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Preface

Hard constraints are represented by inequalities. Hard constraints occur frequently
in practical systems and their models; these hard constraints are often used in optimization
since optima are frequently found at these hard limits. In optimal control theory, this can
be seen in the prevalence of “bang-bang” solutions—the “bang” represents a control at a
hard limit.

In spite of this, hard limits are eschewed in most dynamical models. There are a
number of reasons for this. One is the lack of a suitable or “nice” theory for such systems.
Another is that numerical methods do not handle this situation well. A third is that it is
often not clear what should happen in a differential equation when a hard limit is reached.

Most commonly, when researchers in the sciences, engineering, or economics come
across a dynamic system with a hard constraint, the usual instinct is to smooth out the hard
constraint, often by adding a “penalty” term for either violating, or approaching, the hard
constraint. There are several reasons why this is not necessarily wise:

• This complicates an otherwise simple model, and furthermore, the strength of the
penalty is a new parameter that should somehow be calibrated to fit the situation.
And if the calibration indicates that the value should be zero (or infinity) for all
practical purposes, then we are back to a system with a hard constraint.

• Numerically solving a penalized differential equation with a small penalty term (so
as to well approximate a hard constraint) results in a stiff differential equation, which
must be solved either with extremely small step sizes or using implicit methods that
require the solution of nonlinear equations that are nearly equivalent to the hard
constraint.

This book aims to fill this gap: hard limits are natural models for many dynamic phenom-
ena, and there are ways of creating “differential equations with hard constraints” that are
natural and provide accurate models of many physical, biological, and economic systems.
The models that are described here have roots in optimization theory, and so we will see
Lagrange multipliers and complementarity principles not only as methods to enable us to
minimize functions subject to constraints but also as ways of formulating dynamic models
to systems with hard constraints.

A central idea here is the idea of index. This represents the number of differentiations
between a hard constraint and the state variables of the dynamic system. The higher the
index, the more difficult it is to solve. This index is closely related to the index used in the
area of differential algebraic equations (DAEs), which can be seen as differential equations
with equality constraints. This will provide an organizing principle for much of this book.

xi
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xii Preface

Connections to related dynamical systems with hard constraints will be mentioned,
such as linear complementarity systems (LCSs), projected dynamical systems (PDSs), dif-
ferential inclusions, and more general concepts such as hybrid systems and variable struc-
ture systems. In contrast to hybrid and variable structure systems, the systems described
here are more limited, but they do not suffer from the same theoretical limbo where solu-
tions might or might not exist or be meaningful depending on the precise structure of the
system.

Differential variational inequalities (DVIs) form a focal point in this book. These are
not the most general class of dynamics that can represent hard constraints or impacts. Dif-
ferential inclusions (also discussed) can be more general. But with such great generality it
becomes difficult to turn the abstract formulation into a practical or computationally useful
form. DVIs, on the other hand, provide a general means both of modeling and of carrying
out computations. The connections with more abstract theories, such as differential inclu-
sions, are fleshed out so that the reader can compare the properties and strengths of the two
means of modeling such systems.

I have tried to make this book mathematically self-contained, so that it is accessible
to engineers, economists, and others with a strong mathematical background. The ma-
terial contained in this book, however, does involve considerable technical development,
especially for problems involving partial differential equations, as these involve spaces of
functions with infinite dimensions. Results are given which include infinite-dimensional
cases wherever possible. If the reader does not have a background in functional analysis,
regarding statements such as “. . . X is a Banach space . . . ,” “. . .X is a Hilbert space . . . ,”
“. . .X has the Radon–Nikodym property . . . ,” the reader should think of Rn , the space of n-
dimensional (column) vectors. The dual space X ′ would then be the space of n-dimensional
row vectors. The duality pairing between a vector x ∈ X and yT ∈ X ′ is

〈
yT , x

〉= yT x , the
usual inner product for n-dimensional vectors. The mysterious function JX (which takes
vectors in a Hilbert space X to the dual space X ′) can be thought of as the transpose oper-
ation for Rn . Weak and strong convergence are identical for finite-dimensional spaces, but
they can be different in important ways in infinite-dimensional spaces. The relevant con-
cepts and theorems are detailed in the appendices, along with relevant material on convex
analysis and differential equations.

The results of mine here are often improvements of my published results. While I
have aimed for generality, I have often not given the most general possible formulation. As
this is a book, the target is readability and ease of understanding as well as completeness
of the technical results.

I would also like to take this occasion to thank the many people who have con-
tributed to this work or commented on it, including (in alphabetical order) Jeongho Ahn,
Mihai Anitescu, Kendall Atkinson, Bernard Brogliato, Kanat Çamlıbel, Alan Champneys,
Marius Cocou, Muddappa S. Gowda, Lanshan Han, Weimin Han, João A. C. Martins
(who has sadly passed away), Manuel Monteiro-Marques, Boris Mordukhovich, Jong-Shi
Pang, Laetitia Paoli, Adrien Petrov, Michelle Schatzman, J. M. (Hans) Schumacher, Roger
Temam, and Theodore Wendt. Suely Oliveira also contributed ideas which have strength-
ened the presentation of this work. I would also like to thank the Instituto de Ciências
Matemáticas e de Computação at the Universidade de São Paulo, São Carlos, for their
hospitality while I stayed there, especially José Cuminato, Alexandre N. Cavalho, and An-
tonio Castelo. The University of Iowa Mathematics Department has been my mathematical
home for many years, and I would like to thank many people there including Ken Atkinson,
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Weimin Han (who also works on contact mechanics and has helped improve the book), Yi
Li, and Lihe Wang, for supporting me in my work over many years. The University of Iowa
also has allowed me to take a leave which I have used to finish this book.

David Stewart Iowa City and São Carlos, 2010.
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Chapter 1

Some Examples

. . . there is no philosophy which is not founded upon knowledge of the
phenomena, but to get any profit from this knowledge it is absolutely necessary
to be a mathematician.

Daniel Bernoulli

In this chapter we see how a number of differential equations with inequalities arise. The
inequalities that arise are naturally in the form of complementarity problems or in varia-
tional inequalities. These may arise from variational principles or from simple principles of
the form “if this is positive, then that must be zero.” There are more general formulations
of hybrid systems which consist of a system of differential equations together with rules
of the kind “when we are in this (discrete) state and we reach this set, then we change our
state to another and continue with the corresponding differential equation.” Such models
may appear attractive to engineers, because this corresponds closely to how a system might
be programmed. But there are a number of problems with this approach.

Often hybrid systems like this chatter; that is, they cross and recross the sets that de-
fine the transitions of the (discrete) state variable(s) in arbitrarily short times. For example,
a bouncing ball might be modeled like this with a transition whenever the ball touches the
ground. We would probably use Newton’s rule, where the upward velocity just after con-
tact is a constant multiple (designated e) of the downward velocity just before contact. If
0 < e < 1, then there will be infinitely many bounces in finite time. Discrete-state systems
cannot handle this. Alternatively, a popular approach to controller design has been to use
sliding mode controllers. These controllers deliberately build discontinuities into the con-
troller in order to force the system into a particular subset of state space. However, if there
is any delay in the controller, then the system will jump from one side of the discontinuity
to the other and back again with a frequency inversely proportional to the response time
of the controller. Trying to model these systems from the point of view of general hybrid
systems is at best misleading.

Rather, the purpose of this chapter is to show how the apparently special structure
of rules based on complementarity problems or variational inequalities are in fact very
common and natural. Complementarity problems typically have the following form: Given

1
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2 Chapter 1. Some Examples

a function f : Rn → Rn , find a vector z ∈Rn , where

0≤ z ⊥ f (z)≥ 0;

note that “a ≥ b” for vectors a and b means that “ai ≥ bi for all i” and that “a ⊥ b” means
that aT b = 0. Variational inequalities have the following form: Given f : Rn → Rn and a
closed convex set K , find a vector z such that

z ∈ K & ( z̃− z)T f (z)≥ 0 for all z̃ ∈ K .

Both complementarity problems and variational inequalities are closely related to optimiza-
tion and variational principles. More will be said about this in Chapter 2.

1.1 Mechanical impact
1.1.1 Ball and table

Consider a rigid ball falling onto a rigid table, as illustrated in Figure 1.1.
The equations of motion of the ball, assuming no air resistance, are given by New-

ton’s second law of motion:

m
d2y

dt2
=−mg+ N(t),

where m is the mass of the ball, and g (downward) is the gravitational acceleration. But
sooner or later we must face the hard constraint that y(t)− r ≥ 0 for all times t .

What happens at the time τ of impact when y(τ )= r? Then we must have a reaction
force N(t) to prevent penetration. In fact, since we expect that dy/dt(τ−) < 0 at that time,

y(t)

N(t)

Figure 1.1: Ball and table example.
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1.1. Mechanical impact 3

we must have a jump discontinuity in the velocity so that dy/dt(τ+)≥ 0. This means that
N(t) must contain a Dirac-δ function, or impulse, at time τ : N(t) = N∗δ(t − τ )+ g(t),
where g(t) is “nice,” or at least “nicer” than a δ-function near t = τ .

When there is contact, we expect the normal contact force to be upwards. Downward
normal contact forces N(t) < 0 would indicate some kind of “glue” stopping the two bodies
from separating. So we assume that N(t)≥ 0 for all t , and in particular, our impulse should
also be upward: N∗ ≥ 0.

The relationship between the position y(t) and the normal contact force N(t) is given
by the following relations:

0 ≤ y(t)− r for all t ,

0 ≤ N(t) for all t ,

0= (y(t)− r ) N(t) for all t .

This is a complementarity condition. It can be written more succinctly in the form

0≤ y(t)− r ⊥ N(t) ≥ 0 for all t . (1.1)

The “a ⊥ b” sign means that a and b are orthogonal as vectors; that is, the dot product of a
and b is zero. For scalar a and b, this amounts to saying “ab = 0.”

Unfortunately, these conditions together with initial conditions are not sufficient to
determine the trajectory uniquely. Even in this simple model we need an extra condition,
usually given in terms of a coefficient of restitution 0 ≤ e ≤ 1. The value of e determines
how much “bounce” we expect to see in a collision. The standard (Newtonian) version is
like this: if y(τ )− r = 0, then

dy

dt
(τ+)=−e

dy

dt
(τ−).

That is, the postimpact normal velocity should be −e times the preimpact normal velocity.
On a superficial level this is necessary to distinguish between the behavior of (for example)
Play-Doh, which exhibits nearly completely inelastic behavior (e ≈ 0), and solid rubber
“superballs,” which are nearly perfectly elastic (e≈ 1). Deeper investigation of these ques-
tions has pointed out a number of difficulties with these models (such as impacts resulting
in increased energy) and a proliferation of alternative models (such as Poisson models and
energy-based models of restitution). Ultimately, these issues should be resolved by a better
understanding of elastic bodies in impact (which shall be introduced in Section 1.1.3).

With a coefficient of restitution e given we can determine the impulse strength N∗:
dy/dt(τ+)= dy/dt(τ−)+ N∗/m =−e dy/dt(τ−), and so N∗/m = −(1+ e)dy/dt(τ−).
Even with a given coefficient of restitution, solutions are not necessarily unique, although
finding such examples is not easy [24].

1.1.2 More complex rigid-body systems with impact

Dealing with more complex situations we might have many bodies which can potentially
make contact with many others at any point on the boundary. The equations of motion
are also more complex, as the orientation of the body can change, and we need to take
account of quantities such as angular momentum as well as ordinary momentum. There are
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4 Chapter 1. Some Examples

different ways of representing the orientation of a body (some use Euler angles, some unit
quaternions, some orthogonal matrices, and some more obscure systems such as Rodriguez
coordinates). The configuration of a hinged body, such as our arms and legs, or of robots,
can often be expressed most efficiently in terms of the angles of the hinges. To avoid
making the treatment dependent on a particular choice, we will take the configuration of
the body to be represented by a vector q ∈Rn which contains all the necessary information
to describe the configuration of the mechanical system.

If we use Lagrangian mechanics to describe a mechanical system, then we would
write the Lagrangian

L(q ,v)= T (q ,v)−V (q),

where v = dq/dt is the (generalized) velocity, T (q ,v) is the kinetic energy function, and
V (q) is the potential energy function. Typically T (q ,v) = 1

2v
T M(q)v, where M(q) is a

symmetric positive definite matrix referred to as the mass matrix. The mass matrix will
often contain quantities such as moments of inertia as well as actual masses, though. The
constraints on the configuration of the system can be represented by means of a system of
inequalities ϕi (q(t))≥ 0, i = 1, 2, . . . , m, for all t . Adding this to the Lagrangian by means
of Lagrange multipliers λ(t) gives

L(q ,v,λ)= 1

2
vT M(q)v−V (q)−

m∑
i=1

λiϕi (q)

= 1

2
vT M(q)v−V (q)−λTϕ(q).

However, since we have inequality constraints, we should not use the Lagrange multiplier
principle itself, but we should use the corresponding principle for inequality-constrained
optimization: the (Karush–)Kuhn–Tucker condition. Doing this formally with the principle
of least action gives the following conditions:

M(q)
dv

dt
=−∇V (q)+ k(q ,v)−

m∑
i=1

λi ∇ϕi (q), (1.2)

dq

dt
= v, (1.3)

0≤ λi ⊥ ϕi (q)≥ 0 for all i and t . (1.4)

The function k(q ,v) gives the pseudoforces (for example, Coriolis forces) that arise in the
system, and this has the form

ki (q ,v)=−1

2

∑
r ,s

[
∂mir

∂qs
+ ∂mis

∂qr
− ∂mrs

∂qi

]
vrvs .

If this model is analyzed, we again see that we must have impulses in the solution in
general. Also, we need to have a coefficient of restitution for each pair of bodies that
impact each other.

The theoretical questions that arise with these models having impulsive solutions
which satisfy complementarity conditions are formidable, and they will be discussed later
in Chapter 6.
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v
0
*

u
0

0

*

rigid obstacle

N(t)

x = Lx =

Figure 1.2: Routh’s rod problem.

1.1.3 Elastic bodies in impact

The problems of elastic bodies in impact without friction are partial differential equations
with complementarity conditions. These can either be “boundary thin” obstacle problems
where the complementarity conditions apply to the boundary conditions or “thick” prob-
lems where the complementarity conditions apply over part of the domain of the solution.

For fully three-dimensional elastic bodies, contact occurs over the boundary, so this
problem is a “boundary thin” problem. The simplest example of an elastic impact problem
was first investigated over 150 years ago by Routh [216, pp. 442–444]. He considered the
problem of a rod impacting a rigid obstacle (see Figure 1.2) and two elastic rods colliding.
The equations of motion consist of the wave equation in the domain, complementarity
conditions at the contacting boundary, and zero force on the free end. The equations of
motion inside each rod are given by the wave equation

∂2u

∂ t2 = c2 ∂
2u

∂x2 for 0 < x < L, t > 0. (1.5)

The boundary conditions are

−∂u

∂x
(0, t)= N(t),

∂u

∂x
(L, t)= 0,

0≤ N(t) ⊥ u(0, t)≥ 0.

Note that our contact conditions are again complementarity conditions. These contact con-
ditions are examples of Signorini conditions which were first proposed by Signorini [225]
to describe contact between a static elastic body and a rigid obstacle.

In addition there are the initial conditions u(x ,0) = u0(x) and ∂u/∂ t(x ,0) = v0(x)
with u0 and v0 given functions. In his treatise, Routh gave the exact solution for this
problem with u0(x)≡ u∗0 and v0(x)≡ −v∗0 : once contact is made, an elastic compression
wave travels from x = 0 to x = L; on reflection at x = L the wave becomes an expansion
wave which then travels back to x = 0. When the expansion wave reaches x = 0 the entire
rod has velocity +v∗0 , and the rod then separates from the obstacle. During the period in
which the rod is in contact with the obstacle, the normal contact force N(t) is constant.
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6 Chapter 1. Some Examples

Note that even though this is a second order problem in time, the contact force does
not have any impulses; instead the normal contact force has a jump discontinuity at the
time of impact and a jump discontinuity at the time of separation.

The rod problem of Routh is just the beginning of problems involving impact for
elastic and viscoelastic bodies. Usually these involve three-dimensional bodies with contact
possible on part or all of the boundary, with elastic or viscoelastic behavior of the material
of the body. Furthermore, Coulomb friction may occur at the contact region. All of these
variations make for a range of interesting and difficult problems.

1.2 Coulomb friction
A second example of how inequalities arise is in dry or Coulomb friction. The basic prin-
ciples of friction, that

• the force of friction is directly proportional to the applied load, and

• the force of friction is independent of the apparent area of contact,

were first noted by da Vinci [70] in the late 1400s, but da Vinci never published these results
(see [82, p. 99]). It was not until Amontons [9] in 1699 that these principles were published.
Coulomb’s experimental observations extended Amontons’ and da Vinci’s laws to dynamic
friction [71], although with a different and smaller coefficient of friction. Incidentally, the
two-coefficient model of friction (one for static friction where there is no slip, and another
for dynamic friction where there is slip) was considered by Euler [92, 93]. The currently
used “Coulomb friction laws” are actually a simplification of Coulomb’s experimentally
derived results which allowed for a small but nonzero adhesive term in the friction force,
and Coulomb also noted that the coefficient of friction tended to increase as two surfaces
stayed in contact without slip.

The engineering tribology literature has numerous modifications and additions to
Coulomb’s basic laws, but however they are formulated, the basic Coulomb laws of friction
are taken to be the starting point for any theory of dry or unlubricated friction.

Coulomb’s basic laws can be summarized as follows:

• the magnitude of the friction force is proportional to the load (the normal contact
force) when there is slip;

• the friction force is bounded by a quantity proportional to the load when there is no
slip; and

• the direction of the friction force during slip is opposite to the direction of slip.

The constant of proportionality of the friction force to the normal contact force is usually
denoted by µ, a convention that dates back to Kotel’nikov, a student of Euler in Saint
Petersburg [82, p. 213]. If we wish to distinguish between dynamic and static friction
coefficients, we write µs for the static coefficient and µd for the dynamic coefficient. More
modern theories assume µ = µ (‖v‖), where v is the slip velocity with a graph similar to
that shown in Figure 1.3.

For simplicity, we will assume that µ (‖v‖) is constant. With this simplification,
consider a simple system of a brick on a ramp, as shown in Figure 1.4.
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|| v ||

|| v ||µ( )

Figure 1.3: Possible dependence of the friction coefficient on the slip velocity.
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F
v

θ

Figure 1.4: Brick on a ramp with dry friction. This figure first appeared in [239].

The system of equations to solve is

m
d2x

dt2 =−F+mg sinθ ,

|F | ≤ µN = µmg cosθ

with F having opposite sign to the velocity v = dx/dt . A simple way of writing this uses
the sgn function:

m
dv

dt
=−µmg cosθ sgn(v)+mg sinθ ,

where sgn(v) =+1 if v > 0, sgn(0)= 0, and sgn(v) =−1 if v < 0. The trouble with this
differential equation is that it has a discontinuity at dx/dt = 0; furthermore, if |tanθ |<µ,
the discontinuity is reached in finite time. If we take sign(0)= 0, and sinθ �= 0, there is no
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8 Chapter 1. Some Examples

solution to this differential equation [235, 236]. However, there is a solution in the sense
of differential inclusions [19, 102, 104] if we replace sgn(v) with

Sgn(v)=
 {+1} , v > 0,

[−1,+1] , v = 0,
{−1} , v < 0.

The problem with taking sign(0)= 0 is that we should be allowing F to be any value in the
range [−µN , +µN] if v = 0, and not just F = 0.

An alternative is based on optimization principles, specifically the principle of maxi-
mum dissipation [91, 248]: the friction force F should be the force that maximizes the rate
of energy dissipation:

maxF − v F

subject to |F | ≤ µN .

Since the problem is a linear program, the friction force is the solution to a variational
inequality

v · (F̃− F
)≥ 0 for all F̃ ∈ [−µN , +µN] ,

F ∈ [−µN , +µN] .

Alternatively, using the Kuhn–Tucker conditions (see Appendix B), F is the solution of a
mixed complementarity problem

v = λ+−λ−,

0≤ λ+ ⊥ µN + F ≥ 0,

0≤ λ− ⊥ µN − F ≥ 0.

A difference between the Coulomb friction problem (with N given) and the friction-
less impact problem is that there are no impulsive forces unless N(t) has impulses. Also,
the friction force depends on v = dx/dt , so that there is only one differentiation needed
to go from the velocity to the acceleration and the friction forces. This means that these
problems have index one, while impact problems have index two.

One of the most important, and often surprising, aspects of friction is the possibility
of frictional instabilities. This can arise with velocity-dependent friction coefficients (as
illustrated in Figure 1.3). The reduction of the friction coefficient with increasing slip
velocity means that once slip starts, it tends to accelerate. This phenomenon means that
when car brakes begin to skid, it can be important to release the brake and then reapply it.
But if you have an ABS system in your car, you should not release and reapply the brake,
as the ABS system already does it for you.

If variations in the normal contact force have to be taken into account, there can be
feedback effects between the friction and normal contact forces. While the normal and
frictional contact forces can each be considered to be “monotone” in that the forces behave
monotonically in the normal displacement and the slip separately, this no longer holds when
they are linked. This effect can be so strong as to require the notion of solution to change to
allow impulsive forces even without collisions. This is an example of the Painlevé paradox
(see Section 6.1.6). If you push a stick of chalk the “wrong way” on a blackboard and see
the chalk jittering along, leaving a trail of dots, you have witnessed the paradox in action.
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Figure 1.5: Diode configuration.

1.3 Diodes and transistors
1.3.1 Diode circuits

Diodes are passive electrical devices that allow current to flow in one direction but not the
other. They are very useful for rectifying alternating current: changing electrical current
from alternating its direction to always going in the same direction. Modern diodes are
usually made of semiconductors, in which case they are created by joining together an n-
type and a p-type semiconductor [251]. The junction allows current to pass easily only in
one direction, as illustrated in Figure 1.5.

Transistors are active devices that are used to amplify signals and for other reasons.
There are several different types of transistors, but we will focus on bipolar junction tran-
sistors. These are formed by layering n-type and a p-type semiconductors to form either an
npn or a pnp sandwich. Each junction is a diode-type junction, but a small current flowing
to the middle of the sandwich can control much larger currents flowing between the ends
of the sandwich.

For a diode the standard Shockley model [251] gives a relationship between voltage
and current of

I = I0

(
eqV/kT −1

)
,

where q is the magnitude of the charge on an electron, k is Boltzmann’s constant, and T
is the absolute temperature. The parameter I0 is dependent on the specific details of the
diode but is usually very small. For ordinary temperatures kT/q ≈ 26mV, which is quite
small. A simple model that approximates this well for voltages where V/26mV is large is
the complementarity formulation:

0≥ V ⊥ I ≥ 0, (1.6)

which can be considered an ideal diode characteristic: if the diode is reverse biased (the
voltage is trying to push current the “wrong” direction through the diode), then no current
flows; if the diode is forward biased, then the effective resistance of the diode is zero. This
model can be improved by allowing a “threshold voltage” VT ≈ 0.7volts, where there is no
current until the diode is forward biased by at least VT :

0≥ V −VT ⊥ I ≥ 0. (1.7)

Related to diodes and transistors are thyristors, which are used in large power systems
such as for inverters (which turn direct current into alternating current). In such systems the
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I1

AC
voltage
source

I2
C

L

R)t(V

0

VV 21

Figure 1.6: Half-wave rectifier.

thyristors can behave either as diodes or as short circuits; the precise model is hysteretic, as
once it enters a “short circuit” it can resume its state as a diode only if the current passing
through it goes below a threshold value.

The simplest interesting class of circuits that can be analyzed using complementarity
approaches are circuits made from passive components (linear resistors, capacitors, and
inductors, and perhaps transformers) and diodes. Complementarity formulations of such
circuits have been analyzed [47, 122].

For example, Figure 1.6 shows a half-wave rectifier for converting alternating current
into direct current with smoothing by a capacitor and an inductor.

The full system of equations and complementarity conditions for this half-wave rec-
tifier is

C
dV2

dt
(t)= I1(t)− I2(t),

L
d I1

dt
(t)= V1(t)−V2(t),

V2(t)= R I2(t),

0≤ I1(t)⊥ V1(t)−V (t) ≥ 0.

Furthermore, we can incorporate threshold effects into this model by replacing “V1(t)−
V (t)” in the last line with “V1(t)−V (t)+VT .”

The equations for the half-wave rectifier are an example of a linear complementarity
system (LCS) [48, 124, 223]. These have the form (allowing for external inputs f (t))

dx

dt
(t)= A x(t)+ B u(t)+ E f (t), x(t0)= x0, (1.8)

y(t)= C x(t)+ D u(t)+ F f (t), (1.9)

0≤ y(t)⊥ u(t)≥ 0 for all t . (1.10)

Circuits with linear passive components and diodes have index one or index zero regardless
of the number of circuit elements or how they are connected. This makes their analysis
much easier.
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Figure 1.8: Simplified transistor model (npn transistor).

1.3.2 Bipolar junction transistors

As yet, complementarity models of bipolar junction transistors have not yet been properly
analyzed, but these have a form similar to the diode models. For example, an npn bipolar
junction transistor can be modeled using a diode model, as shown in Figure 1.7.

Typically αF , αR ≈ 1, so that provided the transistor is forward biased (VC ≥ VB ≥
VE ) we assume iDE = 0 and so iB + iC = −iE = αRiDC = αRiC . Thus iC = iB/(1−αR)
and −iE = αR iB/(1−αR). The coefficient αR/(1−αR) is denoted βR and is the nominal
current gain of the transistor. The value of βR is the main parameter of a simplified transis-
tor model shown in Figure 1.8. This simplified model ignores the problems of saturation
that can occur when the current source (βR iB) results in the voltage of the collector ex-
ceeding the supplied voltage at the collector (C). This can be especially important when a
transistor is used as a switch, as is the case in transistor power or digital circuits.

Models of bipolar junction transistors clearly can be based on diode models, and
so we can use complementarity-based models for transistors. However, this introduces a
new element: current sources. This means that we have some new feedback in transistor
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Figure 1.9: Segment of transmission line (Heaviside’s model).

circuits that cannot occur in diode circuits, and some additional analysis is needed to make
sure that this does not cause problems in existence or uniqueness theory, or in numerical
methods used to solve the problem. In particular, there are static circuits (that is, without
either capacitors or inductors) that do not have unique solutions, such as “flip-flops”—
bistable circuits made up of two transistors which are normally in a state with one transistor
conducting and the other not. Complementarity problems have already been found to be
very useful in enumerating the possible steady states of circuits with transistors [265]. But
this lack of uniqueness of solutions for the static problem has important consequences for
both the theory and computation of solutions to problems with active elements.

1.3.3 Transmission lines with diodes

Partial differential equations can arise in diode models if they are connected to transmission
lines, for example. The equations describing the behavior of the transmission line can be
taken from Heaviside’s model:

∂V

∂x
+ L

∂ I

∂ t
=−R I , (1.11)

∂ I

∂x
+C

∂V

∂ t
=−G V , (1.12)

where R, C , L, and G are the resistance, capacitance, inductance, and leakage conduc-
tance1 per unit length of the transmission line (see Figure 1.9).

Consider the circuit shown in Figure 1.10. Taking Laplace transforms in time of
(1.11)–(1.12)gives an ordinary differential equation in x to solve for the Laplace transforms
of the voltage and current, LV (s,0) and LI (s,0),

LV (s,0)= Cs+G

Ls+ R
tanh

(
�
√

(Cs+G)(Ls+ R)
)
LI (s,0)+ q̃(s), (1.13)

1Conductance is the inverse of resistance.
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Figure 1.10: Circuit with diode and transmission line.

where q̃(s) is obtained from the initial conditions and the voltage source V (t). The solution
of the differential equations can then be expressed in terms of a convolution giving V (t ,0)
in terms of I (τ ,0) for 0 < τ < t:

V (t ,0)=
∫ t

0
k(t− τ ) I (τ ,0)dτ +q(t) = (k ∗ I (·,0))+q(t), (1.14)

k(t)= L

C
δ(t)+ k1(t), k1 bounded. (1.15)

The model for the circuit in Figure 1.10 is then

VD(t)= V (t ,0)+ RD I (t ,0)

= RD I (t ,0)+ (k ∗ I (·,0))+q(t),

ID(t)= I (t ,0),

0≥ ID(t)⊥ VD(t)≤ 0.

This is an index-zero convolution complementarity problem (CCP), which has solutions
as shown in Section 4.6 on CCPs. These solutions can be found by numerical methods
directly based on the CCP or by using an implicit time-stepping method.

1.4 Queues and resource limits
1.4.1 Queues

A simple continuous deterministic model of a queue is to have a queue length �(t), with
service rate s(t) ≥ 0 (the rate at which customers are served and then leave the queue) and
arrival rate a(t)≥ 0 (the rate at which new customers arrive at the queue). If �(t) > 0, then
we can model the dynamics of the queue by

d�

dt
(t)= a(t)− s(t).
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14 Chapter 1. Some Examples

However, if a(t) drops to zero and s(t) remains high, then eventually we will reach �(t)= 0.
The length of the queue clearly cannot go negative, so it stops at �(t) = 0. Once this
happens, if the (maximum) service rate exceeds the arrival rate, no queue can develop:
each customer is served as soon as they arrive. To model this, we set r (t) to be the actual
rate at which customers are served at time t . Clearly the actual rate of service cannot exceed
the maximum rate of service, so r (t) ≤ s(t). If �(t) > 0, then we have r (t) = s(t), as the
servers are (or should be!) trying to help the waiting customers as fast as possible. This
leads to the following complementarity formulation:

d�

dt
(t)= a(t)− r (t),

0≤ �(t)⊥ s(t)− r (t)≥ 0.

Naturally, we expect that if �(t) = 0 and a(t) ≤ s(t), then r (t) = a(t); that is, the actual
service rate matches the arrival rate, but this is not immediately apparent from this model.
In fact, it is true for this model, as if r (t) < a(t) for any length of time, then we will
have �(τ ) > 0 for any τ > t shortly afterward. This in turn means that r (τ ) = s(τ ) for
τ > t shortly afterward, which would drive �(τ ) to zero in an arbitrarily short time. Thus
r (t)= a(t) if �(t)= 0 and a(t)≤ s(t).

Models of this kind can also model the flow of inventory through a factory: the
queues are items waiting to be processed by a particular machine. Factories viewed in this
way can be seen as a network of queues: when items are processed and leave one queue,
they join another for further processing. After final processing, they leave the factory, to be
used or sit on a shelf (as part of another queue).

Stochastic models of this kind can also be developed. In fact, these models are known
as Skorokhod problems. While the theory of stochastic differential equations is beyond the
scope of this monograph, they can be applied to this problem. We can, at least formally,
write these problems in complementarity form: for a single queue with random arrive
rate given by a random process d At , we have the stochastic differential complementarity
problem

d Lt = d At − R(t)dt ,

0≤ Lt ⊥ S(t)− R(t)≥ 0.

Although stochastic problems are beyond the scope of this book, there are plenty of inter-
esting issues regarding the deterministic versions, as can be seen in Chapter 5.

1.4.2 Traffic flow

Traffic flow is an example of an economic network [83, 187]. It is an economic network
because each person in the network is trying to optimize something, typically the time to
get to work or the time to get home. The combined action of each individual in the network
drives the behavior of the network as a whole, and it can lead to such things as congestion
and traffic jams, where individually optimal choices can lead to behavior that is far from
optimal for the system as a whole.

Traffic modeling involves a network or roads or transportation links connected to a
graph or network, which consists of nodes together with edges connecting these nodes.
Each edge is a road or transportation link, while each node is an intersection of roads, or
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a point where different transportation links meet. Graphs or networks are a basis for many
models of economic behavior [255, 186].

Most analyses of traffic flow are essentially static. The most common models are
based on the notion of a Wardrop equilibrium [267]: each person in the network takes the
quickest path home given the prevailing conditions, while the time needed to pass through
an edge is a function of the number of cars attempting to do so. This has the features ex-
pected of an equilibrium formulation: it is static, where participants have complete knowl-
edge of the properties of the network. It is reasonable to assume drivers have complete
knowledge after having an infinite amount of time to explore alternatives or hearing of
other routes. Such systems can be made dynamic to reflect the fact that traffic conditions
do change with time (yes, traffic jams do eventually end, at least in most cities). The
knowledge that a person has about the state of the network can (and does) change with
time. Various assumptions can be made about the knowledge that an individual has about
the state of the network: Are they all listening in to the traffic reports on the radio? Or is
it only when they get to an intersection that they can see how congested the exiting roads
are? Knowledge of the traffic flow is nonanticipative: individuals cannot infallibly predict
future network conditions.

Whatever models are used for determining network flows, there are a number of
important issues that must be addressed by any dynamic traffic model:

• flow quantities must be preserved at each node: nodes (such as intersections) cannot
“store” a significant amount of traffic;

• flow quantities must be conserved along each edge: although edges can “store” a
significant amount of traffic, the total number of vehicles in an edge must balance
the number of vehicles entering and leaving the edge;

• traffic flows in an edge cannot become negative, nor can the number of individuals
on an edge;

• each individual in the network has the opportunity to make decisions at nodes and
will presumably use some optimality principle to decide what edge to leave on.

The optimality conditions for each individual in the network can be expressed in comple-
mentarity or variational inequality form. The resulting dynamic system is a differential
equation with complementarity or variational inequality conditions imposed and is there-
fore a differential complementarity problem or differential variational inequality. For more
on this topic, see Section 5.5.

1.4.3 Biological resource limits

There are a number of ways in which hard resource constraints can lead to differential
equations with inequalities. Consider, for example, a tissue of cells in, say, a human body
as illustrated in Figure 1.11. The cells in the tissue will take up oxygen for the cell’s
metabolic processes and release waste products such as CO2 to be taken away by nearby
blood vessels or capillaries.

One model is that the rate of oxygen uptake is essentially constant until the concen-
tration of oxygen in the tissue reaches very low levels. In such a case, the cells could be
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Figure 1.11: Oxygen diffusion in biological tissues.

assumed to “turn off” most of their metabolic processes. This can be modeled as a dif-
fusion process with absorption rate which becomes zero when the concentration becomes
zero. These are typically partial differential equations of a diffusion kind to reflect the de-
pendence of the oxygen concentration on position as well as time. Let u(t ,x) be the oxygen
concentration at time t and position x. Then the evolution of the oxygen concentration can
be modeled as

∂u

∂ t
=∇ · (D∇u)− r (t ,x),

r (t ,x)= arg max
r∈[0,rmax ]

r u(t ,x).

Note that D is the coefficient of diffusion of oxygen in the tissue, and rmax is the maximum
rate of uptake of oxygen by the tissue. The optimality principle used here, that cells take
up oxygen as rapidly as possible up to the limit rmax , can be turned into a variational
inequality:

r (t ,x) ∈ [0,rmax] & (r (t ,x)− r̃ ) u(t ,x)≥ 0 for all r̃ ∈ [0, rmax ].

Such problems can also be treated as parabolic variational inequalities (see Section 4.7).
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Chapter 2

Static Problems

. . . a utopia is always static; it is always descriptive and has no, or almost
no, plot dynamics.

H.G. Wells

In this chapter we set out the main ideas and tools for static complementarity and variational
inequality problems, as well as for set-valued functions. The first section is on basic tools
and deals with aspects of convex analysis and set-valued functions. Readers may wish to
review the material in the appendices for background information on abstract spaces, and
convex sets and functions.

2.1 Basic tools
The spaces in which we look for solutions are Banach or Hilbert spaces, with the particular
example of finite-dimensional spaces Rn of n-dimensional vectors. All Banach and Hilbert
spaces considered here are defined over the real numbers R. Properties of these spaces can
be found in Appendix A. The n-dimensional Euclidean space Rn of n-dimensional vectors
has the usual inner product (x , y)Rn = xT y and norm ‖x‖Rn =√x T x . We use the notation
BX = { x ∈ X | ‖x‖X < 1 } for the open unit ball in a Banach space X .

Vectors in Rn are usually considered to be column vectors, but the dual space (Rn)′
can be considered as the space of corresponding row vectors and identified with Rn if
desired (so that F : X → X ′ includes the case F : Rn →Rn).

The notation (u, v)H is used for inner products if u and v are elements of the same
Hilbert space H . We drop the subscript and write (u, v) if H is understood. For example,
if u, v ∈Rn , (u, v)= uT v =∑n

i=1 uivi .
The dual space X ′ of a Banach space X is the vector space of continuous linear func-

tions X → R, which are called functionals. Similar notation is used for duality pairing
between a Banach space X and its dual space X ′: 〈u, v〉 is the result of applying the func-
tional u ∈ X ′ to v ∈ X : 〈u, v〉 = u(v) explicitly uses the fact that u is a function X →R. If
the space X is ambiguous, or the interpretation is unclear, we denote the duality pairing by
〈u, v〉X ′×X to indicate that u ∈ X ′ and v ∈ X .

17
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18 Chapter 2. Static Problems

Many readers may be used to identifying X and its dual space X ′ if X is a Hilbert
space. They are, after all, isometrically isomorphic under the map JX : X → X ′ given by
JX (u) = (u, ·)X . If we consider Rn to be the space of n-dimensional column vectors and
(Rn)′ to be the space of n-dimensional row vectors, then JX (u)= uT . However, in many
applications this is not appropriate to identify the two spaces. Consider, for example, the
real weighted Hilbert space

�2
w =

{
x= (x1, x2, x3, . . .) |

∞∑
i=1

wi x2
i <+∞

}

for a positive weight vector w= (w1, w2, w3, . . .); this has the inner product

(x, y)w =
∞∑

i=1

wi xi yi .

The dual space to �2
w is most easily identified not with �2

w, but with �2
v, where vi = 1/wi . If

wi →+∞ as i →∞, then �2
w is a much smaller space than �2

v. The map JX for X = �2
w is

far from the identity map:

JX (x)= u, where ui =wi xi .

This choice of representation
(
�2

w
)′ = �2

v is chosen to make the duality pairing

(x, u)=
∞∑

i=1

xi ui

natural and independent of the weight vector, the relationship between these being that
〈x, JX (y)〉 = (x, y)X for all x, y ∈ X .

Most often we will deal with Hilbert spaces, but there are occasions to work with
Banach spaces that are not Hilbert spaces. Most of these are reflexive spaces where we can
naturally identify a Banach space X with its second dual X ′′. This identification uses the
natural map � : X → X ′′ given by

〈� (x) , ξ〉X ′′×X ′ = 〈ξ , x〉X ′×X . (2.1)

Note that � : X → X ′′ is one-to-one and continuous for any Banach space X ; it is surjective
if and only if X is a reflexive space. Reflexive spaces include all Hilbert spaces, L p(�) for
1 < p <∞, and Rn , but not L1(�), L∞(�), or the space of measures of bounded variation
over a set �: M(�).

