαβxβ = aαγ xγ = aαζ xζ

Scalars. Quantities such as temperature and density that may be represented by
a single number—for example, 10◦C or 30 g/cm3 —are called scalars. Under a
transformation of coordinate axes, scalars remain unchanged; that is, scalars are
invariant under coordinate transformations. For this reason, scalars are often called
invariants. In tensor theory, scalars are called tensors of zero order.

Vectors. In summation notation a vector is represented by the symbol ui

(Section 1-23). Suppose the arrow OP representing the vector ui is attached
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Figure 1-24.2

to a rectangular Cartesian coordinate system (x, y, z), as in Fig. 1-24.2. Then
the coordinates of P correspond to the components (u1, u2, u3) of vector ui .
Consequently, under a transformation from one rectangular Cartesian coordinate
system to another, the components of a three-dimensional vector transform
according to the relationship [see Eq. (1-24.11)]

Uα = aαβuβ (1-24.13)

The vector ui remains fixed in space. Such sets of three components (i.e., vectors)
are called tensors of first order. Tensors of first order require only one index for
their representation. Multiplication of a first-order tensor by a zero-order tensor
(i.e., multiplication of a vector by a scalar) yields another first-order tensor. For
example, multiplications of ui by a constant c yields cu i . Hence, by Eq. (1-24.13),
aαβ(cuβ) = c(aαβuβ) = cUα. Thus, cu i is a tensor of first order, as it obeys the
rules of transformation of a tensor of first order. Furthermore, the addition of two
tensors of first order (two vectors) yields a tensor of first order (a vector). For
example, if up, vP are two tensors of first order, by Eq. (1-24.13) we have

Uα = aαβuβ Vα = aαβvβ

Addition of these equations yields

Uα + Vα = aαβuβ + aαβvβ = ααβ(uβ + vβ)

Hence, uβ + vβ is a tensor of first order, as it transforms according to Eq. (1-24.13).
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Tensors of Higher Order. Multiplication of tensors of first order leads to quan-
tities that are not tensors of zero or first order. For example, let uζ and vη be
two first-order tensors in the rectangular Cartesian coordinate system (x, y, z). Let
Uα, Vβ denote the corresponding tensors in the rectangular Cartesian coordinate
system (X, Y, Z). Then, by Eq. (1-24.13),

UαVβ = (aαζ uζ )(aβηvη) = aαζ aβηuζ vη (1-24.14)

or
Wαβ = aαζ aβηwζη

where Wαβ = UαVβ and wζη = uζ vη represent the products of the vectors Uα, Vβ

in the (X, Y, Z) system and uζ , vη in the (x, y, z) system, respectively.
Because both ζ and η are dummy indexes, for given values of α, β the right-

hand side of Eq. (1-24.14) contains nine terms. Accordingly, Eq. (1-24.14) repre-
sents nine equations, each with nine terms. Quantities that transform according to
Eq. (1-24.14) are called tensors of second order. In the symbolical representation
of tensors of second order, two indexes are required. Many quantities other than
the product of two vectors transform according to Eq. (1-24.14). For example,
components of stress and of strain transform according to Eq. (1-24.14) under a
change of rectangular coordinate systems (see Chapters 2 and 3). Accordingly, the
components of stress and of strain form second-order tensors.

In a similar fashion, a tensor of third order is formed by multiplying together
three first-order tensors, and so on. Thus, an nth-order tensor may be formed by
multiplying together n first-order tensors. Essentially, this means that we have
available means of specifying components of nth-order tensors with respect to any
set of rectangular Cartesian axes and rules for transforming these components to
any other set of rectangular Cartesian axes. Hence, the statement that a quantity is
a tensor quantity may be proved by comparison with these known tensor transfor-
mations. For example, this technique was employed in the proof that the sum of
two first-order tensors yields a first-order tensor.

In summary, a tensor of zero order (scalar) is a single quantity that depends on
position in space but not on the coordinate system. A tensor of first order (vector)
is a quantity whose components transform according to Eq. (1-24.13). Hence, with
respect to a rectangular Cartesian coordinate system in three-dimensional space, a
tensor of first order contains 31 = 3 elements of components. A tensor of second
order is a quantity that transforms according to Eq. (1-24.14). With respect to
rectangular Cartesian coordinate systems in three-dimensional space, a second-order
tensor has 32 = 9 elements.

A tensor of nth order is a quantity whose components transform according to
the rule6

Tp1p2...pn = ap1q1ap2q2 · · · apnqn tq1q2...qn (1-24.15)

6See Synge and Schild (1978). Here we let dummy indexes be denoted by q1, q2, . . . , qn.
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With respect to rectangular Cartesian coordinate axes in three-dimensional space,
an nth-order tensor has 3n elements. Thus, a fourth-order tensor has 81 elements, a
fifth-order tensor has 243 elements, and a tenth-order tensor has 59,049 elements.

In general developments of continuous-media mechanics, fourth-order tensors
play a prominent role (Green and Zerna, 2002).

1-25 Symmetric and Antisymmetric Parts of a Tensor

If we interchange α and β in Eq. (1-24.14), we obtain

Wβα = aβζ aαηwζη (1-25.1)

Because ζ and η are dummy indexes, we may interchange them. Thus, Eq. (1-25.1)
may be written

Wβα = aβηaαζwηζ = aαζ aβηwηζ (1-25.2)

Hence, comparing Eqs. (1-24.14) and (1-25.2), we see that wηζ transforms accord-
ing to the same rule as wζη. The tensor wζη is said to be conjugate to wηζ . Thus, if
wζn is a tensor of second order, another tensor of second order is obtained by inter-
changing η and ζ . Consequently, wζη + wηζ and wζη − wηζ are tensors of second
order. Symbolically, we may represent the tensors wζη and wηζ as follows:

wζη =
⎛
⎝w11 w12 w13

w21 w22 w23

w31 w32 w33

⎞
⎠

and

wηζ =
⎛
⎝w11 w21 w31

w12 w22 w32

w13 w23 w33

⎞
⎠

Then

wζη + wηζ =
⎛
⎝ 2 w11 w12 + w21 w13 + w31

w21 + w12 2 w22 w23 + w32

w31 + w13 w32 + w23 2 w33

⎞
⎠

= wηζ + wζη (1-25.3)

and

wζη − wηζ =
⎛
⎝ 0 w12 − w21 w13 − w31

w21 − w12 0 w23 − w32

w31 − w13 w32 − w23 0

⎞
⎠

= −(wηζ − wζη) (1-25.4)

Because wζη + wηζ is unaltered by interchanging ζ and η, it is called a symmetrical
tensor of second order. However, when ζ and η are interchanged in wζη − wηζ ,
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each element changes in sign. Hence, wζη − wηζ is called an antisymmetrical tensor
of second order. Also, by Eqs. (1-25.3) and (1-25.4),

wζη = 1
2 (wζη + wηζ ) + 1

2 (wζη − wηζ ) = Sζη + Aζη (1-25.5)

where Sζη is a symmetric second-order tensor and Aζη is antisymmetric. Conse-
quently, a second-order tensor may be resolved into symmetric and antisymmetric
parts. Furthermore, because the antisymmetric part contains only three compo-
nents, w12 − w21, w13 − w31, w23 − w32, it may be associated with a vector ui .
Equation (1-25.5) is analogous to Eq. (1-23.10).

Problem. Let wζη + wηζ = 2Sζη = 2Sηζ and wζη − wηζ = Aζη = −(wηζ −
wζη) = −Aηζ , where wζη is a tensor of second order. Show that the product of
the symmetric tensor Sζη and the antisymmetric tensor Aζη vanishes; that is, show
that SζηAζη = 0.

1-26 Symbols δij and εijk (the Kronecker Delta
and the Alternating Tensor)

The use of the following notation often simplifies the writing of equations:

δij =
{

1 for i = j

0 for i 	= j
(1-26.1)

The symbol δij is called the Kronecker delta.
Using the notation δij with respect to axes (x, y, z), we may write the second of

Eqs. (1-24.1) and Eqs. (1-24.2) collectively as

aαγ aβγ = δαβ (1-26.2)

Similarly, with respect to axes (X, Y, Z) we may express the first of Eqs. (1-24.1)
and Eqs. (1-24.3) in the form

aγβaγα = δβα (1-26.3)

The Kronecker delta has the following important properties:

1. δλλ = δ11 + δ22 + δ33 = 3

2. δiλδjλ = δij

3. piλδjλ = pij

Property 3 is a generalization of 2. It is called the rule of substitution of indexes ,
as the multiplication of δjλ substitutes the index j for the index λ.

The set of quantities δij, i, j = 1, 2, 3 constitutes a tensor of the second order.
To prove this, we must show that δij transforms according to Eq. (1-24.14) under a
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transformation of rectangular Cartesian axes. The array δij consists of the elements
δ11 = 1, δ22 = 1, δ33 = 1, δ12 = 0, δ23 = 0, and δ13 = 0. Accordingly, if we set
δσγ = wσγ and substitute in Eq. (1-24.14), we get

Wαβ = δ′
αβ = aασ aβγ δσγ = aα1aβ1 + aα2aβ2 + aα3aβ3

Hence, by Eqs. (1-26.1) and (1-26.2),

δ′
αβ =

{
1 for α = β

0 for α 	= β

Thus, it follows that the array (δ11 = δ22 = δ33 = 1, δ12 = δ13 = δ23 = 0) is trans-
formed into itself by the tensor transformation Eq. (1-24.14). This transformation
is in accord with the definition of Eq. (1-26.1). Hence, δαβ is a second-order tensor.
A tensor whose respective components (elements) are the same with respect to all
sets of coordinate systems is called an isotropic tensor. In view of the fact that
δij is a tensor and in view of the substitution property 3 above, δij is sometimes
referred to as the substitution tensor.

Symbol εijk. The symbol εijk is defined as follows:

εijk

⎧⎨
⎩

1 if i, j, k are in cyclic order 1, 2, 3, 1, 2, . . .

0 if any two of i, j, k are equal
−1 if i, j, k are in anticyclic order 3, 2, 1, 2, 3, . . .

(1-26.4)

For example,

ε123 = ε312 = ε231 = 1

ε112 = ε121 = ε322 = · · · = 0 (1-26.5)

ε321 = ε213 = ε132 = −1

By definition of δij and εijk, it follows that

εijkδij = εiik = 0 no summation (1-26.6)

Furthermore, it follows by Eqs. (1-26.5) and (1-26.6) that

εαβkδαβ = 0 summed (1-26.7)

In terms of εijk, the orthogonality relations [Eq. (1-24.5)] may be written

εijαaαn = εαβnaiαajβ (1-26.8)

where i, j, n take independently any value 1, 2, 3. The proof of Eq. (1-26.8) is left
for the problems.

The array εijk transforms according to the rules of transformation of a third-
order isotropic tensor. To show this, we note that a third-order tensor transforms
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according to the rule [see Eq. (1-24.15)]

Tijk = aiαajβakγ tαβγ (1-26.9)

Hence, we must show that εαβγ transforms according to the rule

εijk = aiαajβakγ εαβγ (1-26.10)

Substituting Eq. (1-26.8) into the right side of Eq. (1-26.10), we obtain

akγ aαγ εijα

But αkγ aαγ = δkα , by Eq. (1-26.2). Hence,

akγ aαγ εijα = δkαεijα = εijk

Accordingly, Eq. (1-26.10) is verified. In view of the properties noted in
Eqs. (1-26.4) and (1-26.10), the symbol εijk is called the alternating tensor.

1-27 Homogeneous Quadratic Forms

The most general homogeneous quadratic form in the variables Xi, i = 1, 2, 3,
may be written in index notation as

Q = aαβXαXβ α, β = 1, 2, 3 (1-27.1)

where aij denotes the following square array of real elements:

⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦ (1-27.2)

The quadratic form Q written in expanded form is

Q = a11X
2
1 + a22X

2
2 + a33X

2
3 + (a12 + a21)X1X2

+ (a13 + a31)X1X3 + (a23 + a32)X2X3 (1-27.3)

The determinant det aij is called the determinant of the array [Eq. (1-27.2)]. The
expression (1-27.1) [or Eq. (1-27.3)] is called the quadratic form associated with
the array [aij]. Without loss of generality, the array may be assumed symmetrical;
that is, we may set aij = aji. Then Eq. (1-27.3) becomes

Q = a11X
2
1 + a22X

2
2 + a33X

2
3 + 2a12X1X2 + 2a13X1X3 + 2a23X2X3 (1-27.4)

where we have simply replaced the notation (a12 + a21) in Eq. (1-27.3) by 2a12 in
Eq. (1-27.4), and so on.
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The equation ∣∣∣∣∣∣
a11 − r a12 a13

a21 a22 − r a23

a31 a32 a33 − r

∣∣∣∣∣∣ = 0

or, in the index notation,

|aij − rδij| = 0 (1-27.5)

is called the characteristic equation of the array [aij]. The three roots (r1, r2, r3) of
Eq. (1-27.5) are called the characteristic roots , or latent roots , or eigenvalues of
the array [aij] (Eisenhart, 2005; Hildebrand, 1992). In general, the ri are distinct.
However, special cases may occur in which two or all of the ri are equal.

A necessary and sufficient condition that a set of linear algebraic equations

ciαXα = 0 i = 1, 2, 3 (1-27.6)

possess a solution other than the trivial solution X1 = X2 = X3 = 0 is that
the determinant of the coefficients ciα of Eq. (1-27.6) vanishes (Pipes, 1959;
Hildebrand, 1992). Accordingly,

|ciα| = 0 (1-27.7)

represents a necessary and sufficient condition that Eq. (1-27.6) possess a solution
Xi(Xi 	= 0). Accordingly, by Eqs. (1-27.5), (1-27.6), and (1-27.7), it follows that
for every r such that |aij − rδij| = 0, an array (Xi) exists such that

(aiα − rδiα)Xα = 0

Rewriting, we have

aiαXα = rδiαXα = rXi (1-27.8)

In other words, Eq. (1-27.5) expresses the necessary and sufficient condition that
Eq. (1-27.8) possesses nontrivial solutions of Xi . The nontrivial solutions of
Eq. (1-27.8) are called the eigenvectors of the array [aij].

Let yi denote any arbitrary array (y1, y2, y3). Then, by Eq. (1-27.8), we obtain
the bilinear form

aαβXβyα = rXαyα (1-27.9)

If yi = Xi , we obtain the quadratic form (Hildebrand, 1992)

aαβXαXβ = rXαXα (1-27.10)

Orthogonality of Eigenvectors. Consider the case where the array Xi cor-
responds to the array mi of direction cosines [Eq. (1-23.4)]. Assume that there
exist two nonequal characteristic roots r(1), r(2) of Eq. (1-27.5). Then the corre-
sponding solutions (eigenvectors) of Eq. (1-27.8) may be denoted by mi

(1), mi
(2).



1-27 HOMOGENEOUS QUADRATIC FORMS 51

Accordingly, Eq. (1-27.8) becomes

aiαm(1)
α = r(1)m

(1)
i for r = r(1)

aiαm(2)
α = r(2)m

(2)
i for r = r(2)

(1-27.11)

Multiplying the first of Eqs. (1-27.11) by m
(2)
i and the second by m

(1)
i and

subtracting, we obtain (because aij = aji)

[
r(2) − r(1)

]
m

(1)
β m

(2)
β = 0

However, because by hypothesis r(2) 	= r(1), it follows that

m
(1)
β m

(2)
β = 0 (1-27.12)

Accordingly, the directions (eigenvectors) m
(1)
β , m

(2)
β that correspond to the char-

acteristic roots r(1) and r(2) are orthogonal. Furthermore, if r(1) and r(2) are two
distinct characteristic roots and m

(1)
β and m

(2)
β are the corresponding direction

cosines, by Eq. (1-27.10) we have

aαβm(1)
α m

(2)
β = r(2)m

(1)
β m

(2)
β = r(1)m

(1)
β m

(2)
β = 0

Hence
aαβm(1)

α m
(2)
β = 0 (1-27.13)

This result is equivalent to the vanishing of shearing stress (or strain) components
relative to principal axes (see Chapters 2 and 3).

Finally, note that the characteristic roots r(1), r(2) are real. We prove this by
contradiction as follows: Assume that r(1) is complex. Denote its complex conjugate
by r(1). Then, taking the complex conjugate of the first of Eqs. (1-27.11), we obtain

aαβm
(1)
β = r(1)m(1)

α (1-27.14)

Multiplying (1-27.14) by m(1)
α , we get

aαβm(1)
α m

(1)
β = r(1)m(1)

α m(1)
α (1-27.15)

Multiplying the first of Eqs. (1-27.11) by m(1)
α , we get

aαβm(1)
α m

(1)
β = r(1)m(1)

α m(1)
α (1-27.16)

Comparison of Eqs. (1-27.15) and (1-27.16) yields

[
r(1) − r(1)

]
m(1)

α m(1)
α = 0
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Because m(1)
α m(1)

α is the sum of squares of real numbers, it cannot be zero unless
m1 = m2 = m3 = 0. However, this is not possible because, by Eq. (1-23.4),

m2
1 + m2

2 + m2
3 = 1

Hence
r(1) = r(1)

That is, r(1) is equal to its conjugate r(1). Accordingly, r(1) must be real.

1-28 Elementary Matrix Algebra

The matrix algebra outlined in this section plays an important role in modern
structural analysis and in numerical methods of continuum mechanics such as finite
element methods.

In Section 1-23 we noted that the rectangular array of m rows and n columns
of numbers aij is called a matrix (more explicitly, an m by n matrix or a matrix
of order m by n). The elements aij may be real or complex numbers or, more
generally, may be matrices themselves. However, unless we state otherwise, we
take the numbers aij to be real. In Section 1-23 we denoted the array by [aij] and
considered several properties of the array in terms of the individual elements amn.
However, it is frequently more economical to treat a matrix as a single entity,
particularly in algebraic operations involving addition, subtraction, multiplication,
and division of several arrays. Accordingly, we employ the notation

A = [aij] 1 ≤ i ≤ m 1 ≤ j ≤ n (1-28.1)

where A denotes the m by n matrix [Eq. (1-23.5)] of the m by n elements aij.
If m = 1,

A = [a11, a12, . . . , a1n] = (a11, a12, . . . , a1n) (1-28.2)

contains one row. Hence it is called a row matrix , where we use parentheses ( ) to
denote a row matrix.

Alternatively, if n = 1,

A =

⎡
⎢⎢⎢⎣

a11

a21
...

am1

⎤
⎥⎥⎥⎦ = {a11, a21, . . . , am1} (1-28.3)

contains one column. Hence it is called a column matrix , where, for economy
of space, we use braces { } to denote a column matrix. Because the numbers
a11, a12, . . . , a1n (or the numbers a11, a21, . . . , am1) may be taken as the com-
ponents of a vector in n-dimensional space, it follows that a row matrix and a
column matrix are sometimes called vectors of the first kind and of the second
kind, respectively.
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If all aij = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, then the matrix A = [aij ] = [0] is called
the null matrix.

The algebraic operations of addition, subtraction, multiplication, division, and
so on of matrices are defined in terms of equivalent operations on the elements of
the matrices. These operations are discussed next.

Matrix Addition. Let A = [aij], B = [bij], 1 ≤ i ≤ m, 1 ≤ j ≤ n. Then the oper-
ation of addition, denoted by A + B, is defined by

A + B = [aij + bij] =

⎡
⎢⎢⎢⎣

a11 + b11 a12 + b12 . . . a1n + b1n

a21 + b21 a22 + b22 . . . a2n + b2n

...
...

. . .
...

am1 + bm1 am2 + bm2 . . . amn + bmn

⎤
⎥⎥⎥⎦ (1-28.4)

Matrix Subtraction. The subtraction of matrices A, B, denoted by A − B, as
in addition, requires that A, B be of the same order. By definition,

A − B = [aij − bij] (1-28.5)

If A = B, that is, if aij = bij, A − B = [0], the null matrix. In other words, two
matrices A, B are said to be equal if they are of the same order and their difference
is the null matrix.

Multiplication of a Matrix by a Scalar. Multiplication of a matrix A by a
scalar s multiplies every element aij of A by s. Thus, sA = s[aij] = [saij]. Anal-
ogously, division of a matrix A by a scalar s is defined by (1/s)A = (1/s)[aij] =
[(1/s)aij].

Multiplication of a Matrix by a Matrix. The operation of a matrix multiplica-
tion occurs in a number of situations. For example, in Section 1-24 we found that
a rotation from one set of Cartesian axes xα to another set Xα led to the result
[Eq. (1-24.11)]

Xα = aαβxβ α, β = 1, 2, 3 (1-28.6)

Similarly, a rotation from axes Xα to axes Yα yields

Yα = bαβXβ (1-28.7)

where bαβ are direction cosines between axes Yα and Xβ . Hence, substitution of
Eqs. (1-28.6) into Eq. (1-28.7) yields a transformation from axes xα directly to
axes Yα . Thus,

Yα = bαβaβγ xγ = cαγ xγ (1-28.8)

where
cαγ = bαβaβγ (1-28.9)
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In matrix notation, we may write

X = Ax

Y = BX = BAx = Cx (1-28.10)

where
A = [aβγ ] B = [bαβ ] C = [cαγ ] (1-28.11)

and where summation convention holds (Section 1-23).
Generalization of Eq. (1-28.10) leads to the following definition: Given

A = [aij], 1 ≤ i ≤ m, 1 ≤ j ≤ n; B = [bij], 1 ≤ i ≤ p, 1 ≤ j ≤ q. The product
AB is defined if and only if p = n. When p = n, matrices A and B are said to be
conformable or to conform. The product of two conformable matrices A (of order
m by n) and B (of order n by q) is a matrix C (of order m by q), with elements
cij given by the rule

cij = biαaαj = bi1a1j + bi2a2j + · · · + binanj (1-28.12)

This rule is summarized by the following statement: The matrix C, with elements
cij, is obtained by multiplication of the elements of the ith row of matrix B into
the elements of the j th column of matrix A.

In general, we note that the premultiplication BA of A by B is not equal to the
postmultiplication AB of A by B. Thus, in general, BA 	= AB. In particular, BA
and AB are both defined if and only if m = q and p = n.

More generally, the product P of p matrices (extended product) A1, A2,

A3, . . . , Ap is defined by P = A1A2A3 · · · Ap, provided that in the order
A1, A2, A3, . . . , Ap two adjacent matrices conform. If A1 = A2 = A3 = · · · =
Ap = A, we obtain P = AP , the pth product of A.

Square Matrices. A matrix A = [aij], 1 ≤ i ≤ m, 1 ≤ j ≤ n is said to be square
if and only if m = n. A square matrix is said to be symmetric if and only if aij = aji.
If aij = 0, for i 	= j , the matrix A = [aij] is said to be a diagonal matrix and is
denoted by A = diag(a11, a22, . . . , ann). If A is a diagonal matrix and aii = s for
all i, A is called a scalar matrix. If, in addition, s = 1, the matrix A consists of
diagonal elements all equal to 1. Then A is called the unit matrix and is denoted
by the symbol I ; that is, A = I . For any matrix B, we have IB = BI = B. Hence,
I commutes with any matrix. Thus, the unit matrix operates on matrices in the
same manner that the number 1 operates on real numbers.

Transpose of a Matrix. In operations with arrays [aij], we must consider arrays
[aji]. The matrix [aji] = AT is called the transpose of the matrix A = [aij], and the
operation of forming the transpose AT from matrix A is called transposition. In
particular, the transpose P T of a product P = AB of matrices A, B is P T = BTAT,
and, in like manner, the transpose of the extended product P = A1A2 · · · Aq is
P T = AT

qAT
q−1A

T
q−2 · · · AT

1 .



1-28 ELEMENTARY MATRIX ALGEBRA 55

Division of a Matrix by a Matrix. The operation of division is restricted
to square matrices. Several preliminary notions are required: the concepts of the
determinant |a| of a square matrix [aij], the cofactor Aij of the elements aij in
the determinant |a|, the adjoint matrix A = [Aji] of a matrix, and the inverse of a
matrix, denoted by A−1.

We assume that the concept of determinant is familiar from elementary algebra.
Then, for a square n by n matrix A = [aij], 1 ≤ i ≤ n, 1 ≤ j ≤ n, we have the
associated determinant |a| of the matrix [aij], where the number |a| is defined
(Birkhoff and MacLane, 2008; Lancaster and Tismenetsky, 1985; Gilbert, 2008) by

a =

∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · anm

∣∣∣∣∣∣∣∣∣
(1-28.13)

If a 	= 0, A = [aij] is said to be nonsingular and possesses a reciprocal or inverse
matrix A−1 such that

[aij]A
−1 = AA−1 = I (1-28.14)

where I is the unit matrix of the same order as A. Accordingly, the operation of
matrix multiplication of a matrix by its inverse matrix is analogous to dividing a
real number by itself. More generally, if B is any matrix conformable with the
nonsingular inverse matrix A−1,

BA−1 = C (1-28.15)

where C is a matrix. Equation (1-28.15) is sometimes referred to as the division of
matrix B by matrix A. Accordingly, to divide matrix B by a conformable matrix A,
we must first compute the inverse matrix A−1. To compute A−1, we first introduce
the adjoint matrix A of A. The adjoint matrix A is defined by

A = [Aji] (1-28.16)

where the element Aij denotes the cofactor of the element aij in the determinant |a|
of the matrix A = [aij], and [Aij] is the transpose of the matrix [Aij]. The adjoint
matrix A exists whether or not A is singular.

By definition of matrix multiplication and the theory of determinants, we have
[Eq. (1-28.12)]

[aij][Aji] = |a|I = S (1-28.17)

where S is a diagonal (scalar) matrix, with sii = |a|, and sij = 0 for i 	= j . Dividing
Eq. (1-28.17) by the determinant |a| (assumed nonsingular), we obtain

I = [aij][Aji]

|a| = AA

|a| (1-28.18)
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Accordingly, comparison of Eqs. (1-28.14) and (1-28.18) yields

A−1 = [Aji]

|a| = A

|a| (1-28.19)

The matrix A−1 is called the inverse or reciprocal matrix because of the property
AA−1 = I . It plays the same role in matrix algebra as does division in ordinary
algebra. Thus, if AB = CD where A, B, C, D are appropriate matrices, premulti-
plication by A−1, the inverse of A, yields A−1AB = IB = B = A−1CD.

1-29 Some Topics in the Calculus of Variations

Maxima, Minima, and Lagrange Multipliers. The problem of seeking max-
ima and minima of functions of several variables plays an important role in
engineering. A generalization of the elementary theory of maxima and minima
(or extrema) leads to the calculus of variations. For example, in the theory of
extrema, consider the problem of determining for a given continuous function
f (x1, x2, . . . , xn) of the n variables (x1, x2, . . . , xn) in a given region R, a point
(xp1, xp2, xp3, . . . , xpn) at which the function f attains maximum or minimum val-
ues (i.e., extreme values or simply extrema) with respect to all points of R in a
neighborhood (vicinity) of the point (xp1, xp2, . . . , xpn). This problem always has
a solution (point for which f is an extremum), because according to a theorem of
Weierstrass, every function f (x1, x2, . . . , xn) that is continuous in a closed bounded
region R of the variables (x1, x2, . . . , xn) possesses a maximum value and a mini-
mum value in the interior of R or on the boundary of R. Analogous to the theory
of a single variable, if the function f (x1, x2, . . . , xn) is differentiable in R and
if an extreme value is attained at an interior point P : (xp1, xp2, . . . , xpn), then
the derivatives of f with respect to each of the x’s vanish at P . The vanishing
of the derivatives of f is a necessary condition for extrema. It is not sufficient,
however, as an examination of the function f (x) = x3 at the point x = 0 shows.
More generally, we define a point at which all first-order derivatives of f vanish,
hence at which df = 0, as a stationary point S. In turn, a stationary point S that
furnishes a maximum value or a minimum value (an extreme value) in an allowable
neighborhood of S is called an extremum.

In some problems the choice of points (x1, x2, . . . , xn) is restricted to subre-
gions of R by certain equations of constraint (or simply constraints). For example,
consider the stationary values of the function f (x1, x2, . . . , xn) of the n variables
(x1, x2, . . . , xn), continuous with continuous first partial derivatives, subject to the
restrictions that the x’s must satisfy m equations of constraint (m < n)

gi(x1, x2, . . . , xn) = 0 i = 1, 2, . . . , m (1-29.1)

The direct approach to this problem is to eliminate m of the variables from f

by means of Eq. (1-29.1). Then seek the stationary values of f (y1, y2, . . . , yn−m),
where y1, y2, . . . , yn−m denote the remaining n − m variables. However, because
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the elimination of any m of the variables is arbitrary and the process of elimination
from Eq. (1-29.1) may be nontrivial, an alternative approach attributed to Lagrange
is often employed (the Lagrange multiplier method ). This method has the advantage
of retaining symmetry in the calculations (arbitrary elimination of m variables is
avoided) and of routine elegance.

Lagrange’s method of multipliers consists of forming a new function F such
that

F(x1, x2, . . . , xn; λ0, λ1, . . . , λm) = λ0f (x1, x2, . . . , xn)

+
m∑

i=1

λigi(x1, x2, . . . , xn) (1-29.2)

where the λi, i = 0, 1, 2, . . . , m, are called the Lagrange multipliers. Then
stationary values of F are sought over the unrestricted range of the variables
(x1, x2, . . . , xn) by the requirements

∂F

∂x1
= 0

∂F

∂x2
= 0, . . . ,

∂F

∂xn

= 0

∂F

∂λ1
= g1 = 0

∂F

∂λ2
= g2 = 0, . . . ,

∂F

∂λm

= gm = 0

(1-29.3)

These equations suffice to determine the stationary points (xp1, xp2, . . . , xpn) and
the Lagrange multipliers λ1, λ2, . . . , λm. Because F is homogeneous in the λ’s
[Eq. (1-29.2)], we may take λ0 = 1.

Equations (1-29.3) show that the stationary points for F are the same as the
stationary values of f subject to the constraints of Eq. (1-29.1). The Lagrange
multiplier method is useful in the theory of principal values of stress and strain
(Chapters 2 and 3).

More generally, the above results may be summarized as follows7:
Given a function f (x1, x2, . . . , xn) of n variables (x1, x2, . . . , xn) subject to m

constraints gi(x1, x2, . . . , xn) = 0, i = 1, 2, . . . , m. Let f and gi possess contin-
uous first partial derivatives in a region R of the x space. Furthermore, let the
Jacobian J be nonzero; that is,

J = ∂(g1, g2, . . . , gm)

∂(a1, a2, . . . , am)
	= 0 (1-29.4)

where the set of variables (a1, a2, . . . , am) is some selection of m variables from
the extremum (xp1, xp2, . . . , xpn). Then the stationary values of f subjected to

7For an analytical proof of the Lagrange multiplier method, see Courant (1992), pp. 192–199 (foot-
note 5).
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the constraints gi = 0, i = 1, 2, . . . , m are identical to the stationary values of the
function

F(x1, x2, . . . , xn; λ1, λ2, . . . , λm) = f (x1, x2, . . . , xn)

+
m∑

i=1

λigi(x1, x2, . . . , xn) (1-29.5)

In cases where the constraints gi = 0 are algebraic relations, the Lagrange mul-
tipliers are constant parameters. However, more generally (Langhaar, 1989), when
the equations of constraint require the xi to be solutions of differential equations,
the Lagrange multipliers may be functions of one or more of the variables xi .

Variation of a Function. First Variation of an Integral. Stationary Value
of an Integral. As in the theory of ordinary maxima and minima, the calculus
of variations is concerned with the problem of extreme values (stationary values).
However, in contrast to the ordinary extremum problem of a function of a finite
number of independent variables, the calculus of variations deals with functions of
functions, or simply functionals (Courant and Hilbert, 1989).

The simplest type of problem in the calculus of variations may be outlined as
follows: Let F(x, y, y ′) be a given function of the three arguments x, y, y ′ that
is continuous and has continuous first and second derivatives in the region of the
arguments. Because F is a function of x, an integral

I (y) =
∫ x1

x0

F(x, y, y ′) dx

becomes a definite number depending upon the behavior of the function y = y(x),
the argument function. That is, the integral I (y) becomes a function of the argument
function y(x) or, in other words, a functional. The fundamental problem of the
calculus of variations may be stated in this form: Among all functions y = y(x)

that are defined and continuous and possess continuous first and second derivatives
in the interval x0 ≤ x ≤ x1 and for which boundary values y0 = y(x0), y1 = y(x1)

are given, determine that function y = u(x) for which the integral I (y) has the
smallest possible value (or the largest possible value). The conditions imposed upon
the argument function y(x) are called conditions of admissibility , and we speak
of argument functions that satisfy the conditions of admissibility as admissible
functions. The admissible functions y(x) form a class C. In the above formulations
we required that y(x) be continuous with its first and second derivatives. Actually,
the existence of I (y) requires only that F , hence y ′(x), be sectionally continuous.
The more restricted admissible conditions limit the class C in which functions y(x)

are sought. However, it may be shown that the function y = f (x), which minimizes
I when the broader class of admissible conditions is allowed, always lies in the
more restricted class of admissible functions (Courant and Hilbert, 1989).

Accordingly, our objective is to determine necessary conditions that an admissi-
ble function y = u(x) gives a maximum or minimum value (extreme value) to the
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integral I (y). The method employed is analogous to that of the extreme problem of
determining the extreme value of a function of a single variable. Thus, we assume
that y = u(x) is the solution, say, a minimum. [The problem of determining a max-
imum may be dispensed with, as the method of seeking a maximum is the same
as that for seeking a minimum with F replaced by −F in I (y).] Then for any
other admissible function the value of I must increase. Because we seek necessary
conditions, it suffices to consider admissible functions that lie infinitesimally close
to the solution y = u(x). Hence, we consider the class of admissible functions

y = y(x) + εη(x) = y(x) + δy

where ε is a parameter and η(x) is a function in the class of admissible functions
(i.e., has continuous first and second derivatives in x0 ≤ x ≤ x1 and vanishes at
x = x0 and x = x1). The quantity δy = εη(x) is called the variation of the function
y(x). Then if ε is sufficiently small, the admissible functions y lie in an arbitrarily
small neighborhood of the extremum y = u(x). Hence, the integral J = I (y + εη)

may be regarded as a function of ε, which must attain a minimum at ε = 0 relative
to all values of ε in a sufficiently small neighborhood of ε = 0. Consequently,
dJ/dε|ε=0 = J ′(0) = 0 is a necessary condition that I (y) attain a minimum for
y = u(x). More generally, without regard to maximum or minimum, we say that the
integral I is stationary for y = u(x). Thus, with J (ε) = I (y + εη) = ∫x1

x0
F(x, y +

εη, y ′ + εη′)/dx, differentiation yields the necessary condition

J ′(0) =
∫ x1

x0

(Fyη + Fy′η′) dx = 0

that I (y) be stationary for all admissible η(x). Integration by parts and use of the
conditions η(x0) = η(x1) = 0 yield

J ′(0) =
∫ x1

x0

η

(
Fy − d

dx
Fy′

)
dx = 0

which must hold for arbitrary admissible functions η. Hence, by the fundamental
theorem of the calculus of variations,8

Fy − dFy′

dx
= 0 (1-29.6)

Equation (1-29.6) is the Euler differential equation for the intetgral I (y). It is a
necessary condition that I (y) possess a stationary value.

Recalling the definition δy = εη(x), and noting that η(x) = dy/dε, we may
interpret the symbol δ to denote the differential obtained when ε is regarded as the

8See Langhaar (1989). Langhaar gives an elegant approach to the derivation of the Euler equation
in Section 3-2.
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independent variable. Then the equation

δI = η
dJ

dε

∣∣∣∣
ε=0

=
∫ x1

x0

(ηFy + η′Fy′) dx (1-29.7)

is called the first variation of the integral I . Hence, the terminology stationary
character of an integral means the same thing as vanishing of the first variation of
the integral.
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CHAPTER 2

THEORY OF DEFORMATION

2-1 Deformable, Continuous Media

In classical mechanics a solid body is often assumed to be rigid; that is, distances
between particles constituting the body are assumed to remain invariant under
the action of applied forces. In many problems of dynamics of solids, the rigid-
body approximation is sufficiently accurate for engineering purposes. However,
the rigid-body approximation often leads to grossly incorrect results. For example,
in describing the resistive behavior of a volume of fluid to applied forces, it is
necessary to account for the change in form of the fluid.

The behavior of rigid bodies is treated in general mechanics. In the following
pages we treat the behavior of deformable bodies. Actually, there are no rigid
bodies in nature. All bodies are deformable to a greater or lesser degree; that is,
the distance between the particles of real bodies always undergoes some change
under the action of forces. The question of whether or not a body may be assumed
rigid is a question of the range of validity of the rigid-body approximation.

Continuity. To describe in general the motion of a deformable medium, consid-
ered as a molecular structure, it would be necessary to write down the equations
of motion of each molecule. However, this objective has been achieved only in the
case of gases in states far removed from unstable states. In the case of solids, the
present state of scientific development concentrates on nanomechanics and physics
(Reed and Kirk, 1989; Timp, 1999). However, in this chapter, we are not generally
interested in the motion of individual molecules of a medium. Rather, the problem
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is to describe the overall behavior of the medium—for example, to determine the
velocity, acceleration, strain, stress, or temperature at any point in the medium.
Consequently, we restrict our problem to the determination of mean or average
values up to the microlevel (Fig. 1-1.2) in space and time, not to the determination
of the motion of the molecules themselves. To accomplish this aim, we consider a
medium to be contained in a volume (region) R. Each neighborhood of a material
point P in R is dense. That is, each neighborhood in R contains sufficient material
so that mean or average values in space and time exist. Thus, the concepts of den-
sity, temperature (or kinetic energy of the molecules), and so on are meaningful
(Prandtl and Tietjens, 1957). Furthermore, we initially disregard motion; that is,
for short periods of time each volume element contains the same molecules. In
other words, we regard the molecular mean free paths to have negligible dimen-
sions compared to the elements of volume considered. However, as evidenced in
fluids by the phenomena of diffusion, internal friction (which results in a transfer
of momentum between continuous boundaries of a medium), and heat conduction
(which is due to transfer of kinetic energy at the molecular level), the constant
interchange of molecules between volume elements, which in reality always exists,
cannot be neglected for long periods of time.

In the following sections we treat deformation, that is, the changes in distance
between material points of dense regions. The configuration or shape of the region
is described by a continuous mathematical model whose geometrical points are
associated in a one-to-one manner with the location of material particles of the
region. When the configuration (shape) of a continuous model (region) changes
under some physical action, we say that the region or material body is transformed
(into a new shape or configuration). We assume that the transformation is contin-
uous. Thus, neighborhoods of a material point P in the initial region R remain
neighborhoods of the transformed material point P in the transformed region R.
Therefore, we regard tearing or fracture of the body as an extraordinary circum-
stance that requires special study. We dispense with such effects in this treatment.
Before undertaking the treatment of deformation of deformable bodies, we will
review a few basic concepts of rigid-body displacements, as they play a role in the
general theory of deformable bodies.

2-2 Rigid-Body Displacements

Displacement of a Particle. By definition, the displacement of a particle is
determined by its initial and final locations; the path of the particle between these
points is irrelevant. A displacement of a particle is a vector quantity, as displace-
ments of particles may be represented by arrows that combine by vector addition.
For example, in Fig. 2-2.1, q1 denotes a displacement of a particle from point
O to point P , and q2 denotes a displacement of the particle from P to Q. The
resultant displacement from point O to point Q is represented by the vector sum
q = q1 + q2.

Translation. A mechanical system is said to undergo a translation if the dis-
placement vectors for all its particles are equal. A translation is said to be a type
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Figure 2-2.1

of “rigid-body displacement” because the distances between the particles of the
systems are unchanged. A translation of a system may be represented by a single
vector, which represents the displacement of any particle of the system.

A displacement of a rigid body is a translation if in the final position of the
body all lines connecting particles of the body retain their original directions and
senses (Boresi and Schmidt, 2000).

Rotation. A mechanical system is said to undergo a rotation through an angle θ

about an axis x if all particles of the system describe circular arcs of angle θ with
their centers on the x axis and with their planes perpendicular to the x axis. A
rotation is a rigid-body displacement. In general, a rotation of a rigid body is not
a vectorial quantity.

Plane Displacements. A rigid body is said to experience a plane displacement
if the displacement vectors of all its particles are parallel to a plane. Translations
and rotations are plane displacements. To study plane displacements of a rigid
body, it is necessary to consider only those particles that lie in a cross-sectional
plane parallel to the displacement vectors, because the displacement vectors do not
vary along a normal to that plane. It may be shown that any plane displacement
of a rigid body can be performed by a rotation (Boresi and Schmidt, 2000).

Other Theorems on Displacement of a Rigid Body. For general displace-
ments of a rigid body, we have the following interesting theorems (Whittaker,
1999):

1. Euler’s Theorem. Any displacement of a rigid body that has one point fixed
can be performed by a rotation about an axis through the fixed point.

2. Chasles’s Theorem. Any displacement of a rigid body can be performed by a
screw motion, that is, by a rotation about an axis, combined with a translation
parallel to the axis. Chasles’s theorem is a generalization of Euler’s theorem.

The general kinematical representation of a rigid-body displacement in terms of
the components of the displacement vector is given in Section 2-15.
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2-3 Deformation of a Continuous Region. Material Variables.
Spatial Variables

Let R be a closed region that is occupied initially by a material body. In the theory
of deformation we refer to region R as a medium or a deformable body, or simply
as a body. Let the medium undergo a deformation (change in configuration) such
that at some later time t it occupies the region R, where we indicate the deformed
or transformed state of the body by a script letter. Thus, the material body in region
R is deformed into a region R by some physical action (Fig. 2-3.1). Under the
deformation, material particles in the neighborhood of any point P in R remain
neighborhoods of the transformed point P in R.

To analyze the deformation of region R into region R, some method of descrip-
tion of regions R and R is required. In the general theory of continuum mechanics,
it is convenient to describe the region R by one system of curvilinear Euclidean
coordinates (x1, x2, x3) or (x, y, z) and region R by a second system (ξ1, ξ2, ξ3) or
(ξ, η, ζ ). In turn, (x1, x2, x3) and (ξ1, ξ2, ξ3) may be considered to be coordinates
associated with two separate reference frames,1 A, B (Fig. 2-3.2). Hence, the geo-
metrical point P (x1, x2, x3) in region R and the geometrical point P (ξ1, ξ2, ξ3)
into which P (x1, x2, x3) is transformed may be described in terms of coordinates
(x1, x2, x3), (ξ1, ξ2, ξ3) measured in frames A and B, respectively.

Considering region R to be the initial (undeformed) configuration of the medium,
the final (deformed) configuration R may be described by the equation

ξ1 = ξ1(x1, x2, x3; t) ξ2 = ξ2(x1, x2, x3; t) ξ3 = ξ3(x1, x2, x3; t) (2-3.1)

or, in index notation,

ξi = ξi(x1, x2, x3; t) i = 1, 2, 3 (2-3.1a)

Figure 2-3.1

1See Boresi and Schnmidt (2000), Section 13.11, for a discussion of reference frames.
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Figure 2-3.2 Curvilinear coordinates.

where (x1, x2, x3) are restricted to region R, and (ξ1, ξ2, ξ3) are restricted to region
R. Equations (2-3.1) define the location at time t of the particle P that initially
lies at the point (x1, x2, x3) in the underformed medium. We asume that (ξ1, ξ2, ξ3)
are continuous and differentiable in the variables (x1, x2, x3; t). Physically, this
means that the medium does not rupture or separate into parts at any time dur-
ing the deformation. Thus, to each point in region R there corresponds a point in
region R, and vice versa; mathematically speaking, Eqs. (2-3.1) denote a one-
to-one correspondence between the points in regions R and R. Consequently,
Eqs. (2-3.1) possess single-valued solutions of the type

x1 = x1(ξ1, ξ2, ξ3; t), x2 = x2(ξ1, ξ2, ξ3; t), x3 = x3(ξ1, ξ2, ξ3; t)

or

xi = xi(ξ1, ξ2, ξ3; t), i = 1, 2, 3 (2-3.2)

where the functions xi are considered to be continuous and differentiable with
respect to ξi . Equations (2-3.2) define the initial position xi of a particle that is at
point ξi in the deformed medium at time t .

Equations (2-3.1) and (2-3.2) allow a choice of independent variables, either
(x1, x2, x3) or (ξ1, ξ2, ξ3). This choice gives fluid dynamics a dual nature. For
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example, when (x1, x2, x3) are taken as independent variables, we fix our attention
on a definite particle (x1, x2, x3) or a definite portion of a medium (material), and
we consider how it changes in space. This viewpoint is known as the Lagrangian
(material ) viewpoint, and (x1, x2, x3; t) are called Lagrangian (material) variables.
When (ξ1, ξ2, ξ3) are taken as independent variables, we fix in space a geomet-
rical point (ξ1, ξ2, ξ3), or a geometrical region, and we ask what particles pass
through this point or region. This viewpoint is the Eulerian (spatial ) viewpoint,
and (ξ1, ξ2, ξ3; t) are called Eulerian (spatial ) variables.

In describing a quantity Q, we may write it either in the material form
Q(x1, x2, x3; t) or the spatial form Q(ξ1, ξ2, ξ3; t). For example, the spatial form
is usually used in classical fluid mechanics to describe velocity, acceleration,
and so forth. Also, many modern writers on large deformation theories of solids
adopt (ξ1, ξ2, ξ3; t) as independent variables. However, although the spatial
point of view simplifies the theory of stress, it introduces a natural difficulty in
practical boundary value problems, as the deformed shape of the medium is not
generally known in advance. Furthermore, when problems of deformable solids are
formulated by means of energy principles, the initial coordinates (x1, x2, x3) serve
most simply and naturally as independent variables. The arbitrariness of selection
of spatial or material variables does not arise in the classical small-deflection
theories of elasticity and plasticity because there the points (x1, x2, x3) and
(ξ1, ξ2, ξ3) are assumed to lie so close together that it is not necessary to
distinguish between them; that is, the displacements are infinitesimally small.
Kinematical consequences of this arbitrariness of choice of independent variables
will be considered later.

By Eqs. (2-3.1) and (2-3.2), we note that for t = 0, ξ1 = x0, ξ2 = y0, and ξ3 =
z0, where x0, y0, and z0 denote initial values of ξi . Furthermore, we note that
Eqs. (2-3.1) and (2-3.2) represent a triple infinity of curves, dependent on the
initial point x0, y0, and z0 chosen. Hence, for simplicity we consider a deformation
at a given time t = constant; that is, we consider the deformation between time
t = 0 and time t = constant. In this manner, we may omit t from Eqs. (2-3.1) and
(2-3.2) entirely. Then

ξ1 = ξ1(x1, x2, x3), ξ2 = ξ2(x1, x2, x3), ξ3 = ξ3(x1, x2, x3) (2-3.3a)

and

x1 = x1(ξ1, ξ2, ξ3), x2 = x2(ξ1, ξ2, ξ3), x3 = x3(ξ1, ξ2, ξ3) (2-3.3b)

Although the general description of deformation described in terms of arbitrary
curvilinear coordinates relative to two frames A and B (Fig. 2-3.2) has merit in
a general study of deformation theory, the basic physical concepts may become
more evident in terms of specific reference frames and coordinates. Accordingly,
let us consider frames A, B to coincide with the rectangular Cartesian frame F .
Hence, let xi, ξi be rectangular Cartesian coordinates (Fig. 2-3.3). Then coordi-
nates (x1, x2, x3) denote rectangular Cartesian coordinates of point P in region R,
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Figure 2-3.3 Frames A, B coincident with frame. F(x1, x2, x3)

and (ξ1, ξ2, ξ3) denote rectangular Cartesian coordinates of point P in region R.
Because Eqs. (2-3.3) define the final position (ξ1, ξ2, ξ3) of a particle in terms of
the initial position (x1, x2, x3) of a particle, the quantities

u1 = ξ1 − x1, u2 = ξ2 − x2, u3 = ξ3 − x3 (2-3.4)

are called the components of the displacement of the particle P . The collection of
elements (u1, u2, u3) is called the displacement of P . The displacement is com-
monly represented by a displacement vector (see Section 2-2)

q = iu1 + ju2 + ku3 (2-3.5)

where (i, j, k) are unit vectors directed along positive (X1, X2, X3) axes, respec-
tively, and (u1, u2, u3) are given by Eq. (2-3.4). By means of Eqs. (2-3.3), the
displacement ui may be expressed in terms of either the material coordinates xi or
the spatial coordinates ξi .

Remarks on Notations. In the above development we have employed indexing
notation. Accordingly, we have denoted axes by the symbols xi or (x1, x2, x3), and
associated quantities—for example, displacement components—by (u1, u2, u3)
with corresponding indexing. In many texts, conventional x, y, z notation is
employed. For example, rectangular Cartesian axes are denoted by (x, y, z), and
(x, y, z) displacement components are denoted by three corresponding symbols,
say, (u, v, w). Then partial derivatives of (u, v, w) relative to (x, y, z) are denoted
by ∂u/∂x, ∂u/∂y, ∂u/∂z, . . . , and so on, by ux, uy, uz, . . . , and so on. From time
to time in the text we refer to x, y, z notation for convenience.

2-4 Restrictions on Continuous Deformation of a Deformable Medium

In the theory of functions, it is shown that Eqs. (2-3.1) possess a single-valued
continuous solution of the type (2-3.2) if and only if the following determinant
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does not vanish in region R (Courant, 1992):

J =

∣∣∣∣∣∣∣∣∣∣∣∣

∂ξ1

∂x1

∂ξ1

∂x2

∂ξ1

∂x3
∂ξ2

∂x1

∂ξ2

∂x2

∂ξ2

∂x3
∂ξ3

∂x1

∂ξ3

∂x2

∂ξ3

∂x3

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
ξ1,1 ξ1,2 ξ1,3

ξ2,1 ξ2,2 ξ2,3

ξ3,1 ξ3,2 ξ3,3

∣∣∣∣∣∣ = ∂(ξ1, ξ2, ξ3)

∂(x1, x2, x3)
�= 0 (2-4.1)

where the subscripts ( , i) denote partial differentiations with respect to xi, i =
1, 2, 3.

The determinant J of Eq. (2-4.1) is called the functional determinant or the
Jacobian of the functions (ξ1, ξ2, ξ3). The expression ∂(ξ1, ξ2, ξ3)/∂(x1, x2, x3) is
a conventional notation for the Jacobian.

On the basis of the following physical argument, further restrictions may be
placed on the Jacobian J of the deformation. If the particles of a body are not
displaced at all, ξ1 = x1, ξ2 = x2, and ξ3 = x3. Then J = 1. Also, because the
deformation is a continuous function of time (it does not occur instantaneously), the
Jacobian is a continuous function of time. Hence, J is positive for small continuous
deformation. Furthermore, J cannot become negative by a continuous deformation
of the medium without passing through the excluded value zero [Eq. (2-4.1)]. It
follows that J can never be negative. Therefore, we have the following theorem:

Theorem 2-4.1. A necessary and sufficient condition for a continuous deformation
to be physically possible is that the Jacobian J be greater than zero.

Substituting Eqs. (2-3.4) into Eq. (2-4.1) we obtain

J =

∣∣∣∣∣∣∣∣∣∣∣∣

1 + ∂u1

∂x1

∂u1

∂x2

∂u1

∂x3
∂u2

∂x1
1 + ∂u2

∂x2

∂u2

∂x3
∂u3

∂x1

∂u3

∂x2
1 + ∂u3

∂x3

∣∣∣∣∣∣∣∣∣∣∣∣
> 0 (2-4.2)

In index notation (see Section 1-23), we may write

J = det

(
δαβ + ∂uα

∂xβ

)
; α, β = 1, 2, 3

= det (δαβ + uα,β) > 0 (2-4.3)



2-4 RESTRICTIONS ON CONTINUOUS DEFORMATION OF A DEFORMABLE MEDIUM 73

where

δα,β =
{

1 α = β

0 α �= β

is the Kronecker delta, uα,β = ∂uα/∂xβ , and det stands for determinant.
When the displacement field (u1, u2, u3) satisfies the condition J > 0, we say

that the displacement field is proper and admissible, and the deformation is a proper
and admissible deformation; or, for brevity, we may refer to the displacement and
deformation simply as admissible.

Thus, for an admissible deformation of a medium, the displacement components
(u1, u2, u3) must satisfy Eq. (2-4.2). For example, we cannot subject a piece of
rubber to displacement components u1 = −2x1, u2 = 0, and u3 = 0 because then
J = −1. This type of displacement is called a reflection about the (x2, x3) plane,
as the point (ξ1, ξ2, ξ3) may be considered the image of the point (x1, x2, x3) in a
mirror that lies in the plane x1 = 0 [see Eqs. (2-3.3) and (2-3.4)].

We may define deformation gradient tensor as

ξi,α � Fiα ≡ ∂ξi

∂xα

(2-4.4)

Throughout this book � is used as denoted by and “≡” is used as “defined as” or
“indentical to”.

Then, from Eq. (2-4.1), it is seen that the Jacobian is the determinant of the
deformation gradient tensor :

J = det(ξi,α) (2-4.5)

For large strain theory , which is useful in the study of biomechanics later, the
Cauchy strain tensor is defined as

Cαβ ≡ ξi,αξi,β (2-4.6)

We now define a set of three invariants of the Cauchy strain tensor as follows:

I1(C) � I1 ≡ tr(C) = Cαα

I2(C) � I2 ≡ tr(C2) = CαβCβα (2-4.7)

I3(C) � I3 ≡ tr(C3) = CαβCβγ Cγα

Why do we call I1, I2, and I3 invariants? Because I1, I2, and I3 remain constants
under the rotation of rectangular Cartesian system (coordinate transformation). Let’s
prove it. A tensor of nth order transforms according to Eq. (1-24.15), therefore
one has

Cij = aiαajβCαβ (2-4.8)

where a = [aiα] is the transformation matrix between the two coordinate systems,
(x, y, z) and (x, y, z), that is,

xi = aiαxα (2-4.9)
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The transformation matrix has to satisfy [cf. Eqs. (1-26.2) and (1-26.3)]

aαγ aβγ = aγαaγβ = δαβ (2-4.10)

Now one can readily verify that

I1(C) = tr(C) = Cii = aiαaiβCαβ = δαβCαβ = Cαα = I1(C) (2-4.11)

Readers may work out Problem 6 of Problem Set 2-4 to verify, similar to
Eq. (2-4.11), that

I2(C) = I2(C) I3(C) = I3(C) (2-4.12)

One may define another set of invariants as

IC ≡ I1(C)

IIC ≡ {
I 2

1 (C) − I2(C)
}
/2 (2-4.13)

IIIC ≡ {
2I3(C) − 3I1(C)I2(C) + I 3

1 (C)
}
/6

It is obvious that IC = IC, IIC = IIC, and IIIC = IIIC. What is the meaning of
this set of invariants? The Cayley–Hamilton theorem (Hildebrand, 1992; Nair,
2009) says any second-order tensor A satisfies the following equation:

−A3 + IAA2 − IIAA + IIIAI = 0 (2-4.14)

One may also verify that

−λ3 + IAλ2 − IIAλ + IIIA = 0 (2-4.15)

where λ is the eigenvalue of A, that is,

det(Aαβ − λδαβ) = 0 (2-4.16)

and
IA = tr(A) = A11 + A22 + A33

IIA =
∣∣∣∣A22 A23

A32 A33

∣∣∣∣ +
∣∣∣∣A11 A13

A31 A33

∣∣∣∣ +
∣∣∣∣A11 A12

A21 A22

∣∣∣∣ (2-4.17)

IIIA = det(A) =
∣∣∣∣∣∣
A11 A12 A13

A21 A22 A23

A31 A32 A33

∣∣∣∣∣∣
It is noticed from Eq. (2-4.6) that

IIIC = det(ξi,αξi,β) = det(ξi,α) det(ξi,β) = J 2 (2-4.18)
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Example 2-4.1. Proper and Admissible Displacement Field. Determine whether
the displacement field

u1 = x1 − 2x2, u2 = 3x1 + 2x2, u3 = 5x3 (a)

is proper and admissible.
By Eq. (2-4.2) the condition for a proper and admissible displacement field is

J > 0. To examine this condition, we must compute the derivatives of ui with
respect to the coordiinates xi . Thus,

∂u1

∂x1
= 1,

∂u2

∂x1
= 3,

∂u3

∂x1
= 0

∂u1

∂x2
= −2,

∂u2

∂x2
= 2,

∂u3

∂x2
= 0

∂u1

∂x3
= 0,

∂u2

∂x3
= 0,

∂u3

∂x3
= 5

(b)

Substitution of Eq. (b) into Eq. (2-4.2) yields

J =
∣∣∣∣∣∣

2 −2 0
3 3 0
0 0 6

∣∣∣∣∣∣ (c)

Evaluation of the determinant in Eq. (c) yields J = 72 > 0. Hence, the displacement
field, Eq. (a), is proper and admissible.

Problem Set 2-4

1. Determine whether u1 = k(x2 − x1), u2 = k(x1 − x2), and u3 = kx1x3, where k is a con-
stant, are continuously possible displacement components for a continuous medium.
Consider (x1, x2, x3) to be rectangular Cartesian coordinates.

2. Show that u1 = ax2x3, u2 = bx3x1, and u3 = cx1x2, where (a, b, c) are constants, are
the components of a continuously possible displacement vector.

3. A parallelepiped occupies the region 0 ≤ x ≤ L, −h ≤ y ≤ h, and −b ≤ z ≤ b. It is
deformed in such a manner that a material point P(x, y, z) is displaced to P ∗(x∗, y∗, z∗),
where x∗ = (C –y) cos (x/C), y∗ = (C –y) sin (x/C), and z∗ = z, where C is a constant.
Indicate the restrictions that must be imposed upon C in order that the displacement
may be continuously possible. Here we use the notation x ≡ x1, y ≡ x2, and z ≡ x3,
and so on.

4. Determine whether
u1 = −k1x1x2

u2 = k2(x
2
1 + νx2

2 − νx2
3 )

u3 = k3νx2x3



76 THEORY OF DEFORMATION

where (k1, k2, k3) are constants and ν is Poisson’s ratio, are possible continuous
(x1, x2, x3) displacement components for the deformation of a body of infinite
dimensions. Consider (x1, x2, x3) as Cartesian rectangular coordinates with origin in the
body.

5. In the problem of twisting (torsion) of a cylindrical bar with an elliptic cross section, the
(x1, x2, x3) components of displacement are calculated to be

u1 = −θx2x3, u2 = θx1x3, u3 = b2 − a2

b2 + a2
θx1x2

where x3 is the coordinate along the axis of the bar, θ is the angle of twist in radians
per unit length of the bar, and (a, b) are the major and minor axes of the elliptic cross
section (see Chapter 7). Verify that this displacement field is admissible.

6. Verify that
I2(C) = I2(C)

I3(C) = I3(C)

7. Consider Eq. (2-4.17) as the definitions for IA, IIA, and IIIA, verify that

IA � I1(A)

IIA � {I 2
1 (A) − I2(A)}/2

IIIA � {2I3(A) − 3I1(A)I2(A) + I 3
1 (A)}/6

2-5 Gradient of the Displacement Vector. Tensor Quantity

The elements of the determinant of Eq. (2-4.2) play a fundamental role in the de-
scription of the behavior of deformable media. Physically, these components
characterize the gradients of the displacement vector q with respect to the
variable xi .

With Eq. (2-3.5) and the definition of the vector operator ∇, we define the
following operation:

grad q = (∇, q) = i
∂q
∂x1

+ j
∂q
∂x2

+ k
∂q
∂x3

(a)

where grad q and (∇, q) are two conventional notations for the operation denoted
on the right side of Eq. (a).

Expanding, by multiplying the right side of Eq. (a) term by term, we have

grad q = ii
∂u1

∂x1
+ ij

∂u2

∂x1
+ ik

∂u3

∂x1

+ ji
∂u1

∂x2
+ jj

∂u2

∂x2
+ jk

∂u3

∂x2

+ ki
∂u1

∂x3
+ kj

∂u2

∂x3
+ kk

∂u3

∂x3
(2-5.1)
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Thus, we may characterize the operation grad q by the following array of ele-
ments (matrix):

⎡
⎢⎢⎢⎢⎢⎢⎣

∂u1

∂x1

∂u2

∂x1

∂u3

∂x1
∂u1

∂x2

∂u2

∂x2

∂u3

∂x2
∂u1

∂x3

∂u2

∂x3

∂u3

∂x3

⎤
⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎣u1,1 u2,1 u3,1

u1,2 u2,2 u3,2

u1,3 u2,3 u3,3

⎤
⎦ (b)

where subscripts ( , i) denote differentiation relative to xi (Chapter 1, Section 1-23).
In contrast to the three-dimensional displacement vector q, which may be repre-

sented by the three components (u1, u2, u3), grad q is a mathematical entity formed
from three vector functions (the displacement or deformation gradients):

∂q
∂x1

,
∂q
∂x2

,
∂q
∂x3

(c)

or nine scalar functions:

u1,1, u1,2, u1,3, u2,1, u2,2, u2,3, u3,1, u3,2, u3,3

(d)

Following Gibbs, such a quantity is called a second-order tensor ; that is, grad q is
a second-order tensor. In the theory of tensors, a vector is regarded as a first-order
tensor, and a scalar, a zero-order tensor (see Chapter 1, Section 1-23).

Tensorial quantities have certain invariant properties under the transformation of
coordinate axes. For example, the displacement vector q of a particle of a medium
remains unchanged under a transformation from rectangular Cartesian coordinates
(x1, x2, x3) to cylindrical coordinates (r, θ, z). However, the components of q do
not remain invariant. The property of invariance under coordinate transformation
plays a fundamental role in mathematical physics (Morse and Feshbach, 1961).

Because the gradient of the displacement vector q is a second-order tensor, it
may be represented as the sum of a symmetrical tensor of second order and an
antisymmetrical tensor of second order (see Chapter 1, Section 1-24). Thus, we
may write

grad q =
⎡
⎣e11 e12 e13

e21 e22 e23

e31 e32 e33

⎤
⎦ +

⎡
⎣ 0 ω12 ω13

ω21 0 ω23

ω31 ω32 0

⎤
⎦ (2-5.2)

where

2eβα = 2eαβ = uα,β + uβ,α

2ωαβ = uβ,α − uα,β = −2ωβα (2-5.3)
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Thus, eαβ is symmetric in α, β, whereas ωαβ is antisymmetric. Equation (2-5.2)
signifies that if eij and ωij are known, grad q is determined. More briefly, we may
write Eq. (2-5.2) in the form

grad q = D + � (2-5.4)

where

D =
⎡
⎣e11 e12 e13

e12 e22 e23

e13 e23 e33

⎤
⎦ (2-5.5)

denotes a symmetrical tensor of second order, and

� =
⎡
⎣ 0 ω12 ω13

−ω12 0 ω23

−ω13 −ω23 0

⎤
⎦ (2-5.6)

denotes an antisymmetrical tensor of second order. For small deformations we show
later that D characterizes the strain components at a point in a medium, whereas
� characterizes the mean rotation of a volume element (i.e., ω12, ω13, and ω23).

Problem. Show that any matrix may be expressed as the sum of a symmetric matrix
(aij = aji) and an antisymmetrical matrix (bij = −bji). Hint: Show it for a 2 × 2
matrix. Is this transformation unique?

2-6 Extension of an Infinitesimal Line Element

In the theory of deformation of a continuous medium, the idea of the elongation of
an infinitesimal line element ds is fundamental. In this section we derive a general
expression for the magnification factor ds/ds of the line element of infinitesimal
length ds , where d s denotes the extended length of the fiber. In the classical the-
ories of elasticity and plasticity of massive bodies, approximations based on the
concept of infinitesimally small displacements lead to a complete linearization of
the theory of deformation. However, in a general treatment of bodies with one small
dimension compared to the other dimensions (such as thin shells, bars, etc.) and
in a general treatment of fluid mechanics, the nonlinear effects may be important.
Hence, initially we develop the theory of deformation without using linearizing
approximations. Later, we specialize the equations to obtain classical linear results.

Consider an infinitesimal fiber PA of length ds in a region R with direction
defined by N: (N1, N2, N3) (Fig. 2-6.1). Under a deformation of the medium, the
line element PA passes into the line element PA of length d s and direction N :
(N1, N2, N3); that is, under the deformation the particle at point P : (x1, x2, x3)
moves to the point P : (ξ1, ξ2, ξ3), and the particle at A: (x1 + dx1, x2 + dx2, x3 +
dx3) moves to A : (ξ1 + dξ1, ξ2 + dξ2, ξ3 + dξ3). In general, under the deformation
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Figure 2-6.1 Extension of infinitesimal line element.

both the length and direction of PA are changed. Initially, we consider only the
change in length of PA. Because the fiber remains continuous after the deformation,
line element PA is an infinitesimal line element.

By geometry, we obtain the following expression for the square of the length
of line element PA:

ds2 = dx2
1 + dx2

2 + dx2
3 (2-6.1)

or, in index notation (Chapter 1, Section 1-23 and 1-24),

ds2 = δαβ dxα dxβ = dxα dxα, α = 1, 2, 3 (2-6.2)

Similarly, for the deformed line element PA , we have

(d s)2 = (dξ1)
2 + (dξ2)

2 + (dξ3)
2

= δαβ dξα dξβ = dξβ dξβ β = 1, 2, 3 (2-6.3)

To express the magnification factor ds/ds in terms of the displacement compo-
nents (u1, u2, u3) = ui = ui(x1, x2, x3) and (dx1, dx2, dx3) = dxi , we first express
(dξ1, dξ2, dξ3) = dξi in terms of ui and dxi . Because ξi = ξi(x1, x2, x3) = ξi(x),
where x stands collectively for (x1, x2, x3), expressions for the total differentials
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dξi in terms of dxi are (Kaplan, 2002; Hildebrand, 1992)

dξ1 = ξ1,1 dx1 + ξ1,2 dx2 + ξ1,3 dx3

dξ2 = ξ2,1 dx1 + ξ2,2 dx2 + ξ2,3 dx3 (2-6.4)

dξ3 = ξ3,1 dx1 + ξ3,2 dx2 + ξ3,3 dx3

or

dξα = ∂ξα

∂xβ

dxβ = ξα,β dxβ, α, β = 1, 2, 3 (2-6.5)

where the subscripts ( , β) denote partial derivatives with respect to xβ (Chapter 1,
Section 1-23).

In symbol notation (see Chapter 1, Sections 1-12 and 1-22), Eq. (2-6.4) may be
written in the form

dP = (dP · ∇)P = dP · ∇P (2-6.4a)

where
P = i1x1 + i2x2 + i3x3

P= i1ξ1 + i2ξ2 + i3ξ3

∇= i1
∂

∂x1
+ i2

∂

∂x2
+ i3

∂

∂x3

The notation (dP · ∇)P means that the scalar operation dP · ∇ must be performed
before the operation ∇P. The right side of Eq. (2-6.4a) is short-hand notation for
this operation:

dP · ∇ = dx1
∂

∂x1
+ dx2

∂

∂x2
+ dx3

∂

∂x3

and

(dP · ∇)P = i1

(
∂ξ1

∂x1
dx1 + ∂ξ1

∂x2
dx2 + ∂ξ1

∂x3
dx3

)

+ i2

(
∂ξ2

∂x1
dx1 + ∂ξ2

∂x2
dx2 + ∂ξ2

∂x3
dx3

)

+ i3

(
∂ξ3

∂x1
dx1 + ∂ξ3

∂x2
dx2 + ∂ξ3

∂x3
dx3

)

Hence, because dP = i1 dξ1 + i2 dξ2 + i3 dξ3, Eq. (2-6.4a) is equivalent to
Eq. (2-6.4) or Eq. (2-6.5).

Alternatively, we may represent the increments dxα in terms of dξα as

dP = (dP · �)P = dP · �P (2-6.4b)
where

� = i1
∂

∂ξ1
+ i2

∂

∂ξ2
+ i3

∂

∂ξ3
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In addition, by the chain rule of differentiation, it can be shown that the dis-
placement increments can be represented in the material description and the spatial
description, respectively, as

dq = (dP · ∇)q = dP · ∇q (2-6.4c)

dq = (dP · �)q = dP · �q (2-6.4d)

where [see Eq. (2-3.5)]
q = i1u1 + i2u2 + i3u3

and the ui are taken to be functions of xi in Eq. (2-6.4c) and functions of ξi in
Eq. (2-6.4d). See Example 2-6.1.

Substituting Eq. (2-3.4) into Eqs. (2-6.4) and (2-6.5), we obtain

dξ1 = (1 + u1,1) dx1 + u1,2 dx2 + u1,3 dx3

dξ2 = u2,1 dx1 + (1 + u2,2) dx2 + u2,3 dx3 (2-6.6)

dξ3 = u3,1 dx1 + u3,2 dx2 + (1 + u3,3) dx3

or

dξα =
(

δαβ + ∂uα

dxβ

)
dxβ = (δαβ + uα,β) dxβ (2-6.7)

where uα is the displacement vector of point P under the deformation (Fig. 2-6.1).
Hence, by Eqs. (2-6.2), (2-6.3), and (2-6.7), we obtain

1
2

[
d s2 − ds2

] = ε11 dx2
1 + ε22 dx2

2 + ε33 dx2
3 + 2ε12 dx1 dx2

+ 2ε13 dx1 dx3 + 2ε23 dx2 dx3 = εαβ dxα dxβ (2-6.8)

where the coefficients of dx2
1 , dx2

2 , . . . are given by the following expressions2:

ε11 = u1,1 + 1
2

(
u2

1,1 + u2
2,1 + u2

3,1

)
ε22 = u2,2 + 1

2

(
u2

1,2 + u2
2,2 + u2

3,2

)
ε33 = u3,3 + 1

2

(
u2

1,3 + u2
2,3 + u2

3,3

)
(2-6.9)

2ε12 = u2,1 + u1,2 + u1,1u1,2 + u2,1u2,2 + u3,1u3,2

2ε13 = u3,1 + u1,3 + u1,1u1,3 + u2,1u2,3 + u3,1u3,3

2ε23 = u3,2 + u2,3 + u1,2u1,3 + u2,2u2,3 + u3,2u3,3

2Many authors use the notation γ12, γ13, γ23 where we have used 2ε12, 2ε13, 2ε23. As we see later,
the factors ε12, ε13, ε23 are components of a tensor of second order, whereas the factors γ12, γ13, γ23

are not.
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or, in index notation,

2εαβ = ∂uα

∂xβ

+ ∂uβ

∂xα

+ ∂uγ

∂xα

∂uγ

∂xβ

= uα,β + uβ,α + uγ,αuγ,β = 2εβα α, β, γ = 1, 2, 3 (2-6.10)

where εαβ = εβα = εαβ(x1, x2, x3).
The extension ratio e of the line element PA is defined by e = (d s − ds)/ds.

Hence, if we compute the ratio d s/ds, we can compute the extension e. The ratio
d s/ds may be expressed in terms of either xi (material coordinates) or ξi (spatial
coordinates), as xi and ξi are related [see Eqs. (2-3.3) and (2-3.4)]. In the mate-
rial description , we consider the displacement components uα (hence ξα) to be
functions of the material coordinates xα . Then

ξα(x1,x2, x3) = xα + uα

uα = uα(x1, x2, x3) α = 1, 2, 3 (a)

Consequently, Eqs. (2-6.10) represent the material description for the set of ele-
ments that determines the factor 1

2 (d s2 − ds2). In the spatial description , the dis-
placement components are considered functions of the spatial coordinates ξi . Then

xα(ξ1, ξ2, ξ3) = ξα − uα

uα = uα(ξ1, ξ2, ξ3) α = 1, 2, 3 (b)

Following a procedure analogous to that used to obtain Eqs. (2-6.10), we find for
the spatial description the set of elements that determines the factor 1

2 (d s2 − ds2):

2Eαβ = uα,β + uβ,α − uγ,αuγ,β = 2Eβα (2-6.11)

where we now consider uα = uα (ξ1, ξ2, ξ3) to be functions of the spatial coordi-
nates ξα and the subscript ( , α) denotes derivatives relative to ξα . Because the left
side of Eq. (2-6.8) has the dimension [L2] and dxα dxβ has the dimension [L2],
ε11, ε12, . . . are dimensionless quantities. Also, by Eq. (2-6.10) εαβ = εβα; that is,
the terms εαβ form a symmetric array.

Equations (2-6.8) may be written in an alternative conventional form as follows.
Let (i1, i2, i3) denote unit vectors directed along the positive (X1, X2, X3) axes,
respectively (Fig. 2-6.1). Then, because the unit vector N denotes the direction of
PA, the direction cosine rule yields

N = i1N1 + i2N2 + i3N3 ≡ Ni (c)

where (N1, N2, N3) ≡ Ni are the direction cosines of N measured with respect to
the (X1, X2, X3) axes. Because the direction of N coincides with the direction of
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(dx1, dx2, dx3), we have

N1 = dx1

ds
N2 = dx2

ds
N3 = dx3

ds
(2-6.12)

Dividing Eq. (2-6.8) by ds2 and utilizing Eq. (2-6.12), we obtain

1

2

[(
ds

ds

)2

− 1

]
= ε11N

2
1 + ε22N

2
2 + ε33N

2
3

+ 2ε12N1N2 + 2ε13N1N3 + 2ε23N2N3

= εαβNαNβ (2-6.13)

We may express Eq. (2-6.13) in the form

MFA = εαβNαNβ (2-6.14)

where we call

MFA = 1

2

[(
ds

ds

)2

− 1

]
(2-6.15)

the magnification factor of the extension of line element PA.
Equations (2-6.13) and (2-6.10) [or Eqs. (2-6.14) and (2-6.10)] define implicitly

the magnification ratio d s/ds of an infinitesimal fiber ds that lies at point (x1, x2, x3)

(with direction cosines N), provided the displacement components uα are known
functions of (x1, x2, x3). Because point (x1, x2, x3) may be any point in the medium,
and Nα may denote any direction, it follows that Eqs. (2-6.13) and (2-6.10) [or
Eqs. (2-6.14) and (2-6.10)] describe the state of deformation of the entire medium.

It is important to note that the expressions for the elements εαβ [Eqs. (2-6.10)]
are exact expressions; they are not a first-order approximation plus a second-order
approximation. Furthermore, it may be shown that the set of elements εαβ possesses
tensor character with respect to arbitrary coordinate transformations (Section 2-9).
The elements Eαβ [Eqs. (2-6.11)] also possess tensor character. For these rea-
sons, the arrays εαβ, Eαβ are called components of the strain tensors relative to
coordinates xi, ξi , respectively. In particular, the array εαβ is referred to as the
Green–Saint-Venant strain tensor , and the array Eαβ is called the Almansi strain
tensor in honor of early investigators of deformable body mechanics.

In a rigid-body displacement of the medium, d s = ds for all infinitesimal line
elements through any point in the medium. Then ε11 = ε22 = · · · = ε23 = 0. Con-
versely, if ε11 = ε22 = · · · = ε23 = 0, the displacement of the medium is a rigid-
body displacement; that is, d s = ds. Similar results hold for Eαβ .

Although Eqs. (2-6.10) and (2-6.11) are derived for rectangular Cartesian coor-
dinates, by means of tensor transformations they apply for arbitrary curvilinear
Euclidean coordinates.
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Derivations for arbitrary curvilinear Euclidean coordinates and for orthogonal
curvilinear coordinates are given in the appendices of this chapter.

Example 2-6.1. Admissible Displacement Concepts in Material and Spatial Coor-
dinates. Let the displacement vector be assumed to take the form q = q(xi, t) =
(ax1, bx1, 0), where a and b are parameters independent of xi . By Eqs. (2-3.4) and
(2-6.4a), q = P − P or P = P + q. In expanded form, we have, with Eq. (2-3.5),

ξ1 = x1 + u1, ξ2 = x2 + u2, ξ3 = x3 + u3 (a)

where u1 = ax1, u2 = bx1, and u3 = 0. Alternatively, we may write Eq. (a) in the
form

ξ1 = (1 + a)x1, ξ2 = x2 + bx1, ξ3 = x3 (b)

By Eq. (b) we may express (x1, x2, x3) in terms of (ξ1, ξ2, ξ3) as follows:

x1 = ξ1

1 + a
, x2 = ξ2 − bξ1

1 + a
, x3 = ξ3 (c)

The admissibility of q is given by Eq. (2-4.2). By Eq. (2-4.1) we obtain

J = ∂(ξ1,ξ2, ξ3)

∂(x1, x2, x3)
=

∣∣∣∣∣∣∣
1 + a 0 0

b 1 0

0 0 1

∣∣∣∣∣∣∣ = 1 + a (d)

Accordingly, if a >−1 and J > 0, then q is admissible.
By Eqs. (a), (b), and (c) we have

u1 = ax1, u2 = bx1, u3 = 0 (e)

where ui = ui(x1, x2, x3) and

u1 = a

1 + a
ξ1, u2 = b

1 + a
ξ1, u3 = 0 (f)

where ui = ui(ξ1, ξ2, ξ3). The partial derivatives of ui with respect to xi are, by
Eq. (e),

∂u1

∂x1
= a,

∂u2

∂x1
= b (g)

All the other derivatives are zero. Similarly, the nonzero derivatives of ui with
respect to ξi are, by Eq. (f),

∂u1

∂ξ1
= a

1 + a
,

∂u2

∂ξ1
= b

1 + a
(h)
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It is seen that ∂u1/∂x1 �= ∂u1/∂ξ1 and ∂u2/∂x1 �= ∂u2/∂ξ1. More generally, it
may be shown that ∂ui/∂xj �= ∂ui/∂ξj . However, if the displacement components
are very small (in this example, a, b � 1), ∂ui/∂xj ≈ ∂ui/∂ξj .

In particular, by Eqs. (g) and (h) for a, b � 1:

∂u1

∂x1
= a ≈ ∂u1

∂ξ1
,

∂u2

∂x1
= b ≈ ∂u2

∂ξ1
(i)

By Eq. (2-6.4c) we may express increments of the displacement components in
terms of material coordinates xi as

dq = (du1, du2, du3) = [dx1, dx2, dx3]

⎡
⎣a b 0

0 0 0
0 0 0

⎤
⎦

or
(du1, du2, du3) = (a dx1, b dx1, 0) (j)

Similarly, by Eq. (2-6.4d), in terms of spatial coordinates ξi ,

(du1, du2, du3) =
(

a

1 + a
dξ1,

b

1 + a
dξ1, 0

)
(k)

Because, by Eq. (c), x1 = ξ1/(1 + a), it follows that dx1 = dξ1/(1 + a). Hence,
Eqs. (j) and (k) show that the increments of the displacement components are the
same in material and spatial coordinates.

Problem Set 2-6

1. Measurements of a strained body yield the following data: ε11 = 0.002, ε22 = 0.002, and
ε33 = −0.002.

In the direction (2/
√

5, 0, 1/
√

5) MF = 0.004
In the direction (3/

√
10,−1/

√
10, 0) MF = 0.003

In the direction (1/
√

3, 1/
√

3, 1/
√

3) MF = 0.001

Calculate ε12, ε13, ε23.

2. A straight bar of length L with end points 0 and 1 undergoes a displacement such that
its length changes to L∗. Under this displacement the bar remains straight. Derive an
expression for (L∗ − L)/L, expressing the result in terms of the original length L and
the displacement components (u0, v0), (u1, v1) of the end points of the bar. Let u be
measured along the axial direction of the initial position of the bar and v be measured
perpendicular to the bar in its initial position. Derive an approximate expression for
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(L∗ − L)/L for the case where u1 − u0 � L, v1 − v0 � L. Derive an expression for the
elongation of the bar in each case.

3. The deformation of a body is defined by the (x1, x2, x3) displacement components:

u1 = k(3x2
1 + x2), u2 = k(2x2

2 + x3), u3 = k(4x2
3 + x1)

where k is a positive constant. Compute the magnification of a line element ds that passes
through the point (1, 1, 1) in the direction n1 = n2 = n3 = 1/

√
3.

2-7 Physical Significance of εii. Strain Definitions

Consider the deformation of a line element PA. Let ds be the original undeformed
length of PA, and let d s be the deformed length of PA. Hence, under the deformation,
the elongation of PA relative to its initial length ds is

eA = ds

ds
− 1 (2-7.1)

If eA is positive, the fiber PA elongates; if eA is negative, PA contracts. Further-
more, because physically d s can never be zero under deformation, eA can never
attain the value −1; that is, −1 is a lower bound for eA.

Substitution of Eq. (2-7.1) into Eq. (2-6.15) yields

MFA = eA + 1
2e2

A = εαβNαNβ (2-7.2)

Equation (2-7.2) relates the relative elongation eA of PA to the components εαβ of
Eq. (2-6.10).

To examine the physical significance of the components εαβ , we let N1 = 1,

N2 = N3 = 0; that is, we consider the deformation of a line element PA that orig-
inally is directed along the X1 axis. Then, by Eq. (2-7.2),

e1 + 1
2e2

1 = ε11 (2-7.3)

where the subscript 1 of e1 now signifies that line PA is directed originally along
the X1 axis.

Solving Eq. (2-7.3) for e1, we obtain

e1 =
√

1 + 2ε11 − 1 (2-7.4)

Consequently, under a deformation of a medium, ε11 characterizes the relative
elongation e1 of an infinitesimal line element PA directed originally along the X1

axis in the undeformed medium. Similarly, for line elements directed along the X2
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and X3 axes, the relative elongations are given by the expressions

e2 =
√

1 + 2ε22 − 1, e3 =
√

1 + 2ε33 − 1

Hence, in general, we may write

ei =
√

1 + 2εii − 1 = εii − 1
2ε2

ii + · · · (2-7.5)

Equations (2-7.5) represent the relative elongation of an infinitesimal line ele-
ment PA that is directed initially in the Xi direction at a point P in the undeformed
medium.

Large-Deformation Theory. In large-deformation theories many modern writ-
ers define MFA [see Eq. (2-6.15)] to be the strain of an infinitesimal line element PA
at any point P in the medium . Consequently, for large deformations the strain MFA

is given directly by Eq. (2-7.2), for an infinitesimal line element at point (x1, x2, x3)
(with direction cosines Ni with respect to Xi axes). Because Ni is relative to Xi , we
also may write MFA ≡ MFi . Then, if the displacement components ui are known
functions of (x1, x2, x3), Eqs. (2-7.2) and (2-6.10) determine the strain MFi of any
infinitesimal line element (with direction cosines Ni) in the medium.

Engineering Definition of Strain. In engineering practice it is common to
define the strain of an infinitesimal line element PA to be the elongation of the fiber
PA relative to its initial length . Consequently, the engineering definition of strain
coincides with our definition of eA [Eq. (2-7.1)].

If the relative elongation eA is small compared to 1, the term 1
2e2

A may be
negligible in the expression eA + 1

2e2
A. Then, in this case,

MFi = ei + 1
2e2

1 ≈ ei (2-7.6)

Accordingly, the definition of strain of large-deformation theory [Eq. (2-6.15)] does
not differ greatly from the engineering definition of strain [Eq. (2-7.1)], unless the
relative elongations ei are large.

Logarithmic Strain. Inherent in the preceding definitions is the condition that
the strain be defined as a relation between the change in length of a line element and
its initial length [see Eqs. (2-6.15) and (2-7.1)]. However, in creep and plasticity
theories, particularly for large deformations, another definition of strain based on
the instantaneous length of a line element is sometimes employed. For example,
following Ludwig (1909), we define the increment �εn of strain by the relation

�εn = �l

l
(2-7.7)
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where l denotes the instantaneous length of a finite line element. Accordingly, for
an infinitesimal change dl , the infinitesimal increment �εn of strain is defined by

dεn = dl

l
(2-7.8)

Integration yields

εn = ln
l

l0
= log

(
1 + �l

l0

)

or
εn = ln(1 + en) (2-7.9)

where ln denotes natural logarithm, l0 denotes the initial length of the line ele-
ment, and, by Eq. (2-7.1), en = �l/l0 is the conventional engineering strain. The
term εn is called the natural or true strain. Because of the relation expressed by
Eq. (2-7.9), εn is sometimes called the logarithmic strain.

For e2
n < 1, Eq. (2-7.9) may be expanded in the following series form:

εn = log(1 + en) = en − 1
2e2

n + 1
3e3

n − 1
4e4

n + · · · , e2
n < 1 (2-7.10)

Accordingly, for small strain en Eq. (2-7.10) yields the approximation

εn = en, |en| � 1 (2-7.11)

The definition embodied in Eq. (2-7.9) simplifies some of the equations of the
mechanics of a deformable medium. However, in general, the use of natural strain
tends to complicate the equations of deformable-body mechanics.

Other Strain Measures. Recalling Eqs. (2-6.2) and (2-6.3), we note that with
Eq. (2-6.5) we may write relative to material coordinates

d s2 − ds2 = 2εαβ dxα dxβ (2-7.12)

where
2εαβ = Cαβ − δαβ (2-7.13)

and

Cαβ = ∂ξθ ∂ξθ

∂xα ∂xβ

= ξθ,αξθ,β (2-7.14)

is called the Cauchy strain tensor and in certain theories of continuum is used as a
strain measure. Relative to spatial coordinates, Cauchy’s strain tensor is given by

Cαβ = ∂xθ

∂ξα

∂xθ

∂ξβ

= xθ,αxθ,β (2-7.15)
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For

εαβ = 0

Cαβ = Cαβ = δαβ

Another measure of strain is the gradient of the displacement vector q, char-
acterized by the nine deformation gradients [Eq. (d), Section 2-5]. For small-
displacement theory, in particular, the symmetric tensor D is the matrix of the
infinitesimal strain (see Section 2-15).

In view of the foregoing remarks, we observe that any definition of strain is
arbitrary, as the deformation of a medium is described by Eq. (2-6.13) irrespective
of the definition of strain. The theories of elasticity and plasticity do not require a
definition of strain. However, in studies of strength of materials and in experimental
work, it is customary to utilize the definition of strain expressed by Eq. (2-7.1).
Accordingly, in this text we will usually employ the definition of strain given in
Eq. (2-7.1). That is, we define strain of a line element to be the relative elongation
of an infinitesimal line element.

2-8 Final Direction of Line Element. Definition of Shearing Strain.
Physical Significance of εij(i �= j)

In engineering theories of deformation, the angular change that occurs between any
two originally mutually perpendicular line elements in a medium that undergoes
deformation is defined to be the shearing strain between the given line elements .
To examine the concept of shearing strain in terms of the components εαβ of
Eq. (2-6.10), we first derive expressions for the directions cosines Ni of an infinites-
imal line element in the deformed state in terms of its original direction cosines
Ni relative to axis Xi and the displacement components ui .

Final Direction of Line Element. Under deformation the line element dxα

deforms into the line element dξα , the lengths of these line elements being ds and
d s, respectively. By the definition of direction cosines, the direction cosines Nα of
dξα are given by the equation

Nα = dξα

ds
(a)

Analogously, the direction cosines Nα of dxα are

Nα = dxα

ds
(b)

Alternatively, we may write Eq. (a) in the form

Nα = dξα

ds

ds

ds
= dξα

ds

ds

ds
(c)
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where, by Eq. (2-3.3),

dξα

ds
= ∂ξα

∂xβ

dxβ

ds
, α, β = 1, 2, 3 (d)

Furthermore, by Eqs. (2-3.4) or (2-6.7) we have

∂ξα

∂xβ

= δαβ + ∂uα

∂xβ

= δαβ + uα,β (e)

where δij is the Kronecker delta (Chapter 1, Section 1-25). Accordingly, by Eqs.
(b), (d), and (e) we obtain

dξα

ds
=

(
δαβ + ∂uα

∂xβ

)
Nβ = (δαβ + uα,β)Nβ (f)

Now, Eq. (2-6.15) yields

ds

ds
= 1√

1 + 2MFi

(g)

Consequently, by Eqs. (c), (f) and (g) we obtain the following expression for the
direction cosines Nα:

Nα

√
1 + 2MFi = (δαβ + uα,β)Nβ (2-8.1)

Written out in detail, Eq. (2-8.1) becomes

N1

√
1 + 2MFi = (1 + u1,1)N1 + u1,2N2 + u1,3N3

N2

√
1 + 2MFi = u2,1N1 + (1 + u2,2)N2 + u2,3N3 (2-8.2)

N3

√
1 + 2MFi = u3,1N1 + u3,2N2 + (1 + u3,3)N3

Equation (2-8.1) expresses the final direction cosines Nα of an infinitesimal
line element with initial direction cosines Nα . The term MF i in Eq. (2-8.1)
is expressed in terms of the displacement uα and the direction cosines Nα by
Eqs. (2-6.10) and (2-6.14). In general, it may be shown that there is one direction
Nα that remains invariant (unchanged) under the displacement uα, that is, for
which N1 = N1, N2 = N2, and N3 = N3.

Definition of Shearing Strain. Next, let us consider two infinitesimal line
elements PA and PB of lengths ds1 and ds2 emanating from point P in a medium
and forming angle θ . Under a deformation the two line elements pass into the
line element PA and PB with lengths d s1 and d s2 and with subtended angle ϑ

(Fig. 2-8.1). In general, the plane PAB is nonparallel to the plane PAB.
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Figure 2-8.1

Let the direction cosines of lines PA and PB be Mα and Nα , respectively, with
reference to (X1, X2, X3) axes. Let Mα and Nα denote the corresponding direction
cosines of PA and PB. Hence, by the scalar product for vectors, the angle ϑ is
defined by the equation

cos ϑ = MαNα (h)

By Eq. (2-8.1), the directions Mα and Nα may be expressed in terms of Mα and Nα ,
respectively. Thus, substituting Eq. (2-8.1) into Eq. (h) and utilizing the condition
MαNα = cos θ , we obtain, after employing the notation of Eq. (2-6.10),

�12 =
√

(1 + 2MF1)(1 + 2MF2) cos ϑ = cos θ + 2εαβMαNβ (2-8.3)

where subscripts 1 and 2 on MF denote lines PA and PB , respectively. Accordingly,
Eq. (2-8.3) defines the angle ϑ between the deformed line elements PA , PB that
initially subtend angle θ (Fig. 2-8.1). If the initial angle θ = 90◦

, cos θ = 0. Then

�12 = 2εαβMαNβ (2-8.4)

Equation (2-8.4) forms the basis for definitions of shearing strain. For example, in
theories of large deformation the quantity

�12 =
√

(1 + 2MF1)(1 + 2MF2) cos ϑ
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is defined to be the shearing strain between the given line elements PA and PB .
If the relative elongations of lines PA and PB are small compared to 1 [hence,
if MF 1 and MF 2 are small compared to 1; see Eq. (2-7.2)], by Eq. (2-8.3) we
see that �12 ≈ cos ϑ . Furthermore, for small shearing strains, ϑ is approximately
π /2. Hence, cos ϑ = sin[(π/2) − ϑ] ≈ (π/2) − ϑ . Accordingly, the definition of
shearing strain used in large-deformation theory does not differ appreciably from
the conventional definition, γ12 = (π/2) − ϑ , unless shearing strains are so large
that the above approximations are no longer valid. In this book we adhere to the
conventional definition of shearing strain.

As in the case of the definition of strain of a line element (Section 2-7), the
definition of shearing strain between line elements is of no fundamental importance
in the theory. The intrinsic nature of the relative rotation of two originally mutually
perpendicular line elements is described by Eq. (2-8.4), independently of a definition
of shearing strain.

Physical Significance of εij(i �= j). To examine the physical significance of
εij(i �= j), consider two line elements PA and PB initially directed along axes X1

and X2, respectively (Fig. 2-8.1, with θ = 90◦
). Let the direction cosines Mα and

Nα of PA and PB be expressed with respect to the Xα axes. Then

(M1, M2, M3) = (1, 0, 0)

(N1, N2, N3) = (0, 1, 0)
(i)

Substitution of Eqs. (i) into Eq. (2-8.3) yields

�12 = 2ε12

where subscripts (1, 2) on � indicate that � is computed for lines PA and PB
parallel to axes X1 and X2, respectively.

Similarly, for pairs of lines directed initially along axes (X2, X3) and axes
(X3, X1),

�23 = 2ε23, �31 = 2ε31

Accordingly, for two lines directed initially along mutually perpendicular axes
(i, j),

�ij = 2εij, i �= j (2-8.5)

The sign of �ij is determined by Eq. (2-8.3).
Equation (2-8.5) expresses the fact that the εij(i �= j) characterize the relative

angular rotation between two initially mutually perpendicular lines (i, j) in the
medium; that is, the εij(i �= j) are related to the shearing strain of the medium.

For small deformation we have, by Eq. (2-8.3),

�ij = 2εij ≈ π

2
− ϑij = γij (2-8.6)
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where γij is the conventional definition of shearing strain. Accordingly, for small
deformations 2εij is approximately equivalent to the conventional definition of
shearing strain. A more detailed discussion of the nature of the approximations
implied by Eqs. (2-7.6) and (2-8.6) is presented in Section 2-15.

Example 2-8.1. Computation of Shearing Strain. Let the displacement vector be
given by q = (u1, u2, u3) = (ax2

2 , 0, 0), where a is a constant coefficient. Compute
the magnification factor, cos ϑ , and the shearing strain �12 between two line ele-
ments PA, PB in the X1X2 plane (Fig. 2-8.1), where P is located at the coordinate
point (x1, x2, x3) = (0, 1, 0). Line PA is parallel to axis X1, and PB is parallel to
axis X2. Hence, θ = π /2, and ds1 = dx1, ds2 = dx2.

First, let us check to see if q is admissible. By Eq. (2-4.2) we have

J =
∣∣∣∣∣∣

1 2ax2 0
0 1 0
0 0 1

∣∣∣∣∣∣ = 1 > 0

Thus, q is admissible.
The angle ϑ between line elements PA and PB may be computed by vector

analysis as follows. The direction cosines of lines PA and PB are Mα = (1, 0, 0) and
Nα = (0, 1, 0), respectively. By Eq. (2-8.2) we may compute the direction cosines
of lines PA and PB. However, to do so we must compute the magnification factors
MFA and MFB for lines PA and PB , respectively. The formula for the magnification
factor is given by Eq. (2-6.14). By Eqs. (2-6.9) and with (u1, u2, u3) = (ax2

2 , 0, 0),
we obtain the strain components as functions of a:

ε11 = ε33 = ε13 = ε31 = ε23 = ε32 = 0
ε12 = ε21 = ax2, ε22 = 2a2x2

2

With these strain components and the direction cosines for PA and PB , we find from
Eq. (2-6.15) the magnification factors MFA and MFB for line elements PA and PB ,
respectively, as MFA = 0, MFB = 2a2x2

2 . For the point (x1, x2, x3) = (0, 1, 0), we
have MFA = 0, MFB = 2a2. Thus, for x2 = 1, x1 = x3 = 0, we find by Eq. (2-8.2)
for line elements PA and PB the direction cosines

Mα = (1, 0, 0) and Nα = (2a, 1, 0)/
√

1 + 4a2

Now, by Eq. (h), Section 2-8, we obtain

cos ϑ = 2a/
√

1 + 4a2

Letting γ12 be the decrease in angle between lines PA and PB , we have

cos ϑ = cos
(π

2
− γ12

)
= sin γ12 = 2a√

1 + 4a2
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Therefore, by Eq. (2-8.3), �AB = 2a. Alternatively, in a very direct manner,
Eq. (2-8.5) yields �AB = 2ε12 = 2a.

Problem Set 2-8

1. Show that
u1 = a0 + ax2 − bx3

u2 = b0 − ax1 + cx3

u3 = c0 − cx2 + bx1

where a0, b0, c0, . . . are positive constants and u1, u2, u3 are physically possible contin-
uous displacement components. Assume a0, b0, . . . are very small compared to 1. Derive
expressions in terms of the constants a, b, . . . for the direction cosines (n1, n2, n3) of
the line element that maintains a fixed direction under the displacement. Evaluate the
expressions for a = b = c.

2. The displacement components for a body are

u1 = 2x1 + x2, u2 = x3, u3 = x3 − x2

(a) Verify that this displacement vector is physically possible for a continuously deformed
body.

(b) Determine the strain in the direction 1/
√

3, 1/
√

3, 1/
√

3.

(c) Determine the direction cosines of the element in the undeformed medium that ends
up in the x3 direction in the deformed medium.

(d) Determine the change in angle between the lines whose directions in the undeformed
medium were 1, 0, 0 and 1/

√
3, 1/

√
3, 1/

√
3.

3. The displacement components for a body are

u1 = 2x1, u2 = 3x2 + x3, u3 = x3 − x2

(a) Verify that this is a physically possible set of displacements for a continuously
deformed body.

(b) Determine the strain in the direction 1/
√

3, 1/
√

3, 1/
√

3 and the shear strain between
this direction and the direction −1

√
2, 1/

√
2, 0.

(c) Determine the direction cosines of the element in the undeformed medium that ends
up in the x2 direction in the deformed medium.

2-9 Tensor Character of εαβ . Strain Tensor

In this section we consider the laws of transformation of Eq. (2.-6.10) under a
rotation from rectangular Cartesian coordinates xα to rectangular Cartesian coordi-
nates yα .
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Let a medium undergo a deformation. Then the extension of an infinitesimal
line element ds in the medium is characterized by the relation [see Eq. (2.-6.8)]

(ds)2 − (ds)2 = 2εαβ dxα dxβ (a)

where the components εαβ are functions of xα .
Because (d s)2 − (ds)2 represents the physical extension of line ds , it remains

invariant under a transformation of coordinates. Hence, we may also write

(d s)2 − (ds)2 = 2Eγδdyγ dyδ (b)

where the components Eγδ are functions of yα . The components Eγδ are symmetri-
cal components that determine the quantity (d s)2 − (ds)2 in terms of yα coordinates.

Now, under a transformation of coordinates from xα to yα , dxα transforms
according to the rule [see Eq. (1-24.12)]

dxα = aγα dyγ (c)

where aγα denote the direction cosines between axes yγ and xα .
Substituting Eq. (c) into Eq. (a) and equating the resulting expression to Eq. (b),

we obtain

Eγδ dyγ dyδ = εαβ aγα aαβ dyγ dyδ

or

(Eγδ − εαβaγαaδβ) dyγ dyδ = 0 (d)

Because the yγ are independent and both Eγδ and εαβ are symmetric, Eq. (d) is
satisfied identically (Synge and Schild, 1978) if

Eγδ = εαβaγαaδβ (2-9.1)

Thus, εαβ transforms according to the rule of transformation of a second-order
tensor [see Eq. (1-24.14)]. For this reason, the following matrix (i.e., the array of
elements εαβ; εαβ = εβα) is called the strain tensor :

⎡
⎣ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33

⎤
⎦ (2-9.2)

Individual elements of this matrix are called components of the strain tensor .
If the six components of the strain tensor are known, the deformation of the
medium is defined by Eq. (2-6.14) [or Eq. (2-7.2)]. Because the right side of
Eq. (2-6.14) [or Eq. (2-7.2)] is a quadratic form in the variables Nα, Eq. (2-9.2)
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is the matrix of coefficients of the quadratic form (see Chapter 1, Section 1-27),
which defines the deformation of the medium. The matrix is symmetric with respect
to its principal diagonal (the diagonal containing ε11, ε22, ε33); thus, by the theory
of quadratic forms (Birkhoff and MacLane, 2008), it follows that MFi defined by
Eq. (2-6.14) possesses three stationary values.3 In the theory of quadratic forms,
these stationary real values are called principal values ; in the theory of strain,
they are called principal strains . The following section presents a geometrical
interpretation of principal strains.

Alternatively, a rotation from axes yα to axes xα yields the relation

εαβ = aγαaδβEγδ (2-9.3)

Equations (2-9.1) and (2-9.3) represent the law of transformation of strain com-
ponents from one system of rectangular Cartesian coordinate axes to another (see
Chapter 3, Sections 1-23 and 1-24).

2-10 Reciprocal Ellipsoid. Principal Strains. Strain Invariants

The results obtained in this section are purely geometric in nature. Hence, they
apply to any symmetrical tensor of second order; for example, the results pertain
to the theories of strain, stress, and moments of inertia. However, for continuity in
treatment we employ the notations of the theory of strain developed in the previous
sections.

Let a small volume V , enclosed by the surface S, contain point P of a medium.
Under a deformation of the medium, the strain of all infinitesimal elements ema-
nating from P may be computed by Eq. (2-6.14). Because the surface S is initially
closed, it is closed after the deformation (see Corollary 2-17.2).

To represent geometrically the behavior of this surface under deformation, con-
sider a particular infinitesimal line element PA emanating from point P with
direction cosines Nα . In the direction of line PA extended, mark off a length4

PQ = ds

ds
= 1

1 + ei

= 1√
1 + 2MFi

(a)

where MFi , defined by Eq. (2-6.14), and ei , defined by Eq. (2-7.1), are related by
Eq. (2-7.2). We seek the locus of point Q for all possible directions of line PA.
Accordingly, we let point P be the origin of coordinate axis yα parallel, respec-
tively, to coordinate axes Xα . Then, in the yα coordinate system, the coordinates
of point Q are

yα = ds

ds
Nα (b)

3A geometrical interpretation is given in Section 2-10. See also Chapter 3, Section 1-27.
4This particular choice of length simplifies the development.
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Hence, Eqs. (a) and (b) yield

Nα = (1 + ei)yα =
√

1 + 2MFiyα (c)

Substitution of Eq. (c) into Eq. (2-6.14) yields

(1 + 2ε11)y
2
1 + (1 + 2ε22)y

2
2 + (1 + 2ε33)y

2
3 + 4ε12y1y2

+ 4ε13y1y3 + 4ε23y2y3 = 1 (d)

or, in index notation
(δαβ + 2εαβ)yαYβ = 1 (e)

Letting y1 = X, y2 = Y , and y3 = Z, we may write Eq. (d) in the form

F(X, Y, Z) = (1 + 2ε11)X
2 + (1 + 2ε22)Y

2 + (1 + 2ε33)Z
2

+ 4ε12XY + 4ε13XZ + 4ε23YZ = 1 (2-10.1)

Accordingly, the function F(X, Y, Z) is a second-degree algebraic equation5 in
the variables (X, Y, Z), the coordinates of point Q. Because point Q is real and
finite for nonzero values of ei , the equation F(X, Y, Z) = 1 represents an ellipsoid
with center P . This ellipsoid is called the reciprocal strain ellipsoid .6 There is one
reciprocal strain ellipsoid associated with each point P of the medium.

Once the reciprocal strain ellipsoid has been determined, the relative elongation
(or dilatation) ei of any infinitesimal line element PA emanating from point P may
be interpreted as follows. Consider the extension of line PA. This extension pierces
the reciprocal strain ellipsoid at point Q. Hence, by Eq. (a), the dilatation ei of
line PA is

ei = 1

PQ
− 1 (2-10.2)

The dilatation may be positive, negative, or zero. To examine the various possi-
bilities, consider a sphere with origin at P and with radius equal to 1. This sphere
cuts the reciprocal strain ellipsoid along a curve C, which divides the ellipsoid
into two regions: region Re, exterior to the sphere, and region Ri , interior to the
sphere. If the line extended along the direction PA pierces the ellipsoid in region
Re, then we have PQ > 1, and the dilatation of line PA is negative; that is, line
PA contracts. If the extended line pierces the ellipsoid in region Ri , then we have
PQ < 1, and the dilatation of line PA is positive; that is, line PA elongates. Finally,
if the extended line pierces the sphere on the curve C, then we have PQ = 1, and
the dilatation of PA is zero. Accordingly, it follows that if point Q is inside the

5More generally, F(X, Y,Z) is said to be a quadratic form in the variables (X, Y,Z). See Birkhoff
and MacLane (2008).
6This ellipsoid is referred to as the reciprocal strain ellipsoid by Love because the strain is inversely
proportional to line PQ [see Eq. (2-10.2)]. See Love (2002), pp. 36–37.
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sphere, ei is positive; if Q is outside the sphere, ei is negative; and if Q is on
curve C, ei = 0.

In contrast, if the sphere with origin at P and with unit radius does not cut
the ellipsoid, either all elements emanating from point P elongate (the ellipsoid is
interior to the sphere, as PQ < 1 for all points on the ellipsoid) or all elements
contract (the ellipsoid is exterior to the sphere, as PQ > 1 for all points on the
ellipsoid).

Principal Strains. Relative Elongations of the Axes of the Reciprocal
Strain Ellipsoid. Consider three line elements that emanate from point P in
an undeformed medium and that are directed along the axes of the reciprocal
strain ellipsoid at P . The relative elongations (e1, e2, e3) of these line elements
are called the principal strains of the ellipsoid . The initial directions of the line
elements that experience the principal strains are called principal directions in the
undeformed medium . Their final directions are called principal directions in the
deformed medium .

Let A, B, C denote the end points of the three semi-axes of the reciprocal strain
ellipsoid. Then the relative elongation of the line element PA is

e1 = 1

PA
− 1

Similarly, the relative elongations of line elements PB and PC are

e2 = 1

PB
− 1 e3 = 1

PC
− 1

Accordingly, in order to calculate (e1, e2, e3), we must determine the axes (PA, PB,
PC ) of the reciprocal strain ellipsoid [Eq. (2-10.1)].

By the theory of geometry (Eisenhart, 1939),7 we have [with Eq. (2-10.1)]

∣∣∣∣∣∣
ε11 − φ ε12 ε13

ε12 ε22 − φ ε23

ε13 ε23 ε33 − φ

∣∣∣∣∣∣ = 0 (2-10.3)

where φ = (r − 1)/2. Corresponding to the three roots (φ1, φ2, φ3) of Eq. (2-10.3),
there exist the three quantities (r1, r2, r3), the squares of the inverses of the lengths
of the axes (1/PA)2, (1/PB)2, and (1/PC )2, respectively. Consequently, the relative
elongations (e1, e2, e3) are given by the relations

e1 = √
r1 − 1 e2 = √

r2 − 1 e3 = √
r3 − 1 (2-10.4)

7Also see Section 2-11, where we treat the problem of principal strains using a somewhat different
method.
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We may also show that the shearing strains vanish between line elements in
the principal directions. For example, consider two infinitesimal line elements PQ1

and PQ2 initially emanating from point P with direction cosines M and N . (Lines
PQ1 and PQ2 are assumed perpendicular.) Then, analogous to the develoment of
Section 2-7, we obtain the following expression for the angle ϑ subtended by the
line elements after the deformation:

�12 =
√

(1 + 2λ1)(1 + 2λ2) cos ϑ = (δαβ + 2εαβ)MαNβ (f)

where, for simplicity, we have set λi = MFi .
Substitution of Mα = Xα

√
1 + 2λ1 and Nβ = Yβ

√
1 + 2λ2 [see Eq. (c)] into

Eq. (f) yields

cos ϑ = (δαβ + 2εαβ)XαYβ

= (1 + 2ε11)X1Y1 + (1 + 2ε22)X2Y2

+ (1 + 2ε33)X3Y3 + 2ε12(X1Y2 + X2Y1)

+ 2ε13(X1Y3 + X3Y1) + 2ε23(X2Y3 + X3Y2) (g)

Utilizing Eq. (2-10.1) (with the notation X = X1, Y = X2, Z = X3), we may write
Eq. (g) in the form

cos ϑ = 1

2

[
Y1

∂F

∂X1
+ Y2

∂F

∂X2
+ Y3

∂F

∂X3

]

Hence, a necessary and sufficient condition that ϑ = π/2 is that

Y1
∂F

∂X1
+ Y2

∂F

∂X2
+ Y3

∂F

∂X3
= 0 (h)

Accordingly, Eq. (h) is the condition for the shearing strain between lines PQ1 and
PQ2 to vanish; that is, lines PQ1 and PQ2 remain orthogonal under the deformation.
However, Eq. (h) is also a necessary and sufficient condition that PQ1 and PQ2

are conjugate8 diameters of the reciprocal strain ellipsoid [Eq. (2-10.1)]. Hence,
we may conclude that there exist three line elements emanating from point P that
form a rectangular triad before and after the deformation; they are the infinitesimal
line elements directed along the axes of the reciprocal strain ellipsoid at P (see
also Section 2-11).

8A diameter is said to be conjugate to the ellipsoid if it is parallel to the tangents to the ellipsoid
drawn away from the end points of any other diameter. Because PQ1 and PQ2 are orthogonal, they
must lie along the axes of the ellipsoid.
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Invariants of Reciprocal Strain Ellipsoid. Under a transformation of rectan-
gular Cartesian axes, the coefficients δαβ + 2εαβ of the strain ellipsoid are changed.
However, because the principal strains are physical quantities independent of any
coordinate system, they remain invariant under coordinate transformations.

It may also be shown (see Section 2-11) that the following quantities are invari-
ants under coordinate transformations; that is, they depend only on the physical
nature of the deformation:

ε11 + ε22 + ε33

ε2
12 + ε2

13 + ε2
23 − (ε22ε33 + ε33ε11 + ε11ε22)

ε11ε22ε33 + 2ε12ε13ε23 − ε11ε
2
23 − ε22ε

2
13 − ε33ε

2
12

These quantities are called invariants of the reciprocal strain ellipsoid, or simply
strain invariants.

2-11 Determination of Principal Strains. Principal Axes

The geometrical treatment of Section 2-10 offers some physical insight into the
concepts of principal strains and principal directions. However, a more direct sym-
metrical approach may be employed. Essentially, the determination of principal
strains reduces to the problem of computing the directions for which the relative
elongation ei assumes extremal values.

Consequently, let us consider the law of transformation of the strain tensor εαβ .
By Eq. (2-9.1), under a transformation from rectangular Cartesian coordinates xα

to rectangular Cartesian coordinates yα , the components Eγδ of the strain tensor
εαβ in the coordinate system yα are

Eγδ = εαβaγαaδβ (a)

where aαβ are the direction cosines between axes yα and xβ . Expanding Eq. (a),
we obtain

E11 = ε11a
2
11 + ε22a

2
12 + ε33a

2
13 + 2ε12a11a12 + 2ε13a11a13 + 2ε23a12a13

E22 = ε11a
2
21 + ε22a

2
22 + ε33a

2
23 + 2ε12a21a22 + 2ε13a21a23 + 2ε23a22a23

E33 = ε11a
2
31 + ε22a

2
32 + ε33a

2
33 + 2ε12a31a32 + 2ε13a31a33 + 2ε23a32a33

E12 = ε11a11a21 + ε22a12a22 + ε33a13a23 + ε12(a11a22 + a12a21)

+ ε13(a11a23 + a13a21) + ε23(a12a23 + a13a22)

E13 = ε11a11a31 + ε22a12a32 + ε33a13a33 + ε12(a11a32 + a12a31)

+ ε13(a11a33 + a13a31) + ε23(a12a33 + a13a32)

E23 = ε11a21a31 + ε22a22a32 + ε33a23a33 + ε12(a21a32 + a22a31)

+ ε13(a21a33 + a23a31) + ε23(a22a33 + a23a32)

(2-11.1)
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Now let the y1 axis be parallel to the direction for which the relative elongation
e1 takes an extremal value. By Eq. (2-7.1), Eq. (b) of Section 2-9, and Eq. (2-11.1),
we obtain

ey1 + 1
2 (ey1)

2 = E11

or
ey1 =

√
1 + 2E11 − 1 because ey1 > −1 (b)

Consequently, we see that the problem of determining an extremal value for
the relative elongation ey1 is equivalent to the computation of an extremal value
of the strain component E11. In turn, the problem of computing an extremal
value of the component E11 reduces to the determination of the initial direction
(a11, a12, a13) of the infinitesimal line element for which E11 attains an extremal
value under a deformation. Thus, we seek stationary values of E11 (i.e., values for
which ∂E11/∂a1α = 0) under the restriction that a2

11 + a2
12 + a2

13 = 1.
The extremal values of the relative elongation ei are called the principal values

of the deformation , or simply the principal strains . (Alternatively, we may refer
to extreme value of Eii as the principal strains.) Again, the initial direction (aαβ)

along which ei attains stationary values are called the principal directions (or axes)
of strain.

We show that there are three initially mutually orthogonal principal directions for
which ei takes extremal values. Furthermore, it will be shown that in the deformed
position the shearing strain between principal axes vanishes. Hence, under the
deformation, principal axes remain mutually orthogonal. Accordingly, at each point
in a body there exists a set of three mutually orthogonal principal axes that remain
mutually orthogonal under a deformation.

As noted above, the mathematical problem of determining the extremal of E11

essentially consists of determining the directions (a11, a12, a13) for which

∂E11

∂a11
= ∂E11

∂a12
= ∂E11

∂a13
= 0 (c)

where

a2
11 + a2

12 + a2
13 − 1 = 0 (d)

We may solve this problem straightaway by eliminating one of the aαβ between
Eqs. (c) and (d). Thus, the problem may be reduced to seeking extremal values
of E11 as a function of two variables (say, a11 and a12). However, this procedure
of elimination is rather complicated algebraically, as Eq. (d) is of second degree.
Consequently, rather than proceed directly into these difficulties, we seek extremals
of E11 by a more elegant symmetrical technique called the Lagrange multiplier
method .9

9See Chapter 3, Section 1-29. See also Courant (1992).
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Accordingly, we consider the function

H = E11 − L(a2
11 + a2

12 + a2
13 − 1) (e)

where L is an underdetermined constant called the Lagrange multiplier. In the
manner of Lagrange, we ignore initially the condition of Eq. (d). Thus, we seek
the direction for which H attains an extremal value. This direction is a function
of L. Because it provides a stationary value of H , it also provides a stationary
value for E11 in the region restricted by the condition a2

11 + a2
12 + a2

13 − 1 = 0.
This follows from the fact that extremal values of H and E11 coincide in the
region a2

11 + a2
12 + a2

13 = 1 [see Eq. (e)].
Substituting the expression E11 [Eq. (2-11.1)] into Eq. (e), and setting partial

derivatives of H with respect to (a11, a12, a13) equal to zero, we obtain

(ε11 − L)a11 + ε12a12 + ε13a13 =0

ε12a11 + (ε22 − L)a12 + ε23a13 =0 (2-11.2)

ε13a11 + ε23a12 + (ε33 − L)a13 =0

Equations (2-11.2) are a set of three homogeneous linear algebraic equations in
(a11, a12, a13). Because a2

11 + a2
12 + a2

13 = 1, the trivial solution a11 = a12 = a13 =
0 is excluded. Hence, by the theory of linear algebraic equations (Hildebrand, 1992),
Eqs. (2-11.2) possess a solution if and only if the determinant of the coefficient of
(a11, a12, a13) vanishes identically.

Thus, we obtain the result

F(L) =
∣∣∣∣∣∣
ε11 − L ε12 ε13

ε12 ε22 − L ε23

ε13 ε23 ε33 − L

∣∣∣∣∣∣ = 0 (2-11.3)

Equation (2-11.3) is a third-degree algebraic equation in the Lagrange multiplier
L. Inspection of Eq. (2-11.3) shows that the highest degree term in L is −L3.
Hence, for large positive values of L, F (L) is negative. For large negative values
of L, F (L) is positive. Accordingly, because F(L) is a continuous cubic function
of L, it must pass through the value zero at least once for real values of L.
Consequently, Eq. (2-11.3) possesses at least one real root, say, L1.

Substitution of L1 into Eqs. (2-11.3) yields the following relations for the prin-
cipal direction ξi corresponding to the root L1:

(ε11 − L1)ξ1 + ε12ξ2 + ε13ξ3 =0

ε12ξ1 + (ε22 − L1)ξ2 + ε23ξ3 =0 (f)

ε13ξ1 + ε23ξ2 + (ε33 − L1)ξ3 =0

where

ξ 2
1 + ξ 2

2 + ξ 2
3 = 1 (g)
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Multiplying the first, second, and third of Eqs. (f) by ξ1, ξ2, and ξ3, respectively,
adding, and utilizing Eq. (g), we obtain

L1 = εαβξαξβ (h)

Comparison of Eq. (h) and the first of Eqs. (2-11.1) shows that

L1 = extremal E11 (2-11.4)

Consequently, the value L1 of the Lagrange multiplier L also corresponds to an
extremal value of ei [see Eq. (b)].

Furthermore, it follows from the fourth and fifth parts of Eqs. (2-11.1),
Eqs. (f), and the orthogonality conditions [see Eqs. (1-24.2) and (1.24.3)] for
coordinate axes yα that

E12 = E13 = 0 (i)

Equation (i) signifies that the shearing strains between line elements directed
along y1, y2 axes and along y1, y3 axes vanish identically. However, by the last
of Eqs. (2-11.1) and by Eqs. (f), we note that E23 �= 0. Furthermore, the con-
dition that E11 attains an extremal value in the direction of axis y1 does not
ensure that the relative elongation ei takes on extremal values in the directions of
axes y2, y3.

Hence, having established the existence of one real root (L1 = extremal E11) for
Eq. (2-11.3), we now proceed to examine the two remaining roots. Accordingly, we
consider a second transformation to coordinate axes Yα , which leaves E11 invariant;
that is, we consider a rotation of axes with respect to axes y1 (see Section 2-10).
Thus, we let Y1 = y1 under a rotation through an angle θ with respect to axis y1

(Fig. 2-11.1). The direction cosines of this transformation are given in the following
table:

y1 y2 y3

Y1 1 0 0
Y2 0 cos θ sin θ

Y3 0 − sin θ cos θ

Let the strain components in the coordinate system Yα be distinguished by a
prime from those in the yα system. Then, by Eqs. (2-11.1), we have

E′
11 = E11

E′
22 = E22 cos2 θ + E33 sin2 θ + E23 sin 2θ

E′
33 = E22 sin2 θ + E33 cos2 θ − E23 sin 2θ (2-11.5)

E′
12 = E′

13 = 0

E′
23 = (E33 − E22) sin θ cos θ + E23 cos 2θ
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Figure 2-11.1

By Eqs. (2-11.5) the strain components E′
αβ are expressed as functions of the

rotation θ . Hence, we seek the values of θ for which E′
22 and E′

33 are stationary.
Differentiation of E′

22 with respect to θ yields the condition

tan 2θ = 2E23

E22 − E33
(2-11.6)

Accordingly, E′
22 is a real extremal value for θ determined by Eq. (2-11.6).

Similarly, the value of θ given by Eq. (2-11.6) yields a stationary real value
of E′

33. Consequently, we have shown that the relative elongations ei attain sta-
tionary real values in three mutually orthogonal directions; that is, Eq. (2-11.3)
possesses three real roots L1, L2, L3, these roots being equal to the extremal val-
ues E′

11, E′
22, E′

33. Furthermore, substitution of Eq. (2-11.6) into the last of Eqs.
(2-11.5) shows that E′

23 = 0. Consequently, all the shearing strains between line
elements in the principal directions (axes) vanish. Moreover, the extremal values
of the relative elongations in the direction of the principal axes are determined by
substitution of the extremal values E′

11, E′
22, E′

33 into Eq. (2-7.5).
The three sets of direction cosines, say, ξα′, ηα, ζα , of the three principal axes in

the undeformed medium may be determined by solving Eqs. (2-11.2) with L equal
to L1, L2, L3, respectively, subject to the restriction that ξαξα + ηαηα + ζαζα = 1.
With ξα, ηα, ζα known, the principal directions, say, ξ∗

α , η∗
α, ζ ∗

α , in the deformed
medium may be computed by means of Eqs. (2-7.5), provided (u1, u2, u3) are
known.

Because the shearing strains between line elements directed along principal axes
vanish, we have shown that at each point in a medium that undergoes deformation,
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there exists a set of three directions that are mutually orthogonal before and after
the deformation.

Special Cases. Special cases arise in principal axes theory when two or more
of the principal strains are equal. For example, let X1, X2, X3 denote principal
axes at a point O in a medium. Let the associated principal strains be L1, L2, L3,
respectively. If L2 = L3, then principal axes X2, X3 may be chosen to be any two
mutually perpendicular axes that lie in the X2 − X3 plane. If L1 = L2 = L3, then
principal axes X1, X2, X3 may be chosen to be any three mutually perpendicular
axes at point O .

Example 2-11.1. Computation of Principal Strains and Principal Strain Direc-
tions. Given a strain tensor

ε =
⎡
⎣ 0.01 0.003 0

0.003 0.002 0
0 0 0.006

⎤
⎦ (a)

We wish to compute the principal strains and their directions. By Eq. (2-11.3) the
principal strains are the roots Li of the determinantal equation

F(L) =
∣∣∣∣∣∣
0.01 − L 0.003 0

0.003 0.002 − L 0
0 0 0.006 − L

∣∣∣∣∣∣ = 0 (b)

Expanding Eq. (b) we find

(0.006 − L)(L − 0.011)(L − 0.001) = 0 (c)

Thus, the roots (principal strains or eigenvalues) are

L1 = 0.011 L2 = 0.006 L3 = 0.001 (E2-11.1)

where we have taken the order L1 > L2 > L3.
With each principal strain there is an associated principal strain direction (or

eigenvector). Thus, let ξ = (ξ1, ξ2, ξ3) be the principal direction associated with
the principal strain L1. By Eqs. (f) and (g) of Section 2-11, we have

(0.01 − 0.011)ξ1 + 0.003ξ2 + 0.0ξ3 = 0

0.003ξ1 + (0.002 − 0.011)ξ2 + 0.0ξ3 = 0

0.0ξ1 + 0.0ξ2 + (0.006 − 0.011)ξ3 = 0

ξ 2
1 + ξ 2

2 + ξ 2
3 = 1 (d)

By the first of Eqs. (d), we find ξ1 = 3ξ2. By the third of Eqs. (d), we find
ξ3 = 0, and substituting into the last of Eqs. (d), we get 9ξ 2

2 + ξ 2
2 = 1. Thus, the
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direction cosines (ξ1, ξ2, ξ3) of the principal direction ξ are

ξ1 = ± 3√
10

ξ2 = ± 1√
10

ξ3 = 0 (e)

where either the top (+) signs or the bottom (−) signs must be used.
Similarly, the other principal directions (corresponding to the principal strains L2

and L3) may be computed. These computations are left for the reader as a learning
exercise. As noted above, more generally the principal strains are eigenvalues and
the principal directions are eigenvectors of the mathematical eigenproblem (Morse
and Feshbach, 1961; Bathe, 1995, 2003).

Computer subroutines (Smith and Griffiths, 2004) and commercial computer
programs are available for digital computers for the calculation of eigenvalues and
eigenvectors. Such programs are also available for some handheld calculators and
palmtops.

Equivalent computations hold for the stress tensor (principal stresses and prin-
cipal stress directions) (see Chapter 3, Section 3-5).

Problem Set 2-11

1. Determine the principal strains for Problem 2-6.1.

2. Noting the condition l2 + m2 + n2 = 1, where l, m, n are direction cosines, use the
Lagrange multiplier method to seek extreme values of MFA [Eq. (2-7.2) and Chapter 1,
Section 1-29].

3. The displacement components (u1, u2, u3) are given by the relations u1 = x1 − 2x2,

u2 = 3x1 + 2x2, u3 = 5x3. Verify that this displacement vector is continuously possi-
ble for a continuously deformed body. Determine the principal strains. Determine the
principal axes of strain in the undeformed medium and in the deformed medium.

4. A body is strained so that ε11 = 0.002, ε22 = −0.002, ε33 = 0, 2ε13 = 0.004, ε12 = 0, and
ε23 = 0. Derive equations that determine the directions of the sides of a cubic element
in the body whose angles are preserved under the strain.

5. A set of displacements for a deformable body are given as

u1 = 2x1 − x2 u2 = x2 − 2x1 u3 = x3

(a) Determine if this is a possible set of displacements for a continuously deformed body.

(b) Determine the principal strains.

(c) Determine the direction of the maximum principal strain in the undeformed medium.

6. Let axes (x, y, z) be principal axes of strain. Let principal strains be (ε1, ε2, ε3). Two
perpendicular line elements (element 1 and element 2) lie in the octahedral plane (see
Section 2-12 for definition of octahedral plane) in the first octant of the coordinate system.
Element 1 is parallel to the (x, y) plane. Determine the direction cosines of elements 1
and 2. Determine � between elements 1 and 2 in terms of (ε1, ε2, ε3). Determine the
magnification of element 1 in terms of (ε1, ε2, ε3).
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7. Consider the motion of a continuum from initial position X = (X1, X2, X3) to the final
position x = (x1, x2, x3). The relation X and x is given by

xk = (δkK + BkK)XK k, K = 1, 2, 3

where δkK is the Kronecker delta and where we let K be a summing index. Hence,

δkK = 1 k = K δkK = 0 k �= K

The elements BkK are constants.

(a) Determine the displacement components UK .

(b) Determine the material strain tensor symmetric components eKL and the antisym-
metric components ωKL [Eqs. (2-5.2) and (2-2.3)].

(c) Determine the requirements for the approximations εKL ≈ eKL, where εKL is the
material strain tensor [Eq. (2-6.10)].

(d) Let BkK = 1 for all k, K . Determine the principal strains and principal directions
for the point X1 = X2 = X3 = 1.

8. A body is strained so that εx = εy = εz = γxy = γxz = γyz = e, where e is a constant.
Determine the principal strains. Then, write down the three systems of equations that
determine the principal directions. Here we employ the notation x ≡ x1, y ≡ x2, z ≡ x3,
εx ≡ ε11, εy ≡ ε22, εz ≡ ε33, γxy ≡ 2ε12, γxz ≡ 2ε13, γyz ≡ 2ε23.

9. Figure P2-11.9 represents the centerline of the cross section of a cylindrical shell. When
the shell buckles, the particle that lies at point (x, y, z) of the middle surface is dis-
placed to the point (x∗, y∗, z∗). (The x axis is perpendicular to the paper, outward.) In
terms of the axial, circumferential, and radial displacement components (u, v,w), the
angular coordinate θ , and the initial coordinate x, derive expressions for the coordinates
(x∗, y∗, z∗).

Figure P2-11.9
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2-12 Determination of Strain Invariants. Volumetric Strain

In Eq. (2-11.8), denote L by λi . Then, expanding, we obtain

λ3
i − J1λ

2
i + J2λi − J3 = 0 (2-12.1)

where
J1 = ε11 + ε22 + ε33 = εαα = δαβεαβ

J2 = ε11ε22 + ε11ε33 + ε22ε33 − ε2
12 − ε2

13 − ε2
23

=
∣∣∣∣ε11 ε12

ε12 ε22

∣∣∣∣ +
∣∣∣∣ε11 ε13

ε13 ε23

∣∣∣∣ +
∣∣∣∣ε22 ε23

ε23 ε33

∣∣∣∣ = δαβ cof εαβ (2-12.2)

J3 =
∣∣∣∣∣∣
ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33

∣∣∣∣∣∣ = det(εαβ)

It is shown in the theory of algebraic equations that the coefficients (J1, J2, J3)

are related to the three roots (λ1, λ2, λ3) of Eq. (2-12.1) by the following equation:

J1 = λ1 + λ2 + λ3

J2 = λ1λ2 + λ1λ3 + λ2λ3 (2-12.3)

J3 = λ1λ2λ3

Comparing Eqs. (2-12.2) and (2-12.3), we see that Eqs. (2-12.3) are a special
case of Eqs. (2-12.2), that is, the case when axes (X1, X2, X3) are the principal
axes and ε12 = ε13 = ε23 = 0. Accordingly, because the principal deformations10

(λ1, λ2, λ3) are physical quantities independent of the coordinate system, Eqs.
(2-12.3) state that the quantities (J1, J2, J3) are independent of the coordinate
system; that is, (J1, J2, J3) are invariant (unchanged) under coordinate transfor-
mations. Consequently, the coefficients (J1, J2, J3) of Eq. (2-12.1) are called the
invariants of the strain tensor εαβ , or, briefly, the strain invariants .

Alternatively, the invariance of J1, J2, J3 may be shown by direct calculations.
For example, by Eq. (2-9.3) the strain components εαβ, Eαβ relative to the two sets
of axes yα and xβ are related by the equation

εαβ = aγαaδβEγδ (a)

where aαβ are the direction cosines between the axes yα and xβ , respectively (see
Section 1-24). Substituting Eq. (a) into Eq. (2-12.2), we have [with α = β in
Eq. (a)], using Eq. (1-26.2),

J1 = εαα = aγαaδαEγδ = δγ δEγδ = Eγγ = Eαα

10Because λi = ei + 1
2 e2

i , λi is called a principal strain .
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Thus, J1 is invariant under a rotation of axes xα into axes yα; that is, it is
computed in the same manner relative to axes xα or axes yα , and it has the same
numerical value relative to either axis.

Similarly, for J2 [Eq. (2-12.2)] we have

J2 = δαβ cof εαβ = 1
2εαβεγ δειαγ εκβδ (b)

where εijk is the alternating tensor [Eq. (1-26.4)]. Substitution of Eq. (a) into
Eq. (b) yields

J2 = 1
2 (aζαaηβEζη)(aμγ aνδEμν)ειαγ εκβδ (c)

or, regrouping, we obtain

J2 = 1
2EζηEμν(ειαγ aζαaμγ )(εκβδaηβaνδ)

which [with Eq. (1-26.10) and the result following Eq. (1-26.10)] reduces to

J2 = 1
2EζηEμνειζμεκην = 1

2EαβEγδειαγ εκβδ (d)

where the right side of Eq. (c) is obtained by changing summing indices (Chapter 1,
Section 1-23). Thus, the computation of J2 relative to axes xα is the same as it is
relative to axes yα , Eqs. (b) and (c), respectively; and it has the same numerical
value whether expressed in terms of εαβ or Eαβ . Consequently, J2 is invariant
under a rotation of axes.

Finally, it can be shown that

J3 = det (εαβ) = 1
6εαβεδγ εζηεζαδεηβγ

= 1
6EαβEδγ Eζηεζαδεηβγ (d)

hence that J3 is invariant under a rotation of axes.

Volumetric Strain. Under a deformation, an initial volume element dV is
deformed into a volume element dV . In accordance with Eq. (2-6.15), we define
the volumetric strain e by the relation

e = 1

2

[(
dV

dV

)2

− 1

]
(2-12.4)

The volumetric strain e may be expressed in terms of the components εαβ directly if
dV /dV is evaluated for an arbitrary volume element dV . However, considerable
algebraic labor is avoided through the use of principal strains. Accordingly, we
consider an infinitesimal rectangular parallelepiped with edges along principal axes.
Because line elements in the principal directions remain mutually perpendicular
under a deformation, the parallelepiped remains rectangular in the deformed state.
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Consequently, Eq. (2-6.15) yields the result(
d s1

ds1

)2

= 1 + 2λ1 (a)

where λ1 is the principal strain of one edge of the rectangular parallelepiped whose
edges are (ds1, ds2, ds3). Similar expressions pertain for ds2 and ds3. Hence,
because dV = ds1 ds2 ds3, by Eq. (a) we have(

dV

dV

)2

= (1 + 2λ1)(1 + 2λ2)(1 + 2λ3) (b)

where (λ1, λ2, λ3) are principal strains.
By Eqs. (2-12.3), (2-12.4), and (b), the volumetric strain (also called cubical

dilatation, or simply dilatation) e may be expressed in terms of the strain invariants
(J1, J2, J3) as

e = J1 + 2J2 + 4J3 (2-12.5)

Accordingly, the volumetric strain e is also an invariant quantity. If (J1, J2, J3)

are expressed in terms of the components εαβ of the strain tensor [Eqs. (2-12.2)],
Eq. (2-12.5) defines the volumetric strain e in terms of εαβ . Furthermore, because
J2 and J3 are, respectively, second- and third-order terms in the principal strains
λi [see Eqs. (2-12.3)], to first-order terms in λi the volumetric strain is

e = J1 = ε11 + ε22 + ε33 = εαα (2-12.6)

Consequently, if quadratic terms in ui and their derivatives are small compared to
corresponding linear terms in ui , Eqs. (2-12.6) and (2-6.9) yield

e = u1,1 + u2,2 + u3,3 (2-12.7)

Hence, Eq. (2-12.7) represents an approximate expression for the volumetric strain
in terms of the (x1, x2, x3) derivatives of (u1, u2, u3), respectively. For an incom-
pressible medium, e = 0. For example, for infinitesimal small displacements of an
incompressible fluid,

e = J1 = u1,1 + u2,2 + u3,3 = 0 (2-12.8)

Mean and Deviator Strain Tensor. Experiments indicate that yielding and
plastic deformation of many metals are essentially independent of mean strain εm,
where by definition

εm = εx + εy + εz

3
= ε11 + ε22 + ε33

3
= λ1 + λ2 + λ3

3
= 1

3
J1 (2-12.9)

Hence, plasticity theories often postulate that plastic behavior of materials is related
primarily to that part of the strain tensor that is independent of εm. Accordingly,
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we write the strain tensor [Eq. (2-9.2)] in the form

D = Dm + Dd (2-12.10)

Here, D symbolically represents the strain (deformation) tensor and

Dm =
⎛
⎝εm 0 0

0 εm 0
0 0 εm

⎞
⎠ = εmD1 (2-12.11)

where

D1 =
⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ (2-12.12)

represents the unit tensor and

Dd =
⎛
⎝ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33

⎞
⎠ (2-12.13)

where
ε11 = εx − εm = ε11 − εm

ε22 = εy − εm = ε22 − εm

ε33 = εz − εm = ε33 − εm

(2-12.14)

The validity of Eq. (2-12.10) follows from the definition of a tensor (Synge and
Schild, 1978).