2.1.1 Convex analysis

Convex sets are sets C , where for any x , y ∈ C and 0≤ θ ≤ 1, we have θx+ (1− θ )y ∈ C;
convex functions are functions f : X →R∪{∞}, where

f (θx+ (1− θ )y)≤ θ f (x)+ (1− θ ) f (y) for all x , y and 0≤ θ ≤ 1,
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2.1. Basic tools 19

but we assume that f is proper; that is, f (x) <∞ for some x . Usually we assume that f
is also lower semicontinuous, so that if xk → x , we have liminfk→∞ f (xk) ≥ f (x). Every
convex function has an associated epigraph:

epi f = { (x ,s) | s ≥ f (x) } . (2.2)

If f is convex, then epi f is a convex set; if f is lower semicontinuous, then epi f is a
closed set. The main results of convex analysis that we need are given in Appendix B. We
summarize some of the results here. In a Hilbert space X containing a closed convex set
K , we have projection operators �K : X → X , where �K (x) is the point in K closest to x .
If K is a subspace of X , then �K (x) is the orthogonal projection of x onto K . In Hilbert
spaces, �K is characterized by

(x−�K (x), z−�K (x))X ≤ 0 for all z ∈ K .

The projection operator is Lipschitz with Lipschitz constant one: ‖�K (x)−�K (y)‖ ≤
‖x− y‖.

A cone C is a set such that whenever x ∈ C and α ≥ 0, we have αx ∈ C . Convex
cones are important for understanding both local and global structure of convex sets and
even functions. Given a closed convex cone K , the dual cone K ∗ and the polar cone K ◦
are defined by

K ∗ = {
y ∈ X ′ | 〈y, x〉 ≥ 0 for all x ∈ K

}⊆ X ′, (2.3)

K ◦ = −K ∗. (2.4)

If X is a reflexive space, then K = K ∗∗ = K ◦◦, identifying X and X ′′ via the natural map. If
X is a Hilbert space and we identify X with its dual space X ′, we say a cone K is self-dual
if K = K ∗. For example, K = Rn+ (the nonnegative orthant of n-dimensional vectors with
nonnegative entries) is a self-dual cone.

A convex cone K is pointed if K ∩ (−K ) = {0}. In finite dimensions, K is pointed
if and only if K ∗ (or K ◦) contains an open set. In infinite dimensions this may not hold;
instead we say K is strongly pointed if K ∗ (or K ◦) contains an open set.

Another cone associated with a closed convex K set is the recession or asymptotic
cone K∞ given by

K∞ =
{

lim
k→∞ tk xk | tk ↓ 0, xk ∈ K for all k

}
. (2.5)

Recession cones give information about the K “at infinity.”
The tangent cone of a convex set K at a point x ∈ K is

TK (x)=
{

lim
k→∞ (xk− x)/tk | tk ↓ 0, xk ∈ K for all k

}
, (2.6)

which is also a closed convex cone as illustrated in Figure 2.1. Closely associated with this
cone is the normal cone for a convex set at a point x ∈ K :

NK (x)= TK (x)◦. (2.7)

Polyhedral sets are closed convex sets that are the intersection of a finite number of
half-spaces

⋂M
k=1 { x | 〈dk , x〉 ≥ αk } ⊆ Rn . Polyhedral cones are polyhedral sets that are

also cones. Polyhedral sets have the important property that every real linear function over
such a set either is unbounded below or has a minimum. Related to this, the sum of two
polyhedral sets P+ Q = { x+ y | x ∈ P , y ∈ Q } is also a (closed) polyhedral set.
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Figure 2.1: Tangent and normal cones.

2.1.2 Set-valued functions

Set-valued functions are functions � : X → P(Y ), where P(A) is the collection of subsets
of A. These generalize ordinary functions since any ordinary function φ : X → Y can be
represented by �(x)= {φ(x)} for all X . The domain of a set-valued function is

dom�= {x |�(x) �= ∅} . (2.8)

Often the values �(x) have some special characteristics (such as being closed and convex),
and often the graph of �, given by

graph�= { (x , y) | y ∈�(x) } , (2.9)

should be a closed subset of X ×Y . A closely related concept to � having a closed graph
is that of upper semicontinuity (see Section 2.1.3). Questions of integration of set-valued
functions involve issues of measurability, which are discussed below. Here we will concen-
trate on some of the issues for set-valued functions � : �→ P (X ), where X is a Banach
space and � a metric space. An essential reference for set-valued analysis is Aubin and
Frankowska [21].

Later we will consider maximal monotone operators which are a special class of
set-valued functions that generalize monotonicity for ordinary functions:

0≤ 〈φ(z2)−φ(z1), z2− z1〉 for all z1, z2 ∈ X .

Maximal monotone operators are closely connected to subdifferentials of convex functions:
for a lower semicontinuous proper convex function φ : X → R∪{∞}, the subdifferential
∂φ generalizes the gradient function, and it is a maximal monotone operator. See Sec-
tion 2.3.6 for more details.

Unlike single-valued functions ϕ : �→ X , there are several notions of continuity
for set-valued functions � : �→ P (X ). The simplest is to use a metric, and the most
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commonly used metric for sets is the Hausdorff metric: suppose A and B are bounded sets;
then we define

dH (A, B)=max(sup
a∈A

d(a, B), sup
b∈B

d(b, A)), (2.10)

d(x , C)= inf
c∈C

d(x ,c)= inf
c∈C
‖x− c‖ . (2.11)

Note that this can really be a metric only for closed sets A and B , as the distance between
an open interval and its closure is dH ( (a,b), [a,b] ) = 0. This definition ensures that dH
satisfies the requirements of a metric for closed and bounded sets:

1. dH (A, A)= 0 and dH (A, B)= 0 implies A = B;

2. dH (A, B)= dH (B , A);

3. dH (A, C)≤ dH (A, B)+dH(B , C).

We say that � : �→ P (X ) with nonempty closed bounded values is continuous with re-
spect to the Hausdorff metric if for any x ∈� and ε > 0 there is a δ > 0 such that

d(x , y) < δ implies dH (�(x), �(y)) < ε.

In addition, there is upper and lower semicontinuity.
Upper semicontinuity of � : �→ P(X ) means that if V is an open set containing

�(x), then there is a neighborhood U of x where �(y) ⊂ V for all y ∈ U . This can be
defined in terms of the “one-sided metric”

δH (A, B)= sup
a∈A

d(a, B). (2.12)

If �(x) is compact, upper semicontinuity at x then means that for any ε > 0 there is a δ > 0
such that for all y,

d(x , y) < δ implies δH (�(y), �(x)) < ε.

Lower semicontinuity of � : �→ P(X ) means that for any z ∈�(x), if V is an open
set containing z, then there is a neighborhood U of x where �(y)∩V �= ∅ for all y ∈ U . In
other words, if xk → x in � and z ∈ �(x), then there is a sequence zk ∈ �(xk) such that
zk → z.

Similarly, lower semicontinuity then means that for any x ∈ � and ε > 0 we have
δ > 0 such that

d(x , y) < δ implies δH (�(x), �(y)) < ε.

A related concept to upper semicontinuity is that of having a closed graph. A set-
valued function � : �→ P(X ) has a closed graph if the graph of �

graph�= { (x , z) ∈�× X | z ∈�(x) } (2.13)

is closed in �× X .
A set-valued function � : �→ P(X ), where X is a reflexive Banach space, is hemi-

continuous if graph� is closed in the strong×weak topology of �× X . That is, if
yk ∈�(xk), xk → x strongly, and yk ⇀ y weakly, then y ∈�(x). Hemicontinuity is equiv-
alent to having a closed graph if X is finite dimensional, as the weak topology of Rn is
equivalent to its strong topology.
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2.1.3 Upper semicontinuity and closed graphs

An alternative condition that a set-valued function � : X → P(Y ) is upper semicontinuous
at x ∈ X is that for any ε > 0 there is a δ > 0 where

‖x− z‖< δ implies �(z)⊆�(x)+ ε BY , (2.14)

BY being the open unit ball { y ∈ Y | ‖y‖< 1 }. This condition can be expressed more
succinctly as

�(x+ δ BX )⊆�(x)+ ε BY ,

where for a set A,

�(A)=
⋃
a∈A

�(a).

Upper semicontinuity can be represented in terms of a type of inverse to a set-valued
function. For set-valued functions there are two kinds of inverse functions:

�−(U )= { x |�(x)∩U �= ∅} , (2.15)

�+(U )= { x |�(x)⊆U } . (2.16)

Note that �−(U ) is called the weak inverse image of U while �+(U ) is called the strong
inverse image of U . Then � is upper semicontinuous if and only if �+(U ) is open for all
open sets U ⊆ Y . Since �−(Y\U )= X\�+(U ), by taking complements of this definition
of upper semicontinuity, we see that � is upper semicontinuous if and only if �−(C)
is closed for all closed sets C ⊆ Y . These inverse functions have some, but not all, the
properties of inverses of the standard (set-valued) inverse to single-valued functions:

f −1(U )= { x | f (x) ∈U } . (2.17)

If � is the set-valued version of a single-valued function f (where �(x)= { f (x)} for all x),
then f −1(U )=�−(U )=�+(U ) for all U ⊆ Y . The following properties hold for the weak
inverse images:

�−(U ∩V )=�−(U )∩�−(V ),

�−(U ∪V )⊆�−(U )∪�−(V ).

Corresponding properties hold for the strong inverse image �+ by taking complements.
If f : X → Y is a single-valued function, then �(x) := { f (x)} is upper semicon-

tinuous if and only if f is continuous. However, other set-valued functions are upper
semicontinuous, such as

Sgn(x)=
 {+1} , x > 0,

[−1,+1] , x = 0,
{−1} , x < 0.

(2.18)

This is the usual set-valued version of the sgn function sgn(x)=+1 for x > 0,−1 for x < 0,
and zero for x = 0. To ensure that Sgn is upper semicontinuous it would be sufficient to
have the value {−1,+1} at x = 0. However, it is desirable to have set-valued functions
which have closed convex values, as will be seen in Section 4.1.
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The property of � : X → Y being upper semicontinuous is closely related to the
property that the graph of � is closed.

Lemma 2.1. If a set-valued function � : X → Y is upper semicontinuous with closed
values, then it has a closed graph. If � is upper semicontinuous with closed convex values,
then it is hemicontinuous provided X is a reflexive Banach space. Conversely, if � : X → Y
has a closed graph with �(X ) compact, then � is upper semicontinuous.

Proof. Suppose � : X → Y is upper semicontinuous. Suppose we have a sequence
(xm , ym) ∈ graph� where (xm , ym) → (x , y). By upper semicontinuity, for any ε > 0
there is a δ > 0 such that �(x + δBX ) ⊆ �(x)+ εBY . Thus for m sufficiently large,
ym ∈�(xm)⊆�(x+ δBX )⊆�(x)+ εBY . Thus the limit y ∈�(x)+ εBY ⊆�(x)+ εBY .
Since this is true for all ε > 0 and �(x) is closed, y ∈ �(x) and so (x , y) ∈ graph�. That
is, � has a closed graph.

Now suppose that � is upper semicontinuous with closed convex values, and that
zk ∈�(xk), and xk → x in � and zk ⇀ z in X . For every ε > 0 there is a δ < 0 such that
d (xk , x) < δ implies that � (xk)⊆� (x)+ε BX . Since BX is weakly compact in a reflexive
Banach space and � (x) is weakly closed (as it is a strongly closed convex set), � (x)+ε BX
is weakly closed. Thus z ∈ � (x)+ ε BX , or equivalently, d (z, � (x)) ≤ ε. Since this is
true for all ε > 0, and � (x) a closed set, z ∈ � (x). So if � is upper semicontinuous
with closed convex values, graph� is closed in the strong×weak topology; that is, � is
hemicontinuous.

Now suppose that � : X → Y has a closed graph and �(X ) is compact. Let x ∈ X .
First note that �(x) is closed since {x}×�(x) = (graph�)∩ ({x}×Y ), the intersection
of closed sets, is closed; furthermore, �(x) is compact since it is a closed subset of the
compact set �(X ). Let ε > 0 be given. If there is no δ > 0 such that �(x+δBX )⊆�(x)+
εBY , there must be a sequence (xk , yk) ∈ graph� such that xk → x but yk �∈�(x)+εBY for
all k. Since �(X ) is a compact set, there is a convergent subsequence yk → y as k →∞
in the subsequence. Since � has a closed graph, (x , y) ∈ graph�, and so y ∈ �(x) and
yk ∈ �(x)+ εBY for sufficiently large k, contradicting our assumption. Thus � is upper
semicontinuous.

Without having compactness, the converse, that closed graph functions are upper
semicontinuous, is, however, false. A simple example with closed graph but not upper
semicontinuous is the “lighthouse function” as illustrated by Figure 2.2:

�(θ )= R+(cosθ , sinθ ). (2.19)

This is a ray going from the origin at angle θ to the horizontal. The graph can be seen to
be closed. The graph is {(θ , x , y) | x = α cosθ , y = α sinθ , α ≥ 0}. Suppose that graph� "
(θk , xk , yk) → (

θ̂ , x̂ , ŷ
)

as k →∞. Since α = √
x2+ y2 on the graph, then we get αk =√

x2
k + y2

k → α̂ :=√
x̂2+ ŷ2. So

x̂ = lim
k→∞ xk = lim

k→∞αk cosθk = α̂ cos θ̂ ,

ŷ = lim
k→∞ yk = lim

k→∞αk sinθk = α̂ sin θ̂ .

Thus
(
θ̂ , x̂ , ŷ

) ∈ graph�, and so graph� is closed.
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Φ( θ )

Φ( θ )

x

y

Figure 2.2: Lighthouse function: a set-valued function that has a closed graph but is not
upper semicontinuous.

On the other hand, �(θ )+ B
R2 is an open set containing �(θ ); but for any θ ′ �≡

θ (mod 2π), �(θ ′) �⊆�(θ )+ B
R2. Thus � is not upper semicontinuous.

Even though having a closed graph is not enough to imply that a set-valued function
is upper semicontinuous, there are other approximation properties that can be shown, at
least under some mild assumptions. Our particular concern is with set-valued functions
� : �→ P(X ) which have closed, convex values.

Pointed cones and strongly pointed cones are important for approximating cones.
For the case of closed convex cone-valued functions � : �→ P(X ) with a closed graph, if
K0 =�(x0) is a strongly pointed cone, then there is a family of cones Kη for η > 0 (also
strongly pointed) with K0 =⋂

η>0 Kη. Furthermore, for every η > 0 there is a δ > 0 where
d(x , x0) < δ implies �(x)⊆ Kη. These cones Kη can be constructed as follows. Let SX be
the unit sphere in X :

SX = { x ∈ X | ‖x‖ = 1 } . (2.20)

Lemma 2.2. If K0 is a strongly pointed cone in a reflexive Banach space X, then we have
that d (0, co(K0∩ SX )) > 0, and for any 0 < η < d (0, co(K0∩ SX )),

Kη := cone
([

co(K0∩ SX )+ηBX
]∩ SX

)
is a nested family of closed pointed cones, and

K0 =
⋂
η>0

Kη.
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Proof. If K0 is strongly pointed, then co(K0∩ SX ) does not contain zero. To see this,
suppose we have a sequence x� ∈ co(K0∩ SX ) where x� → 0 as �→∞. Now x� =∑n�

i=1 θ�,i z�,i , where θ�,i ≥ 0,
∑n�

i=1 θ�,i = 1, and z�,i ∈ K0 ∩ SX for all � and i . Now K0
is a strongly pointed cone, so there is a ν ∈ K ∗ where 〈ν, x〉 ≥ ‖x‖X for all x ∈ K by
Lemma B.3. Now ‖x�‖ ≤ 1 for all �, so by Alaoglu’s theorem there is a weak* convergent
subsequence, which is weakly convergent if X is reflexive. Let x̂ be the weak limit of this
subsequence. Then

〈ν, x̂〉 = lim
�→∞〈ν, x�〉 (in the subsequence)

= lim
�→∞

n�∑
i=1

θ�,i
〈
ν, z�,i

〉
≥ lim

�→∞

n�∑
i=1

θ�,i
∥∥z�,i

∥∥ = 1.

Thus x̂ �= 0. Thus x� ⇀ x̂ �= 0 in the subsequence, which contradicts the strong convergence
of x�→ 0 as �→∞.

This establishes the fact that K0 strongly pointed implies d (0, co(K0∩ SX )) > 0. For
any 0 < η < ηmax := d (0, co(K0∩ SX )), we set

Kη = cone
([

co(K0∩ SX )+ηBX
])

.

Clearly Kη is a convex cone, as it is a cone generated by a convex set. To show that
Kη is closed, suppose that x� ∈ Kη and x� → x in X . If x = 0, then clearly x ∈ Kη.
Otherwise, for sufficiently large �, x� �= 0 and so x�/‖x�‖ ∈ co(K0∩ SX )+ ηBX . The set
co(K0∩ SX )+ηBX is a weakly closed set, as it is a sum of two weakly compact sets (being
bounded closed convex sets in a reflexive Banach space). Since x� → x �= 0, x�/‖x�‖ →
x/‖x‖ strongly, we have x/‖x‖ ∈ [

co(K0∩ SX )+ηBX
]
. Thus x ∈ Kη, as desired.

We now show that K0 =⋂
η>0 Kη. Now K0 ∩ SX ⊂

[
co(K0∩ SX )+ηBX

]
and K0

is a cone, so K0 = cone(K0∩ SX ) ⊂ Kη for all η > 0. We then have to show the reverse
inclusion:

⋂
η>0 Kη is a nested intersection of closed convex sets, and so it is a closed

convex set. It is also a cone, as it is an intersection of cones. Suppose x∗ ∈⋂
η>0 Kη. Since⋂

η>0 Kη and K0 are cones, we can assume without loss of generality that ‖x∗‖ = 1 by
scaling. Then

x∗ ∈
⋂
η>0

(
Kη ∩ SX

)
=

⋂
η>0

[
co(K0∩ SX )+ηBX

]∩ SX

⊂
⋂
η>0

[
co(K0∩ SX )+ηBX

]
.

Thus d (x∗, co (K0∩ SX ))≤ η for all η> 0. Now K0 is closed and convex, so co(K0∩ SX )⊂
K0, and thus d (x∗, K0) ≤ η for all η > 0. This implies that d (x∗, K0) = 0, and x∗ ∈ K0.
That is, K0 =⋂

η>0 Kη, as desired.
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Without pointedness, this result fails in finite dimensions. Consider, for example, the
half-space K0 := {

x = [x , y]T ∈ R2 | x ≥ 0
}
. The only convex cone that strictly contains

a half-space is the whole space, so Kη = R2 for any η > 0.
Without strong pointedness, this result fails in infinite dimensions. For example,

we could take K0 := {
x ∈ �2 | x1 ≥ x j/j for j = 2, 3, . . .

}
. Now 0 ∈ co

(
K0∩ S�2

)
since

x j =
(
e1/j+ e j

)
/
√

1+1/j2∈ K0∩S�2 , which converges weakly to zero in �2. By Mazur’s
lemma (Lemma A.3), there is a strongly convergent subsequence in co

(
K0∩ S�2

)
which

converges to zero, and so 0 ∈ co
(
K0∩ S�2

)
. The cone generated by any open set containing

co
(
K0∩ S�2

)
would then contain the entire space.

It would be tempting to believe that if � : �→ P(X ) has closed convex values and
has a closed graph, then the recession cone function x #→� (x)∞ also has a closed graph.
However, this is not the case, even in finite dimensions with � (x)∞ (strongly) pointed.
Consider, for example, the set-valued function � : R→ P(R) given by � (x)= [1/x ,∞)
for x > 0 and � (x)= {0} for x ≤ 0. It can be easily checked that the graph of � is closed,
with closed convex values. However, � (x)∞ = [0,∞)= R+ for x > 0 and � (x)∞ = {0}
for x ≤ 0, so x #→� (x)∞ does not have a closed graph.

Part of the problem with this example is that the minimum norm point of � (x),
��(x) (0), is unbounded as x ↓ 0. If min{‖y‖ | y ∈� (x) } ≤ R for some real R, then we at
least have a closed graph for the recession cone if � has a closed graph and convex values.

Lemma 2.3. If � : �→ P(X ), X a reflexive Banach space, and � is hemicontinuous with
closed convex values and miny∈�(x)‖y‖ ≤ R for all x ∈ �, then the map x #→ � (x)∞ is
also hemicontinuous.

Proof. Suppose that xk → x in � and wk ∈ � (xk)∞, where wk ⇀ w. Suppose also that
yk ∈� (xk) with

∥∥yk

∥∥≤ R. Since �(xk)+� (xk)∞ ⊆�(xk), for any τ ≥ 0 we have yk +
τ wk ∈� (xk) for all k. Since the yk are bounded and X is reflexive, by Alaoglu’s theorem,
there is a weakly convergent subsequence (which we also denote by yk) such that yk ⇀ y.
Thus yk + τ wk ⇀ y + τ w. By hemicontinuity, y+ τ w ∈ � (x). Since this is true for
all τ ≥ 0, it follows that w ∈� (x)∞. Hence x #→� (x)∞ is hemicontinuous.

Hemicontinuity by itself is not a strong condition. For example, consider the convex
cone-valued map � : R→ P(�2) given by

� (t)=


R+e j , t j+1 < t < t j ,

R+e j +R+e j+1, t = t j+1,
{0} , t ≤ 0,

where t j ↓ 0 as j →∞ and t1 = +∞. This is a hemicontinuous set-valued map at zero
since for any sequence yk ∈�(sk) with sk → 0 and yk ⇀ y we must have y = 0. And yet,
� (0)= {0} gives essentially no information about �(t) for small nonzero t . In particular,
outer approximations to �(t) for small t must use more information than can be found
in �(0). Strong pointedness of �(0) in particular is insufficient to construct suitable outer
approximations for �(t). However, if we know that �(t) has a suitable outer approximation
(no matter how “big”), we can use this to give arbitrarily close approximations (in a suitable
sense).
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Define Hξ ,α for ξ ∈ X ′ and α ∈ R to be the half-space

Hξ ,α = { y ∈ X | 〈ξ , y〉+α ≥ 0 } .
Our basic result for outer approximations of set-valued functions is as follows, using the
support function σK (η)= supx∈K 〈η, x〉.

Theorem 2.4. Suppose that � : �→ P(X ) is hemicontinuous with closed convex values
in X, a reflexive Banach space. Suppose also that for any x0 ∈� and a neighborhood U of
x0,

�(x)⊆ L+ R BX

with L a strongly pointed closed convex cone and R ≥ 0, and that miny∈�(x)‖y‖ ≤ R for
all x ∈ U . Let K =�(x0). Then for any−ξ ∈ intdomσK and α > σK (−ξ ), there is a δ > 0
such that

d(x , x0) < δ⇒�(x)⊆ Hξ ,α.

Proof. Suppose otherwise. Then there is a sequence xk → x0 as k →∞ in � and yk ∈
�(xk) with yk �∈ Hξ ,α for some −ξ ∈ intdomσK and α > σK (−ξ ). Since −ξ ∈ intdomσK
and σk is a convex lower semicontinuous function, there is a closed neighborhood of −ξ +
θBX on which σK is continuous. By choosing θ > 0 sufficiently small, we can ensure that
for −ξ ′ ∈ −ξ + θBX we have

∣∣σK (−ξ ′)−σK (−ξ )
∣∣≤ 1

2
(α−σK (−ξ )) ,

and so σK (−ξ ′)≤ 1
2 (α+σK (−ξ )) < α for all such ξ ′. Let α′ := 1

2 (α+σK (−ξ )) < α.
Since yk �∈ Hξ ,αwe have 〈ξ , yk〉+α < 0 for all k.
Suppose first that yk is a bounded sequence. Then by Alaoglu’s theorem and reflex-

ivity of X , there is a weakly convergent subsequence (also denoted yk) such that yk ⇀ y.
As � is hemicontinuous, y ∈�(x0)= K .

From weak convergence,

〈ξ , yk〉+α→〈ξ , y〉+α ≤ 0 for k →∞.

So

〈−ξ , y〉 ≥ α > σK (−ξ )

= sup
w∈K

〈−ξ , w〉 ≥ 〈−ξ , y〉 ,

which is a contradiction.
Now suppose that yk is an unbounded sequence; by choosing a suitable subsequence

we can ensure that ‖yk‖ ↑∞ as k→∞. By Lemma B.3, pick ζ ∈ int L∗ such that 〈ζ , w〉 ≥
‖w‖ for all w ∈ L. We will need this later.

Suppose that η ∈ X ′ with ‖η‖X ′ ≤ θ , so that σK (−ξ+η)≤ α′. Thus 〈ξ −η, yk〉+α′ ≥
0. Now yk/‖yk‖ is a bounded sequence in a reflexive Banach space X , and so it has a
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weakly convergent subsequence yk/‖yk‖⇀ ŷ. So taking limits, in the subsequence, of〈
ξ −η,

yk

‖yk‖
〉
≥ α′
‖yk‖ gives

〈ξ −η, ŷ 〉 ≥ 0.

Since this is true for all η ∈ X ′ with ‖η‖X ′ ≤ θ , we have 〈ξ , ŷ〉 ≥ θ ‖ŷ‖ for some θ > 0.
If ŷ = 0, we would not be able to obtain a contradiction. We need to use �(xk) ⊆

L+ R BX and strong pointedness of L to show that ŷ �= 0. For each k write yk = uk + vk ,
uk ∈ L, and ‖vk‖ ≤ R. Now

〈ζ , yk〉 = 〈ζ , uk〉+ 〈ζ , vk〉
≥ ‖uk‖− R ‖ζ‖X ′

≥ ‖yk‖−2R ‖ζ‖X ′ .

Thus 〈
ζ ,

yk

‖yk‖
〉
≥ 1− ‖ζ‖X ′

‖yk‖ 2R → 1 as k →∞

in the subsequence. Taking weak limits, 〈ζ , yk/‖yk‖〉→ 〈ζ , ŷ〉≥ 1, so ‖ŷ‖≥ 1/‖ζ‖X ′ > 0.
For each k we can choose yk ∈ �(xk) with

∥∥yk

∥∥ ≤ R. By Alaoglu’s theorem and
reflexivity of X , there is a weakly convergent subsequence to which we restrict our attention
so that yk ⇀ y in the subsequence. By convexity of �(xk) for all k, for any 0 ≤ βk ≤
1 we have yk + βk

(
yk− yk

) ∈ �(xk). In particular, for a given τ ≥ 0 we can set βk =
min(1, τ/‖yk‖). Then as ‖yk‖→∞, for sufficiently large k,

yk+
τ

‖yk‖
(
yk− yk

) ∈�(xk).

Taking weak limits on the left and using hemicontinuity of �, we see that

y+ τ ŷ ∈�(x0).

As this is true for all τ ≥ 0, ŷ ∈� (x0)∞. Since �(x0)= K ⊆ Hξ ,α, ŷ ∈ (
Hξ ,α

)
∞ = Hξ ,0;

that is, 〈ξ , ŷ〉 ≤ 0. However, we have already seen that 〈ξ , ŷ〉 ≥ θ ‖ ŷ‖ > 0. This is a
contradiction.

Thus there must be a δ > 0 such that

d(x , x0) < δ⇒�(x)⊆ Hξ ,α.

In finite dimensions, hemicontinuity is equivalent to having a closed graph. The
condition “�(x)⊆ L+ R BX , L strongly pointed, for all x in a neighborhood of x0” looks
like a difficult condition to check, but in finite dimensions this can be reduced to simply
requiring that “� (x0)∞ is a pointed cone.”

Lemma 2.5. Suppose that � : �→ P(Rn) has a closed graph with closed convex values
and miny∈�(x)‖y‖ ≤ R for all x ∈ U , U a neighborhood of x0. If, in addition, � (x0)∞ is a
pointed cone, then there is a (strongly) pointed cone L, R > 0, and δ > 0 such that

d(x , x0) < δ⇒�(x)⊆ L+ R BRn .
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Proof. Take K =� (x0)∞ and L = Kη for some η > 0 as given in Lemma 2.2. We prove
the result by contradiction. Suppose that xk → x0 in � and there exist yk ∈�(xk) such that
‖yk−�L(yk)‖→∞ as k →∞. Then ‖yk‖→∞. Now yk/‖yk‖ are in a bounded closed
set, and so there is a convergent subsequence. Restrict attention to this subsequence, and
let yk/‖yk‖ → ŷ in the subsequence. By the same arguments as in Theorem 2.4, ŷ ∈ K .
Now L = Kη contains a neighborhood of K ∩ SRn " ŷ. Thus yk/‖yk‖ ∈ L for sufficiently
large k, and thus yk ∈ L for sufficiently large k. Hence ‖yk−�L(yk)‖ = 0 for sufficiently
large k, which contradicts ‖yk−�L(yk)‖→∞.

These approximations will be particularly useful in dealing with measure differential
inclusions (MDIs). See Section 4.4.

2.1.4 Measurability considerations

For matters of integration and differential equations, it is necessary to deal with matters
of measurability of set-valued functions. Measurability is such a common property that
these considerations tend to be rather technical with little practical impact. Nevertheless,
for the existence of solutions, it can be important that the desired functions are shown to be
measurable so that their integrals are meaningful. Section A.4 contains basic material on
measurability for single-valued functions and on σ -algebras.

Let X be a measure space (with its own σ -algebra of measurable sets A) and Y
be a topological space with a σ -algebra of measurable sets B. Recall that f : X → Y is
measurable if f −1(E) is measurable in X for every measurable set E in Y ; that is, for all
E ∈ B, f −1(E) ∈ A. Often we consider Y merely a topological space, in which case we
take B to be the σ -algebra of Borel sets in Y . In that case, f : X → Y is measurable if
f −1(U ) is measurable in X for every open set U in Y .

We say a set-valued function � : X → P(Y ) is strongly measurable if �−(C) is
measurable in X for every closed set C in Y ; we say � is weakly measurable if �−(U ) is
measurable in X for every open set U in Y . We define A⊗B to be the σ -algebra generated
by the Cartesian products E×F with E ∈A and F ∈ B. Then we have the characterization
theorem of measurability (see, for example, [21, Thm. 8.1.4] or [129, Thm. 2.4]).

Theorem 2.6. For a set-valued function � : X → P(Y ), where X is a measure space and
Y a complete separable metric space with A the σ -algebra of measurable sets of X and B
the σ -algebra of Borel sets of Y , the following are equivalent:

1. � is strongly measurable.

2. � is weakly measurable.

3. Graph� is measurable in X ×Y ; that is, graph� ∈A⊗B.

4. �−(E) is measurable for all Borel E ⊆ Y .

5. For all y ∈ Y , the function x #→ dY (y, �(x)) is a measurable function X →R.

Theorem 2.6 can be used to create an “arithmetic” of measurable functions: unions,
intersections, Cartesian products, and compositions of measurable set-valued functions to
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separable spaces that are also measurable. Also, upper semicontinuous and lower semi-
continuous functions are measurable. If the conditions of Theorem 2.6 hold, we drop the
qualifiers “weak” and “strong” and simply say that � is measurable. An important conse-
quence of measurability of a set-valued function is the existence of a single-valued selection
of �.

Lemma 2.7. If � : X → P(Y )\{∅} is measurable and Y is a separable metric space, then
there is a measurable selection f : X → Y such that f (x) ∈�(x) for all x ∈ X.

A proof can be found in, for example, [21, Thm. 8.1.3] or in [4, Cor. 18.14]. Another
important consequence of measurability of set-valued functions is the Filippov lemma be-
low. If A is a measurable space and X and Y are topological spaces, then a function
f : A× X → Y is a Carathéodory function if for each a ∈ A, x #→ f (a, x) is continuous
and for each x ∈ X , a #→ f (a, x) is measurable. Carathéodory functions are measurable
functions on A× X with the σ -algebra of measurable sets A⊗B, where A is the collection
of measurable sets of A and B is the collection of Borel sets of X (see, for example, [4,
Lem. 4.51]). From this it is easy to show the following lemma.

Lemma 2.8 (Filippov implicit function lemma). Suppose that A is a measurable space,
X and Y are separable metric spaces, � : A→ P(X ) and g : A→ Y are measurable, and
f : A× X → Y is a Carathéodory function. Then the set-valued function � : A → P(X )
given by

�(a)= { x ∈�(x) | f (a, x)= g(a) }
is a measurable function, and so it has a measurable selection h : A→ X, h(a) ∈�(a) for
all a ∈ A.

Proofs can be found in, for example, [4, 21, 101, 167]. This lemma is important to
avoid problems of nonmeasurability when there is nonuniqueness in a representation, such
as in differential inclusions (see Section 4.1).

2.2 Complementarity problems
Complementarity problems (CPs) have the following form: Given F : Rn → Rn , find z ∈
Rn such that

0≤ z ⊥ F(z)≥ 0. (2.21)

Note that “a ≥ 0” for a vector a means that the components ai ≥ 0 for all i , and “a ⊥ b”
means that aT b = 0, or that the inner or dot product of a and b is zero. For all our CPs, we
will assume that F is a continuous function. We denote the problem (2.21) by CP(F).

If F is an affine function F(z)=Mz+q , then we call (2.21) a linear complementarity
problem (LCP) [67]: Given M ∈ Rn×n and q ∈Rn , find z ∈ Rn such that

0≤ z ⊥ Mz+q ≥ 0. (2.22)

This is denoted LCP(q , M).
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Generalized complementarity problems (GCPs) replace the componentwise inequal-
ity “a ≥ 0” with a more general condition “a ∈ K ,” where K is a closed convex cone. The
GCP is the problem of finding z satisfying

K " z ⊥ F(z) ∈ K ∗. (2.23)

Here K ∗ is the dual cone to K (see (B.8)).
We denote the problem (2.23) by CP(F , K ). Note that CP(F) = CP(F , Rn+) for

F : Rn → Rn . Again, if F is affine (F(z) = Mz+ q), then we have a generalized linear
complementarity problem (GLCP), which is denoted by LCP(q , M , K ).

CPs date back to the early 1960s with the work of Lemke and Howson [157] and Cot-
tle and Dantzig [66], who worked essentially with LCPs. The connections with quadratic
programming with inequality constraints were soon identified [271].

CPs can be obtained from constrained optimization problems via the Kuhn–Tucker
conditions. For example, consider the problem of minimizing f (x) subject to ci (x) ≥ 0
for i = 1, 2, . . . , m. Then if we write L(x ,λ) = f (x)−∑m

i=1 λi ci (x), the Kuhn–Tucker
conditions become

0=∇x L(x ,λ), (2.24)

0≤ λi ⊥ ci (x)≥ 0 for all i , (2.25)

provided a suitable constraint qualification is satisfied. One possible constraint qualification
is that {∇ci (x) | i = 1, 2, . . . , m, and ci (x)= 0 } is a linearly independent set for any x .
This is known as the linear independence constraint qualification (LICQ). A refined version
is the Mangasarian–Fromowitz constraint qualification (MFCQ), which for the case of only
inequality constraints requires that for any x there be a vector d where∇ci (x)d < 0 for all i ,
where ci (x) = 0. In the case where −ci is convex for all i , there is the Slater constraint
qualification which simply requires the existence of a point x0, where ci (x0) > 0 for all i .

2.2.1 Lemke’s algorithm

For an LCP with K = Rn+, Lemke’s method is the most common method of computing a
solution. It is also an excellent technique for proving the existence of solutions. Let us
consider LCP(q , M): Given M ∈ Rn×n and q ∈ Rn , find z ∈ Rn such that

0≤ z ⊥ Mz+q ≥ 0.

This can be solved using methods similar to the simplex method for linear programming.

A quick outline of the simplex method

Linear programming is the problem of minimizing a linear function subject to linear in-
equality constraints. This can be put into the standard form:

min
x

cT x+d subject to (2.26)

Ax = b, x ≥ 0. (2.27)

As usual “a ≥ b” for vectors a and b means that “ai ≥ bi for all i .” We will assume that
x ∈ Rn and b ∈ Rm so that A is an m × n matrix (n ≥ m). The simplex method uses a
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simplex tableau, which is a representation of the linear program:

b A

cT

This tableau has a basis B which is a subset of m indexes of the variables xi : B ⊆
{1, 2, . . . , n}, where for each i ∈ B , the i th column of A is a column of the identity ma-
trix, and the matrix

[
ai j | i ∈ B , j = 1, 2, . . . , m

]
is a permutation matrix (that is, a ma-

trix formed by permuting either rows or columns of the identity matrix). Writing B =
{i1, i2, . . . , im} so that the i j th column of A is the j th column of the identity matrix, we can
read off the values of xi associated with the simplex tableau: xi j = b j for j = 1, 2, . . . , m,
and xi = 0 if i �∈ B . For this to be a feasible point (xi ≥ 0 for all i ) we need b j ≥ 0 for all j .

To deal with the cost vector c associated with the linear program, we suppose that
ci = 0 for all i ∈ B . If ci < 0 for some i �∈ B , then we have an opportunity to reduce the
cost associated with the simplex tableau by means of an operation called pivoting. Let us
suppose that b j > 0 for all j ; the other case will be considered later.

If ci < 0, then the point x associated with the current simplex tableau has xi = 0, and
i �∈ B . If we increase xi from the value zero, then we will have to change the values of the
xk variables for k ∈ B , but we will leave the values of xk for k �∈ B and k �= i unchanged.
For k ∈ B we will have to change xk from xk = bk to

xk = bk−aki xi .

The value of the objective function decreases by ci xi . If aki ≤ 0 for all k, then there is no
limit to how much we can increase xi while staying feasible, and so there is no limit to how
much we can decrease the objective function. Such a linear program has no solution: it has
just an infimum of −∞.

If some aki > 0, then we cannot increase xi without limit. Instead, we have to ensure
that bk − aki xi ≥ 0. That is, we cannot make xi larger than bk/aki for aki > 0. Since this
must hold for all k = 1, 2, . . . , m, then the most we can make xi is mink:aki>0 bk/aki . Pick
� as the minimizing value of k, and let j be the index, where a�j = 1; that is, x j is the
�th basis variable. We will assume that this is unique for now. If we increase xi to this
upper limit, then we have x� = 0 after the increase, and we should take � out of the basis B .
Bringing i into the basis and taking j out of the basis can be carried out by means of adding
multiples of row � to other rows, which bring to zero all rows of column i except row �, and
we scale row � to make ai� = 1. At the same time, in order to keep the same feasible set,
whatever row operations we do to the A matrix should also be done to the vector b. Finally,
for the cost vector c to reflect these changes, we should subtract a multiple of row � from c
to set c j = 0. Finally the objective value at the new point must be updated: d ← d+ ci xi .

If we always have b j > 0 for all j , then at each stage of the simplex method, either
we strictly reduce the objective function value c j ≥ 0 for all j and we are at a minimum, or
we discover that there is no minimum. Since there is only a finite number of possible basis
sets B , and the basis set determines the simplex tableau, then the simplex method cannot
cycle, and so it must terminate. If we get b j = 0 for some j during the simplex method,
then there is the possibility that there is no reduction in the objective function value. This
is known as degeneracy. In this case the method can cycle. Even though degeneracy is
destroyed by small, random perturbations to the data, this is an important practical issue,
and cycling can occur in practical problems using practical implementations of the simplex
method unless steps are taken to prevent this. The most commonly presented method for
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handling degeneracy is lexicographical degeneracy resolution. Although this is not the
best performing method computationally, it at least resolves the theoretical questions of
existence of minima. Details of how lexicographical degeneracy resolution works can be
found in, for example, [106]. More practical methods can be found in, for example, [192].