The tensor Dm is called the mean strain tensor. The tensor Dd is called the
deviator strain tensor. Accordingly, the components

ε11, ε22, ε33, ε12, ε13, ε23

are called the components of the deviator strain tensor.
If (x1, x2, x3) are principal axes of strain,

εx = ε11 = λ1 εy = ε22 = λ2

εz = ε33 = λ3 ε12 = ε13 = ε23 = 0 (2-12.15)

and the above equations are simplified accordingly, then

For Dm : J1m = J1 = 3εm

J2m = 1
3J 2

1 = 3ε2
m (2-12.16)

J3m = 1
27J 3

1 = ε3
m
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For Dd : J1d = 0

J2d = J2 − 1
3J 2

1 = − 1
6 [(λ1 − λ2)

2 + (λ2 − λ3)
2 + (λ3 − λ1)

2]

= ε11ε22 + ε11ε33 + ε22ε33 (2-12.17)

J3d = 1
27 (2λ1 − λ2 − λ3)(2λ2 − λ3 − λ1)

× (2λ3 − λ1 − λ2)

= (λ1 − εm)(λ2 − εm)(λ3 − εm)

= ε11 ε22 ε33

where ε11 = λ1 − εm, ε22 = λ2 − εm, ε33 = λ3 − εm denote the principal values of
ε11, ε22, ε33.

Octahedral Strains. Consider the octahedral planes defined as planes whose
normals satisfy the relations N2

1 = N2
2 = N2

3 = 1
3 with respect to principal strain

axes.
Then

λoct = εoct = ε11 + ε22 + ε33

3
= εm = λ1 + λ2 + λ3

3
(2-12.18)

The strain εoct is called the octahedral strain . Similarly, the maximum shearing
strain between an octahedral plane and its normal,

� = γoct = 2
3

√
(λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ3)2 (2-12.19)

is called the octahedral shearing strain . It plays a significant role in certain theories
of plasticity.

Plane Strain. A special case of strain that plays an important role in the plane
theory of deformation is that of plane strain . For example, if two of the displace-
ment components (say u1, u2) are functions of two coordinates only (say x1, x2)

and if the third component u3 = constant, the state of the deformation is called a
plane strain relative to the (x1, x2) plane. It follows that

ε33 = ε13 = ε23 = 0 (2-12.20)

and ε11, ε22, ε12 are functions of (x1, x2) only. Such a state of deformation exists
in a cylinder constrained at its end faces such that the axial displacement of all
points in the cylinder is prevented (u3 = 0). In the case of plane strain relative
to the (x1, x2) plane, the three-dimensional deformation problem in (x1, x2, x3) is
reduced to a two-dimensional problem in (x1, x2) (see Chapter 5).
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2-13 Rotation of a Volume Element. Relation to Displacement
Gradients

Consider an infinitesimal volume element surrounding any particle P of a contin-
uous media. Under a deformation this infinitesimal volume is altered not only in
position but also in dimensions and shape. We define the rotation of the volume
element to be the mean value of the rotation experienced by the set of infinitesimal
line elements emanating from point P . Accordingly, in our present discussion we
are concerned only with rotations of line elements. Hence, we let the position P of
the particle in the deformed medium coincide with its position P in the undeformed
medium.

Initially, we consider the rotation of a single infinitesimal line element PA1 that
lies in the (x1, x2) plane. After the deformation, the line PA1 coincides with the
direction PA (or P A ) (see Fig. 2-13.1).

The orthogonal projection of the vector PA on the (X1, X2) plane is PA 1. The
angle φX3 = ϑ − θ between lines PA1 and PA 1 is understood to be the rotation
of line element PA1 about the X3 axis. Accordingly, by Fig. 2-13.1 we have the
relations

tan θ = dx2

dx1
tan ϑ = dξ2

dξ1
(a)

Furthermore, the deformation is defined by the equations ξi = ξi(x1, x2, x3),

i = 1, 2, 3, with the understanding that (xi1, xi2, xi3) vanish at x1 = x2 = x3 = 0.
Because PA 1 lies in the (x1, x2) plane, PA 1 = (dξ1, dξ2, 0). Hence, for PA 1, by
Eqs. (2-5.3), (2-6.4) and (2-6.6), we obtain the relations

dξ1 = (1 + e11)dx1 + (e21 + ω21) dx2

dξ2 = (e12 + ω12)dx1 + (1 + e22) dx2
(b)

Figure 2-13.1



114 THEORY OF DEFORMATION

Hence, Eqs. (a) and (b) yield

tan ϑ = e12 + ω12 + (1 + e22) tan θ

1 + e11 + (e21 + ω21) tan θ
(c)

The angle of rotation of PA1 about the X3 axis is φX3 = ϑ − θ . Moreover, the
tangent of the difference of two angles may be written in the form

tan φX3 = tan ϑ − tan θ

1 + tan ϑ tan θ
(d)

Accordingly, substitution of Eq. (c) into Eq. (d) yields, after simplification,

tan φX3 = ω12 + 1
2 (e22 − e11) sin 2θ + e12 cos 2θ

1 + e11 cos2 θ + e22 sin2 θ + e21 sin 2θ
(2-13.1)

Equation (2-13.1) expresses the rotation φX3 of line element PA1 about the X3

axis in terms of tan φX3 . It is desirable to obtain an expression for φX3 in explicit
form. With φX3 determined, we have, by definition of mean rotations φ, for the
mean rotation of the volume element about the X3 axis,

φX3
= 1

2π

∫ 2π

0
φX3dθ (e)

One method of approach might be by numerical integration after substitution of
Eq. (2-13.1) into Eq. (e). In general, however, φX3

cannot be obtained in closed
form, and, consequently, the effect of ωαβ and eαβ remain coupled in the mean
rotations.11 Hence, the assertion made in Section 2-5 to the effect that the ωαβ may
be related to mean rotations of volume elements is not generally true. Accordingly,
we consider cases for which the assertion is valid. For this purpose we restrict the
discussion to the case where

|e11| � 1 |e12| = |e21| � 1 |e22| � 1

Then Eq. (2-13.1) may be written

tan φX3 ≈ ω12 + 1
2 (e22 − e11) sin 2θ + e12 cos 2θ = ω12 + F(θ)

where
|F(θ)| = ∣∣ 1

2 (e22 − e11) sin 2θ + e12 cos 2θ
∣∣ � 1

11In an extensive study of the mean rotation of an elastic solid around a coordinate axis, Elder et al.,
(1984) have developed a Fourier series expansion for the mean angle of rotation in terms of certain
parameters. The expansion is valid for finite strains not exceeding 1

2 .
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The determination of angle φX3 now reduces to two cases: (a) |ω 12| � 1 and (b)
|ω 12| sufficiently small so that a Taylor series expansion of φX3 about ω12, retaining
at most two terms, is permissible. We now consider these cases in order.

Case a. Because |eαβ | � 1 is assumed, with |ω12| � 1, Eq. (2-13.1) yields the
result

φX3 = ω12 + e12 cos 2θ + 1
2 (e22 − e11) sin 2θ (f)

Moreover, by the definition of the mean rotation φ of a volume element, we
have, for the mean rotation of the volume element about the X3 axis,

φX3
= 1

2π

∫ 2π

0
φX3dθ (g)

Substitution of Eq. (f) into Eq. (g) yields, after integration,

φX3
= ω12 (g)

Similar expressions hold for the rotations of the volume element about X1 and
X2 axes. Hence, we have for the mean rotation of the volume element about
(X1, X2, X3) axes, respectively,

φX1
= ω23 φX2

= ω31 φX3
= ω12 (2-13.2)

Consequently, the quantities (ω12, ω13, ω23) may be interpreted as the rotation
vector

ω = iω23 + jω31 + kω12 (2-13.3)

= 1
2 curl q

for a volume element, provided eαβ and ωαβ are very small compared to 1. Hence,
we have demonstrated the assertion made in Section 2-5 that � characterizes a
mean rotation of a volume element when the strains are small. In other words, for
|eαβ | � 1, |ωαβ | � 1, the mean rotation of a volume element may be characterized
by the components of the antisymmetric part of the gradient of the displacement.

Case b. We assume that |ω12| is sufficiently small to allow a Taylor series expan-
sion of φX3 = arctan [ω12 + F (θ )], retaining, at most, two terms. Hence, by the
Taylor series expansion, we have, retaining two terms,

φX3 ≈ φX3(0) + ∂φX3

∂ω12

∣∣∣∣
0
F(θ) = arctan ω12 + F(θ)

1 + ω2
12
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Accordingly, by definition of mean rotation, we find

φX3
= arctan ω12 (2-13.4)

because ∫2π
0 F(θ) dθ = 0. Hence,

ω12 = tan φX3

That is, ω12 is equal to the tangent of the mean rotation φX3
of the volume element

about axis X3. Similar results hold for ω23, ω31 in this case. Because the arctangent
is multivalued, in lieu of other information, Eq. (2-13.3) must be restricted to one
branch of the function, say, −π /2 ≤ φX3 ≤ π /2.

We note that the requirement |eαβ | � 1 is sufficient for interpreting ωαβ in terms
of mean volume rotation, as may be seen by considering the displacement field u1 =
−(1 − cos θ)X1 − (sin θ) X2, u2 = (sin θ)X1 − (1 − cos)X2, as then e11 = e22 =
cos θ − 1, e12 = 0, and ω12 = sin θ . Hence, Eq. (2-13.1) reduces to an identity.
Then, by definition of mean value of rotation, we obtain ω12 = sin φX3 ; that is, ω12

is related to volume rotation.

Problem. Let u1 = a+ cx 2, u2 = b–cx 1. Hence, compute the strain components of
εαβ . Discuss the possibility of interpretation of ω12 in terms of the volume rotation.

Example 2-13.1. Volumetric Rotation. Let the displacement components be
given as

u1 = C(10x1 − 3x2) u2 = C(3x1 + 2x2) u3 = 6Cx3 (a)

where C is a small positive constant. By the theory of Section 2-13, the mean
rotation of a volume element is characterized by ωαβ , where the ωαβ are related
to uα by Eq. (2-5.3). Thus, the components of mean rotation for |eαβ | � 1 [see
Eq. (2-5.3)] are

ω12 = 1
2 (u2,1 − u1,2) = 3C

ω23 = 1
2 (u3,2 − u2,3) = 0

ω31 = 1
2 (u1,3 − u3,1) = 0

(b)

Equation (b) indicates that the mean rotation of the volume element is constant
throughout the region and is directed around axis x3 [see Eq. (2-13.3)].

Problem Set 2-13

1. The classical small-displacement theory of elasticity yields the following (x, y, z) dis-
placement components for a beam subjected to pure bending: u = −k1xy, v = k2(x

2+
vy2 –vw 2), w = k3vyz . Compute the rotations of a volume element in the beam with
respect to (x, y, z) axes, respectively.

2. For a bar stretched by its own weight, the classical small-displacement theory of elasticity
yields the displacement components:

u = −C1zx v = −C1zy w = 1
2 C1(x

2 + y2) + C2z
2 + C3
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where C1, C2, C3 are constants. Compute the rotations of a volume element in the body
with respect to (x, y, z) axes, respectively.

3. The rectangular Cartesian displacement components of an arbitrary point in a body are
given by the relations

u = a1x + a2y + a3z

v = b1x + b2y + b3z

w = c1x + c2y + c3z

Show that a spherical surface with center at the origin of coordinate system (x, y, z) is
transformed into a quadratic surface. Show that if ε11 = ε22 = ε33 are principal strains,
the spherical volume element enclosed in the spherical surface remains spherical under
the deformation.

4. A displacement field (u1, u2, u3) is defined for all (x1, x2) and for x3 ≥ 0 by the relations

u1 = −εx3x1 u2 = −εx3x2 u3 = 1
2 ε(x2

1 + x2
2 ) + 1

2 εAx2
3

where ε > 0 and A are constants.

(a) Determine the value of A that ensures that this field is a physically possible continuous
field (an admissible field).

(b) With the value of A determined in part (a), compute the three strain invariants.

(c) With the value of A determined in part (a), compute the rotations of a volume element
with respect to (x1, x2, x3) axes, respectively.

5. Outline a method of computing the octahedral shearing strain γoct defined as the maximum
value of � measured between the normal to an octahedral plane and any line in the
octahedral plane. Hence, verify Eq. (2-12.19).

6. The following set of displacement components is given for a deformable body in the
region:

x2 + y2 ≤ a |z| ≤ L

where a and L are constants:

u = x(cos kz − 1) − y(sin kz)

v = x(sin kz) + y(cos kz − 1) k = const > 0

w = 0

(a) Determine whether these displacement components may represent a continuous defor-
mation.

(b) Determine the strain components.

(c) Determine the volumetric strain.

(d) Determine the volumetric rotation for small angles of rotation and small eαβ .

7. For the displacement field of Example 2-13.1, determine the tangent of the angle of
rotation about the x2 axis of a line element initially parallel to the x3 axis, and about the
x1 axis of a line element initially parallel to the x2 axis.
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2-14 Homogeneous Deformation

In the preceding sections we considered general deformation of a continuous
medium. For this case we discovered that the deformation of the medium is char-
acterized by the six strain components εαβ . These six components are expressed in
Lagrange coordinates by Eq. (2-6.9). Furthermore, in Section 2-10 we noted that
the deformation may be described by a family of strain ellipsoids, one ellipsoid for
each particle of the medium.

In this section we consider a special kind of deformation; that is, we let the final
position (ξ1, ξ2, ξ3) of a particle of the medium be a linear function of its initial
position (x1, x2, x3). Thus, we take

ξ1 = c10 + (1 + c11)x1 + c12x2 + c13x3

ξ2 = c20 + c21x1 + (1 + c22)x2 + c23x3 (2-14.1)

ξ3 = c30 + c31x1 + c32x2 + (1 + c33)x3

where cij, i = 1, 2, 3; j = 0, 1, 2, 3, are arbitrary constants.
By Eqs. (2-3.4) and (2-14.1) we obtain

u1 = c10 + c11x1 + c12x2 + c13x3

u2 = c20 + c21x1 + c22x2 + c23x3 (2-14.2)

u3 = c30 + c31x1 + c32x2 + c33x3

For x1 = x2 = x3 = 0, Eqs. (2-14.2) yield u1 = c10, u2 = c20, u3 = c30. Accord-
ingly, (c10, c20, c30) represent a translation of the origin of the (x1, x2, x3)
coordinate system. Furthermore, by Eq. (2-6.9), we see that (c10, c20, c30)

produce no strain in the medium. Consequently, they represent a rigid-body
translation of the medium (see Section 2-2). Hence, we discard (c10, c20, c30) from
Eqs. (2-14.2):

u1 = c11x1 + c12x2 + c13x3

u2 = c21x1 + c22x2 + c23x3 (2-14.3)

u3 = c31x1 + c32x2 + c33x3

In index notation, Eqs. (2-14.3) is
uα = cαβ xβ (2-14.4)

Substitution of Eqs. (2-14.3) into Eq. (2-6.14) yields

εαβ = 1
2 (cαβ + cβα + cθαcθβ) (2-14.5)
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or
ε11 = c11 + 1

2 (c2
11 + c2

21 + c2
31)

...

2ε12 = c21 + c12 + c11c12 + c21c22 + c31c32 (2-14.6)
...

Hence, the six strain components εαβ are constant throughout the medium if
(ξ1, ξ2, ξ3) are linear functions of (x1, x2, x3). A deformation for which the strain
components are constant is called a homogeneous deformation or a homogeneous
state of strain . It follows that the ellipsoids of strain for each point are equal, and
they are identically oriented. Consequently, the relative elongation of an infinites-
imal line element depends only on its direction; it does not depend on its location
in the body. Likewise, the change in angle between two infinitesimal line ele-
ments does not depend on their location but only on their initial directions [see
Eq. (2-8.3)]. In particular, it follows that two initially parallel infinitesimal lines
remain parallel under the deformation.

Geometric Properties. Under a homogeneous deformation, certain finite geo-
metric entities also remain unchanged. For example, consider a straight line under
a homogeneous strain. The general equation of a straight line may be written
parametrically as

x1 = a1 + b1t x2 = a2 + b2t x3 = a3 + b3t (2-14.7)

where a1, a2, a3, b1, b2, b3 are constants and t is a parameter. Under the deforma-
tion, (x1, x2, x3) is transformed into (ξ1, ξ2, ξ3), or

ξ1 = x1 + u1 ξ2 = x2 + u2 ξ3 = x3 + u3 (2-14.8)

Substitution of Eqs. (2-14.3) and (2-14.7) into (2-14.8) yields

ξ1 = (1 + c11)a1 + c12a2 + c13a3 + [(1 + c11)b1 + c12b2 + c13b3]t
ξ2 = · · · (2-14.9)
ξ3 = · · ·

Equation (2-14.9) is again a linear equation in t ; accordingly, it is the equation
of a straight line. Thus, we have proved that finite straight lines remain straight
under a homogeneous deformation. Furthermore, because a plane is generated by
all straight lines through two given nonskew straight lines, planes also remain plane
under the deformation.

Similarly, it may be proved that under a homogeneous deformation, paral-
lel lines remain parallel; hence, parallel planes remain parallel, and any paral-
lelepiped remains a parallelepied because it is constructed from pairs of parallel
planes.

Moreover, under a homogeneous deformation, a spherical surface in the medium
is transformed in general into an ellipsoid, provided the displacement remains finite.
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Pure Strain (Dilatation). A homogeneous deformation is called a pure strain
or dilatation when there exist in the undeformed medium three axes that remain
unaltered under the deformation. In general, there exists in a homogeneous
deformation three rectangular Cartesian axes (x1, x2, x3), which are transformed
into three other rectangular Cartesian axes (X1, X2, X3). The deformation
(strain) is pure when (x1, x2, x3) and (X1, X2, X3) coincide. Then the axes of
(x1, x2, x3) and (X1, X2, X3) constitute the principal axes of the deformation (see
Sections 2-10 and 2-11) in the undeformed medium and the deformed medium,
respectively.

Accordingly, let us take the axes of the rectangular Cartesian system
(X1, X2, X3) as principal axes. Let (x1, x2, x3) be the coordinates of point P in
the undeformed medium; let (ξ1, ξ2, ξ3) be coordinates of P after a homogeneous
deformation. Then, by Eqs. (2-14.1),

ξ1 = (1 + c11)x1 + c12x2 + c13x3

ξ2 = c21x1 + (1 + c22)x2 + c23x3 (2-14.10)
ξ3 = c31x1 + c32x2 + (1 + c33)x3

where we have discarded the rigid-body translation (c10, c20, c30). By the definition
of pure strain , if point P is on the X1 axis, the corresponding point P must also
be on the X1 axis. Then, because (x2, x3) are zero, (ξ2, ξ3) must also be zero.
Hence, because x1 is not zero, it follows by Eqs. (2-14.10) that c21 = c31 = 0.
Similarly, by considering points on the axes X2 and X3, c12 = c13 = c32 = c23 = 0.
Consequently, referred to principal axes, a pure strain (dilatation) is defined by the
equations

ξ1 = (1 + c11)x1 ξ2 = (1 + c22)x2 ξ3 = (1 + c33)x3 (2-14.11)

Accordingly, the constants (c11, c22, c33) in Eqs. (2-14.3) are the relative elonga-
tions of line elements that coincide with the principal axes. They are called the
coefficients of the principal dilatations .

By Eqs. (2-14.11), we see that a dilatation is characterized by three extensions
(for positive c11, c22, c33) or contractions (for negative c11, c22, c33) parallel to three
rectangular axes. A dilatation is said to be simple if c11 = c22 = c33. For example, a
simple dilatation occurs when an isotropic medium is subjected to uniform external
pressure. In spherical coordinates, a simple dilatation is given by the relations

u = Cr v = w = 0 c11 = c22 = c33 = C (2-14.12)

where (u, v, w) are the displacement components in the (r, φ, θ ) directions, respec-
tively.

The type of deformation that occurs in a cylindrical or prismatic bar sub-
jected to uniform tension or compression is given in cylindrical coordinates by the
equations

u = Cr v = 0 w = Kz c11 = c22 = C c33 = K (2-14.13)
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where (u, v, w) are in the (r, φ, z) directions, respectively. In this case, K and C

have opposite signs. The ratio −C/K is a dimensionless characteristic constant of
the material, called Poisson’s ratio. For most metals, Poisson’s ratio is a number
that lies in the range 1

4 to 1
3 .

In general, for pure strain, we have the following theorem12:

Theorem 2-14.1. A necessary and sufficient condition that a homogeneous defor-
mation to be a pure strain (dilatation) is that the displacement of components
(u1, u2, u3) be the (x1, x2, x3) derivatives, respectively, of a function φ of second
degree in (x1, x2, x3).

Furthermore, it may be shown that any homogeneous strain may be produced
in a body by a suitable pure strain followed by a properly chosen rotation.13

2-15 Theory of Small Strains and Small Angles of Rotation

In the previous sections we examined the general deformation of a continuous
medium. In certain cases we simplified the general results for small values of strains
and small angles of rotation. In this section we discuss further the simplifications
obtained when the strain is small compared to 1 and when the angles of rotation
are either of the same order or smaller.

Using the notation of Eq. (2-5.7), we may write Eq. (2-6.13) in the form

ε11 = e11 + 1
2 [e2

11 + (e12 + ω12)
2 + (e13 + ω13)

2]

ε22 = e22 + 1
2 [e2

22 + (e21 + ω21)
2 + (e23 + ω23)

2]

e33 = e33 + 1
2 [e2

33 + (e31 + ω31)
2 + (e32 + ω32)

2]

2ε12 = 2e12 + e11(e21 + ω21) + (e12 + ω12)e22

+ (e13 + ω13)(e23 + ω23) (2-15.1)

2ε13 = 2e13 + e11(e31 + ω31) + (e12 + ω12)(e32 + ω32)

+ (e13 + ω13)e33

2ε23 = 2e23 + (e21 + ω21)(e31 + ω31) + e22(e32 + ω32)

+ (e23 + ω23)e33

or, in index notation,

2εαβ = 2eαβ + (eαθ + ωαθ)(eβθ + ωβθ ) (2-15.1a)

12See Love (2002), p. 38.
13See Love (2002), p. 69; see also Section 2-15.
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To examine the reduction of Eqs. 2-15.1 to the classical approximations of small
strains and small rotations, we rewrite the first of Eqs. 2-15.1 in the form

(1 + 2ε11) = (1 + e11)
2 + (e12 + ω12)

2 + (e13 + ω13)
2 (2-15.2)

Next, we note that Eq. (2-15.2) is satisfied identically by the relations

1 + e11√
1 + 2ε11

= cos α1

e12 + ω12√
1 + 2ε11

= sin α1 cos β1 (2-15.3)

e13 + ω13√
1 + 2ε11

= sin α1 sin β1

where cos α1 = N1 [see Eq. (2-8.2)] is the direction cosine with respect to the
x1 axis of a line element with initial direction cosines N1 = 1, N2 = N3 = 0 in
the undeformed state [see Eq. (2-6.12)]. The angle β1 is merely a variable of
transformation. It does not enter into the principal results of the argument to follow.

Now if the rotation α1 is small, N1 = cos α1 ≈ 1 − (α2
1/2). Accordingly, for

small rotations, by the first of Eqs. (2-15.3), we obtain

1 + e11√
1 + 2ε11

≈ 1 − α2
1

2

In a similar manner, the second and third equations of Eqs. 2-15.1 yield equivalent
results. Thus,

1 + e11√
1 + 2ε11

≈ 1 − α2
1

2

1 + e22√
1 + 2ε22

≈ 1 − α2
2

2
(2-15.4)

1 + e33√
1 + 2ε33

≈ 1 − α2
3

2

where (α1, α2, α3) denote the angles of rotation of lines initially directed along
(x, y, z) axes, respectively.

For strains (ε11, ε22, ε33) small compared to 1, we may write

(1 + 2εii)
1/2 = 1 + εii − 1

2ε2
ii + · · · (2-15.5)

where i = 1, 2, 3. Substitution of Eqs. (2-15.5) into Eqs. (2-15.4) yields, to second-
degree terms in the rotation αi ,

ε11 − e11 = α2
1

2

ε22 − e22 = α2
2

2
(2-15.6)

ε33 − e33 = α2
3

2
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or

εii − eii = α2
i

2
i = 1, 2, 3 (2-15.7)

Equations (2-15.7) indicate that if the strains are small [Eq. (2-15.5)] and if the
rotations are sufficiently small [Eqs. (2-15.4)], the difference between εii and eii is
of the order of the square of the angle αi of rotation.

To examine the reduction of the last three equations of Eqs. 2-15.1, we note
that in a manner analogous to the derivation of Eqs. (2-15.3), the second of Eqs.
2-15.1 yields the relations

e12 − ω12√
1 + 2ε22

= sin α2 sin β2

1 + e22√
1 + 2ε22

= cos α2 (2-15.8)

e23 + ω23√
1 + 2ε22

= sin α2 cos β2

Then by Eqs. (2-15.3), (2-15.8), and the fourth of Eqs. 2-15.1, we find

2ε12√
1 + 2ε11

√
1 + 2ε22

= cos α1 sin α2 sin β2 + cos α2 sin α1 cos β1 (2-15.9)

+ sin α1 sin α2 sin β1 cos β2

If the strains (ε11, ε22) are small compared to 1, and if the angles (α1, α2) of
rotation are small, Eq. (2-15.9) yields the approximation

2ε12 ≈ α2 sin β2 + α1 cos β1 + α1α2 sin β1 cos β2 (2-15.10)

Also, Eqs. (2-15.3) and (2-15.8) yield

e12 + ω12 ≈ α1 cos β1

e12 − ω12 ≈ α2 sin β2 (2-15.11)

Finally, Eqs. (2-15.10) and (2-15.11) yield, to second-degree terms in (α1, α2),

2(ε12 − e12) = α1α2 sin β1 cos β2

By an entirely similar argument, similar expressions for 2(ε13 − e13), 2(ε23 − e23)
are obtained from the last two of Eqs. 2-15.1. Hence, we obtain, to second-degree
terms in (α1, α2, α3),

2(ε12 − e12) = α1α2 sin β1 cos β2

2(ε13 − e13) = α1α3 cos β1 sin β3 (2-15.12)

2(ε23 − e23) = α2α3 sin β2 cos β3
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Equations (2-15.12) show that for small strains and small rotations (ε12, ε13,
ε23) differ from (e12, e13, e23), respectively, by second-degree terms in the angles
of rotation. Consequently, for sufficiently small strains and small rotations, the
second-degree terms in (e11, e12, e13) may be discarded in the expression for ε11

[Eqs. (2-15.1)], as these terms yield second-degree terms in ε11 and fourth-degree
terms in (α1, α3). Hence,

ε11 ≈ e11 + e12ω12 + e13ω13 + 1
2 (ω2

12 + ω2
13)

Furthermore, substitution into this relation the expressions for (e12, e13) [see
Eqs. (2-15.11) and (2-15.12)] yields square terms in the strains and cubic terms in
the rotations. Hence, to second-degree terms, we obtain

ε11 = e11 + 1
2 (ω2

12 + ω2
13)

By an analogous argument, similar expressions for (ε22, ε33, ε12, ε13, ε23) are
obtained. Thus, to this degree of approximation we find

ε11 = e11 + 1
2 (ω2

12 + ω2
13)

ε22 = e22 + 1
2 (ω2

21 + ω2
23)

ε33 = e33 + 1
2 (ω2

31 + ω2
32) (2-15.13)

2ε12 = 2e12 + ω13ω23

2ε13 = 2e13 + ω12ω32

2ε23 = 2e23 + ω21ω31

or
2εαβ = 2eαβ + ωαθωβθ α, β, θ = 1, 2, 3 (2-15.13a)

Finally, if the squares and the products of ωij may be neglected compared to the
strains, we may discard the ω terms from Eqs. (2-15.13). Accordingly, if the strains
and the angles of rotation are sufficiently small compared to 1, and if the rotations
are sufficiently small compared to the strains, we may neglect all quadratic terms
in Eqs. 2-15.1. This approximation is equivalent to discarding the quadratic terms
in Eqs. (2-6.9) [or in Eqs. (2-6.10)]. Then we obtain the approximation

ε11 = e11 = ux = ∂u

∂x
= u1,1

ε22 = e22 = vy = ∂v

∂y
= u2,2

ε33 = e33 = wz = ∂w

∂z
= u3,3
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2ε12 = 2e12 = vx + uy = ∂v

∂x
+ ∂u

∂y
= u2,1 + u1,2 (2-15.14)

2ε13 = 2e13 = wx + uz = ∂w

∂x
+ ∂u

∂z
= u3,1 + u1,3

2ε23 = 2e23 = wy + vz = ∂w

∂y
+ ∂v

∂z
= u3,2 + u2,3

or, in index notation,

2εαβ =
(

∂uα

∂xβ

+ ∂uβ

∂xα

)
= uα,β + uβ,α (2-15.15)

Accordingly, Eqs. (2-15.14) or (2-15.15), which form the basis of classical
small-displacement theory, imply that the strains and the angles of rotation are
both small compared to 1. Moreover, they imply that quadratic terms in ωij may
be neglected in comparison to linear terms in eii [see Eqs. 2-15.1 and (2-6.9)]. The
latter condition is not satisfied for general displacements of flexible bodies, such as
slender rods and thin plates. For example, if we roll up a large thin sheet into the
shape of a cylinder, the strains are quite small, even though the displacements are
very large. However, the angles of rotation of line elements in the sheet are very
large. Hence, the rotational terms ωij cannot be discarded from Eqs. 2-15.1, and the
approximations entailed in Eqs. (2-15.15) are no longer valid. In any case, however,
Eqs. (2-15.15) are valid approximations, provided the displacement components are
infinitesimally small.

Consequently, although the classical theory of small displacements is applicable
to a large class of problems, it must be used with caution. It is applicable to massive
bodies (thick bars and thick plates) but it may yield results grossly in error when
applied to thin flexible bodies14 (e.g., thin shells).

Aside from its importance in the classical small-displacement theory of solids,
the theory of infinitesimally small deformation (displacement) finds applications
in the theory of liquids and gases. For example, in considering the motion of a
particle of fluid from the time t to the time t + dt , where dt is an infinitesimally
small period of time, the particle undergoes an infinitesimally small displacement.
Hence, a particle at point P at time t is at point P at time t + dt . The displacement
vector PP has the (x1, x2, x3) projections

u̇1 dt u̇2 dt u̇3 dt

where here (u̇1, u̇2, u̇3) designate the (x1, x2, x3) projections of the velocity vector
of the particle. Hence, to apply the theory of small displacements to fluids, we may
in many cases simply let the displacement components be given by the relations

u1 = u̇1 dt u2 = u̇2 dt u3 = u̇3 dt (2-15.16)

14See Thin-Walled Structures Journal , ed. by J. Loughlan and K. P. Chong, Oxford, UK: Elsevier
Science.
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Simple Shear. A simple shear parallel to the (x1, x2) plane and along the x1 axis
is said to exist in a medium when the displacement function is of the form

u1 = kx2 u2 = 0 u3 = 0 (a)

By Eqs. (2-15.15) and (a), we obtain

2ε12 = 2e12 = k (b)

Thus, comparing Eqs. (2-8.5) and (b), we see that k is the shearing strain between
two line elements originally parallel to the x1 and x2 axes, respectively. It is the
tangent of the angle φ through which a line parallel to the x2 axis is turned by the
deformation (see Fig. 2-15.1). More explicitly, for small strains and small rotations
[Eq. (2-15.16)], k is equal to φ.

Dilatation. By Eq. (2-7.5) the dilatation at a point P in the direction of axis i is

ei =
√

1 + 2εii − 1

Because εii is small compared to 1, a binomial expansion of the radical yields, to
first-degree terms,

ei = εii

Accordingly, for the small-displacement theory the coefficients (ε11, ε22, ε33)
are the coefficients of dilatations of elements parallel to coordinate axes (1, 2, 3).

Irrotational Strain. By Eqs. (2-14.10) and (2-14.11) we note that the terms (1 +
c11)x1, (1 + c22)x2, (1 + c33)x3 determine the part of a homogeneous deformation
that is called a pure strain . Furthermore, by Eqs. (2-3.4), (2-5.3), and (2-14.10),

Figure 2-15.1
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we have
2ω12 = c21 − c12

2ω31 = c13 − c31 (2-15.17)

2ω23 = c32 − c23

It follows from the definition of the rotation of a volume element that for small
strains (eij � 1) and small angles of rotation (ωij of the same order as eij), the
rotation of a volume element is determined by the constants c12, c21, . . . . Thus, a
homogeneous deformation is characterized by a translation [c10, c20, c30; see Eqs.
(2-14.1)], a pure strain [Eq. (2-14.11)], and a rotation [Eq. (2-15.17)]. In the absence
of translation, it follows that any homogeneous deformation such that c21 = c12 =
c13 = c31 = c32 = c23 = 0, hence such that ω12 = 0, ω13 = 0, ω23 = 0, is a pure
strain. Because ω12, ω31, ω23 characterize a rotation, a pure strain is said to be
irrotational.

Rigid-Body Displacements. The simplest type of displacement vector is
q = constant. This type of motion defines a translation of a medium. A second
group of rigid motions is that of rotations. These two groups (translations and
rotations) combine to form the group of all rigid-body displacements, as any rigid
displacement may be composed of a rotation about an axis in a fixed direction,
plus a translation that depends on the choice of this axis (see Chasles’s theorem,
Section 2-2).

We now proceed to show that a rigid displacement is represented by a linear
function of the coordinates. However, we shall see that it is not the most general
linear functions, as certain coefficients must be restricted appropriately. To derive
the displacement vector, we note that for infinitesimally small displacements a rigid-
body displacement is characterized by the vanishing of the six strain components
eij [see Eq. (2-15.14)].

Hence, in x, y, z notation,

∂u

∂x
= 0

∂v

∂y
= 0

∂w

∂z
= 0

∂w

∂y
+ ∂v

∂z
= 0

∂u

∂z
+ ∂w

∂x
= 0

∂v

∂x
+ ∂u

∂y
= 0 (2-15.18)

Differentiating the last three of Eqs. (2-15.18) with respect to (x, y, z), respectively,
we obtain

∂2w

∂x∂y
+ ∂2v

∂x∂z
= 0

∂2u

∂z∂y
+ ∂2w

∂x∂y
= 0

∂2v

∂x∂z
+ ∂2u

∂y∂z
= 0

Solving, we obtain

∂2u

∂y∂z
= ∂2v

∂z∂x
= ∂2w

∂x∂y
= 0
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Hence, the equations

∂u

∂x
= 0 and

∂2u

∂y∂z
= 0

show that u is a linear sum of a function of y and a function of z. Accordingly,

u = f1(y) + f2(z)

Likewise,
v = f3(x) + f4(z)

w = f5(x) + f6(y)

By the equation (∂w/∂y) + (∂v/∂z) = 0, we have

f ′
6 + f ′

4 = 0

where primes denote derivatives. However, because f6 is a function of y and f4

is a function of z, the most general possibility is

f ′
6(y) = −f ′

4(z) = c1 (c)

where c1 is a constant. Similarly we have

f ′
2(z) = −f ′

5(x) = c2 (d)

f ′
3(x) = −f ′

1(y) = c3 (e)

Integrating Eqs. (c), (d), and (e), and substituting the results into the expressions
for (u, v, w), we obtain

u = a0 + c2z − c3y

v = b0 + c3x − c1z (2-15.19)

w = c0 + c1y − c2x

where (a0, b0, c0) are constants of integration. Equations (2-15.19) define the
infinitesimal displacement components of a rigid-body motion , the translation
being (a0, b0, c0) and the rotation (c1, c2, c3).

Example 2-15.1. Comprehensive Analysis of Deformation. The displacement vec-
tor of a continuous medium is given by the components

u1 = C(10x1 + 3x2) u2 = C(3x1 + 2x2) u3 = 6Cx3

relative to rectangular Cartesian axes (x1, x2, x3), where C is a constant. We wish
to compute characteristic deformation quantities associated with this displacement.
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First consider the admissibility of the displacement field. By Eq. (2-4.2) we
find, with Eq. (a), J = (1 + 6C)(1 + 11C)(1 + C) > 0 for admissibility of the field.
Examination of J as a function of C reveals that J > 0 for −1 < C < − 1

6 and for
C >− 1

11 ; hence, the displacement field is proper and admissible for these values
of C.

By Eq. (2-6.9) the associated strain components are

ε11 = 10C + 54.5C2 ε22 = 2C + 6.5C2 ε33 = 6C + 18C2

2ε12 = 6C + 36C2 2ε13 = 2ε23 = 0
(b)

Equations (b) include the nonlinear effects related to C2. If C � 1, the εαβ may
be approximated by eαβ [see Eqs. (2-15.14)]. Then

ε11 ≈ e11 = 10C ε22 ≈ e22 = 2C ε33 ≈ e33 = 6C

2ε12 ≈ 6C 2ε13 ≈ e13 = 0 2ε23 ≈ e23 = 0
(c)

Also for C � 1, the volumetric strain e is approximated as follows [see Eqs.
(2-12.2) and (2-12.5)]:

e = J1 + 2J2 + 4J3 ≈ J1 ≈ e11 + e22 + e33 = 18C (d)

The principal values (strains) of the deformation are determined as the roots Li of
the determinant [Eq. (2-11.3) ]

F(L) =
∣∣∣∣∣∣
10C − L 3C 0

3C 2C − L 0
0 0 6C − L

∣∣∣∣∣∣ = 0 (e)

where the approximation εαβ ≈ eαβ has been used.
Expanding Eq. (e), we obtain

F(L) = (6C − L)(L2 − 12CL + 11C2)

= (6C − L)(L − 11C)(L − C) = 0

Thus, the roots are

L1 = e1 ≈ ε1 = 11C L2 = e2 ≈ ε2 = 6C L3 = e3 ≈ ε3 = C (f)

where we have ordered the principal strains such that ε1 >ε2 >ε3.
The principal axes (eigenvectors) associated with the principal strains may

be computed by the theory presented in Section 2-11. Thus, for ε11 ≈ 11C, we
must solve Eqs. (2-11.2) subject to the condition that the direction cosines (say,
N1, N2, N3) of the principal axes satisfy the relationship N2

1 + N2
2 + N2

3 = 1.
Hence, in Eq. (2-11.2) we let (a11, a12, a13) be denoted by (N1, N2, N3). Then
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the principal direction associated with ε1 is obtained from the equations (with
L1 = ε1 = 11C)

(10C − 11C)N1 + 3CN2 = 0

3CN1 + (2C − 11C)N2 = 0

(6C − 11C)N3 = 0 (g)

N2
1 + N2

2 + N2
3 = 1

The first and third of Eqs. (g) yield N1 = 3N2 and N3 = 0. Then by the last of
Eqs. (g), N2

1 + N2
2 = 9N2

2 + N2
2 = 10N2

2 = 1, or N2 = ±1/
√

10; therefore, N1 =
±3/

√
10. Thus, the principal axis is defined by the direction cosines:

N1 = ± 3√
10

N2 = ± 1√
10

N3 = 0 (h)

The remaining two principal axes may be determined similarly with L1 = 6C and
L3 = C, respectively. In each case, because of the direction cosine requirement
[the last of Eqs. (g)], each direction cosine will involve a plus and minus
sign. For example, in the case L1 = 11C we could arbitrarily select the
signs N1 = +3

√
10 = 3N2. Hence, N2 = +1/

√
10. Alternatively, if we take

N1 = −3/
√

10, we have N2 = N1/3 = −1
√

10. We can proceed to arbitrarily
select the sign for a second principal axis. However, the signs of the direction
cosines of the third (remaining) principal axis are selected so that the axes
associated with principal strains L1, L2, L3 form a right-hand coordinate system
(see Chapter 1, Section 1-24).

With the principal strains determined, the octahedral shearing strain may be
computed by means of Eq. (2-12.9). Thus,

� = γoct = 2
3 [(L1 − L2)

2 + (L1 − L3)
2 + (L2 − L3)

2]1/2

= 2
3 [52 + 102 + 52]1/2C = 8.165C

Problem Set 2-15

1. Let ε11 = ε22 = ε33 = ε12 = ε23 = ε13 = 0. Neglecting quadratic terms in the
strain–displacement relations, solve the resulting equations for displacement
components (u1, u2, u3); that is, derive the displacement components for a linearized
rigid-body displacement.

2. Show that εαβ = (uα,β + uβ,α)/2, α, β = 1, 2, 3, represent the components of a second-
order tensor.

3. Given that ε11 = A(L − x1), ε22 = B(L − x1), ε12 = 0, u1 = u1(x1, x2), u2 = u2(x1,

x2), u3 = 0, A, B, and L are constants. Use linearized strain–displacement relations to
determine displacement components (u1, u2) for the case u1(0, 0) = u2(0, 0) = ω (0,
0) = 0. (ω = rotation vector.)
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4. For two-dimensional small-displacement theory, the strains in a body are given by

εx = Cy(L − x) εy = Dy(L − x) γxy = −(C + D)(A2 − y2)

where C,D,L, and A are known constants (see Problem 2-11.8). The boundary con-
ditions are u(0, 0) = 0, v(0, 0) = 0, (∂u/∂y)(0, 0) = 0. Determine the displacement
components u and v as functions of x and y.

5. The classical small-displacement theory of elasticity yields the following displacement
components for a beam subjected to pure bending: u1 = −kx1x2, u2 = k2(x

2
1 + γ x2

2 −
γ x2

3 ), u3 = k3γ x2x3. Compute the rotations of a volume element in the beam with
respect to (x1, x2, x3) axes, respectively.

6. The strains of a deformed body are given by the relations

εx = νC(l − z) εy = νC(l − z) εz = −C(l − z) γxy = γyz = γzx = 0

where ν, C, and l are constants. Assuming that strains and rotations are infinitesi-
mally small, derive formulas for the displacement components (u, v,w) in the (x, y, z)

directions, respectively. The boundary conditions are:

For (0, 0, 0), u = v = w = 0

For (0, 0, l), ω23 = 0, ω31 = 0 ω12 = A

where A is a constant. Specialize the results for A = 0.

7. For a problem in small-displacement theory, the strain components are given by εx =
A(x − z), εy = A(x − y), εz = A(y + z), γxy = γyz = γxz = 0, where A = constant.
Determine the (x, y, z) displacement components (u, v,w) in terms of (x, y, z), where
u = v = w = ω23 = ω31 = ω12 = 0, for x = y = z = 0.

8. Let the displacement uα be defined by the equations uα = Cαβxβ , where Cαβ are con-
stants and xβ denotes rectangular Cartesian coordinates. Is it possible to select the Cαβ

so that the components εαβ of the strain tensor consist only of quadratic terms in Cαβ ?
Explain. Assuming that it is possible, discuss the significance of this result in the pro-
cess of approximating the strain components εαβ by their small-displacement approxi-
mations eαβ .

9. Consider the following displacement field (u, v,w) relative to material (Lagrangian)
coordinates (x, y, z):

u = −(1 − cos φ)x − y sin φ

v = x sin φ + (1 − cos φ)y

w = 0

where φ is a constant.

(a) Compute the small-displacement approximations eαβ of the strain tensor components
εαβ , and describe the associated deformation characterized by (u, v,w).

(b) Compute the strain tensor components εαβ , and describe the associated deformation
characterized by (u, v, w).

(c) Discuss the significance of the results obtained in parts (a) and (b).
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10. A rectangular region (Fig. P2-15.10a) is deformed into a parallelogram region (Fig.
P2-15.10b) under displacement (u, v, 0) relative to (x, y, z) axes.

(a) Write expressions for u, v, as functions of x, y.

(b) Calculate the components εαβ of the strain tensor.

(c) Determine the initial direction cosines of the line element that in the deformed
region lies parallel to the y axis.

(d) Determine the volumetric strain.

(e) Determine the volumetric rotation.

(a) (b)

Figure P2-15.10

2-16 Compatibility Conditions of the Classical Theory of Small
Displacements

The six strain components εij, i, j = 1, 2, 3, cannot be given arbitrarily as functions
of xi , as they are determined completely by the three displacement components
ui . Hence, there must exist relations between the strain components because they
are not independent functions. To obtain these relations, we eliminate (u1, u2, u3)

from the strain–displacement equations. We restrict ourselves to the case of small
displacement and to simply connected regions.15 Hence, for small displacements
[Eqs. (2-15.14)], taking the second derivatives of ε11, ε22, and 2ε12 with respect to
(x2, x1) and (x1, x2), respectively, we obtain

∂2ε11

∂x2
2

= ∂3u1

∂x1∂x2
2

∂2ε22

∂x2
1

= ∂3u2

∂x2
1∂x2

2
∂2ε12

∂x1∂x2
= ∂3u1

∂x1∂x2
2

+ ∂3u2

∂x2
1∂x2

where we have used the notation x = x1, y = x2, z = x3. Adding the first two of
these equations and equating the results to the third equation, we obtain

∂2ε11

∂x2
2

+ ∂2ε22

∂x2
1

= 2
∂2ε12

∂x1∂x2
(2-16.1a)

15Region R is simply connected if for every closed curve scribed in R, the curve can be shrunk to a
point without cutting region R apart or taking the curve outside R. Otherwise, for multiply connected
regions (regions that are not simply connected), additional requirements as to the single-valued nature
of u must be met.
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Because Eqs. (2-15.15) are cyclically permutable in (x1, x2, x3), the permutations
(1, 2) → (1, 3) and (1, 3) → (2, 3) in Eq. (2-16.1a) yield

∂2ε11

∂x2
3

+ ∂2ε33

∂x2
1

= 2
∂2ε13

∂x1∂x3
(2-16.1b)

∂2ε22

∂x2
3

+ ∂2ε33

∂x2
2

= 2
∂2ε23

∂x2∂x3
(2-16.1c)

Similarly, we also obtain from Eqs. (2-15.14)

∂2ε11

∂x2 ∂x3
+ ∂2ε23

∂x2
1

= ∂2ε13

∂x1 ∂x2
+ ∂2ε12

∂x1∂x3
(2-16.1d)

∂2ε22

∂x1 ∂x3
+ ∂2ε13

∂x2
2

= ∂2ε23

∂x1 ∂x2
+ ∂2ε12

∂x2 ∂x3
(2-16.1e)

∂2ε33

∂x1 ∂x2
+ ∂2ε12

∂x2
3

= ∂2ε13

∂x2 ∂x3
+ ∂2ε23

∂x1 ∂x3
(2-16.1f)

In index notation, Eqs. (2-16.1) may be written concisely in the form

∂2εmn

∂xi ∂xj

+ ∂2εij

∂xm ∂xn

= ∂2εim

∂xj ∂xn

+ ∂2εjn

∂xi ∂xm

(2-16.2)

or
εmn,ij + εij,mn = εim,jn + εjn,im

where i, j, m, n = 1, 2, 3. Although many of Eqs. (2-16.2) are redundant, Eqs.
(2-16.1) are contained in Eqs. (2-16.2).

The differential relations given in Eqs. (2-16.1) or (2-16.2) are called the con-
ditions of compatibility . The above demonstration proves the necessity of the
conditions of compatibility to ensure the existence of functions (u, v, w) related
to εij by Eqs. (2-15.14). Various proofs have been given that they are also suffi-
cient . The simplest of these proofs introduces the components of rotation ωij [see
Eqs. (2-5.3)].

Thus, for small displacements all the first differential coefficients of (u1, u2, u3)

may be expressed in terms of the nine quantities ωij, εij. For example,

∂u1

∂x1
= ε11

∂u1

∂u2
= ε12 − ω12

∂u1

∂x3
= ε13 − ω13
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The conditions of compatibility of the nine equations that express the first deriva-
tives of (u1, u2, u3) with respect to xi yield six equations of the type

∂ε11

∂x2
= ∂ε12

∂x1
− ∂ω12

∂x1

and three equations of the type

∂ε13

∂x2
− ∂ε12

∂x3
= ∂ω13

∂x2
− ∂ω12

∂x3
= ∂ω23

∂x1

All the first differential coefficients of ωij can thus be expressed in terms of the
first differential coefficients of εij. For example,

∂ω23

∂x1
= ∂ε13

∂x2
− ∂ε12

∂x3

∂ω23

∂x2
= ∂ε23

∂x2
− ∂ε22

∂x3

∂ω23

∂x3
= ∂ε33

∂x2
− ∂ε23

∂x3
, . . . ,

The conditions of compatibility of these nine equations are the six equations of
Eqs. (2-16.1).

Alternative Derivation of Compatibility Relations. The strain compatibil-
ity relations may be derived by an alternative technique based upon the assumed
single-valued continuous nature of the displacement uα. From this viewpoint, the
compatibility relations are requirements that the deformation occur without dis-
continuities (Section 2-1). Accordingly the compatibility relations are sometimes
called equations of continuity or the conditions of continuity .

For small-displacement theory, the linear parts of the strain components are
[Eqs. (2-15.14)]

eαβ = 1
2 (uα,β + uβ,α) (a)

Recall that specification of eαβ does not uniquely determine uα , as uα may involve
a rigid-body displacement that does not affect eαβ . In other words, in general we
may write

uα = u(d)
α + u(r)

α (b)

where u(d)
α denotes the deformational part of uα and u(r)

α denotes the rigid-body
displacement part of u. Furthermore, we may write

u(r)
α = u(T )

α + u(R)
α (c)

where u(T )
α denotes a rigid-body translation and u(R)

α denotes a rigid-body rotation
(Section 2-2).

We seek the requirement (restrictions) on eαβ for a continuous single-valued
displacement uα . Accordingly, consider the deformation of region R into region R
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(Fig. 2-16.1). We consider uα known. Thus, uα(P ), . . . , uα(B), . . . , uα(Q) repre-
sent the displacements of points P, . . . , B, . . . , Q of curve C in region R. Under
the displacement, C is transformed into curve C in region R. The requirements of
single-valued continuous displacement field uα imply that uα(Q) may be obtained
by integration of uα from any point, say, P , along any curve C between points P
and Q.

Accordingly,

uα(Q) = uα(P ) +
∫ Q

P

duα (d)

Because uα = uα(x1, x2, x3), duα = uα,β dxβ , therefore

uα(Q) = uα(P ) +
∫ Q

P

uα,βdxβ (e)

Employing the notation of Eq. (2-5.7), we may write

uα(Q) = uα(P ) +
∫ Q

P

eαβdxβ +
∫ Q

P

ωβαdxβ (f)

Integration by parts of the second integral yields

∫ Q

P

ωβαdxβ =
∫ Q

P

ωβαd[xβ − xβ(Q)]

= [xβ(Q) − xβ(P )]ωβα(P ) −
∫ Q

P

[xβ − xβ(Q)]ωβα,γ dxγ (g)

Figure 2-16.1
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where the transformation dxβ = d[xβ − xβ(Q)] allows the representation of the
integral in terms of xβ(Q), xβ(P ), ωβα(P ) and a line integral from P to Q. Hence,
Eqs. (f) and (g) yield

uα(Q) = uα(P ) + [xβ(Q) − xβ(P )]ωβα(P )

+
∫ Q

P

{eαγ − [xβ − xβ(Q)]ωβα,γ }dxγ (h)

For uα to be continuous and single valued, the value uα(Q) obtained by the
integration process [Eq. (h)] must be the same no matter along which path we
integrate from P to Q. That is, the line integral

∫ Q

P
must be path independent.

Before explicitly noting necessary and sufficient conditions that the line integral
be path independent, we note the relation

ωβα,γ = ∂

∂xγ

[
1

2
(uα,β − uβ,α)

]
= eαγ,β − eβγ,α (i)

Hence, substitution of Eq. (i) into Eq. (h) yields

uα(Q) = uα(P ) + [xβ(Q) − xβ(P )]ωβα(P ) +
∫ Q

P

Rαγ dxγ (j)

where
Rαγ = eαγ − [xβ − xβ(Q)](eγα,β − eβγ,α) (k)

For uα(Q) to be independent of path from P to Q, Rαγ dxγ = dFα must be an
exact differential such that ∫Q

P dFα = Fα(Q) − Fα(P ). Necessary and sufficient
conditions for the exact differential dFα to exist are (see Chapter 1, Section 1-19)

∂Rαδ

∂xθ

− ∂Rαθ

∂xδ

= 0 (2-16.3)

Substitution of Eq. (k) into Eq. (2-16.3) yields

eij,kl + ekl,ij = ekj,il + eil,kj i, j, k, l = 1, 2, 3 (2-16.4)

Hence, Eqs. (6-16.4) consist of 34 = 81 equations. Because some of these equations
are satisfied identically, and some are repeated as a result of the symmetry of
indices ij and kl, the 81 equations may be shown to reduce to the six equations,
Eqs. (2-16.1).

Example 2-16.1. Compatibility of Strain in a Region. The small-displacement
components of the strain tensor in a region are given by

e11 = x2
2 e22 = x2

1 e33 = x2
2

e12 = 2x1x2 e23 = x2x3 e31 = x1 + x3
(a)
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We wish to determine if these components are compatible for all values of rectan-
gular Cartesian coordinates (x1, x2, x3).

By Eqs. (a) and (2-15.14), Eqs. (2-16.1) yield

2 + 2 = 4 0 + 0 = 0 0 + 2 = 2
0 + 0 = 0 + 0 0 + 0 = 0 + 0 0 + 0 = 0 + 0

Hence, compatibility of strain is ensured for all xi .

Example 2-16.2. Compatibility of Strain at a Point. For a plane strain state in the
(x1, x2) plane, the small-displacement strain components about a region surrounding
point (x1, x2) = (0, 0) were calculated to be

e11 = x1x
2
2 e12 = x3

1 + x3
2 e22 = x2

1x2 (a)

Determine whether compatibility is satisfied (a) at the point (0, 0) and (b) for all
values of (x1, x2).

By Eqs. (2-16.1) we obtain, with Eq. (a), the single condition 2x1 + 2x2 = 0.
For x1 = x2 = 0, we get 0 + 0 = 0. Hence, compatibility is satisfied at this point.
However, it cannot be satisfied for all points in the region but only for those
points for which x1 = −x2. Accordingly, Eqs. (a) are generally incompatible, as
the compatibility conditions must be satisfied throughout the region in question.

Problem Set 2-16

1. For small-displacement theory the displacement components (u, v,w) relative to rectan-
gular Cartesian axes (x, y, z) are u1 = ax2x3, u2 = bx3x1, u3 = cx1x2, where a, b, c are
constants. Show that the deformation is compatible.

2. For the two-dimensional small-displacement theory, the strains for a cantilever beam of
length L and depth 2a, subject to a concentrated lateral load P at the free end, are given
by

ε11 = Ax1x2 ε22 = −νAx1x2 2ε12 = A(1 + ν)(a2 − x2
2 )

where A, a, ν are constants and (x1, x2) denote plane rectangular Cartesian coordinates
with origin at the free end of the beam, with x1 axis coinciding with the central longi-
tudinal axis of the beam and with axis x2 coincident with the force P . Assume that the
displacement (u1, u2) relative to axis (x1, x2) are functions of (x1, x2).

(a) Show that continuous single-valued displacements (u1, u2) are possible. Are they
compatible?

(b) Hence, if possible, derive formulas for (u1, u2) as explicit functions of (x1, x2), with
the conditions u1 = u2 = u1,2 = 0 for x1 = L, x2 = 0.

3. For a two-dimensional small-displacement problem, the strain components for a contin-
uum are determined to be [see Eq. (2-8.6)]

εx = Axy εy = Bxy γxy = Cy2
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where A, B,C are known constants (see Problem 2-11.8). Determine the (x, y) displace-
ment components (u, v) as functions of (x, y). The boundary conditions are

u(0, 0) = 0 v(0, 0) = 0 uy(0, 0) = D

where D is a known constant.

4. In a region about the origin of a Cartesian coordinate system (x1, x2, x3), the small strain
components are computed to be

e11 = x2
1 e12 = x1x2 e13 = x1x3 e22 = x2

2
e23 = x2x3 e33 = x2

3

Determine whether they are compatible in this region.

5. For a plane strain problem in the (x1, x2) plane, the strain components are given as

e11 = cos(x2/L) e12 = 0 e22 = cos(x1/L)

where L is a constant. Consider the compatibility of these strain components.

2-17 Additional Conditions Imposed by Continuity

In Section 2-4 certain properties of a physical deformation were discussed. In
this section we consider several additional properties that are of importance in a
complete description of the deformation of continuous media.

Transformations of Lines and Surfaces. Let a point P on a line L be denoted
by the continuous functions

x1 = x1(s) x2 = x2(s) x3 = x3(s) (2-17.1)

where s is some parameter, say, arc length. As s varies from a to b, we obtain
successively all points on L; for s = a, we obtain one end; for s = b, we obtain
the other end.

Letting time t = constant and substituting Eqs. (2-17.1) into Eqs. (2-3.1), we
obtain (ξ1, ξ2, ξ3) as continuous functions of s. As s varies from a to b, the point
P : (ξ1, ξ2, ξ3) passes through all points of the line L in the deformed medium;
the two ends of line L correspond to s = a and s = b, respectively. Hence, there
is a one-to-one correspondence of points on lines L and L . Thus, we have the
following theorem:

Theorem 2-17.1. If a set of points forms a continuous line L in the undeformed
medium R, at any later instant t this set of points forms a continuous line L in the
deformed medium R, there being a one-to-one correspondence between points on
L and L .
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An immediate corollary to Theorem 2-17.1 follows:

Corollary 2-17.1. If line L is closed in region R, the corresponding line L is closed
in region R.

This corollary follows from Theorem 2-17.1 simply by letting the end points of
line L, corresponding to s = a and s = b, coincide. Hence, the end points of line
L also coincide, and L is closed.

In a similar fashion, the following theorem and corollary may be proved:

Theorem 2-17.2. If a set of points form a continuous surface S in the region R of
an underformed medium, it also forms a continuous surface S in the region R of
the deformed medium, there being a one-to-one correspondence between points in
S and S .

Corollary 2-17.2. If the surface S is closed, the surface S is also closed. Further-
more, there is a one-to-one correspondence between points interior to surface S and
points interior to surface S , and conversely .

The proofs of Theorem 2-17.2 and Corollary 2-17.2 are left to the reader.

Material Form of the Continuity Equation. Consider an infinitesimal volume
dV enclosing particle P : (x, y, z) of an initially undeformed medium. Let S be
the surface containing dV . Consider the deformation of the medium during some
time interval t1. During time t1, the volume dV is transformed into the volume
dV enclosed by the surface S . By Theorem 2-17.2, the surface S is a pointwise
transformation of surface S. Furthermore, a particle that was initially enclosed in
surface S is now enclosed in surface S (Corollary 2-17.2). Consequently, it follows
that the mass enclosed in surface S is enclosed in surface S after the deformation;
that is, mass is conserved in the transformation from S to S .

Let ρ be the initial mass density of the medium enclosed in S. Let ρ∗ be the
mass density of the medium enclosed in S . Hence, the conservation of mass of
the volume element dV = dx1dx2dx3 is expressed by the equation

∫∫∫
ρ dx1 dx2 dx3 =

∫∫∫
ρ∗ dξ1 dξ2 dξ3 (2-17.2)

where the asterisk denotes the deformed state.
By the theory of transformation of multiple integrals (Courant, 1992), the integral

on the right side of Eq. (2-17.2) may be transformed into an integral in dxdydz;
that is,

∫∫∫
ρ∗ dξ1 dξ2 dξ3 =

∫∫∫
ρ∗J dx1 dx2 dx3 (2-17.3)
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where

J = ∂(ξ2, ξ2, ξ3)

∂(x1, x2, x3)

is the functional determinant or Jacobian of (ξ1, ξ2, ξ3) with respect to (x1, x2, x3)
[see Eqs. (2-4.1) or (2-4.2)].

Substituting Eq. (2-17.3) into Eq. (2-17.2), we obtain∫∫∫
ρdx1dx2dx3 =

∫∫∫
ρ∗Jdx1dx2dx3

or ∫∫∫
(ρ∗J − ρ) dx1 dx2 dx3 = 0 (2-17.4)

Because Eq. (2-17.4) applies for any infinitesimal volume dV = dx1dx2dx3 in
the medium, the integrand must vanish identically. Hence, it follows that

J = ρ

ρ∗ (2-17.5)

Equation (2-17.5) is called the Lagrangian (or material ) form of the equation
of continuity of the medium. It expresses the conservation of mass in the volume
element dV before and after the deformation of the medium. Because ρ∗ is taken to
be a continuous positive function of time t, J , which is a function of (x1, x2, x3),
varies with time. For t = 0, ρ = ρ∗, and J = 1. Hence, if ρ∗ is an increasing
function of time, J < 1. If ρ∗ is a decreasing function of time, J > 1. For an
incompressible medium ρ∗ = ρ for all time. Consequently, for an incompressible
fluid, J = 1. Furthermore, as both ρ and ρ∗ are always positive, J > 0. Thus,
by the above argument, we have again arrived at the conclusion expressed in
Theorem 2-4.1.

2-18 Kinematics of Deformable Media

In our previous discussion we treated deformation as a purely geometric concept;
that is, we considered deformation that occurred during some small, fixed time
interval. Consequently, concepts of velocity and acceleration of a particle did not
enter into our formulation. In the following discussion we extend our treatment of
deformation to encompass the time rate of deformation. However, as the kinematics
of continuous media is an extensive subject, we consider only a few basic results
that are required for our immediate needs. Within the range of validity of the
continuous media approximation of physical matter, these results are applicable to
rigid solids, elastic solids, nonelastic solids, and real or viscous fluids.

The basic displacement–time relation for continuous media is given by
Eq. (2-3.1):

x∗ = x∗(x, y, z; t) y∗ = y∗(x, y, z; t) z∗ = z∗(x, y, z; t) (2-3.1)
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where

ξ1 = x∗ ξ2 = y∗ ξ3 = z∗ x1 = x x2 = y x3 = z

To simplify the subsequent equations, we employ the following notations:

x = x0 y = y0 z = z0

x∗ = x y∗ = y z∗ = z
(a)

With the notation of Eqs. (a), Eqs. 2-3.1 are interpreted as follows. A particle of
mass dm that is at point (x, y, z) at time t is located at point (x0, y0, z0) at time
t = 0. Thus, as noted in Section 2-3, the deformation process may be described in
terms of either (x0, y0, z0; t) (material variables) or (x, y, z; t) (spatial variables).

In the material point of view, we focus our attention on a particular particle
initially at (x0, y0, z0), and we follow its motion in space. In the spatial point of
view, we focus our attention on a particular geometrical region fixed in space; that
is, we observe changes that take place in this fixed region or space.

Velocity and Acceleration. Let a particle travel along a curved path C in
space (Fig. 2-18.1). The velocity v of the particle at point (x, y, z) on its path is
defined as

v = lim
�t→0

�s
�t

= ds
dt

(2-18.1)

Figure 2-18.1
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where �s denotes the displacement vector between two different positions P, P1

of the particle, and �t denotes the time required for the particle to travel from
P to P1.

As �t → 0, P1 → P . Consequently, the direction of v coincides with the direc-
tion of the tangent to C at point P . Hence, the velocity vector v may be represented
by three scalar equations:

u = dx

dt
v = dy

dt
w = dz

dt
(2-18.2)

where x = x(t), y = y(t), z = z(t). In Eq. (2-18.2), (u, v, w) denote the (x, y, z)
projections of the velocity vector v, in contrast to their designation previously as
projections of the displacement vector (see Section 2-3).

Furthermore, the acceleration vector a is defined as (Boresi and Schmidt, 2000)

a = lim
�t→0

�v
�t

= dv
dt

(2-18.3)

In terms of (x, y, z) projections, the acceleration a is

ax = du

dt
= d2x

dt2
ay = dv

dt
= d2y

dt2
az = dw

dt
= d2z

dt2
(2-18.4)

where (x, y, z) subscripts on a denote (x, y, z) projections, respectively.
Accordingly, it follows that when (u, v, w) are considered as functions of

(x0, y0, z0; t), Eqs. (2-18.1) to (2-18.4) are the expressions for the velocity and the
acceleration of a particle in the material point of view. To distinguish between the
cases u = u(x0, y0, z0; t) and u = u(x, y, z; t), we denote differentials of functions
of the variables (x0, y0, zo; t) by an ordinary16 d, whereas we denote differentials
of functions of the variables (x, y, z; t) by the symbol ∂ . As noted in Eqs. (2-18.2),
dx/dt = u is the x projection of the velocity vector. However, ∂x/∂t = 0,
because here x denotes the x coordinate of a point fixed in space. Likewise,
du/dt is the x projection of the acceleration vector, whereas ∂u/∂t denotes the
difference in the x projections of the velocities of the two particles that coincide
with the geometrical point (x, y, z) at times t and t+ dt , respectively. Hence, for
steady-state flow of water over a weir, ∂u/∂t = 0 everywhere; however, du/dt
�= 0 (Fig. 2-18.2).

Regarding (u, v, w) as functions of (x, y, z; t), the total differentials du, dv

dw are
du = ∂u

∂x
dx + ∂u

∂y
dy + ∂u

∂z
dz + ∂u

∂t
dt

dv = ∂v

∂x
dx + ∂v

∂y
dy + ∂v

∂z
dz + ∂v

∂t
dt (2-18.5)

dw = ∂w

∂x
dx + ∂w

∂y
dy + ∂w

∂z
dz + ∂w

∂t
dt

16Some authors use the symbol D. See Chapter 3, Section 3A-2.
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Figure 2-18.2

Dividing Eqs. (2-18.5) by dt , we obtain [with Eqs. (2-18.2) and (2-18.4)]

du

dt
= ax = u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
+ ∂u

∂t

dv

dt
= ay = u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ ∂v

∂t
(2-18.6)

dw

dt
= az = u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
+ ∂w

∂t

or

du

dt
− ∂u

∂t
= u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

dv

dt
− ∂v

∂t
= u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
(2-18.7)

dw

dt
− ∂w

∂t
= u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

The terms on the right side of Eqs. (2-18.7) (i.e., the differences between the
material acceleration dv/dt and the local acceleration ∂v/∂t) are called the con-
vective terms of the acceleration .

In general, let Q(x, y, z; t) be any scalar function (such as density, temperature,
pressure, a projection of the velocity vector, etc.). With the earth as a reference
frame, ∂Q/∂t denotes the rate of change of Q with the respect to t at a geometrical
point (x, y, z) that is fixed with respect to the earth. If the process is a steady-
state process, ∂Q/∂t = 0; for example, a steady-state flow is characterized by
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the condition that the function Q remain constant for all times at point (x, y, z).
Accordingly, for steady-state conditions all partial derivatives with respect to time
vanish.

From the Lagrangian point of view, for a fixed (x0, y0, z0), the point (x, y, z) is
a function of time [see (Eqs. 2-3.1) and Eqs. (a)]. Accordingly, for a given particle
P : (x, y, z) of a medium, Q is a function of time t alone. Hence, the total derivative
dQ /dt denotes the rate of change of Q with respect to t as we follow the particle
along its path. Hence, analogous to Eqs. (2-18.6), we have

dQ

dt
= u

∂Q

∂x
+ v

∂Q

∂y
+ w

∂Q

∂z
+ ∂Q

∂t
(2-18.8)

Equation (2-18.8) relates the material derivative dQ /dt to the local derivative
∂Q/∂t .

In vector notation, Eq. (2-18.8) takes the form

dQ

dt
= ∂Q

∂t
+ v · (∇Q) (2-18.9)

Equations (2-18.6) may be written in vector notation by first rewriting the terms
on the right side. For example, ax may be written in the form

ax = 1

2

∂

∂x
(u2 + v2 + w2) + v

(
∂u

∂y
− ∂v

∂x

)
+ w

(
∂u

∂z
− ∂w

∂x

)
+ ∂u

∂t

Similar expressions hold for ay and az. Consequently, in vector form, Eqs. (2-18.6)
become [with Eqs. (1-8.5) and (1-13.1)]

a = ∂v
∂t

+ 1

2
∇(v)2 − (v) × (curl v) (2-18.10)

where (v)2 = u2 + v2 + w2 is a scalar.
For rectangular Cartesian coordiantes, Eq. (2-18.6) may be written in index

notation as

aα = ∂uα

∂t
+ uβ

∂uα

∂xβ

α, β = 1, 2, 3 (2-18.11)

where a1 = ax, a2 = ay, a3 = az, and u1 = u, u2 = v, u3 = w.

Spatial Equation of Continuity. In Section 2-17 we derived the continuity
equation ρ = Jρ∗, where ρ denotes the initial mass density of a medium enclosed
in a volume element dV, ρ∗ denotes the mass density in the corresponding volume
element dV of the deformed medium, and J denotes the Jacobian with respect to
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the material coordinates (x0, y0, z0). Accordingly, ρ = Jρ∗ is called the material
equation of continuity .

Alternatively, the conservation of mass concept referred to spatial coordinates
yields the spatial equation of continuity in the form (see Chapter 1, Section 1-14)

∂ρ

∂t
+ ∂(ρu)

∂x
+ ∂(ρv)

∂y
+ ∂(ρw)

∂z
= 0 (2-18.12)

or, in index notation, in the forms

∂ρ

∂t
+ ∂(ρuα)

∂xα

= 0 (2-18.13)

∂ρ

∂t
+ uα

∂ρ

∂xα

+ ρ
∂uα

∂xα

= 0 (2-18.14)

dρ

dt
+ ρ

∂uα

∂xα

= 0 (2-18.15)

where x1 = x, x2 = y, x3 = z, u1 = u, u2 = v, u3 = w, and where in Eq. (2-18.15)
we have used the material derivative of ρ [Eq. (2-18.18)].

A vector field (u, v, w) that satisfies the relations

∂v

∂x
= ∂u

∂y

∂u

∂z
= ∂w

∂x

∂w

∂y
= ∂v

∂z
(2-18.16)

is said to be irrotational . Alternatively, Eqs. (2-18.16) may be written in the form
curl v = ∇ × v = 0. Accordingly, for irrotational flow the curl of the velocity is
zero. Consequently, by Eqs. (2-18.6) and (2-18.16) the acceleration components
for an irrotational velocity field are given by the relations [also see Eq. (2-18.10)]

ax = ∂u

∂t
+ 1

2

∂V 2

∂x
ay = ∂v

∂t
+ 1

2

∂V 2

∂y
az = ∂w

∂t
+ 1

2

∂V 2

∂z
(2-18.17)

where
V 2 = v2 = u2 + v2 + w2 (2-18.18)

If the components (u, v, w) of a velocity field are the partial derivatives of a scalar
function φ with respect to (x, y, z), respectively, Eq. (2-18.15) may be written in
the form

dρ

dt
+ ρ∇2φ = 0 (2-18.19)

where

dρ

dt
= ∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
(2-18.20)
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and

∇2φ = ∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2
(2-18.21)

Furthermore, it follows by Eq. (2-18.16) that the vector field (u, v, w) is irrotational.
If the vector field is a velocity field for an incompressible fluid, dρ/dt = 0. Then

the continuity equation [Eq. (2-18.19)] reduces to Laplace’s equation ∇2φ = 0 (see
also Chapter 1, Sections 1-13 and 1-14).

Problem Set 2-18

1. A velocity field is given by

u = yz + t v = zx − t w = xy

Determine if this flow is possible in an incompressible fluid. Determine if the flow is
irrotational. Derive formulas for the acceleration components ax, ay, az.

APPENDIX 2A STRAIN–DISPLACEMENT RELATIONS IN
ORTHOGONAL CURVILINEAR COORDINATES

2A-1 Geometrical Preliminaries

In Chapter 1, Sections 1-20 to 1-22, certain properties of orthogonal curvi-
linear coordinate systems in three-dimensional space are discussed. In this
section we develop some additional properties prerequisite to the derivation of
strain–displacement relations in orthogonal curvilinear coordinate systems. We
employ notation that differs somewhat from that used in Chapter 1.

We let three independent scalar functions (X, Y, Z) be defined in terms of three
independent variables (x, y, z), as follows:

X = X(x, y, z) Y = Y(x, y, z) Z = Z(x, y, z) (2A-1.1)

If (X, Y, Z) denote rectangular Cartesian coordinates, then for any set of (X, Y, Z)

the variables (x, y, z) are space coordinates (see Chapter 1, Section 1-20). By
independent functions we mean that Eq. (2A-1.1) may be solved uniquely (in a
region of regularity) for (x, y, z); that is,

x = x(X, Y, Z) y = y(X, Y, Z) z = z(X, Y, Z) (2A-1.2)

If (x, y, z) are assigned constant values (x0, y0, z0), Eq. (2A-1.2) yields

x(X, Y, Z) = x0 y(X, Y, Z) = y0 z(X, Y, Z) = z0 (2A-1.3)
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The equation x = x0 defines a surface, called a coordinate surface. Hence, cor-
responding to various values of x0, there exists a family of coordinate surfaces,
one surface for each value of x0. Similarly, the equations y = y0, z = z0 yield
two other families of coordinate surfaces. As noted in Chapter 1, Section 1-20,
the intersection of two coordinate surfaces defines a coordinate line. For example,
the intersection of the surface y = y0 with the surface z = z0 defines a coordinate
line along which only x varies; it is called the x coordinate line. Similarly, the
intersection of the surfaces x = x0 and z = z0 defines a y coordinate line; inter-
section of the surfaces x = x0 and y = y0 defines a z coordinate line. In general,
the coordinate lines are curved. Hence, the variables (x, y, z) are called curvilinear
coordinates.

Three coordinate surfaces in general intersect at a point in space. Hence, a point
in space is associated with a triplet (xi, yi, zi). If the curvilinear coordinate lines
through any point (x, y, z) are mutually perpendicular, they are said to be orthog-
onal . Then, the curvilinear coordinates (x, y, z) are called orthogonal curvilinear
coordinates . For example, cylindrical coordinates (r , θ , z) and spherical coordinates
(r , θ , φ) are systems of orthogonal curvilinear coordinates.

Relative to rectangular Cartesian axes (X, Y, Z), the position vector r of a point
(x, y, z) may be written r = iX + jY + kZ, where i, j, k denote unit vectors in
the X, Y, Z directions, respectively. Hence, a system of curvilinear coordinates
(x, y, z) may be defined by the single vector equation r = r(x, y, z). Further-
more, rx, ry, rz are tangent vectors to the (x, y, z) coordinate lines, respectively,
where (x, y, z) subscripts on r denote partial derivatives relative to (x, y, z). This
statement follows from the fact that dr = rx dx + rydy + rzdz, and from the fact
that dr = rxdx for dy = dz = 0, dr = ry dy for dx = dz = 0, and dr = rzdz for
dx = dy = 0. Accordingly, for an orthogonal curvilinear coordinate system

rx · ry = rx · rz = ry · rz = 0 (2A-1.4)

Noting that the distance ds between two neighboring points is defined by ds2 =
dr · dr, we find with Eq. (2A-1.4) that

ds2 = α2 dx2 + β2 dy2 + γ 2 dz2 (2A-1.5)

where

α2 = rx · rx β2 = ry · ry γ 2 = rz · rz (2A-1.6)

Accordingly, because rx, ry, rx , are tangent vectors to (x, y, z) coordinate lines,
unit tangent vectors with respect to (x, y, z) coordinate lines are defined by

e1 = rx

α
e2 = ry

β
e3 = rz

γ
(2A-1.7)

Because rx, ry, rz (hence e1, e2, e3) are orthogonal vectors relative to (x, y, z)
coordinate lines, any other vector may be expressed linearly in terms of them. For
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example, the second derivative of R with respect to x may be expressed in the
form

rxx = ae1 + be2 + ce3

To compute the coefficients (a, b, c), we form the scalar products of rxx with
e1, e2, e3. Thus, we find

e1 · rxx = a e2 · rxx = b e3 · rxx = c (2A-1.8)

To evaluate the scalar products e1 · rxx , and so on, we differentiate Eqs. (2A-1.4)
and (2A-1.6) with respect to (x, y, z) and take into account Eqs. (2A-1.7). A few
typical results of these differentiations are

rx · rxx = ααx rx · rxy = ααy rx · rxz = ααz

rz · rxx + rx · rxz = 0 rx · rxy + ry · rxx = 0 (2A-1.9)

Equations (2A-1.7) to (2A-1.9) yield a = αx, b = −ααy/β, c = −ααz/γ . Simi-
larly, the other second derivatives of r may be expressed as linear combinations of
e1, e2, e3. The complete set of relations is

rxx = α

(
αx

α
e1 − αy

β
e2 − αz

γ
e3

)

ryy = β

(
−βx

α
e1 + βy

β
e2 − βz

γ
e3

)

rzz = γ

(
−γx

α
e1 − γy

β
e2 + γz

γ
e3

)
(2A-1.10)

rxy = αye1 + βxe2

rxz = αze1 + γxe3

ryz = βze2 + γye3

The preceding equations17 are employed in the following section.

2A-2 Strain–Displacement Relations

Let (x, y, z) be orthogonal curvilinear coordinates relative to the undeformed state
of a medium; that is, (x, y, z) are material coordinates. Let (u, v, w) be the projec-
tions of the displacement vector of a point (x, y, z) in the medium on tangents to
the coordinate lines at point (x, y, z). Then, since the unit tangents e1, e2, e3 to the

17This development and the derivation in the following section follow closely the treatment given
by H. L. Langhaar, Foundations of Practical Shell Analysis (Urbana, Ill.: University of Illinois,
Theoretical and Applied Mechanics Dept., 1964).
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coordinate lines are defined by Eqs. (2A-1.7), the displacement vector of a particle
initially located at point (x, y, z) defined by the position vector r = r(x, y, z) is

�ρ = u

α
rx + v

β
ry + w

γ
rz (2A-2.1)

After the deformation, the particle that initially lies at point (x, y, z) is located
at the point (x∗, y∗, z∗) defined by the position vector r∗(x∗, y∗, z∗) = r + �ρ.
Accordingly, with Eq. (2A-2.1), the final position vector r∗ of the particle that
initially lies at point r is

r∗ = r + u

α
rx + v

β
ry + w

γ
rz (2A-2.2)

The initial length of a line element (αdx, βdy, γ dz) is determined by Eq.
(2A-1.5). The final length ds∗ of the line element is determined by the relation (see
Section 2-3)

(
ds∗

ds

)2

=
(

dr*

ds

)2

=
(

r∗
x

dx

ds
+ r∗

y

dy

ds
+ r∗

z

dz

ds

)2

(2A-2.3)

The derivatives (r∗
x, r∗

y, r∗
z) may be evaluated by Eq. (2A-2.2), with the aid of

Eqs. (2A-1.10); thus, we find

r∗
x =

(
1 + ux

α
+ αyv

αβ
+ αzw

γα

)
rx +

(
vx

β
− αyu

β2

)
ry +

(
wx

γ
− αzu

γ 2

)
rz

r∗
y =

(
uy

α
− βxv

α2

)
rx +

(
1 + βxu

αβ
+ vy

β
+ βzw

βγ

)
ry +

(
wy

γ
− βzv

γ 2

)
rz

(2A-2.4)

r∗
z =

(uz

α
− γxw

α2

)
rx +

(
vz

β
− γyw

β2

)
ry +

(
1 + γxu

γ α
+ γyv

βγ
+ wz

γ

)
rz

Furthermore, the derivatives dx/ds, dy/ds, dz/ds may be expressed in terms of
the direction cosines (l, m, n) of the vector dr relative to local coordinate lines,
because

l = α
dx

ds
m = β

dy

ds
n = γ

dz

ds
(2A-2.5)

The strain components εx, εy, . . . , εyz are defined, as for rectangular coordinates,
by Eq. (2-6.8). Hence, substitution of Eqs. (2A-2.4) and (2A-2.5) into Eq. (2A-2.3)
yields, with Eqs. (2A-1.4) and (2-6.8) (see Problem 2-11.8),

εx = 1

α

[
ux + αyv

β
+ αzw

γ
+ 1

2α

(
ux + αyv

β
+ αzw

γ

)2

+ 1

2α

(
vx − αyu

β

)2

+ 1

2α

(
wx − αzu

γ

)2
]
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εy = 1

β

[
vy + βzw

γ
+ βxu

α
+ 1

2β

(
vy + βzw

γ
+ βxu

α

)2

+ 1

2β

(
wy − βzv

γ

)2

+ 1

2β

(
uy − βxv

α

)2
]

εz = 1

γ

[
wz + γxu

α
+ γyu

β
+ 1

2γ

(
wz + γxu

α
+ γyv

β

)2

+ 1

2γ

(
uz − γxw

α

)2

+ 1

2γ

(
vz − γyw

β

)2
]

γxy = uy

β
+ vx

α
− βxv

αβ
− αyu

αβ
+ 1

αβ

(
ux + αyv

β
+ αzw

γ

) (
uy − βxv

α

)

+ 1

αβ

(
vx − αyu

β

) (
vy + βxu

α
+ βzw

γ

)
+ 1

αβ

(
wx − αzu

γ

) (
wy − βzv

γ

)

γxz = wx

α
+ uz

γ
− αzu

αγ
− γxw

αγ
+ 1

αγ

(
wz + γxu

α
+ γyv

β

) (
wx − αzu

γ

)

+ 1

αγ

(
uz − γxw

α

)(
ux + αzw

γ
+ αyv

β

)
+ 1

αγ

(
vz − γyw

β

) (
vx − αyu

β

)

γyx = vz

γ
+ wy

β
− γyw

βγ
− βzv

βγ
+ 1

βγ

(
vy + βzw

γ
+ βxu

α

) (
vz − γyw

β

)

+ 1

βγ

(
wy − βzv

γ

) (
wz + γyv

β
+ γxu

γ

)
+ 1

βγ

(
uy − βxv

α

)(
uz − γxw

α

)
(2A-2.6)

Equations (2A-2.6) are exact geometric expressions for the strain components;
that is, they are not quadratic approximations. For small-displacement theory the
quadratic terms in (u, v, w) are discarded. Then Eqs. (2A-2.6) reduce to linear
relations between the strain components and the displacement components.

The strain–displacement relations may be specialized for particular orthogonal
curvilinear coordinate systems. For example, α = β = γ = 1 for rectangular Carte-
sian coordinates, and then Eqs. (2A-2.6) reduce to Eqs. (2-6.9), with the equivalence
εx = ε11, . . . , γxy = 2ε12, . . ..

For small-displacement theory the following specializations of Eqs. (2A-2.6) are
obtained:

Cylindrical Coordinate System (r, θ, z):

α = 1 β = r γ = 1

εr = ∂u

∂r
εθ = u

r
+ 1

r

∂v

∂θ
εz = ∂w

∂z
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γrθ = 1

r

∂u

∂θ
+ ∂v

∂r
− v

r
γrz = ∂u

∂z
+ ∂w

∂r
(2A-2.7)

γθz = ∂v

∂z
+ 1

r

∂w

∂θ

Spherical Coordinate System (r, θ, φ):

α = 1 β = r γ = r sin θ

εr = ∂u

∂r
εθ = u

r
+ 1

r

∂v

∂θ

εφ = 1

r sin θ

∂w

∂φ
+ u

r
+ v

r
cot θ

γrθ = 1

r

∂u

∂θ
+ ∂v

∂r
− v

r
γrφ = 1

r sin θ

∂u

∂φ
+ ∂w

∂r
− w

r

γθφ = 1

r

(
∂w

∂θ
− w cot θ

)
+ 1

r sin θ

∂v

∂φ

(2A-2.8)

Plane Polar Coordinates (r, θ ):

α = 1 β = r γ = 1 w = ∂

∂z
= 0 u = u(r, θ) v = v(r, θ)

εr = ∂u

∂r
εθ = u

r
+ 1

r

∂v

∂θ
γrθ = 1

r

∂u

∂θ
+ ∂v

∂r
− v

r
(2A-2.9)

Similar results may be obtained for other orthogonal curvilinear coordinate systems
by substitution of appropriate values for α, β, γ .

APPENDIX 2B DERIVATION OF STRAIN–DISPLACEMENT
RELATIONS FOR SPECIAL COORDINATES BY CARTESIAN METHODS

2B-1 Cylindrical Coordinates

Cylindrical coordinates (r , θ , z) are related to rectangular Cartesian coordinates
(x, y, z) (Fig. 2B-1.1) by

x = r cos θ y = r sin θ z = z (2B-1.1)
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Figure 2B-1.1

Hence, the square of an infinitesimal line element ds emanating from point P is
given by [Eq. (1-21.5)]

ds2 = dx2 + dy2 + dz2 = dr2 + r2 dθ2 + dz2 (2B-1.2)

Under deformation, point P undergoes a displacement (U, V, W ), where U, V, W

denote displacement components parallel to tangents along the (r , θ , z) coordinate
lines, respectively. The final position P of P has coordinates

ξ1 = x + U cos θ − V sin θ

ξ2 = y + U sin θ + V cos θ (2B-1.3)

ξ3 = z + W

where U = U(r, θ, z), V = V (r, θ, z), W = W(r, θ, z). The deformed line element
ds now has length d s, defined by

d s2 = dξ 2
1 + dξ 2

2 + dξ 2
3 (2B-1.4)
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By Eqs. (2B-1.1) to (2B-1.4), we find

d s2 = [(1 + Ur)
2 + V 2

r + W 2
r ] dr2

+
[(

Uθ − V

r

)2

+
(

1 + U + Vθ

r

)2

+
(

Wθ

r

)2
]

r2 dθ2

+ [U 2
z + V 2

z + (1 + Wz)
2] dz2

+
[
(1 + Ur)

(
Uθ − V

r

)
+ Vr

(
1 + U + Vθ

r

)
+ WrWθ

r

]
r dr dθ

+ [(1 + Ur)Uz + VrVz + Wr(1 + Wz)] dr dz

+
[

Uθ − V

r
Uz +

(
1 + U + Vθ

r

)
Vz + Wθ

r
(1 + Wz)

]
r dθ dz (2B-1.5)

where (r , θ , z) subscripts denote partial differentiation.
Hence, forming 1

2 (d s − ds2), with Eqs. (2B-1.2) and (2B-1.5), in the form

1
2 (d s2 − ds2) = εrr dr2 + εθθ (r dθ)2 + εzz dz2

+ 2εrθ r dr dθ + 2εrz dr dz + 2εθzr dθ dz (2B-1.6)

we find relative to cylindrical coordinates (r , θ , z) the strain components

εrr = Ur + 1
2 (U 2

r + V 2
r + W 2

r )

εθθ = U + Vθ

r
+ 1

2

[(
Uθ − V

r

)2

+
(

U + Vθ

r

)2

+
(

Wθ

r

)2
]

εzz = Wz + 1
2 (U 2

z + V 2
z + W 2

z ) (2B-1.7)

2εrθ = Uθ − V

r
+ Vr + Ur

Uθ − V

r
+ Vr

U + Vθ

r
+ WrWθ

r

2εrz = Uz + Wr + UrUz + VrVz + WrWz

2εθz = Vz + Wθ

r
+ Uθ − V

r
Uz + U + Vθ

r
Vz + WθWz

r

The method described above may be employed conveniently for any orthogo-
nal curvilinear coordinate system. It may also be used directly for nonorthogonal
coordinates with straight-line coordinate lines.

2B-2 Oblique Straight-Line Coordinates

Consider a plane set of oblique coordinate lines (y1, y2) that subtend angle θ

(Fig. 2B-2.1).
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Figure 2B-2.1

The coordinates of a point P in the plane may be denoted by oblique coordinates
(y1, y2) or rectangular coordinates (x1, x2), where

x1 = y1 + y2 cos θ

x2 = y2 sin θ
(2B-2.1)

Hence, an infinitesimal line element (dx1, dx2) emanting from P has length ds

defined by
ds2 = dx2

1 + dx2
2 = dy2

1 + dy2
2 + 2 cos θ dy1 dy2 (2B-2.2)

Under a deformation, point P undergoes a displacement (U, V ) along coordinate
lines (y1, y2), respectively, and ds is transformed into d s, where

d s2 = dξ 2
1 + dξ 2

2 (2B-2.3)

where
ξ1 = x1 + U + V cos θ ξ2 = x2 + V sin θ

U = U(y1, y2) V = V (y1, y2)
(2B-2.4)

Consequently, by Eqs. (2B-2.1) to (2B-2.3), we find

1
2 (d s2 − ds2) = ε11 dy2

1 + ε22 dy2
2 + 2ε12 dy1 dy2 (2B-2.5)

where the strain components relative to (y1, y2) are

ε11 = ∂U

∂y1
+ ∂V

∂y1
cos θ + 1

2

[(
∂U

∂y1

)2

+ 2
∂U

∂y1

∂V

∂y1
cos θ +

(
∂V

∂y1

)2
]

ε22 = ∂U

∂y2
cos θ + ∂V

∂y2
+ 1

2

[(
∂U

∂y2

)2

+ 2
∂U

∂y2

∂V

∂y2
cos θ +

(
∂V

∂y2

)2
]

(2B-2.6)
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2ε12 = ∂V

∂y1
+ ∂U

∂y2
+

(
∂U

∂y1
+ ∂V

∂y2

)
cos θ + ∂U

∂y1

∂U

∂y2

+
(

∂U

∂y1

∂V

∂y2
+ ∂U

∂y2

∂V

∂y1

)
cos θ + ∂V

∂y1

∂V

∂y2

APPENDIX 2C STRAIN–DISPLACEMENT RELATIONS IN GENERAL
COORDINATES

The topics treated in Chapter 1, Sections 1-23 to 1-27, and in Chapter 2 are pre-
liminary to this appendix. See also Chapter 2 in Synge and Schild (1978).

2C-1 Euclidean Metric Tensor

The theory of deformation of a medium rests fundamentally upon the concept of
the extension of an infinitesimal line element ds . Accordingly, the measurement
of length ds is a basic requirement of the theory. Because the deformation of a
medium is described in terms of a reference frame, measurement of length in a
general coordinate system is required.

Consider a three-dimensional Euclidean space. Let the range of all indices be
1, 2, 3. Let

yi = yi(x1, x2, x3) (2C-1.1)

be an admissible transformation from the rectangular Cartesian coordinates
(x1, x2, x3) to general coordinates (y1, y2, y3). Assume that the one-to-one inverse
of Eqs. (2C-1.1) exists. Thus,

xi = xi(y1, y2, y3) (2C-1.2)

Consider the line elements ds with rectangular Cartesian projections
dx1, dx2, dx3. Then, because (x1, x2, x3) are rectangular Cartesian coordinates,
the length of the line element ds is determined by the Pythagorean rule in the
form

ds2 = dxi dxi = δij dxi dxj (2C-1.3)

(Here, we employ i, j symbols for summation. If summation is not implied, a
statement to that effect will be indicated.)

The distance ds may also be expressed in terms of the general coordinates
(y1, y2, y3) by replacing dxi, dxj in Eq. (2C-1.3) by appropriate expressions in
terms of yi . Accordingly, by the usual rules of differentiations we find

dxi = xi,k dyk (2C-1.4)
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where ( , k) denotes differentiation with respect to yk . Substitution of Eq. (2C-1.4)
into Eq. (2C-1.3) yields

ds2 = xi,kxi,mdykdym (2C-1.5)

= gkmdykdym (2C-1.5a)

where the set of functions gkm is called the Euclidean metric tensor in yi . By
comparison of Eqs. (2C-1.5) and (2C-1.5a), we find

gkm = xi,kxi,m = gmk (2C-1.6)

Thus, the Euclidean metric tensor is symmetric in k, m. Written out in full,
Eqs. (2C-1.5a) is

ds2 = g11 dy1 dy1 + g12 dy1 dy2 + g13 dy1 dy3

+ g21 dy2 dy1 + g22 dy2 dy2 + g23 dy2 dy3 (2C-1.7)

+ g31 dy3 dy1 + g32 dy3 dy2 + g33 dy3 dy3

or
ds2 = g11 dy1 dy1 + 2g12 dy1 dy2 + 2g13 dy1 dy3

+ g22 dy2 dy2 + 2g23 dy2 dy3 + g33 dy3 dy3 (2C-1.7a)

The Euclidean metric tensor in any other general coordinate system (z1, z2, z3) may
be derived from the Euclidean metric tensor in the coordinate system (y1, y2, y3)
and the transformation from coordinates yi to coordinates zi . For example, let the
transformation from yi to zi be given in the form

yi = yi(z1, z2, z3) (2C-1.8)

Hence,
dyk = yk,pdzp (2C-1.9)

Substitution of Eq. (2C-1.9) into Eq. (2C-1.5a) yields

ds2 = gkmyk,pym,q dzp dzq (2C-1.10)

or
ds2 = Gpq dzp dzq (2C-1.10a)

where
Gpq = gkmyk,pym,q (2C-1.11)

is the Euclidean metric tensor in the coordinate system (z1, z2, z3). Equation
(2C-1.11) is the characteristic law of transformation between the Euclidean metric
tensors gkm, Gpq in the general coordinates yi, zi , respectively. In the language of
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Figure 2C-1.1

tensor calculus, the transformation law of Eq. (2C-1.11) defines a covariant tensor
field of rank two. That is, the set of components gkm form a covariant tensor of
rank two. The components of the strain field and of the stress field transform
according to the rule of Eq. (2C-1.11).

In summary, Eqs. (2C-1.3), (2C-1.5a), and (2C-1.10a) play a fundamental role
in general studies of theories of deformation of a continuum.

Problem. Let (x1, x2, x3) denote rectangular Cartesian coordinates (conventionally
denoted by x, y, z). Let (y1, y2, y3) denote cylindrical coordinates (conventionally
denoted by r , θ , z) (Fig. 2C-1.1). Derive the relations between yi and xi in the form
of Eqs. (2C-1.2). Then, derive the Euclidean metric tensor in terms of (y1, y2, y3)
(or r , θ , z). Write down the expression for ds2 in terms of yi .

2C-2 Strain Tensors

In the theory of deformation, we consider the transformation of a line element
PA in the initial region R into a line element PA in the deformed region R

(see Chapter 2). We let the point P be denoted by P (x1, x2, x3) and point A

by A(x1 + dx1, x2 + dx2, x3 + dx3), where (x1, x2, x3) are general coordinates.
Similarly, in terms of general coordinates (y1, y2, y3), we write P (y1, y2, y3) and
A (y1 + dy1, y2 + dy2, y3 + dy3). In the initial configuration the length of PA may
be written

ds2 = gij dxi dxj (2C-2.1)

and the length of PA

d s2 = Gij dyi dyj (2C-2.2)
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where gij, Gij denote the Euclidean metric tensors relative to coordinates
(x1, x2, x3), (y1, y2, y3), respectively.

Because the following relations between xi and yi exist,

xi = xi(y1, y2, y3)

yi = yi(x1, x2, x3)
(2C-2.3)

we may also write [see Eq. (2C-1.10)]

ds2 = gijxi,k xj,m dyk dym (2C-2.4)

d s2 = Gijyi,p yj,q dxp dxq (2C-2.5)

Accordingly, depending upon which set of coordinates we employ, we may express
the difference d s2 − ds2 in the forms

d s2 − ds2 = 2εij dxi dxj (2C-2.6)

d s2 − ds2 = 2Eij dyi dyj (2C-2.7)

where, in the modern theory of continuum, the symmetrical set of elements [see
Eq. (2-6.13)]

εpq = εqp = 1
2 (Gijyi,pyj,q − gpq) (2C-2.8)

is called Green’s strain tensor (it was first introduced by Green and Saint-Venant)
and the symmetrical set of elements [see Eq. (2-6.11)]

Ekm = Emk = 1
2 (Gij − gijxi,kxj,m) (2C-2.9)

is called Almansi’s strain tensor (it was first used by Cauchy in small-displacement
theory and by Almansi in large-displacement theory). Alternatively, because xi are
called material coordinates and yi are called spatial coordinates, εij and Eij are
referred to as strain in material coordinates and in spatial coordinates, respec-
tively. The tensor character of εij and Eij follows from the fact that under a further
transformation of coordinates they obey the rule of transformation of Eq. (2C-1.11).

Choice of Coordinates. If coordinates (x1, x2, x3), (y1, y2, y3) are rectangu-
lar Cartesian referred to a given rectangular Cartesian frame, Eqs. (2C-1.6) and
(2C-1.11) yield the simple result

Gij = gij = δij =
{

1 if i = j

0 if i �= j
(2C-2.10)

The associated theory of deformation is discussed in Chapter 2.
For finite deformation it is often convenient to consider a spatial coordinate

system (y1, y2, y3) in the transformed region R so that point P has the same
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coordinates in the system yi as does the point P in the original region R (in the
system xi). (For example, this procedure is used in the theory of finite deformation
of shells.) Then, x1 = y1, x2 = y2, x3 = y3, and by Eqs. (2C-2.8) and (2C-2.9) it
follows that

εij = Eij = 1
2 (Gij − gij) (2C-2.11)

Accordingly, the metric tensors Gij, gij define the strain tensors εij, Eij directly.
The coordinates xi, yi are then called intrinsic or convected coordinates.
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CHAPTER 3

THEORY OF STRESS

This chapter presents the three-dimensional theory of stress of a continuous
medium. As in the theory of deformation, by a continuous medium we mean a mate-
rial in which each volume of substance is sufficiently dense so that concepts such
as mass density, temperature, stress, and so forth have meaning at every point in
the region occupied by the material. The theory of stress rests upon Newton’s laws,
which are independent of the nature of materials that fall within the continuous-
medium model. Consequently, the theory of stress developed here is applicable
to all continuous media, regardless of their mechanical behavior of response to
forces—that is, whether they behave elastically, plastically, viscoelastically, or
in any other manner. The main part of the chapter is devoted to classical stress
theory in which stress couples and body couples are neglected. A brief discussion
of the concept of stress couples and body couples is presented in Appendix 3B.1

3-1 Definition of Stress

It is noted in elementary mechanics that point forces never really occur in nature;
forces are always distributed throughout regions. Nevertheless, the point force is
an indispensable concept in mechanics. For example, distributed forces that act on
a rigid body are dynamically equivalent to a single point force and a couple.

To gain insight into the nature of distributed forces, we consider the forces that
act inside a solid or a fluid. The theories of deformable bodies (fluid mechanics,
elasticity, and plasticity) are based on the concept of action by direct contact.
If we imagine a body to be partitioned intocells by fictitious surfaces, one cell

1See also Appendices 5A (Chapter 5) and 6A (Chapter 6) and Brown (1976).
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162 THEORY OF STRESS

does not exert a direct effect on another cell unless it is in contact with it. If
two cells are in contact with each other along one of the fictitious surfaces of
separation, a force may be transmitted from the first cell to the second cell and
vice versa.

To elaborate on this idea, let us pass a fictitious plane Q through a body and
mark an area A on the plane. One side of the plane Q will be designated as
positive, the other side as negative (Fig. 3-1.1). The material on the positive side
of the plane Q exerts a force upon the material on the negative side. This force
is transmitted through the plane Q by direct contact of material on the two sides
of the plane. The force that is transmitted through the area A is denoted by F.
Note that we do not use the notations �A, �F as in some works, as use of these
notations in the limiting process that defines stress may lead to confusion with the
concept of derivative of a vector [see Eq. (a) below and Chapter 1, Section 1-10].
In general, F is not perpendicular to the plane Q. In accordance with Newton’s
law of reaction, the material on the negative side of plane Q transmits, through
the area A, a force equal to −F . The force F is an internal force, as its reaction
is exerted within the body.

The force F may be resolved into components Fn and Fs , such that the compo-
nent Fn is perpendicular to plane Q, and the component Fs is tangent to plane Q

(Fig. 3-1.1). The component Fn is called the normal force on the area A, and the
component Fs is called the shearing force on the area A. The word “normal” has
the same meaning as the word “perpendicular.”

The foregoing concepts are equally applicable to stationary bodies and to
deforming bodies (e.g., to flowing fluids). During a deformation process, Fn and

Figure 3-1.1
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Fs ordinarily vary with time. The forces Fn and Fs naturally depend on the area
A. The magnitudes of the average forces per unit area are Fn/A and Fs/A.
These ratios are called the average normal stress and the average shearing stress
on the area A. The concept of stress at a point is obtained by letting area A be
infinitesimal. Then the forces Fn and Fs approach zero, but the ratios Fn/A and
Fs/A usually approach limits different from zero. The limiting values of the ratios
Fn/A and Fs/A are called the normal stress and the shearing stress on plane Q

at the point where the infinitesimal area A is located. In general, these stresses
depend not only on the coordinates of the infinitesimal area A but also on the
plane in which the area A lies. The normal stress and the shearing stress may be
regarded as normal and tangential projections of a stress vector that is associated
with the infinitesimal area A. Accordingly, we may speak of the direction of the
stress vector that acts at a given point on a given plane; it is the direction of the
infinitesimal force that acts on the elemental area. Mathematically, the foregoing
remarks may be summarized as follows:

lim
A→0

Fn

A
= σ lim

A→0

Fs

A
= τ (a)

where σ is the normal stress at a point in area A in plane Q and τ is the shearing
stress at the same point in area A in plane Q.

There are significant differences between the internal forces in fluids and in
solids. Solids frequently sustain large internal tensile forces. In contrast, normal
forces in fluids are usually compressive. In other words, the normal force transmit-
ted from the fluid on one side of a fictitious plane to the fluid on the other side is usu-
ally a push rather than a pull. In fluids, the reactions (pushes) measured per unit area
are referred to as pressures (negative stresses). In the case of solids, we retain the
terminology “stress” and consider pressures or compressions as negative stresses.

The materials that are known as fluids have another property that distinguishes
them from solids. Fluid materials flow (i.e., they deform continuously) whenever
shearing stresses exist. It is customary to designate this property as the definition
of a fluid. Accordingly, shearing stresses cannot exist in a fluid that is at rest.
This definition may be applied to ascertain whether a given material is a fluid.
For example, clay does not flow unless the absolute value of the shearing stress
exceeds a certain positive value. Consequently, clay is classified as a plastic solid
rather than a fluid.

Intuitively, we should expect that the shearing stress in free-flowing fluids, such
as air and water, must be small, even though the fluids are in motion. This observa-
tion has led to the concept of a frictionless fluid, that is, an ideal fluid. A frictionless
fluid is defined to be a material in which shearing stresses cannot be developed.
Much of classical hydrodynamics is concerned with frictionless fluids. However,
the theory of frictionless fluids has not been so useful as it was originally expected
to be, as significant shearing stresses always exist in a flowing fluid in the regions
near solid boundaries.

A fluid in which shearing stresses are developed when flow occurs is said to be
viscous. To some extent, all real fluids are viscous.
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3-2 Stress Notation

In the theory of stress of continuous bodies, a distinction is made between the
following two types of forces: (1) body forces, acting on the elements of volume
(or mass) of the body, and (2) stresses, acting on surface elements inside or on the
boundary of the body. Examples of body forces are gravitational forces, magnetic
forces, and inertia forces. Examples of stresses (of surface forces) are contact forces
between solid bodies, or hydrostatic pressure between a solid body and a fluid.

To establish a stress notation, we imagine a plane surface cutting through a body
in a deformed state (stressed state) and consider the interaction between the two
parts of the body across the surface of separation. For simplicity, we take the body
to be a regular prism with sides parallel to axes (X, Y, Z) (Fig. 3-2.1), with the
plane of separation perpendicular to the X axis. The two parts of the body are shown
separated for clarity. A positive X plane in the part on the left is shaded. We define
a positive X plane as one whose outward normal points in the positive X direction.
The shaded positive X plane is considered to be a rectangle with sides �Y, �Z. The
X surface, which bounds the right part of the body and coincides with the positive X

surface of the left part, is also shaded in Fig. 3-2.1. Because its outward normal
points in the negative X direction, it is a negative X plane. As noted in Section 3-1,
the force exerted by the negative X surface on the positive X surface is σ �Y �Z,
where σ is the stress vector. In general, σ is not perpendicular to the positive X

plane. Hence, we may resolve the force σ �Y �Z and the associated stress into
components along the positive (X, Y, Z) directions. The (X, Y, Z) components of
stress are denoted by σxx, σxy, σxz, respectively. Hence, the notation σxx denotes
the stress component normal to the positive X plane. Similarly, the notation σxy, σxz

denotes the shearing components (or tangential components) of the stress vector
that lies in the positive X plane, the components being directed in the positive
Y, Z directions, respectively. We note that in the above notation the first subscript
denotes the surface upon with σ acts, and the second subscript denotes the direction
of the stress component.

Figure 3-2.1
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By Newton’s third law (action and reaction), the stress components that act on
the negative X surface (right part) must act in the opposite direction (Fig. 3-2.1).
Thus, a positive component σxj relative to the negative X surface means a stress
component in the negative j direction. Likewise, this holds for the negative X plane
of the left part (the surface obtained by a translation of the negative X surface of
the right part through a distance �X). In the theory of deformable solids, we will
consider the above convention to define positive stress components. Negative
components are shown schematically by reversing the direction of the arrow
denoting positive components. For example, consider an infinitesimal cubic
element at a point O in a body, with sides parallel to axes (X, Y, Z) (Fig. 3-2.2).
The stress components acting on positive and negative planes are shown in the
positive senses. Thus, on positive planes the arrowheads point in the positive
senses of the corresponding axes, whereas on negative planes they point in the
negative senses of the axes.

The axes (X, Y, Z) are attached to frame F (see Chapter 2, Section 2-2). Because
the body (Fig. 3-2.1) is in a deformed state, the quantities (σxx, σxy, . . . , σzz) are
defined relative to the deformed state (stressed state) of the body. Thus, it follows
that the equation of motion of the body is most simply written in terms of spatial
coordinates (see Chapter 2, Section 2-3, and Section 3-8).

The stress notation illustrated in Fig. 3-2.2 is a conventional notation. However,
other stress notations are common. The more frequent notations for components of
the stress tensor are listed in Table 3-2.1.

Index Notation. The set of nine stress components associated with the cube of
Fig. 3-2.2 (stress at point O) may be written in the index form σij, i, j = 1, 2, 3.

Figure 3-2.2
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TABLE 3-2.1 Summary of Stress Notationsa

Engineering σx σy σz τxy = τyx τxz = τzx τyz = τzy

Some American writersb σxx σyy σzz σxy = σyz σxz = σzx σyz = σzy

Love (also some Russian
and English writers)

Xx Yy Zz Xy = Yx Xz = Zx Yz = Zy

Planck −Xx −Yy −Zz −Xy = −Yx −Xz = −Zx −Yz = −Zy

Some English writers P Q R S T U

aσij = σji ; see Section 3-3.
bAny other symbol may be used in place of σ ; e.g., τ , s, t , etc.

Here we have employed the notation

σxx = σ11, σyy = σ22, σzz = σ33

σxy = σ12, σxz = σ13, σyz = σ23
(3-2.1)

and so on.
In index form, axes (X, Y, Z) are referred to by the notation (X1, X2, X3); see

Chapter 1, Section 1-23.

3-3 Summation of Moments. Stress at a Point.
Stress on an Oblique Plane

By the foregoing sign convention, the stress components with reference to rectan-
gular spatial (x, y, z) may be tabulated in the following array:⎛

⎜⎝
σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎞
⎟⎠ (3-3.1)

In this array, the stress components in the first row act on a plane perpendicular
to the X axis, the stress components in the second row act on a plane perpen-
dicular to the Y axis, and the stress components in the third row act on a plane
perpendicular to the Z axis. Apparently, nine stress components are required to
define stress at a point in a body. However, by simple consideration of summation
of moments acting on a differential element, the number of stress components can
be reduced by three (see Appendix 3B).

Returning to Fig. 3-2.2, we note that summation of moments with respect to
point O yields the following equations2 (in the absence of body moments and

2If we let σxx, σxy, σxz be the stress components on the left face of the element, then in gen-
eral the stress components on the right face will be σxx + (∂σxx/∂x)dx, σxy + (∂xy/∂x)dx, and
σxz + (∂σxz/∂x)dx. Similar relations hold for other pairs of faces. However, the terms (∂σxx/∂x)dx

and so forth contribute only higher-order terms in dx, dy, dz to Eqs. (3-3.2). Also, the acceleration
effects, being proportional to the mass moment of inertia of the element, are of higher degree in
dx, dy, dz, hence do not contribute to Eqs. (3-3.2).
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couple stresses due to other sources such as magnetic effects; see Appendix 3B):

Mx = (σyx dx dz) dy − (σzy dx dy) dz = 0

My = (σzx dx dy) dz − (σxz dy dz) dx = 0

Mz = (σxy dy dz) dx − (σyx dx dz) dy = 0

(3-3.2)

where Mx, My, Mz denote moment components with respect to the (X, Y, Z) axes,
respectively. Hence, by Eq. (3-3.2),

σyz = σzy, σzx = σxz, σxy = σyx (3-3.3)

or, in index notation
σαβ = σβα (3-3.3a)

With Eqs. (3-3.3), Eq. (3-3.1) may be written in the form⎛
⎝σxx σxy σxz

σxy σyy σyz

σxz σzy σzz

⎞
⎠ (3-3.4)

This array of stress components is symmetrical with respect to the principal diag-
onal (running from the upper left corner to the lower right corner); that is, the
shearing stress components (the off-diagonal components) are equal in pairs. Hence,
in the absence of body moments and couple stresses, only six stress components
are required to define stress at a point in a body . That is, Eq. (3-3.4) is a square
symmetric array (see Chapter 1, Section 1-27).

The stress vectors (σ 1, σ 2, σ 3) on planes that are perpendicular, respectively, to
the X1, X2, and X3 axes are (in index notation)

σ1 = i1σ11 + i2σ12 + i3σ13

σ2 = i1σ21 + i2σ22 + i3σ23

σ3 = i1σ31 + i2σ32 + i3σ33

(3-3.5)

where i1, i2, i3 are unit vectors in the (X1, X2, X3) directions, respectively (see
Fig. 3-3.1, where σ 1 is illustrated).

Consider the stress vector σ n on an oblique plane P with unit normal n through
point O of a medium (Fig. 3-3.2). The unit normal vector to the plane is

n = i1n1 + i2n2 + i3n3 (3-3.6)

where ni are the direction cosines of the unit vector n relative to axes (X1, X2, X3).
By Fig. 3-3.2, by Newton’s second law, summation of forces yields (because

acceleration effects are of higher degree in dx1, dx2, dx3)

σn = n1σ1 + n2σ2 + n3σ3 (3-3.7)
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Figure 3-3.1

Figure 3-3.2
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Substitution of Eqs. (3-3.5) into Eq. (3-3.7) yields

σn = i1(n1σ11 + n2σ21 + n3σ31) + i2(n1σ12 + n2σ22 + n3σ32)

+ i3(n1σ13 + n2σ23 + n3σ33) (3-3.8)

where i1, i2, i3 are unit vectors along (X1, X2, X3) axes. By definition, the stress
vector σ n may be represented in terms of its (X1, X2, X3) projections. Hence,

σn = i1σn1 + i2σn2 + i3σn3 (3-3.9)

where σn1, σn2, σn3 are the (X1, X2, X3) projections of the vector σ n. Conse-
quently, equating Eqs (3-3.8) and (3-3.9), we obtain the scalar relations

σn1 = n1σ11 + n2σ21 + n3σ31 = nασα1

σn2 = n1σ12 + n2σ22 + n3σ32 = nασα2

σn3 = n1σ13 + n2σ23 + n3σ33 = nασα3

(3-3.10)

Equations 3-3.10 represent the components of stress at a point O on an oblique
plane P (whose unit normal has direction cosines ni) in terms of the six components
of stress σij (σij = σji). If point O is in the surface bounding a medium, and if
plane P is tangent to the surface at point O , Eqs. (3-3.10) are the stress boundary
conditions at point O in terms of the stress components .

Normal Stress and Shearing Stress on an Oblique Plane. The normal
stress σnn on the plane P is the projection of the vector σ n in the direction of the
unit normal n of plane P ; that is, σnn = n · σn. Hence, by Eqs. (3-3.3) and (3-3.8),

σnn = n2
1σ11 + n2

2σ22 + n2
3σ33 + 2n1n2σ12

+ 2n1n3σ13 + 2n2n3σ23 (3-3.11)

By Eq. (3-3.11) the normal stress σnn on an oblique plane P (with unit normal n
whose direction cosines are ni) through point O is expressed in terms of the six
stress components σij. In some problems the maximum value of σnn is of impor-
tance. We will return later to the problem of computing the maximum value of σnn.

The magnitude of σnt of the shearing stress on plane P is the magnitude of the
orthogonal projection on plane P of vector σ n; that is, it is the magnitude of
the projection of σ n in the direction of a unit vector t that is perpendicular to n
and that lies in plane P (Fig. 3-3.3).

Consequently, by geometry and Fig. 3-3.3,

σ 2
nt = σ 2

n − σ 2
nn

or
σ 2

nt = σ 2
n1 + σ 2

n2 + σ 2
n3 − σ 2

nn (3-3.12)

When Eqs. (3-3.10) and (3-3.11) are substituted into Eq. (3-3.12), the shearing
stress σnt is given in terms of stress components σij and unit normal (n1, n2, n3).
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Figure 3-3.3

Having discussed the physical significance of stress on an oblique plane, we
now present the results in abbreviated (index) notation. Accordingly, we let the
unit normal vector n to plane P be denoted by ni . Because ni is a unit vector,
nαnα = 1. Let the stress vector σ n at point O on plane P be denoted by σnα, with
the understanding that we are considering plane P with normal n. Then
Eqs. (3-3.9) or (3-3.10) may be written in the form [with σαβ = σβα; Eq. (3-3.3a)]

σnα = σβαnβ = σαβnβ (3-3.13)

Hence, the normal stress σnn on the plane P is given by the relation (see
Eq. (3-3.11)

σnn = σnαnα = σβαnβnα = σaβnαnβ (3-3.14)

With the above notation and Eq. (3-3.12), we obtain the shearing stress σnt in the
form

σ 2
nt = αnασnα − σ 2

nn (3-3.15)

Substituting Eqs. (3-3.13) and (3-3.14) into Eq. (3-3.15), we obtain σnt in terms
of σαβ, nβ .

Example 3-3.1. The state of stress at a point P in a medium relative to rectangular
Cartesian axes xi is given by the stress array

(σij ) =
⎛
⎝5 2 0

2 −3 0
0 0 4

⎞
⎠ (a)

It is desired to compute the stress vectors on the positive faces of the planes
perpendicular to the x1 and x2 axes and on the positive face of the plane with unit
normal (1/

√
2, 1/

√
2, 0).

Solution. The plane perpendicular to the x1 axis has unit normal (1, 0, 0). Hence,
by Eqs. (3-3.5) the associated stress vector on the positive face of the plane is

σ1 = 5i1 + 2i2 (b)
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and similarly, for the plane perpendicular to the x2 axis (with unit normal 0, 1, 0),
the stress vector is

σ2 = 2i1 + 3i2

For the plane with unit normal (1/
√

2,1/
√

2,0), the stress vector is given by
Eq. (3-3.8) [or by Eqs. (3-3.10)]. Thus, for this plane

σn = 7√
2

i1 − 1√
2

i2 (c)

Problem Set 3-3

1. The flat strip shown in Fig. P3-3.1 is subjected to tensile stress σ . Express the tensile
stress σ ′ and the shearing stress τ on the oblique section AC in terms of θ and σ .
(Ans.: σ ′ = σ cos2 θ; τ = σ sin θ cos θ .)

Figure P3-3.1

2. The square plate is subjected to shearing stress τ on its edges (see Fig. P3-3.2). Deter-
mine the shearing stresses and the tensile stresses on sections A − A and B − B.
(Ans .: Section A − A: σ ′ =τ , τ ′ = 0; section B − B: σ ′ = −τ ,τ ′ = 0.)

Figure P3-3.2

3. A rectangular plate is subjected to axial compression stress σ along two parallel edges
and axial tension stress σ along the other two parallel edges, in the perpendicular
direction.
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(a) Determine the shearing stress and the tensile stress on a section A − A that forms
an angle θ with the direction of the axial tension. Express the results in terms of σ

and θ . Evaluate for θ = 45◦.

(b) Repeat for a rectangular plate loaded by axial tension σ along its four edges.
[Ans .: (a) −σ ′ = σ cos 2θ; τ ′ = σ sin 2θ . (b) σ ′ = σ ; τ ′ = 0.]

4. Compute τ for equilibrium (Fig. P3-3.4).

Figure P3-3.4

5. Compute τ for equilibrium (Fig. P3-3.5).

Figure P3-3.5

6. The square plate is loaded as shown in Fig. P3-3.6. Compute the shearing stresses and
the tensile stresses on sections A − A and B − B in terms of σ1, σ2, τ , and θ . Specialize
the result (a) for σ1 = σ2 and θ = 45◦, and (b) for σ1 = σ2 = 0.

7. The stress tensor is ⎛
⎝3 1 4

1 2 −5
4 −5 0

⎞
⎠
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Figure P3-3.7

Determine σn1, σn2, σn3, σnn, σnt for the plane whose normal has direction cosines
(1

√
3,1/

√
3,1/

√
3).

8. The skewed plate of unit thickness is loaded by uniformly distributed stresses of 100
and 200 psi along the sides of the plate in the directions as shown in Fig. P3-3.8.

Figure P3-3.8

(a) Determine the stress matrix for this case (σ33 = σ23 = σ31 = 0).

(b) Determine the normal stress on a plane making angles of 45◦ with x1 and x2 axes.
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9. On several planes through a point in a body, the stress vectors relative to axes (x1, x2, x3)

are tabulated as follows:

Unit Normal to Plane Stress Vector on Plane

1, 0, 0 i + 2j + 3k
1/

√
3,1/

√
3,1/

√
3 2

√
3i + 2

√
3j

0, 1, 0 2(i + j + k)

Determine the components of the stress array referred to (x1, x2, x3) axes; that is, deter-
mine the stress components σ11, σ22, σ33, σ12, σ13, σ23.

10. The stress tensor at a point P is defined by the rectangular Cartesian components
σ11 = 36 = −σ22, σ12 = 27, σ23 = σ13 = 0, and σ33 = 18, relative to axes (x1, x2, x3).

(a) Determine the three rectangular (x1, x2, x3) components of the stress vector acting
on a plane

(
with unit normal 2

3 ,− 2
3 , 1

3

)
passing through point P .

(b) Determine the magnitude of the stress vector of part (a).

(c) Determine the normal component of the stress vector of part (a).

(d) Determine the angle between the stress vector and the unit normal of part (a).

11. The stress components are σ11 = 2, σ22 = 4, σ33 = 7, σ23 = −1, σ31 = 3, and σ12 = 5.
Compute the normal stress and the magnitude of the shearing stress on a plane whose
normal makes equal angles with the (x1, x2, x3) axes.

12. A crystal in a bar has the lattice directions indicated by the unit vectors i1, i2, and i3.
The projections of these vectors on the x axis are

√
3/2,

√
2/4, and

√
2/4, respectively

(Fig. P3-3.12). A plane in the crystal is normal to the vector N given by N = i1+ i2+
i3. Determine the normal component of the stress on this plane, assuming that the bar
is in a state of uniaxial tension of magnitude s (force/area) in the x direction.

Figure P3-3.12

13. Consider σx = 4, σy = 2, σz = −2, τyz = 8, τzx = −2, and τxy = 3. Compute the stress
vectors on planes with unit normals ( 2

3 , 2
3 , 1

3 ) and (1/
√

14, 3/
√

14, 2/
√

14, 3/
√

14).
Compute the normal stresses on these planes; then compute the shearing stresses (see
Tables 3-2.1).
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14. A state of stress at a point in a continuous medium is defined by the stress σαβ = σβα ,
where α, β = 1, 2, 3, relative to axes xi , consider a plane P with unit normal ni and a
plane Q with unit normal Ni . Denote the stress vector on plane P by σi and the stress
vector on plane Q by 	i . Show that the projection of the stress vector σi on the unit
normal Ni is equal to the projection of the stress vector 	i on the unit normal ni .

15. The state of stress at a point in a body is defined by the stress components σ11 = 1000,
σ22 = −1000, σ12 = 500, σ23 = −200, and σ13 = σ33 = 0. Consider a plane that passes
through the point and has unit normal vector (1/10, 3/10, 3/

√
10) relative to axes

(x1, x2, x3).

(a) Determine the (x1, x2, x3) components of the stress vector that acts on the plane.

(b) Determine the magnitude of the stress vector that acts on the plane.

(c) Determine the magnitude of the normal stress that acts on the plane.

(d) Determine the magnitude of the shearing stress that acts on the plane.

3-4 Tensor Character of Stress. Transformation of Stress
Components under Rotation of Coordinate Axes

The stress array σαβ possesses the same mathematical (tensor) character as the strain
array εαβ . However, physically, the stress array and the strain array represent dif-
ferent physical quantities. Accordingly, in this section we examine transformation
of σαβ from the physical viewpoint of stress.

Let (X1, X2, X3) and (Y1, Y2, Y3) be two rectangular coordinate systems attached
to frame F with common origin O (Fig. 3-4.1). Let aαβ denote the direction cosines
between axes Yα and Xβ (Table 3-4.1). Each entry in Table 3-4.1 is the cosine of
the angle between two coordinate axes designated at the top of its column and left
of its row. For example, a23 is the cosine of the angle between axes X3, Y2. Let
	αβ denote the stress components relative to axes Yα . The symbol 	 (capital σ )

Figure 3-4.1
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TABLE 3-4.1

X1 X2 X3

Y1 a11 a12 a13

Y2 a21 a22 a23

Y3 a31 a32 a33

in this text is used to denote stress components relative to final transformed axes
(axes Yα). It should not be confused with the summation symbol as used generally
in mathematics. The stress components 	αβ are defined relative to axes Yα in the
same manner as the stress components σαβ are defined relative to axes Xα . For
example, let Q be a plane perpendicular to axis Y1 (Fig. 3-4.1). The unit normal
to plane Q is N1: (a11, a12, a13). The stress vector acting on plane Q is 	1, with
components 	11, 	12, 	13. Hence, by Eq. (3-3.7) or (3-3.14),

	11 = a2
11σ11 + a2

12σ22 + a2
13σ33 + 2a12a13σ23

+ 2a11a13σ13 + 2a11a12σ12 = σαβa1αa1β

(a)

Similarly, for 	22, 	33 (components normal to planes perpendicular to axes Y2, Y3,
respectively), we find

	22 = σαβa2αa2β 	33 = σαβa3αa3β (b)

The shearing stress component 	12 is the component of σ 1 in the Y2 direction
(Section 3-3). Hence, by vector algebra, it is the scalar product of the vector 	1

and the unit vector N2: (a12, a22, a23) parallel to the Y2 axis. Thus,

	12 = �1·N2 (c)
where, by Eq. (3-3.8),

�1 = i1(a11σ11 + a12σ12 + a13σ13)

+ i2(a11σ12 + a12σ22 + a13σ23)

+ i3(a11σ13 + a12σ23 + a13σ33)

(d)

and by Eq. (3-3.6),
N2 = i1a21 + i2a22 + i3a23 (e)

Consequently, Eqs. (c), (d), and (e) yield

	12 = a11a21σ11 + a12a22σ22 + a13a23σ33

+ (a12a23 + a22a13)σ23 + (a11a23 + a21a13)σ13

+ (a11a22 + a21a12)σ12

= σαβa1αa2β

(f)
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With the definitions of 	13, 	23, similar calculations yield

	13 = σαβa1αa3β 	23 = σαβa2αa3β (g)

Equations (a), (b), (f), and (g) determine the stress components 	αβ in any
system of rectangular coordinates Yα if the stress components σαβ are known for
a given system Xα . Summarizing the results, we may write, in index notation,

	γδ = σαβaγαaδβ α, β = 1, 2, 3 (3-4.1)

Comparison of Eqs. (3-4.1) with Eqs. (2-9.1) shows that the stress components
σij transform according to the same rules as the strain components εij. Hence, σij

transforms according to the rules of transformation of a second-order tensor [see
Chapter 1, Eq. (1-23.14)]. Accordingly, the matrix of Eq. (3-3.1) is called the stress
tensor. When σij = σji, the stress tensor is a symmetrical tensor of second order
[see Eq. (3-3.4)].

In summary, the tensor nature of σij may be established formally in index
notation as follows. Let Xi and Yi be two systems of rectangular coordinates
(Fig. 3-4.1). Then, by Eq. (3-3.13), the stress vector Vγ on a plane perpendicular
to axis Yγ is given in index form as

Vγβ = σβαaγα = σαβaγα (h)

The component 	γδ of the stress vector Vγβ in the direction of axis Yδ (with
direction cosines aδβ) is given by the scalar product of vectors in the form Vγβaδβ .
Hence, Eq. (h) yields

	γδ = σαβaγαaδβ (i)

There are many physical quantities that transform according to Eq. (3-4.1)
besides stress and strain components; for example, moments and products of iner-
tia of a rigid body, the vorticity of hydrodynamics, the magnetic field tensor, and
others obey the transformation rule of Eq. (3-4.1).

Alternatively, it may be shown that the inverse transformation from axes Yα to
Xα yields

σαβ = aγαaδβ	γδ (3-4.2)

Equation (3-4.2) is analogous to Eq. (2-9.3). Hence, Eqs. (3-4.1) and (3-4.2)
represent the law of transformation of stress components from one system of rect-
angular Cartesian coordinate axes to another (see Chapter 1, Sections 1-23 and
1-24).

The stress tensor σ we discussed so far may be named as the Cauchy stress. We
now introduce two more stress measures, the first Piola–Kirchhoff (PK1) stress
tensor and the second Piola–Kirchhoff (PK2) stress tensor, as

Tiα ≡ JF−1
iβ σβα (3-4.3)

Sij ≡ JF−1
iα F−1

jβ σαβ (3-4.4)
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where the deformation gradient F and its inverse F−1 are defined as

Fαi ≡ ∂ξα

∂xi

F−1
iα ≡ ∂xi

∂ξα

(3-4.5)

and J is the Jacobian, the determinant of the deformation gradient. Recall that the
relations among the displacements u, material coordinates x, and spatial coordinates
ξ can be expressed as

x + u − ξ = 0 (3-4.6)

one may expand Eqs. (3-4.5) as

F =

∥∥∥∥∥∥∥∥∥∥∥∥

1 + ∂u1

∂x1

∂u1

∂x2

∂u1

∂x3
∂u2

∂x1
1 + ∂u2

∂x2

∂u2

∂x3
∂u3

∂x1

∂u3

∂x2
1 + ∂u3

∂x3

∥∥∥∥∥∥∥∥∥∥∥∥
F−1 =

∥∥∥∥∥∥∥∥∥∥∥∥

1 − ∂u1

∂ξ1
−∂u1

∂ξ2
−∂u1

∂ξ3

−∂u2

∂ξ1
1 − ∂u2

∂ξ2
−∂u2

∂ξ3

−∂u3

∂ξ1
−∂u3

∂ξ2
1 − ∂u3

∂ξ3

∥∥∥∥∥∥∥∥∥∥∥∥
(3-4.7)

It should be emphasized that the displacements in the expression for the deformation
gradient has to be put in Lagrangian (material) description, that is, u = u(x); and
the displacements in the expression for the inverse deformation gradient has to be
put in Eulerian (spatial) description, that is, u = u(ξ). It is straightforward to prove
that Eqs. (3-4.3) and (3-4.4) can be written as

σαβ = J−1FαjTjβ = J−1FαiFβjSij (3-4.8)

The first-order and second-order Piola–Kirchhoff stresses are the keys to under-
standing large-strain theory. They are also essential in the study of biomechanics
of soft tissues, as we will see later.

Example 3-4.1. Transformation of Stress Components. The state of stress at a
point P in a medium is given by the array (relative to axes xi)

(σij ) =
⎛
⎝ 10 20 0

20 5 0
0 0 10

⎞
⎠ (a)

It is required to compute the stress components relative to axes yi with
direction cosines relative to axes xi as follows: a11 = √

3/2, a12 = 1
2 , a13 = 0;

a21 = − 1
2 , a22 = √

3/2, a23 = 0; and a31 = a32 = 0, a33 = 1 (see Table 3-4.1). By
Eq. (3-4.1), we find

	ij =
⎛
⎝ 26.070 7.835 0

7.835 −11.070 0
0 0 10

⎞
⎠ (b)
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Problem Set 3-4

1. Let (Y1, Y2, Y3) and (X1, X2, X3) be two systems of rectangular coordinates with the same
origin. The cosine of the angle between any two of the axes is designated in Table 3-4.1.
For example, the cosine of the angle between the Y2 axis and the X3 axis is a23. Show
that the sum of the squares of the numbers in any row or any column of this table is
1. Show that the sum of the products of the numbers in any row (or column) with the
corresponding numbers in any other row (or column) is zero. (Hint : See Section 1-17.)

2. Show by means of Eq. (3-4.1) that σX+ σY + σZ = σx+ σy+ σz; that is, the sum of the
normal stress components is a constant in all rectangular coordinate systems (or, in other
words, is invariant).

3. Show that for a body subjected to hydrostatic pressure p (see Table 3-2.1)

σX + σY + σZ = σx + σy + σz = −3p

4. For Example 3-4.1, by means of Eq. (3-4.2) derive Eq. (a) by transforming the stress
components 	αβ from axes yα to xα .

5. A stress state at a point is defined by the stress components σ11 = a, σ12 = b, σ22 = c, and
σ13 = σ23 = σ33 = 0 relative to axes xα . Determine the stress components 	αβ relative
to axes yα obtained by a rotation of 30◦ about axes x2.

3-5 Principal Stresses. Stress Invariants. Extreme Values

As noted in Section 3-4, mathematically the stress tensor is entirely analogous to
the strain tensor. Accordingly, by analogy to the theory of Section 2-11, for any
general state of stress, through any point P in a medium, there exist three mutually
perpendicular planes on which the shearing stresses σij (i �= j) vanish identically.
The resulting stresses on these planes are normal stresses; they are called princi-
pal stresses (extreme values, characteristic values, or eigenvalues ; see Chapter 1,
Sections 1-27 and 1-29). Axes through point P coincident with the principal stress
direction are called principal axes of stress . Planes on which shearing stresses van-
ish are called principal planes of stress . Thus, by definition, principal stresses are
perpendicular to the planes on which they act; that is, principal stresses are nor-
mal to principal planes of stress. A cube subjected to principal stresses is easily
visualized, as the forces on the surface are normal to the faces.

Because the stress tensor is mathematically analogous to the strain tensor,
the principal stresses are the roots of the following cubic equation in σ [see
Chapter 2, Eq. (2-11.3)], provided σij = σji:

F(σ ) =
∣∣∣∣∣∣
σ11 − σ σ12 σ13

σ12 σ22 − σ σ23

σ13 σ23 σ33 − σ

∣∣∣∣∣∣ = 0 (3-5.1)

where the notation σ11 = σxx , σ22 = σyy , σ33 = σzz, σ12 = σxy , σ13 = σxz, and
σ23 = σyz has been used.
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Expansion of Eq. (3-5.1) yields

σ 3 − I1σ
2 + I2σ − I3 = 0 (3-5.2)

where
I1 = σ11 + σ22 + σ33

I2 = σ11σ22 + σ11σ33 + σ22σ33 − σ 2
12 − σ 2

13 − σ 2
23

=
∣∣∣∣σ11 σ12

σ12 σ22

∣∣∣∣ +
∣∣∣∣σ11 σ13

σ13 σ33

∣∣∣∣ +
∣∣∣∣σ22 σ23

σ23 σ33

∣∣∣∣
I3 =

∣∣∣∣∣∣
σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

∣∣∣∣∣∣ (3-5.3)

In index notation,

I1 = σαα

I2 = 1
2 (I 2

1 − σαβσβα) (3-5.3a)

I3 = det(σαβ) = 1
6 (2σαβσβγ σγα − 3I1σαβσβα + I 3

1 )

Equation (3-5.2) determines the three roots (principal stresses) σ1, σ2, and σ3. The
principal stresses (σ1, σ2, σ3) are physical invariants that are independent of choice
of axes (X1, X2, X3). Furthermore, by the theory of equations, if (σ1, σ2, σ3) are
the three roots of Eq. (3-5.2), the following relations hold:

I1 = σ1 + σ2 + σ3

I2 = σ1σ2 + σ1σ3 + σ2σ3 (3-5.4)

I3 = σ1σ2σ3

Accordingly, because (σ1, σ2, σ3) are invariants, it follows by Eq. (3-5.4) that I1, I2,
and I3 [Eq. (3-5.3)] are invariants; that is, (I1, I2, I3) are independent of the choice
of coordinate axes (X1, X2, X3). Because (I1, I2, I3) are determined by stress com-
ponents σij, in contradistinction with strain invariants (J1, J2, J3), they are called
stress invariants or invariants of the stress tensor . By definition, pressure in a
fluid is p =−I1/3; that is, pressure is also a stress invariant. For a tensor proof of
invariance, see Section 2-12.

Principal Axes of Stress. Analogous to Eq. (2-11.2) in Chapter 2, we have three
sets of three equations each (one set for each of the principal stresses σ1, σ2, σ3)
of the form

(σ11 − σ)a11 + σ12a12 + σ13a13 = 0

σ12a11 + (σ22 − σ)a12 + σ23a13 = 0 (3-5.5)

σ13a11 + σ23a12 + (σ33 − σ)a13 = 0
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With the relation a2
11 + a2

12 + a2
13 = 1 and Eq. (3-5.5), the three sets of direction

cosines of the three principal axes corresponding to extreme values of σ11, σ22,
and σ33 (i.e., to σ1, σ2, and σ3) and to zero values of σ12, σ13, and σ23 may be
computed.

However, cases arise in which σ11 = σ22 = σ33 (e.g., frictionless fluids). Then,
all planes through point O are principal planes, and all stresses at point O are
principal stresses. Accordingly, all shearing stresses vanish on all planes through
point O . If two principal stresses are equal, the corresponding directions are not
unique. Then all planes through the principal axis for which the stress has a different
value from the other two principal stresses are principal planes.

Extreme Values of Shearing Stress. In terms of principal axes (1, 2, 3) the
shearing stress σnt on an oblique plane is, by Eqs. (3-3.10), (3-3.11), and (3-3.12),

σ 2
nt = σ 2

n1 + σ 2
n2 + σ 2

n3 + σ 2
nn

= (n1σ1)
2 + (n2σ2)

2 + (n3σ3)
2 − (n2

1σ1 − n2
2σ2 + n2

3σ3)
2

(3-5.6)

or, in index notation,
σ 2

nt = (nα)2(σα)2 − (n2
ασα)2 (3-5.7)

To determine the maximum and minimum values of σnt , we may use the Lagrange
multiplier technique to simplify the calculations. Accordingly, we consider the
function (see Chapter 1, Section 1-29)

F = σ 2
nt + λ2(n2

1 + n2
2 + n2

3 − 1) (3-5.8)

where λ2 is the Lagrange multiplier. The conditions for extreme values (stationary
values) of F are

∂F

∂n1
= ∂F

∂n2
= ∂F

∂n3
= 0 (3-5.9)

Equations (2-5.6), (3-5.8), and (3-5.9) yield

n1σ
2
1 − (n2

1σ1 + n2
2σ2 + n2

3σ3)(2n1σ1) + λ2n1 = 0

n2σ
2
2 − (n2

1σ1 + n2
2σ2 + n2

3σ3)(2n2σ2) + λ2n2 = 0

n3σ
2
3 − (n2

1σ1 + n2
2σ2 + n2

3σ3)(2n3σ3) + λ2n3 = 0

(3-5.10)

Equations (3-5.10) are necessary and sufficient conditions for F to take on sta-
tionary values. To seek extrema of σnt , we require further that nαnα = 1. Obvious
solutions of Eqs. (3-5.10) are

n1 = n2 = 0 n3 = ±1 (a)
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Accordingly, by Eqs. (3-5.10), λ = σ33, and by Eq. (3-5.7), σnt = 0. However,
because n1 = n2 = 0, n3 = ±1 defines the principal axis 3, this result is known a
priori. Similarly,

n1 = n3 = 0 n2 = ±1 (b)

yields λ = σ2 and σnt = 0; and
n2 = n3 = 0 n1 = ±1 (c)

yields λ = σ1 and σnt = 0.
For (n1, n2, n3) all having nonzero values, that is, for n1 �= 0, n2 �= 0, and

n3 �= 0, Eqs. (3-5.10) have the single solution σ1 = σ2 = σ3. Hence, again
Eq. (3-5.7) yields the result σnt = 0.

The remaining possibility is that only one of the direction cosines can be zero.
For example, consider n1 = 0, n2 �= 0, and n3 �= 0. Then the first of Eqs. (3-5.10)
is satisfied identically. By the last two of Eqs. (3-5.10), we get after some simpli-
fication

(n2
3 − n2

2)(σ2 − σ3)
2 = 0 (d)

For σ2 �= σ3, Eq. (d) yields n2
2 = n2

3. Because n2
2 + n2

3 = 1, we have n2 = ±1/
√

2
and n3 = ±1/

√
2. With n1 = 0, n2 = ±1

√
2, and n = ±1/

√
2, Eq. (3-5.6) yields

σnt = ± 1
2 (σ2 − σ3) (3-5.11)

Similarly, for n2 = 0, n1 = ±1/
√

2, and n3 = ±1/
√

2, we get

σnt = ± 1
2 (σ1 − σ3) (3-5.12)

and for n3 = 0, n1 = ±1/
√

2, and n2 = ±1/
√

2,

σnt = ± 1
2 (σ1 − σ2) (3-5.13)

The derived results are tabulated in Table 3-5.1.

Example 3-5.1. Invariants of Stress Tensor. Let the stress tensor relative to axes
(X1, X2, X3) be given by the array⎛

⎝4 1 2
1 6 0
2 0 8

⎞
⎠ (a)

TABLE 3-5.1 Extreme Values of Shear Stress

n1 ±1 0 0 ±1/
√

2 ±1/
√

2 0
n2 0 ±1 0 ±1/

√
2 0 ±1/

√
2

n3 0 0 ±1 0 ±1/
√

2 ±1/
√

2
σnt 0 0 0 ± 1

2 (σ1 − σ2) ± 1
2 (σ1 − σ3) ± 1

2 (σ2 − σ3)



3-5 PRINCIPAL STRESSES. STRESS INVARIANTS. EXTREME VALUES 183

TABLE 3-5.2

X1 X2 X3

Y1 1/
√

2 1/
√

2 0
Y2 −1/

√
2 1/

√
2 0

Y3 0 0 1

Hence, by Eqs. (a) and (3.5.3), the stress invariants are

I1 = 18 I2 = 99 I3 = 160 (b)

Consider a rotation of the (X1, X2) axes 45◦ counterclockwise in the (X1, X2)

plane to form axes (Y1, Y2). Let axes Y3 and X3 coincide. Then the trans-
formation between (X1, X2, X3) and (Y1, Y2, Y3) is given by Table 3-5.2. By
Eqs. (3-4.1) and Table 3-5.2, we find the following stress components relative to
axes (Y1, Y2, Y3):

	11 = 6 	22 = 4 	33 = 8

	12 = 1 	13 = √
2 	23 = −√

2
(c)

Thus, relative to axes (Y1, Y2, Y3) the stress tensor is defined by the array

⎛
⎝ 6 1

√
2

1 4 −√
2√

2 −√
2 8

⎞
⎠ (d)

By Eqs. (d) and (3-5.3), we find

I1 = 18 I2 = 99 I3 = 160 (e)

Equations (b) and (e) verify that I1, I2, I3 are invariants under the transformation
of Table 3-5.2. The invariants of I1, I2, I3 can also be verified for the case of
Example 3-4.1.

Problem Set 3-5

1. The stress tensor is defined by the array

⎛
⎝3 5 8

5 1 0
8 0 2

⎞
⎠

Determine the principal stresses and the principal directions. Write down the numerical
values of the stress invariants.
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2. Consider axes (x, y, z) and (X,Y, Z). Let the stress tensor of Problem 1 be taken rel-
ative to axes (x, y, z). Let axes (X,Y, Z) be defined relative to (x, y, z) by direction
cosines:

l1 =
√

3

2
m1 = 1

2
n1 = 0 l2 = −1

2
m2 =

√
3

2

n2 = 0 l3 = m3 = 0 n3 = 1

Compute the components of the stress relative to axes (X,Y, Z).

3. Consider a stress state characterized by the stress array σ ij = σij+ δijp, where
p = −(σ11 + σ22 + σ33)/3. In terms of λ1, λ2, λ3, the principal values of the array
σij, i, j = 1, 2, 3, derive expressions for the invariants I 1, I 2, I 3 of the array σ ij:

δij =
{

1 i = j

0 i �= j

Determine the principal value of the array σ ij.

4. The stress components relative to rectangular coordinate axes (x1, x2, x3) are, at a given
point P in a medium, σ11 = 0, σ22 = 7/2, σ33 = −7/2, σ23 = −1

√
12, σ31 = 7

√
2, and

σ12 = −1/
√

6.

(a) Determine the principal stresses and the maximum shearing stress. [Hint: The prin-
cipal stresses are integers.] Consider axes yα obtained by a rotation relative to axes
xα (see Table 3-4.1).

(b) Determine the principal stresses and maximum shearing stress relative to axes yα .

3-6 Mean and Deviator Stress Tensors. Octahedral Stress

Experiments indicate that yielding and plastic deformation of many metals are
essentially independent of the applied mean stress σm, where by definition

σm = σxx + σyy + σzz

3
= σ1 + σ2 + σ3

3
= 1

3
I1 (3-6.1)

Hence, most plasticity theories (Drucker, 1967) postulate that plastic behavior of
materials is related primarily to that part of the stress tensor that is indepen-
dent of σm. Certain behaviors of nonmetals are also independent of σm (Chen
and Saleeb, 1994). Accordingly, the stress tensor [Eq. (3-3.4)] is rewritten in the
form

T = Tm + Td (3-6.2)

where T symbolically represents the stress tensor and where

Tm =
⎡
⎣ σm 0 0

0 σm 0
0 0 σm

⎤
⎦ = (δαβσm) (3-6.3)
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and

Td =

⎡
⎢⎢⎢⎢⎣

2σxx − σyy − σzz

3
σxy σxz

σxy

2σyy − σxx − σzz

3
σyz

σxz σyz

2σzz − σyy − σxx

3

⎤
⎥⎥⎥⎥⎦

= (σαβ − σmδαβ)

(3-6.4)

The validity of Eq. (3-6.2) follows from the definition of a tensor (see
Section 1-24).

The tensor Tm is called the mean stress tensor . The tensor Td is called the devi-
ator stress tensor , as it is in a certain sense a measure of the deviation of the state
of stress from a spherically symmetric state, that is, from the state of stress that
exists in an ideal (frictionless) fluid.

If (X1, X2, X3) are principal axes, then

σ11 = σ1 σ22 = σ2 σ33 = σ3 σ12 = σ13 = σ23 = 0

and Eq. (3-6.2) is simplified accordingly. Application of Eqs. (3-5.3) to Eqs. (3-6.3)
and (3-6.4) yields the following stress invariants for Tm and Td :
For Tm:

I1m = I1 = 3σm

I2m = 1
3 I 2

1 = 3σ 2
m

I3m = 1
27I 3

1 = σ 3
m

(3-6.5)

For Td :

I1d = 0

I2d = I2 − 1

3
I 2

1 = −1

6

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2]
I3d =I3− 1

3
I1I2+ 2

27
I 3

1 = 1

27
(2σ1−σ2−σ3)(2σ2−σ3−σ1)(2σ3−σ1−σ2)

(3-6.6)

The principal values of the deviator tensor Td are

S1 = σ1 − σm = 2σ1 − σ2 − σ3

3
= (σ1 − σ3) + (σ1 − σ2)

3

S2 = σ2 − σm = (σ2 − σ3) + (σ2 − σ1)

3

= (σ2 − σ3) + (σ1 − σ2)

3

S3 = σ3 − σm = (σ3 − σ1) + (σ3 − σ2)

3

= (σ1 − σ3) + (σ2 − σ3)

3

(3-6.7)
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Accordingly, because S1 + S2 + S3 = 0, only two of the principal stresses (values)
of Td are independent. Many of the formulas of the mathematical theory of plastic-
ity are often written in terms of the stress invariants of the deviators stress tensor
(Sokolovski, 1955) Td .

Octahedral Shearing Stress. Another concept frequently employed in
plasticity theory is that of octahedral shearing stress (Prager and Hodge, 1963).
Octahedral shearing stress is defined as follows. Consider the directions defined
by the conditions

m2
1 = m2

2 = m2
3 = 1

3
(a)

where m1, m2, m3 are direction cosines relative to principal axes . There are eight
planes through any point O in space whose direction cosines satisfy Eqs. (a).
Consequently, the eight planes whose direction cosines satisfy Eqs. (a) are called
the octahedral planes . These planes form equal angles with the principal directions.
The shearing stress, say τ0, which acts on the octahedral planes is called the octa-
hedral shearing stress . By Eqs. (3-3.10), (3-3.11), (3-3.12), and (3-5.7), we find
that

9τ 2
0 = (σ1 − σ2)

2 + (σ1 − σ3)
2 + (σ2 − σ3)

2 (3-6.8)

where (σ1, σ2, σ3) denote principal stresses. Because (σ1, σ2, σ3) are invariant
under a transformation of coordinate axes, it follows that the octahedral shearing
stress τ0 is invariant.

Equation 3-6.8 may be written in the form

9τ 2
0 = 2I 2

1 − 6I2 = −6I2d (3-6.9)

where I1, I2 are the stress invariants defined by Eq. (3-5.4), and I2d is defined by
Eq. (3-6.6). Expressing I1 and I2 in terms of stress components taken relative to
arbitrary (X1, X2, X3) axes, by means of Eqs. (3-5.3) and (3-6.9), we obtain

9τ 2
0 = (σ11 − σ22)

2 + (σ22 − σ33)
2 + (σ33 − σ11)

2

+ 6σ 2
12 + 6σ 2

13 + 6σ 2
23 (3-6.10)

Failure Criteria. To design a structural element or system to perform a given
function, the designer must have a clear understanding of the possible ways or
modes in which the part or system may fail to perform its function. In other
words, the designer must determine possible modes of failure of the system and
then establish suitable failure criteria that accurately predict the various modes of
failure.

When a structural element or, more generally, a body is subject to loads, its
response depends not only on the type of material from which it is made but also
on the manner of loading and on environmental conditions. Depending on these
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factors, an element may fail to meet design requirements because of excessive dis-
placement, plastic deformation (yielding), fracture, and so on (Boresi and Schmidt,
2002).

For each of these modes of failure, one or more criteria have been employed.
For example, in the past at least six failure criteria have been proposed for
initiation of yield, depending upon the material (Boresi and Schmidt, 2002).
For most metals, either the maximum shearing stress criterion (Tresca–Saint–
Venant–Coulomb–Guest criterion) or the octahedral shearing stress criterion
[equivalent to the maximum strain energy of distortion criterion and also referred
to as the von Mises–Hencky criterion; see Boresi and Schmidt (2002)] have been
employed to predict yielding (i.e., departure from the elastic state).

The maximum shearing stress criterion states that inelastic action at any point in
a body at which any state of stress exists begins when the maximum shearing stress
reaches a value equal to the shearing stress in a tension specimen when yielding
starts. In equation form the maximum shearing stress criterion states that yielding
begins at any point in a body when the maximum shearing stress reaches the
value

(σnt )max = τmax = 1

2
(σ1 − σ3) = 1

2
Y (3-6.11)

where Y is the yield stress of a tension specimen of the material, (σ1, σ3) are the
maximum and minimum principal stresses at the point, and τmax is a shorthand
notation for (σnt )max; see Table 3-5.1.

The yielding criterion of failure according to the octahedral shearing stress con-
cept states that inelastic action (yielding) begins at a point in the medium at which
any state of stress exists when the octahedral shearing stress τ0 reaches the value
[see Eq. (3-6.10)]

τ0 =
(√

2

3

)
Y = 0.471Y (3-6.12)

Thus, the octahedral shearing stress criterion may be stated as follows. Inelastic
action at any point in a body under any combination of stresses begins when the
octahedral shearing stress τ0, given by Eq. (3-6.10), becomes equal to 0.471Y ,
where Y is the tensile yield stress of the material as determined from a standard
tension test.

Generally, it is found by experiments that initiation of yielding in many mate-
rials (especially ductile materials) is predicted fairly well by either the maximum
shearing stress criterion or the octahedral stress criterion and the maximum dis-
tortional energy criterion, which is related to deviatorical stresses and leads to the
same result as the octahedral shearing stress criterion. For geotechnical materi-
als, the Mohr–Coulomb failure criterion, which accounts for differences in tensile
and compressive strengths, gives better predictions (Chong and Smith, 1984).
A special case of the Mohr–Coulomb criterion is the maximum shearing stress
criterion (Boresi and Schmidt, 2002). The maximum principal stress criterion is
also applicable for brittle materials, particularly metals.
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Example 3-6.1. Principal Directions (Eigenvectors) of the Stress Tensor T and
the Deviator Stress Tensor Td . Let Ni

α denote the unit vector for the principal
direction related to the principal stress σi . By Eq. (3-5.5) the unit vectors of the
principal axes may be computed with the additional condition Ni

αNi
α = 1; i is not

summed. The equations that determine Ni
α [the equivalent of aiα in Eq.(3-5.5)] are

(σαβ − σiδαβ)Ni
β = 0

Ni
αNi

α = 1
(a)

where i, α, β take on the values 1, 2, 3; i is not summed. Equation (a) may be
written in the form

σαβNi
β = σiδαβNi

β

Ni
αNi

α = 1
(b)

Equation (b) is in the form of the classical eigenproblem for the eigenvectors Ni
α

associated with the principal stresses (eigenvalues) σi .
Now consider the deviator stress tensor [Eq. (3-6.2)], Td = T−Tm =

(σαβ − σmδαβ). By analogy with the stress tensor T and Eqs. (3-5.5) and (a), the
principal axes of Td [Eq. (3-6.4)] are determined by the equations

[
(σαβ − σmδαβ) − Siδαβ

]
Mi

β = 0

Mi
αMi

α = 1
(c)

where Mi
α denotes the unit vector of principal axis i and where Si are the principal

stresses (eigenvalues) of the deviator stress tensor Td . Rewriting Eq. (c), we have

(σαβ − σmδαβ)Mi
β = SiδαβMi

β (d)

or
SαβMi

β = SiδαβMi
β (e)

where Sαβ = σαβ−σmδαβ are the stress components of the deviator tensor
[Eq. (3-6.4)], and Si = σ−σm are the deviator tensor principal stresses [see
Eq. (3-6.7) and Problem 3-6.2]. Hence, expansion of Eq. (e) yields

σαβMi
β = σiδαβMi

β (f)

Comparison of Eqs. (b) and (f) shows that the eigenvectors Ni
α of the stress

tensor T are identical to the eigenvectors Mi
α of the deviator stress tensor Td .

More generally, it may be shown that any two symmetrical stress states
σαβ, Sαβ have a common principal axes system if and only if (Pearson, 1959)

σαβSβγ = Sαβσβγ (g)
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The results of this example and in particular Eq. (g) hold for any symmetric
tensors. For example, they apply to the strain tensor (Chapter 2, Section 2-11).

Problem Set 3-6

1. Show that Td [Eq. (3-6.4)] may be written

Td =
⎛
⎝Sx τxy τxz

τxy Sy τyz

τxz τyz Sz

⎞
⎠

where Sx = σx−σm, Sy = σy−σm, and Sz = σz−σm (see Table 3-2.1).

2. Show that I2d and I3d [Eq. (3-6.6)] may be written I2d = −1

6
[(S1 − S2)

2 + (S2 − S3)
2 +

(S3 − S1)
2] and I3d = S1S2S3, where S1 = σ1−σm, S2 = σ2−σm, and S3 = σ3−σm.

3. Show that the normal stress component σoct on the octahedral planes (l2 = m2 = n2 = 1

3
relative to principal axes) is given by the relation

σoct = σx + σy + σz

3
= σ1 + σ2 + σ3

3
= σm

4. The stress tensor is ⎛
⎝ 2 0

√
3

0 0 0√
3 0 0

⎞
⎠

(a) Determine the principal stresses.

(b) Determine the direction cosines of the normal to the plane on which σmax acts.

5. The stress tensor is ⎛
⎝−10 0 −8

0 2 0
−8 0 2

⎞
⎠

(a) Determine the principal stresses.

(b) Determine the octahedral shear stress.

(c) Determine the maximum shear stress.

(d) Determine the direction cosines of the normal to one of the planes on which the
maximum shear stress acts.

6. At a certain point in a body, the stress components (see Table 3-2.1) are

σx = 8 σy = 6 σz = 2 τxy = 2 τxz = 4 τyz = 1

(a) Determine the stress vector on a plane normal to the vector i + 2j + k.

(b) Determine the principal stresses.

(c) Determine the maximum shear stress.

(d) Determine the octahedral shear stress.
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7. (a) The stress tensor is

⎛
⎝ 4 0 −4

0 3 0
−4 0 −2

⎞
⎠

(i) Determine the principal stresses.

(ii) Determine the direction of σmax.

(b) The three principal stresses for a body are σ1 = 4, σ2 = 2, and σ3 = 0. They are in
the x1, x2, and x3 directions, respectively.

(i) Determine the octahedral shear stress.

(ii) Determine the maximum shear stress.

(iii) Determine the direction cosines of the normal to one of the planes on which
the maximum shear stress acts.

8. The three principal stresses at a point in a body are σ1 = 6, σ2 = 3, and σ3 = −4. They
are in the (x1, x2, x3) directions, respectively.

(a) Determine the octahedral shear stress.

(b) Determine the maximum shear stress.

(c) Determine the direction cosines of the normal to one of the planes on which the
maximum shear stress acts.

9. The stress tensor with respect to (x1, x2, x3) axes is

⎛
⎝3 0 0

0 4 0
0 0 −6

⎞
⎠

(a) Determine the octahedral shear stress.

(b) Determine the normal stress on the octahedral plane.

(c) Determine the maximum shear stress and plane on which it acts.

(d) Determine the normal stress on the plane of part (c).

10. The stress array for the torsion problem of a circular cross-sectional bar of radius a and
with longitudinal axis coincident with the z axis of rectangular Cartesian axis (x, y, z) is

⎛
⎝ 0 0 −Gyβ

0 0 Gxβ

−Gyβ Gxβ 0

⎞
⎠

where G, β are constants.
Compute the principal stresses at a point on the lateral surface of the bar. Determine
the principal stress axes for a point on the lateral surface of the bar.

11. σ11 = σ22 = σ33 = 0 and σ13 = σ32 = σ12 = τ .

(a) Calculate the principal stresses in terms of τ .

(b) Calculate the maximum shearing stress.

(c) Determine the directions of the axes of principal stress insofar as they are
determinate.
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12. At a certain point in a body, the stress components are σ11 = 8, σ22 = 6, σ33 = 2,

σ13 = 4, σ23 = 1, and σ12 = 2.

(a) Determine the stress vector on a plane normal to the vector i + 2j + k.

(b) Determine the principal stresses.

(c) Determine the direction in which σmax acts.

(d) Determine the maximum shear stress.

13. Let σ x, σ y, σ z be stress vectors relative to surface elements that are perpendicular to
rectangular Cartesian coordinate axes (x, y, z), respectively. Show that the sum of the
squares of the magnitudes of these stress vectors is an invariant under any coordinate
transformation.

14. The following array represents the state of stress at a point P in a medium relative to
axes (x1, x2, x3):

⎛
⎝ 19 −5 −√

6
−5 19 −√

6
−√

6 −√
6 10

⎞
⎠

(a) Determine the smallest principal stress value at the point P .

(b) Determine the principal axes directions.

(c) Determine the stress vector on a plane with unit normal (1/
√

3, 1/
√

3, 1/
√

3) rel-
ative to axes (x1, x2, x3).

15. Determine the stress component normal to the plane with unit normal vector
(1/

√
3, 1/

√
3, 1/

√
3) with respect to principal axes of stress. Express the results in

terms of principal stresses (σ1, σ2, σ3). Hence, express the result in terms of stress
components with respect to any rectangular Cartesian axes (x, y, z).

16. The components of the stress tensor (Table 3-2.1) are with respect to rectangular Carte-
sian axes (x, y, z)

σx = σy = 0 σz = −10 τyz = −5 τzx = 5 τxy = 5

Determine the principal stresses. Determine the direction cosines of the principal axes.
Use the cross-product relation to get the last principal axis after the other two are
determined.

17. The following state of stress exists at a point in a body: σx = 4, σy = 8, σz = −12,

τxz = 2, and τxy = τyz = 0. Compute the magnitude of the maximum shearing stress.

18. Let σ1 > σ2 > σ3 denote principal stresses. Let σ1, σ3 be given. Determine the values of
σ2 for which the octahedral shear stress τoct attains extreme values.

19. The stress at a point in a body is defined by the array

⎛
⎝ 10 −√

2
√

2
−√

2 7 −3√
2 −3 7

⎞
⎠

(a) Determine the defining cubic equation for the principal stresses.
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(b) Determine the minimum stress at the point.

(c) Determine the direction of the principal axis for minimum stress.

20. A body is deformed under the action of forces. Strain components εαβ at a point are
measured experimentally. Excluding a common factor, the components are given by the
strain array ⎛

⎝7 2 0
2 6 −2
0 −2 5

⎞
⎠

(a) Determine the principal values ε1 ≥ ε2 ≥ ε3 of the strain tensor. Hence, determine
the principal strain directions associated with ε2.

(b) The stress components σαβ of part (a) are given by the array (excluding a common
factor) ⎛

⎝21 6 0
6 18 −6
0 −6 15

⎞
⎠

Determine the principal stresses σ1 ≥ σ2 ≥ σ3. Determine the principal stress direc-
tion associated with σ2.

21. Determine the magnitude and the direction of the principal stresses (Table 3-2.1), and
the maximum shearing stresses, for the following cases:

σx σy σz τxy τxz τyz

(a) 15,000 −4,000 10,000 −3,000 0 1,000
(b) 10,000 −5,000 0 −5,000 0 0
(c) −10,000 −5,000 10,000 2,000 3,000 4,000
(d) 10,000 −5,000 −5,000 2,000 2,000 0
(e) 10,000 0 0 0 0 0
(f) 0 0 −10,000 5,000 5,000 −5,000

22. Show that for the plane stress relating to the (x, y) plane, σx + σy and

∣∣∣∣σx τxy

τxy σy

∣∣∣∣ are

invariants.

23. The nonzero stress components relative to axes xα are σ11 = −90 MPa, σ22 = 50 MPa,
and σ12 = 6 MPa.

(a) Determine the principal stresses (σ1 >σ2 > σ3).

(b) Determine the maximum shearing stress.

(c) Determine the octahedral shearing stress.

(d) Determine the angle between the x1 axis and axis X1, where X1 is in the direction
of the largest principal stress σ1.

24. Body A is loaded relative to xα axes so that σ11 = σ and the other stress components
are zero. Body B is loaded so that σ12 = τ and the other stress components are zero.
It is found that the octahedral shearing stress τ0 has the same value for both bodies.
Determine the ration σ /τ .
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25. Indicate whether the following statements are true or false.

(a) Strain theory depends upon the material being considered. True False

(b) Stress theory depends upon strain theory. True False

(c) The mathematical theories of stress and strain are equivalent. True False

(d) The correct strains of a strained continuum must be compatible. True False

(e) If the stress components are directly proportional to the corresponding strain com-
ponents, the values of the principal stresses are related to the values of the principal
strains by the same proportional factor. True False

3-7 Approximations of Plane Stress. Mohr’s Circles
in Two and Three Dimensions

Plane Stress. In a large class of important problems, certain approximations may
be applied to simplify the three-dimensional stress tensor [see Eq. (3-3.4)]. For
example, simplifying approximations can be made in analyzing the deformations
that occur in a thin flat plate subjected to forces applied along its edge and directed
so that they lie in the middle surface of the plate. We define a thin plate to be a
prismatic member (such as a cylinder) of a very small length or thickness h . Accord-
ingly, the middle surface of the plate, located halfway between its end (faces) and
parallel to them, may be taken as the (X, Y) plane. The thickness direction is then
coincident with the direction of the Z axis. Because the plate is not loaded on
its faces, σzz = σxz = σyz = 0 on its lateral surfaces (Z = ±h/2). Consequently,
because the plate is thin, as a first approximation it may be assumed that

σzz = σxz = σyz = 0 (3-7.1)

throughout the plate thickness.3

Furthermore, it may be assumed that the remaining stress components σxx , σyy ,
σxy are independent of Z. With these approximations, the stress tensor σij reduces
to a function of the two variables (X, Y); then it is called a plane stress tensor or
the tensor of plane stress . The corresponding stress condition in the plate is called
a state of plane stress with respect to the ( X, Y ) plane.

Consider a transformation of coordinate axes from Xi to Yi : (Y1, Y2, Y3). Let
axes Z = X3 and Y3 remain coincident under the transformation. Then, for a state
of plane stress in the (X, Y ) plane, Table 3-7.1 gives the direction cosines between

3Actually, this restriction may be relaxed without increasing the complexity of the problem by letting
the stress components σzz, σxz, σyz vary through the thickness of the plate. However, these stress
components are taken to be symmetrical in z. See Chapter 5. [Again, here we consider (X, Y,Z) to
be spatial coordinates; see Chapter 2, Section 2-3.]
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TABLE 3-7.1

X1 X2 X3

Y1 cos θ sin θ 0
Y2 − sin θ cos θ 0
Y3 0 0 1

Figure 3-7.1

the axes in a transformation from axes Xi to axes Yi , where X1 = X, X2 = Y (see
Fig. 3-7.1). Hence, with Table 3-7.1 and Fig. 3-7.1, Eqs. (3-4.1) yield

	11 = σ11 cos2 θ + σ22 sin2 θ + 2σ12 sin θ cos θ

	22 = σ11 sin2 θ + σ22 cos2 θ − 2σ12 sin θ cos θ

	12 = (σ22 − σ11) sin θ cos θ + (cos2 θ − sin2 θ)σ12

(3-7.2)

where 	ij denotes stress components relative to axes Yi and σij denotes components
relative to axes Xi(σ11 = σxx, σ22 = σyy , and σ12 = σ21 = σxy).

By means of trigonometric double-angle formulas, Eq. (3-7.2) may be written
in the form

	11 = 1

2
(σ11 + σ22) + 1

2
(σ11 − σ22)cos 2θ + σ12 sin 2θ

	22 = 1

2
(σ11 + σ22) − 1

2
(σ11 − σ22)cos 2θ − σ12 sin 2θ

	12 = 1

2
(σ22 − σ11) sin 2θ + σ12 cos 2θ

(3-7.3)

Equations (3-7.2) or (3-7.3) express the stress components 	ij in the coordinate
system Yi in terms of the corresponding stress components σij in the coordinate
system Xi for the plane transformation defined by Fig. 3-7.1 and Table 3-7.1.
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Graphical Interpretation of Plane Stress. Mohr’s Circle in Two
Dimensions. In the form of Eqs. (3-7.3), the plane transformation of stress
components is particularly suited for graphical interpretation. Furthermore, if we
choose (X1, X2) axes to coincide with principal axes, Eqs. (3-7.3) are simplified
further. Consequently, we let axes (X1, X2) be principal axes. Then σ12 = 0 and
σ1 = σ11, σ2 = σ22. Accordingly, Eqs. (3-7.3) become

	11 = 1

2
(σ1 + σ2) + 1

2
(σ1 − σ2) cos 2θ

	22 = 1

2
(σ1 + σ2) − 1

2
(σ1 − σ2) cos 2θ

	12 = −1

2
(σ1 − σ2) sin 2 θ

(3-7.4)

where (σ1, σ2) denote principal stresses with σ1 >σ2 (see Section 3-5 and
Fig. 3-7.2).

Recalling the physical significance of 	11, 	22, we note that the stress
components on plane BE perpendicular to the Y1 axis are 	11, 	12. The plane
BE forms an angle θ in the positive direction of rotation (counterclockwise in
Fig. 3-7.2) with the plane on which σ1 acts. Similarly, the stress components
	22, 	12, (	12 = 	21) act on a plane forming an angle of 90◦ in the positive
direction of rotation with plane BE . Accordingly, Eqs. (3-7.4) represent stress
components on planes forming angles of θ and (π/2) + θ with the plane on
which σ1 acts. Hence, the variation of the stress components may be depicted
graphically by constructing a diagram in which 	11 and 	12 (or 	22 and 	12) are
coordinates. For each plane BE , there is a point on the diagram whose coordinates
correspond to values of 	11 and 	12.

However, squaring the first and third of Eqs. (3-7.4) and adding, we obtain[
	11 − 1

2
(σ1 + σ2)

]2

+ (	12)
2 = 1

4
(σ1 − σ2)

2 (3-7.5)

Figure 3-7.2
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Equation 3-7.5 is the equation of a circle in the 	11, 	12 plane with center at

[
1

2
(σ1 + σ2), 0

]
(3-7.6)

and with radius
1

2
(σ1 − σ2) (3-7.7)

Consequently, the geometrical representation of Eqs. (3-7.4) is a circle (see
Fig. 3-7.3). This stress circle is frequently called Mohr’s circle in honor of O.
Mohr, who first employed it to study plane stress problems (Mohr, 1882, 1914).
(See Mohr’s circles in three dimensions for maximum shear stress at a point.)

In the stress circle, we have taken the 	12 axis positive downward. Hence, the
point P , whose coordinates are the stress components on plane BE (Fig. 3-7.2 ),
is obtained by rotating the radius O ′R of the circle counterclockwise (Fig. 3-7.3)
through an angle of 2θ [see Eqs. (3-7.4)]; that is, to determine the stress components
(coordinates of point P ) on a plane that forms an angle θ (counterclockwise) with
plane BC , we rotate the radius O ′R of the stress circle counterclockwise through

Figure 3-7.3 Mohr’s circle (maximum stresses in x1, x2 plane). For maximum stresses
in three dimensions, see the section on Mohr’s circles below.
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an angle of 2θ . Accordingly, stress components on a plane perpendicular to the Y2

axis are given by the coordinates of a point P ′ obtained by rotating O ′P through
180◦ counterclockwise, as the plane perpendicular to the Y2 axis forms an angle of
90◦ with plane BE (Fig. 3-7.2).

With the construction outlined above, the signs of the stress components agree
with those given by Eqs. (3-7.4). Thus, the complete state of plane stress at a point
in a medium is characterized by Mohr’s circle, provided the principal stresses σ1

and σ2 are known. Alternatively, if the state of plane stress on two planes through
a point is known, Mohr’s circle may be constructed, and principal stresses may be
determined.

Mohr′s Circles in Three Dimensions. The stress circle construction of Mohr
may be extended to three-dimensional problems. This construction is facilitated
through the use of principal axes.

Relative to principal axes, the normal stress on a plane P with unit normal n
relative to principal axes is, by Eq. (3-3.11),

σnn = n2
1σ1 + n2

2σ2 + n2
3σ3 (3-7.8)

Similarly, the square of the shearing stress on plane P is, by Eqs. (3-3.13) and
(3-3.15),

σ 3
nt = n2

1σ
2
1 + n2

2σ
2
2 + n2

3σ
2
3 − (n2

1σ1 + n2
2σ2 + n2

3σ3)
2 (3-7.9)

Accordingly, Eqs. (3-7.8) and (3-7.9) yield

σ 2
nn + σ 2

nt = n2
1σ

2
1 + n2

2σ
2
2 + n2

3σ
2
3

σ 2
nn = (n2

1σ1 + n2
2σ2 + n2

3σ3)
2 (3-7.10)

where
n2

1 + n2
2 + n2

3 = 1

Solving Eqs. (3-7.10) for n2
1, n2

2, n2
3 and noting that n2

1 ≥ 0, n2
2 ≥ 0, n2

3 ≥ 0, we
obtain

n2
1 = σ 2

nt + (σnn − σ2)(σnn − σ3)

(σ1 − σ2)(σ1 − σ3)
≥ 0

n2
2 = σ 2

nt + (σnn − σ1)(σnn − σ3)

(σ2 − σ3)(σ2 − σ1)
≥ 0

n2
3 = σ 2

nt + (σnn − σ1)(σnn − σ2)

(σ3 − σ1)(σ3 − σ2)
≥ 0

(3-7.11)
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Ordering the principal stresses such that σ1> σ2> σ3, we may write Eqs. (3-7.11)
in the form

σ 2
nt + (σnn − σ2)(σnn − σ3) ≥ 0

σ 2
nt + (σnn − σ3)(σnn − σ1) ≤ 0

σ 2
nt + (σnn − σ1)(σnn − σ2) ≥ 0

These inequalities may be rewritten in the form

σ 2
nt +

(
σnn − σ2 + σ3

2

)2

≥
[

1

2
(σ2 − σ3)

]2

σ 2
nt +

(
σnn − σ1 + σ3

2

)2

≤
[

1

2
(σ3 − σ1)

]2

σ 2
nt +

(
σnn − σ1 + σ2

2

)2

≥
[

1

2
(σ1 − σ2)

]2

(3-7.12)

The inequalities of Eqs. (3-7.12) may be interpreted graphically as follows. Let
(σnn, σnt ) denote abscissa and ordinate, respectively, on a graph (Fig. 3-7.4). Then
an admissible state of stress must lie within a region bounded by three circles
obtained from Eqs. (3-7.12) where the equalities are taken.

Extreme Values of Normal Stress and Shear Stress. By Eqs. (3-7.4) and
Fig. 3-7.3 for plane problems we note that the maximum value of the normal

Figure 3-7.4
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stress is (for θ = 0◦)
(σnn)max = σ1 (a)

Similarly, the minimum value of the normal stress is

(σnn)min = σ2 (b)

For the shearing stress, we have, by Fig. 3-7.3,

(σnt )max = 1

2
(σ1 − σ2)

Analogously, Eqs. (3-7.8) and (3-7.9) and Fig. 3-7.4 yield, for three-dimensional
problems,

(σnn)max = σ1

(σnn)min = σ3

(σnt )max = 1

2
(σ1 − σ3)

In the early history of stress analysis, Mohr’s circles were used extensively.
However, today it is used principally as a heuristic device (Smith and Sidebottom,
1965).

Example 3-7.1. Stress Quantities at a Point in a Medium. The stress components
at a point in a body are given as

σ11 = 50,000 psi σ22 = 50,000 psi
σ12 = σ13 = σ23 = σ33 = 0

Because there are no shearing stresses acting, the principal stresses at the point are

σ1 = 50,000 σ2 = 50,000 σ3 = 0 (a)

Because σ1 = σ2 = 50,000 and σ3 = 0, the three Mohr circles reduce to a sin-
gle circuit (Fig. 3-7.4) with origin at σnn = 25,000 and with radius R = 25,000.
Accordingly, by Table 3-5.1, (σnt )max = 1

2 (σ1−σ3) = 25,000 or, from Mohr’s cir-
cle, (σnt )max = R = 25,000. This is the largest value of shearing stress that exists
at the point. For example, it is larger than τ0 [see Eq. (b) below].

By Eqs. (a) and (3-6.8), the octahedral shearing stress τ0 is given by

9τ 2
0 = (σ1 − σ2)

2 + (σ1 − σ3)
2 + (σ2 − σ3)

2 = 5000 × 106

or
τ0 = 23,570 psi (b)
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Again, note that (σnt )max is larger than τ0. The octahedral normal stress σoct (see
Problem 3-6.3) is

σoct = σ1 + σ2 + σ3

3
= σ11 + σ22 + σ33

3
= σm = 33, 333 psi (c)

Problem Set 3-7

1. A thin skewed plate is acted on by tensile edge stresses (S1, S2) directed parallel to the
sides of the plate (Fig. P3-7.1).

Figure P3-7.1

(a) In terms of S1, S2, and θ , derive expressions for stress components σ11, σ22, and σ12.

(b) Sketch Mohr’s circle for the stress state in the plate. Hence, derive expressions for
the principal stress (σ1, σ2) in terms of σ11, σ22, and σ12. Note that because σ11, σ22,
and σ12 are known from part (a), these expressions may be used to express (σ1, σ2)
in terms of S1, S2, and θ .

2. The stress tensor is ⎛
⎝9 0 2

0 0 0
2 0 6

⎞
⎠

Determine the numerical values of the principal stresses. Then determine the direction of
the principal axes of stress.

3. The stress tensor with respect to (x1, x2, x3) axes is

⎛
⎝ 2 0

√
5

0 4 0√
5 0 6

⎞
⎠

Determine the principal stresses and their directions.
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4. Show that in the case σ1 > σ2 = σ3, Mohr’s circles reduce to a single circle (Mohr’s
circle), Fig. P3-7.4. Then show that any admissible stress state (σnn, σnt ) must lie on
Mohr’s circle.

Figure P3-7.4

5. Show that when σ1 = σ2 = σ3, Mohr’s circles reduced to a single point in the (σnn, σnt )
space.

6. Show that the maximum value of σnn is equal to σ1, the minimum value of σnn is σ3,
and the maximum value of σnt is (σ1−σ3)/2.

7. Construct Mohr’s circles for Problem 3-6.7.

8. Construct Mohr’s circles for Problem 3-6.17.

3-8 Differential Equations of Motion of a Deformable Body Relative
to Spatial Coordinates

It is known from elementary mechanics that the resultant force that acts on any
body is equal to the mass of the body times the acceleration of the mass center of
the body, and the resultant moment that acts on the body is equal to the time rate
of change of moment of momentum. In the case of rigid bodies (bodies that do not
deform), these conditions lead to a system of six equations (three force equations
and three moment equations), which with boundary conditions (initial conditions)
completely specify the motion of the body. However, the motion of deformable
media is not by any means completely defined by these conditions.

Nevertheless, the foregoing principles may be used to derive equations that
(together with stress–strain relationships and boundary conditions derived later)
describe the motion of a deformable medium. It is necessary not only to apply the
principles to the medium as a whole but to each element of which the medium is
composed.

Let S be an arbitrary closed surface within a deformed medium. Let V be
the element of volume enclosed by S . The external forces acting on the volume
consist of two parts: (1) body force and (2) tractive or surface force.
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Let (x1, x2, x3) denote spatial coordinates (Chapter 2, Section 2-3). The projec-
tion of the resultant body force vector (Fig.3-8.1) on the x1 axis is

∫∫∫
through volume V

B1 dV (a)

where B1 denotes the x1 projection of the body-force vector per unit volume
relative to spatial coordinates (x1, x2, x3). If the body force is entirely due to
gravity, as is common, B1 = ρg1, where ρ is the mass density and g1 is the x1

projection of the vector acceleration of gravity (say, directed toward the center of
the earth). Often the motion of a mass element is characterized by the introduction
of inertia forces. In general, we may treat inertia forces as body forces; that is, they
act on each element of mass in the body. However, because of their significance
in the study of the motion of a medium, inertia forces are not usually included in
the body-force vector. Rather, they are treated separately (Fig. 3-8.1).

Accordingly, the x1 projection of the resultant inertia force vector is

∫∫∫
through volume V

(−a1) dm =
∫∫∫

through volume V

(−ρa1) dV (b)

Figure 3-8.1
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where a1 is the x1 projection of the acceleration vector of the mass increment dm ,
and ρ dV = dm, where ρ denotes mass density of the volume element dV .

The x1 projection of the resultant traction vector (Fig. 3-8.1) exerted on surface
S is ∫∫

over surface S

σn1 dS (c)

where σn1 denotes the x1 projection of the stress vector on dS . By Eq. (3-3.10),
Eq. (c) may be written in the form∫∫

over surface S

(n1σ11 + n2σ21 + n3σ31) dS (d)

where ni is the unit normal vector of the surface, positive outward.
Summing the x1 projections of the resultant force that acts on the mass element

dm , by Eqs. (a), (b), and (d) we obtain∫∫∫
through volume V

(B1 − ρa1) dV +
∫∫

over surface S

(n1σ11 + n2σ21 + n3σ31) dS = 0 (e)

Applying the divergence theorem (Chapter 1, Section 1-16) to the surface inte-
gral of Eq. (e) and regrouping, we obtain

∫∫∫ (
∂σ11

∂x1
+ ∂σ21

∂x2
+ ∂σ31

∂x3
+ B1 − ρa1

)
dV = 0 (f)

Equation (f) applies to any volume element dV in the body. Consequently, for
Eq. (f) to be satisfied for all parts of the body, the integrand must vanish identically;
that is,

∂σ11

∂x1
+ ∂σ21

∂x2
+ ∂σ31

∂x3
+ B1 = ρa1 (g)

In a similar manner, summations of force projections in the x2 and x3 directions
yield two more equations. Thus, the following set of three equations is obtained:

∂σ11

∂x1
+ ∂σ21

∂x2
+ ∂σ31

∂x3
+ B1 = ρa1

∂σ12

∂x1
+ ∂σ22

∂x2
+ ∂σ32

∂x3
+ B2 = ρa2

∂σ13

∂x1
+ ∂σ23

∂x2
+ ∂σ33

∂x3
+ B3 = ρa3

(3-8.1)

where (a1, a2, a3) are the (x1, x2, x3) projections of the acceleration vector of mass
element dm .
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In index notation (Section 1-23), Eqs. (3-8.1) may be written (σαβ = σβα)

σβα,β + Bα = ρaα α, β = 1, 2, 3 (3-8.2)

Equations (3-8.1) or (3-8.2) are called the differential equations of motion of a
deformable medium. Alternatively, they may be derived by summation of forces
that act on the faces of a cubic element, considering the variation of stress through
the cube. For incompressible media, ρ = constant. If the medium is in stati-
cal equilibrium, the right-hand terms in Eqs. (3-8.1) and (3-8.2) are zero. Then
Eqs. (3-8.1) or (3-8.2) are called the differential equations of equilibrium .

If the body force (B1, B2, B3) is derivable from a potential function F , for
example, gravity potential, Eqs. (3-8.1) may be written in the form

∂(σ11 − F)

∂x1
+ ∂σ21

∂x2
+ ∂σ31

∂x3
= ρa1

∂σ12

∂x1
+ ∂(σ22 − F)

∂x2
+ ∂σ32

∂x3
= ρa2

∂σ13

∂x1
+ ∂σ23

∂x2
+ ∂(σ33 − F)

∂x3
= ρa3

(3-8.3)

where
B1 = − ∂F

∂x1
B2 = − ∂F

∂x2
B3 = − ∂F

∂x3
(3-8.4)

or, in index notation,

∂(σβα − δβαF )

∂xβ

= ρaα α, β = 1, 2, 3 (3-8.5)

where δβα is the Kronecker delta (Chapter 1, Section 1-24).
The equations of this chapter summarize the general theory of stress. For

the approximation of plane stress in the (x1, x2) plane, σ33 = σ13 = σ31 =
σ23 = σ32 = 0 (Chapter 5). If body forces are negligible, we may set
B1 = B2 = B3 = 0. The general equations are simplified accordingly.

For small-deformation (displacement) theory, Eqs . (3-8.1), (3-8.2), (3-8.3), and
(3-8.5) hold approximately if σβα, Bα, F, ρ, and aα are considered functions of
material coordinates (see Appendix 3C).

It is worthwhile to note that so far the material body in question is considered
as a continuum, that is, a continuous collection of uncountably infinite mass points
each with vanishing size. That is why the size and mass of the entire material body
are finite; only the mass density can be defined as

ρ ≡ lim
�V →0

�m

�V
(3-8.6)
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while both �m and �V reduce to zero in the limiting process. Also, it is noticed
that the spatial equation of continuity, Eq. (2-8.12), and the equation of motion,
Eq. (3-8.2), are expressed as partial differential equations in space and time. These
are the fundamental characteristics of any continuum theory. On the diametrically
opposite side, molecular dynamics (MD) views a material body as a collection of
finite number of atoms, which exert interatomic forces on each other. The governing
equations are just Newton’s second law, which can be simply expressed as

mi r̈i = f i + ϕi i = 1, 2, 3, . . . ., n (3-8.7)

where n is the total number of atoms in the system; mi, ri , and r̈i are the mass,
position vector, and acceleration vector of atom i, respectively; f i and ϕi are the
interatomic force and body force acting on atom i, respectively. Here, we put mi ,
instead of m, as the mass of the ith atom to emphasize that the system consists
of not just many atoms but also many kinds of atoms. The material and spatial
equations of continuity are recalled as

ρ = ρ∗J (2-17.5)

∂ρ

∂t
+ ∂(ρu)

∂x
+ ∂(ρv)

∂y
+ ∂(ρw)

∂z
= 0 (2-8.12)

which are just statements of law of conservation of mass in different descriptions.
The counterpart in MD is simply that mi(i = 1, 2, 3, . . . ., n) are constants in time.
Equation 3-8.1 or (3-8.2) is the statement of the law of balance of linear momen-
tum in continuum mechanics, including elasticity, while its counterpart in MD is
Eq. (3-8.7), which is a set of ordinary differential equations in time. The law of bal-
ance of angular momentum for classical continuum mechanics implies that stress
stensor is symmetric

σαβ = σβα (3-8.8)

In MD the law of balance of angular momentum is automatically satisfied since
each atom is considered as a mathematical point with no finite size and, hence, no
intrinsic angular momentum. We will discuss the law of conservation of energy for
both elasticity and molecular dynamics in next chapter.

Problem Set 3-8

1. Using the principle that the resultant moment with respect to any fixed axis of all forces
acting on volume V is equal to the time rate of change of moment of momentum of the
volume with respect to the axis, derive the equations that result from consideration of
moments with respect to the x axis. Simplify the equations for equilibrium. How would
these equations be altered in the presence of a body moment resulting from an electric
or magnetic field, that is, in the presence of a moment proportional to a mass element?

2. Derive Eq. (3-8.1) by applying the principle F = ma to a cubic element in the body.
[Hint : If the normal stress on the plane perpendicular to the x axis at a point x is σx ,
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then the normal stress that acts on the plane perpendicular to the x axis at the point
x + dx is σx + (∂σx/∂x) dx, and so on.]

3. A body is in a state of equilibrium. The stress components σy, σz, τyz, τxz are zero. Body
forces are zero. Derive the most general formulas for the stress components σx, τxy .

4. The stress vectors σ x, σ y act on planes x = constant, y = constant, where (x, y) are plane
oblique coordinates (Fig. P3-8.4). Let (ex, ey) be unit vectors along axes (x, y). Then

σx = pxxex + pxyey

σy = pyxex + pyyey

Figure P3-8.4

(a) Compute the normal stress (σx, σy) and the shear stresses (τxy, τyx) on planes
x = constant, y = constant in terms of pxx, pxy, pyx, pyy , and θ .

(b) Derive the relation between τxy and τyx .

(c) Derive the differential equilibrium equations for the element in terms of
pxx, pxy, pyy, pyx and ex , ey .

5. For an axially symmetric state of stress in cylindrical coordinates, τrθ = τθz = 0, and the
other stress components are independent of θ (Appendix 3A). Show that if there is no
body force, the equilibrium equations for an axially symmetric state of stress are satisfied
automatically if the stresses are derived from two arbitrary functions, F(r, z),H(r, z),
as follows:

σr = Fzz + 1

r
Hr σθ = Fzz + Hrr σz = Frr + 1

r
Fr τrz = −Frz

(Subscripts on F and H denote partial derivatives.)

6. The state of stress in a continuum is defined relative to axes xα by the components
σ11 = x2

1 + x2
2 , σ33 = x2

1 + x2
3 , σ12 = x1x2, and σ22 = σ23 = σ13 = 0. Determine the body

forces that act in the continuum for the case of equilibrium.
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APPENDIX 3A DIFFERENTIAL EQUATIONS OF EQUILIBRIUM
IN CURVILINEAR SPATIAL COORDINATES

3A-1 Differential Equations of Equilibrium in Orthogonal Curvilinear
Spatial Coordinates

Let S be a closed surface within a deformed medium, and let V denote the volume
enclosed by S (Fig. 3-8.1). Let (l, m, n) be the direction cosines of the outwardly
directed unit normal to S with respect to orthogonal curvilinear spatial coordinates
(x, y, z) in the deformed region [see Eq. (2A-2.5) in Chapter 2].

As noted in Chapter 3, the stress vector is defined by the equilibrium conditions
in terms of the stress components (σxx, σyy, σzz, σxy, σxz, σyz) defined relative to
(x, y, z) axes. Defining the coordinate system by a vector function r = r(x, y, z)

and noting that unit vectors relative to (x, y, z) coordinate lines are defined by
Eq. (2A-1.7) in Chapter 2, we express the stress vector on surface V as

(lσxx +mσyx +nσzx)
rx

α
+(lσxy +mσyy +nσzy)

ry

β
+ (lσxz + mσyz + nσzz)

rz

γ
(a)

The body forces acting on the body (see Section 3-8) may be written

ρ

(
Bx

rx

α
+ By

ry

β
+ Bz

rz

γ

)
αβγ dx dy dz (b)

where here (Bx, By, Bz) denotes the body force per unit mass, ρ denotes mass
density, and σβγ dx dy dz represents the volume in curvilinear coordinates (x, y, z)
(see Chapter 1, Section 1-22).

With Eqs. (a) and (b) the equilibrium of forces acting on the material in V

requires∫∫
S

[
(lσxx +mσyx +nσzx)

rx

α
+ (lσxy +mσyy +nσzy)

ry

β
+ (lσxz +mσyz +nσzz)

rz

γ

]
dS

+
∫∫∫

V

ρ

(
Bx

rx

α
+ By

ry

β
+ Bx

rz

γ

)
αβγ dx dy dz = 0 (c)

Transforming the surface integral in Eq. (c) into a volume integral by means of the
divergence theorem [Eqs. (1-22.8) and (1-22.12) in Chapter 1], we find∫∫∫

V

{
∂

∂x

[
βγ

(
σxx

rx

α
+ σxy

ry

β
+ σxz

rz

γ

)]
+ ∂

∂y

[
γα

(
σyx

rx

α
+ σyy

ry

β
+ σyz

rz

γ

)]

+ ∂

∂z

[
αβ

(
σzx

rx

α
+ σzy

ry

β
+ σzz

rz

γ

)]

+ ρ(βγ Bxrx + γαByry + αβBzrz)

}
dx dy dz = 0 (d)
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Equation (d) must hold for arbitrary volume element; hence, the integrand must
vanish identically. Accordingly, setting the integrand equal to zero and performing
the indicated differentiations of products, we obtain the vector equilibrium equation
(σxy = σyx , etc.):[

∂

∂x

(
βγ

α
σxx

)
+ ∂

∂y
(γ σyx) + ∂

∂z
(βσzx) + ρβγ Bx

]
rx

+
[

∂

∂x
(γ σxy) + ∂

∂y

(
γα

β
σyy

)
+ ∂

∂z
(ασzy) + ργαBy

]
ry

+
[

∂

∂x
(βσxz) + ∂

∂y
(ασyz) + ∂

∂z

(
αβ

γ
σzz

)
+ ραβBz

]
rz

+ βγ

α
σxxrxx + γα

β
σyyryy + αβ

γ
σzzrzz

+ 2ασyzryz + 2βσxzrxz + 2γ σxyrxy = 0 (e)

The three scalar equations of equilibrium with respect to axes (x, y, z) are obtained
by taking the scalar products of Eq. (e) with rx, ry, rz, respectively. Expressing the
scalar products rx · rx, rx · ry, . . . , rx · rxy , and so on, in terms of α, β, γ by means
of Eqs. (2A-1.4), (2A-1.6), and (2A-1.10) in Chapter 2, we obtain the three scalar
equations (σxy = σyx , etc.):

∂

∂x
(βγ σxx) + ∂

∂y
(γ ασyx) + ∂

∂z
(αβσzx) + γαyσxy + βαzσxz

− γβxσyy − βγxσzz + ραβγ Bx = 0

∂

∂x
(βγ σxy) + ∂

∂y
(γ ασyy) + ∂

∂z
(αβσzy) + αβzσyz + γβxσxy

− αγyσzz − γαyσxx + ραβγ By = 0

∂

∂x
(βγ σxz) + ∂

∂y
(γ ασyz) + ∂

∂z
(αβσzz) + βγxσxz + αγyσyz

− βαzσxx − αβzσyy + ραβγ Bz = 0

(3A-1.1)

Equations (3A-1.1) represent the three scalar equilibrium equations relative to
orthogonal curvilinear coordinates (x, y, z). Because they are purely statical in
nature, they apply to all continuous-media materials. They may be extended to
include dynamical problems, provided the body force (ρBx, ρBy, ρBz) is con-
sidered to include inertial forces. Love (2009) has derived Eq. (3A-1.1) without
employing vector algebra.

3A-2 Specialization of Equations of Equilibrium

Commonly employed orthogonal curvilinear coordinate systems in three-
dimensional problems are the cylindrical coordinate system (r, θ, z) and the
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spherical coordinate system (r, θ, φ); in plane problems the plane polar coordinate
system (r, θ ) is frequently used. Specialization of Eqs. (3A-1.1) for these systems
follows:

a) Cylindrical coordinate system (r, θ, z). In Eqs. (3A-1.1) we let x = r, y = θ ,
and z = z. Then the differential length ds is defined by the relation

ds2 = dr2 + r2dθ2 + dz2 (3A-2.1)

Comparison of Eqs. (2A-1.5) in Chapter 2 and 3A-2.1) yields

α = 1 β = r γ = 1 (3A-2.2)

Substituting Eq. (3A-2.2) into Eqs. (3A-1.1), we obtain the equilibrium
equations (σrθ = σθr , etc.):

∂σrr

∂r
+ 1

r

∂σθr

∂θ
+ ∂σzr

∂z
+ σrr − σθθ

r
+ ρBr = 0

∂σrθ

∂r
+ 1

r

∂σθθ

∂θ
+ ∂σzθ

∂z
+ 2σrθ

r
+ ρBθ = 0

∂σrz

∂r
+ 1

r

∂σθz

∂θ
+ ∂σzz

∂z
+ σrz

r
+ ρBz = 0

(3A-2.3)

where (σrr , σθθ , σzz, σrθ , σrz, σθz) represent stress components defined rela-
tive to cylindrical coordinates (r, θ, z).

b) Spherical Coordinate System (r, θ, φ). In Eqs. (3A-1.1), we let x = r, y = θ ,
and z = φ, where r is the radial coordinate, θ is the latitude, and φ is the
longitude. Because the differential length ds is defined by

ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2 (3A-2.4)

comparison of Eqs. (2A-1.5) and (3A-2.4) yields

α = 1 β = r γ = r sin θ (3A-2.5)

Substituting Eq. (3A-2.5) into Eqs. (3A-1.1), we obtain the equilibrium
equations (σrθ = σθr , etc.):

∂σrr

∂r
+ 1

r

∂σθr

∂θ
+ 1

r sin θ

∂σφr

∂φ
+ 1

r
(2σrr −σθθ −σφφ+σrθ cot θ)+ρBr =0

∂σrθ

∂r
+ 1

r

∂σθθ

∂θ
+ 1

r sin θ

∂σφθ

∂φ
+ 1

r
[(σθθ − σθθ ) cot θ + 3σrθ ] + ρBθ =0

∂σrφ

∂r
+ 1

r

∂σθφ

∂θ
+ 1

r sin θ

∂σφφ

∂φ
+ 1

r
(3σrφ + 2σθφ cot θ) + ρBφ =0

(3A-2.6)
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where (σrr , σθθ , σφφ, σrθ , σrφ, σθφ) are defined relative to spherical coordi-
nates (r, θ, φ).

c) Plane Polar Coordinate System (r , θ ). In plane-stress problems relative to
(x, y) coordinates, σzz = σxz = σyz = 0, and the remaining stress components
are functions of (x, y) only (see Chapter 5, Section 5-2). Letting x = r, y = θ ,
and z = z in Eqs. (3A-2.3) and noting that σzz = σrz = σθz = (∂/∂z) = 0, we
obtain from Eqs. (3A-2.3) (σrθ = σθr , etc.):

∂σrr

∂r
+ 1

r

∂σθr

∂θ
+ σrr − σθθ

r
+ ρBr = 0

∂σrθ

∂r
+ 1

r

∂σθθ

∂θ
+ 2

σrθ

r
+ ρBθ = 0

(3A-2.7)

where (σrr , σθθ , σrθ ) are stress components defined relative to polar coordi-
nates (r, θ ). Equations (3A-2.7) hold also for plane-strain problems (Chapter
5, Section 5-1), and they apply to generalized plane-stress problems, provided
(σrr , σθθ , σrθ ) are defined as mean stress components relative to coordinate
z (Chapter 5, Section 5-2). In addition to Eqs. (3A-2.6), we require Bz = 0.

The form of Eqs . (3A-1.1), (3A-2.3), (3A-2.6), and (3A-2.7) holds relative
to material coordinates for small-displacement theory (see Appendix 3C).

3A-3 Differential Equations of Equilibrium in General Spatial
Coordinates

In tensor notation it may be shown that the differential equations of equilibrium
relative to spatial coordinates xα may be written (Green and Zerna, 1992)

σβα||β + ρBα = ρaα (3A-3.1)

where σβα denotes a contravariant tensor (stress tensor) of the second kind , Bα

and aα denote contravariant tensors of the first kind (body force and acceleration
vectors, respectively), ρ denotes mass density, and the symbol || denotes covariant
differentiation . Alternatively, Eqs. (3A-3.1) may be written

∂σβα

∂xβ
+ σβγ �α

βγ + σβα�
γ

βγ + ρBα = ρaα (3A-3.2)

where �α
βγ denote Christoffel symbols of the second kind . In turn, the Christoffel

symbols are related to covariant and contravariant metric tensors gαβ, gαβ by the
formulas

�αβγ = 1

2

(
∂gαγ

∂xβ

+ ∂gβγ

∂xα

− ∂gαβ

∂xγ

)

�
γ
αβ = gγδ�αβδ

(3A-3.3)

where �αβγ denote Christoffel symbols of the first kind .
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In turn, gαβ, gαβ are related to the element ds of length squared by

ds2 = gαβdyαdyβ = gαβdyαdyβ (3A-3.4)

where dyα, dyα denote contravariant and covariant tensors, respectively.4 In
general,

gαβgβγ = δγ
α (3A-3.5)

where δ
γ
α = 0 for γ �= α, and δ

γ
α = 1 for γ = α is the mixed Kronecker delta.

For orthogonal curvilinear coordinates

gαβ = gαβ = 0 α �= β

gii = 1/gii i = 1, 2, 3 (i not summed) (3A-3.6)

In terms of metric coefficients (α, β, γ ) (see Chapter 2, Appendix 2A), for
orthogonal coordinates

g11 = α2 g22 = β2 g33 = γ 2

g11 = 1

α2
g22 = 1

β2
g33 = 1

γ 2

g12 = g13 = g23 = g12 = g13 = g23 = 0

(3A-3.7)

Also, for orthogonal coordinates, �
γ

αβ = 0, for α �= β �= γ �= α, and �α
αβ = �α

βα .
Hence, Eqs. (3A-3.3) and (3A-3.7) yield

�1
11 = αx

α
�2

22 = βy

β
�3

33 = γz

γ

�1
12 = αy

α
�1

13 = αz

α
�2

11 = −ααy

β2

�3
11 = −ααz

γ 2
�2

12 = βx

β
�2

32 = βz

β

�1
22 = −ββx

α2
�3

22 = −ββz

γ 2
�1

33 = −γ γx

α2

�2
33 = −γ γy

β2
�3

23 = γy

γ
�3

13 = γx

γ

�1
23 = �2

31 = �3
12 = 0

(3A-3.8)

Substitution of Eqs. (3A-3.8) into Eqs. (3A-3.2) yields the differential equation of
motion for orthogonal curvilinear coordinates [see Eqs. (3A-1.1), where aα = 0].

APPENDIX 3B EQUATIONS OF EQUILIBRIUM INCLUDING COUPLE
STRESS AND BODY COUPLE

In this appendix the equations of equilibrium including couple stresses and body
couple are derived. The effects of the introduction of couple stresses and body

4See Appendix 2C, where formulas for gαβ are derived. See also Green and Zerna (1992).
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Figure 3B-1

couple on classical elasticity solutions have been studied by a number of investi-
gators. Our purpose here, however, is to note the nature of the equations including
stress couples and body couple. Questions of solutions of the associated boundary
value problems, questions of uniqueness and completeness, and applications are
left to the literature.5

Consider a regular parallelepiped volume element V of a deformed region R

of mass density ρ. Let the stress vectors σ 1, σ 2, σ 3 act on planes perpendicular
to spatial axes (x1, x2, x3). These stress vectors undergo changes dσ 1, dσ 2, dσ 3

under changes dx i of coordinates xi (Fig. 3B-1). Let Bα be the body-force vector
per unit mass acting on V (see Section 3-8).

In addition to the stress vectors σ i and body force vector Bα , let the element V

be subjected to surface couples μ1, μ2, μ3 per unit area that undergo changes dμi

under changes dxi in xi . Also, let V be acted upon by a body-couple vector Cα

per unit volume. Hence, μidAi and CαdV represent couples acting upon planes
of area dAi = dxj dxk(i �= j �= k �= i, and i, j, k = 1, 2, 3), perpendicular to axes
xi and upon volume dV , respectively (Fig. 3B-2). Then the stress equation of

5See footnote 1; see also D. E. Carlson, “Stress Functions for Couple and Dipolar Stresses,” 24
Quart. J. Appl. Mech., 1: 29–35 (1966).
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Figure 3B-2

equilibrium, obtained by summing forces along and moments about axes xi , are

σαβ,α + ρBβ = 0

mαβ,α + eβγ δσγ δ + Cβ = 0
(3B-1)

where eβγ δ is the alternating tensor (Chapter 1, Section 1-26), σαβ is the stress
tensor (Sections 3-2, 3-3, and 3-8), mαβ are the components of μα along axes xβ ,
and subscript (,α) denotes partial differentiation relative to coordinate xα (Chapter 1,
Section 1-23). The set of components mαβ is the couple stress tensor .6

A direct consequence of the introduction of Cα, mαβ into the theory of stress
is that the symmetry of the stress tensor σαβ is lost (σαβ �= σβα). The exploration
of the effects of the introduction of stress couples and body couple into the theory
of elasticity has been studied by Mindlin (1963), Mindlin and Tiersten (1962), and
Sternberg (1968).7

6The introduction of body-couple Cα and couple stresses mαβ has its origin in the works of W. Voigt,
Theoretische Studien über die Elasticitätsverhältnisse der Krystalle, Abhandl. Ges. Wiss. Göttingen
34 (1887); Über Medien ohne innere Kräfte une eine durch sie gelieferte mechanische Deutung
der Maxwell-Hertzschen Gleichunge, Abhandl. Ges. Wiss. Göttingen 72–79 (1894). The theory
was amplified by E. Cosserat and F. Cosserat, Théorie des corps déformables (Paris,Hermann &
Cie,1909).
7See footnotes 1 and 5.
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In addition, various related broader generalizations of conventional elasticity
theory have been proposed in studies that include hyperstresses of ever-increasing
generality and abstractness (physical elusiveness). Here, we take the reader no
further but refer him or her to the ever-increasing related litarature of current
technical journals.

APPENDIX 3C REDUCTION OF DIFFERENTIAL EQUATIONS
OF MOTION FOR SMALL-DISPLACEMENT THEORY

3C-1 Material Derivative. Material Derivative of a Volume Integral

The concept of material derivative and derivative of a volume integral plays a role
in the theory of continuum mechanics, particularly in the application of balance
laws .

Let Q(x1, x2, x3; t) be a scalar point function (such as density, temperature,
pressure, a projection of a velocity vector, etc.). With respect to a Newtonian
reference frame (Boresi and Schmidt, 2001), ∂Q/∂t denotes the change of Q with
respect to t at a geometrical point fixed with respect to the frame. If the process
associated with the function Q is a steady-state process ∂Q/∂t = 0; for example,
a steady-state flow is characterized by the condition that Q remain constant for all
time at each point (x1, x2, x3). Accordingly, for steady-state conditions all partial
derivatives with respect to time t vanish.

In the material (Lagrangian) description of a deformable medium, let (x1, x2, x3)

be material coordinates. Then, because (x1, x2, x3) is considered to be the geomet-
rical position of a material particle at a given time, say, t = 0, the time rate of
change of a function Q in the material description is given by

dQ

dt
= ∂Q

∂t

∣∣∣∣
x=const

(3C-1.1)

where x stands for the set of coordinates (x1, x2, x3).
In the spatial description, with coordinates (y1, y2, y3), the coordinates yi are

considered to be the location at time t of a material particle originally at xi at time
t = 0. Accordingly, the time rate of change of the function Q is given by

dQ

dt
= ∂Q

∂y1

dy1

dt
+ ∂Q

∂y2

dy2

dt
+ ∂Q

∂y3

dy3

dt
+ ∂Q

∂t
(3C-1.2)

Because yi = xi + ui , dy i /dt = du i /dt = u̇i , as xi is time independent. Hence, in
the spatial description the time rate of change of Q is

dQ

dt
= u̇1

∂Q

∂y1
+ u̇2

∂Q

∂y2
+ u̇3

∂Q

∂y3
+ ∂Q

∂t
(3C-1.3)

In modern continuum mechanics, the time rate of change of a function Q is
denoted by DQ /Dt and is called the material derivative (more fully, the time rate
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of change of physical property associated with a material point function). Hence,
for the material description we have the material derivative

DQ

Dt
= ∂Q

∂t

∣∣∣∣
x=const

Q = Q(x, t) (3C-1.4)

where x denotes the coordinates (x1, x2, x3), and for the spatial description

dQ

Dt
= u̇1

∂Q

∂y1
+ u̇2

∂Q

∂y2
+ u̇3

∂Q

∂y3
+ ∂Q

∂t
Q = Q(y, t) (3C-1.5)

where y denotes the coordinates (y1, y2, y3).
By analogy to the material derivative of a scalar point function Q, the time

rate of change of a volume integral is called the material derivative of a volume
integral .

In material coordinates, the material derivative of a volume integral is defined
to be

D

Dt

∫
F dV = d

dt

∫
F dV = ∂

∂t

(∫
FdV

)∣∣∣∣
x=const

=
∫

∂F

∂t

∣∣∣∣
x=const

dV

(3C-1.6)

where F is a continuous differentiable function of (x, t). In spatial coordinates, the
material derivative of a volume integral is defined by

D

Dt

∫
FdV = d

dt

∫
FdV (3C-1.7)

where F is a continuous differentiable function of (x, t). To derive the material
derivative in terms of the spatial coordinates y = (y1, y2, y3), we follow a procedure
similar to that employed in the derivation of the momentum principle in fluid
mechanics.8

We consider the chance in the volume integral for a given region R in space (the
spatial viewpoint). For clarity, we consider the medium in V to be a flowing fluid.
However, the argument applies in general. Hence, at time t the fluid is considered
to occupy the fixed region R of volume V in space. The change of momentum
that the fluid experiences may be regarded as a sum of two parts, the local change
and the convective change. The local change results from the time variation of the
momentum in region R . Thus, the local change of momentum in region R is

∫
V

∂(ρu̇i )

∂t
dV (3C-1.8)

8See Section 16.9, Boresi and Schmidt (2001).
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Figure 3C-1.1

where ρu̇1 is the momentum of region R per unit volume as a function of xi

and t . For steady flow , the velocity u̇1 and density ρ at any point remain constant.
Hence, the local change of momentum is zero for steady flow.

The convective change of momentum occurs because the fluid that lies in region
R at time t passes into other regions where other flow conditions exist. To get a
clear picture of this phenomenon, we represent the region R by the area enclosed
by the solid line in Fig. 3C-1.1.

The fluid that lies in region R at time t occupies region R ′ at time t + �t . The
region R ′ is represented by the area enclosed by the dashed line in Fig. 3C-1.1. If
the time interval �t is small, regions R and R ′ overlap. The region of overlapping,
that is, the region that belongs to both R and R ′, is denoted by A. The region
that belongs to R but not to R ′ is denoted by B. The region that belongs to R ′
but not to R is denoted by B ′. Then R = A + B, and R ′ = A + B ′, where the
+ sign denotes the union of the two regions (Fig. 3C-1.1).

We initially consider the case of steady flow. Then the vector momentum
Gi = ∫ ρu̇i dV of fluid in a given spatial region does not vary with time. The
notation Gi(R ) denotes the momentum of fluid in region R . The increment
of momentum that the specified quantity of fluid experiences during time �t is
�Gi = Gi(R ′) − Gi(R ). Hence, because R ′ = A + B ′ and R = A + B, �Gi =
Gi(A + B ′) − Gi(A + B). Because the momentum of the fluid is the vector sum
of its parts, Gi(A + B) = Gi(A) + Gi(B) and Gi(A + B ′) = Gi(A) + Gi(B

′).
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Figure 3C-1.2

Hence, �Gi = Gi(B
′)−Gi(B). Now the fluid in region B ′ has flowed out of region

R during the time �t , and the fluid in region B has flowed into the region R during
time �t . Hence, for steady flow the rate of increase of momentum of the quantity of
fluid that occupies R is equal to the net rate at which momentum is convected out
of region R . Thus, letting �t → 0, R ′ → R , and noting that the volume swept
out of R by particles occupying an element of area dS on the boundary S of V

(Fig. 3C-1.2) is u̇αnα dS dt , where summation notation holds (Chapter 1, Section
1-23), we obtain that part of the rate of change of momentum due to convection as

lim
�t→0

�Gα

�t
= lim

�t→0

1

�t

[∫
S

(ρu̇α)u̇βnβdS �t

]

=
∫

S

(ρu̇α)u̇βnβdS

(3C-1.9)

Consequently, the time rate of change of momentum (including the local rate) is,
by Eqs. (3C.1.8) and (3C.1.9),

D

Dt

∫
V

(ρu̇α)dV =
∫

V

∂(ρu̇α)

∂t
dV +

∫
S

(ρu̇α)u̇βnβdS

=
∫

V

[
∂(ρu̇α)

∂t
+ ∂

∂yβ

(ρu̇αu̇β)

]
dV

(3C-1.10)

where we have employed the divergence (Gauss) theorem (Chapter 1, Section
1-15) to transform the surface integral into a volume integral.

Because the above argument applies in general to any point function F of the
fluid (such as temperature, density, etc.), we may replace the function ρu̇i with a
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general function F . Thus, for the material derivative of an integral with continuous
differentiable integrand F(y1, y2, y3; t) defined over the region R , we have

D

Dt

∫
V

F(y1, y2, y3; t)dV =
∫

V

∂F

∂t
dV +

∫
S

F u̇βnβdS

=
∫

V

[
∂F

∂t
+ ∂(F u̇β)

∂yβ

]
dV

=
∫

V

[
DF

Dt
+ F

∂u̇β

∂yβ

]
dV

(3C-1.11)

where we have employed the spatial expression for the material derivative
[Eq.(3C-1.5)].

A direct application of the material derivative of a volume integral yields the
balance of mass law (conservation of mass). Thus, because in region R the mass
m is constant, we have, by Eq. (3C.1.11),

Dm

Dt
= D

Dt

∫
V

ρdV =
∫

V

(
Dρ

Dt
+ ρ

∂u̇β

∂yβ

)
dV = 0

Accordingly, because this result must hold for every volume element in R, we
have

Dρ

Dt
+ ρ

∂u̇β

∂yβ

= 0 (3C-1.12)

Equation (3C-1.12) is the spatial form of the conservation of mass (see Chapter 1,
Section 1-14, and Chapter 2, Section 2-18). Substitution of Eq. (3C-1.12) into
Eq. (3C-1.10) yields the result [employing Eq. (3C-1.5)]

D

Dt

∫
V

(ρu̇α)dV =
∫

V

Du̇α

Dt
ρ dV =

∫
V

ρaαdV (3C-1.13)

where
aα = Du̇a

Dt
(3C-1.14)

is the acceleration vector of a particle in volume V (see Chapter 2, Section 2-18).

3C-2 Differential Equations of Equilibrium Relative to Material
Coordinates

Equations (3-8.1) or (3-8.2) are the equations of motion of a deformable body
relative to spatial coordinates xα. We wish to express them in terms of mate-
rial coordinates. For simplicity we discard acceleration effects. Also, here we
let ξα denote spatial coordinates and xα denote material coordinates (Chapter 2,
Section 2-3). In the development, we indicate the reduction of the equations for
small-displacement theory (small strains, small rotations compared to 1).
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The necessary transformations are simplified if the equation of force equilib-
rium is written initially in vector form. Accordingly, let an infinitesimal regular
parallelepiped having edges of length dξ1, dξ2, dξ3 parallel to axes (y1, y2, y3),
respectively, be acted upon by stress vectors −�1, �1 + d�1, . . . , and body forces
B : (B1, B2, B3) per unit volume, as shown in Fig. 3C-2.1 (Section 3-2).

Because d�1 = (∂�1/∂ξ1)dξ1, summation of vector forces yields the equilib-
rium equation

∂	1

∂ξ1
+ ∂	2

∂ξ2
+ ∂	3

∂ξ3
+ B = 0 (3C-2.1)

where B = (B1, B2, B3) and where �1, �2, �3, and B are functions of the spatial
coordinates ξα.

By the chain rule of partial differentiation, differentiation with respect to the
material coordinates xα requires

∂	α

∂xβ

∂xβ

∂ξα

+ B = 0 α, β = 1, 2, 3 (3C-2.2)

where the partial derivatives ∂xβ/∂ξα may be obtained from the relationship
between xα, ξα , and uα, the displacement vector [Eq. (2-3.4)]. Thus,

dξα = (δαβ + uα,β)dxβ = [δαβ + eαβ + ωβα]dxβ (3C-2.3)

where Eq. (2-5.3) has been employed.

Figure 3C-2.1
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Inversion of Eqs. (3C-2.3) yields

dxα = 1

J
Cαβ dξβ (3C-2.4)

where J is the Jacobian of Eq. (2-3.3) and is given by Eq. (2-4.2):

J = det(δαβ + uα,β) =
∣∣∣∣∣∣
1 + u1,1 u1,2 u1,3

u2,1 1 + u2,2 u2,3

u3,1 u3,2 1 + u3,3

∣∣∣∣∣∣> 0 (3C-2.5)

Or, using the notation of Eqs. (2-4.3) and (2-5.3), we write

J = det(δαβ + eα,β + ωβα)

=
∣∣∣∣∣∣

1 + e11 e12 + ω21 e13 + ω31

e21 + ω12 1 + e22 e23 + ω32

e31 + ω13 e23 + ω23 1 + e33

∣∣∣∣∣∣> 0
(3C-2.6)

The coefficients Cαβ of Eq. (3C-2.4) are the elements of the transpose of the
determinant consisting of the signed minors of J . Accordingly, writing Jij = δij +
uij = δij + eij + ωji, we find

Cii = Jjj Jkk − JkjJjk

Cij = (−1)i+j (JijJkj − JijJkk)
(3C-2.7)

where i �= j �= k �= i take on the values 1, 2, 3. It then follows by Eqs. (3C-2.2)
and (3C-2.4) that

∂	α

∂xβ

Cβα + B = 0

or
∂[Cβα(x)	α(x)]

∂xβ

+ B(x) = 0 (3C-2.8)

as ∂Cβα/∂xβ = 0, and J B(ξ) = B(x). The condition Cβα,β = 0 follows readily
from representation of Cβα in terms of uα. The reduction to B(x) follows from
the fact that by the definition of the Jacobian, dV = dξ1dξ2dξ3 = Jdx1dx2dx3 =
JdV ; hence, BdV = J BdV = BdV , where J = dV /dV = B/B. Written in full,
Eq. (3C-3.8) is

∂(C11�1 + C12�2 + C13�3)

∂x1
+ ∂(C21�1 + C22�2 + C23�3)

∂x2

+∂(C31�1 + C32�2 + C33�3)

∂x3
+ B = 0 (3C-2.9)
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Novozhilov (1953) has shown that the terms in parentheses in Eq. (3C-2.9) have
a definite physical meaning. Here, we follow a somewhat analogous procedure.
Consider a rectangular area perpendicular to axes X3 (of axes Xα), and with sides
dx1, dx2, isolated from the body before deformation. Under a deformation this area
becomes a parellogram with sides dy1, dy2 in the direction of unit vectors i1, i2,
respectively. Consequently, the unit vector N3 in the direction of the normal to the
paralleogram is given by the vector product of i1, i2 (see Chapter 1, Section 1-7).

N3 sin(i1, i2) = i1 × i2 (3C-2.10)

Similarly, for unit normals N1, N2 perpendicular to those areas of the deformed
body, which before the deformation were perpendicular to X1 and X2 axes, respec-
tively, we have

N1 sin(i2, i3) = i2 × i3

N2 sin(i3, i1) = i3 × i1
(3C-2.11)

Accordingly, by Eq. (2-8.2) for i1, i2, i3 we obtain Table 3C-2.1 of direction
cosines relative to axes Xα [using Eq. (a) in Chapter 2, Section 2-10], where the
general element aij (direction cosine between X1 and ij ) is given by

aij = δij + eij + ωji

1 + ej

(3C-2.12)

Accordingly, the projections of N1, N2, N3 (i.e., N11, N12, N13, N21, . . . , N32,

N33,) along axes (X1, X2, X3) are given by

N31 sin(i1, i2) = a21a32 − a22a31

N32 sin(i1, i2) = a12a31 − a11a32

N33 sin(i1, i2) = a11a22 − a12a21

N21 sin(i3, i1) = a23a31 − a21a33

N22 sin(i3, i1) = a11a33 − a13a31

N23 sin(i3, i1) = a13a21 − a11a23

N11 sin(i2, i3) = a22a33 − a32a23

N12 sin(i2, i3) = a32a13 − a12a33

N13 sin(i2, i3) = a12a23 − a13a22

(3C-2.13)

We note that, by Eq. (2-8.4) in Chapter 2, we may write cos(i1, i2) =
cos[(π/2) − φ12] = sin φ12 = 2ε12/

√
(1 + 2ε11)(1 + 2ε22). Hence,
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TABLE 3C-2.1

i1 i2 i3

X1 a11 a12 a13

X2 a21 a22 a23

X3 a31 a32 a33

sin(i1, i2) =
√

1 − 4ε2
12

(1 + 2ε11)(1 + 2ε22)

=
√

(1 + 2ε11)(1 + 2ε22) − 4ε2
12

(1 + 2ε11)(1 + 2ε22)

(3C-2.14)

Consequently, Eqs. (3C-2.7), (3C-2.12), (3C-2.14), and Table 3C-2.1 yield

Nii = Cii√
(1 + 2εjj )(1 + 2εkk) − 4ε2

jk

Nij = Cij√
(1 + 2εjj )(1 + 2εkk) − 4ε2

jk

(3C-2.15)

where i �= j �= k �= i take on the values 1, 2, 3 (where i, j, k are not summed; see
Chapter 1, Section 1-23).

Equations (3C-2.15) represent the projections of the unit vectors N1 :
(N11, N12, N13), N2 : (N21, N22, N23), N3 : (N31, N32, N33), along axes (X1,

X2, X3). These unit vectors are in the directions of the normals to those areas
of the deformed body, which before the deformation were perpendicular to the
(X1, X2, X3) axes.

Now the area dx1 dx2 becomes a parallelogram with sides dy1 = (1 + e1) dx1i1,
dy2 = (1 + e2) dx1i2. Hence, with Eq. (3C-2.14), the ratio of its area A3 before
deformation to the area A3 after deformation is [see Eq. (2-7.5) in Chapter 2]

A3

A3
= (1 + e1)(1 + e2)(sin i1, i2) =

√
(1 + 2ε11)(1 + 2ε22) − 4ε2

12 (3C-2.16)

Analogously, we obtain

A2

A2
=

√
(1 + 2ε11)(1 + 2ε33) − 4ε2

13

A1

A1
=

√
(1 + 2ε22)(1 + 2ε33) − 4ε2

23

(3C-2.17)

Accordingly, the square roots entering into the denominator of Eqs. (3C-2.15)
are equal to the ratios of the areas of the rectangular elements that are perpendic-
ular to the Xi axes before the deformation and become parallelograms after the
deformation.
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Noting Eqs. (3C-2.16) and (3C-2.17), we write Eq. (3C-2.9) in the form

∂

∂x1

(
A1

A1
σ n1

)
+ ∂

∂x2

(
A2

A2
σ n2

)
+ ∂

∂x3

(
A3

A3
σ n3

)
+ B = 0 (3C-2.18)

as, by Eq. (3-3.7), σ n1 = N11�1 + N12�2 + N13�3, with analogous results hold-
ing for σ n2, σ n3. Also, by Eqs. (3-3.5), we may write

σ n1 = i1σ11 + i2σ22 + i3σ13

σ n2 = i1σ21 + i2σ22 + i3σ23

σ n3 = i1σ31 + i2σ32 + i3σ33

(3C-2.19)

Hence, Eqs. (3C-2.16), (3C-2.17), and (3C-2.18) yield

∂

∂x1

[
A1

A1
(σ11i1 + σ12i2 + σ13i3)

]
+ ∂

∂x2

[
A2

A2
(σ21i1 + σ22i2 + σ23i3)

]

+ ∂

∂x3

[
A3

A3
(σ31i1 + σ32i2 + σ33i3)

]
+ B = 0

(3C-2.20)

Writing Eq. (3C-2.20) in scalar form with the aid of Table 3C-2.1 and
Eqs. (3C-2.12), we have in summation notation (α, β = 1, 2, 3):

∂

∂x1

[
(δiβ + eiβ + ωβi)σ

∗
αβ

] + Bi = 0 i = 1, 2, 3 (3C-2.21)

where

σ ∗
ij = Ai

Ai

(
σij

1 + ei

)
(3C-2.22)

(i, j ) not summed (Chapter 1, Section 1-23).
Equations (3C-2.21) are the scalar equations of equilibrium in terms of material

coordinates xi . However, the quantities σ ∗
ij are not stress components. They may

only be “interpreted” as stresses referring to the elements of the volume element
before deformation.

Small.Displacement Approximations. For sufficiently small deformation, the
factor

Ai

Ai

(
1

1 + ei

)
≈ 1

Hence, then σ ∗
ij ≈ σij for small deformation (Chapter 2, Section 2-15); that is, then

σ ∗
ij serve as approximations to the stress components σij, and the asterisk may

be removed from Eqs. (3C-2.21). In addition, for small displacements V /V ≈ 1;
hence, the body forces are such that B ≈ B.
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We recall that for small rotations eij differ from εαβ only by terms of the same
order as the squares of the angles of rotation (Chapter 2, Section 2-13). Hence,
under such situations eαβ may be discarded from Eq. (3C-2.21). If, in addition, the
angles of rotation are themselves so small that ωαβ may be regarded as angles of
mean volume rotation relative to axes Xi (Chapter 2, Section 2-13), and the angles
of rotation are so small that their products with σαβ may be neglected compared
to σαβ , we may write

∂σαβ

∂xα

+ Bβ = 0 (3C-2.23)

Accordingly, for small-displacement theory, the equations of equilibrium in mate-
rial coordinates reduce to the same form as in spatial coordinates. Then there is
no need to distinguish between the spatial and material forms of the equilibrium
equations [Eqs. (3C-2.1) and Eq. (3C-2.23), respectively].
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CHAPTER 4

THREE-DIMENSIONAL EQUATIONS
OF ELASTICITY

In Chapters 2 and 3 we developed certain geometrical and dynamical concepts in
the general theory of continuous media. In this chapter the concepts of geometry
and dynamics are related through the introduction of material response (kinematics)
to applied forces (dynamics). The treatment is restricted principally to bodies that
respond in a linearly elastic manner. However, certain parts of the theory are
applicable to more general responses. To simplify the mathematical development,
the major part of the theory is restricted to small strains and small rotations (small
displacements).1 First, we discuss briefly the principal effects resulting from more
general conditions.

4-1 Elastic and Nonelastic Response of a Solid

Initially, we review the results of the simple tension test of a circular cylindrical
material bar, which is clamped at one end and is subjected to an axially directed
tensile load (pull) P at the other end. It is assumed that the load is increased
slowly from its initially zero value, as the material response depends not only
upon the magnitude of the load but also upon the rate of loading as well. It is
customary to plot the tensile stress σ in the bar with increasing values of P as
a function of the strain ε of the bar (see Chapter 2, Section 2-7). In engineering
practice, the tensile stress σ is usually approximated by σ ≈ P/A0, where A0 is the
original cross-sectional area of the bar. Then σ is proportional to load P . However,
strictly speaking, according to the definition of stress (Chapter 3, Section 3-2), the

1For a fuller treatment of the large-displacement theory, see Novozhilov (1953) and Green and
Adkins (1960).
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stress is P/A, where A is the actual cross-sectional area of the bar when the load
P acts. (The bar undergoes lateral contraction everywhere as it is loaded.) For
a material such as mild steel, the stress–strain curve of a tensile test takes the
form shown in Fig. 4-1.1. For load P , which produces sufficiently small strain,
the strain disappears upon removal of load. Then the body is said to be strained
within the limit of perfect elasticity . If the strain is proportional to the load, the
body is said to be strained within the limit of linear elasticity . The limit of perfect
elasticity is frequently referred to simply as the elastic limit σEL, whereas the limit
of linear elasticity is referred to as the proportional limit σPL. These limits are
usually different for steels (Fig. 4-1.1). The response of a body or material to load
is said to be perfectly elastic so long as the deformation (strain) does not exceed
the strain associated with the elastic limit.

For sufficiently small strains, the curve differs little whether area A0 or area
A is used for the cross-sectional area of the bar. Beyond the proportional limit,
the stress–strain curve reaches a local maximum, called the upper yield, flow,
or plastic limit, σYL, after which it drops to a local minimum (the lower yield
point) and runs approximately parallel (in a wavy fashion) to the strain axis for

Figure 4-1.1 Stress–strain curve for mild steel.
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a short distance. Often, no distinction is made between the elastic limit and the
yield limit.

This region is followed by a plastic or flow region in which considerable defor-
mation occurs. In the plastic or flow region, a relatively small change in load causes
a large change in strain. In this region, also, there is considerable difference in the
stress–strain curve, depending upon whether A0 or A is used in the definition of
stress. With A0, the curve first rises slowly, turning with concave side down and
attaining a maximum value M (the ultimate strength) before turning downward to
fracture (point F ). Physically, after point M is reached, the necking down of the
steel bar occurs. This necking down is a drastic reduction of the cross-sectional area
of the bar in the neighborhood of the place where the fracture of the bar ultimately
occurs. If the load P is referred to the cross section A, σ = P/A, the stress–strain
curve obtained in the plastic region (dashed in Fig. 4-1.1) differs considerably from
the stress–strain curve relation to area A0.

When the strain does not disappear after removal of load, the strain εs that
remains is called set. To produce a set, the load must be sufficiently large to
produce a stress σ that exceeds the elastic limit. Thus, for a stress–strain state
(σ, ε), Fig. 4-1.1, removal of load results in a set. The strain εe that is recovered
upon removal of load is called the elastic strain. Hence, beyond the elastic limit
the strain ε is a sum of the set εs and the elastic strain εe or ε = εs + εe. The
condition of an occurrence of a set may be used as a definition of nonelastic
material response.

Steel is one of the most important ductile (tough) materials. Other less tough
(brittle) materials undergo different response to tensile load. For example, with
cast iron there is no plastic range, and fracture F follows almost immediately at
the end of the sudden ending elastic range (Fig. 4-1.2). There are also materials

Figure 4-1.2 Stress–strain curve for cast iron.
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Figure 4-1.3 Perfectly plastic material.

that respond to tensile load almost entirely in a plastic manner, for example, lead
and clay (Fig. 4-1.3). This response is referred to as perfectly plastic (Prager and
Hodge, 1951).

Somewhat analogous results are obtained for compression, bending, and torsion
tests (Smith and Sidebottom, 1965). However, pure compression causes fracture
only in brittle materials. In the following, we are concerned primarily with perfect
elastic response. Studies of viscoelasticity, plasticity, and the like generally lie
outside the scope of this treatment.

Concept of Elasticity. We assume that the stress at every point P in the body
depends at all times solely on the simultaneous deformation in the immediate
neighborhood of the point P . In general, the stress in a solid body depends more
or less not only on the force that acts at any instant but also on the previous
history of deformation of the body. For example, the stress at point P may depend
on residual stresses due to cold working or cold forming of the body. However,
we concern ourselves with the study of the behavior of those solid bodies (i.e.,
those bodies composed of materials that possess large cohesive forces, in contrast
to fluids, which can sustain only relatively small tension forces), which have the
ability to recover their original size and shape instantly when the forces producing
the deformation are removed. This property of instant recovery of initial size and
shape upon removal of load is called perfectly elasticity.

Generally, a physical body is acted on continuously by forces. For example,
in the vicinity of Earth a body is acted on by Earth’s gravitational force even in
the absence of other forces. Only in interstellar space does a body approach being
free of the action of forces, although even there it is acted on by the gravitational
attractions of the distance stars. Accordingly, the zero state or the zero configuration
from which the deformations of the body are measured is arbitrary. However, once
the zero configuration is specified, the strain of the body measured from the zero
state determines the body’s internal configuration.
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Whenever a body exhibits the phenomenon of hysteresis —that is, of returning
to its original size and shape only slowly or not at all—its behavior is not perfectly
elastic. The study of bodies that recover their sizes and shapes only gradually after
load is removed is treated in the theory of viscoelasticity. The study of bodies that
do not return to their original sizes after removal of load is generally considered
in the theory of plasticity.

Any body may be regarded as perfectly elastic provided it is not strained beyond
a certain limiting value, called the elastic limit. Accordingly, the theory of elas-
ticity may be applied to any body provided the deformations do not exceed the
elastic limit.

Finally, the complete description of the initial state of a body requires the
specification of the temperature at every point in the body, as well as its ini-
tial configuration; for, in general, a change in temperature will produce a change in
configuration. In turn, a change in configuration may or may not be accompanied
by a change in temperature.

4-2 Intrinsic Energy Density Function (Adiabatic Process)

The problem of equilibrium of a deformed solid body remains indeterminate
until six equations, supplemental to the differential equations of motion and the
strain–displacement equations, are established. These supplemental equations
relate the components of the displacement vector to the components of the stress
tensor, and they express the law according to which the material of a given body
resists various forms of deformation. A theoretical explanation of this law would
require an insight into the nature of the intermolecular forces that seek to keep
the particles of a solid body at definite distances from one another—that is, an
insight into the components of stress and strain within a solid body. This objective
has been achieved only in the case of gases in states that are far removed from
unstable states, and in the case of elastic solids the present state of scientific
development offers no solution to this difficult problem. If relations between
stress and strain interior to a body are found by experiment, it is always by
inference from measurement of quantities that in general are not components of
stress or strain (such as average strains, cubic compression, extension of a line
element on the surface of the body, etc.). Hence, at the present time, the relation
between stress and strain is established mainly by direct experiment. However,
some general properties inherent in this relation can be explained theoretically.
The law of conservation of energy forms the basis for the theoretical treatment of
stress–strain relations.

Let us assume initially that the process of deformation is adiabatic2; that is, no
heat is lost or gained in the system during the deformation. Furthermore, let the
work expended on changing the volume and the form of an arbitrary infinitesimal
element of the body be independent of the manner in which the transition from

2The subsequent analysis holds approximately, however, for isothermal processes. See, for example,
Love (1944), Sections 62 and 65.
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the zero state (undeformed state) to the final state (strained state) is realized. This
condition is an alternative definition of elasticity. In other words, we assume that
the role of dissipative (nonconservative) forces in the process of interaction of the
particles of the body is negligible compared to the role of conservative forces.3

A body that satisfies this assumption must return to its initial dimensions and form
after the load is removed; that is, the body is perfectly elastic.

Under the above conditions, the work required to deform an initially unde-
formed differential element dV of an elastic body can be expressed in the form
F(ε11, ε22, ε33, ε12, ε13, ε23) dV ; that is, it is equal to the product of the initial vol-
ume dV of the element and a certain function F of the six strain components. This
function is called the intrinsic strain energy density ; it depends on the physical prop-
erties of the material, but it is independent of the form and the size of the body. It
should be noted that the strain energy density depends only on the six strain compo-
nents (Green’s assumption) and that it is independent of rigid-body motions (prin-
ciple of material indifference; see Eringen, 1980, and Marsden and Hughes, 1994).

Alternatively, the strain components εαβ may be expressed in terms of the
three principal strain components (ε1, ε2, ε3) and the direction cosines Nαβ of
the principal axes of strain (1, 2, 3) relative to axes (X1, X2, X3) (see Chapter 2,
Sections 2-10 and 2-11). Furthermore, because the principal axes are mutually
perpendicular and the Nαβ are components of unit vectors, the direction cosines
may be expressed as functions of three independent angles, say, the Euler angles
(θ, φ, ψ),4 which determine the principal axes relative to axes (X1, X2, X3). Then
the work δI required to deform the incremental element dV may be written

δI = F(ε1, ε2, ε3, θ, φ, ψ) dV (4-2.1)

Accordingly, it is clear from Eq. (4-2.1) that the work expended to deform an
element of volume (say, a parallelepiped) depends not only upon the magnitude of
the principal strain components (ε1, ε2, ε3) but also upon the principal directions
(directions of the sides of the parallelepiped) of the fibers of the volume element
subjected to (ε1, ε2, ε3).

The above argument implies that a volume element (body) responds to defor-
mations differently in different directions. A body that behaves in this manner is
said to be anisotropic. Or, more completely, we say that the material of which
the body is composed is anisotropic. It exhibits different properties (responses to a
given force) in different directions. If, in contrast, the material response is the same
(for a given force) in all directions, we say that the material (body) is isotropic.
For a body with material properties identical in all directions, the work required to
deform a volume element does not depend upon the orientation of the element (i.e.,
it does not depend upon the Euler angles that locate principal directions). Then δI

is a function only of the principal strains (ε1, ε2, ε3). Thus, for isotropic material,

δI = F(ε1, ε2, ε3) dV (4-2.2)

3The role of dissipative forces is of major importance in the study of plasticity (Hill, 1983).
4Different authors may define Euler angles differently. See Synge and Griffith (2008, Section 10.6).
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Furthermore, because the principal strains (ε1, ε2, ε3) may be expressed as functions
of the strain invariants (J1, J2, J3) (Chapter 2, Section 2-12), Eq. (4-2.2) may be
written

δI = I (J1, J2, J3) dV (4-2.3)

For general theories of deformation, Eq. (4-2.3) is more useful than Eq. (4-2.2), as in
order to represent the principal strains (ε1, ε2, ε3) in terms of strain components εαβ ,
it is necessary to obtain the roots of a cubic equation [Eq. (2-11.3) in Chapter 2],
whereas the strain invariants are expressible directly in terms of εαβ [Eq. (2-12.2)].
For small-displacement theory, however, the form of Eq. (4-2.2) is useful, as then
(ε1, ε2, ε3) have simple physical meanings (see Chapter 2, Section 2-8).

The work expended in deforming the entire body is, by Eq. (4-2.3),

I =
∫

V

I (J1, J2, J3) dV (4-2.4)

The function I (J1, J2, J3) as well as the function F of Eqs. (4-2.1) and (4-2.2)
is referred to as the intrinsic energy density function. It represents the work of
deformation referred to a unit volume of the body in the undeformed state. In
the following section we show that the differential of the intrinsic energy density
function may be interpreted as a strain energy function.

4-3 Relation of Stress Components to Strain Energy Density Function

We limit the following analysis to strains small compared to 1. Also, the major
results are restricted to small rotations. In other words, the treatment is appli-
cable primarily for small-displacement theory (Chapter 2, Section 2-15). A more
general treatment is presented by Novozhilov (1953), where the reduction to small-
displacement results is indicated.

Because we restrict our study here to small-displacement theory, we need not dis-
tinguish between material (Lagrangian) and spatial (Eulerian) coordinates. Hence,
let S be a closed surface within the body, and let V be the volume enclosed by S.
Suppose that the body is in a deformed equilibrium state. We might also suppose
that the body is in a process of deformation (Love, 1944, Sections 61 and 62).
However, it may be shown that the resulting relation between the stress compo-
nents and the strain energy density function (the intrinsic energy density function)
remains unchanged. Let W denote the work that the external forces perform on
volume V during the deformation. The change or variation of internal energy of
the volume resulting from the deformation is denoted by δI . If the deformation is
adiabatic, the law of conservation of energy yields (Pippard, 1960; Wark, 1994)
δW = δI . Now I = ∫∫∫

I dV , where I is the intrinsic energy density. Hence,

δI = δ

[∫∫∫
I dV

]
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or

δW = δ

[∫∫∫
I dV

]
(a)

The work δW is the sum of the work δWB of the body forces that act on volume
V and the work δWS of the surface forces that act on surface S. With the notation
introduced in the theory of stress (Chapter 3), the work δWB is

dWB =
∫∫∫

(B1 δu1 + B2 δu2 + B3 δu3) dV

=
∫∫∫

(Bα δuα) dV α = 1, 2, 3 (b)

where (u1, u2, u3) are components of the displacement vector, and (B1, B2, B3) are
components of body force relative to volume dV. Similarly, the work δWS is

δWS =
∫∫

(σn1 δu1 + σn2 δu2 + σn3 δu3) dS

=
∫∫

(σnα δuα) dS α = 1, 2, 3

With Eq. (3-3.10) in Chapter 3, this equation may be written in the form

δWS =
∫∫

[(σ11n1 + σ21n2 + σ31n3) δu1

+ (σ12n1 + σ22n2 + σ32n3) δu2

+ (σ13n1 + σ23n2 + σ33n3) δu3] dS

=
∫∫

(σβα nβ δuα) dS =
∫∫

(σβα δuα) nβ dS

By the divergence theorem (Chapter 1, Section 1-15), this surface integral may be
transformed into the volume integral

δWs =
∫∫∫ [

∂

∂x1
(σ11δu1) + ∂

∂x2
(σ21δu1) + ∂

∂x3
(σ31δu1)

+ ∂

∂x1
(σ12δu2) + ∂

∂x2
(σ22δu2) + ∂

∂x3
(σ32δu2)

+ ∂

∂x1
(σ13δu3) + ∂

∂x2
(σ23δu3) + ∂

∂x3
(σ33δu3)

]
dV

=
∫∫∫

∂

∂xβ

(σβα δuα) dV α, β = 1, 2, 3 (c)
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Performing the differentiations indicated in Eq. (c), by Eqs. (a), (b), (c), (3-8.4),
and (2-12.17), we obtain (because σαβ = σαβ)∫∫∫

(δI ) dV =
∫∫∫

(σ11 δε11 + σ22 δε22 + σ33 δε33

+ 2σ12 δε12 + 2σ13 δε13 + 2σ23 δε23) dV

=
∫∫∫

σαβ δεαβ dV (d)

where (small-displacement theory, Chapter 2, Section 2-12)

εαβ = εβα = 1
2 (uα,β + uβ,α) (e)

In Eq. (d) the differential quantity δI is the differential of the intrinsic energy
density function I , which is, in turn, a single-valued function of temperature and
the quantities εαβ that determine the body configuration. Corresponding to any state
of deformation, the value of I is the measure of internal energy δI [Eq. (a)]. In the
zero state (Sections 4-1 and 4-2) the value of I is zero.

Because Eq. (d) represents the statement of the first law of thermodynamics
(with no heat input; adiabatic process), we have

δI = sα δeα α = 1, 2, . . . , 6 (f)

where, temporarily, we employ the notation

s1 = σ11 s2 = σ22 s3 = σ33

s4 = σ12 s5 = σ13 s6 = σ23

e1 = ε11 e2 = ε22 e3 = ε33

e4 = 2ε12 e5 = 2ε13 e6 = 2ε23

(g)

Accordingly, the expression on the right side of Eq. (f) is, in the adiabatic case, an
exact differential of the strains, and there exists a function U that has the property
expressed by the relations (Chapter 1, Section 1-19)

sα = ∂U

∂eα

α = 1, 2, . . . , 6 (4-3.1)

The function U represents potential energy per unit volume stored up in the body
by the deformation (strain). When the body is strained adiabatically, the variations
δU of U are the same as the variations δI of the intrinsic energy I of the
body. A function U that satisfies the relations of Eq. (4-3.1) is called a strain
energy density function. The existence of a strain energy density function may
also be demonstrated for an isothermal (constant temperature) process, as noted in
Section 4-2. Practically speaking, an adiabatic process may be approximated by
changes that take place in bodies undergoing small, rapid vibrations, whereas an
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isothermal process may be approximated by changes that occur in a body that is
strained slowly by gradually increasing load and that is continually in temperature
equilibrium with surrounding bodies.

In terms of engineering notations (σx, σy, σz, τxy, τxz, τyz) and (εx, εy, εz, γxy,

γxz, γyz) (see Sections 3-2 and 2A-2 and Table 3-2.1), we may write Eq. (4-3.1)
in the form

σx = ∂U

∂εx

σy = ∂U

∂εy

σz = ∂U

∂εz

τxy = ∂U

∂γxy

τxz = ∂U

∂γxz

τyz = ∂U

∂γyz

(4-3.2)

Equations (4-3.2) provide a great simplification of the problem of determining
stress components in the small-deflection theory of elasticity because instead of
seeking six unknown functions (σx, . . . , τyz), we need seek only one function U .
In general, U is a function of six strain components (Section 4-2). However, a
further simplification results if the material is isotropic (see also Section 4-5). Then,
because the directions of principal strains have no bearing on the strain energy
density, U is a function of the principal strains (ε1, ε2, ε3). Then, by Eqs. (4-3.2),
the principal stresses are

σ1 = ∂U

∂ε1
σ2 = ∂U

∂ε2
σ3 = ∂U

∂ε3
(4-3.3)

The principal stresses and strains are not affected by rotations of particles of the
medium, and therefore Eq. (4-3.3) is valid, even though the displacements are large,
provided that the strains are small compared to 1.

Constitutive Relation in Molecular Dynamics. We now recall the governing
equations in molecular dynamics previously stated

mi r̈i = f i + ϕi i = 1, 2, 3, . . . ., n (3-8.7)

where n is the total number of atoms in the system; mi, ri , and r̈i are the mass,
position vector, and acceleration vector of atom i, respectively; f i and φi are the
interatomic force and body force acting on atom i, respectively. Here we emphasize
that f i is the interatomic force acting on atom i due to the interaction between atom i

and all the other atoms in the system. Similar to Eq. (4-3.1) or (4-3.2), which means
stress tensor is the derivative of a scale-valued function, named potential energy
per unit volume or strain energy density function, with respect to strain tensor,
in MD the interatomic force vector f i can also be expressed as the derivative of
potential energy V with respect to the position vector ri as

V = V (r1, r2, r3, . . . ., rn) ≡ V (r) (4-3.4)

f i = − ∂V

∂r i
(4-3.5)
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The total energy of the system, T , is equal to the sum of kinetic energy, K , and
potential energy, V , that is,

T = K + V

=
n∑

i=1

1

2
mi ṙi · ṙi + V (r)

(4-3.6)

The work done by the body force can be calculated as an integral:

W(t) =
n∑

i=1

t∫
0

ϕi (τ ) · ṙi (τ ) dτ (4-3.7)

It is seen that the integrand is the inner product of the body force on atom i and
velocity of atom i, which is equal to the rate of work done on atom i. One may
readily show that

dT

dt
= d(K + V )

dt
=

n∑
i=1

mi r̈i · ṙi +
n∑

i=1

dV (r)
dt

=
{

n∑
i=1

mi r̈i +
n∑

i=1

∂V (r)
∂ri

}
· ṙ i

=
{

n∑
i=1

mi r̈i −
n∑

i=1

f i

}
· ṙi (4-3.8)

dW(t)

dt
=

n∑
i=1

d

dt

t∫
0

ϕi (τ ) · ṙi (τ ) dτ

=
n∑

i=1

ϕi (t) · ṙi (t) (4-3.9)

Because of Eq. (3-8.6), we obtain

dT

dt
− dW

dt
=

n∑
i=1

(mi r̈i − f i − ϕi ) · ṙi = 0 (4-3.10)

If the body force is zero, that is, the system is isolated from its environment, then
Eq. (4-3.10) says that the total energy is a constant. Equation (4-3.10) is actually
the law of conservation of energy in MD. Also, one may see that the first problem
in Problem Set 4-3 states the law of conservation of energy in elasticity. Therefore,
in a way, Eqs. (3-8.7) and (4-3.5) define molecular dynamics.
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Constitutive Equation for Soft Biological Tissue.
Pseudoelasticity. A typical stress–stretch relation of a soft biological tissue
exhibits a nonlinear behavior over large strains [cf. Fig. 6.2 of Humphrey and
Delange (2004)]. Fung (1990) reported that the behavior of soft tissue tends
not to depend strongly on strain rate. In other words, one may treat the soft
tissue as an elastic solid. However, hysteresis is also found as a characteristic of
soft tissue. Fung suggested that one might treat the behaviors in loading and in
unloading as elastic with the same form of the constitutive equation but different
numerical values for the associated material parameters and named this approach
pseudoelasticity to remind us that this material behavior is not truly elastic. Fung’s
concept of pseudoelasticity is particularly applicable to tissues that are subjected
in vivo to consistent loading and unloading, such as the arteries, diastolic heart,
and lungs. Fung also performed one-dimensional extension tests on excised strips
of mesentery, a thin collagenous membrane located in the abdomen and found an
almost linear relation between the stiffness and the stress, which can be described
by (Humphrey and Delange, 2004)

dT

d
= a + bT (4-3.11)

where T is a component in the first-order Piola–Kirchhoff (PK1) stress tensor,
associated with the axis of the one-dimensional specimen;  is the stretch ratio
that is a component of the deformation gradient; a and b are material parameters.
Then the one-dimensional constitutive relation of the soft tissue is obtained as

T = a

b

[
eb(−1) − 1

]
(4-3.12)

Motivated by, but not directly derived from, the one-dimensional exponential result,
Eq. (4-3.12), Fung (1990) postulated a strain energy density function:

U = 1
2c[eQ − 1] (4-3.13)

with
Sij = ∂U

∂εij
(4-3.14)

where S is the second-order Piola–Kirchhoff (PK2) stress tensor; ε is the
Green–Saint-Venant strain tensor; and

Q = Cijklεijεkl (4-3.15)

Then the stress–strain relation for soft biological tissue with large strain is
obtained as

Sij = ceQCijklεkl (4-3.16)

It is noticed that, in case of small strain, practically there is no difference among the
Cauchy stress, first-order Piola–Kirchhoff stress, and second-order Piola–Kirchhoff
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stress; there is no difference among the infinitesimal strain, Green–Saint-Venant
strain, and Almansi strain.

Incompressible and Nearly Incompressible Soft Biological Tissues.
If a biological tissue is modeled as an incompressible material, then the mass
density remains unchanged during any deformation process. Remember that mass
is conserved. Now incompressibility implies that volume of the material body is
unchanged, that is, J = 1, which implies [cf. Eq. (2-4.18)] IIIc = 1. This condi-
tion places a restriction on the Green’s deformation tensor C as well as on the
Green–Saint-Venant strain tensor ε [cf. Eq. (2-7.13)]. This means all components
Cij , and εij alike, are not independent. Hence we must take proper caution in
evaluating the partial derivatives ∂U

∂ε
in Eq. (4-3.14). This can be achieved by the

method of Lagrange’s multipliers. Thus, the strain energy density function U is
replaced by

U ← U − p(IIIC − 1)/2 (4-3.17)

where p is the unknown Lagrange multiplier. Now the stress–strain relation is
changed to

Sij = ∂{−p(IIIC − 1)/2 + U}
∂εij

= −p
∂IIIC
∂Cij

+ ∂U

∂εij

= −pJ 2C−1
ij + ∂U

∂εij

= −pC−1
ij + ceQCijklεkl

(4-3.18)

Recall Eq. (3-4.8); the Cauchy stress is obtained as

σαβ = J−1FαiFβjSij

= FαiFβj

{ − pC−1
ij + ceQCijklεkl

}
= FαiFβj

{ − pF−1
iξ F−1

jξ + ceQCijklεkl
}

= −pδij + ceQCijklεklFαiFβj (4-3.19)

It is emphasized that the Lagrange multiplier p, usually referred to as hydrostatic
pressure, is used to enforce the constraint of incompressibility (J = 1 or IIIC = 1).
If the biological tissue is modeled as a nearly incompressible material, then the
following form is suggested

U = d(J ln J − J + 1) + c(eQ − 1)/2 (4-3.20)

where d is another material constant. Vetter and McCulloch (2000) found that
the nearly incompressible model gives more accurate numerical results than the
incompressible formulation without significantly affecting tissue volume.
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Muscle Mechanics and Active Stress. As far as mechanics is concerned,
is there any fundamental difference between living biological tissues and lifeless
materials? Of course, there should be. Is the existence of large strain or incom-
pressibility a fundamental difference? Obviously not. Is Fung’s (1990) concept of
pseudoelasticity , including his famous constitutive relation, Eq. (4-3.13), counted
as the fundamental difference? Not exactly. All lifeless materials are passive. Put
simply, a passive material deforms according to the loading to which it is sub-
jected; namely, it elongates when there is a tensile stress and contracts when there
is a compressive stress. But the muscle, when it is activated, may exert active ten-
sile stress even in the state of contraction. The full constitutive relation has been
suggested to have the form (Humphrey, 2002)

σij = −pδij + σ
p

ij + T
(
Ca2+, α

)
mimj (4-3.21)

where σ is the total Cauchy stress (active plus passive); p is the Lagrange multiplier
(hydrostatic pressure) enforcing incompressibility; σp is the passive contribution to
the stress and may be equal to ceQCijkl εklFαiFβj if a Fung-type elastic relation is
adopted; T (Ca2+, α) is the muscle tension in the direction m, which is a unit vector
in the direction of a muscle fiber in a deformed state (Eulerian description). The
muscle tension T (Ca2+, α) is often assumed to depend on the intracellular calcium
Ca2+ and the stretch α of the muscle fiber relative to its reference sarcomere length,
that is,

αm = F · M or αmi = FiβMβ (4-3.22)

where F is the deformation gradient tensor, defined in Eq. (2-4.4); M is a unit vector
in the original muscle fiber direction (Lagrangian description). Various forms of
T (Ca2+, α) have been suggested in the literature as, for example, for vascular
smooth muscle (Rachev and Hayashi, 1999; Humphrey, 2002),

T
(
Ca2+, α

) = A
(
Ca2+)α

[
1 −

(
αm − α

αm − αo

)2
]

(4-3.23)

where A
(
Ca2+) is a so-called activation function; αm is the stretch at which the

Piola–Kirchhoff stress is maximum; αo is the stretch at which force generation is
vanishing. Notice that A

(
Ca2+) = 0 if the muscle is not activated irrespective of

the stretch. The values of αm and αo vary from one blood vessel type to another
blood vessel type; the typical values are αo ∈ (0.5, 0.8) and αm ∈ (1.4, 1.8). For
illustrative purpose, here we choose αo = 0.5 and αm = 1.5 and plot the normal-
ized active Cauchy and first-order Piola–Kirchhoff stresses versus muscle stretch
ratio α in Fig. 4-3.1. The normalized active Cauchy stress is defined as

t ≡ T
(
Ca2+, α

)
A
(
Ca2+) = α

[
1 −

(
αm − α

αm − αo

)2
]

(4-3.24)
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Figure 4-3.1 Normalized active Cauchy stress and first-order Piola–Kirchhoff stress are
shown as functions of stretch ratio.

The normalized active first-order Piola–Kirchhoff stress in this case is

T = t

α
= 1 −

(
αm − α

αm − αo

)2

(4-3.25)

Notice that (1) α = 1 means that the length of the muscle fiber is equal to its
reference sarcomere length, that is, there is no elongation or shortening, (2) α < 1
means the muscle fiber is shortened, (3) α > 1 means the muscle fiber is elongated.
Figure 4-3.1 indicates that, as long as the muscle is activated, the active stress is
always a tensile stress along the direction of the muscle fiber irrespective of whether
the fiber is shortened or elongated. This is the fundamental difference between a
living biological tissue and a lifeless material. The effect of active stress will be
demonstrated through a solved problem in Chapter 6.

Problem Set 4-3

1. Show that Eqs. (4-3.2) are valid if we take dW/dt = dK/dt + dI/dt , where
K = 1

2

∫∫∫
ρ(u̇2

1 + u̇2
2 + u̇2

3) dV denotes the kinetic energy of the system and W and
I are defined as in Section 4-2. Dots above u1, u2, u3 denote time derivatives, and t

denotes time.

2. For isotropic soft tissues, the material property tensor in Eq. (4-3.15) is reduced to

Cijkl = λδij δkl + G(δikδj l + δilδjk)

Find the second-order Piola–Kirchhoff stresses from Eq. (4-3.16).
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4-4 Generalized Hooke’s Law

In its most general form, Hooke’s law asserts that each of the stress components
is a linear function of the components of the strain tensor, that is,

σx = C11εx + C12εy + C13εz + C14γxy + C15γxz + C16γyz

σy = C21εx + C22εy + C23εz + C24γxy + C25γxz + C26γyz

σz = C31εx + C32εy + C33εz + C34γxy + C35γxz + C36γyz

τxy = C41εx + C42εy + C43εz + C44γxy + C45γxz + C46γyz

τxz = C51εx + C52εy + C53εz + C54γxy + C55γxz + C56γyz

τyz = C61εx + C62εy + C63εz + C64γxy + C65γxz + C66γyz

(4-4.1)

where the 36 coefficients, C11, . . . , C66, are called elastic coefficients (stiffnesses)
(see Table 3-2.1 in Chapter 3).

In general, the coefficients Cij are not constants but may depend on location in
the body as well as on temperature. Ordinarily, the Cij decrease with increasing
temperature. In index notation (Chapter 1, Section 1-23), Eq. (4-4.1) may be written
in the form

σα = Cαβεβ α, β = 1, 2, . . . , 6 (4-4.2)

where
σ1 = σx σ2 = σy, . . . , σ6 = τyz

ε1 = εx ε2 = εy, . . . , ε6 = γyz
(4-4.3)

In reality, Eq. (4-4.1) is no law but merely an approximation that is valid for
small strains, as any continuous function is approximately linear in a sufficiently
small range of the variables. For a given temperature and location in the body, the
coefficients Cαβ in Eq. (4-4.1) are constants that are characteristics of the material.

Equations (4-3.2) and (4-4.1) yield

∂U

∂εx

= σx = C11εx + · · · + C16γyz

∂U

∂εy

= σy = C21εx + · · · + C26γyz

(4-4.4)

Hence, differentiation of Eq. (4-4.4) yields

∂2U

∂εx∂εy

= C12 = C21
∂2U

∂εx∂εz

= C13 = C31, . . . ,

∂2U

∂εxγyz

= C16 = C61, . . .

(4-4.5)

These equations show that C12 = C21, C13 = C31, . . . , Cik = Cki, . . . , and C56 =
C65; that is, the elastic coefficients Cαβ are symmetrical. Accordingly, there are only
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21 distinct C’s. In other words, the general anisotropic linearly elastic material has
21 elastic coefficients. In view of the preceding relation, the strain energy density
of a general anisotropic material is [by integration5 of Eqs. (4-4.4)]

U = 1
2C11ε

2
x + 1

2C12εxεy + · · · + 1
2C16εxγyz

+ 1
2C12εxεy + 1

2C22ε
2
y + · · · + 1

2C26εyγyz

+ 1
2C13εxεz + 1

2C23εyεz + · · · + 1
2C36εzγyz

+ · · ·
+ 1

2C16εxγyz + 1
2C26εyγyz + · · · + 1

2C66γ
2
yz (4-4.6)

In index notation, Eq. (4-4.6) may be written

U = 1
2Cαβεαεβ = 1

2σαεα α, β = 1, 2, . . . , 6 (4-4.7)

In its general form, Eq. (4-4.6) is important in the study of crystals (Planck, 1949;
Love, 1944; Nye, 1987).

Symmetry Conditions. The elastic coefficients Cαβ of Eqs. (4-4.1) may be
denoted by the array (matrix)⎛

⎜⎜⎜⎝
C11 C12 · · · C16

C12 C22 · · · C26
...

...
. . .

...

C16 C26 . . . C66

⎞
⎟⎟⎟⎠ (4-4.8)

In certain structural materials, special kinds of symmetry may exist. For example,
the elastic coefficients may remain invariant under a coordinate transformation x →
x, y → y, and z → −z. Such a transformation is called a reflection with respect
to the (x, y) plane. The direction cosines of this transformation are defined by

a11 = a22 = 1 a33 = −1

a21 = a31 = a12 = a32 = a13 = a23 = 0
(4-4.9)

(see Table 3-4.1 in Chapter 3). Substitution of Eqs. (4-4.9) into Eqs. (3-4.1) and
(2-9.1) reveals that for a reflection with respect to the (x, y) plane

�11 = σ ′
x = σ11 = σx �22 = σ ′

y = σ22 = σy

�33 = σ ′
z = σ33 = σz �12 = τ ′

xy = σ12 = τxy

�23 = τ ′
yz = −σ23 = −τyz �13 = τ ′

xz = −σ13 = −τxz

(4-4.10)

5Here we discard an arbitrary function of (x, y, z), as we are interested in derivatives of U with
respect to εα . Furthermore, in agreement with Eq. (4-4.1), we assume that the stress components
σα [see Eq. (4-4.3)] vanish identically with the strain components. Accordingly, linear terms in εβ

are discarded from Eq. (4-4.6). If the σα do not vanish with the εβ (e.g., as in the case of residual
stresses), arbitrary functions of (x, y, z) must be added to Eq. (4-4.1). In turn, these functions lead
to linear terms in εβ in Eq. (4-4.6).
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and

E11 = ε′
x = ε11 = εx E22 = ε′

y = ε22 = εy

E33 = ε′
z = ε33 = εz E12 = 1

2γ ′
xy = ε12 = 1

2γxy

E23 = 1
2γyz = −ε23 = − 1

2γyz E13 = 1
2γ ′

xz = −ε13 = − 1
2γxz

(4-4.11)

Hence, under the transformation of Eq. (4-4.9), the first of Eqs. (4-4.1) yields

σ ′
x = C11ε

′
x + C12ε

′
y + C13ε

′
z + C14γ

′
xy + C15γ

′
xz + C16γ

′
yz (4-4.12)

Substitution of Eqs. (4-4.10) and (4-4.11) into Eq. (4-4.12) yields

σx = σ ′
x = C11εx + C12εy + C13εz + C14γxy − C15γxz − C16γyz (4-4.13)

Comparison of the first of Eqs. (4-4.1) with Eq. (4-4.13) yields the conditions
C15 = −C15, C16 = −C16, or C15 = C16 = 0. Similarly, considering σ ′

y, . . . , τ ′
yz,

we find
C25 = C26 = C35 = C36 = C45 = C46 = 0

Accordingly, the elastic coefficients for a material whose elastic properties are
invariant under a reflection with respect to the (x, y) plane (i.e., the body possesses
a plane of elastic symmetry) are summarized by the matrix

⎛
⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13 C14 0 0
C12 C22 C23 C24 0 0
C13 C23 C33 C34 0 0
C14 C24 C34 C44 0 0
0 0 0 0 C55 C56

0 0 0 0 C56 C66

⎞
⎟⎟⎟⎟⎟⎟⎠

(4-4.14)

If the material has two mutually orthogonal planes of elastic symmetry, it may
be shown that C14 = C24 = C34 = C56 = 0. Then Eq. (4-4.14) reduces to

⎛
⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

⎞
⎟⎟⎟⎟⎟⎟⎠

(4-4.15)

Equation (4-4.1) is simplified accordingly.
The conditions under which the elastic coefficients Cαβ remain invariant under

a rotation through an angle θ about an axis are more complicated to derive. For
example, a rotation θ about the z axis is defined by the relations x → x cos θ +
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y sin θ, y → −x sin θ + y cos θ, z → z. Under this transformation, Eqs. (2-9.1) and
(3-4.1) yield

E11 = ε11 cos2 θ + ε22 sin2 θ + ε12 sin 2θ

E22 = ε11 sin2 θ + ε22 cos2 θ − ε12 sin 2θ

E33 = ε33

E23 = ε23 cos θ − ε13 sin θ

E13 = ε23 sin θ + ε13 cos θ

E12 = (ε22 − ε11) sin θ cos θ + ε12 cos 2θ

(4-4.16)

and
�11 = σ11 cos2 θ + σ22 sin2 θ + σ12 sin 2θ

�22 = σ11 sin2 θ + σ22 cos2 θ − σ12 sin 2θ

�33 = σ33

�23 = σ23 cos θ − σ13 sin θ

�13 = σ23 sin θ + σ13 cos θ

�12 = (σ22 − σ11) sin θ cos θ + σ12 cos 2θ

(4-4.17)

Proceeding as in the above examples, after some lengthy calculations we may show
that (for θ not equal to π, 1

2π, 2
3π)

C14 =C24 =C34 = C45 =C46 =C56 =C16 =C26 =C36 =C15 =C25 = C35 = 0

and furthermore,

C11 = C22 C13 = C23 C55 = C66 C44 = 1
2 (C11 − C12)

For θ = π ,

C16 = C26 = C15 = C25 = C46 = C45 = C36 = C35 = 0

with no additional relations between the Cij . For θ = 1
2π ,

C34 = C46 = C45 = C56 = C16 = C26 = C15 = C25 = C36 = C35 = 0

and, furthermore,

C11 = C22 C13 = C23 C55 = C66 C14 = −C24

Finally, for θ = 2
3π ,

C14 = C24 = C34 = C36 = C56 = C35 = 0
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and
C11 = C22 C13 = C23 C55 = C66 C44 = 1

2 (C11 − C12)

C16 = −C26 = C45 − C15 = C25 = C46

For certain special material behavior, the anisotropic coefficients may be
expressed readily in terms of engineering coefficients such as Young’s moduli,
shear moduli, and Poisson’s ratios (Lekhnitskii, 1963). For example, transversely
isotropic materials are characterized by five material coefficients. These materials
exhibit isotropic behavior in a plane (say, the x-y plane) and anisotropic behavior
perpendicular to this plane (in the direction of the z axis, the symmetry axis).
In other words, the elastic coefficients are unaltered (remain invariant) under a
rotation through any angle θ about the axis of symmetry. Thus, as derived above,
a transversely isotropic material has the characteristic array of elastic coefficients:

Cαβ =

⎛
⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C55

⎞
⎟⎟⎟⎟⎟⎟⎠

(4-4.15a)

where C44 = 1
2 (C11 − C12). In terms of engineering representations,

C11 = (1 − nν2
zx)Ex

AB
C12 = (νxy + nν2

zx)Ex

AB

C13 = νzxEx

B
C33 = (1 − νxy)Ez

B
C55 = Gxz = Gyz

(4-4.15b)

where
A = 1 + νxy B = 1 − νxy − 2nν2

zx n = Ex/Ez

The ratio n is a measure of the degree of anisotropy. The symbols E, G, and ν

with appropriate subscripts denote Young’s moduli, shear moduli, and Poisson’s
ratios associated with the corresponding axes (see Section 4-7). The coefficient
C44, which is determined in terms of C11, C12 is given by C44 = Ex/(2A); see
Eq. (4-4.15b).

The remaining engineering (elastic) coefficients are related to the four coeffi-
cients (Ex, Ez, νxy, νzx) as follows:

Gxy = Ex

2(1 + νxy)
νxz = nνzx (4-4.15c)

The engineering coefficients Ex, Ez, and so on have been determined by Chong
et al. (1980a, 1980b) and Chong (1983) for oil shale, which is a transversely
isotropic material. Like many other materials, oil shale is sensitive to loading or
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strain rate. The effect of strain rate on the elastic coefficients of oil shale has
been discussed by Chong et al. (1981) in terms of a nonlinear solid model. The
experimental determination of engineering coefficients is treated by Schreiber et al.
(1973).

General Form of Transformation Law of Elastic Coefficients. In terms of
double-subscript notation for the stress components σαβ and for the strain compo-
nents εαβ , we may write Hooke’s generalized law (also called elastic constitutive
relations) in the following form [Eq. (4-4.1)] relative to axes (x1, x2, x3):

σαβ = Cαβγ δεγ δ α, β, γ, δ = 1, 2, 3 (4-4.18)

where the elastic coefficients Cαβ of Eq. (4-4.1) have been modified appropriately
to account for the fact that 2ε12 = γxy, 2ε13 = γxz, and 2ε23 = γyz relative to axes
(x, y, z) or (x1, x2, x3). In Eq. (4-4.18) the elastic coefficients Cαβγ δ require four
indexes to accommodate indexing of εγ δ .

We wish to consider the rules under which the elastic coefficients Cαβγ δ

transform, when the stress components σαβ and the strain components εγ δ are
referred to axes (y1, y2, y3) defined relative to axes xi by direction cosines aαβ (see
Table 3-4.1). By Eq. (3-4.1), we have the stress components relative to axes yα:

�mn = σαβamαanβ (a)

Hence, Eqs. (4-4.18) and (a) yield

�mn = Cαβγ δamαanβεγ δ (b)

By Eq. (2-9.3) we obtain the strain components εαβ relative to axes xα in terms of
the components Epq relative to axes yα (here we sum on p and q):

εγ δ = Epqapγ aqδ (4-4.19)

Substitution of Eq. (4-4.19) into Eq. (b) yields

�mn = Cαβγ δamαanβapγ aqδEpq (c)

Writing Eq. (c) in the form

�mn = C ′
mnpqEpq (d)

where C ′
mnpq denote the elastic coefficients relative to axes yα , we obtain, upon

comparison of Eqs. (c) and (d),

C ′
mnpq = Cαβγ δamαanβapγ aqδ α, β, γ, δ, m, n, p, q = 1, 2, 3 (4-4.20)
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Equation (4-4.20) is the general rule for transformation of the elastic coefficients
Cαβγ δ under a rotation of axes described by Table 3-4.1. Because m, n, p, q (or
α, β, γ, δ) take on values 1, 2, 3, there are seemingly 34 = 81Cαβγ δ . However,
because σαβ = σβα , Eq. (4-4.18) yields the result that Cαβγ δ = Cβαγ δ . Also, we
assume that symmetry exists in the second pair of indices, without loss of generality.
For, if symmetry did not exist, we could attain symmetry by replacing each εαβ by
the identity

εαβ = 1
2 (εαβ + εβα) (e)

Then
Cαβγ δ = Cαβδγ

Finally, we observe that symmetry exists between the two pairs of indexes (α, β)

and (γ, δ). This result may be shown with the help of the theory of Section 4-3,
as follows:

By Eq. (d) of Section 4-3, we may write, by the argument following Eq. (d),

δU = σαβ δεαβ (f)

where δU denotes the increment of strain energy U , where U is a function of the
strain components εαβ (Section 4-2). Accordingly, if U is written symmetrically in
terms of εαβ [which can be done by the substitution of Eq. (e) into U ], Eq. (f)
yields

∂U

∂εαβ

δεαβ = σαβ δεαβ (g)

Because of the symmetry of U in εαβ , Eq. (g) yields

σαβ = ∂U

∂εαβ

(4-4.21)

Accordingly, Eqs. (4-4.18) and (4-4.21) yield

∂2U

∂εαβ ∂εγ δ

= ∂2U

∂εγδ ∂εαβ

or
Cαβγ δ = Cγδαβ

In summary, the coefficients Cαβγ δ possess the following symmetry properties:

Cαβγ δ = Cβαγ δ

Cαβγ δ = Cαβδγ

Cαβγ δ = Cγδαβ

(4-4.22)
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Consequently, there are 21 independent Cαβγ δ in the most general anisotropic
material.

Finally, we caution that Eq. (4-4.21) is valid if and only if the strain energy
density function is written symmetrically in the εαβ, α, and β = 1, 2, 3. It may be
shown that Eq. (4-4.21) holds for orthogonal coordinates in general.

Example 4-4.1. Orthotropic Elastic Coefficients for a Plane Stress Region in the
(x, y) Plane. A state of plane stress relative to the (x, y) plane is defined by the
conditions (Chapter 3, Section 3-7)

σx = σx(x, y) σy = σy(x, y) τxy = τxy(x, y)

σz = τxz = τyz = 0
(a)

Show that the stress–strain relations for this plane stress region in which the mate-
rial is orthotropic relative to axes (x, y) takes on the form

⎡
⎣σx

σy

τxy

⎤
⎦ =

⎡
⎣P11 P12 0

P12 P22 0
0 0 P33

⎤
⎦
⎡
⎣ εx

εy

γxy

⎤
⎦ (b)

and express the coefficients Pij in terms of the coefficients Cij [see Eqs. (4-4.1)
and (4-4.15)].