The basic idea of lexicographical degeneracy resolution is that for determining the
variable to remove from the basis, instead of choosing k = � to be the minimizer of bk/aki ,
where i is the index of the variable entering the basis, we use the lexicographical ordering
of the vectors [bk , ak1, ak2, . . . , akn ]/aki for aki > 0: in the lexicographic ordering u <L v

for vectors u, v ∈ Rn if u �= v and for p =min
{

j | u j �= v j
}
, u p < vp . We say u ≤L v if

u <L v or u = v. Note that “<L” is a complete ordering of Rn; that is, for any two vectors
u, v ∈ Rn either u <L v, or u = v, or v <L u. If we arrange for the initial tableau to have
b≥ 0 and the initial variables in the basis to be x1, x2, . . . , xm , then the tableau has the form[

b | I , A′
]

and the rows of the initial tableau are lexicographically positive. That is,

0 <L [bk , ak1, ak2, . . . , akn] for all k.

By choosing the lexicographical minimizer of [bk , ak1, ak2, . . . , akn]/aki over k with aki >

0, we ensure that the subsequent tableau has lexicographically positive rows. Furthermore,
for there to be a tie (two rows giving the same lexicographical minimum), two of the rows
of the tableau have to be linearly dependent, which is impossible since at each stage A
contains an m×m permutation matrix associated with the columns in the basis B .

The lexicographical degeneracy resolution method enables us to prove the following
reversibility lemma for simplex tableau pivoting.

Lemma 2.9. Suppose [b | A ] is a simplex tableau with lexicographically positive rows
and basis B if we perform a simplex pivot to bring a variable x p (p �∈ B) into the basis,
removing xq according to the lexicographical rule and producing tableau

[
b′ | A′

]
with

basis B ′ = (B\{q})∪{p}. Then bringing variable xq into the basis for tableau
[

b′ | A′
]

produces tableau [b | A ] with basis B.

This result turns out to be essential for understanding the Lemke method described
in the next section.

Proof. For 1≤ i ≤m, let π(i ) be the index of the basic variable xπ(i) associated with row i
in tableau [b | A ]. Let k be the row associated with variable xq which is removed from the
basis B in tableau [b | A ]; π(k)= q . Thus akp > 0 and

[bk , ak1, . . . , akn]/akp <L [bi , ai1, ai2, . . . , ain]/aip for all i �= k.

After the simplex pivot step, A′ has entries a′kp = 1, a′ip = 0 for i �= k, and[
b′k , a′k1, . . . , a′kn

]= [bk , ak1, . . . , akn ]/akp ,[
b′i , a′i1, . . . , a′in

]= [bi , ai1, . . . , ain ]− aip

akp
[bk , ak1, . . . , akn ] .

If π ′(i ) is the index of the basic variable associated with row i in tableau
[

b′ | A′
]
, then

π ′(k)= p and π ′(i )= π(i ) for i �= k.
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Now we want to show that if we bring variable xq into the basis B ′ of tableau[
b′ | A′

]
, we must remove xq from the basis; that is, we want to show that row k gives

the lexicographical minimum of
[

b′i , a′i1, . . . , a′in
]
/a′iq over i , where a′iq > 0. To do this,

note that a′kq = akq/akp = 1/akp > 0, and for i �= k, a′iq = aiq − aipakq/akp = −aip/akp
since akq = 1 and aiq = 0 if i �= k. Then[

b′k , a′k1, . . . , a′kn

]
/a′kq = [bk , ak1, . . . , akn ] ,[

b′i , a′i1, . . . , a′in
]
/a′iq = [bk , ak1, . . . , akn ]− akp

aip
[bi , ai1, . . . , ain ]

for i �= k. But we consider such rows for the lexicographical minimum only if a′iq =−aip/akp > 0. Since [bi , ai1, . . . , ain ] is lexicographically positive, it follows that[
b′k , a′k1, . . . , a′kn

]
/a′kq <L

[
b′i , a′i1, . . . , a′in

]
/a′iq

whenever a′iq > 0. Thus if we bring xq into the basis in tableau
[

b′ | A′
]
, we must remove

x p. Elementary calculations show that the resulting tableau is [b | A ], as desired.

Lemke’s method via simplex tableaus

Lemke’s method is based on the simplex method, but without the cost vector c. Instead we
rewrite the LCP as

Iw−Mz = q ,

z, w ≥ 0,

zTw = 0.

So we start with an initial simplex tableau with the variables xi = wi for i = 1, 2, . . . , n,
and xn+i = zi for i = 1, 2, . . . , n. If the vector q ≥ 0, then the point associated with the
tableau w = q , z = 0 is feasible and we have a solution of the LCP. Unfortunately, this is
rarely the case: usually some qi < 0.

To handle this we add an extra variable s ≥ 0 and a vector d with di > 0 for all i
called the covering vector, and s is called a slack variable. The system of the tableau then
becomes

I w−M z− s d = q ,

s, z, w ≥ 0,

zTw = 0.

To start Lemke’s algorithm, we do the operations to bring s into the basis and make the
tableau feasible so that the vector on the right (q+ sd) is nonnegative. That is, we increase
s until q + s d ≥ 0. In fact, we increase s until we reach the smallest value where this is
true: s =mink:qk<0−qk/dk ≥ 0. The value �= k which gives the minimum indicates that
the variable w� must be removed from the basis.

Complementarity is then used to decide which variable must next be brought into
the basis. After bringing s into the basis and removing w�, the only variable that can be
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brought into the basis without violating complementarity (zTw = 0) is z�. In general, if
z j is removed from the basis in one simplex step, then we must (try to) bring in w j in the
next step; conversely if w j is removed at the end of one simplex step, then we must (try
to) bring in z j in the next step. There are two ways in which this process can stop. One
is if s is removed from the basis in a simplex step. In the resulting simplex tableau, the
associated point has w−Mz = q , z, w ≥ 0 and zTw = 0. In other words, we have found
a solution to the LCP. The other is if we find that we have an unbounded ray of feasible
points: (s, z, w)= (s0, z0, w0)+α(s∞, z∞, w∞), (s∞, z∞, w∞) �= 0, and

I w−M z− s d = q ,

s, z, w ≥ 0,

zTw = 0 for all α ≥ 0.

Since we have not brought s out of the basis, we must have s0 > 0 in this case. Clearly
(taking α = 0), s0, z0, w0 ≥ 0, and also (taking α→∞) s∞, z∞, w∞ ≥ 0. Also, w0 =
Mz0+ s0d+q , and w∞ = Mz∞+ s∞d . From the complementarity conditions zTw = 0,
we see that (z0+αz∞)T (w0+αw∞)= 0 for α > 0. Since all vectors in this inner product
are nonnegative, this implies that zT

0 w0 = zT∞w0 = zT
0 w∞ = zT∞w∞ = 0.

If we focus on what happens as α→∞, we remove q from consideration and focus
only on the matrix. In linear complementarity theory, there are a wide range of matrix
classes that are important. We will have a look at these in the next section.

Matrix classes and Lemke’s algorithm

Some LCPs do not have solutions, and those for which we can guarantee existence usually
have some kind of “positivity” property. The first is the property of being copositive: A
matrix M ∈Rn×n is copositive if

z ≥ 0=⇒ zT Mz ≥ 0. (2.28)

The matrix M being copositive is not sufficient to ensure the existence of solutions of
LCP(q , M) for all q . Two conditions are known to be sufficient for this in addition to
copositivity. A matrix M ∈Rn×n is strictly copositive if[

z ≥ 0 & z �= 0
]=⇒ zT Mz > 0. (2.29)

A matrix M ∈ Rn×n is copositive plus if it is copositive and[
z ≥ 0 & zT Mz = 0

]
=⇒

(
M+MT

)
z = 0 for all z. (2.30)

To compare with other well-known matrix classes, note that any positive semidefinite
matrix is copositive and any positive definite matrix is strictly copositive. However, matri-
ces with nonnegative entries are copositive; if, in addition, every row or every column of M
has a strictly positive entry, then M is strictly copositive. Symmetric positive semidefinite
matrices are copositive plus.

The set of copositive n× n matrices is a closed convex cone in the space of n× n
matrices.
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To see how these matrix classes relate to Lemke’s algorithm and the solution of LCPs,
note that if Lemke’s algorithm terminates at an unbounded ray (s, z, w) = (s0, z0, w0)+
α(s∞, z∞, w∞)≥ 0 with α ≥ 0, then we have the following properties:

w0 = Mz0+ s0d+q ,

w∞ = Mz∞+ s∞d ,

0= zT
0 w0 = zT∞w0 = zT

0 w∞ = zT∞w∞.

Recall that 0≤ (s∞, z∞, w∞) �= 0 and s0 > 0. So, for copositive M ,

0 = zT∞w∞ = zT∞ (Mz∞+ s∞d)

≥ s∞ zT∞d ≥ 0.

Since d is a vector of strictly positive entries, this means that either s∞ = 0 or z∞ = 0. If
s∞ > 0, then z∞ = 0, and so w∞ = s∞d , and our unbounded ray corresponds to the first
feasible basis of the tableau. By the reversibility lemma (Lemma 2.9), this is impossible.
Thus we must conclude that s∞ = 0.

If M is strictly copositive, then we have zT∞Mz∞ = 0, which implies that z∞ = 0.
With both s∞ and z∞ zero, we see that w∞ = 0, and so we do not really have a ray at all:
(s∞, z∞, w∞)= 0. So if M is strictly copositive, then Lemke’s method cannot terminate at
an unbounded ray. The only possibility left is that Lemke’s method finds a solution of the
LCP.

If M is copositive plus, then the arguments are a little more complicated, and we
prove a weaker result: Lemke’s algorithm finds a solution if and only if a solution exists.
So we start out by assuming that Lemke’s algorithm fails. Again, we have s∞ = 0 and
zT∞Mz∞ = 0 for terminating at a ray. Thus w∞ = Mz∞ ≥ 0. Again, note that we cannot
have z∞ = 0, for then (s∞, z∞, w∞)= 0 and there is no unbounded ray. For M copositive
plus, zT∞Mz∞ = 0 implies

(
M+MT

)
z∞ = 0. Thus MT z∞ =−Mz∞ =−w∞ ≤ 0. Then

0= zT
0 w∞ = zT

0

(
−MT z∞

)
=−zT∞Mz0,

0= zT∞w0 = zT∞ (Mz0+ s0d+q)= s0 zT∞d+ zT∞q .

Since s0 > 0 and zT∞d > 0, then zT∞q < 0. It then turns out that the feasible set { (z, w) |w=
Mz+ q , z, w ≥ 0 } must be empty. Suppose that there is a feasible z and w. Then 0 ≤
zT∞w = zT∞ (Mz+q)= (−Mz∞)T z+ zT∞q =−wT∞z+ zT∞q < 0, which is impossible.

Another important class of matrices related to Lemke’s method is the class of P-
matrices. A P-matrix M ∈ Rn×n is a square matrix where every principal submatrix has
positive determinant [67, Def. 3.3.1]. That is, for every subset I ⊆ {1, 2, . . . , n} the subma-
trix MI I := [

mij | i , j ∈ I
]

has positive determinant. An equivalent (and for our purposes
more useful) characterization of P-matrices [67, Thm. 3.3.4] is that

zi (Mz)i ≤ 0 for all i implies z = 0. (2.31)

For every P-matrix we can easily show that solutions must be unique: If z(1) and z(2) are
two solutions to CP(M (·)+q , Rn+), then

0≤ z(1)
i ⊥

(
Mz(1)+q

)
i
≥ 0 for all i ,

0≤ z(2)
i ⊥

(
Mz(2)+q

)
i
≥ 0 for all i .
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λ = 0

x

λ
λ = 1

Figure 2.3: Illustration of homotopy methods for solving nonlinear equations.

Subtracting and cross-multiplying give(
z(1)

i − z(2)
i

)(
M

(
z(1)− z(2)

))
i

= z(1)
i

(
Mz(1)+q

)
i
− z(2)

i

(
Mz(1)+q

)
i

− z(1)
i

(
Mz(2)+q

)
i
+ z(2)

i

(
Mz(2)+q

)
i

=−z(2)
i

(
Mz(1)+q

)
i
− z(1)

i

(
Mz(2)+q

)
i
≤ 0 for all i .

Then it is clear that if M is a P-matrix, then z(1)−z(2)= 0 and solutions are unique. Further,
the solution can be computed via Lemke’s algorithm.

2.2.2 Lemke’s method and homotopy methods

Despite its appearance, Lemke’s method has behind it an important topological idea, which
relates it closely to homotopy or continuation methods for solving nonlinear systems of
equations [5, 6, 108, 109]. The basic idea of homotopy methods is that to solve a difficult
system of equations f (x) = 0 with f : Rn → Rn , we find an easy-to-solve system g(x)
with g : Rn →Rn and a sufficiently “nice” homotopy h : [0, 1]×Rn →Rn , where

h(0, x)= g(x),

h(1, x)= f (x).

We then follow the solution of h(λ, x)= 0 from λ= 0 to λ= 1, as illustrated in Figure 2.3.
When we reach λ= 1, we have a solution of the problem.

To make things more concrete, we can assume that f is smooth and take, for example,
g(x)= x−a with a piecewise linear homotopy

h(λ, x)= λ f (x)+ (1−λ) (x−a).
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Assume that the (n+1)×n Jacobian matrix ∇(λ,x)h(λ, x) has full rank whenever h(λ, x)=
0. Then the set { (λ, x) | h(λ, x)= 0 } is a union of smooth curves in Rn+1. The idea then
is to follow one of these smooth curves from λ = 0 until λ = 1. The older continuation
algorithms had the simpler strategy of increasing λ by a small amount �λ and then solv-
ing h(λ+�λ, x) = 0 for x , using Newton’s method, for example. If Newton’s method
failed, then �λ is reduced, and the process is repeated; otherwise, update λ← λ+�λ and
continue following the curve.

The trouble with continuation methods is that sometimes the curve “doubles back”
and to follow the curve, λ must be reduced rather than increased. So the more modern
homotopy algorithms were developed [231, 268] which treated the curves in terms of arc-
length continuation: (λ(s), x(s)) and ‖(dλ/ds(s), dx/ds(s))‖ = 1. Care must be taken to
prevent the algorithm from reversing direction along the curve that it is tracking and to
avoid jumping from one curve to another. In general, curves given by equations h(x ,λ)= 0
are not necessarily smooth and can have bifurcations. The way to avoid this is to note that
if we have an extra parameter such as a in h(x ,λ; a)= λ f (x)+ (1−λ)(x−a), provided the
Jacobian matrix ∇ah(x ,λ; a) is nonsingular, then for almost all a, the curves h(x ,λ; a)= 0
are smooth and ∇(x ,λ)h(x ,λ; a) has full rank on these curves. This can be proved from a
generalization of the Morse–Sard theorem [7, 272].

These methods can be very effective for highly nonlinear systems of equations and
even for LCPs [269]. However, Lemke’s method does not involve smooth functions.

Lemke’s method is a piecewise affine version of homotopy path following. In Lemke’s
method, s takes the role of λ, although s does not go from zero to one. Instead, s goes from
a large value (such that s d + q ≥ 0) down to zero to obtain a solution to LCP(q , M). In-
deed, s is not guaranteed to be reduced at each step of Lemke’s method, but it may increase
at times before eventually being brought to zero when Lemke’s algorithm succeeds. The
homotopy can be considered as changing LCP(q , M) to LCP(s d+q , M), which is easy for
large s > 0 because s d+q ≥ 0 implies that z = 0 is a solution. The reduction of Lemke’s
method to a homotopy method for a piecewise linear functions can be carried out by using
an equivalent nonlinear system of equations, such as

z solves LCP(q , M)⇐⇒min(z, Mz+q)= 0,

since for any vectors a, b ∈ Rn ,

0≤ a ⊥ b ≥ 0⇐⇒min(a, b)= 0.

The minimum is understood to be a componentwise minimum:

min(a, b)i =min(ai , bi ).

The connection with homotopy methods has also been used in other contexts, such as
to prove the existence of solutions to linear and nonlinear complementarity problems and
GCPs [137, 138, 140, 197].

2.2.3 Polyhedral cones

Polyhedral cones are cones generated by a finite number of vectors. These are important
for many applications, and the standard cone Rn+ is an example of a polyhedral cone.
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The general form for a polyhedral cone is

K = cone{v1, v2, . . . , vm }

=
{

m∑
i=1

αivi | αi ≥ 0 for all i

}
. (2.32)

For K ⊆ Rn , if we let V be the n×m matrix [v1, v2, . . . , vm ], then K = V (Rn+). We would
like to use Lemma B.8(2) to find the dual cone, but V need not be invertible, especially if
m > n. A general formula for the dual cone can be found using the ideas of Lemma B.8(2).

Lemma 2.10. If L is a closed convex cone in X and V : X → Y is a linear operator, then
the dual cone V (L)∗ = { x | V ∗x ∈ L∗ }.

Proof. This is a straightforward calculation:

V (L)∗ = {
z ∈ Y ′ | 〈z, Vw〉 ≥ 0 for all w ∈ L

}
= {

z ∈ Y ′ | 〈V ∗z, w
〉≥ 0 for all w ∈ L

}
= {

z ∈ Y ′ | V ∗z ∈ L∗
}

,

as desired.

In the particular case where L = Rn+, we can use the Moore–Penrose pseudoinverse
V+ of V to get (

V Rn+
)∗ = (

V T
)+

Rn++null
(

V T
)

.

If m ≤ n and V has full rank (that is, rank(V )=min(m,n)), then null
(
V T

)= {0}, so

(
V Rn+

)∗ = (
V T

)+
Rn+.

LCP(q , M , V Rn+) becomes the following: Given q , M , and V , find z such that

V Rn+ " z ⊥ Mz+q ∈
(

V T
)+

Rn+.

Writing z = V x , x ∈ Rn+, we have Mz+q = MV x+q = (
V T

)+
w, where w ≥ 0. If V is

square and nonsingular, then w = V T (MV x+q) with x , w ∈ Rn+. We can then represent
the CP over V Rn+ as a standard CP over Rn+.

2.2.4 Special structure

Copositivity can be generalized to general closed convex cones:

M is K -copositive if 〈z, Mz〉 ≥ 0 for all z ∈ K . (2.33)

Existence for GCPs CP(M (·)+q , K ) can be shown if M is K -copositive and
(
M+MT

)
z=

0 implies 〈z, q〉> 0.

Downloaded 03 Nov 2011 to 160.36.192.127. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php



40 Chapter 2. Static Problems

A strongly K -copositive matrix M is one where there is an η > 0 such that for all
z ∈ K we have 〈z, Mz〉 ≥ η‖z‖2. This echoes the definition of strongly monotone, but it is
restricted to the cone used for complementarity. Strong copositivity can be used to obtain
bounds on the solution of an LCP K " z ⊥ Mz + q ∈ K ∗: 0 = 〈z, Mz+q〉 ≥ η‖z‖2 −
‖q‖ ‖z‖ so ‖z‖ ≤ ‖q‖/η. However, strong copositivity does not guarantee uniqueness.

Uniqueness for K =Rn+ occurs for all q ∈Rn if and only if M is a P-matrix (see, for
example, [67, Thm. 3.3.7]). Related properties can be developed for other structures, such
as where K = K1× K2 is a Cartesian product. Suppose that if we break up M and q in a
consistent way, they have the form

M =
[

M11 M12
0 M22

]
, q =

[
q1
q2

]
.

Provided LCP(q2, M22, K2) has a unique solution z2, then we obtain the subproblem
LCP(q1−M12z2, M11, K1). If this in turn also has a unique solution, then we have found
the unique solution of LCP(q , M , K1× K2). Conversely, if LCP(q , M , K1× K2) has a
unique solution, we see that these subproblems must also have unique solutions.

Thus, e.g., if M11 and M22 are positive definite (so that 〈z1, M11z1〉, 〈z2, M22z2〉> 0
for all nonzero z1, z2), then solutions of LCP(q , M , K ) exist and are unique, even though
M itself might not be positive definite.

A generalization of the P-matrix property can be applied to a general Cartesian prod-
uct of cones K = K1× K2 × ·· · × Km = ∏m

i=1 Ki . If we partition M into blocks Mij
consistent with this Cartesian product, we say that M is a P(K )-matrix if

0≥ 〈
zi , (Mz)i

〉 = m∑
j=1

〈
zi , Mij z j

〉
implies

z = 0.

Other examples of special cones that have received particular attention include the
Lorentz cone (also called the ice cream cone) in Rn with n ≥ 2:

Ln :=
{[

x
y

]
| x ∈ R, y ∈ Rn−1, x ≥ ‖y‖2

}
. (2.34)

This is a self-dual cone. To see this, suppose
[
u, vT

]T ∈ L∗n . Then[
u, vT

][
x , yT

]T = ux+ vT y ≥ 0

for all
[
x , yT

]T ∈ Ln . Taking the minimum of ux+vT y over all y satisfying ‖y‖2 ≤ x , we

get ux−‖v‖2 x = x (u−‖v‖2)≥ 0. Since x ≥ 0 we have u ≥ ‖v‖2, and so
[
u, vT

]T ∈ Ln .

Thus L∗n ⊆ Ln . Conversely, it is easy to show that if
[
u, vT

]T ∈ Ln , then
[
u, vT

]T ∈ L∗n :

for
[
x , yT

]T ∈ Ln , [
u, vT

][
x , yT

]T ≥ ux−‖v‖‖y‖
≥ ux−ux ≥ 0.
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Another cone that has been considered is the cone of semidefinite symmetric n× n
matrices:

Sn :=
{

A ∈Rn×n | AT = A, A positive semidefinite
}

.

This is also a self-dual cone under the inner product 〈A, B〉= trace(AT B)=∑n
i, j=1 Aij Bi j .

This inner product is called the Frobenius inner product and is often denoted by A • B in
the optimization literature, or A : B in the continuum mechanics literature. The standard
nonnegative cone Rn+, the Lorenz cone Ln , and the cone of semidefinite matrices Sn are
all examples of symmetric cones. Symmetric cones are self-dual cones K that are ho-
mogeneous; that is, for every pair x , y in the interior of K there is a matrix A such that
A K = K and Ax = y. All such symmetric cones are generated by Euclidean Jordan al-
gebras [97, 114]. Euclidean Jordan algebras are finite-dimensional vector spaces V with
a bilinear product ◦ : V × V → V and an inner product (·, ·)V on V with the following
properties:

x ◦ y = y ◦ x , (2.35)

x ◦
(

x2 ◦ y
)
= x2 ◦ (x ◦ y) , where x2 = x ◦ x , (2.36)

(x ◦ y, z)V = (y, x ◦ z)V (2.37)

for all x , y, and z ∈ V . The cone generated by the algebra is the cone of squares: K ={
x2 | x ∈ V

}
. For all such cones K generated by a Euclidean Jordan algebra, not only is

K convex, but K is self-dual (that is, K = K ∗) in the inner product (·, ·)V for V [97].
For example, if K = Rn+, we can take x ◦ y to be the componentwise or Hadamard

product (x ◦ y)i = xi yi . For the Lorentz cone Ln we use[
x0
x

]
◦
[

y0
y

]
=

[
x0y0+ xT y
x0y+ y0x

]
. (2.38)

For the cone of symmetric semidefinite n× n matrices we use A ◦ B = 1
2 (AB+ B A). In

all finite-dimensional Euclidean Jordan algebras there is an element e where e ◦ x = x for
all x in the algebra. For the Hadamard product e is the vector of ones of the appropriate
dimension. For the Lorentz product (2.38), e is [1, 0]T . For A◦ B = 1

2 (AB+ B A), e is just
the identity matrix I .

The effect of this structure on the solution of CPs is discussed in [114, 115], for
example.

There are two properties that are important for future developments. The first is that
a matrix M ∈Rn×n is a GUS(K ) matrix, where K is a closed convex cone, if for all q ∈Rn

the CP

K " z ⊥ Mz+q ∈ K ∗

has a unique solution. A matrix M is an LS(K ) matrix if the solution map q #→ z for
LCP(q , M , K ),

K " z ⊥ Mz+q ∈ K ∗,
is well defined and single valued for all q ∈ K , and is a Lipschitz map. If M ∈ LS(K ), then
clearly M ∈ GUS(K ), since the solution operator is already single valued and everywhere
defined. For polyhedral cones, by a result of Gowda [113], if M ∈ GUS(K ), then the so-
lution operator is Lipschitz as well, so M ∈ LS(K ); thus GUS(K )= LS(K ) for polyhedral
cones, but this is not necessarily true for general K .
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2.2.5 Complementarity in infinite dimensions

CPs in infinite dimensions arise in many situations, such as in connection with partial
differential equations. The framework for CPs starts with a Banach space X and its dual
space X ′. Then for K a closed convex cone we have the dual cone given in terms of
the duality pairing between X and X ′. We need the function F : X → X ′ (rather than
F : X → X ) to be continuous. Actually requiring F : X → X ′ is an advantage, since for
second order elliptic partial differential equations we can take X = H 1(�) for � to be a
bounded open set in Rd , and X ′ = H−1(�). Then we can take F(u)=−∇2u+a u, where
∇2 is the usual Laplacian operator (∂2/∂x2+ ∂2/∂y2 on R2).

If we consider the problem of preventing penetration into an obstacle given by u(x)≥
ϕ(x) for all x ∈�, then we have the following obstacle problem: find N(x) and u(x) such
that

0≤ N(x)⊥ u(x)−ϕ(x)≥ 0 with

−∇2u+a u = N(x)+ f (x) in � and

u(x)= 0 on ∂�.

Here we take X = H 1
0 (�), which incorporates the boundary conditions u(x)= 0 for x∈ ∂�,

and so X ′ = H 1
0 (�)′ is the dual space. Since the operator −∇2 is an elliptic operator

H 1
0 (�)→ H 1

0 (�)′, we can show that there exists a unique solution to this CP. The tech-
niques to prove this are outlined in the next section. A more detailed example will be given
in Section 2.6.

2.3 Variational inequalities
Around the same time as CPs were being created and analyzed in finite-dimensional situ-
ations, variational inequalities (VIs) were being applied to infinite-dimensional situations.
The first application was to the frictionless contact of an elastic body with a rigid obstacle.
This problem was first posed by Signorini [225] in 1933 and first resolved in a theoretical
sense by Fichera [98] in 1963. The general idea and applications of VIs was developed
further by Lions and Stampacchia [160]. More information about VIs from the point of
view of partial differential equations can be found in [23, 84]. VIs can also be used for
finite-dimensional problems; see [95, 96].

The precise formulation of VIs requires a closed convex set K (but not necessarily a
cone) in a Banach space X (which can be Rn or a suitable Hilbert space) and a continuous
function F : K → X ′. The problem is then to find a z such that

z ∈ K and 0≤ 〈 z̃− z, F(z)〉 for all z̃ ∈ K . (2.39)

We denote this problem by VI(F , K ). If K is a cone as well, then the VI is, in fact, a CP.

Lemma 2.11. If K is a closed convex cone, then

z ∈ K and 0≤ 〈 z̃− z, F(z)〉 for all z̃ ∈ K

if and only if
K " z ⊥ F(z) ∈ K ∗.

That is, if K is a closed convex cone, then VI(F , K ) is equivalent to CP(F , K ).
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Proof. Suppose z solves VI(F , K ). We show first that F(z) ∈ K ∗. Let w ∈ K . We
want to show that 〈w, F(z)〉 ≥ 0. This is obviously true if w = 0, so suppose that w �= 0.
Then, for α > 0, αw ∈ K since K is a cone, and thus setting z̃ = αw, 0 ≤ 〈̃z− z, F(z)〉 =
α 〈w, F(z)〉−〈z, F(z)〉. Dividing by α and taking α→∞ give 〈w, F(z)〉 ≥ 0. Thus F(z) ∈
K ∗.

Now z ⊥ F(z): we can take z̃ = 0 ∈ K to get 〈−z, F(z)〉 ≥ 0; on the other hand,
since z ∈ K and F(z) ∈ K ∗, 〈z, F(z)〉 ≥ 0. The only way both these inequalities can be true
is if 〈z, F(z)〉 = 0, as desired. Thus z solves CP(F , K ).

Now suppose that z satisfies CP(F , K ). Then z ∈ K , and if z̃ ∈ K as well,

〈 z̃− z, F(z)〉 = 〈 z̃, F(z)〉− 〈z, F(z)〉 ≥ 0

since 〈z, F(z)〉 = 0 and F(z) ∈ K ∗. Thus z solves VI(F , K ).

VIs are most useful in dealing with certain optimization problems over closed convex
sets. Consider the problem of minimizing f (x) over x ∈ K . If f is continuously (or
Frèchet) differentiable, then

f (y)= f (x)+〈y− x ,∇ f (x)〉+o (‖y− x‖) as y → x .

If x∗ minimizes f over K , then for any y ∈ K , θy+ (1− θ )x = x+ θ (y− x) ∈ K , so

f (x)≤ f (x+ θ (y− x))= f (x)+ θ 〈y− x ,∇ f (x)〉+o (θ ‖y− x‖) .

Subtracting f (x), dividing by θ > 0, and taking θ ↓ 0, we get

x ∈ K and 0≤ 〈y− x ,∇ f (x)〉 for all y ∈ K , (2.40)

which is a VI. Conversely, if x satisfies (2.40) and f is convex, then as f (y) ≥ f (x)+
〈y− x ,∇ f (x)〉, for y ∈ K we have f (y) ≥ f (x)+〈y− x ,∇ f (x)〉 ≥ f (x). Thus x is the
global minimizer of f over K .

There is a more geometric viewpoint to describe the solution to a VI. Consider again
(2.39):

z ∈ K and 0≤ 〈 z̃− z, F(z)〉 for all z̃ ∈ K .

Since TK (z)= cone(K − z) for z ∈ K , 〈w, F(z)〉 ≥ 0 for all w ∈ TK (z). Thus

F(z) ∈ −NK (z). (2.41)

That is,−F(z) points in the direction of the normal cone at z. Conversely, if F(z)∈−NK (z)
for closed convex K , then z ∈ K and 〈̃z− z, F(z)〉 ≥ 0 for all z̃ ∈ K , so that z solves the VI.

2.3.1 VIs of the second kind

VIs of the second kind have the following form: Given F : X → X ′, K a closed convex
subset of X , and a convex and lower semicontinuous2 function j : X →R, find z satisfying

z ∈ K and 〈 z̃− z, F(z)〉 ≥ j (z)− j ( z̃ ) for all z̃ ∈ K . (2.42)

2That is, if xn → x , then liminfn→∞ f (xn) ≥ f (x). This is a weaker condition than requiring f to be
continuous. See also Appendix A.
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This problem is denoted by VI2(F , K , j ). This formulation can be represented as a stan-
dard VI: Let

L =
{[

z
s

]
| z ∈ K , s ≥ j (z)

}
, (2.43)

G(z,s)=
[

F(z)
1

]
. (2.44)

Lemma 2.12. VI2(F , K , j ) is equivalent to VI(G, L), provided j is convex and lower
semicontinuous and L and G are given by (2.43)–(2.44).

Proof. Suppose that z is a solution of VI2(F , K , j ) and that j : X → R∪{∞} is a convex
lower semicontinuous function, K is closed and convex in X , and F : X → X ′. Since j
is convex, L is a convex set; since j is lower semicontinuous and K is closed, L is also
closed. Note that j (z) <∞. We show that x := [ z

j (z)

]
solves VI(G, L). Since z solves

VI2(F , K , j ), z ∈ K , then
[ z

j (z)

] ∈ L. Now suppose that x̃ := [̃z
s̃

] ∈ L. Then z̃ ∈ K and
s̃ ≥ j ( z̃ ). So〈[

z̃
s̃

]
−

[
z

j (z)

]
,

[
F(z)

1

]〉
= 〈 z̃− z, F(z)〉+ ( s̃− j (z))

≥ 〈 z̃− z, F(z)〉+ j ( z̃ )− j (z)≥ 0.

Thus x solves VI(G, L).
Conversely, suppose x = [z

s

]
solved VI(G, L). Then, for any z̃ ∈ K and s̃ ≥ j ( z̃ ),

0 ≤
〈[

z̃
s̃

]
−

[
z
s

]
,

[
F(z)

1

]〉
= 〈 z̃− z, F(z)〉+ s̃− s.

Note that if we choose z̃ = z and s̃ = j ( z̃ ), then we get

0≤ j (z)− s and s ≥ j (z),

so s = j (z). Now, for any z̃ ∈ K , choosing s̃ = j ( z̃ ) we have

0≤ 〈 z̃− z, F(z)〉+ j ( z̃ )− j (z),

and z solves VI2(F , K , j ), as desired.

Thus the class of second kind VIs is actually no larger than the class of standard VIs.

2.3.2 Equivalent formulations

Existence of solutions can be shown by means of equivalent nonlinear (in fact, nonsmooth)
systems of equations. There are two equivalent equations �(x) = 0 of particular impor-
tance: the normal map

�nor(x ; K , F)= F(�K (x))+ JX (x−�K (x))
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and the natural map

�nat(x ; K , F)= x−�K

(
x− J−1

X (F(x))
)

.

If K and F are both understood from context, we drop these parameters from �nor and
�nat. For both the normal and natural maps, �K (x) is the nearest point in K to x . The
function �K is well defined and continuous, in fact Lipschitz continuous, where X is a
Hilbert space. After we have established the basic properties of �K we will show that
solving VI(F , K ) is equivalent to finding zeros of the normal and natural maps. First we
set out connections with more geometric properties. The proof uses the characterization of
�K (x) in (B.6).

Lemma 2.13. If K ⊆ X, with X a Hilbert space, is closed and convex, then

JX (x−�K (x)) ∈ NK (�K (x))

holds for all x ∈ X. Furthermore, for z ∈ K , then JX (y) ∈ NK (z) if and only if
�K (z+ y)= z.

Proof. Let z = �K (x). Then z ∈ K and from (B.6), (x− z, z−w)X ≤ 0 for all w ∈ K .
Thus JX (x− z) ∈ TK (z)◦ = NK (z). That is, JX (x−�K (x)) ∈ NK (�K (x)), as desired.

For the second statement, suppose first that z ∈ K and that JX (y) ∈ NK (z). Then
for any w ∈ K , ((z+ y)− z, z−w)X = (y, z−w)X ≤ 0. Thus by (B.6), z = �K (z+ y).
Conversely, if z =�K (z+ y), then (y, z−w)X = ((z+ y)− z, z−w)X ≤ 0 for all w ∈ K .
By (B.14), this implies that JX (y) ∈ NK (z).

Now z ∈ K is a solution of VI(F , K ) if for all w ∈ K , 〈w− z, F(z)〉 ≥ 0, or equiv-
alently that 〈w− z,−F(z)〉 ≤ 0 for all w ∈ K . Then by (B.14), this is equivalent to
−F(z) ∈ NK (z). This gives a third equivalent condition for z solving VI(F , K ):

0 " F(z)+ NK (z). (2.45)

We can now return to the normal and natural maps.

Lemma 2.14. The VI (2.39) for z holds if and only if �nor(x)= 0, where z =�K (x), and
if and only if �nat(x)= 0, where z = x.

Proof. Suppose that z solves VI(F , K ):

z ∈ K and 〈 z̃− z, F(z)〉 ≥ 0 for all z̃ ∈ K .

We show that this is equivalent to �nat(z) := z−�K (z− J−1
X (F(z)))= 0: Note that (2.39)

is equivalent to z ∈ K and 0≥ 〈̃z− z,−F(z)〉 = ( z̃− z, (z− J−1
X (F(z)))− z)X for all z̃ ∈ K .

By (B.6), this is equivalent to z =�K (z− J−1
X (F(z))) and thus �nat(z)= 0. Now suppose

that �nat(z)= 0 so that z−�K (z− J−1
X (F(z)))= 0; that is, z =�K (z− J−1

X (F(z))). Then
−F(z) ∈ NK (z), and 0 ∈ F(z)+ NK (z), and so z solves VI(F , K ).

For the normal map, we show that z being a solution of VI(F , K ) (2.39) im-
plies �nor(x) = 0, where x = z− J−1

X (F(z)) or JX (x − z) = −F(z). From the previous
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paragraph we see that (2.39) is equivalent to z = �K (z − J−1
X (F(z))) = �K (x). Thus

(2.39) implies that �nor(x) = F(�K (x))+ JX(x −�K (x)) = F(z)+ JX (x − z) = F(z)−
F(z) = 0. Conversely, suppose that �nor(x) = 0. Then set z = �K (x) ∈ K . From (B.6),
(x− z, y− z)X ≤ 0 for all y ∈ K . Also, substituting for �K (x) in �nor(x)= F(�K (x))+
JX (x − �K (x)) = F(z) + JX (x − z) = 0 we see that JX (x − z) = −F(z), and so
〈−F(z), y − z〉 ≤ 0 for all y ∈ K . That is, z ∈ K and 〈y − z, F(z)〉 ≥ 0 for all y ∈ K ,
and so z satisfies (2.39).

The ability to formulate the VI as a nonlinear equation means that we can apply, for
example, techniques from topology to prove existence of solutions.

2.3.3 Complementarity bounds

The simplest bounds we can obtain are for strongly monotone VIs, as we have seen. How-
ever, at least in finite dimensions we can obtain some bounds for VIs with linear functions
in terms of related CPs using strong copositivity over the recession cone.

Lemma 2.15. Let K ⊆ Rn be a closed, convex set with recession cone K∞. If M ∈ Rn×n

is K∞-strongly copositive, then there are a constant C and a neighborhood V of M such
that for any solution of a linear VI with M̃ ∈ V ,

z ∈ K & 0≤ 〈
z̃− z, M̃z+q

〉
for all z̃ ∈ K ,

we have the bound

‖z‖ ≤ C (1+‖q‖) . (2.46)

Note that C depends on K and V but not on q .

Proof. Pick a fixed z∗ ∈ K . Let η > 0 be the constant for strong K∞-copositivity of M , so
that 〈w, Mw〉 ≥ η‖w‖2 for all w ∈ K∞. Suppose that there are no such C andV . Then there
must be a sequence of q� ∈Rn , M� ∈Rn×n , and z� ∈ K such that

〈
z∗ − z�, M�z�+q�

〉≥ 0
and M� → M ,

∥∥z�
∥∥/(

1+∥∥q�
∥∥) →∞ as �→∞. This implies that

∥∥z�
∥∥ →∞ and∥∥q�

∥∥/∥∥z�
∥∥→ 0 as �→∞. Now ẑ � := z�/

∥∥z�
∥∥ is bounded in Rn , and so it has a conver-

gent subsequence; denote such a subsequence by ẑ � and let ẑ be its limit. Taking limits in
the subsequence of

0≤
〈

z∗∥∥z�
∥∥ − z�∥∥z�

∥∥ , M� z�∥∥z�
∥∥ + q�∥∥z�

∥∥
〉

gives the inequality

0≤−〈 ẑ, Mẑ 〉 .
But z� ∈ K for all �, so ẑ = lim�→∞ z�/

∥∥z�
∥∥ ∈ K∞ (taking limits in the subsequence); also

‖ ẑ ‖ = 1. Therefore, 0≤−η‖ ẑ ‖2, implying that ‖ ẑ ‖ = 0, which is impossible.
Thus there is such a C independent of q for which the above bound holds.