By Eqs. (4-4.1), (4-4.15), and (a), we have

σx = C11εx + C12εy + C13εz

σy = C12εx + C22εy + C23εz

σz = C13εx + C23εy + C33εz = 0

τxy = C44γxy

τxz = C55γxz = 0

τyz = C66γyz = 0

(c)

If C55, C66 are nonzero, the last two of Eqs. (c) require that γxz = γyz = 0. By the
third of Eqs. (c),

εz = − (C13εx + C23εy)

C33
(d)

Substitution of Eq. (d) into the first two of Eqs. (c) yields

σx = P11εx + P12εy

σy = P12εx + P22εy

τxy = P33γxy

(e)
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where

P11 = C11C33 − C2
13

C33
P12 = C12C33 − C13C23

C33

P22 = C22C33 − C2
23

C33
P33 = C44

(f)

Thus, by Eq. (e) we have⎡
⎣σx

σy

τxy

⎤
⎦ =

⎡
⎣P11 P12 0

P12 P22 0
0 0 P33

⎤
⎦
⎡
⎣ εx

εy

γxy

⎤
⎦ (g)

where Eq. (f) relates the Pij to the Cij .

General Form of Potential Energy in Molecular Dynamics. The general
interatomic potential in MD can be written as

V =
n∑

i,j=1

1

2!
V ij(ri , rj ) +

n∑
i,j,k=1

1

3!
V ijk(ri , rj , rk)

+
n∑

i,j,k,l=1

1

4!
V ijkl(ri , rj , rk, rl) + · · ·

(4-4.23)

where one recognizes that the terms on the right-hand side may be referred to
as 2-body potential, 3-body potential, 4-body potential, and so on. It should be
emphasized that for the summation all indices must be distinct. For example, j �= i

for the 2-body potential; j �= i, k �= j , and k �= i for the 3-body potential. In other
words, V ijkl.... = 0 if any two indices are equal.

Before we introduce a few potential energies popoularly used in MD simulation,
we define the relative position vector, rij , and separation distance, r ij , between
atom i and atom j as follows:

rij ≡ ri − rj

r ij ≡ ‖ri − rj‖ =
√(

ri
x − r

j
x

)2 +
(
ri
y − r

j
y

)2 +
(
ri
z − r

j
z

)2 (4-4.24)

It is worthwhile to show that

∂r ij

∂ri
x

=
∂

[(
ri
x − r

j
x

)2 +
(
ri
y − r

j
y

)2 +
(
ri
z − r

j
z

)2
]1/2

∂ri
x

=
[(

ri
x − rj

x

)2 + (
ri
y − rj

y

)2 + (
ri
z − rj

z

)2
]−1/2 (

ri
x − rj

x

)

= ri
x − r

j
x

r ij
(4-4.25)
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Then it is easy to verify that

∂r ij

∂ri
= rij

r ij

∂r ij

∂rj
= − rij

r ij
(4-4.26)

Lennard-Jones Potential. This potential is a 2-body potential, or pair potential,
that has been most frequently used in MD simulation for nanoscale systems (Jones,
1924a, 1924b; Kittel, 2005). It can be expressed as

V (r) = 4e

[(a

r

)12 −
(a

r

)6
]

(4-4.27)

The interatomic force can be calculated as

f i = −fj = 24e

(
2
a12

r13
− a6

r7

)
rij

r
(4-4.28)

It is seen that (1) when the separation distance is very small, the first term dominates
and the force is repulsive because f i is in the direction of rij = ri − rj ; (2) when the
separation distance is large, the second term dominates and the force is attractive;
(3) the equilibrium position is at where f i = 0 and it is obtained as ro = 2

1/6a.
However, readers should not be misled by the last statement, which was obtained
for the case that only two atoms are considered. Actually, one should consider
all the atoms in the system in principle, at least all the nearest neighbors for
reasonably accurate solution. Notice that there are 12 nearest neighbors in the
face-centered-cubic crystal structure and Kittel (2005) obtained ro/a = 1.09.

Coulomb–Buckingham Potential. The Coulomb–Buckingham potential is
also a pair potential and can be expressed as

V ij(r ij) = qiqj

r ij
+ Aij exp

(
− r ij

B ij

)
− C ij(

r ij
)6 (4-4.29)

where qi and qj are the electric charge of atom i and atom j , respectively; Aij , B ij ,
and C ij are the material constants associated with the ith kind atom and the j th kind
atom. The first term on the right-hand side of Eq. (4-4.29) is the famous Coulomb
potential between two charges, and the next two terms specify the Buckingham
potential. The Coulomb–Buckingham potential is suitable to describe the atomic
interactions of ionic crystals, such as rocksalt-type and perovskite-type crystals.
Here we put indices i and j even as superscripts on the potential function V to
emphasize that not only the material constants but also the function form depend
on the type of atoms involved. The interatomic force can be calculated as

f i = −f j =
[
qiqj

(
r ij)−2 + Aij

B ij
e−r ij/Bij − 6C ij(r ij)−7

]
rij

r ij
(4-4.30)
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Tersoff Potential. The Tersoff (1988) potential may be expressed as

V ij = fC

(
r ij) [fA

(
r ij) − bijfB

(
r ij)] (4-4.31)

where fC

(
r ij

)
is a cutoff function given by

fC

(
r ij) =

⎧⎪⎨
⎪⎩

1 r ij < Dij

1
2 {1 + cos[π

(
r ij − Dij

)
/
(
Sij − Dij

)
]} Dij < r ij < Sij

0 r ij >Sij

(4-4.32)

and Sij is called the cutoff radius, a material constant for atom i and atom j . This
simply means if the separation distance between atom i and atom j is greater than
the cutoff radius Sij , then the potential energy V ij is vanishing; in other words,
Tersoff potential represents a short-range interaction between atoms. The other
parameters in Eq. (4-4.31) are explicitly specified as

fA

(
r ij) = Aij exp

(−λijr ij)
fB

(
r ij) = B ij exp

(−μijr ij)
bij =

[
1 + β

ni

i

(
ξ ij)ni

]−1/2ni

ξ ij =
∑
k �=i,j

fC

(
r ij)g(θ ijk)

g(θijk) = 1 + c2
i

d2
i

− c2
i

d2
i + (hi − cos θ ijk)2

(4-4.33)

where θ ijk is the bond angle between the two vectors rij and rik; Aij , B ij , λij , μij ,

Dij , βi, ni, ci, di , and hi are material constants. It is noticed that bij involves the
existence of all the other atoms k within the cutoff radius, and hence it represents
the bond strength due to many-body effects. Usually, the material constants related
to atom i and atom j can be simplified as

Aij =
√

AiAj B ij =
√

BiBj

Sij =
√

SiSj Dij =
√

DiDj

λij = λi + λj

2
μij = μi + μj

2

(4-4.34)

where Ai, Bi, Si, Di, λi , and μi are the corresponding material constants associ-
ated with atom i. To calculate the interatomic forces acting on atom i, atom j , and
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atom k, it is worthwhile to find the following derivatives to begin with:

f ′
C

(
r ij) ≡ dfC

(
r ij
)

dr ij
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 r ij < Dij

− π

2
(
Sij − Dij

) sin

(
π
(
r ij − Dij

)
Sij − Dij

)
Dij < r ij < Sij

0 r ij >Sij

g′(θ ijk) ≡ dg

dθ ijk
= 2c2

i

[
d2

i + (
hi − cos θ ijk)2

]−2 (
hi − cos θ ijk) sin θ ijk

dg

d cos θ ijk
= −2c2

i

[
d2

i + (
hi − cos θ ijk)2

]−2 (
hi − cos θ ijk)

(4-4.35)

Then the atomic forces can be obtained as

F i = −1

2

[
f ′

C

(
fA − bijfB

) + fC

(−λijfA + μijbijfB

)] rij

r ij

+ 1

2
cijfC

(
r ij) fB

(
r ij) ∂ξ ij

∂ri
(4-4.36)

F j = 1

2

[
f ′

C

(
fA − bijfB

) + fC

(−λijfA + μijbijfB

)] rij

r ij

+ 1

2
cijfC

(
r ij) fB

(
r ij) ∂ξ ij

∂rj
(4-4.37)

Fk = 1

2
cijfC

(
r ij) fB

(
r ij) ∂ξ ij

∂rk
(4-4.38)

with
∂ξ ij

∂ri
=

[
gf ′

C

(
rik

) rik

rik
+ d ij ∂ cos θ ijk

∂ri

]

∂ξ ij

∂rj
= d ij ∂ cos θ ijk

∂rj

∂ξ ij

∂rk
=

[
−gf ′

C

(
rik

) rik

rik
+ d ij ∂ cos θ ijk

∂rk

]
(4-4.39)

where
cij ≡ −0.5βi

(
βiξ

ij)ni−1
[
1 + (

βiξ
ij)ni

]−1/2ni−1

d ij ≡ fC

(
rik

) −2c2
i

(
hi − cos θ ijk

)
[
d2

i + (
hi − cos θ ijk

)2
]2
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It is lengthy but straightforward to obtain

∂ cos θ ijk

∂ri
=

(
1

rik
− cos θ ijk

r ij

)
rij

r ij
+

(
1

r ij
− cos θ ijk

rik

)
rik

rik

∂ cos θ ijk

∂rj
= cos θ ijk

r ij

rij

r ij
− 1

r ij

rik

rik

∂ cos θ ijk

∂rk
= − 1

rik

rij

r ij
+ cos θ ijk

rik

rik

rik

(4-4.40)

It is seen that
∂ cos θ ijk

∂ri
+ ∂ cos θ ijk

∂rj
+ ∂ cos θ ijk

∂rk
= 0 (4-4.41)

which implies, among any three atoms, i, j, and k. Tersoff potential yields

Fi + Fj + Fk = 0 (4-4.42)

One more time, it says the total interatomic forces are vanishing, and it verifies
that Newton’s third law is automatically satisfied.

Stiffness Matrix in Molecular Dynamics. Here, for simplicity, we only con-
sider pair potentials. For atom i and atom j , we define

r ≡ ri − rj

r ≡ ‖ri − rj‖
V ij(r) = V ji(r) � V (r)

φ(r) ≡ −1

r

dV

dr

�(r) ≡ 1

r

dφ

dr

(4-4.43)

We now rewrite the governing equations in molecular dynamics using tensor nota-
tions as

miüi
α = f i

α + ϕi
α

= φr ij
α + ϕi

α

(4-4.44)

where ui ≡ ri − Ri is the displacement vector of atom i with Ri being its initial
position and notice that r̈i = üi . To illustrate a point, we assume that all the atomic
displacements involved are small. Now we do the Taylor series expansion of the
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interatomic force about the initial position

f i
α = φr ij

α

∣∣
ri=Ri ,rj =Rj +

∑
β

∂
(
φr

ij
α

)
∂ri

β

∣∣∣∣∣∣ ri=Ri

rj =Rj

(
ri
β − Ri

β

)

+
∑
β

∂
(
φr

ij
α

)
∂r

j

β

∣∣∣∣∣∣ ri=Ri

rj =Rj

(
r
j
β − R

j
β

)
+ · · ·

= f i
α(0) +

∑
β

∂
(
φr

ij
α

)
∂ri

β

∣∣∣∣∣∣ ri=Ri

rj =Rj

ui
β +

∑
β

∂
(
φr

ij
α

)
∂r

j
β

∣∣∣∣∣∣ ri=Ri

rj =Rj

u
j

β + · · ·

(4-4.45)

and notice that

∂
(
φr

ij
α

)
∂ri

β

= ∂φ

∂ri
β

r ij
α + φ

∂
(
r

ij
α

)
∂ri

β

= dφ

dr

r
ij
β

r
r ij
α + φδαβ ≡ �r ij

αr
ij
β + φδαβ

∂
(
φr

ij
α

)
∂r

j
β

= ∂φ

∂r
j
β

r ij
α + φ

∂
(
r

ij
α

)
∂r

j
β

= −dφ

dr

r
ij
β

r
r ij
α − φδαβ ≡ −{

�r ij
αr

ij
β + φδαβ

} (4-4.46)

The stiffness matrix can be obtained as

−K
ij
αβ ≡ [

�r ij
αr

ij
β + φδαβ

]∣∣∣
ri=Ri ,rj =Rj

(4-4.47)

Then Eq. (4-4.45) can be rewritten as

f i
α = f i

α(0) −
∑
β

K
ij
αβui

β +
∑
β

K
ij
αβu

j

β + · · · (4-4.48)

This means that, for a system of N atoms with pair potential and small displace-
ments, the governing equation can be expressed in the following matrix form:

Mü + Ku = f o + ϕ (4-4.49)

which is exactly equivalent to the governing equations in classical mechanical
vibration.

Remark: The above-mentioned molecular dynamics (MD) may be considered
classical molecular dynamics in which the interatomic potential functions
(predefined or fixed) are based on either empirical data or independent electronic
structure calculations. These potential functions may not be accurate enough,
especially for “chemically complex” system, of which the electronic structure and
thus the bonding pattern changes qualitatively in the course of the simulation. The
classical MD has been greatly extended by the family of techniques, named as ab
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initio MD or quantum MD. The basic idea underlying all ab initio MD methods
is to compute the forces acting on the nuclei from electronic structure calculations
that are performed “on-the-fly” as the MD trajectory is generated during the sim-
ulation. In other words, the electronic variables are not integrated out beforehand
but are considered as active degrees of freedom. It also means ab initio MD is
focusing on selecting a particular approximation in order to solve the Schrödinger
equation. The most popular electronic structure theory implemented within ab
initio molecular dynamics is the density functional theory (Car and Parrinello,
1985). Obviously, the ab initio molecular dynamics is much more computationally
demanding than the classical one; the bright side is that new phenomena, especially
of chemically complex systems, can be predicted or explained. Interested readers
are referred to the comprehensive work of Marx and Hutter (2000).

Problem Set 4-4

1. A strain gage rosette provides the following data: εx = 0.01, εy = 0.02, and ε30◦ = 0,
where ε30◦ is the strain of a line element at 30◦ to the x axis. Compute ε60◦ . Is the result
valid if the material is anisotropic? If it is inelastic?

2. Consider a solid body that has three mutually orthogonal planes of symmetry. Derive the
matrix for the elastic coefficients Cmn .

3. The stress–strain relations for an elastic body are

σx = C11εx + C12εy

σy = C12εx + C22εy

τxy = C33γxy

σz = τxz = τyz = 0

relative to axes (x, y, z), where Cij are elastic coefficients. Consider axes (x ′, y ′, z′)
obtained by a rotation of axes (x, y, z) through angle θ about the z axis. Express the
stress components σ ′

x, σ
′
y, τ

′
xy relative to axes (x ′, y ′, z′) in terms of strain components

ε′
x, ε

′
y , ε

′
xy relative to axes (x ′, y ′, z′), elastic coefficients Cij , and angle θ .

4. In Example 4-4.1 it is desired, because of shape considerations, to represent stress compo-
nents and strain components relative to axes (x1, y1), which are obtained by a rotation of
θ about axis z, which is perpendicular to the (x, y) plane. (Axes x, y, and z form a right-
handed coordinate system.) Determine the elastic coefficients relative to axis (x1, y1, z1)

for values of θ = 30◦ and 45◦.

4-5 Isotropic Media. Homogeneous Media

If the orientations of crystals and grains constituting the material of a solid body
are distributed sufficiently randomly, any part of the body will display essentially
the same material properties in all directions. If a solid body is composed of such
randomly oriented crystals and grains, it is said to be isotropic. Thus, isotropy may
be considered a directional property of the material. Accordingly, if a material body
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is isotropic, its physical properties at a point P in the body are invariant under a
rotation with respect to axes with origin at P . A medium is said to be elastically
isotropic if its characteristic elastic coefficients are invariant under any rotation of
coordinates.

If the material properties at a point in a medium depend on the direction con-
sidered, the body (material) is said to be nonisotropic, anisotropic, or aeolotropic.
Wood is an example of an anisotropic material.

If the material properties are identical for every point in a body, the body is said
to be homogeneous. In other words, homogeneity implies that the physical proper-
ties of a body are invariant under a translation. Alternatively, a body whose material
properties change from point to point is said to be nonhomogeneous. For example,
because in general the elastic coefficients are functions of temperature, a body
subjected to a nonuniform temperature distribution is nonhomogeneous. Accord-
ingly, the property of nonhomogeneity is a scalar property, that is, it depends only
on the location of a point in the body, not on any direction at the point. Conse-
quently, a body may be nonhomogeneous but isotropic. For example, consider a
flat plate sandwich formed by a layer of aluminum bounded by layers of steel. If
the point considered is in a steel layer, the material properties have certain val-
ues that are generally independent of direction. That is, the steel is essentially
isotropic. Furthermore, if the temperature is approximately constant throughout the
plate, the material properties do not change greatly from point to point. If the point
considered is in the aluminum, the material properties differ from those of steel.
Accordingly, taken as a complete body, the sandwich plate exhibits nonhomogene-
ity. However, at any point in the body, the properties are essentially independent
of direction.6

Analogously, a body may be nonisotropic but homogeneous. For example, the
physical properties of a crystal depend on direction in the crystal, but the properties
vary little from one point to another.7

If an elastic body is composed of isotropic material, the strain energy density
depends only on the principal strains (which are invariants), since for isotropic
materials the elastic coefficients are invariants under arbitrary rotations [see
Eq. (4-6.2)].

4-6 Strain Energy Density for Elastic Isotropic Medium

The strain energy density of an elastic isotropic material depends only on the
principal strains (ε1, ε2, ε3). Accordingly, if the elasticity is linear, Eq. (4-4.6)
yields

U = 1
2C11ε

2
1 + 1

2C12ε1ε2 + 1
2C13ε1ε3 + 1

2C12ε1ε2 + 1
2C22ε

2
2

+ 1
2C23ε2ε3 + 1

2C13ε1ε3 + 1
2C33ε

2
3 (4-6.1)

6An exception occurs at the boundaries (interfaces) between the aluminum layer and the steel layers.
Here, the body is nonisotropic in nature.
7For an extensive discussion of anisotropy and nonhomogeneity in crystals, see Nye (1987).
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As noted in Section 4-4, a strain energy density function U exists for either
adiabatic or isothermal deformations. However, the numerical values of the elastic
coefficients Cαβ differ in these two cases (Nye, 1987).

By symmetry, the naming of the principal axis is arbitrary. Hence, C11 = C22 =
C33 = C1 and C23 = C13 = C12 = C2. Consequently, Eq. (4-6.1) contains only two
distinct coefficients. Hence, for a linearly elastic isotropic material, the strain energy
density may be expressed in the form

U = 1
2λ(ε1 + ε2 + ε3)

2 + G
(
ε2

1 + ε2
2 + ε2

3

)
(4-6.2)

where λ = C2 and G = (C1 − C2)/2 are elastic coefficients called Lamé’s elastic
coefficients. If the material is homogeneous, λ and G are constants at all points.
In terms of the strain invariants [see Eq. (2-12.3)], Eq. (4-6.2) may be written in
the following form:

U = ( 1
2λ + G

)
J 2

1 − 2GJ2 (4-6.3)

Returning to arbitrary rectangular coordinates (x1, x2, x3) and introducing the gen-
eral definitions of J1 and J2 from Eq. (2-12.2), we obtain

U = 1
2λ(ε11 + ε22 + ε33)

2 + G
(
ε2

11 + ε2
22 + ε2

33 + 2ε2
23 + +2ε2

13 + 2ε2
12

)
(4-6.4)

Equations (4-3.2) and (4-6.4) now yield Hooke’s law for a linearly elastic isotropic
material in the form

σ11 = λe + 2Gε11 σ22 = λe + 2Gε22 σ33 = λe + 2Gε33

σ12 = 2Gε12 σ13 = 2Gε13 σ23 = 2Gε23
(4-6.5)

where e = u1,1 + u2,2 + u3,3 = J1 is the classical small-displacement cubical strain
[see Eq. (2-12.6)]. Thus, we have shown that for isotropic linearly elastic media,
the stress–strain law involves only two elastic coefficients. An analytic proof of the
fact that no further reduction is possible on a theoretical basis can be constructed
(Jeffreys, 1987; Love, 1944, Section 69).

In index notation, Eqs. (4-6.5) may be written in the form

σαβ = λe δαβ + 2Gεαβ (4-6.6)

where δαβ is the Kronecker delta (Chapter 1, Section 1-24). By means of
Eqs. (4-6.5), we find, with Eqs. (2-12.3) and (3-5.4), that

I1 = (3λ + 2G)J1

I2 = λ(3λ + 4G)J 2
1 + 4G2J2

I3 = λ2(λ + 2G)J 3
1 + 4λG2J1J2 + 8G3J3

(4-6.7)

which relate the stress invariants I1, I2, I3 to the strain invariants J1, J2, J3.
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Inverting Eqs. (4-6.5), we obtain

ε11 = 1

E
[(1 + ν)σ11 − νI1] ε22 = 1

E
[(1 + ν)σ22 − νI1]

ε33 = 1

E
[(1 + ν)σ33 − νI1]

ε12 = 1

2G
σ12 = 1 + ν

E
σ12 ε13 = 1

2G
σ13 = 1 + ν

E
σ13

ε23 = 1

2G
σ23 = 1 + ν

E
σ23

(4-6.8)

where

E = G(3λ + 2G)

λ + G
ν = λ

2(λ + G)
(4-6.9)

are elastic coefficients called Young’s modulus and Poisson’s ratio, respectively.
(For a physical interpretation of E and v, see Section 4-7.) In addition,

λ = νE

(1 + ν)(1 − 2ν)
G = E

2(1 + ν)
k = E

3(1 − 2ν)
(4-6.9a)

where k is the bulk modulus (see Problem 4-6.3).
Alternatively, Eqs. (4-6.5) may be written in terms of E and ν as

σ11 = E

(1 + ν)(1 − 2ν)
[(1 − 2ν)ε11 + νJ1]

σ22 = E

(1 + ν)(1 − 2ν)
[(1 − 2ν)ε22 + νJ1]

σ33 = E

(1 + ν)(1 − 2ν)
[(1 − 2ν)ε33 + νJ1]

σ12 = E

1 + ν
ε12 σ13 = E

1 + ν
ε13 σ23 = E

1 + ν
ε23

(4-6.10)

In index notation, we may write Eqs. (4-6.8) and (4-6.10) as

εαβ = 1 + ν

E
σαβ − ν

E
I1δαβ (4-6.11)

and
σαβ = E

1 + ν
εαβ + νE

(1 + ν)(1 − 2ν)
J1 δαβ (4-6.12)
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Substitution of Eqs. (4-6.8) into Eq. (4-6.4) yields the strain energy density U

in terms of stress quantities. Thus, we obtain

U = 1

2E

[
σ 2

11 + σ 2
22 + σ 2

33 − 2v(σ11σ22 + σ11σ33 + σ22σ33)

+ 2(1 + v)(σ 2
12 + σ 2

13 + σ 2
23)

]
= 1

2E

[
I 2

1 − 2(1 + ν)I2
]

(4-6.13)

If the axes (x1, x2, x3) are directed along the principal axes of strain , then
ε12 = ε13 = ε23 = 0. Hence, by Eqs. (4-6.5), σ12 = σ13 = σ23 = 0. Therefore, the
axes (x1, x2, x3) must lie along the principal axes of stress. Consequently, for an
isotropic material the principal axes of stress are coincident with the principal axes
of strain. Hence, when we deal with isotropic material, no distinction need be made
between principal axes of stress and principal axes of strain. Such axes are simply
called principal axes.

Similarly, in terms of G, v, Eq. (4-6.4) may be written

U = G

[
ν

1 − 2ν
J 2

1 + εαβεβα

]
α, β = 1, 2, 3 (4-6.14)

Example 4-6.1. Stress–Strain Relations for Fiber-Reinforced Material. In mod-
ern technology, materials called composites are designed with different properties
in different directions by embedding fiberlike elements in a matrix base. Usually,
the matrix properties differ from those of the fibers. The base matrix may be a
plastic, a metal, concrete, and so on, and the fibers may be fiberglass or polymer
filaments, metal strands, steel reinforcing bars, and the like. The fibers are often
laid in a particular pattern. For example, in Fig. E4-6.1, fiber reinforcements are
laid parallel to the x2 direction and at angle ±α relative to the x1 direction.

To compute the strain energy density function of the composite, we require the
strains of the fibers as well as the strains of the matrix [Eqs. (4-6.4)]. Because
the strain energy density function is a scalar quantity, we may compute the strain
energy density for the fibers and the matrix separately and add the energies to
obtain the strain energy density for the composite. We assume that the pattern of
fibers does not change in the direction perpendicular to the plane of Fig. E4-6.1.

The strain energy of a fiber may be computed by considering the fiber to act as
a tension member. Hence, the strain energy of oblique bars per unit volume (per
unit area of surface in x1, x2 plane, per unit thickness perpendicular to the x1, x2

plane) is
U0 = 1

2E0a0ε
2
0 (E4-6.1)

where E0 is the modulus of elasticity of a fiber, a0 is the cross-sectional area of
a fiber per unit width perpendicular to the fiber direction, per unit thickness, and
ε0 is the strain of an oblique fiber. By Eq. (2-7.2), the strain ε0 in terms of strain
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Figure E4-6.1

components ε11, ε12, ε22 relative to axes x1, x2 (we neglect the effects of strains
ε13, ε23, ε33 on the fibers) is

ε0 = ε11 cos2 α + ε22 sin2 α + ε12 sin 2α (E4-6.2)

To obtain the strain energy of the oblique fibers, we substitute Eq. (E4-6.2) into
Eq. (E4-6.1) with α = +α (fibers of positive slope) and with α = −α (fibers of
negative slope), and add the results. Thus the strain energy U0 of oblique fibers is

U0 = E0a0[(ε11 cos2 α + ε22 sin2 α)2 + ε2
12 sin2 2α] (E4-6.3)

Similarly, the strain energy of the horizontal fibers is

Uh = 1
2E0ahε

2
22 (E4-6.4)

where ah for the horizontal fibers is equivalent to a0 for the oblique fibers.
Assuming a condition of plane stress exists in the matrix (i.e., σ33 = σ13 =

σ23 = 0; see Chapter 3, Section 3-7), by Eqs. (4-6.13) and (4-6.5) we obtain the
strain energy of the matrix as

Um = Em

2(1 − ν2)

[
ε2

11 + ε2
22 + 2νε11ε22 + 2(1 − ν)ε2

12

]
(E4-6.5)
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Hence, the total strain energy density is U = Um + U0 + Uh. Accordingly, by
Eq. (4-3.1), we obtain the stress–strain relations

σ11 = C11ε11 + C12ε22

σ22 = C12ε11 + C22ε22

σ12 = C33ε12

(E4-6.6)

where
C11 = Em

1 − ν2
+ 2E0a0 cos4 α

C12 = νEm

1 − ν2
+ 2E0a0 sin2 α cos2 α

C22 = Em

1 − ν2
+ 2E0a0 sin4 α + E0ah

C33 = Em

1 + ν
+ 4E0a0 sin2 α cos2 α

(E4-6.7)

The elastic coefficients Cij of Eq. (E4-6.7) define the anisotropic nature of the
composite, as four coefficients are required to describe the material response.

Example 4-6.2. Further Restrictions on the Elastic Coefficients. The strain energy
of a material must be positive, otherwise the material would be unstable. This
fact means that the quadratic form that represents the strain energy density U

in terms of strain components, Eq. (4-4.6), must be positive definite (Langhaar,
1989). [See Section 4.16, Eq. (4-16.1) for a definition of positive definite.] In order
for U to be positive definite, the discriminants of the matrix of coefficients Cαβ ,
Eq. (4-4.8), must all be positive (Hildebrand, 1992). This condition places further
restrictions on the elastic coefficients.

For example, for the case of Example 4-6.1, the coefficients Cij form the array

⎛
⎝C11 C12 0

C12 C22 0
0 0 C33

⎞
⎠ (a)

Hence, they must satisfy the conditions

C11 > 0 C11C22 − C2
12 > 0 C33(C11C22 − C2

12) > 0 (b)

for U to be positive definite. Because ν, Em, E0, a0, ah are positive quantities and
ν < 1

2 , Eq. (b) is satisfied with the definition of Cij given by Eq. (E4-6.7).
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Problem Set 4-6

1. Displacement components are given by the formulas u1 = 0, u2 = C1x3, and u3 = C2x2,
where C1 and C2 are nonzero constants. What restrictions must be placed on C1, C2 in
order that these displacement components may exist for a real body? Derive the strain
components of the strain tensor. For small deflections, determine the state of stress that
exists in the body if the body is linearly elastic and isotropic. Locate the principal axes
of strain and the principal axes of stress.

2. The coordinate axes x and y on the free unloaded surface of a linearly elastic isotropic
body are principal directions. At what angle θ relative to the x axis must a strain gage be
place in order that direct measurement of the principal stress σx be made with this gage,
that is, so that σx = Kεg? Assume that the elastic coefficients of the material are known.

3. For an isotropic elastic medium subjected to a hydrostatic state of stress, σ11 = σ22 =
σ33 = −p, σ12 = σ13 = σ23 = 0, where p denotes pressure. Show that for this state of
stress p = −ke, where e is the cubical strain and k = E/[3(1 − 2ν)] is called the bulk
modulus. Discuss the case ν > 1

2 , ν < −1. [See also Love (1944), Section 70.]

4. Three strain gages are located on the free surface of a deformed body as shown in
Fig. P4-6.4. The extensional strains measured by gages a, b, and c are εa, εb, and εc,
respectively.

(a) Derive an expression for the strain components ε11, ε22, and ε12 in terms of εa, εb,
and εc.

(b) Assume that the material is linearly elastic and isotropic. Express the stress compo-
nents σx, σy , and τxy on the surface in terms of εa, εb, and εc and elastic constants
v and E.

(c) Assume that the direction 1 is a principal direction of strain. Express the angle θ in
terms of εa, εb, and εc.

Figure P4-6.4
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5. An elastic medium subjected to a state of stress σij deforms incompressibly (J1 = 0).
Consider rectangular Cartesian coordinate axes (x, y, z).

(a) Assume that σ11 + σ22 + σ33 �= 0. Determine the value of ν, Poisson’s ratio, for the
material.

(b) Assume additionally that ε33 = 0. Show that two values of ν are theoretically pos-
sible. Determine these two values of ν.

6. A strain gage rosette is attached on a point of the free unloaded surface of an elastic
isotropic body (Fig. P4-6.6). Under deformation of the body, the strain gages in arms
1, 2, 3 record strains ε1, ε2, ε3, respectively. In terms of ε1, ε2, ε3 and angle θ , derive
expressions for the strain components εx, εy, εz, γxy, γxz, γyz, and derive expressions for
the stress components σx, σy, σz, τxy, τxz, τyz at the point.

Figure P4-6.6

7. The skewed plate of unit thickness is loaded by uniformly distributed stress S1 and S2

applied perpendicularly to the sides of the plate (see Fig. P4-6.7).

Figure P4-6.7
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(a) Determine all possible conditions of equilibrium for the plate in terms of S1, S2, a, b,
and θ .

(b) For θ = 90◦, derive an expression for the elongation of the diagonal AC under the
action of the stresses S1 and S2, assuming that the material is linearly elastic and
isotropic.

8. In Fig. P4-6.7 let the stresses S1 and S2 be applied so that they are directed parallel to
the edges AB (or DC ) and AD (or BC ) of the skewed plate. Derive expressions for the
principal stresses and the principal strains in terms of S1, S2, a, b, θ, E, and ν, where E

and ν denote Young’s modulus and Poisson’s ratio, respectively.

9. The following strains have been measured at a point on the free (unloaded ) surface of
an elastic isotropic body:

Direction Angle φ Strain ε

1 0◦ 0.002
2 120◦ 0.002
3 120◦ −0.001

Determine the principal strains in the plane of the surface and the principal directions
of strain.

10. A strain rosette is used to determine the strain on a free (unloaded) surface of an isotropic
elastic body (Fig. P4-6.10). The modulus of elasticity is E = 107 psi. Poisson’s ratio is
ν = 0.25. The measured strains in directions (a, b, c) are εa = 0.0002, εb = 0.0001, and
εc = 0.0004. Determine the principal stresses and their directions relative to direction a.

Figure P4-6.10

11. The following strains have been measured at a point on the free (unloaded ) surface of
a body

Direction Angle φ Strain ε

1 0◦ 0.002
2 120◦ 0.002
3 240◦ −0.001



4-6 STRAIN ENERGY DENSITY FOR ELASTIC ISOTROPIC MEDIUM 265

Determine the principal strains in the plane of the surface and the principal directions
of strain. Assume the body is isotropic but not necessarily elastic. Discuss the solution
of this problem for the elastic anisotropic body.

12. Strains have been measured by three strain gages at a point P on the free surface of
a plate that lies in the (x, y) plane. The measured strains are C, 3C, and 2C along the
three directions that form the angles 0◦

, 60◦, and 120◦, respectively, with the positive
x axis. With the assumption that the material is isotropic, it may be shown that at
P the direction normal to the plane of the plate (the x, y plane) is a principal strain
direction. Let this principal strain be denoted by ε3. Determine the strain components
εx, εy, εz, γxy, γxz, γyz relative to the rectangular Cartesian axes (x, y, z), where z is
perpendicular to the plate.

To check the strain measurements, a fourth gage is placed in the direction form-
ing the angle 270◦ with the positive x axis, and the plate is reloaded. The measured
strains are now C, 3C, 2C, and 2C, respectively, in the directions 0, 60, 120, and 270◦.
Calculate the strain components and compare them to the previously determined strain
components. Comment on this result.

13. Let yi denote rectangular Cartesian coordinate lines that coincide at any point P (in an
isotropic, elastic medium) with the tangent lines to orthogonal curvilinear coordinate
lines xi (Fig. P4-6.13). Let σαβ and εαβ denote components of the stress tensor and
the strain tensor, respectively, relative to planes perpendicular to the tangent lines at P

to coordinate lines (x1, x2, x3). Noting the invariant form of the strain energy density
function U (Section 4-6), employ the relation between stress components and the strain
energy density function (Section 4-3) to derive the stress–strain relations for axes xi .
For cylindrical coordinates (x1 ≡ r, x2 ≡ θ, x3 ≡ z), show that σr = λ(εr + εθ + εz) +
2Gεr , with similar relations for σθ , σz, and τrθ = Gγrθ , τrz = Gγrz, τθz = Gγθz.

Figure P4-6.13
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14. A state of plane strain relative to the (x, y) plane is defined by u = u(x, y), v =
v(x, y),w = 0. The strain energy density U0 of a certain crystal undergoing plane strain
is given by

U0 = 1
2

(
b11ε

2
x + b22ε

2
y + b33γ

2
xy + 2b12εxεy + 2b13εxγxy + 2b23εyγxy

)
where bij , i, j = 1, 2, 3, are elastic coefficients. For small-displacement theory, derive
the differential equations of equilibrium in terms of (u, v) for plane strain of the crystal,
including the effects of body forces.

4-7 Special States of Stress

Simple Tension. To interpret the Lamé constants λ and G, we consider a body
in the following state of stress relative to axes (x, y, z):

σx = σy = τxy = τyz = τyz = 0 σz = const = σ

When this state of stress exists in a cylindrical or prismatic bar whose axis is
parallel to the z axis, the stress on the lateral boundary vanishes. On the ends, the
normal stress is σ , and the shearing stress is zero. Hence, this is the state of stress
in a bar under simple tension.

Equations (4-6.5) yield λe + 2Gεx = λe + 2Gεy = γxy = γxz = γyz = 0 and
λe + 2Gεz = σ , where εx = ε11, εx = ε11, and so on. Solving the equations for
the ε’s, we obtain

εx = εy = − λσ

2G(3λ + 2G)

εz = (λ + G)σ

G(3λ + 2G)

(4-7.1)

It follows that
−εx

εz

= −εy

εz

= λ

2(λ + G)
= ν (4-7.2)

The quantities

E = G(3λ + 2G)

λ + G
and ν = λ

2(λ + G)
(4-7.3)

are called Young’s modulus of elasticity and Poisson’s ratio, respectively. In terms
of ν and E, Eq. (4-7.1) becomes

εx = εy = −νσ

E
εz = σ

E
(4-7.4)

Solving Eqs. (4-7.3) for λ and G in terms of the readily measurable quantities E

and ν, we obtain

G = E

2(1 + ν)
λ = νE

(1 + ν)(1 − 2ν)
(4-7.5)
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Integrating Eqs. (4-7.4) and disregarding an arbitrary rigid-body displacement,
we obtain the displacement vector

u = −vσ

E
x v = −vσ

E
y w = σ

E
z (4-7.6)

Because (u, v, w) are linear functions of the coordinates (x, y, z), this type of strain
is homogeneous (see Chapter 2, Section 2-14).

Pure Shear. Consider the state of pure shear characterized by the stress compo-
nents σx = σy = σz = τxy = τxz = 0, τyz = τ = constant. For this state of stress,
Eqs. (4-6.5) yield

λe + 2Gεx = λe + 2Gεy = λe + 2Gεz = γxy = γxz = 0 γyz = τ

G

Solving these equations for the strain components, we obtain

εx = εy = εz = γxy = γxz = 0 γyz = τ

G

These formulas show that a rectangular parallelepiped ABCD (Fig. 4-7.1) whose
faces are parallel to the coordinate planes is sheared in the yz plane so that the
right angle between the edges of the parallelepiped parallel to the y and z axes
decreases by the amount γyz. For this reason, G is called the shear modulus of
elasticity.

Example 4-7.1. Elimination of Friction Effect in a Uniaxial Compression Test. In
a uniaxial compression test, the effect of friction between the test specimen and the
testing machine platens may be eliminated by a properly designed experiment. One
way to eliminate the effect of friction is to design the specimen and/or machine

Figure 4-7.1
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platens so that (1) the cross sections of the specimen and the end platens are
the same, and (2) a certain relation exists between the material properties of the
specimen and the platens.

To illustrate this point, let quantities associated with the specimen be denoted
by subscript s and those associated with the platens by subscript p. Let P be the
load applied to the specimen through the end platens. Because the cross-sectional
shapes of the specimen and the platens are the same, we denote the areas by A. Let
coordinate z be taken along the longitudinal axis of the specimen, and coordinate x

be perpendicular to axis z. Then, under a machine load P , the longitudinal strains
in the specimen and platens, respectively, are

(εz)s = P

EsA
(εz)p = P

EpA
(a)

The associated lateral strains are

(εx)s = −νs(εz)s = − νsP

EsA
(εx)p = −νP (εz)p = − νpP

EP A
(b)

If the lateral strains in the specimen and the platens are equal, they will expand
laterally the same amount, thus eliminating friction that might be induced by the
tendency of the specimen to move laterally relative to the platens. Hence, by
Eq. (b) the requirement for friction to be nonexistent is that (εx)s = (εx)p, or

νs

Es

= νp

Ep

(c)

Therefore, in addition to identical cross sections of specimen and platens, the
moduli of elasticity and Poisson’s ratios must satisfy Eq. (c). Thus, in order to
reduce the effect of friction on the test results, it is essential to select the material
properties of the platens to satisfy Eq. (c) as closely as possible (Cook, 1962).
In addition, to ensure uniform axial stress at the interfaces of the ends of the
specimen and the platens, the length of a platen should be about the same as the
maximum dimension of its cross section.

Problem Set 4-7

1. Let isotropic elastic material in the (x, y) plane be subjected to the stress components
σ11 = 0, σ22 = σ, σ12 = τ . Let u1 = u2 = ω = 0 for x1 = x2 = 0, where (u1, u2) denote
(x1, x2) displacement components and ω denotes volumetric rotation.

(a) Show that the circle x2
1 + x2

2 = a2 is deformed into an ellipse.

(b) For the case τ = 0, show that the major and minor axes of the ellipse coincide with
the (x1, x2) axes, and express their lengths in terms of a and the elastic properties of
the material.

2. The strain energy density U of a linearly elastic material is given by the relation U =( 1
2 λ + G

)
J 2

1 − 2GJ2, where (λ,G) are the Lamé elastic constants and (J1, J2) are the
first and second strain invariants.
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(a) Employing the relation between U and the stress components σα , derive the
stress–strain relations for a state of plane strain ε33 = ε23 = ε13 = 0 relative to the
(x1, x2) plane.

(b) Repeat part (a) for a state of plane stress σ33 = σ13 = σ23 = 0.

3. Derive results equivalent to Eqs. (4-7.1) through (4-7.6) for the case of hydrostatic com-
pression σ11 = σ22 = σ33 = −p, σ12 = σ23 = σ31 = 0, where p is pressure.

4. Relative to axes (x, y, z), let u = w = 0 and v = kz, where k is a constant. Show that
this case (simple shear) differs from that of pure shear by a rigid-body rotation.

5. The volumetric strain or dilatation e is equal to the strain invariant J1 [Eq. (2-12.6)].
What is the dilatation for the cases of (a) simple tension and (b) pure shear?

4-8 Equations of Thermoelasticity

The classical study of thermoelasticity is concerned with the distribution of
stress (or strain) in a solid subjected to a nonuniform temperature distribution
T (x, y, z)—that is, a temperature distribution that is not linear in (x, y, z)—or
in a solid that is physically or geometrically constrained and then subjected to a
uniform or nonuniform temperature change.

The subject was initially formulated by Duhamel (1837, 1838) when he derived
equations for the distribution of strain in an elastic medium containing temper-
ature gradients. Duhamel’s results were subsequently reformulated by a number
of authors. Finally, Neumann (1885) presented the theory of thermal stress in the
following way.

Consider an isotropic elastic solid in an arbitrary state of stress. Let a small ele-
ment of the solid be detached from its surroundings. Let the element be subjected to
a temperature change T . The additional straining in the element is given by the com-
ponents ε′

ij = kT δij , where k is the coefficient of linear thermal expression for the
solid and δij is the Kronecker delta (see Chapter 1, Section 1-26). Consequently, if
the net strain in the body is denoted by the components of the strain tensor δij , then
the portion of the strain produced by the stress is characterized by the components
εij − kT δij . To arrive at a stress–strain–temperature relation, one then replaces the
components εij by the components εij − kT δij in the generalized Hooke’s law. In
Section 4-12 we will see that by modifying the stress–strain relations in this manner
and expressing the equilibrium conditions in terms of displacement components,
we obtain the result that the usual displacement equilibrium equations are modified
by a body force Ek ∇T /(1 − 2ν) per unit volume, where E is Young’s modulus of
elasticity and ν is Poisson’s ratio. Furthermore, we must superimpose on the load
stress a “hydrostatic stress” equal to −EkT/(1 − 2ν); and finally, we must superim-
pose a surface traction with (x, y, z) components EkTl/(1 − 2ν), EkTm/(1 − 2ν),
and EkTn/(1 − 2ν), where l, m, n denote the (x, y, z) components of the unit nor-
mal vector to the surface. In other words, if T is a known function (found by
solving the heat conduction equation; see Section 4-9), the thermoelasticity prob-
lem reduces to determination of the displacement field from a determinate set
of equations.
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Duhamel applied the basic theory outlined above to a number of specific prob-
lems. Later Neumann and others used the theory to study the double refracting
property of nonuniformly heated glass plates. In these investigations a number
of techniques were developed for the solution of thermoelasticity boundary value
problems. Although for a long time these methods appeared to be more or less
academic, recently the study of thermal stress has been stimulated by practical
problems, and it has become an increasingly important factor in the design of
components of modern structures and machines that undergo heating.

As implied in the foregoing, the classical Duhamel–Neumann theory of ther-
mal stress assumes that although the state of strain of an elastic solid is affected
by a nonuniform temperature distribution, the heat conduction process is unaf-
fected by a deformation. This assumption is true if the system is in mechanical
and thermal equilibrium. However, it is an approximation in the time-dependent
thermal problem because then the acceleration terms cannot vanish identically as
implied by the Duhamel–Neumann theory. Ordinarily, the thermal acceleration
effects are small. Nevertheless, application of the Duhamel–Neumann theory to the
transient thermal problem leads to inconsistencies that cannot be resolved within
the scope of this theory because elastic and thermal constants that appear in the
Duhamel–Neumann formulation are defined under conditions that are not met in the
transient case.

An extensive discussion of the dynamical theory of thermoelasticity has been
given by Chadwick (1960). The theory has been generalized to encompass the
transient problem by Biot (1956) through application and further development of
the methods of irreversible thermodynamics, including the thermoelastic potential
and the minimum entropy production principle. A survey of mathematical methods
and techniques of treating thermoelastic problems has been presented by Parkus
(1963).

In the following articles we restrict ourselves to classical thermoelasticity theory
as developed by Duhamel and Neumann. Comprehensive treatises on thermoelas-
ticity have been written by Boley and Weiner (1997) and by Nowacki (1986).

4-9 Differential Equation of Heat Conduction

For a large class of problems, temperature distribution in a solid may be calculated
by solving the heat conduction equation, subject to the geometrical and tempera-
ture boundary conditions (Carslaw and Jaeger, 1986). In general, the temperature
distribution T will depend on time t . However, unless the inertia effects that arise
as a result of a suddenly applied temperature change are significant, time t enters
the thermal-stress problem only as a passive parameter. The problem may then be
treated as a quasi-static one, as the temperature distribution enters into the thermal-
stress calculation as an integral load function. Accordingly, for a large class of
problems, the temperature distribution may be expressed functionally as

T = T (x, y, z; t)
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where (x, y, z) denote rectangular Cartesian coordinates and t denotes time. For
a given time t = t1, the above equation defines the temperature distribution as a
function of coordinates (x, y, z).

By the theory of heat, the temperature T (x, y, z; t) that exist at a point (x, y, z)

of a thermally isotropic homogeneous body referred to rectangular Cartesian coor-
dinates is determined by the partial differential equation

∂T

∂t
= κ∇2T + Q

cρ
(4-9.1)

where ∇2 denotes the Laplacian operator

∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
(4-9.2)

In Eq. (4-9.1), ρ denotes the mass density; c denotes the specific heat, that is, the
quantity of heat that is necessary to raise the temperature of a unit mass 1◦C. The
term κ is the temperature diffusivity. It is defined by the ratio

κ = α

cρ
(4-9.3)

where α is the thermal conductivity. In turn, α is related to the quantity of heat dq
that flows through a surface element �S with normal n during the time dt by the
relation

dq = −α
dT

dn
�S dt (4-9.4)

In the following, we consider mainly thermally isotropic and homogeneous bod-
ies. Hence, ordinarily α depends on neither direction nor location in the body.
Additionally, if it is assumed that α and c do not depend on temperature or stress
level, they remain constant. If the temperature gradient is not too great, this last
assumption is permissible. However, if large temperature gradients occur, it may
be necessary to consider variations of α and c with temperature.

The term Q in Eq. (4-9.1) represents the quantity of heat per unit time and
unit volume that is produced by heat sources that lie in the interior of the volume
element. A unit volume dV produces accordingly the quantity of heat Q dV dt

during time dt.
If the temperature distribution is independent of time, we speak of a stationary or

steady-state temperature distribution. Equation (4-9.1) then reduces to the Poisson
equation of potential theory:

∇2T + Q

α
= 0 (4-9.5)

In the absence of heat sources in the body, Q = 0. Hence, for steady-state heat
flow in the absence of heat sources, the temperature distribution in the body must
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satisfy the equation
∇2T = 0 (4-9.6)

Equation (4-9.6) is subject to the temperature conditions on the surface of the body.
The temperature distribution is not determined completely by Eqs. (4-9.1) to

(4-9.6). For nonsteady heat flow, an initial temperature distribution (at t = 0) must
be specified. The initial temperature distribution may be a continuous or a discon-
tinuous function of the coordinates; that is, T (x, y, z; 0) = f (x, y, z).

The boundary conditions of the problem depend on the effect that the environ-
ment of the body exerts on its surface. The equations describing this effect must be
known at each point on the surface. The boundary conditions are in their simplest
form when the temperature T0 on the surface is given as a function of position
and time. However, they can also be specified in terms of heat flow, that is, in
terms of the quantity of heat that flows through the surface as a function of time
[Eq. (4-9.4)]. Finally, as is common, but also mathematically more difficult, the
boundary conditions may be represented in terms of the temperature θ of the
environment by the law of heat exchange between the surface of the body and its
environment. To formulate the problem mathematically, an approximation attributed
to Newton is often used:

∂T

∂n0
= e

α
(θ − T0) (4-9.7)

Equation (4-9.7) relates the temperature gradient on the surface of the body to
the temperature difference between the surface of the body and its environment.
The ratio e/α is called the relative emissivity , and e is called the emissivity of the
surface.

4-10 Elementary Approach to Thermal-Stress Problem in One
and Two Variables

Consider an infinitesimal element dx of a solid body. Initially, let the temperature
of the element be T0. The temperature T0 is considered to be that temperature for
which the length of the element is dx. For simplicity, let us take T0 = 0 because
the elongation of the element depends on differences between existing temperature
in the element and temperature T0. Let the element be subjected to temperature T .
Then, the element will undergo an infinitesimal elongation de (provided T is pos-
itive; for negative T , a contraction occurs). By the theory of heat, the elongation
de is related to the temperature T by the equation

de = kT dx (a)

where k is the coefficient of thermal expansion for the material of the element. In
general k is a function of temperature T . For example, for crystals the following
relation between k and T is often used:

k = a + bT + cT 2 (b)



4-10 ELEMENTARY APPROACH TO THERMAL-STRESS PROBLEM 273

where T is temperature in degrees Celsius and where a, b, c are constants with mag-
nitudes of the order 10−6, 10−8, 10−11, respectively. Theoretically, the coefficient
of thermal expansion for a material is defined by the relation

k = 1

LT

dL

dT
(c)

where LT denotes the length of the element for temperature T . Usually, k is
determined experimentally by employing the relation

k = 1

L0

�L

�T
(d)

where k denotes an average value of k, �L denotes the finite change in length of
the element for the finite change in temperature �T , and L0 denotes the length of
the element at some temperature, say, room temperature. Accordingly, the constants
a, b, c of Eq. (b) are not generally well defined, although average values for certain
materials are often employed in practice. Furthermore, in the development of the
theory of thermoelasticity, we find that k enters into the equations only in the
product form kT. Consequently, we may account for variations of k with T by
setting T = kT and considering T as a pseudotemperature parameter for the body;
that is, the variation of k with T may be accounted for by replacing the product
kT by the parameter T .

By Eq. (a), the strain in the fiber resulting from T is

ε = de

dx
= kT (e)

In general, a temperature change in the element will not produce stress in the
element unless either the element is physically prevented by forces from expanding
or, if physically free to expand, it is unable to expand in a manner compatible with
the temperature distribution in the element. For example, if the element is restrained
so that its length is unchanged under a temperature increase of T , forces P must act
at its ends (Fig. 4-10.1). Figuratively speaking, we imagine that first the element
is allowed to elongate a distance de. Then by application of forces P , the element
is returned to its initial length dx. Hence, to compute the stress induced in the
element by the temperature change T when its ends are restrained from moving,
we compute the stress σ induced in the element by forces P under compression
de. Hence,

σ = P

A
= −Eε (f)

where A is the cross-sectional area of the element and E is the modulus of elasticity
of the material.

By Eqs. (e) and (f) we obtain

σ = −EkT (g)

where the minus sign denotes compression.
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Figure 4-10.1

Thermal-Stress Problems in Beams. The above argument may be applied to
elementary beam (strip) problems. For example, consider a rectangular strip in the
(x, y) plane (Fig. 4-10.2). Let the strip be subjected to a temperature distribution
T = T (y), even in y. Then the resulting elongation of the strip is symmetrical with
respect to axis (x). Now on each infinitesimal longitudinal element dx of the strip,
we imagine that the stress

σ ′
x = −EkT (h)

acts. If the strip is prevented from elongating, Eq. (h) determines the normal stress
component in the x direction. In elementary beam theory, the stress components
σy, σz, τxz, τyz are neglected. Furthermore, if the weight of the beam is neglected

Figure 4-10.2
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Figure 4-10.3

and no other loads act, there is no shear stress τxy . Hence, the stress of elementary
beam theory is given completely in this case by Eq. (h).

If the beam is free to expand, that is, if it is free of forces at its ends, the stress
σx must vanish on the ends. For a beam with free ends, the end stress due to σ ′

x

[Eq. (h)] is σx = −EkT , where T is evaluated at the ends. Accordingly, to eliminate
the boundary forces, we need to add a distributed stress EkT over the ends of the
beam. It follows by Saint-Venant’s principle (see Section 4-15) that the stress σ ′′

x

at some distance from the ends (a distance several times the depth 2c of the strip)
resulting from the distributed load EkT is for a beam of unit thickness (Fig. 4-10.3),

σ ′′
x = 1

2c

∫ c

−c

EkT dζ (i)

Hence, except near the ends, the stress σx in the beam is obtained by superposition
of σ ′

x and σ ′′
x ; that is,

σx = σ ′
x + σ ′′

x = 1

2c

∫ c

−c

EkT dζ − EkT (j)

Equation (j) is valid for variable k and E; that is, k and E may be functions of
temperature T or coordinate y. If EkT is a constant, Eq. (j) yields σx = 0. Hence,
if the free strip is subjected to a constant temperature change and if E and k are
constant, no stress is induced. The beam simply elongates with no stress.

If the temperature distribution is nonsymmetrical with respect to the longitudinal
axis of the beam, T = T (y) is an odd function of y. Accordingly, the end forces
EkT give rise to a resultant moment M that alters the stress σx in the beam.

By theory of moments (Fig. 4-10.3),

M =
∫ c

−c

EkTζ dζ (k)

The moment M produces stress σ ′′′
x in the beam. If we assume that this stress varies

linearly with respect to y, as is done in elementary beam theory, we may write

σ ′′′
x = σy

c
(l)
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where σ denotes the value of σ ′′′
x at y = c. The moment M may also be expressed

in terms of σ ′′′
x as

M =
∫ c

−c

σ ′′′
x ζ dζ (m)

Equations (k), (l), and (m) yield

σ ′′′
x = y

I

∫ c

−c

EkT ζ dζ (n)

where I = 2c3/3 denotes the moment of inertia of the area of the cross section of
the beam with respect to the z axis. Equation (n) is restricted to a linear distribution
of stress across the cross section of the beam (the beam has unit thickness).

The net stress in the beam may be obtained by superposition of the stresses
σ ′

x, σ ′′
x , σ ′′′

x . Thus, for a beam with free ends and with rectangular cross section, the
stress resulting from a temperature distribution T (y) is given by the relation

σx = −EkT + 1

2c

∫ c

−c

EkT dζ + 3y

2c3

∫ c

−c

EkT ζ dζ (o)

Equation (o) holds for the plane-stress problem (σz = 0) of rectangular strips.
For plane-strain problems (εz = 0), it may be shown that

σx = −EkT

1 − ν
+ 1

2c

∫ c

−c

EkT

1 − ν
dζ + 3y

2c3

∫ c

−c

EkT

1 − ν
ζ dζ (p)

where ν denotes Poisson’s ratio for the material.

Problem Derive Eq. (p).

4-11 Stress–Strain–Temperature Relations

The equilibrium equations and the strain–displacement relations remain valid in
thermal-stress problems, as they are independent of material properties. However,
the stress–strain relations are altered by temperature.

If a body is subjected to a temperature change T , and if the body is allowed
to expand freely, a line element of length ds in the body is elongated to a length
(1 + kT ) ds, where k is the coefficient of thermal expansion. For thermal isotropic
bodies, k is independent of the direction of ds. Additionally, for a number of
structural materials, k remains fairly constant for a wide range of temperature (see
Section 4-10). Hence, unless large temperature gradients occur, k may be taken as
a constant.
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It has been observed that k also depends on the stress level (Rosenfeld and
Averbach, 1956). Although this effect is not included in the subsequent discus-
sion, it may be of considerable importance, as the experiments of Rosenfeld and
Averbach (1956) show that k for steel may increase as much as 10% in the elastic
range for a tensile-stress change of 40,000 psi (13.8 MPa). They also observed that
the coefficient of thermal expansion of Invar in the elastic range decreased with
increasing tensile stress. Accordingly, for certain temperature ranges the variation
of k with stress may be more significant than variations of material properties
with temperature. Variations in k can be treated numerically. Further study of the
dependency of k on stress level is needed.

Under the above assumptions, for a thermally isotropic body the angles of an
infinitesimal rectangular parallelepiped remain unchanged. Hence, the strains in
perpendicular directions are equal, and the shearing strains are zero. Consequently,
the strain–temperature relations for a body subjected to the temperature change T

are, with respect to rectangular Cartesian coordinates (x1, x2, x3),

ε′
11 = ε′

22 = ε′
33 = kT ε′

12 = ε′
13 = ε′

23 = 0 (4-11.1)

or, in index notation,
ε′

ij = kT δij (4-11.2)

where k denotes the linear coefficient of thermal expansion of the material and
δij denotes the Kronecker delta (Chapter 1, Section 1-26). For a nonhomoge-
neous body, k may be a function of coordinates and of temperature; that is,
k = k(x1, x2, x3; T ).

Now let the body be subjected to forces that induce stresses δij in the body.
Accordingly, if δij denote the strain components in the body after the application
of the forces, the net change in strain produced by the forces is represented by the
equations

ε′
ij = εij − kT δij (4-11.3)

In general, T may depend on the location in the body and on time t . Hence,
T = T (x1, x2, x3; t).

Substitution of Eqs. (4-11.3) into Eqs. (4-6.5) yields

σ11 = λe + 2Gε11 − cT σ22 = λe + 2Gε22 − cT

σ33 = λe + 2Gε33 − cT σ12 = 2Gε12 σ13 = 2Gε13

σ23 = 2Gε23

(4-11.4)

where
c = (3λ + 2G)k = E

1 − 2ν
k (4-11.5)
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Similarly, substitution of Eqs. (4-11.3) into Eq. (4-6.8) yields

ε11 = 1

E
[σ11 − ν(σ22 + σ33)] + kT

ε22 = 1

E
[σ22 − ν(σ11 + σ33)] + kT

ε33 = 1

E
[σ33 − ν(σ11 + σ22)] + kT

ε12 = 1 + ν

E
σ12

ε13 = 1 + ν

E
σ13

ε23 = 1 + ν

E
σ23

(4-11.6)

or, in index notation [see Eq. (4-6.1)],

εij = 1

E
[(1 + ν)σij − (νI1 − EkT )δij] i, j = 1, 2, 3 (4-11.7)

where I1 = σ11 + σ22 + σ33 is the first stress invariant and δij is the Kronecker
delta. Finally, substituting Eqs. (4-11.6) into Eqs. (4-6.3) and (4-6.4), we find

U = ( 1
2λ + G

)
J 2

1 − 2GJ2 − cJ1T + 3
2ckT 2 (4-11.8)

In terms of the strain components [see Eqs. (2-12.2) in Chapter 2 and (4-6.4)],
we obtain

U = 1
2λ(ε11 + ε22 + ε33)

2 + G(ε2
11 + ε2

22 + ε2
33 + 2ε2

12 + 2ε2
13 + 2ε2

23)

− c(ε11 + ε22 + ε33)T + 3
2ckT 2 (4-11.9)

Equations (4-11.4) and (4-11.6) are the basic stress–strain relations of classi-
cal thermoelasticity for isotropic materials. For temperature changes T , the strain
energy density is modified by a temperature-dependent term that is proportional to
the volumetric strain e = J1 = ε11 + ε22 + ε33 and by a term proportional to T 2

[Eqs. (4-11.8) and (4-11.9)].
We find by Eqs. (4-11.6) and (4-11.9) [or Eqs. (4-11.7) and (4-11.8)] that

U = 1

2E

[
I 2

1 − 2(1 + ν)I2
]

(4-11.10)

and
U = 1

2E

[
σ 2

11 + σ 2
22 + σ 2

33 − 2ν(σ11σ22 + σ11σ33 + σ22σ33)

+ 2(1 + ν)(σ 2
12 + σ 2

13 + σ 2
23)

]
(4-11.11)
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in terms of stress components. Equation (4-11.11) does not contain T explicitly.
However, the temperature distribution may affect the stresses.

In index notation, we may write Eqs. (4-11.9) and (4-11.11) in the forms

U = Gεαβεβα + νG

1 − 2ν
(εαα)2 − E

1 − 2ν
kT εαα + 3Ek2T 2

2(1 − 2ν)
(4-11.12)

and
U = 1

4G
σαβσβα − ν

2E
(σαα)2 (4-11.13)

where we have written U as a symmetric function of εαβ, σαβ [see Section 4-4 and
Eq. (4-4.21)].

Example 4-11.1. Stress–Strain–Temperature Relations for Beryllium. The
Cartesian stress and strain tensors are denoted by (σ11, σ22, σ33, σ12, σ13, σ23) or
(s1, s2, s3, s4, s5, s6) and (ε11, ε22, ε33, ε12, ε13, ε23) or (e1, e2, e3,

1
2e4,

1
2e5,

1
2e6).

The strain–energy density of a Hookean body is (discarding quadratic terms in T

since they produce no stresses)

U = 1
2Cαβeαeβ − T cαeα (E4-11.1)

where repeated indexes are summed from 1 to 6 [Section 4-4, Eq. (4-4.2)]. In
Eq. (E4-11.1), the effects of temperature T have been included (Section 4-11), in
which the material is considered to have different thermal properties, denoted by
ci , relative to axes xi [Eq. (4-11.3)]. By Eqs. (4-3.1), the stress–strain relations are
given by si = ∂U/∂ei .

The beryllium crystal belongs to the close-packed hexagonal system. It has
an axis of symmetry such that a rotation of the crystal through 60◦ about that
axis brings the space lattice into coincidence with its original configuration. The
base plane of the crystal is perpendicular to that axis. The notations (x, y, z) and
(x1, x2, x3) are used interchangeably. The base plane of the crystal is taken to
be the (x, y) plane; hence, the z axis is the axis of the crystal. Love [1944,
Eqs. (5) and (6), p. 154] shows that for the type of symmetry exhibited by the
beryllium crystal (see Section 4-4),

C14 = C24 = C34 = C46 = C45 = C56 = C16 = C26 = C15 = C25 = 0

C36 = C35 = 0 C11 = C22 C13 = C23 C66 = C55

C44 = 1
2 (C11 − C12)

(E4-11.2)

Love’s method also leads to the following relations for the thermal constants:

c1 = c2 c4 = c5 = c6 = 0 (E4-11.3)
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Accordingly, the beryllium crystal has five elastic constants (say B1, B2, B3, B4, B5)

and two thermoelastic constants (call them C1, C2), such that

U0 = 1
2B1(e

2
1 + e2

2) + B2e1e2 + B3e3(e1 + e2) + 1
2B4e

2
3

+ 1
2B5(e

2
5 + e2

6) + 1
2B6e

2
4 − C1T (e1 + e2) − C2T e3 (E4-11.4)

where we have denoted

C11 = C22 = B1

C12 = B2 C13 = C23 = B3

C33 = B4 C55 = C66 = B5

C44 = B6 = 1
2 (B1 − B2)

The relations ∂U/∂ei = si yield

s1 = B1e1 + B2e2 + B3e3 − C1T

s2 = B2e1 + B1e2 + B3e3 − C1T

s3 = B3e1 + B3e2 + B4e3 − C2T

s6 = B5e6 s5 = B5e5 s4 = B6e4

(E4-11.5)

Equation (E4-11.5) reduces to the proper relations for an isotropic body (Section
4-6) if

B1 = B4 = λ + 2G B2 = B3 = λ B5 = B6 = G C1 = C2 (E4-11.6)

where (λ, G) are Lamé’s constants. Alternatively, Eq. (E4-11.5) may be written as

σ11 = B1ε11 + B2ε22 + B3ε33 − C1T

σ22 = B2ε11 + B1ε22 + B3ε33 − C1T

σ33 = B3ε11 + B3ε22 + B4ε33 − C2T (E4-11.7)

σ23 = 2B5ε23 σ31 = 2B5ε31 σ12 = 2B6ε12

The determinant of Eq. (E4-11.7) is

� = (B1 − B2)[(B1 + B2)B4 − 2B2
3 ] (E4-11.8)

Inversion of Eq. (E4-11.7)

ε11 = A1σ11 + A2σ22 + A3σ33 + K1T

ε22 = A2σ11 + A1σ22 + A3σ33 + K1T

ε33 = A3σ11 + A3σ22 + A4σ33 + K2T

ε23 = 2A5σ23 ε31 = 2A5σ31 ε12 = 2A6σ12

(E4-11.9)
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where

A1 = B1B4 − B2
3

�
A2 = −B2B4 − B2

3

�
A3 = − (B1 − B2)B3

�

A4 = B2
1 − B2

2

�
A5 = 1

4B5
A6 = 1

4B6

K1 = B1 − B2

�
(B4C1 − B3C2)

K2 = B1 − B2

�
[−2B3C1 + (B1 + B2)C2]

(E4-11.10)

With the aid of tensor properties of stress and strain, it can be shown that
Eqs. (E4-11.7) and (E4-11.9) are invariant if the crystal is rotated through any angle
about the z axis. Consequently, insofar as the elastic constants are concerned, the
crystal has the same type of symmetry as a circular cylinder that is coaxial with
the z axis.

Stress–Strain Relations Relative to Axes Inclined to Crystal Axis. It is
also of interest to determine the stress–strain–temperature relations with reference
to axes (x ′, y ′, z′) inclined to the z axis (Fig. 4-11.1). The simplest procedure
is to express σ ′

11, σ ′
22, σ ′

33, σ ′
23, σ ′

31, σ ′
12 in terms of σ11, σ22, σ33, σ23, σ31, σ12

by the equations of stress transformations [Chapter 3, Eq. (3-4.1)]. The latter
stresses may be expressed in terms of the strains by Eq. (E4-11.7). Finally,
ε11, ε22, ε33, ε23, ε31, ε12 may be expressed in terms of ε′

11, ε′
22, ε′

33, ε′
23, ε′

31, ε′
12 by

the equations of strain transformation [Chapter 2, Eq. (2-9.3)]. The results are

σ ′
11 = B1ε

′
11 + (B2 cos2 θ + B3 sin2 θ)ε′

22 + (B2 sin2 θ + B3 cos2 θ)ε′
33

+ 2(B2 − B3)ε
′
23 sin θ cos θ − C1T

σ ′
22 = (B2 cos2 θ + B3 sin2 θ)ε′

11

+ [B1 cos4 θ + 2(B3 + 2B5) sin2 θ cos2 θ + B4 sin4 θ ]ε′
22

+ [(B1 + B4 − 4B5) sin2 θ cos2 θ + B3(sin4 θ + cos4 θ)]ε′
33

+ 2[(B1 − B3 − 2B5) cos2 θ + (B3 − B4 + 2B5) sin2 θ ]ε′
23 sin θ cos θ

− T (C1 cos2 θ + C2 sin2 θ)

σ ′
33 = (B2 sin2 θ + B3 cos2 θ)ε′

11

+ [(B1 + B4 − 4B5) sin2 θ cos2 θ + B3(sin4 θ + cos4 θ)]ε′
22

+ [B1 sin4 θ + B4 cos4 θ + 2(B3 + 2B5) sin2 θ cos2 θ ]ε′
33

+ 2[(B1 − B3 − 2B5) sin2 θ + (B3 − B4 + 2B5) cos2 θ ]ε′
23 sin θ cos θ

− T (C1 sin2 θ + C2 cos2 θ)
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Figure 4-11.1

σ ′
23 = (B2 − B3)ε

′
11 sin θ cos θ

+ [(B1 − B3 − 2B5) cos2 θ + (B3 − B4 + 2B5) sin2 θ ]ε′
22 sin θ cos θ

+ [(B1 − B3 − 2B5) sin2 θ + (B3 − B4 + 2B5) cos2 θ ]ε′
33 sin θ cos θ

+ 2[(−2B3 + B1 + B4 − 2B5) sin2 θ cos2 θ + B5(sin4 θ + cos4 θ ]ε′
23

+ (C2 − C1)T sin θ cos θ

σ ′
31 = 2(B6 sin2 θ + B5 cos2 θ)ε′

31 + 2(B6 − B5)ε
′
12 sin θ cos θ

σ ′
12 = 2(B6 − B5)ε

′
31 sin θ cos θ + 2(B6 cos2 θ + B5 sin2 θ)ε′

12 (4-11.14)

It is possible to solve Eq. (4-11.14) for the strain components, but it is easier to
proceed in the same way that Eq. (4-11.14) was derived, interchanging the roles
of stress and strain tensors and transforming in the same way. In the process,
Eq. (E4-11.9) is used instead of Eq. (E4-11.7). Since Eqs. (E4-11.7) and (E4-11.9)
are of the same form, the desired results are obtained by interchanging σ ′

ij by ε′
ij ,

and replacing Bi by Ai in Eq. (4-11.14). Also, Ci is replaced by −Ki . Thus, by
an obvious transformation of Eq. (4-11.14), we obtain

ε′
11 = A1σ

′
11 + (A2 cos2 θ + A3 sin2 θ)σ ′

22 + (A2 sin2 θ + A3 cos2 θ)σ ′
33

+ 2(A2 − A3)σ
′
23 sin θ cos θ + K1T

ε′
22 = (A2 cos2 θ + A3 sin2 θ)σ ′

11

+ [A1 cos4 θ + 2(A3 + 2A5) sin2 θ cos2 θ + A4 sin4 θ ]σ ′
22

+ [(A1 + A4 − 4A5) sin2 θ cos2 θ + A3(sin4 θ + cos4 θ)]σ ′
33

+ 2[(A1 − A3 − 2A5) cos2 θ + (A3 − A4 + 2A5) sin2 θ ]σ ′
23 sin θ cos θ

+ T (K1 cos2 θ + K2 sin2 θ)
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ε′
33 = (A2 sin2 θ + A3 cos2 θ)σ ′

11

+ [(A1 + A4 − 4A5) sin2 θ cos2 θ + A3(sin4 θ + cos4 θ)]σ ′
22

+ [A1 sin4 θ + A4 cos4 θ + 2(A3 + 2A5) sin2 θ cos2 θ ]σ ′
33

+ 2[(A1 − A3 − 2A5) sin2 θ + (A3 − A4 + 2A5) cos2 θ ]σ ′
23 sin θ cos θ

+ T (K1 sin2 θ + K2 cos2 θ)

ε′
23 = (A2 − A3)σ

′
11 sin θ cos θ

+ [(A1 − A3 − 2A5) cos2 θ + (A3 − A4 + 2A5) sin2 θ ]σ ′
22 sin θ cos θ

+ [(A1 − A3 − 2A5) sin2 θ + (A3 − A4 + 2A5) cos2 θ ]σ ′
33 sin θ cos θ

+ 2[(−2A3 + A1 + A4 − 2A5) sin2 θ cos2 θ + A5(sin4 θ + cos4 θ)]σ ′
23

+ (K1 − K2)T sin θ cos θ

ε′
31 = 2(A6 sin2 θ + A5 cos2 θ)σ ′

31 + 2(A6 − A5)σ
′
12 sin θ cos θ

ε′
12 = 2(A6 − A5)σ

′
31 sin θ cos θ + 2(A6 cos2 θ + A5 sin2 θ)σ ′

12 (4-11.15)

Example 4-11.1 demonstrates the application of rules for transformation of stress
and strain components, as well as the derivation of stress–strain relations through
use of the strain energy density function.

Problem Set 4-11

1. Show that Eqs. (E4-11.7) and (E4-11.9) are invariant if the crystal is rotated through any
angle about the z axis.

2. The values of the elastic coefficients Bi of Example 4-11.1 in pounds per square inch are

B1 = 43,420,000 B2 = 4,003,000
B3 = 1,595,000 B4 = 49,630,000
B5 = 24,100,000 B6 = 19,710,000

By Eqs. (E4-11.10),

A1 = 2.325 × 10−8 in.2/lb A2 = −0.2118 × 10−8 in.2/lb

A3 = −0.0679 × 10−8 in.2/lb A4 = 2.019 × 10−8 in.2/lb

A5 = 1.037 × 10−8 in.2/lb A6 = 1.268 × 10−8 in.2/lb

Using these values, verify the following results.
For stretching in the z direction, Poisson’s ratio is ν = −A3/A4 = 0.0336. For

stretching in the x direction, the lateral contractions in the y and z directions are
different; νy = −A2/A1 = 0.0911 and νz = −A3/A1 = 0.0292. For stretching in
the z′ direction with θ = 45◦

, ν ′
y = −0.0072, ν ′

x = 0.0669. For stretching in the z

direction, E = 1/A4 = 49,530,000 psi. For stretching in any direction perpendicular
to the z axis, E = 1/A1 = 43,010,000 psi. The maximum value of Young’s modulus
occurs for stretching in the z′ direction with θ = 11.4◦. Its value is 49,540,000 psi.
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Evidently, Poisson’s ratio is small for stretching in any direction. As may be seen from
Eqs. (E4-11.5) or (E4-11.6), B5 and B6 are shear moduli corresponding to shears in the
coordinate planes.

From Eq. (E4-11.12) the shear modulus for shear in the (y ′, z′) plane is

σ ′
23

2ε′
23

= 1
4 [(−2A3 + A1 + A4 − 2A5) sin2 θ cos2 θ + A5(sin4 θ + cos4 θ)]−1

This attains a minimum value for θ = 45◦. The corresponding value of the shear modulus
is 22,320,000 psi. Likewise, for θ = 45◦,

σ ′
12

2ε′
12

= σ ′
31

2ε′
31

= 21,700,000 psi

Accordingly, the crystal is roughly isotropic with respect to shear moduli; an average
value is about 22,000,000 psi.

3. Consider the problem of small-displacement plane strain thermoelasticity for which

εz = γxz = γyz = 0

(a) Derive an expression for σz in terms of stress components σx and σy , material prop-
erties k (thermal coefficient of linear expansion) and E (modulus of elasticity), and
temperature change T measured from an arbitrary zero.

(b) Assume the additional conditions that stress components σx = σy = τxy = 0. Hence,
derive expressions for the strain components εx, εy , and γxy .

(c) Show that under the combined conditions of parts (a) and (b) the compatibility con-
ditions reduce to ∇2T = 0 for constant E and k.

(d) Using the results of part (b), show that the rotation of a volume element in the xy
plane is

ωz = ∂v

∂x
= −∂u

∂y

Hence, show that
∂ε′

∂x
= ∂ωz

∂y

∂ε′

∂y
= −∂ωz

∂x

where ε′ = (1 + ν)kT . That is, show that ε′ and ωz satisfy the Cauchy–Riemann
equations. (Consequently, the theory associated with the Cauchy–Riemann equations
may be applied to ε′ and ωz.)

4. Consider a plane element of rectangular plan form (Fig. P4-11.4) (b  L, b  h, and
h  L). A known temperature variation (measured from an arbitrary zero) T = T (x)

through the depth 2h of the element exists. Because the flat element is thin (b small), it
is reasonable to assume that a state of plane stress (σz = τzx = τyz = 0) exists. Assume
also that σx = τxy = 0 and that σy = σy(x).

(a) Show that in the absence of body forces and acceleration, the equations of motion
are satisfied.
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Figure P4-11.4

(b) Determine the equations of compatibility for this case. Hence, solve these equations
to obtain the most general expression for σy(x).

(c) To evaluate arbitrary constants in σy , employ the boundary conditions that the resul-
tant force and the resultant moment at y = ±L vanish; that is, for y = ±L

∑
Fy =

∫ h

−h

σy dx = 0
∑

Mz =
∫ h

−h

xσy dx = 0

Hence, express σy as a function of x.

4-12 Thermoelastic Equations in Terms of Displacement

As noted in Section 4-8, by modifying the stress–strain–temperature relations
appropriately and expressing the equilibrium equations in terms of displacement
components, we may reduce the thermoelasticity problem to one of determining
the displacement field from a determinant set of equations. In this section, this
transformation is carried out.
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Introducing the notations I1 = σx + σy + σz, E = 2(1 + ν)G, we may write
Eqs. (4-11.6) in the form (using x, y, z notation)

εx = 1

2G

(
σx − ν

1 + ν
I1

)
+ kT

εy = 1

2G

(
σy − ν

1 + ν
I1

)
+ kT

εz = 1

2G

(
σz − ν

1 + ν
I1

)
+ kT

γxy = 1

G
τxy, . . . , . . .

(4-12.1)

or briefly, in index notation,

εαβ = 1

2G

(
σαβ − νδαβ

1 + ν
I1

)
+ kT δαβ α, β = 1, 2, 3

δαβ =
{

1 α = β

0 α �= β

(4-12.2)

Adding the first three of Eqs. (4-12.1), we obtain

e = 1 − 2ν

1 + ν

I1

2G
+ 3kT = 1 − 2ν

E
I1 + 3kT (4-12.3)

where e = εx + εy + εz is the volume dilatation (or the strain invariant J1).
The temperature–displacement relations may be determined as follows:

Solving Eqs. (4-12.1) for stresses, and utilizing Eq. (4-12.3), we obtain the
stress–strain–temperature relations [see also Eq. (4-11.4)]:

σx = λe + 2Gεx − kET

1 − 2v
, . . . , . . .

τxy = Gγxy, . . . , . . .

(4-12.4)

where the ellipses denote similar equations in (σy, σz) and in (τxz, τyz), and

λ = vE

(1 + v)(1 − 2v)

Substituting Eqs. (4-12.4) into the equilibrium equations, that is,

∂σx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
+ X = 0, . . . , . . . (a)
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we obtain [with Eqs. (2-15.14)]

(λ + G)
∂e

∂x
+ G∇2u +

(
X − E

1 − 2ν

∂kT

∂x

)
= 0

(λ + G)
∂e

∂y
+ G∇2ν +

(
Y − E

1 − 2ν

∂kT

∂y

)
= 0

(λ + G)
∂e

∂z
+ G∇2w +

(
Z − E

1 − 2ν

∂kT

∂z

)
= 0

(4-12.5)

Equations (4-12.5) are the displacement–temperature–equilibrium relations.
They reduce to the usual displacement–equilibrium relations if T = constant.

Boundary Conditions. The boundary conditions in terms of stress compo-
nents are

σPx = σxl + τxym + τxzn

σPy = τxyl + σym + τyzn

σPz = τxzl + τyzm + σzn

(4-12.6)

Substituting Eqs. (4-12.4) into Eq. (4-12.6), we obtain

σPx + kET

1 − 2v
l = λel + G

(
∂u

∂x
l + ∂u

∂y
m + ∂u

∂z
n

)

+ G

(
∂u

∂x
l + ∂v

∂x
m + ∂w

∂x
n

)
, . . . , . . . (4-12.7)

where the ellipses denote similar equations in σPy and σPz. Equations (4-12.7)
reduce to the usual displacement boundary conditions if the terms in T are dis-
carded. Consequently, by the above equations, the problem of thermal stress is
reduced to the problem of determining displacement components (u, v, w) that
satisfy the temperature–displacement relations [Eq. (4-12.5)] and the boundary
conditions [Eq. (4-12.7)]. With (u, v, w) known, the strain components may be
computed by the strain–displacement relations. Then by Eq. (4-12.4) the stress
components may be determined. Compatibility is automatically satisfied.

Physical Interpretation of the Thermal-Stress Problem. Referring to
Eq. (4-12.4), we note that the stress components consist of two parts: (1) a part
related directly to the strain components in the usual manner and (2) a part pro-
portional to the temperature at each point. The latter part may be imagined to be
due to a “hydrostatic” pressure equal in magnitude to kET/(1 − 2ν).

Referring to Eqs. (4-12.5) and (4-12.7), we note that the body forces (X, Y, Z)

and the surface stresses (σPx, σPy, σPz) are modified by the terms

− E

1 − 2ν

∂kT

∂x
− E

1 − 2ν

∂kT

∂y
− E

1 − 2ν

∂kT

∂z
(4-12.8)
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and
kET

1 − 2ν
l

kET

1 − 2ν
m

kET

1 − 2ν
n (4-12.9)

respectively. Equation (4-12.9) represents a normal tension on the surface equal to
kET/(1 − 2ν). Hence, the total stress produced in a body subjected to tempera-
ture distribution T (x, y, z; t) is obtained by superimposing on the load stress the
“hydrostatic stress” −kET/(1 − 2ν), the stress produced by the equivalent body
forces [Eq. (4-12.8)], and the stress produced by the equivalent surface stresses
[Eq. (4-12.9)]. When the thermal-stress problem is formulated in terms of stress
components, the solution must satisfy the compatibility equations [Eqs. (4-14.2)]
as well as the equations of equilibrium [Eqs. (a)] and the boundary conditions
[Eqs. (4-12.6)].

Problem. Derive the most general temperature distribution T (x, y, z) for which an
unrestrained isotropic homogeneous elastic body may undergo stress-free thermal
expansion, that is, for which the stresses (σx, σy, σz, τxy, τxz, τyz) are zero.

Thermomechanical Coupling. To understand the physical phenomena of ther-
momechanical coupling, we now take a broader view. First, we recall the differential
equations of motion of a deformable medium [cf. Eqs. (2-18.4) and (3-8.2)]:

σβα,β + Bα = ρv̇α (3-8.2)*

Equation (4-11.1) is the strain–temperature relation for thermally isotropic material.
We may generalize it for anisotropic material as

ε′
ij = kijT (4-12.10)

Now the total strain can be decomposed into two parts: (1) due to mechanical
deformation and (2) due to temperature rise [cf. Eq. (4-11.3)]. Then the stresses
can be obtained as [cf. Eq. (4-4.18)]

σβα = Cβαγ δ(εγ δ − kγ δT )

≡ Cβαγ δεγ δ − κβαT
(4-12.11)

Substitution of Eq. (4-12.11) into Eq. (3-8.2) leads to

ρüα = Cβαγ δεγ δ,β − (κβαT ),β + Bα (4-12.12)

If we adopt a small-strain assumption, Eq. (4-12.12) is reduced to

ρüα = Cβαγ δuγ,δβ − (κβαT ),β + Bα (4-12.13)
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For isotropic material

Cβαγ δ → λδαβ δγ δ + G(δβγ δαδ + δβδ δαγ ) (4-12.14)

κβα ≡ Cβαγ δkγ δ → {λδαβ δγ δ + G(δβγ δαδ + δβδ δαγ )}k δγ δ

→ (3λ + 2G)k (4-12.15)

Then Eq. (4-12.12) is reduced to [notice that 3λ + 2G = E/(1 − 2ν)]

ρüα = (λ + G)uβ,βα + Guβ,αα − (3λ + 2G)(kT ),α + Bα (4-12.16)

which is essentially Eqs. (4-12.5). Now we recall the equation of heat conduction,
Eq. (4-9.1), as

ρcṪ = ρcκ∇2T + Q

= α∇2T + Q
(4-9.1)

Actually, we should generalize the equation of heat conduction to the level corre-
sponding to thermoelasticity as represented by Eq. (4-12.11). The equation of heat
conduction in thermoelasticity can be expressed as (Eringen, 1980)

ρcṪ = α∇2T − (3λ + 2G)kT o∇ · u̇ + Q (4-12.17)

From Eqs. (4-12.16) and (4-12.17), it is noticed that the displacement field u and
the temperature field T are fully coupled. In fact, Eq. (4-12.16) is the law of
balance of linear momentum for isotropic thermoelastic solid; Eq. (4-12.17) is the
law of conservation of energy for isotropic thermoelastic solid. Also, it is seen
that if k = 0, namely, the effect of thermal expansion is not counted, then the
thermal and mechanical processes are completely decoupled. At this moment, it
should be emphasized that in continuum physics , of which thermoelasticity is just
a special case, temperature is an independent variable and has the same ranking as
the displacements. This point is clearly indicated in Eqs. (4-12.16) and (4-12.17).

Temperature in Molecular Dynamics. If one wishes to understand the role
of temperature not just in continuum theory but also in atomistic theory, to be
precise, in molecular dynamics, then at this moment one should ask the question:
Is temperature an independent variable in molecular dynamics?

The answer is no. We recall the governing equations in molecular dynamics,
Eq. (3-8.7), as

mi r̈i = f i + ϕi (3-8.7)

which can be rewritten as
mi üi = f i + ϕi (4-12.18)

In this equation, ϕi is the body force, equivalent to B in eq. (4-12.18); f i is the
interatomic force, which is a function of the positions of all the atoms in the system.
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On the other hand, the law of conservation of energy is automatically satisfied
[cf. Eq. (4-3.10)]. Now the question becomes: How does the temperature come
into the picture?

In molecular dynamics, temperature for a group of N atoms is calculated as

3NkBT (t; �t) = 1

�t

τ+�t∫
τ=t

N∑
i=1

mi(u̇i (τ ) − u̇
i
) · (u̇i (τ ) − u̇

i
) dτ (4-12.19)

where u̇
i

is the time-interval averaged velocity of atom i defined as

u̇
i
(t; �t) ≡ 1

�t

τ+�t∫
τ=t

u̇i (τ ) dτ (4-12.20)

and kB is the Boltzmann constant; mi is the mass of atom i. It is seen that the
temperature T according to this definition, Eq. (4-12.19), is the space–time average
of the velocities of N atoms for a time period between t and t + �t . It is worthwhile
to note that the definition of temperature can be reduced to two special cases:

Space-averaged temperature (Haile, 1992)

3NkBT =
N∑

i=1

mi(u̇i − ˆ̇u) · (u̇i − ˆ̇u)

ˆ̇u ≡

N∑
i=1

mi u̇i

M
M ≡

N∑
i=1

mi

(4-12.21)

Time-averaged temperature (Irvine and Kirkwood, 1950; Hardy, 1982)

3kBT (t; �t) = 1

�t

τ+�t∫
τ=t

m
[
u̇(τ ) − u̇) · (u̇(τ ) − u̇

]
dτ

u̇(t; �t) ≡ 1

�t

τ+�t∫
τ=t

u̇(τ ) dτ

(4-12.22)

Of course, Eq. (4-12.19) is a much more reasonable definition for temperature. On
the other hand, no matter which equation is adopted as the definition for temper-
ature, it is seen that, in molecular dynamics, temperature is not an independent
variable; instead it is derivable from the velocities of atoms. One may specify tem-
perature as boundary conditions or consider the temperature of the whole system
as a given function of time. Molecular dynamics simulation, with the consideration
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of temperature, is to determine the trajectories of a system of atoms subjected to
given constraints. In the following, we introduce several methods to implement
MD simulation with given constraints due the consideration of temperature.

1. Velocity Upgrade (Haile, 1992)

Suppose, in the numerical procedure, at the nth time step (t = n�t) for a group
of N atoms, it is found that

v = 1

M

N∑
i=1

mivi

T = 1

3kBN

N∑
i=1

mi(vi − v)2

(4-12.23)

It is understood that this group of N atoms may or may not be the whole specimen.
This freedom enables us to specify different kinds of boundary conditions. If the
desired (specified) temperature is T ∗ �= T , then we simply modify the velocities of
the N atoms as

vi∗ =
√

T ∗
/T (vi − v) + v (4-12.24)

while keeping the positions of the atoms unchanged. It is straightforward to check:

v∗ = 1

M

N∑
i=1

mivi∗ = 1

M

N∑
i=1

mi
[√

T ∗
/T (vi − v) + v

]
= v

1

3kBN

N∑
i=1

mi(vi∗ − v∗)2 = 1

3kBN

N∑
i=1

mi
[√

T ∗
/T (vi − v) + v − v

]2 = T ∗

(4-12.25)

This means that the temperature has been upgraded to T ∗ and, although the veloc-
ities have been changed, the total momentum is conserved because

Mv∗ =
N∑

i=1

mivi∗ = Mv =
N∑

i=1

mivi (4-12.26)

Since the positions of the atoms are kept unchanged, the total potential energy is
unchanged. On the other hand, the kinetic energy has been changed from

Ekinetic = 1

2

N∑
i=1

mivi · vi (4-12.27)
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to

E∗
kinetic = 1

2

N∑
i=1

mivi∗ · vi∗

= 1

2

N∑
i=1

mi
[√

T ∗
/T (vi − v) + v

]2

= T ∗

T
Ekinetic +

(
1 − T ∗

T

)
1

2
Mv · v (4-12.28)

2. Random Number Generation

This method stipulates that, at t = n�t , we randomly created a set of N vectors,
namely, ṽi such that

N∑
i=1

mi ṽi = 0

1

3kBN

N∑
i=1

mi ṽi · ṽi = T ∗
(4-12.29)

Then let the velocities of the N atoms change to

vi∗ = ṽi + v (4-12.30)

where v is the mass-weighted average of the original velocities vi . It can be easily
verified that

1

M

N∑
i=1

mivi∗ = 1

M

N∑
i=1

mi(ṽi + v) = v

1

3kBN

N∑
i=1

mi(vi∗ − v)2 = 1

3kBN

N∑
i=1

mi(ṽi + v − v)2 = T ∗
(4-12.31)

which means the new set of velocities keeps the total momentum unchanged and
yields the desired temperature.

3. Nose–Hoover Thermostat

In this algorithm (Hoover, 1985), the governing equations, Eq. (3-8.7), are modi-
fied to

ṙi = vi

v̇i = f i + ϕi

mi
− χ(t)vi

(4-12.32)
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and the so-called friction coefficient , χ , is a scalar-valued function controlled by
the first-order differential equation

χ̇ = 1

T ∗τ 2
[T (t) − T ∗] (4-12.33)

where τ is a specified time constant, normally in the range [0.5, 2] picoseconds.

4. Berendsen Thermostat

The Berendsen algorithm (Berendsen et al., 1984) can be better understood by
rewriting the governing equations as

vi

(
t + 1

2
�t

)
=

{
vi

(
t − 1

2
�t

)
+ �t[f i (t) + ϕi (t)]

mi

}
χ(t)

vi (t) = vi (t + 1
2�t) + vi (t − 1

2�t)

2

χ(t) =
√

1 + �t

τ

(
T ∗

T
− 1

)

ri (t + �t) = ri (t) + �t vi (t + 1
2�t)

(4-12.34)

It is seen that if T = T ∗ → χ = 1, then Eqs. (4-12.34) are essentially Eq. (3-8.7)
in finite difference form.

5. Gaussian Constraints

In this algorithm (Smith and Forester, 1994; Smith et al., 2008), the governing
equations are the same as Eqs. (4-12.32). However, the idea behind it is quite
different. Rewrite the temperature of N atoms as

T = 1

3kBN

N∑
i=1

(mivi )2

mi
(4-12.35)

If the temperature reaches equilibrium, that is, T = T ∗, or we wish it is true, then

dT

dt
∼ d

dt

[
N∑

i=1

(mivi )2

]
∼

N∑
i=1

mivi · (f i + ϕi ) = 0 (4-12.36)

Therefore χ is chosen to be

χ(t) =

N∑
i=1

mivi · (f i + ϕi )

N∑
i=1

(mivi )2

(4-12.37)
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It is noticed that by writing the temperature as in Eq. (4-12.35) one implicitly
assume the total momentum of this group of atoms is zero.

Remark: In using velocity upgrade or random number generation, one modifies
the velocities once in a while without changing the governing equations. It is
noticed that these governing equations are actually Newton’s second law for those
atoms. Modification of the velocities is essentially an action to implement the
boundary condition, which reflects the interaction between the material body and
its environment. On the contrary, in using Nose–Hoover thermostat, Berendsen
thermostat, or Gaussian constraints, one has to modify the governing equations.

4-13 Spherically Symmetrical Stress Distribution (The Sphere)

Let a hollow sphere with inner radius a and outer radius b be subjected to a tem-
perature T that is a function only of the radial coordinate R. Then the displacement
of each point in the sphere is radial. Hence, the displacement vector is U = U(R);
that is, the deformation is symmetrical with respect to the center of the sphere.
Consequently, the equations of equilibrium reduce to the single equation [see
Eqs. (3A-26) in Chapter 3]

dσR

dR
+ 2

R
(σR − σT ) = 0 (4-13.1)

where the radial component of the stress vector is σR and the tangential components
of the stress vector are equal to σT . The components (σR, σT ) are functions of R

only. The stress–strain–temperature relations [see Eqs. (4-12.4)] reduce to

σR = λe + 2GεR − EkT

1 − 2ν

σT = λe + 2GεT − EkT

1 − 2ν

(4-13.2)

where
e = εR + 2εT (4-13.3)

The strain–displacement relations are

εR = dU

dR
εT = U

R
(4-13.4)

Substitution of Eqs. (4-13.4) into Eqs. (4-13.3) and (4-13.2) yields

σR = (λ + 2G)
dU

dR
+ 2λ

U

R
− EkT

1 − 2ν

σT = 2(λ + G)
U

R
+ λ

dU

dR
− EkT

1 − 2ν

(4-13.5)
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Substituting Eqs. (4-13.5) into Eqs. (4-13.1), we obtain

d2U

dR2
+ 2

R

dU

dR
− 2U

R2
= 1 + ν

1 − ν

d(kT )

dR
(4-13.6)

Rewriting Eq. (4-13.6), we obtain

d

dR

[
1

R2

d

dR
(R2U)

]
= 1 + ν

1 − ν

d(kT )

dR
(4-13.7)

Integration of Eq. (4-13.7) yields

U = 1 + ν

1 − ν

1

R2

∫ R

a

ρ2kT dρ + AR + B

R2
(4-13.8)

In Eq. (4-13.8) the coefficient of thermal expansion k may vary with temperature;
that is, it may vary with ρ. The constants A and B are determined by boundary
conditions.

Substitution of Eq. (4-13.8) into Eqs. (4-13.5) yields the following expressions
for the stress components:

σR = − 2E

1 − ν

1

R3

∫ R

a

ρ2kT dρ + EA

1 − 2ν
− 2EB

1 + ν

1

R3

σT = E

1 − ν

1

R3

∫ R

a

ρ2kT dρ + EA

1 − 2ν
+ EB

1 + ν

1

R3
− kT E

1 − ν

(4-13.9)

Equations (4-13.9) are the general formulas for the stress components in a sphere
subjected to temperature symmetrically distributed with respect to the center of the
sphere. For the special cases of the solid sphere and the hollow sphere subjected to
a temperature distribution T = T (R; t), the constants of integration are determined
from the following boundary conditions:

Solid sphere: σR = 0 at R = b U = 0 at R = 0

Hollow sphere: σR = 0 at R = a and R = b
(4-13.10)

Intracranial Saccular Aneurysm. An intracranial saccular aneurysm (Fig.
4-13.1) is a localized blood-filled balloonlike dilatation of the arterial wall that
often occurs in or near bifurcations in the circle of Willis (the primary network of
arteries that supply blood to the brain; see Fig. 4-13.2). A subclass of intracranial
saccular aneurysms can be treated reasonably well as thin-walled pressurized hol-
low spheres. Although the rupture potential of these aneurysms is very low, less
than 0.1 to 1.0% per year. However, when they rupture, 50% of the patients die
and 50% of the survivors will have severe, lasting neurological deficits. Therefore,
knowing that the rupture appears to occur when wall stresses, σθθ and σφφ , exceed
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Figure 4-13.1 Schema of a subclass of intracranial saccular aneurysms (cf. Fig. 4-13.2)
that can be modeled, to a first approximation, as a thin-walled pressurized sphere of radius
a. Although pressure gradients are associated with the blood flow within the lesion, these
gradients tend to be small in comparison to the mean blood pressure (∼ 93 mm Hg);
hence, we can often assume a uniform internal pressure p. Also shown is a picture of a
human circle of Willis with bilateral aneurysms, one ruptured and one not—the rupture
being the cause of death. This reminds us that biomechanics is not just intellectually
challenging and fun, it has potential to affect the lives of individuals and families. From
Humphrey and Delange (2004), with permission from Springer.

strength locally, the question is reduced to: How can we better predict the rupture
potential of a given aneurysm (Humphrey and Delange, 2004)? Now consider an
aneurysm is a hollow sphere with inner radius a and outer radius b subjected to an
internal pressure p. Because the displacement vector of each point in the sphere is
radial, one may write in spherical coordinates

u = [ur, uθ , uφ] = [U(r), 0, 0] (4-13.11)

From the strain–displacement relations [Eqs. (2A-2.8)], one may obtain

εr = dU

dr
εθ = U

r
εφ = U

r

γrθ = 0 γrφ = 0 γθφ = 0
(4-13.12)

The general stress–strain relation for linear isotropic elastic solid can be expressed
as (Sadd, 2009)

σrr = λ(εrr + εθθ + εφφ) + 2Gεrr

σθθ = λ(εrr + εθθ + εφφ) + 2Gεθθ

σφφ = λ(εrr + εθθ + εφφ) + 2Gεφφ

σrθ = Gγrθ

σrφ = Gγrφ

σθφ = Gγθφ

(4-13.13)



4-13 SPHERICALLY SYMMETRICAL STRESS DISTRIBUTION (THE SPHERE) 297

Figure 4-13.2 Schema of the circle of Willis, the primary network of arteries that sup-
plies blood to the brain. Note the intracranial secular aneurysm, which is a focal dilatation
of the arterial wall on the left middle cerebral artery (with the circle viewed from the
base of the brain). Such lesions tend to be thin walled and susceptible to rupture. From
Humphrey and Delange (2004), with permission from Springer.

Substituting Eqs. (4-13.12) into Eqs. (4-13.13) yields

σrr = λ

(
dU

dr
+ 2

U

r

)
+ 2G

dU

dr

σθθ = σφφ = λ

(
dU

dr
+ 2

U

r

)
+ 2G

U

r

σrθ = σrφ = σθφ = 0

(4-13.14)

Substituting Eqs. (4-13.14) in Eqs. (3A-2.6) and assuming that there is no body
force, the only nontrivial equilibrium equation is obtained as

d2U

dr2
+ 2

r

dU

dr
− 2

r2
U = 0 (4-13.15)
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The boundary conditions are

σrr(r = a) = (λ + 2G)
dU(a)

dr
+ 2λ

U(a)

a
= −p

σrr(r = b) = (λ + 2G)
dU(b)

dr
+ 2λ

U(b)

b
= 0

(4-13.16)

The solution for Eq. (4-13.15) is

U = Ar + Br−2 (4-13.17)

The coefficients A and B are determined by the boundary conditions, Eqs.
(4-13.16), as

(3λ + 2G)A − 4GBa−3 = −p

(3λ + 2G)A − 4GBb−3 = 0
(4-13.18)

which implies

A = pa3

(3λ + 2G)(b3 − a3)
B = pa3b3

4G(b3 − a3)
(4-13.19)

Then the stresses are obtained as

σrr = pa3

b3 − a3

(
1 − b3

r3

)
≤ 0

σθθ = σφφ = pa3

b3 − a3

(
1 + b3

2r3

)
> 0

(4-13.20)

It is seen that the normal stress in the radial direction σrr is a compressive stress;
the normal stresses in the tangential directions (referred as wall stresses), σθθ

and σφφ , are tensile stresses; the maximum wall stress occurs at the inner radius,
that is,

(σθθ )max = (σφφ)max = p
2a3 + b3

b3 − a3
(4-13.21)

The ratio between the maximum wall stress and the inner pressure is (2a3 +
b3)/(b3 − a3), which may become a huge value if the wall becomes thinner.
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Problem Set 4-13

1. Evaluate the constants A,B of Eqs. (4-13.9) for the solid sphere using the conditions of
Eqs. (4-13.10). Repeat for the hollow sphere.

2. Let kT = CR2, where C is a constant. For this temperature distribution, express (in terms
of E, ν,C, R) the stress components σR, τT for a hollow sphere with inner radius a and
outer radius b. Repeat for a solid sphere.

3. For the intracranial saccular aneurysm problem, let the mean blood pressure be 93 mm
Hg and 1.5 mm ≤ a ≤ 5 mm and the wall thickness h ≡ b − a is in the order of 25 to
250 μm. Find the range of the maximum wall stress.

4-14 Thermoelastic Compatibility Equations in Terms of Components
of Stress and Temperature. Beltrami–Michell Relations

Using the stress–strain relations [Eqs. (4-11.6)], we may write the strain compati-
bility relations [Eqs. (2-16.1) in Chapter 2] in terms of stress components. Rewriting
Eqs. (4-11.6), we obtain Hooke’s law in the form (with x, y, z notation)

εx = 1

E
[(1 + ν)σx − νI1] + kT

εy = 1

E
[(1 + ν)σy − νI1] + kT

εz = 1

E
[(1 + ν)σz − νI1] + kT

γxy = 2(1 + ν)

E
τxy

γxz = 2(1 + ν)

E
τxz

γyz = 2(1 + ν)

E
τyz

(4-14.1)

where I1 = σx + σy + σz, is the first stress invariant [see Eq. (3-5.3) in Chapter 3],
and where T = T (x, y, z). Consider the first of Eqs. (2-16.1a) in Chapter 2:

∂2εx

∂y2
+ ∂2εy

∂x2
= ∂2γxy

∂x∂y
(a)

Substitution of Eqs. (4-14.1) into Eq. (a) yields, for ν and E constant,

(1 + ν)

(
∂2σx

∂y2
+ ∂2σy

∂x2

)
− ν

(
∂2I1

∂x2
+ ∂2I1

∂y2

)

= 2(1 + ν)
∂2τxy

∂x∂y
− E∂2(KT )

∂x2
− E∂2(KT )

∂y2

(b)
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By Eq. (3-8.1) in Chapter 3, with the right-hand terms set equal to zero, we obtain

∂τxy

∂y
= −∂σx

∂x
− ∂τxz

∂z
− X

∂τxy

∂x
= −∂τyz

∂z
− ∂σy

∂y
− Y

where (X, Y ) denote body-force components (B1, B2), respectively. Differentia-
tion of the first of these equations by x and of the second by y yields

∂2τxy

∂x ∂y
= −∂2σx

∂x2
− ∂2τxz

∂x ∂z
− ∂X

∂x

∂2τxy

∂x∂y
= − ∂2τyz

∂x ∂z
− ∂2σy

∂y2
− ∂Y

∂y

Adding these equations, we obtain

2
∂2τxy

∂x∂y
= −∂2σx

∂x2
− ∂2σy

∂y2
− ∂

∂z

(
∂τxz

∂x
+ ∂τyz

∂y

)
− ∂X

∂x
− ∂Y

∂y

With the last of Eqs. (3-8.1), with a3 = 0, the above equation yields

2
∂2τxy

∂x∂y
= ∂2σx

∂z2
− ∂2σx

∂x2
− ∂2σy

∂y2
+ ∂Z

∂z
− ∂X

∂x
− ∂Y

∂y

where Z ≡ B3. Substitution of this last equation into Eq. (b) yields, after simpli-
fication by the use of Eq. (3-5.3),

∇2(I1 + EkT ) − ∂2(I1 + EkT )

∂z2
− (1 + ν)∇2σz = (1 + ν)

(
∂Z

∂z
− ∂X

∂x
− ∂Y

∂y

)
(c)

where

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

In a similar manner, by Eqs. (2-16.1b) and (2-16.1c) in Chapter 2, we obtain

∇2(I1 + EkT ) − ∂2(I1 + EkT )

∂x2
− (1 + ν)∇2σx = (1 + ν)

(
∂X

∂x
− ∂Y

∂y
− ∂Z

∂z

)

∇2(I1 + EkT ) − ∂2(I1 + EkT )

∂y2
− (1 + ν)∇2σy = (1 + ν)

(
∂Y

∂y
− ∂X

∂x
− ∂Z

∂z

)
(d)
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Adding Eqs. (c) and (d), we get

(1 − ν)∇2I1 = −(1 + ν)

(
∂X

∂x
+ ∂Y

∂y
+ ∂Z

∂z

)
− 2∇2EkT (e)

Substitution of Eqs. (e) into Eqs. (c) and (d) yields

∇2σx + 1

1 + ν

∂2(I1 + EkT )

∂x2
= − ν

1 − ν

(
∂X

∂x
+ ∂Y

∂y
+ ∂Z

∂z

)
− 2

∂X

∂x
− ∇2EkT

1 − ν

∇2σy + 1

1 + ν

∂2(I1 + EkT )

∂y2
= − ν

1 − ν

(
∂X

∂x
+ ∂Y

∂y
+ ∂Z

∂z

)
− 2

∂Y

∂y
− ∇2EkT

1 − ν

∇2σz + 1

1 + ν

∂2(I1 + EkT )

∂z2
= − ν

1 − ν

(
∂X

∂x
+ ∂Y

∂y
+ ∂Z

∂z

)
− 2

∂Z

∂z
− ∇2EkT

1 − ν

(4-14.2a)
In a similar manner, Eqs. (2-16.1d), (2-16.1e), and (2-16.1f) yield

∇2τxy + 1

1 + ν

∂2(I1 + EkT )

∂x∂y
= −

(
∂X

∂y
+ ∂Y

∂x

)

∇2τxz + 1

1 + ν

∂2(I1 + EkT )

∂x∂z
= −

(
∂Z

∂x
+ ∂X

∂z

)

∇2τyz + 1

1 + ν

∂2(I1 + EkT )

∂y∂z
= −

(
∂Y

∂z
+ ∂Z

∂y

)
(4-14.2b)

If the body forces are constant throughout the body, the body-force terms on the
right side of Eqs. (4-14.2) are zero. We note that although Eqs. (4-14.2) were
derived utilizing the equilibrium equations, they hold for dynamical problems,
provided inertial forces are included in the body-force terms.

Replacing (σx, σy, σz, τxy, τxz, τyz) by (σ11, σ22, σ33, σ12, σ13, σ23) and (X, Y, Z)

by (B1, B2, B3), we may write Eqs. (4-14.2) in the form

∇2σij + 1

1 + v

∂2(I1 + EkT )

∂xi∂xj

= − v

1 − v

∂Bα

∂xα

δij −
(

∂Bi

∂xj

+ ∂Bj

∂xi

)
− ∇2EkT

1 − v
δij

(4-14.3)
where i, j, α = 1, 2, 3 and ∇2 = (∂2/∂x2

1) + (∂2/∂x2
2 ) + (∂2/∂x2

3 ) = δαβ ·
(∂2/∂xα ∂xβ), where δαβ is the Kronecker delta.

Equations (4-14.2) represent the thermoelastic strain compatibility conditions in
terms of stress components and temperature. Because Hooke’s law is used in their
derivation, they are restricted to linearly elastic material. Furthermore, they are
restricted to isotropic homogeneous materials, as it has been assumed that E and
ν are constants and that the material is isotropic. In the absence of temperature T ,
Eqs. (4-14.2) are known as the Beltrami–Michell compatibility relations.
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Example 4-14.1. Thermoelastic Equations for Axially Symmetrical Stress Distri-
bution. In cylindrical coordinates, the axially symmetric state of stress is charac-
terized by the conditions τrθ = τzθ = 0, ∂/∂θ = 0. Then the general equations of
equilibrium reduce to the form [Eqs. (3A-2.7) in Chapter 3]

∂σr

∂r
+ ∂τrz

∂z
+ σr − σθ

r
= 0

∂τrz

∂r
+ ∂σz

∂z
+ τrz

r
= 0

(E4-14.1)

Body forces are not included in Eqs. (E4-14.1). The strain–displacement relations
are [because v = 0 and ∂/∂θ = 0; see Eqs. (2A-2.7) in Chapter 2]

εr = ∂u

∂r
εθ = u

r
εz = ∂w

∂z

γrz = ∂u

∂z
+ ∂w

∂r

(E4-14.2)

The stress–strain–temperature relations are

εr = E−1[σr − ν(σθ + σz)] + kT

εθ = E−1[σθ − ν(σr + σz)] + kT

εz = E−1[σz − ν(σθ + σr)] + kT

γrz = G−1τrz

(E4-14.3)

where k is the coefficient of thermal expansion and T = T (r, z) is the temperature.
Solving Eqs. (E4-14.3) for the stresses, we obtain

σr = λe + 2Gεr − EkT

1 − 2ν

σθ = λe + 2Gεθ − EkT

1 − 2ν

σz = λe + 2Gεz − EkT

1 − 2ν

τrz = Gγrz

(E4-14.4)

where
λ = νE

(1 + ν)(1 − 2ν)
and G = E

2(1 + ν)
(E4-14.5)

Substitution of Eqs. (E4-14.2) into Eqs. (E4-14.4) and substitution of the results
into Eqs. (E4-14.1) yield

∇2u − u

r2
+ 1

1 − 2ν

∂e

∂r
− 2(1 + ν)

1 − 2ν

∂(kT )

∂r
= 0

∇2w + 1

1 − 2ν

∂e

∂z
− 2(1 + ν)

1 − 2ν

∂(kT )

∂z
= 0

(E4-14.6)



4-14 THERMOELASTIC COMPATIBILITY EQUATIONS 303

where

∇2 = ∂2

∂r2
+ 1

r

∂

∂r
+ ∂2

∂z2
(E4-14.7)

A particular solution of Eqs. (E4-14.6) may be obtained through the concept of
the displacement potential. Accordingly, we let

u = ∂ψ

∂r
w = ∂ψ

∂z
e = ∇2ψ (E4-14.8)

where ψ = ψ(r, z) is the displacement-potential function.
Noting that

∇2
(

∂ψ

∂r

)
= ∂

∂r
(∇2ψ) + 1

r2

∂ψ

∂r

∇2
(

∂ψ

∂z

)
= ∂

∂z
(∇2ψ)

(E4-14.9)

by Eqs. (E4-14.6) and (E4-14.8), we obtain

∂

∂r

[
(1 − ν)∇2ψ − (1 + ν)kT

] = 0

∂

∂z

[
(1 − ν)∇2ψ − (1 + ν)kT

] = 0

(E4-14.10)

Accordingly, a particular integral of Eq. (E4-14.10) is

∇2ψ = 1 + v

1 − v
kT (E4-14.11)

For a prescribed temperature T , Eq. (E4-14.11) defines the displacement-potential
function ψ .

By Eqs. (E4-14.3), (E4-14.4), and (E4-14.8), we find the stress components
associated with the particular solution ψ :

σ ′
r = 2G

(
∂2ψ

∂r2
− ∇2ψ

)
σ ′

θ = 2G

(
1

r

∂ψ

∂r
− ∇2ψ

)

σ ′
z = 2G

(
∂2ψ

∂z2
− ∇2ψ

)
τ ′
rz = 2G

∂2ψ

∂r∂z

(E4-14.12)
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The complementary solution of Eqs. (E4-14.1) or (E4-14.6) expressed in terms of
a stress function is (Timoshenko and Goodier, 1970)

σ ′′
r = ∂

∂z

[
ν∇2F − ∂2F

∂r2

]

σ ′′
θ = ∂

∂z

[
ν∇2F − 1

r

∂F

∂r

]

σ ′′
z = ∂

∂z

[
(2 − ν)∇2F − ∂2F

∂z2

]

τ ′′
rz = ∂

∂r

[
(1 − ν)∇2F − ∂2F

∂z2

]
(E4-14.13)

provided that the stress function F satisfies the relation ∇2∇2F = 0, where
∇2 is defined by Eq. (E4-14.7). A general solution of the axially symmetric
thermal-stress problem is given by the sum of Eqs. (E4-14.12) and (E4-14.13) (see
Chapter 8).

Problem Set 4-14

1. Consider the equations of equilibrium in cylindrical coordinates (r, θ, z). Assume that
the stress components and the displacement components u,w are independent of θ and
that v = 0. For the linearly elastic isotropic body, perform the following:

(a) Specialize the equilibrium equations and the strain–displacement relations for this
case (see appendices in Chapters 2 and 3).

(b) Assume that the stress components are defined in terms of a function φ as

σr = ∂

∂z

[
ν∇2φ − ∂2φ

∂r2

]

σθ = ∂

∂z

[
ν∇2φ − 1

r

∂φ

∂r

]

σz = ∂

∂z

[
(2 − ν)∇2φ − ∂2φ

∂z2

]

τrz = ∂

∂r

[
(1 − ν)∇2φ − ∂2φ

∂z2

]

where

φ = φ(r, z) and ∇2 = ∂2

∂r2
+ 1

r

∂

∂r
+ ∂2

∂z2

Derive the defining equation for φ in the absence of body forces and temperature
field.

2. The stress components σx = σz = τyz = τxz = 0. Body forces are zero. The material
is not necessarily elastic. Derive the most general formulas for the stress components
σy, τxy .
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3. Determine whether or not the following stress components are a possible solution of an
elasticity problem in the absence of body forces and temperature effects:

σx = ayz τxy = dz2

σy = bxz τxy = ey2

σz = cxy τyz = f x2

where a, b, c, d, e, f are constants.

4. Derive Eqs. (4-14.2b).

5. Let an isotropic homogeneous body be subjected to nonuniform temperature distribu-
tion. Assume that the body is free to expand thermally; that is, it is not subjected to
geometrical constraints. Show that the most general temperature distribution T for a
“stress-free” expansion of the body is given by the relation

kT = ax + by + cz + d

where k denotes the linear coefficient of thermal expansion and a, b, c, d are arbitrary
constants.

6. Consider a hollow right-circular cylinder subjected to the temperature distribution kT =
(Ar2 + B)e−βz, where A,B, and β are constants and r denotes the radial coordinate of
the cylinder. Consider a particular solution of the form ψ = f (r)e−βz, where f (r) is a
function of r . Derive the explicit form of ψ . Derive the stress components associated
with the particular solution.

7. A right-circular hollow cylinder of inner radius a and outer radius b is free to expand
laterally, but it is constrained at its ends to prevent axial displacements. It is subjected to
a steady-state heat source Q specified by the relation Q = Az , where A is a constant and
z is the axial coordinate measured from one end of the cylinder. Discuss the temperature
distribution in the cylinder, specifying required quantities where needed. Discuss the
stress distribution in the cylinder. Perform appropriate analyses to aid your discussion.

8. An aluminum bar is 300 mm long, has a constant cross section of 800 mm2, a modulus
of elasticity E = 105 GPa, and a coefficient of thermal expansion k = 23 × 10−6 per ◦C.
It is supported at each end so that its length remains constant, but it is free to expand
laterally. It is subjected to a temperature increase T = 30◦C.

(a) Determine the longitudinal stress and strain due to T .

(b) A longitudinal load P = 500 kN is applied at the midlength of the bar, in addition
to the temperature increase T . Determine the longitudinal stress and strain in each
half of the bar.

4-15 Boundary Conditions

In addition to the equilibrium equations [Eqs. (3-8.1) in Chapter 3] and the compat-
ibility conditions [Eqs. (4-14.2)], the stress components on the surface of the body
must be in equilibrium with the external forces acting on the surface (boundary).
The equilibrium conditions at the boundary may be obtained from the theory of
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stress at a point. Equation (3-3.8) gives the stress σ n on an oblique plane P (with
the unit normal n) through a point in a body. If the plane P is tangent to the surface
of the body, σ n is a stress on the boundary of the body. Hence, by Eqs. (3-3.10),

σn1 = n1σ11 + n2σ21 + n3σ31

σn2 = n1σ12 + n2σ22 + n3σ32

σn3 = n1σ13 + n2σ23 + n3σ33

(4-15.1)

where σn1, σn2, σn3 denote the components of the surface stress vector at a point
on the boundary, and n1, n2, n3 denote the direction cosines of the normal (positive
outward) to the surface at this point. When Eqs. (3-3.10) pertain to a point on the
boundary [Eqs. (4-15.1)], they are called stress boundary conditions.

The solutions of elasticity problems require that the stress components satisfy
equilibrium conditions [Eqs. (3-8.1)], compatibility conditions [Eqs. (4-14.2)], and
boundary conditions [Eqs. (4-15.1)]. In general, these conditions are usually suf-
ficient to determine the stress components uniquely. However, if the body is in
equilibrium, one cannot prescribe the body force (X, Y, Z) and the surface stress
(σn1, σn2, σn3) in a perfectly arbitrary way. For example, if a solution of the prob-
lem is to exist, the distribution of body forces and surface forces acting on the
body must be such that the resultant force and the resultant moment vanish.

Because the basic equations of classical linear elasticity may be formulated
either in terms of stresses or in terms of strains (through the use of stress–strain
relations), instead of prescribing stresses acting on the boundary surface, we could
prescribe displacements (u, v, w). Consequently, we may formulate the following
fundamental boundary value problems of elasticity:

1. Determine the stress and the displacement in the interior of an elastic body in
equilibrium when the body forces are prescribed and the distribution of forces
acting on the surface of the body is known.

2. Determine the stress and the displacement in the interior of an elastic body
in equilibrium when the body forces are prescribed and the displacements on
the surface of the body are known.

In addition to problems 1 and 2, a third boundary value problem of elastic-
ity occurs when part of the boundary is subjected to prescribed forces and the
remaining part of the boundary is subjected to prescribed displacements (the mixed
boundary value problem). Thus,

3. Determine the stress and the displacement in the interior of an elastic body in
equilibrium when the body forces are prescribed and the distribution of forces
acting on S 1 and the distribution of displacements on S 2 are known, where
S1 + S2 = S denotes the bounding surface of the body.

The general three-dimensional problem of elasticity presents formidable com-
plications because of the difficulty of satisfying boundary conditions precisely.
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The majority of the general solutions of the boundary value problems of three-
dimensional elasticity amounts to proofs of the existence of solutions. However,
effective general methods have been developed for the solution of two-dimensional
problems of elasticity (Muskhelishvili, 1975). Furthermore, solutions are often
obtained in approximate form by employing Saint-Venant’s principle, that is, by
satisfying certain boundary conditions in integral form rather than in the pointwise
manner required by the theory of elasticity.

Roughly speaking, the usual engineering interpretation of Saint-Venant’s prin-
ciple may be summarized as follows:

Two statically equivalent force systems that act over a given small portion S on
the surface of a body produce approximately the same stress and displacement at
a point in the body sufficiently far removed from the region S over which the force
systems act.8

Saint-Venant’s principle as stated above is open to criticism. More complete
interpretations of the principle have been given. Some aspects of the implications
of Saint-Venant’s principle are of considerable importance to the engineer. Accord-
ingly, we summarize some further aspects of the principle. For more complete
details, refer to the literature.9

Saint-Venant’s Principle. A meaningful statement of Saint-Venant’s principle
should contain estimates of the difference between the actual stress and displace-
ment in a body and the stress and displacement obtained under the approximate
satisfaction of the boundary conditions implied by the principle. von Mises has
given such statements for several problems of elasticity (von Mises, 1945; Stern-
berg, 1954). We summarize these results here.

von Mises (1945) stated Saint-Venant’s principle more correctly as follows
(p. 555):

If the forces acting upon a body are restricted to several small parts of the surface,
each included in a sphere of radius ε, then the strains and stresses produced in the
interior of the body at a finite distance from all those parts are smaller in order of
magnitude when the forces for each single part are in equilibrium than when they
are not.

von Mises noted that if this statement is true, it must be a consequence of the
fundamental differential equations of elasticity theory. He examined particularly the
cases of (1) the infinite half-space z ≥ 0 subjected to a system of forces Xα, Yα, Zα

acting on the plane z = 0 at (x, y) coordinates ξα, ηα, α = 1, 2, 3, . . ., and (2) the
circular disk. Following Boussinesq’s approach, von Mises notes that for the infinite

8That is, two force systems that have the same resultant, but not necessarily the same distribution
over S.
9For further discussion of the implications of Saint-Venant’s principle, see von Mises (1945) and
Sternberg (1954). For a discussion of Saint-Venant’s principle as often employed in engineering
practice, see Timoshenko and Goodier (1970). For its application in anisotropic elasticity, see Choi
and Horgan (1977).
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half-space under the loads indicated the mean stress σm is given by (Boussinesq,
1885; Love, 1944, p. 191)

6π

κ − 3
r3σm = x

∑
Xα + y

∑
Yα + z

∑
Zα

+ 1

r2

[(
3x2 − r2)∑ ξαXα + 3xy

∑
ξαYα + 3xz

∑
ξαZa

+ 3xy
∑

ηαXα + (
3y2 − r2)∑ ηαYα + 3yz

∑
ηαZα

]
+ higher-order terms in ξα, ηα (4-15.2)

Similar expressions hold for other stress values. In Eq. (4-15.2), r2 = x2 + y2 + z2,
and κ = 1 − 2ν, where ν is Poisson’s ratio (Section 4.7).

Accordingly, von Mises notes that if all ξα and ηα are of the order of mag-
nitude ε (some positive number), we can conclude as follows. The stresses (and
strains) at a point (x, y, z) are of the order ε, if the sums of force components∑

Xα,
∑

Yα,
∑

Zα are zero; they are of the order ε2 if and only if the six linear
moments

∑
ξαXα,

∑
ξαYα,

∑
ξαZα and

∑
ηαXα,

∑
ηαYα,

∑
ηαZα also vanish.

The case of a system in equilibrium, that is,
∑

ξαZα = ∑
ηαZα = ∑

(ξαYα −
ηαXα) = 0, is, in general, in no way distinguished. Only if all forces are parallel to
each other, either normal to the boundary surface or inclined under an angle differ-
ent from zero, do the three equilibrium conditions entail the other three conditions.
In general, the order of magnitude of the inner stresses is reduced to ε2 if and only
if the external forces acting upon a small part of the surface are such as to remain
in equilibrium when turned through an arbitrary angle (astatic equilibrium).

The results are illustrated in the four simple examples of Figure 4-15.1. All forces
are here parallel to the x direction (Y = Z = 0). In the case of (Figure 4-15.1a) we
have a single force that provides a finite stress value according to the first term of
Eq. (4-15.2). In Figs. 4-15.1b and 4-15.1c the sum of forces is zero, but in 4-15.1b
the sum of ηαXα and in 4-15.1c the sum of ξαXα are different from zero. It follows
from Eq. (4-15.2) that in either case the stress has the order of magnitude ε. If
the Saint-Venant principle is correct, the stress should be small of higher order in
Fig. 4-15.1c, where all equilibrium conditions are fulfilled. In fact, in 4-15.1d, only

Figure 4-15.1 Finite stress (a), stress of order of magnitude ε (b, c), and stress of order
ε2 (d).
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where the three forces form a system in astatic equilibrium with all linear moments
zero does the stress have the order of magnitude ε2.

Noting that the above results derived for an infinite half-space may be in question
when considering a finite body, von Mises shows that for a circular (finite) disk,
results comparable to those of the infinite half-space also apply to the finite body.
In conclusion, von Mises (1945) states (p. 561):

In order to obtain a precise and sufficiently general statement let us consider a finite
simply connected body, supported at an adequate number of distinct surface points
S1, S2, S3, . . .. Let P1 be a point of the surface where the load F1 is applied and
P an inner point of the body at finite distances from P1 and from S1, S2, S3, . . ..
Let, finally, σ be some well defined strain or stress quantity in P , for instance, the
normal stress in x-direction, or any component of the distortion. Then, with constant
F1, this σ will be a function of the coordinates of P1. If P1 is a regular surface
point (tangential plane, finite curvature) the function will have finite derivatives.
That means, if P1 moves through a small distance ε the change in σ will be of
the order of magnitude ε. Consequently, two equal and opposite forces attacking at
points of distance ε will produce a σ -value of the order ε. On the other hand, the
load F1 can be replaced by several loads that have the vector sum F1, all attacking
at P1. Each of them can be shifted to the neighborhood and then reversed. The
system of these reversed forces combined with original F1 will still produce a
σ -value of order ε. Thus our first statement reads [see quote above]:

(a) If a system of loads on an adequately supported body, all applied at surface
points within a sphere of diameter ε, have the vector sum zero, they produce
in an inner point P of the body a strain or stress value σ of the order of
magnitude ε.

To this statement we add the results reached in the preceding sections by
way of direct computation for two particular cases, the infinite half-space and
the circular disk. The general proof following the same lines can be given
without difficulty.

(b) If the loads, in addition to having the vector sum zero, fulfill three further
conditions so as to form an equilibrium system within the sphere of diameter ε,
the σ -value produced in P will, in general, still be of the order of magnitude ε.

(c) If the loads, in addition to being an equilibrium system satisfy three more
conditions so as to form a system in astatic equilibrium, then the σ -value
produced in P will be of the order of magnitude ε2 or smaller. In particular,
if loads applied to a small area are parallel to each other and not tangential
to the surface and if they form an equilibrium system, they are also in astatic
equilibrium and thus lead to a σ of the order ε2.

In this whole argument the loads as well as the supporting reactions were sup-
posed to be concentrated, finite forces acting at distinct points of the surface. No
difficulty arises if, instead, continually distributed surface stresses are assumed with
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the provision that all integrals of such stresses over finite regions (and the regions
that tend to zero) remain finite.

A final remark is in order about the legitimate application of Saint-Venant’s
principle (or some equivalent statement) in cases of thin rods, shells, and so on.
The only precise and consistent way to deal with thin elastic rods is the theory
of the so-called one-dimensional elastica. In this theory the forces acting on the
ends of the rod enter the computation only with their resultant vector and resultant
moment. This implies, evidently, a principle of “statically equivalent loads.” What
Saint-Venant originally had in mind was doubtlessly the case of a long cylinder
with infinite ratio of length to diameter. The purpose of the present discussion was
to show that an extension of the principle to bodies of finite dimensions is not
legitimate.

For additional studies of the Saint-Venant principle, refer to the technical litera-
ture (Horvay and Born, 1957; Keller, 1965; Knowles and Horgan, 1969; Choi and
Horgan, 1977).

Problem Set 4-15

1. On the basis of the principle of astatic equilibrium, state the nature of the stress produced
in the plane circular disk by the forces acting on the boundary (Fig. P4-15.1). Magnitudes
of all forces are |F |.

Figure P4-15.1
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4-16 Uniqueness Theorem for Equilibrium Problem of Elasticity

In the following sections we seek solutions to the equilibrium problem of elasticity.
However, before doing so, we prove the following theorem.10

Theorem 4-16.1. If either the surface displacements or the surface stresses are
given, the solution of the equilibrium problem is unique for the small-displacement
theory of elasticity; that is, the state of stress (and strain) is determinable
unequivocally.

In terms of principal axes and for isotropic material, we observe that the strain
energy density function U may be written in the form [Eq. (4-6.2)]

U = 1
2λ(ε1 + ε2 + ε3)

2 + G
(
ε2

1 + ε2
2 + ε2

3

)
where (ε1, ε2, ε3) denote principal strains and (λ, G) are Lamé coefficients. First,
we observe that if λ > 0, G > 0,

U

{
> 0 for nonzero ε1, ε2, ε3

= 0 if and only if ε1 = ε2 = ε3 = 0
(4-16.1)

In other words, U is positive definite (Langhaar, 1989).
Alternatively, if we assume that the strain energy density function U is positive

definite, we may show that G > 0, λ > 0 for known materials. The basis for this
result follows from the fact that necessary and sufficient conditions that U , given
in matrix form (Chapter 1, Section 1-28) by

2U = [ε1, ε2, ε3]

⎡
⎣λ + 2G λ λ

λ λ + 2G λ

λ λ λ + 2G

⎤
⎦
⎡
⎣ε1

ε2

ε3

⎤
⎦

be positive definite, are that the eigenvalues of the array (matrix)

⎡
⎣λ + 2G λ λ

λ λ + 2G λ

λ λ λ + 2G

⎤
⎦

be positive. The eigenvalues of the array are the three roots S1, S2, S3 of the deter-
minantal equation

⎡
⎣(λ + 2G) − S λ λ

λ (λ + 2G) − S λ

λ λ (λ + 2G) − S

⎤
⎦ = 0

10This theorem is attributed to Kirchhoff (1858). See also Love (1944), pp. 170, 176.
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Hence,
S1 = S2 = 2G > 0

S3 = 3λ + 2G > 0
(a)

We note that λ and G, the Lamé coefficients, are related to Young’s modulus of
elasticity E and Poisson’s ratio ν by Eqs. (4-7.5). Further, for known materials,
Poisson’s ratio ν is never negative. In reality, for elastic materials Poisson’s ratio
satisfies the condition 0 < ν < 1

2 . Consequently, with Eqs. (4-7.5) the condition
G > 0 implies E> 0; hence, for 0 < ν < 1

2 , λ > 0. It thus follows that for known
materials, λ > 0, G > 0 are necessary and sufficient conditions for U to be positive
definite.

More generally, for anisotropic materials the strain energy may be written in the
form [see Eqs. (4-4.7)]

2U = Cαβγ δεαβεγ δ (b)

where the elastic coefficients consist of the elements of the sixth-order symmetric
matrix (Cαβγ δ). It may be shown that U is positive definite if and only if the six
discriminants of (Cαβγ δ) are positive (Hildebrand, 1992). For example, for isotropic
materials

(Cαβγ δ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

λ + 2G λ λ 0 0 0
λ λ + 2G λ 0 0 0
λ λ λ + 2G 0 0 0
0 0 0 2G 0 0
0 0 0 0 2G 0
0 0 0 0 0 2G

⎤
⎥⎥⎥⎥⎥⎥⎦

(c)

The six discriminants of Eq. (c) are

λ + 2G > 0 (λ + 2G)2 − λ2 = 4G(λ + G) > 0

(λ + 2G)3 + 2λ3 − 3λ2(λ + 2G) = 4G2(3λ + 2G) > 0

8G3(3λ + 2G) > 0 16G4(3λ + 2G) > 0 32G(3λ + 2G) > 0

(d)

Equations (d) are satisfied if G > 0 and 3λ + 2G > 0, which agree with Eqs. (a).
In terms of Young’s modulus E and Poisson’s ratio ν, the conditions G > 0, 3λ +

2G > 0 are mathematically equivalent to the conditions (see Problem 4-6.3)

E > 0 − 1 < ν < 1
2 (e)

which for known materials becomes E > 0, 0 < ν < 1
2 .

For transversely isotropic materials with an axis of symmetry z [Eqs. (4-4.15a),
(4-4.15b), and (4-4.15c)], U is positive definite, provided the moduli are positive
and

1 − νxy > 2νxzνzx (f)
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Equation (f) is equivalent to the second of Eqs. (e) for the isotropic case νxy =
νxz = νzx = ν.

Now let us assume that (u′, v′, w′) and (u′′, v′′, w′′) are two possible sys-
tems of nonsingular (x, y, z) displacement components that satisfy the equilibrium
equations [Eqs. (3-8.1) in Chapter 3, with a1 = a2 = a3 = 0] and the boundary
conditions [Eqs. (4-15.1)]. We may express the equilibrium equations in terms of
the function U by employing the relations given in Eqs. (4-3.2). For example, the
first of Eqs. (3-8.1) may be written in (x, y, z) notation as

∂

∂x

∂U

∂εx

+ ∂

∂y

∂U

∂γxy

+ ∂

∂z

∂U

∂γxz

+ Bx = 0 (4-16.2)

with similar expressions holding for the last two of Eqs. (3-8.1). Then, if we set

u = u′ − u′′ v = v′ − v′′ w = w′ − w′′ (4-16.3)

(u, v, w) is a system of displacements that satisfy the equations

∂

∂x

∂U

∂εx

+ ∂

∂y

∂U

∂γxy

+ ∂

∂z

∂U

∂γxz

= 0, . . . , . . . , (4-16.4)

where the ellipses denote two similar equations. Because Eqs. (4-16.4) hold at
every point in the body, we may write

∫∫∫ [
u

(
∂

∂x

∂U

∂εx

+ ∂

∂y

∂U

∂γxy

+ ∂

∂z

∂U

∂γxz

)
+ v

(
∂

∂x

∂U

∂γxy

+ ∂

∂y

∂U

∂εy

+ ∂

∂z

∂U

∂γyz

)

+w

(
∂

∂x

∂U

∂γxz

+ ∂

∂y

∂U

∂γyz

+ ∂

∂z

∂U

∂εz

)]
dx dy dz = 0

(4-16.5)
By the divergence theorem [Eq. (1-15.3) in Chapter 1] we may transform

Eq. (4-16.5) into the form [utilizing Eqs. (2-15.14) in Chapter 2]

∫∫ [
u

(
l
∂U

∂εx

+ m
∂U

∂γxy

+ n
∂U

∂γxz

)
+ v

(
l

∂U

∂γxy

+ m
∂U

∂εy

+ n
∂U

∂γyz

)

+ w

(
l

∂U

∂γxz

+ m
∂U

∂γyz

+ n
∂U

∂εz

)]
dS

−
∫∫∫ (

∂U

∂εx

εx + ∂U

∂εy

εy + ∂U

∂εz

εz + ∂U

∂γyz

γyz + ∂U

∂γxz

γxz + ∂U

∂γxy

γxy

)
dx dy dz = 0

(4-16.6)
If boundary conditions are of the displacement type, u = v = w = 0 on S. If

boundary conditions are of the stress type, the stress components calculated from
(u, v, w) vanish on S [because each of sets (u′, v′, w′) and (u′′, v′′, w′′) yields the
same stress components on S]. In either case, the double integral of Eq. (4-16.6)
vanishes.



314 THREE-DIMENSIONAL EQUATIONS OF ELASTICITY

By Eqs. (4-4.4) and (4-4.6), we observe that the volume integral may be writ-
ten in the form

∫∫∫
2U dx dy dz. Hence, in order that Eq. (4-16.6) be satisfied,

it follows that U must vanish. Because by Eq. (4-16.1) U is either positive or
zero, in order that U be zero, ε1 = ε2 = ε3 = 0. Hence, it follows that (u, v, w)

represents a rigid-body displacement at most, and the assumed displacement sets
(u′, v′, w′) and (u′′, v′′, w′′) can differ by a rigid-body displacement at most. How-
ever, when the boundary conditions are of the displacement type, (u, v, w) must
vanish everywhere, as they vanish at all points on S.