Downloaded 03 Nov 2011 to 160.36.192.127. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php



2.3. Variational inequalities 47

The following bound will be useful later on for proving existence of solutions for
index-one differential VIs.

Lemma 2.16. If K = C+ L, where C and K are closed and convex, with C bounded and
L a cone, and M strongly L-copositive with constant η > 0, then there is a constant γ
(depending only on C, L, and M) where for any solution z of the VI

z ∈ K & 0≤ 〈 z̃− z, Mz+q〉 for all z̃ ∈ K

we have

‖z‖ ≤ γ (1+‖q−�L∗ (q)‖) . (2.47)

Furthermore, γ depends continuously on η > 0, ‖M‖, and maxu∈C ‖u‖.

Proof. For any solution z ∈ K = C + L we have z = u + v with u ∈ C and v ∈ L. Set
z̃ = u ∈ C ⊆ C+ L = K . Then

0 ≤ 〈 z̃− z, Mz+q〉 = −〈v, Mu+Mv+q〉
= −〈v, Mv〉− 〈v, Mu〉− 〈v, q−�L∗ (q)+�L∗ (q)〉
≤ −η‖v‖2−〈v, Mu〉− 〈v, �L∗ (q)〉− 〈v, q−�L∗ (q)〉 .

But 〈v, �L∗ (q)〉 ≥ 0 as v ∈ L. Hence

0≤−η‖v‖2−‖v‖‖M‖‖u‖−‖v‖‖q−�L∗ (q)‖ .

Rearranging and dividing by ‖v‖ give

‖v‖ ≤
(
‖M‖max

u∈C
‖u‖+‖q−�L∗ (q)‖

)
/η

≤ β (1+‖q−�L∗ (q)‖)
for β =max(‖M‖maxu∈C ‖u‖ , 1)/η. Then

‖z‖ ≤ ‖u‖+‖v‖ ≤ max
u∈C

‖u‖+β (1+‖q−�L∗ (q)‖)
≤ γ (1+‖q−�L∗ (q)‖)

for γ = β +maxu∈C ‖u‖, as desired. This formula is clearly continuous in M and η; in
turn, η := infv∈L:‖v‖=1 〈v, Mv〉 depends continuously on M , as we are taking the infimum
of a continuous function over a compact set.

Remark 2.17. It might be tempting to think that if K ⊂ C + L, where C and L are closed
and convex with C bounded and L a cone, then we can still obtain the same bound (2.47).
However, this is not so. An example follows. See also Figure 2.4.

We start with a function ψ : [0,∞)→ [0,∞) that is smooth, except at t = 0, where
ψ ′(0+)=+∞, and that ψ ′′(x)≤ 0 for all x > 0. Let

K = { (x , y) | |y| ≤ ψ(x) } .
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y = ψ ( x )+

y = ψ ( x )−

N
K

( z )

x

y

Figure 2.4: The set K ⊂ C+ L for a counterexample to (2.47).

Since ψ ′′(x)≤ 0 for all x , K is a convex set. Furthermore, ψ ′(x) ≥ 0 for all x ≥ 0. If this
were not so, suppose that ψ ′(x∗) < 0. Then, as ψ ′ is a decreasing function, for x ≥ x∗ we
have ψ(x)≤ ψ(x∗)+ψ ′(x∗)(x− x∗), which must eventually become negative, contradict-
ing ψ(x) ≥ 0 for x ≥ 0.

We will also assume that ψ ′(x) > 0 for all x and that limx→∞ψ ′(x)= 0. The first of
these conditions ensures that ψ ′(x) is not eventually zero; in this case, Lemma 2.16 would
apply. The second condition ensures that the recession cone L = K∞ = R+ × {0}, the
positive x-axis. Choosing ψ so that ψ(x) ≤ R for all x > 0 implies that K ⊂ K∞+ R B,
where B is the unit ball in R2.

For our VI, we set

M =
[ +1 0

0 −1

]
,

which is strongly copositive on L = R+×{0}. We want to find a family of vectors q ∈ L∗
such that the solutions of the VIs

z ∈ K & 0≤ ( z̃− z)T [
Mz+q

]
for all z̃ ∈ K

are unbounded. This would contradict a bound of the form (2.47). To carry out this task,
we use the formulation of the VI

−[
Mz+q

] ∈ NK (z),

which can be interpreted in a more geometric way. Let z = [
x , y

]T . If |y| < ψ(x), then

NK (z) = {0}; if y = ±ψ(x) and x > 0, then NK (z) = R+
[−ψ ′(x),±1

]T ; if x = y = 0,
then NK (z)= [−1, 0]T . There are three possibilities for a solution of this VI:
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• x = y = 0: [ −q1
−q2

]
= α

[ −1
0

]
for α ≥ 0,

• |y|<ψ(x): [ −x−q1
+y−q2

]
=

[
0
0

]
, or

• y =±ψ(x) and x > 0:[ −x−q1
+y−q2

]
= α

[ −ψ ′(x)
±1

]
for α ≥ 0.

Now q ∈ L∗ = R+×R means that q1 ≥ 0. We will focus on the cases q1 = 0 and q2 →
+∞. The latter case for solutions is the one that we will consider. After all, we do not
have to show that all solutions violate (2.47), only that there is one that does. Even more
specifically, we will assume that y = −ψ(x), so that y− q2 = −α; that is, α = q2− y =
q2+ψ(x). Then

−x =−αψ ′(x)

=− (q2+ψ(x)) ψ ′(x).

That is, x = (q2+ψ(x)) ψ ′(x). Since ψ ′(x)> 0 for all x , if we take q2→+∞, x→+∞ as
well. In particular, for any value of x sufficiently large we can take q2 = x/ψ ′(x)−ψ(x)>
0. Thus we have a family of solutions to the VI that is unbounded for q ∈ L∗, even though
K ⊂ C + L with C closed, convex, and bounded and L a closed convex cone with M
strongly L-copositive. Thus (2.47) does not hold in this case.

2.3.4 Existence and uniqueness in finite dimensions

Existence results for solutions to VIs can be obtained by a number of means, although
the most common is to use coercivity or semicoercivity of F . We say that F : X → X ′ is
semicoercive on K if there are a z0 ∈ K and R > 0 such that 〈x− z0, F(x)〉 > 0 for all
x ∈ K , where‖x‖ ≥ R.

To establish the existence of solutions for semicoercive F (Lemma 2.18) we use some
topological arguments. In particular we use the tools of degree theory [106, 162]. The
basic properties that we use are as follows: pick a number R > 0. We consider continuous
functions f : Rn →Rn so that whenever ‖x‖ ≥ R, then f (x) �= 0. Every such function has
a well-defined degree, which is an integer. If the degree of f is not zero, then f (x∗) = 0
for some x∗ with ‖x∗‖ < R. If f is smooth and has finitely many zeros with the Jacobian
matrix ∇ f (x) nonsingular at each zero x , then the degree of f is

deg f =
∑

x : f (x)=0

sgn det (∇ f (x)) ;

sgn(s) = +1 if s > 0, −1 if s < 0, and zero if s = 0. In particular, if f is the identity
function, deg f =+1.

Downloaded 03 Nov 2011 to 160.36.192.127. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php



50 Chapter 2. Static Problems

The property of degrees that makes degree theory particularly useful is the homo-
topy property: if we have a continuous function h : [0,1]×Rn → Rn such that h(s, x) �= 0
whenever ‖x‖ ≥ R, and f (x)= h(0, x), g(x)= h(1, x), then deg f = deg g. The function h
is a homotopy between f and g; we say that f and g are homotopic. More information on
using homotopies to solve systems of equations can be found in Section 2.2.2.

A strategy for showing that solutions exist to a problem is to reduce the problem to
solving a certain system of equations f (x)= 0. Then show that the function f is homotopic
to a simpler one g where we can prove that deg g �= 0. This is a strategy that can be applied
to prove the existence of solutions to VIs. An alternative approach is to use the fixed point
theorem of Brouwer.

Lemma 2.18. Assume K ⊆ X = Rn and K is closed and convex. Suppose that F is
continuous and is semicoercive in the sense that there are a z0 ∈ K and R > 0 such that
〈x− z0, F(x)〉> 0 for ‖x‖ ≥ R and x ∈ K . Then solutions exist for the VI

z ∈ K and 〈 z̃− z, F(z)+q〉 ≥ 0 for all z̃ ∈ K .

Proof. Suppose G is semicoercive: 〈x− z0, G(x)〉> 0 for ‖x‖ ≥ R and x ∈ K . Then it is
impossible for VI(G, K ) to have a solution z with ‖z‖ ≥ R: 〈z0− z, G(z)〉 < 0 for z ∈ K
and ‖z‖ ≥ R. We will assume that R > ‖z0‖.

Let G(x) := JX (x − z0). Now we can construct a homotopy between the function
x #→ �nor(x ; G, K ) and x #→ �nor(x ; F , K ) where 〈x− z0, F(x)〉 > 0 for ‖x‖ ≥ R and
x ∈ K . Let H (s, x)= s F(x)+ (1− s) JX (x− z0). Then, for x ∈ K , ‖x‖ ≥ R,

〈x− z0, H (s, x)〉 = s 〈x− z0, F(x)〉+ (1− s) (x− z0, x− z0)X > 0

since both 〈x− z0, F(x)〉> 0 and (x− z0, x− z0)X = ‖x− z0‖2
X > 0. Thus

x #→�nor(x ; H (s, ·), K )= H (s,�K (x))+ JX(x−�K (x))

is a suitable homotopy between �nor(·; F , K ) and �nor(·; G, K ).
What remains now is to find the degree of �nor(·; G, K ). Now

�nor(x ; G, K )= G(�K (x))+ JX(x−�K (x))

= JX (�K (x)− z0+ x−�K (x))= JX (x− z0).

There is only one solution to�nor(x)= 0: x = z0. The Jacobian matrix∇�nor(x ; G, K )= I
for all x , so deg�nor(·; G, K )= sgn det∇�nor(z0; G, K )=+1. Thus deg�nor(·; F , K )=
+1, and so there is at least one zero �nor(z) = 0, and so VI(F , K ) has a solution z ∈ K ,
‖z‖ ≤ R.

For infinite-dimensional problems we also need some compactness property, weak
continuity, or similar property of F in order to establish the existence of solutions. See, for
example, Section 2.5 on pseudomonotonicity.

Uniqueness holds for solutions of VIs if F is strictly monotone: for any z1, z2 ∈ K
with z1 �= z2,

〈z1− z2, F(z1)− F(z2)〉> 0. (2.48)

Lemma 2.19. If F : X → X ′ is strictly monotone, then there is at most one solution of
VI(F , K ) for any closed, convex K ⊂ X.
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Proof. Suppose z1, z2 ∈ K are two solutions of VI(F , K ). Then, since z1, z2 ∈ K ,

0≤ 〈z2− z1, F(z1)〉 ,
0≤ 〈z1− z2, F(z2)〉 .

Adding these inequalities gives

〈z2− z1, F(z1)− F(z2)〉 ≥ 0,

which contradicts strict monotonicity of F unless z1 = z2. Thus solutions are unique.

Existence and uniqueness follow from a single condition, at least for finite-dimensional
problems: F : X → X ′ is strongly monotone if there is a constant η > 0 such that

〈z1− z2, F(z1)− F(z2)〉 ≥ η‖z1− z2‖2 for all z1, z2 ∈ X . (2.49)

Strong monotonicity implies semicoercivity as described above.

Lemma 2.20. If F : X → X ′ is strongly monotone with constant η > 0 and K ⊆ X = Rn

is closed and convex, then solutions for VI(F , K ) exist and are unique. Furthermore, if z1
solves VI(F+q1, K ) and z2 solves VI(F+q2, K ), then ‖z1− z2‖ ≤ ‖q1−q2‖/η.

Proof. Pick z0 ∈ K . Then

〈z− z0, F(z)− F(z0)〉 ≥ η‖z− z0‖2 ,

so 〈z− z0, F(z)〉 ≥ η‖z− z0‖2+〈z− z0, F(z0)〉 ≥ ‖z− z0‖ (η‖z− z0‖−‖F(z0)‖), which
is positive for ‖z‖ > ‖z0‖+ ‖F(z0)‖/η. Then by Lemma 2.18 solutions of (2.39) exist.
Solutions are unique since strong monotonicity implies strict monotonicity.

To show F + q monotone, note that (F+q)(z1)− (F+q) (z2) = F(z1)− F(z2) so
that F+q also satisfies (2.49) with the same η > 0. Now, for any z̃ ∈ K ,

〈 z̃− z1, F(z1)+q1〉 ≥ 0,

〈 z̃− z2, F(z2)+q2〉 ≥ 0.

Putting z̃ = z2 in the first inequality and z̃ = z1 in the second and adding the inequalities
give

〈z2− z1, F(z1)− F(z2)〉+ 〈z2− z1, q1−q2〉 ≥ 0.

Thus

‖z2− z1‖ ‖q1−q2‖ ≥ 〈z2− z1, F(z2)− F(z1)〉 ≥ η‖z2− z1‖2 .

Dividing by ‖z2− z1‖ gives the desired bound on ‖z2− z1‖.

The final conclusion of this lemma shows that if F is strongly monotone, then the
solution operator is not only well defined but is also Lipschitz with Lipschitz constant
≤ 1/η. This carries over to the infinite-dimensional case, which we now consider.
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2.3.5 Existence of solutions for infinite-dimensional problems

Proofs of existence of solutions for infinite-dimensional VIs are usually based on either
monotone operator arguments or on compactness arguments.

We start with a lemma, which shows how we can use strong monotonicity in the
context of infinite-dimensional problems to show how to solve “nearby” VIs.

Lemma 2.21. Suppose F : X → X ′ is strongly monotone in the sense that

〈z1− z2, F(z1)− F(z2)〉 ≥ η‖z1− z2‖2
X , η > 0, (2.50)

and that solutions exist for VI(F+q , K ) for all q ∈ X ′. Suppose also that G : X → X ′ is
Lipschitz with constant L < η. Then solutions exist for VI(F+G+q , K ) for all q ∈ X ′.

Proof. Let solF ,K : X ′ → X be the map such that solF ,K (q)= z, where z solves VI(F +
q , K ). Since F is strongly monotone, solF ,K is well defined and Lipschitz with constant
1/η, as can be seen from the last conclusion of Lemma 2.20.

Now for q ∈ X ′ consider the iteration where z(k+1) is the solution of VI(F+G(z(k))+
q , K ). That is, z(k+1) = solF ,K

(
G(z(k))+q

)
. The mapping T : X → X given by T (z) =

solF ,K (G(x)+q) is a contraction mapping since it is Lipschitz with constant L/η < 1.
Thus there is a fixed point; call it z∗. Then z∗ is the (unique) solution of VI(F +G(z∗)+
q , K ); that is,

z∗ ∈ K and
〈
z̃− z∗, F(z∗)+G(z∗)+q

〉≥ 0 for all z̃ ∈ K .

That is, z∗ solves VI(F+G+q , K ).

This can be used to show that solutions exist for VI(F , K ), where F is strongly
monotone and Lipschitz, and K ⊆ X , with X a Hilbert space. Note that we do not identify
X with X ′, even though X is a Hilbert space.

Theorem 2.22. Suppose F : X → X ′ is strongly monotone in the sense of (2.50) and
Lipschitz with X a Hilbert space. Then, for any closed convex set K ⊆ X, VI(F + q , K )
has a unique solution for any q ∈ X ′.

Proof. Let JX : X → X ′ be the duality map J (x)= (x , ·)X . Since it is a continuous linear
map, it is also Lipschitz. Also, JX is strongly monotone in the sense of (2.50) since for all
x ∈ X

〈JX (x), x〉X ′×X = (x , x)X = ‖x‖2
X (η = 1).

First we show that VI(JX + q , K ) has a solution for all q ∈ X ′. That is, we want
to find z ∈ K such that 〈 z̃− z, JX (z)+q〉X×X ′ ≥ 0 for all z̃ ∈ K . From the definition of
JX , this amounts to requiring that ( z̃− z, z+ J−1

X (q))X ≥ 0 for all z̃ ∈ K . From (B.6),
z = �K (−J−1

X (q)), so that VI(JX + q , K ) has a solution for all q ∈ X ′. Let L J be the
Lipschitz constant of JX , and L F be the Lipschitz constant of F .

We now create a homotopy between JX and F :

H (s, x)= (1− s) JX (x)+ s F(x).
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For all 0 ≤ s ≤ 1, H (s, ·) is Lipschitz continuous with the Lipschitz constant bounded by
max(L J , L F ). The Lipschitz constant of H (s, ·)−H (s′, ·) is bounded by

∣∣s− s′
∣∣ max(L J , L F ).

Now H (s, ·) is strongly monotone in the sense of (2.50) for all 0≤ s ≤ 1 since

〈H (s, x1)− H (s, x2), x1− x2〉
= (1− s)〈JX (x1)− JX (x2), x1− x2〉+ s 〈F(x1)− F(x2), x1− x2〉
≥ (1− s) ‖x1− x2‖2

X + s η ‖x1− x2‖2
X

≥min(1, η) ‖x1− x2‖2
X .

We now show that VI(H (s, ·)+ q , K ) has a solution for all q ∈ X ′ and all 0 ≤ s ≤ 1. Let
δ = min(1, η)/(2(L J + L F )); we choose this value so that if 0 ≤ s, s′ ≤ 1, and

∣∣s− s′
∣∣ ≤

δ, then the Lipschitz constant of H (s, ·)− H (s′, ·) is less than or equal to min(1, η)/2 <

min(1, η), and so by Lemma 2.20, if VI(H (s, ·)+q , K ) has a solution for all q ∈ X ′, then
VI(H (s′, ·)+q ′, K ) has a solution for all q ′ ∈ X ′. Now VI(H (0, ·)+q , K )=VI(JX+q , K )
has a solution for all q ∈ X ′ by the preceding paragraph. We can show by induction that
VI(H (kδ, ·)+ q , K ) has a solution for k = 0, 1, 2, . . . , *1/δ+ and any q ∈ X ′. For any 0 ≤
s ≤ 1 there is a k = 0, 1, 2, . . . , *1/δ+ such that |s− kδ| ≤ δ/2, so that VI(H (s, ·), K ) has a
solution, as desired.

In particular, we can conclude that for s = 1, VI(H (1, ·)+ q , K ) = VI(F + q , K )
has a solution for any q ∈ X ′. That the solution is unique follows as F + q is strongly
monotone.

Theorem 2.22 applies to strongly monotone functions F : X → X ′, and yet our finite-
dimensional results in Lemma 2.18 require only coercivity. Here is one way in which we
can extend Theorem 2.22 to cover situations of this kind.

Theorem 2.23. Suppose that F : X → X ′ is strongly monotone in the sense of (2.50),
G : X → X ′ is a compact operator, and 〈z, F(z)+G(z)〉> 0 for all z ∈ K , where ‖z‖ ≥ R.
Then VI(F+G, K ) has a solution.

Proof. Let solF ,K : X ′ → X be the map solF ,K (q) = z, where z solves VI(F + q , K ).
Since F is strongly monotone with monotonicity constant η > 0, solF ,K is Lipschitz with
Lipschitz constant 1/η. To solve VI(F +G, K ), we need to find z∗ such that z∗ solves
VI(F+G(z∗), K ); in other words, we want to find z∗ such that z∗ = solF ,K (G(z∗)). From
the inequality 〈z, F(z)+G(z)〉> 0 for all z ∈ K , where ‖z‖ ≥ R, there can be no solution z
with ‖z‖> R. Thus we can restrict our attention to the ball B = { z ∈ X | ‖z‖X ≤ R }. Now
z #→ solF ,K (G(z)) is a map B → B .

Since G is a compact operator, it maps bounded sets to precompact sets, and solF ,K
maps precompact sets to precompact sets by continuity of solF ,K . Thus any z∗ must lie
in the closure solF ,K (G(B)), which is a compact set. Furthermore, its closed convex hull
cosolF ,K (G(B)) is also compact (by Mazur’s lemma), and we can consider the restriction
of z #→ solF ,K (G(z)) to this compact, convex set. We can then apply the Leray–Schauder
fixed point theorem (Proposition A.13) to show that there must exist a z∗ ∈ cosolF ,K (G(B))
such that z∗ = solF ,K (G(z∗)), and therefore that z∗ solves VI(F+G, K ), as desired.

For more approaches to VIs in infinite-dimensional spaces, see the section on pseu-
domonotone operators (Section 2.5).
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2.3.6 Convex functions and subdifferentials

Maximal monotone operators can be obtained from convex functions: a function φ : X →
R∪{∞} is convex if for all x , y ∈ X and 0≤ θ ≤ 1, we have φ (θx+ (1− θ )y)≤ θ φ(x)+
(1− θ ) φ(y). Note that we allow ∞ as a value: 0×∞ = 0; α+∞=∞ and α <∞ for
any real α; if α > 0, then α×∞=∞. However, we do not simultaneously allow −∞ as a
value since∞−∞ is undefined. The function φ is a proper convex function if it is convex
and φ(x) <∞ for some x ∈ X . The domain of φ is

domφ = { x ∈ X | φ(x) <∞} .

Usually we also require that φ be lower semicontinuous. Associated with a convex function
φ is the epigraph of φ, which is a convex set:

epiφ =
{[

x
s

]
| s ≥ φ(x)

}
⊂ X ×R.

If φ is lower semicontinuous, then epiφ is a closed set. Epigraphs are important, as they
allow us to apply results for convex sets (such as the separating hyperplane theorem) to
prove things about convex functions.

Associated with a proper lower semicontinuous convex function φ : X →R∪{∞} is
its Fenchel dual φ∗ : X ′ → R∪{∞}:

φ∗(ξ )= sup
x∈X

〈ξ , x〉−φ(x),

which is also proper, convex, and lower semicontinuous. Properties of Fenchel duals are
given in Theorem B.15.

The subdifferential of a convex function φ is a set-valued function ∂φ : X → P(X ′)
given by

∂φ(x)= {
w ∈ X ′ | φ(y)≥ φ(x)+〈w, y− x〉 for all y ∈ X

}
. (2.51)

Subdifferentials generalize the notion of gradient or derivative for smooth convex functions
in that ∂φ(x)= {∇φ(x)} if φ is differentiable at x . An overview of properties of subdiffer-
entials is given in Appendix B. The most important of these are given in Theorem B.14.
The subdifferential already has a number of the important properties of maximal monotone
operators: ∂φ(x) is always closed and convex (Theorem B.14(2)) and ∂φ has a closed graph
(Theorem B.14(3)).

2.4 Maximal monotone operators
The theory of maximal monotone operators was initially developed by Minty [172, 173] as
part of developing methods for solving electrical network problems with nonlinear resistors
[171]. This theory was taken up and extended by Brézis [41] from static problems to
dynamic problems.
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2.4.1 Main properties

A monotone operator on a Hilbert space X is a set-valued function � : X → P(X ′) such
that

〈y1− y2, x1− x2〉X ′×X ≥ 0 (2.52)

for all y1 ∈�(x1), y2 ∈�(x2).

A set-valued function � : X → P(X ′) is a maximal monotone operatorif � is a monotone
operator, and the only monotone operator �̃, where �(x)⊆ �̃(x) for all x , is �̃=�. If X is
a Hilbert space, we often identify X with X ′ and consider set-valued maps � : X → P(X )
as (maximal) monotone operators. We also refer to single-valued functions φ : X → X ′
as being (maximal) monotone operators by identifying φ with the set-valued map �(x)=
{φ(x)} for all x .

The function s #→ Sgn(s) given by

Sgn(s)=
 {+1} , s > 0,

[−1,+1] , s = 0,
{−1} , s < 0,

is a maximal monotone operator R→ P(R). That it is monotone is easy to establish;
that it is maximal is also fairly easy. Suppose �̃ : R→ P(R) is a monotone extension of
Sgn: Sgn(s) ⊆ �̃(s) for all s. If there is a y ∈ �̃(s)\Sgn(s), for some s, we consider the
three different cases: s > 0, s = 0, and s < 0. First, for s > 0, y �= +1. If y > +1, then
choose 0 < s < s′ so that+1∈ Sgn(s′)⊆ �̃(s′). Then (y− (+1))

(
s− s′

)
< 0, contradicting

monotonicity. If y < +1, then choose 0 < s′ < s so that again +1 ∈ Sgn(s′) ⊆ �̃(s′).
Then (y− (+1))

(
s− s′

)
< 0, again contradicting monotonicity. Thus we cannot have any

extension y ∈ �̃(s)\Sgn(s) for s > 0. Similar arguments show that we cannot have y ∈
�̃(s)\Sgn(s) for s < 0. Now we consider s = 0. If y ∈ �̃(0)\Sgn(0), then either y >

+1 or y < −1. In the first case, choose s′ > 0 and y ′ = +1 ∈ Sgn(s′) ⊆ �̃(s′). Then
(y− (+1))

(
0− s′

)
< 0, contradicting monotonicity. On the other hand, if y <−1, choose

s′ < 0 and y ′ = −1 ∈ Sgn(s′) ⊆ �̃(s′). Then (y− (−1))
(
0− s′

)
< 0, again contradicting

monotonicity. Thus �̃= Sgn, and so Sgn is maximal monotone.
It is possible for a maximal monotone function to have the empty set as a value.

Consider, for example, � : R→ P(R) given by

�(x)=
 {0} if x > 0,
−R+ if x = 0,
∅ if x < 0.

The graph of this function is shown in Figure 2.5. This is maximal monotone, as can easily
be checked: x+�(x)= y has one and only one solution in x : x =max(y, 0).

Every monotone set-valued function has a maximal monotone extension, thanks to
Zorn’s lemma.

Maximal monotone operators have some important properties for differential incl-
usions.

Downloaded 03 Nov 2011 to 160.36.192.127. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php



56 Chapter 2. Static Problems

x

Φ(   )x

Figure 2.5: Example of maximal monotone function with a domain that is not the whole
space, R.

Lemma 2.24. If � : X → P(X ) is a maximal monotone operator, then

1. � has a closed graph, even in the strong×weak topology;

2. �(x) is a closed, convex set for all x ∈ X;

3. �(x) �= ∅ for some x ∈ X (that is, dom� �= ∅).

Proof.

1. Consider the set-valued map �̃ where graph�̃ = graph�, which is an extension of
�. But �̃ is also monotone. To see this, suppose y1 ∈ �̃(x1), y2 ∈ �̃(x2). Then there
are sequences (x (k)

1 , y(k)
1 )→ (x1, y1) and (x (k)

2 , y(k)
2 )→ (x2, y2) in the strong×weak

topology as k→∞ where (x (k)
1 , y(k)

1 ), (x (k)
2 , y(k)

2 ) ∈ graph�. Since 〈y(k)
1 − y(k)

2 , x (k)
1 −

x (k)
2 〉 ≥ 0 as � is monotone, taking limits as k →∞ we see that 〈y1− y2, x1− x2〉 ≥

0. Thus �̃ is a monotone extension of �. Since � is maximal monotone, �̃ = �,
and so graph�= graph� is closed.

2. Suppose that �(x∗) is not convex. Then there must be a pair ỹ1, ỹ2 ∈ �(x∗) and
0 < θ < 1 such that y∗ = θ ỹ1+ (1− θ )ỹ2 �∈�(x∗). Let �̃(x)= �(x) for all x �= x∗
and �̃(x∗)=�(x)∪{y∗}. We show that �̃ is monotone: The monotonicity condition
〈y1− y2, x1− x2〉 ≥ 0 for y1 ∈ �̃(x1), y2 ∈ �̃(x2) can fail only if one of x1 and x2 is
x∗ and one of y1 and y2 is y∗. Without loss of generality, suppose that x2 = x∗ and
y2 = y∗. Then the monotonicity condition becomes

0 ≤ 〈
y1− y∗, x1− x∗

〉
= θ

〈
y1− ỹ1, x1− x∗

〉+ (1− θ )
〈
y1− ỹ2, x1− x∗

〉
,

which is true since ỹ1, ỹ2 ∈�(x∗) and � is monotone.

Since � is maximal monotone, �̃=� and so y∗ ∈�(x∗), contradicting our assump-
tion. Thus �(x) must be convex, no matter what x ∈ X is chosen.
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3. If �(x)= ∅ for all x , then we can set �̃(x)= {0} for all x , which is a strict monotone
extension, so � cannot be maximal monotone.

Showing that a set-valued map � : X → P(X ′) is monotone is usually straightfor-
ward. Showing the “maximal” part is harder. The following theorem due to Minty [173]
and Browder gives a characterization of monotone maps that are also maximal monotone.
The method of proof is based on Borwein [34] and Borwein and Zhu [36], rather than the
approach of Brézis [41]. The approach here is based on convex functions, subdifferentials,
and Fenchel duality, which are described in Appendix B, which the reader may wish to
review.

Theorem 2.25 (Minty–Browder). If X is a Hilbert space and� : X →P(X ′) is monotone,
then � is maximal monotone if and only if for each y ∈ X ′ there is a unique solution x to
the inclusion y ∈ JX (x)+�(x), where JX : X → X ′ is the standard duality map for X.

This result in the case when X is a reflexive space and JX is the associated duality
map given by JX = ∂( 1

2 ‖·‖2
X ) is known as Rockafellar’s theorem.

First, if � is monotone and JX +� is surjective, then � is maximal monotone. To
see this, suppose that �̃ is an extension to � but JX +� is surjective. Suppose that ξ ∈
�̃(x)\�(x) and let η = JX (x)+ ξ . Since JX +� is surjective, there is a z ∈ X where
η = JX (z)+ ζ ∈ JX (z)+�(z). Now, if �̃ were also monotone, then

0= 〈η−η, x− z〉 = 〈JX (x− z), x− z〉+ 〈ξ − ζ , x− z〉
≥ ‖x− z‖2

X .

This implies z = x ; but then ζ = ξ , which contradicts ξ ∈ �̃(x)\�(x). So �̃ cannot be
monotone, and so � is maximal monotone.

The converse is much harder. The proof used here is based on the Fitzpatrick function
F� : X × X ′ →R∪{∞} (see [36, 105]) for a maximal monotone operator �:

F�(x ,ξ )= sup
y,η:η∈�(y)

[〈η, x〉+ 〈ξ , y〉− 〈η, y〉] (2.53)

= 〈ξ , x〉− inf
y,η:η∈�(y)

〈η− x , y− x〉 .

From (2.53) it is clear that F� is a convex lower semicontinuous function. Since � is
monotone, 〈η− ξ , y− x〉 ≥ 0 whenever η ∈�(y) and ξ ∈�(x). Thus

F�(x ,ξ )≥ 〈ξ , x〉 . (2.54)

Equality holds in (2.54) if and only if 〈η− ξ , y− x〉 ≥ 0 for every pair (y,η) with η ∈�(y).
Note that we have equality if y = x or ξ = η. By maximality of �, this is equivalent to
ξ ∈�(x). Thus equality holds in (2.54) if and only if ξ ∈�(x).

We also need the following “sandwich lemma” of Borwein [34].

Lemma 2.26. Suppose f ,−g : X → R∪ {∞} are proper convex lower semicontinuous
functions, where f (x)≥ g(x) for all x ∈ X. Suppose also that

0 ∈ int (dom f −dom g) .
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Then there is a ψ ∈ X ′ such that

f (x)− g(y)≥ 〈ψ , x− y〉 .
Proof. Let h(u) = infx∈X f (x)− g(x− u) = ( f � (−g(−·))) (u), where ψ �χ is the inf-
convolution of convex functions ψ and χ . Thus h is proper and convex. Note that h(0)≥ 0.
If 0∈ int(dom f −domg), then domh contains an open ball around zero (see Lemma B.19);
thus h is Lipschitz continuous near zero and ∂h(0) �= ∅. Chooseψ ∈ ∂h(0), so h(u)≥ h(0)+
〈ψ , u〉. Unwrapping the definition of h we get f (x)− g(x− u) ≥ h(0)+〈ψ , u〉 ≥ 〈ψ , u〉.
Setting u = x− y gives the desired result.

Rather than simply prove surjectivity of JX +� for maximal monotone �, we show
surjectivity of JX + ∂ f +� for f , a proper convex lower semicontinuous function. This
extension is not much harder than showing surjectivity of JX +�, and it can be used to
show maximal monotonicity of �+� for maximal monotone � and � under some mild
but important conditions. Recall from Section B.2 that a proper lower semicontinuous
convex function ϕ : X → R∪{∞} has a dual function ϕ∗ : X ′ → R∪{∞} where ϕ(x)+
ϕ∗(ξ ) ≥ 〈ξ , x〉 with equality if and only if ξ ∈ ∂ϕ(x), or equivalently, x ∈ ∂ϕ∗(ξ ).

Theorem 2.27. If � : X → P(X ′) is maximal monotone, f : X → R∪ {∞} is a proper
convex lower semicontinuous function, and X is a Hilbert space, then JX + ∂ f +� is
surjective, provided that

0 ∈ int
[
dom�−dom∂ f

]
.

Proof. We show that zero is in the image of JX +∂ f +�; for any η ∈ X ′, we simply repeat
the arguments with � replaced by �− η to show that η is in the image of JX + ∂ f +�.
Note that since f is a proper convex lower semicontinuous function, by the separating
hyperplane theorem applied to epi f and the point (x , f (x)−1) with x ∈ dom f , there are
a ψ ∈ X ′ and β ∈R where f (x)≥ 〈ψ , x〉+β.

Let f J (x)= f (x)+ 1
2 ‖x‖2

X for all x . Now f J is also a proper convex lower semicon-
tinuous function. Let G(x ,ξ ) = − f J (x)− f ∗J (−ξ ), which is a concave function G : X ×
X ′ → R∪{−∞}. By Theorem B.15, −G(x ,ξ ) ≥ 〈−ξ , x〉 = −〈ξ , x〉 for all x and ξ , with
equality if and only if −ξ ∈ ∂ f J (x)= ∂ f (x)+ JX (x). Note that dom f ∗J = X ′ since for any
ξ ∈ X ′,

f ∗J (ξ )= sup
x
〈ξ , x〉− f J (x)

≤ sup
x
‖ξ‖X ′ ‖x‖X +|β|+‖ψ‖X ′ ‖x‖X − 1

2
‖x‖2

X

≤ |β|+ 1

2

(‖ξ‖X ′ + ‖ψ‖X ′
)2

< +∞.

Thus F�(x ,ξ )≥ 〈ξ , x〉 ≥ G(x ,ξ ) for all x and ξ . Now domG ⊇ dom f × X ′. On the
other hand, dom F� ⊇ graph� since F�(x ,ξ )= 〈ξ , x〉<+∞ whenever ξ ∈�(x). So

dom F�−domG ⊇ (dom�−dom f )× X ′,

which contains zero in its interior by assumption. Then, by Lemma 2.26, there is (ζ , z) ∈
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X ′ × X = (
X × X ′

)′ (since X is reflexive), where

0 ≤ F�(x ,ξ )−G(y,η)−〈(ζ , z) , (x ,ξ )− (y,η)〉
= F�(x ,ξ )−G(y,η)−〈ζ , x− y〉− 〈z, ξ −η〉 (2.55)

for all x , y ∈ X and ξ , η ∈ X ′.
Our task now is to show that ζ ∈�(z) and−ζ ∈ ∂ f J (z), as then 0= ζ − ζ ∈ JX (z)+

∂ f (z)+�(z). To do this we show that we have equalities F�(z,ζ )= 〈ζ , z〉 = G(z,ζ ).
Suppose ξ ∈ �(x). Then F�(x ,ξ ) = 〈ξ , x〉, so (2.55) becomes 〈ξ , x〉 −G(y,η) ≥

〈ζ , x− y〉+ 〈z, ξ −η〉. Since dom f ∗J = X ′, there is a v ∈ X where v ∈ ∂ f ∗J (−ζ ). Then
G(v,ζ )=− f J (v)− f ∗J (−ζ )=−〈v,−ζ 〉 by Theorem B.15. Substituting y = v and η = ζ

into (2.55) give

〈ξ , x〉− 〈ζ , v〉 ≥ 〈ζ , x− v〉+ 〈z, ξ − ζ 〉 .
Rearranging this gives 〈ξ − ζ , x− z〉 ≥ 0. Since this is true for all (x ,ξ ) ∈ graph�, it
follows that ζ ∈�(z).

On the other hand, now substitute x = z and ξ = ζ into (2.55):

〈ζ , z〉−G(y,η)≥ 〈ζ , z− y〉+ 〈z, ζ −η〉 .
Subtracting 2 〈ζ , z〉 gives 〈−ζ , z〉−G(y,η) ≥ 〈−ζ , y〉+ 〈−η, z〉. Adding G(y,η) to both
sides and substituting the definition of G gives

〈−ζ , z〉 ≥ 〈−ζ , y〉− f J (y)+〈−η, z〉− f ∗J (−η).

Taking the supremum over both y and η gives

〈−ζ , z〉 ≥ f ∗J (−ζ )+ f ∗∗J (z) = f ∗J (−ζ )+ f J (z).

Since we have the reverse inequality by Theorem B.15, we have f J (z)+ f ∗J (−ζ )= 〈−ζ , z〉
and −ζ ∈ ∂ f J (z)= JX (z)+ ∂ f (z). Thus 0 ∈ JX (z)+ ∂ f (z)+�(z), as desired.

The Minty–Browder theorem (Theorem 2.25) follows from Theorem 2.27 by taking
f (x)= 0 for all x ∈ X , as then dom f = X and thus dom�−dom∂ f = X , which contains
zero in its interior.

The Minty–Browder theorem is also very important, as it immediately leads to the
resolvent operator Rλ : X ′ → X given by

Rλ = (JX +λ�)−1 for λ > 0. (2.56)

For maximal monotone �, Rλ is a well-defined, single-valued, and Lipschitz function
X ′ → X with Lipschitz constant one. Identifying X and X ′ so that JX = I (the iden-
tity operator), the resolvent can be used to construct Lipschitz approximations �λ, called
Yosida approximations, to �:

�λ = I − Rλ

λ
for λ > 0. (2.57)

If we cannot identify X and X ′, then

�λ = JX
J−1

X − Rλ

λ
JX = JX − JX Rλ JX

λ
for λ > 0. (2.58)
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These resolvents and approximations can be used to prove a large number of properties
of maximal monotone operators and are crucial for much of the application to differential
equations. The relationship between the resolvents and the Yosida approximations involves
the minimum-norm points of �(x):

�0(x)= y, where ‖y‖ =min{‖w‖ |w ∈�(x)}
=��(x)(0)

using the projection operator �K (x) of x onto a closed convex K .

Lemma 2.28. The resolvent Rλ is a monotone Lipschitz function X ′ → X with Lip-
schitz constant one; �λ is a monotone Lipschitz function X → X ′ with Lipschitz con-
stant 1/λ. The second Yosida approximation

(
�µ

)
λ
=�µ+λ. Also, whenever x ∈ dom�,

limλ↓0�λ(x)=�0(x) and ‖�λ(x)‖ ↑ ∥∥�0(x)
∥∥ as λ ↓ 0.