Accordingly, we conclude that the solution to the equilibrium problem is unique;
that is, the stress and strain components are unique. In general, the displacement
is unique to within an arbitrary rigid-body displacement (Chapter 2, Section 2-15).

Uniqueness has been discussed for certain cases in which singularities are
allowed (Sternberg and Eubanks, 1955).

4-17 Equations of Elasticity in Terms of Displacement Components

In certain types of elasticity problems it is desirable to represent the equations of
motion in terms of the displacement vector q = i1u1 + i2u2 + i3u3, where i1, i2, i3
denote unit vectors directed along (x1, x2, x3) axes, respectively.

Accordingly, substitution of Eqs. (4-6.5) into the equations of motion
[Eqs. (3-8.1) in Chapter 3] yields with Eqs. (2-15.14) in Chapter 2 (with a1 = ü1,

a2 = ü2, a3 = ü3, where dots denote differentiation with respect to time):

(λ + G)
∂e

∂x1
+ G∇2u1 + B1 = ρü1

(λ + G)
∂e

∂x2
+ G∇2u2 + B2 = ρü2 (4-17.1)

(λ + G)
∂e

∂x3
+ G∇2u3 + B3 = ρü3

e = u1,1 + u2,2 + u3,3

Multiplying the first of Eqs. (4-17.1) by i1, the second by i2, the third by i3, and
adding, we obtain in vector form

(λ + G)∇∇ · q + G∇2q + B = ρq̈ (4-17.2)

where
∇ = i1

∂

∂x1
+ i2

∂

∂x2
+ i3

∂

∂x3

denotes the vector gradient operator, ∇2 denotes the Laplace operator (see
Chapter 1, Section 1-22), and

B = i1B1 + i2B2 + i3B3
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denotes the body-force vector per unit volume. For q̈ = 0, in the absence of body
forces we obtain

∇∇ · q + G

λ + G
∇2q = 0 (4-17.3)

Because ∇ and ∇2 are invariants under coordinate transformations, Eq. (4-17.3)
holds for general coordinate systems, the quantities ∇ and ∇2 being expressed in
the coordinate system of interest.

Boundary Conditions. The boundary conditions at a point P on the surface
of a body in terms of stress components are given by Eqs. (3-3.10) in Chapter 3.
Substitution of Eqs. (4-6.5) into Eqs. (3-3.10) yields with Eqs. (2-15.14)

σn1 = λen1 + G

(
n1

∂u1

∂x1
+ n2

∂u1

∂x2
+ n3

∂u1

∂x3

)

+ G

(
n1

∂u1

∂x1
+ n2

∂u2

∂x1
+ n3

∂u3

∂x1

)
= λen1 + G

[
nα

(
∂u1

∂xα

+ ∂uα

∂x1

)]

σn2 = λen2 + G

(
n1

∂u2

∂x1
+ n2

∂u2

∂x2
+ n3

∂u2

∂x3

)

+ G

(
n1

∂u1

∂x2
+ n2

∂u2

∂x2
+ n3

∂u3

∂x2

)
= λen2 + G

[
nα

(
∂u2

∂xα

+ ∂uα

∂x2

)]

σn3 = λen3 + G

(
n1

∂u3

∂x1
+ n2

∂u3

∂x2
+ n3

∂u3

∂x3

)

+ G

(
n1

∂u1

∂x3
+ n2

∂u2

∂x3
+ n3

∂u3

∂x3

)
= λen3 + G

[
nα

(
∂u3

∂xα

+ ∂uα

∂x3

)]
(4-17.4)

or

σnα = λenα + G

[
nβ

(
∂uα

∂xβ

+ ∂uβ

∂xα

)]
α, β = 1, 2, 3

Multiplying the first of Eqs. (4-17.4) by i1, the second by i2, the third by i3, and
adding, we obtain

σ n = λn∇ · q + G(n1∇u1 + n2∇u2 + n3∇u3 + n · ∇q) (4-17.5)

where n = i1n1 + i2n2 + i3n3 is the unit normal to the surface at P .
By the above equations, the classical elasticity problem is transformed into

a problem of determining the displacement vector q = i1u1 + i2u2 + i3u3 that
satisfies the equations of motion, Eqs. (4-17.1) or (4-17.2), and the boundary
conditions, Eqs. (4-17.4) or (4-17.5). With q determined, we may compute the
strain components by means of Eqs. (2-15.14) and then the stress components by
Eqs. (4-6.5). Because we are dealing with the displacement, compatibility is
automatically ensured (Chapter 2, Section 2-16).
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Differentiation of Eqs. (4-17.1), the first with respect to x, the second with
respect to y, and the third with respect to z, and addition of the results leads to an
interesting property of the volumetric strain e. Thus, for the equilibrium problem,

(λ + 2G)∇2e + ∇ · B = 0 (4-17.6)

Hence, in the absence of body force or with constant body force, Eq. (4-17.6)
yields

∇2e = 0 (4-17.7)

In other words, in this case the volumetric strain e satisfies Laplace’s equation or is
harmonic. Accordingly, the vast literature of Laplace’s equation (potential theory)
may be applied to seek solutions of the elasticity problem.

Problem Set 4-17

1. Consider an isotropic linearly elastic body subjected to small displacements. Note that
if Poisson’s ratio has the value ν = 1

2 , the shear modulus G = E/3, the bulk modulus
k = ∞ (see Problem 4-6.3), and the volumetric strain e = 0.

(a) Interpret the physical situation described by these conditions.

(b) Show that in this case, the displacement components (u, v,w) relative to (x, y, z)

axes and the first stress invariant I1 = σx + σy + σz are determined by the four
equations

G∇2u = 1

3

∂I1

∂x
+ B1 = 0

G∇2v = 1

3

∂I1

∂y
+ B2 = 0

G∇2w = 1

3

∂I1

∂z
+ B3 = 0

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0

where ∇2 = (∂2/∂x2) + (∂2/∂y2) + (∂2/∂z2), (B1, B2, B3) denotes the body force
relative to (x, y, z) axes, and G is the shear modulus.

2. The Helmholtz transformation relates the displacement vector q to the gradient of a
scalar potential function φ (curl ∇φ = 0) and to the curl of a solenoidal vector potential
function S (div S = 0) in the form

q = grad φ + curl S

(a) Show that grad φ (= ∇φ; see Chapter 1, Section 1-14) results in a dilatation only
(Section 2-15), whereas curl S (= ∇ × S; Section 1-13) produces a rotation only
(Section 2-15).
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(b) Hence, show that the equations of motion (Section 4-17) may be written in the
form

G∇2[α grad φ + curl S] = −B

where

α = 2(1 − ν)

1 − 2ν

Thus, the three-dimensional elasticity problem is transformed into the problem of
seeking a scalar potential function φ and a solenoidal vector potential function S.

4-18 Elementary Three-Dimensional Problems of Elasticity.
Semi-Inverse Method

The solutions of an elasticity problem must satisfy not only the equations of motion
[Eqs. (3-8.1) in Chapter 3] and the boundary conditions [Eqs. (4-15.1)], but also the
compatibility conditions [Eqs. (2-16.1) or (2-16.2) in Chapter 2]. With respect to
rectangular Cartesian coordinate axes (x, y, z), when expressed in terms of stress
components, the compatibility equations contain only second derivatives of stress
components and first derivatives of body forces [see Eqs. (4-14.2)]. If the body
forces are constant, the compatibility equations contain only terms in second deriva-
tives of stress components. Consequently, in a particular problem, if the equations
of equilibrium and the boundary conditions are satisfied by stress components that
are linear functions of (x, y, z), or constants, the compatibility equations are sat-
isfied identically. Hence, these stress components are a solution to the elasticity
problem. Furthermore, by the uniqueness theorem of elasticity (Section 4-16), it
follows that this solution is the only solution to the problem.

Semi-Inverse Method. Often a solution to an elasticity problem may be
obtained without seeking simultaneous solutions to the equations of equilibrium,
the compatibility conditions, and the boundary conditions. For example, one
may attempt to seek solutions by making certain assumptions (guesses) about
the components of stress, the components of strain, or the components of
displacement, while leaving sufficient freedom in these assumptions so that the
equations of elasticity may be satisfied. If the assumptions allow us to satisfy
the elasticity equations, then, by the uniqueness theorem, we have succeeded in
obtaining the solution to the problem. This method was employed by Saint-Venant
in his treatment of the torsion problem (Section 7-2). Hence, it is often referred to
as the Saint-Venant semi-inverse method.

Example 4-18.1. Hydrostatic State of Stress. In the absence of body forces, let a
medium be subjected to the hydrostatic state

σx = σy = σz = −p τxy = τxz = τyz = 0 (a)
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where the constant p denotes pressure. Equations (a) automatically satisfy compat-
ibility:

εx = εy = εz = −p

3λ + 2G
= −(1 − 2ν)

p

E

γxy = γxz = γyz = 0
(b)

Equation (b) yields
e = εx + εy + εz = −3(1 − 2ν)

p

E
= −p

k
(c)

where e denotes the volumetric strain, and k = E/[3(1 − 2ν)] = bulk modulus.
Substitution of Eqs. (b) into Eq. (2-15.14) in Chapter 2 yields after integration

u = − p

3λ + 2G
x + ay + bz + c

v = − p

3λ + 2G
y − ax + dz + f

w = − p

3λ + 2G
z − bx − dy + g

(d)

where a, b, c, d, f, g are constants, which define a rigid-body displacement (see
Chapter 2, Sections 2-2 and 2-15). If we specify at the point x = y = z = 0 that
u = v = w = ωx = ωy = ωz = 0, where (ωx, ωy, ωz) denotes the rotation vector
(see Section 2-13), we obtain a = b = c = d = f = g = 0. Then Eqs. (d) reduce to

u = − p

3λ + 2G
x v = − p

3λ + 2G
y w = − p

3λ + 2G
z (e)

Equations (e) represent a simple dilatation (see Section 2-14).
If the medium is incompressible, e = 0. Then Eq. (c) yields ν = 1

2 . Accordingly,
for an incompressible medium, Poisson’s ratio is one-half.

Example 4-18.2. Pure Bending of Prismatic Bars. In the elements of strength
of materials, simplifying approximations are employed to study problems of beam
bending. In this example we take the initial assumptions of elementary beam theory
and consider them in the light of the theory of elasticity. Consider an initially
straight bar with rectangular cross section subject at its ends to couples, of moment
M , which lie in the plane y = 0 for (x, y, z) axes shown in Fig. E4-18.1.

Initially the (x, y, z) axes coincide with the principal axes of the beam. Taking
the results of elementary beam theory, we assume (semi-inverse) the system of
stress components

σz = −M

I
x σx = σy = τxy = τxz = τyz = 0 (a)

where I denotes the moment of inertia of the rectangular cross section relative to
the y axis. By Eqs. (3-8.1) in Chapter 3 we note that Eqs. (a) satisfy the equations
of equilibrium (in the absence of body force). Furthermore, because the stress
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Figure E4-18.1

components are linear functions of (x, y, z), the equations of compatibility [Eqs.
(4-14.2)] are automatically satisfied.

By means of Eqs. (4-6.8) and (2-15.15), and using (x, y, z) notations for stress
and strain components, we obtain with Eqs. (a) (assuming that small-displacements
theory holds)

∂u

∂x
= νM

EI
x

∂v

∂y
= νM

EI
x

∂w

∂z
= − M

EI
x

∂v

∂x
+ ∂u

∂y
= 0

∂w

∂y
+ ∂v

∂z
= 0

∂u

∂z
+ ∂w

∂x
= 0

(b)

where ν and E denote Poisson’s ratio and Young’s modulus, respectively. Because
compatibility is ensured, we are guaranteed that integration of Eqs. (b) yields admis-
sible displacement components (u, v, w) (see Chapter 2, Section 2-16). Accord-
ingly, we proceed to integrate Eqs. (b) as follows:

By the third of Eqs. (b), we find

w = − M

EI
xz + f1(x, y) (c)

where f1 is an unknown function of (x, y).
With Eq. (c), the fifth and sixth of Eqs. (b) yield

u = M

2EI
z2 − z

∂f1

∂x
+ f2(x, y)

v = −z
∂f1

∂y
+ f3(x, y)

(d)
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where f2(x, y) and f3(x, y) are unknown functions of (x, y). Substitution of
Eqs. (d) into the first two of Eqs. (b) yields

−z
∂2f1

∂x2
+ ∂f2

∂x
= νM

EI
x

−z
∂2f1

∂y2
+ ∂f3

∂y
= νM

EI
x

Consequently, by Eqs. (b),

∂2f1

∂x2
= ∂2f1

∂y2
= 0

Accordingly, integration yields

f2(x, y) = νM

2EI
x2 + g1(y)

f3(x, y) = νM

EI
xy + g2(x)

f1(x, y) = axy + bx + cy + e

(e)

where g1, g2 are unknown functions of y and x, respectively, and a, b, c, e are
constants. Substitution of Eqs. (d) and (e) into the fourth of Eqs. (b) yields

dg1

dy
+ dg2

dx
+ νMy

EI
= 2az (f)

Because the terms on the left side of Eq. (f) are independent of z, Eq. (f) requires
that the constant a be zero.

Hence
dg1

dy
+ νMy

EI
= −dg2

dx
(g)

Because g1 = g1(y) and g2 = g2(x), Eq. (g) implies that at most

dg1

dy
+ νMy

EI
= −dg2

dx
= α (h)

where α is a constant. Accordingly, integration of Eq. (h) yields

g2 = −αx + β

g1 = −νMy2

2EI
+ αy + γ

(i)
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where α, β, γ are arbitrary constants. Thus, with the preceding conditions, the
displacement components become [Eqs. (i), (e), and (d)]:

u = M

2EI
(z2 + νx2 − νy2) + αy − bz + γ

v = νM

EI
xy − αx − cz + β

w = − M

EI
xz + bx + cy + e

(j)

In Eqs. (j) the linear terms in (x, y, z) represent a rigid-body displacement
[Eqs. (2-15.19) in Chapter 2]. The constants α, β, γ, b, c, e depend on the manner
in which the beam is constrained. For example, by fixing the centroid of the left
face of the beam (x = y = z = 0), and by fixing an element of the z axis at the
origin x = y = z = 0, and an element of area in the xz plane at the origin, we
ensure that there is no rigid-body displacement of translation or rotation relative to
the origin. These constraints imply that, for x = y = z = 0,

u = v = w = ∂u

∂z
= ∂v

∂z
= ∂u

∂y

(
or

∂v

∂x

)
= 0

Hence, α = β = γ = b = c = e = 0. Thus, for these constraints, the displacement
(u, v, w) are reduced to

u = M

2EI
(z2 + νx2 − νy2)

v = M

EI
νxy

w = − M

EI
xz

(k)

Inspection of Eqs. (k) shows that the beam fibers lying in the plane x = 0
undergo no displacement in the z direction; that is, these fibers do not elongate (or
contract). Consequently, the plane x = 0 is called the neutral plane of the beam.
The fiber that coincided with the z axis before deformation is called the neutral
axis of the beam.

The longitudinal fibers for which x > 0 contract, and the fibers for which x < 0
elongate. Because the point (x, y, z) in the beam passes to the point ξ = x + u, η =
y + v, ζ = z + w, points that were originally on the neutral axis pass into the points

ζ = z ξ = M

2EI
z2 = M

2EI
ζ 2 η = 0 (l)

The plane y = 0 contains the deformed neutral axis of the beam. Thus, the deformed
neutral axis of the beam lies in the plane of the couples applied at the ends.
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Because we have assumed small-displacement theory, the radius of curvature R

of the deformed neutral axis is approximated as

1

R
= d2ξ/dζ 2

[1 + (dξ/dζ )2]3/2
≈ d2ξ

dζ 2

Hence, by Eqs. (l),
1

R
= M

EI
(m)

Equation (m) is the Bernoulli–Euler equation of elementary beam theory. It states
that in pure bending of prismatic bars, the bending moment M is proportional to
the curvature 1/R of the neutral axis. The Bernoulli–Euler equation forms the basis
for elementary beam theory.

Deformed Shape of Cross Section. Consider the cross section of the beam
at some arbitrary point z = z1. After deformation, points in this section lie in the
cross section ζ = z1 + w. By Eq. (k), w = −Mxz1/EI . Hence,

ζ = z1

(
1 − Mx

EI

)
= z1

(
1 − x

R

)
(n)

Equation (n) is the equation of the plane normal to the deformed neutral axis at
z = z1. Hence, the assumption made in the elements of strength of material is valid;
that is, planes originally perpendicular to the neutral axis remain plane and normal
to the deformed neutral axis.

To examine the deformation of the cross section in its plane (Fig. E4-18.1), we
note that the sides y = ±b deform into the lines

η = y + v = ±b ± νMxb

EI
= ±b

[
1 + νMx

EI

]
= ±b

[
1 +

(νx

R

)]

Thus, the vertical lines become inclined. Similarly, the lines x = ±a at section
z = z1 deform into the lines ξ = ±a + [z2

1 + ν(a2 − y2)]/2R. Hence, for small
values of 1/R, the x lines deform into a parabola with curvature of magnitude
|d2ξ/dη2| ≈ |d2ξ/dy2| = ν/R. The center of curvature of the x lines of the cross
section z = z1 lie on the opposite side of the neutral plane from the center of
curvature of the neutral axis (Fig. E4-18.1). Consequently, the deformed neutral
surface of the beam is an anticlastic surface.

The general case of pure bending in which couples act in planes that do not
coincide with a principal plane may be treated by considering individual compo-
nents of the couples with moments directed along principal axes. The foregoing
analysis is then applicable to each component. The solution may then be obtained
by superposition.
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Problem Set 4-18

1. The following stress array is proposed as a solution to a certain equilibrium problem of
a plane body bounded in the region −L/2 ≤ x ≤ L/2, −h/2 ≤ y ≤ h/2:

σx = Ay + Bx2y + Cy3 σy = Dy3 + Ey + F

τxy = (G + Hy2)x σx = τxz = τyz = 0

where (x, y, z) are rectangular Cartesian coordinates and A,B, . . . , H are nonzero con-
stants. Determine the conditions under which this array is a possible equilibrium solution.
It is proposed that the region be loaded such that τxy = 0 for y = ±h/2, σy = 0 for
y = h/2, σy = −σ(σ = constant) for y = −h/2, and σx = 0 for x = ±L/2. Determine
whether the proposed stress array may satisfy these conditions.

2. In bending of a straight bar with rectangular cross section, the stress state is given by

σx = C1y + C2xy τxy = C3(c
2 − y2)

σy = σz = τxz = τyz = 0

where (x, y, z) are right-hand rectangular Cartesian axes, with axis x coincident with
the axis of the bar and bending occurring in the x, y plane.

(a) Determine under what conditions these stresses satisfy the equations of equilibrium.
Neglect body forces.

(b) In a sketch, show what boundary stresses must exist on the lateral surfaces and on
the end faces of a cantilever beam of length L and depth 2c. Take the origin of
(x, y, z) axes at the free end of the beam, with y axis in the direction of the depth
dimension.

3. A beam of rectangular cross section is composed of a material whose stress–strain
relation for one-dimensional loading is σx = kε

1/3
x , where k is a known constant

(Fig. P4-18.3). The beam is bent by couples into a circular arc of radius ρ at the
middle surface. The middle surface does not strain in the x direction and all stresses
are zero except σx . Derive an expression for the strain energy per unit length of the
beam in terms of a, b, k, and ρ.

Figure P4-18.3
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4. Show that the stress components

σy = E

R
z + K σx = σz = τxy = τxz = τyz = 0

where E,R, and K are constants, satisfy the equilibrium equations and the boundary
conditions for pure bending in the y, z plane of a prismatic bar. Derive expressions
for (x, y, z) displacement components (u, v,w) relative to one end of the bar. Are the
compatibility conditions satisfied?

5. A semi-infinite space is subjected to a uniformly distributed pressure over its entire
bounding plane (Fig. P4-18.5). Consider an infinitesimal volume element ABCD at
some distance from the bounding plane. The normal stress on surface AB is σy = σ .
In terms of the appropriate material properties and σ , derive expressions for the normal
stress components σx, σz that act on the volume element (axis z is perpendicular to the
x, y plane). (Hint : What are the values of the strain components εx, εz?)

Figure P4-18.5

6. For the cantilever beam, it is assumed that the elementary beam formulas hold; that is
[see Fig. P4-18.6],

σx = 12Pxy

a3b
τxy = 3P(a2 − 4y2)

2a3b

σy = σz = τxz = τyz = 0

The material is elastic and deflections are small. Determine whether all the require-
ments of three-dimensional elasticity theory are satisfied by this solution. If not, what
is violated?
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Figure P4-18.6

7. By the small-displacement theory of pure bending of a three-dimensional beam, we find
that the (x, y, z) displacement components (u, v,w) are

u = 1

R
xy + Dy + Ez + F

v = − 1

2R
[x2 + ν(y2 − z2)] − Dx + Az + C

w = − 1

R
νyz − Ay − Ex + B

(a)

where ν is Poisson’s ratio, R is the radius of curvature of the beam centerline in the
deformed position, and A, B,C, D,E,F are constants. Initially, the undeformed beam
occupies the region 0 ≤ x ≤ L(L = beam length), −c ≤ y ≤ c(2c = beam depth),
−b ≤ z ≤ b(2b = beam width).

(a) Derive expressions for the (x, y, z) strain components of the strain tensor εij and
for the rotation tensor (vector) ω as functions of (x, y, z).

(b) Impose the condition that u = v = w = 0 at x = y = z = 0, and establish the
required restrictions on Eqs. (a).

(c) Impose the condition that each component of ω is zero at x = y = z = 0 and com-
pute the components of ω at x = L, y = z = 0.

(d) By means of Eqs. (a), compute the slope of the centerline at x = L, y = z = 0, and
show that the result corresponds to one component of ω.

8. Given the following stress state:

σx = C[y2 + ν(x2 − y2)] τxy = −2Cνxy

σy = C[x2 + ν(y2 − x2)] τxy = τxz = 0

σz = Cν(x2 + y2)

discuss possible reasons for which this stress state may not be a solution of a problem
in elasticity.

9. For the case of spherical symmetry in which stress, strain, and displacement are functions
of only the radial coordinate r of spherical coordinates (r, θ, φ), reduce the general three-
dimensional equilibrium equations to a single differential equation in terms of stress
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components [Section 3A-2, Eq. (3A-2.6)]. Express this equation in terms of displacement
and solve the resulting differential equation to obtain the Lamé solution for the spherical
container.

10. When one represents the equation of motion for an elastic body in terms of displacement,
one obtains the Lamé equation:

(λ + G)∇(∇ · q) + G∇2q + B = ∂2q
∂t2

where (λ, G) are the Lamé constants, t is time, ∇ = i(∂/∂x) + j(∂/∂y) + k(∂/∂z),

∇2 = (∂2/∂x2) + (∂2/∂y2) + (∂2/∂z2), (x, y, z) are rectangular Cartesian coordinates,
B is the body-force vector, and q is the displacement vector. Consider the unbounded
elastic medium (infinite region):

(a) Applying the inverse method, let the displacement field be u = u(x, t), v = w = 0,
and let B = 0. For this case, determine the mathematical problem to which the
elasticity problem reduces.

(b) Repeat for the case u = v = 0, w = w(x, t).

(c) Show that u = f (x − ct) + g(x + ct), and w = f (x − ct) + g(x + ct), respec-
tively, are solutions of the mathematical problems of parts (a) and (b), where c is
a constant. Determine c in each case.

(d) Consider the special solution u = u0 sin 2π [(x/λ) − (t/T )], where u0, λ, T are
parameters (called the amplitude, wavelength, and period of vibration, respectively).
The ratio λ/T = V is velocity of wave propagation. Derive a formula for the ratio
λ/T = V , and show that for a particular medium V = constant for the assumed
motion. Compare V to c.

11. The stress–strain relations for a general anisotropic body may be written either in the
form σα = Cαβεβ, σ, β = 1, 2, . . . , 6 or in the form εα = Sαβσβ = 1, 2, . . . , 6, where
the stiffness Cαβ = Cβα are related to the compliances Sαβ = Sβα by the relations

Cαβ = cofactor of Sαβ

det Sαβ

where σ1 = σx, σ2 = σy, σ3 = σz, . . . , σ6 = τyz are the stress components relative to
rectangular Cartesian axes x1 = x, x2 = y, x3 = z, and similarly for strain components
ε1 = εx, ε2 = εy, ε3 = εz, . . . , ε6 = γyz.

Consider the simply supported anisotropic beam (Fig. P4-18.11) bent by couples M

in the (x2, x3) plane. Assume that the stresses are given by elementary beam theory;
that is,

σ1 = σ2 = σ4 = σ5 = σ6 = 0 σ3 = Mx2

I

where I is the moment of inertia of the cross section relative to axis x1 (perpendicular
to plane x2, x3).

Derive formulas for the displacement components (u1, u2, u3) relative to (x1, x2, x3)

axes, respectively, evaluating arbitrary constants from end conditions at x3 = 0 and
x3 = L.
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Figure P4-18.11

4-19 Torsion of Shaft with Constant Circular Cross Section

Consider a solid cylinder with constant circular cross section A and with length L.
Let the cylinder be subjected to axial twisting couples M applied at its ends; the
vector that represents the couple is directed along the z axis, the axis of the shaft
(see Fig. 4-19.1).

Under the action of M, an originally straight generator of the cylinder will
deform into a helical curve. However, because of the axial symmetry of the cross
section, it is reasonable to assume that plane cross sections of the cylinder normal to
the z axis remain plane after the deformation. Furthermore, for small displacements
a radius of a given section remains essentially straight and inextensible. In other
words, the couple M causes each section to rotate approximately as a rigid body
about the axis of the couple, that is, the axis of twist, z. Furthermore, if we measure
the rotation θ of each section relative to the plane z = 0, the rotation θ of a given
section will depend on its distance from the plane z = 0. For small deformations,

Figure 4-19.1
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a reasonable assumption is that the amount of rotation of a given section depends
linearly on its distance z from the plane z = 0. Thus, the rotation θ of a section
relative to the plane z = 0 is

θ = βz (4-19.1)

where β is the twist per unit length of the shaft. Under the assumption that plane
sections remain plane and that Eq. (4-19.1) holds, we now seek to satisfy the
equations of elasticity; that is, we employ the semi-inverse method of seeking the
elasticity solution.

Because plane sections are assumed to remain plane, the displacement compo-
nent w, parallel to the z axis, is taken to be zero. To calculate the (x, y) components
u and v, consider a cross-section distance z from the plane z = 0. Consider a point
in the circular cross section (Fig. 4-19.2) with radial distance OP.

Under the deformation, radius OP rotates into the radius OP∗. In terms of the
angular displacement θ of the radius, the displacement components (u, v) are

u = x∗ − x = OP [cos(θ + φ) − cos φ]
v = y∗ − y = OP [sin(θ + φ) − sin φ]

(4-19.2)

Expanding cos(θ + φ) and sin(θ + φ) and noting that x = OP cos φ, y = OP sin φ,
we may write Eq. (4-19.2) in the form

u = x(cos θ − 1) − y sin θ

v = x sin θ + y(cos θ − 1)
(4-19.3)

Restricting the deformation to be small, we obtain (as then sin θ ≈ θ , cos θ ≈ 1)

u = −yθ v = xθ (4-19.4)

to first-degree terms in θ .

Figure 4-19.2
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Substitution of Eq. (4-19.1) into Eqs. (4-19.4) yields

u = −βyz v = βxz w = 0 (4-19.5)

On the basis of the foregoing assumptions, Eqs. (4-19.5) represent the displacement
components of a circular shaft subjected to a twisting couple M .

Substitution of Eqs. (4-19.5) into Eqs. (2-15.14) in Chapter 2 yields the strain
components

εx = εy = εz = γyz = 0 γxz = −βy γyz = βx (4-19.6)

With Eqs. (4-19.6), Eqs. (4-6.5) yield the stress components

σx = σy = σz = τxy = 0 τxz = −βGy τyz = βGx (4-19.7)

Because Eqs. (4-19.7) are linear in (x, y), they automatically satisfy com-
patibility Eqs. (4-14.2) in the absence of body forces and temperature. Further-
more, they satisfy equilibrium provided the body forces are zero [Eqs. (3-8.4) in
Chapter 3].

To satisfy the boundary conditions, Eqs. (4-19.7) must yield no forces on the
lateral boundary; on the ends they must yield stresses such that the net moment is
equal to M and the resultant force vanishes. Because the direction cosines of the
unit normal to the lateral surface are (l, m, 0), the first two of Eqs. (4-15.1) are
satisfied identically. The last of Eqs. (4-15.1) yields

lτxz + mτyz = 0 (4-19.8)

By Fig. 4-19.3,
l = cos φ = x

a
m = sin φ = y

a
(4-19.9)

Substitution of Eqs. (4-19.7) and (4-19.9) into Eqs. (4-19.8) yields

−xy

a
+ xy

a
= 0

Accordingly, the boundary conditions on the lateral boundary are satisfied.
On the ends the stresses must be distributed so that the net moment is M .
Because all stress components except τyz, τxz vanish, summation of forces on

the end planes yield Fx = Fy = Fz = 0. Also, summation of moments with respect
to the z axis yields (Fig. 4-19.4)

∑
Mz = M =

∫
A

(xτyz − yτxz) dA (4-19.10)



330 THREE-DIMENSIONAL EQUATIONS OF ELASTICITY

Figure 4-19.3

Figure 4-19.4

Substitution of Eqs. (4-19.7) into Eq. (4-19.10) yields

M = Gβ

∫
A

(
x2 + y2) dA = Gβ

∫
A

r2dA (4-19.11)

Integration over the circular area yields

M = GβI0 (4-19.12)
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where
I0 = π

2
a4 (4-19.12a)

is the polar moment of inertia of the circular cross section. Equation (4-19.12)
relates the angular twist β per unit length of shaft to the applied moment M .

Because compatibility and equilibrium are satisfied, Eqs. (4-19.7) represent the
solution of the elasticity problem, provided the stress components τxz, τyz are
distributed over the end planes according to Eqs. (4-19.7). Because τxy, τyz are
independent of z, the stress distribution is the same for all cross sections. Thus, the
stress vector σ for any point P in a cross section is given by the relation

σ = −iβGy + jβGx (4-19.13)

It lies in the plane of the section and is perpendicular to the radius vector r joining
point P to the origin O .

By Eq. (4-19.13), the magnitude of σ is

σ = βG
√

x2 + y2 = βGr (4-19.14)

Hence, σ is a maximum for r = a; that is, σ attains a maximum value of βGa on
the lateral boundary of the shaft.

Problem Set 4-19

1. When we twist a slender prismatic bar with noncircular cross section and with generators
parallel to the z axis by means of couples of magnitude M applied to the ends of the
bar, we find the only nonzero stress components are τxz and τyz.

(a) Write the governing differential equations of equilibrium for the bar and the bound-
ary conditions for the lateral stress-free surfaces of the bar.

(b) Determine the principal stresses and the corresponding principal stress directions in
terms of τxz, τyz, and τ , where τ 2 = τ 2

xz + τ 2
yz.

2. Consider a shaft with circular cross section. Let the shaft be subjected to a system of
forces such that every cross section of the shaft rotates as a rigid body through an angle
θ = βz, where β is a constant and z is the axial distance measured from one end of the
shaft. Also, the axial displacement of the shaft is zero.

For large rotation, express the displacement components (u, v) of a point in the
direction of (x, y) axes in the plane of the cross section in terms of coordinates
(x, y, z). (Axes x, y, z form a right-handed coordinate system.) Hence, derive expres-
sions for the strain components (εx, εy, εz, γxy, γxz, γyz) and the stress components
(σx, σy, σz, τxy, τxz, τyz). Is the lateral surface of the shaft free of boundary stress?

3. Consider a particle initially at the point (x, y, z) in a cylindrical shaft (Fig. P4-19.3).
When the bar is subjected to a couple M directed along the z axis, the radius to point
(x, y) rotates about the z axis through an angle βz, where β is the angle of twist per
unit length of the bar. Assuming that the displacement is small, in terms of β, x, y,
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and z, derive the displacement components u = x∗ − x, v = y∗ − y. Assume that w =
βf (x, y), where w is the z component of displacement of the particle and f (x, y) is a
function of x and y. Derive formulas for the six strain components εx, . . . , γyz in terms
of β, f, x, and y. Derive the corresponding expressions for the six stress components
in terms of f, β, x, y, and G (the shear modulus). What is the equilibrium equation in
terms of f ? Neglect body forces.

Figure P4-19.3

4. The stress array for the torsion problem of a circular cross section bar of radius a and
with longitudinal axis coincident with the z axis of rectangular Cartesian axes (x, y, z) is⎛

⎝ 0 0 −Gyβ

0 0 Gxβ

−Gyβ Gxβ 0

⎞
⎠

where G, β are constants.
Compute the principal stresses at a point on the lateral surface of the bar. Determine

the principal stress axes for a point on the lateral surface of the bar.

4-20 Energy Principles in Elasticity

As noted in Section 4-2, the linear elastic problem of equilibrium of a deformable
solid body requires in general the solution of 6 first-order linear partial differential
equations of motion, 6 compatibility relations in the form of second-order linear
partial differential equations, and 6 stress–strain relations, with stress components
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and/or displacement components subject to appropriate boundary conditions. If
stress couples and body couples are absent, the 6 differential equations of motion
are reduced to 3 under the supplemental conditions that σαβ = σβα (Chapter 3,
Section 3-3). Under certain restrictive assumptions, the 15 equations that then
define the linear elasticity problem may be further reduced (such as plane problems,
Chapters 5 and 6, or problems of plates and shells, etc.). However, the direct
approach of seeking exact solutions to this problem (i.e., solving directly for the
displacement vector or the stress tensor; see Sections 4-18 and 4-19) is usually
extremely difficult. Consequently, solutions are often sought by alternative methods.
Frequently, these alternative methods are based on energy concepts in conjunction
with minimum principles of the calculus of variation (Chapter 1, Section 1-29).

Because energy is a scalar quantity, energy methods are sometimes referred to
as scalar methods. However, we refer to the coupling of energy concepts with
minimum principles briefly as energy principles.

Because the equations of elasticity may be solved alternatively by energy prin-
ciples, we might anticipate that the equations of elasticity may be in part derived
from energy concepts (see Sections 4-3 and 4-4). Energy principles of various
kinds may be employed, depending on the nature of the variations (Chapter 1,
Section 1-29). For example, when displacements are varied, we are led to the
principle of virtual work (virtual displacement), Section 4-21; when stresses are
varied, we obtain principles of virtual stress (Castigliano’s theorem), Section 4-22;
and when both stress and strain are varied, we obtain mixed minimum principles
(Reissner’s theorem), Section 4-23. Conceptually, the energy approaches in elas-
ticity may be interpreted as replacements for the various equations of elasticity.
For example, the principle of virtual displacement may be interpreted as a replace-
ment of the equation of motion (because displacement components are employed,
compatibility is ensured), whereas principles of virtual stress may be considered a
replacement for the compatibility requirements.

Although in a certain sense the use of energy principles in seeking elasticity
solutions may be thought of as an alternative method of attack, their use is important
from a number of other viewpoints. For example, energy principles may be used to
simplify the derivation of the governing differential equations of various structural
problems of plates and shells, as well as for obtaining the associated boundary
conditions (Langhaar, 1989). Furthermore, certain features of the solution of the
problem may be clarified without a complete knowledge of the solution (Langhaar,
1989, Section 4-10). With the widespread use of high-speed electronic computers,
the adaptability of energy principles in seeking approximate solutions has become
one of their most important features. Particularly, the principles of virtual work
and virtual stress form the basis for much of the modern work in finite element
methods.

4-21 Principle of Virtual Work

We present the principle of virtual work for conservative unchecked systems. The
law of kinetic energy (Boresi and Schmidt, 2002) when applied to conservative
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unchecked systems leads immediately to the general static principle known as the
principle of virtual work (virtual displacement). We consider the development of
the principle initially for a system of particles before discussing elastic bodies
(conservative systems).

Principle of Virtual Work (Displacement) for Particles. In the case of a
single particle, when the particle begins to move from a state of rest, it is gaining
kinetic energy. Therefore, by the law of kinetic energy, the forces Fj that act
on the particle are performing net positive work. Hence, the particle does not
move unless it can undergo some arbitrarily small displacement, say δui , for which
the corresponding increment of work δW of the forces is positive, that is, for
which δW > 0. Alternatively, spontaneous motion of the particle is not possible if
δW ≤ 0 for all small displacements imaginable for the particle. Because the small
displacements δui need not necessarily be realized physically, they are said to be
virtual displacements ; similarly the work δW is called the virtual work.

If the forces that act on the particle are in equilibrium, then under a virtual
displacement δui : (δu1, δu2, δu3) relative to axes xi , in which the forces acting on
the particle are unchanged , we have

δu1

∑
Fx1 = 0 δu2

∑
Fx2 = 0 δu3

∑
Fx3 = 0 (4-21.1)

as, by definition of equilibrium,∑
Fx1 = 0

∑
Fx2 = 0

∑
Fx3 = 0 (4-21.2)

Hence

δW = δu1

∑
Fx1 + δu2

∑
Fx2 + δu3

∑
Fx3 = 0 (4-21.3)

In other words, for a particle in equilibrium, the virtual work of all forces acting
on the particle in a virtual displacement is identically zero.

Similarly, for a system of mass particles in equilibrium under external forces
and internal forces (say, mutual attractions between the masses), the resultant of
all external and internal forces of the system that act on any particle must vanish.
Hence, under a virtual displacement of each particle, with all forces (external and
internal) remaining unchanged, the virtual work done by the resultant force acting
on each particle is zero [Eq. (4-21.3)]: thus, the total virtual work that is performed
by all forces on all particles is zero. The virtual work is performed in part by
the internal forces and in part by the external forces. For the elastic system, we
consider all forces to be conservative. For internal forces of a system of particles,
we therefore require the internal energy U to be a function of particle position only
(see Section 4-2). Accordingly, the principle of virtual work may be stated for a
system of particles in the form

δWe + δWi = 0 (4-21.4)
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where δWe, δWi are the virtual works of the external forces and of internal forces,
respectively. Hence, we may write

δWe = −δWi = δU (4-21.5)

where δU is the first variation of the total internal energy U of the particles, that
is, the first-order terms in the virtual displacements (see Chapter 1, Section 1-29,
and Section 4-3). Equation (4-21.5) is the symbolic representation of the principle
of virtual work for a system of material particles. In other words,

if a system of particles is in a state of equilibrium under the action of conservative
unchecked external and internal forces, then under virtual displacements given to
each particle the virtual work performed by the external forces (which remain
unchanged in the virtual displacement) is equal to the first variation of the internal
energy.

Principle of Virtual Work (Displacement) for Elastic Bodies. We proceed
in a manner analogous to that for a system of particles, noting, however, that
for an elastic body we require a virtual displacement to satisfy the conditions of
an admissible displacement (Chapter 2, Section 2-4) that satisfies any prescribed
displacement boundary conditions (Sections 4-15 and 4-16). For example, in the
case of the beam of Example 4-18.2, the virtual displacement components and
certain of their derivatives must vanish at the point x = y = z = 0.

Let the state of stress of an elastic body be denoted by the stress components
σαβ , and the deformation state by the displacement components uα relative to axes
xα . Let the body be in a state of small dynamic motion or in a state of equilibrium.
Then analogous to the work performed by external forces on a particle, we have
the virtual work due to surface stress σnα [Eq. (3-3.10) in Chapter 3],

δWS =
∫∫
S

σnα δuα dS (4-21.6)

and the virtual work due to body forces Bα (as well as inertial forces −ρüα):

δWB =
∫∫∫

V

(Bα − ρüα) δuα dV (4-21.7)

By Eqs. (3-3.10) and (4-21.6), we obtain

δWS =
∫∫
S

[(σβαnβ)δuα] dS (4-21.8)
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or, by use of the divergence theorem (Chapter 1, Section 1-15),

δWs =
∫∫∫

V

∂

∂xβ

(σβαδuα) dV

=
∫∫∫

V

(
∂σβα

∂xβ

δuα + σβα

∂δuα

∂xβ

)
dV

=
∫∫∫

V

(σβα,βδuα + σβαδεαβ) dV (4-21.9)

where we have employed the linearity (hence interchangeability) of ∂δuα/∂xβ =
(δuα),β = δ(uαβ), and where δεαβ = δ[(uα,β + uβ,α)/2] (see Section 4-3) denotes
the virtual strain components associated with δuα.

Introducing Eq. (3-8.1) into Eq. (4-21.9), we obtain with Eq. (4-21.7)

δW = δWS + δWB =
∫∫∫

V

σβαδεαβ dV (4-21.10)

However, by Eq. (d), Section 4-3, we have for the conservative elastic system

δI = δU(εαβ) =
∫∫∫

V

σβαδεαβ dV (4-21.11)

where we consider U , hence σβα , functions of the strain components εαβ . Conse-
quently, Eqs. (4-21.10) and (4-21.11) yield

δW = δU(εαβ) (4-21.12)

where

δW = δ

⎡
⎣∫∫

S

σnαuα dS +
∫∫∫

V

(Bα − ρüα)uα dV

⎤
⎦ (4-21.13)

and
δU(εαβ) = δ

∫∫∫
V

σβαεαβ dV (4-21.14)

where we place the variation sign outside the integral, recalling that under a virtual
displacement (virtual strain) the surface stress σnα, body force Bα, stress compo-
nents σβα , and inertial forces −ρüα are not changed.

For an equilibrium state, ρü = 0. Then Eq. (4-21.12) yields∫∫
S

σnα δuα dS +
∫∫∫

V

Bα δuα dV =
∫∫∫

V

σβα δεαβ dV (4-21.15)
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Equation (4-21.15) is a statement of the principle of virtual work (displacement) for
an elastic body.

Recalling from elementary mechanics that for a conservative system of forces the
work δW done by forces undergoing a virtual displacement is equal to the negative
of the potential energy change δ� of the forces, we may write Eq. (4-21.12) in
the form

δπ = 0 (4-21.16)

where δπ is the variation of the total potential energy π = � + U(εαβ) of the
system, and � = −W is the potential energy of external forces. Hence, for a
conservative system, the principle of virtual work is equivalent to the principle of
stationary potential energy δπ = 0 (see Chapter 1, Section 1-29). Alternatively,
we may note that if a displacement state uα satisfies the condition δπ = 0 for all
δuα , it can be shown that uα is the solution of the elasticity problem.

Because in the development of the principle of virtual work (δπ = 0) we have
employed admissible displacements uα (and δuα), the compatibility conditions of
strain are ensured (Chapter 2, Section 2-16). In addition, we require that uα satisfy
all displacement boundary conditions prescribed on boundary S ′′ (then δuα = 0 on
S ′′). Accordingly, to ensure that displacement uα is the solution of the elasticity
problem, the condition δπ = 0 must be shown equivalent to the equations of equi-
librium (motion) and to appropriate boundary conditions. This fact may be shown
as follows. Let stress boundary conditions be prescribed on S ′′ and displacement
boundary conditions be prescribed on S ′′, where S = S ′ + S ′′ denotes the surface
bounding an elastic region R.

Then, by Eq. (4-21.15) [or Eq. (4-21.16)], we obtain (because δuα = 0 on S ′′)∫∫
S′

σ ′
α δuα dS +

∫∫∫
R

Bαδuα dV = δU (4-21.17)

where σ ′
α denotes the stress vector on surface S ′,

δU =
∫∫∫

R

σβα δεαβ dV =
∫∫∫

R

σβα δuα,β dV (4-21.18)

and where we have used (δuα), β = δ(uα,β) [see Eq. (4-21.9)]. Again, because
δuα = 0 on S ′′, by Eqs. (4-21.18) and (1-15.3) in Chapter 1, we write

δU = −
∫∫∫

R

σβα,β δuα dV +
∫∫
S′

σβα δuα nβ dS (4-21.19)

Consequently, by Eqs. (4-21.17) and (4-21.19), we find∫∫
S′

(σβαnβ − σ ′
α) δuα dS −

∫∫∫
R

(σβα,β + Bα) δuα dV = 0 (4-21.20)
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for any δuα that vanishes on S ′′. Consider the particular case δuα = 0 everywhere
on S. Then the first integral in Eq. (4-21.20) is identically zero, and we obtain

∫∫∫
R

(σβα,β + Bα) δuα dV = 0 (4-21.21)

However, by the fundamental lemma of the calculus of variations (Langhaar, 1989,
Section 3-2), if the integrand of Eq. (4-21.21) is not identically zero, then a δuα

vanishing on S may be found such that the integral of Eq. (4-21.21) does not
vanish. Consequently, a necessary and sufficient condition that Eq. (4-21.21) be
satisfied is that σβα,β + Bα = 0; that is, the equations of equilibrium must be satis-
fied by stress components σβα associated with uα. Hence, the second integrand of
Eq. (4-21.20) vanishes regardless of the increment (virtual displacement) δuα. Thus,
Eq. (4-21.20) reduces to ∫∫

S′

(σβαnβ − σ ′
α) δuα dS = 0 (4-21.22)

and, by the fundamental lemma of the calculus of variations, the integrand of
Eq. (4-21.22) vanishes. In other words, the stress components σβα associated
with displacement components uα must satisfy the stress boundary condition σ ′

α =
σβαnβ on S ′. Accordingly, the displacement component uα satisfies all the condi-
tions of the elasticity problem and hence is unique (Section 4-16).

Theorem of Minimum Strain Energy (Elastic Energy). In the absence of
body forces (Bα = 0), and the case where the displacement is prescribed every-
where on the bounding surface S of the elastic body, δuα = 0 on S. Then the
equilibrium state of the system (ρüα = 0) as defined by Eq. (4-21.12) reduces to

δ

∫∫∫
V

σβαεαβ dV = δU(εαβ) = 0 (4-21.23)

Equation (4-21.23) is called the theorem of minimum strain energy (elastic energy).
We note that U is the total strain energy

∫∫∫
U dV , where explicit forms for

the strain energy density U as functions of strain components εαβ are given in
Sections 4-6 and 4-11.

Problem Set 4-21

1. An isotropic Hookean body is subjected to plane strain; that is, u = u(x, y), v = v(x, y),
and w = 0. There is no body force, but there is a temperature field T (x, y). Using
small-displacement theory, derive the differential equations for u, v by the principle of
stationary potential energy.
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2. A uniform Hookean rod of cross-sectional area A and length L is suspended vertically
in a gravity field from one end. The specific weight of the material is s. The rod is
loaded by its own weight. Set up the formula for the total potential energy in terms of
the downward displacement u(x). State the forced boundary condition at the support. By
the principle of stationary potential energy, derive the natural boundary condition at the
free end and the differential equation for u. The strain energy of the bar is

U = A

2E

∫ L

0
σ 2

x dx

where E is Young’s modulus and σx = Eεx = E(du/dx).

3. A rectangular plate of length a and width b is free on the edge x = a and is simply
supported on the other three edges. It is loaded by a uniformly distributed load p = p0.
Using small-deflection theory, assume the lateral bending deflection w to be of the form

w = Axy(y − b)

and determine the constant A by the principle of stationary potential energy.
Note that this deflection pattern satisfies the forced boundary conditions on the sup-

ported edges. Does it satisfy the natural boundary conditions on the free edge also? The
formula for the strain energy of bending is

Ub = 1

2
D

∫∫ [(
wxx + wyy

)2 − 2(1 − ν)
(
wxxwyy − w2

xy

)]
dx dy

Neglect the strain energy due to stretching of the plate. Subscripts on w denote partial
derivatives.

4-22 Principle of Virtual Stress (Castigliano’s Theorem)

As noted in Chapters 2 and 3, the mathematical character of the strain tensor σαβ

and the stress tensor εαβ are identical. Accordingly, from a mathematical viewpoint,
we may expect that results somewhat analogous to those derived in Section 4-21
may be obtained by considering virtual changes δσβα (variations) in the stress
tensor σβα .

Accordingly, if we proceed in the manner of Section 4-21, we find

δU(εαβ) =
∫∫
S

uαδσnα dS +
∫∫∫

B

uαδBα dV (4-22.1)

where

δσnα = (δσα)nβ

δBα = −δ(σαβ,β)

δσαβ = δσβα σαβ = σβα
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If we assume that the body forces are identical (unchanged) under the virtual
changes of stress, δBα = 0, and then

δ(σαβ,β) = 0

δ(σαβnβ) = δσnα

(4-22.2)

Equation (4-22.1) or (4-22.2) is referred to as the principle of virtual stress. This
principle states that the variations of the solution σαβ of the equilibrium elasticity
problem must satisfy the equations of equilibrium and the stress boundary condi-
tions. Furthermore, the converse statement, that “given σαβ such that δσβα satisfies
Eq. (4-22.1), then it follows that σαβ is the solution of the elasticity problem,” may
be proved (Pearson, 1959, p. 147), with the result that σαβ may be shown to satisfy
the equations of compatibility [see Eqs. (4-14.2)].

Alternatively, we may also proceed to demonstrate the principle of virtual
stress as follows: We have noted that the equations of equilibrium are (Chapter 3,
Section 3-8) with σβα = σαβ ,

σαβ,β + Bα = 0 (4-22.3)

and the stress boundary conditions are (Section 4-15)

σnα = σαβnβ (4-22.4)

In general, Eqs. (4-22.3) and (4-22.4) are not adequate to determine the stress
components σαβ uniquely (Section 4-16). Hence, it is possible to obtain any number
of stress states that satisfy these equations. Accordingly, with the introduction of
virtual stress components δσαβ and body-force changes δBα , let us consider another
system of stress components:

σαβ + δσαβ Bα + δBα (4-22.5)

Because of the linear nature of the equations of equilibrium and the boundary
conditions, in order that Eqs. (4-22.5) satisfy Eqs. (4-22.3) and (4-22.4) we must
have (principle of superposition)

(δσαβ),β + δBα = 0

δ(σnα) = (δσαβ)nβ

(4-22.6)

In other words, the variations δσαβ, δBα must themselves satisfy the equations
of equilibrium and the boundary conditions. For simplicity, let δBα = 0. Then,
proceeding as in Section 4-21, we obtain (now giving virtual changes to σαβ , while
maintaining the displacement and hence the strain fixed under these changes)∫∫

S

(δσnα)uα dS =
∫∫∫

R

(δσαβ)εαβ dV (4-22.7)
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For the isotropic case, because εαβ is kept constant, by Eqs. (4-6.10) and (4-6.13),
we obtain∫∫∫

R

(δσαβ) εαβ dV =
∫∫∫

R

δ[σ11ε11 + σ22ε22 + σ33ε33 + 2σ12ε12

+ 2σ13ε13 + 2σ23ε23] dV

=
∫∫∫

R

1

E
[σ11δσ11 + σ22δσ22 + σ33δσ33

− ν(σ22δσ11 + σ11δσ22 + σ33δσ11 + σ11δσ33

+ σ33δσ22 + σ22δσ33) + 2(1 + ν)(σ12δσ12

+ σ13δσ13 + σ23δσ23)] dV

= δ

⎧⎨
⎩
∫∫∫

R

1

2E
[σ 2

11 + σ 2
22 + σ 2

33 − 2ν(σ11σ22 + σ11σ33 + σ22σ33)

+ 2(1 + ν)(σ 2
12 + σ 2

13 + σ 2
23)] dV

}

= δ

∫∫∫
R

U dV

(4-22.8)
where we have used the equivalent notation

δ
(
σ 2

11

) = 2σ11δσ11, . . . , . . .

δ(σ11σ22) = σ22 δσ11 + σ11 δσ22, . . . , . . .
(4-22.9)

Consequently, Eq. (4-22.7) may be written in the form∫∫
S

[(δσn1)u1 + (δσn2)u2 + (δσn3)u3] dS = δU(σαβ) (4-22.10)

where U(σαβ) = ∫∫∫
UdV and where explicit forms for U as a function of stress

components σαβ are given in Sections 4-6 and 4-8. Accordingly, Eq. (4-22.10)
states that for the true state of stress σαβ , the work done by the variations of the
surface tractions on the actual displacement uα equals the variation of the total
elastic strain energy U of the body resulting from the variation of the actual state
of stress, where the variations δσαβ satisfy Eqs. (4-22.6) or Eqs. (4-22.2) when
δBα = 0.

The result denoted by Eq. (4-22.10) is referred to as the principle of virtual
stress or Castigliano’s variational equation.

Castigliano’s Theorem on Deflections. A special case of Eq. (4-22.10) is
called Castigliano’s theorem on deflections. For example, let an elastic body be
supported so that rigid-body displacements of the body are not possible. Let the
body be in a state of equilibrium under the action of surface forces and body forces,
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with certain point forces being included in the external loads. Then Eq. (4-22.10)
yields the result (Langhaar, 1989, Sections 4-10 and 4-11)

qi = ∂U(F1, F2, . . .)

∂Fi

(4-22.11)

where qi is the component in the direction of force Fi of the displacement of
the point of application of force Fi , and U is considered to be a function of the
forces Fi . Castigliano’s theorem of deflection may also be shown to apply to point
moments if the qi are interpreted to be rotations in the sense of the moments, the
Fi are interpreted to be moments, and U is considered to be a function of the
moments (Langhaar, 1989).

4-23 Mixed Virtual Stress–Virtual Strain Principles
(Reissner’s Theorem)

In the principle of virtual work, strain compatibility equations are ensured because
displacement components are employed in the calculations, and the principle δπ =
0 replaces the equations of equilibrium and the associated stress boundary condi-
tions. In the principle of virtual stress, equilibrium equations are satisfied a priori,
and the virtual stress principle is analogous to satisfaction of the compatibility
conditions.

Reissner (1950, 1953, 1958), with the objective of giving more equal weight to
the equilibrium and compatibility conditions, has formulated an alternative principle
in which variations in both stress and strain components are admitted. Following
Reissner, we consider the variation of the quantity

Q =
∫∫∫

R

σαβεαβ dV − U(σαβ) (4-23.1)

for arbitrary virtual stresses δσαβ and strains δεαβ to obtain

δQ =
∫∫∫

R

[(δσαβ)εαβ + σαβ(δεαβ)] dV −
∫∫∫

R

F(σαβ)δσαβ dV (4-23.2)

where F(σαβ) is the functional expression for εαβ in terms of σαβ . Letting σαβ, εαβ

be the solution to the elasticity problem, the first and third integrands of Eq. (4-23.1)
vanish identically. Hence, Eqs. (4-23.1) and (4-23.2) yield

δ

⎡
⎣∫∫∫

R

σαβεαβ dV − U(σαβ)

⎤
⎦ =

∫∫∫
R

σαβ(δεαβ) dV =
∫∫∫

R

σαβ(δuα),β dV

(4-23.3)
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or, with Eq. (1-15.3) in Chapter 1 and Eqs. (3-8.1) in Chapter 3, with ρüα = 0 and
σαβ = σβα ,

δ

⎡
⎣∫∫∫

R

σαβεαβ dV − U(σαβ)

⎤
⎦ =

∫∫
S

σnα(δuα) dS +
∫∫∫

R

Bα(δuα) dV

(4-23.4)
Reissner shows that both compatibility and equilibrium follow from Eq. (4-23.4)
when one assumes that σnα = σαβnβ on S ′ and uα = uα (prescribed) on S ′′, where
S = S ′ + S ′′ is the surface bounding region R.

Mixed variational principles of the type derived by Reissner play an important
role in the development of finite element methods.

The variational principles discussed in Sections 4-20 through 4-23 also form the
basis for other kinds of approximation methods of numerical stress analysis.

APPENDIX 4A APPLICATION OF THE PRINCIPLE OF VIRTUAL WORK
TO A DEFORMABLE MEDIUM (NAVIER–STOKES EQUATIONS)

As noted in Section 4-20, the principle of virtual work may be employed directly
to derive the governing differential equations of a continuum. In this appendix
we derive the differential equations of motion of a deformable medium (see
Section 3-8). The technique is applicable to a particular structural system, a fluid
system, or a general solid, provided appropriate expressions are used for the
various components of virtual work.

The general form of the principle of virtual work is [(Langhaar, 1989, Section
4-10); also Eqs. (4-21.4) and (4-21.10)]

δW = 0 (4A-1)

where δW denotes the virtual work of all forces acting on a system that undergoes
an infinitesimal virtual displacement δuα from a given configuration. Considering
forces acting on the system to be grouped into internal forces FI , external forces
FE , and inertial forces FA, we may write Eq. (4A-1) in the form

δWI + δWE + δWA = 0 (4A-2)

where δWI is the virtual work of internal forces FI , δWE is the virtual work of
external forces FE , and δWA is the virtual work of the inertial forces FA. By
Eq. (d), Section 4-3, we have for a medium contained in region R bounded by
surface S

δWI = −
∫∫∫

R

(δI ) dV = −
∫∫∫

R

σαβδεαβ dV (4A-3)

because the work performed by the internal forces is the negative of the intrinsic
(internal) energy, and where σαβ is the stress tensor and εαβ is the strain tensor.
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Let δuα be the infinitesimal virtual displacement vector. Then the virtual strain
components associated with δuα are

δεαβ = 1

2

(
∂ δuα

∂xβ

+ ∂ δuβ

∂xα

)
(4A-4)

Hence, because σαβ and δεαβ are symmetric tensors,

δWI = −
∫∫∫

R

−2σαβ

∂(δuα)

∂xβ

dV (4A-5)

Noting that

σαβ

∂(δuα)

∂xβ

= ∂

∂xβ

(σαβδuα) − δuα

∂σαβ

∂xβ

(4A-6)

we write Eq. (4A-5) in the form

δWI = −
∫∫∫

R

∂

∂xβ

(σαβ δuα) dV +
∫∫∫

R

δuα

∂σαβ

∂xβ

dV (4A-7)

Applying the divergence theorem (Chapter 1, Section 1-15) to Eq. (4A-7), we
obtain

δWI =
∫∫∫

R

δuα

∂σαβ

∂xβ

dV −
∫∫
S

σαβ δuαnβ dS (4A-8)

where nβ is the outward unit normal to surface S.
Now by Eqs. (4-15.1), σnα = σαβnβ , where σnα is the stress vector on S. Hence,

δWI =
∫∫∫

R

δuα

∂σαβ

∂xβ

dV −
∫∫
S

σnαδuα dS (4A-9)

The virtual work due to external forces is

δWE =
∫∫∫

R

Bα δuα dV +
∫∫
S

σnα δuα dS (4A-10)

where Bα denotes body-force components per unit volume.
The virtual work due to inertial forces −ρaα, where ρ denotes mass density and

aα denotes the acceleration components, is

δWA = −
∫∫∫

R

ρaα δuα dV (4A-11)



4B NONLINEAR CONSTITUTIVE RELATIONSHIPS 345

Accordingly, by Eqs. (4A-2), (4A-9), (4A-10), and (4A-11), the principle of virtual
work yields ∫∫∫

R

(
∂σαβ

∂xβ

+ Bα − ρaα

)
δuα dV = 0 (4A-12)

Because Eq. (4A-12) must hold for any virtual displacement δuα (Langhaar,
1989), the integrand of Eq. (4A-12) must vanish identically. Thus,

σαβ,β + Bα = ρaα (4A-13)

Equation (4A-13) is the equation of motion for a deformable medium [Eqs. (3-8.1)
in Chapter 3]. In deriving it, we have not used stress–strain relations, nor have we
employed thermodynamics concepts.

For a Newtonian incompressible fluid, the stress σαβ is related to the velocity
field vα by the relations (Goldstein, 1965, Chapter 3)

σαβ = −pδαβ + μ

(
∂vα

∂xβ

+ ∂vβ

∂xα

)
3p = −(σ11 + σ22 + σ33) = −I1

(4A-14)

where δαβ is the Kronecker delta, μ is the Newtonian viscosity coefficient, and vα

is the velocity.
Equations (4A-13) and (4A-14) yield

σαβ,β = −p,α + μ∇2vα (4A-15)

as for an incompressible fluid, vβ,β = 0 (Chapter 2, Section 2-18). Substitution of
Eqs. (4A-15) into Eq. (4A-13) yields

− ∂p

∂xα

+ μ∇2vα + Bα = ρ

(
∂vα

∂t
+ ∂vα

∂xβ

vβ

)
(4A-16)

where

ρaα = ρ
dvα

dt
= ρ

(
∂vα

∂t
+ ∂vα

∂xβ

vβ

)
(4A-17)

Equations (4A-16) are the Navier–Stokes equations of viscous fluid flow.

APPENDIX 4B NONLINEAR CONSTITUTIVE RELATIONSHIPS

Many isotropic and anisotropic materials possess linear stress–strain (constitutive)
relations below their elastic limits. The generalized Hooke’s law (Section 4-4) is
applicable to these materials. However, for certain other materials—for example,
geomaterials such as concrete, soil, and rock—the constitutive relationships are
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nonlinear (Chen and Saleeb, 1994). Generally, three different methods are employed
to model nonlinear materials:

1. The use of variable stress–strain coefficients

2. The introduction of higher-order strain energy terms
3. Hypoelastic formulations

4B-1 Variable Stress–Strain Coefficients

Nonlinear stress–strain relations may be characterized by tangent moduli that are
dependent on magnitudes of stress and/or strain (Chong et al., 1980b; Boresi et al
2002). Models that employ bilinear, piecewise linear and curve-fitting techniques
have been used to approximate stress–strain relations (Desai and Christian, 1977).
These approaches are adaptable especially to computer applications.

The main disadvantage of the variable coefficient approach is that the constitu-
tive relationship is independent of path (Chen, 1984). Hence, the main applications
of the variable stress–strain coefficients approach are limited to monotonic or pro-
portional loading situations (Desai and Siriwardane, 1984). This method is not
applicable to cyclic loading cases. Chen (1984) has referred to the variable coeffi-
cient approach as the Cauchy elastic formulation.

4B-2 Higher-Order Relations

In this modeling technique, higher-order strains or strain invariants are included
in the strain energy density function U . The stress–strain relations are obtained
by differentiation [Eqs. (4-3.2)]. Materials modeled with higher-order invariants
are called hyperelastic materials or Green-type materials (Eringen, 1962; Chen and
Saleeb, 1994). The main disadvantage of this modeling technique is that the num-
ber of required elastic coefficients increases tremendously for each higher-order
invariant introduced. For example, for isotropic materials, the third-order hypere-
lastic model contains 9 material coefficients (compared to 2 material coefficients in
Hooke’s law, which is a special case of hyperelasticity), and a fifth-order hyperelas-
tic model requires 14 coefficients (Chen, 1984). For transversely isotropic materials,
a third-order hyperelastic model requires 35 coefficients (Cleary, 1978), compared
to 5 coefficients for the Cauchy elastic formulation (Chong et al., 1980b). To accu-
rately determine experimentally 5 coefficients is extremely difficult; to accurately
determine 35 coefficients is impractical, if not impossible (Chong et al., 1980b).

Nevertheless, hyperelastic models can account for various effects not included
in the Cauchy elastic formulation. For example, the change of volume resulting
from shear can be accounted for in higher-order hyperelasticity laws (Desai and
Siriwardane, 1984).

4B-3 Hypoelastic Formulations

The hyperelastic and Cauchy elastic materials (Sections 4B-1 and 4B-2) are inde-
pendent of loading path, and upon unloading, they return to their original unstrained
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state. To account for the past history of loading and permanent set, Truesdell (1955)
proposed a hypoelastic formulation in which the basic relation is

σ̇ = Cε̇ (4B-3.1)

where the matrices σ̇ and ε̇ are functions of rates of stress and strain, respectively,
and the matrix C is a function of stress.

Integration of Eq. (4B-3.1) with respect to time t yields a relationship for the
stress matrix σ in the form

σ =
∫ t

0
C

∂ε

∂τ
dτ + σ0 (4B-3.2)

where the matrix σ0 contains appropriate functions of integration.
The main disadvantage of the hypoelastic model is that anisotropic behavior

is induced by stress (Chen, 1984), resulting in different principal axes for stress
and strain. As a result, coupling between normal stresses and shearing strains
occurs. In addition, the hypoelastic model requires 21 material coefficients, making
it difficult to apply.

4B-4 Summary

Each of the methods described above have merit for certain applications. At present,
the most frequently used nonlinear approach for practical problems is the Cauchy
elastic formulation (Section 4B-1). However, considerable research is being con-
ducted currently on modeling of nonlinear elastic material behavior.

APPENDIX 4C MICROMORPHIC THEORY

Micromorphic theory envisions a material body as a continuous collection of
deformable particles; each possesses finite size and inner structure. On the other
hand, classical continuum mechanics, including elasticity, envisions a material body
as a continuous collection of material points, each with infinitesimal size and no
inner structure. The purpose to go beyond the classical continuum mechanics is
to take into account the microstructure of the material body in question while
still keeping the advantages of continuum theory intact. Micromorphic theory is
considered as the most successful top-down formulation of a two-level continuum
model in which the deformation is expressed as a sum of macroscopic continuous
deformation and microscopic deformation of the inner structure.

4C-1 Introduction

Microcontinuum field theories constitute extensions of the classical field theories
concerned with deformations, motions, and electromagnetic interactions of material
media, as continua, in miniaturized space and time scales. In terms of a physical pic-
ture, a microcontinuum may be envisioned as a continuous collection of deformable
point particles, each with finite size and inner structure. It is emphasized that in the
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classical continuum theory a point particle is represented by a geometrical point,
which is infinitesimal in size and hence has no inner structure. Then the question
arises: How can one represent the intrinsic deformation of a point particle in micro-
continuum? Eringen settled this question by replacing the deformable point particle
with a geometric point P and some vectors attached to P , which denote the orien-
tations and intrinsic deformations of all the material points in the deformable point
particle (Eringen and Suhubi, 1964a, 1964b; Eringen, 1964, 1999, 2001, 2002).
This is compatible with the classical picture where a material point in a continuum
is endowed with physical properties such as mass density, displacement vector,
electric field, stress tensor, and so forth. Therefore, the vectors assigned to P rep-
resent the additional degrees of freedom arising from the motions, relative to P , of
all the material points in the particle. Geometrically, a particle P is identified by
its position vector X, in the reference (Lagrangian or material) state B, and vectors
�α(α = 1, 2, 3, . . . ., N) attached to P , representing the inner structure of P . Here
N is the number of discrete material points in the particle. The motions may be
expressed as [cf. Eq. (2-3.3a)]

x = x(X, t) (4C-1.1)

ξα = ξα(X,�α, t) α ∈ (1, 2, 3, . . . ., N) (4C-1.2)

where t is the time; x and ξα , corresponding to X and �α , respectively, are the
position vectors in the deformed (Eulerian or spatial) state b. A medium with such
general motions is named microcontinuum of grade N by Eringen. In the two-level
continuum model, first let the position vector of a material point be decomposed
as the sum of the position vector of the centroid (mass center) of the particle and
the position vector of a material point relative to the centroid (cf. Fig. 4C-1.1):

x′ = x + ξ X′ = X + � (4C-1.3)

and then let the motions be reduced to

x = x(X, t) ξ = ξ(X,�, t) (4C-1.4)

If the micromotion ξ = ξ(X,�, t) is further reduced to an affine motion, that is,

ξ = χK(X, t)�K or ξk = χkK(X, t)�K (4C-1.5)

we arrive at the doorstep of the micromorphic theory. It is seen that the macromotion
x = x(X, t) accounts for the motion of the centroid of the particle; the micromotion
ξk = χkK(X, t)�K accounts for the intrinsic motions of the particle; and χkK is
called the microdeformation tensor. If the Jacobians of the macromotion and the
micromotion are strictly positive, that is,

J ≡ det

(
∂xk

∂XK

)
� det(xk,K) > 0

j ≡ det(χkK) > 0
(4C-1.6)
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Figure 4C-1.1

then there exist unique inverse motions

X = X(x, t) (4C-1.7)

� = χk(x, t)ξk or �K = χKk(x, t)ξk (4C-1.8)

with
xk,KXK,l = δkl XK,kxk,L = δKL

χkKχKl = δkl χKkχkL = δKL

(4C-1.9)

Because χkK is a second-order tensor, the particle has 9 independent degrees of
freedom in addition to the 3 classical translational degrees of freedom of the cen-
troid. A unit cell or a polyatomic molecule may be viewed as a point particle in
micromorphic theory (Eringen, 1999, 2001).

The microgyration tensor is defined as

ωkl ≡ χ̇kKχKl (4C-1.10)

then it is straightforward to prove that

χ̇kK = ωklχlK (4C-1.11)

ξ̇k = ωklξl (4C-1.12)

Let ρo(ρ) and �V (�v) denote the mass density and the volume of the deformable
point particle in the Lagrangian (Eulerian) state and let primed quantities refer to
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those of the point in the particle. This leads to

ρo�V =
∫

�V

(ρo)′dV ′ ρ�v =
∫

�v

ρ′dv′

∫
�V

(ρo)′�dV ′ = 0
∫

�v

ρ′ξdv′ = 0

ρoIKL�V ≡
∫

�V

(ρo)′�K�LdV ′ ρikl�v ≡
∫

�v

ρ′ξkξldv′

(4C-1.13)

where IKL and ikl are the microinertia of the deformable point particle in the
Lagrangian (undeformed) state and Eulerian (deformed) state, respectively.

4C-2 Balance Laws of Micromorphic Theory

Eringen and Suhubi (1964a, 1964b) and Eringen (1964) derived the laws of conser-
vation of mass, conservation of microinertia, balance of linear momentum, balance
of momentum moments, and conservation of energy for micromorphic theory by
means of a microscopic space-averaging process. Later Eringen (1999) derived the
balance laws in a more elegant way: Balances of linear momentum and momentum
moments are the consequences of the objectivity of conservation of energy. The
balance laws of micromorphic theory, including the Clausius–Duhem inequality,
can be expressed as

dρ

dt
+ ρvk,k = 0 (4C-2.1)

dikl

dt
= φkl + φlk (4C-2.2)

ρ
dvi

dt
= σji,j + Bi (4C-2.3)

ρ
dφij

dt
= mkij,k + σji − sij + ρimnωimωjn + Lij (4C-2.4)

ρ
de

dt
= mijkωjk,i + σij(vj,i − ωji) + sijωij − qi,i + h (4C-2.5)

− ρ(ψ̇ + ηθ̇) + mijkωjk,i + σij(vj,i − ωji) + sijωij − qiθ,k

θ
≥ 0 (4C-2.6)

where v is the velocity vector; σ is the Cauchy stress; s = sT is the microstress;
e is the internal energy density; q is the heat flux; h is the heat source; and the
generalized spin tensor is defined as

ϕ ≡ ω · i or φkl ≡ ωkmiml (4C-2.7)
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the body-force density and the body-couple density are defined as

B �v ≡
∫

�v

B′dv′

L �v ≡
∫

�v

B′ ⊗ ξdv′
(4C-2.8)

the moment stress, a third-order tensor, is defined as

mkij�ak ≡
∫

�a

σ ′
kiξjda′

k (4C-2.9)

with da′
k being the differential surface area with outward normal nk . It is noticed

that in micromorphic theory the Cauchy stress is not symmetric, that is, σkl �=
σlk . If the size of the point particle is reduced to zero, that is, ‖ξ‖ → 0, then it
leads to i = ω = ϕ = m = L = 0. This means Eqs. (4C-2.1) and (4C-2.3) remain
unchanged; Eq. (4C-15) becomes a trial statement, that is, 0 = 0; Eqs. (4C-2.4)
and (4C-2.5) are reduced to

σji = sij ⇒ σij = σji (4C-2.10)

ρ
de

dt
= σijvj,i − qi,i + h (4C-2.11)

Of course, under this limiting situation (size of the point particle is vanishing),
micromorphic theory is identical to classical continuum theory.

4C-3 Constitutive Equations of Micromorphic Elastic Solid

First, we recall the Cauchy strain tensor as defined in Eq. (2-4.6) and rewrite it in
the notation used in Appendix 4C as

CKL ≡ xk,Kxk,L

In micromorphic theory, we need three strain measures, which may be named as
the generalized Lagrangian strain tensors (Eringen, 1999; Lee et al., 2004):

αKL ≡ xk,KχLk − δKL

βKL ≡ χkKχkL − δKL

γKLM ≡ χKkχkL,M

(4C-3.1)

One may verify that the strain rates can be obtained as

α̇KL = (vl,k − ωlk)xk,KχLl ≡ aklxk,KχLl

β̇KL = (ωkl + ωlk)χkKχlL ≡ bklχkKχlL = β̇LK

γ̇KLM = ωkl,mχKkχlLxm,M ≡ cklmχKkχlLxm,M

(4C-3.2)

A micromorphic elastic solid is defined as a micromorphic material of which
the dependent constitutive variables {m,σ , s, q, ψ, η} are functions of independent



352 THREE-DIMENSIONAL EQUATIONS OF ELASTICITY

constitutive variables {α,β,γ , θ, ∇θ}, where η is the entropy density, θ is the abso-
lute temperature, and ψ ≡ e − ηθ is the Helmholtz’s free-energy density. Then the
constitutive equations for micromorphic elastic solid can be derived to be (Eringen,
1999; Lee et al., 2004)

ψ = ψ(α, β, γ , θ) (4C-3.3)

η = −∂ψ

∂θ
(4C-3.4)

σkl = ρ
∂ψ

∂αKL
xk,KχLl (4C-3.5)

skl = 2ρ
∂ψ

∂βKL
χkKχlL (4C-3.6)

mklm = ρ
∂ψ

∂γLMK
xk,KχLlχmM (4C-3.7)

− qkθ,k ≥ 0 (4C-3.8)

If, for whatever reason, we consider that the temperature gradient,∇θ , is not in the
list of the independent constitutive variables, then, from Eq. (4C-3.8), we have to
conclude that q = 0, which implies that the material considered is an insulator.

It is seen that (1) although we started with ψ = ψ(α, β, γ , θ, ∇θ) as a consti-
tutive equation, it ends up with ψ = ψ(α, β, γ , θ), that is, the Helmholtz’s free
energy density will not depend on temperature gradient; (2) Eq. (4C-3.4) says the
entropy density is derivable from the Helmholtz’s free energy density—this is
one of the Gibbs equations in thermodynamics; (3) the three stress tensors are also
derivable from the Helmholtz’s free energy density—it can be viewed as a general-
ization of the stress–strain relation in Eq. (4-3.1) or in Eq. (4-3.2); (4) Eq. (4C-3.8)
actually is an inequality that stipulates that heat flows from the high-temperature
region to the low-temperature region—a conclusion drawn from the second law of
thermodynamics.

One may derive constitutive equations for micromorphic electromagnetic solids
and fluids, anisotropic fluids and suspensions, liquid crystals, blood, micromorphic
theory of turbulence, micromorphic thermoplasticity, and so forth. (Eringen 1999,
2001, 2002; Chen and Lee 2003; Lee and Chen 2004; Lee et al., 2004).

APPENDIX 4D ATOMISTIC FIELD THEORY

In this appendix, we are going to introduce an atomistic field theory that bridges
the gap between continuum and atomistic descriptions of mechanics of materials
and is capable of describing the dynamics features of multicomponent crystalline
systems , that is, crystalline systems that have more than one kind of atom in the
primitive unit cell (Chen and Lee, 2005; Chen, 2006, 2009).
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4D-1 Introduction

In recent years, intensive research effort in physics, chemistry, and engineering
has focused on the development of coupled atomistic/continuum material model-
ing from the nanoscale to the macroscale. To date, however, progress has been
very slow. The most formidable challenge is interfacing molecular dynamics (MD)
with continuum mechanics (Cai et al., 2000; E and Huang, 2001; E et al., 2003; To
and Li, 2005; Li et al., 2006). Fundamentally, this is because continuum mechanics
cannot represent the dynamics of material systems at atomistic scale. Elastic distor-
tions give rise to both acoustic and optical waves with dispersive frequency–wave
vector relations in the atomistic region. Across this interface, however, only the
acoustic waves with nondispersive frequency-wave vector relations can exist in the
continuum mechanics region. This mismatch in phonon representation gives rise to
unphysical phonon scattering/wave reflections, which in turn fundamentally alter
the dynamic behavior of materials, rendering most of the current multiscale methods
powerless in simulations of dynamic material behavior. It is clear that overcoming
this barrier requires fundamental understanding of the connection between atomistic
and continuum representations at the atomic length/time scale.

Historically, statistical mechanics has provided a theoretical link between atom-
istic models and macroscopic continuum mechanics. Assuming a single-component
single-phase fluid system consisting of molecules interacting under central forces,
conservation equations were derived by means of classical statistical mechanics,
and expressions were determined for stress tensor and heat flux vector in terms of
molecular variables (Irving and Kirkwood, 1950).

The past decades have seen an exponential growth of interest in linking atomistic
models to continuum mechanics (Hardy, 1982; Lutsko, 1988; Zhou and McDowell,
2002; Zimmerman et al., 2004; Delph, 2005). Among these efforts, it is worthwhile
to mention the formalism developed by Hardy: Analytical formulas for local prop-
erties and balance equations at atomic scale were obtained as exact consequences
of Newton’s equations of motion with neither an ensemble average nor a time
average being required. However, the above-mentioned works can only describe
the dynamics features of single-component systems , that is, crystalline systems that
have only one atom per primitive unit cell.

4D-2 Phase-Space and Physical-Space Descriptions

From the lattice dynamics point of view, classical continuum mechanics is
the long-wavelength limit of monatomic lattices, since the classical continuum
mechanics only reproduces acoustic waves, while elastic distortion gives rise to
wave propagation of both acoustic and optical types in any multiatomic lattices.
Therefore, to link an atomistic description with continuum field description of
general material systems at atomic length and time scales, we need an integrated
theory, not just a numerical procedure to treat the interface between atomic region
and continuum region.

Microscopic dynamic quantities in classical N -body dynamics are functions of
phase-space coordinates (r, p), that is, the positions and momenta of atoms. Any
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single crystal can be treated as a multicomponent system (or multielement system).
The phase-space coordinates are defined as

r = {Rkα = Rk + �rkα|k = 1, 2, 3, . . . ., Nl; α = 1, 2, 3, . . . ., Na} (4D-2.1)

p = {mαVkα = mα(Vk + �vkα)|k = 1, 2, 3, . . . ., Nl; α = 1, 2, 3, . . . ., Na}
(4D-2.2)

where the superscript kα refers to the αth atom in the kth unit cell; mα is the mass
of the αth atom; Rkα and Vkα are the position and velocity vector of the kα atom,
respectively; Rk and Vkare the position and velocity of the mass center of the kth
unit cell, respectively; �rkα and �vkα are the atomic position and velocity of the
αth atom relative to the mass center of the kth unit cell, respectively; Nl is the
total number of unit cells in the system; Na is the number of atoms in a unit cell.

Note that a crystalline material can be viewed as a collection of lattice cells
and a group of discrete and distinct atoms embedded in each lattice cell, depicted
in Figs. 4D-2.1 and 4D-2.2. For physical space coordinates, distinguishing from
the standard treatment in statistical mechanics, let x represent the coordinate of the
continuously distributed lattice point, yα the coordinate of the discrete αth atom
relative to x. Thus, the link between a dynamic function in phase space and its
corresponding density function in the physical space can be established through a
localization function δ and a Kronecker delta function δ̃ as (Chen, 2009)

a(x, yα, t) =
Nl∑

k=1

Na∑
ξ=1

A[r(t), p(t)]δ(Rk − x)δ̃(�rkξ − yα) (4D-2.3)

Figure 4D-2.1

Figure 4D-2.2
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with the following normalization conditions:∫
V

δ(Rk − x)dx = 1 (4D-2.4)

δ̃(�rkξ − yα) ≡
∫

V (yα)

δ(�rkξ − y)dy ≡
{

1 if ξ = α and �rkα = yα

0 otherwise

(4D-2.5)
This density function a(x, yα, t), in Eq. (4D-2.3), defines an atomic-scale local
density of A[r(t), p(t)]. It is a smooth and continuous function in x, while
discontinuous in α, α = 1, 2, 3, . . . , Na , with yα being an subscale internal
variable. Similarly one may define a local density function b(x, t) on cell level:

b(x, t) =
Nl∑

k=1

B(r, p)δ(Rk − x) (4D-2.6)

With the sifting properties of localization function δ and Kronecker delta function δ̃

(McLennan, 1989), the time evolution law of physical quantities can be obtained
as (Chen, 2006, 2009)

∂a(x, yα, t)

∂t

∣∣∣∣
x,yα

=
Nl∑

k=1

Na∑
ξ=1

Ȧ(r, p)δ(Rk − x)δ̃(�rkξ − yα)

− ∇x ·
⎛
⎝ Nl∑

k=1

Na∑
ξ=1

Vk ⊗ A(r, p)δ(Rk − x)δ̃(�rkξ − yα)

⎞
⎠

− ∇yα ·
⎛
⎝ Nl∑

k=1

Na∑
ξ=1

�vkξ ⊗ A(r, p)δ(Rk − x)δ̃(�rkξ − yα)

⎞
⎠

(4D-2.7)

4D-3 Definitions of Atomistic Quantities in Physical Space

Following the pattern of Eq. (4D-2.3), mass density ρα , linear momentum density
ρα(v + �vα), angular momentum density ραφα , total energy density ραEα, inter-
nal energy density ραeα , interatomic force density fα , external force density fα

ext ,
homogeneous part and inhomogeneous part of stress tensor (tα and τα), homoge-
neous part and inhomogeneous part of heat flux (qα and jα), and heat source hα

are defined as

ρα =
Nl∑

k=1

Na∑
ξ=1

mξδ(Rk − x)δ̃(�rkξ − yα) (4D-3.1)

ρα(v + �vα) =
Nl∑

k=1

Na∑
ξ=1

mξ(Vk + �vkξ )δ(Rk − x)δ̃(�rkξ − yα) (4D-3.2)
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ραϕα = ρα(v + �vα) × (x + yα)

=
Nl∑

k=1

Na∑
ξ=1

(
mξ Vkξ × Rkξ δ

(
Rk − x

)
δ
(
�rkξ − yα

)
(4D-3.3)

ραEα =
Nl∑

k=1

Na∑
ξ=1

[ 1
2mξ

(
Vkξ

)2 + Ukξ
]
δ
(
Rk − x

)
δ̃
(
�rkξ − yα

)
(4D-3.4)

ραeα =
Nl∑

k=1

Na∑
ξ=1

[ 1
2mξ

(
Ṽkξ

)2 + Ukξ
]
δ
(
Rk − x

)
δ̃
(
�rkξ − yα

)
(4D-3.5)

fα =
Nl∑

k=1

Na∑
ξ=1

Fkξ δ
(
Rk − x

)
δ̃
(
�rkξ − yα

)
(4D-3.6)

fα
ext =

Nl∑
k=1

Na∑
ξ=1

Fkξ
extδ

(
Rk − x

)
δ̃
(
�rkξ − yα

)
(4D-3.7)

tα = −
Nl∑

k=1

Na∑
ξ=1

mξ Ṽk ⊗ Ṽkξ δ
(
Rk − x

)
δ̃
(
�rkξ − yα

)

− 1

2

Nl∑
k,l=1

Na∑
ξ,η=1

(
Rk−Rl

) ⊗ FkξB(k, ξ, l, η, x, yα) (4D-3.8)

τα = −
Nl∑

k=1

Na∑
ξ=1

mξ�ṽkξ ⊗ Ṽkξ δ
(
Rk − x

)
δ̃
(
�rkξ − yα

)

− 1

2

Nl∑
k,l=1

Na∑
ξ,η=1

(
�rkξ−�rlη

) ⊗ FkξB(k, ξ, l, η, x, yα) (4D-3.9)

qα = −
Nl∑

k=1

Na∑
ξ=1

Ṽk
[ 1

2mξ
(
Ṽkξ

)2 + Ukξ
]
δ
(
Rk − x

)
δ̃
(
�rkξ − yα

)

− 1

2

Nl∑
k,l=1

Na∑
ξ,η=1

(
Rk−Rl

)
Ṽkξ · FkξB(k, ξ, l, η, x, yα) (4D-3.10)

jα = −
Nl∑

k=1

Na∑
ξ=1

�ṽkξ
[ 1

2mξ
(
Ṽkξ

)2 + Ukξ
]
δ
(
Rk − x

)
δ̃
(
�rkξ − yα

)

− 1

2

Nl∑
k,l=1

Na∑
ξ,η=1

(
�rkξ−�rlη

)
Ṽkξ · FkξB(k, ξ, l, η, x, yα)

(4D-3.11)

hα =
Nl∑

k=1

Na∑
ξ=1

Ṽkξ · Fkξ
ext δ

(
Rk − x

)
δ̃
(
�rkξ − yα

)
(4D-3.12)
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where

B(k, l, ξ, η, x, yα)

≡
∫ 1

0
δ(Rkλ + Rl (1 − λ) − x)δ̃(�rkξ λ + �rlη(1 − λ) − yα) dλ

(4D-3.13)

the differences between phase-space velocities and physical-space velocities are
defined as

Ṽkξ ≡ Vkξ − (v + �vξ )

Ṽk ≡ Vk − v

�ṽkξ ≡ �vkξ − �vξ

(4D-3.14)

Fkξ
ext is the body force, such as gravitational force and Lorentz force, acting on

the kξ atom; Ukξ is the potential energy of the kξ atom. Notice that the potential
energy is additive; therefore, the total potential energy of the system is obtained as

U =
Nl∑

k=1

Na∑
ξ=1

Ukξ (4D-3.15)

and the interatomic force acting on the kξ atom is calculated through

Fkξ = − ∂U

∂Rkξ
(4D-3.16)

4D-4 Conservation Equations

Based on Eq. (4D-2.7), a lengthy but straightforward process leads to the local
conservation laws of mass, linear momentum, angular momentum, and energy for
each atom α ∈ [1, 2, 3, . . . , Na] at any point in the field (x, t) as follows (Chen
and Lee, 2005):

dρα

dt
+ ρα∇x · v + ρα∇yα · �vα = 0 (4D-4.1)

ρα d(v + �vα)

dt
= ∇x · tα + ∇yα · τα + fα

ext (4D-4.2)

tα + τα = (tα + τα)T (4D-4.3)

ρα deα

dt
= tα : ∇x(v + �vα) + τα : ∇yα (v + �vα) + ∇x · qα + ∇yα · jα + hα

(4D-4.4)
where

∇x ≡ ∂

∂x
∇yα ≡ ∂

∂yα
(4D-4.5)

and the material time rate of Aα is defined as

dAα

dt
≡ ∂Aα

∂t
+ v · ∇xA

α + �vα · ∇yαAα (4D-4.6)
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Similar to the situation in classical continuum theory, the balance of angular
momentum leads to the symmetry of the total stress tensor tα + τα. It is seen
that, from Eqs. (4D-3.8) and (4D-3.9), the symmetry of the total stress tensor is
automatically satisfied.

We may define mass density, microinertia density, linear momentum density,
moment of momentum density, and total energy density at cell level as

ρ =
Nl∑

k=1

Na∑
α=1

mαδ(Rk − x) ≡
Nl∑

k=1

mδ(Rk − x) (4D-4.7)

ρi =
Nl∑

k=1

Na∑
α=1

mα�rkα ⊗ �rkαδ(Rk − x) (4D-4.8)

ρv =
Nl∑

k=1

Na∑
α=1

mαVkαδ(Rk − x) =
Nl∑

k=1

mVkδ(Rk − x) (4D-4.9)

ρϕ =
Nl∑

k=1

Na∑
α=1

mα�vkα ⊗ �rkαδ(Rk − x) (4D-4.10)

ρE =
Nl∑

k=1

{
1
2m(Vk)2 +

Na∑
α=1

[ 1
2mα(�vkα)2 + Ukα

]}
δ(Rk − x) (4D-4.11)

If one assumes the micromotion is affine as in the micromorphic theory (cf.
Appendix 4C), that is,

�vkα = ωk · �rkα (4D-4.12)

then one obtains almost the same set of balance laws as in micromorphic theory
except [cf. Eqs. (4C-2.2) and (4C-2.4)]:

ρ
di
dt

= ρϕ + ρϕT − ∇x · γ (4D-4.13)

ρ
dϕ

dt
= ∇x · m + ω · ρi · ωT + tT − s + L − ∇x · (ω · γ ) (4D-4.14)

where

γ =
Nl∑

k=1

(Vk − v) ⊗
Na∑
α=1

mα�rkα ⊗ �rkαδ(Rk − x) (4D-4.15)

It is seen that Vk − v ≡ Ṽk is the difference between phase-space velocity and
physical-space velocity. It is easy to understand why γ does not appear in the bal-
ance laws of micromorphic theory. Because they were obtained through the micro-
scopic space-averaging process, which is different from the statistical Mechanics
process pioneered by Irving and Kirkwood (1950) and Hardy (1982).
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Notice that the balance laws [Eqs. (4D-4.1) to (4D-4.4)] and the constitutive
relations [Eqs. (4D-3.5), (4D-3.8) to (4D-3.11), and (4D-3.16)] are obtained through
the atomistic formulation, which naturally leads to a generalized continuum field
theory. The atomistic field theory is identical to molecular dynamics at atomic scale
and can be reduced to classical continuum field theory at macroscopic scale.

A corresponding finite element method to implement this atomistic field theory
has been formulated (Lee and Chen 2008; Lee et al., 2009a, 2009b). This theory
has been applied to different materials and/or different cases by Lei et al. (2008)
and Xiong et al. (2007a, 2007b, 2008, 2009a, 2009b, 2009c).
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CHAPTER 5

PLANE THEORY OF ELASTICITY
IN RECTANGULAR CARTESIAN
COORDINATES

If a problem of elasticity is reducible to a two-dimensional problem, we say that
it is a plane problem of elasticity. The corresponding theory is referred to as the
plane theory of elasticity.

The equations of the plane theory of elasticity apply to the following two cases
of equilibrium of elastic bodies, which are of considerable interest in practice: (1)
plane strain (Section 5-1) and (2) deformation of a thin plate under forces applied
to its boundary and acting in its plane (Section 5-2).

In the past decade or so, a considerable literature on the application of com-
plex variables to the analytical solution of plane problems has evolved. In fact,
the complex-variable method has been developed to the extent that it is currently
considered a routine approach to the plane problem of elasticity. However, in many
plane problems, the complex-variable method is now being superseded by numeri-
cal methods such as finite element methods, which lend themselves to the treatment
of difficult boundary value problems in engineering. The complex-variable method
has been expounded extensively and authoritatively by Muskhelishvili (1975) and
also by Sokolnikoff (1983). Consequently, the method is treated only briefly in this
book (see Appendix 5B).

In Appendix 5A we discuss briefly the problem of plane elasticity with
couple stresses.

5-1 Plane Strain

The plane strain approximation, which serves to represent a three-dimensional
problem by a two-dimensional one, may be applicable to a prismatic body
whose length is large compared to its cross-sectional dimensions and which is

365Elasticity in Engineering Mechanics, Third Edition          Arthur P. Boresi, Ken P. Chong and James D. Lee
Copyright © 2011 John Wiley & Sons, Inc.
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loaded uniformly along its length. An example of such a body is a long hollow
cylinder subjected to lateral pressure. In such bodies the longitudinal displacement
component—say, w in the z direction—is often very small compared to the
displacement components in the cross section—say, in the (x, y) plane—and
under certain conditions may be ignored. A formal definition of plane strain is
given below, and the equations of elasticity are simplified accordingly.

For convenience, we employ (x, y, z) notation.

Definition. A body is in a state of plane strain, parallel to the (x, y) plane, if the
displacement w is zero, and if the components (u, v) are functions of (x, y) only.

In view of this definition, the cubical strain for plane strain is

e = ∂u

∂x
+ ∂v

∂y
(5-1.1)

Hence, Eqs. (4-6.5) reduce to (isotropic material) (see Table 3-2.1)

σx = λe + 2Gεx σy = λe + 2Gεy σz = λe

τxy = Gγxy = G

(
∂v

∂x
+ ∂u

∂y

)
τxz = τyz = 0

(5-1.2)

Equations (5-1.2) show that the stress components are functions of (x, y) only,
because (u, v) hence e, are functions of (x, y) only.

The equilibrium equations for plane strain [see Eqs. (3-8.1)] are

∂σx

∂x
+ ∂τxy

∂y
+ X = 0

∂τxy

∂x
+ ∂σy

∂y
+ Y = 0 (5-1.3)

Z = 0

Consequently, in plane strain with respect to the (x, y) plane, the component of
body force perpendicular to the (x, y) plane must vanish. Also, because σx, σy, τxy

are functions of (x, y) only, the components (X, Y ) of the body force are indepen-
dent of z.

The strain–displacement relations [Eqs. (2-15.14)] reduce to the following form
for plane strain:

εx = ∂u

∂x
εy = ∂v

∂y
εz = 0

γxy = ∂u

∂y
+ ∂v

∂x
γxz = γyz = 0

(5-1.4)

Hence, by Eqs. (4-6.6) and (5-1.4),

σz = ν(σx + σy) (5-1.5)
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Thus, the static equations of elasticity for a body in plane strain with respect to the
(x, y) plane reduce to

∂σx

∂x
+ ∂τxy

∂y
+ X = 0

∂τxy

∂x
+ ∂σy

∂y
+ Y = 0

σx = λe + 2Gεx σy = λe + 2Gεy

σz = λe = ν(σx + σy) τxy = Gγxy

(5-1.6)

In Eqs. (5-1.6) it should be noted that σz is deduced from σx and σy [Eq. (5-1.5)].
Hence, the problem is reduced to determining three stress components σx, σy, τxy .

With Eq. (5-1.5), the stress–strain relations [Eqs. (4-6.8)] may be written in the
form

εx = 1 + ν

E
[σx − ν(σx + σy)]

εy = 1 + ν

E
[σy − ν(σx + σy)]

γxy = 2(1 + ν)

E
τxy

(5-1.7)

A state of plane strain can be maintained in a cylindrically shaped body by
suitably applied forces. For example, by Eq. (5-1.5), we see that σz does not
vanish in general. Hence, for a state of plane strain in a cylindrical body with the
generators of the body parallel to the z axis, a tension or compression σz must be
applied over the terminal sections formed by planes perpendicular to the z axis.
Thus, the effect of σz is to keep constant the length of all longitudinal fibers of
the body. In addition, the stress components σx and σy must attain values on the
lateral surface of the body that are consistent with Eqs. (5-1.2) or (5-1.6).

The solution of the plane strain problem of the cylindrical body may be used
in conjunction with the auxiliary problem of a cylindrical body subjected to longi-
tudinal terminal forces to solve the problem of deformation of a cylindrical body
with terminal sections free of force. If the longitudinal terminal forces are equal
in magnitude but opposite in sign to σz, the superposition of the results clears the
terminal sections of the cylinder of force. However, the resulting deformation of
the body is not necessarily a plane deformation. In general, the solution of the aux-
iliary problem involves the deformation of a cylinder by longitudinal end forces
that produce a net axial force and a net couple (pure bending); see Chapter 7.

Example 5-1.1. Plane State of Strain. A region in the (x, y) plane is subjected
to a state of plane strain such that the (x, y) displacement components (u, v) are
linear functions of (x, y), namely (with w = 0 in the z direction)

u = a1x + b1y + c1 v = a2x + b2y + c2 w = 0 (a)

Measurements indicate that for x = 0, y = 1 m, u = −3 mm, and v = 2.5 mm; for
x = 1 m, y = 0, u = −2 mm, and v = 1 mm; for x = 1 m, y = 1 m, u = −5 mm,
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and v = 3.5 mm; and for x = y = 0, u = v = 0. Substitution of these conditions
into Eqs. (a) yields the result

u = −0.002x − 0.003y v = 0.001x + 0.0025y (b)

With Eqs. (b), Eqs. (2-15.14) in Chapter 2 yield, for small-displacement theory,

ε11 = εx = ∂u

∂x
= −0.002

ε22 = εy = ∂v

∂y
= 0.0025

ε12 = εxy = 1

2

(
∂u

∂y
+ ∂v

∂x

)
= −0.001

ε33 = εz = 0 ε13 = εxz = 0 ε23 = εyz = 0

(c)

With Eqs. (c) and Eqs. (2-9.1) in Chapter 2, strain components relative to any
other set of axes (say, X, Y ) may be computed. For example, let axes (X, Y ) be
obtained by a rotation in the (x, y) plane of 30◦ such that the direction cosines
between axes (X, Y ) and axes (x, y) are

a11 =
√

3/2 a12 = 1/2 a21 = −1/2 a22 =
√

3/2

(see Table 1-24.1 in Chapter 1). Then by Eqs. (c) and (2-9.1), we obtain the strain
components EX, EY , EXY relative to axes (X, Y ) as (noting that EZ = EXZ =
EYZ = 0):

E11 = EX = ε11a
2
11 + ε22a

2
12 + 2ε12a11a12 = −0.001741

E22 = EY = ε11a
2
21 + ε22a

2
22 + 2ε12a21a22 = 0.002241

E12 = EXY = ε11a11a12 + ε22a12a22 + ε12(a11a22 + a12a21) = 0.001449

(d)

Note that J1 = εx + εy = EX + EY = 0.0005 and J2 = εxεy − ε2
xy = EXEY −

E2
XY = −0.000006.

Example 5-1.2. Stress–Strain–Strain Energy Density Relations: Plane
Strain. The strain energy density for an anisotropic (crystalline) material sub-
jected to a state of plane strain is given by

U = 1
2 (C11ε

2
11 + C22ε

2
22 + 2C33ε

2
12 + 2C12ε11ε22 + 4C13ε11ε12 + 4C23ε22ε12) (a)

We wish to determine the stress–strain relations for the material. By Eq. (4-4.21)
in Chapter 4, σαβ = ∂U/∂εαβ , where U must be expressed symmetrically in terms
of ε12, ε21. Thus, let

ε12 = 1
2 (ε12 + ε21) (b)
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Then substitution of Eq. (b) into Eq. (a) yields

U = 1
2

[
C11ε

2
11 + C22ε

2
22 + 2C33

(
ε12 + ε21

2

)2

+ 2C12ε11ε22 + 4C13ε11

(
ε12 + ε21

2

)
+ 4C23ε22

(
ε12 + ε21

2

)]
(c)

Then
σ11 = ∂U

∂ε11
= C11ε11 + C12ε22 + C13(ε12 + ε21)

or, as ε12 = ε21,

σ11 = C11ε11 + C12ε22 + 2C13ε12 (d)

Similarly,

σ22 = ∂U

∂ε22
= C12ε11 + C22ε22 + 2C23ε12

σ21 = σ12 = ∂U

∂ε12
= C13ε11 + C23ε22 + C33ε12

(e)

Example 5-1.3. Integration of Plane Strain–Displacement Relations. The plane
strain–displacement relations as given by Eqs. (5-1.4) are

εx = ∂u

∂x
εy = ∂v

∂y
γxy = ∂u

∂y
+ ∂v

∂x
(a)

where u = u(x, y) and v = v(x, y). Elimination of (u, v) from Eqs. (a) yields the
strain compatibility relationship for plane strain

∂2εx

∂y2
+ ∂2εy

∂x2
= ∂2γxy

∂x∂y
(b)

In a plane strain problem, the strain components were determined as

εx = Ax2 + By2 εy = −Bx2 − Ay2 γxy = 0 (c)

Substitution of Eqs. (c) into Eq. (b) shows that the strain components are compat-
ible. By Eqs. (a) and (c),

εx = ∂u

∂x
= Ax2 + By2 εy = ∂v

∂y
= −Bx2 − Ay2 γxy = ∂u

∂y
+ ∂v

∂x
= 0

(d)
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Integration of the first two of Eqs. (d) yields

u = 1
3Ax3 + Bxy2 + f1(y) v = −Bx2y − 1

3Ay3 + f2(x) (e)

where f1(y), f2(x) are y and x functions of integration, respectively.
Substitution of Eqs. (e) into the third of Eqs. (d) yieldsf ′

1(y) + f ′
2(x) = 0, or

f ′
1(y) = C f ′

2(x) = −C (f)

where C is a constant. Hence, integration yields

f1(y) = Cy + D f2(x) = −Cx + F (g)

where C, D, and F are constants of integration that must be determined by speci-
fication of the rigid-body displacement (Section 2-15 in Chapter 2). Equations (e)
and (g) yield the displacement components

u = 1
3Ax3 + Bxy2 + Cy + D

v = −Bx2y − 1
3Ay3 − Cx + F

(h)

Problem Set 5-1

1. The two-dimensional body OABC is held between two rigid frictionless walls as shown
in Fig. P5-1.1. The region under the body is filled with a fluid at uniform pressure p.
What are the boundary conditions required to solve for the stresses in body OABC ?
Neglect gravity.

Figure P5-1.1
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2. For a state of plane strain, σx = f (y). Neglecting body forces, derive the most general
equations for σx , σy , σz, and τxy .

3. The strain energy density U of a linearly elastic material is given by the relation U =
( 1

2 λ + G)J 2
1 − 2GJ2, where (λ,G) are the Lamé elastic constants and (J1, J2) are the

first and second strain invariants.
Employing the relationship between U and the stress components σα , derive the
stress–strain relations for a state of plane strain relative to the (x, y) plane.

4. For a state of plane strain in an isotropic body, σx = ay2, σy = −ax2, and τxy = 0.
The body forces and temperature are zero. Using small-displacement elasticity theory,
compute the displacement components u(x, y) and v(x, y) (a is a constant). (See also
Section 5-6.)

5. For a state of plane strain in an isotropic body,

σx = ay2 + bx σy = −ax2 + by τxy = −b(x + y)

The body forces and temperature are zero. Using small-displacement elasticity theory,
compute the displacement components u(x, y) and v(x, y) (a and b are constants). (See
Section 5-6.)

6. Consider a rectangular region in the (x, y) plane subjected to a uniform stress σ in the x

direction along the edges parallel to the y axis. The (x, y) axes have origin at the center
of the region.

(a) For an isotropic, homogeneous elastic material in this region, derive expressions for
the (x, y) displacement components (u, v) in terms of (x, y) and arbitrary constants
of integration by the theory of elasticity.

(b) Employ appropriate conditions at the origin (x = y = 0) to eliminate rigid-body
displacements of the region and evaluate the arbitrary constants of integration.

(c) By elementary means of mechanics of materials, derive the displacement components
and show that the results obtained in part (b) agree with these results.

5-2 Generalized Plane Stress

As described in Section 3-7 in Chapter 3, for certain kinds of loading, the equations
of plane theory of elasticity apply to thin plates. We define a thin plate to be a
prismatic member (e.g., a cylinder) of very small length or thickness h. The middle
surface of the plate, located halfway between its ends and parallel to them, is taken
as the (x, y) plane (see Fig. 5-2.1).

We assume that the faces (upper and lower ends) are free from external
stresses and that the stresses that act on the edges of the plate are parallel to
the faces and are distributed symmetrically with respect to the middle surface.
Similar restrictions apply to the body forces. By symmetry, note that points that
are originally in the middle surface of the plate lie in the middle surface after
deformation. Also, because the plate is assumed thin, the displacement component
w is small, and variations of the displacement components (u, v) through the
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Figure 5-2.1

thickness are small. Consequently, satisfactory results are obtained, if we treat
the equilibrium problem of the plate in terms of mean values u, v, and w of
displacement components (u, v, w) defined as follows:

u(x, y) = 1

h

∫ h/2

−h/2
u(x, y, z) dz v(x, y) = 1

h

∫ h/2

−h/2
v(x, y, z) dz

w(x, y) = 1

h

∫ h/2

−h/2
w(x, y, z) dz (5-2.1)

where bars over letters denote mean values. In turn, substitution of Eqs. (5-2.1)
into Eqs. (2-15.14) in Chapter 2 yields mean strains εx, εy, εz, γ xy, γ yz, γ xz.

Because it is assumed that τxz = τyz = 0 on the ends, that is, for z = ±h/2 in
the absence of body forces, it follows from the last of Eqs. (3-8.1) in Chapter 3 that
for z = ±h/2, ∂σz/∂z = 0. This follows from the fact that because τxz = 0 for z =
±h/2, ∂τxz/∂x = 0 for z = ±h/2, and because τyz = 0 for z = ±h/2, ∂τyz/∂y = 0
for z = ±h/2.

Hence, not only is σz zero for z = ±h/2, but also its derivative with respect to
z vanishes. Therefore, as the plate is thin, σz is small throughout the plate. These
observations lead us naturally to the approximation that σz = 0 everywhere.

Analogously, we define mean values of stress components (σx, σy, τxy) as
follows:

σx = 1

h

∫ h/2

−h/2
σx dz σ y = 1

h

∫ h/2

−h/2
σy dz

τ xy = 1

h

∫ h/2

−h/2
τxy dz (5-2.2)

Accordingly, the mean values of (σx, σy, τxy) are independent of z.
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Furthermore,
1

h

∫ h/2

−h/2

∂

∂z
(τxz) dz = 1

h
τxz

∣∣∣∣
h/2

−h/2
= 0

1

h

∫ h/2

−h/2

∂

∂z
(τyz) dz = 1

h
τyz

∣∣∣∣
h/2

−h/2
= 0 (5-2.3)

Also, mean values of body forces are defined as

X = 1

h

∫ h/2

−h/2
X dz Y = 1

h

∫ h/2

−h/2
Y dz Z = 1

h

∫ h/2

−h/2
Z dz = 0 (5-2.4)

Substitution of Eqs. (5-2.2), (5-2.3), and (5-2.4) into the first two of Eqs. (3-8.1)
yields, after integration with respect to z (neglecting acceleration effects),

∂σ x

∂x
+ ∂τxy

∂y
+ X = 0

∂τxy

∂x
+ ∂σy

∂y
+ Y = 0 (5-2.5)

From the stress–strain relations [Eqs. (4-6.5) in Chapter 4], it follows from σz =
λe + 2Gεz = 0 that (isotropic material)

εz = − λ

λ + 2G
(εx + εy) = − ν

1 − ν
(εx + εy) (5-2.6)

Substituting Eq. (5-2.6) into the first and second of Eqs. (4-6.5), we obtain

σx = 2λG

λ + 2G
(εx + εy) + 2Gεx σy = 2λG

λ + 2G
(εx + εy) + 2Gεy (5-2.7)

The fourth of Eqs. (4-6.5) is

τxy = G

(
∂u

∂y
+ ∂v

∂x

)
(5-2.8)

Taking the mean values of Eqs. (5-2.7) and (5-2.8), we obtain

σx = λ(εx + εy) + 2Gεx = λe + 2Gεx

σy = λ(εx + εy) + 2Gεy = λe + 2Gεy

τxy = G

(
∂u

∂y
+ ∂v

∂x

) (5-2.9)

where

λ = 2λG

λ + 2G
= νE

1 − ν2
εx = 1

h

∫ h/2

−h/2
εx dz

εy = 1

h

∫ h/2

−h/2
εy dz

(5-2.10)
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Comparison of Eqs. (5-2.5) and (5-2.9) with Eqs. (5-1.6) shows that the mean values
of displacement components (u, v) and the mean values of the stress components
(σx, σy, τxy) satisfy the same equations that govern the case of plane strain, the
only difference being that λ is replaced by λ defined by Eq. (5-2.10). Additionally,
the stress components σnx, σny on the boundary of the plate are replaced by their
mean values σnx, σ ny [see Eqs. (4-15.1) in Chapter 4].

Taking note of these facts, we may write equations of generalized plane stress
without bars over the symbols. We keep in mind that components of stress, strain,
and displacement are mean values and that λ is replaced by

λ = 2λG

λ + 2G
= νE

1 − ν2

Thus, we see that for plane strain and for generalized plane stress, we are led
to the study of the following system of equations:

∂σx

∂x
+ ∂τxy

∂y
+ X = 0

∂τxy

∂x
+ ∂σy

∂y
+ Y = 0 (5-2.11)

σx = λe + 2Gεx σy = λe + 2Gεy τxy = G

(
∂u

∂y
+ ∂v

∂x

)
= Gγxy

(5-2.12)

where
e = ∂u

∂x
+ ∂v

∂y
(5-2.13)

Equations (5-2.11) may be written entirely in terms of strain components by sub-
stitution of Eqs. (5-2.12) into Eqs. (5-2.11). Equations (5-2.11) may also be written
entirely in terms of displacement components by substitution of Eqs. (5-2.13) and
(2-15.14) into Eqs. (5-2.12) and substitution of the result into Eqs. (5-2.11).

A more specialized state of stress, called plane stress , is obtained if we set
σz = τxz = τyz = Z = 0 everywhere. Then the equilibrium equations are given by
Eqs. (5-1.3).

Although in generalized plane stress, the mean values of the displacement com-
ponents are independent of z, in a state of plane stress the displacement components
(u, v, w) are not, in general, independent of z. In particular, we note that εz does
not vanish and that it is defined by Eq. (5-2.6).

Furthermore, we observe that in a plate, a state of plane stress requires the body
forces and the tractions at the edges to be distributed in certain special ways. It
does not, however, require tractions on the faces of the plate.

Finally, we also remark that the average values of displacement in any problem
of plane stress are the same as if the problem were one of generalized plane stress.
Accordingly, the solution of problems of plane stress may be employed to examine
effects produced by certain distributions of forces that do not produce plane stress
states, as any such problem can be solved by treating it as a plane stress problem and
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by replacing λ by λ in the results. For example, this technique may be employed in
problems of equilibrium of a thin plate deformed by forces applied in the plane of
the plate. Although the actual values of stress and displacement are not determined
by this procedure (unless the forces actually produce a state of plane stress), the
average values across the thickness of the plate are obtained. Moreover, average
values are the usual quantities measured experimentally.

Example 5-2.1. Plane Stress. Consider a plane stress problem relative to the (x, y)
plane, that is,

σx = σx(x, y) σy = σy(x, y) τxy = τxy(x, y)

σz = τxz = τyz = 0
(a)

The corresponding strain components [Eqs. (4-6.8) or (5-3.6)] for constant tem-
perature T are

ε11 = εx = 1

E
(σx − νσy) ε22 = 1

E
(σy − νσx)

2ε12 = γxy = 2(1 + ν)

E
σ12 = 2(1 + ν)

E
τxy

ε33 = εz = − ν

E
(σx + σy)

(b)

For a particular plane stress problem, it has been found that the (x, y) displace-
ment components (u, v) are given by the equations

u = a1 + a2x + a3y + a4xy

v = b1 + b2x + b3y + b4xy
(c)

where ai, bi are constants. We wish to determine the corresponding small-
displacement nonzero strain components [Eqs. (b)] and the stress components
[Eqs. (a)] as functions of (x, y).

By Eqs. (2-15.4) and (c),

ε11 = εx = ∂u

∂x
= a2 + a4y ε22 = εy = ∂v

∂y
= b3 + b4x

2ε12 = γxy = ∂u

∂y
+ ∂v

∂x
= a3 + b2 + a4x + b4y

(d)

To determine εz we need σx, σy . Hence, substitution of Eqs. (d) into Eqs. (b) and
solution for (σx, σy) yields

σx = E

1 − ν2
(a2 + νb3 + νb4x + a4y)

σy = E

1 − ν2
(νa2 + b3 + b4x + νa4y)

(e)
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Then, by the last two of Eqs. (b) and Eqs. (d) and (e),

τxy = E

2(1 + ν)
(a3 + b2 + a4x + b4y)

εz = − ν

1 − ν
(a2 + b3 + b4x + a4y)

(f)

Equations (d), (e), and (f) determine the nonzero stress and strain components.

Problem Set 5-2

1. Repeat Problem 5-1.3 for the case of plane stress.

2. A material is isotropic and elastic. Body forces and temperature are zero. All stress
components are zero except τxy . Using small-displacement theory, determine the most
general form for τxy .

3. Consider a plane stress problem relative to the (x, y) plane. At a point P in the (x, y) plane
the normal stresses on three planes perpendicular to the (x, y) plane and forming angles
120◦ relative to each other are 4C, 3C, and 2C, respectively, in the counterclockwise
direction, with the direction of the stress 4C coincident with the positive x axis. Determine
the principal stresses at P .

4. The following stress array is proposed as a solution to a certain equilibrium problem of
a plane body bounded in the region −L/2 ≤ x ≤ L/2, −h/2 ≤ y ≤ h/2:

σx = Ay + Bx2y + Cy3 σy = Dy3 + Ey + F

τxy = (G + Hy2)x σz = τxz = τyz = 0

where (x, y, z) are rectangular Cartesian coordinates and A,B, . . . , H are nonzero con-
stants. Determine the conditions under which this array is a possible equilibrium solution.

It is proposed that the region be loaded such that τxy = 0 for y = ±h/2, σy = 0 for
y = h/2, σy = −σ (σ = constant) for y = −h/2, and σx = 0 for x = ±L/2. Determine
whether the proposed stress array may satisfy these conditions.

5. A flat plate is in a state of biaxial tension. The principal stresses are σx and σy

(see Fig. P5-2.5). Two electrical strain gages are located as shown. The angle α is
given by

cos α =
√

1

1 + ν
sin α =

√
ν

1 + ν

Assume that the material is linearly elastic and isotropic. Prove that the principal stresses
may be read directly (except for a constant factor) as the strains in the direction of the
two strain gages 1 and 2.
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Figure P5-2.5

6. A semi-infinite space is subjected to a uniformly distributed pressure over its entire
bounding plane (Fig. P5-2.6). Consider an infinitesimal volume element ABCD at some
distance from the bounding plane. The normal stress on surface AB is σy = σ . In terms
of the appropriate material properties and σ , derive expressions for the normal stress
components σx, σz that act on the volume element (axis z is perpendicular to the x, y

plane). Hint : What are the values of the strain components εx, εz?

Figure P5-2.6

5-3 Compatibility Equation in Terms of Stress Components

Equations (5-2.11) and one supplementary condition (the compatibility condition),
which ensures that there exist two displacement components (u, v) related to the
three stress components (σx, σy, τxy) through Eqs. (5-2.12), comprise the equations
of plane elasticity. The compatibility equation may be derived from Eqs. (4-14.2)
or from Eqs. (2-16.1).

Plane Strain. Consider the state of plane strain. Such a state is defined by the
conditions that εx, εy, γxy are independent of z, and εz = γxz = γyz = 0. Hence, the
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compatibility conditions reduce to the single equation [Eq. (2-16.1) in Chapter 2]:

∂2εx

∂y2
+ ∂2εy

∂x2
= ∂2γxy

∂x∂y
(5-3.1)

Also, Eqs. (4-6.8) with Eqs. (5-1.5) become

εx = 1

2G

[
σx − λ

2(λ + G)
(σx + σy)

]

εy = 1

2G

[
σy − λ

2(λ + G)
(σx + σy)

]

γxy = 1

G
τxy

(5-3.2)

Substitution of Eqs. (5-3.2) into Eq. (5-3.1) yields

∂2σx

∂y2
+ ∂2σy

∂x2
− ν∇2(σx + σy) = 2

∂2τxy

∂x∂y
(a)

Equations (5-1.3) yield

−2
∂2τxy

∂x ∂y
= ∂2σx

∂x2
+ ∂2σy

∂y2
+ ∂X

∂x
+ ∂Y

∂y
(b)

Substitution of Eq. (b) into Eq. (a) yields after simplification

∇2(σx + σy) = −2(λ + G)

λ + 2G

(
∂X

∂x
+ ∂Y

∂y

)

= − 1

1 − ν

(
∂X

∂x
+ ∂Y

∂y

) (5-3.3)

Equations (5-2.11) and (5-3.3) represent the equations of plane strain. The
equations of generalized plane stress are obtained from these equations if mean
values of stress and body force are used and if λ is replaced by

λ = 2λG

λ + 2G
= νE

1 − ν2

Generalized Plane Stress. For generalized plane stress, σz = 0. Hence, by the
third of Eqs. (4-6.5) in Chapter 4,

εz = − ν

1 − ν
(εx + εy) = − ν

1 − ν
(ux + vy) (5-3.4)
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By Eqs. (5-3.4), we may eliminate εz from the first two of Eqs. (4-6.5). Then, on
taking mean values, we obtain

σx = λe + 2Gεx σ y = λe + 2Gεy τxy = Gγ xy

e = εx + εy λ = 2Gν

1 − ν

(5-3.5)

or, alternatively, in terms of E, ν,

σx = E

1 − ν2
(εx + νεy)

σ y = E

1 − ν2
(εy + νεx)

τ xy = E

2(1 + ν)
γ xy

(5-3.5a)

The inverse relations are

Eεx = σx − νσ y Eεy = σ y − νσx Gγ xy = τ xy (5-3.6)

The mean strain components evidently satisfy the compatibility conditions [Eqs.
(2-16.1) or (5-3.1)]. With Eq. (5-3.6), Eq. (5-3.1) may be expressed in terms of
stress as

∇2(σ x + σy) = −(1 + ν)

(
∂X

∂x
+ ∂Y

∂y

)
(5-3.7)

In view of the principle of superposition, body forces can be eliminated from
consideration if a particular solution is found. We must then solve a problem with
no body forces but with altered boundary conditions. For constant body forces or
centrifugal body forces, particular solutions are easily found. Consequently, let us
consider cases in which body forces are absent. Then the compatibility conditions
for generalized plane stress and strain [Eqs. (5-3.7) and (5-3.3)] are identical. The
stress–strain relations are the same in both cases, except that λ replaces λ in
problems of generalized plane stress.

In terms of the Airy stress function F (see Section 5-4), the problem, in either
case, reduces to the solution ∇2∇2F = 0 in the absence of body forces. Further-
more, by the principle of superposition, any solution of an axial stress problem
may be superimposed on a plane strain solution. For the general plane orthogonal
curvilinear coordinate system the defining equation for F is obtained by specializ-
ing the expression for ∇2 for the plane, that is, setting h3 = 1 and ∂/∂w = 0 [see
Section 1-22 and Eq. (1-22.13) in Chapter 1].

Summary of Equations of Plane Elasticity. For convenience we summarize
the equations of the plane theory of elasticity for an isotropic, homogeneous
material. Also, for completeness we include the effects of body force (X, Y ) and
temperature T . All quantities are considered to be functions of (x, y) coordinates.
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Plane Strain. The stress–strain–temperature relations are

σx = E

(1 + ν)(1 − 2ν)
[(1 − ν)εx + νεy − (1 + ν)kT ]

σy = E

(1 + ν)(1 − 2ν)
[νεx + (1 − ν)εy − (1 + ν)kT ]

τxy = Gγxy = E

2(1 + ν)
γxy (5-3.8)

σz = E

(1 + ν)(1 − 2ν)
[ν(εx + εy) − (1 + ν)kT ]

e = ux + νy = εx + εy

εz = γxz = γyz = τxz = τyz = 0

The compatibility relation in terms of stress components is

∇2(σx + σy) + E

1 − ν
∇2(kT ) + 1

1 − ν

(
∂X

∂x
+ ∂Y

∂y

)
= 0 (5-3.9)

where E (Young’s modulus) and ν (Poisson’s ratio) are constants and where

∇2 = ∂2

∂x2
+ ∂2

∂y2

Plane Stress. The stress–strain–temperature relations are

σx = E

1 − ν2
[εx + νεy − (1 + ν)kT ]

σy = E

1 − ν2
[νεx + εy − (1 + ν)kT ]

τxy = Gγxy = E

2(1 + ν)
γxy (5-3.10)

εz = − 1

1 − ν
[ν(εx + εy) − (1 + ν)kT ]

e = εx + εy + εz = 1

1 − ν
[(1 − 2ν)(εx + εy) + (1 + ν)kT ]

σz = τxz = τyz = γxz = γyz = 0

The compatibility relation in terms of stress components is

∇2(σx + σy) + E∇2(kT ) + (1 + ν)

(
∂X

∂x
+ ∂Y

∂y

)
= 0 (5-3.11)

Equations (5-3.9) and (5-3.11), subject to appropriate boundary conditions, consti-
tute the equations from which the sum of stress components σx, σy is determined.
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Mathematically speaking, Eqs. (5-3.9) and (5-3.11) are equivalent, as we may write

∇2(σx + σy) + K1∇2(kT ) + K2

(
∂X

∂x
+ ∂Y

∂y

)
= 0 (5-3.12)

where for plane strain K1 = E/(1 − ν), K2 = 1/(1 − ν), and for plane stress
K1 = E, K2 = 1 + ν. In other words, Eq. (5-3.9) is obtained from Eq. (5-3.11)
by the substitutions

E → E

1 − ν
1 + ν → 1

1 − ν
(5-3.13)

Accordingly, the mathematical problems of plane strain and plane stress
are equivalent.

Example 5-3.1. Compatibility Conditions for Plane Problems. Relation to Three-
Dimensional Compatibility Relations. A Caution. In Section 5-3 we noted that the
strain compatibility equation may be represented in terms of stress components. In
particular, in the absence of body forces and temperature, the compatibility relation
for plane problems reduces to [Eqs. (5-3.9) and (5-3.12)]

∇2(σx + σy) = 0 (a)

whereas for the three-dimensional problem, the compatibility relations in terms of
stress components are given by Eqs. (4-14.2) in Chapter 4. It is possible that a
two-dimensional state of stress may satisfy Eq. (a) but may not satisfy all of Eqs.
(4-14.2). For example, a two-dimensional solution for a cantilever beam [see Eq.
(b), Example 5-7.1] is given by the stress state

σx = A − 2Bxy σy = 0

τxy = −B(c2 − y2)
(b)

where A, B, and c are constants. Equation (a) is satisfied by Eqs. (b). However,
if Eqs. (b) are substituted in Eqs. (4-14.2), it is found that all the equations are
satisfied identically except for the equation

∇2τxy + 1

1 + ν

∂2I1

∂x ∂y
= 0 (c)

Equations (b) and (c) yield the result

1 + ν = 1 (d)
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Thus, Eq. (d) cannot be satisfied unless Poisson’s ratio ν = 0, which is not possible
for known materials. Hence, a solution may be compatible in the two-dimensional
state but not in the three-dimensional state.

Problem Set 5-3

1. Consider a wedge hanging vertically in a gravity field of acceleration g (Fig. P5-3.1).
The following elasticity solution for the stress problem of the wedge is proposed: σx =
σy = τxy = τyz = 0, σz = 1

2 ρgz, and τxz = 1
2 ρgx. Discuss this proposed solution.

Figure P5-3.1

2. Consider a beam in the region −h/2 ≤ y ≤ h/2, −b/2 ≤ z ≤ b/2, and 0 ≤ x ≤ L.
Assume plane stress in the (x, y) plane, with zero body forces. The stress component
normal to the plane perpendicular to the x axis is σx = −My/I , where M = M(x) is a
function of x only, and I = bh3/12. Derive expressions for σy and τxy subject to the
boundary conditions τxy = 0 for y = ±h/2 and σy = 0 for y = h/2. What restriction, if
any, must be placed on M in order that the derived state of stress be compatible? What
can be said about σy at y = −h/2?

3. Given the following stress state:

σx = C[y2 + ν(x2 − y2)] τxy = −2Cvxy

σy = C[x2 + ν(y2 − x2)] τyz = τxz = 0

σz = Cν(x2 + y2)

Discuss the possible reasons for which this stress state may not be a solution of a problem
in elasticity.
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5-4 Airy Stress Function

Simply Connected Regions. For the plane theory of elasticity, the equilibrium
equations [Eqs. (3-8.1) in Chapter 3] reduce to two equations:

∂σx

∂x
+ ∂τxy

∂y
+ X = 0

∂τxy

∂x
+ ∂σy

∂y
+ Y = 0 (5-4.1)

As noted in Section 5-3, we may initially ignore body forces (X, Y ) and seek
solutions to Eqs. (5-4.1) modified accordingly. Then the effects of body forces may
be superimposed. However, in the case of body forces derivable from a potential
function V (∇2V = 0), such that

X = −∂V

∂x
Y = −∂V

∂y
(5-4.2)

we may incorporate the effects of body force directly. Thus, Eqs. (5-4.1) and (5-4.2)
yield

∂σ ′
x

∂x
+ ∂τxy

∂y
= 0

∂σ ′
y

∂y
+ ∂τxy

∂x
= 0 (5-4.3)

where
σ ′

x = σx − V σ ′
y = σy − V (5-4.4)

Now, for simply connected regions, we note that the first of Eqs. (5-4.3) repre-
sents the necessary and sufficient condition that there exist a function φ(x, y) such
that (see Section 1-19 in Chapter 1)

∂φ

∂y
= σ ′

x

∂φ

∂x
= −τxy (5-4.5)

The second of Eqs. (5-4.3) represents the necessary and sufficient condition that
there exist a function θ (x, y) such that

∂θ

∂x
= σ ′

y

∂θ

∂y
= −τxy (5-4.6)

Comparison of the two expressions for τxy shows that

∂φ

∂x
= ∂θ

∂y
(5-4.7)

In turn, Eq. (5-4.7) is the necessary and sufficient condition that there exist a
function F(x, y) such that

φ = ∂F

∂y
θ = ∂F

∂x
(5-4.8)
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Substitution of Eq. (5-4.8) into Eqs. (5-4.5) and (5-4.6) shows that there always
exists a function F such that for body forces represented by Eqs. (5-4.6), stress
components in the plane theory of elasticity may be expressed in the form

σ ′
x = ∂2F

∂y2
σ ′

y = ∂2F

∂x2
τxy = − ∂2F

∂x∂y

Alternatively, by Eqs. (5-4.4) we have

σx = ∂2F

∂y2
+ V σy = ∂2F

∂x2
+ V τxy = − ∂2F

∂x∂y
(5-4.9)

The function F is called the Airy stress function in honor of G. B. Airy, who first
noted this relation.

Because it was assumed that the stresses σx, σy, τxy are single valued and contin-
uous together with their second-order derivatives [note the compatibility equations
in terms of stress components Eq. (5-3.3)], the function F must possess continuous
derivatives up to and including fourth order. These derivatives, from the second
order on up, must be single-valued functions throughout the region occupied by
the body [see Eqs. (5-4.9)].

Conversely, if F has these properties, the functions σx, σy, τxy defined in terms
of F by Eqs. (5-4.9) will satisfy Eq. (5-4.1), provided body forces are defined by
Eqs. (5-4.2). Additionally, to ensure that the stresses so determined correspond to an
actual deformation, the compatibility conditions for the plane theory of elasticity
must be satisfied. For body forces defined by Eq. (5-4.2) (or for constant body
forces), this condition becomes [see Eq. (5-3.3) or (5-3.7)]

∇2(σx + σy) = 0 (5-4.10)

Adding the first two of Eqs. (5-4.9), we note that

σx + σy = ∇2F + 2V (5-4.11)

Substitution of Eq. (5-4.11) into Eq. (5-4.10) yields (because ∇2V = 0)

∇2∇2F = ∂4F

∂x4
+ 2

∂4F

∂x2∂y2
+ ∂4F

∂y4
= 0 (5-4.12)

Equation (5-4.12) is the compatibility condition of the plane theory of elastic-
ity with constant body forces or body forces derivable from a potential function
[Eq. (5-4.2)] in terms of the stress function F .

Equations of the form of Eq. (5-4.12) are called biharmonic. Solutions of
Eq. (5-4.12) are called biharmonic functions (Brown and Churchill, 2008). Some
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well-known solutions to Eq. (5-4.12) are, in rectangular coordinates,

y, y2, y3, x, x2, x3, xy, x2y, xy2, x3y, and xy3

x2 − y2, x4 − y4, x2y2 − 1
3y4, . . .

cos λy cosh λx cosh λy cos λx y cos λy cosh λx

y cosh λy cos λx x cos λy cosh λx x cosh λy cos λx

(5-4.13)

By the above analysis, the problem of plane elasticity has been reduced to
seeking solutions to Eq. (5-4.12) such that the stress components [Eqs. (5-4.9)]
satisfy the boundary conditions. A number of problems may be solved by using
simple linear combinations of polynomials in x and y (see Section 5-7).

Airy Stress Function with Body Forces and Temperature Effects. More
generally, Eq. (5-4.12) may be written to include temperature effects [see Eqs.
(5-3.9), (5-3.11), and (5-3.12)]. Body forces derivable from a potential function
[Eq. (5-4.2)] do not affect Eq. (5-4.12). Hence, for potential body forces,
Eq. (5-4.12) generalized to include temperature effects is [see Eq. (5-3.12)]

∇2∇2F + C∇2(kT ) = 0 (5-4.12a)

where C = E for plane stress and C = E/(1 − ν) for plane strain. Cases of more
general body forces ordinarily must be treated individually.

Problem. Verify that the functions listed in Eq. (5-4.13) satisfy Eq. (5-4.12).

Boundary Conditions. It is frequently convenient to have the stress boundary
conditions [Eqs. (4-15.1) in Chapter 4] expressed in terms of the Airy stress func-
tion. For simply connected regions, Eqs. (4-15.1) may be transformed as follows.

Consider region G: (x, y) bounded by the curve � (Fig. 5-4.1). The unit normal
vector (+outward) is

n = (l, m, n) =
(

dy

ds
, −dx

ds
, 0

)
(5-4.14)

where s denotes arc length measured from some arbitrary point P on �. The unit
tangent vector to � is denoted by t, the positive direction of t being such that (n,t)
form a right-handed system.

For the plane theory of elasticity with respect to the (x, y) plane, the boundary
conditions [Eqs. (4-15.1)] reduce to

σnx = lσx + mτxy σny = lτxy + nσy (5-4.15)

Substitution of Eqs. (5-4.14) into Eqs. (5-14.5) yields

σnx = σx

dy

ds
− τxy

dx

ds
σny = τxy

dy

ds
− σy

dx

ds
(5-4.16)
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Figure 5-4.1

By Eqs. (5-4.16), (5-4.5), and (5-4.6), we eliminate σx, σy, τxy to obtain

σnx = ∂φ

∂y

dy

ds
+ ∂φ

∂x

dx

ds
= ∂φ

ds

σny = −∂θ

∂y

dy

ds
− ∂θ

∂x

dx

ds
= −dθ

ds

or, multiplying by ds , we get

σnx ds = ∂φ

∂x
dx + ∂φ

∂y
dy = dφ

−σny ds = ∂θ

∂x
dx + ∂θ

∂y
dy = dθ

(5-4.17)

Integration of Eq. (5-4.17) yields [with Eq. (5-4.8)]

φ = ∂F

∂y
=
∫

σnx ds =
∫ l

0
σnx ds + C1 = Rx + C1

θ = ∂F

∂x
= −

∫
σny ds = −

∫ l

0
σny ds + C2 = −Ry + C2

(5-4.18)

where (Rx, Ry) denote the (x, y) projections of the total force acting on �

from 0 to l, and (C1, C2) are constants. Equations (5-4.18) express the stress
boundary conditions [Eqs. (4-15.1)] in terms of derivatives of the Airy stress
function F .
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The stress boundary conditions may be interpreted physically in terms of the net
force and net moment at s = l resulting from the stress distributed on the boundary
from s = 0 to s = l. For example, recall that by definition the total differential dF
of F is

dF = ∂F

∂x
dx + ∂F

∂y
dy (5-4.19)

Substitution of Eqs. (5-4.18) into Eq. (5-4.19) yields, after integration,

F(l) =
∫ l

0
dF =

∫ l

0
(−Ry dx + Rx dy) + C1(y − y0) + C2(x − x0) + C3

Because linear terms in F do not contribute to the stress components [Eq. (5-4.9)
with V = 0], we take C1 = C2 = C3 = 0. Then integration by parts yields [with
Eqs. (5-4.18)]

F(l) =
∫ l

0
(−Ry dx + Rx dy)

= (−xRy + yRx)|l0 −
∫ l

0
(−x dRy + y dRx)

= −x1Ry(l) + y1Rx(l) +
∫ l

0
(xσny − yσnx) ds

= −
∫ l

0
(xl − x)σny ds +

∫ l

0
(yl − y)σnx ds = Ml (5-4.20)

where Ml denotes the moment with respect to P : (s = l) of boundary forces on �

from the point P : (s = 0) to the point P : (s = l). Thus, Eq. (5-4.20) shows that
the value F(l) of the Airy stress function at s = l relative to its value at s = 0, is
equal to the net moment of the boundary forces on � from the point s = 0 to the
point s = l.

Equation (5-4.20) replaces one of the boundary conditions [Eqs. (5-4.18)]. To
obtain a second equation, consider the directional derivative of the Airy stress
function in the direction of n (Fig. 5-4.1). We have [see Section 1-8 in Chapter 1
and Eqs. (5-4.14) and (5-4.18)]

dF(l)

dn
= n · grad F

=
(

dy

ds
, −dx

ds

)
· [−Ry(l), Rx(l)]

= −
(

dx

ds
,

dy

ds

)
·
(∫ l

0
σnx ds,

∫ l

0
σny ds

)

= −t · R (5-4.21)
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where R denotes the resultant external force acting on � from the point s = 0 to
the point s = l. Hence, the normal derivative of F at point s = l is equal to the
negative of the projection R on the tangent t to the curve � at point s = l.