Proof. To show that Rλ is monotone and Lipschitz for λ > 0, suppose Rλy1 = x1 and
Rλy2 = x2. Equivalently, y1 ∈ JX (x1)+λ�(x1) and y2 ∈ JX (x2)+λ�(x2). Since λ� is
monotone,

0 ≤ 〈(y1− JX (x1))− (y2− JX (x2)) , x1− x2〉
= 〈y1− y2, x1− x2〉−‖x1− x2‖2

X ,

so

‖x1− x2‖2
X ≤ 〈y1− y2, x1− x2〉 ≤ ‖y1− y2‖X ′ ‖x1− x2‖X .

It is clear that 0 ≤ 〈y1− y2, x1− x2〉, so Rλ is monotone. Dividing by ‖x1− x2‖X
gives ‖x1− x2‖X ≤ ‖y1− y2‖X ′ , so Rλ is Lipschitz with constant one.

To show that �λ is monotone and Lipschitz, suppose �λx1 = y1 and �λx2 = y2.
This is equivalent to yi = JX (J−1

X − Rλ)JX xi/λ. Now Rλ JX xi = wi means that JX xi ∈
JXwi +λ�(wi ), so JXwi ∈ JX xi −λ�(wi ). Then yi = (JX xi − JXwi )/λ ∈�(wi ). Thus

〈y1− y2, x1− x2〉 = 〈y1− y2, w1−w2〉+ 〈y1− y2, (x1− x2)− (w1−w2)〉
≥ 〈y1− y2, (x1−w1)− (x2−w2)〉
= λ

〈
y1− y2, J−1

X y1− J−1
X y2

〉
= λ‖y1− y2‖2

X ′ .

This shows that �λ is both monotone and (after division by ‖y1− y2‖X ′ ) Lipschitz with
constant 1/λ.

To show that
(
�µ

)
λ
=�λ+µ, we note that

(
�µ

)
λ
= �̃λ, where

�̃λ =
(
JX − JX R̃λ JX

)
/λ, R̃λ =

(
JX +λ�µ

)−1 ,
�µ =

(
JX − JX Rµ JX

)
/µ,

Rµ = (JX +µ�)−1 .

We can unwrap the equation y = �̃λx to show that it is equivalent to y = �λ+µx . Note
that in the following, JX is linear, but the other operators usually are not. First y = �̃λx =(
JX x− JX R̃λ(JX x)

)
/λ. Let u = R̃λ(JX x), so y = (JX x− JX u)/λ. From the definition of
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R̃λ, JX u+ λ�µ(u) = JX x , so JX x − JX u = λ�µ(u). (Recall that �µ is a single-valued
function.) But �µ(u) = (

JX u− JX Rµ(JX u)
)
/µ. Let v = Rµ(JX u), so JX x − JX u =

λ�µ(u)= (λ/µ) (JX u− JXv). From the definition of Rµ, JXv+µ�(v) " JX u, or equiva-
lently JX u− JXv ∈ µ�(v).

We proceed by eliminating u in terms of x and v: since JX is a linear isomor-
phism, x − u = (λ/µ) (u− v). Then we can write u = (λv+µx)/ (λ+µ). Substitut-
ing this into JX u− JXv ∈ µ�(v) gives µ (JX x− JXv)/ (λ+µ) ∈ µ�(v); that is, JX x ∈
JXv+ (λ+µ)�(v), which means v = Rλ+µ(JX x). Finally,

y = (JX x− JX u)/λ= (JX x− JXv)/ (λ+µ)

= (
JX x− JX Rλ+µ(JX x)

)
/ (λ+µ)=�λ+µ(x),

as desired.
For the results concerning �0(x), let y0 = �0(x) ∈ �(x). Noting that �λ(x) ∈

�(Rλ(JX x)), by monotonicity of �,

0 ≤ 〈y0−�λ(x), x− Rλ(JX x)〉
= λ

〈
y0−�λ(x), J−1

X �λ(x)
〉

= λ
(〈

y0, J−1
X �λ(x)

〉
−‖�λ(x)‖2

X ′
)

.

Thus
‖y0‖X ′ ‖�λ(x)‖X ′ ≥

〈
y0, J−1

X �λ(x)
〉
≥ ‖�λ(x)‖2

X ′ ;

dividing by ‖�λ(x)‖X ′ gives ‖�λ(x)‖X ′ ≤ ‖y0‖X ′ =
∥∥�0(x)

∥∥
X ′ . Since �λ+µ = (�λ)µ,∥∥�λ+µ(x)

∥∥
X ′ ≤

∥∥�0
λ(x)

∥∥
X ′ = ‖�λ(x)‖X ′ , as �λ is single valued. Thus ‖�λ(x)‖ increases

as λ decreases.
Similarly,

∥∥�λ+µ(x)
∥∥2

X ′ ≤ 〈�λ(x), J−1
X �λ+µ(x)〉. So∥∥�λ+µ(x)−�λ(x)

∥∥2
X ′ =

∥∥�λ+µ(x)
∥∥2

X ′ + ‖�λ(x)‖2
X ′ −2

〈
�λ(x), J−1

X �λ+µ(x)
〉

≤ ‖�λ(x)‖2
X ′ −

∥∥�λ+µ(x)
∥∥2

X ′ .

Since ‖�λ(x)‖X ′ is bounded as λ ↓ 0 (by
∥∥�0

λ(x)
∥∥

X ′ ) and increasing, it has a limit. This
means that �λ(x) is a Cauchy sequence as λ ↓ 0, and thus it has a limit which we call y.
Now λ�λ(x)= JX x− JX Rλ(JX x)→ 0 as λ ↓ 0, so Rλ(JX x)→ x as λ ↓ 0. Now �λ(x) ∈
�(Rλ(JX x)), so the limit y ∈ �(x) as � has a closed graph. But from the arguments
regarding ‖�λ(x)‖X ′ , ‖y‖X ′ ≤

∥∥�0(x)
∥∥

X ′ . But the only way that this can be true is if
y =�0(x). That is, �λ(x)→�0(x) as λ ↓ 0, as desired.

While these results may seem somewhat technical, they will be very useful in under-
standing solutions of differential equations with maximal monotone operators.

2.4.2 More examples of maximal monotone operators

Maximal monotone functions � : R→ R are relatively easy to describe. They are essen-
tially single-valued monotone functions on an interval (a,b) with the jump discontinuities
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“filled in.” Except for the case �(x)=R for x = x∗ and �(x)=∅ otherwise, for each max-
imal monotone � : R→R there is an interval (a, b) (a or b possibly±∞) and a monotone
function φ : (a,b)→R such that if x is a point of continuity of φ, then�(x)={φ(x)}, and if
x is a point of discontinuity of φ, then �(x)= [

φ(x−), φ(x+)
]
, where φ(x−)= limz↑x φ(z)

and φ(x+)= limz↓x φ(z). If φ(b−) is finite, then �(b)= [φ(b−),∞); otherwise �(b)= ∅.
A similar rule applies at a: if φ(a+) is finite, then �(a)= (−∞, φ(a+)]; otherwise �(a)=
∅. If x �∈ [a, b], then �(x)= ∅.

The Sgn function can be obtained from the ordinary sgn function in this way, and the
function of Figure 2.5 can be obtained from the zero function on the interval (0,+∞).

As will be noted in the next section, subdifferentials of proper lower semicontinuous
convex functions also provide a class of maximal monotone operators. For a closed convex
set K the normal cone operator NK is a maximal monotone operator that can be represented
as a subdifferential.

Lemma 2.29. For any nonempty closed convex set K ⊆ X, where X is a Hilbert space, the
normal cone operator NK is a maximal monotone operator.

The proof of this will wait until the representation of NK as a subdifferential is given
in the next section. However, the normal cone operator is very useful, as it often gives a
way to impose hard constraints.

Other examples of maximal monotone operators include, for example, elliptic partial
differential operators such as −∇2 : H 1(�)→ H−1(�). Often we should be careful about
the choice of space X on which the operator acts so that we have an operator X → X ′.
Since −∇2 is a linear operator, all that is required to show that it is maximal monotone is
that it is defined on all of H 1(�) and that〈

u,−∇2u
〉
=

∫
�

u
(
−∇2u

)
dx ≥ 0 for all u ∈ H 1(�). (2.59)

To show this, we just need to note that since −∇2 is bounded H 1(�) → H−1(�), it is
enough to show that (2.59) holds for a dense subset of H 1(�), such as for smooth func-
tions u. In fact, we can use smooth functions u with ∂u/∂n = 0 on ∂� since making this
requires just a small change to u (and an O(1) change to ∇u) in a small neighborhood of
the boundary ∂�. Then we can use the classical divergence theorem:∫

�

u
(
−∇2u

)
dx =

∫
�

[∇ · (−u∇u)+∇u ·∇u] dx

=
∫
∂�

−u
∂u

∂n
d S+

∫
�

∇u ·∇u dx

=
∫
�

∇u ·∇u dx ≥ 0.

If φ is a proper lower semicontinuous convex function, then ∂φ is a maximal mono-
tone operator X → P(X ′). Monotonicity is easy to check: if g1 ∈ ∂φ(x1) and g2 ∈ ∂φ(x2),
then

φ(x2)−φ(x1) ≥ 〈g1, x2− x1〉 ,
φ(x1)−φ(x2) ≥ 〈g2, x1− x2〉 .
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Adding these inequalities gives

0≤ 〈g1− g2, x1− x2〉 .
Since this is true for all g1 ∈ ∂φ(x1) and g2 ∈ ∂φ(x2), ∂φ is a monotone map X → P(X ′).
Showing that it is maximal is more difficult. Fortunately this can be done using opti-
mization theory. First, we note that x∗ is a global minimizer of a proper convex lower
semicontinuous function if and only if 0 ∈ ∂φ(x∗) (Theorem B.14(6)).

We can now use the characterization of Theorem 2.25 to show that ∂φ is maximal
monotone.

Lemma 2.30. If X is a Hilbert space and φ : X → R∪{∞} is a proper lower semicontin-
uous convex function, then the subdifferential ∂φ : X → P(X ′) is maximal monotone.

Proof. We have just seen that ∂φ is monotone. Now we show that it is maximal. Since φ is
proper, there is x0 such that φ(x0) <∞. We first need to find a linear lower bound on φ. To
do this, we consider the point (x0, φ(x0)−1) �∈ epiφ. Thus by the separating hyperplane
theorem there is (w, β) ∈ X ′ ×R and ρ ∈ R such that 〈(w,β) , (x0,φ(x0)−1)〉 < ρ but
〈(w,β) , (x ,α)〉 ≥ ρ for all (x ,α) ∈ epiφ. In particular, since (x0,φ(x0)) ∈ epiφ, 〈w, x0〉+
βφ(x0)− β < ρ but 〈w, x0〉 + βφ(x0) ≥ ρ; hence β > 0. Now (x , φ(x)) ∈ epiφ for all
x ∈ X , so 〈w, x〉+βφ(x)≥ ρ for all x . Dividing by β > 0 gives φ(x)≥ ρ/β+〈−w/β, x〉.
Setting α0 := ρ/β and g0 :=−w/β, we have φ(x)≥ α0+〈g0, x〉 for all x ∈ X .

Now ψ : X → R∪{∞} is a proper lower semicontinuous convex function given by
ψ(z)= 1

2 ‖z‖2
X +φ(z)−〈y, z〉. Also, ψ(z)→∞ as ‖z‖X →∞:

ψ(z) ≥ 1

2
‖z‖2

X +α0+〈g0, z− x0〉− 〈y, z〉

≥ 1

2
‖z‖2

X +α0−〈g0, x0〉−
(‖g0‖X ′ + ‖y‖X ′

)‖z‖X

→∞ as ‖z‖X →∞.

We can then apply Theorem B.13 to conclude that there is a global minimizer x∗. By
Theorem B.14(6), 0 ∈ ∂ψ(x∗). Since ∂ψ(x∗) = JX (x∗)+ ∂φ(x∗)− y, we have a solution
x = x∗ of the inclusion

y ∈ JX (x)+ ∂φ(x).

Since this holds for all y ∈ X ′, JX + ∂φ is surjective and ∂φ is a maximal monotone oper-
ator.

As a simple example, consider φ : R→R given by φ(x)= |x |; then ∂φ(x)= Sgn(x)
is a maximal monotone operator. Another example is the indicator function for a nonempty
closed convex set K ⊆ X :

IK (x)=
{

0, x ∈ K ,
∞, x �∈ K .

(2.60)

Note that IK is lower semicontinuous (since K is closed), convex (since K is convex), and
proper (since K �= ∅). Note that minimizing a lower semicontinuous convex function φ

over a closed convex set K corresponds to minimizing φ+ IK .
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An important connection between properties of convex sets and subdifferentials is
that ∂ IK (x)= NK (x), the normal cone for K at x .

Lemma 2.31. If K ⊆ X is a nonempty closed convex set, NK (x)= ∂ IK (x) for all x ∈ X.

Proof. (⊆) Suppose y ∈ NK (x). We show that y ∈ ∂ IK (x). Note that NK (x) �= ∅, so x ∈ K .
From the definition of NK (x), 〈y, z− x〉 ≤ 0 for all z ∈ K . Thus, for any z ∈ K , IK (z)= 0≥
〈y, z− x〉 = IK (x)+〈y, z− x〉. If z �∈ K , then IK (z)=+∞, so IK (z)≥ IK (x)+〈y, z− x〉
as well. Thus y ∈ ∂ IK (x).

(⊇) Suppose that y ∈ ∂ IK (x). Then, IK (x) <∞, so x ∈ K . Then, for any z ∈ K ,
IK (z)≥ IK (x)+〈y, z− x〉, so 0≥ 0+〈y, z− x〉. Thus y ∈ NK (x).

A consequence is that NK is a maximal monotone operator.
We can compute things like resolvents and Yosida approximations for NK for K ⊆

X : Rλ = (JX +λNK )−1. Then y = Rλx means that x ∈ JX y+ λNK (y), or equivalently
x− JX y ∈ λNK (y). Since NK (y) is a cone, we can absorb the factor of λ > 0 into NK (y).
Then, for any z ∈ K , 0 ≥ 〈x− JX y, z− y〉 = (J−1

X x − y, z− y)X . Thus y = �K (J−1
X x).

The Yosida approximation is then

(NK )λ (x)= λ−1 (JX − JX Rλ JX ) (x)

= λ−1
(

JX x− JX�K (J−1
X JX x)

)
= λ−1 JX (x−�K (x)) . (2.61)

2.4.3 Sums of maximal monotone operators

When is the sum of two maximal monotone operators also maximal monotone? The sum
of two monotone operators must be monotone: suppose � and � are maximal monotone
operators X → P(X ′). Then, whenever yi ∈�(xi ) and zi ∈�(xi ) for i = 1, 2, we have

〈(y2+ z2)− (y1+ z1) , x2− x1〉
= 〈y2− y1, x2− x1〉+ 〈z2− z1, x2− x1〉 ≥ 0.

But it is not immediately clear that �+� is maximal monotone. In fact, it can be false.
One of the simplest examples is given by

�(x)=
 +R+ if x =−1,

{0} if x <−1,
∅ if x >−1,

�(x)=
 −R+ if x =+1,

{0} if x >+1,
∅ if x <+1.

Note that the graph of �+� is empty!
Another example where dom�∩ dom� �= ∅ can be constructed in two dimensions

using normal cones. Let �= NC1 and � = NC2 , where C1 =
{

(x , y) | (x−1)2+ y2 ≤ 1
}

and C2 =
{

(x , y) | (x+1)2+ y2 ≤ 1
}
. Then NC1 (0,0) = R+e1 and NC2 (0,0) = −R+e1,
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where e1 = [1, 0]T . Furthermore, since dom� = C1 and dom� = C2, dom(�+�) =
dom�∩ dom� = C1 ∩C2 = {(0,0)}. But �(0,0)+�(0,0)= R+e1−R+e1 = Re1. For
�+� to be maximal monotone, I +�+� must be surjective; because the domain is just
one point, this means that �+� being maximal monotone implies that �(0,0)+�(0,0)=
R2, which is false. Thus �+� is not maximal monotone even though dom�∩dom� �= ∅.

Often �+� is maximal monotone for maximal monotone � and �; however, the
conditions are nontrivial and can cause significant complications. For example, if � is a
Lipschitz monotone function X → X ′ and � is maximal monotone, then �+� is maximal
monotone. The simplest general statement along these lines seems to be as follows.

Lemma 2.32. If � and � are maximal monotone X → P(X ′), X a Hilbert space, and

0 ∈ int [dom�−dom�] ,

then �+� is also maximal monotone.

We can prove this as an easy consequence of Theorem 2.27 as shown in [34, 35]. We
follow their approach here.

Proof. Note that �×� : X× X → X ′ × X ′ is also maximal monotone since JX×X = JX ×
JX and JX×X +�×� = (JX +�)× (JX +�) is surjective. Now let �= { (x , x) | x ∈ X },
the diagonal of X × X , and consider the operator �×�+ ∂ I� : X × X → P (

X ′ × X ′
)
.

Now dom�×�−dom∂ I� = dom�×dom�−�, which contains 1
2 (dom�−dom�)×

1
2 (dom�−dom�), which contains zero in its interior under the assumption that 0 ∈
int [dom�−dom�].

Thus we can apply Theorem 2.27 to show that JX×X +�×� + ∂ I� is surjec-
tive. For any ξ , η ∈ X ′ there are x , y ∈ X , where (ξ ,η) ∈ JX (x)× JX (y)+�(x)×�(y)+
∂ I�(x , y). But ∂ I�(x , y)= ∅ if x �= y, and if x = y, then ∂ I�(x , x) = N�(x , x)= �⊥ ={

(ζ ,−ζ ) | ζ ∈ X ′
}

since � is a linear subspace of X × X . That is, for some ζ ∈ X ′,

ξ ∈ JX (x)+�(x)+ ζ ,

η ∈ JX (x)+�(x)− ζ .

Adding the two inclusions gives

ξ +η ∈ 2 JX (x)+�(x)+�(x).

Thus 2 JX +�+� is surjective, so �+� is maximal monotone.

For example, consider X = H 1(�) and

K =
{

u ∈ H 1(�) | u(x)−ϕ(x)≥ 0 for all x ∈�
}

.

Then � = −∇2 : H 1(�) → H−1(�) = H 1(�)′ is maximal monotone. Now dom� =
H 1(�) = X , and since K is a closed convex set in H 1(�) = X , dom NK = K . Now
dom�− dom� = X − K = X , provided K �= ∅. Note, for example, that K �= ∅ if ϕ ∈
H 1(�). But X contains zero in its interior, and thus −∇2+ NK is a maximal monotone
operator X → P(X ′).

Another easy consequence of this result is an extension of Theorem B.14(7).
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Lemma 2.33. If φ, ψ : X → R∪{∞} are convex proper lower semicontinuous functions
and 0 ∈ int[dom∂φ−dom∂ψ], we have ∂ (φ+ψ)= ∂φ+ ∂ψ .

Proof. Note that ∂ (φ+ψ) (z) ⊇ ∂φ(z)+ ∂ψ(z) for all z. Now φ +ψ is proper since
dom∂φ ⊆ domφ and dom∂ψ ⊆ domψ , and our assumption implies that 0 ∈ domφ −
domψ . That is, there is a point x∗ ∈ domφ∩domψ so that x∗ ∈ dom(φ+ψ).

Each of ∂φ and ∂ψ is maximal monotone. Since 0 ∈ int [dom∂φ−dom∂ψ], we
can apply Lemma 2.32 to show that ∂φ+ ∂ψ is maximal monotone. Since ∂ (φ+ψ) is a
maximal monotone operator whose graph contains the graph of ∂φ+ ∂ψ , by maximality,
∂ (φ+ψ)= ∂φ+ ∂ψ .

An important special case of the formula ∂ (φ+ψ)= ∂φ+ ∂ψ that does not require
a constraint qualification like “0 ∈ int [dom∂φ−dom∂ψ]” is the case where φ = IK and
φ = IL with K and L convex polyhedral sets. In this case, ∂ IK (z)= NK (z) and ∂ IL(z)=
NL (z) are polyhedral cones. We assume that z ∈ K ∩ L.

Polyhedral sets can be represented in terms of linear inequalities:

K =
mK⋂
j=1

{
x | 〈ξ j , x

〉≥ α j
}

,

L =
mL⋂
j=1

{
x | 〈η j , x

〉≥ β j
}

.

The intersection is therefore also a polyhedral set:

K ∩ L =
mK+mL⋂

j=1

{
x | 〈ζ j , x

〉≥ γ j
}

,

with ζ j = ξ j for j ≤ mK and ζ j = η j−mK for j > mK , and similarly for γ j . If we set
J (z)= {

j | 〈ζ j , x
〉= γ j

}
, the tangent cone to K ∩ L can be written as

TK∩L(z)= {
x | 〈ζ j , x

〉≥ 0, j ∈ J (z)
}

.

The normal cone NK∩L (z)= TK∩L (z)◦ = −TK∩L(x)∗ can then be easily computed using
Lemma 2.34.

Lemma 2.34. If P = { x | 〈di , x〉 ≥ 0, i = 1, 2, . . . , m }, then

P∗ = cone{d1, d2, . . . , dm} .
Proof. (⊆) Suppose ξ ∈ P∗. If ξ �∈ cone{d1, d2, . . . , dm}, then there is a separating hyper-
plane

〈z, ξ〉< β,

〈z, η〉 ≥ β for all η ∈ cone{d1, d2, . . . , dm} .
Taking η= 0 we see that β ≤ 0. Note that 〈z, η〉 ≥ 0 for all η ∈ cone{d1, d2, . . . , dm}: for all
α≥ 0 we have αη ∈ cone{d1, d2, . . . , dm}, and so 〈z, αη〉 ≥ β. Dividing by α > 0 and taking
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α→∞ we get 〈z, η〉 ≥ 0. In particular, taking η= di we see that 〈z, di 〉 ≥ 0, and so z ∈ P .
Thus 〈z, ξ〉 ≥ 0≥ β > 〈z, ξ〉, which is a contradiction. Thus ξ ∈ cone{d1, d2, . . . , dm}.

(⊇) Suppose ξ ∈ cone{d1, d2, . . . , dm}. Then ξ =∑m
i=1 αi di with αi ≥ 0 for all i .

Then, if x ∈ P , we have 〈ξ , x〉 =∑m
i=1 αi 〈di , x〉 ≥ 0, so ξ ∈ P∗.

Returning to the matter of normal cones of polyhedral sets, this means that for z ∈
K ∩ L,

NK∩L (z)=−cone
{
ζ j |

〈
ζ j , z

〉= γ j
}

.

By using the same arguments for K and L separately,

NK (z)=−cone
{
ξ j |

〈
ξ j , z

〉= α j
}

,

NL (z)=−cone
{
η j |

〈
η j , z

〉= β j
}

.

But ζ j = ξ j if j ≤mK and ζ j = η j−mK otherwise, and comparison of the index sets shows
that indeed NK∩L (z)= NK (z)+ NL(z) as cone(A∪ B)= cone(A)+ cone(B).

Polyhedral sets arise sufficiently often enough that it is useful to realize that no
“constraint qualification” type of conditions need to be satisfied in order to set NK∩L =
NK + NL . This is also useful in the following section, where we show how Lagrange
multipliers can be incorporated into VIs.

2.4.4 VIs and Lagrange multipliers

A consequence of the equivalent formulation (2.45), 0 " F(z)+NK (z), for VI(F , K ) is that
we can have VIs with Lagrange multipliers representing certain types of convex constraints.
Consider, for example, VI(F , K ), where K = L ∩M with L and M being closed convex
sets:

z ∈ K & 0≤ 〈 z̃− z, F(z)〉 for all z̃ ∈ K .

From Lemma 2.32, we note that provided

0 ∈ int [L−M]= int [dom∂ IL −dom∂ IM ] ,

we have

NL∩M (z)= ∂ IL∩M (z)

= ∂ (IL + IM ) (z)

= ∂ IL (z)+ ∂ IM (z)

= NL (z)+ NM (z).

Note that if L and M are polyhedral sets, then by the previous section, we do not need any
constraint qualification to ensure that NL∩M (z)= NL (z)+ NM (z).

Hence z solves VI(F , K ) if and only if 0 ∈ F(z)+ NK (z)= F(z)+ NL (z)+ NM (z).
Thus there is a µ ∈ NM (z) where 0 ∈ F(z)+µ+ NL (z). Then 0 ∈ F(z)+µ+ NL (z). That
is,

z ∈ L & 0≤ 〈 z̃− z, F(z)+µ〉 for all z̃ ∈ L, (2.62)

µ ∈ NM (z). (2.63)
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To make the connections with Lagrange multipliers clearer, consider M to be generated by
some constraint functions:

M = { x | Ax = b and φ(x)≤ 0 } ,
where A : X → Y is a linear operator and φ is a convex proper lower semicontinuous
function. Furthermore, we assume that the Slater constraint qualification (B.22) holds
for φ; that is, there is an x̂ where Ax̂ = b and φ( x̂ ) < 0. We will also suppose that the
adjoint operator A∗ : Y ′ → X ′ has closed range (which is automatically true if X is finite
dimensional) and that φ is finite in a neighborhood of x̂ . Then, for z ∈ M ,

NM (z)= N{x |Ax=b}(z)+ N{x |φ(x)≤0}(z).

From the Slater constraint qualification (Lemma B.16), N{x |φ(x)≤0}(z)= cone∂φ(z) if φ(z)=
0 and N{x |φ(x)≤0}(z)= {0} if φ(z) < 0. On the other hand,

N{x |Ax=b}(z)= T{x |Ax=b}(z)◦

= { x | Ax = 0 }◦
= {ξ | 〈ξ , x〉 ≤ 0 for all x , where Ax = 0 }
= {ξ | 〈ξ , x〉 = 0 for all x , where Ax = 0 }
= (ker A)⊥ = range A∗.

Thus, provided range A∗ is closed, every element of N{x |Ax=b}(z) can be represented by
A∗λ. Thus we can pick µ ≥ 0 and ζ ∈ ∂φ(z), where

z ∈ L & 0≤ 〈
z̃− z, F(z)+ A∗λ+µζ

〉
(2.64)

for all z̃ ∈ L,

Az = b, (2.65)

0≥ φ(z)⊥ µ≥ 0, ζ ∈ ∂φ(z). (2.66)

The last conditions essentially recover the Karush–Kuhn–Tucker conditions on the La-
grange multiplier for inequality-constrained optimization (B.26). If φ(z) = maxi φi (z)
with smooth φi , then we can decompose ∂φ(z) = co {∇φi (z) | φi (z)= φ(z) } and obtain
Lagrange multipliers µi satisfying

z ∈ L & 0≤
〈̃

z− z, F(z)+ A∗λ+
∑

i

µi∇φi (z)

〉
for all z̃ ∈ L,

Az = b,

0≥ φi (z)⊥ µi ≥ 0 for all i .

In the extreme case, we can make L = X , the entire space, and then the conditions reduce
to the Karush–Kuhn–Tucker conditions

0= F(z)+ A∗λ+
∑

i

µi∇φi (z),

Az = b,

0≥ φi (z)⊥ µi ≥ 0 for all i .
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Of course, VI conditions have reentered through the complementarity conditions between
φi (z) and µi . Note that here F(z) is not necessarily the gradient of any function, so we are
not giving necessary conditions for a local minimum, but for a VI.

We can also proceed in the reverse direction, replacing a “VI with Lagrange multi-
pliers” of the form (2.62)–(2.63) with a standard VI over a restricted set. We start with the
“VI with Lagrange multipliers”:

z ∈ L & 0≤ 〈 z̃− z, F(z)+µ〉 for all z̃ ∈ L,

µ ∈ NM (z).

The condition that µ ∈ NM (z) implies that z ∈ M . Also, for any z̃ ∈ M , 〈 z̃− z, µ〉 ≤ 0.
Thus if z̃ ∈ L ∩M , 0≤ 〈 z̃− z, F(z)+µ〉 ≤ 〈 z̃− z, F(z)〉, so

z ∈ L ∩M & 0≤ 〈 z̃− z, F(z)〉 for all z̃ ∈ L ∩M ,

and z solves VI(F , L ∩M)= VI(F , K ).
Note that no constraint qualifications are needed for turning a “VI with Lagrange

multipliers” into a standard VI, just for the reverse operation.

2.5 Pseudomonotone operators
Pseudomonotonicity has at least two meanings, which we describe here.

There is pseudomonotonicity in the sense of Karamardian [139], which is the follow-
ing property: � : X → X ′ is pseudomonotone in the sense of Karamardian if

〈�(y), x− y〉 ≥ 0 implies 〈�(x), x− y〉 ≥ 0. (2.67)

There is also pseudomonotonicity in the sense of Brézis [40] for single-valued functions
and Browder [43] and Naniewicz and Panagiotopoulos [188] for set-valued maps: � : X →
P(X ′). It is pseudomonotonicity in the sense of Brézis et al. that we consider here, which
is defined by the following three conditions:

• �(x) is closed, convex, and bounded for each x ∈ X ;

• for any finite-dimensional space F ⊂ X , �|F is upper semicontinuous into X ′ in the
weak topology; and

• if xk ⇀ x weakly in X as k →∞, and yk ∈�(xk) satisfy

limsup
k→∞

Re 〈yk , xk− x〉 ≤ 0,

then for each z ∈ X there is a y ∈�(x) (y = y(z) can depend on z) such that

liminf
k→∞ Re 〈yk , xk− z〉 ≥ Re 〈y, x− z〉 .

The single-valued case has an excellent treatment in Zeidler [274, Chap. 27]. Pseudomono-
tone operators have found application to dynamic problems as well, such as in [153].

Downloaded 03 Nov 2011 to 160.36.192.127. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php



70 Chapter 2. Static Problems

The main result for coercive pseudomonotone operators (lim‖x‖→∞ infη∈�(x) 〈η, x〉/
‖x‖ = +∞) is the following.

Theorem 2.35. If � : X → P(X ′), with X a reflexive Banach space, is pseudomonotone,
is bounded on bounded sets, and is coercive, then � is surjective.

Unlike the Minty–Browder or Rockafellar theorems for maximal monotone opera-
tors, there is no uniqueness of x satisfying η ∈ �(x). Thus we do not have resolvents in
general for pseudomonotone operators. Also, for single-valued functions in finite dimen-
sions, pseudomonotonicity reduces to continuity. So pseudomonotonicity becomes useful
only in infinite dimensions.

Rather than prove Theorem 2.35 directly, we prove a generalization for VIs.

Theorem 2.36. Suppose � : K → P(X ′) is pseudomonotone with nonempty values, where
K is a closed convex subset of X, a reflexive Banach space, and � is weakly coercive on
K in the sense that there are a fixed z0 ∈ K and number R where 〈η, x− z0〉 > 0 for all
η ∈�(x), where x ∈ K and ‖x‖ ≥ R. Suppose also that � maps bounded sets to bounded
sets. Then VI(�, K ) has a solution.

Note that VI(�, K ) for set-valued � is the problem of finding z and ζ ∈�(z), where

z ∈ K & 0≤ 〈 z̃− z, ζ 〉 for all z̃ ∈ K .

If we take K = X in Theorem 2.36, we get Theorem 2.35 as an immediate corollary. The
proof below is based on a proof of a related result by de Figueiredo [72].

Proof. Let F be the set of all finite subsets of K that contain z0. For each F ∈ F let xF
and ηF ∈�(xF ) solve the VI

xF ∈ co(F) & 0≤ 〈z− xF , ηF 〉 for all z ∈ co(F). (2.68)

There is a solution to this VI, which we now show. First, co(F) is finite dimensional and
is contained in the finite-dimensional space span F . Since span F is finite dimensional, we
can give it an inner product which generates an equivalent norm.

In the case that � is single valued, � being pseudomonotone implies that � is con-
tinuous on co(F). Then (2.68) is equivalent to

0 ∈�(xF )+ Nco(F )(xF )

and to

xF =�co(F )

(
xF − J−1

span F (�(xF ))
)

.

But x #→�co(F )
(
x− J−1

span F (�(x))
)

is a continuous function from co(F) to co(F), and so
by Brouwer’s theorem (Proposition A.11) there is a fixed point xF solving (2.68).

In the case that � is multivalued, we use a Galerkin approximation �F : co(F)→
(span F)′ defined by

�F (x)= {
η′ | η′ = η|span F , η ∈�(x)

}
.
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This is upper semicontinuous with closed convex values. We can approximate �F by a
single-valued function�F ,ε so that the Hausdorff distance between graph�F and graph�F ,ε
is less than ε for any given ε > 0. This can be done, for example, by using a piecewise affine
approximation to a selection of �F on a triangulation of F . Then we can solve the VI

xF ,ε ∈ co(F) & 0≤ 〈
z− xF ,ε , �F ,ε(xF ,ε)

〉
for all z ∈ co(F). (2.69)

Since co(F) is compact and � maps bounded sets to bounded sets, we can pick a convergent
subsequence (also denoted xF ,ε) as ε ↓ 0, so that xF ,ε→ xF and �F ,ε(xF ,ε)⇀ηF ∈�(xF )
weakly in X ′. We know that ηF ∈�(xF ) since � is upper semicontinuous on co(F). Taking
limits of (2.69) as ε ↓ 0 gives (2.68), so we have a solution of VI(�, co(F)).

Note that all solutions of VI(�, co(F)) have ‖x‖< R, as if ‖x‖ ≥ R, 〈η, z0− x〉< 0
for all η ∈�(x). Thus xF ∈ K ∩ R BX .

For G ∈ F , let VG = { xF | F ∈F and G ⊆ F }. Now VG ⊂ K ∩ R BX . Let A
w

denote the weak closure of A. Since K ∩ R BX is closed and convex, it is weakly closed.
Since X is reflexive, R BX is weakly compact by Alaoglu’s theorem. As K is weakly closed
(being convex and closed), K ∩ R BX is weakly compact. Since VG

w
is a weakly closed

subset of K ∩ R BX , VG
w

is also weakly compact.
The sets VG

w
with G ∈ F have the finite intersection property: for any finite collec-

tion of such sets VG1

w
, VG2

w
, . . . , VGm

w
,

VG1

w∩VG2

w ∩·· ·∩VGm

w ⊇ VG1 ∩VG2 ∩·· ·∩VGm

= VG1∪G2∪···∪Gm " xG1∪G2∪···∪Gm ,

so VG1

w∩VG2

w∩·· ·∩VGm

w �= ∅. Thus
⋂

G∈F VG
w �= ∅ by the finite intersection property

(Lemma A.1). Let x̂ ∈⋂
G∈F VG

w
.

We now show that x̂ gives a solution of VI(�, K ). First, x̂ ∈ K ∩ R BX ⊆ K . So all
we need to show is that 〈z− x̂ , η〉 ≥ 0 for all z ∈ K with some η ∈�( x̂ ).

Pick F ∈F , where x̂ , z ∈ F . Since x̂ ∈ VF
w

, there must be a sequence xk := xFk ⇀ x̂
where F ⊆ Fk . If ηk = ηFk , we have

0≥ 〈ηk , xk− x̂ 〉 , ηk ∈�(xk).

Taking the limsup of the right-hand side and using pseudomonotonicity of � give

0≥ liminf
k→∞ 〈ηk , xk− z〉

≥ 〈 η̂, x̂− z〉 , η̂ ∈�( x̂ ).

Note that the first inequality holds by (2.68) with F = Fk , and since z ∈ Fk . Thus we have
x̂ , η̂ ∈�(̂x ), which satisfy VI(�, K ).

2.6 Signorini’s problem
Signorini’s problem [98, 225, 226] was a landmark problem that led to much of the early
work on VIs [160]. The tools we have, along with some multivariable calculus and func-
tional analysis, are sufficient to formulate the problem properly and show the existence of
solutions to this problem.
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Signorini initially posed his problem in a short paper [225] in 1933, which he much
later expanded in more detail [226] in 1959 following a course he gave at his university
(Instituto Nazionale di Alta Matematica), where he mentioned this problem to his students
and colleagues. Gaetano Fichera and Mauro Picone took up this problem, with Signorini
strongly encouraging them. However, finding that this problem with unknown boundary
conditions was not part of the literature at that time, Fichera set about trying to develop a
way of dealing with the problem. He used the principle of virtual work to gain an entrance
to the problem, eventually obtaining a solution late in 1962. By this time, Signorini was
in failing health, but was overjoyed that Fichera had been able to find a solution, with a
short summary [98] published in 1963 and a complete treatment [99] published in 1964.
Fichera describes his involvement in this problem and the development of the theory of VIs
in [100].

A more detailed introduction to elasticity is given in Section 6.2. To quickly sum-
marize, the main unknown is the displacement field u(x) where a point x in the unde-
formed body � ⊂ Rd is moved to x+ u(x). Using linearized elasticity, the strain tensor
ε[u]= 1

2

(∇u+∇uT
)

and the stress tensor σ are related by

σi j [u]=
d∑

k,l=1

ai jkl εkl [u],

where ai jkl is a collection of elasticity constants that have certain symmetries: ai jkl =
a j ikl = akli j , etc. Note that both ε and σ are symmetric d × d matrix-valued functions
of position x. The constants ai jkl define the elastic properties of the material of the body.
These constants also have some other important properties; most particularly, there is an
η > 0 such that ∑

i, j ,k,l

ai j klεi j εkl ≥ η
∑
i, j

ε2
i j .

These relationships can be written in short form: σ = Aε and ε : Aε ≥ ηε : ε, where
A : B =∑

i, j ai j bi j is the standard inner product on matrices.
Physically, Signorini’s problem represents an elastic body which makes contact with

a frictionless rigid obstacle. The obstacle is represented by the fact that there is a hard limit
on the normal displacement of the body on the boundary close to the obstacle. On other
parts of the boundary, there are either traction boundary conditions (a known or given force
is acting on the boundary) or displacement boundary conditions (where the displacement
of the boundary is given). Traction boundary conditions have the form

σ (x)n(x)= t(x), x ∈ %t ,

while displacement boundary conditions have the form

u(x)= d(x), x ∈ %d .

On the part of the boundary where contact can occur %c, we have the complementarity
condition

0≤ N(x)⊥ ϕ(x)−n(x) ·u(x)≥ 0, x ∈ %c,

σ (x)n(x)=−N(x)n(x), x ∈ %c.
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Note that N(x) is the normal contact force that prevents penetration, and ϕ(x) represents the
distance from the undeformed body to the obstacle. This is the complementarity represen-
tation of the Signorini contact conditions. Within the body we have the standard equations
of elasticity, which can be written as

0= divσ + f(x), x ∈�,

where f(x) represents the nonelastic (or external) forces acting on the body. Note that
(divσ )i =

∑
j ∂σi j /∂x j so that divσ is a vector-valued function.

So far we have a formulation of Signorini’s problem as a CP. Now we will turn it into
a VI. To do this we set

K =
{

u ∈ H 1(�) | n ·u≤ ϕ on %c, u= d on %d

}
.

Since the restriction of functions in H 1(�) to the boundary or part thereof is a continuous
operation, K is a closed and convex subset of H 1(�). For any w ∈ K ,

0=
∫
�

(w−u) · [divσ [u]+ f] dx

=
∫
�

∑
i

(wi −ui )

∑
j

∂σi j

∂x j
+ fi

 dx

=
∫
�

∑
i, j

[
∂

∂x j

(
(wi −ui )σi j

)−(
∂wi

∂x j
− ∂ui

∂x j

)
σi j + (wi −ui ) fi

]
dx

=
∫
∂�

∑
i, j

(wi −ui )σi j n j d S−
∫
�

[(∇w−∇u) : σ [u]− (w−u) · f] dx .