Equations (5-4.20) and (5-4.21) serve as boundary conditions in terms of the
Airy stress function F . If the boundary � is free of external forces, Eqs. (5-4.20)
and (5-4.21) yield

F(l) = 0
dF(l)

dn
= 0 (5-4.22)

Multiply Connected Regions. The above argument assumes that derivatives
G = G(x, y) of second order or higher of the Airy stress function are single-valued
functions of (x, y). Hence, it is restricted to simply connected regions for which

∂Q

∂x
= ∂P

∂y
P = ∂G

∂x
Q = ∂G

∂y
(5-4.23)

pcare necessary and sufficient conditions for the existence of G (see Section
1-19 in Chapter 1). For multiply connected regions with bounding contours Lk

(Fig. 5-4.2), the condition (5-4.23) is only a necessary condition for the existence
of the single-valued functions G(x, y). For a multiply connected region, in
addition to Eq. (5-4.23), the conditions

Jk =
∫

Lk

P dx + Q dy = 0 k = 1, 2, 3, . . . , m (5-4.24)

are also required.

Figure 5-4.2
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Accordingly, in order that the derivatives G(x, y) of second order or higher of
the Airy stress function F(x, y) be single valued, it is necessary and sufficient that
in addition to Eq. (5-4.23), the following conditions (Muskhelishvili, 1975) hold:

J1 = J2 = · · · = Jk = · · · = Jm = 0 (5-4.25)

where Jk is defined by Eq. (5-4.24).
The defining equations for the Airy stress function [Eqs. (5-4.12), (5-4.20),

(5-4.21), and (5-4.25)] may be expressed for the general plane orthogonal curvi-
linear coordinate system by specializing the results of Section 1-22 in Chapter 1
for the plane.

Equations (5-4.23) and (5-4.25) ensure the single valuedness of the stress com-
ponents σx, σy, τxy . However, they do not assure the existence of single-valued
displacement components (u, v), as these components are obtained by an integration
of stress (or strain) quantities, this integration process possibly yielding multival-
ued terms. Accordingly, if we require single-valued displacement, we must select
the arbitrary functions (or constants) that result in the expressions for (u, v) in
such a fashion that the single valuedness of displacement is ensured. Although we
ordinarily require that the displacement be single valued, the concept of multival-
ued displacement components may be interpreted in a physical sense and finds an
application through Volterra’s theory of dislocation (see Love, 2009, pp. 221–228).

Example 5-4.1. Plane Theory of Thermoelasticity. Concept of Displacement
Potential. In the absence of body forces, the plane theory of thermoelasticity
may be reduced to the problem of determining a stress function F such that
[Eq. (5-4.12a)]

∇2∇2F = −C∇2(kT ) (E5-4.1)

where C = E for the plane stress state and C = E/(1 − ν) for the plane strain
state. In addition to Eq. (E5-4.1), the stress function F must satisfy appropriate
boundary conditions (see Section 5-4). In general, the solution of Eq. (E5-4.1) sub-
ject to specific boundary conditions is a difficult mathematical problem, although
in certain special cases simple solutions may be obtained. A general solution
of Eq. (E5-4.1) may be obtained by adding a particular solution, for which the
right-hand side of Eq. (E5-4.1) is satisfied identically, to the solution (comple-
mentary solution) of ∇2∇2F = 0. A method of obtaining a particular integral of
Eq. (E5-4.1) has been outlined by Goodier (1937). The method is frequently referred
to as the method of displacement potential because displacement representations
and certain concepts from potential theory are employed.

Following Goodier (1937), we represent the plane theory of thermoelasticity in
terms of displacement components. Initially, we consider the case of plane stress,
the results for plane strain being obtained by a simple transformation of material
constants.

Let (x, y) denote rectangular Cartesian coordinates. Let (u, v) denote displace-
ment components in the (x, y) directions, respectively. In terms of (u, v), the stress
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components for plane stress are (see Section 4-12 in Chapter 4)

σx = E

1 − ν2

[
∂u

∂x
+ v

∂v

∂y
− (1 + ν)kT

]

σy = E

1 − ν2

[
∂v

∂y
+ v

∂u

∂x
− (1 + ν)kT

]

τxz = E

2(1 + ν)

(
∂u

∂y
+ ∂v

∂x

)
= G

(
∂u

∂y
+ ∂v

∂x

)
(E5-4.2)

Substitution of Eqs. (E5-4.2) into the equilibrium equations for plane stress yields,
in the absence of body force [see Eq. (5-4.1)],

∂e

∂x
+ 1 − ν

1 + ν
∇2u = 2k

∂T

∂x

∂e

∂y
+ 1 − ν

1 + ν
∇2v = 2k

∂T

∂y

e = ∂u

∂x
+ ∂v

∂y

(E5-4.3)

Let
u = ∂ψ

∂x
v = ∂ψ

∂y
(E5-4.4)

where ψ = ψ(x, y) is called the displacement potential function. Substitution of
Eqs. (E5-4.4) into Eqs. (E5-4.3) yields

∂

∂x

(
1

1 + ν
∇2ψ − kT

)
= 0

∂

∂y

(
1

1 + ν
∇2ψ − kT

)
= 0

These equations are satisfied identically if

∇2ψ = (1 + ν)kT (E5-4.5)

Accordingly, the solution of Eq. (E5-4.5) represents a particular solution of
Eqs. (E5-4.3). To obtain a general solution of Eqs. (E5-4.3), we must add to the
solution of Eq. (E5-4.5) the complementary solution of Eqs. (E5-4.3); that is, we
must add the solution of Eqs. (E5-4.3) for the case T = 0. This general solution
must then be made to satisfy the boundary conditions of the problem.
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By Eqs. (E5-4.2), (E5-4.4), and (E5-4.5), the stress components corresponding
to the particular solution ψ are

σ ′
x = −2G

∂2ψ

∂y2

σ ′
y = −2G

∂2ψ

∂x2

τ ′
xy = 2G

∂2ψ

∂x∂y

(E5-4.6)

In the absence of temperature T , the complementary solution of the plane prob-
lem is expressed in terms of the Airy stress function F [Eqs. (5-4.9)]. Accordingly,
the stress components for a general solution of the plane stress thermoelastic prob-
lem are, by Eqs. (5-4.9) and (E5-4.6),

σx = ∂2

∂y2
(F − 2Gψ)

σy = ∂2

∂x2
(F − 2Gψ)

τxy = − ∂2

∂x∂y
(F − 2Gψ)

(E5-4.7)

Similarly, for the case of plane strain, we have Stress–Displacement Relations :

σx = λe + 2G
∂u

∂x
− EkT

1 − 2ν

σy = λe + 2G
∂v

∂y
− EkT

1 − 2ν

σz = ν(σx + σy) − EkT = λe − EkT

1 − 2ν

τxy = G

(
∂u

∂y
+ ∂v

∂x

)

λ = νE

(1 + ν)(1 − 2ν)
G = E

2(1 + ν)
e = ∂u

∂x
+ ∂v

∂y

(E5-4.8)

Equilibrium Equations in Terms of Displacement :

∂e

∂x
+ (1 − 2ν)∇2u = 2(1 + ν)

∂(kT )

∂x

∂e

∂y
+ (1 − 2ν)∇2v = 2(1 + ν)

∂(kT )

∂y

(E5-4.9)
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Displacement Potential–Temperature Relation:

∇2ψ = 1 + ν

1 − ν
kT (E5-4.10)

With the displacement potential function ψ defined by Eq. (E5-4.10), the stress
components (σx, σy, τxy) are again given by Eqs. (E5-4.7). Then σz is determined
by Eq. (E5-4.8).

In the preceding method of integration of the stress equations, we have used
a stress function or a displacement potential. In a certain class of problems the
thermal-stress equations may be integrated more directly by other methods (Sen,
1939; Sharma, 1956; McDowell and Sternberg, 1957).

Problem Set 5-4

1. In a state of plane strain relative to the (x, y) plane, the displacement component w =
0 and the displacement components (u, v) are functions of (x, y) only. Hence, the
components of rotation ωx = ωy = 0 and ω = ωz. For zero body forces (set V = 0),
we note that the equations of equilibrium are satisfied by Eqs. (5-4.9). Show that

σx + σy = 2(λ + G)e

where e is the volumetric strain or dilatation and where λ, G are the Lamé constants.
Hence, show that in terms of dilatation and rotation the equations of equilibrium are

(λ + 2G)
∂e

∂x
− 2G

∂ω

∂y
= 0 (λ + 2G)

∂e

∂y
+ 2G

∂ω

∂x
= 0

Thus, show that e and ω are plane harmonic functions.

2. Because the dilatation e and rotation ω are plane harmonic functions (see Problem 1),
(λ + 2G)e + i2Gω is a function of the complex variable x+ iy, where i is

√−1. Also,
the Airy stress function F is related to e by ∇2F = 2(λ + G)e, where

∇2 = ∂2

∂x2
+ ∂2

∂y2

Introduce the new function ξ + iη of x + iy as follows:

ξ + iη =
∫

[(λ + 2G)e + i2Gω] d(x + iy)

so that

∂ξ

∂x
= ∂η

∂y
= (λ + 2G)e = λ + 2G

2(λ + G)
∇2F − ∂ξ

∂y
= ∂η

∂x
= 2Gω
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where F is Airy’s stress function. Hence, show that

2G
∂u

∂x
= ∂2F

∂y2
− λ

2(λ + G)
∇2F = −∂2F

∂x2
+ ∂ξ

∂x

2G
∂v

∂y
= ∂2F

∂x2
− λ

2(λ + G)
∇2F = −∂2F

∂y2
+ ∂η

∂y

and that

2G
∂u

∂y
= − ∂2F

∂x∂y
− 2Gω = − ∂2F

∂x∂y
+ ∂ξ

∂y

2G
∂v

∂x
= − ∂2F

∂x∂y
+ 2Gω = − ∂2F

∂x∂y
+ ∂η

∂x

and that there follows

2Gu = −∂F

∂x
+ ξ 2Gv = −∂F

∂y
+ η

These equations define the displacement components (u, v) when F is known.

3. We recall that
e = ∂u

∂x
+ ∂v

∂y
2ω = ∂v

∂x
− ∂u

∂y

These equations with the definitions of ξ, η given in Problem 2 yield, after integration,

u = ∂

∂x

[
yη

2(λ + 2G)

]
+ ∂

∂y

[
yξ

2G

]
+ u′

v = ∂

∂y

[
yη

2(λ + 2G)

]
+ ∂

∂x

[
yξ

2G

]
+ v′

where v′ + iu′ is a function of x+ iy. Let u′ = ∂f/∂x, v′ = ∂f/∂y, ∇2f = 0. Show
that

u = ξ

2G
+ λ + G

2G(λ + 2G)
y

∂ξ

∂y
+ ∂f

∂x

v = η

2(λ + 2G)
− λ + G

2G(λ + 2G)
y

∂η

∂y
+ ∂f

∂y

These equations define (u, v) when e and ω are known.

4. With the information given in Problems 2 and 3, show that

F = −2Gf + λ + G

λ + 2G
yη

and that the formulas for (u, v) given in Problems 2 and 3 are thus equivalent.
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5. Let a thin plate with constant thickness and with mass density ρ rotate with constant
angular velocity ω above the y axis (Fig. P5-4.5). Neglecting gravity, write an expression
for the inertia force X per unit volume (body force per unit volume) that acts on an
arbitrary mass element of the plate. Write the differential equations of equilibrium for
the plate. Write the general solution of these equations in terms of Airy’s stress function
F . Show that the equation of compatibility is ∇4F = (1 − ν)ρω2, where ν is Poisson’s
ratio.

Figure P5-4.5

6. An infinite plane strip is bounded by the lines y = ±1. The stresses on the lines y = ±1
are σy = cos x, τxy = 0. There is no body force. By assuming an Airy stress function
of the form f (y) cos x, determine σx, σy, τxy as functions of (x, y).

7. The following stress–strain relations pertain to the anisotropic flat thin plate subjected
to a state of generalized plane stress:

εx = S11σx + S12σy

εy = S12σx + S22σy

γxy = S33τxy (x, y) = rectangular Cartesian coordinates

where S11, S22, S33, S12 are elastic constants and where (σx, σy, τxy) and (εx, εy, γxy ) are
average values of stress and strain through the thickness. Let (σx, σy, τxy) be defined in
terms of an Airy stress function F . Show that the defining equation for the Airy stress
function F is of the form(

∂2

∂x2
+ α1

∂2

∂y2

)(
∂2F

∂x2
+ α2

∂2F

∂y2

)
= 0 (a)

where α1, α2 are constants. For the case S11 = S22 = 1/E, S12 = −ν/E, and S33 =
1/G, show that Eq. (a) reduces to the biharmonic equation.
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8. Let

F = ax2 + by3 +
∞∑

n=1

An(y)cos
(nπx

L

)

be an Airy stress function for a plane, isotropic problem, where a, b, L are con-
stants, and An(y) are functions of y, Derive the defining differential equation for the
coefficients An.

Consider a plane rectangular region −L ≤ x ≤ L, −C ≤ y ≤ C. Assume that no net
force or no net couple acts on the sections x = ±L. Discuss how the arbitrary constants
in the solution of the differential equation for An(y) may be evaluated.

9. Consider a case of plane stress without body forces in the region −c ≤ y ≤ c, 0 ≤ x ≤ �

(see Fig. P5-4.9). If the resultant of the stresses in the x direction is zero, the elementary
beam formula yields σx = My/I ; that is, σx is a linear function of y.

(a) Let σx = Fyy , σy = Fxx , and τxy = −Fxy . Write the most general expression for
F(x, y) that satisfies the equations of equilibrium and yields σx as linear function
of y in the form σx = yf (x).

(b) Assuming that the material is isotropic and linearly elastic, write the equation of
compatibility for F(x, y) as determined in part (a).

(c) Determine the most general form of F(x, y) that satisfies the equations of equilib-
rium and compatibility, and yields σx linear in y.

(d) Derive expressions for the stress components using the stress function derived in
part (c).

(e) Assume that no load is applied along the line y = c. Show that the elementary
formula can be correct, strictly speaking, only if the stresses are those produced in
a cantilever with a concentrated vertical load at the end and/or a moment applied
at the end.

Figure P5-4.9

10. The general stress–strain–temperature relationship for an isotropic material is

εx = 1

E
σx − ν

E
σy − ν

E
σz + kT

εy = − ν

E
σx + 1

E
σy − ν

E
σz + kT

εz = − ν

E
σx − ν

E
σy + 1

E
σz + kT

γyz = 1

G
τyz γxz = 1

G
τxz γxy = 1

G
τxy
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Consider a body that is in a state of plane strain.

(a) Derive the “two-dimensional” Hooke’s law expressing the strains εx, εy, . . . as func-
tions of σx, σy, τxy , and T = T (x, y).

(b) Assuming that body forces are negligible, let σx = Fyy , σy = Fxx , and τxy = −Fxy ,
where F is a stress function. Derive the compatibility conditions in terms of T and
F . Thus, show that F(x, y) must be biharmonic if T (x, y) is harmonic.

11. For a plane problem, the stress components in the (x, y) rectangular region 0 ≤ x ≤ L,
−c ≤ y ≤ c, where L and c are constants, are given by the relations (q = constant)

σx = qx3y

4c3
+ q

4c3

(
−2xy3 + 6

5
c2xy

)

σy = −qx

2
+ qx

(
y3

4c3
− 3y

4c

)

τxy = 3qx2

8c3
(c2 − y2) − q

8c3
(c4 − y4) + q

4c3
· 3c2

5
(c2 − y2)

(a) Show that these stress components satisfy the equations of equilibrium in the absence
of body forces.

(b) Derive the Airy stress function from which these stress components are derivable.

(c) Show that the stress state is compatible.

(d) Determine the problem that the stress components represent.

12. The stress function for a cantilever beam loaded by a shear force P at the free end is

F = C1xy3 + C2xy

(a) Evaluate the constants C1 and C2.

(b) Derive the expressions for the displacements u and v.

(c) Compare v with the expression derived for displacement y from elementary beam
theory, EI (d2y/dx2) = M .

13. Apply the stress function F = −(P/d3)xy2(3d − 2y) to the region 0 ≤ y ≤ d, 0 ≤ x.
Determine what kind of problem is solved by this stress function.

14. The stress–strain relationship for a certain orthotropic material may be written as

εα = Cαβσβ α, β = 1, 2, . . . , 6

where

Cαβ =

⎛
⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13 0 0 0
C21 C22 C23 0 0 0
C31 C32 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

⎞
⎟⎟⎟⎟⎟⎟⎠
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and

σ1 = σx σ2 = σy σ3 = σz σ4 = τxy σ5 = τxz σ6 = τyz

ε1 = εx ε2 = εy ε3 = εz ε4 = γxy ε5 = γxz ε6 = γyz

(a) For this material derive the fourth-order partial differential equation that a stress
function must satisfy in order to meet equilibrium and compatibility requirements
for plane stress in the xy plane. Neglect body forces.

(b) Show that the equation derived in part (a) reduces to ∇4F = 0 for an isotropic
material.

15. Consider the Airy stress function F = Ax3y, where A is a constant and (x, y) are
rectangular Cartesian coordinates. Determine the plane elasticity problem that is solved
by this function for the region −a ≤ x ≤ a,−b ≤ y ≤ b.

16. Show that the function

F = q

20c3

[
10x2(2y3 − 3cy2) − 2y2(2y3 − 5cy2 + 4c2y − c3)]

may be employed as a stress function. For the plane region 0 ≤ x ≤ L, 0 ≤ y ≤ c,
determine the stress boundary conditions, and describe fully the plane problem for
which the stress function serves as the solution for equilibrium.

17. Show that the three-dimensional equilibrium equations without body force are
satisfied, if the stresses are derived from any six functions A, B,C, L,M, N as
follows

σx = Bzz + Cyy − 2Lyz τyz = −Ayz + (My + Nz − Lx)x

σy = Cxx + Azz − 2Mzx τzx = −Bzx + (Nz + Lx − My)y

σz = Ayy + Bxx − 2Nxy τxy = −Cxy + (Lx + My − Nz)z

Subscripts on A, B,C, L,M, N denote partial derivatives.
By discarding some of the above functions, obtain Airy’s solution to the equilibrium

equations of plane stress theory relative to the yz plane.

18. A dam or retaining wall is subjected to a linearly varying pressure p = p0y. The slice
shown in Fig. P5-4.18 is assumed to be in a plane state, with all quantities functions of
(x, y) only.

(a) Write down the stress boundary conditions for the faces of AO, BO.

(b) On the basis of part (a), write the simplest Airy stress function that will
ensure satisfaction of the boundary conditions on AO, BO. Explain your
choice.

(c) Let the body force of the dam be ρg in the y direction, where ρ is the mass density
and g is the gravity acceleration. Including the effect of body forces, determine
explicitly in terms of known quantities the complete expressions for σx, σy, τxy .
(Hint: Note that the body force ρg is derivable from the potential function
V = −ρgy.)
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Figure P5-4.18

19. A solution to a plane strain equilibrium problem in the absence of body forces is
generated by the Airy stress function Ayx3.

(a) Determine whether this solution is compatible for a three-dimensional problem.

(b) With this Airy stress function, derive expressions for the stress components; hence,
for a linearly elastic isotropic material, derive the corresponding strain components.

20. For homogeneous orthotropic plane stress problems, the stress–strain relations relative
to (x, y) axes are

εx =
(

σx

Ex

)
− νxy

(
σy

Ey

)
εy =

(
σy

Ey

)
− νyx

(
σx

Ex

)

γxy = τxy

G
=
[

Ex + (1 + 2vyx)Ey

ExEy

]
τxy

(a)

where the symbols are self-explanatory. The strain energy density U is given by the
formula

U + Aε2
x + Bε2

y + 2Cεxεy + Dγ 2
xy (b)

(a) By the relations σα = ∂U/∂εα , derive the stress–strain relations.

(b) With the result of part (a) and Eq. (a), derive a relationship among Ex, νxy, Ey , and
νyx .

(c) As in the isotropic case, assume that a stress function F(x, y) exists such that

σx = ∂2F

∂y2
σy = ∂2F

∂x2
τxy = − ∂2F

∂x∂y
(c)
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Derive the defining equation for the stress function F(x, y) in the form

(
∂2

∂x2
+ k2 ∂2

∂y2

)(
∂2F

∂x2
+ ∂2F

∂y2

)
= 0 (d)

where k2 is expressed in terms of Ex,Ey .

(d) Let F = (P/6I )(3b2xy − xy3), where P, B, and I are constants. Show that
F satisfies the equation ∇2∇2F = 0 for isotropic materials and also satisfies
Eq. (d). Hence, F is an appropriate stress function for both isotropic and
orthotropic materials.

5-5 Airy Stress Function in Terms of Harmonic Functions

In this section we consider the problem of representation of the Airy stress function
in terms of a pair of suitably chosen conjugate harmonic functions and a third
harmonic function. Such a representation allows us to express the general solution
of the biharmonic equation in terms of harmonic functions.

Let φ be a harmonic function in (x, y); that is, ∇2φ = 0, where ∇2 is the two-
dimensional Laplacian. It may be shown that a solution of the biharmonic equation
∇2∇2F = 0 may be expressed in terms of φ by any one of the following forms:

xφ yφ (x2 + y2)φ (5-5.1)

We note that a function Q1 defined by

Q1 = ∇2F = σx + σy (5-5.2)

where F is the Airy stress function, is harmonic in the absence of body forces
and temperature, as ∇2Q1 = ∇2∇2F = 0. The function Q2 related to Q1 by the
Cauchy–Riemann equations (Brown and Churchill, 2008)

∂Q1

∂x
= ∂Q2

∂y

∂Q1

∂y
= −∂Q2

∂x
(5-5.3)

is the conjugate harmonic of Q1. By Eqs. (5-5.2) and (5-5.3), we note that

∇2Q1 = ∇2Q2 = 0 (5-5.4)

That is, Q2 is harmonic.
By the Cauchy integral theorem (Brown and Churchill, 2008) of complex vari-

ables, the integral of the analytic function

f (z) = Q1 + iQ2 (5-5.5)
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where z = x+ iy, i = √−1, is another analytic function, say ψ(z). Thus,

ψ(z) = q1 + iq2 = 1

c

∫
f (z) dz (5-5.6)

is analytic, where c is as yet an arbitrary constant. The functions (q1, q2) are
conjugate harmonic functions; that is, they satisfy Eqs. (5-5.3). We note by
Eq. (5-5.6) that ψ ′(z) = (1/c)f (z), where the prime denotes differentiation with
respect to z. Hence,

∂q1

∂x
+ i

∂q2

∂x
= ∂

∂x
ψ(z) = ∂ψ

∂z

∂z

∂x

Because ∂z/∂x = 1, we obtain from the above results and Eq. (5-5.5)

∂q1

∂x
+ i

∂q2

∂x
= 1

c
(Q1 + iQ2) (5-5.7)

Equating real parts of Eq. (5-5.7), we obtain

∂q1

∂x
= 1

c
Q1 (5-5.8)

Because (q1, q2) satisfy Eqs. (5-5.3), we obtain from Eqs. (5-5.3) and (5-5.8)

∂q2

∂y
= 1

c
Q1 (5-5.9)

Accordingly, by Eqs. (5-5.8), (5-5.9), and (5-5.2), we find that p0 defined by

p0 = F − xq1 − yq2 (5-5.10)

is harmonic, provided c = 4. Accordingly, the Airy stress function F may be written
in the form

F = xq1 + yq2 + p0 (5-5.11)

where (q1, q2) are suitably chosen conjugate harmonic functions and p0 is an arbi-
trary harmonic function. Alternatively, we may take F in the forms (provided
c = 4)

F = 2xq1 + p1 (5-5.12)

or

F = 2yq2 + p2 (5-5.13)

where (p1, p2) are arbitrary harmonic functions.
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5-6 Displacement Components for Plane Elasticity

Direct Integration Method. When the plane elasticity stress components
σx, σy, τxy are known, the strain components εx, εy, εxy may be determined by
Eqs. (5-3.6) for generalized plane stress or by Eqs. (5-3.2) for plane strain. Then
integration of the strain–displacement relations [Eqs. (5-1.4) for plane strain or
Eqs. (5-1.4) with εz given by Eqs. (5-3.4) for generalized plane stress] yields the
(x, y) displacement components (u, v). The integration of the strain–displacement
relations yields an arbitrary rigid-body displacement (see Section 2-15 in
Chapter 2 and Examples 4-18.1 and 4-18.2 in Chapter 4). Accordingly, complete
specification of the displacement (u, v) requires that the rigid-body displacement
of the body be known. For example, in Example 4-18.1, it was specified that
the point x = y = z = 0 be fixed and that the volumetric rotation for this point
vanish. Consequently, the displacements and rotations of all other points and
volume elements in the body were determined relative to the point and volume
element at x = y = z = 0. Similarly, to fix the rigid-body displacement in the
solution of the plane problem, we may specify the displacement of some point
(say, x0, y0) and the rotation of a line element (say, a line element through
point x0, y0).

Representation in Terms of Airy Stress Function. Alternatively, we may
derive formulas for the plane displacement components (u, v) in terms of the Airy
stress function. We carry out the calculation for the case of the plane stress. The
results for plane strain may be obtained in a similar manner.

For plane stress relative to the (x, y) plane, the stress–strain relations are

εx = ∂u

∂x
= 1

E
(σx − νσy)

εy = ∂v

∂y
= 1

E
(σy − νσx) (5-6.1)

γxy = ∂v

∂x
+ ∂u

∂y
= 1

G
τxy

where (εx, εy, γxy) are the strain components, (σx, σy, τxy) are stress components,
(u, v) denote the (x, y) displacement components, E denotes the modulus of elas-
ticity, ν is Poisson’s ratio, and G = E/[2(1 + ν)].

In terms of the Airy stress function F , the stress components are [Eqs. (5-4.9)
with V = 0]

σx = ∂2F

∂y2
σy = ∂2F

∂x2
τxy = − ∂2F

∂x∂y
(5-6.2)

Equations (5-6.1) and (5-6.2) yield [with Eq. (5-5.2)]

E
∂u

∂x
= −(1 + ν)

∂2F

∂x2
+ Q1

E
∂v

∂y
= −(1 + ν)

∂2F

∂y2
+ Q1

(5-6.3)
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We replace Q1 by 4(∂q1/∂x) in the first of Eqs. (5-6.3) and by 4(∂q2/∂y) in the
second [see Eqs. (5-5.8) and (5-5.9)]. Thus, after dividing by 1 + ν, we find

2G
∂u

∂x
= −∂2F

∂x2
+ 4

1 + ν

∂q1

∂x

2G
∂v

∂y
= −∂2F

∂y2
+ 4

1 + ν

∂q2

∂y

(5-6.4)

Integration of Eqs. (5-6.4) yields

2Gu = −∂F

∂x
+ 4

1 + ν
q1 + f1(y)

2Gv = −∂F

∂y
+ 4

1 + ν
q2 + f2(y)

(5-6.5)

where f1(y), f2(x) are arbitrary functions of integration.
To interpret (f1, f2) of Eqs. (5-6.5), we note that by the last of Eqs. (5-6.2) and

Eqs. (5-6.5), with Eqs. (5-5.3)

τxy = G

(
∂v

∂x
+ ∂u

∂y

)
= − ∂2F

∂x∂y
+ 1

2

df1

dy
+ 1

2

df2

dx

Hence,

df1

dy
+ df2

dx
= 0 (5-6.6)

Integration of Eq. (5-6.6) yields

f1 = Ay + B f2 = −Ax + C (5-6.7)

Hence, the functions (f1, f2) represent a rigid-body displacement (Section 2-15 in
Chapter 2). Discarding them, we get

2Gu = −∂F

∂x
+ 4

1 + ν
q1

2Gv = −∂F

∂y
+ 4

1 + ν
q2

(5-6.8)

Equations (5-6.8) determine displacement components (u, v) when the stress
function F is known. The function Q1 is determined by computing ∇2F [Eq.
(5-5.2)]. Then the function Q2 is determined by means of the Cauchy–Riemann
equations [Eqs. (5-5.3)]. The functions (q1, q2) are then determined by integration
of the function f (z) = Q1 + iQ2 [Eqs. (5-5.5) and (5-5.6)].
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The method outlined above is useful for the determination of displacement com-
ponents (u, v) for those cases in which direct integration of the strain–displacement
relations fails (see Examples 4-18.1 and 4-18.2).

Example 5-6.1. Stress Function for the Flexural Wrinkling of a Sandwich
Panel. Because of in-plane compressive forces (F) in the compression facing of
a sandwich panel (Fig. E5-6.1), flexural wrinkling (Chong and Hartsock, 1974),
which is a localized instability, may occur prior to overall buckling. The
compression facing can be treated approximately as a plate supported by the
elastic core bounded by the tension facing. The core under plane strain conditions
is governed by Eq. (5-4.12) in terms of the Airy stress function F :

∂4F

∂x4
+ 2

∂4F

∂x2∂y2
+ ∂4F

∂y4
= 0 (a)

Equation (a) may be satisfied by taking F in the form (Timoshenko and Good-
ier, 1970)

F = F(x, y) = f (y) sin αx (b)

provided f (y) satisfies the equation

∂4f

∂y4
− 2α2 ∂2f

∂y2
+ α4f = 0 (c)

The solution to Eq. (c) is

f (y) = C1 cosh αy + C2 sinh αy + C3y cosh αy + C4y sinh αy (d)

To determine C1, C2, C3, and C4, the following four boundary conditions are used:

At y = 0 : σy = −qm sin αx εx = 0 (e)

At y = D : εx = 0
∂v

∂x
= 0 (f)

Figure E5-6.1
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where qm is the amplitude of the stress at the interface resulting from deformation
of the compression facing. Expressing the stresses, hence the strain εx , in terms of
the Airy stress function, we may employ Eqs. (e) and (f) to determine the constants
C1, C2, C3, and C4. The resulting stress function F is

F(x, y) = qm

α2
sin αx

{
cosh αy − αy

2(1 − ν)
sinh αy

− [
(1 + ν)β2 + sinh2 β(−6 + 8ν + 6ν2 − 8ν3)

]
× α

2(1 − ν)�
sinh αy − [

α2 sinh2 β(3 − ν − 4ν2)
] y cosh αy

2(1 − ν)�

} (g)

in which � = −α[(1 + ν)β + (3 − ν − 4ν2) sinh β cosh β], and β = αD.

Problem Set 5-6

1. The skewed plate of unit thickness is loaded by uniformly distributed stresses S1 and
S2 applied perpendicularly to the sides of the plate (see Fig. P5-6.1).

(a) Determine all conditions of equilibrium for the plate in terms of S1, S2, a, b,
and θ .

(b) For θ = 90◦, derive an expression for the elongation of the diagonal AC under
the action of S1 and S2. Assume that the material is homogeneous, isotropic, and
linearly elastic, and that the displacements are small.

Figure P5-6.1
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2. In Fig. P5-6.1, let S1 and S2 be applied so that they are directed parallel to the
edges AB(DC) and AD(BC) of the skewed plate. Assuming that the plate is elas-
tic, derive expressions for the principal stresses and the principal strains in terms
of S1, S2, a, b, θ , E, and ν, where E and ν denote Young’s modulus and Poisson’s
ratio, respectively.

3. Let isotropic elastic material in the (x, y) plane be subjected to the stress components
σx = 0, σy = σ , and τxy = τ . Let u = v = ω = 0 for x = y = 0, where (u, v) denote
(x, y) displacement components and ω denotes volumetric rotation.

(a) Show that the circle x2 + y2 = a2 is deformed into an ellipse.

(b) For the case τ = 0, show that the major and minor axes of the ellipse coincide with
the (x, y) axes, and express their lengths in terms of a and the elastic properties
of the material.

4. For the isotropic, homogeneous, and elastic cantilever beam shown in Fig. P5-6.4, the
stresses are given by

σx = P

I
(L − x)y τxy = P

2I
(y2 − c2) σy = 0

where P, I, L, and c are constants.

(a) Verify that these stresses satisfy equilibrium and compatibility conditions for
plane stress.

(b) Determine the strains, hence the displacements u and v, as functions of x and y.
The boundary conditions are for x = y = 0, u = v = 0, and an infinitesimal line
segment originally in the y direction does not rotate.

Figure P5-6.4

5. The rectangular plate shown in Fig. P5-6.5 is very thin in the z direction and has a
length in the ±x directions that is very large compared to 2a. The plate is made of a
nonlinear elastic isotropic homogeneous material whose stress–strain relations are

εx = Aσ 3
x − Bσ 3

y εy = Aσ 3
y − Bσ 3

x

where A and B are known constants. The plate is subjected to angular velocity ω about
the x axis. The mass density of the plate is ρ. Assume that τxy = u = X = ∂/∂x = 0.
Determine the stresses σx and σy and the displacement v as functions of y.
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Figure P5-6.5

6. A narrow uniform bar of density ρ and length 2b is rotating with an angular velocity ω

about an axis perpendicular to the bar through its center. Neglecting gravity effects and
assuming linear elastic behavior, determine the increase in length of the bar resulting
from the rotation.

7. Assume the plate of Problem 5 is linearly elastic. Determine the stress components
σx, σy and the displacement component v as functions of y.

8. Consider the equations of linear elasticity of a homogeneous isotropic body. For
example, the equations of motion are

(λ + G)
∂2uα

∂xα∂xβ

+ G
∂2uβ

∂xα∂xα

= ρ
∂2uβ

∂t2

For the case of static equilibrium, assume that uα is representable in the form

2Guα = ∂φ

∂xα

where φ is a scalar function of rectangular Cartesian coordinates (x1, x2, x3).

(a) Derive the defining equation for φ.

(b) In terms of φ, derive expressions for the volumetric strain (dilatation) e, the strain
tensor (small displacement) εαβ , and the stress tensor σαβ .

(c) Let F = A(x2 − y2) + 2Bxy be an Airy stress function, where (A,B) are
constants and (x, y) are plane rectangular Cartesian coordinates. Determine the
problem solved by this function F for the plane rectangular region −a ≤ x ≤ a,
−b ≤ y ≤ b.

9. The thin homogeneous plane strip of width 2h extends a great distance in the ±x

direction (Fig. P5-6.9). The plate is rigidly restrained by the fixed walls at y = ±h.
The plate is loaded by gravity in the −y direction. The density of the plate is ρ.
Assume ∂/∂x = u = τxy = X = 0. The plate is made of a material whose stress–strain
relations are

εx = Aσ 3
x − Bσ 3

y εy = Aσ 3
y − Bσ 3

x γxy = Cτxy

where A, B, and C are known constants. Determine formulas for σx , σy , and v as
functions of y and the known constants A, B,C, ρ, g, and h.
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Figure P5-6.9

10. A flat strip is supported at one end (x = 0; Fig. P5-6.10) and hangs in a gravity field of
acceleration g. The mass density of the strip is ρ. Let the thickness of the strip be 1 unit.
Assume a state of plane stress relative to the (x, y) plane.

(a) Consider the equilibrium of the part of the bar from x = x to x = L. Write expres-
sions for the body forces X, Y and for the net force acting at section x.

(b) Assume the simplest possible stress distribution in the bar and derive an expression
for the normal stress σx .

(c) By the semi-inverse method, determine whether equations of elasticity are satisfied
by the results of parts (b) and (a).

(d) Derive explicit expressions for the (x, y) displacement components (u, v) in terms
of properties of the bar and (x, y). Let u = v = ∂u/∂y = 0 at x = y = 0.

Figure P5-6.10
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5-7 Polynomial Solutions of Two-Dimensional Problems in
Rectangular Cartesian Coordinates

For plane elasticity with constant body forces or with body forces derivable from
a potential function, the compatibility relations reduce to the following single
equation in terms of a stress function F (for simply connected regions):

∇2∇2F = 0 (5-7.1)

where for plane rectangular Cartesian coordinates (x, y),

∇2 = ∂2

∂x2
+ ∂2

∂y2
(5-7.2)

For zero body force, the stress components σx, σy, τxy are related to F by
the equations

σx = ∂2F

∂y2
σy = ∂2F

∂x2
τxy = − ∂2F

∂x∂y
(5-7.3)

In the absence of body forces, Eqs. (5-7.3) automatically satisfy equilibrium [Eqs.
(5-2.11)]. Accordingly, any solution to Eq. (5-7.1) represents the solution of a
certain problem of plane elasticity. For example, any of the terms of Eq. (5-4.13)
represents a solution to Eq. (5-7.1). Hence, Eq. (5-4.13) represents a set of solutions
of the problem of plane elasticity.

If the stress function F is taken in the form of a polynomial in x and y, we note
[see Eqs. (5-7.3)] that nontrivial (nonzero) stress components are obtained only for
a polynomial of second degree or higher in x and y. Furthermore, Eq. (5-7.1) is
satisfied identically by polynomials of third degree in x and y. For polynomials
of degree higher than three, Eq. (5-7.1) requires the coefficients of all terms of
degree higher than three to satisfy a set of n − 3 auxiliary conditions, where n is
the degree of the polynomial.

For discontinuous loads on boundaries, the polynomial method has severe the-
oretical limitations, as discontinuous boundary conditions are not representable
by polynomials. For continuously varying loads, however, the polynomial method
seems to be unlimited theoretically, although in practice the computations may
quickly become prohibitive if boundary conditions are to be precisely satisfied.
Furthermore, because the computations soon become laborious in any case, the
polynomial method requires a systematic approach. One such approach has been
proposed by Neou (1957).

Method of Neou. The method proposed by C. Y. Neou (1957) systematically
reduces the Airy stress function F expressed in a general doubly infinite power
series to the desirable polynomial form for special cases. The method proceeds as
follows: Let

F =
∞∑

m=0

∞∑
n=0

Amnx
myn (5-7.4)
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where m, n = 0, 1, 2, . . ., and Amn are undetermined coefficients that may be
arranged in the following rectangular array:

A00 A01 A02 A03 A04 · · ·
A10 A11 A12 A13 A14 · · ·
A20 A21 A22 A23 A24 · · ·
A30 A31 A32 A33 A34 · · ·
A40 A41 A42 A43 A44 · · ·
...

...
...

...
...

...

(5-7.5)

Substitution of Eq. (5-7.4) into Eqs. (5-7.3) yields

σx =
∞∑

m=0

∞∑
n=2

n(n − 1)Amnx
myn−2 (5-7.6)

σy =
∞∑

m=2

∞∑
n=0

m(m − 1)Amnx
m−2yn (5-7.7)

τxy = −
∞∑

m=1

∞∑
n=1

mnAmnx
m−1yn−1 (5-7.8)

Because A00, A01, and A10 do not occur in Eqs. (5-7.6), (5-7.7), and (5-7.8), they
may be omitted from Eq. (5-7.5).

Substitution of Eq. (5-7.4) into Eq. (5-7.1) yields

∞∑
m=4

∞∑
n=0

m(m − 1)(m − 2)(m − 3)xm−4ynAmn

+ 2
∞∑

m=2

∞∑
n=2

m(m − 1)n(n − 1)xm−2yn−2Amn

+
∞∑

m=0

∞∑
n=4

n(n − 1)(n − 2)(n − 3)xmyn−4Amn = 0 (5-7.9)

Collecting similar powers of x and y and writing Eq. (5-7.9) under one summation
sign, we obtain

∞∑
m=2

∞∑
n=2

[
(m + 2)(m + 1)m(m − 1)Am+2,n−2 + 2m(m − 1)n(n − 1)Amn

+ (n + 2)(n + 1)n(n − 1)Am−2,n+2
]
xm−2yn−2 = 0 (5-7.10)
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Because Eq. (5-7.10) must be satisfied for all values of x and y,

(m + 2)(m + 1)m(m − 1)Am+2,n−2 + 2m(m − 1)n(n − 1)Amn

+ (n + 2)(n + 1)n(n − 1)Am−2,n+2 = 0 (5-7.11)

Equation (5-7.11) establishes an interrelation among any three alternate coefficients
in the diagonals of Eq. (5-7.5), running from lower left to upper right. For example,
for m = 2 and n = 2, Eq. (5-7.11) yields

3A40 + A22 + 3A04 = 0

Similarly, other relations between the Amn may be established by Eq. (5-7.11).
In the manner outlined above, the plane problem of elasticity with continu-

ous boundary stress is reduced to the determination of Amn [see Eqs. (5-7.4) and
(5-7.5)] from the interdependence relations [Eq. (5-7.11)] and the prescribed bound-
ary conditions.

Alternatively, the plane problem of elasticity may be solved by more general
techniques, such as transform methods (Milne-Thompson, 1942; Stevenson,
1943; Green, 1945; Sneddon, 1995) or by methods of complex variables
(Muskhelishvili, 1975).

Example 5-7.1. Stress Function Compatibility and Stresses. A prismatic cantilever
beam has a length L, a rectangular cross section of unit thickness, and a depth 2c.
At its unsupported (free) end it is subjected to an axial tensile load P1 applied at the
centroid of the cross section and a vertical load P2 parallel to the depth dimension
2c. By the method of Neou (1957), an engineer develops the following formula for
the corresponding Airy stress function:

F = 1

4c

(
3P2xy − P2xy3

c2
+ P1y

2
)

(a)

where x, y are coordinates along the beam and along the depth direction, respec-
tively, with origin at the centroid of the cross section of the free end. We wish to
verify the correctness of Eq. (a).

To check the compatibility, we must ensure that F given by Eq. (a) satisfies
Eq. (5-7.1). Substitution of Eq. (a) into Eq. (5-7.1) verifies the result ∇2∇2F = 0.
Thus, F is a valid stress function. Next, we must examine the boundary conditions
at the unsupported (free) end x = 0. By Eqs. (5-7.3) we find

σx = ∂2F

∂y2
= P1

2c
− 3P2xy

2c3

σy = ∂2F

∂x2
= 0

τxy = − ∂2F

∂x∂y
= −3P2(c

2 − y2)

4c3

(b)
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At the free end x = 0, the stress components must satisfy the conditions

∫ c

−c

σxdy = P1

∫ c

−c

τxydy = −P2

(c)

Substitution of Eqs. (b) into Eq. (c) verifies that Eqs. (c) are satisfied. At the
supported end of the beam, the support at x = L must exert stress components
σx, τxy on the beam, as given by Eq. (b), for the solution to be valid throughout
the beam.

Problem Set 5-7

1. Determine the interrelations of Amn [Eq. (5-7.11)] for (m = 4, n = 2), (m = 3, n = 3),
and (m = 2, n = 4).

2. By the method of Neou (1957), derive a polynomial in x and y for the Airy stress func-
tion F for the cantilever beam loaded as shown in Fig. P5-7.2 Hence, derive formulas
for the stress components σx, σy, τxy . What stress boundary conditions exist at x = L?
Discuss the application of Saint-Venant’s principle to this problem (see Section 4-15 in
Chapter 4).

Figure P5-7.2

3. By the method of Neou (1957), derive a polynomial in x and y for the Airy stress
function F for the beam loaded as shown in Fig. P5-7.3. Hence, derive formulas for
the stress components σx, σy, σxy . Discuss the application of Saint-Venant’s principle to
this problem (see Section 4-15).
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Figure P5-7.3

4. A cantilever beam is loaded as shown in Fig. P5-7.4.

(a) Derive expressions for the stresses in the beam using the stress function

φ = C1xy + C2
x3

6
+ C3

x3y

6
+ C4

xy3

6
+ C5

x3y3

9
+ C6

xy5

20

At the boundary x = 0 the solution is to satisfy the condition that the resultant force
system vanishes (i.e., Fx = Fy = Mz = 0). What stress boundary conditions exist
at x = L?

(b) Derive expressions for the displacement components u and v, assuming that the
beam is in a state of plane stress and that it is fixed at the left end so that

u(L, 0) = v(L, 0) = 0
∂u

∂y
(L, 0) = 0

Figure P5-7.4

5. The Airy function F = Ax3y generates a solution for a plane strain problem with zero
body forces. Is this an exact three-dimensional solution? Explain. Determine the stresses
and displacements by any valid procedure (Section 5-6).

6. A long prismatic dam is subjected to water pressure that increases linearly with depth.
The dam has thickness 2b and height h (Fig. P5-7.6). Formulate the stress determination
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problem as a well-posed plane problem. State whether the problem is plain strain or gen-
eralized plane stress. Relax the boundary conditions at x = 0 and x = h to require only
restrictions on the resultant force system. Solve the problem using the stress function

F = A1xy + A2x
3 + A3x

3y + A4xy3 + A5(5x3y3 − 3xy5)

Figure P5-7.6

7. By the method of Neou (1957), the Airy stress function

F = p

60a

(
5
L2

a2
− 3

)
y3 + p

40a3
y5 − pa

40L
xy + p

20aL
xy3

− p

40a3L
xy5 − p

4
x2 + 3p

8a
x2y − p

8a3
x2y3 + p

12L
x3

− p

8aL
x3y + p

24a3L
x3y3

is obtained for a rectangular beam supported by end shear load and subjected to a
triangular load as shown in Fig. P5-7.7. Discuss the validity of the solution.

Figure P5-7.7
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8. The cantilever beam shown in Fig. P5-7.8 is subjected to a distributed shear stress on
the upper face. Assume the stress function for the problem to be of the form

F = C1y
2 + C2y

3 + C3y
4 + C4y

5 + C5x
2 + C6x

2y + C7x
2y2 + C8x

2y3

The boundary conditions are

At y = −h: τxy = σy = 0

At y = +h: τxy = −τ0x

I
σy = 0

At the free end, the resultant forces and moment are zero. Determine the eight constants
C1, C2, . . . , C8.

Figure P5-7.8

9. Consider the polynomial F(x, y) = C1x
5 + C2x

4y + C3x
3y2 + C4x

2y3 + C5xy4 +
C6y

5, where (x, y) are plane rectangular Cartesian coordinates and C1, C2, . . . , C6 are
constants.

(a) Determine the conditions for which F(x, y) is an Airy stress function (i.e., for
which F is biharmonic).

(b) Derive formulas for the corresponding stress components. Are they compatible?

(c) Let C1 = C3 = C4 = C6 = 1. Specialize the stress formulas accordingly.

(d) Determine the boundary value stress problem for which F(x, y) represents a solution
for an isotropic homogeneous elastic medium in the region R bounded by 0 ≤ x ≤
1, 0 ≤ y ≤ 1; that is, determine the boundary stresses that act on the region R.

10. The Airy stress function,

F = Ax2 + Bx2y + Cy3 + Dy5 + Ex2y3 (a)

where A,B, . . . , E are constants, can be used to get an approximate plane stress solution
for a cantilever beam of unit width, length L, and depth 2c, subject to a uniform
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pressure q (force/length) on its upper surface. The coordinates (x, y) have origin on the
unsupported (free) end at the centroid of the end cross section, with x directed along
the axis of the beam and y directed upward.

(a) Determine the requirements on A,B, . . . , E so that F(x, y) is biharmonic.

(b) Determine the constants A, B, . . . , E so that the boundary conditions of the problem
are satisfied (pressure q for y = c; zero net force and net moment on the free end
x = 0).

5-8 Plane Elasticity in Terms of Displacement Components

In many problems it is convenient to seek solutions in terms of the displacement
components. Accordingly, in this section we present equations of plane elasticity
relative to the (x, y) plane in terms of (x, y) displacement components (u, v). We
consider the case of plane stress, the results for plane strain being obtained in an
analogous manner. We employ the approximations of small displacements.

In terms of (x, y) Cartesian coordinates, the strain components εx, εy, τxy in
terms of (x, y) displacement components (u, v) are

εx = ∂u

∂x
εy = ∂v

∂y
γxy = ∂u

∂y
+ ∂v

∂x
(5-8.1)

Hence, substitution of Eqs. (5-8.1) into Eqs. (5-3.10) yields the stress–displacement
relations

σx = E

1 − ν2

[
∂u

∂x
+ ν

∂v

∂y
− (1 + ν)kT

]

σy = E

1 − ν2

[
ν
∂u

∂x
+ ∂v

∂y
− (1 + ν)kT

]

τxy = E

2(1 + ν)

(
∂u

∂y
+ ∂v

∂x

)
= G

(
∂u

∂y
+ ∂v

∂x

)
(5-8.2)

Equations (5-2.11) and (5-8.2) yield (in the absence of body forces and for variable
modulus of elasticity E)

uxx + 1

2
(1 − ν)uyy + 1

2
(1 + ν)vxy + (ux + νvy)

1

E

∂E

∂x

+ 1

2
(1 − ν)(uy + vx)

1

E

∂E

∂y
= 1 + ν

E

∂(EkT )

∂x

1

2
(1 + ν)uxy + 1

2
(1 − ν)vxx + vyy + 1

2
(1 − ν)(uy + vx)

1

E

∂E

∂x

+ (vy + νux)
1

E

∂E

∂y
= 1 + ν

E

∂(EkT )

∂y

(5-8.3)
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where subscripts (x, y) on (u, v) denote partial derivatives. For E = constant,
∂E/∂x = ∂E/∂y = 0.

Similarly, Eqs. (5-8.1), (5-3.8), and (5-2.11) yield for plane strain

(1 − ν)uxx + 1

2
(1 − 2ν)uyy + 1

2
vxy + [(1 − ν)ux + νvy]

1

E

∂E

∂x

+ 1

2
(1 − 2ν)(uy + vx)

1

E

∂E

∂y
= 1 + ν

E

∂(EkT )

∂x

1

2
uxy + 1

2
(1 − 2ν)vxx + (1−)vyy + 1

2
(1 − 2ν)(uy + vx)

1

E

∂E

∂x

+ [νux + (1 − ν)vy]
1

E

∂E

∂y
= 1 + ν

E

∂(EkT )

∂y

(5-8.4)

The solution to Eqs. (5-8.3) or (5-8.4) subject to appropriate boundary conditions
constitutes the solution of the plane problem of elasticity. Ordinarily, exact solutions
to these equations are not readily achieved. Then we may resort to approximate
numerical methods. For certain problems the concept of a displacement potential
function may be useful (see Example 5-4.1).

Problem Set 5-8

1. Consider the small-displacement plane elasticity problem of plane stress relative to the
(x, y) plane. Express the equilibrium equations in terms of (u, v), the (x, y) displacement
components, including the effects of temperature T (x, y), and letting the modulus of
elasticity E be dependent on (x, y). Include body forces.

2. A state of plane strain relative to the (x, y) plane is defined by u = u(x, y), v = v(x, y),
and w = 0. The strain energy density U0 of a certain crystal undergoing plane strain is
given by

U0 = 1
2

(
b11ε

2
x + b22ε

2
y + b33γ

2
xy + 2b12εxεy + 2b13εxγxy + 2b23εyγxy

)
where bij , i, j = 1, 2, 3 are elastic coefficients. For small-displacement theory, derive the
differential equations of equilibrium in terms of (u, v) for plane strain of the crystal,
including the effects of body forces.

5-9 Plane Elasticity Relative to Oblique Coordinate Axes

In certain classes of plane problems, it is convenient to employ elasticity equations
relative to oblique coordinate axes. Accordingly, consider oblique coordinates (ξ, η)
with axis ξ coincident with axis x of rectangular Cartesian axes (x, y) and axis η

forming angle θ relative to axes ξ (Fig. 5-9.1). Hence, a typical point P in a region
may be located by the coordinates (ξ, η) or (x, y), where

x = ξ + η cos θ y = η sin θ (5-9.1)
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Figure 5-9.1

or
ξ = x − y cot θ η = ycscθ (5-9.2)

Under a deformation, point P goes into point P ∗ under displacement compo-
nents (u, v) relative to axes (x, y) or (U, V ) relative to axes (ξ, η), where

u = U + V cos θ v = V sin θ (5-9.3)

or
U = u − v cot θ V = vcscθ (5-9.4)

We consider u = u(x, y), v = v(x, y) and U = U(ξ, η), V = V (ξ, η).
For small-displacement theory, we obtain from Eqs. (2B-13) in Chapter 2, dis-

carding quadratic terms (and letting x1 = x, x2 = y, y1 = ξ , y2 = η, etc.) the strain
components (εξ , εη, γξη) relative to axes (ξ, η) as

εξ = ∂U

∂ξ
+ ∂V

∂ξ
cos θ

ξη = ∂V

∂η
+ ∂U

∂η
cos θ

γξη = ∂V

∂ξ
+ ∂U

∂η
+
(

∂U

∂ξ
+ ∂V

∂η

)
cos θ

(5-9.5)

Also, by the chain rule of partial differentiation and Eqs. (5-9.3), we have for the
strain components (εx, εy, γxy)

εx = ∂u

∂x
= ∂U

∂ξ
+ ∂V

∂ξ
cos θ

εy = ∂v

∂y
= ∂V

∂η
− ∂V

∂ξ
cos θ

γxy = ∂u

∂y
+ ∂v

∂x
=
(

∂U

∂η
− ∂V

∂ξ
cos 2θ

)
csc θ +

(
∂V

∂η
− ∂U

∂ξ

)
cot θ (5-9.6)
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For θ = π /2, Eqs. (5-9.5) and (5-9.6) reduce to the usual results for orthogonal
axes. By Eqs. (5-9.5) and (5-9.6), we obtain

εx = εξ

εy = εξ cot2 θ + εηcsc2θ − γξη cot θcsc θ

γxy = γξηcsc θ − 2εξ cot θ

(5-9.7)

We define stress components (σξ , ση, τξη, τηξ ) relative to axes (ξ, η) by con-
sidering an element with sides coincident with (ξ, η) coordinate lines (Fig. 5-9.2;
see also Problem 3-8.4 in Chapter 3). Hence, considering equilibrium of forces
and moments as for the rectangular Cartesian element, we obtain the equilibrium
equations

∂σξ

∂ξ
+ ∂τηξ

∂η
+
(

∂τηξ

∂ξ
+ ∂ση

∂η

)
cos θ = 0

∂τξη

∂ξ
+ ∂ση

∂η
= 0

τξη = τηξ

(5-9.8)

For θ = π /2, Eqs. (5-9.8) reduce to the usual equation of equilibrium relative to
orthogonal plane axes (x, y).

Figure 5-9.2
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Figure 5-9.3

Relations between stress components (σx, σy, τxy) defined relative to axes (x, y)
and (σξ , ση, τξη, τηξ ) defined relative to axes (ξ, η) may be derived by considering
the equilibrium of appropriate elements. Accordingly, by the equilibrium conditions
for the elements shown in Fig. 5-9.3, we obtain

σξ = σx sin θ − 2τxy cos θ + σy cos θ cot θ

ση = σycsc θ

τξη = τηξ = τxy − σy cot θ

(5-9.9)

Substitution of Eqs. (5-9.7) into Eqs. (5-3.8) yields for plane strain

σx = K1
[
(1 − ν + ν cot2 θ)εξ + νεηcsc2θ − νγξηcsc θ cot θ − (1 + ν)kT

]
σy = K1

[
(ν + cot2 θ − ν cot2 θ)εξ + (1 − ν)εηcsc2θ

− (1 − ν)γξηcsc θ cot θ − (1 + ν)kT
]

τxy = K1

[
1 − 2ν

2
γξηcsc θ − (1 − 2ν)εξ cot θ

]
(5-9.10)

where
K1 = E

(1 + ν)(1 − 2ν)
(5-9.11)
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Hence, substitution of Eqs. (5-9.10) into Eqs. (5-9.9) yields the stress–strain rela-
tions for plane strain states relative to coordinate axes (ξ, η). Thus, we find

σξ sin3 θ = K1
[
(1 − ν)εξ + (cos2 θ − ν cos 2θ)εη

− (1 − ν)γξη cos θ − (1 + ν)kT sin2 θ
]

ση sin3 θ = K1
[
(cos2 θ − ν cos 2θ)εξ + (1 − ν)εη

− (1 − ν)γξη cos θ − (1 + ν)kT sin2 θ
]

τξη sin3 θ = K1
[− (1 − ν)(εξ + εη) + 1

2 (1 − 2ν + cos2 θ)γξη

+ (1 + ν)kT sin2 θ cos θ
]

(5-9.12)

Similarly, for plane stress [Eqs. (5-3.10)] we obtain

σξ sin3 θ = K2
[
εξ + (cos2 θ + ν sin2 θ)εη − γξη cos θ

− (1 + ν)kT sin2 θ
]

ση sin3 θ = K2
[
(cos2 θ + ν sin2 θ)εξ + εη − γξη cos θ

− (1 + ν)kT sin2 θ
]

τξη sin3 θ = K2
[− (εξ + εη) cos θ + 1

2 (1 + cos2 θ − ν sin2 θ)γξη

+ (1 + ν)kT sin2 θ cos θ
]

(5-9.13)

where
K2 = E

1 − ν2
(5-9.14)

The preceding equations find application in cases where orthogonal plane axes do
not coincide with the boundary curves of the region, for example, in parallelogram
regions such as swept-back airplane wings (Fig. 5-9.2). A general development for
the theory of shells in nonorthogonal coordinates has been presented by Langhaar
(1961).

APPENDIX 5A PLANE ELASTICITY WITH COUPLE STRESSES

5A-1 Introduction

The basic distinction between the classical theory of stress and the theory of stress
including couple stresses lies in the nature of the assumed interaction of the material
on two sides of a surface element. In the classical theory, it is assumed that the
action of the material on one side of the surface upon the material on the other
side of the surface is equipollent to a force (see Section 3-1 and Fig. 3-1.1 in
Chapter 3). In couple stress theory, the interaction is assumed to be equipollent
to a force and a couple (stress couple). Further refinement is also admitted in the
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nature of assumed body couples (analogous to body forces; see Section 3-8). The
couple stresses are taken to be moments per unit area, and the body couples are
moments per unit volume.

It has been noted that relatively few practical applications of couple stress (body
couple) theories are known (Schijve, 1966; Ellis and Smith, 1967; Koiter, 1968).
Nevertheless, the theory is less restrictive than the classical stress theory of Euler
and Cauchy. Furthermore, applications of the simplest theory of elasticity, in which
couple stresses are admitted, to problems in which the analogous classical solutions
yield locally unbounded stresses or deformations indicate that the results (e.g.,
singularities) are changed, softened, or perhaps eliminated (Sternberg, 1968).

Accordingly, in this appendix we give a brief discussion of the linear couple
stress theory for the equilibrium of homogeneous isotropic elastic solids under
the conditions of plane strain . In particular, we follow the heuristic procedure
employed by Mindlin (Mindlin, 1963; Weitsman, 1965; Kaloni and Ariman, 1967).
Finally, although the whole of the classical theory of elasticity seems in agreement
with the assumption that couple stresses vanish, a study of the couple stress theory
may lead to a critical reexamination of the basic concepts and principles of the
mechanics of continuum. In this last regard, one may read with profit the study by
Toupin (1964).

5A-2 Equations of Equilibrium

For the plane problem relative to the (x, y) plane and in the absence of body forces
and couples, the stress equations of equilibrium for a medium that can support
couple stresses are, in (x, y) notation (see Fig. 5A-2.1; see also Appendix 3B in
Chapter 3), ∑

Fx = 0 :
∂σx

∂x
+ ∂τyx

∂y
= 0

∑
Fy = 0 :

∂τxy

∂x
+ ∂σy

∂y
= 0

∑
M0 = 0 :

∂mxz

∂x
+ ∂myz

∂y
+ τxy − τyx = 0

(5A-2.1)

Accordingly, for nonconstant couple stresses (∂mxz/∂x 
= 0, ∂myz/∂y 
= 0), the
shear stresses are not necessarily equal (i.e., τxy 
= τyx). Conversely, if (τxy, τyx)
are equal to zero, the couple stresses (xxz, myz) need not vanish. Equations (5A-2.1)
are the Cosserat equations of equilibrium for plane problems with body forces and
couples omitted (Cosserat and Cosserat, 1909).

5A-3 Deformation in Couple Stress Theory

We now treat the case of plane strain. As noted in Section 5-1, for plane strain
relative to the (x, y) plane, the displacement components (u, v) are functions of
(x, y) only and w = 0. Hence, for an isotropic elastic medium, the normal strains
(εx, εy) are related to the normal stresses (σx, σy) by the first two of Eqs. (5-1.7),
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Figure 5A-2.1

and (εx, εy) are related to (u, v) by the first two of Eqs. (5-1.4). Furthermore,
the shear strain γxy is related to (u, v) by the fourth of Eqs. (5-1.4). However,
because in general τxy 
= τyx , the third of Eqs. (5-1.7) is no longer valid. Hence,
following Mindlin (1963), we resolve τxy and τyx into a symmetric part τS and an
antisymmetric part τA (see Section 1-25 in Chapter 1 and Fig. 5A-3.1):

τS = 1
2 (τxy + τyz) τA = 1

2 (τxy − τyx) (5A-3.1)

Accordingly, by Fig. 5A-3.1 and Section 2-8 in Chapter 2, the symmetric part τS

produces the shear strain

γxy = 1

G
τS = 1 + ν

E
(τxy + τyx) (5A-3.2)

where G = E/[2(1 + ν)] is the modulus of shear. Similarly, the antisymmetric part
τA produces a local rigid rotation (Fig. 5A-3.1 and Section 2-13):

ωz = 1

2

(
∂v

∂x
− ∂u

∂y

)
(5A-3.3)

Furthermore, the antisymmetric part τA is balanced by the couple stresses
[Eq. (5A-2.1)].
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Figure 5A-3.1

Considering the effect of the couple stresses on the element (δx, δy), Fig. 5A-3.2,
we note that mxz, myz produce curvatures κxz and κyz related to the rotation ωz by
the equations

Rxz

∂ωz

∂x
δx = δx Ryz

∂ωz

∂y
δy = δy

or
κxz = ∂ωz

∂x
κyz = ∂ωz

∂y
(5A-3.4)

Analogous to the shearing strain γxy relation to the symmetric part τS of τxy, τyz, we
assume that the curvatures (κxz, κyz) (deformations) are proportional to the stress
couples (mxz, myz) (forces):

κxz = 1

4B
mxz κyz = 1

4B
myz (5A-3.5)

where B [see Eq. (5A-3.2)] is a modulus of curvature or bending, and the factor 4
is taken for convenience in later calculations. We note that because the couple
stresses have the dimensions of couple per unit area or force per unit length and
curvature is the reciprocal of length, the modulus B has the dimensions of force.
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Figure 5A-3.2



5A-4 EQUATIONS OF COMPATIBILITY 425

5A-4 Equations of Compatibility

Equations (5-1.4), (5A-3.3), and (5A-3.4) consist of five deformation quantities
(εx, εy, γxy, κxz, κyz) expressed in terms of two displacement components. By elim-
ination of the displacement components from Eqs. (5-1.4), we obtain the usual
equations of strain compatibility [Eq. (5-3.1)].

Similarly, elimination of the rotation ωz from Eqs. (5A-3.4) yields

∂κxz

∂y
= ∂κyz

∂x
(5A-4.1)

Now, by Eqs. (5-1.4) and (5A-3.3), we find

∂ωz

∂x
= 1

2

(
∂2v

∂x2
− ∂2u

∂x∂y

)
= 1

2

∂γxy

∂x
− ∂εx

∂y

∂ωz

∂y
= 1

2

(
∂2v

∂x∂y
− ∂2u

∂y2

)
= ∂εy

∂x
− 1

2

∂γxy

∂y

Hence, by Eqs. (5A-3.4),

κxz = 1

2

∂γxy

∂x
− ∂εx

∂y

κyz = ∂εy

∂x
− 1

2

∂γxy

∂y

(5A-4.2)

Seemingly, we have obtained four compatibility relations [Eqs. (5-3.1), (5A-4.1),
and (5A-4.2)]. However, we observe that Eqs. (5-4.2) imply Eq. (5A-4.1). Hence,
we have the compatibility relations

∂2εx

∂y2
+ ∂2εy

∂x2
= ∂2γxy

∂x∂y

∂κxz

∂y
= ∂κyz

∂x

κxz = 1

2

∂γxy

∂x
− ∂εx

∂y

κyz = ∂εy

∂x
− 1

2

∂γxy

∂y

(5A-4.3)

where only three relations are independent, as the second equation is implied by
the remaining three.

Finally, we note that the four compatibility relations may be written in terms
of stress components (σx, σy, τxy, τyx) and couple stresses (mxz, myz) by means of
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Eqs. (5A-3.2), (5A-3.5), and the first two of Eqs. (5-1.7). Thus, we obtain

∂2σx

∂y2
+ ∂2σy

∂x2
− ν∇2(σx + σy) = ∂2

∂x∂y
(τxy + τyx)

∂mxz

∂y
= ∂myz

∂x

mxz = l2 ∂

∂x
(τxy + τyx) − 2l2 ∂

∂y
[σx − ν(σx + σy)]

myz = 2l2 ∂

∂x
[σy − ν(σx + σy)] − l2 ∂

∂y
(τxy + τyx)

(5A-4.4)
where

∇2 = ∂2

∂x2
+ ∂2

∂y2
(5A-4.5)

and

l2 = 2(1 + ν)B

E
= B

G
(5A-4.6)

where l2 is the ratio of the material constants, B and G. By the last two of
Eqs. (5A-4.4), we note that large stress gradients may lead to large values of
the couple stresses (mxz, myz) when l2 
= 0. If l = 0, the material has relatively
no resistance to curvature effects (B/G = 0), Eqs. (5A-3.5). Because the second
of Eqs. (5A-4.4) is implied by the other three equations, only three of the four
compatibility equations are independent.

5A-5 Stress Functions for Plane Problems with Couple Stresses

Equation (5A-2.1) may be solved by means of stress functions in a manner analo-
gous to the solution of Eqs. (5-4.1) by means of the Airy stress function (Carlson,
1966).

According to the theory of total differentials (Section 1-19 in Chapter 1 and
Section 5-4), the first of Eqs. (5A-2.1) is a necessary and sufficient condition for
the existence of a function φ of (x, y) such that

σx = ∂φ

∂y
τyx = −∂φ

∂x
(5A-5.1)

and the second of Eqs. (5A-2.1) yields in a similar manner

σy = ∂θ

∂x
τxy = −∂θ

∂y
(5A-5.2)

where θ = θ(x, y). Furthermore, the second of Eqs. (5A-4.4) admits a function
ψ = ψ(x, y) such that

mxz = ∂ψ

∂x
myz = ∂ψ

∂y
(5A-5.3)
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Substitution of Eqs. (5A-5.1), (5A-5.2), and (5A-5.3) into the last of Eqs. (5A-2.1)
yields

∂

∂x

(
∂ψ

∂x
+ φ

)
+ ∂

∂y

(
∂ψ

∂y
− θ

)
= 0 (5A-5.4)

which in turn is a necessary and sufficient condition that the function H = H(x, y)

exists, such that
∂ψ

∂x
+ φ = ∂H

∂y

∂ψ

∂y
− θ = −∂H

∂x
(5A-5.5)

or
φ = ∂H

∂y
− ∂ψ

∂x
θ = ∂H

∂x
+ ∂ψ

∂y
(5A-5.6)

Hence, substitution of Eqs. (5A-5.6) into Eqs. (5A-5.1) and (5A-5.2) yields expres-
sions for σx, σy, τyx, τxy in terms of ψ and H . Thus, we obtain the formulas

σx = ∂2H

∂y2
− ∂2ψ

∂x∂y
σy = ∂2H

∂x2
+ ∂2ψ

∂x∂y

τxy = − ∂2H

∂x∂y
− ∂2ψ

∂y2
τyx = − ∂2H

∂x∂y
+ ∂2ψ

∂x2

mxz = ∂ψ

∂x
myz = ∂ψ

∂y

(5A-5.7)

where all components of stress and couple stress are expressed in terms of the two
stress functions H and ψ . For ψ = 0, mxz = myz = 0, and Eqs. (5A-5.7) reduce
to the classical Airy stress function relations [Eqs. (5-4.9) with V = 0].

Differential Equations for H and ψ . The remaining equations [Eqs. (5A-4.4)]
of compatibility define the functions H and ψ . Hence, substitution of the first four
of Eqs. (5A-5.7) into the first of Eqs. (5A-4.4) yields

∇2∇2H = ∇4H = 0 (5A-5.8)

Thus, H is the Airy stress function of classical stress theory [see (Eq. 5-4.12)].
Finally, substitution of Eqs. (5A-5.7) into the last two of Eqs. (5A-4.4) yields

∂

∂x
(ψ − l2∇2ψ) = −2(1 − ν)l2 ∂

∂y
(∇2H)

∂

∂y
(ψ − l2∇2ψ) = −2(1 − ν)l2 ∂

∂x
(∇2H)

(5A-5.9)

Accordingly, the functions ψ − l2∇2ψ and 2(1 − ν)l2∇2H are conjugate harmonic
functions; that is, they satisfy the Cauchy–Riemann equations [see Eqs. (5-5.3)].
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By Eqs. (5A-5.9), we obtain, by differentiating the first of Eqs. (5A-5.9) by x and
the second by y, and adding,

∇2ψ − l2∇4ψ = 0 (5A-5.10)

Similarly, differentiations with respect to y first and then x yield Eqs. (5A-5.8).
Thus, the defining equations for H and ψ are Eqs. (5A-5.8) and (5A-5.10). The
theory of plane strain with couple stresses is contained in Sections 5A-2 through
5A-5. The theory of plane stress may be derived in an analogous manner. In
Appendix 6A, the plane strain theory is applied to the problem of a circular hole
in a field of uniform tension as well as in a biaxial field of stress.

APPENDIX 5B PLANE THEORY OF ELASTICITY IN TERMS
OF COMPLEX VARIABLES

The material treated in Sections 5-5 and 5-6 is essential for the topics discussed in
this appendix.

5B-1 Airy Stress Function in Terms of Analytic Functions ψ (z) and χ (z)

It may be shown that the Airy (biharmonic) stress function F(x, y) may be
expressed in terms of two analytic functions of the complex variable z = x+ iy
(Muskhelishvili, 1975). By this result, we transform the plane theory of elasticity
into complex variable theory.

In Section 5-5 we introduced the analytic function ψ(z) = q1+ iq2 and noted
that F − xq1 − yq2 is harmonic, where i = √−1, (q1, q2) are conjugate harmonic
functions and F is the Airy (biharmonic) stress function. Hence, the Airy stress
function may be written in the following forms [see Eqs. (5-5.11), (5-5.12), and
(5-5.13)]:

F = xq1 + yq2 + h1

F = 2xq1 + h2

F = 2yq2 + h3

(5B-1.1)

where h1, h2, h3 are arbitrary harmonic functions in the plane region D.
By the appropriate combination of two analytic functions defined in D, we now

note that we may generate the Airy stress function in the form of the first of
Eqs. (5B-1.1). To do this, we first introduce the analytic function

χ(z) = p1 + ip2(z)

where (p1, p2) are conjugate harmomic functions. Next, we form the real part of
zψ(z) + χ(z), where ψ(z) is defined by Eq. (5-5.6) and z = x − iy. Thus, we
obtain

Re [zψ(z) + χ(z)] = Re[(x − iy)(q1 + iq2) + p1 + ip2]

= xq1 + yq2 + p1 (5B-1.2)
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Accordingly, comparison of the first of Eqs. (5B-1.1) and Eq. (5B-1.2) yields

F = Re[zψ(z) + χ(z)] (5B-1.3)

Alternatively, Eq. (5B-1.3) may be written more symmetrically by employing the
complex conjugations of ψ and χ and noting that the sum of a complex function
and its conjugate yields a real function. Thus,

zψ(z) + zψ(z) + χ(z) + χ(z) = 2(xq1 + yq2 + p1)

Hence, we may write F in the form

2F = zψ(z) + zψ(z) + χ(z) + χ(z) (5B-1.4)

Equations (5B-1.3) and (5B-1.4) express the Airy stress function F in terms of the
two analytic functions ψ(z) and χ(z) and their complex conjugates. It is readily
shown that Eq. (5B-1.4) satisfies the condition ∇2∇2F = 0.

5B-2 Displacement Components in Terms of Analytic Functions ψ (z)
and χ (z)

For the case of plane stress, the (x, y) displacement components in terms of the
Airy stress function F and the complex conjugate harmonic functions (q1, q2) are
given by Eq. (5-6.8). By Eq. (5B-1.4), we obtain

∂F

∂x
= 1

2 [ψ(z) + zψ ′(z) + ψ(z) + zψ ′(z) + χ ′(z) + χ ′(z)]

∂F

∂y
= i

2 [−ψ(z) + zψ ′(z) + ψ(z) − zψ ′(z) + χ ′(z) − χ ′(z)]
(5B-2.1)

where primes denote differentiation with respect to z.
In developing the theory, it is expedient to express quantities in terms of

∂F/∂x + i(∂F/∂y). Hence, by Eq. (5B-1.2) we write

∂F

∂x
+ i

∂F

∂y
= ψ(z) + zψ ′(z) + χ ′(z) (5B-2.2)

Consequently, multiplication of the second of Eqs. (5-6.8) by i and addition to the
first of Eqs. (5-6.8) yields, with Eq. (5B-2.2),

2G(u + iv) = κψ(z) − zψ ′(z) − χ ′(z) (5B-2.3)

where for plane stress (also generalized plane stress)

κ = 3 − ν

1 + ν
(plane strain) (5B-2.4)
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In an analogous manner, we also obtain Eq. (5B-2.3) for the case of plane strain,
where for plane strain

κ = 3 − 4ν (plane stress) (5B-2.5)

One may transform the expression for plane strain into the equivalent expression
for plane stress by the following substitutions:

1 − ν2

E
(plane strain) → 1

E
(plane stress)

ν (plane strain) → ν

1 + ν
(plane stress)

(5B-2.6)

Equation (5B-2.3) is the fundamental displacement relation in the complex variable
theory of plane elasticity.

5B-3 Stress Components in Terms of ψ (z) and χ (z)

Consider a line element AB joining two points in a medium in the (x, y) plane,
with positive direction from A to B. Axes n, t are normal and tangential, respec-
tively, to AB at point P . They form a right-handed coordinate system as do (x, y)
(Fig. 5B-3.1). Let the forces σnx ds, σny ds act on the infinitesimal element ds , with
positive sense in the directions of positive (x, y), respectively. Hence, the stress
components acting on an element of the medium with sides dx, dy, ds (Fig. 5B-3.2)

Figure 5B-3.1
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Figure 5B-3.2

are σx, σy, τxy, σnx, σny . For plane equilibrium of the element, we have (in the
absence of body forces)

∑
Fx = σnx ds − σx dy + τxy dx = 0∑
Fy = σny ds + σy dx + τxy dy = 0

or
σnx = σx cos θ − τxy sin θ

σny = −σy sin θ + τxy cos θ
(a)

where
cos θ = dy

ds
sin θ = dx

ds
(b)

Expressing σx , σy , and τxy in terms of the stress function F , we may write Eq. (a),
with Eqs. (b), in the form

σnx = ∂2F

∂y2

dy

ds
+ ∂2F

∂x∂y

dx

ds
= ∂

∂x

(
∂F

∂y

)
dx

ds
+ ∂

∂y

(
∂F

∂y

)
dy

ds

σny = −∂2F

∂x2

dx

ds
− ∂2F

∂x∂y

dy

ds
= − ∂

∂x

(
∂F

∂x

)
dx

ds
− ∂

∂y

(
∂F

∂x

)
dy

ds
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Accordingly, we may write by the chain rule of differentiation

σnx = d

ds

(
∂F

∂y

)
σny = − d

ds

(
∂F

∂x

)
(5B-3.1)

Hence, multiplying the second of Eqs. (5B-3.1) by i and adding it to the first of
Eqs. (5B-3.1), we obtain

σnx + iσny = d

ds

(
∂F

∂y
− i

∂F

∂x

)
= i

d

ds

(
∂F

∂x
+ i

∂F

∂y

)
(5B-3.2)

or

(σnx + iσny)ds = −id

(
∂F

∂x
+ i

∂F

∂y

)

Substituting Eq. (5B-2.2) into Eq. (5B-3.2), we obtain

(σnx + iσny)ds = −id
[
ψ(z) + zψ ′(z) + χ ′(z)

]
(5B-3.3)

Now let ds have the direction of the y axis. Then ds = dy, dz = i dy, dz = −idy,
σnx = σx , and σny = τxy . Then, Eq. (5B-3.3) becomes

(σx + iτxy) = ψ ′(z) + ψ ′(z) − zψ ′′(z) − χ ′′(z) (5B-3.4)

Similarly, let ds have the direction of the x axis. Then ds = dx, dz = dx,

dz = dx, σnx = −τxy , and σny = −σy , and Eq. (5B-3.3) becomes

(σy − iτxy) = ψ ′(z) + ψ ′(z) + zψ ′′(z) + χ ′′(z) (5B-3.5)

Adding and subtracting Eqs. (5B-3.4) and (5B-3.5), we find

∇2F = σx + σy = 2
[
ψ ′(z) + ψ ′(z)

] = 4 Re
[
ψ ′(z)

]
σy − σx − 2iτxy = 2

[
zψ ′′(z) + χ ′′(x)

] (5B-3.6)

or by complex conjugation we obtain from the second of Eqs. (5B-3.6)

σy − σx + 2iτxy = 2[zψ ′′(z) + χ ′′(z)] (5B-3.7)

where ψ(z) and χ (z) are analytic functions.
Accordingly, Eqs. (5B-2.3), (5B-3.6), and (5B-3.7) express the components

(u, v) of the displacement vector and the components (σx, σy, τxy) of the stress
tensor in terms of analytic functions ψ(z) and χ (z), inside region D occupied by
the plane body under consideration.
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5B-4 Expressions for Resultant Force and Resultant Moment

Let (Fx, Fy) be the resultant force that acts on an arc AB. Then, by Eqs. (5B-3.2)
and (5B-3.3),

Fx + iFy =
∫ B

A

(σnx + iσny)ds

= −i

∫ B

A

d
[
ψ(z) + zψ ′(z) + χ ′(z)

]
= −i

[
ψ(z) + zψ ′(z) + χ ′(z)

]|BA
(5B-4.1)

Similarly, the moment M with respect to origin 0 of coordinate system (x, y) of
the forces that act on AB is (Fig. 5B-3.2)

M =
∫

AB

(xσny − yσnx) ds

= −
∫

AB

[
xd

(
∂F

∂x

)
+ yd

(
∂F

∂y

)]

= −
[
x

∂F

∂x
+ y

∂F

∂y

]B

A

+
∫

AB

[
∂F

∂x

dx

ds
+ ∂F

∂y

dy

ds

]
ds

= −
[
x

∂F

∂x
+ y

∂F

∂y

]B

A

+
∫

AB

dF

ds
ds

= −
[
x

∂F

∂x
+ y

∂F

∂y

]B

A

+ F |BA (5B-4.2)

Also,

x
∂F

∂x
+ y

∂F

∂y
= Re

[
z

(
∂F

∂x
− i

∂F

∂y

)]
(5B-4.3)

Now, by Eq. (5B-2.1), we obtain

∂F

∂x
− i

∂F

∂y
= ψ(z) + zψ ′(z) + χ ′(z) (5B-4.4)

Accordingly, by Eqs. (5B-1.3), (5B-4.2), (5B-4.3), and (5B-4.4), the expression for
M may be written

M = Re[χ(z) − zχ ′(z) − zzψ ′(z)]BA (5B-4.5)

Equations (5B-4.1) and (5B-4.5) represent boundary conditions for resultant force
and moment in terms of the analytic functions ψ(z) and χ (z).

Because we have assumed that region D is simply connected, the function ψ(z)
and χ (z) are single valued. Hence, if points A and B coincide (Fig. 5B-4.1), the
curve AB is closed, and the values of ψ and χ are the same at points A and B.
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Figure 5B-4.1

Hence, if A = B, Eqs. (5B-4.1) and (5B-4.5) yield Fx = Fy = M = 0. Thus, for
simply connected plane regions, the external forces acting on any part of the region
contained inside a closed contour AB is statically equivalent to zero.

5B-5 Mathematical Form of Functions ψ (z) and χ (z)

In this section we consider the degree of arbitrariness of the functions ψ, χ in the
cases when (a) the state of stress is given and (b) the displacement field is specified.
It is convenient to treat these cases separately. Because χ (z) occurs in the stress
and displacement relations only in the forms χ ′(z) and χ ′′(z), it is expedient to
define a function φ(z) such that

χ ′(z) = φ(z) (5B-5.1)

Case A. Stress State Given. By Eqs. (5B-5.1), (5B-3.6), and (5B-3.7),

σx + σy = 2[ψ ′(z) + ψ ′(z)] = 4 Re[ψ ′(z)]

σy − σx − 2iτxy = 2[zψ ′′(z) + φ′(z)]
(5B-5.2)

To determine the nature of ψ(z), φ(z), we first note that for the simply connected
region D, ψ(z), φ(z) may be specified to within certain arbitrary complex numbers
without altering the stress distribution in region R. Thus, the stress quantities σx +
σy, σy − σx + 2iτxy may be expressed in terms of either the functions (ψ, φ) or
the functions (ψ1, φ1), where

ψ1(z) = ψ(z) + icz + a

φ1(z) = φ(z) + b
(5B-5.3)
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where (a, b) are complex numbers and c is a real constant. Equations (5B-5.3)
follow directly from substitution of ψ(z), φ(z) and ψ1(z), φ1(z) into Eqs. (5B-5.2)
and equating the quantities so obtained (i.e., requiring the same stresses for either
set of functions). Integration then yields Eqs. (5B-5.3). In other words, if the state
of stress in D is specified, the analytic functions ψ, φ are determined to within a
linear function icz +a and a complex constant b, respectively.

Case B. Displacement Specified. Let us specify the displacement components
(u, v) in region D. By Eqs. (5B-5.1) and (5B-2.3), we find

2G(u + iv) = κψ(z) − zψ ′(z) − φ(z)

ω = 1

2

(
∂v

∂x
− ∂u

∂y

)
= (1 + ν)(1 + κ)

E
Im ψ ′(z)

(5B-5.4)

where ω is the volumetric rotation and Im ψ ′(z) denotes the imaginary value of
ψ ′(z), that is,

Im ψ ′(z) = − i

2
[ψ ′(z) − ψ ′(z)] (5B-5.5)

The second of Eqs. (5B-5.4) follows from the fact that by the first of Eqs. (5B-5.4)

4Gu = κ[ψ(z) + ψ(z)] − zψ ′(z) − zψ ′(z) − φ(z) − φ(z)

4Gv = −iκ[ψ(z) − ψ(z)] + i[zψ ′(z) − zψ ′(z) − φ(z) − φ(z)]
(5B-5.6)

Because the stresses are determined uniquely, when the displacements are given,
we conclude that the extent of the arbitrariness in the functions ψ, φ can be no
greater than that exhibited by Eqs. (5B-5.3). Indeed, the requirement that the func-
tions (ψ, φ) and (ψ1, φ1) yield the same displacements demands that

c = 0 κa = b (5B-5.7)

This restriction is more severe than that of Eq. (5B-5.3). Thus, if the displacements
(u, v) are prescribed in D, the function ψ(z) is determined to within a complex
constant a and the specification of a defines the constant b. Accordingly, the
functions ψ(z), φ(z) are determined uniquely for a given state of stress, provided
a, b, c are chosen so that for the plane region D, the displacement and rotation
are specified to account for rigid-body motion. For example, we may specify the
displacement and rotation for some point—say, z0 —in R. Then, for example, the
conditions

ψ(z0) = 0 Imψ ′(z0) = 0 φ(z0) = 0 (5B-5.8)

are sufficient to determine the values of a, b, c. If the displacements are specified
c = 0, and we may choose a so that ψ(z0) = 0. Then, by Eq. (5B-5.7), b is defined.
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Form of Functions ψ (z) and φ (z). By the theory of analytic functions, we
know that in a simply connected region D, the analytic functions ψ(z), φ(z) are
single valued and may be represented in the power series (Carrier et al., 2005;
Brown and Churchill, 2008) over R:

ψ(z) =
∞∑

n=0

anz
n

φ(z) =
∞∑

n=0

bnz
n

(5B-5.9)

If the region D is multiply connected, the functions ψ(z), φ(z) may be multivalued;
that is, they may undergo finite incremental changes in traversing a closed contour
defining the interior of D (Brown and Churchill, 2008). Consider for simplicity the
doubly connected region R (Fig. 5B-5.1). In circumscribing the boundary C1, let
the functions ψ(z) and φ(z) receive the increments

�ψ(z) = i2πα

�φ(z) = i2πβ
(5B-5.10)

Figure 5B-5.1
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where in general (α, β) are complex constants. This type of behavior is exhibited
by the function log(z − z0), where z0 is a point inside the contour C1. Because
z − z0 = ρeiθ , we have, upon circumscribing C1,

�
[
c log(z − z0)

] = [
c log(ρeiθ )

]|ρ,2π

ρ,0

= c
[

log ρ + log eiθ
]|ρ,2π

ρ,0

= c
[

log ρ + iθ
]|ρ,2π

ρ,0 = i2πc

(5B-5.11)

Hence, we may write
ψ0(z) = ψ(z) − α log(z − z0)

φ0(z) = φ(z) − β log(z − z0)
(5B-5.12)

where ψ0(z), φ0(z) are analytic within the doubly connected region R, as within
R, ψ0(z) and φ0(z) are finite, differentiable, and single valued.

Consequently, we may represent ψ(z) and φ(z) in the form

ψ(z) = ψ0(z) + α log(z − z0)

φ(z) = φ0(z) + β log(z − z0)
(5B-5.13)

The requirement that the displacement u + iv be single valued demands that a rela-
tion between the constants α and β exist. Thus, substitution of Eqs. (5B-5.13) into
the first of Eqs. (5B-5.4) has the result, with the requirement of single-valued dis-
placements, that the term κα log(z − z0) − β log(z − z0) vanishes in circumscribing
C1. Hence, noting that �[α log(z − z0)] = 2πiα and �[β log(z − z0)] = −2πiβ,
we obtain the relation

κα + β = 0 (5B-5.14)

Hence, Eqs. (5B-5.13) become

ψ(z) = ψ0(z) + α log(z − z0)

φ(z) = φ0(z) − κα log(z − z0)
(5B-5.15)

Finally, we note that ψ0(x), φ0(z) may be represented by the Laurent series (Brown
and Churchill, 2008)

ψ0(z) =
∞∑

n=−∞
an(z − z0)

n

φ0(z) =
∞∑

n=−∞
bn(z − z0)

n

(5B-5.16)

as they are analytic in R. Generalization of these results for n-connected regions
is given by Muskhelishvili (1975, Chapter 5).
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Transformation under Translation and Rotation of Rectilinear Coordi-
nate Axes. For a given state of stress in a plane region, translation of the origin
of rectilinear coordinate axes requires that ψ(z) remain invariant, whereas χ (z)
must be modified to maintain the stress state. For a rotation of axes (x, y) into axes
(x1, y1) through angle α, the functions (ψ, χ) are given by

ψ = ψ1(ζ )eiα χ = χ1(ζ ) (5B-5.17)

where ζ = ze−iα and (ψ1, χ1) are functions relative to axes (x1, y1), which play
the same role as (ψ, χ ) relative to axes (x, y) (Muskhelishvili, 1975, p. 137).

5B-6 Plane Elasticity Boundary Value Problems in Complex Form

As with the three-dimensional theory, we may state the following plane boundary
value problems of elasticity (in the absence of body forces):

1. Determine the states of stress and displacement in region R for given stresses
applied to the boundary B of region R.

2. Determine the states of stress and displacement in region R for given dis-
placement of the boundary B of region R.

The uniqueness of solutions of the above problems may be shown (Section 4-16
in Chapter 4) for bounded displacement field and for stress fields that vanish at
infinity (Muskhelishvili, 1975).

For the first problem, the plane theory of elasticity is characterized by the
equation (in absence of body forces) (see Sections 5-1 and 5-2):

∂σx

∂x
+ ∂τxy

∂y
= 0

∂τxy

∂x
+ ∂σy

∂y
= 0

⎫⎪⎬
⎪⎭ over R (5B-6.1)

∇2(σx + σy) = 0} over R (5B-6.2)

σnx = σxl + τxym

σny = τxy l + σym

}
on B (5B-6.3)

In terms of the Airy stress function F , we may write these equations as follows
(Section 5-4):

σx = ∂2F

∂y2
σy = ∂2F

∂x2
τxy = ∂2F

∂x∂y
(5B-6.1′)

∇2∇2F = 0 (5B-6.2′)
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σnx = ∂2F

∂y2
� − ∂2F

∂x∂y
m

σny = ∂2F

∂x∂y
� + ∂2F

∂x2
m

(5B-6.3′)

Noting the relations (Fig. 5B-6.1)

� = cos θ = dy

ds
m = sin θ = −dx

ds
(5B-6.4)

we obtain by Eqs. (5B-6.3′) and (5B-6.4) and the chain rule of differentiation [see
Eqs. (5B-3.1)]

σnx = d

ds

(
∂F

∂y

)
σny = − d

ds

(
∂F

∂x

)
(5B-6.5)

Integration of Eqs. (5B-6.5) yields

∂F

∂x
= −

∫
B

σny ds = f1(s) + C1

∂F

∂y
=
∫

B

σnx ds = fs(s) + C2

(5B-6.6)

Figure 5B-6.1
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where f1(s), f2(s) are functions of s on boundary B and (C1, C2) are arbitrary
constants. Thus, Eqs. (5B-6.6) define the derivatives of F to within arbitrary
constants.

Because Eqs. (5B-6.6) are equivalent to Eqs. (5B-6.3), the first fundamental
problem of the plane theory of elasticity may be written in the form

∇2∇2F = ∇4F = 0 over R

∂F

∂x
= f1(s) + C1

∂F

∂y
= f2(s) + C2

⎫⎪⎪⎬
⎪⎪⎭ on C

(5B-6.7)

where f1, f2 are prescribed functions of s. By Eqs. (5B-2.2), we may write the last
two of Eqs. (5B-6.7) in terms of ψ, χ . Thus,

ψ(z) + zψ ′(z) + χ ′(z) = f1(s) + if2(s) + constant on B (5B-6.8)

We recall that the first of Eqs. (5B-6.7) is satisfied identically by Eq. (5B-1.3) [or
Eq. (5B-1.4)].

For the second fundamental problem, we require that u = g1(s), v = g2(s) on
B, where (g1, g2) are prescribed functions. Hence, for this problem we replace
Eq. (5B-6.8) by the boundary condition [see Eq. (5B-2.3)]

κψ(z) − zψ ′(z) − χ ′(z) = 2G(g1 + ig2) on B (5B-6.9)

We have noted the nature of the arbitrariness of functions ψ, χ in Section 5B-5. To
within this degree of arbitrariness for the simply connected region, the functions
ψ and χ are determined completely by Eqs. (5B-6.8) and (5B-6.9) for the first
and second fundamental problems. For details of the mixed fundamental problem
(Section 4-15 in Chapter 4), refer to the literature (Muskhelishvili, 1975). For the
simply connected region, Eqs. (5B-6.8) [or Eqs. (5B-6.9)] in conjunction with Eqs.
(5B-5.9) [or Eqs. (5B-5.13) and (5B-5.16) for the doubly connected region] serve
to define ψ(z) and φ(z), that is, to define the coefficients an, bn [recall φ = ψ ′(z),
Eq. (5B-5.1)].

5B-7 Note on Conformal Transformation

Let z and ζ be two complex variables related by the equation

z = w(ζ ) (5B-7.1)

where w(ζ ) is an analytic function in some domain D in the w plane. Hence,
Eq. (5B-7.1) relates every point ζ in the w plane to some definite point in the z

plane; that is, Eq. (5B-7.1) defines a one-to-one correspondence between the points



5B-7 NOTE ON CONFORMAL TRANSFORMATION 441

Figure 5B-7.1

in the w plane and the points in the z plane. Also, Eq. (5B-7.1) may be inverted
to yield

ζ = f (z) (5B-7.2)

Because the points in the z plane cover some region R in the z plane (Fig. 5B-7.1),
we say that Eq. (5B-7.1) represents an invertible single-valued “conformal map-
ping” of region R into the region D (or conversely). The mapping is called
conformal because of the following property, which relations of the type of
Eq. (5B-7.1) possess where w(ζ ) is analytic: If in D two-line elements emanate
from some point ζ and subtend angle θ , then the corresponding elements in R
form the same angle, with the sense of θ maintained. The following discussion
depends heavily on topics treated in Brown and Churchill (2008).

Many of the solutions of plane problems of elasticity by the method of complex
variables rely heavily on the theorems relative to the unit circle. Thus, fundamental
to these solutions is the conformal mapping of a region R in the z plane into
a unit circle in the w plane. In particular, two cases are distinguished: (1) the
transformation of a simply connected region R interior to a contour C, and (2) the
transformation of the region R∗ exterior to a contour C (Fig. 5B-7.2).

By the theory of conformal mapping, the transformation (mapping)

z =
∞∑

k=0

ckζ
k = w(ζ ) (5B-7.3)

transforms the interior region R (Fig. 5B-7.2) bounded by the simple contour C

(i.e., a contour that consists of one closed curve that does not intersect itself) into
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Figure 5B-7.2

the unit circle. The arbitrary point z0 can be transformed into an arbitrarily chosen
point in the unit circle (say, ξ = η = 0).

For the region R∗ outside contour C, the mapping

z = w(ζ ) = C−1

ζ
+ ananalytic fuction

= C−1

ζ
+

∞∑
k=0

ckζ
k (5B-7.4)

transforms region R∗ (Fig. 5B-7.2) exterior to C into the unit circle.
In Eq. (5B-7.3), w′(ζ ), where prime denotes derivative with respect to ζ , has

no zero within the unit circle (as it is conformal); hence, w′(ζ ) has no zero in D.
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Equations (5B-7.3) and (5B-7.4) contain an infinite number of terms in general.
However, in practice often only a finite number of terms are used. Hence, instead
of transforming the actual region R (or R∗) into the unit circle, an approximation
Ra of R is employed. If an exact transformation w(ζ ) is unknown, the coefficients
cn are sometimes determined by methods of the approximate theory of conformal
transformations.

Example 5B-7.1. The mapping

z = w(ζ ) = −a

∫ ζ

1
(1 − p3)2/3 dp

p2
+ constant (a)

where a is a real constant, transforms an equilateral triangle [Fig. (E5B-7.1)] in
the z plane into a unit circle in the ζ plane. Noting by the binomial expansion that
(1 − p3)2/3 = 1 − 2

3p3 + 1
9p6 − 4

27p9 + · · ·, and choosing the constant in Eq. (a)
properly, we find

z = w(ζ ) = −a

(
1

ζ
+ 1

3
ζ 2 + 1

45
ζ 5 + · · ·

)
(b)

For the boundary of the unit circle, ζ = 1ei . Thus, for the contour of region R,
Eq. (b) yields

z = −a(e−iθ + 1
3e2iθ + 1

45e5iθ + · · ·) (c)

Approximations Ra to the equilateral triangle (region R) may be obtained by taking
2, 3, 4, . . . terms in Eq. (c). With three terms, a fairly good approximation to the
equilateral triangle is obtained.

Figure E5B-7.1
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Curvilinear Coordinates in the Plane. Because much of the complex variable
method relates to the conformal mapping of a given region R in the z plane into a
region D (unit circle) in the ζ plane, it is natural to introduce polar coordinates (r, θ )
in the ζ plane (see Chapter 6). Then, ζ = ξ + iη, where ξ = r cos θ, η = r sin θ

may be written as ζ = reiθ . Hence,

z = x + iy = w(ζ ) = w(reiθ ) (5B-7.5)

Accordingly, the circles r = constant and the radii θ = constant in the ζ plane are
transformed into orthogonal curvilinear coordinate lines (a, b) in the z plane by
Eq. (5B-7.5) (see Section 1-20, Chapter 1), as z = w(ζ ) is a conformal transforma-
tion (Fig. 5B-7.3). The tangents to the coordinate lines are denoted by the symbols
A, B and form a base for the axes of the curvilinear coordinate system at point z0.
Because the transformation is conformal, the axes (A, B) are right handed (conform
to axes x, y) as a conformal transformation preserves the orientation of directions.
The axis A forms the angle α with respect to the x direction.

In the sequel we require expressions for the transformations of displacement
components (u, v), which are vectors. Accordingly, consider a vector V in the z

plane at the point z = w(reiθ ). By Fig. 5B-7.3 we find

Vx + iVy = (VA + iVB)eiα (5B-7.6)

Figure 5B-7.3
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Equation (5B-7.6) relates the components (Vx, Vy) relative to the (x, y) axes to
the components (VA, VB ) relative to curvilinear coordinates (a, b). To express eiα

in terms of the transformation z = w(ζ ), we note that if we consider a displacement
dz of the point z in the direction of the tangent A, the corresponding point ζ (in
D) will undergo displacement dζ in the radial direction (θ = constant). Thus,

dz = eiα|dz| dζ = eiθ |dζ |

and, with Eq. (5B-7.5),

eiα = dz

|dz| = w′(ζ )dζ

|w′(ζ )||dζ | = eiθ w′(ζ )

|w′(ζ )|

= ζ

r

w′(ζ )

|w′(ζ )| (5B-7.7)

Equations (5B-7.6) and (5B-7.7) yield

Vx + iVy = (VA + iVB)
ζ

r

w′(ζ )

|w′(ζ )|
or

VA + iVB = e−iα(Vx + iVy)
ξ

r

w′(ζ )

|w′(ζ )| (5B-7.8)

where ξ = re−iθ and w′(ζ ) are complex conjugates of ζ and w′(ζ ).

Problem Set 5B-7

1. Let z = c cosh ζ , where z = x + iy, ζ = ξ + iη. Derive the equations that define the
coordinate lines in the z plane that correspond to the coordinate lines ξ = ξ0 = constant,
η = η0 = constant in the ζ plane. Show that the coordinate lines form an orthogonal
system.

2. Let z = ia coth(ζ/2), where z = x + iy, ζ = ξ + iη. Repeat Problem 1.

5B-8 Plane Elasticity Formulas in Terms of Curvilinear Coordinates

To transform the stress components and the displacement components to curvilinear
coordinates (a, b) we must transform ψ(z), χ(z) into functions of ζ , that is, into
functions ψ(ζ ), χ(ζ ), where z = w(ζ ).

Stress Components. Let σa, σb, τab be defined as follows (Fig. 5B-8.1):

σa = normal stress component on curve a = constant

σb = normal stresscomponent on curve b = constant

τab = τba = shear component on both curves
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Figure 5B-8.1

By plane transformation laws of stress (Section 3-7 in Chapter 3), we obtain

σa = 1
2 (σx + σy) + 1

2 (σx − σy) cos 2α + τxy sin 2α

τab = − 1
2 (σx − σy) sin 2α + τxy cos 2α

(5B-8.1)

Letting α → α + π /2, we obtain from the first of Eq. (5B-8.1)

σb = 1
2 (σx + σy) − 1

2 (σx − σy) cos 2α − τxy sin 2α (5B-8.2)

Hence, by Eqs. (5B-8.1) and (5B-8.2), we find

σa + σb = σx + σy (5B-8.3)

σb − σa + 2iτab = e2iα(σy − σx + 2iτxy) (5B-8.4)

To obtain an expression for the term e2iα , we note by Eq. (5B-7.7) that

e2iα = ζ 2

r2

[w′(ζ )]2

|w′(ζ )|2 = ζ 2

r2

[w′(ζ )]2

w′(ζ )w′(ζ )

= ζ 2

r2

w′(ζ )

w′(ζ )
(5B-8.5)
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Thus, Eqs. (5B-8.4) and (5B-8.5) yield

σb − σa + 2iτab = ζ 2

r2

w′(ζ )

w′(ζ )
(σy − σx + 2iτxy)

σa + σb = σx + σy

(5B-8.6)

To express σa, σb in terms of ζ , we note that by Eqs. (5B-3.6) and (5B-7.5)

σx + σy = 2[ψ ′(z) + ψ ′(z)] = 2

[
ψ ′

1(ζ )

w′(ζ )
+
(

ψ ′
1(ζ )

w′(ζ )

)]
(5B-8.7)

where ψ1(ζ ) = ψ(z). In a similar manner, we may express σb —σa + 2iτab in
terms of ζ .

Displacement Components. Let (u, v) denote the (x, y) components of dis-
placement (Fig. 5B-8.2). Let (ua, ub) denote the (a, b) components of displacement.
Then, by vector projections, we find

(ua + ub) = e−iα(u + iv) (5B-8.8)

where (u + iv) is expressed in terms of ψ and χ by Eq. (5B-2.3), which in turn
may be expressed in terms of ζ .

Figure 5B-8.2
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Equations (5B-8.6) and (5B-8.8) express the stress components and the displace-
ment components of plane elasticity in curvilinear plane coordinates in the z plane
(polar coordinates r , θ in the ζ plane).

5B-9 Complex Variable Solution for Plane Region Bounded by Circle
in the z Plane

In this section we demonstrate the complex variable method for the case of a simply
connected circular region R in the z plane, with prescribed boundary stresses on the
circle C (Fig. 5B-9.1). The case of prescribed displacement on C may be treated in
an analogous manner. Although the example is elementary, the essential features
of the complex variable method are illustrated. (The more complicated problem of
the plane region with circular hole is treated in Section 6-10 of Chapter 6.)

Solution Relative to z. We take axes (x, y) with origin at the center of the
circle C. We consider the components of the boundary stress (σnr, σnα) on C to
be known, continuous, and single-valued functions of α on C. Accordingly, by
Eqs. (5B-3.3) and (5B-6.8), we have (with constant = 0)

f1(s) + if2(s) = i

∫ s

0
(σnx + iσny) ds = ia

∫ α

0
(σnx + iσny) dα (5B-9.1)

Overall equilibrium of region R requires

∑
Fx = a

∫ 2π

0
σnx dα = a

∫ 2π

0
(σnr cos α − σnα sin α) dα = 0 (5B-9.2)

∑
Fy = a

∫ 2π

0
σny dα = a

∫ 2π

0
(σnr sin α + σnα cos α) dα = 0 (5B-9.3)

∑
M0 = a

∫ 2π

0
σnα dα = 0 (5B-9.4)

Hence, (σnr, σnα) are periodic in α (with period 2π ). Assuming (σnr, σnα) are
continuous, single-valued functions of α (Dirichlet conditions; Carrier et al., 2005),
we may represent them (and hence σnx, σny) in the form of convergent Fourier
series. Thus, we may express f1+ if2 in the known form

f1 + if2 =
m=∞∑

m=−∞
Ameimα (5B-9.5)

where by Fourier series theory

Am = 1

2π

∫ 2π

0
(f1 + if2)e

−imα dα (5B-9.6)
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Figure 5B-9.1

By Section 5B-5 [Eq. (5B-5.9)], we have in R, |z| < a for analytic functions ψ, χ ′

ψ(z) =
∞∑

n=1

anz
n

χ ′(z) = φ(z) =
∞∑

n=0

bnz
n

(5B-9.7)

where we have taken ψ(0) = 0. Assuming that the series of Eqs. (5B-9.7) converge
in R and on C, we have by Eq. (5B-6.8) and (5B-9.7)

∞∑
n=1

ana
neinα + a1aeiα +

∞∑
n=0

(n + 2)an+2a
n+2e−inα +

∞∑
n=0

bna
ne−inα

=
∞∑

m=−∞
Ameimα (5B-9.8)

where we note the formulas

z = aeiα z = ae−iα

ψ ′(z) =
∞∑

n=1

nanz
n−1 φ(z) = χ ′(z) =

∞∑
n=0

bnz
−n

z

∞∑
n=1

nanz
n−1 =

∞∑
n=1

nana
ne−(n−2)iα

= a1aeiα +
∞∑

n=0

(n + 2)an+2a
n+2e−inα (5B-9.9)
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Comparing like powers of e in Eq. (5B-9.8), we obtain

eiθ : a(a1 + a1) = A1 = real number (n = 1)

einθ : an = An (n>1) (5B-9.10)

e−inθ : (n + 2)an+2a
n+2 + anbn = −A−n (n>0)

Equations (5B-9.10) define all the coefficients an, bn except a1. Only the real value
of a1 is defined by the first of Eqs. (5B-9.10), as a1 + a1 = Re(a1). However, this
condition is sufficient because the imaginary part of ψ ′(z) may be chosen arbitrarily
for z = 0. For example, we may take Im ψ ′(0) = 0 [Eq. (5B-5.8)]. Furthermore,
the constant A1 has the physical significance that it is the average (mean) value of
radial load acting on the boundary C or R. This result follows from Eqs. (5B-9.6)
and (5B-9.1). Thus, by Eq. (5B-9.6),

2πA1 =
∫ 2π

0
(f1 + if2)e

−iα dα

=
∫ 2π

0
(f1 cos α + f2 sin α) dα + i

∫ 2π

0
(f2 cos α − f1 sin α) dα

However, we note that by Eqs. (5B-9.2) to (5B-9.4),

∑
M0 = a

∫ 2π

0
σnαdα = a

∫ 2π

0
(σny cos α − σnx sin α) dα

= −
∫ 2π

0
(cos αdf1 + sin αdf2)

= −[f1 cos α + f2 sin α]2π
0 +

∫ 2π

0
(−f1 sin α + f2 cos α) dα

=
∫ 2π

0
(−f1 sin α + f2 cos α) dα = 0

and in a similar manner

∑
Fr = a

∫ 2π

0
σnr dα = a

∫ 2π

0
(σnx cos α + σny sin α) dα

=
∫ 2π

0
(f1 cos α + f2 sin α) dα

Hence,

A1 = a

2π

∫ 2π

0
σnr dα (5B-9.11)

and A1 equals the mean value of the radial load.
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Solution Relative to ζ . Alternatively, the solution may be derived in the ζ plane
(Fig. 5B-9.1). For example, the region R in the z plane may be transformed into
the unit circle D in the ζ plane by the mapping

z = w(ζ ) = aζ (5B-9.12)

Hence, on the boundary C ′,

ζ = eiθ = γ

w(ζ )

w′(ζ )
= aζ

a
= ζ(= γ on C ′) (5B-9.13)

To write boundary conditions on C ′, we require that ψ(z) and χ ′(z) be transformed
into functions of ζ . For this purpose, we remark that with the notation

ψ1(ζ ) = ψ(z) = ψ[w(ζ )]

φ1(ζ ) = φ(ζ ) = φ[w(ζ )]

we have

ψ ′(z) = dψ

dz
= dψ1(ζ )

dζ

dζ

dz
= ψ ′

1

w′(ζ )

Consequently, the boundary conditions [Eq. (5B-6.8)] in terms of ζ(= γ on C ′)
become, with φ(z) = χ ′(z),

ψ1(γ ) + w(γ )

w′(γ )
ψ ′

1(γ ) + φ1(γ ) = f1 + if2 (5B-9.14)

or with Eqs. (5B-9.13)

ψ1(γ ) + γψ ′
1(γ ) + φ1(γ ) = f1 + if2 (5B-9.15)

With

ψ1(ζ ) =
∞∑

n=0

anζ
n φ1(ζ ) =

∑
bnζ

n (5B-9.16)

the analysis proceeds as in the z plane [following Eqs. (5B-9.7)]. Then substitution
of ψ(z), φ(z) [or ψ1(ζ ), φ1(ζ )] into expressions for σx+ σy , σy − σx + 2iτxy,

2G(u + iv) yields (x, y) components in the z plane (in the ζ plane), provided
ψ, φ are absolutely and uniformly convergent on the boundary circle |z| = a. If
first derivatives of σnr, σnθ (or σnx, σny) satisfy Dirichlet conditions (Brown and
Churchill, 2008), this requirement is satisfied.
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Problem Set 5B

1. Consider the problem of small deflections, plane thermoelasticity for which

εx = γxz = γyz = 0

(a) Derive an expression for σz in terms of stress components σx and σy , material prop-
erties k (thermal coefficients of linear expansion) and E (modulus of elasticity), and
temperature change T measured from an arbitrary zero.

(b) Assume the additional conditions that stress components σx = σy = τxy = 0. Hence,
derive expressions for the strain components εx , εy , and γxy .

(c) Show that under the combined conditions of parts (a) and (b), the compatibility
conditions reduce to ∇2T = 0 for constant E and k.

(d) Using the results of part (b), show that the rotation of a volume element in the xy
plane is

ωz = ∂v

∂x
= −∂u

∂y

Hence, show that
∂ε′

∂x
= ∂ωx

∂y

∂ε′

∂y
= −∂ωx

∂x

where ε′ = (1 + ν)kT . That is, show that ε′ and ωz satisfy the Cauchy–Riemann
equations. (Consequently, the theory associated with the Cauchy–Riemann equations
may be applied to ε′ and ωz.)

2. Let z denote the complex variable z = x + iy, where (x, y) denote plane rectangular
Cartesian coordinates. Let z = x − iy denote the complex conjugate of z.

(a) Show that the equilibrium equations of plane elasticity in the absence of body forces
may be transformed into the result (i2 = −1)

∂

∂z
(σx − σy + 2iτxy) + ∂

∂z
(σx + σy) = 0

(b) Let the displacement s be given by s = u + iv where (u, v) denotes (x, y) dis-
placement components. Express ∂s/∂z in terms i and derivatives of u, v relative to
(x, y).

(c) Noting that the equilibrium equation of part (a) is a necessary and sufficient condition
that there exists a function F(z, z) such that

∂F

∂z
= σx + σy

∂F

∂z
= σy − σx − 2iτxy

and expressing (σx, σy, τxy) in terms of (u, v), show for plane strain, employing the
results of part (b), that

4Gs = −F(z, z) + f (z)

where 2G(1 + ν) = E,E = Young’s modulus, and ν = Poisson’s ratio.
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(d) Compute the derivative ∂s/∂z in terms of i and derivatives of (u, v) with respect to
(x, y). Hence, show that

σx + σy − f ′(z) = −4G
∂s

∂z
= ∂F

∂z
− f ′(z)

4(λ + G)
∂s

∂z
= σx + σy + 2i(λ + G)

(
∂v

∂x
− ∂u

∂y

)

where
λ = νE

(1 + ν)(1 − 2ν)

3. Show that the equation σx + σy = 4Re[ψ ′(z)] may be written in the form

σx + σy + 4iEω

(1 + ν)(1 + κ)
= 4ψ ′(z)

where ω is the volumetric rotation.
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CHAPTER 6

PLANE ELASTICITY IN POLAR
COORDINATES

The use of polar coordinates is advantageous in problems involving boundaries
formed by circular arcs or radially straight lines. Furthermore, certain problems of
symmetry lend themselves well to polar coordinates. Accordingly, in this chapter
we express the basic plane elasticity equations in polar coordinates.

6-1 Equilibrium Equations in Polar Coordinates

Consider an element of volume bounded by the polar coordinate lines (r, θ ) and
(r + dr, θ + dθ ) (Fig. 6-1.1). Let the thickness h of the element [dimension per-
pendicular to the (x, y) plane] be a function of (r, θ ). Let the element be subjected
to stress as shown (R and � denote body forces per unit volume in the radial and
tangential directions, respectively). Because dθ is an infinitesimal angle, summa-
tions of forces in the radial and tangential directions yield for equilibrium, assuming
that the thickness is sufficiently small compared to the in-plane dimensions so that
variations of radial and tangential stresses over the thickness can be neglected:

∂(hσr )

∂r
+ 1

r

∂(hτrθ )

∂θ
+ h(σr − σθ )

r
+ hR = 0

∂(hτrθ )

∂r
+ 1

r

∂(hσθ )

∂θ
+ 2(hτrθ )

r
+ h� = 0

(6-1.1)

Equations (6-1.1) are the equilibrium equations for plane elasticity in polar coordi-
nates. They are equivalent to Eqs. (5-2.11) in Chapter 5. Alternatively, Eqs. (6-1.1)
may be derived by mathematically transforming Eqs. (5-2.11) from (x, y) coordi-
nates to (r, θ ) coordinates by tensor theory (see also Appendix 3A in Chapter 3).
For h = constant h may be canceled from Eqs. (6-1.1).
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Figure 6-1.1

6-2 Stress Components in Terms of Airy Stress Function F = F(r, θ )

To derive stress components in terms of the Airy stress function F , where F is con-
sidered to be a function of polar coordinates (r, θ ), we may transform Eqs. (5-4.3)
(for constant thickness and in the absence of body forces) to polar coordinates as
follows. By Fig. (6-1.1), we obtain the following relations between (x, y) and (r, θ ):

r2 = x2 + y2

x = r cos θ y = r sin θ (6-2.1)

tan θ = y

x

Consider first the transformation of σx . By Eqs. (5-4.9), we note that we require
∂2F/∂y2 in terms of (r, θ ). By the chain rule of partial differentiation and
Eq. (6-2.1), we have

∂F

∂y
= ∂F

∂r

∂r

∂y
+ ∂F

∂θ

∂θ

∂y
= ∂F

∂r
sin θ + 1

r

∂F

∂θ
cos θ
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Similarly,

∂2F

∂y2
= ∂

∂y

∂F

∂y

= ∂2F

∂r2
sin2 θ + 2

r

∂2F

∂r ∂θ
sin θ cos θ − 2

r2

∂F

∂θ
sin θ cos θ

+ 1

r

∂F

∂r
cos2 θ + 1

r2

∂2F

∂θ2
cos2 θ

Now, noting that as θ → 0, σx → σr , cos θ → 1, sin θ → 0, we obtain

σr = ∂2F

∂y2

∣∣∣∣
θ→0

= 1

r

∂F

∂r
+ 1

r2

∂2F

∂θ2

Also, noting that as θ → π /2, σy → σθ , cos θ → 0, sin θ → 1, we find

σθ = ∂2F

∂y2

∣∣∣∣
θ→π/2

= ∂2F

∂r2

In a similar manner, we may evaluate ∂2F/∂x∂y. Then, noting that as θ → 0,
τxy → τrθ , we find

τrθ = − ∂2F

∂x ∂y

∣∣∣∣
θ→0

= −1

r

∂2F

∂r ∂θ
+ 1

r2

∂F

∂θ
= − ∂

∂r

(
1

r

∂F

∂θ

)

Accordingly, the stress components are given in terms of the Airy stress function
F(r, θ) by the relations

σr = 1

r

∂F

∂r
+ 1

r2

∂2F

∂θ2

σθ = ∂2F

∂r2
(6-2.2)

τrθ = − ∂

∂r

(
1

r

∂F

∂θ

)

More generally, the preceding transformations may be carried out with respect
to orthogonal curvilinear coordinates (Section 1-22). For variable thickness h =
h(r, θ), we replace σr, σθ , τrθ in Eq. (6-2.2) by hσr, hσθ , hτrθ [see Eqs. (6-1.1)].
Also, for certain cases, body forces may be introduced simply (see Section 6-6).

6-3 Strain–Displacement Relations in Polar Coordinates

Consider a point P in a medium that undergoes a deformation (Fig. 6-3.1). Under
the deformation, the point P moves to P *. With respect to rectangular Cartesian
coordinates (x, y), the displacement components of point P are (u, v); with respect
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Figure 6-3.1

to polar coordinates, the displacement components are (U, V ). Accordingly, by
Fig. 6-3.1,

u = U cos θ − V sin θ

v = U sin θ + V cos θ
(6-3.1)

Substitution of Eqs. (6-3.1) into Eqs. (2-15.14) yields εx, εy, γxy in terms of U, V ,
and θ . For example, consider εx . By Eqs. (2-15.14) and the chain rule for partial
differentiation, we obtain

εx = ∂u

∂x
= ∂u

∂θ

∂θ

∂x
+ ∂u

∂r

∂r

∂x
(6-3.2)

where, by Eqs. (6-3.1) and (6-2.1),

∂u

∂θ
= ∂U

∂θ
cos θ − U sin θ − ∂V

∂θ
sin θ − V cos θ

∂u

∂r
= ∂U

∂r
cos θ − ∂V

∂r
sin θ

∂θ

∂x
= − sin θ

r
∂r

∂x
= cos θ

(6-3.3)
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Accordingly, by Eqs. (6-3.2) and (6-3.3), we obtain

εx =
(

−∂U

∂θ
cos θ + U sin θ + ∂V

∂θ
sin θ + V cos θ

)
sin θ

r

+
(

∂U

∂r
cos θ − ∂V

∂r
sin θ

)
cos θ

Noting that εx → εr , sin θ → 0, and cos θ → 1 as θ → 0, we obtain

εr = εx |θ→0 = ∂U

∂r

Analogously, εx → εθ , sin θ → 1, and cos θ → 0 as θ → π /2. Hence,

εθ = εx |θ→π/2 = 1

r

∂V

∂θ
+ U

r

Finally, in a similar manner, we may express γxy as a function of U, V , and θ , and
noting that γxy → γrθ as θ → 0, we obtain

γrθ = γxy |θ→0 = ∂V

∂r
− V

r
+ 1

r

∂U

∂θ

Accordingly, the strain components εr, εθ , γrθ with respect to polar coordinates
(r, θ ) are

εr = ∂U

∂r

εθ = U

r
+ 1

r

∂V

∂θ

γrθ = 1

r

∂U

∂θ
+ ∂V

∂r
− V

r

(6-3.4)

where U = U(r, θ), V = V (r, θ ) are the radial and tangential displacement com-
ponents (Fig. 6-3.1).

Alternatively, Eqs. (6-3.4) may be derived by the method of Section 2-6 in
Chapter 2 (see also Appendix 2B).

Problem. Derive the last of Eqs. (6-3.4).

With the understanding that (u, v) denote radial and tangential components of
displacement relative to (r, θ ) coordinates, we may write

εr = ∂u

∂r
εθ = u

r
+ 1

r

∂v

∂θ

γrθ = 1

r

∂u

∂θ
+ ∂v

∂r
− v

r
= 1

r

∂u

∂θ
+ r

∂

∂r

(v

r

) (6-3.5)

The strain–compatibility relations in polar coordinates may be obtained either
by elimination of (u, v) from Eqs. (6-3.5) or by transformation of Eqs. (5-3.1)



460 PLANE ELASTICITY IN POLAR COORDINATES

in Chapter 5 into polar coordinates. Thus, for plane deformations we obtain the
compatibility relation

∂

∂r

(
r
∂γrθ

∂θ
− r2 ∂εθ

∂r

)
+ r

∂εr

∂r
− ∂2εr

∂θ2
= 0 (6-3.6)

For the special case of rotationally symmetric problems where all quantities are
functions of radial coordinate r only, by Eqs. (6-3.5), we obtain the compatibility
relations

εr = d

dr
(rεθ )

γrθ = r
d

dr

(v

r

) (6-3.7)

Problem Set 6-3

1. Consider two orthogonal line elements, ds1 and ds2, one radial and one tangential in
a plane R (Fig. P6-3.1). Consider the following separate deformations: (a) all points
in the body (region) undergo a radial displacement; U = U1(r, θ), V = V1 = 0, where
(U , V ) denote radial and tangential components of displacement; (b) all points undergo
a displacement such that U = U2 = 0, V = V2(r, θ). Derive expressions for the strain
components εr , εθ , γrθ corresponding to the deformations (a) and (b). Superimpose the
results of deformations (a) and (b) to arrive at Eqs. (6-3.4).

Figure P6-3.1

2. The line t is tangent to the centerline of a circular arc ring AB at point P (see Fig. P6-3.2).
When the ring is loaded, point P undergoes radial and tangential displacement compo-
nents (w, u). Derive an expression for tan(φ∗ − φ), the tangent of the angle through which
line t rotates. Linearize this formula for small rotations, that is, for tan(φ∗ − φ) ≈ φ∗ − φ.
Recall that tan(φ∗ − φ) ≈ (tan φ∗ − tan φ)/(1 + tan φ∗ tan φ). Note that u = u(θ ), w =
w(θ ). Express the results in terms of a,w, u and derivatives of w and u .
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Figure P6-3.2

6-4 Stress–Strain–Temperature Relations

Equations (5-2.12) and (5-2.13) in Chapter 5 remain valid for any orthogonal plane
coordinates, except that the derivatives ∂/∂x, ∂/∂y must be transformed appropri-
ately. Accordingly, relative to polar coordinates (r, θ ), we have the stress–strain
relations

σr = λe + 2Gεr

σθ = λe + 2Gεθ

τrθ = Gγrθ

e = ∂u

∂r
+ u

r
+ 1

r

∂v

∂θ

(6-4.1)

where (u, v) are displacement components relative to polar coordinates (r, θ ); see
Fig. 6-3.1 (where U, V are used).

Accordingly, for plane strain we have the stress–strain–temperature relations
[Eqs. (5-3.8)]

σr = E

(1 + ν)(1 − 2ν)
[(1 − ν)εr + vεθ − (1 + ν)kT ]

σθ = E

(1 + ν)(1 − 2ν)
[νεr + (1 − ν)εθ − (1 + ν)kT ]

τrθ = E

2(1 + ν)
γrθ

σz = E

(1 + ν)(1 − 2ν)
[ν(εr + εθ ) − (1 + ν)kT ]

e = εr + εθ = ∂u

∂r
+ u

r
+ 1

r

∂v

∂θ

εz = γrz = γθz = τrz = τθz = 0

(6-4.2)

and for the compatibility relations in terms of stress components [Eq. (5-3.9)]

∇2(σr + σθ ) + E

1 − ν
∇2(kT ) + 1

1 − ν

(
∂Br

∂r
+ 1

r
Br + 1

r

∂Bθ

∂θ

)
= 0 (6-4.3)
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where (Br, Bθ ) denote body forces relative to (r, θ ) coordinates, T denotes tem-
perature, and k is the coefficient of linear thermal expansion. For plane stress, we
have the stress–strain–temperature relations [Eq. (5-3.10)]

σr = E

1 − ν2
[εr + νεθ − (1 + ν)kT ]

σθ = E

1 − ν2
[νεr + εθ − (1 + ν)kT ]

τrθ = E

2(1 + ν)
γrθ

εz = − 1

1 − ν
[ν(εr + εθ ) − (1 + ν)kT ]

e = εr + εθ + εz = 1

1 − ν
[(1 − 2ν)(εr + εθ ) + (1 + ν)kT ]

σz = τrz = τθz = γrz = γθz = 0

(6-4.4)

and the compatibility relations [Eq. (5-3.11)]

∇2(σr + σθ ) + E∇2(kT ) + (1 + ν)

(
∂Br

∂r
+ 1

r
Br + 1

r

∂Bθ

∂θ

)
= 0 (6-4.5)

Problem Set 6-4

1. ad(a) For the case of plane stress relative to the (x, y) plane, write the integral V of the
strain energy density U in terms of rectangular Cartesian coordinates (x, y). Neglect
temperature effects.

(b) Express the integral V in terms of polar coordinates (r, θ ).

(c) Derive expressions for the stress components relative to polar coordinates (Section 4-3
in Chapter 4).

2. A circular ring, with rectangular cross section, has a unit thickness perpendicular to its
plane. Its inner boundary (r = a) is fixed. Its outer boundary (r = b) is subjected to a
uniform shearing stress S directed in the counterclockwise sense.

(a) In terms of polar coordinates (r, θ ), with origin at the center of the ring, and polar
coordinate stress components, write the integral V for the strain energy density U of
the ring (plane stress case).

It may be shown that the stress solution for this problem is given by σr = σθ = 0,
τrθ = Sb2/r2.

(b) Evaluate the integral V of the strain energy density U .

(c) By equating V to the work done during loading (the shear stress at r = b is increased
from zero to S), compute the rotation of the ring at r = b.

3. In Problem 2, determine the tangential (θ ) displacement v as a function of r , where v = 0
at r = a, and τrθ = S at r = b.

4. In Problem 2, assume σr = σθ = u = 0, where u is the radial displacement. Show that
τrθ = Sb2/r2. (Assume v = 0 at r = a and τrθ = S at r = b.)
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6-5 Compatibility Equation for Plane Elasticity
in Terms of Polar Coordinates

Expressing the second derivative of F with respect to x in terms of polar coor-
dinates and adding it to the second derivative of F with respect to y derived in
Section 6-2, we obtain

σx + σy = ∂2F

∂x2
+ ∂2F

∂y2
= ∂2F

∂r2
+ 1

r

∂F

∂r
+ 1

r2

∂2F

∂θ2
(6-5.1)

Also, by Eqs. (6-2.2) we note that

σr + σθ = ∂2F

∂r2
+ 1

r

∂F

∂r
+ 1

r2

∂2F

∂θ2
(6-5.2)

Accordingly, by Eqs. (6-5.1), (6-5.2), and (5-7.1), we obtain the compatibility rela-
tion (for constant body forces, or body forces derivable from a potential function)
in terms of polar coordinates (r, θ ):

∇2∇2F =
(

∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2

) (
∂2F

∂r2
+ 1

r

∂F

∂r
+ 1

r2

∂2F

∂θ2

)
= 0 (6-5.3)

Accordingly, in polar coordinates [see Section 1-22 and Eq. (1-22.13) in Chapter 1]

∇2 = ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2
(6-5.4)

A solution of the compatibility equation ∇2∇2F = 0 in polar coordinates was
derived by Michell (1899) for a certain class of plane problems. A modified form
of the solution given by Michell1 is

F = A0 log r + B0r
2 + C0r

2 log r + D0r
2θ + A′

0θ

+ A1

2
rθ sin θ + (B1r

3 + A′
1r

−1 + B ′
1r log r) cos θ

− C1

2
rθ cos θ + (D1r

3 + C ′
1r

−1 + D′
1r log r) sin θ

+
∞∑

n=2

(Anr
n + Bnr

n+2 + A′
nr

−n + B ′
nr

−n+2) cos nθ

+
∞∑

n=2

(Cnr
n + Dnr

n+2 + C ′
nr

−n + D′
nr

−n+2) sin nθ (6-5.5)

1The term D0r
2θ was not given by Michell (1899). Also, Michell included the terms r cos θ, r sin θ ,

which are not included here. However, these terms yield zero stress components. See Timoshenko
and Goodier (1970, Chapter 4). See also Timpe (1905, 1923).
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Problem Set 6-5

1. Consider a ring loaded as shown in Fig. P6-5.1. Show that the function

φ =
(

Ar2 + Br4 + C

r2
+ D

)
cos 2θ + Fr2 + H log r

satisfies ∇2∇2φ = 0. Determine the constants A, B,C, D,F,H to satisfy the stress
boundary conditions. Hence, derive formulas for σr , σθ , τrθ .

Figure P6-5.1

2. Derive the equation of compatibility for plane problems in polar coordinates in terms of
the strain components [see Eq. (6-3.6)].

3. The stress function F = (Eδ/4π)r log r sin θ has been proposed as a possible solution
for a circular ring with a radial slit (Fig. P6-5.3), where δ is the radial displacement at
the slit.

(a) Write down a complete set of boundary conditions in terms of stress components and
displacement components.
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Figure P6-5.3

(b) Outline a procedure to determine a stress function that satisfies all boundary
conditions.

4. For a problem of plane stress,

Eu = (1 − ν)(log r) cos θ − 2 cos θ + 2θ sin θ

Ev = (1 − ν)(1 − log r) sin θ + 2θ cos θ

where (u, v) are displacement components in polar coordinates (r, θ ), E is the modulus
of elasticity, and ν is Poisson’s ratio. There is no body force.

(a) Is this a possible displacement vector if the origin is included in the body? Explain.

(b) Is this a possible displacement vector for a closed ring with center at the origin?
Explain.

(c) Does the corresponding Airy stress function satisfy the compatibility condition
∇2∇2F = 0? Explain.

(d) Show that for this problem the stress components σr and σθ are equal.

5. In addition to the terms given in Eq. (6-5.5) (obtained by the method of separation of
variables), the terms

F1 = Aθr2 log r F2 = Bθ log r

F3 = Cθr cos θ log r F4 = Dθr sin θ log r

are also solutions to the biharmonic equation of plane elasticity, in the absence of body
forces and thermal effects. Discuss the application of these terms to regions R1, R2, R3,
with polar coordinate systems shown in Fig. P6-5.5.
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6-6 Axially Symmetric Problems

For axially symmetric problems, F = F(r). Then the equilibrium equations [see
Eqs. (6-1.1)] reduce to (for h = constant)

dσr

dr
+ 1

r
(σr − σθ ) + R = 0 � = 0 (6-6.1)

Accordingly, for axially symmetric problems of equilibrium the tangential body
force � is zero, and the two stress components (σr, σθ ) and the radial body force
R are functions of r only. Furthermore, the shearing stress τrθ [see Eqs. (6-2.2)]
is zero.

The compatibility relation simplifies to

(
d2

dr2
+ 1

r

d

dr

) (
d2F

dr2
+ 1

r

dF

dr

)
= 0 (6-6.2)

Equation (6-4.2) may be written in the form

1

r

d

dr

{
r

d

dr

[
1

r

d

dr

(
r

dF

dr

)]}
= 0 (6-6.3)

In this latter form, the Airy stress function F may be determined by direct inte-
gration. Accordingly, for problems of axial symmetry, integration of Eq. (6-6.3)
yields the Airy stress function in the form

F = A log r + Br2 log r + Cr2 + D (6-6.4)

where A, B, and C are arbitrary constants of integration, which are determined by
boundary conditions. The constant D does not enter into the formulas for the stress
components, as they depend on derivatives of F . Thus, by Eqs. (6-2.2) and (6-6.4),
we obtain

σr = 1

r

dF

dr
= A

r2
+ B(1 + 2 log r) + 2C

σθ = d2F

dr2
= − A

r2
+ B(3 + 2 log r) + 2C

(6-6.5)

For a doubly connected region bounded by contours L1 and L2 and with the origin
of coordinates (r, θ ) inside the inner contour (Fig. 6-6.1), the requirement that the
displacement be single valued dictates that B = 0. (See Example 6-6.2; see also
remarks at the end of Section 5-4 in Chapter 5.)

Inclusion of Body Forces. A direct and elementary treatment of the most
generally rotationally symmetric plane state of stress for linear isotropic elastic
materials under arbitrary body forces has been given by Stern (1965). The main
results follow.
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Figure 6-6.1

For the most general rotationally symmetric plane problem, relative to polar
coordinates (r, θ ) we assume that the stress components are independent of θ .
Thus, Eqs. (6-1.1), with h = constant, yield

dσr

dr
+ σr − σθ

r
+ R = 0

dτrθ

dr
+ 2τrθ

r
+ � = 0

(6-6.6)

Recalling Eq. (5-3.12) and expressing ∇2 and ∂/∂x, ∂/∂y in terms of (r, θ ), in the
absence of temperature effects, we obtain for the equation of compatibility

d2

dr2
(σr + σθ ) + 1

r

d

dr
(σr + σθ ) = −K2

(
dR

dr
+ R

r

)
(6-6.7)

where for plane strain K2 = 1/(1 − ν) and for plane stress K2 = 1 + ν. For pur-
poses of integration, it is convenient to rewrite Eqs. (6-6.6) and (6-6.7) in the forms

1

r2

d

dr
(r2σr) = 1

r
(σr + σθ ) − R (6-6.8)

1

r2

d

dr
(r2τrθ ) = −� (6-6.9)

1

r

d

dr

{
r

[
d

dr
(σr + σθ ) + K2R

]}
= 0 (6-6.10)

where by the assumption of independency of θ , R and � must be independent
of θ .
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Integration of Eq. (6-6.10) yields

σr + σθ = A log r + B − K2H(r) (6-6.11)

where A and B are constants to be defined by the boundary conditions, and

H(r) =
∫ r

r0

R(ξ) dξ (6-6.12)

where r0 is some fixed (arbitrary) value of r . Hence, by Eqs. (6-6.8) and (6-6.11),
we find, after integration, that

σr = C

r2
+ A

4
[2 log(r) − 1] + B

2
− K2

2
H(r) + K2 − 2

2
I (r) (6-6.13)

where C is a constant of integration and

I (r) = 1

r2

∫ r

r0

ξ 2R(ξ) dξ (6-6.14)

By Eqs. (6-6.11) and (6-6.13), we obtain

σθ = − C

r2
+ A

4
[2 log(r) + 1] + B

2
− K2

2
H(r) + 2 − K2

2
I (r) (6-6.15)

Finally, integration of Eq. (6-6.9) yields

τrθ = D

r2
− J (r) (6-6.16)

where D is a constant and

J (r) = 1

r2

∫ r

r0

ξ 2�(ξ) dξ (6-6.17)

The displacement components are obtained by integrating the strain–
displacement relations. However, the displacement need not be rotationally
symmetric. Let u and v denote the radial and transverse components of
displacement. Then the strain–displacement relations in conjunction with Hooke’s
law give for plane stress [see Eqs. (5-3.10) with kT = 0]

εr = ∂u

∂r
= 1

E
σr − ν

E
σθ (6-6.18)

εθ = u

r
+ 1

r

∂v

∂θ
= 1

E
σθ − ν

E
σr (6-6.19)

γrθ = 1

r

∂u

∂θ
+ r

∂

∂r

(v

r

)
= 2(1 + ν)

E
τrθ (6-6.20)
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With the aid of Eqs. (6-6.13) and (6-6.15) and integration by parts, Eq. (6-6.18)
yields

u(r, θ) = −1 + ν

E

C

r
+ 1 − ν

2E
Ar log r − 3 − ν

4E
Ar

+ 1 − ν

2E
Br − 1 − ν2

2E
r[H(r) − I (r)] + f (θ)

where f (θ ) is an undetermined function of θ only. Putting this result in Eq. (6-6.20)
and noting Eq. (6-6.16), we can write

v(r, θ) = −1 + ν

E

D

r
− 1 + ν

E
r[G(r) − J (r)] + df

dθ
+ rg(θ)

where g(θ ) is another undetermined function and

G(r) =
∫ r

r0

�(ξ) dξ

As a consequence of Eq. (6-6.19), however, we conclude that

d2f

dθ2
+ f = 0

dg

dθ
= A

E

so that finally we find

u(r, θ) = −1 + ν

E

C

r
+ 1 − ν

2E
Ar log r − 3 − ν

4E
Ar

+ 1 − ν

2E
Br − 1 − ν2

2E
r[H(r) − I (r)] + M cos θ + N sin θ

v(r, θ) = −1 + ν

E

D

r
+ A

E
rθ − 1 + ν

E
r[G(r) − J (r)] − M sin θ + N cos θ + Lr

where the constants M and N represent the Cartesian components of a rigid-body
translation and L is a rigid-body rotation angle.