The boundary integral term is∫
∂�

(w−u) ·σ [u]nd S =
∫
%t

(w−u) · td S−
∫
%c

(w−u) ·n N d S

since σ [u]n = t on %t , u = w on %d , and σ [u]n = −N n on %c. The complementarity
condition between u ·n−ϕ and N means that the last term becomes

−
∫
%c

(w−u) ·n N d S =
∫
%c

((ϕ−w ·n)− (ϕ−u ·n)) N d S

=
∫
%t

(ϕ−w ·n) N d S ≥ 0 since ϕ−n ·w≥ 0.

Thus

0≥
∫
%t

(w−u) · td S−
∫
�

[(∇w−∇u) : σ [u]− (w−u) · f ] dx .

Since σ [u] is a symmetric tensor (σi j = σ j i ), (∇u : σ )=∑
i, j

(
∂ui/∂x j

)
σi j = (ε[u] : σ [u]);

similarly ∇w : σ [u]= ε[w] : σ [u]. In addition, if we change signs, we get

0≤
∫
�

[ε (w−u) : σ [u]− (w−u) · f ] dx−
∫
%t

(w−u) · td S

for all w ∈ K .
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If we write

a(u,v)=
∫
�

ε[v] : σ [u]dx ,

ψ(v)=
∫
�

v · fdx+
∫
%t

v · td S,

then we get the VI

u ∈ K & 0≤ a(w−u, u)−ψ(w−u) for all w ∈ K .

We can define A : H 1(�)→ H 1(�)′ = H−1(�) by 〈Au, v〉 = a(u, v), and similarly ψ ∈
H 1(�)′ = H−1(�). Note that the boundary integral term

∫
%t

v · td S is continuous on

H 1(�), thanks to the trace theorem (Theorem A.9) for Sobolev spaces. The operator A
is elliptic since

〈Au, u〉 =
∫
�

ε[u] : σ [u]dx

≥
∫
�

η ‖ε[u]‖2 dx ≥ c ‖u‖2
H1

for a positive constant c, provided that the Lebesgue measure of %d is positive, thanks to
Korn’s theorem [121]. This is sufficient to apply Theorem 2.22 to show existence, unique-
ness, and continuous dependence of solutions.

One thing to note about the VI approach is that it completely removes N from consid-
eration. Questions of the regularity of N do not concern or bother us with this formulation.
However, if we want information about N , this is not the best approach.

Another way of representing Signorini’s problem is as a constrained optimization
problem: Minimize the total energy of the system subject to the constraint that the obstacle
is not penetrated. That is, we minimize E [u] over u ∈ K , where

E[u]=
∫
�

1

2
ε[u] : σ [u]dx−

∫
�

u · fdx−
∫
%t

u · td S.

Note that E is a convex function, continuous and coercive on K ⊂ H 1(�), and so it is
weakly lower semicontinuous (as H 1(�) is a Hilbert space). Thus we can apply Theo-
rem B.13 to show existence of solutions. This can be characterized in terms of subdiffer-
entials if we use the characteristic function IK for K . Since E is defined over the entirety
of H 1(�), it follows that ∂ (E+ IK )= ∂E+∂ IK = ∂E+ NK . In other words, the solution
must satisfy 0 ∈ ∂ (E+ IK ) (u), which is equivalent to

0= divσ + f− N ν n− ν t, (2.70)

where ν is the surface measure on %t ∪%c, N is the normal contact force, and n is the
outward normal unit vector, as usual. To see that (2.70) is correct we should look carefully
at NK (u). Recall that

NK (u)=
{

y ∈ H−1(�) | 〈y, w−u〉 ≤ 0 for all w ∈ K
}

.
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Now w ∈ K if and only if ϕ−w ·n ≥ 0 on %c. If we choose w ·n = u ·n on %c but w is
otherwise arbitrary inside �, we see that y ∈ NK (u) must be zero in the interior of �. That
is, y is a distribution concentrated on the boundary y= vν, where ν is the surface measure
of %c. Furthermore, since there is no restriction on the tangential component of w on %c,
the tangential component of y or v must be zero. So we write y=−N ν n. Then

NK (u)=
{

y=−N νn |
∫
%c

−N n · (w−u) d S ≤ 0 for all w ∈ K

}
.

If ϕ(x)−u(x) ·n(x) > 0, then we can pick w ∈ K , where n(x) · (w(x)−u(x)) can be either
positive or negative, so we need to have N(x)= 0. If ϕ(x)−u(x) ·n(x)= 0, then no matter
how we pick w ∈ K , we will always have n(x) · (w(x)−u(x)) ≤ 0. Then we must have
N(x) ≥ 0. That is,

NK (u)= {y=−N νn |
0≤ N(x) ⊥ ϕ(x)−n(x) ·u(x)≥ 0 for all x ∈ %c } .

This brings us back to the complementarity formulation.
This approach actually gives us some information about the regularity of N (some-

thing that the VI approach does not): from the Sobolev imbedding theorem (Theorem A.8)
and duality we can show that N ∈ H−1/2(%c).
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Chapter 3

Formalisms

There is no branch of mathematics, however abstract, which may not some
day be applied to phenomena of the real world.

Nikolai Lobachevsky
But the Modern Utopia must be not static but kinetic. . .

H.G. Wells

In this chapter we outline how we can provide a consistent and unified formalism for de-
scribing the examples of the previous chapter. The theory behind these formalisms is de-
veloped in the following chapter.

3.1 Differential variational inequalities
A differential variational inequality (DVI) is formally defined as the problem of finding a
solution pair (u, z) of functions x : [0, T ] → X and z : [0, T ] → Z , where X and Z are
Banach spaces (X = Rn and Z = Rm for example), such that

dx

dt
(t)= f (t , x(t), z(t)), x(t0)= x0, (3.1)

z(t) ∈ K for (almost) all t , (3.2)

0 ≤ 〈 z̃− z(t), F(t , x(t), z(t))〉 (3.3)

for all z̃ ∈ K and (almost) all t .

The function f : [0, T ]×X× Z → X defines the main dynamics of the system, but z(t)∈ Z
is determined by the VI (3.1)–(3.3) in terms of F : [0, T ]× X × Z → Z ′ and the closed
convex set K . In due course we will need to impose additional conditions on f , F , and
even K .

We usually interpret a differential equation “dx/dt(t)= f (t , x(t), z(t))” as holding if
the right-hand side function t #→ f (t , x(t), z(t)) is an integrable function, the solution x(·) is
an absolutely continuous function, and the equation hold for almost all t . In some situations
we relax these requirements to handle situations where a weaker or more general solution
makes sense.

77
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78 Chapter 3. Formalisms

Often we use an apparently weaker formulation: instead of requiring that (3.3) hold
for (almost) all t , we use the integral formulation:

0≤
∫ T

0
〈 z̃(t)− z(t), F(t , x(t), z(t))〉 dt (3.4)

for all continuous z̃ : [0, T ]→ K .

In fact, it is not even necessary to require this for all continuous z̃; we can simply require
that (3.4) hold for all smooth (or C∞[0, T ]) functions z̃(·).

Lemma 3.1. Suppose K is a closed convex set. If (3.4) holds for all z̃ ∈ C∞[0, T ], and

t #→ (1+‖z(t)‖Z ) (1+‖F(t , x(t), z(t))‖Z ′)

is an integrable function, then (3.3) holds for almost all t .

Proof. First we show that if (3.4) holds for all z̃ ∈C∞[0, T ], then (3.4) holds for all bounded
and integrable z̃.

Suppose z̃ is a bounded integrable function. We extend z̃ outside [0, T ] by setting
z̃(t) = z0 for some fixed z0 ∈ K if t �∈ [0, T ]. Now pick a C∞(R) function ψ : R→ R

which is zero outside the interval [−1,+1] and positive on (−1,+1) and
∫ +1
−1 ψ(s)ds = 1.

Let ψε (s) = ψ(s/ε)/ε so that
∫ +ε
−ε ψε(s)ds = 1 and ψε is zero outside [−ε,+ε]. The

convolution z̃ε(t)= (ψε ∗ z̃ ) (t)= ∫ +∞
−∞ ψε (t− s) z̃(s)ds is C∞. Since K is convex, z̃ε(t) ∈

K for all t . To see this, suppose otherwise: z̃ε(t) �∈ K . Then by the separating hyperplane
theorem there are w ∈ X ′ and β ∈R such that 〈x , w〉+β ≥ 0 for all x ∈ K , but 〈 z̃ε (t), w〉+
β < 0. On the other hand, for every τ , z̃(τ ) ∈ K . So

〈 z̃ε(t), w〉+β = 〈(ψε ∗ z̃ ) (t), w〉+β

=
∫ +∞

−∞
ψε (t− s) [〈 z̃(s), w〉+β] ds(
since

∫
ψε = 1

)
≥ 0

as ψε ≥ 0 and 〈 z̃(s), w〉+β ≥ 0 for all s. This contradicts the assumption that z̃ε(t) �∈ K ;
therefore z̃ε(t) ∈ K for all t .

For any integrable function φ,∫ +∞

−∞
φ(t) · (ψε ∗ z̃ ) (t)dt =

∫ +∞

−∞
φ(t)

∫ +∞

−∞
ψε (t− s )̃z(s)ds dt

=
∫ +∞

−∞

(∫ +∞

−∞
φ(t)ψε (t− s)dt

)
z̃(s)ds

=
∫ +∞

−∞
(
φ ∗ ψ̌ε

)
(s) z̃(s)ds,

where ψ̌ε (s) = ψε (−s). Now φ ∗ ψ̌ε → φ in L1(R) as ε → 0, and since z̃ is bounded,(
φ ∗ ψ̌ε

) · z̃ → φ · z̃ as ε → 0 in L1(R). Applying this argument to φ(t) = F(t , x(t), z(t))
and φ(t)= 〈z(t), F(t , x(t), z(t))〉 shows that if (3.4) holds for all z̃ε , then it holds for z̃.
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Now we show that this implies that (3.3) holds for almost all t: for any measurable
set E ⊂ [0, T ], R ≥ 0, and w ∈ K we can set

z̃ R(t)= satR (χE (t)w+ (1−χE(t)) z(t)) ,

where χE (t) = 1 if t ∈ E and zero otherwise, and satR(v) is the projection of v onto the
intersection of K and the closed unit ball of radius R. Then z̃ R(t) ∈ K is bounded and
measurable, so (3.4) holds for z̃ R . Now z̃(t) = satR(w) if t ∈ E and z̃(t) = satR(z(t)) if
t �∈ E . Taking R →∞ we note that satR(z(t))→ z(t). Then, taking limits as R →∞ and
using the dominated convergence theorem, we see that (3.4) holds for z̃(t) := χE (t)w+
(1−χE (t))z(t). Then z̃(t)− z(t)= χE (t) (w− z(t)), so∫

E
〈w− z(t), F(t , x(t), z(t)〉 dt ≥ 0 for all measurable E ⊂ [0, T ].

Thus the set { t | 〈w− z(t), F(t , x(t), z(t)〉< 0 } must be a null set, and so (3.3) must hold
for almost all t and all w ∈ K .

The ability to replace the pointwise condition (3.3) with the integral condition (3.4)
is useful for existence proofs, as will be seen later.

If K is a cone, then (3.1)–(3.3) are equivalent to the corresponding differential com-
plementarity problem (DCP): Given x0 ∈Rn , f : [0, T ]×Rn×Rm →Rn , F : [0, T ]×Rn×
Rm → Rm , and K ⊆ Rn a closed convex cone, find x : [0, T ]→ Rn and z : [0, T ]→ Rm

such that

du

dt
(t)= f (t , x(t), z(t)), x(t0)= x0, (3.5)

K " z(t)⊥ F(t , x(t), z(t)) ∈ K ∗ for almost all t . (3.6)

Since CPs can be cast as VIs, DCPs form a subset of DVIs. Nonetheless, DCPs provide a
useful subclass of DVIs.

As with DVIs there is an integral formulation of DCPs in which (3.6) is replaced by

z(t) ∈ K for almost all t ,

F(t , x(t), z(t)) ∈ K ∗ for almost all t ,

0=
∫ T

0
〈z(t), F(t , x(t), z(t))〉 dt .

The integral and pointwise formulations of DCPs are equivalent by Lemmas 3.1 and 2.11.
By Lemma 2.11, the existence and uniqueness theory for VIs carries over to CPs, although
often there is special structure that can be applied to certain CPs that is not apparent in the
general formulation of VIs.

3.1.1 A discussion of meanings

As with all formalisms, sometimes we have to stop and ask “What do you really mean?”
And as we are dealing with a general class of dynamical problems we might be forced to
allow solutions that are not regular functions, not even locally integrable functions such as
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Dirac-δ functions or more general distributions. So if we have a solution z(t) of a problem
which is a distribution (that is a functional on the space of C∞ functions of compact sup-
port), what does it mean to say “z(t) ∈ K for (almost) all t”? Since the pointwise values of
distributions are in general meaningless, this does not make sense at face value. The only
operations that make sense for distributions are integrals with smooth functions of bounded
support: 〈z, φ〉 = ∫ +∞

−∞ φ(t) z(t)dt . For closed convex K we can give an interpretation to
“z(t) ∈ K for (almost) all t” as meaning∫ +∞

−∞ φ(t) z(t)dt∫ +∞
−∞ φ(t)dt

∈ K for all 0≤ φ ∈ C∞0 (R), φ �≡ 0. (3.7)

As a simple test case, consider K = R+; in other words, when is a distribution nonneg-
ative? The answer is well known and can be found in [127], for example. A real-valued
distribution z(t) is nonnegative if and only if

∫ +∞
−∞ φ(t) z(t)dt ≥ 0 for all φ ≥ 0. As shown

in [127], this is equivalent to z(·) being a nonnegative measure. The theory of measure
differential inclusions (see Section 4.4.2) can be applied to refine these ideas.

Another case is K = [0, 1]. Then (3.7) means that for any nonnegative C∞ function
with compact support φ,

0≤
∫ +∞

−∞
φ(t) z(t)dt ≤

∫ +∞

−∞
φ(t)dt .

For a C∞ function with compact support that can have either sign, |∫ +∞−∞ φ(t) z(t)dt| ≤∫ +∞
−∞ |φ(t)| dt . (This can be done by splitting any such test function φ= φ+−φ− where φ±

themselves are test functions with max(‖φ+‖∞ , ‖φ−‖∞) and ‖φ+‖1+‖φ−‖1 arbitrarily
close to ‖φ‖∞ and ‖φ‖1, respectively.) Then, if ψ is another C∞ function of compact
support with common support interval [a, b],

|〈z, φ〉− 〈z, ψ〉|
≤

∣∣∣∣∫ +∞

−∞
(φ(t)−ψ(t)) z(t)dt

∣∣∣∣
≤

∫ +∞

−∞
|φ(t)−ψ(t)| dt

≤ (b−a) ‖φ−ψ‖∞ ,

and so φ #→ 〈z, φ〉 is continuous in the supremum norm. This means that we can ex-
tend this functional to continuous functions with support in [a, b]. Hence we have a mea-
sure on [a, b]. Then we can apply the Radon–Nikodym theorem to conclude that z can
be represented by an integrable function (also denoted by z(t)). Since nonnegative C∞
functions are dense in the space of nonnegative L1 functions, for any nonnegative L1

function φ, 0 ≤ ∫ +∞
−∞ φ(t) z(t)dt ≤ ∫ +∞

−∞ φ(t)dt . In particular, taking φ = χ[σ ,τ ], we get
0 ≤ ∫ τ

σ z(t)dt ≤ τ −σ for all τ ≥ σ . Using the standard results of Lebesgue integration,
this implies that for almost all t , 0≤ z(t)≤ 1. By redefining z on a null set, we can assure
that 0≤ z(t)≤ 1 for all t . Thus the distributional definition coincides with the usual one.

Here we see that the weak distributional definition for bounded sets is equivalent to
the ordinary notion. For unbounded sets we have to include the possibility of impulses or
other measures which cannot be represented by integrable functions.
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3.2 Notion of index
The notion of index of a DVI or DCP is very important for the theory that follows. The
index is essentially the number of times that the equation F(t , x , z) = 0 would need to be
differentiated with respect to t in order to uniquely specify z in terms of t and x . So, for
example, the DCP (which is also called a linear complementarity system (LCS))

dx

dt
= Ax(t)+ Bz(t), (3.8)

w(t)= Cx(t)+ Dz(t), (3.9)

0≤ w(t)⊥ z(t)≥ 0 (3.10)

has index zero if D is a nonsingular matrix. Note that F(t , x , z) = Cx + Dz, so that if
F(t , x , z) = 0, we can put z = −D−1Cx without using any differentiations. On the other
hand, if D = 0, then (d/dt)F(t , x , z)= (d/dt) (Cx)= C (dx/dt)= C (Ax+ Bz)= 0, so if
C B is a nonsingular matrix, then we can write z =− (C B)−1 Ax . Since one differentiation
was sufficient to write z in terms of t and x , this problem has index one.

Impact problems (without friction) for rigid bodies (1.2)–(1.4) with one contact can
be put into the form, with q(t), v(t) ∈Rn ,

M(q)
dv

dt
= k(q ,v)−∇V (q)+n(q) N , (3.11)

dq

dt
= v, (3.12)

0≤ ϕ(q)⊥ N ≥ 0. (3.13)

Here we have a DCP with F(t ,q ,v, N) = ϕ(q). Note that n(q)=∇ϕ(q). Here N takes the
role of z in the general formulation. Now ϕ(q) = 0 does not give an equation for N , nor
does 0= (d/dt)ϕ(q)=∇ϕ(q) ·dq/dt =∇ϕ(q) ·v. However, using the notation Hess f (x)
for the matrix of second derivatives

[
∂2 f/∂xi ∂x j (x)

]
,

0= (d/dt)2ϕ(q)

=∇ϕ(q)T dv

dt
+ vT Hessϕ(q)v

=∇ϕ(q)T M(q)−1 [
k(q ,v)−∇V (q)+n(q) N

]+ vT Hessϕ(q)v

= n(q)T M(q)−1n(q) N

+n(q)T M(q)−1 [
k(q ,v)−∇V (q)

]+ vT Hessϕ(q)v

does give an equation for N in terms of q and v. Thus this problem has index two.
Coulomb friction (by itself) results in an index-one DVI: for the example of a brick

on a ramp as illustrated in Figure 1.4, we have

m
dv

dt
= mg sinθ− f ,

f ∈ [−µN ,+µN], 0≤ ( f̃ − f )v for all f ∈ [−µN ,+µN],

N = mg cosθ .
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Here the friction force is represented by f . The function F(t ,v) = v. Setting F(t ,v) = 0
does not give an equation for f . However, 0= (d/dt)F(t ,v)= dv/dt = mg sinθ− f does
give an equation for f . Thus the index for this problem is one.

Index-three problems do not commonly arise in applications, but it is not hard to
make one up. Here is an example: find x : [0, T ]→ R3 and z : [0, T ]→R satisfying

dx1

dt
= x2, x1(0)= 0,

dx2

dt
= x3, x2(0)=−1,

dx3

dt
= z, x3(0)= 0,

0≤ x1(t)⊥ z(t)≥ 0.

Every “solution” has the form z(t)= δ′(t)+α δ(t), where δ(t) is the Dirac-δ function, with
α ≥ 0. But δ′(t) is not a nonnegative distribution as

∫
δ′(t)φ(t)dt =−φ′(0) for any smooth

function φ, which can be positive or negative even for nonnegative φ.
This can be extended to give index-m problems: dm x/dtm = u, 0 ≤ x(t)+ q(t) ⊥

z(t) ≥ 0 for almost all t . Problems with index three or higher do not in general have
solutions.

3.2.1 Solution behavior

In order to understand how solutions behave, or the different characteristics that solutions
have, for different indexes, we consider a simple class of problems of this sort:

dm x

dtm
(t)= z(t)−1, (3.14)

x(0)= 1, x ( j )(0)= 0, 1≤ j ≤ m−1,

0≤ x(t)⊥ z(t)≥ 0 for (almost) all t . (3.15)

This problem has index m.

3.2.2 Index-zero problems

We start with index-zero problems, as they are the simplest to understand. Consider the
problem

dx

dt
(t)= z(t)−1, x(0)= 1, (3.16)

0≤ x(t)+ z(t)⊥ z(t) ≥ 0 for (almost) all t . (3.17)

The scalar CP

0≤ x(t)+ z(t)⊥ z(t)≥ 0

can be solved for z(t) directly. If x(t) > 0, then x(t)+ z(t) > 0 as well (since z(t) ≥ 0),
and so z(t) = 0. If x(t) < 0, then since x(t)+ z(t) ≥ 0, we must have z(t) > 0. So then
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x(t)+ z(t) = 0 by complementarity, and z(t) = −x(t) > 0. The case x(t) = 0 has the
solution z(t)= 0 by inspection. Since this is a strongly monotone CP for z(t), there is only
one solution.

Thus we can write z(t) in terms of x(t) directly: z(t)= x (t)− =max(0,−x(t)). We
can substitute this into the differential equation for x (3.16):

dx

dt
= x (t)−−1, x(0)= 1. (3.18)

This can be solved in pieces: initially x(t) > 0, so we initially have dx/dt = −1, and
x(t) = 1− t . However, eventually x(t) will reach zero and might then become negative.
We reach x(t)= 0 at time t∗ = 1; then we still have dx/dt < 0. So for t immediately after
t∗ = 1 we will have dx/dt = x (t)−−1=−x(t)−1, which has solutions x(t)=−1+c e−t .
Substituting x(1)= 0 we can solve for the constant c: −1+ c e−1 = 0, so c= e. This gives
x(t)=−1+ e1−t for t ≥ 1.

The solution is continuous and smooth, except for the “kink” at t = 1. This can
be explained by noting that the right-hand side of (3.18) is Lipschitz continuous (but not
smooth) in x(t). The standard theory of ordinary differential equations can be applied to
(3.18), showing that solutions exist and are unique on any time interval. Note that since z(t)
depends in a Lipschitz way on x(t), z(t) is also a continuous (but not necessarily smooth)
function of t .

3.2.3 Index-one problems

Index-one problems are more difficult:

dx

dt
= z(t)−1, x(0)= 1,

0≤ x(t)⊥ z(t)≥ 0 for almost all t .

We will assume that z(·) is an integrable function, rather than a general measure. This
means that x(·) is absolutely continuous.

Now we require that x(t) ≥ 0 for all t , which is a condition that must be imposed
on the initial value x(0). If x(t) > 0, then by the complementarity condition, z(t) = 0,
so dx/dt = −1. Eventually we must reach x(t∗) = 0 (which happens at t∗ = 1). But we
cannot allow x(t) to become negative. On the other hand, we cannot have x(t) > 0 for
t > t∗ since that would mean there must be a time τ between t∗ and t where x(τ ) > 0
and dx/dt(τ ) > 0, which is impossible. So we must have x(t)= 0 for all t > t∗. Does this
allow us to have a solution? Yes it does, since if x(t)= 0 for all t > t∗, the complementarity
condition allows any z(t) ≥ 0. But for the only possible solution, dx/dt(t)= 0 for t > t∗.
This gives−1+ z(t)= 0; that is, z(t)=+1 for all t > t∗. Note that z(t) is not a continuous
function of t . Instead we have a jump discontinuity in z(t) at t = t∗.

We can try to write this DCP as a differential equation, but when x(t)= 0, any z(t)≥ 0
satisfies the complementarity condition. Substituting this into the right-hand side for the
differential equation gives the differential inclusion

dx

dt
(t) ∈�(x(t))−1, x(0)= 1,
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where �(x)= {0} if x > 0, �(0)=R+, and �(x)= ∅ for x < 0. The theory of differential
inclusions is quite extensive [19, 73, 103]; existence of solutions can be shown using the
theory of maximal monotone operators [41].

The sign of the right-hand side of the differential equation and the sign of x in the
complementarity condition are crucially important for existence of solutions. For example,
if we had the problem

dx

dt
(t)=−z(t)−1, x(0)= 1,

0≤ x(t)⊥ z(t)≥ 0 for almost all t ,

then we would have dx/dt(t) = −1 for x(t) > 0. But when we reach x(t∗) = 0, we have
dx/dt(t∗) ≤ −1 (in fact, dx/dt(t) ≤ −1 for any t), so for any t > t∗, x(t) < 0, which
violates the complementarity condition. Thus solutions do not exist in general for this
problem.

Similarly, for the problem

dx

dt
(t)= z(t)−1, x(0)= 1,

0≤ x(t)⊥−z(t)≥ 0 for almost all t ,

solutions do not exist in general.

3.2.4 Index-two problems

For index-two problems, consider

d2x

dt2
(t)= z(t)−1, x(0)= 1,

dx

dt
(0)= 0, (3.19)

0≤ x(t)⊥ z(t)≥ 0 for almost all t . (3.20)

It turns out that we have to assume that z(·) can be a measure. Again, for x(t) > 0 we have
z(t) = 0, so until x(t∗) = 0 we have x(t) = 1− t2/2. This means that we have x(t∗) = 0
for t∗ = √2. Note that dx/dt(t∗−) = (d/dt)

(
1− t2/2

)∣∣
t=t∗ = −2t∗ < 0. Since we need

x(t)≥ 0 for t > t∗, this means that the velocity dx/dt has to have a jump discontinuity at
t∗. This, in turn, means that z(t) must contain a Dirac-δ function: z(t)= z∗ δ(t− t∗)+ z1(t),
with z1(t) a “nicer” function, at least near t = t∗. The strength of the impulse z∗ can be
determined in part from this condition:

z∗ = dx

dt
(t∗+)− dx

dt
(t∗−)

≥ 0− (−2 t∗
)= 2 t∗ = 2

√
2.

But this is clearly not sufficient to uniquely specify z∗. In fact, any z∗ ≥ dx/dt(t∗−) will
give a solution: If z∗ > dx/dt(t∗−), then we have the solution

x(t)= (
z∗ −dx/dt(t∗−)

)(
t− t∗

)− (
t − t∗

)2
/2

and z(t) = z∗ δ(t − t∗) for t∗ ≤ t < t∗ + ε, where x(t∗ + ε) = 0 again. If we choose z∗ =
dx/dt(t∗−), then we have the solution x(t)= 0 and z(t)= z∗ δ(t− t∗)+1 for t ≥ t∗.
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Since problems of this kind arise in impact mechanics, there has been a strong need
to find a way of resolving this nonuniqueness. The usual way in which this is done is to
introduce a coefficient of restitution e. There are several variations of this idea, but the usual
way in which it is formulated, following Newton, is that

dx

dt
(t∗+)=−e

dx

dt
(t∗−). (3.21)

In the context of general rigid-body dynamics this can be phrased as “the postimpact normal
velocity is −e times the preimpact normal velocity.” In terms of the rigid-body equations
(3.11)–(3.13) given above,

n(q(t∗))T v(t∗+)=−e n(q(t∗))T v(t∗−).

This is Newton’s law of restitution. For problems with multiple contacts, each contact can
have its own coefficient of restitution.

From the requirement that dx/dt(t∗+) ≥ 0 it is clear that e ≥ 0. Physical principles
intervene to limit e ≤ 1, as e > 1 violates the principle that energy must be conserved or
dissipated as heat. Macroscopic energy cannot be created spontaneously. There is also the
fact that if e > 1, x(t∗) = 0, dx/dt(t∗) = 0, it is still possible for the solution to become
nonzero spontaneously. This results in a different kind of nonuniqueness.

To see how this is possible, consider the case where 0 < e < 1 first. The first impact
time is t∗1 =

√
2. Then x(t∗1 )= 0, dx/dt(t∗+1 )=+2e t∗1 . So, immediately after t = t∗1 , x(t)=

2et∗1 (t− t∗1 )− (t− t∗1 )2/2. The second impact time is then t∗2 = t∗1 +4et∗1 and dx/dt(t∗+2 )=
−e dx/dt(t∗−2 )=+e dx/dt(t∗+1 )= 2e2t∗1 . Immediately after the second impact time x(t)=
2e2t∗1 (t − t∗2 )− (t− t∗2 )2/2. Then the third impact time t∗3 = t∗2 +4e2t∗1 . Continuing in this

way we can show that the kth impact time is t∗k = t∗1 (1+ 4
∑k−1

j=1 e j ). For 0 < e < 1 this
sequence has a finite limit. Thus we have infinitely many bounces in a finite time. After all
these bounces we have t = limk→∞ t∗k = t∗∞. Then x(t∗∞)= 0 and dx/dt(t∗∞), and we can
continue the solution by setting z(t)= 1 and x(t) = 0 for t ≥ t∗∞. This is an example of a
Zeno solution where the set of strict inequalities changes infinitely often in finite time.

Now the differential equation d2x/dt2 = z(t)−1 and the complementarity condition
0 ≤ x(t) ⊥ z(t) ≥ 0 are both reversible conditions (that is, replacing t with T − t for both
x and z keeps both conditions true). However, reversing time for the restitution law (3.21)
results in

dx

dt
(t∗+)=−1

e

dx

dt
(t∗−). (3.22)

Thus if we time-reverse the solution x(t) and z(t) from the previous paragraph to get x̌(t)=
x(T − t) and ž(t) = z(T − t), we get a solution of (3.19)–(3.20) with the restitution law
(3.22). Note that for T > t∗∞, the time-reversed solution x̌(·) has the initial values x̌(0)= 0
and dx̌/dt(0) = 0. Instead of getting only the trivial solution (x̌(t) = 0 for all t) we also
have a solution which spontaneously starts bouncing due to the coefficient of restitution
ě = 1/e > 1.

There are a number of practical difficulties with coefficients of restitution for real
impacts. One is that the coefficient of restitution is far from being a constant for a pair of
bodies. The orientation of contact is also very important (see, for example, [250]). Also,
there are some theoretical questions as to the appropriateness of using Newton’s law of
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restitution. Alternatives include Poisson’s law of restitution, which is based on splitting the
impact interval into a compression phase and an expansion phase and requiring that the ratio
of the integral of the normal contact force over the expansion phase be e times the integral of
the normal contact force over the compression phase [11, 209]. Other alternatives include
energy-based laws of restitution [252, 253].

3.2.5 Index three and higher

Index-three problems have serious questions regarding their existence. Consider, for exam-
ple, the problem

d3x

dt3 (t)= z(t)−1, x(0)= 1,
dx

dt
(0)= 0,

d2x

dt2 (0)= 0,

0≤ x(t)⊥ z(t)≥ 0 for almost all t .

Again, for x(t)> 0 we have z(t)= 0. So until x(t)= 0 we have the solution x(t)= 1− t3/3.
The first impact time is at t∗ = 31/3. Then we need to change dx/dt instantaneously. If
η = dx/dt(t∗+)−dx/dt(t∗−), since dx/dt(t∗+)≥ 0, η ≥ 1. Then

d3x

dt3 (t)= d2

dt2

(
dx

dt
(t)

)
,

which is the second derivative of a function with a jump discontinuity at t = t∗. This
means that z(t) must contain the derivative of a Dirac-δ function at t = t∗: z(t)= z∗ δ′(t−
t∗)+ z1(t), where z1(t) is a more regular function at t = t∗. The trouble with this is that,
according to the theory of distributions, a distribution ψ is nonnegative if for every smooth
(that is, C∞) function φ ≥ 0 with compact support, 〈ψ , φ〉 ≥ 0. By this definition, δ′ cannot
be a nonnegative distribution [127], as

〈
δ′, φ

〉=−φ′(0), which can be positive, negative, or
zero.

Some theories circumvent this difficulty by restricting the class of functions to which
they apply. In particular, the theory of linear complementarity systems (see (1.8)–(1.10)
above) [124] does this by restricting attention to polygonal cones and functions that are
Bohl distributions. Bohl distributions locally have the form

z(t)=
m∑

j=0

a j δ
( j )(t− t∗)+wT eCt d , t∗ ≤ t < t∗ + ε, (3.23)

where C may be a matrix. A Bohl distribution is initially nonnegative at t∗, according
to [124], if [am , am−1, . . . , a1, a0] is lexicographically positive (that is, the first nonzero in
the list is positive), or if all a j = 0 and there is an ε′ > 0 such that wT eCt d ≥ 0 for all
t∗ ≤ t ≤ t∗ + ε′.

The restriction to such a narrow class of functions has important implications for
other aspects of the theory. Numerical methods that can compute solutions for problems
of lower index generally fail for index-three or higher problems. The general principle that
“limits of solutions are also solutions” tends to fail. Without this property, not only is it
difficult to prove convergence for numerical methods, but the whole concept as a model
comes into question. We do not expect any model of the world to be complete, but only an
approximation. If an unmodeled disturbance can destroy a given solution, then the model
is probably not useful and should be replaced.
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3.3 Infinite-dimensional problems
Infinite-dimensional problems often behave differently from finite-dimensional problems;
the existence and uniqueness theory are often also quite different, or they must at least
deal with some new issues. One of the most important issues is the matter of whether the
right-hand side is a bounded or unbounded operator. For partial differential equations, it is
usually unbounded. Consider, for example, the heat equation on a bounded open domain
�⊂ Rd :

∂u

∂ t
=∇2u in �, (3.24)

u(t , x)= 0 for x ∈ ∂�, (3.25)

u(0, x)= u0(x) for x ∈�. (3.26)

This has solutions. But the reversed heat equation governed by the partial differential
equation

∂u

∂ t
=−∇2u in � (3.27)

usually does not. The basic reason is that the operator∇2 is an unbounded operator. Look-
ing more closely, the eigenvalues λk of −∇2 go to +∞ as k →∞. If the eigenfunctions
are φk : −∇2φk = λkφk with φk(x)= 0 for x ∈ ∂� and g(x)= 0 for all x ∈ ∂�, then if we
expand the initial conditions as u0(x)=∑∞

k=1 u∗k φk(x), then the solution of (3.24)–(3.26)
is

u(t , x)=
∞∑

k=1

u∗k e−λk t φk(x).

Since λk > 0 for all (sufficiently large) k, e−λk t → 0 as t →+∞ for these k. The decaying
exponentials indicate that the sum, if it is well defined for t = 0, should be well defined for
any t > 0.

On the other hand, the reversed heat equation has the solution

u(t , x)=
∞∑

k=1

u∗k e+λk t φk(x).

Now we have exponential growth in the coefficients of φk as t increases. For the Laplacian
operator −∇2 for �⊂ Rd , the eigenvalues are asymptotically λk ∼ constk2/d as k →∞.
Assume that the φk are orthonormal functions; that is,

〈
φi , φ j

〉
L2(�)=

∫
�
φi (x)φ j (x)dx = 0

if i �= j and one if i = j . Then

‖u(t , ·)‖2
L2(�) =

∞∑
k=1

(
u∗k

)2
e+2λkt

for the reversed heat equation. Unless u∗k decay very fast, ‖u(t , ·)‖L2(�)=+∞ even for very
small t > 0. This means that solutions usually do not exist for the reversed heat equation.
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On the other hand, we will also deal with hyperbolic problems like the wave equation

∂2u

∂ t2 ∇2u in �, (3.28)

u(t , x)= 0 for x ∈ ∂�, (3.29)

u(0, x)= u0(x) for x ∈�, (3.30)

∂u

∂ t
(0, x)= v0(x) for x ∈�. (3.31)

If we use the eigenfunction decomposition that we used for the heat equation, u(t , x) =∑∞
k=1 uk(t)φk(x), then

d2uk

dt2
=−λk uk ,

uk(0)= (u0)k ,
duk

dt
(0) = (v0)k ,

where u0(x) =∑∞
k=1 (u0)k φk(x) and v0(x) = ∑∞

k=1 (v0)k φk(x). Solving these ordinary
differential equations gives

u(t , x)=
∞∑

k=1

[
(u0)k cos

(
λ

1/2
k t

)
+ (v0)k λ

−1/2
k sin

(
λ

1/2
k t

)]
φk(x).

Instead of having rapid decay in the coefficients of the eigenfunctions, there is rapid oscilla-
tion. This makes the behavior of solutions of hyperbolic equations much harder to analyze
or control.

3.3.1 Gelfand triples

In order to capture the behavior of these kinds of operators, we usually work in the frame-
work of Gelfand triples. A Gelfand triple, also called an evolution triple or rigged Hilbert
space, is a pair of Hilbert spaces X and H together with some inclusions

X ⊆ H = H ′ ⊆ X ′. (3.32)

Here the inclusion X ⊆ H is actually a function incl : X → H which is one-to-one (that
is, incl(x)= incl(z) implies x = z). Also, we identify H with its dual H ′. In practice, this
usually means that H = L2(A) for some domain A ⊂ Rd and we identify the function f ∈
L2(A) with the functional g #→ ∫

A f g. The inclusion H ′ ⊆ X ′ is the adjoint incl∗ : H ′ →
X ′ of incl : X → H .

The inclusion function incl should be linear, continuous, one-to-one, and dense: the
closure of the image incl(X )= H . The fact that incl(X )= H is important, as it implies that
incl∗ is also one-to-one: incl∗(u1)= incl∗(u2) implies that incl∗(u1−u2)= 0. To see this,
note that

0= 〈
incl∗(u1−u2), v

〉
X ′×X = 〈u1−u2, incl(v)〉H ′×H ;
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by taking limits incl(vk) → w for any w ∈ H , we see that 〈u1−u2, w〉H×H ′ = 0 for all
w ∈ H . Thus u1 − u2 = 0; that is, u1 = u2. This means that incl∗ is one-to-one. In
finite dimensions, every vector subspace is closed, so incl(X ) is closed. This means that
incl(X )= incl(X )= H , so incl is then one-to-one and onto. This means that we can identify
X = H = H ′ = X ′ = Rn . But in infinite dimensions dense but not onto inclusions are
common. For example, we can take X to be the Sobolev space H 1(�) for an open domain
�⊆ Rn and H = L2(�).

Often it is assumed that incl : X → H is compact; that is, if A is a bounded set in
X , then incl(A) is compact. In finite dimensions all closed bounded sets are compact, but
this is not true for infinite-dimensional Banach spaces. So, in finite dimensions, any linear
function X → H is compact. In infinite dimensions some inclusions are compact (such as
H 1(�)→ L2(�)), but some are not (such as any identity map on an infinite-dimensional
Banach space, or the inclusion L p(�)→ Lq (�) where q ≤ p). If incl is compact, then
incl∗ is also compact.

In a Gelfand triple we do identify the middle Hilbert space H with its dual H ′. This
means that we treat the operator JH : H → H ′ defined by 〈JH (u), v〉H ′×H = (u, v)H as
the identity operator on H = H ′. If H = L2(�), this means that we identify a function
f ∈ L2(�) with the functional on L2(�)

g #→
∫
�

f (x) g(x)dx .

This is reasonable for most applications involving partial differential equations.
The most crucial aspect of a Gelfand triple is that the duality pairing on X and X ′ is

equivalent to the inner product on H :

(u, v)H = 〈u, v〉X×X ′ for all u ∈ X ⊆ H , v ∈ H ⊆ X ′. (3.33)

In the finite-dimensional case, this just means that the duality pairing between Rn and
(Rn)′ ∼= Rn is the same as the inner product on Rn : (x , y) = x T y. In the case where
X = H 1(�) and H = L2(�), this just means that the duality pairing between u ∈ H 1(�)
and v ∈ H−1(�)= H 1(�)′ is given by3

〈u, v〉H1×H−1 =
∫
�

u(x)v(x)dx ,

although the integral may need to be understood in the sense of distributions. This in-
tegral can also be given a meaning via Plancherel’s theorem for Fourier transforms: for
f , g : Rd → R “sufficiently regular,”∫

Rd
f (x) g(x)dx = (2π)−d Re

∫
Rd

F f (ξ )Fg(ξ )dξ . (3.34)

Note that here (·) means the complex conjugate of (·).
3Many authors define H−1(�) as H 1

0 (�)′ and leave the relationship between H 1
0 (�)′ and H 1(�)′ un-

examined; here we define H−1(�) = H 1(�)′. In fact, H 1
0 (�)′ can be considered as a closed subspace of

H 1(�)′.
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Plancherel’s theorem implies that∫
Rd
| f (x)|2 dx = (2π)−d

∫
Rd
|F f (ξ )|2 dξ ,

so Fourier transforms can be used for inner products. In particular, for the H 1 inner product,
since F [∇ f ](ξ )= iξ F f (ξ ),

( f , g)H1 =
∫
Rd

( f (x) g(x)+∇ f (x) ·∇g(x)) dx

= (2π)−d Re
∫
Rd

(1+ ξ · ξ ) F f (ξ )Fg(ξ )dξ while

( f , g)L2 = (2π)−d Re
∫
Rd

F f (ξ )Fg(ξ )dξ .

The dual inner product for H−1(Rn) is given by

( f , g)H−1 = (2π)−d Re
∫
Rd

(1+ ξ · ξ )−1 F f (ξ )Fg(ξ )dξ .

Since f ∈ H 1(Rd ) if and only if ξ #→ (1+ ξ · ξ )1/2F f (ξ ) is in L2(Rd ), if φ : H 1(Rd )→R

is a linear functional, then we can represent φ by

φ( f )= Re
∫
Rd

q(ξ ) (1+ ξ · ξ )1/2F f (ξ )dξ

with q a complex-valued function in L2(Rd ). If we write

q(ξ )= (2π)−d (1+ ξ · ξ )−1/2 Fg(ξ ),

then g ∈ H−1(Rd ) and

φ( f )= (2π)−d Re
∫
Rd

Fg(ξ )F f (ξ )dξ

=
∫
Rd

g(x) f (x)dx for all f ∈ H 1(Rd ).

Thus we have a representation of H 1(Rd )′ as H−1(Rd ) where the duality pairing between
H 1(Rd ) and H−1(Rd ) is (formally) equivalent to the usual inner product in L2(Rd ).

Note that the inclusion I := incl∗ ◦ JH ◦ incl : X → X ′ of X ⊆ H = H ′ ⊆ X ′ is usu-
ally very different from the map JX : X → X ′ given by 〈JX (x), z〉X ′×X = (x , z)X . For
example, if X = H 1(Rd ) and H = L2(Rd ) as discussed above, then I really is the in-
clusion f #→ f that gives H 1(Rd ) → H−1(Rd ). On the other hand, JX ( f ) = g, where
g(x)= F−1

ξ→x

[
(1+ ξ · ξ ) F f (ξ )

] = f (x)−∇2 f (x); that is, JX = I −∇2. These are very
different operators.

One property that is very important about I is that it is a strictly monotone linear
function:

〈I (z), z〉X ′×X =
〈
incl∗(JH (incl(z))), z

〉
X ′×X

= 〈JH (incl(z)), incl(z)〉H ′×H

= (incl(z), incl(z))H

= ‖incl(z)‖2
H = ‖z‖2

H > 0 for z �= 0.
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n x(  )

Ω

x

Figure 3.1: Normal direction vector to � at x ∈ ∂�.

Note that I is not strongly monotone, since there is no guarantee that there is an α > 0
where ‖z‖H ≥ α ‖z‖X for all z ∈ X . In fact, for infinite-dimensional Banach spaces, if the
inclusion X ⊆ H is compact (that is, incl : X → H is a compact operator), then ‖z‖H /‖z‖X
can be made as close to zero as desired.

This has some important consequences. For example, it would be tempting to apply
the theory of maximal monotone operators (as developed in Section 4.2) to situations de-
scribed by Gelfand triples. However, where we should not identify X with X ′ (so that JX
cannot be considered to be the identity operator), A : X → X ′ maximal monotone does not
imply that I + A is onto. This is discussed in more detail in Section 4.2.2. In particular,
Lemma 4.7 gives a simple condition where a maximal monotone operator � : X → P(X ′)
can define a maximal monotone operator �H : H → P(H ′)= P(H ).

In order to obtain existence of solutions for problems that include, for example, the
heat equation (3.24)–(3.26), we restrict our attention to linear elliptic operators A : X → X ′:
there is an α > 0 such that

〈A(x), x〉X ′×X ≥ α ‖x‖2
X for all x ∈ X . (3.35)

For most purposes involving dynamics, this condition can be weakened to what is described
here as a semielliptic operator: there are α > 0 and β ∈ R such that

〈A(x), x〉X ′×X ≥ α ‖x‖2
X −β ‖x‖2

H for all x ∈ X . (3.36)

Then A+β I is an elliptic operator. As an example, consider the negative Laplacian opera-
tor A=−∇2 on the space H 1(�) with Neumann boundary conditions: ∂u/∂n(x)= g(x) on
the boundary ∂� where ∂u/∂n(x) is the derivative of u at x in the direction of the outward
pointing normal vector to � at x . This normal derivative is just ∂u/∂n(x)= n(x) ·∇u(x);
see Figure 3.1.

With the Neumann boundary conditions, if f (x) := 1 for all x ∈�, then ∂ f/∂n(x)= 0
for any x ∈ ∂� and −∇2 f = 0. Thus

〈
f ,−∇2 f

〉
H1×H−1 = 0.

3.3.2 Interpolation spaces in Gelfand triples

Often we need to look for intermediate spaces, usually of functions with intermediate levels
of smoothness or regularity, other than just X , H , and X ′ in a Gelfand triple. This can be
done using the theory of interpolation spaces, which can be found in many sources such as
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[1, 29, 262]. More accessible summaries can be found in, for example, [151, 260, 273].
The various methods for carrying this out are called the complex method, the real method
(with either “J” or “K” versions), and the operator method. Here, the simpler operator
method will suffice.

We take X to be a Hilbert space in a Gelfand triple X ⊂ H = H ′ ⊂ X ′ with com-
pact inclusions. Let A : X → X ′ be an elliptic self-adjoint operator (we can take A = JX ,
the duality operator). Then A−1 ◦ I : X → X ′ → X is a compact self-adjoint operator:(
A−1 ◦ I (x), y

)
X =

(
x , A−1 ◦ I (y)

)
X . Then by the spectral theorem for compact self-

adjoint operators there is an infinite family of eigenfunctions φk and eigenvalues µk > 0
with µ1 ≥ µ2 ≥ ·· · > 0 and limk→∞µk = 0, and span {φ1, φ2, . . .} = X . The eigenfunc-
tions can be taken to be orthogonal ((φi , φ j )= 0 if i �= j ), not only in the inner product on
X but also in H . We will scale the eigenfunctions φi so that ‖φi‖H = 1. Then each φi is an
eigenfunction of A with Aφi = λiφi , with λi =µ−1

i . (Actually, it should be Aφi = λi I (φi ),
but we identify φi ∈ X with I (φi ) ∈ X ′.)

For any w ∈ span{φ1, φ2, . . .} we have the following norm for any given θ ∈ R:∥∥∥∥∥
∞∑

i=1

αiφi

∥∥∥∥∥
θ

=
[ ∞∑

i=1

λθi α
2
i

]1/2

. (3.37)

This norm is equivalent to the norm on X if θ = 1, the norm on H if θ = 0, and the norm
on X ′ if θ = −1. If we used A = JX in our construction, the norms would be equal. For
each θ , we define the interpolation space Xθ to be the completion of span{φ1, φ2, . . .} in
the norm ‖·‖θ . If ρ > θ , then Xρ ⊂ Xθ , and the imbedding is compact. The fractional
power operators Aα defined by Aαφi = λαi φi are continuous operators Xθ → Xθ−2α with
continuous inverses ((Aα)−1 = A−α : Xθ → Xθ+2α). Negative θ spaces correspond to dual
spaces: Xθ ⊂ H = H ′ ⊂ (Xθ )′ = X−θ is a Gelfand triple.

3.4 Differentiation lemmas
Differentiation lemmas are technical results for functions satisfying complementarity con-
ditions or VIs that connects the complementarity condition or VI with properties of the
functions concerned. For example, if a : [r ,s]→ X , b : [r ,s]→ X ′ with X a Banach space
satisfy a generalized complementarity condition

K " a(t)⊥ b(t) ∈ K ∗ for all t

and are smooth, then

0=
〈
a(t),

db

dt
(t)

〉
,

0 ≥
〈

da

dt
(t),

db

dt
(t)

〉
,

0 ≤
〈
a(t),

d2b

dt2
(t)

〉
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for all t . These results can be generalized to much less regular functions and also applied
to VIs. Their use ranges from helping to show existence of solutions to showing energy
conservation in certain impact problems.

3.4.1 Differentiation lemmas for CPs

Differentiation lemmas are easier to develop for complementarity conditions, so we start
with these. The first result which we prove is a basic result which we can use for a large
number of situations.

Lemma 3.2. Let K be a closed convex cone in a Banach space X which has the Radon–
Nikodym property (RNP). Suppose that K " a(t) ⊥ b(t)∈ K ∗ for almost all t and for t = t0,
and that b is differentiable at t0. Then 〈a(t0), db/dt(t0)〉 = 0. If a is also differentiable at
t0, then 〈da/dt(t0), db/dt(t0)〉 ≤ 0. If b is absolutely continuous and is twice differentiable
at t0, then

〈
a(t0), d2b/dt2(t0)

〉≥ 0.

Proof. Since K " a(t0) ⊥ b(t0) ∈ K ∗, for almost all h > 0,

〈a(t0), (b(t0+h)−b(t0))/h〉 ≥ 0.

Taking limits as h ↓ 0 gives 〈a(t0), db/dt(t0)〉 ≥ 0. On the other hand, for almost all h < 0,
〈a(t0), (b(t0+h)−b(t0))/h〉 ≤ 0. Again taking limits h ↑ 0 gives 〈a(t0), db/dt(t0)〉 ≤ 0.
Combining these two inequalities gives 〈a(t0), db/dt(t0)〉 = 0.

For the second result, consider the finite difference approximation (for almost all
h �= 0) 〈

a(t0+h)−a(t0)

h
,

b(t0+h)−b(t0)

h

〉
= 1

h2
〈a(t0+h)−a(t0), b(t0+h)−b(t0)〉

= 1

h2 (〈a(t0+h), b(t0+h)〉+ 〈a(t0), b(t0)〉
− 〈a(t0+h), b(t0)〉− 〈a(t0), b(t0+h)〉) ≤ 0.

Taking limits as h → 0 we see that 〈da/dt(t0), db/dt(t0)〉 ≤ 0.
For the third result, consider the finite difference approximation〈

a(t0),
b(t0+h)−2b(t0)+b(t0−h)

h2

〉
= 1

h2 (〈a(t0), b(t0+h)〉−2 〈a(t0), b(t0)〉+ 〈a(t0), b(t0−h)〉) ≥ 0.

Now we show that limh→0 (b(t0+h)−2b(t0)+b(t0−h))/h2 = b′′(t0). Since b′′(t0)
exists, limr→0

(
b′(t0+ r )−b′(t0)

)
/r = b′′(t0). So for any ε > 0 there is a δ > 0 such that
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|r |< δ implies
∥∥(

b′(t0+ r )−b′(t0)
)
/r −b′′(t0)

∥∥ < ε. So

∥∥∥∥b(t0+h)−2b(t0)+b(t0−h)

h2 −b′′(t0)

∥∥∥∥
=

∥∥∥∥ 1

h

∫ h

0

b′(t0+ r )−b′(t0− r )

r

r

h
dr −b′′(t0)

∥∥∥∥
≤ 1

h

∫ h

0

∥∥∥∥b′(t0+ r )−b′(t0)+b′(t0)−b′(t0− r )

r
−2b′′(t0)

∥∥∥∥ r

h
dr

≤ 1

h

∫ h

0
2ε

r

h
dr = ε (for |h|< δ).

So limh→0 (b(t0+h)−2b(t0)+b(t0−h))/h2 = b′′(t0); taking the limit,
〈
a(t0), b′′(t0)

〉≥ 0,
as desired.

Note that it is not even necessary for (a(t0+ h)− a(t0))/h → a′(t0) strongly for the
first result to hold; this could be weak convergence.

These pointwise results can be extended to prove integrated results. One example is
as follows.

Lemma 3.3. Suppose X is a Banach space with the RNP, K is a closed convex cone in X
and

K " a(t)⊥ b(t) ∈ K ∗ for almost all t .

If a is absolutely continuous [0, T ] → X and b ∈ L1(0, T ; X ′), then
〈
a′(t), b(t)

〉 = 0 for
almost all t . Also, if a ∈ H 1+α(0, T ; X ) and b ∈ H−α(0, T ; X ), α >−1, then

〈
a′(t), b(t)

〉=
0 in the sense of tempered distributions.

Proof. We start by supposing that a : [0, T ] → X is absolutely continuous and that
b ∈ L1(0, T ; X ′). Then since X has the RNP, a′(t) = limh→0(a(t + h)− a(t))/h exists
almost everywhere. Then, for almost every t ∈ [0, T ], the derivative a′(t) exists and K "
a(t) ⊥ b(t) ∈ K ∗, so that by Lemma 3.2

〈
a′(t), b(t)

〉= 0, as desired.
Now consider a ∈ H 1+α(0, T ; X ), b ∈ H−α(0, T ; X ), and α > −1. Note that we do

not necessarily require that α≥ 0. First we extend a(t) to all real t: a(t)= a(T ) if t > T , and
a(t)= a(0) if t < 0; b(t)= 0 if t > T or t < 0. We wish to show that

∫
φ(t)

〈
a′(t), b(t)

〉
dt =

0 for all tempered test functions φ ∈ S(R) with support in [0, T ]. To do this we first show
that this is true for all nonnegative φ ∈ S(R).

We can use Fourier transforms to represent

∫ T

0
〈(a(t+h)−a(t))/h, φ(t)b(t)〉 dt
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via Plancherel’s theorem: For h > 0,

0 ≤
∫ +∞

−∞

〈
a(t+h)−a(t)

h
, φ(t)b(t)

〉
dt

= 1

2π
Re

∫ +∞

−∞
eiωh −1

h
Fa(ω)F (φb) (ω)dω

= 1

2π
Re

∫ +∞

−∞
eiωh −1

h

(
1+ω2

)αFa(ω)
(

1+ω2
)−αF (φb) (ω)dω.

Similarly, if h < 0, then 0≥ ∫ +∞
−∞ 〈(a(t+h)−a(t))/h, φ(t)b(t)〉 dt .

Clearly the integrand converges pointwise to

iωFa(ω)F (φb) (ω)= F [
a′

]
(ω)F (φb) (ω).

To show that the integral converges we use the dominated convergence theorem. Note that

ω #→ (
1+ω2

)(1+α)/2Fa(ω) and ω #→ (
1+ω2

)−α/2F (φb) (ω) are both in L2(0, T ), and so

ω #→ (
1+ω2

)1/2 |Fa(ω)| |Fb(ω)| is integrable.

As
∣∣eiωh −1

∣∣/ |h| ≤ |ω| ≤ (
1+ω2

)1/2
, the integrands are bounded uniformly as h→

0 by an integrable function. Thus we can apply the dominated convergence theorem and
take h → 0 to obtain

0= 1

2π
Re

∫ +∞

−∞

(
1+ω2

)α
iωFa(ω)

(
1+ω2

)−αF (φb) (ω)dω

= 1

2π
Re

∫ +∞

−∞

(
1+ω2

)αF [
a′

]
(ω)

(
1+ω2

)−αF (φb) (ω)dω

=
∫ T

0

〈
da

dt
(t), φ(t)b(t)

〉
dt .

Since this is true for any 0≤φ ∈S(R) with support in [0, T ], it can be shown that
〈
a′(t), b(t)

〉=
0 in the sense of tempered distributions, so

〈
a′(t), b(t)

〉= 0 for almost all t .

This result can be extended to a having bounded variation [0, T ]→ X and b contin-
uous function [0, T ]→ X ′. Note that we cannot allow b to be discontinuous at an atom of
a′, as the simple example from [243] below shows:

a(t)=
{

0, t ≤ 0,

1, t > 0,

b(t)=
{

1, t ≤ 0,
0, t > 0.

Then a(t)b(t)= 0 for all t . However, a′(t)= δ(t), the Dirac-δ function. Since b is a Borel
function, it is bounded, and b(0)= 1, we have

∫
a′(t)b(t)dt = 1, not zero. Nevertheless,

continuity of b is sufficient to obtain the corresponding result for a of bounded variation.
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This result turns out to be important in proving energy conservation results for rigid-
body dynamics with impact: only when the velocity is discontinuous and the contact force
is impulsive can there be work done by a rigid obstacle.

Lemma 3.4. If a : [0, T ]→ X has bounded variation, b : [0, T ]→ X ′ is continuous, K is
a closed convex cone in X, and

K " a(t)⊥ b(t) ∈ K ∗,

then
〈
a′(t), b(t)

〉= 0 in the sense of measures.

Proof. Let φ : [0, T ]→ R be continuous. Then we can write φ(t) = φ+(t)−φ−(t) with
φ+(t) = max(φ(t), 0) and φ−(t) = max(−φ(t), 0). Both φ± are continuous and nonnega-
tive. Let us suppose that φ is also nonnegative. Then φ(t)b(t) ∈ K ∗ for all t and φ b is
continuous. We want to show that

∫ T
0 φ(t)

〈
a′(t), b(t)

〉
dt = 0. Using the Stieltjes integral,

for any ε > 0 we can pick a δ > 0 so that for any partition 0= t0 < t1 < · · ·< tN−1 < tN = T
with ti ≤ τi ≤ ti+1 and ti+1− ti < δ for all i∣∣∣∣∣

∫ T

0
φ(t) 〈da(t), b(t)〉−

N−1∑
i=0

〈a(ti+1)−a(ti), φ(τi )b(τi )〉
∣∣∣∣∣ < ε.

Picking τi = ti , we note that 〈a(ti+1)−a(ti), φ(ti )b(ti )〉 ≥ 0, but if we pick τi = ti+1, we
get 〈a(ti+1)−a(ti), φ(ti+1)b(ti+1)〉 ≤ 0. Thus∣∣∣∣∣

N−1∑
i=0

〈a(ti+1)−a(ti), φ(τi )b(τi )〉
∣∣∣∣∣ < ε

for any choice of τi ∈
[
ti , ti+1

]
. Thus∣∣∣∣∫ T

0
φ(t) 〈da(t), b(t)〉

∣∣∣∣ < 2ε.

Since ε > 0 is arbitrary, we get
∫ T

0 φ(t) 〈da(t), b(t)〉 = 0. As this is true for all nonnegative
continuous φ, it must be true for all continuous φ. Thus 〈da(t), b(t)〉 = 0 in the sense of
measures.

Lemmas 3.2, 3.3, and 3.4 are the most important and have application to questions of
conservation of energy or energy balance for mechanical systems with contact.

Corresponding results for the two-derivative differentiation lemmas follow.

Lemma 3.5. Suppose that X is a Banach space with the RNP, and that

K " a(t)⊥ b(t) ∈ K ∗ for almost all t .

If a ∈ W 1,p(0, T ; X ) and b ∈ W 1,q (0, T ; X ′) with 1/p+1/q = 1, then
〈
a′(t), b′(t)

〉 ≤ 0 for
almost all t . Also, if a ∈ H 1+α(0, T ; X ) and b ∈ H 1−α(0, T ; X ) for some |α| < 1, then〈
a′(t), b′(t)

〉≤ 0 for almost all t .
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Proof. For the case where a ∈ W 1,p(0, T ; X ) and b ∈ W 1,q (0, T ; X ′) with 1/p+1/q = 1,
we note that both a and b are differentiable almost everywhere. By Lemma 3.2,

〈
a′(t), b′(t)

〉
≤ 0 for any point of differentiability t of both a and b. Thus the result holds in this case.

For the second case, we use Fourier transforms applied to

0≥
〈

a(t+h)−a(t)

h
,

b(t+h)−b(t)

h

〉
.

Let φ be a smooth nonnegative function that is zero outside (ε, T − ε) for some ε > 0. Then

K " φ(t)a(t)⊥ φ(t)b(t) ∈ K ∗ for almost all t .

Extending the functions by zero outside of (ε, T − ε),

0 ≥
∫ +∞

−∞

〈
φ(t+h)a(t+h)−φ(t)a(t)

h
,
φ(t+h)b(t+h)−φ(t)b(t)

h

〉
dt

= 1

2π

∫ +∞

−∞

〈(
eiωh −1

h

)
F [φ a] (ω),

(
eiωh −1

h

)
F [φ b] (ω)

〉
dω

= 1

2π

∫ +∞

−∞

(
eiωh −1

h

)(
eiωh −1

h

)
〈F [φ a] (ω), F [φ b] (ω)〉 dω

= 1

2π

∫ +∞

−∞
2

1− cos(ωh)

ω2h2
ω2 〈F [φ a] (ω), F [φ b] (ω)〉 dω

= 1

π

∫ +∞

−∞
1− cos(ωh)

(ωh)2

〈F [
(φ a)′

]
(ω), F [

(φ b)′
]

(ω)
〉
dω.

Now θ #→ (1− cosθ )/θ2 is a bounded function since it is continuous (except possibly
at zero) and limθ→0 (1− cosθ )/θ2 = 1/2 and limθ→±∞ (1− cosθ )/θ2 = 0. Also φ a ∈
H 1+α(R; X ) and φ b ∈ H 1−α(R; X ′), so

ω #→ 〈F [
(φ a)′

]
(ω), F [

(φ b)′
]

(ω)
〉

is in L1(R).

But (1− cos(ωh))/ (ωh)2 → 1/2 as h ↓ 0 pointwise, so by the dominated convergence
theorem, the limit as h ↓ 0 of the integral above is

0 ≥ 1

2π

∫ +∞

−∞
〈F [

(φ a)′
]

(ω), F [
(φ b)′

]
(ω)

〉
dω

=
∫ +∞

−∞
〈
(φ a)′ (t), (φ b)′ (t)

〉
dt .

But (φ a)′ = φ′ a+φ a′, and so〈
(φ a)′ (t), (φ b)′ (t)

〉= 〈
φ′(t)a(t)+φ(t)a′(t), φ′(t)b(t)+φ(t)b′(t)

〉
= φ′(t)2 〈a(t), b(t)〉+φ(t)φ′(t)

(〈
a′(t), b(t)

〉+ 〈
a(t), b′(t)

〉)
+φ(t)2 〈

a′(t), b′(t)
〉
.
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The first two terms are zero; the first term is because a(t)⊥ b(t), and the second is because
of the first differentiation lemma. Thus

0≥
∫ T

0
φ(t)2 〈

a′(t), b′(t)
〉
dt .

Since this is true for all nonnegative continuous φ that are zero in a neighborhood of zero
and T , we have

〈
a′(t), b′(t)

〉≤ 0 for almost all t .

We cannot go beyond two derivatives with these differentiation lemmas; simple coun-
terexamples are given in [243]. One of the nice features of these results for DCPs is that
they are essentially symmetric in a(t) and b(t). However, this is not so for VIs, as we will
see.

3.4.2 Differentiation lemmas for VIs

Some, but not all, of these differentiation lemmas can be transferred to VIs. Consider the
following form of parametric VIs:

a(t) ∈ K for all t , (3.38)

0≤ 〈b(t)−a(t), f (t)〉 for any b(t) ∈ K for all t . (3.39)

Then, if a(t) and f (t) form a solution of the parametric VI (3.38)–(3.39), we have the
following inequalities:

0≤
〈

a(t+h)−a(t)

h
, f (t)

〉
for h > 0,

0≥
〈

a(t+h)−a(t)

h
, f (t)

〉
for h < 0.

Provided a′(t) exists (even if (a(t+h)−a(t))/h converges only weakly), then

0= 〈
a′(t), f (t)

〉
. (3.40)

Following the methods of proof of Lemma 3.3, we can show that if a ∈ W 1,p(0, T ; X ) and
f ∈ Lq (0, T ; X ′) (1/p+1/q = 1), or a ∈ H 1+α(0, T ; X ) and f ∈ H−α(0, T ; X ′), solve the
parametric VI (3.38)–(3.39), then

〈
a′(t), f (t)

〉= 0 for almost all t .
There are also differentiation lemmas with two derivatives for VIs: If a(t) and f (t)

solve (3.38)–(3.39) and are both differentiable at t , we have

0≥
〈

a(t+h)−a(t)

h
,

f (t+h)− f (t)

h

〉
for h �= 0.

Taking limits gives

0≥ 〈
a′(t), f ′(t)

〉
. (3.41)

On the other hand, if a is twice differentiable at t and h �= 0,

0≤
〈

a(t+h)−2a(t)+a(t−h)

h2 , f (t)

〉
= 1

h2

[〈a(t+h)−a(t), f (t)〉+ 〈a(t−h)−a(t), f (t)〉] .
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Taking limits gives

0≤ 〈
a′′(t), f (t)

〉
. (3.42)

The formal proofs that these inequalities apply for a and f having the appropriate regularity
(for example, that a ∈W 1,p(a,b; X ) and f ∈W 1,q (a,b; X ′) satisfying (3.38)–(3.39) implies
(3.41) holds for almost all t) follow those of the previous section for CPs.

These differentiation lemmas for VIs are particularly useful for dealing with elastic
impact problems, as these are often cast as VIs to avoid dealing with the normal contact
forces on the boundary.
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Chapter 4

Variations on the Theme

In most sciences one generation tears down what another has built and what
one has established another undoes. In mathematics alone each generation
adds a new story to the old structure.

Hermann Hankel

There are a number of variations on the theme of DVIs. These include, first and fore-
most, differential inclusions and maximal monotone differential inclusions. Also men-
tioned are variants on this approach: projected dynamical systems (PDSs), sweeping pro-
cesses, parabolic variational inequalities (PVIs), and other approaches based more directly
on complementarity, such as linear complementarity systems (LCSs) and convolution com-
plementarity problems (CCPs).

4.1 Differential inclusions
Differential inclusions [19, 73, 228] are a generalization of differential equations of the
form

dx

dt
(t) ∈�(t , x(t)), x(t0)= x0. (4.1)

The function � : [0, T ]×X →P (X ) is a set-valued function. In full generality, differential
inclusions do not have solutions, just as differential equations in their full generality do not
have solutions. Usually for differential equations, we require that the right-hand side func-
tion �(t , x) be Lipschitz, or even just continuous, in x . Carathéodory’s existence theorem
(Theorem C.5) requires just continuity in x and integrability in t . Some of these restrictions
are not necessary for differential inclusions. Filippov [102, 103] developed the theory of
differential inclusions for dealing with discontinuous ordinary differential equations, such
as arise with Coulomb friction. Consider the problem of a brick on a ramp considered in
Section 1.2:

m
dv

dt
= mg sinθ−µmg cosθ sgn(v), v(0)= v0, (4.2)

101
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102 Chapter 4. Variations on the Theme

where we take sgn(v)=+1 if v > 0, −1 if v < 0, and 0 if v = 0. As given, the differential
equation (4.2) has no solution beyond the time when v(t∗)= 0, which will happen in finite
time for 0 < θ < tan−1µ. The reason is that if v(t∗) = 0, then to have v(t) > 0 for some
time t > t∗, there must be a time τ between t∗ and t where dv/dt(τ ) > 0 and v(τ ) > 0,
which contradicts the formula in (4.2). Similarly, it is not possible to have v(t) < 0 for
t > t∗. So our only possible solution is to have v(t) = 0 for t > t∗. However, this means
that dv/dt(t)= 0 for t > t∗. This means that

0= mg sinθ −µmg cosθ sgn(0)= mg sinθ �= 0,

a contradiction! Thus there are no solutions after v(t∗)= 0.
The remedy for this lack of existence is to extend the set of values of the right-hand

side of (4.2) to allow v(t)= 0 for t > t∗. The idea is to replace

dx

dt
= f (t , x(t)),

where f (t , x) is a discontinuous function of x , with

dx

dt
∈�(t , x(t)),

where
�(t , x)=

⋂
δ>0

co f (t , x+ δB),

where B is the unit ball centered on the origin: B = { y | ‖y‖< 1 }, and co A = co A is the
closure of the convex hull of A ⊆ X . The convex hull of a set A is

co A =
{

m∑
i=1

θi xi |
m∑

i=1

θi = 1, θi ≥ 0 for all i , xi ∈ A for all i

}
,

the set of convex combination of elements of A. This ensures that in the resulting differ-
ential inclusion dx/dt ∈�(t , x), the value of �(t , x) always has closed convex values. To
understand the need for the sets �(t , x) to be convex, we need to understand set-valued
integrals.

4.1.1 Set-valued integrals

For a set-valued function � : [0, T ]→ P(Rn) we would like to define the set-valued inte-
grals for 0≤ a ≤ b ≤ T by∫ b

a
�(t)dt =

{∫ b

a
φ(t)dt | φ(t) ∈�(t) for all t

}
. (4.3)

The functions φ : [0, T ] → Rn satisfying φ(t) ∈ �(t) for all (or almost all) t is called a
selection of �. However, there are some obstacles to using (4.3) as a definition, as the
integrals

∫ b
a φ(t)dt require that φ be integrable functions, which implies that the φ are

measurable functions in the sense of Lebesgue measure. This rather technical condition
imposes some easy-to-satisfy restrictions on �.
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A set-valued function � : [0, T ] → P(Rn) is said to be measurable if for each ball
x+r B , the set { t ∈ [0, T ] |�(t)∩ (x+ r B) �= ∅} is a Lebesgue measurable subset of [0, T ]
(see Section 2.1.4). Equivalently, � is measurable if for every x ∈ Rn , the distance func-
tion t #→ d (x , �(t)) := infy∈�(t )‖x− y‖ is a measurable function [0, T ]→ R [21]. Since
functions [0, T ]→ R that are not measurable are very difficult to construct (and the con-
struction usually requires the axiom of choice), the requirement of measurability of � is a
technical necessity but not a practical difficulty.

The measurability of � : [0, T ]→ P(Rn) implies that � has measurable selections:
φ : [0, T ]→Rn , where φ is both a measurable function and a selection of �. We introduce
the notation ‖A‖ for sets A:

‖A‖ =
{

supa∈A ‖a‖ , A �= ∅,
+∞, A = ∅.

The set-valued function � is integrable if it is measurable and the function t #→ ‖�(t)‖ is a
Lebesgue integrable function [0, T ]→R. Note that integrability implies that the Lebesgue
measure of { t ∈ [0, T ] |�(t)= ∅} is zero.

The importance of integrability of � is that this implies the existence of integrable
selections φ, so that we then can use (4.3) as the definition of

∫ b
a �(t)dt .

The connection with convexity comes through Aumann’s theorem [22].

Theorem 4.1. For any integrable set-valued function � : [0, T ]→ P(Rn) with closed val-
ues and 0≤ a ≤ b ≤ T , ∫ b

a
�(t)dt =

∫ b

a
co�(t)dt .

Proof. (⊆) First note that �(t) ⊆ co�(t) for all t , so
∫ b

a �(t)dt ⊆ ∫ b
a co�(t)dt . Now

we show that
∫ b

a co�(t)dt is a closed set. Suppose that we have ym =
∫ b

a ϕm(t)dt with
ϕm(t) ∈ co�(t) for almost all t and that ym → y in Rn .

The sequence ϕm satisfies ‖ϕm(t)‖ ≤ ‖�(t)‖ for almost all t , so the ϕm are equi-
integrable. Then by the Dunford–Pettis theorem there is a weakly convergent subsequence
which we denote by ϕm ⇀ ϕ. Since the dual space L1(a,b; Rn)′ is L∞(a,b; Rn), this
means that for any bounded integrable function ξ : [a,b] → Rn ,

∫ b
a 〈ξ (t), ϕm〉 (t)dt →∫ b

a 〈ξ (t), ϕ(t)〉 dt as n →∞ in the subsequence. Let E = { t ∈ [a,b] | ϕ(t) �∈ co�(t) }.
Then, for each t ∈ E , by the separating hyperplane theorem, there are a w(t) ∈ Rn and
a β(t) ∈ R such that 〈w(t), ϕ(t〉) < β(t) and 〈w(t), z〉 ≥ β(t) for all z ∈ co�(t). With-
out loss of generality, we can ensure that ‖w(t)‖ = 1 and |β(t)| ≤ supz∈�(t )‖z‖+‖ϕ(t)‖.
By Filippov’s lemma (Lemma 2.8), we can ensure that both w(t) and β(t) are measurable
functions of t ∈ E . From the bounds on w and β we see that 〈w(t), ϕ(t)〉−β(t) is an inte-
grable function of t , and

∫
E (〈w(t), ϕm (t)〉−β(t)) dt → ∫

E

(〈
w(t)T , ϕ(t)

〉−β(t)
)

dt . Now
ϕm(t) ∈ co�(t) for almost all t ∈ E , so

∫
E

(〈
w(t)T , ϕm(t)

〉−β(t)
)

dt ≥ 0. On the other
hand, 〈w(t), ϕ(t)〉−β(t) < 0 for almost all t ∈ E . The only way the two integrals can be
equal is if the Lebesgue measure of E is zero. Thus ϕ(t) ∈ co�(t) for almost all t ∈ [a,b],
and so ϕ is a selection of co�(t), and y = ∫ b

a ϕ(t)dt . Hence
∫ b

a co�(t)dt is closed, and

therefore
∫ b

a �(t)dt ⊆ ∫ b
a co�(t)dt .
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To show the reverse inclusion, suppose we have ϕ, a selection of co�. We wish to
find a sequence ϕm of selections of � such that

∫ b
a ϕm(t)dt → ∫ b

a ϕ(t)dt . For each integer

m ≥ 1, let εm = 1/m. Then, since ϕ(t) ∈ co�(t), we can find n+ 1 points ϕ(k)
m (t) ∈�(t),

k = 1, 2, . . . , n+1, and coefficients θk(t)≥ 0 with
∑n+1

k=1 θk(t)= 1 such that∥∥∥∥∥ϕ(t)−
n+1∑
k=1

θk(t)ϕ(k)
m (t)

∥∥∥∥∥ < εm .

By Filippov’s lemma we can assume that ϕ(k)
m and θk are measurable for all k. We want to

replace the sum
∑n+1

k=1 θk(t)ϕ(k)
m (t) by a single function ϕn(t) ∈ �(t) for almost all t . We

do this by rapidly switching between the ϕ
(k)
m functions, allowing each ϕ

(k)
m to be “on” for

a fraction of the time that approaches θk in a suitable sense. Let ω > 0 be given; this will
be interpreted as the speed of cycling through the ϕ

(k)
m . For each interval [r/ω, (r +1)/ω),

r ∈ Z, we set ρk,r ,ω = ω
∫ (r+1)/ω

r/ω θk(t)dt , the average value of θk on this interval. Note

that
∑n+1

j=1ρ j ,r ,ω = 1 for all r . Let Fk,r ,ω = [r +∑k−1
j=1ρ j ,r ,ω, r +∑k

j=1ρ j ,r ,ω)/ω, and let

Fk,ω =⋃
r∈Z Fk,r ,ω; these are disjoint sets whose union is R. Now let ϕm,ω(t) = ϕ

(k)
m (t)

whenever t ∈ Fk,ω , or equivalently

ϕm,ω(t)=
n+1∑
k=1

χFk,ω (t)ϕ(k)
m (t).

By Alaoglu’s theorem, there is a weak* convergent subsequence χFk,ω

∗
⇀ θ̂k as ω→∞ in

L∞(a,b; R). It is easily shown that for any interval [c, d], the integrals
∫ d

c χFk,ω (t)dt →∫ d
c θk(t)dt as ω→∞, so the weak* limit of any convergent subsequence is θk . Since

ϕ
(k)
m ∈ L1(a,b; Rn) and L∞(a,b; R)= L1(a,b; R)′,

∫ b
a χFk,ω (t)ϕ(k)

m (t)dt→ ∫ b
a θk(t)ϕ(k)

m (t)dt
as ω→∞.

Chooseω=ωm sufficiently large so that ‖∫ b
a χFk,ω (t)ϕ(k)

m (t)dt−∫ b
a θk(t)ϕ(k)

m (t)dt‖<εm .
This gives the selection ϕm = ϕm,ωm of �. Finally,∥∥∥∥∫ b

a
ϕ(t)dt−

∫ b

a
ϕm(t)dt

∥∥∥∥
≤

∥∥∥∥∥
∫ b

a
ϕ(t)dt−

∫ b

a

n+1∑
k=1

θk(t)ϕ(k)
m (t)dt

∥∥∥∥∥
+

n+1∑
k=1

∥∥∥∥∫ b

a
θk(t)ϕ(k)

m (t)dt−
∫ b

a
χFk,ωm

(t)ϕ(k)
m (t)dt

∥∥∥∥
≤ εm (b−a)+ (n+1)εm.

Taking m →∞ we see that
∫ b

a ϕm(t)dt → ∫ b
a ϕ(t)dt , so that

∫ b
a co�(t)dt ⊆ ∫ b

a �(t)dt .

With both inclusions shown,
∫ b

a co�(t)dt = ∫ b
a �(t)dt .
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4.1. Differential inclusions 105

4.1.2 Integral and differential definitions of solutions to differential
inclusions

This definition of integrals of set-valued functions enables us to give a pair of equivalent
conditions for solutions of differential inclusions dx/dt ∈�(t , x).

Definition 4.2. A solution of the differential inclusion on [0, T ],

dx

dt
∈�(t , x)⊆ Rn ,

is an absolutely continuous function x : [0, T ]→ X where x is an absolutely continuous
function where dx/dt(t) ∈�(t , x(t)) for almost all t . Equivalently, for all t1 < t2 in [0, T ],

x(t2) ∈ x(t1)+
∫ t2

t1
�(τ , x(τ ))dτ . (4.4)

Note that we cannot use

x(t) ∈ x(0)+
∫ t

0
�(τ , x(τ ))dτ for all t (4.5)

in the definition. The inclusion (4.5) is implied by (4.4), but the converse is false. For exam-
ple, take �(t , x)= [−1,+1] so that solutions are simply functions R→ R with Lipschitz
constant one. But the functions satisfying (4.5) are all functions satisfying |x(t)− x(0)|≤ t .

Definition 4.2 can be extended to differential inclusions in a Banach space X , pro-
vided X has the RNP. This property ensures that absolute continuity implies differentia-
bility almost everywhere. Note that reflexive spaces such as Hilbert spaces automatically
have the RNP.