In certain cases, restrictions may be imposed on the constants. For example, we
should note that if the origin is contained in the body, then the constants A, C,
and D must necessarily vanish. The constant A must also vanish whenever the
origin can be encircled by a contour entirely in the body, even though the origin
itself is not; this guarantees single-valued displacements. Finally, if any portion of
the body extends indefinitely, the constant A must vanish for stresses to remain
bounded.

The accelerating disk affords a rather simple application of the preceding results.
Consider a circular disk of radius b clamped to a rotating shaft on a concentric
circular portion of the disk of radius a, 0 < a < b. We suppose that at some partic-
ular instant the shaft is rotating with angular velocity ω and angular acceleration α.
In a quasi-static analysis the problem may be rephrased as a circular ring clamped
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along the inner boundary r = a and free of traction on the outer boundary r = b,
and further subjected to the body-force densities

R = ρrω2 � = −ρrα

where ρ is the mass density of the disk, assumed uniform throughout. Integrating
from the inner boundary (r0 = a), we obtain

H(r) = 1
2ρω2(r2 − a2)

I (r) = ρω2

4r2
(r4 − a4)

G(r) = − 1
2ρα(r2 − a2)

J (r) = − ρα

4r2
(r4 − a4)

Because the ring is complete, A = 0. Furthermore, on the outer boundary σr =
τrθ = 0. Hence,

C

b2
+ B

2
− ρω2

8b2
(b2 − a2)[(3 + ν)b2 + (1 − ν)a2] = 0

D

b2
+ ρα

4b2
(b4 − a4) = 0

At r = a, u = v = 0, so that M = N = 0 and

−1 + ν

E

C

a
+ 1 − ν

E

aB

2
= 0

−1 + ν

E

D

a
+ aL = 0

Thus, we find

1

2
B = (1 + ν)ρω2

8
K

C = (1 − ν)ρω2a2

8
K

D = −ρα

4
(b4 − a4)

L = − (1 + ν)ρα

4Ea2
(b4 − a4)

where

K = (b2 − a2)
(3 + ν)b2 + (1 − ν)a2

(1 + ν)b2 + (1 − ν)a2
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Then the stresses are given by

σr = ρω2

8

{(
1 + a2

r2

)
K −

(
1 − a2

r2

)
[(3 + ν)r2 + (1 − ν)a2 − νK]

}

σθ = ρω2

8

{(
1 + a2

r2

)
νK −

(
1 − a2

r2

)
[(1 + 3ν)r2 − (1 − ν)a2 − K]

}

τrθ = − qα

4r2
(b4 − r4)

while the displacement components are simply

u = ρω2(1 − ν2)

8E
r

(
1 − a2

r2

)
[K − (r2 − a2)]

v = −ρα(1 + ν)

4E
r

(
1 − a2

r2

) (
b4

a2
− r2

)

Example 6-6.1. Let A = B = 0 in Eq. (6-6.5). Then Eq. (6-6.5) yields

σr = σθ = 2C (a)

Equation (a) represents the case of constant stress throughout the plane [see
Fig. E6-6.1].

Figure E6-6.1
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Example 6-6.2. Let B = 0 in Eqs. (6-6.5). Then

σr = A

r2
+ 2C σθ = − A

r2
+ 2C (b)

Equation (b) may be used to represent the stress in a thick-walled cylinder with
inner radius a and outer radius b and with internal pressure pi and external pressure
p0 (Fig. E6-6.2). Then the boundary conditions are

σr = −p0 for r = b

σr = −pi for r = a
(c)

Substitution of Eqs. (c) into Eqs. (b) yields

A = a2b2(p0 − pi)

b2 − a2

2C = pia
2 − p0b

2

b2 − a2

(d)

To investigate the variation of (σr , σθ ) through the wall of the cylinder, consider
the case pi = p, p0 = 0. Then Eqs. (b) and (d) yield

σr = − a2b2p

(b2 − a2)r2
+ a2p

b2 − a2

σθ = a2b2p

(b2 − a2)r2
+ a2p

b2 − a2

(e)

The change of (σr, σθ ) with radial distance r is pictured in Fig. E6-6.3.

Figure E6-6.2
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Example 6-6.3. Plane Strain Axisymmetrical Deformation of a Circular
Cylinder. A thick-wall cylindrical pressure vessel with circular cross section
undergoes linearly elastic deformation when subjected to a uniform external
pressure acting on its outer lateral surface r = b. Its inner lateral surface at radius
r = a is constrained by a rigid cylindrical core so that its radial displacement
u = 0 at r = a (similar to Fig. P6-6.2, with u = 0). We wish to determine the
stress components (σr, σθ , σz), where (r, θ ) are polar coordinates in the cross
section and z is the coordinate along the axis of the cylinder. The origin of
coordinates (r, θ, z) is located at the center (r = 0) of one of its end cross sections
(where z = 0). We assume that the cylinder is free to expand laterally except at
r = a but is constrained axially so that a condition of plane strain relative to the
(r, θ ) plane exists.

Because the cylinder is loaded axisymmetrically, the theory of this Section
applies. Thus, the stress components are independent of θ , and the tangential dis-
placement component v (Fig. 6-1.1) is zero. Also, τrθ = 0 by Eqs. (6-6.2) and
(6-6.4).

In the absence of body forces and temperature field, Eqs. (6-6.13) and (6-6.14)
yield

σr = C

r2
+ A

4
[2 log(r) − 1] + B

2

σθ = − C

r2
+ A

4
[2 log(r) + 1] + B

2

(a)

Because the (r, θ ) origin can be encircled by a contour entirely in the body even
though the origin itself is not in the body (i.e., it is located at r = 0), the constant
A = 0. [See the discussion following Eq. (6-6.20).]

Figure E6-6.3
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The strain–displacement relations for a linearly elastic isotropic medium for
plane strain are [Eqs. (6-4.2) with kT = 0]

εr = du

dr
= 1 − ν2

E

(
σr − νσθ

1 − ν

)

εθ = u

r
= 1 − ν2

E

(
σθ − νσr

1 − ν

) (b)

The second of Eqs. (b) yields, with Eqs. (a) and A = 0,

u = (1 + ν)r

E

[
− C

r2
+ B(1 − 2ν)

2

]
(c)

The boundary condition u = 0 for r = a yields with Eq. (c)

C = B(1 − 2ν)a2

2
(d)

The boundary condition σr = −p for r = b yields with Eqs. (a) and (d)

B = − 2pb2

a2(1 − 2ν) + b2
C = − p(1 − 2ν)a2b2

a2(1 − 2ν) + b2
(e)

Equations (a) and (e) yield

σr = − pb2

a2(1 − 2ν) + b2

[
1 + (1 − 2ν)

a2

r2

]

σθ = − pb2

a2(1 − 2ν) + b2

[
1 − (1 − 2ν)

a2

r2

] (f)

Therefore, because for plane strain σz = ν(σr + σθ ), we obtain by Eq. (f)

σz = − 2νpb2

a2(1 − 2ν) + b2
= constant (g)

Equations (c) and (e) yield

u = − (1 + ν)(1 − 2ν)pb2r

E[a2(1 − 2ν) + b2]

[
1 − a2

r2

]
(h)

Atheromatous Plaque on Artery Wall. An atheroma, commonly referred to
as atheromatous plaque, is an accumulation and swelling in artery walls made up
of cells or cell debris, which contains lipids (cholesterol and fatty acids), calcium,
and fibrous connective tissue. Plaques are found in arteries, not veins, unless sur-
gically moved to function as arteries as in bypass surgery, of most humans older
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than 10. The process of atheroma development is called atherogenesis, an unhealthy
condition that may lead to heart attack.

The endothelium (the cell monolayer on the inside of the vessel) and the covering
tissue, termed fibrous cap, separate atheroma from the blood in the lumen (artery
opening). If a rupture occurs of the endothelium and fibrous cap, then a platelet and
clotting response over the rupture rapidly develops and results in a shower of debris.
Platelet and clot accumulation over the rupture may produce narrowing/closure of
the lumen, and tissue damage may occur due to either closure of the lumen and
loss of blood flow beyond the ruptured atheroma and/or by occlusion of smaller
downstream vessels by debris (Waller et al., 1992).

Of course, the atheroma process and the mechanism of the rupture of the
endothelium and fibrous cap are very complex. To understand the effect of
the plaque on the stress distribution in the artery, consider an axis-symmetric
problem of a hollow cylinder made of two kinds of materials, the first one for
the plaque r ∈ [a, b] and the second one for the health artery r ∈ [b, c] with
a < b < c. Let the hollow cylinder subject to an internal pressure p and the
material constants be (λ1, G1) and (λ2, G2) for the first and the second material,
respectively. Due to axis symmetry the displacement vector of every point in the
cylinder is radial, one may write in cylindrical coordinates

ui = [ui
r , ui

θ , ui
z] = [Ui(r), 0, 0] i = 1, 2 (6-6.21)

From the strain–displacement relations [Eqs. (2A-2.7)], one obtains

εi
rr = dUi

dr
εi
θθ = Ui

r
εi
zz = 0

γ i
rθ = 0 γ i

rz = 0 γ i
θz = 0

(6-6.22)

The general stress–strain relation for linear isotropic elastic solid in cylindrical
coordinates can be expressed as (Sadd, 2009)

σrr = λ(εrr + εθθ + εzz) + 2Gεrr

σθθ = λ(εrr + εθθ + εzz) + 2Gεθθ

σzz = λ(εrr + εθθ + εzz) + 2Gεzz

σrθ = Gγrθ

σrz = Gγrz

σθz = Gγθz

(6-6.23)

Substituting Eqs. (6-6.22) into Eqs. (6-6.23) yields

σ i
rr = λi

(
dUi

dr
+ Ui

r

)
+ 2Gi

dUi

dr

σ i
θθ = λi

(
dUi

dr
+ Ui

r

)
+ 2Gi

Ui

r

σ i
zz = σ i

rθ = σ i
rz = σ i

θz = 0

(6-6.24)
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Substituting Eqs. (6-6.24) into Eqs. (3A-2.3) and assuming that there is no body
force, the only nontrivial equilibrium equation is obtained as

d2Ui

dr2
+ 1

r

dUi

dr
− Ui

r2
= 0 (6-6.25)

The solutions for Eq. (6-6.25) are

U1 = Ar + Br−1 U2 = Cr + Dr−1 (6-6.26)

and the stresses are

σ 1
rr = 2(λ1 + G1)A − 2G1r

−2B

σ 1
θθ = 2(λ1 + G1)A + 2G1r

−2B

σ 2
rr = 2(λ2 + G2)C − 2G2r

−2D

σ 2
θθ = 2(λ2 + G2)C + 2G2r

−2D

(6-6.27)

The boundary conditions are (1) the internal pressure acting on the wall of plaque
(r = a) is p; (2) the outer pressure at r = c is zero; (3) the normal stress is
continuous at the interface between the plaque and the healthy artery (r = b); and
(4) the displacement is also continuous at the interface (r = b). One may express
the four boundary conditions as

σ 1
rr (r = a) = −p

σ 2
rr (r = c) = 0

σ 1
rr (r = b) = σ 2

rr (r = b)

U1(r = b) = U2(r = b)

(6-6.28)

which imply⎡
⎢⎢⎣

λ1 + G1 −G1a
−2 0 0

0 0 λ2 + G2 −G2c
−2

λ1 + G1 −G1b
−2 −λ2 − G2 G2b

−2

1 b−2 −1 b−2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

A

B

C

D

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

− p

2
0
0
0

⎤
⎥⎥⎦ (6-6.29)

The coefficients A, B, C, and D are solved as

A = − α

λ1 + 2G1
P

B = β

G1

(
1 − a2 α

β

λ1 + G1

λ1 + 2G1

)
P

C = P

D = c2 λ2 + G2

G2
P

(6-6.30)
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where

α ≡ −(λ2 + G1 + G2) + (λ2 + G2)
c2

b2

G2 − G1

G2

β ≡ (λ2 + G2)(c
2 − b2) − α(b2 − a2)

λ1 + G1

λ1 + 2G1

P ≡ pa2

2β

(6-6.31)

To verify the solutions, consider the following special cases:

1. If the material properties of the plaque and the healthy artery are the same,
that is,

λ1 = λ2 = λ μ1 = μ2 = μ (a)

then

α = −(λ + 2G) β = (λ + G)(c2 − a2) P = pa2

2(λ + G)(c2 − a2)
(b)

A = C = P B = D = λ + G

G
c2P (c)

σrr = pa2(1 − c2r−2)

c2 − a2
σθθ = pa2(1 + c2r−2)

c2 − a2
(d)

which are exactly the same solutions for an artery without plaque [cf. Eq. (e)
in Example 6-6.2].

2. If the thickness of the plaque is very thin, that is,

a = b (e)
then

β = (λ2 + G2)(c
2 − a2) P = pa2

2(λ2 + G2)(c2 − a2)
(f)

C = P D = c2 λ2 + G2

G2
P (g)

σ 2
rr = pa2(1 − c2r−2)

c2 − a2
σ 2

θθ = pa2(1 + c2r−2)

c2 − a2
(h)

which are again the same solutions for an artery without plaque.

Significance of Active Stress. What is the fundamental difference between liv-
ing biological tissues and lifeless materials? As we have discussed in Chapter 4, all
lifeless materials are passive; but the muscle, when it is activated, may exert active
tensile stress even in the state of contraction. Now we are going to demonstrate
the effect of active stress in living biological tissue through an example.

Recall the full constitutive relation of the compressible muscle (Humphrey,
2002)

σij = σ
p

ij + Amimj (6-6.32)
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where σ is the total Cauchy stress (active plus passive); σp is the passive contri-
bution to the stress; A > 0 is the muscle tension in the direction m, which is a unit
vector in the direction of a muscle fiber in a deformed state (Eulerian discription).
For an axially symmetric and plane strain problem, let the direction of muscle
tension m coincide with the circumferential direction, namely, the θ direction. The
displacement vector has only one component

u = [ur, uθ , uz] = [U(r), 0, 0]

From the strain–displacement relations, Eqs. (2A-2.7), one may obtain

εrr = dU

dr
� U ′ εθθ = r−1U εzz = γrθ = γrz = γθz = 0 (6-6.33)

From the general stress–strain relation for linear isotropic elastic solid in
cylindrical coordinates, the Cauchy stress tensor for muscle can be obtained as
[cf. Eq. (6-6.32)]

σrr � σr = (λ + 2G)U ′ + λr−1U

σθθ � σθ = (λ + 2G)r−1U + λU ′ + A

σzz � σθ = λ(U ′ + r−1U)

(6-6.34)

The governing equation, Eq. (6-6.1), now leads to

dσr

dr
+ 1

r
(σr − σθ ) = (λ + 2G)(U ′′ + r−1U ′ − r−2U) − r−1A = 0 (6-6.35)

The solution of this differential equation has two parts: the homogeneous solution
and the particular solution, which is obtained as

U = Cr + Dr−1 + αr ln r (6-6.36)

where the active stress ratio is defined as

α ≡ A

2(λ + 2G)
(6-6.37)

The stresses are obtained as

σr = (λ + 2G)U ′ + λr−1U

= 2(λ + G)C − 2GDr−2 + α[2(λ + G) ln r + λ + 2G]
≡ 2(λ + G)C − 2GDr−2 + αF(r)

σθ = (λ + 2G)r−1U + λU ′ + A

= 2(λ + G)C + 2GDr−2 + α[2(λ + G) ln r + 3λ + 4G]
σz = λ(r−1U + U ′)

= 2λC + 2α[λ ln r + λ]

(6-6.38)



480 PLANE ELASTICITY IN POLAR COORDINATES

The boundary conditions σr(r = a) = −p and σr(r = b) = 0 lead to[
2(λ + G) −2Ga−2

2(λ + G) −2Gb−2

] [
C

D

]
=

[−p − αF(a)

−αF(b)

]
(6-6.39)

Then C and D are determined to be

C = a2b2

2(λ + G)(b2 − a2)

{
pb−2 − α[−b−2F(a) + a−2F(b)]

}
D = a2b2

2G(b2 − a2)
{p − α[F(b) − F(a)]}

(6-6.40)

For illustrative purpose, let the dimensionless parameters used in this example be

Poisson’s ratio: ν = 0.3

Outer radius/inner radius:
b

a
= 1.5

Active stress ratio:
A

E
= 0.4

Pressure/Young’s modulus:
p

E
= 0.1

(6-6.41)

For ν = 0.3, the two Lamé constants are calculated to be

λ = 3

5.2
E G = 1

2.6
E (6-6.42)

Define the normalized stresses, displacement, and position as

σ rr ≡ σrr

p

σ θθ ≡ σθθ

p

σ zz ≡ σzz

p

U ≡ U

a

r ≡ r − a

b − a

(6-6.43)

The normalized stresses and displacement as functions of normalized position with
and without active stress are plotted in Figs. 6-6.2 to 6-6.5. The curves in solid
lines are for the case with active stress, that is, when the muscle is activated, the
curves in broken lines are for the case without active stress, that is, the muscle
has not been activated. From Fig. 6-6.2, it is seen that at r = a, that is, r = 0,
the radial stress is equal to −p, that is, σ 11 = −1; and at r = b, σ 11 = 0. This
means in both cases the boundary conditions are satisfied and the only difference
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Figure 6-6.2

Figure 6-6.3

is quantitative. From Fig. 6-6.3, the circumferential stress σ 22 in case of no active
stress is monotonically decreasing with the radius r , which is a well-known solution
for the problem of cylindrical tube subjected to inner pressure. However, in case of
muscle being activated, the circumferential stress is monotonically increasing with
the radius. From Fig. 6-6.4, the longitudinal stress in case of no active stress is a
constant tensile stress, which means that a tensile stress in the z direction is needed
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Figure 6-6.4

Figure 6-6.5

to maintain the plane strain condition. On the contrary, in the case with active
stress, σ33 is a varying compressive stress. Actually this phenomenon can be seen
even more vividly in Fig. 6-6.5, from which it is seen that the radial displacement
ur = U(r) is positive in case of no active stress. Of course, it is positive simply
because the inner pressure pushes everything outward. However, when the muscle
is activated, the active stress, although a tensile stress, tends to squeeze the muscle
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fiber. That is why the radial displacement is smaller than the corresponding one in
the case of no active stress and even becomes negative. Once again this example
demonstrates the effect of active stress—the hallmark of living biological tissue.

Problem Set 6-6

1. Derive expressions for the radial and tangential components of displacement for the
problem of Example 6–6.2.

2. A thin circular disk is given, which has outer radius b and inner radius a. The hole is
expanded and a smooth, rigid plug of radius a + ε is inserted. Determine the stresses
in the disk for this problem of generalized plane stress (Fig. P6-6.2).

Figure P6-6.2

3. A cylinder is cast of thermoplastic material in a steel mold (Fig. P6-6.3). The material
solidifies at 210◦F. It is then cooled to room temperature, during which process the
material “shrinks” (by thermal contraction) around the steel core. Estimate the maximum
normal stress in the cylinder. The steel core has a 2-in. radius, and the plastic cylinder
an original radius of 4 in. The coefficient of linear expansion is k = 0.0002 in./in./◦F.
E = 105 psi, ν = 0.5.

4. Noting that the radial body force for a solid constant-thickness (thin) rotating disk is
R = ρω2r , where ρ is the mass density and ω is the angular frequency, show that a
solution of the elasticity problem is given by rσr = F , σθ = (dF/dr) + ρω2r2, where
F satisfies the equation

r2 d2F

dr2
+ r

dF

dr
− F = −(3 + ν)ρω2r3 (a)

Hence, show that the solution for F is

F = Ar + B

r
− (3 + ν)ρω2r3

8
(b)

Derive expressions for the constants A and B for the solid disk (Fig. P6-6.4).
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Figure P6-6.3

Figure P6-6.4

5. A steel disk with a hole 2 in. in diameter is shrunk on a shaft 2.003 in. in diameter.
The disk has a constant thickness, and its outside diameter is 20 in. Assuming that the
shaft is rigid, calculate the angular velocity at which the disk will become loose on
the shaft (see Problem 4).
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6. Consider the Airy stress function F = Ar2 log r , where (r, θ ) are polar coordinates.

(a) Compute the associated stress components (σr, σθ , τrθ ).

(b) Is the above Airy stress function a possible solution to a boundary value problem
of a complete ring (a ≤ r ≤ b, 0 ≤ θ ≤ 2π )? Explain.

(c) Is the above Airy stress function a possible solution to a boundary value problem
of a disk (0 ≤ r ≤ b, 0 ≤ θ ≤ 2π )? Explain.

(d) Is the above Airy stress function a possible solution to a boundary value problem
of an incomplete ring (a ≤ r ≤ b, 0 ≤ θ ≤ θ0 < 2π )? Explain.

7. Plain strain axisymmetric deformation of a circular cylinder: The cylinder has an inner
radius a and an outer radius b. The inside of the cylinder is restrained such that the
radial displacement is zero at r = a. The outside is subjected to a pressure p. Determine
the stress σr , σθ , and σz as functions of r .

8. A thin circular disk has outer radius b and inner radius a (similar to Fig. P6-6.2).
The radial displacement u at r = a is zero. The outer boundary (r = b) is subjected to
pressure p and is otherwise unconstrained. Determine the stress components (σr, σθ ) as
functions of polar coordinate r. Hint : See Eqs. (6-6.4) and (6-6.5), and note that the
boundary conditions must be satisfied. The problem is one of plane stress in the plane
of the disk.

9. A thin circular annulus (inner radius = a; outer radius = b) is subjected to a temperature
distribution T defined by the relation kT = A(r2 − a2), where k and A are known con-
stants. Derive expressions for the polar coordinate stress components (σr, σθ , τrθ ). Hint :
The compatibility equation for the axisymmetric plane stress problem is d(rεθ )/dr = εr .

10. Let the disk of Problem 8 be subjected to pressure p at its inner surface (r = a), which
is now unconstrained. Let the outer radius be fixed so that the radial displacement u = 0.
Determine (σr , σθ ) as functions of r .

11. In addition to the constraints and load of Problem 8, let the disk be subjected to the
temperature distribution T defined by kT = A(r2 − a2), where k and A are known
constants (see Problem 9). Determine the polar stress components (σr , σθ ) as functions
of r .

12. Determine and plot the displacement U and stresses σrr , σθθ , and σzz as functions of r

in the artery wall with atheromatous plaque for the following two cases:

(a) a = 1.0, b = 1.1, c = 1.2, λ1 = λ2 = G1 = G2 = p = 1

(b) a = 1.0, b = 1.1, c = 1.2, λ2 = G2 = p = 1, λ1 = G1 = 2

13. Let the muscle tension A in Eq. (6-6.34) be replaced by 0.2 Er/a. Find the significance
of active stress by determining and plotting the displacement U and stresses σrr , σθθ ,
and σzz as functions of r . Use the following parameters: p/E = 0.1, ν = 0.3, b/a = 1.5.

6-7 Plane Elasticity Equations in Terms of Displacement Components

In this section we develop the plane stress equilibrium equations for an isotropic
homogeneous elastic material in the absence of temperature effects. In Section 6-9
we consider the plane stress problem of a variable-thickness disk of nonhomoge-
neous anisotropic material.
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For plane stress, the stress–strain equilibrium equations in polar coordinates
(r, θ ), in the absence of temperature effects, are [see Eqs. (6-4.4)]

σr = E

1 − ν2
(εr + νεθ )

σθ = E

1 − ν2
(εθ + νεr)

τrθ = Gγrθ = E

2(1 + ν)
γrθ

(6-7.1)

where (σr, σθ , τrθ ) and (εr, εθ , γrθ ) denote polar coordinate components of stress
and strain, respectively, and where ν denotes Poisson’s ratio, E Young’s modu-
lus, and G the shear modulus. The strain–displacement relations in plane polar
coordinates are [Eq. (6-3.5)]

εr = ur εθ = u

r
+ 1

r
vθ

γrθ = 1

r
uθ + vr − v

r

(6-7.2)

where (u, v) denote (r, θ ) components of displacement, and where (r, θ ) subscripts
on (u, v) denote differentiation relative to (r, θ ). Substitution of Eqs. (6-7.2) into
Eqs. (6-7.1) yields

σr = E

1 − ν2

(
ur + ν

u

r
+ ν

vθ

r

)
σθ = E

1 − ν2

(u

r
+ vθ

r
+ νur

)
τrθ = E

2(1 + ν)

(uθ

r
+ vr − v

r

) (6-7.3)

The equilibrium equations are, with h = constant [see Eqs. (6-1.1)],

∂σr

∂r
+ 1

r

∂τrθ

∂θ
+ σr − σθ

r
+ Br = 0

∂τrθ

∂r
+ 1

r

∂σθ

∂θ
+ 2τrθ

r
+ Bθ = 0

(6-7.4)

Substitution of Eqs. (6-7.3) into Eqs. (6-7.4) yields

E

1 − ν2

[
urr + ur

r
− u

r2
+ (1 + ν)vrθ

2r
− (3 − ν)vθ

2r2
+ (1 − ν)uθθ

2r2

]
+ Br = 0

E

1 − ν2

[
(1 + ν)urθ

2r
+ (3 − ν)uθ

2r2
+ (1 − ν)vrr

2

+ (1 − ν)vr

2r
− (1 − ν)v

2r2
+ vθθ

r2

]
+ Bθ = 0 (6-7.5)
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In Eqs. (6-7.4) and (6-7.5) we have denoted body forces in the (r, θ ) directions
by (Br, Bθ ), respectively. Equations (6-7.5) are the equilibrium equations for plane
stress problems in terms of displacement components (u, v) relative to polar coordi-
nates (r, θ ). They form the basis for study of plane stress boundary value problems
in polar coordinates. For the classical axisymmetric problem, u = u(r), v = 0. Then
Eqs. (6-7.5) reduce to the single equation

E

1 − ν2

(
d2u

dr2
+ 1

r

du

dr
− u

r2

)
+ Br = 0 (6-7.6)

For Br = 0, Eq. (6-7.6) may be written

d

dr

[
1

r

d

dr
(ru)

]
= 0

and direct integration yields the solution

u = C1r + C2

r
(6-7.7)

where the constants C1, C2 are determined by boundary conditions. For example,
by Eqs. (6-7.3) and (6-7.7), we obtain, because v = 0,

σr = EC1

1 − ν
− EC2

1 + ν

1

r2

σθ = EC1

1 − ν
+ EC2

1 + ν

1

r2

(6-7.8)

With the boundary conditions σr = −p0 for r = b, σr = −pi for r = a, we obtain
(see Example 6-6.2)

C1 = 1 − ν

E

(
pia

2 − p0b
2

b2 − a2

)

C2 = 1 + ν

E

[
a2b2(pi − p0)

b2 − a2

] (6-7.9)

Example 6-7.1. Stresses in a Rotating Disk Subjected to a Temperature
Gradient. A thin solid disk of radius a rotates about an axis through its center
r = 0 with a constant angular velocity ω. It is also subjected to a temperature field
T defined by the relation T = T0r/a, where T0 is a constant. We wish to determine
the stresses in the disk and the increase of its diameter resulting from these effects.

The radial body force is R = ρrω2, and because ω = constant (α = 0), the
tangential body force � = 0 (see Section 6-6). Hence by Eqs. (6-6.8) and (6-6.9),
we have

1

r2

d

dr
(r2σr) = 1

r
(σr + σθ ) − ρrω2 (a)

1

r2

d

dr
(r2τrθ ) = 0 (b)
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By Eq. (6-4.5), for plane stress we have (with Br = R = ρrω2 and Bθ = � = 0)

1

r

d

dr

{
r

[
d

dr
(σr + σθ + EkT ) + (1 + ν)ρrω2

]}
= 0 (c)

Solving Eqs. (a) and (c) for (σr, σθ ), with T = T0r/a, we find by the procedure
used to obtain Eqs. (6-6.13) and (6-6.15), because A = 0,

σr = C

r2
+ B

2
− 3 + ν

8
ρr2 ω2 − Ek

3
T0

r

a
(d)

σθ = − C

r2
+ B

2
− 1 + 3ν

8
ρr2 ω2 − 2

3
EkT0

r

a
(e)

Integration of Eq. (b) yields

τrθ = D

r2
(f)

where D is a constant.
The boundary conditions at r = a are σr = 0 and τrθ = 0. With these conditions,

Eqs. (d) and (f) yield

C

a2
+ B

2
= 3 + ν

8
ρa2 ω2 + Ek

3
T0 (g)

D = 0 (h)

At r = 0, u = 0. Hence, we must obtain an expression for u in terms of (σr, σθ )
or constants C and B.

For plane stress, the strain–displacement relations are by the first two of Eqs.
(6-4.4)

εr = du

dr
= 1

E
(σr − νσθ ) + kT (i)

εθ = u

r
= 1

E
(σθ − νσr) + kT (j)

Equation (j) yields

u = 1

E
(rσθ − νrσr) + kT r (k)

For r = 0, Eqs. (d), (e), and (k) yield

u = 0 = 1

E

(
−C

0
− ν

C

0

)
(l)

Consequently, in order for u to be zero, C = 0. Hence Eq. (g) yields

B = 3 + ν

4
ρa2 ω2 + 2EkT0

3
(m)
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and Eqs. (d), (e), and (m) give

σr = 3 + ν

8
ρω2(a2 − r2) + EkT0

3

(
1 − r

a

)
(n)

σθ = ρω2

8
[(3 + ν)a2 − (1 + 3ν)r2] + EkT0

3

(
1 − 2r

a

)
(o)

By Eqs. (k), (n), and (o), the general expression for u is

u = (1 − ν)ρω2r

8E
[(3+ ν)a2 − (1 + ν)r2] + kT0r

3

(
1 + r

a

)
− νkT0r

3

(
1− r

a

)
(p)

Thus, for r = a,

u = 1 − ν

4
ρa3ω2 + 2

3
kT0a

and the increase in the diameter of the disk is

� d = 2u = 1 − ν

2
ρa3 ω2 + 4

3
kT0a (q)

6-8 Plane Theory of Thermoelasticity

The plane theory of thermoelasticity is based on assumptions equivalent to those
of plane elasticity theory. Consequently, plane thermoelasticity consists of two
cases: plane strain and plane stress (or, more generally, generalized plane stress).

Plane Strain. We recall that a body is in a state of plane strain parallel to
the (x, y) plane if the z displacement component w is constant and if (u, v), the
(x, y) components of displacement, are functions of (x, y) only. Consequently,
the strain–displacement relations in (x, y) coordinates reduce to

εx = ∂u

∂x
εy = ∂v

∂y
εz = 0

γxy = ∂u

∂y
+ ∂v

∂x
γxz = γyz = 0

(6-8.1)

Substituting Eqs. (6-8.1) into the equations of thermoelasticity (see Section 4-12
in Chapter 4), we obtain relations for the plane strain theory of thermoelasticity.

In cylindrical coordinates (r, θ, z) the plane strain condition is expressed by the
relations

u = u(r, θ) v = v(r, θ) w = const.

Hence, the strain–displacement relations in cylindrical coordinates are [see Eqs.
(2A-2.7) in Chapter and (6-7.2)]

εr = ∂u

∂r
εθ = u

r
+ 1

r

∂v

∂θ
εz = 0

γrθ = 1

r

∂u

∂θ
+ ∂v

∂r
− v

r
γrz = γθz = 0

(6-8.2)
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The stress–strain–temperature relations in cylindrical coordinates are [see Eqs.
(4-11.6) and (6-4.2)]

εr = E−1[σr − ν(σθ + σz)] + kT γrθ = G−1τrθ

εθ = E−1[σθ − ν(σr + σz)] + kT γrz = γθz = 0

εz = E−1[σz − ν(σr + σθ )] + kT

(6-8.3)

For plane strain εz = 0; hence, the last of Eqs. (6-8.3) yields

σz = ν(σr + σθ ) − EkT (6-8.4)

Substitution of Eq. (6-8.4) into Eqs. (6-8.3) yields the stress–strain–temperature
relations for plane strain:

εr = E−1[(1 − ν2)σr − ν(1 + ν)σθ ] + (1 + ν)kT

εθ = E−1[(1 − ν2)σθ − ν(1 + ν)σr ] + (1 + ν)kT

γrθ = G−1τθ

(6-8.5)

For axisymmetric problems v = 0 and ∂/∂θ = 0, and Eqs. (6-8.2) are modified
accordingly. Consequently, u and T are functions of r only.

For axially symmetric plane strain in the absence of body forces, the equilibrium
equations reduce to the single equation [see Eqs. (3A-2.7) and (2A-2.7) and let
∂/∂θ = 0, v = 0]

dσr

dr
+ σr − σθ

r
= 0 (6-8.6)

Substituting Eqs. (6-8.2) into Eqs. (6-8.5), solving Eqs. (6-8.5) for (σr, σθ ), and
substituting the resulting equations into the equilibrium equation [Eq. (6-8.6)], we
obtain

d2u

dr2
+ 1

r

du

dr
− u

r2
= 1 + ν

1 − ν

d(kT )

dr

Rewriting this equation, we obtain

d

dr

[
1

r

d(ru)

dr

]
= 1 + ν

1 − ν

d(kT )

dr
(6-8.7)

Integration of Eq. (6-8.7) yields

u =
(

1 + ν

1 − ν

)
1

r

∫ r

a

ρkT dρ + Ar + B

r
(6-8.8)

Equations (6-8.7) and (6-8.8) and corresponding modifications of the equations of
Section 4-12 in Chapter 4 summarize the plane strain theory of thermoelasticity.
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Plane Stress. A body is in a state of plane stress in the (x, y) plane if σz =
τxz = τyz = 0. Substitution of these conditions into the general thermoelasticity
theory of Section 4-12 in Chapter 4 yields the corresponding equations of plane
stress thermoelasticity.

In cylindrical coordinates, the stress–strain–temperature relations for plane
stress are [see Eqs. (6-8.3)]

εr = E−1(σr − νσθ ) + kT

εθ = E−1(σθ − νσr) + kT

εz = − ν

E
(σr + σθ ) + kT

(6-8.9)

Inverting the first two of Eq. (6-8.9), we obtain

σr = E

1 − ν2
(εr + νεθ ) − EkT

1 − ν

σθ = E

1 − ν2
(εθ + νεr) − EkT

1 − ν

(6-8.10)

Substitution of Eqs. (6-8.10) into the last of Eqs. (6-8.9) yields

εz = −ν

1 − ν
(εr + εθ ) + 1 + ν

1 − ν
kT (6-8.11)

Equation (6-8.6) is the equilibrium condition for axially symmetric plane stress
thermoelasticity, as σz = τrz = ττz = 0. Also, because v = 0, and ∂/∂θ = 0 for
axial symmetry, the strain–displacement relations [Eqs. (6-8.2)] reduce to

εr = du

dr
εθ = u

r
(6-8.12)

where u is the displacement in the r direction.
Substitution of Eqs. (6-8.12) and (6-8.10) into Eqs. (6-8.6) yields

d2u

dr2
+ 1

r

du

dr
− u

r2
= (1 + ν)

d(kT )

dr
(6-8.13)

Integration of Eq. (6-8.13) yields

u = (1 + ν)
1

r

∫ r

a

kT ρdρ + Ar + B

r
(6-8.14)

Equations to (6-8.9) to (6-8.14) and corresponding modifications of the equations
of Section 4-12 summarize the theory of plane stress thermoelasticity. Plane stress
thermoelasticity problems of radial heating of a thin circular disk and axial heating
of beams and strips are important in practice.
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Problem Set 6-8

1. ad(a) Show that u = ∑∞
n=0 an cos nθ , v = ∑∞

n=0 bn sin nθ , where (u, v) denote polar coor-
dinates (r, θ ) components of displacement and the coefficients an, bn are functions of
r only, is a possible solution of the plane stress equations of equilibrium expressed
in terms of displacement components (u, v).

(b) Derive the differential equations that define the coefficients an, bn.

2. Assume that the Airy stress function F is of the form F = f (θ ), where f (θ ) is a
function of θ , the polar coordinate angle of polar coordinates (r, θ ).

(a) Derive the explicit form for f (θ ) for the case of the plane stress problem of a
ring, in the region a ≤ r ≤ b, under uniform shearing stresses applied at the inner
(r = a) and outer (r = b) surfaces of the ring. Neglect body forces and inertia
forces.

(b) Derive explicit expressions for displacement components (u, v) relative to polar
coordinates (r, θ ), respectively, expressing the results in terms of the applied stresses
and the radii a and b.

3. A thin circular disk of radius a is subjected to a temperature distribution

T = T0

(
1 − r

a

)

where T0 is a known constant. The compatibility equation for axisymmetric polar coor-
dinate problems with thermal effects is

1

r

d

dr

(
r

dF

dr

)
= −EkT + C

where k is the coefficient of thermal expansion and C is an unknown constant of
integration (to be determined by boundary conditions). Determine the change in diameter
of the disk due to the applied temperature.

4. Derive the compatibility equation given in Problem 3.

5. A long mine tunnel of radius a is cut in deep rock. Before the tunnel is cut, the rock is
subjected to uniform pressure p. Considering the rock to be an infinite, homogeneous
elastic medium with elastic constants E and ν, determine the inward radial displacement
at the surface of the tunnel due to the excavation.

6. A circular annular disk rotates with constant angular velocity ω about the axis O,
perpendicular to the plane of the disk (Fig. P6-8.6). The inner radius of the disk is
located at r = a, the outer radius at r = b. The inside radius is restrained to prevent
radial displacement. Assume that a state of plane stress relative to the plane of the
disk exists.

(a) Derive the equations of motion of the disk in terms of displacement components
relative to polar coordinates (r, θ ).

(b) Integrate the equations to determine the radial displacement u.

(c) Determine the constants of integrations.
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Figure P6-8.6

7. Modify the equations of Section 4-12 in Chapter 4 for plane strain. Repeat for plane
stress.

8. Let T = T (r, θ) for a plane thermoelasticity problem in polar coordinates (r, θ ). Deter-
mine an explicit expression for T (r, θ) for the steady-state case in absence of heat
source, expressing T (r, θ) in the form T = T1(r) + T2(r, θ), where T1(r) is the part of
T (r, θ) dependent upon r alone. That is, show that

T1(r) = A0 + B0 log r

T2(r, θ) =
∞∑

n=1

[(Anr
n + Bnr

−n) cos nθ + (Cnr
n + Dnr

−n) sin nθ ]

where An,Bn, Cn,Dn are constants.

9. In Problem 8 set all constants except B1 and D1 equal to zero. For the resulting tem-
perature field, determine the stress produced in a hollow circular cylinder defined by
cylindrical coordinates (r, θ, z) the z axis coinciding with the longitudinal axis of the
cylinder. Assume that axial displacement of the cylinder is prevented.

10. A nuclear fuel element in the form of a solid right-circular cylinder is free to expand
laterally but not axially. It is subjected to a radiation heat source in the form of the
Gaussian distribution

Q = Ae−α2r2

where α2 is a constant and r is the radial coordinate. Generally, α2 � 1. Compute
the temperature distribution T . What reasonable approximation may be used for T ?
Determine the stress distribution in the cylinder. What practical restriction must be
imposed on A?
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11. A solid plane circular disk of radius a is subjected to the temperature distribution T

given by kT = A + Br cos θ + Cr sin θ , where A,B,C are constants and (r, θ ) are
polar coordinates with origin at the center of the disk. The disk is not restrained at its
boundary r = a.

(a) Show that the solution of the plane stress problem of the disk is σr = σθ =
τrθ = 0.

(b) Derive explicit expressions for the radial and tangential displacement components
(u, v), respectively.

(c) Write the boundary conditions that determine the arbitrary constants of integration
of part (b).

6-9 Disk of Variable Thickness and Nonhomogeneous
Anisotropic Material

In this section we treat the variable-thickness elastic disk made of nonhomogeneous
anisotropic material relative to polar coordinates (r, θ ). We assume that the stress
components and body forces are functions of radial distance r from the center of
the disk.

The equilibrium equations are [Eqs. (6-1.1)]

d

dr
(hσr) + h

r
(σr − σθ ) + hBr = 0

d

dr
(hτrθ ) + 2h

r
τrθ + hBθ = 0

(6-9.1)

where (σr, σθ , τrθ ) denote stress components relative (r, θ ) coordinates, h = h(r)

denotes the disk thickness, and (Br, Bθ ) denote the body forces per unit volume in
the (r, θ ) directions, respectively.

For the material being considered, the stress–strain-temperature relations are

σr = C11εr + C12εθ + C13γrθ − C1T

σθ = C12εr + C22εθ + C23γrθ − C2T

τrθ = C13εr + C23εθ + C33γrθ − C3T

(6-9.2)

where Cij = Cji = Cij (r) are elastic constants, Ci = Ci(r) are thermoelastic con-
stants, T = T (r) denotes temperature, and (εr , εθ , γrθ ) are strain components.

Inverting Eqs. (6-9.2), we obtain

εr = S11σr + S12σθ + S13τrθ + k1T

εθ = S12σr + S22σθ + S23τrθ + k2T

γrθ = S13σr + S23σθ + S33τrθ + k3T

(6-9.3)
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where (k1, k2, k3) are linear thermal expansion coefficients related to Ci and Cij

by the relations

Ck1 = C1

∣∣∣∣C22 C23

C23 C33

∣∣∣∣ − C2

∣∣∣∣C12 C13

C23 C33

∣∣∣∣ + C3

∣∣∣∣C12 C13

C22 C23

∣∣∣∣
Ck2 = −C1

∣∣∣∣C12 C23

C13 C33

∣∣∣∣ + C2

∣∣∣∣C11 C13

C13 C33

∣∣∣∣ − C3

∣∣∣∣C11 C13

C12 C23

∣∣∣∣
Ck3 = C1

∣∣∣∣C12 C22

C13 C23

∣∣∣∣ − C2

∣∣∣∣C11 C12

C13 C23

∣∣∣∣ + C3

∣∣∣∣C11 C12

C12 C22

∣∣∣∣
(6-9.4)

and

S11 = 1

C

∣∣∣∣C22 C23

C23 C33

∣∣∣∣ S12 = S21 = − 1

C

∣∣∣∣C12 C13

C23 C33

∣∣∣∣
S13 = S31 = 1

C

∣∣∣∣C12 C13

C22 C23

∣∣∣∣ S22 = 1

C

∣∣∣∣C11 C13

C13 C33

∣∣∣∣
S23 = S32 = − 1

C

∣∣∣∣C11 C13

C12 C23

∣∣∣∣ S33 = 1

C

∣∣∣∣C11 C12

C12 C22

∣∣∣∣
C =

∣∣∣∣∣∣
C11 C12 C13

C12 C22 C23

C13 C23 C33

∣∣∣∣∣∣

(6-9.5)

For the type of problem considered here, u = u(r) and v = v(r). Then Eqs.
(6-3.5) reduce to

εr = u′ εθ = u

r
γrθ = v′ − v

r
(6-9.6)

where primes denote derivatives with respect to r .
Equations (6-9.1), (6-9.2), and (6-9.6) yield

σr = C11u
′ + C12

u

r
+ C13

(
v′ − v

r

)
− C1T

σθ = C12u
′ + C22

u

r
+ C23

(
v′ − v

r

)
− C2T

τrθ = C13u
′ + C23

u

r
+ C33

(
v′ − v

r

)
− C3T

(6-9.7)

and

u′′ + R1u
′ + R2u + R3v

′′ + R4v
′ + R5v = R6

v′′ + P1v
′ + P2v + P3u

′′ + P4u
′ + P5u = P6

(6-9.8)
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where
rR1 = 1 + r

C11
C

′
11

r2R2 = r

C11
C

′
12 − C22

C11

R3 = C13

C11

rR4 = r

C11
C

′
13 − C23

C11
rR5 = −R4

R6 = 1

C11

[
−Br + C1T

′ +
(

C
′
1 + C1

r
− C2

r

)
T

]

rP1 = 1 + r

C33
C

′
33

rP2 = −P1

P3 = C13

C33

rP4 = 2C13 + C23

C33
+ r

C3
C

′
13

r2P5 = C23

C33
+ r

C33
C

′
23

P6 = 1

C33

[
−Bθ +

(
2C3 + rC

′
3

r

)
T + C3T

′
]

(6-9.9)

where
Cij = hCij Ci = hCi Br = hBr Bθ = jBθ (6-9.10)

If the disk rotates with angular velocity ω and angular acceleration α,

Br = ρω2 Bθ = −ραr (6-9.11)

where ρ denotes mass per unit volume.

Boundary Conditions. We consider two cases.

Case 1.

For r = a: σr = σa τrθ = τa

For r = b: σr = σb τrθ = τb

(6-9.12)

where σa, σb, τa, τb are prescribed constants.

Case 2.

For r = a: u = ua v = va

For r = b: σr = σb τrθ = τb

(6-9.13)

where σb, τb, ua, va are prescribed constants.
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Substitution of Eqs. (6-9.7) into Eqs. (6-9.12) and (6-9.13) yields the boundary
conditions in terms of (u, v) in the following form:

Case 1. For r = a,

C11u
′ + C12

u

a
+ C13

(
v′ − v

a

)
− C1Ta = σa

C13u
′ + C23

u

a
+ C33

(
v′ − v

a

)
− C3Ta = τa

(6-9.14)

where Ta = T evaluated at r = a. For r = b,

C11u
′ + C12

u

b
+ C13

(
v′ − v

b

)
− C1Tb = σb

C13u
′ + C23

u

b
+ C33

(
v′ − v

b

)
− C3Tb = τb

(6-9.15)

where Tb = T evaluated at r = b.

Case 2. For r = a.
u = ua v = va (6-9.16)

For r = b,
C11u

′ + C12
u

b
+ C13

(
v′ − v

b

)
− C1Tb = σb

C13u
′ + C23

u

b
+ C33

(
v′ − v

b

)
− C3Tb = τb

(6-9.17)

Equations (6-9.8) with appropriate boundary conditions [Eqs. (6-9.14) and
(6-9.15) or Eqs. (6-9.16) and (6-9.17)] define the described disk problem for plane
stress with nonhomogeneous anisotropic material. If C13 = C23 = 0 and v = 0, the
above theory reduces to the axisymmetric plane stress problem of the orthotropic
disk. If C13 = C23 = 0 and v = 0, the above theory uncouples into two problems,
one that defines u and the other that defines v. The defining equations for the u

problem are the first of Eqs. (6-9.8) with R3 = R4 = R5 = 0 and the boundary
conditions σr = σa for r = a, σr = σb for r = b [Case 1, Eq. (6-9.12)], or u = ua

for r = a, σr = σb for r = b [Case 2, Eq. (6-9.13)]. The defining equations
for v are the second of Eqs. (6-9.8) with P3 = P4 = P5 = 0 and the boundary
conditions τrθ = τa for r = a, τrθ = τb for r = b [Case 1, Eq. (6-9.12)], or v = va

for r = a, τrθ = τb for r = b [Case 2, Eq. (6-9.13)]. The finite difference method
may be used to solve the boundary value problem described above.

Problem Set 6-9

1. An annular plane region R defined by a ≤ r ≤ b is subjected to uniform pressure pa

at r = a and pb at r = b. The stress–strain relations of the material relative to polar
coordinates (r, θ ) are

σr = C11εr + C12εθ

σθ = C12εr + C22εθ

τrθ = C33γrθ
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where Cij are constant elastic coefficients.

(a) Considering the physical nature of the problem, express the equilibrium equations in
terms of (u, v), the (r, θ ) displacement components.

(b) Show that the radial displacement component u is of the form

u = Ar−n + Brn

where n is an explicit function of the elastic constants Cij and (A, B) are constants.

(c) Write the conditions that define the constants A and B.

6-10 Stress Concentration Problem of Circular Hole in Plate

The general solution for the Airy stress function [Eq. (6-5.5)] includes a number
of special cases of importance (Section 6-11). In this section we single out the
particularly important problem of a plane rectangular region with interior circular
hole and subjected to uniformly distributed edge stresses (Kirsch, 1898). As a
special case of this problem, we treat in detail the case of uniformly distributed
normal stress along two opposite edges (Fig. 6-10.1). More generally, normal stress
and shear stress may be distributed uniformly along all edges. We assume that the
hole is sufficiently small compared to typical overall dimensions of the region
so that there exists regions far removed from the hole in which the stresses are
essentially unaffected by the hole. Hence, for a circle r = b scribed in the region
(b � a), the stress distribution is obtained by considering the equilibrium state of
an element (Fig. 6-10.2). Thus, we find

N = σ cos2 θ = σ

2
(1 + cos 2θ)

S = −σ sin θ cos θ = −σ

2
sin 2θ

(6-10.1)

For simplicity, we may consider the stress components [Eq. (6-10.1)] as the sum
of two stress states (Fig. 6-10.3)

N = N1 + N2

S = S1 + S2
(6-10.2)

where
N1 = σ

2
S1 = 0 (6-10.3)

and
N1 = σ

2
cos 2θ S2 = −σ

2
sin 2θ (6-10.4)

The stress distribution for state 1 is described by the results of Example (6-6.2),
with pi = 0, p0 = −σ /2, and a � b. The stress distribution of state 2 may be
described by the Airy stress function

F(r, θ) = f (r) cos 2θ (6-10.5)
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Figure 6-10.1

Figure 6-10.2

Substitution of Eq. (6-10.5) into the compatibility equation ∇2∇2F = 0 yields the
equation for f (r):

(
d2

dr2
+ 1

r

d

dr
− 4

r2

) (
d2f

dr2
+ 1

r

df

dr
− 4f

r2

)
= 0
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the solution of which is
f (r) = Ar2 + Br4 + C

1

r2
+ D (6-10.6)

Hence,

F(r, θ) =
(

Ar2 + Br4 + C
1

r2
+ D

)
cos 2θ (6-10.7)

Equation (6-10.7) corresponds to the term in the first summation of Eq. (6-5.5),
with n = 2, where A, B, C, D are constants to be determined by the boundary
conditions for state 2 (Fig. 6-10.3).

The stress components for state 2 are, by Eqs. (6-10.7) and (6-2.2),

σr = −
(

2A + 6C

r4
+ 4D

r2

)
cos 2θ

σθ =
(

2A + 12Br2 + 6C

r4

)
cos 2θ

τrθ =
(

2A + 6Br2 − 6C

r4
− 2D

r2

)
sin 2θ

(6-10.8)

Accordingly, with Eqs. (6-10.8) and the boundary conditions

σr = τrθ = 0 for r = a

σr = 1
2σ cos 2θ τrθ = − 1

2σ sin 2θ for r = b
(6-10.9)

the values of A, B, C, D are

A = −σ

4
B = 0 C = −a4

4
σ D = a2

2
σ (6-10.10)

Then superposition of Eqs. (6-10.8) and Eqs. (b) of Example 6–6.2 [with Eqs. (d)
under the conditions that pi = 0, p0 = −(σ/2) and b � a] yields the stress state
in the plane region with small circular hole (Fig. 6-10.1):

σr = σ

2

(
1 − a2

r2

)
+ σ

2

(
1 + 3a4

r4
− 4a2

r2

)
cos 2θ

σθ = σ

2

(
1 + a2

r2

)
− σ

2

(
1 + 3a4

r4

)
cos 2θ

τrθ = −σ

2

(
1 − 3a4

r4
+ 2a2

r2

)
sin 2θ

(6-10.11)

We note that as r → b (� a), the stress state given by Eqs. (6-10.11) satisfies
the conditions for r = b [Eqs. (6-10.1)]. Also for r = a,

σr = τrθ = 0 σθ = σ(1 − 2 cos 2θ)

For θ = π /2, 3π /2, σθ attains its maximum value of (σθ )max = 3σ . [In general,
(σθ )max = kσ , where k is called the stress concentration factor .] For θ = 0, π, σθ
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Figure 6-10.4

attains a compressive value of −σ . Thus, σθ attains a maximum tensile value of
three times the uniformly distributed stress σ , at the hole r = a, for θ = π /2, 3π /2
(Fig. 6-10.4).

Because for θ = π /2, 3π /2, σθ = (σ /2)(2 + a2/r2 + 3a4/r4), σθ → σ rapidly
as r increases. Hence, the effect of the hole is of local character, the hole producing
a stress concentration effect that increases the maximum stress several fold in the
vicinity of the hole over the nominal stress value σ .

By superposition, we may also show (σθ )max = 2σ everywhere at the boundary
of the hole, when uniform tensile stress σ is applied along all straight edges of the
plate. Furthermore, if a uniform compressive stress of magnitude σ is applied to
two opposite edges (say, the horizontal edges in Fig. 6-10.1) and a uniform tensile
stress σ is applied simultaneously to the other edges (Fig. 6-10.1), at the hole, then

σθ = 4σ for θ = π/2, 3π/2

σθ = −4σ for θ = 0, π

The large stress concentration effect that occurs at small holes in structural elements
is of considerable importance to the designer. Much effort is expended to determine
these effects and to design elements that minimize such effects (Savin, 1961).2

2Savin’s book is devoted entirely to methods of calculating stress concentration factors around holes.
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The displacement components in the region may be determined by the method
noted in Section 6-6, that is, by direct integration of the strain–displacement rela-
tions [Eqs. (6-3.5)].

Plane Strain under General Loading. More generally, the stress concentration
problem of a circular hole in a plate subject to boundary stresses σx, σy, τxy may
be solved by the method of superposition. For example, consider (x, y) axes with
origin at the center of the hole, with the x axis in the horizontal direction and the y

axis in the vertical direction (Figs. 6-10.1 and 6-10.4). On distant boundary planes
perpendicular to the x axis, stresses σx, τxy act, and on distant boundary planes
perpendicular to the y axis, stresses σy, τxy act. The stress components σx, σy, τxy

are assumed to act in the positive sense (see Fig. 3-2.2 in Chapter 3).
The stress components (σr, σθ , τrθ ) (see Fig. 6.1.1) at a point (r, θ ), as in

Fig. 6-10.4, are

σr =
(

σx + σy

2

)(
1 − a2

r2

)
+

(
σx − σy

2

) (
1 + 3a4

r4
− 4

a2

r2

)
cos 2θ

+ τxy

(
1 + 3a4

r4
− 4

a2

r2

)
sin 2θ

σθ =
(

σx + σy

2

)(
1 + a2

r2

)
−

(
σx − σy

2

) (
1 + 3a4

r4

)
cos 2θ (6-10.12)

− τxy

(
1 + 3a4

r4

)
sin 2θ

τrθ = −
(

σx − σy

2

) (
1 − 3a4

r4
+ 2a2

r2

)
sin 2θ + τxy

(
1 − 3a4

r4
+ 2a2

r2

)
cos 2θ

For plane strain, εz = 0. Hence,

σz = ν(σr + σθ ) (6-10.13)

The first two of Eqs. (6-10.12) and Eq. (6-10.13) yield

σz = ν

[
σx + σy − 2(σx − σy)

a2

r2
cos 2θ − 4a2

r2
τxy sin 2θ

]
(6-10.14)

For r = a, Eqs. (6-10.12) and (6-10.14) yield

σr = 0 τrθ = 0
σθ = σx + σy − 2(σx − σy) cos 2θ − 4τxy sin 2θ

σz = νσθ

(6-10.15)

The maximum, minimum values of σθ , hence σz, are given by the condition

tan 2θ = τxy

(σx − σy)
/

2
(6-10.16)
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For example, for τxy = 0, Eq. (6-10.16) yields tan 2θ = 0, or θ = 0 (or π ), π /2
(or 3π /2). Thus, by Eq. (6-10.15) we obtain

σθ = −σx + 3σy for θ = 0, π r = a (6-10.17)
and

σθ = 3σx − σy for θ = π/2, 3π/2 r = a (6-10.18)

For the cases (σx = σ, σy = 0), (σx = σy = σ ) and (σx = −σy = σ ), Eqs. (6-10.17)
and (6-10.18) yield the results obtained in the discussion following Eqs. (6-10.12).
For σx = σy = 0, σθ = −4τxy sin 2θ . Hence,

(σθ )max = 4τxy for θ = 3π/4 r = a

(σθ )min = −4τxy for θ = π/4 r = a
(6-10.19)

Applications of Eqs. (6-10.12) to rock mechanics problems have been given by
Leeman and Hayes (1966) and to deep mine shaft problems by Chan and Beus
(1985).

Large Holes. Equations (6-10.11) and (6-10.12) are applicable for the condition
a � b; that is, for small circular holes relative to the loaded regions (Fig. 6-10.1).
For a large hole (the radius of the hole being large compared to the smallest
dimension of the region, which is the lateral width w in Fig. 6-10.4), these equations
and the associated concentration factors are no longer valid. Chong and Pinter
(1984) employed finite elements to investigate the effect of the ratio a/w (hole
radius/width of strip) on the stress concentration factor k for the loading shown in
Fig. 6-10.4. They found that in the range of a/w from 0.3 to 0.9, k varies from
3.44 to 19.50, respectively. As the ratio a/w approaches 0.99, k increases to 163.
For small values of a/w (< 0.1), k becomes essentially constant and equal to
approximately 3. An extensive literature survey, including experimental results, is
also presented in Chong and Pinter (1984).

Problem Set 6-10

1. A very large plate has a small circular hole in it. At a long distance from the hole,
σx = 20 kips/in.2, σy = 30 kips/in.2, τxy = 0. Calculate the maximum tensile stress in
the plate adjacent to the hole.

2. Consider the Airy stress function F = f (r) cos 2θ , where (r, θ ) are polar coordinates and
f (r) is a function of r only.

(a) Derive the differential equation that defines f (r).

(b) Show that f (r) = C1r
2 + C2R

4 + C3(1/r2) + C4 is the solution of the differential
equation of part (a).

(c) Consider the polar coordinate region bounded by the θ coordinate lines r = a,

r = b, a < b. Determine the equations that define C1, C2, C3, C4, supposing that
σr = τrθ = 0 for r = a, and σr = σ cos 2θ, τrθ = −σ sin 2θ for r = b, where σ is a
known constant.
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6-11 Examples

A large number of special cases of the general solution of Eq. (6-5.5) find impor-
tant practical applications in practice. Rather than discuss these cases in detail, we
merely note briefly some important specializations of Eq. (6-5.5) and the corre-
sponding applications.

Example 6-11.1. Pure Bending of Curved Bars. The Airy stress function [see
Eq. (6-6.4)]

F = A log r + Br2 log r + Cr2 + D (E6-11.1)

may be used to study the problem of pure bending of curved bars (Fig. E6-11.1).
The corresponding stress components are given by Eqs. (6-6.5). The constants
A, B, and C are determined from the boundary conditions (the beam has unit
thickness)

σr = 0 r = a, b∫ b

a

σθdr = 0
∫ b

a

σθ rdr = −M

τrθ = 0 on all boundaries

(E6-11.2)

Figure E6-11.1
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Hence, the stress components are then defined by Eqs. (6-6.5) with

A = −4M

N
a2b2 log

b

a

B = −2M

N
(b2 − a2)

C = M

N
[b2 − a2 + 2(b2 log b − a2 log a)]

N = (b2 − a2)2 − 4a2b2
(

log
b

a

)2

(E6-11.3)

The strain components may be obtained for either plane strain or plane stress con-
ditions. The displacement components may be obtained then by direct integration
of the strain–displacement relations [Eqs. (6-3.5)].

Example 6-11.2. Circular Cantilever Beam. The Airy stress function

F(r, θ) = f (r) sin θ (E6-11.4)

may be used to study the problem of the circular cantilever beam subject to
end shear (Fig. E6-11.2). With the compatibility condition ∇2∇2F = 0 and

Figure E6-11.2
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Eq. (E6-11.4), we find

f (r) = Ar3 + B

r
+ Cr + Dr log r (E6-11.5)

Hence, by Eqs. (6-2.2), (E6-11.4), and (E6-11.5), the stress components are

σr =
(

2Ar − 2B

r3
+ D

r

)
sin θ

σθ =
(

6Ar + 2B

r3
+ D

r

)
sin θ

τrθ = −
(

2Ar − 2B

r3
+ D

r

)
cos θ

(E6-11.6)

With the boundary conditions

σr = τrθ = 0 at r = a, b

and the end shear condition ∫ b

a

τrθ dr = P

Eqs. (E6-11.6) yield

A = P

2N
B = −Pa2b2

2N
D = −P

N
(a2 + b2)

N = a2 − b2 + (a2 + b2) log
b

a

(E6-11.7)

Again the strain components and the displacement components may be obtained
by the equations of Section 6-4, and by integration of the strain–displacement
relations [Eqs. (6-3.5)].

It may also be shown that the Airy stress function

F = f (r) cos θ (E6-11.8)

yields a solution to the circular cantilever beam subjected to end tension T and
end moment M (Fig. E6-11.3). Then, by appropriate superposition of the results
obtained with Eqs. (E6-11.1), (E6-11.4), and (E6-11.8), solutions of the problems
illustrated in Figs. E6-11.4 and E6-11.5 may be obtained.

Example 6-11.3. Normal Point Load on Edge of Half-Plane. The problem of the
point load P on the half-plane boundary (Fig. E6-11.6) may be analyzed by means
of the stress function (under the condition that stresses vanish as r → ∞):

F(r, θ) = −P

π
rθ sin θ (E6-11.9)
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Figure E6-11.3

Figure E6-11.4
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Figure E6-11.5

Figure E6-11.6

The derivation of the stress components is left as an exercise. Note that the point
r = 0 is a singular point (yields an infinite stress). This result may be used to obtain
the stress distribution in the half-plane under the action of several point forces (see
Problem Set 6-11).

Example 6-11.4. Plane Wedge under Load at Tip. The wedge problem under point
load at the tip may be studied by the stress function (Fig. E6-11.7)

F = Arθ sin θ (E6-11.10)
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Figure E6-11.7

where A is a constant determined by the boundary condition of equilibrium for
a tip element. The stresses vanish as r → ∞ (compare Example 6-11.3). Certain
paradoxes of the wedge problem have been treated in the literature (Sternberg and
Koiter, 1958; Ting, 1984a, 1984b).

Problem Set 6-11

1. Derive the strain components and the displacement components of Example 6-11.1.
Assume a state of plane stress in the (r, θ ) plane.

2. Repeat Problem 1 for Example 6-11.2. Assume appropriate constraints at the wall
(support).

3. Repeat Problem 1 for Example 6-11.3. Discuss the behavior at r = 0.

4. Repeat Problem 1 for Example 6-11.4. Discuss the cases

α = π/2 π/2 < α < π

5. A circular cantilever beam is loaded in pure bending (Fig. P6-11.5). Determine the
displacement of the end (point A). For r = (a + b)/2, θ = 0, let the radial and tangential
displacement components vanish, u = v = 0, and ∂u/∂θ = 0.

6. A thick rectangular plate is rolled into a cylindrical shape (Fig. P6-11.6). Residual
stresses resulting from the rolling process are removed by annealing. After annealing,
the end planes 1 and 2 are a small angle α apart. The end planes are then brought
together by applying a moment M to each plane, and the faces are welded together. Then
uniform internal pressure pi and external pressure p0 are applied to the lateral surfaces
of the cylinder. Derive expressions for the radial and tangential stress components σr

and σθ .
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Figure P6-11.5

Figure P6-11.6
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7. The stress function F = Arθ sin θ yields the solution to the problem of a semi-infinite
plate loaded by a concentrated force perpendicular to its straight-line boundary, where
0 < r,−π/2 ≤ θ ≤ π/2. Derive a formula for the maximum shearing stress at a point
in the plate some distance from the load. Derive an equation for curves along which
the maximum shearing stress is a constant, and trace several of these curves on a
sketch of the plate. Derive expressions for radial and tangential components of dis-
placement.

8. A semi-infinite plate is loaded normally to its free boundary by a concentrated force P

(Fig. P6-11.8). Assume that σθ = τrθ = 0. Hence, show that rσr = f (θ), where f (θ )
is a function of θ alone. Derive the formula for f (θ). Hence, express σr as a known
function of r , θ , and the load P . Derive expressions for radial and tangential components
of displacement.

9. The stress function for a single concentrated force P acting perpendicular to the straight
boundary of a semi-infinite plate is

F = −P

π
rθ sin θ

By the method of superposition, derive expressions for the principal stresses and the
maximum shear at point A for the semi-infinite plate loaded as shown in Fig. P6-11.9,
for the cases Q = P and Q = 2P .

10. Two forces P are applied a distance 2b apart perpendicularly to the edge of a semi-
infinite plate (Fig. P6-11.10).

(a) Determine the principal stresses at a point D at a depth d below the surface in the
line of symmetry.

(b) The two forces P are replaced by a single force 2P applied in the line of symmetry.
Determine the depth c below which the minimum principal stress at D is changed
by less than 4%.

11. Consider a plane disk subjected to diametrically directed forces P , as shown in
Fig. P6-11.11a. (See Appendix 6B for a more advanced discussion of this problem.)

Figure P6-11.8
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Figure P6-11.9

Figure P6-11.10

(a) By considering the solution of the half-plane subjected to point load P acting normal
to the straight-line boundary, show by superposition of two appropriate half-plane
problems that we may obtain a solution to the disk problem for boundary stresses
as shown in Fig. P6-11.11b.

(b) Then, select a state of stress that when superposed upon that of Fig. P6-11.11b is
a solution to the problem of Fig. P6-11.11a.
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Figure P6-11.11
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Figure P6-11.12

12. A tangential concentrated force P is applied to the upper half-plane (y ≥ 0) at the origin
(Fig. P6-11.12). Formulate the problem in terms of the Airy function. Determine the
stress components. (Hint : See Problems 7 and 8.)

13. The semi-infinite plate is loaded uniformly along the straight-line boundary θ = π

(Fig. P6-11.13). Show that the stress components may be derived from the stress function
F = Cr2(θ − sin θ cos θ). Evaluate the stress component for θ = π /2; for θ = 0. Discuss
any discrepancies in these components. Derive expressions for radial and tangential
components of displacement.

14. For a state of plane stress expressed in polar coordinates, assume that all stress compo-
nents except σr are zero.

(a) In the absence of body forces and acceleration, show that rσr = f (θ ), where f (θ )
is an arbitrary function of θ .

(b) Derive a general formula for f (θ ).

(c) Apply the results of parts (a) and (b) to the problem of a cantilever wedge loaded
in its plane by a concentrated force P applied at its tip (Fig. P6-11.14); that is,
express σr as a completely determined function of r and θ . Discuss the boundary
conditions at the support.

Figure P6-11.13
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Figure P6-11.14

15. A thin plate in the shape of a wedge is subjected to uniform pressure p acting along
its side θ = −α and a uniform pressure q acting along its side θ = α (0 < α < π/2).
Because σθ = −p,−q for θ = −α,+α, ∂2F/∂r2 must be independent of the radial
coordinate r , where (r, θ ) denote polar coordinates and F is the Airy stress function.
The tip of the wedge is located at r = θ = 0. Hence, the Airy stress function F may
at most be proportional to r2. Accordingly, by the general solution of ∇2∇2F = 0 [see
Eq. (6-5.5)], we take

F = (A + Bθ + C cos 2θ + D sin 2θ)r2

(a) Derive the conditions that define the constants A, B,C, D.

(b) For the case p = 0, α = π /2, show that the solution yields the case of a semi-infinite
plate subjected to uniform pressure on one-half of its boundary.

16. ad(a) In the absence of body forces and temperature field, show that F = Cr2(2θ −
sin 2θ), C > 0 a constant, is an Airy stress function.

(b) For a plane wedge (Fig. P6-11.16), employ F of part (a) to determine possible
boundary conditions for the surfaces θ = ±α, where 2α is the wedge angle.

(c) In terms of the constant C and polar coordinates (r, θ ), determine the explicit for-
mulas for the stress components σx, τxy on the vertical section ab.

17. A plane wedge (tapered beam with thickness of 1 unit) is loaded at its tip by a force
P (Fig. P6-11.17). In terms of polar coordinates (r, θ ) the stress components are σr =
−(kP cos θ)/r , σθ = τrθ = 0, where k = 2/(2α − sin 2α) and α is the half-angle of the
wedge. In terms of k, P, x, y, derive expressions for the stress components σx, σy, τxy

relative to the rectangular Cartesian axes (x, y). Evaluate the maximum shearing stress
at the point x = 1, y = −1. (Hint : Consider the equilibrium of appropriate elements or
parts of the wedge.)
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Figure P6-11.16

Figure P6-11.17

18. Determine the value of the constant C in the stress function

F = C[r2(α − θ) + r2 sin θ cos θ − r2 cos2 θ tan α]

required to satisfy the conditions on the upper and lower edges of the triangular plate
shown in Fig. P6-11.18. Evaluate σx and τxy for a vertical section mn .
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Figure P6-11.18

Figure P6-11.19

19. A stress function used in solving the problem of vertical loading of a straight boundary of
a semi-infinite plane region is F = Ar2θ . Consider a point P : (r, θ ) (see Fig. P6-11.19).
Transform F into a function of the rectangular coordinates (x, y). Hence, derive expres-
sions for the stress components σx, σy, τxy that act at point P . Examine the boundary
conditions for θ = ±π /2.
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APPENDIX 6A STRESS–COUPLE THEORY OF STRESS
CONCENTRATION RESULTING FROM CIRCULAR HOLE IN PLATE

The theory of plane elasticity with couple stresses is treated in Appendix 5A.
In the present appendix we give the solution to the plane elasticity theory with
couple stresses for the circular hole in a plane region under uniform tension σ

(Fig. 6-10.1). The governing equations for the function H and ψ are Eqs. (5A-5.8)
and (5A-5.10). The solutions for H and ψ in polar coordinates are (see Mindlin,
1963; Weitsman, 1965; Kaloni and Ariman, 1967, Chapter 5 References)

H = σ

4
r2(1 − cos 2θ) + A log r +

(
B

r2
+ C

)
cos 2θ

ψ =
[

D

r2
+ EK2

( r

l

)]
sin 2θ

(6A-1)

where A, B, C, D, E are constants and K2(r/ l) is the modified Bessel function
of the second kind and second order. Equations (6A-1) may be shown to satisfy
Eqs. (5A-5.8), (5A-5.9), and (5A-5.10).

In terms of polar coordinates (r, θ ), the stress components and couples are
σr, σθ , τrθ , τθr , mrz, mθz (Fig. 6A-1). By equilibrium of triangular elements 1 and 2
(Figs. 6A-1 and 6A-2), we obtain

σr = σx cos2 θ + σy sin2 θ + (τxy + τyx) sin θ cos θ

σθ = σx sin2 θ + σy cos2 θ − (τxy + τyx) sin θ cos θ

τrθ = (σy − σx) sin θ cos θ + τxy cos2 θ − τyx sin2 θ

τθr = (σy − σx) sin θ cos θ − τxy sin2 θ + τyx cos2 θ

mrz = mxz cos θ + myz sin θ

mθz = −mxz sin θ + myz cos θ

(6A-2)

Figure 6A-1
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Figure 6A-2

Accordingly, by Eqs. (5A-5.7) and (6A-2) and the relations

∂

∂x
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
∂

∂y
= sin θ

∂

∂r
+ cos θ

r

∂

∂θ

(6A-3)

we find in terms of H and ψ

σr = 1

r

∂H

∂r
+ 1

r2

∂2H

∂θ2
− 1

r

∂2ψ

∂r∂θ
+ 1

r2

∂ψ

∂θ

σθ = ∂2H

∂r2
+ 1

r

∂2ψ

∂r∂θ
− 1

r2

∂ψ

∂θ

τrθ = −1

r

∂2H

∂r∂θ
+ 1

r2

∂H

∂θ
− 1

r

∂ψ

∂r
− 1

r2

∂2ψ

∂θ2

τθr = −1

r

∂2H

∂r∂θ
+ 1

r2

∂H

∂θ
+ ∂2ψ

∂r2

mrz = ∂ψ

∂r

mθz = 1

r

∂ψ

∂θ

(6A-4)

Substitution of Eqs. (6A-1) into Eq. (6A-4) yields, with the observation that

K2

( r

l

)
= 2l

r
K1

( r

l

)
+ K0

( r

l

)
∂K0(r/ l)

∂r
= −1

l
K1

( r

l

)
∂K1(r/ l)

∂r
= −1

r
K1

( r

l

)
− 1

l
K0

( r

l

) (6A-5)
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where K0 and K1 are the modified Bessel functions of the second kind of orders
zero and one (Irving and Mullineaux, 1966),

σr = σ

2
(1 + cos 2θ) + A

r2
−

(
6B

r4
+ 4C

r2
− 6D

r4

)
cos 2θ

+ 2E

Ir

[
3l

r
K0

( r

l

)
+

(
1 + 6l2

r2

)
K1

( r

l

)]
cos 2θ

σθ = σ

2
(1 − cos 2θ) − A

r2
+

(
6B

r4
− 6D

r4

)
cos 2θ

− 2E

lr

[
3l

r
K0

( r

l

)
+

(
1 + 6l2

r2

)
K1

( r

l

)]
cos 2θ

τrθ = −
(

σ

2
+ 6B

r4
+ 2C

r2
− 6D

r4

)
sin 2θ

+ E

lr

[
6l

r
K0

( r

l

)
+

(
1 + 12l2

r2

)
K1

( r

l

)]
sin 2θ

τθr = −
(

σ

2
+ 6B

r4
+ 2C

r2
− 6D

r4

)
sin 2θ

+ E

l2

[(
1 + 6l2

r2

)
K0

( r

l

)
+

(
3l

r
+ 12l3

r3

)
K1

( r

l

)]
sin 2θ

mrz = −2D

r3
sin 2θ − E

l

[
2l

r
K0

( r

l

)
+

(
1 + 4l2

r2

)
K1

( r

l

)]
sin 2θ

mθz =
{

2D

r3
+ 2E

r

[
K0

( r

l

)
+ 2l

r
K1

( r

l

)]}
cos 2θ

(6A-6)

The constants A, B, C, D, E are determined by the boundary conditions

σr = τrθ = mrz = 0 r = a (6A-7)

and the condition
D = 8(1 − ν)l2C

where ν is Poisson’s ratio, which is required for the satisfaction of Eq. (5A-5.9) in
polar coordinates. Thus, we find

A = −σa2

2
B = −σa4(1 − F)

4(1 + F)

C = σa2

2(1 + F)
D = 4(1 − ν)a2l2σ

1 + F

E = − palF

(1 + F)K1(a/l)

F = 8(1 − ν)

4 + a2

l2
+ 2a

l

K0(a/l)

K1(a/l)

(6A-8)
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The terms containing σ correspond to the stress distribution due to simple tension
(Section 6-10). The terms in r diminish as r increases. Hence, the stress state at
points far from the hole is due to simple tension σ .

If the couple stresses are ignored, � = 0. Then noting that

lim
a/l→∞

K0(a/l)

K1(a/l)
= 1

we see that the stress components of Eq. (6A-6) reduce to those of Eq. (6-10.11).
With l = 0, the stress σθ at the hole (r = a) for θ = π /2, 3π /2, is

(Fig. 6-10.1)

σθ = σ
3 + F

1 + F
(6A-9)

Accordingly, if stress couples are maintained in the theory, the stress concentration
factor depends both on Poisson’s ratio ν and the ratio of the radius a of the hole
and the material constant l [Eq. (5A-4.6)]. If couple stresses are discarded, F = 0,
and the stress concentration factor is 3 [Eq. (6A-9)] as usual (Section 6-10). As a/l

decreases, so does the stress concentration factor. With a/l = 3 and ν = 0(0.5),
the stress concentration factor is 2.4(2.6).

Although the above theory implies that the ratio a/l influences the stress con-
centration factor, experiments indicate that in order to do so the material constant
l must be of order of the grain size (Ellis and Smith, 1967).

Indeed, on the basis of these experiments, it may be concluded that the reduction
(from 3) in stress concentration factors that is experimentally observed for small-
radius notches and holes cannot be accounted for by the above simple couple
stress theory. The requirement that l must be about the order of magnitude of the
grain size or smaller implies that theoretical foundations of the simple, isotropic,
homogeneous continuum must be extended to examine the problem in finer detail
(Ellis and Smith, 1967).

APPENDIX 6B STRESS DISTRIBUTION OF A DIAMETRICALLY
COMPRESSED PLANE DISK

An experimental test of a plane disk subjected to diametrically directed forces P

(Fig. P6-11.11a) is known as the split cylinder test (so called because the disk or
cylinder tends to split along the line of action of forces P ) or the Brazilian test.
The split cylinder test is an extremely useful method for determining the tensile
strengths of brittle materials that have much higher compressive strengths than
tensile strengths (Chong and Kuruppu, 1984). Typically, tensile failure will occur
along the loaded diameter, splitting the cylinder (or disk) into two halves

The classical theory (Timoshenko and Goodier, 1970) assumes that the line
load is applied over an infinitesimally small width. If we assume a simple radial
stress distributions for each force P and superimpose boundary stresses (similar
to Problem 6-11.11), we find that the horizontal tensile stress (Fig. 6B-1) along
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the diameter is constant (Timoshenko and Goodier, 1970, and Problem 6-11.11)
and equal to (for unit thickness)

σx = 2P

πD
(6B-1)

This stress distribution violates equilibrium (Fairhurst, 1964) because if half of
the disk (say, left of the loaded diameter) is taken as a free body, �Fx = 0. To
overcome these difficulties, Hondros (1959) developed a modified theory assuming
negligible body forces and a finite width of loading applied radially. Numerical
results based on a series solution agree closely with his experimental results mon-
itored by strain gages. Stresses along the loaded (vertical) diameter are given by

σx = 2P

πab

[
(1 − r2/R2) sin 2α

(1 − 2r2/R2 cos 2α + r4/R4)
− tan−1

(
1 + r2/R2

1 − r2/R2
tan α

)]
(6B-2)

σy = 2P

πab

[
(1 − r2/R2) sin 2α

(1 − 2r2/R2 cos 2α + r4/R4)
+ tan−1

(
1 + r2/R2

1 − r2/R2
tan α

)]

τxy = 0 (6B-3)

where r = radial distance from the origin; R = radius of the disk; a = width of the
applied load; and 2α = a/R. At any other point on the disk, the stresses are given
in a series form. For long cylinders (plane strain case) and thin disks (plane strain
case), the stress expressions given remain unchanged. However, the stress–strain
relationships are different.

The finite element method can be used to model the split cylinder test (Chong
et al., 1982). As a result of symmetry, only one-quarter of the disk needs to be
considered. In the Chong et al. (1982) study, a total of 250 two-dimensional ele-
ments with 146 nodes were used. Each node had two degrees of freedom. The
nodal stresses were computed using consistent stress distributions. The load of P /2
was assumed to act at the apex node.

The stress distributions from the above theories, experiments, and the finite
element method along the vertical diameter (σx, σ y) and the horizontal diameter
(σx, σ y) are presented in Fig. 6B-1. These stresses have been normalized (divided)
by the quantity σ0 = P /(bd ) for comparison with other references. Four different
methods are compared in the figure: (a) classical theory of Timoshenko and Good-
ier (1970), (b) finite element analysis (Chong et al., 1982), (c) isodynes method
(Pindera et al., 1978), and (d) Hondros’ theory (1959) with bearing width a equal to
one-sixth of the disk radius. Methods (a) and (b) are plotted for all four curves. For
simplicity, methods (c) and (d) are shown only if they deviate from the classical
theory.

It can be seen that the classical theory agrees well with all methods except for
the tensile stress across the loaded diameter σx . For σx , methods (b), (c), and (d)
show good agreement, indicating a very high compressive stress close to the load.
This represents the reversal of stresses necessary for equilibrium and balance of



REFERENCES 525

internal horizontal forces. Both methods (b) and (d) indicate zero stress at 0.85
of the disk radius measuring from the center, whereas method (c) measures zero
stress at 0.90 of the disk radius.

Physically, the region under the load experiences very high uniform compressive
pressures in σx and σy [as indicated by Eqs. (6B-2) and (6B-3); this also can be
seen from the finite element analysis]. Apparently this region wedges its way into
the disk, causing an ultimate tensile failure in the brittle materials. This wedging
action can be seen in the displacement contours based on finite element analysis.
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CHAPTER 7

PRISMATIC BAR SUBJECTED
TO END LOAD

In this chapter we consider the formulation of the classical problem of cylindrical
elastic bars subjected to forces acting on the end planes of the bar. After developing
the general theory, we examine bars of certain typical cross sections by elementary
means. First, we consider the classical problem of torsion of prismatic bars after
Saint-Venant. Next, we treat briefly the problem of bending of prismatic bars. The
latter theory is again attributed principally to Saint-Venant.

7-1 General Problem of Three-Dimensional Elastic Bars Subjected
to Transverse End Loads

Consider a cylindrical bar made of linearly elastic, homogeneous, isotropic material.
Let the bar occupy the region bounded by a cylindrical lateral surface S and by
two end planes distance L apart and perpendicular to the surface S (Fig. 7-1.1).
The lateral surface of the bar is free of external load. The end planes of the bar
are subjected to forces that satisfy equilibrium conditions of the bar as a whole. If
the body forces are zero, the following sets of equations apply:

(a) Equilibrium equations:

∂σx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
= 0

∂τxy

∂x
+ ∂σy

∂y
+ ∂τyz

∂z
= 0 (7-1.1)

∂τxz

∂x
+ ∂τyz

∂y
+ ∂σz

∂z
= 0
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Figure 7-1.1

(b) Stress–strain relations:

σx = λe + 2Gεx σy = λe + 2Gεy σz = λe + 2Gεz

τxy = Gγxy τxz = Gγxz τyz = Gγyz
(7-1.2)

or, alternatively,

εx = 1

E
[σx − ν(σy + σz)]

εy = 1

E
[σy − ν(σx + σz)]

εz = 1

E
[σz − ν(σx + σy)]

γxy = 1

G
τxy γxz = 1

G
τxz γyz = 1

G
τyz

(7-1.3)

(c) Boundary conditions:
On lateral surfaces (direction cosines l, m, n = l, m, 0):

σPx = lσx + mτxy = 0

σPy = lτxy + mσy = 0

σPz = lτxz + mτyz = 0

(7-1.4a)

On ends (z = 0, z = L; direction cosines l, m, n = 0, 0, ∓ 1):

τxz, τyz prescribed functions (7-1.4b)

such that ∑
Fx = Px

∑
Fy = Py

∑
Mz = M

where Px, Py denote (x, y) components of the resultant force and M denotes the
moment of the resultant couple. The problem of solving the equations formulated in
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the above generality poses considerable mathematical difficulties, particularly if the
solution sought is to permit reasonably simple calculations. Fortunately, in a large
number of practical cases, it is unnecessary to consider the problem in such general
terms. Even though in practice we rarely know the true distribution of forces that
act in the end planes of the bar, we often know a force system that is approximately
statically equivalent to the actual force system. Accordingly, if we are considering
a member with cross-sectional dimensions that are small compared to the length of
the member, it may be adequate merely to ensure that the solution yields resultant
forces and resultant moments that are approximately equal to actual values at the
ends of the bar. For example, by Saint-Venant’s principle, the stress distribution
in regions sufficiently far removed from the end planes will be little affected by
different distribution of forces over the end planes, provided the resultant force and
moment for all distributions considered are the same (Chapter 4, Section 4-15).

Finally, the stress component σij must satisfy the Beltrami–Mitchell com-
patibility equations (in the absence of body forces and for uniform temperature
distribution)

∇2σij + 1

1 + ν

∂2I1

∂xi∂xj

= 0 i, j = 1, 2, 3 (7-1.5)

where
I1 = σ11 + σ22 + σ33 = σx + σy + σz (7-1.6)

and

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
(7-1.7)

In the following discussion, we consider first the problem of twisting (torsion)
of the bar by couples whose planes lie in the end planes of the bar. Then we treat
the problem of bending of the bar by transverse end forces. The problems of bars
subjected to axial forces at the ends and to couples whose planes are perpendicular
to the end planes of the bar are left as exercises (see Review Problems R-1 and
R-2, which appear before Appendix 7A at the end of this chapter).

7-2 Torsion of Prismatic Bars. Saint-Venant’s Solution.
Warping Function

In Chapter 4, Section 4-19, we treated the problem of torsion of a bar with simply
connected circular cross section by the semi-inverse method. By taking displace-
ment components in the form

u = −βyz v = βxz w = 0 (7-2.1)

where (x, y, z) denote rectangular Cartesian coordinates and β denotes the angle of
twist per unit length of the bar, we were able to satisfy the equations of elasticity
exactly, provided the end shears were applied in a particular manner (Section 4-19).
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However, if we proceed to apply Eqs. (7-2.1) to the torsion problem of a bar
with simply connected non-circular cross section, we find that in general it is not
possible to satisfy the boundary conditions on the lateral surface [see Eqs. (7-14.4)].
Accordingly, Eqs. (7-2.1) do not represent the solution to the torsion problem of
bars with non-circular cross section. Hence, we are faced with the choice of either
modifying Eqs. (6-2.1) or abandoning the semi-inverse method with regard to
displacement components. For example, one may attempt to add more generality
to Eqs. (7-2.1) (after Saint-Venant) or one may attempt to reformulate the problem
in terms of stress components (after Prandtl). Initially, in this section, we modify
Eqs. (7-2.1). In Section 7-3 we return to the formulation of the problem in terms
of stress components.

The concept of allowing a section distance z from the end z = 0 to rotate as a
rigid body about the axis of twist (the z axis, Fig. 7-2.1) is analytically attractive.
Accordingly, we retain the same form for (u, v) [see Eq. (7-2.1) and Section 4-19];
however, we relax the condition w = 0.

Because the end forces tend to twist the bar about the z axis, physically it
seems reasonable that extension of the bar along its axis is of secondary importance.
Hence, the dependency of w, the displacement component in the z direction, upon z

appears to be of secondary importance. Physically, the dependency of w upon
coordinates (x, y) is difficult to guess. Accordingly, we do not attempt to specify
an explicit relation between w and (x, y): rather, we arbitrarily take (after Saint-
Venant) w in the form w = βψ(x, y), where ψ(x, y) is an arbitrary function of
(x, y). Because ψ(x, y) is a measure of how much a point in the plane z = constant
displaces in the z direction, it is called the warping function . Thus, for the small-
displacement torsion problem of a bar with non-circular cross section, we take
the displacement vector (u, v, w) in the form

u = −βzy v = βzx w = βψ(x, y) (7-2.2)

Figure 7-2.1
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We now proceed to determine whether the equations of elasticity may be satisfied
by this assumption. In other words, we seek to determine the function ψ(x, y) such
that the equations of elasticity are satisfied.

For small-displacement theory, Eqs. (2-15.14) and (7-2.2) yield

εx = εy = εz = γxy = 0

γxz = β

(
∂ψ

∂x
− y

)
γyz = β

(
∂ψ

∂y
+ x

) (7-2.3)

Substitution of Eqs. (7-2.3) into Eqs. (7-1.2) yields the stress components

σx = σy = σz = τxy = 0

τxz = Gβ

(
∂ψ

∂x
− y

)
τyz = Gβ

(
∂ψ

∂y
+ x

) (7-2.4)

Now substitution of Eqs. (7-2.4) into Eqs. (7-1.1) yields for equilibrium

∂2ψ

∂x2
+ ∂2ψ

∂y2
= ∇2ψ = 0 (7-2.5)

where now

∇2 = ∂2

∂x2
+ ∂2

∂y2

Accordingly, the assumption of displacement components in the form of
Eqs. (7-2.2) yields the requirement that ∇2ψ = 0, that is, that ψ be harmonic over
the region R of the cross section of the bar (Fig. 7-2.1). Because we have assumed
displacement components (u, v, w), compatibility conditions are automatically
satisfied (Chapter 2, Section 2-16). Consequently, we have satisfied the equations
of elasticity, provided that we can find a harmonic function (warping function) ψ

that by Eqs. (7-2.4) yields stress components that satisfy the boundary conditions
[Eqs. (7-14.4)].

Substituting Eqs. (7-2.4) into the boundary conditions for the lateral surface, we
see that the first two of Eqs. (7-1.4a) are satisfied identically. The third equation
yields (

∂ψ

∂x
− y

)
l +

(
∂ψ

∂y
+ x

)
m = 0 (7-2.6)

where (l, m) denote the components of the unit normal vector to the lateral surface S

bounding the simply connected region R (Fig. 7-2.2). By Fig. 7-2.2, we find

l = cos φ = dy

ds

m = sin φ = −dx

ds

(7-2.7)
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Substitution of Eq. (7-2.7) into Eq. (7-2.6) yields

∂ψ

∂x

dy

ds
− ∂ψ

∂y

dx

ds
= x

dx

ds
+ y

dy

ds
= 1

2

d

ds
(x2 + y2) (7-2.8)

Furthermore, by Fig. 7-2.2, we have

dy

ds
= dx

dn

dx

ds
= −dy

dn
(7-2.9)

Consequently, Eqs. (7-2.8) and (7-2.9) yield

∂ψ

dn
= ∂ψ

∂x

dx

dn
+ ∂ψ

∂y

dy

dn
= 1

2

d

ds
(x2 + y2) (7-2.10)

For a circular cross section of radius a, x2 + y2 = a2 = constant. Then
Eq. (7-2.10) yields dψ/dn = 0 on S, or ψ = constant on S. This result agrees
with that obtained in Section 4-19.

In general, we note that if the cross section is noncircular Eqs. (7-2.6), (7-2.7),
and (7-2.9) yield the result

∂ψ

∂n
= yl − xm = f (s) (7-2.11)

where f (s) denotes a function of the parameter s on the bounding curve S

(Fig. 7-2.2).

Figure 7-2.2
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Finally, it may be shown (see Problem 7-2.1 at the end of this section) that

∑
Fx =

∫
A

τxz dA = 0∑
Fy =

∫
A

τyz dA = 0∑
Mz =

∫
A

(xτyz − yτxz) dA = M

(7-2.12)

Accordingly, we have obtained a solution of the torsion problem of a bar with
simply connected cross section, provided ψ(x, y) satisfies the equations

∇2ψ = 0 in R

dψ

dn
= yl − xm = f (s) on S

(7-2.13)

Equations (7-2.13) define a well-known, extensively studied problem of potential
theory (Kellogg, 2008): The Neumann boundary value problem.1 In other words,
the torsion problem expressed in terms of the warping function ψ(x, y) may be
stated as follows:

Determine a function ψ(x, y) that is harmonic (∇2ψ = 0) in R, such that it is
regular in R and continuous in R + S, and such that its normal derivative takes on
prescribed values f (s) on S.

Alternatively, Eqs. (7-2.13) may be reformulated by utilizing the complex con-
jugate of ψ(x, y), that is, by utilizing the function χ(x, y) related to ψ(x, y) by
the Cauchy–Riemann equation (Brown and Churchill, 2008)2:

∂ψ

∂x
= ∂χ

∂y

∂ψ

∂y
= −∂χ

∂x
(7-2.14)

Differentiating the first of Eqs. (7-2.14) by y, the second by x, and subtracting,
we obtain ∇2χ = 0. Substitution of Eqs. (7-2.14) and (7-2.9) into the second of
Eqs. (7-2.13) yields

∂χ

ds
= yl − xm = 1

2

d

ds
(x2 + y2) or χ = 1

2 (x2 + y2) + const.

Accordingly, in terms of the complex conjugate χ of ψ , Eqs. (7-2.13) may be
written

∇2χ = 0 in R

χ = 1
2 (x2 + y2) = g(s) on S

(7-2.15)

1A solution ψ to the Neumann problem exists, provided that the integral of the normal derivative of
the function ψ , calculated over the entire boundary S, vanishes. Then the solution ψ is determined
to within an arbitrary constant. For the torsion problem [Eqs. (7-2.13)], the solution ψ exists (see
Problem 7-2.1).
2See also Eqs. (5-5.3) in Chapter 5.
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where the constant in the second equation has been set equal to zero, as it does not
affect the state or stress or displacement [see Eqs. (7-2.3), (7-2.4), and (7-2.14)].

In terms of χ , the strain and stress components are, by Eqs. (7-2.3), (7-2.4), and
(7-2.14),

γxz = β

(
∂χ

∂y
− y

)
γyz = −β

(
∂χ

∂x
− x

)
(7-2.16)

and

τxz = Gβ

(
∂χ

∂y
− y

)
τyz = −Gβ

(
∂χ

∂x
− x

)
(7-2.17)

The boundary value problem defined by Eqs. (7-2.15), that of seeking a harmonic
function χ in region R, whose values are prescribed on the boundary S of R, is
known as the Dirichlet problem. The Dirichlet problem has been studied extensively
(Kellogg, 2008; Courant and Hilbert, 1996).

Problem Set 7-2

1. Verify the first two of Eqs. (7-2.12). Verify that a solution ψ to the Neumann problem
exists for the torsion of a bar [see Eqs. (7-2.13)].

7-3 Prandtl Torsion Function

In the preceding section we formulated the torsion problem of the bar with simply
connected cross section in terms of two associated boundary value problems [see
Eqs. (7-2.13) and (7-2.15)]. In this section we consider an alternative approach orig-
inally formulated by Prandtl (1903).3 Prandtl employed the semi-inverse procedure
as follows.

Because in the classical torsion problem the lateral surface and the end planes
of the bar are free from normal tractions, one might initially guess that the nor-
mal tractions are zero throughout the bar. Furthermore, because the end faces are
subjected to shear stress components that produce a couple M, one might initially
assume as a first guess that the shear component not associated with the couple M
also vanishes. Then one has (with respect to x, y, z axes designated in Fig. 7-2.1)

σx = σy = σz = τxy = 0 (7-3.1)

Next, because the left and right end planes are loaded identically, it appears rea-
sonable that the remaining two components of stress (τxz, τyz) are approximately
independent of the axial coordinate z. Accordingly, assuming that τxz, τyz are func-
tions of (x, y) only and substituting Eqs. (7-3.1) into Eqs. (7-1.1), we find

∂τxz

∂x
+ ∂τyz

∂y
= 0 (7-3.2)

3As we will see, the results obtained by Prandtl are related simply to those obtained by Saint-Venant.
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Equation (7-3.2) represents the necessary and sufficient condition that there exist a
function φ(x, y) such that (see Chapter 1, Section 1-19)

τxz = ∂φ

∂y
τyz = −∂φ

∂x
(7-3.3)

where here the function φ is called the Prandtl torsion function .
Equation (7-3.3) automatically satisfies the equation of equilibrium [Eq. (7-3.2)].

Substitution of Eqs. (7-3.1) and (7-3.3) into Eqs. (7-1.5) yields

∇2φ = ∂2φ

∂x2
+ ∂2φ

∂y2
= c = constant (7-3.4)

Accordingly, compatibility is satisfied provided ∇2φ = c. The constant c may be
shown to have a physical significance in that it is related to the angle of twist.
Before verifying this statement, we consider the boundary conditions on the lateral
surface and on the end planes [Eqs. (7-1.4)]. The first two of Eqs. (7-1.4a) are
satisfied automatically; the last of Eqs. (7-1.4a), with Eqs. (7-2.7) and (7-3.3),
yields (see Fig. 7-2.2)

dφ

ds
= ∂φ

∂x

dx

ds
+ ∂φ

∂y

dy

ds
= 0 on S

or
φ = K = constant on S (7-3.5)

where K denotes an arbitrary constant. For the simply connected cross section we
may set K = 0 (see Section 7-6).

Finally, substitution of Eqs. (7-2.7) and (7-3.3) into Eqs. (7-1.4b) yields the
following integrations over the end planes:

∑
Fx =

∫∫
σPx dx dy =

∫∫
τxz dx dy

=
∫

dx

∫
∂φ

∂y
∂y =

∫
φ

∣∣∣∣
y2

y1

dx

∑
Fy =

∫∫
σPy dx dy =

∫∫
τyz dx dy

= −
∫

dy

∫
∂φ

∂x
dx = −

∫
φ

∣∣∣∣
x2

x1

dy

∑
Mz = M =

∫∫
(xτyz − yτxz) dx dy

= −
∫∫ (

x
∂φ

∂x
+ y

∂φ

∂y

)
dx dy

= −
∫

xφ

∣∣∣∣
x2

x1

dy −
∫

yφ

∣∣∣∣
y2

y1

dx + 2
∫∫

φ dx dy
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Because φ = constant on the lateral surface [we take K = 0 for the simply con-
nected region; see Eq. (7-3.5)] and x1, x2, y1, y2 denote points on the lateral surface,
it follows that∑

Fx = 0
∑

Fy = 0
∑

Mz = M = 2
∫∫

φ dx dy (7-3.6)

By the above discussion, we see that the torsion problem for a simply connected
cross section R is solved precisely, provided we obtain a function φ such that

∇2φ = c = const. in R

φ = 0 on S
(7-3.7)

and provided the shears τxz, τyz are distributed over the end planes in accordance
with Eq. (7-3.3). The twisting moment M is then defined by Eq. (7-3.6). The
constant c may be related to the angle of twist per unit length of the bar, as we
now proceed to show.

Displacement Components. Substitution of Eqs. (7-3.1) and (7-3.3) into the
stress–strain relations [Eqs. (7-1.3)] yields with Eqs. (2-15.14)

∂u

∂x
= ∂v

∂y
= ∂w

∂z
= 0 γxy = ∂u

∂y
+ ∂v

∂x
= 0

γxz = ∂u

∂z
+ ∂w

∂x
= 1

G
τxz γyz = ∂v

∂z
+ ∂w

∂y
= 1

G
τyz

(7-3.8)

Integration of Eqs. (7-3.8) yields

u = −Az(y − b) v = Az(x − a) (7-3.9)

where A is a constant of integration and where x = a, y = b defines the center of
twist , that is, the z axis about which each cross section rotates as a rigid body (see
Section 4-19; there, a = y = 0 denotes the axis of twist).

Substitution of Eqs. (7-3.9) into the last two of Eqs. (7-3.8) yields

∂w

∂x
= 1

G
τxz + A(y − b)

∂w

∂y
= 1

G
τyz − A(x − a)

(7-3.10)

Integration of Eqs. (7-3.10) yields

w = w0 − A(xb − ya) (7-3.11)

where w0 = w0(x, y) represents the warping of the cross section. The terms
involving the constants (a, b) in Eqs. (7-3.9) and (7-3.11) represent a rigid-body
displacement relative to the center of twist.
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To determine the angle of twist per unit length of the bar, we recall that the
rotation ωz of a volume element relative to the z axis is [see Eqs. (2-13.2)]

ωz = 1

2

(
∂v

∂x
− ∂u

∂y

)
(7-3.12)

Substitution of Eqs. (7-3.9) into Eqs. (7-3.12) yields ωz = Az. Hence, the angle of
twist β per unit length of the bar is

β = ∂ωz

∂z
= A (7-3.13)

Therefore, the constant of integration A in Eqs. (7-3.9) is identical to the angle of
twist per unit length of the bar. Furthermore, by the last two of Eqs. (7-3.8), we
note that by differentiating γxz by y and γyz by x and subtracting, we obtain

2β = 2
∂ωz

∂z
= ∂

∂z

(
∂v

∂x
− ∂u

∂y

)
= 1

G

(
∂τyz

∂x
− ∂τxz

∂y

)
(7-3.14)

Hence, substitution of Eq. (7-3.3) into Eq. (7-3.14) yields [with Eq. (7-3.7)]

∇2φ = ∂2φ

∂x2
+ ∂2φ

∂y2
= c = −2Gβ (7-3.15)

Accordingly, in terms of the Prandtl stress function φ, the torsion problem of a bar
with simply connected cross section R bounded by S is defined by

∇2φ = −2Gβ in R

φ = 0 on S
(7-3.16)

For the case where a = b = 0, the warping displacement w0(x, y) is related to
the warping function ψ(x, y) by the equation [see Eqs. (7-2.2) and (7-3.11)]

w0 = βψ(x, y) (7-3.17)

Furthermore, the Prandtl stress function φ(x, y) is related to the warping function
ψ(x, y) by the equation [see Eqs. (7-2.4) and (7-3.3)]

∂φ

∂y
= Gβ

(
∂ψ

∂x
− y

)
∂φ

∂x
= −Gβ

(
∂ψ

∂y
+ x

)
(7-3.18)

and to the complex conjugate χ of ψ by the relations [see Eqs. (7-2.14), (7-3.3),
and (7-3.18)]

∂φ

∂y
= Gβ

(
∂χ

∂y
− y

)
∂φ

∂x
= Gβ

(
∂χ

∂x
− x

)
(7-3.19)
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Integration of these relations yields

φ = Gβ[χ − 1
2 (x2 + y2) + b] (7-3.20)

where b denotes a constant. Thus, the Prandtl stress function φ may be simply
related to the Saint-Venant warping function ψ [Eqs. (7-3.18)] or to the conjugate
harmonic function χ of ψ [Eq. (7-3.20)].

Problem Set 7-3

1. Show that cylinders with circular cross sections are the only bodies whose lateral surface
can be free from external load when the stress components are characterized by

σx = σy = σz = τxy = 0 τxz = −Gβy τyz = Gβx

7-4 A Method of Solution of the Torsion Problem:
Elliptic Cross Section

A direct approach to the solution of the torsion problem is difficult in most practical
cases. However, in terms of Prandtl’s stress function φ, the following indirect
approach is sometimes useful, although it is not generally applicable.

Because φ = 0 on the lateral boundary [Eq. (7-3.16)], we may seek stress
functions φi such that φi = 0 on the lateral boundary of the shaft, leaving sufficient
arbitrariness in φ so that the equation ∇2φ = −2Gβ may be satisfied over the
region R occupied by the cross section. For a certain class of cross sections with
boundaries simply expressible in the form f (x, y) = 0, this procedure is sometimes
fruitful.

Example 7-4.1. Bar with Elliptical Cross Section. The equation of the bounding
curve C of a bar with elliptical cross section is (Fig. E7-4.1)

f (x, y) = x2

a2
+ y2

b2
− 1 = 0 (E7-4.1)

Hence, if we assume a stress function φ in the form

φ = A

(
x2

a2
+ y2

b2
− 1

)
(E7-4.2)

where A is a constant, the boundary condition φ = 0 on C is automatically satisfied.
To yield a solution to the torsion problem, the function φ must be chosen so that
both of Eqs. (7-3.16) are satisfied. By Eq. (E7-4.2) we find that

∇2φ = 2A

(
1

a2
+ 1

b2

)
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Figure E7-4.1

Hence, in order that φ satisfy Eq. (7-3.16) we must have

A = −a2b2Gβ

a2 + b2
(E7-4.3)

Accordingly, if A is given by Eq. (E7-4.3), Eq. (E7-4.2) yields the solution of the
torsion of a bar with elliptic cross section. With φ so determined, the theory of
Section 7-3 yields the stress components (τxz, τyz) and the moment M in terms
of the dimensions a, b of the cross section, the shear modulus G, and the angle of
twist β per unit length of the bar.

Moment–Angle of Twist Relation. The moment–stress function relation
[Eq. (7-3.6)], with Eqs. (E7-4.2) and (E7-4.3), now yields

M = −2Gβa2b2

a2 + b2

[
1

a2

∫∫
x2 dx dy + 1

b2

∫∫
y2 dx dy −

∫∫
dx dy

]
(7-4.4)

Now, for the ellipse, ∫∫
x2 dx dy = Iy = πa3b

4∫∫
y2 dx dy = Ix = πab3

4∫∫
dx dy = πab

(7-4.5)

where (Ix, Iy) denote the moment of inertia of the cross-sectional area with respect
to the (x, y) axes, respectively. Consequently, Eqs. (7-4.4) and (7-4.5) yield

M = πGβa3b3

a2 + b2
= Cβ (7-4.6)
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where

C = πa3b3G

a2 + b2
(7-4.7)

is called the torsional rigidity of the bar. Equation (7-4.6) relates the twisting
moment M to the angle of twist β, the constant of proportionality being C, the
torsional rigidity.

Also, by Eqs. (7-4.3) and (7-4.6), we find

A = − M

πab
(7-4.8)

Therefore, we may write φ in the form

φ = − M

πab

(
x2

a2
+ y2

b2
− 1

)
(7-4.9)

Stress Components. By Eqs. (7-3.3) and (7-4.9), we obtain

τxz = ∂φ

∂y
= − 2M

πab3
y

τyz = −∂φ

∂x
= 2M

πa3b
x

(7-4.10)

Hence, (τxz, τyz) vary linearly over the cross section with respect to (y, x), respec-
tively. To determine the direction of the shearing stress vector τ = iτxz + jτyz on
the boundary of the shaft, we note that the tangent of the angle between the vector
τ and the positive x axis is given by [Eq. (7-4.10)]

τyz

τxz

= −b2x

a2y
(7-4.11)

However, by the equation of the bounding curve C of the cross section
[Eq. (E7-4.1)], we see that the angle formed by the tangent to C and the positive
x axis is

dy

dx
= −b2x

a2y
(7-4.12)

Equations (7-4.11) and (7-4.12) show that the shearing stress vector τ is tangent
to the boundary C of the cross section. For x = a, y = 0, τ = jτyz; hence, τ is
directed perpendicular to the x axis. For x = 0, y = b, τ = iτxz; then τ is directed
perpendicular to the y axis (see Fig. 7-4.2). Also, the magnitude of τ is

τ =
√

τ 2
xz + τ 2

yz = 2M

πab

√
x2

a4
+ y2

b4
(7-4.13)
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Figure 7-4.2

Determining the maximum value of τ from Eq. (7-4.13), we find

τmax = 2M

πab2
y = b x = 0 (7-4.14)

For a circular shaft a = b = r; then τmax = 2M/πr3, everywhere on the bound-
ary C.

Displacement Components. With β determined as a function of M and C

[Eq. (7-4.6)], the displacement components (u, v) are known for all points in any
cross section for a given moment and a given bar. They are u = −βyz, v = βxz

[Eq. (7-3.9), with a = b = 0]. To compute the displacement component w, we must
compute ψ(x, y), the warping function [Eqs. (7-2.2) or (7-3.17)], from its relation
to the stress function φ(x, y) [Eq. (7-3.18)].

By Eqs. (7-3.18) and (7-4.9), we obtain

∂ψ

∂x
= 1

Gβ

∂φ

∂y
+ y =

(
1 − 2M

πab3Gβ

)
y

∂ψ

∂y
= − 1

Gβ

∂φ

∂x
− x =

(
2M

πa3bGβ
− 1

)
x

(7-4.15)

Integration of Eqs. (7-4.15) yields

ψ = b2 − a2

a2 + b2
xy + const. (7-4.16)

If we set w = 0 for x = y = 0, the constant in Eq. (7-4.16) is zero. Consequently,

w = βψ = β(b2 − a2)

a2 + b2
xy

or
w = −Kxy (7-4.17)



542 PRISMATIC BAR SUBJECTED TO END LOAD

Figure 7-4.3

where

K = β(a2 − b2)

a2 + b2
= M(a2 − b2)

πa3b3G
(7-4.18)

Equation (7-4.17) is the equation of a hyperbola. Accordingly, the contour map
of w over the cross section of the bar is represented by a family of hyperbolas
(Fig. 7-4.3), with the (x, y) axes representing lines of zero displacement.

Because K is a positive constant, w is positive (in the direction of the positive z

axis) in the second and fourth quadrants and negative in the first and third quadrants
of the (x, y) plane.

Problem Set 7-4

1. Derive Eq. (7-4.14).

2. Apply the method outlined in Section 7-4 to the bar with circular cross section.

7-5 Remarks on Solutions of the Laplace Equation, ∇2F = 0

In the theory of complex variables (Brown and Churchill, 2008) it is shown that
the real and imaginary parts of an analytic function F of the complex variable
z = x + iy satisfy the Laplace equation ∇2F = 0; that is, the real and imaginary
parts of an analytic function are harmonic functions. Accordingly, by considering
the real and the imaginary parts of analytic functions Fn, one may proceed, inversely
so to speak, to determine the equations of the boundaries of simply connected
cross sections for which the real and imaginary parts of Fn represent solutions of
the torsion problem. For example, we have previously noted that f (z) = ψ + iχ

is an analytic function where χ is the conjugate harmonic of the warping func-
tion ψ , and that the torsion problem may be represented either in terms of ψ or χ

(Section 7-3).
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One of the simplest sets of analytic functions of the complex variable z = x + iy

is the set Fn = zn = (x + iy)n. By letting n = ±1, ±2, ±3, . . ., solutions of the
torsion problem may be developed in the form of polynomials. For example, for
n = 2, we obtain the solutions x2 − y2 and 2xy. For n = 3, we find x3 − 3xy2

and 3x2y − y3. For n = 4, we have x4 − 6x2y2 + y4 and 4x3y − 4xy3, and so
on. Sums and differences of these polynomial solutions may also be employed, as
the sums and the differences of harmonic functions yield other harmonic functions.
A systematic application of this technique to the torsion problem has been employed
by Weber and Günther (1958). Here we merely present a classical example of the
method. Other examples are considered in the problems.

Example 7-5.1. Equilateral Triangle. Consider the harmonic polynomial φ1 =
A(x3 − 3xy2) (obtained from zn, with n = 3), where A is a constant. Because φ1

is harmonic, by setting χ = φ1, we may write Prandtl’s stress function φ in the
form [see Eq. (7-3.20)]

φ = −Gβ

[
x2 + y2

2
− x3 − 3xy2

2a
− b

]
(E7-5.1)

where a and b denote constants. If we assign the value 2a2/27 to the constant b,
we may factor Eq. (E7-5.1) into the form

φ = Gβ

2a

(
x −

√
3y − 2a

3

)(
x +

√
3y − 2a

3

)(
x + a

3

)
(E7-5.2)

Accordingly, for b = 2a2/27, the condition that φ vanish on the lateral boundary
of a bar in torsion [Eqs. (7-3.16)] is satisfied identically by the three conditions

x −
√

3y − 2a

3
= 0

x +
√

3y − 2a

3
= 0

x + a

3
= 0

(E7-5.3)

Equations (E7-5.3) represent the equations of three straight lines in the (x, y) plane
that form an equilateral triangle (Fig. E7-5.1). The region bounded by the three
straight lines may be considered as the cross section of a bar in torsion.

Shear–Stress Components. By Eqs. (7-3.3) and (E7-5.1), we find that the
shear–stress components are

τxz = −3Gβy

a

(
x + a

3

)
τyz = Gβ

(
x − 3x2

2a
+ 3y2

2a

) (E7-5.4)

Equations (E7-5.4) show that τxz = 0 for y = 0 and for x = −a/3, and that τyz is
parabolically distributed along the y axis (x = 0).
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Figure E7-5.1

Warping of Cross Section. Letting χ = (x3 − 3xy2)/2a and integrating
Eqs. (7-2.14), we obtain the warping function

ψ = y

2a
(y2 − 3x2) + C0 (E7-5.5)

where C0 is a constant. If we set w = 0 for x = y = 0, then Eq. (E7-5.5) and the
last of Eqs. (7-2.2) yield

w = βy

2a
(y2 − 3x2) (E7-5.6)

By Eq. (E7-5.6), we note that w = 0 for y = 0 and y = ±√
3x. In general, the w

contour lines for which w = constant are described by the equation

x2 = y2

3
+ K

y
(E7-5.7)

where K = constant. If K > 0, x → ∞ as y → 0 and as y → ∞. These conditions
facilitate the visualization of the contour map for w (Problem 7-5.1), where positive
w is taken in the direction of positive z where (x, y, z) are for a right-handed
coordinate system. The sign of w changes upon crossing the lines y = 0 and y =
±√

3x. Consequently, the cross section warps into alternate convex (+w) and
concave (−w) regions.

Problem Set 7-5

1. Sketch the contour map for the warping of the triangular cross section under torsion [see
Eq. (E7-5.7) and Fig. E7-5.1].

2. Derive Eqs. (E7-5.2), (E7-5.4), and (E7-5.5).
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3. Considering terms obtained from the analytic function (x + iy)4, we can express a Prandtl
stress function in the form

φ = −Gβ

[
x2 + y2

2
− a(x4 − 6x2y2 + y4)

2
+ a − 1

2

]

Set a = 0.2; plot the cross section of the bar for which φ solves the torsion problem.
Calculate the stress at the boundary point for which the radius vector forms an angle
of θ = 45◦ with the positive x axis. Use G = 12 × 106 psi, β = 0.001 rad/in. Com-
pare the result to that of a circle with radius equal to the radius vector of the plotted
cross section at θ = 45◦. Repeat for a = 0.5. (In his investigations, Saint-Venant found
that the torsional rigidity of a given cross section may be approximated by replac-
ing the given cross section with an elliptical cross section with the same area and
the same polar moment of inertia.) Is the circular approximation noted above a good
approximation?

4. Choosing axes (x1, y1) at the tip of the equilateral triangular cross section (Fig. E7-5.1),
by means of Eqs. (7-3.6) and (E7-5.2) show that

M = Gβa4

15
√

3

5. C. Weber proposed the following elementary method of examining the effects of a circular
groove or slot in a circular bar [for other kinds of groove and bar combinations, see
Weber and Günther (1958)]: Considering a pair of harmonic functions x and x/(x2 + y2)

obtained from zn with n = ±1, Weber transformed the functions into polar coordinates
(r, θ ). Thus, x = r cos θ and x/(x2 + y2) = (cos θ)/r . Hence, he took [see Eq. (7-3.20)]
a Prandtl stress function in the form

φ = Gβ

2

[
b2 − r2 + 2a(r2 − b2)

cos θ

r

]
(a)

where β is taken to denote the angle of twist per unit length. Setting φ = 0 on the
boundary, Weber obtained the equation of the boundary of the cross section as

(r2 − b2)

(
1 − 2a

r
cos θ

)
= 0 (b)

Equation (b) is satisfied identically by the conditions

r2 − b2 = 0
r − 2a cos θ = 0

(c)

Equations (c) may be considered to represent the cross section R of a circular shaft with
a circular groove (Fig. P7-5.5). Hence, with Eq. (a), the stress components τxz, τyz may
be computed by Eqs. (7-3.3). Derive the formulas for τxz, τyz.

6. Using the results derived in Problem 5, derive formulas for the stress components τxz, τyz

on the boundary of the shaft and on the boundary of the groove. Compute the maximum
value of stress on the boundary of the shaft and then on the groove.
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Figure P7-5.5

7. Compute τmax in terms of M and a for α = 60◦, α = 45◦, and α = 30◦ (Fig. P7-5.5).
Compute τ at the point P for these cases. Verify that τxz = τyz = 0 for corners A and B.

8. For the cross section given in Problem 5, derive the formula for the torsional rigidity of
the member.

9. Consider the torsion of a shaft with circular cross section that varies along the axis of the
shaft. Let (r, θ, z) be cylindrical coordinates such that (r, θ ) lies in the plane of the cross
section and z lies along the axis of the shaft. Thus, the radius of the circular cross section
varies with z. As in the torsion of a bar with constant circular cross section, assume
that u = w = 0, where u,w denote displacement components in the (r, z) directions,
respectively. Because of the symmetry of the circular cross section, the displacement
component v in the θ direction is independent of polar coordinate θ . The dependence of
v on r and z is difficult to guess. Hence, take v = v(r, z).

(a) Determine the corresponding strain components of the shaft.

(b) For a linearly elastic, isotropic material, determine the corresponding stress compo-
nents of the shaft.

(c) Express the equilibrium equations in terms of v.

(d) Show that there exists a torsion function F(r, z) such that F satisfies the equations
of equilibrium, provided

∂F

∂r
= r3 ∂

∂z

(v

r

) ∂F

∂z
= −r3 ∂

∂r

(v

r

)
(e) Show that the defining equation for F(r, z) is

∂2F

∂r2
− 3

r

∂F

∂r
+ ∂2F

∂z2
= 0

(f) Determine the boundary conditions that F must satisfy. Hence, define the mathemat-
ical problem that determines F . Hint: Consider a section of the shaft in the r, z plane
and write the boundary conditions for the lateral surface of the shaft.
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7-6 Torsion of Bars with Tubular Cavities

Consider a bar with cross section R, where R is the multiply connected region
interior to C0 and exterior to the longitudinal tubular cavities C2, C2, . . . , Cn

(Fig. 7-6.1). As in the torsion problem of the simply connected cross section,
the displacement components are taken in the form

u = −βzy

v = βzx

w = βψ(x, y)

(7-6.1)

where β and ψ are a constant and a function of (x, y), respectively, which are to
be determined.

The shearing–stress components in region R are given by the relations [see
Eqs. (7-2.4)]

τxz = βG

(
∂ψ

∂x
− y

)
τyz = βG

(
∂ψ

∂y
+ x

)
(7-6.2)

Because the boundaries C0, C1, C2, . . . , Cn are free from external loads, the
boundary conditions are

lτxz + mτyz = 0 on Ci i = 0, 1, . . . , n (7-6.3)

In terms of ψ , the boundary conditions may be written in the form

∂ψ

dn
= ly − mx on Ci i = 0, 1, 2, . . . , n (7-6.4)

Introducing the stress function φ, defined by Eqs. (7-3.3), we may write the
boundary conditions in terms of the stress function φ in the form

l
∂φ

∂y
− m

∂φ

∂x
= dφ

ds
= 0 on Ci i = 0, 1, . . . , n (7-6.5)

Figure 7-6.1
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or

φ = Ki on Ci i = 0, 1, 2, . . . , n (7-6.6)

where the Ki are constants.
In general, the function φ may be multiple valued. However, the function ψ is

determined by the boundary condition, Eq. (7-6.4), to within an arbitrary constant,
and it follows by Eqs. (7-6.2) and (7-3.3) that the function φ is determined to within
an arbitrary constant. Consequently, the stress function φ defined by Eqs. (7-3.3)
must satisfy the conditions of Eq. (7-6.6), where the value of only one of the
constants Ki may be assigned arbitrarily. If the region R is simply connected (i.e.,
if there are no tubular cavities), i = 0, and φ = K0 on C0. The constant K0 may
then be assigned an arbitrary value—for example, zero.

The remaining n constants must be chosen so that the displacement component
w [and hence ψ , see Eq. (7-6.1)] is a single-valued function, the constants Ki

being related to the function ψ through Eqs. (7-3.18) and (7-6.6) or to the complex
conjugate χ of ψ through Eqs. (7-3.20) and (7-6.6). For example, the values of
Ki may be established so that the solution of the Dirichlet problem [with b = 0 in
Eqs. (7-3.20)]

∇2χ = 0 over R

χ = 1
2 (x2 + y2) + Ki i = 1, . . . , n on Ci

GβKi = Ki

satisfies the conditions for the existence of a single-valued function in a multiply
connected region.4

Substituting Eqs. (7-3.3) into Eqs. (7-6.2), differentiating the first of Eqs. (7-6.2)
by y and the second by x, and subtracting the resulting equations, we obtain the
condition

∇2φ = −2Gβ in region R (7-6.7)

The twisting moment M that results from the shearing forces that act on the end
plane of the bar is

M =
∫∫

over R

(xτyz − yτxz) dx dy (7-6.8)

Substituting Eqs. (7-3.3) into Eqs. (7-6.8), we obtain

M = −
∫∫

over R

(
x

∂φ

∂x
+ y

∂φ

∂y

)
dx dy (7-6.9)

4See Eqs (7-2.15) and the discussion at the end of Section 5-4 in Chapter 5, particularly Eqs. (5-4.24)
and (5-4.25). Here, m = n and G = χ .
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Equation (7-6.9) may be written in the form

M =
∫∫

over R

2φ dx dy −
∫∫

over R

[
∂(xφ)

∂x
+ ∂(yφ)

∂y

]
dx dy (7-6.10)

Transforming the second integral of Eq. (7-6.10) by Green’s theorem for the plane
(Section 1-16), we may write Eq. (7-6.10) in the form

M = 2
∫∫

over R

φ dx dy =
n∑

i=0

∮
Ci

φ(x dy − y dx) (7-6.11)

Because we may assign the value of one of the K ′
i s in Eq. (7-6.6) arbitrarily,

let K0 on the boundary C0 be zero; that is, let φ = 0 on C0. Then, substitution of
Eq. (7-6.6) into Eq. (7-6.11) yields

M = 2
∫∫

over R

φ dx dy +
n∑

i=1

Ki

∮
Ci

(y dx − x dy)

Noting that ∮
Ci

(y dx − x dy) = 2
∫∫

over Ai

dx dy = 2Ai

where Ai is the area bounded by the curve Ci , we obtain

M = 2
∫∫

over R

φ dx dy + 2
n∑

i=1

KiAi (7-6.12)

Equation (7-6.12) is the moment–stress function relation for the torsion problem
of bars with multiply connected cross sections. Alternatively, by means of Eqs.
(7-3.20) and (7-6.12), M may be expressed in terms of the function χ .

Problem Set 7-6

1. For the hollow circular shaft of inner radius a and outer radius b, by the above theory,
evaluate M using the stress function φ = A(r2 − b2).

7-7 Transfer of Axis of Twist

In the previous analysis of the torsion problem, we assumed that any cross section of
the beam was subjected to an infinitesimal rotation θ about a z axis. No assumption
was made as to the location of the z axis relative to the cross section. In calculations,
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it may be convenient to choose a particular z axis. Hence, let us consider an axis
z1 that is parallel to the axis z, but that intersects the (x, y) plane at point (a, b).
With respect to the z1 axis, the displacement components are

u1 = −βz(y − b) v1 = βz(x − a) w1 = βψ1(x, y) (7-7.1)

where ψ1, not necessarily identical to ψ , is the warping function with respect to the
z1 axis (see also Review Problem R-4, later in this chapter before Appendix 7A).

In terms of the stress function ψ1, the stress components are

τxz = Gβ

(
∂ψ1

∂x
− y + b

)

τyz = Gβ

(
∂ψ1

∂y
+ x − a

)
σx = σy = σz = τxy = 0

(7-7.2)

Substitution of these stress components into the equilibrium equations [Eqs.
(7-1.1)] yields the result

∇2ψ1 = ∂2ψ1

∂x2
+ ∂2ψ1

∂y2
= 0 (7-7.3)

Also, the boundary conditions [Eqs. (7-1.4)] reduce to the condition

d

dn
(ψ1 + bx − ay) = ly − mx (7-7.4)

Now the function ψ1 + bx − ay is harmonic, and it satisfies the same boundary
conditions as the warping function ψ . Hence, by the uniqueness (Courant and
Hilbert, 1996) of the solution of the problem of Neumann, ψ and ψ1 + bx − ay

can differ only by a constant; that is, ψ1 = ψ − bx + ay + c, where c is a constant.
Consequently, the displacement components measured with respect to axis z1 are
given by the formulas

u1 = −βzy + βzb

v1 = βzx − βza

w1 = βψ + βya − βxb + βc

(7-7.5)

These components differ by a rigid-body displacement from those with respect to
the z axis [Eqs. (7-2.2)]. Consequently, the stress components are identical with
those with respect to the z axis. Thus, the choice of the origin of coordinates is
immaterial in the torsion problem of the bar with regard to the stress components.

7-8 Shearing–Stress Component in Any Direction

Directional Derivative. Let P (x, y) be any point on a curve in the (x, y) plane.
Let the scalar function φ(x, y) be defined on C with its partial derivatives ∂φ/∂x
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Figure 7-8.1

and ∂φ/∂y; for example, φ may be the stress function in torsion. Let Q : (x +
�x, y + �y) be a point on C in the neighborhood of P (see Fig. 7-8.1). Let �s

be the length of arc PQ and �φ be the change in φ due to increments �x and
�y. Then, the derivative

dφ

ds
= lim

�s→0

�φ

�s

determines the rate of change of φ along the curve C at the point P : (x, y). Now
the total differential of φ is

dφ = ∂φ

∂x
dx + ∂φ

∂y
dy

and
dφ

ds
= ∂φ

∂x

dx

ds
+ ∂φ

∂y

dy

ds

Also,
dx

ds
= lim

�s→0

�x

�s
= cos α

dy

ds
= lim

�s→0

�y

�s
= sin α

Hence, dφ/ds = (∂φ/∂x) cos α + (∂φ/∂y) sin α. By this equation, it is apparent
that dφ/ds depends on the direction of s. For this reason, dφ/ds is called the
directional derivative. It represents the rate of change of φ in the direction of
the tangent to the particular curve chosen for point P : (x, y). For example, if
α = 0,

dφ

ds
= ∂φ

∂x

is the rate of change of φ in the direction of the x axis.
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Figure 7-8.2

Maximum Value of the Directional Derivative: Gradient. Consider two
neighboring curves in the (x, y) plane; say, C and C + �C (Fig. 7-8.2). Let the
respective values of φ on these curves be φ and φ +�φ. Then �φ/�s is the average
rate of change of φ with respect to the distance �s measured from curve C to the
curve C + �C. Now consider the ratio �n/�s, where �n denotes the distance
from C to C + �C measured along the normal to C at point P : ((x, y). The
limiting value of this ratio is cos β; that is,

dn

ds
= lim

�C→0

�n

�s
= cos β

Hence,
dφ

ds
= dφ

dn

dn

ds
= dφ

dn
cos β

Therefore, dφ/dn, that is, the derivative of φ in the direction normal to C, is
the maximum value that dφ/ds may take in any direction. Hence, (dφ/ds)max =
|dφ/dn|. The vector in the direction of the normal, of magnitude |dφ/dn|, is called
the gradient of φ; that is, (φx, φy) = gradient φ = grad φ, where (x, y) subscripts
on φ denote partial derivatives. Consequently, the maximum value of dφ/ds is
equal to the magnitude of the gradient of φ, |grad φ|.

Stress Component–Directional Derivative. Consider an arbitrary point
P : (x, y) in the cross section of a bar in torsion (Fig. 7-8.3). The stress component
τθ in the direction θ is

τθ = τxz cos θ + τyz sin θ

In terms of the stress function φ, by Eqs. (7-3.3),

τxz = ∂φ

∂y
τyz = −∂φ

∂x
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Figure 7-8.3

Therefore,

τθ = ∂φ

∂y
cos θ − ∂φ

∂x
sin θ

= φy cos θ − φx sin θ

Now set α = θ + π/2. Then

τθ = φy cos
(
α − π

2

)
− φx sin

(
α − π

2

)
= φx cos α + φy sin α = dφ

ds

Consequently, τθ is equal to the directional derivative of φ in a direction leading
θ by 90◦. Note that if the direction α corresponds to a direction for which φ =
constant, dφ/ds = 0. Hence, the shearing–stress perpendicular to the line φ =
constant is zero. Therefore, lines φ = constant are shearing–stress trajectories, and
the stress vector on lines φ = constant has magnitude

|τθ | = (φ2
x + φ2

y)
1/2 =

(
dφ

ds

)
max

= |grad φ|

The stress vector is tangent to lines φ = constant.
In polar coordinates (r, β) (see Fig. 7-8.4),

τr = 1

r

∂φ

∂β
τβ = −∂φ

∂r
(7-8.1)
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Figure 7-8.4

For example, in terms of polar coordinates (r, β), the Prandtl stress function of a
circular shaft with circular groove is [see Eq. (a), Problem 7-5.5]

φ = Gθ

2

[
b2 − r2 + 2a(r2 − b2)

cos β

r

]
(7-8.2)

where here θ denotes the unit angle of twist. Consequently, Eqs. (7-8.1) and (7-8.2)
yield

τr = τrz = 1

r

∂φ

∂B
= −Gθa

r2
(r2 − b2) sin β

τβ = τβz = −∂φ

∂r
= Gθ

[
r − a

r2
(r2 + b2) cos β

] (7-8.3)

Thus, for β = 0 and r = b (Fig. P7-5.5 and Problem 7-5.5) we have

τrz = 0 τβz = −Gθ(2a − b)

and for β = 0 and r = 2a (point P in Fig. P7-5.5) we obtain

τrz = 0 τβz = Gθ

4a
(4a2 − b2)

Problem Set 7-8

1. Plot out several shearing–stress trajectories for the cross section shown in Fig. P7-5.5.

7-9 Solution of Torsion Problem by the Prandtl Membrane Analogy

In this section we consider an analogy method proposed by Prandtl (1903)5 that
leads itself to obtaining approximate solutions to the torsion problem. Although

5See Prandtl (1903, p. 758). Another analogy method, a hydrodynamic analogy, has been proposed
by Pestel (1955a, 1955b); see also Grossmann (1957). We discuss only the analogy proposed by
Prandtl.
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this method is of historical interest, it is rarely used today to obtain quantitative
results, and it is treated here primarily from the heuristic viewpoint.

The analogy is based upon the equivalence of the torsion equation (7-3.15)

∇2φ = −2Gβ (7-9.1)
and the membrane equation

∇2z = −q

S
(7-9.2)

where z denotes the lateral displacement of a membrane subjected to a lateral
pressure q in terms of force per unit area and an initial (large) tension S (Fig. 7-9.1)
in terms of force per unit length.

For example, consider an element ABCD of dimensions dx, dy of a membrane
(Fig. 7-9.1). The net vertical force due to the tension S acting along edge AD is
(assuming small displacements so that sin α ≈ tan α)

−S dy sin α ≈ −S dy tan α = −S dy
∂z

∂x

Figure 7-9.1
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and similarly the net vertical force due to the tension S (assumed to remain constant
for sufficiently small values of q) acting along edge BC is

S dy tan

(
α + ∂α

∂x
dx

)
= S dy

∂

∂x

(
z + ∂z

∂x
dx

)

Similarly, for edges AB and DC we obtain

−S dx
∂z

∂y
S dx

∂

∂y

(
z + ∂z

∂y
dy

)

Consequently, summation of force in the vertical direction yields for equilibrium
of the membrane element dx dy:

S
∂2z

∂x2
dx dy + S

∂2z

∂y2
dx dy + q dx dy = 0

or
∇2z = −q

S

Prandtl showed that the shearing–stress components in a straight elastic bar in tor-
sion may be related to the slopes of a membrane (soap film) extended over a hole in
a flat plate and subjected to a small pressure q, the hole having the shape of the cross
section of the bar and the membrane being attached to the boundary of the hole.

By comparison of Eqs. (7-9.1) and (7-9.2), we arrive at the following analogous
quantities:

z = cφ
q

S
= c2Gβ (7-9.3)

where c is a constant of proportionality. Hence,

z

q/S
= φ

2Gβ
φ = 2GβS

q
z (7-9.4)

Accordingly, the membrane displacement z is proportional to the Prandtl stress
function φ, and because the shearing–stress components τxz, τyz are equal to the
appropriate derivatives of φ with respect to x and y [see Eqs. (7-3.3)], it follows
that the stress components are proportional to the derivatives of the membrane
displacement z with respect to the coordinates (x, y) in the flat plate to which the
membrane is attached (Fig. 7-9.1). In other words, the stress components at a point
(x, y) of the bar are proportional to the slopes of the membrane at the correspond-
ing point (x, y) of the membrane. Consequently, the distribution of shear–stress
components in the cross section of the bar is easily visualized by forming a mental
image of the slope of the corresponding membrane. Furthermore, for simply con-
nected cross sections, because z is proportional to φ, by Eqs. (7-3.6) and (7-9.4)
we note that the twisting moment M is proportional to the volume enclosed by the
membrane and the (x, y) plane (Fig. 7-9.1).
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For the multiply connected cross section, additional conditions arise. For
example, consider the cross section shown in Fig. 7-6.1. For this cross section,
Eq. (7-6.12) shows that the twisting moment M is proportional to the integral
of φ over R plus twice the sum of the products of area of the holes and the
corresponding constant values of φ on the boundaries of the holes. With regard to
the membrane analogy, one must then consider a membrane stretched over region
R in such a manner that the membrane has a constant value on a boundary of a
hole. Such an effect may be obtained if one stretches a membrane over a flat plate
P0 with a cutout corresponding to region R and with flat plates P1, P2, . . . , Pn

placed over the holes A1, A2, . . . , An, the plates P1, P2, . . . , Pn having appropriate
heights z1, z2, . . . , zn with respect to the holes A1, A2, . . . , An. For example, for
a cross section with a single tubular hole, the equivalent membrane is shown
in Fig. 7-9.2. This simple idea can be extended to n holes. On the basis of the
directional derivative concept [see Section 7-8 and particularly Eqs. (7-8.1)] and
the membrane analogy, we see that for a curve C on the membrane defined by
z = constant (i.e., for φ = constant) the shear–stress resultant τ is everywhere
tangent to the curve (Fig. 7-9.3), where by Eq. (7-8.1),

τ = −∂φ

∂n
= −dφ

dn
on C (7-9.5)

Figure 7-9.2
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Figure 7-9.3

Considering the equilibrium of the part of the membrane enclosed by C, we find

qA =
∫

S sin θ ds (7-9.6)

where A denotes the plane area bounded by C (Fig. 7-9.4).
By Fig. 7-9.4 and Eqs. (7-9.4) and (7-9.5), we have

sin θ = − ∂z

∂n
= −dφ

dn

q

2GβS
= τq

2GβS
(7-9.7)

Hence, Eqs. (7-9.6) and (7-9.7) yield∫
C

τ ds = 2GβA (7-9.8)

Accordingly, for multiply connected regions Eq. (7-9.8) becomes (see Figs. 7-6.1
and 7-9.2) ∫

Ci

τ ds = 2GβAi (7-9.9)

where Ci denotes the boundary of the plane area Ai .
Several cross sections and their associated membranes are shown schematically

in Fig. 7-9.5.
Some useful conclusions may be drawn from consideration of Fig. 7-9.5. For

example, noting that by Eqs. (7-4.6) and (7-6.12)

M = 2
∫∫
R

φ dx dy + 2
k∑

i=1

KiAi = Cβ (7-9.10)
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Figure 7-9.4

Cross sections

Figure 7-9.5
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it appears from Fig. 7-9.5 that for a bar with circular cross section and a given angle
of twist (i.e., for a given pressure q and tension S for the associated membrane),
the required moment M is not changed as greatly by cutting a concentric circular
hole in the shaft as it is cutting a concentric circular hole and slit in the shaft
(Figs. 7-9.5b, c, and d). Calculations bear out this observation.

Certain kinds of approximations may also be suggested by examination of
the membrane. For example, if the wall thickness of a circular tube is small
(Fig. 7-9.5b), then by Eq. (7-9.10) we have, with k = 1,

M = 2
∫∫
R

φ dx dy + 2K1A1 ≈ 2K1A1 (7-9.11)

where K1 is the value of φ on the boundary of the hole and A1 is the area of the
hole. Other approximations of this type are often employed in practice (Weber and
Günther, 1958).

Example 7-9.1. Narrow Rectangular Cross Section. Consider a bar subjected to
torsion. Let the cross section of the bar be a solid rectangle with width 2a and depth
2b, where b 
 a (Fig. E7-9.1). The associated membrane is shown in Fig. E7-9.2.

Figure E7-9.1
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Figure E7-9.2

Except for the region near x = ±b, the membrane deflection is approximately
independent of x. For a given x, the deflection with respect to y is assumed to be
parabolic. Then

z = z0

[
1 −

(y

a

)2
]

(a)

Hence,

∇2z = −2z0

a2
(b)

By Eqs. (b), (7-9.2), and (7-9.3), we may write ∇2z = −2z0/a
2 = −2cGβ or

φ = Gβa2
[

1 −
(y

a

)2
]

(c)

Consequently, Eqs. (7-3.3) yield

τxz = ∂φ

∂y
= −2Gβy τyz = 0 (d)

and the last of Eqs. (7-3.6) yields

M = 2
∫ b

−b

∫ a

−a

φ dx dy = 16

3
Gβa3b (e)

By Eqs. (d), we note that the maximum value of |τxz| is τmax = 2Gβa for y = ±a.
In summary, we note that the solution is approximate, and in particular the

boundary conditions for x = ±b are not satisfied. See also Timoshenko (1983) for
the case of a narrow trapezoid.

Problem Set 7-9

1. A torsion bar has a cross section in the shape of an isosceles triangle of height h and
base 2b, with h 
 b. Let (x, y) axes be defined such that the origin is at the center
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of the base, with the x axis in the height direction. Define the torsion function to be
φ = Gb2β[1 − (y/b)2], based upon the membrane of the cross section.

(a) Derive expressions for the corresponding stress components.

(b) Determine the formula for the torsional rigidity in terms of G, b, h.

(c) Examine the boundary conditions and discuss them.

7-10 Solution by Method of Series. Rectangular Section

In Example 7-9.1 the torsion problem of a bar with narrow rectangular cross section
was approximated by noting the deflection of the corresponding membrane. In this
section we again consider the rectangular section −a ≤ x ≤ a, −b ≤ y ≤ b, but
we discard the restriction a � b (Fig. 7-10.1).

By visualizing the membrane corresponding to the cross section of Fig. 7-10.1,
we note that the torsion stress function φ must be even in x and y. Also, we recall

Figure 7-10.1
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that in terms of φ the torsion problem is defined by the equations

∇2φ = −2Gβ over R

φ = 0 on C
(7-10.1)

By Example 7-9.1, we have seen that Gβ(a2 − x2) is a particular integral of the
first of Eqs. (7-10.1). Accordingly, we take the stress function φ in the form [see
also Eq. (7-3.20)]

φ = Gβ(a2 − x2) + V (x, y) (7-10.2)

where V (x, y) is an even function of (x, y). Substitution of Eq. (7-10.2) into
Eqs. (7-10.1) yields

∇2V = 0 over R

V = 0 for x = ±a

V = Gβ(x2 − a2) for y = ±b

(7-10.3)

Equations (7-10.3) represent a special case of the Dirichlet problem (Section 7-2).
We seek solutions of Eqs. (7-10.3) by the method of separation of variables.

Thus, we take
V = f (x)g(y) (7-10.4)

where f (x) and g(y) are functions of x and y, respectively. The first of Eqs.
(7-10.3) and (7-10.4) yield

∇2V = gf ′′ + g′′f = 0 (7-10.5)

where primes denote derivatives with respect to x or y. In order that Eq. (7-10.5)
be satisfied, we must have

f ′′

f
= −g′′

g
= −λ2 (7-10.6)

where λ2 is a positive constant. Hence,

f ′′ + λ2f = 0 g′′ − λ2g = 0 (7-10.7)

The solutions of Eqs. (7-10.7) are

f = A cos λx + B sin λx

g = C cosh λy + D sinh λy
(7-10.8)

Because V must be even in x and y, it follows that B = D = 0. Consequently, the
function V takes on the form [Eq. (7-10.4)]

V = A cos λx cosh λy (7-10.9)

where A denotes an arbitrary constant.
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To satisfy the second of Eqs. (7-10.3), Eq. (7-10.9) yields the result

λ = nπ

2a
n = 1, 3, 5, . . . (7-10.10)

To satisfy the last of Eqs. (7-10.3) we employ the method of superposition
(∇2V = 0 is a linear, homogeneous partial differential equation), and we write

V =
∞∑

n=1,3,5,...

An cos
nπx

2a
cosh

nπy

2a
(7-10.11)

Equation (7-10.11) satisfies ∇2V = 0 in R, provided the series converges and is
termwise differentiable (Brown and Churchill, 2007). Equation (7-10.11) automat-
ically satisfies the boundary condition for x = ±a. The boundary condition for
y = ±b yields the condition [Eqs. (7-10.3)]

∞∑
n=1,3,5,...

Cn cos
nπx

2a
= Gβ(x2 − a2) = h(x) (7-10.12)

where

Cn = Ancosh
nπb

2a
(7-10.13)

By the theory of Fourier series, we multiply both sides of Eq. (7-10.12) by
cos(nπx/2a) and integrate between the limits −a and +a to obtain the coefficients
Cn as follows:

Cn = 1

a

∫ a

−a

h(x) cos
nπx

2a
dx (7-10.14)

Because h(x) cos(nπx/2a) = Gβ(x2 − a2) cos(nπx/2a) is symmetrical about
x = 0, we may write

Cn = 2Gβ

a

∫ a

0
(x2 − a2)cos

nπx

2a
dx

or

Cn = 2Gβ

a

∫ a

0
x2 cos

nπx

2a
dx − 2Gβa

∫ a

0
cos

nπx

2a
dx

Integration yields [see Pierce and Foster (1956), Formula 350, or Ryzhik et al.
(1994)]:

Cn = −32Gβa2(−1)(n−1)/2

n3π3
(7-10.15)
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Hence, Eqs. (7-10.11), (7-10.13), and (7-10.15) yield

An = −32Gβa2(−1)(n−1)/2

n3πcosh
nπb

2a

(7-10.16)

and

φ = Gβ(a2 − x2) − 32Gβa2

π3

∞∑
n=1,3,5,...

(−1)(n−1)/2 cos
nπx

2a
cosh

nπy

2a

n3cosh
nπb

2a

(7-10.17)

Note that as coshx = 1 + x2/2! + x4/4! + · · ·, the series in Eq. (7-10.17) goes to
zero if b/a → ∞ (i.e., if the section is very narrow b 
 a). Then Eq. (7-10.17)
reduces to

φ ≈ Gβ(a2 − x2) (7-10.18)

This result verifies the assumption employed in Example 7-9.1 for the slender
rectangular cross section.

By Eqs. (7-3.3) and (7-10.17), we obtain

τxz = ∂φ

∂y
= −16Gβa

π2

∞∑
n=1,3,5,...

(−1)(n−1)/2cos
nπx

2a
sinh

nπy

2a

n3cosh
nπb

2a

τyz = −∂φ

∂x
= 2Gβx − 16Gβa

π2

∞∑
n=1,3,5,...

(−1)(n−1)/2sin
nπx

2a
cosh

nπy

2a

n3cosh
nπb

2a

(7-10.19)

By Eqs. (7-3.6) and (7-10.17), the twisting moment is

M = 2
∫ b

−b

∫ a

−a

φ dx dy = Cβ = GJβ (7-10.20)

where J , a factor dependent on geometry of the cross section, is

J = 2
∫ b

−b

∫ a

−a

(a2 − x2)dxdy

− 64a2

π3

∞∑
n=1,3,5,...

(−1)(n−1)/2

n3cosh
nπb

2a

∫ b

−b

∫ a

−a

(
cos

nπx

2a
cosh

nπy

2a

)
dxdy
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Integration yields [see Pierce and Foster (1956), Formula 489, or Ryzhik et al.
(1994)]:

J = (2a)3(2b)

3

⎡
⎣1 − 192

π5

(a

b

) ∞∑
n=1,3,5,...

1

n5
tanh

nπb

2a

⎤
⎦ (7-10.21)

The factor outside the brackets on the right side of Eq. (7-10.21) is an approxi-
mation for a thin rectangular cross section because the series goes to zero as b/a

becomes large.
In general, Eq. (7-10.21) may be written in the form

J = k1(2a)3(2b) (7-10.22)

where

k1 = 1

3

⎡
⎣1 − 192

π5

(a

b

) ∞∑
n=1,3,5,...

1

n5
tanh

nπb

2a

⎤
⎦ (7-10.23)

Equation (7-10.20) may then be written in the form

M = Gβk1(2a)3(2b) (7-10.24)

Values of k1 for various ratios of b/a are given by Timoshenko and Goodier (1970).

Problem Set 7-10

1. Verify Eq. (7-10.21).

2. With b> a, show that the maximum shear for the rectangular cross section (Fig. 7-10.1)
occurs at x = a, y = 0. Hence, show that

τmax = 2Gβak

where

k = 1 − 8

π2

∞∑
n=1,3,5,...

1

n2cosh(nπb /2a )

3. Derive the warping function for the rectangular cross section. Consider the case a = b,
and sketch in contour lines.

4. Calculate τxz, τyz at the indicated points in the cross section (Fig. P7-10.4). Calculate J

[Eq. (7-10.21)].

5. Consider a shaft with a sector cross section with angle α and radius a (Fig. P7-10.5).
Let (r, β) denote polar coordinates. Let the torsion stress function φ be given by
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φ = V − Gθr2/2, where here θ denotes the unit angle of twist. By the method employed
in Section 7-10, show that

φ = Gθ

2

⎡
⎢⎢⎣−r2

(
1 − cos 2β

cos α

)
+ 16a2α2

π3

∞∑
n=1,3,5,...

(−1)(n+1)/2
( r

a

)nπ/α

× cos(nπβ/α)

n

(
n + 2α

π

)(
n − 2α

π

)
⎤
⎥⎥⎦

6. Consider the torsion problem of a shaft whose cross section is shown in Fig. P7-10.6.
Assume a stress function of the form φ = V − 1

2 Gθr2, where V is a function of r alone,
G denotes the shear modulus, θ denotes the angle of twist per unit length of the shaft, and
r is the radial polar coordinate. For h/a � 1, derive an expression for V in terms of a, h,
and r . Hence, derive an expression for the shearing stress τ . Discuss the validity of the
solution in the vicinity of β = π /2.

Figure P7-10.4
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Figure P7-10.5

Figure P7-10.6
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7-11 Bending of a Bar Subjected to Transverse End Force

Consider a prismatic elastic bar fixed6 at the end z = 0 and subjected to a lateral
force P at the end z = L (Fig. 7-11.1). The cross section of the bar is contained
in region R bounded by the surface S. We restrict discussion to the case of simply
connected regions R (see Sections 7-2 and 7-6).

We let the origin of axes (x, y, z) be located arbitrarily in the cross section at
z = 0. Furthermore, we take the x axis coincident with the line of action of force P .
Then summation of forces on the end face z = L yields

Px =
∫∫

τzx dx dy = P Py = Pz = Mx = My = Mz = 0 (7-11.1)

Accordingly, overall equilibrium of any portion of the bar (say, between the sections
z = z, z = L; Figs. 7-11.1 and 7-11.2) requires that∫∫

τzxdxdy = P

∫∫
σzxdxdy = −P (L − z)∫∫

τzxdxdy =
∫∫

σzdxdy =
∫∫

yσzdxdy

=
∫∫

(xτzy − yτzx)dxdy = 0

(7-11.2)

It follows from the first two of Eqs. (7-11.2) that τzx and σz are not zero. Also, in
general, τyz is not zero by the last of Eqs. (7-11.2).

Following the semi-inverse method of Saint-Venant, we seek solutions such that
σz, τzx, τzy are the only nonvanishing stress components; that is, we assume that

σx = σy = τxy = 0 (7-11.3)

Figure 7-11.1

6For example, the conditions at z = 0 may be taken such that the displacement components u =
v = w = 0 at x = y = z = 0, and the rotation ω = 0 at x = y = z = 0.
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Figure 7-11.2

Furthermore, we take the simplest linear dependence on (x, y) for the component
σz; that is, we assume that σz is proportional to Ax + By +C, where A, B, C

are constants. More explicitly, on the basis of the second of Eqs. (7-11.2) we
assume that

σz = P (Ax + By + C)(L − z) (7-11.4)

Substitution of Eq. (7-11.4) into Eqs. (7-11.2) yields the result

AIyy + BIxy + CSy = −1

AIxy + BIxx + CSx = 0

ASy + BSx + CS0 = 0

(7-11.5)

where (Ixx, Iyy, Ixy) and (Sx, Sy) are the moments of inertia and the first moments,
respectively, of the area of the cross section of the bar relative to axes (x, y), and
S0 is the area of the cross section of the bar.

Equations (7-11.5) are three linear algebraic equations in the unknowns A, B, C.
Solving Eqs. (7-11.5), we obtain

A = −IxxS0 − S2
x

�
= S2

x − IxxS0

�

B = IxyS0 − SxSy

�

C = IxxSy − IxySx

�
= −Ax − By

(7-11.6)

where

� =
∣∣∣∣∣∣

Iyy Ixy Sy

Ixy Ixx Sx

Sy Sx S0

∣∣∣∣∣∣ (7-11.7)

and x, y, denote the coordinates of the center of gravity of the area of the cross
section.
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In the absence of body forces (X = Y = Z = 0). Equations (7-1.1), (7-11.3),
and (7-11.4) yield

∂τxz

∂z
= ∂τyz

∂z
= 0

∂τxz

∂x
+ ∂τyz

∂y
= P (Ax + By + C)

(7-11.8)

It follows by the first two of Eqs. (7-11.8) that τxz, τyz are independent of z.
Furthermore, the last of Eqs. (7-11.8) may be written in the form

∂

∂x

[
τxz − P

2
(Ax2 + Cx)

]
+ ∂

∂y

[
τyz − P

2
(By2 + Cy)

]
= 0 (7-11.9)

By the theory of Section 1-19, Eq. (7-11.9) represents necessary and sufficient
conditions that a function F exist such that

τxz − P

2
(Ax2 + Cx) = P

2

∂F

∂y

τyz − P

2
(By2 + Cy) = −P

2

∂F

∂x

or

τxz = P

2

[
∂F

∂y
+ Ax2 + Cx

]

τyz = P

2

[
−∂F

∂x
+ By2 + Cy

] (7-11.10)

Hence, if τxz and τyz are expressed in the form of Eqs. (7-11.10), the equations
of equilibrium are satisfied. Furthermore, as τxz and τyz are independent of z, it
follows that F = F(x, y). The governing equations for F are the compatibility
equations [Eqs. (7-1.5)] and the boundary conditions [Eqs. (7-1.4)]. Substitution of
Eqs. (7-11.3), (7-11.4), and (7-11.10) into Eqs. (7-1.5) yields

∂

∂y
(∇2F) = − 2νA

1 + ν

∂

∂x
(∇2F) = 2νB

1 + ν

Integration yields

∇2F = 2ν

1 + ν
(Bx − Ay) − 2C0 over R (7-11.11)

where C0 is a constant of integration that may be interpreted physically [see Section
7-12; see also Eq. (7-11.29)].
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The boundary conditions [Eqs. (7-1.4a)] reduce to lτ xz+ mτ yz = 0 or

τxz

dy

ds
− τyz

dx

ds
= 0 (7-11.12)

where [see Eq. (7-2.7) and Fig. 7-2.2]

l = dy

ds
m = −dx

ds
(7-11.13)

Substitution of Eqs. (7-11.10) into Eq. (7-11.12) yields

∂F

∂s
= (By2 + Cy)

dx

ds
− (Ax2 + Cx)

dy

ds
on S (7-11.14)

Equation (7-11.11), which holds over region R, and Eq. (7-11.14), which holds on
the lateral surface S, are the defining equations for F .

The above results may be simplified somewhat by noting the nature of Eqs.
(7-11.11) and (7-11.14), and representing F in terms of two new functions. Thus,
we set

F = � + C0φ (7-11.15)

Then Eqs. (7-11.11) and (7-11.14) yield

∇2φ = −2

∇2� = 2ν

1 + ν
(Bx − Ay)

⎫⎬
⎭ over R (7-11.16)

and

∂φ

∂s
= 0 or φ = 0 (Section 7-6)

∂�

∂s
= (By2 + Cy)

dx

ds
− (Ax2 + Cx)

dy

ds

⎫⎪⎬
⎪⎭ on S (7-11.17)

By Eqs. (7-11.16) and (7-11.17), we see from the theory of Section 7-3 that
φ (except for the constant factor Gβ) is the Prandtl stress function. Accordingly,
the problem of the bending of the cantilever bar subjected to transverse end load
may be expressed in terms of the Prandtl stress function of torsion and an auxiliary
function �, which must satisfy the last of Eqs. (7-11.16) and (7-11.17). The function
� is called the flexural function or the bending function .

If (x, y) are axes of symmetry with origin at the centroid of the section (then
x, y are called principal axes of the cross section),

B = C = 0 A = − 1

Iyy

= −1

I
(7-11.18)

where I denotes Iyy . Then, analogous to the principal axes theories of stress
(σij = 0, i = j) and strain (εij = 0, i = j ), axes (x, y) are called principal axes
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of inertia (Ixy = 0). With x a principal axis of inertia of the cross section, the
equations for the flexural function [Eqs. (7-11.16) and (7-11.17)] reduce to

∇2� = 2ν

1 + ν

y

I
over R

∂�

∂s
= x2

I

dy

ds
on S

(7-11.19)

For a certain class of problems it is convenient to redefine � in terms of two
functions, as follows:

� = 1

P
[�(x, y) + h(y)] (7-11.20)

where � is a function of both x and y, and h is a function of y only.7 Then Eqs.
(7-11.19) become

∇2� = 2ν

1 + ν

P

I
y − df

dy
over R

∂�

∂s
=
(

Px2

I
− f

)
dy

ds
on S

(7-11.21)

where f = dh/dy = f (y). The objective of the substitution of Eq. (7-11.20) is to
arrive at simpler boundary conditions. For example, if we can choose f such that

(
Px2

I
− f

)
dy

ds
= 0 on S (7-11.22)

then
∂�

∂s
= 0 on S (7-11.23)

and as R is a simply connected region, it follows that we may take (see Section 7-6)

� = 0 on S (7-11.24)

We will employ this technique below to obtain the solution of the flexure problem
for the rectangular and the elliptic cross sections.

Alternatively, we may seek solutions of Eq. (7-11.11) by taking a particular
integral in the form of a polynomial in x and y. For example, we may express F

in the form

F = h(x, y) + ν

3(1 + ν)
(Bx3 − Ay3) − 1

2
C0(x

2 + y2) (7-11.25)

7This substitution was employed by Timoshenko (1913) to solve the problem of flexure of certain
kinds of cross sections (Sections 7-14 and 7-15).
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where ∇2h = 0; that is, h is a harmonic function. Then the problem of bending
of a bar by transverse end force transforms into seeking a function such that [see
Eqs. (7-11.10), (7-11.11), and (7-11.14)]

∇2h = 0 over region R

∂h

∂s
= (By2 + Cy)

dx

ds
− (Ax2 + Cx)

dy

ds

+
(

ν

1 + ν
Bx2 − C0x

)
dx

ds
+
(

ν

1 + ν
Ay2 + C0y

)
dy

ds
on S (7-11.26)

where the stress components are given by

τxz = P

2

[
∂h

∂y
+ A

(
x2 − νy2

1 + ν

)
+ Cx − C0y

]

τyz = P

2

[
−∂h

∂x
+ B

(
y2 − νx2

1 + ν

)
+ Cy + C0x

] (7-11.27)

For principal axes of the cross section, B = C = 0, A = −1/I , and Eqs. (7-11.26)
and (7-11.27) are simplified accordingly.

Determination of the Constant of Integration, C0. The above formulation
of the flexural problem of the bar (cantilever beam) subjected to end force P is
complete except for the determination of the integration constant C0 [Eq. (7-11.11)].
We find that if we substitute Eqs. (7-11.10) into Eqs. (7-11.2), all the equations are
satisfied identically with the exception of the last equation, that is,

Mz =
∫∫

(xτyz − yτxz) dx dy = 0 (7-11.28)

The constant C0 must be chosen to satisfy Eq. (7-11.28). Accordingly, if we employ
the definitions of Eqs. (7-11.10) and (7-11.15), we obtain, after some calculations,

C0

∫∫
φ dx dy = −

∫∫
� dx dy − 1

2

∫∫
(By − Ax)xy dx dy

−
∮ [

(By2 + Cy)
dx

ds
− (Ax2 + Cx)

dx

ds

]
Rs ds

(7-11.29)

where the double integrals are evaluated over R, the line integral is taken over S,
and

Rs = 1

2

∫ s

0
(x dy − y dx) (7-11.30)
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For principal axes of the cross section, B = C = 0, A = −1/I , and Eq. (7-11.29)
is simplified accordingly. With Eq. (7-11.29), the formulation of the problem of
bending of a bar subjected to transverse end load is complete.

In general, C0 = 0. Hence, there is twisting of the bar (torsion) when a transverse
end load is applied arbitrarily. It is for this reason that the Prandtl torsion function
[Eqs. (7-11.15) through (7-11.17)] enters into the bending problem of bars.

The constant C0 may be related to the average rotation of a cross section of the
bar with respect to the axis z. For example, for the state of stress defined above,
we obtain by Eqs. (7-1.3)

εx = εy = −νσz

E
= −νP

E
(Ax + By + C)(L − z)

εz = P

E
(Ax + By + C)(L − z)

γxy = 0 γxz = 1

G
τxz γyz = 1

G
τyz

(7-11.31)

where

εx = ∂u

∂x
εy = ∂v

∂y
εz = ∂w

∂z

γxy = ∂u

∂y
+ ∂v

∂x
γxz = ∂u

∂z
+ ∂w

∂x
γyz = ∂v

∂z
+ ∂w

∂y

and where E is the modulus of elasticity and ν is Poisson’s ratio of the mate-
rial. With Eqs. (7-11.31), the three strain compatibility equations of the type (see
Chapter 2, Section 2-16)

∂2εx

∂y2
+ ∂2εy

∂x2
= ∂2γxy

∂x∂y

are satisfied identically. Also, the equation

2
∂2εz

∂x∂y
= ∂

∂z

(
∂γyz

∂x
+ ∂γxz

∂y
− ∂γxy

∂z

)

is satisfied. The remaining two equations of compatibility simplify to

∂

∂x

(
∂γyz

∂x
− ∂γxz

∂y

)
= −2νPB

E

∂

∂y

(
∂γyz

∂x
− ∂γxz

∂y

)
= 2νPA

E

(7-11.32)

Integration of Eqs. (7-11.32) leads to

∂γyz

∂x
− ∂γxz

∂y
= 2νP

E
(−Bx + Ay) + 2K (7-11.33)

where K is a constant of integration.
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Recalling the definition of γyz, γxz, and ωz in terms of (u, v, w) [see Eqs.
(2-15.14) and (2-5.3)], we note that Eq. (7-11.33) may be written as

∂ωz

∂z
= νP

E
(−Bx + Ay) + K

The term ωz is the angle of rotation of an element of volume in the rod about the
z axis. The term ∂ωz/∂z is thus the twist of fibers in the rod parallel to the z axis.
Integration of the twist over the cross section R of the bar yields the result

∂ωz

∂z
= νP

E
(−Bx + Ay) + K (7-11.34)

where
ωz = 1

S0

∫∫
ωz dx dy

x = 1

S0

∫∫
x dx dy

y = 1

S0

∫∫
y dx dy

(7-11.35)

denote, respectively, the average value of the angle of rotation ωz, the x value of
the centroid of the cross section, and the y value of the centroid, and S0 denotes the
area of the cross section. Accordingly, by Eq. (7-11.34), the integration constant K

may be related to the average angle of rotation of a cross section about the z axis.
Furthermore, if the x axis is an axis of symmetry, B = y = 0. Then ∂ωz/∂z = K .
However, because x is an axis of symmetry (a principal axis passing through the
centroid of the cross section), ωz = 0. Hence, when x is a principal axis passing
through the centroid of the cross section, K = 0.

Alternatively, the compatibility condition, Eq. (7-11.33), may be expressed in
terms of τxz and τyz by means of the last two of Eqs. (7-11.31). Then, by Eqs.
(7-11.10), the compatibility relation may be formulated in terms of the function F .
This latter expression, with Eq. (7-11.11), yields the result

C0 = E

(1 + ν)P
K (7-11.36)

Accordingly, the above remarks made with regard to K hold also for the constant
C0. For example, the constant C0 defined by Eqs. (7-11.29) vanishes when x is a
principal axis. In general, C0 is related to the mean rotation ωz by Eqs. (7-11.34)
and (7-11.36). That is,

∂ωz

∂z
= (1 + ν)P

E

[
ν

1 + ν
(−Bx + Ay) + C0

]
(7-11.37)
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Remark on Solution of ∇2χ = F(x, y). The basic equation of the theories of
torsion and of bending of bars is of the form

∇2χ = F(x, y) (7-11.38)

where χ must satisfy certain requirements on the lateral surface of the bar [see, e.g.,
Eqs. (7-2.5), (7-2.10), (7-2.13), (7-2.15), (7-3.10), (7-11.11), (7-11.14), (7-11.16),
(7-11.17), (7-11.21), and (7-11.26)]. In general, Eq. (7-11.38) is a linear, non-
homogeneous, partial differential equation of second order. Because it is linear,
it may be transformed into an equivalent homogeneous equation. The following
basic theorem holds for the equivalent homogeneous case (∇2χ = 0) (Brown and
Churchill, 2007).

Theorem 7-11.1. If χ1, χ2, . . . , χn are n solutions of a homogeneous linear par-
tial differential equation, then C 1χ1 + C2χ2 + · · · + Cnχn is also a solution, where
C1, C2, . . . , Cn are arbitrary constants .

Any function of x and y that satisfies Eq. (7-11.38) identically is called a par-
ticular integral. There are in general an infinite number of particular solutions
to Eq. (7-11.38). Because of the linear character of Eq. (7-11.38), the sum of a
complementary function (χ1, χ2, . . . , χn) and any particular integral will satisfy Eq.
(7-11.38). In the torsion and bending problems of bars, the solution of Eq. (7-11.38)
must also satisfy the boundary conditions. In general, the boundary conditions are
extremely complex. Particularly, we have seen that in general the bending problem
of a bar entails both bending and twisting [see Eqs. (7-11.11), (7-11.15), (7-11.16),
and (7-11.17)]. In Section 7-13 we will examine explicitly the conditions under
which a bar loaded by a transverse end force will bend without twisting of its
end section about the z axis. By application of the conditions for which twisting
of the end section is eliminated, we obtain some simplification of the boundary
conditions.

Problem Set 7-11

1. Derive Eqs. (7-11.6).

2. Derive Eq. (7-11.29). Simplify the results for principal axes of the cross section.

3. Verify that all but the last of Eqs. (7-11.2) are satisfied by Eq. (7-11.10).

7-12 Displacement of a Cantilever Beam Subjected
to Transverse End Force

In this section we derive formulas for the (x, y, z) displacement components
(u, v, w) for the stress components defined in Section 7-11. Hence, our task is to
integrate Eqs. (7-11.31).
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By the third of Eqs. (7-11.31) we have

∂w

∂z
= P

E
(Ax + By + C)(L − z)

Integration yields

w = PL

E
(Ax + By + C)z − P

2E
(Ax + By + C)z2 + f (x, y) (7-12.1)

where f (x, y) denotes a function of (x, y) only.
To obtain expressions for the displacement components (u, v), we consider

simultaneously certain of Eqs. (7-11.31) and Eq. (7-12.1). In the development
of these expressions it is convenient to employ the following transformations. As
noted by Eqs. (7-11.25) and (7-11.26), the bending problem of the bar may be
defined in terms of a harmonic function h. Now we introduce a function g(x, y),
the conjugate harmonic of h(x, y), defined by the relations

∂g

∂x
= ∂h

∂y

∂g

∂y
= −∂h

∂x
∇2g = 0 (7-12.2)

Then, with Eqs. (7-11.27) and (7-12.2) and the last of Eqs. (7-11.31), we obtain

γxz = ∂u

∂z
+ ∂w

∂x
= (1 + ν)P

E

[
∂g

∂x
+ A

(
x2 − νy2

1 + ν

)
+ Cx − C0y

]

γyz = ∂v

∂z
+ ∂w

∂y
= (1 + ν)P

E

[
∂g

∂y
+ B

(
y2 − νx2

1 + ν

)
+ Cy + C0x

] (7-12.3)

By the first of Eqs. (7-11.31) and (7-12.3) and Eq. (7-12.1), we find

∂u

∂x
= −νP

E
(Ax + By + C)(L − z)

∂u

∂z
= (1 + ν)P

E

[
∂g

∂x
+ A

(
x2 − νy2

1 + ν

)
+ Cx − C0y

]

− PAL

E
z + PA

2E
z2 − ∂f

∂x

(7-12.4)

Equations (7-12.4) are compatible, provided that

∂2(g − f )

∂x2
= − (2 + ν)A

1 + ν
x + νB

1 + ν
y − C

1 + ν
(7-12.5)

where

f = Ef

(1 + ν)P
(7-12.6)
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Similarly, we find

∂v

∂y
= −νP

E
(Ax + By + C)(L − z)

∂v

∂z
= (1 + ν)P

E

[
∂g

∂y
+ B

(
y2 − νx2

1 + ν

)
+ Cy + C0x

]
− PBL

E
z + PB

2E
z2 − ∂f

∂y

and

∂2(g − f )

∂y2
= νA

1 + ν
x − (2 + ν)B

1 + ν
y − C

1 + ν
(7-12.7)

Finally, differentiation of the equation

γxy = ∂u

∂y
+ ∂v

∂x
= 0

with respect to z yields

∂2(g − f )

∂x∂y
= ν

1 + ν
(Bx + Ay) (7-12.8)

Equations (7-12.5), (7-12.7), and (7-12.8) require that [with Eq. (7-12.6)]

f = (1 + ν)P

E
g + PA

2E

(
2 + ν

3
x3 − νxy2

)

+ PB

2E

(
−νx2y + 2 + ν

3
y3
)

+ PC

2E
(x2 + y2) − βx + αy + γ0

(7-12.9)

where α, β, γ0 are constants.
With Eqs. (7-12.1) and (7-12.9), the displacement component w is now deter-

mined in terms of the harmonic function g. Next, we substitute the expression for
f into the equations for ∂u/∂z and ∂v/∂z to obtain [with Eq. (7-11.36)]

∂u

∂z
= −Ky − P

E

{
A

[
Lz − z2

2
− ν

2
(x2 − y2)

]
− νBxy − νCx

}
+ β

∂v

∂z
= Kx − P

E

{
−νAxy + B

[
Lz − z2

2
+ ν

2
(x2 − y2)

]
− νCy

}
− α

(7-12.10)

From the equations for ∂u/∂x and ∂u/∂z, we determine u in the form

u = −Kyz − P

E

{
A

[
Lz2

2
− z3

6
+ ν

2
(L − z)x2 + ν

2
y2z

]

+ νB(L − z)xy + νC(L − z)x

}
+ βz + F1(y)
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where F1(y) is an unknown function of y. Similarly, we find

v = Kxz − P

E

{
νA(L − z)xy + B

[
Lz2

2
− z3

6
+ ν

2
(L − z)y2 + ν

2
x2z

]

+ νC(L − z)y

}
− αz + F2(x)

where F2(x) is an unknown function of x.
The functions F1(y) and F2(x) are determined by the condition

∂u

∂y
+ ∂v

∂x
= 0

Hence,

F1(y) = νPAL

2E
y2 − γy + α0

F2(x) = νPBL

2E
x2 + γ x + β0

where α0, β0, γ are constants.
In summary, by the analysis above we have determined the displacement com-

ponents (u, v, w) in the form

u = −Kyz − P

E

{
A

[
Lz2

2
− z3

6
+ ν

2
(L − z)(x2 − y2)

]

+ νB(L − z)xy + νC(L − z)x

}
− γy + βz + α0

v = Kxz − P

E

{
νA(L − z)xy + B

[
Lz2

2
− z3

6
− ν

2
(L − z)(x2 − y2)

]

+ νC(L − z)y

}
+ γ x − αz + β0

w = g + P

E

{
A

[
x

(
Lz − z2

2

)
+ 2 + ν

6
x3 − ν

2
xy2

]

+ B

[
y

(
Lz − z2

2

)
− ν

2
x2y + 2 + ν

6
y3
]

+ C

[
Lz + 1

2
(x2 + y2 − z2)

]}
− βx + αy + γ0

(7-12.11)

where α0, β0, γ0, α, β, γ are constants and

g = (1 + ν)Pg

E
(7-12.12)
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In Eq. (7-12.11), the terms in α0, β0, γ0, α, β, γ represent a rigid-body displace-
ment (see Chapter 2, Section 2-15 and Problem 2-15.1). To evaluate the rigid-body
displacement, we may require that the displacement (u, v, w) and the rotation
(ωx, ωy, ωz) be prescribed at a point (x, y, z).

Problem Set 7-12

1. Discuss conditions that may be employed to evaluate α0, β0, γ0, α, β, γ of Eqs. (7-12.11).

7-13 Center of Shear

The condition for which there occurs no twisting of the end section of a bar
loaded by transverse end force is defined from Eq. (7-11.37) by settling the twist
∂(ωz)/∂z = 0. Thus, we obtain

C0 = ν

1 + ν
(Bx − Ay) (7-13.1)

as the necessary and sufficient condition that the twist vanish. In general, if C0 is
defined by Eq. (7-13.1), the moment Mz does not vanish. For example, in general,

Mz =
∫∫

(xτyz − yτxz) dx dy (7-13.2)

Accordingly, with Eqs. (7-11.10), (7-11.15), and (7-13.1), Eq. (7-13.2) yields

Mz = P

{
ν

1 + ν
(Bx − Ay)

∫∫
φ dx dy +

∫∫
� dx dy

+ 1

2

∫∫
(By − Ax)xy dx dy

+
∮ [

(By2 + Cy)
dx

ds
− (Ax2 + Cx)

dy

ds

]
Rsds

} (7-13.3)

Thus, Eq. (7-13.3) defines the moment that must be applied to the end of the bar,
together with a force P directed along the x axis, to give zero average twist of the
end. By elementary statics and Saint-Venant’s principle, we replace the moment
Mz and the force P acting along the x axis by a force Pi , parallel to P and equal
in magnitude to P , but located at a distance yi from the x axis, where

yi = −Mz

P
= ν

1 + ν
(−Bx + Ay)

∫∫
φ dx dy −

∫∫
� dx dy

− 1

2

∫∫
(By − Ax)xy dx dy −

∮ [
(By2 + Cy)

dx

ds
− (Ax2 + Cx)

dy

ds

]
Rsds

(7-13.4)
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The above theory defines bending of a bar with zero average rotation when a
force P is applied parallel to the x axis at a distance yi from the x axis. Similarly,
if a force P is applied parallel to the y axis, it must be located at a distance xi from
the y axis for bending of the rod with zero average rotation of the end, where, as
with the computation for yi [Eq. (7-13.4)], we find

xi = ν

1 + ν
(bx − ay)

∫∫
φ dx dy +

∫∫
γ dx dy + 1

2

∫∫
(by − ax)xy dx dy

+
∮ [

(by2 + cy)
dx

ds
− (ax2 + dx)

dy

ds

]
Rsds (7-13.5)

where over the cross section R

∇2γ = 2ν

1 + ν
(bx − ay) (7-13.6)

and on the boundary S

γ =
∮ [

(by2 + cy)
dx

ds
− (ax2 + cx)

dy

ds

]
ds (7-13.7)

and where

a = IxyS0 − SxSy

�
b = S2

y − S0Ixy

�
c = IyySx − IxySy

�
(7-13.8)

where � is defined by Eq. (7-11.7).
The intersection of the lines x = xi, y = yi locates a point in the (x, y) plane.

This point is called the shear center because if a transverse force is applied at
(xi, yi), it produces zero average twist at the end of the rod.

It may be shown that the location of the shear center may be determined provided
the solution of the torsion problem is known; that is, in general, it is not necessary
to know the solution to the bending problem to compute (xi, yi) (see Problems
7-13.1 to 7-13.4). In the strength of materials definition of shear center, Poisson’s
ratio is usually discarded.

Problem Set 7-13

1. With the fact that (Green’s theorem)∫∫
(F∇2G − G∇2F) dx dy =

∮ (
F

∂F

∂n
− G

∂F

∂n

)
ds (a)

where F and G are functions of (x, y), let F = φ, G = �, take into consideration Eqs.
(7-11.16) and (7-11.17), and show that

2ν

1 + ν

∫∫
φ(Bx − Ay) dx dy + 2

∫∫
� dx dy = −

∮
�

∂φ

∂n
ds (b)
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2. Noting by Eqs. (7-2.4) and (7-3.3) that

∂φ

∂y
= ∂ψ

∂x
− y

∂φ

∂x
= −∂ψ

∂y
− x (a)

where the factor Gβ has been absorbed in φ, show that [with Eqs. (7-2.7), (7-2.9), and
(7-11.30)]

∂φ

∂n
= ∂φ

∂x

dx

dn
+ ∂φ

∂y

dy

dn
= −∂ψ

∂s
− 2

dRs

ds
(b)

Hence, show that∮
�

∂φ

∂n
ds = −

∮
�

(
∂ψ

∂s
+ 2

dRs

ds

)
ds

=
∮

(ψ + 2Rs)
∂�

∂s
ds

=
∮

(ψ + 2Rs)

[
(By2 + Cy)

dx

ds
− (Ax2 + Cx)

dy

ds

]
ds

(c)

3. With Eqs. (7-2.7) and Eq. (a) of Problem 1, show that

I =
∮

ψ

[
(By2 + Cy)

dx

ds
− (Ax2 + Cx)

dy

ds

]
ds

= −
∫∫ {

∂

∂y
[(By2 + Cy)ψ] + ∂

∂x
[(Ax2 + Cx)ψ]

}
dx dy

= −2
∫∫

(Ax + By + C)ψ dx dy

−
∫∫ [

(By2 + Cy)
∂ψ

∂y
+ (Ax2 + Cx)

∂ψ

∂x

]
dx dy

Hence, with Eq. (a) of Problem 2, Eq. (a) of Problem 1, and the fact that φ = 0 on S

for a simply connected region R [see Eq. (7-11.17)], show that

I = −2
∫∫

(Ax + By + C)ψ dx dy +
∫∫

(By − Ax)xy dx dy

4. With the results of Problems 1, 2, and 3, show that∫∫
� dx dy = − ν

1 + ν

∫∫
φ(Bx − Ay) dx dy

−
∮ [

(By2 + Cy)
dx

ds
− (Ax2 + Cx)

dy

ds

]
Rsds

+
∫∫

(Ax + By + C)ψ dx dy − 1

2

∫∫
(By − Ax)xy dx dy

Hence, show that [see Eqs. (7-13.4) and (7-13.5)]

yi = −
∫∫

(Ax + By + C)ψ dx dy + ν

1 + ν

∫∫
[B(x − x) − A(y − y)]φ dx dy

xi =
∫∫

(ax + by + c)ψ dx dy + ν

1 + ν

∫∫
[b(x − x) − a(y − y)]φ dx dy

(7-13.9)
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Equation (7-13.9) shows that if the solution to the torsion problem for region R is
known—that is, if either φ or ψ is known [see Eq. (a) of Problem 2]—the coordinates
(xi, yi) of the shear center may be calculated. In other words, (xi, yi) may be determined
even though the solution of the bending problem (F = � + C0φ) is not known.

5. Show that when the cross section of a bar has one axis of symmetry, the shear center will
lie on this axis. Show that when the cross section of a bar has two axes of symmetry,
the shear center coincides with the intersection of these two axes.

6. Show by calculations and examples that the shear center of a cross section of a bar does
not necessarily lie in the region R occupied by the cross section.

7-14 Bending of a Bar with Elliptic Cross Section

In this section we consider a technique introduced by Timoshenko (1921, 1913,
1983) for solving the bending problem of bars for certain types of cross section.
The motivation of the method lies in seeking to represent the boundary conditions
[taken in the form of the second of Eqs.(7-11.21)] in the simplest possible form.
For example, for a simply connected cross section we may choose f (y) to make
the right side of the second of Eqs. (7-11.21) equal to zero. Then, ∂�/∂s = 0
on S. Because the cross section is simply connected, it follows that � may be
taken equal to zero on S (see Section 7-6). We illustrate the method for a bar with
elliptic cross section.

For an elliptic cross section, the lateral surface of the cross section is defined
by the equation

x2

a2
+ y2

b2
= 1 (7-14.1)

where (a, b) denotes the major and minor semiaxes of the ellipse. Accordingly, the
right side of the second of Eqs. (7-11.21) vanishes identically, provided we set

f (y) = −Pa2

Ib2
(y2 − b2) (7-14.2)

Substitution of Eq. (7-14.2) into the first of Eqs. (7-11.21) yields

∇2� = 2Py

I

(
a2

b2
+ ν

1 + ν

)
(7-14.3)

The boundary condition � = 0 on S [see Eq. (7-11.24)] will be satisfied if we take
� in the form

�(x, y) = D

(
x2

a2
+ y2

b2
− 1

)
y (7-14.4)
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where D = constant. Substitution of Eq. (7-14.4) into Eq. (7-14.3) yields

D = P

I

(
a2b2

3a2 + b2

)(
a2

b2
+ ν

1 + ν

)
(7-14.5)

With the cross section defined by Eq. (7-14.1), the axes (x, y) are axes of
symmetry. Hence, with the resultant force P directed along the x axis, C0 = 0 (see
Section 7-11). Then Eqs. (7-11.10), (7-11.15), (7-11.20), and (7-11.21) yield the
following expressions for the stress components τxz, τyz:

τxz = 1

2

[
∂�

∂y
+ f − Px2

I

]

τyz = −1

2

∂�

∂x

(7-14.6)

Substitution of Eqs. (7-14.2), (7-14.4), and (7-14.5) into Eqs. (7-14.6) yields

τxz = Pa2

2I

[
(1 + ν)a2 + νb2

(1 + ν)(3a2 + b2)

(
x2

a2
+ 3y2

b2
− 1

)
−
(

x2

a2
+ y2

b2
− 1

)]

τyz = − (1 + ν)a2 + νb2

(1 + ν)(3a2 + b2)

P xy

I

(7-14.7)

The normal stress component σz for this case (A = −1/I, B = C = 0) is found
from Eq. (7-11.4) to be

σz = −Px

I
(L − z) (7-14.8)

Equation (7-14.8) agrees precisely with elementary beam theory. However, the
shearing–stress components differ from results predicted by elementary beam the-
ory. Elementary beam theory predicts that τyz vanishes everywhere and that τxz is
a function of x only.

If b � a, Eqs. (7-14.7) may be approximated by the equations

τxz = P

3I
(a2 − x2) τyz = −Pxy

3I
(7-14.9)

Then, τxz agrees with the stress component computed by elementary theory. How-
ever, again τyz is in disagreement with elementary theory although it is very small
(because y is small; it is at most equal to b). The maximum value of τxz predicted
by Eq. (7-14.9) is (for x = 0)

(τxz)max = Pa2

3I
= 4P

3A
(7-14.10)

where I = Aa2/4, where A = cross-sectional area of the ellipse.
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By Eqs. (7-14.7), the maximum value of τxz is (for x = y = 0)

(τxz)max = Pa2

2I

[
1 − (1 + ν)a2 + νb2

(1 + ν)(3a2 + b2)

]
(7-14.11)

Again, for b � a, Eq. (7-14.11) yields the result given by Eq. (7-14.10).

Bar with Circular Cross Section. If in the above analysis we let a = b, the
cross section of the bar becomes circular. Thus, for the circular bar we obtain from
Eqs. (7-14.7)

τxz = P

2I

[
1 + 2ν

4(1 + ν)
(x2 + 3y2 − a2) − (x2 + y2 − a2)

]

τxz = − 1 + 2ν

4(1 + ν)

Pxy

I

(7-14.12)

Hence

(τxz)max = 3 + 2ν

8(1 + ν)

Pa2

I
(7-14.13)

7-15 Bending of a Bar with Rectangular Cross Section

Consider a cantilever beam with rectangular cross section R and with lateral sur-
face S. Let end load P be applied to the end of the bar (beam) and directed along
the vertical centroidal axis (x axis, Fig. 7-15.1). The cross section is defined by the
equation

(x2 − a2)(y2 − b2) = 0 (7-15.1)

By the theory of Section 7-11, the beam undergoes bending with no twisting of
the end plane (A = −1/I, B = C = C0 = 0).

Because the net load P is equivalent to shear–stress components τxz, τyz dis-
tributed over the end of the bar, we may employ the semi-inverse method by
assuming simple distributions for τxz, τyz and then attempt to satisfy the elasticity
equations. For example, as

∑
Fx = P,

∑
Fy = 0, it appears reasonable to assume

τyz to be odd in y and τxz to be even in x and y (see Fig. 7-15.1). Furthermore, we
employ the technique demonstrated in Section 7-14 for the elliptic cross section.
Hence, taking f = Pa2/I and noting the nature of the dependency of (τxz, τyz) on x

and y, we find by Eqs. (7-14.6) that � is even in x and odd in y. Also, by choosing
f = Pa2/I and noting that dy/ds = 0 for y = ±b, by Eqs. (7-11.21), we obtain

∇2� = 2ν

1 + ν

Py

I
over R

� = 0 on S

(7-15.2)

By inspection, a particular solution of the first of Eqs. (7-15.2) is

�1 = Ay3 + By (7-15.3)
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Figure 7-15.1

Substitution of Eq. (7-15.3) into Eq. (7-15.2) yields

A = νP

3(1 + ν)I
(7-15.4)

with B arbitrary.
By the discussion at the end of Section 7-11, we choose � in the form

� = � + νP

3(1 + ν)I
y3 + By (7-15.5)

where by Eqs. (7-15.2) and (7-15.5)

∇2� = 0 on R

� = − νP

3(1 + ν)I
y3 − By on S

(7-15.6)

Let us choose8 B so that � = 0 for y = ±b. Then, Eq. (7-15.6) yields

B = − νPb2

3(1 + ν)I
(7-15.7)

Thus, by Eqs. (7-15.5) and (7-15.6), we arrive at the stress function

� = � + νP

3(1 + ν)I
(y3 − b2y) (7-15.8)

where
∇2� = 0 on R (7-15.9)

8Note that we could assume a particular solution of Eq. (7-15-2) in the form Ay3 + B. Then we
could choose B so that � = 0 for y = b, but � would not be zero on the line y =—b. Hence, our
choice of �1 [Eq. (7-15-3)] leads to a simpler boundary condition for �.
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and

� = 0 for y = ±b

� = νP

3(1 + ν)I
(b2y − y3) for x = ±a

(7-15.10)

Because � is even in x and odd in y, � is even in x and odd in y.
Consider solutions of Eq. (7-15.9) of the form

� = f (x)g(y) (7-15.11)

where f (x), g(y) are functions of x and y, respectively. Substitution of Eq.
(7-15.11) into Eq. (7-15.9) with the requirement that � be even in x and odd in y

yields solutions of the form

� = A cosh kx sin ky (7-15.12)

where A and k are constants.
Substitution of Eq. (7-15.12) into the first of Eqs. (7-15.10) yields

A cosh kx sin kb = 0, or k = nπ/b, n = 1, 2, 3, . . .. Hence, superposition of
solutions of the type given by Eq. (7-15.12) yields

� =
∞∑

n=1

An cosh
nπx

b
sin

nπy

b
(7-15.13)

Let An cosh(nπa/b) = an. Then, by Eq. (7-15.13) and the second of Eqs. (7-15.10),
we must require that

∞∑
n=1

an sin
nπy

b
= νP

3(1 + ν)I
(b2y − y3) (7-15.14)

Multiplying Eq. (7-15.14) by sin(mπy/b) and integrating from −b to b, we obtain

∞∑
n=1

an

∫ b

−b

sin
nπy

b
sin

mπy

b
dy = νP

(1 + ν)I

∫ b

−b

(b2y − y3) sin
mπy

b
dy

(7-15.15)

Observing that∫ b

−b

sin
mπy

b
sin

nπy

b
dy =

{
0, m = n

b, m = n∫ b

−b

y sin
mπy

b
dy = −2(−1)mb2

mπ
.

∫ b

−b

y3 sin
mπy

b
dy = −2(−1)mb4

m3π3
(m2π2 − 6)



7-15 BENDING OF A BAR WITH RECTANGULAR CROSS SECTION 589

we obtain after integration of Eq. (7-15.15)

an = − 4νPb3

(1 + ν)I

(−1)n

n3π3

Hence, the constant An in Eq. (7-15.13) is determined, and the stress function �

is given by the formula

� = νP

3(1 + ν)I

⎡
⎢⎣y3 − b2y − 12b3

π3

∞∑
n=1

(−1)n

n3

cosh
nπx

b
sin

nπy

b

cosh
nπa

b

⎤
⎥⎦ (7-15.16)

Then, because f = Pa2/I , substitution of Eq. (7-15.16) into Eqs. (7-14.6) yields

τxz = P

2I
(a2 − x2) + νP

6(1 + ν)I

⎡
⎢⎣3y2 − b2 − 12b2

π2

∞∑
n=1

(−1)n

n2

cosh
nπx

b
cos

nπy

b

cosh
nπa

b

⎤
⎥⎦

τxz = 2νPb2

π2(1 + ν)I

∞∑
n=1

(−1)n

n2

sinh
nπx

b
sin

nπy

b

cosh
nπa

b

(7-15.17)

Equations (7-15.17) express the solution to the bending of a cantilever beam with
rectangular cross section and with load P directed along the vertical centroidal axis
in the end plane z = L.

Examination of τxz. On the horizontal line x = 0, Eqs. (7-15.17) yield

τxz = Pa2

2I

⎧⎪⎨
⎪⎩1 + ν

1 + ν

⎡
⎢⎣y2

a2
− b2

3a2
− 4b2

π2a2

∞∑
n=1

(−1)n

n2

cos
nπy

b

cosh
nπa

b

⎤
⎥⎦
⎫⎪⎬
⎪⎭

τyz = 0

(7-15.18)

Elementary theory of beams yields the result (for x = 0) τxz = Pa2/2I . Hence, the
quantity in braces in Eq. (7-15.18) represents a correction factor K to elementary
beam theory; that is, the result of elementary beam theory must be multiplied by
the factor

K = 1 + ν

1 + ν

⎡
⎢⎣y2

a2
− b2

3a2
− 4b2

π2a2

∞∑
n=1

(−1)n

n2

cos
nπy

b

cosh
nπa

b

⎤
⎥⎦ (7-15.19)

If ν = 0, the correction factor is 1. Also, if b � a the correction factor is approxi-
mately 1. That is, elementary theory is approximately correct (at x = 0) for beams
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of narrow cross section (Fig. 7-15.1, with b � a). The fact that the correction factor
approaches 1 as b/a approaches zero is apparent from Eq. (7-15.19), as cos(nπy/b)

is never larger than 1 and cosh(nπa/b) becomes very large as b/a → 0.
It may also be shown that K → 1 as b/a becomes very large. For example,

consider the point x = y = 0. Then, Eq. (7-15.19) yields

K = 1 − ν

1 + ν

[
b2

3a2
+ 4b2

π2a2

∞∑
n=1

(−1)n

n2
sech

nπa

b

]

Note that as b/a → ∞, sech(nπa/b) → 1. To evaluate the series
∑∞

n=1 (−1)n/n2,
we first observe that by Fourier series we may express θ2 in series form as

θ2 = C2

3
− 4C2

π2

(
cos

πθ

C
− 1

22
cos

2πθ

C
+ 1

32
cos

3πθ

C
− 1

42
cos

4πθ

C
+ · · ·

)

where C is a constant. Letting θ = 0 and C = 1
2 , we obtain

0 = 1

12
− 1

π2

(
1 − 1

22
+ 3

32
− 1

44
+ · · ·

)

or
π2

12
= 1 − 1

22
+ 1

32
− 1

42
+ · · · = −

∞∑
n=1

(−1)n

n2

Accordingly, for b/a → ∞, τxz → Pa2/2I at x = y = 0. That is, the elementary
theory of beam also gives the correct result for a very wide beam (Fig. 7-15.1 for
b 
 a).

Problem Set 7-15

1. Let b/a = 6 and ν = 0.3. For the horizontal line x = 0, evaluate the correction factor K

[Eq. (7-15.19)] for y/b = 0, 0.2, 0.4, 0.6, 0.8, and 1.0.

Review Problems

R-1. Let the resultant vector of the forces acting on the end z = L of a bar be directed along
the z axis. Let the resultant moment be zero. Consider the simplest stress distribution
that is statically equivalent to the resultant vector and the resultant moment. Hence,
by the semi-inverse method, solve the problem of the cylindrical bar subjected to a
longitudinal end force.

R-2. Let the forces that act on the end of a rod at z = L be statically equivalent to a couple
of moment My = M , where My denotes the moment relative to the y axis in the
end plane at z = L. Compute a statically equivalent system for the end plane z = 0.
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Assume the simplest stress distribution that is statically equivalent to My . Hence,
solve the problem of bending of a bar subjected to end couple M . Express the stress
components, the strain components, and the displacement components in terms of M

and material and geometrical properties of the bar.

R-3. Figure R7-3 represents the cross section of a cantilever beam subjected to transverse
end load P directed along the x axis. Derive a formula for f (y) to make � vanish
on the lateral boundary [see Eq. (7-11.22)]. Discuss the application of the method
demonstrated in Sections 7-14 and 7-15 for this problem.

Figure R7-3

R-4.9 In Section 7-7 it was assumed that the angle of twist θ = βz was the same for
both axes z and z1. Then it was shown that the stresses, hence the moment M with
respect to axis z1, are identical to the stresses and the moment with respect to axis z.
Alternatively, we may assume that the twisting moment M for axis z is the same as for
axis z1. Then it may be shown by the equations of elasticity that the twist θ1 relative
to axis z1 is equal to the twist θ relative to axis z. Verify this statement.

APPENDIX 7A ANALYSIS OF TAPERED BEAMS

Chapter 7 is devoted to prismatic beams. However, for certain structural applica-
tions, tapered beams, which have variable moments of inertia to counteract different
acting moments, are more efficient than prismatic beams.

9This problem was suggested by Professor James G. Goree, Clemson University, Clemson, South
Carolina.
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Figure 7A-1 Stresses in tapered beam.

As a result of their structural efficiency and suitability for fabrication, web-
tapered beams (Fig. 7A-1) are becoming popular in various types of construction.
The flexural and torsional behavior of tapered beams has been studied extensively
by Lee and his associates (1967, 1972) as well as by Davis et al. (1973). The
stability aspects have also been investigated by Kitipornchai and Trahair (1972).
As for the shear stresses, Chong et al. (1976) have showed, using principles of
mechanics, that the sloping flanges possess vertical components of forces that can
either increase or decrease the web shear, depending on the direction of taper and
the direction of acting shear.

Assumptions of small deflection theory were used. Referring to the stress block
in Fig. 7A-1 and summing up forces in the horizontal direction, Chong et al. (1976)
found

−τxyt dx = ∂Fx

∂x
dx (7A-1)

But

Fx =
∫ c

y1

σx dA (7A-2)

and
σx = Mxy

Ix

(7A-3)

and therefore

Fx = Mx

Ix

∫ c

y1

y dA (7A-4)
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Let

Qxy =
∫ c

y1

y dA (7A-5)

Then
Fx = MxQxy

Ix

(7A-6)

Substituting Eq. (7A-6) into Eq. (7A-1), Chong et al. (1976) found

τxy = −1

t

∂

∂x

(
MxQxy

Ix

)
(7A-7)

Expansion of Eq. (7A-7) yields

τxy = −1

t

(
VxQxy

Ix

+ Mx

Ix

∂Qxy

∂x
− MxQxy

I 2
x

∂Ix

∂x

)
(7A-8)

in which t = thickness of web; Fx = internal force in the x direction; σx = normal
stress in the x direction; Mx = moment at x; Vx = shear at x; Ix = moment of
inertia at x; dA = differential cross-sectional area; and τxy = shear stress at x.

The first term of Eq. (7A-8) corresponds to the shear stress in beams of constant
cross section. The additional terms account for the taper. Equation (7A-7) can be
applied to the classical wedge cantilever (Shepherd, 1935), as shown in Fig. 7A-2.
The classical solution is

τxy = −Py2

Ix

[(
tan α

α

)3

sin4 θ

]
(7A-9)

Figure 7A-2 Wedge cantilever loaded at tip.
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For small tapers [(
tan α

α

)3

sin4 θ

]
→ 1 (7A-10)

For α = 10◦, the maximum error amounts to 3% if the bracketed term is set
equal to unity. Thus, for regular small tapers

τxy = −Py2

Ix

(7A-11)

Using Eq. (7A-7), Chong and co-workers (1976) obtained

Mx = Px (7A-12)

Qxy = 1

2

[(
h

2

)2

− y2

]
t Qxy = b

2
(x2 tan2 α − y2) (7A-13)

in which b = uniform thickness of the wedge. Substitution of Eqs. (7A-2) and
(7A-13) into Eq. (7A-7) yields τxy = −Py2/Ix , which is identical to Eq. (7A-11).

For shear stresses in tapered beams loaded away from the tip (Fig. 7A-3)

Ix = bh3

12
(7A-14)

Qxy = b

2

(
h2

4
− y2

)
(7A-15)

Substitution of Eqs. (7A-14) and (7A-15) into (7A-7) gives

τxy = −3Mx

bh2

dh

dx
+ 6

b

(
h2

4
− y2

)
d

dx

(
M

h3

)
(7A-16)

Figure 7A-3 Tapered cantilever beam.
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The shear distribution of web-tapered beams was investigated using a theory that
assumes a radial flexural stress pattern. Finite element analysis and the classical
wedge theory were used to check the accuracy of the theory. These independent
methods agreed well with each other (Chong et al., 1976). The presented theory
is applicable to wide-flange or box-tapered Hookean beams. Conventionally, the
shear–stress distribution is assumed to be uniform with the external shear carried
solely by the web. By the proposed theory, significant shears are carried by the
flanges, which can be deducted or added to the total web shear.

On the basis of the proposed theory, a simplified analysis procedure was
described. We may simply calculate the vertical components of the flange flexural
load and subtract or add them from the total vertical shear. The resulting shear
was assumed to be carried by the web as a relatively uniform stress distribution
(Chong et al., 1976).

REFERENCES

Brown, J. W., and Churchill, R. V. 2007. Fourier Series and Boundary Value Problems ,
7th ed. New York: McGraw-Hill Book Company.

Brown, J. W., and Churchill, R. V., 2008. Complex Variables and Applications , 8th ed.
New York: McGraw-Hill Book Company.

Chong, K. P., Swanson, W. D., and Matlock, R. B. 1976. Shear Analysis of Beams,
J. Struct. Div . (ASCE), 102(No. ST9), Proc. Paper 12411: 1781–1788.

Courant, R., and Hilbert, D. 1996. Methods of Mathematical Physics . New York: Wiley-
Interscience Publishers.

Davis, G., Lamb, R. S., and Snell, C. 1973. Stress Distributions in Beams of Varying
Depth, Struct. Enr ., 51(11): 421–434.

Grossmann, G. 1957. Experimentalle Durchführung einer neuen hydrogynamischen
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CHAPTER 8

GENERAL SOLUTIONS OF ELASTICITY

In this chapter we present particular forms of general solutions of the three-
dimensional equations of elasticity. In essence, these solutions are contained in
the Galerkin–Papkovich vector.

8-1 Introduction

Galerkin (1930) represented strain components by three functions X, Y, Z, in terms
of which he defined stress components. Later he expressed the corresponding dis-
placement components and showed a number of applications. Papkovich (1932a,
1932b) noted that the Galerkin strain functions X, Y, Z could be considered com-
ponents of a vector F; that is,

F = iX + jY + kZ (8-1.1)

The vector F is called the Galerkin–Papkovich vector.
Papkovich showed that the vector F is related to the displacement vector

ρ = iu + jv + kw (8-1.2)

where (u, v, w) denote (x, y, z) displacement components, the relation being

2Gρ = [2(1 − ν)∇2 − ∇ div] F, (8-1.3)

provided that

∇4F = − B
1 − ν

(8-1.4)
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where

B = iBx + jBy + kBz (8-1.5)

denotes the body force vector (Bx, By, Bz) and

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
∇ = i

∂

∂x
+ j

∂

∂y
+ k

∂

∂z

Through the Helmholtz transformation, Mindlin (1936) also showed that there exists
a correlation [Eq. (8-1.3)] between the displacement vector ρ (sometimes referred
to as the Galerkin vector) and the Galerkin–Papkovich vector. An alternative pro-
cedure has been given by Westergaard (1952).

Problem Set 8-1

1. Verify Eqs. (8-1.3), (8-1.4), and (8-1.5).

8-2 Equilibrium Equations

In this section we express the equilibrium equations in terms of the displacement
vector ρ. Consideration of the equilibrium of a tetrahedron shows that the stress
vector σp associated with the inclined plane of the tetrahedron is given by [see
Eq. (3-3.7) in Chapter 3]

σp = �σx + mσy + nσz (8-2.1)

where (�, m, n) are direction cosines of the normal to the tetrahedron oblique plane
and where (τij = τji):

σx = iσx + jτxy + kτxz

σy = iτyx + jσy + kτyz

σz = iτzx + jτzy + kσz (8-2.2)

where σx , σy , σz, τxy , τxz, and τyz are the components of the stress tensor.
Because

div σx = ∂σx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z

div σy = ∂τxy

∂x
+ ∂σy

∂y
+ ∂τyz

∂z
(8-2.3)

div σz = ∂τxz

∂x
+ ∂τyz

∂y
+ ∂σz

∂z
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the general equilibrium equations may be written

div σx + Bx = 0 div σy + By = 0 div σz + Bz = 0 (8-2.4)

The stress–strain relations of linear elastic materials may be written

εx = 1 + v

E
σx − v

E
I1 = ∂u

∂x

εy = 1 + v

E
σy − v

E
I1 = ∂v

∂y

εz = 1 + v

E
σz − v

E
I1 = ∂w

∂x

γxy

1

G
τxy γxz = 1

G
τxz γyz = 1

G
τyz (8-2.5)

where

I1 = σx + σy + σz (8-2.6)

Also, by Eqs. (8-1.2), (8-2.5), and (8-2.6), we may write J1 = εx + εy + εz in the
form

J1 = div ρ = 1 − 2ν

E
I1 (8-2.7)

Inverting Eqs. (8-2.5), we have

σx = 2G

(
εx + ν

1 − 2ν
div ρ

)
= 2G

(
∂u

∂x
+ ν

1 − 2ν
div ρ

)

σy = 2G

(
∂v

∂y
+ ν

1 − 2ν
div ρ

)

σz = 2G

(
∂w

∂z
+ ν

1 − 2ν
div ρ

)

τxy = G

(
∂u

∂y
+ ∂v

∂x

)
τxz = G

(
∂u

∂z
+ ∂w

∂x

)
τyz = G

(
∂v

∂z
+ ∂w

∂y

)
,

(8-2.8)

where

G = E

2(1 + ν)
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Substitution of Eqs. (8-2.8) into Eqs. (8-2.4) yields

G

(
∇2u + 1

1 − 2ν

∂

∂x
div ρ

)
+ Bx = 0

G

(
∇2v + 1

1 − 2ν

∂

∂y
div ρ

)
+ By = 0

G

(
∇2w + 1

1 − 2ν

∂

∂z
div ρ

)
+ Bz = 0 (8-2.9)

or, with Eqs. (8-1.2) and (8-1.5), addition of Eqs. (8-2.9) yields

G

(
∇2 + 1

1 − 2ν
∇ div

)
ρ + B = 0 (8-2.10)

Equation (8-2.10) represents the equilibrium equation in terms of the displacement
vector ρ and body force vector B.

Problem Set 8-2

1. Derive Eqs. (8-2.9).

8-3 The Helmholtz Transformation

The Helmholtz transformation illustrates the condition that an arbitrary displace-
ment vector may be decomposed into a dilatation and a rotation. According to
Helmholtz’s theorem, the displacement vector may be resolved into a lamellar part
and a solenoidal part. Thus, we write

ρ = ∇φ + curl S (8-3.1)

where ∇φ, the lamellar part (curl ∇φ = 0), may be shown to represent the dilata-
tion, and the solenoidal part curl S (div S = 0) may be shown to represent the
rotation. The function φ is a scalar potential (or strain potential), whereas the
function S is a vector potential function such that div S = ∇ · S = 0. Because

ρ = iu + jv + kw

∇φ = i
∂φ

∂x
+ j

∂φ

∂y
+ k

∂φ

∂z
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and

curl S = ∇ × S =

∣∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z
Sx Sy Sz

∣∣∣∣∣∣∣∣∣
=

(
∂Sz

∂y
− ∂Sy

∂z

)
i +

(
∂Sx

∂z
− ∂Sz

∂x

)
j +

(
∂Sy

∂x
− ∂Sx

∂y

)
k (8-3.2)

we have

u = ∂φ

∂x
+ ∂Sz

∂y
− ∂Sy

∂z

v = −∂Sz

∂x
+ ∂φ

∂y
+ ∂Sx

∂z

w = ∂Sy

∂x
− ∂Sx

∂y
+ ∂φ

∂z
(8-3.3)

Equations (8-3.3) yield the dilatation

J1 = ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= ∇2φ (8-3.4)

and the rotation vector

ωx = − 1
2∇2Sx ωy = − 1

2∇2Sy ωz = − 1
2∇2Sz (8-3.5)

ω = − 1
2∇2S = iωx + jωy + kωz

Hence, the dilatation is expressed in terms of φ, and the rotation is expressed in
terms of S.

Problem Set 8-3

1. Derive Eqs. (8-3.3).

2. Derive Eqs. (8-3.4) and (8-3.5).
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8-4 The Galerkin (Papkovich) Vector

Substitution of Eq. (8-3.1) into Eq. (8-2.10) yields

∇2[α∇φ + [curl S] = − B
G

(8-4.1)

where we have utilized the conditions

div curl S = 0

div ∇φ = ∇2φ

∇2∇φ = ∇∇2φ (8-4.2)

and where

α = 2(1 − ν)

1 − 2ν
= λ + 2G

G

λ = νE

(1 + ν)(1 − 2v)
(8-4.3)

Equation (8-4.1) represents the equilibrium equation in terms of the functions φ

and S.
Because the curl of a vector and the divergence of a vector are independent

quantities, we take S and φ in the form (where W is an arbitrary vector)

S = −curl W φ = 1

α
div W (8-4.4)

Substitution of Eq. (8-4.4) into Eq. (8-3.1) yields

ρ = 1

α
∇ div W − curl curl W (8-4.5)

Noting the relation

curl curl = ∇ div − ∇2

we may write Eq. (8-4.5) in the form

ρ = ∇2W − 1

2(1 − ν)
∇ div W (8-4.6)

Substitution of Eqs. (8-4.4) into Eq. (8-4.1) yields the equilibrium equation in the
form

∇2(∇ div W − curl curl W) = − B
G
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Again noting the relation curl curl = ∇ div − ∇2, we find

∇2∇2W = ∇4W = − B
G

(8-4.7)

Analogously, substitution of Eq. (8-1.3) into (8-2.10) yields

∇2∇2F = − B
1 − ν

(8-4.8)

Comparison of Eqs. (8-4.7) and (8-4.8) [or alternatively Eqs. (8-1.3) and (8-4.6)]
yield the following relation between the vector W and the vector function F:

W = 1 − ν

G
F (8-4.9)

Problem Set 8-4

1. Derive Eq. (8-4.1).

2. Derive Eq. (8-4.5).

3. Derive Eq. (8-4.8).

8-5 Stress in Terms of the Galerkin Vector F

Equation (8-1.3) defines the displacement components (u, v, w) in terms of F =
(X, Y, Z) by the relations

2Gu = 2(1 − ν)∇2X − ∂

∂x
div F

2Gv = 2(1 − ν)∇2Y − ∂

∂y
div F

2Gw = 2(1 − ν)∇2Z − ∂

∂z
div F

(8-5.1)

Equation (8-1.3) also yields

2G div ρ = (1 − 2ν)∇2div F (8-5.2)

Now, Eqs. (8-2.2), (8-2.8), (8-1.3), (8-5.2), and (8-5.1) yield

σx = (1 − ν)

(
∇∇2X + ∂

∂x
∇2F

)
+

(
iν∇2 − ∂

∂x
∇

)
div F

σy = (1 − ν)

(
∇∇2Y + ∂

∂y
∇2F

)
+

(
jν∇2 − ∂

∂y
∇

)
div F

σz = (1 − ν)

(
∇∇2Z + ∂

∂z
∇2F

)
+

(
kν∇2 − ∂

∂z
∇

)
div F

(8-5.3)
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Equations (8-5.3) satisfy Eqs. (8-2.4) (in the absence of body force B), provided
that Eq. (8-4.8) is satisfied. Substitution of Eqs. (8-5.3) into Eqs. (8-2.2) yields

σx = 2(1 − ν)
∂

∂x
∇2X +

(
ν∇2 − ∂2

∂x2

)
div F

σy = 2(1 − ν)
∂

∂y
∇2Y +

(
ν∇2 − ∂2

∂y2

)
div F (8-5.4)

σz = 2(1 − ν)
∂

∂z
∇2Z +

(
ν∇2 − ∂2

∂z2

)
div F

I1 = σx + σy + σz = (1 + ν)∇2div F (8-5.5)

τxy = (1 − ν)

(
∂

∂y
∇2X + ∂

∂x
∇2Y

)
− ∂2

∂x ∂y
div F

τyz = (1 − ν)

(
∂

∂z
∇2Y + ∂

∂y
∇2Z

)
− ∂2

∂y ∂z
div F (8-5.6)

τzx = (1 − ν)

(
∂

∂x
∇2Z + ∂

∂z
∇2X

)
− ∂2

∂x ∂z
div F

The equations in this section may also be represented in terms of the vector
function W = iWx + jWy + kWz.

Problem Set 8-5

1. Derive Eqs. (8-5.3).

2. Derive Eqs. (8-5.4), (8-5.5), and (8-5.6).

3. Express the equations in Section 8-5 in terms of the vector function W = iWx + jWy +
kWz.

8-6 The Galerkin Vector: A Solution
of the Equilibrium Equations of Elasticity

To show that the Galerkin vector is a general solution of the equilibrium equations
of elasticity, it is necessary and sufficient that for any displacement vector ρ there
exists an infinite number of vector functions F that satisfy Eqs. (8-1.3) and (8-1.4).
The criterion of the generality of a given form of solution lies in the possibility
of determining the arbitrary functions that occur in the solution so that boundary
conditions are fulfilled. To show that an infinite number of vector functions F exist,
we proceed as follows.
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Let

ψ = div F (8-6.1)

Then Eqs. (8-1.3) and (8-5.2) may be written

2Gρ = 2(1 − ν)∇2F − ∇ψ (8-6.2)

and

2Gdiv ρ = (1 − 2ν)∇2ψ (8-6.3)

Next, choose a function ψ1 that satisfies Eq. (8-6.3). Assume that ψ1 exists,
then, an infinite number of such functions exist, as any harmonic function may
be added to ψ1 without affecting the validity of Eq. (8-6.3). Now substitute ψ1

into Eq. (8-6.2). Let F = F1 denote a vector that satisfies Eq. (8-6.2). Assume F1

exists; then, an infinite number of such functions exist, as any harmonic vector
function may be added to F1 without violating Eq. (8-6.2).

To demonstrate this last statement, select a Galerkin vector in the form

F2 = F1 + kχ (8-6.4)

The vector F2 is required to satisfy Eq. (8-1.3). Also, by Eqs. (8-6.2), (8-6.3), and
(8-6.4), we have [also noting Eq. (8-6.1)]

2Gρ = 2(1 − ν)∇2F1 − ∇ψ1 (8-6.5)

2Gdiv ρ = (1 − 2ν)∇2ψ1 (8-6.6)

provided that

∇2χ = 0

∂χ

∂z
= ψ1 − div F1 (8-6.7)

A function χ that satisfies Eq. (8-6.7) can be determined only if (ψ1 − div F)
is harmonic. For example, let (ψ1 − div F1) = θ . Then ∂χ /∂z = θ , and ∇2χ = 0
yields

∇2 ∂χ

∂z
= ∂

∂z
∇2χ = ∇2θ = 0

Hence θ = (ψ1 − div F1) must be harmonic. Alternatively, we have by Eq. (8-6.5)

2G div ρ = 2(1 − ν)∇2div F1 − ∇2ψ1 (8-6.8)
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Subtraction of Eq. (8-6.8) from Eq. (8-6.6) yields

∇2(ψ1 − div F1) = 0

Hence, ψ1 − div F1 is harmonic. The harmonic function χ may also be added
to Eq. (8-6.4) in the forms iχ and jχ . That is, the vector

χ = iχ + jχ + kχ (8-6.9)

may be added to Eq. (8-6.4) without altering the above argument. The proof that
states the generality of the Galerkin vector is complete.

Problem Set 8-6

1. Derive Eq. (8-6.5).

2. Derive Eq. (8-6.8).

3. Generalize the results of Section 8-6 for the vector χ defined by Eq. (8-6.9).

8-7 The Galerkin Vector kZ and Love’s Strain Function
for Solids of Revolution

Let

F = kZ (8-7.1)

where Z may be considered a general function of the rectangular space coordinates
(x, y, z), or alternatively of cylindrical coordinates (r, θ, z), and so on.

For rectangular Cartesian coordinates (x, y, z)

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
(8-7.2)

For cylindrical coordinates (r, θ, z)

∇2 = ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2
+ ∂2

∂z2
(8-7.3)

Substitution of Eq. (8-7.1) into Eq. (8-4.8) yields

∇4Z = − Bz

1 − ν
(8-7.4)

If the body force Bz is zero, Z is biharmonic; that is, ∇4Z = 0.
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By Eqs. (8-1.3), (8-5.1), (8-5.5), (8-7.1), and (8-5.4), we have for either rectan-
gular or cylindrical coordinates

2Gρ = k[2(1 − ν)∇2Z] − ∇ ∂Z

∂z
(8-7.5)

2Gw =
[

2(1 − ν)∇2 − ∂2

∂z2

]
Z (8-7.6)

I1 = (1 + ν)
∂

∂z
(∇2Z) (8-7.7)

div F = ∂Z

∂z
(8-7.8)

σz = ∂

∂z

{[
(2 − ν)∇2 − ∂2

∂z2

]
Z

}
(8-7.9)

For rectangular Cartesian coordinates. Eqs. (8-5.1), (8-5.4), and (8-5.6) yield

2Gu = − ∂2Z

∂x ∂z
2Gv = − ∂2Z

∂y ∂z
(8-7.10)

σx = ∂

∂z

[(
ν∇2 − ∂2

∂x2

)
Z

]
σy = ∂

∂z

[(
ν∇2 − ∂2

∂y2

)
Z

]
(8-7.11)

τxy = − ∂3Z

∂x∂y∂z
(8-7.12)

τyz = ∂

∂y

{[
(1 − ν)∇2 − ∂2

∂z2

]
Z

}
= ∂

∂y

[(
−ν∇2 + ∂2

∂x2
+ ∂2

∂y2

)
Z

]

(8-7.13)

τxz = ∂

∂x

{[
(1 − ν)∇2 − ∂2

∂z2

]
Z

}
= ∂

∂x

[(
−ν∇2 + ∂2

∂x2
+ ∂2

∂y2

)
Z

]

(8-7.14)

Noting the following relations between rectangular and cylindrical coordinates,

∂

∂x
= ∂

∂r

∂2

∂x2
= ∂2

∂r2

∂

∂y
= 1

r

∂

∂θ

∂2

∂y2
= 1

r

∂

∂r
+ 1

r2

∂2

∂θ2

∂

∂z
= ∂

∂z

∂2

∂z2
= ∂2

∂z2

∂2

∂x ∂y
= ∂

∂r

(
1

r

∂

∂θ

)
= ∂2

∂r∂θ

[
1

r
( )

]

∂2

∂y∂z
= 1

r

∂2

∂θ ∂z

∂2

∂z∂x
= ∂2

∂z∂r
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we may write, for cylindrical coordinates, formulas that correspond to Eqs. (8-7.10)
through (8-7.14). Thus,

2Gur = − ∂2Z

∂r ∂z
2Gvθ = −1

r

∂2Z

∂θ∂z
(8-7.15)

σr = ∂

∂z

[(
ν∇2 − ∂2

∂r2

)
Z

]
(8-7.16)

σθ = ∂

∂z

[(
ν∇2 − 1

r

∂

∂r
− 1

r2

∂2

∂θ2

)
Z

]
(8-7.17)

τrθ = − ∂3

∂r∂θ∂z

(
Z

r

)
(8-7.18)

τθz = 1

r

∂

∂θ

{[
(1 − ν)∇2 − ∂2

∂z2

]
Z

}
(8-7.19)

τzr = ∂

∂r

{[
(1 − ν)∇2 − ∂2

∂z2

]
Z

}
(8-7.20)

If Z = Z(r, z), it is identical to the strain function introduced in 1960 by
A. E. H. Love (2009) for solids of revolution loaded symmetrically about the
axis of revolution z. For axisymmetrical cases,

∇2 = ∂2

∂r2
+ 1

r

∂

∂r
+ ∂2

∂z2
(8-7.21)

and dependency on θ vanishes. Hence, vθ , τrθ , τθz vanish identically in Eqs.
(8-7.15), (8-7.18), and (8-7.19), while Eqs. (8-7.16), (8-7.17), and (8-7.20) are
simplified accordingly. Hence, in terms of cylindrical coordinates (r, θ, z), for
axially symmetric situations, Z = Z(r, z), and the stress components become

σr = ∂

∂z

[(
ν∇2 − ∂2

∂r2

)
Z

]
σθ = ∂

∂z

[(
ν∇2 − 1

r

∂

∂r

)
Z

]

σz = ∂

∂z

{[
(2 − ν)∇2 − ∂2

∂z2

]
Z

}

τrz = ∂

∂r

{[
(1 − ν)∇2 − ∂2

∂z2

]
Z

}
(8-7.22)

Problem Set 8-7

1. Verify Eq. (8-7.4).

2. Derive Eqs. (8-7.5) through (8-7.9).
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8-8 Kelvin’s Problem: Single Force Applied in the Interior
of an Infinitely Extended Solid

Let the z axis be taken positive vertically downward. Let a point force 2kP be
applied at the origin of coordinates r, z and be directed along z. Because the
problem is axially symmetrical, Love’s strain function Z(r, z) hence Galerkins’
vector kZ(r, z), may be applied to the problem

Consider

R2 = r2 + z2 (8-8.1)

The function R is biharmonic; that is,

∇2∇2R = 0 (8-8.2)

Accordingly, we take

Z = BR (8-8.3)

where B is a constant because ∇2∇2Z = 0, provided the body force Bz = 0. By
Eq. (8-8.3), we have

∂Z

∂r
= Br

R

∂2Z

∂r2
= B

(
1

R
− r2

R3

)
= Bz2

R3

∂Z

∂z
= Bz

R

∂2Z

∂z2
= B

(
1

R
− z2

R3

)
= Br2

R3

∇2Z = 2B

R
(8-8.4)

By Eqs. (8-7.6), (8-7.7), (8-7.15), (8-7.22), and (8-8.4), we obtain

2Gur = − ∂2Z

∂r∂z
= Brz

R3

2Gw =
[
(1 − 2ν)∇2 + 1

r

∂

∂r
+ ∂2

∂r2

]
Z

= B

[
2(1 − 2ν)

R
+ 1

R
+ z2

R3

]
(8-8.5)

and

I1 = (1 + ν)
∂∇2Z

∂z
= −2(1 + ν)Bz

R3

σr = ∂

∂z

[(
ν∇2 − ∂2

∂r2

)
Z

]
= B

[
(1 − 2ν)z

R3
− 3r2z

R5

]
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σθ = ∂

∂z

[(
ν∇2 − 1

r

∂

∂r

)
Z

]
= (1 − 2ν)Bz

R3

σz = ∂

∂z

{[
(2 − ν)∇2 − ∂2

∂z2

]
Z

}
= −B

[
(1 − 2ν)z

R3
+ 3z3

R5

]

τrz = ∂

∂r

{[
(1 − ν)∇2 − ∂2

∂z2

]
Z

}
= −B

[
(1 − 2ν)r

R3
+ 3rz2

R5

]
(8-8.6)

We note that if ν = 1
2 , the stresses are zero for z = 0 except for the point r = 0.

(See Problem 8-8.3.)
The constant B is determined by considering the forces that act on a spherical

cavity surrounding the origin of coordinates (the point of application of the point
force). Alternatively, we may consider the total vertical load that acts on a plane
z = constant. For z > 0, this total load should be −P . For z < 0, it is P . For
constant z, Eq. (8-8.1) yields

r dr = R dR (8-8.7)

Hence, for z > 0,

−P =
∫ ∞

0
2πr dr(σz) =

∫ ∞

z

2πR dR(σz)

or

P = 2πB

[
(1 − 2ν)z

∫ ∞

z

R dR

R3
+ 3z3

∫ ∞

z

RdR

R5

= 4π(1 − ν)B

Consequently,

B = P

4π(1 − ν)
(8-8.8)

By Eqs. (8-8.6) we may show that the shearing stress τrz on a cylindrical surface
r = constant between any two horizontal planes z = ± constant converges to zero
as r → ∞. Hence, the total applied load between the two planes is 2kP . Further-
more, it may be noted that σz = 0 for the plane z = 0 except for the point r = 0.

Accordingly, Kelvin’s problem is solved by Eqs. (8-8.5), (8-8.6), and (8-8.8).
The solution to Kelvin’s problem may be employed to build solutions to other
problems of axial symmetry (Timoshenko and Goodier, 1970; Luré, 1964).

Problem Set 8-8

1. Derive Eqs. (8-8.5).

2. Derive Eqs. (8-8.6).
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3. Show that for ν = 1
2 , with the force kP acting at the origin of the coordinates of one-half

of the infinite space (solid) that was considered in the Kelvin problem, Eqs. (8-8.5) and
(8-8.6) give the solution of the problem of a point load on the half-space with ν = 1

2
(Boussinesq’s problem). [See Westergaard (1952, p. 136), and Boussinesq (1885).] For
ν �= 1

2 , see the section that follows.

8-9 The Twinned Gradient and Its Application to Determine
the Effects of a Change of Poisson’s Ratio

Westergaard (1940) has devised a procedure suitable for certain problems of elas-
ticity that have a simple solution for a particular value of Poisson’s ratio, say, ν0.
For example, he showed that Boussinesq’s problem of normal force (Boussinesq,
1885) and Cerruti’s problem of a tangential force (Cerruti, 1882) acting on the
plane surface of a semi-infinite solid may be solved when Poisson’s ratio is ν0 = 1

2
by the results of Kelvin’s problem (Section 8-8 and Problem 8-8.3) of a force at a
point in the interior of an infinite solid. In the case where Poisson’s ratio ν0 = 1

2 ,
the solution of Kelvin’s problem can be represented in terms of one principal stress
at each point, acting along a radial line from the point of application of the force.
The other principal stresses are zero, and one-half of the total force may be assigned
to one-half of the infinite solid. For other values of Poisson’s ratio ν �= 1

2 (based on
the positive definiteness of the strain energy, ν < 1

2 ; see Chapter 4, Section 4-6),
certain terms must be added to the formulas for the displacements and stresses.
The previous derivations of the Boussinesq solution and particularly for the Cer-
ruti solution are somewhat lengthy. Westergaard overcame this difficulty by the
application of a simple analytical device, which he called the twinned gradient .
The displacement to be added to the solution for ν0 = 1

2 to obtain the solution for
the case ν �= 1

2 is obtained as the gradient of a potential except that one of the
components is replaced by its so-called twin , an identical component but in the
reverse direction (opposite sign). The procedure is outlined below.

The Twinned Gradient Method. Assume that a set of displacements (denoted
by primes)

ρ′ = iu′ + jv′ + kw′ (8-9.1)

and stresses σ ′ and τ ′ have been found for a particular value ν0 of Poisson’s ratio
and for body forces per unit volume B′. Then by Eqs. (8-2.10) and (8-9.1),

G

(
∇2 + 1

1 − 2ν0
∇div

)
ρ′ + B′ = 0 (8-9.2)

The corresponding stresses are defined by the equations [Eqs. (8-2.8)]

σ ′
x = 2G

(
∂u′

∂x
+ ν0

1 − 2ν0
divρ′

)
, . . . , . . .
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τ ′
xy = G

(
∂u′

∂y
+ ∂v′

∂x

)
, . . . , . . .

I ′
1 = σ ′

x + σ ′
y + σ ′

z = 2(1 + ν0)G

1 − 2ν0
div ρ′ (8-9.3)

Assume now that Poisson’s ratio is changed from ν0 to ν, while the shear
modulus of elasticity G remains unchanged. Also assume for the time being that the
displacements ρ′ are held unchanged. Then according to Eqs. (8-2.8), the shearing
stresses will not be changed, but each normal stress σ ′ will receive the increment

σ = 2G

(
ν

1 − 2ν
− ν0

1 − 2ν0

)
div ρ′

= 2(ν − ν0)G

(1 − 2ν)(1 − 2ν0)
div ρ′ = (ν − ν0)I

′
1

(1 + ν0)(1 − 2ν)
(8-9.4)

Because in this correction the displacements ρ′ remained unchanged, further cor-
rections must be provided. The correction is completed by adding additional dis-
placements ρ′′ to ρ′, thereby obtaining the total displacements

ρ = ρ′ + ρ′′ (8-9.5)

and the final stresses

σ = σ ′ + σ ′′ τ = τ ′ + τ ′′ (8-9.6)

which require the final body forces

B = B′ + B′′ (8-9.7)

Westergaard (1940) investigated the possibility of expressing the correction ρ′′
by means of a twinned gradient . He gave the operator

i
∂

∂x
+ j

∂

∂y
− k

∂

∂z
= ∇ − 2k

∂

∂z
(8-9.8)

this name because the part k(∂/∂z) in ∇ is replaced by its “twin” −k(∂/∂z). He
then expressed the correction ρ′′ in terms of the negative of the twinned gradient
operating on a scalar function � as

2Gρ′′ = −i
∂�

∂x
− j

∂�

∂y
+ k

∂�

∂z
= −∇� + 2k

∂�

∂z
(8-9.9)

By Eqs. (8-9.9) and (8-2.8), we find

τ ′′
xy = − ∂2�

∂x ∂y
τ ′′
xz = τ ′′

yz = 0 (8-9.10)
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and

2Gdiv ρ′′ = −∂2�

∂x2
− ∂2�

∂y2
+ ∂2�

∂z2
= −∇2� + 2

∂2�

∂z2
(8-9.11)

Then, one may obtain the total additional normal stresses σ ′′ that must be added
to σ ′ to obtain the final stresses by means of Eq. (8-2.8). For example, for σ ′′

z we
have (because the normal stresses σ ′ were increased previously by σ)

σ ′′
z = σ + 2G

(
∂w′′

∂z
+ ν

1 − 2ν
div ρ′′

)
(8-9.12)

By Eq. (8-9.1) with double primes, Eqs. (8-9.4) and (8-9.9), we have alternatively
for Eq. (8-9.12)

σ ′′
z = (ν − ν0)I

′′
1

(1 + ν0)(1 − 2ν)
+ 1

1 − 2ν

(
∂2�

∂z2
− ν∇2�

)
(8-9.13)

Westergaard (1940) arbitrarily took σ ′′
z = 0 with the objective of selecting �

accordingly and computing the remaining stresses and body forces so that equilib-
rium is maintained. Hence, by Eq. (8-9.13), � is taken so that

∂2�

∂z2
− ν∇2� = (ν0 − ν)I ′′

1

1 + ν0
(8-9.14)

Because σ ′′
z = 0, σ ′′

x and σ ′′
y may be computed in terms of � by means of

Eqs. (8-9.3) using double primes. Thus, with Eqs. (8-9.1) and (8-9.9)

σ ′′
x = σ ′′

x − σ ′′
z = 2G

(
∂u′′

∂x
− ∂w′′

∂z

)
= −∂2�

∂x2
− ∂2�

∂z2
(8-9.15)

or

σ ′′
x = ∂2�

∂y2
− ∇2�

and similarly for σ ′′
y . Thus, the complete set of stresses produced by the changes is

σ ′′
x = ∂2�

∂y2
− ∇2� σ ′′

y = ∂2�

∂x2
− ∇2� τ ′′

xy = − ∂2�

∂x∂y

σ ′′
z = τ ′′

xz = τ ′′
yz = 0 (8-9.16)

The body forces required to maintain the stresses of Eq. (8-9.16) in a state of
equilibrium are determined by the equations

∂σ ′′
x

∂x
+ ∂τ ′′

xy

∂y
+ B ′′

x = 0
∂τ ′′

xy

∂x
+ ∂σ ′′

y

∂y
+ B ′′

y = 0 (8-9.17)
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Hence

B ′′
x = ∂(∇2�)

∂x
B ′′

y = ∂(∇2�)

∂y
(8-9.18)

or

B′′ = i
∂

∂x
(∇2�) + j

∂

∂y
(∇2�)

In many important problems, the original and the final body forces are zero.
Then, B′ = B′′ = B = 0, and Eq. (8-9.18) is satisfied if ∇2� = 0, that is, if � is
a harmonic function. In addition, Eq. (8-9.14) reduces to the condition

∂2�

∂z2
= (ν0 − ν)I ′

1

1 + ν0
(8-9.19)

It is possible to satisfy the equation ∇2� = 0 and Eq. (8-9.19) at the same time, as
∇2I ′

1 = 0; that is, I ′
1 is a harmonic function. Also, because ∇2� = 0, � becomes

an Airy stress function of (x, y); see Eqs. (8-9.17) and Chapter 5, Section 5-4.
Some of the equations developed above become indefinite when ν0 = 1

2 . How-
ever, considerations of convergence show that the remaining equations remain
applicable for this limiting case. This conclusion is also reached by a direct study
of the limiting case of ν0 = 1

2 .

8-10 Solutions of the Boussinesq and Cerruti Problems
by the Twinned Gradient Method

The Boussinesq Problem. The Boussinesq problem is that of determining the
displacements and the stresses in a half-space (semi-infinite solid) occupying the
region z > 0 and subjected to a load kP acting at the origin of coordinates (x, y, z),
where (x, y) are rectangular coordinates in the bounding plane of the half-space,
and coordinate z, perpendicular to the bounding plane, may be visualized as being
directed vertically, positive downward.

In Kelvin’s problem (Section 8-8) a solid is considered that extends infinitely
in all directions. At the origin of coordinates a concentrated force 2P is applied in
the direction of z, which is assumed to be directed vertically, positive downward.
In the Boussinesq problem the semi-infinite solid occupying the region z ≥ 0 is
considered, with concentrated normal force P acting at the origin of coordinates
(x, y, z) in the direction of positive z.

The Cerruti Problem. In the Cerruti problem the semi-infinite solid z ≥ 0 is
acted on by a force P applied at the origin of coordinates (x, y, z) but directed
in the positive x direction; that is, force P lies in the bounding (x, y) plane of
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the region. In the following we develop the solutions for the Boussinesq and the
Cerruti problems by the method of twinned gradient.

Solutions for ν = 1
2 . When Poisson’s ratio ν = 1

2 , the Kelvin, Boussinesq, and
Cerruti solutions can all be expressed by the same formulas. In considering these
solutions, it is appropriate to use cylindrical coordinates (r, θ, z) and the polar
coordinate R, in addition to axes (x, y, z), where r and R are defined by

R2 = r2 + z2 = x2 + y2 + z2 (8-10.1)

For ν = 1
2 , Eqs. (8-8.5) yield

u′
r = P

4πG

rz

R3
w′ = P (R2 + z2)

4πGR3
(8-10.2)

In terms of (x, y, z) coordinates, using Eq. (8-9.1) we may write [Eqs. (8-7.10)
with Z = Br; Eq. (8-8.3)] with r = ix + jy

ρ′ = P

4πGR3
[ixz + jyz + k(R2 + z2)] (8-10.3)

The principal stress in the direction of the radius vector R is equal to I ′
1, as

the other two principal stresses are zero. Thus, by the expression for I1 given in
Eq. (8-8.6), we have

σ ′
R = I ′

1 = −3P

2π

z

R3
(8-10.4)

With Z = BR, the corresponding components of stress in cylindrical coordinates
(r, θ, z) and rectangular coordinates (x, y, z) are, from Eqs. (8-8.6) and Eqs. (8-7.9)
through (8-7.14), respectively,

σ ′
r = −3P

2π

r2z

R3
σ ′

θ = 0 σ ′
z = −3P

2π

z3

R5

τ ′
rθ = τ ′

θz = 0 τ ′
rz = −3P

2π

rz2

R5
(8-10.5)

and

σ ′
x = −3P

2π

x2z

R5
σ ′

y = −3P

2π

y2z

R5
σ ′

z = −3P

2π

z3

R5

τ ′
xy = −3P

2π

xyz

R5
τ ′
yz = −3P

2π

yz2

R5
τ ′

xz = −3P

2π

xz2

R5

(8-10.6)

Boussinesq’s Problem for Any Value of Poisson’s Ratio. With ν0 = 1
2 and

with I ′
1 given by Eq. (8-10.4), Eq. (8-9.19) yields
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∂2�

∂z2
= 1 − 2ν

3
I ′

1 = − (1 − 2ν)P

2π

z

R3

∂�

∂z
= (1 − 2ν)P

2πR
� = (1 − 2ν)P

2π
log(R + z)

(8-10.7)

which shows that � is a harmonic function. The displacements to be added to
Eqs. (8-10.2) and (8-10.3) are, by Eq. (8-9.9),

u′′
r = − 1

2G

∂�

∂r
= − (1 − 2ν)P

4πG

r

R(R + z)

w′′ = 1

2G

∂�

∂z
= (1 − 2ν)P

4πGR
(8-10.8)

The two stress components that must be added to those in Eqs. (8-10.5) are, by
Eqs. (8-9.16), with ∇2� = 0,

σ ′′
r = 1

r

∂�

∂r
= (1 − 2ν)P

2π

1

R(R + z)

σ ′′
θ = ∂2�

∂r2
= −1

r

∂�

∂r
− ∂2�

∂z2
= (1 − 2ν)P

2π

[
− 1

R(R + z)
+ z

R3

] (8-10.9)

Cerruti’s Problem for Any Value of Poisson’s Ratio. In treating the Cerruti
problem, it is expedient to change the directions so that the force P that acts at the
origin of coordinates will act in the direction of the positive x axis on the semi-
infinite solid z ≥ 0. Then, Eqs. (8-10.1) to (8-10.6) must be interpreted under the
cyclic changes (x, y, z) → (y, z, x) and (i, j, k) → (j, k, i). Then, by Eqs. (8-9.14)
with ∇2� = 0 and ν0 = 1

2 ,

∂2�

∂z2
= 1 − 2ν

3
I ′

1 = − (1 − 2ν)P

2π

x

R3
(8-10.10)

Integrations yield

∂�

∂z
= (1 − 2ν)P

2π

x

R(R + z)
� = − (1 − 2ν)P

2π

x

R + z
(8-10.11)

By substituting the function � into Eqs. (8-9.9) and (8-9.16) and adding the values
to those derived from Eqs. (8-10.3) and (8-10.6), we obtain the following formulas,
which are the solution of the Cerruti problem:

u = P

4πGR

[
1 + x2

R2
+ (1 − 2ν)

(
R

R + z
− x2

(R + z)2

)]
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v = P

4πGR

[
xy

R2
− (1 − 2ν)xy

(R + z)2

]

w = P

4πGR

[
xz

R2
+ (1 − 2ν)x

R + z

]

σx = Px

2πR3

[
−3x2

R2
+ 1 − 2ν

(R + z)2

(
R2 − y2 − 2Ry2

R + z

)]

σy = Px

2πR3

[
−3y2

R2
+ 1 − 2ν

(R + z)2

(
3R2 − x2 − 2Rx2

R + z

)]

σz = −3Pxz2

2πR5
I1 = − (1 + ν)Px

πR3

τxy = Py

2πR3

[
−3x2

R2
+ 1 − 2ν

(R + z)2

(
−R2 + x2 + 2Rx2

R + z

)]

τyz = −3Pxyz

2πR5
τxz = −3Px2z

2πR5
(8-10.12)

Normal Line Load on a Semi-Infinite Orthotropic Solid. The case of a
normal load distributed uniformly along a strip of width 2ε on the bounding plane
of a semi-infinite solid with orthotropic material properties has been presented by
Lekhnitskii (1981). As in the case of an isotropic semi-infinite solid, the stress
distribution is radially directed and is symmetrical with respect to the centerline
of the strip. However, depending upon the relative magnitude of the elastic coef-
ficients, the trajectories of constant radial stress may vary considerably from the
circle trajectories in the case of the isotropic solid.

Problem Set 8-10

1. Verify the results given by Eqs. (8-10.5) and (8-10.6).

2. Verify the results given by Eqs. (8-10.8) and (8-10.9).

3. Derive the expression for � given by Eqs. (8-10.7).

4. Derive the formula for � given by Eq. (8-10.11).

5. Derive the solution for the Cerruti problem [Eqs. (8-10.12)].

8-11 Additional Remarks on Three-Dimensional Stress Functions

Four types of stress functions are known for solving elasticity problems. They are
(1) the components of the displacement vector, (2) the components of the Galerkin
vector, (3) the Maxwell stress functions, and (4) the Morera stress functions
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(Langhaar and Stippes, 1954). For problems with stress-type boundary conditions,
the Maxwell stress functions are in many respects the simplest to use, but they
lack the simple transformation properties of vectors. It was shown by Weber
(1948) that the Maxwell and Morera functions supplement each other, and that
together they are the components of a second-order symmetric Cartesian tensor.

Langhaar and Stippes (1954) developed the compatibility equations for an
isotropic Hookean body subjected to boundary stresses and temperature gradients
in terms of the Maxwell stress functions, and they presented the general solution
for steady temperature fields. They also showed that when the complementary
energy of a homogeneous body with arbitrary elastic properties is expressed in
terms of the components of the Maxwell–Morera tensor, the Euler equations
for the integral of the complementary energy density are the complete set
of compatibility equations in terms of the stress components. In addition,
they generalized the Maxwell–Morera tensor so that it represents the general
solution of the equilibrium equations in any curvilinear coordinate system. As
an application, they gave the general solution of the equilibrium equations in
cylindrical coordinates.

A comprehensive discussion of stress functions has been presented in a review
article by Sternberg (1960), which gives an extensive list of references dating to
1958. In a highly mathematical treatment, Marsden and Hughes (1994), using mod-
ern differential geometry and functional analysis, discuss parts of the mathematical
foundations of three-dimensional elasticity. As stated in their preface, their work “is
intended for mathematicians, engineers, and physicists who wish to see this clas-
sical subject in a modern setting and to see examples of what newer mathematical
tools have to contribute.” Several hundred references are listed.
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Active materials, 2
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Almansi strain tensor, 83, 159
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Aneurysm, intracranial saccular, 295–298
Angle of twist, 331, 529
Anisotropic material, 231, 241–255, 259–261,
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strain–temperature relation, 288
stress-strain relations, 261, 368–369

Anticlastic surface, 322
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characteristic equation, 50
determinants, 49
rectangular, 38–40
skew-symmetric, 39
square, 39–40
stress, 166–167
symmetric, 39
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typical element, 39

Arroyo, M., 4, 60
Artery wall, atheromatous plaque on, 475–478
Associative law of vector addition, 12
ASTM (American Society for Testing and

Materials), 10n.2
Atheromatous plaque on artery wall, 475–478
Atomistic field theory, 352–359

atomistic quantities in physical space,
355–357

conservation equations, 357–359
phase-space and physical-space descriptions,

353–355
Atrek, E., 1, 60
Averbach, B. L., 277, 362
Axis of twist:

generally, 327, 536
transfer of, 549–550

Baker, M. J., 8, 63
Balance laws, 214, 218

angular momentum, 205, 358
in atomistic field theory, 358, 359
linear momentum, 205, 289
of micromorphic theory, 350–351

Bar, prismatic, 318–322, 527–591
bending, 318–322, 569–577

Bernoulli-Euler equation, 322
curved bar, 505–506
elliptic cross section, 584–586
pure, 318–322, 581–582
rectangular cross section, 586–590
transverse end force, 569–577

Prandtl torsion theory, 534–538
Saint-Venant’s torsion theory, 529–534
shear-center, 581–584
torsion, 529–568

axis of twist, 327, 536, 549–550
boundary conditions, 528
elliptic cross section, 538–542, 584
narrow rectangular cross section, 560–561
Prandtl function of, 535
Prandtl membrane analogy, 554–562
Prandtl theory, 534–538
rectangular section, 562–568

Saint-Venant’s solution, 529–534
shear-stress components, 543–544
with tubular cavities, 547–549
warping, circular cross section, 544

Bathe, K.-J., 106, 159
Beams:

cantilever, 506–507
tapered, 591–595
thermal stress, 274–276

Beltrami–Mitchell compatibility equations, 529
Beltrami–Mitchell compatibility relation,

299–305
Belytshko, T., 4, 60
Bending:

of prismatic bar, 318–322, 569–577
Bernoulli-Euler equation, 322
curved bar, 505–506
elliptic cross section, 584–586
pure, 318–322, 581–582
rectangular cross section, 586–590
transverse end force, 569–577

pure, 318–322
bar subjected to transverse end force,

527–529, 569–577
Bessel functions, 519
cantilever beam, 506–507
curved bars, 505–506
function (flexural), 572
general equations, 569–577
plane wedges, 509–510
prismatic bars, 318–322

Berendsen, H. J. C., 293, 359
Berendsen thermostat, 293, 294
Bernoulli-Euler equation, 322
Beus, M. J., 504, 525
Biharmonic equation, 384. See also Airy stress

function
functions, 384
solutions of, 385, 465

Bilinear form, 50
Bio-inspired sensors, 4
Biological tissues:

constitutive equation for, 237–238
lifeless material vs. living, 239–240
structure of, 5

Biomechanics, 5
Bioscience, 5
Biot, M. A., 270, 359
Biotechnology, 1, 5, 7
Birkhoff, G., 55, 60, 96, 97n.5, 159
Body couples, 7, 161, 211–214

force, 233, 467–475, 487
moments, 166–167

Body force (atomistic field theory), 357
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Boley, B. A., 270, 359
Boltzmann constant, 290
Bone structure, 5, 6
Boresi, A. P., 3, 9, 11, 60, 67, 68n.1, 142, 159,

187, 214, 215n.8, 224, 333, 346, 359
Borgman, E. S., 525
Born, J. S., 310, 361
Boundary conditions, 169, 287, 528

for bars, 528
equilibrium, 305–310
intracranial saccular aneurysm, 298
mixed boundary value problem, 306–307
for multiply connected regions, 388
for plane polar coordinates, 471–473,

496–497
Saint-Venant’s principle, 307–310
stress, 169–171, 287, 306
in terms of Airy stress function, 385–388
in terms of displacement, 313, 315–316
for torsion of bars, 547–548

Boundary element method, 3
Boundary-value problems, 10–11, 438–440

Dirichlet, 10–11, 534
mixed, 11
Neumann, 11, 533, 550

Boussinesq, J., 307, 308, 359, 611, 614–615,
618

Boussinesq problem, 614–616
Brazilian test, 522
Brebbia, C. A., 3, 60
Brown, G. H., 161, 224
Brown, J. W., 384, 399, 436, 437, 441, 451, 453,

533, 542, 564, 577, 595
Brown, O. E., 19, 62
Buehler, M. J., 62
Bulatov, V. V., 359
Bulk modulus, 258

CAD (computer-aided design), 2
Cai, W., 353, 359
Calculus of variations, 56–60

admissible functions, 58
argument function, 58
conditions of admissibility, 58
Euler differential equation, 59
first variation of an integral, 60
functionals, 58
stationary value of an integral, 59
variation of a function, 58–60

CAM (computer-aided manufacturing), 2
Car, R., 255, 359
Carlson, D. E., 212n.5, 426, 453
Carrier, G. F., 436, 448, 453
Carslaw, H. S., 270, 359

Cartesian coordinate system, see Rectangular
Cartesian coordinates

Castigliano’s theorem:
on deflections, 341–342
principle of virtual stress, 341–342

Cauchy elastic formulation, 346, 347
Cauchy-Riemann equations, 533
Cauchy strain tensor, 73–74, 88–89, 158
Cauchy stress, 177, 237–240, 351
Cayley–Hamilton theorem, 74
Cell biomechanics, 5
Center of shear (shear center), 581–584
Center of twist, 536
Cerruti, V., 611, 614–616, 618
Cerruti problem, 614–617
Chadwick, P., 270, 359
Chan, S. S., 504, 525
Characteristic roots (eigenvalues), 50
Chasles’s theorem, 67, 127
Chen, J. L., 360
Chen, P., 62
Chen, W.-F., 184, 224, 346, 347, 359
Chen, Y., 352, 354, 355, 357, 359, 361, 363
Cheung, Y. K., 3, 60
Chistoffel symbols, 210
Choi, I., 307n.9, 310, 359
Chong, K. P., 1–4, 6, 9, 60, 125n.14, 187, 224,

245, 246, 346, 360, 403, 453, 504, 522,
524, 525, 592, 595

Christian, J. T., 360
Churchill, R. V., 384, 399, 436, 437, 441, 451,

453, 533, 542, 564, 577, 595
Circle of Willis, 295–297
Clausius–Duhem inequality, 350
Cleary, M. P., 346, 360
Clemson University, 591n.9
Coefficients of the principal dilatations, 120
Column matrix, 52
Commutative law of vector addition, 12
Compatibility, 317

Beltrami–Mitchell compatibility equations,
529

Beltrami–Mitchell compatibility relation,
299–305

with couple stress, 425–426
displacement, 132–138
equation for plane elasticity:

in polar coordinates, 463
in rectangular coordinates, 369, 408–415

plane strain, 369, 377–382, 461
plane stress, 378–381, 462
small displacement, conditions of, 132–138, 371
in terms of Airy stress function, 379
thermoelasticity, 299–305
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Complementary function (solution or integral),
389–391

Complex variables, 399–400, 428–453
Airy stress function, 428–429
conformal transformation, 440–445
in curvilinear coordinates, 445–448
displacement components, 429–430
plane elasticity boundary value problems,

438–440
for plane region bounded by circle in z plane,

448–452
resultant force and resultant moment, 433–434
stress components, 430–432

Composites, 259–261
Compressions, 163
Computers, 1–3

microcomputers, 1
minicomputers, 1
in smart structures/materials control, 5
supercomputers, 1, 6

Computer-aided design (CAD), 2
Computer-aided manufacturing (CAM), 2
Conditions of admissibility, 58
Conservation laws:

angular momentum, 357
in atomistic field theory, 357
energy, 232, 289, 290, 357
linear momentum, 357
of linear momentum, 357
mass, 205, 218, 357
in molecular dynamics, 236

Constitutive equations:
of elastic solids, 351–352
for soft biological tissue, 237–238

Constitutive relations, 9, 246. See also
Stress-strain relations

in atomistic field theory, 359
in molecular dynamics, 235–236
nonlinear, 345–347

Constraints, 56
Contact mechanics, 2
Continuity, 65–66

conditions of, 134–140
equations of, 134, 140, 145, 146
material (Lagrangian) form, 139–140
spatial form, 144–146

Continuous body:
defined, 68
deformation, 68, 72–73

Continuous (deformable) medium (continuum), 7,
68, 72–73, 140

Continuum mechanics, 7, 68, 205
and atomistic models, 353
interfacing molecular dynamics and, 353

Continuum physics, 289
Contour map, 542
Contravariant tensors, 210–211
Cook, N. G. W., 268, 360
Coordinate lines, curvilinear, 31–32, 147,

445–448
Coordinate surfaces, 31, 147
Coordinate systems:

cylindrical, 150–153, 208–209, 491
Eulerian, 21, 67–71, 82, 232

deformation, 67–71
micromorphic theory, 348–350

intrinsic, 159
Lagrangian, 67–71, 149, 214, 232, 348–350
left-handed, 14, 15
material, 66–71, 214
oblique, 154–155, 416–420

plane, 416–420
straight-line, 154–155

orthogonal curvilinear, 31–32, 146–151
differential length in, 32–33
gradient, 33–34
Laplacian, 34–36
strain-displacement relations, 146–151

plane polar, 210, 455–456
polar coordinates:

Airy stress function in, 456–457, 463, 498
equilibrium equations in, 455–456
plane compatibility equation in, 463
strain-displacement relations, 457–461
stress components in, 456–457
stress-strain temperature relations, 461–462

rectangular Cartesian, 32, 40–46, 70–71,
408–415

strain components in, 83–84
strain-displacement relations, 366
transformation of tensors under, 40–46

right-handed, 14, 15
spatial, 21, 66–71
spherical, 151, 209–210, 294–299

Corrosion sensors, 5
Cosserat, E., 213n.6, 421, 453
Cosserat, F., 213n.6, 421, 453
Coulomb–Buckingham potential, 250
Couple, body, 7
Couple stress, 7, 211–214, 420–428

deformation, 421–424
equations of compatibility, 425–426
equations of equilibrium, 421
stress concentration from circular hole in plate,

519–522
stress functions for plane problems with,

426–428
Couple stress tensor, 213
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Courant, R., 30n.5, 57, 58, 60, 61, 72, 139, 159,
534, 550, 595

Covariant tensors, 210–211
Creep, 8
Cross section, 538, 544, 547–549

deformed shape of, 322
elliptical, 538–539
warping, 536–537, 544

Crystalline systems:
multicomponent, 352–354
single-component, 353

Cubical strain, 366
Curl of vector field, 22
Current density, 23
Curvilinear coordinates, 147
Cutoff radius, 251
Cylindrical coordinate system, 150–153,

208–209, 491

Dally, J. W., 10, 61
Dana, G. F., 360
Davis, D. C., 4, 60
Davis, G., 592, 595
Deformable body (medium), 65–66

differential equations of motion, 288
equilibrium, three-dimensional, 598–600
spatial coordinates, 201–206

incompressible, 204
kinematics of, 140–146

acceleration, 22, 141–144
convective, 143

Deformation:
admissible, 73, 84–85
compatibility conditions, small displacement,

132–138
condition for continuously possible, 72–73
of a continuous region, 68–71
couple-stress, 421–424
definition, 66
deformable, continuous media, 65–66, 71–76
extension of infinitesimal line element, 78–86
gradient of displacement vector, 76–78
homogenous, 118–121
kinematics of deformable media, 140–146
line element:

direction cosines of, 78–79, 89
extension of, 78–86
final direction cosines of a deformed, 89–90
relative elongation of, 86–89

material (Lagrangian) form, 67–71, 139–140
mean and deviator strain tensor, 110–112
octahedral strains, 112
plane strain, 112
principal axes, 101–107

principal strains, 100–101
proper, 73
reciprocal ellipsoid, 96–100
rigid-body displacements, 66–67
rotation of volume element, 113–117
shearing strain, 90–92
spatial (Eulerian) form, 67–71
strain definitions, 87–89
strain invariants, 108–109
strain tensor, 94–96
theory of small strains and small angels of

rotation, 121–132
transformations of lines and surfaces,

138–139
volumetric strain, 109–110
zero state (configuration), 229

Deformation gradient tensor, 73
De Koning, M., 359
Del (nabla), 17
Delange, S. L., 237, 296, 297, 361
Delph, T. J., 353, 360
Density, 66

at cell level, 358
current, 23
mass, 7

Density functional theory, 255
Desai, C. S., 346, 360
Designer materials, 5–7
Determinants:

of arrays, 49
vector, 14, 16

Determinant notation, 14, 16, 42
Development, biomechanics of, 5
Diagonal matrix, 54
Differential, total, 79–80, 387
Differential equations of motion, 204
Differential length, in orthogonal curvilinear

coordinates, 32–33
Differentiation:

of scalar field, 21
of vector field, 21–22
of vectors, 19–21

Diffusivity, 271
Dilatation:

cubical, 110
intracranial saccular aneurysm, 295–298
pure, 120–121, 125

Dillon, O. W., 60
DiNola, A., 359
Directional derivative, 17–18, 550–554
Direction cosines:

determinants of, 42
in index form, 43
orthogonality relations, 41–42
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Direction cosines: (continued )
relations between, 41–42
table, 41

between two sets of rectangular Cartesian axes,
40–43

Dirichlet boundary-value problem, 10–11, 534
Disk, 470–471, 487–489, 494–498, 522–525
Displacement:

admissible, 73, 75, 84–85
of cantilever beam subjected to transverse end

force, 577–581
compatibility (continuity), 132–138
components of, 71, 82–83

equations, 314–317
in terms of Airy stress function, 401–404,

429–430
torsion, 536–538

deformable body, 71
fluid particles, 21
gradient of, 76–78, 115–117
particle, 66, 67
plane, 67, 366–368, 415–416
proper, 73, 75
reflection, 73
rigid-body, 66–67, 127–130

plane, 67
rotation, 67
translation, 66, 67

small strains and angles of rotation, 121–132
vector, 76–78
virtual, 333–338

Displacement potential, 389–392
Displacement potential function, 390
Divergence, of vector field, 23
Divergence theorem, 25–27, 233

Gauss’s theorem, 25–26
Green’s theorem, 27
Green’s theorem of the plane, 28
in two dimensions, 27–28

Dove, R. C., 10, 61
Drucker, D. C., 184, 224
Duchaineau, M., 60
Duhamel, J. M. C., 269, 270, 360
Duhamel-Neumann theory, 269–270
Dummy indexes, 37, 38
Dvorak, G. J., 1, 61

E, W., 353, 360
Education, in mechanics, 3
Eigenvalues (characteristic roots), 50
Eigenvectors, 50–52, 188
Eisenhart, L. P., 41, 50, 61, 98, 159
Elastic coefficients (stiffnesses), 241–246,

257–261

for general anisotropic elastic material, 242
Lamé, 33, 257, 266, 311, 312
law of transformation, 246–249

Elasticity:
anisotropic, 231, 241–255, 259–261
axisymmetric problem, 302–304, 467–485
in biomechanical problems, 5
boundary-value problems, 10–11, 305–307,

438–440, 533–534
bulk modulus, 258
concept of, 229–230
isotropic, 231
linear theory, 8, 227
nonlinear theory, 8, 345–346
perfect, 227, 229–231
plane, 9. See also Plane theory
Poisson’s ratio, 267
polynomial solution of two-dimensional

problems, 408–415
pseudoelasticity, 237–239
shear modulus, 267
solutions in, 9–11, 317–323, 384, 408–415,

465, 485–489
general, 9, 597–618
successive elastic, 8
three-dimensional, 9, 317–327, 597–618

strain energy density, 234–235
theory of, 8–9, 230
uniqueness theorem in, 311–314
Young’s modulus, 267

Elastic limit, 227, 228, 230
Elastic response, 8
Elastic strain, 228
Elder, A. S., 114n.11, 159
Electronic structure theory, 255
Electroreheological (ER) fluids, 4
Ellis, E. W., 522, 525
Ellis, R. W., 421, 453
Ellis, T. M. R., 2, 61
Emissivity, 272
Energy:

internal, 232–234
intrinsic density function, 230–232
kinetic, 66, 242
stress energy density function, 232–235,

256–262, 368
Energy methods, 8
Energy principles:

Castigliano’s theorem, 341–342
conservation energy, 232
elasticity, 332–333
minimum elastic energy, 338
minimum strain energy, 338
mixed virtual stress-virtual strain, 342–343
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Reissner’s theorem, 342–343
stationary potential energy, 337
virtual displacement, 334–338, 343, 345
virtual stress, 339–342
virtual work, 333–339, 343–345

for elastic bodies, 335–338
for particles, 334–335

Energy-related solid mechanics, 2
Engquist, B., 360
Environmental sensors, 5
Equations of constraint, 56
Equilibrium:

astatic, 308
boundary conditions, 305–310
of cubic element, 204
differential equations of, 204, 207–211, 421,

598–600
in cylindrical coordinates, 208–209
in general spatial coordinates, 210–211
including couple stress and body couple,

211–214
in material coordinates, 210, 218–224
in oblique coordinates, 416–420
in orthogonal curvilinear spatial coordinates,

207–208
in plane polar coordinates, 210, 455
plane strain, 366
specialization of, 208–210
in spherical coordination, 209–210

of infinitesimal cubic element, 165
of moments, 166
in three dimensions, 317–322
uniqueness theorem of, 311–314

Eringen, A. C., 7, 61, 224, 231, 346, 348, 350–352,
360

Eskandarian, A., 361
Eubanks, R. A., 314, 363
Euclidean metric tensor, 155–157
Euler angles, 231
Euler differential equation, 59
Eulerian continuity equation, 22–24
Eulerian (spatial) coordinates, 21, 70, 82, 232

deformation, 67–71
micromorphic theory, 348–350

Euler’s theorem, 67
Exact differential, 30–31
Experimental Mechanics, 10n.2
Experimental methods, 2
Experimental stress analysis, 9–10
Experimental Techniques, 10n.2
Extreme (extreme values, extrema), 56, 181–183

Failure criteria (modes), 186–189
Fairhurst, C., 524, 525

Feshbach, H., 106, 159
Fields, 17–19, 21–22

acceleration, 22
divergence, 23, 25–27
nonstationary (unsteady), 18
scalar, 16–18
stationary (steady), 18
vector, 18–19, 21–23
vector lines of, 18
velocity, 18, 22–24

Field lines, 18
Finite difference method, 3, 8
Finite element method, 1, 8, 52, 359
Finite layer method, 3
Finite prism method, 3
Finite strip method, 3
Flexural function, 572
Fluids:

circulation, 29
divergence, 25–27
electroreheological, 4
Eulerian (spatial) continuity equation, 22–24
flow, 22–24, 145–146, 163
frictionless, 163
ideal, 163
incompressible, 24, 146, 345
irrotational flow, 24, 145–146
magnetorheological, 4
momentum, 215

convective, 215
local, 215

steady flow, 24, 142, 216
unsteady flow, 22
velocity fields of, 18, 22–24
viscous, 163, 345
vorticity, 30

Forces:
body, 201–202, 204, 236, 338, 343–344
conservative, 231
distributed, 161
inertial, 202–203, 338, 343–344
nonconservative, 231
normal, 162–163
point, 161
shearing, 162, 163
statically equivalent systems, 308–309
surface, 164, 203
tractive, 203

Forester, T. R., 293, 363
Formula, 350, 564
Fosdick, L. D., 1, 2, 61
Foster, R. M., 564, 566, 595
Fracture gages, 10
Frames, 68–71
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Free indexes, 37–38
Frequency–wave vector relations, 353
Friction coefficient, 293
Functionals, 58
Functional determinant, 72, 220
Fung, Y. C., 5, 61, 237, 239, 360

Galerkin, B., 597, 598, 604–606, 609, 617, 618
Galerkin–Papkovich vector, 597–598,

602–608
Gallagher, R. H., 60
Gao, H., 60
Gaussian constraints, 293–294
Gauss’s theorem, 25–26. See also Divergence

theorem
General tensor notation, 3
Geotechnical Testing Journal, 10n.2
Gibbs vector notation, 36
Gilbert, D., 61
Gilbert, L., 55, 61
Golsten, S., 361
Goodier, J. N., 307n.9, 363, 389, 403, 453, 454,

463n.1, 522, 524, 526, 566, 596, 610, 619
Goree, James G., 591n.9
Goursat, E., 25, 61
Gradient (grad), 33–36, 552

of displacement vector, 76–78
in orthogonal curvilinear coordinates, 33–34
of scalar function, 17
twinned, 611–614

Gradshteyn, I. S., 595
Green, A. E., 8, 46, 61, 210, 211n.4, 224, 226n.1,

361, 410, 453
Green, R. E., Jr., 10, 62
Green–Saint-Venant strain tensor, 83, 159, 237,

238
Green’s deformation tensor, 238
Greenspan, D., 11, 61
Green’s strain tensor, 83, 158, 159
Green’s theorem, 27
Green’s theorem of the plane, 28
Green-type materials, 346
Griffith, B. A., 231, 363
Griffiths, D. V., 106, 159
Grossmann, G., 554n.5, 595
Growth, biomechanics of, 5
Günther, W., 543, 545, 560, 596

Haak, J. R., 359
Haile, J. M., 291, 361
Half-plane, 507–508
Hamed, E., 5
Hansma, P., 62
Hardy, R. J., 353, 358, 361

Hartsock, J. A., 403, 453
Hayashi, K., 239, 362
Hayes, D. J., 525
Health-care delivery, 5
Heat conduction equation, 270–272, 289
Heat transfer (exchange), 272
Helmholtz’s free-energy density, 352
Helmholtz transformation, 600–601
Higher-order relations, 346
Hilbert, D., 58, 534, 550, 595
Hildebrand, F. B., 50, 61, 74, 80, 102, 159, 261,

312, 361
Hill, R., 231n.3, 361
Hodge, P. G., Jr., 186, 225, 229, 362
Homeland Security problems, 3
Homogenous deformation/state of strain, 118–121
Homogenous media, 256
Hondros, G., 524, 525
Hooke’s law, 241–255, 257, 346
Hoover, W. G., 292, 361
Horgan, C. O., 307n.9, 310, 359, 361
Horvay, G., 310, 361
Hsu, C. S., 9, 62
Huang, Y., 5, 61
Huang, Z., 353, 360
Hughes, T. J. R., 231, 362, 618
Humphrey, J. D., 5, 61, 239, 296, 297, 361, 478,

525
Hutter, J., 255, 362
Hydraulic systems, 5
Hydrostatic pressure, 238
Hydrostatic stress, 287–288, 317–318
Hyperelastic materials, 346
Hypoelastic materials, 346–347
Hysteresis, 230

Ince, E. L., 61
Incompressible fluids, 24
Incompressible soft biological tissue, 238
Indexes:

dummy, 37, 38
free, 37–38
Latin letter, 38
repeated Greek index, 36–38, 43, 117
repeated nonsummed, 38
rule of substitution, 47
summation convention, 36–40, 43–44

Index notation, 3
determinant, 42
orthogonality relations, 42
summation, 36–40, 43–44

Inelastic response, 8
Infinitesimal strain, 238
Information technology, 1, 7
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Integral:
line, 28–30, 136
particular, 577
stationary value of, 56–60
surface, 29
volume, 214–218

Integration, constant of, 574–576
Intelligent structures, 3–4. See also Smart

structures/materials
Interatomic force, 235, 249–255
Intracranial saccular aneurysm, 295–298
Intrinsic energy density function, 230–232
Invariance (invariants), 43, 100, 108

strain, 108–112
strain ellipsoid, 100
stress, 180, 182–183

Inverse matrix, 55, 56
Irrotational flow, 24
Irvine, J. H., 361
Irving, J., 353, 358, 521, 525
Isotropic material/media (body), 231, 255–256,

280, 312–313
higher-order relations, 346
strain energy density for, 256–266
strain–temperature relation, 289
thermoelasticity equations, 269–270

Jacobian, 72–73, 220, 348
Jaeger, J. C., 270, 359
Jasiuk, I., 5
Jeffery, A., 595
Jeffreys, H., 257, 361
Jiang, H., 61
Jones, J. E., 250, 361
Jones, R. E., 63
Journal of Testing and Evaluation, 10n.2

Kaloni, P. N., 421, 453, 519
Kannan, R., 4, 62
Kaplan, W., 80, 159
Karpov, E. G., 62
Keller, H. B., 310, 361
Kellogg, O. D., 533, 534, 595
Kelvin’s problem, 609–611, 614
Ketter, R. L., 595
Khang, D.-Y., 5, 61
Khattab, M. A., 525
Kinetic energy, law of, 333, 334
Kirchhoff, G. R., 311n.10, 361
Kirchhoff uniqueness theorem, 311–314
Kirk, W. P., 5, 62, 65, 159
Kirkwood, J. G., 353, 358, 361
Kirsch, G., 1, 498, 525
Kirsch, U., 61

Kitipornchai, S., 592, 595
Kittel, C., 250, 361
Knops, R. J., 10, 61
Knowles, J. K., 310, 361
Koiter, W. T., 421, 453, 510, 526
Kronecker delta, 47–48, 73, 211
Krook, M., 453
Kuruppu, M. D., 522, 525

Lagaros, N. D., 63
Lagrange multiplier, 57, 238
Lagrange multiplier method, 57–58, 101–105,

181, 238
Lagrangian (material) coordinates, 70, 149, 214,

232, 348–350
Lamb, R. S., 595
Lamé elastic coefficients, 33, 257, 266, 311, 312
Lamit, L., 2, 61
Lancaster, P., 55, 62
Langhaar, H. L., 58, 59, 62, 148n.17, 311, 333,

342, 343, 345, 361, 420, 453, 618
Laplace equation, 10, 18, 24, 34, 316, 542–546
Laplacian:

defined, 18
in orthogonal curvilinear coordinates, 34–36

Large-deformation theory, 87
Large strain theory, 73
La Rubia, T. D., 60
Latent roots, 50
Latin letter indexes, 38
Lattice dynamics, 353, 354
Lee, G. C., 592, 595
Lee, G. G., 592, 595
Lee, J. D., 351, 352, 357, 359, 361–363
Leeman, E. R., 525
Lei, Y., 359, 362
Lekhnitskii, S. G., 245, 362, 617, 618
Lennard-Jones potential, 250
Level surfaces, 17
Li, J. C., 60
Li, S., 353, 362, 363
Lin, A. Y., 62
Linearly elastic materials, 8
Linear momentum density, at cell level, 358
Linear theory of elasticity, 8
Line element:

direction cosines of, 78–79, 89
extension of, 78–86
final direction of, 89–90
relative elongation of, 86–89

Line integral, 28–30, 136
Lines of force, 18
Liu, S. C., 60
Liu, W. K., 4, 62
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Liu, X., 362
Log, natural (base e), 88
Londer, R., 1, 62
Loughlan, J., 125n.14
Love, A. E. H., 7, 62, 121n.12, 121n.13, 159, 166,

208, 224, 230n.2, 232, 242, 257, 308,
311n.10, 362, 389, 453, 608, 618

Ludwig, P., 87, 159
Luré, A. I., 610, 618
Lutsko, J. F., 353, 362

McCulloch, A. D., 238, 363
McDowell, D. L., 353, 363
McDowell, E. L., 392, 453
MacLane, S., 55, 60, 96, 97n.5, 159
McLennan, J. A., 355, 362
Macroscale, 5
Macroscale interactions, simulation of, 4
Macroscale technologies, 6–7
Magnetorheological (MR) fluids, 4
Magnification factor, 83
Makeev, M. A., 63
Many-body effects, 251
Marsden, J. E., 231, 362, 618
Marx, D., 255, 362
Mass, conservation of, 218
Mass density, at cell level, 358
Masud, A., 4, 62
Materials:

designer, 5–7
smart, 1–5

Material coordinates, see Lagrangian (material)
coordinates

Material derivative, 214–215
Material derivative of a volume integral, 214–218
Material equation of continuity, 145
Matlock, R. B., 595
Matrix:

adjoint, 55
column, 52
defined, 38
diagonal, 54
inverse, 55, 56
null, 53
of order m by n, 52
reciprocal, 55, 56
row, 52
scalar, 54
square, 43
transpose of, 54
unit, 54

Matrix algebra, 52–56
Matrix methods, 8
Matrix theory, 38

Maxima, 56
Maximum principal stress criterion, 187
Maximum shearing stress criterion, 187
Mazurkiewicz, S. B., 525
MD, see Molecular dynamics
Membrane analogy, 10
Mendelson, A., 8, 62
Menon, M., 63
Meshless method, 3
Mesoscale technologies, 6–7
Method of series:

for bending, 586–590
for torsion, 562–568

Metric tensor of space, 33
Meyers, M. A., 5, 62
Michell, J. H., 463, 525
Micro-cantilevers, 5
Microcomputers, 1
Microcontinuum field theories, 347
Microcontinuum of grade N, 347
Microelectronics, 1, 7
Microgyration tensors, 349
Microinertia density, at cell level, 358
Micromechanics, 2
Micromorphic theory, 347–352

balance laws of, 350–351
constitutive equations of elastic solids,

351–352
Microscale technologies, 4–7
Microscopic space-averaging, 350, 358
Milne-Thompson, L. M., 410, 454
Mindlin, R. D., 213, 224, 421, 454, 519, 598, 619
Minicomputers, 1
Minima, 56
Minimum strain energy (elastic energy), theorem

of, 338
Mixed boundary value problems, 11
Mohr, O., 196, 224
Mohr–Coulomb failure criterion, 187
Mohr’s circles, 195–198
Moiré method, 10
Molecular biomechanics, 5
Molecular dynamics (MD), 4, 205

ab initio, 255
classical, 254
constitutive relation in, 235–236
general form of potential energy, 249–250
governing equations, 235
quantum, 255
stiffness matrix in, 253–255
temperature in, 289–294

Berendsen thermostat, 293, 294
Gaussian constraints, 293–294
Nose–Hoover thermostat, 292–294
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random number generation, 292, 294
velocity upgrade, 291–292, 294

Moment:
body, 166–167
equilibrium, 166
twisting, 539–540

Moment of momentum density, at cell level, 358
Moment stress, 351
Momentum:

balance of angular momentum, law of, 205
balance of linear momentum, law of, 205, 289
time rate, change of, 215–217

Monatomic lattices, 353
Moon, F. C., 2, 62
Moore’s Law, 7
Morrell, M. L., 595
Morris, M., 19, 62
Morse, P. M., 106, 159
Motion, differential equations of, 204
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