4.1.3 Existence of solutions to differential inclusions

There is another condition that is needed for solutions to exist for a differential inclusion:
a “no-blow-up” condition that prevents solutions going to infinity in finite time. One way
of ensuring this for ordinary differential equations dx/dt = f (t , x) ∈ Rn is to impose the
condition that 〈x , f (t , x)〉 ≤ C

(
1+‖x‖2) for all x . Then

d

dt

(
‖x(t)‖2

)
= 2

〈
dx

dt
(t), x(t)

〉
= 2 〈 f (t , x(t)), x(t)〉
≤ 2C

(
1+‖x(t)‖2

)
.

Thus ‖x(t)‖ ≤
√

e2Ct
(‖x(0)‖2+1

)−1≤ 1+ eCt ‖x(0)‖ for t ≥ 0.
The same idea can be used to prevent blowup for differential inclusions:

〈y, x〉 ≤ C
(

1+‖x‖2
)

for all x and y ∈�(t , x). (4.6)
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We will use a stronger condition for the following proof:

‖�(t , x)‖ ≤ C(t) (1+‖x‖) for all t , x (4.7)

with C(·) an integrable function. This condition along with upper semicontinuity of � and
the values �(t , x) having closed convex values is enough to show existence of solutions to
the differential inclusion dx/dt ∈�(t , x), x(t0)= x0, at least in finite dimensions.

Theorem 4.3. Suppose that � : [0, T ]×Rn → P(Rn) has the following properties:

1. �(t , ·) is upper semicontinuous for all t;

2. ‖�(t , x)‖ ≤ C(t) (1+‖x‖) for all x , where C is an integrable function;

3. the values �(t , x) are closed convex sets for all t and x.

Then the differential inclusion dx/dt ∈�(t , x), x(t0)= x0 has a solution x(t) for all t ≥ t0.

Proof. The method of proof is via a variation of Euler’s method for numerical solution of
ordinary differential equations and is close to the proof of convergence by Taubert [258].
Choose h > 0 as the “step size” of the method. We can then construct a sequence of
functions xh(t) which we will show has a limit point; any limit point of this sequence turns
out to be a solution of the differential inclusion. Note that assumptions 1 and 2 together
imply that �(·, x) is an integrable set-valued function for all x .

The construction of xh(t) proceeds inductively. We have x(t0) = x0 as the initial
condition. Then we can pick an integrable selection ϕ0 of �(·, x(t0)) on [t0, t1) where
t1 = t0+h. Let

xh(t)= x(t0)+
∫ t

t0
ϕ0(τ )dτ , t0 ≤ t ≤ t1.

This gives xh(t1). In general, let tk = t0+ kh. Suppose that we have constructed xh(t) for
t0 ≤ t ≤ tk . We want to then construct xh(t) for tk ≤ t ≤ tk+1 consistently with the previous
construction. Pick an integrable selection ϕk of t #→�(t , xh(tk)) and set

xh(t)= xh(tk)+
∫ t

tk
ϕk(τ )dτ , tk ≤ t ≤ tk+1.

We can bound
∥∥xh(t)

∥∥ since dxh/dt(t)∈�(t , xh(tk)) for tk ≤ t ≤ tk+1. Thus
∥∥dxh/dt(t)

∥∥≤
C(t)

(
1+∥∥xh(tk)

∥∥)
for tk ≤ t ≤ tk+1with C(t) an integrable function. Thus

∥∥∥xh(tk+1)
∥∥∥≤ ∥∥∥xh(tk)

∥∥∥+∫ tk+1

tk
C(τ )dτ

(
1+

∥∥∥xh(tk)
∥∥∥)

.
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If we let ηk = 1+∥∥xh(tk)
∥∥, then ηk+1 ≤

(
1+ ∫ tk+1

tk
C(τ )dτ

)
ηk for all k. Thus

ηk ≤ η0

k−1∏
j=0

(
1+

∫ t j+1

t j

C(τ )dτ

)

≤ η0 exp

k−1∑
j=0

∫ t j+1

t j

C(τ )dτ


≤ (1+‖x(t0)‖) exp

(∫ tk

t0
C(τ )dτ

)
.

Since
∥∥xh(t)

∥∥ ≤ ηk+1 for all tk ≤ t ≤ tk+1, we have a bound on xh(t) for all t ≥ t0 that is
independent of h > 0. On any finite interval [t0, t∗] we have

∥∥∥xh(t)
∥∥∥≤ (1+‖x(t0)‖) exp

(∫ t∗

t0
C(τ )dτ

)
.

Furthermore, the xh are uniformly absolutely continuous on [t0, t∗] since∥∥∥dxh/dt(t)
∥∥∥≤ C(t)

(
1+ max

t0≤t≤t∗

∥∥∥xh(t)
∥∥∥)

.

Thus the family of functions is equicontinuous on [t0, t∗]. Then we can apply the theorem
of Arzela and Ascoli to show that there is a uniformly convergent subsequence xh → x̂ as
h ↓ 0 in this subsequence.

We wish to show that x̂ is a solution of the differential inclusion. This amounts to
showing that

x̂(t) ∈ x̂(s)+
∫ t

s
�(τ , x̂(τ ))dτ for all t0 ≤ s < t

and that x̂(t0)= x0. Let x̃ h(t)= xh(tk) for tk ≤ t < tk+1, so that

xh(t) ∈ xh(s)+
∫ t

s
�(τ , x̃ h(τ ))dτ for all s < t .

As h ↓ 0, maxt0≤t≤t∗
∥∥x̃ h(t)− xh(t)

∥∥→ 0 in the subsequence since xh are uniformly ab-
solutely continuous and hence uniformly continuous. Also, x̂ is absolutely continuous
since it is the uniform limit of a sequence of functions which are uniformly absolutely
continuous as h ↓ 0. Now dxh/dt is a selection of t #→ �(t , x̃ h(t)). For every ε > 0
and t ∈ [t0, t∗] there is a ρ(t) > 0 such that �(t , x̂(t)+ρ(t)B)⊆ �(t , x̂(t))+ εB . By Fil-
ippov’s lemma we can assume that δ is a measurable function. Thus, for almost all t ,
dist(dxh/dt(t), �(t , x̂(t))+ εB) → 0 as h ↓ 0 in the subsequence. Since the functions
dxh/dt are equi-integrable, by the Dunford–Pettis theorem, there is a further subsequence
in which dxh/dt converges weakly in L1(t0, t∗; Rn) to a limit ϕ̂ as h ↓ 0. Since �(t , x) is
a closed convex set for all t and x , we can use the separating hyperplane theorem to show
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that ϕ̂(t) ∈�(t , x̂(t))+ εB for almost all t . Also
∫ t

s dxh/dt(τ )dτ → ∫ t
s ϕ̂(τ )dτ as h ↓ 0 in

the further subsequence. Thus

x̂(t) ∈ x̂(s)+
∫ t

s

[
�(τ , x̂(τ ))+ εB

]
dτ .

Since this is true for every ε > 0 and 0 ≤ s < t , we see that x̂ solves the differential inclu-
sion, as desired.

Condition 2 of Theorem 4.3 can be replaced by the following two weaker conditions:
for any R > 0, suppose that

• ‖�(t , x)‖ ≤ kR(t) for all t and ‖x‖ ≤ R, where kR is integrable, and

• 〈y, x〉 ≤ C(t)
(
1+‖x‖2) for all y ∈�(t , x), where C(·) is integrable.

The existence of solutions can be shown for these weaker conditions by applying Theo-
rem 4.3 to the modified differential inclusion

dxR

dt
∈�(t , �R B (xR)), x(t0)= x0.

This is possible because ‖�(t , x)‖ ≤ kR(t) for all t and ‖x‖ ≤ R with kR integrable.
Because of the bound 〈y, x〉 ≤ C(t)

(
1+‖x‖2) for all y ∈ �(t , x), it can be shown that

‖xR(t)‖ ≤ 1+ exp
(∫ t

t0
C(τ )dτ

) ‖x0‖, independently of R. Thus, for sufficiently large
R > 0, ‖xR(t)‖< R for all t ∈ [t0, t∗], and so dxR/dt(t) ∈�(t , xR(t)), and we have solved
the differential inclusion on [t0, t∗].

Proving uniqueness of solutions requires some extra conditions. Even for ordinary
differential equations, continuity of the right-hand side does not guarantee uniqueness:

dx

dt
=√

max(x ,0), x(0)= 0 (4.8)

has the solutions x(t)= 0 for all t , x(t)= 1
4 t2 for all t , and for any t∗> 0, x(t)= 0 for t ≤ t∗

and x(t)= 1
2 (t− t∗)2 for t ≥ t∗. Failure of uniqueness is usually blamed on the lack of Lip-

schitz continuity of the function x #→ √
max(x ,0) at zero. This effect, though, is the result

of an extreme instability of the differential equation (4.8) at x = 0: d/dx
(√

max(x ,0)
) =

1
2 x−1/2 for x > 0, so that as x ↓ 0, d/dx

(√
max(x ,0)

)→+∞, indicating extreme instabil-
ity. On the other hand, the differential equation dx/dt = −√max(x ,0) does have unique
solutions: here d/dx

(−√max(x ,0)
)→−∞ as x ↓ 0. Again, Lipschitz continuity fails at

x = 0, but the differential equation is extremely stable. It is so stable, in fact, that solutions
reach x(t)= 0 in finite time, rather than just limt→∞ x(t)= 0.

This distinction between stability and instability is the key idea behind the idea of
one-sided Lipschitz continuity for differential inclusions: there is a one-sided Lipschitz
constant L such that

〈y1− y2, x1− x2〉 ≤ L ‖x1− x2‖2 (4.9)

for all y1 ∈�(t , x1), y2 ∈�(t , x2).
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Then, if we have two solutions x1(t) and x2(t) of dx/dt ∈�(t , x),

d

dt
‖x1(t)− x2(t)‖2 = 2

〈
dx1

dt
(t)− dx2(t)

dt
, x1(t)− x2(t)

〉
≤ 2 L ‖x1(t)− x2(t)‖2 .

Then, by means of Gronwall’s lemma,

‖x1(t)− x2(t)‖ ≤ eL(t−t0) ‖x1(t0)− x2(t0)‖ .

If x1(t0) = x2(t0) = x0, then x1(t) = x2(t) for all t ≥ t0. Note that one-sided Lipschitz
continuity not only ensures uniqueness of solutions but also ensures Lipschitz continuity
of the solutions in terms of the initial conditions x0.

Examples of one-sided Lipschitz continuous set-valued functions include s #→
−Sgn(s) as defined in (2.18), with L = 0. Thus the differential inclusion for a brick on
a ramp with Coulomb friction (4.2) has unique solutions.

Note that uniqueness and Lipschitz continuity of the solution in terms of the initial
conditions still hold if the one-sided condition is modified to allow the one-sided Lipschitz
constant to depend on t:

〈y1− y2, x1− x2〉 ≤ L(t) ‖x1− x2‖2

for all y1 ∈�(t , x1), y2 ∈�(t , x2),

where L(t) is an integrable function of t . The bound on ‖x1(t)− x2(t)‖ should then read as

‖x1(t)− x2(t)‖ ≤ exp

(∫ t

t0
L(τ )dτ

)
‖x1(t0)− x2(t0)‖ .

This idea of one-sided Lipschitz continuity can be extended to infinite dimensions and
unbounded operators by the theory of maximal monotone operators.

4.1.4 Comparison with DVIs

DVIs can be represented as differential inclusions. A simple way is to define the set of
solutions of the VI

u ∈ K & 0≤ 〈̃u−u, F(t , x(t),u)〉 for all ũ ∈ K

as sol(F(t , x(t), ·), K ). Then we can write the DVI (3.1)–(3.3) as the differential inclusion

dx

dt
(t) ∈ f (t , x(t), sol(F(t , x(t), ·), K )), x(t0)= x0. (4.10)

Often the reverse is true, but this usually requires some structure on the differential inclu-
sion. In practice this is almost always available, but it is also possible to construct “wild”
differential inclusions which cannot be reformulated as DVIs.

For example, consider the class of piecewise smooth problems [235, 236]

dx

dt
(t)= fi (t , x(t)), (4.11)

where hi (x(t)) < min
j : j �=i

h j (x(t)).
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We assume that all functions involved are smooth and that i ranges over {1, 2, . . . , m}. Let
the index set I (x) := {

i | hi (x)=min j h j (x)
} �= ∅. We also assume {∇hi (x) | i ∈ I (x) } is

an affinely independent set for all x ; that is, the affine space generated by {∇hi (x) | i ∈ I (x) }
is not generated by any strict subset. This is equivalent to saying that{∇hi (x)−∇h p(x) | i ∈ I (x)\{p}}
is a linearly independent set for some p ∈ I (t , x). The choice of p ∈ I (x) makes no differ-
ence to the condition: any p is as good as any other. Let Ri =

{
x | hi (x) < min j : j �=i h j (x)

}
;

then I (x)= {
i = 1, 2, . . . , m | x ∈ Ri

}
.

We use the Filippov reformulation as a differential inclusion:

dx

dt
(t) ∈ co { fi (t , x(t)) | i ∈ I (x) } . (4.12)

This can be represented as a DVI: Let 'm ⊂ Rm be the unit simplex

'm :=
{
θ ∈Rm | θi ≥ 0 for i = 1, 2, . . . , m,

m∑
i=1

θi = 1

}
.

Then (4.12) can be represented as

dx

dt
(t)=

m∑
i=1

θi (t) fi (t , x(t)), (4.13)

θ (t) ∈ 'm , (4.14)

0 ≤ (
θ̃ − θ (t)

)T
h(x(t)) for all θ̃ ∈'m , (4.15)

where h(x)= [h1(x), h2(x), . . . , hm(x)]T .
To see that these are equivalent, note that (4.14)–(4.15) is equivalent to θ = θ (t)

minimizing
∑m

i=1 θi hi (x(t)) over θ ∈'m : thus (4.14)–(4.15) implies θi (t)= 0 if hi (x(t))>
min j h j (x(t)), and so

m∑
i=1

θi (t) fi (t , x(t)) ∈ co { fi (t , x(t)) | i ∈ I (x) } .

Conversely, any element of co { fi (t , x(t)) | i ∈ I (x) } can be represented as

m∑
i=1

θi (t) fi (t , x(t)),

where θ (t) satisfies (4.14)–(4.15).
Other kinds of differential inclusions can arise naturally, such as in modeling Coulomb

friction forces in three dimensions. If the normal contact force N(t) is known (or can be
computed in terms of the state vector x(t)), then Coulomb’s friction law means that the fric-
tion force F(t) must be in the direction −vslip (t)/

∥∥vslip (t)
∥∥ with magnitude µN(t) if the

slip velocity vslip (t) �= 0. If the slip velocity vslip (t)= 0, then F(t) can be any vector inside
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a closed ball centered at the origin with radius µN(t). Writing x(t)= [q(t)T , v(t)T ]T for
the state vector, with q(t) the configuration of the system and v(t) a representation of the
velocities, and the slip velocity given by vslip (t) = H (q(t))v(t), the differential equation
for a mechanical system has the form

M(q(t))
dv

dt
(t) ∈ k(q(t), v(t))−µN(t) H (q(t))T ∂φ(H (q(t))v(t)),

dq

dt
(t)= G(q(t))v(t),

where M(q) is the mass matrix, k(q ,v) contains all noncontact forces, and φ(vslip ) =∥∥vslip
∥∥. Since φ is convex, “w ∈ ∂φ(z)” is equivalent to the VI of the second kind

0≤ φ( z̃ )−φ(z)−〈w, z̃− z〉 for all z̃.

This in turn is equivalent to a VI of the first kind, and so we can represent the differential
inclusion for this friction problem as a DVI.

4.2 Maximal monotone operators and differential
inclusions

The negative of a maximal monotone operator can be used as the right-hand side for dif-
ferential inclusions. This not only extends Theorem 4.3 on the existence of solutions to
differential inclusions, but the solutions have some important properties, such as unique-
ness for given initial conditions.

Since the domain of a maximal monotone operator does not have to be the whole
Hilbert space, this approach can be used to show the existence of solutions for differential
equations involving unbounded operators such as the heat equation

∂u

∂ t
=∇2u. (4.16)

This approach can also allow us to incorporate other conditions such as u(t , x) ≥ ϕ(x) for
all t and x ∈�, although there are some complications in doing this.

In the particular case of the negative Laplacian operator−∇2, we take φ : H 1(�)→
R given by φ(u)= 1

2

∫
�
‖∇u(x)‖2 dx as the convex lower semicontinuous and proper func-

tion: −∇2u =∇φ(u) and ∂φ(u)= {∇φ(u)} in H 1(�)′.

4.2.1 Theory of maximal monotone differential inclusions

We first consider the differential inclusion

0 ∈ du

dt
+�(u), u(0)= u0, (4.17)

where � is a maximal monotone operator X → P(X ′) for a Hilbert space where we can
identify X and X ′; that is, we take JX = I . In the context of a Gelfand triple V ⊂ H =
H ′ ⊂ V ′, we need � : H →P(H ). (If X ′ is not identified with X , these results can be used
to show the existence and properties of the differential inclusion 0 ∈ JV (du/dt)+�(u).)

Downloaded 03 Nov 2011 to 160.36.192.127. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php



112 Chapter 4. Variations on the Theme

Theorem 4.4. If � : X → P(X ′) = P(X ) is a maximal monotone operator for a Hilbert
space X identified with X ′, then solutions exist for the differential inclusion

0 ∈ du

dt
+�(u), u(0)= u0 ∈ dom�.

Furthermore, the solution satisfies the following properties:

1. u(t) ∈ dom� for all t > 0;

2. u is Lipschitz on [0,∞) with ‖du/dt(t)‖ ≤ ∥∥�0(u0)
∥∥ for almost all t > 0;

3. d+u/dt(t)+�0(u(t))= 0 for all t > 0;

4. the map t #→�0(u(t)) is continuous from the right, and
∥∥�0(u(t))

∥∥ is a nonincreas-
ing function of t; hence also ‖du/dt(t)‖ is a decreasing function of t;

5. if u(t) and û(t) are solutions of 0 ∈ du/dt +�(u) with (possibly) different initial
conditions, then ‖u(t)− û(t)‖ ≤ ‖u(0)− û(0)‖.

Before we give the proof of this, consider a differential inclusion with a maximal
monotone operator:

0 ∈ du

dt
+Sgn(u)+ c, u(0)= u0.

If u0 > 0, then for an initial interval du/dt =−1− c. If |c|< 1, then u(t)= u0− (1+ c)t .
In a finite time t∗ = u0/ (1+ c) we have u(t∗) = 0. But for t > t∗ with |c| < 1 the only
possible solution is u(t) = 0. Clearly du/dt(t) exists only for almost all t , but the one-
sided derivative d+u/dt(t) does exist for all t .

Many of the properties mentioned in the theorem above are clearly on display: du/dt
is a nonincreasing function of t; the minimum norm point Sgn(u(t))+c is continuous from
the right in t .

Proof. We show item 5 first: if u and û are any two solutions of 0 ∈ du/dt +�(u) for a
monotone � ,

d

dt
‖u(t)− û(t)‖2 = 2

〈
u(t)− û(t),

du

dt
(t)− dû

dt
(t)

〉
≤ 0,

so ‖u(t)− û(t)‖ ≤ ‖u(0)− û(0)‖.
Now we show existence of solutions via Yosida approximations (2.57): let

0= duλ

dt
+�λ(uλ), uλ(0)= u0.

Since �λ are Lipschitz, these differential equations have solutions uλ(t) for t ≥ 0. We
show that the uλ form a Cauchy sequence as λ ↓ 0. First we prove that ‖duλ/dt(t)‖ is
a decreasing function of t . Recall that �λ(u) = (u− Rλ(u))/λ, and Rλ is Lipschitz of
constant one. Then

duλ

dt
(t)=−1

λ
(uλ− Rλ(uλ)) .
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Using the variation-of-parameters formula for t > s,

uλ(t)= e−(t−s)/λuλ(s)+ 1

λ

∫ t

s
e−(t−τ )/λRλ(uλ(τ ))dτ ,

uλ(t+h)= e−(t−s)/λuλ(s+h)+ 1

λ

∫ t

s
e−(t−τ )/λRλ(uλ(τ +h))dτ

since the equation is autonomous. Subtracting and taking norms give

‖uλ(t+h)−uλ(t)‖ ≤ e−(t−s)/λ ‖uλ(s+h)−uλ(s)‖
+ 1

λ

∫ t

s
e−(t−τ )/λ ‖uλ(τ +h)−uλ(τ )‖ dτ

since Rλ is Lipschitz with constant one. By means of a Gronwall lemma (e.g., Lemma C.3),
‖uλ(t+h)−uλ(t)‖ ≤ η(t), where

η(t)= e−(t−s)/λη(s)+ 1

λ

∫ t

s
e−(t−τ )/λη(τ )dτ ,

η(s)= ‖uλ(s+h)−uλ(s)‖ .

Simple calculations show that η(t)= η(s) for all t > s. Thus we have ‖uλ(t+h)−uλ(t)‖
≤ ‖uλ(s+h)−uλ(s)‖ for all t > 0. Dividing by h > 0 and taking h→ 0 give ‖duλ/dt(t)‖≤
‖duλ/dt(s)‖ whenever t > s ≥ 0 and both derivatives exist. But since uλis the solu-
tion of a Lipschitz differential equation, duλ/dt exists everywhere. So ‖�λ(uλ(t))‖ =
‖duλ/dt(t)‖ ≤ ‖duλ/dt(0)‖ = ‖�λ(u0)‖ ≤ ∥∥�0(u0)

∥∥.
Now to show that the sequence is a Cauchy sequence consider λ, µ > 0 and the

difference between the corresponding differential equations:

0= duλ

dt
− duµ

dt
+�λ(uλ)−�µ(uµ).

Taking inner products with uλ−uµ gives

0= 1

2

d

dt

∥∥uλ−uµ

∥∥2+ 〈
�λ(uλ)−�µ(uµ), uλ−uµ

〉
.

Note that

uλ−uµ =
(
uλ− Rλ(uλ)

)+ (
Rλ(uλ)− Rµ(uµ)

)+ (
Rµ(uµ)−uµ

)
= λ�λ(uλ)+ Rλ(uλ)− Rµ(uµ)−µ�µ(uµ).

Since �λ(uλ) ∈ �(Rλ(uλ)) and �µ(uµ) ∈ �(Rµ(uµ)), by monotonicity of � we have〈
�λ(uλ)−�µ(uµ), Rλ(uλ)− Rµ(uµ)

〉≥ 0. So〈
�λ(uλ)−�µ(uµ), uλ−uµ

〉
≥ 〈

�λ(uλ)−�µ(uµ), λ�λ(uλ)−µ�µ(uµ)
〉

≥ λ‖�λ(uλ)‖2+µ
∥∥�µ(uµ)

∥∥2− (λ+µ)‖�λ(uλ)‖∥∥�µ(uµ)
∥∥

≥ λ‖�λ(uλ)‖2+µ
∥∥�µ(uµ)

∥∥2

− λ+µ

2

(
‖�λ(uλ)‖2+∥∥�µ(uµ)

∥∥2
)

= λ−µ

2
‖�λ(uλ)‖2+ µ−λ

2

∥∥�µ(uµ)
∥∥2 ≥−|λ−µ|

2

∥∥∥�0(u0)
∥∥∥2

.
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Hence

d

dt

∥∥uλ−uµ

∥∥2 ≤ |λ−µ|
∥∥∥�0(u0)

∥∥∥2
,

and since uλ(0)= uµ(0)= u0,
∥∥uλ(t)−uµ(t)

∥∥≤ (|λ−µ| t)1/2
∥∥�0(u0)

∥∥. So the family uλ

converges uniformly on bounded sets with limit u(t), where

‖uλ(t)−u(t)‖ ≤ (λt)1/2
∥∥∥�0(u0)

∥∥∥ .

Also Rλ(uλ)→ u uniformly as λ ↓ 0 since

‖Rλ(uλ(t))−uλ(t)‖ ≤ λ‖�λ(uλ(t))‖ ≤ λ

∥∥∥�0(u0)
∥∥∥ .

Since ‖�λ(uλ(t))‖ ≤ ∥∥�0(u0)
∥∥, taking λ ↓ 0, u(t) ∈ dom� (which shows item 1), as

the graph of � is closed. Since �λ(uλ(t)) ∈ �(Rλ(uλ(t)) and Rλ(uλ(t)) → u(t), then
the limit of �λ(uλ(t)) as λ ↓ 0 is in �(u(t)). The bounds on ‖�λ(uλ(t))‖ then imply∥∥�0(u(t))

∥∥≤ ∥∥�0(u0)
∥∥. Repeating this argument with initial condition û(0)= u(t0) shows

that
∥∥�0(u(t))

∥∥≤ ∥∥�0(u(t0))
∥∥ for all t > t0. Thus t #→ ∥∥�0(u(t))

∥∥ is a nonincreasing func-
tion (which is the second part of item 4).

Since the uλ are uniformly Lipschitz as λ ↓ 0 so that the limit is also Lipschitz, with
constant

∥∥�0(u0)
∥∥, then ‖duλ/dt‖L∞ ≤

∥∥�0(u0)
∥∥, which is item 2. Thus there is a weakly

converging subsequence duλ/dt ⇀ w in L2(0, T ; X ); by standard methods w = du/dt .
Since limλ↓0�λ(uλ(t)) = �(u(t))0 ∈ �(u(t)), by item 1 in Lemma 2.24 0 ∈ du/dt(t)+
�(u(t)) for almost all t .

To show continuity from the right of t #→�0(u(t)), we show this holds at t = 0. So
consider a sequence tn ↓ 0 as n→∞. Since �0(u(tn)) is uniformly bounded, by Alaoglu’s
theorem there is a weakly convergent subsequence (also denoted by �0(u(tn))) with weak
limit y. By Mazur’s lemma, ‖y‖ ≤ ∥∥�0(u(0))

∥∥. Because � has a strong×weak closed
graph, y ∈ �(u(0)) so y = �0(u(0)). Since this is the only possible limit, �0(u(tn)) ⇀
�0(u(0)) as n →∞. Since

∥∥�0(u(tn))
∥∥→ ∥∥�0(u(0))

∥∥ as n →∞, combined with weak
convergence, we have strong convergence: �0(u(tn))→�0(u(0)) as n →∞. This shows
the first part of item 4.

Finally, continuity from the right for t #→�0(u(t)) and 0 = du/dt(t)+�0(u(t)) for
almost all t (from 0∈ du/dt(t)+�(u(t)) and ‖du/dt(t)‖ ≤ ∥∥�0(u(t))

∥∥ whenever du/dt(t)

exists) shows that (u(t+h)−u(t))/h =−(1/h)
∫ t+h

t �0(u(τ ))dτ , and taking h ↓ 0 gives
0= d+u/dt(t)+�0(u(t)) for all t ≥ 0. This shows item 3.

These results, though remarkable, are still somewhat restrictive. However, they are
easily extended to handle combinations of maximal monotone and external functions. First
we show that solutions exist for f (t) ∈ du/dt+�(u), u(0)= u0 for f ∈ L1(0, T ; X ), and
not just for u0 ∈ dom� but also for u0 ∈ dom�. We start with a lemma following Brézis’
path.

Downloaded 03 Nov 2011 to 160.36.192.127. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php



4.2. Maximal monotone operators and differential inclusions 115

Lemma 4.5. Suppose that u and v are solutions of the following differential inclusions,
where � : X → P(X ) is maximal monotone with X ′ identified with X:

f (t) ∈ du

dt
+�(u),

g(t) ∈ dv

dt
+�(v).

Assume that f and g are in L1(0, T ; X ). Then for 0≤ s ≤ t ≤ T

‖u(t)− v(t)‖ ≤ ‖u(s)− v(s)‖+
∫ t

s
‖ f (τ )− g(τ )‖ dτ .

Proof. We use the basic inequality for almost all t ,

1

2

d

dt
‖u(t)− v(t)‖2 =

〈
du

dt
(t)− dv

dt
(t), u(t)− v(t)

〉
≤ 〈 f (t)− g(t), u(t)− v(t)〉
≤ ‖ f (t)− g(t)‖ ‖u(t)− v(t)‖ ,

so that (d/dt)‖u(t)− v(t)‖ ≤ ‖ f (t)− g(t)‖. Integrating gives our result.

To show the existence of solutions for f (t) ∈ du/dt+�(u), u(0)= u0, we take limits
from functions f , where solutions do exist (by Theorem 4.4) to any given f ∈ L1(0, T ; X ),
and use Lemma 4.5 to show that the convergence is uniform.

Corollary 4.6. If f ∈ L1(0, T ; X ) and � : X → P(X ) is maximal monotone with X ′ iden-
tified with X, then solutions exist and are unique for

f (t) ∈ du

dt
+�(u), u(0)= u0 ∈ dom�.

Proof. First solutions exist for piecewise constant f and u0 ∈ dom�. Consider a sequence
0 = t0 < t1 < · · · and f (t)= fi for t ∈ [ti , ti+1). On each interval [ti , ti+1] the differential
inclusion becomes

0 ∈ du

dt
+�(u)− fi , u(ti )= ui ,

where ui = u(ti ) is obtained from the solution on the previous interval [ti−1, ti ]. So, for a
given f ∈ L1(0, T ; X ) and u0 ∈ dom�, consider a sequence fk of piecewise constant func-
tions that converges to f in L1(0, T ; X ) and u0,k → u0 with u0,k ∈ dom�. By Lemma 4.5,
the solutions uk to

fk (t) ∈ duk

dt
+�(uk), uk(0)= uk,0

satisfy

‖uk(t)−ul(t)‖ ≤
∥∥uk,0−ul,0

∥∥+∫ t

0
‖ fk(τ )− fl(τ )‖ dτ ,
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so that uk is a Cauchy sequence in space of continuous functions C(0, T ; X ). Thus uk → u
uniformly as k →∞. Then, as the graph of � is closed, for every s < t ,

u(t)−u(s) ∈
∫ t

s

[
f (τ )−�(u(τ ))

]
dτ ,

and so u is absolutely continuous and

f (t) ∈ du

dt
(t)+�(u(t))

for almost all t , and u(0)= u0. Uniqueness (and continuous dependence on u0 ∈ dom�)
follows from Lemma 4.5.

The stronger properties about the one-sided derivatives d+u/dt +�0(u)= 0 for the
differential inclusion without f do not hold for all t , but the modification

0= d+u

dt
(t)+ (

�(u(t))− f +(t)
)0

holds for all t , where f +(t)= limh↓0(1/h)
∫ t+h

t f (τ )dτ exists. If X is a separable Hilbert
space, then almost all t is a Lebesgue point for f .

We can extend the above theory to allow f (t ,u) as long as f (t ,u) is Lipschitz in u.
Suppose that f : [0, T ]× X → X is a function where u #→ f (t , u) is a Lipschitz function
with constant L(t) for all t with L an integrable function, t #→ f (t ,u) measurable, and
f (t ,u) bounded by ‖ f (t ,u)‖ ≤ k(t)+ L(t)‖u‖ with both k and L integrable. Then the
differential inclusion

f (t ,u(t)) ∈ du

dt
+�(u), u(0)= u0 ∈ dom� (4.18)

has unique solutions for maximal monotone �. To see this, we consider a Picard-type
iteration: given uk ∈ C(0, T ; X ), let uk+1 be the solution of

f (t ,uk(t)) ∈ duk+1

dt
+�(uk+1), uk+1(0)= u0.

This can be thought of in terms of the operator G : C(0, T ; X )→ C(0, T ; X ) given by Gv,
which is the solution of

f (t , v(t)) ∈ du

dt
+�(u), u(0)= u0.

Now G is a Lipschitz operator with Lipschitz constant
∫ T

0 L(τ )dτ since ‖Gv−Gw‖C(0,T ; X )
=max0≤t≤T ‖Gv(t)−Gw(t)‖, and by Lemma 4.5,

‖Gv(t)−Gw(t)‖ ≤
∫ t

0
‖ f (τ , v(τ ))− f (τ , w(τ ))‖ dτ

≤
∫ t

0
L(τ ) ‖v(τ )−w(τ )‖ dτ

≤
(∫ t

0
L(τ )dτ

)
‖v−w‖C(0,T ; X ) .
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Thus if T > 0 is chosen sufficiently small so that
∫ T

0 L(τ )dτ < 1, G is a contraction map,
and so by the contraction mapping theorem there is a unique fixed point u ∈ C(0, T ; X ),
which solves

f (t ,u(t)) ∈ du

dt
+�(u), u(0)= u0.

Once a solution is obtained on [0, T ], the above result can be used to show the existence of
a unique solution on [T , 2T ], and then on [2T , 3T ], etc. Thus a unique solution exists for
this variant for all t ≥ 0.

4.2.2 Maximal monotone operators and Gelfand triples

Often we have a situation in which we have a Gelfand triple of Hilbert spaces X ⊆ H =
H ′ ⊆ X ′ with a maximal monotone operator � : X → P(X ′). To apply the above theory
we need a maximal monotone operator � : H → H = H ′. It is tempting to simply define

�H (u)=
{

�(u)∩H if u ∈ X ,
∅ if u �∈ X .

(4.19)

This might or might not be a maximal monotone operator.
As a simple example, consider the operator � : H 1(−1,+1) → P(H−1(−1,+1))

given by �( f ) = { f (0)δ}, where δ is the Dirac-δ function. This is well defined, since by
the Sobolev imbedding theorem every function in H 1(−1,+1) is continuous. It is maximal
monotone, as it is the gradient of the smooth convex function φ : H 1(−1,+1)→ R given
by φ( f ) = 1

2 f (0)2. However, if we take H = L2(−1,+1), then, as Dirac-δ functions do
not belong to H , �( f )∩H is empty unless f (0)= 0. Thus �( f )= {0} if f ∈ H 1(−1,+1)
and f (0) = 0, and �( f ) = ∅ otherwise. This means that � is not maximal monotone: it
can be strictly extended to form the zero function on H .

However, there are easily checked cases in which �H is also maximal monotone.

Lemma 4.7. Suppose that � : X → P(X ′) is a maximal monotone operator in a Gelfand
triple of Hilbert spaces X ⊆ H = H ′ ⊆ X ′, and that there is an α > 0 such that �−
αJX is monotone, where JX : X → X ′ is the usual duality operator. Then �H is maximal
monotone H → P(H ).

First we need an extra lemma.

Lemma 4.8. If � : X → P(X ′) is maximal monotone and strongly monotone in that there
is an η > 0 such that if ζ ∈�(z), ξ ∈�(x), then

〈ζ − ξ , z− x〉 ≥ η ‖z− x‖2
X ,

then for any ϒ : X → X ′ Lipschitz with Lipschitz constant less than or equal to η, �+
ϒ : X → P(X ′) is also maximal monotone.

Proof. We wish to show that for any β > 0, the operator β JX +�+ϒ is onto X ′. So
consider the problem of solving β JX (x)+�(x)+ϒ(x) " y for any given y ∈ X ′ and
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β > 0. This can be rewritten as x + (β JX +�)−1ϒ(x) = (β JX +�)−1 (y). This can be
solved by an iterative method:

xk+1 = (β JX +�)−1 (y)− (β JX +�)−1ϒ(xk).

Now (β JX +�)−1ϒ is a single-valued Lipschitz operator with Lipschitz constant Lϒ/

(β+η) < 1 where Lϒ is the Lipschitz constant for ϒ . Applying the contraction mapping
principle shows that there is indeed a unique solution.

Now we can continue with the proof of Lemma 4.7.

Proof. From Lemma 4.8 it can be shown that �−αJX is maximal monotone. Our task is
to show that for any γ > 0, γ I +�H is surjective, where I : H → H is the identity map;
this map can be identified with the inclusion map X ⊆ H = H ′ ⊆ X ′ on X . Now, for any
γ > 0, γ I +� is maximal monotone, since I is both Lipschitz and monotone. (We can
repeatedly apply Lemma 4.8.) Furthermore, γ I +� : X → P(X ′) is strongly monotone
with constant greater than or equal to α. Thus γ I −αJX +� : X →P(X ′) is also maximal
monotone. Thus γ I +�= αJX + (γ I −αJX +�) is onto X ′. For any y ∈ H = H ′ ⊆ X ′,
there is an x ∈ X such that y ∈ γ x +�(x). Since x ∈ X ⊆ H , y− γ x ∈ �(x) and since
y− γ x ∈ H , we have y− γ x ∈ �H (x). Thus y ∈ (γ I +�H ) (x) for some x ∈ X . This
means that γ I +�H is onto H , and so �H : H → P(H ) is a maximal monotone operator
on H .

As we see in the next section, maximal monotone operators in Gelfand triples can be
used to show the existence and uniqueness of solutions to obstacle problems.

4.2.3 Application to the heat equation and obstacle problems

To see how we can use this for partial differential equations and related problems, consider
again the heat equation with Dirichlet boundary conditions:

∂u

∂ t
=∇2u, u(t , x)= u0(x) for all x ∈�,

u(t , x)= 0 for all x ∈ ∂�,

where � is a bounded open set in Rd . Finding the right function spaces in which to set up
this problem is not a trivial issue. For u in practically any function space worth considering,
∇2u can be defined in the sense of distributions. However, this does not allow us to infer
the existence of solutions. A natural modern approach is to use Gelfand triples: we look
for solutions in the Sobolev space H 1

0 (�), the space of functions u ∈ L2(�) where the
distributional gradient ∇u ∈ L2(�), and the restriction (or, more accurately, the trace of u)
to the boundary ∂� is zero. Thanks to the divergence theorem,∫

�

v(x)
(
−∇2u(x)

)
dx =−

∫
∂�

v(x)
∂u

∂n
(x)d S(x)+

∫
�

∇v(x) ·∇u(x)dx

=
∫
�

∇v(x) ·∇u(x)dx (if v = 0 on ∂�)
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is defined whenever u, v ∈ H 1
0 (�). By duality, then, we can think of −∇2 : H 1

0 (�) →
H 1

0 (�)′. The Gelfand triple we can use is then

H 1
0 (�)⊂ L2(�)= L2(�)′ ⊂ H 1

0 (�)′.

This identifies a function f ∈ L2(�) with the functional g #→ ∫
�

f (x) g(x)dx .
However, this does not allow us to identify H 1

0 (�) with H 1
0 (�)′, as the natural iso-

morphism J : H 1
0 (�)→ H 1

0 (�)′ is given by w #→w−∇2w.
If we wish to deal with the heat equation within the framework of maximal monotone

operators, we need to use L2(�) as our Hilbert space. In this space, −∇2 is the subdiffer-
ential of the proper lower semicontinuous convex function

φ( f )=
{ ∫

�
‖∇ f (x)‖2 dx , f ∈ H 1

0 (�),
+∞ otherwise.

Then we have unique solutions to the differential inclusion

0 ∈ ∂u

∂ t
+ ∂φ(u), u(0, x)= u0(x)

not only for u0 ∈ dom∂φ = {
w ∈ L2(�) | ∇2w ∈ L2(�)

}
but also for u0 ∈ dom∂φ =

L2(�)! That’s right; we do not even need u0 ∈ H 1
0 (�) for solutions to exist. It is enough

for u0 to be in L2(�).4

Now let us consider incorporating a constraint that u(t , x) satisfy u(t , x) ≥ ϕ(x) for
all x ∈�. This kind of problem is known as an obstacle problem in the partial differential
equations community. What should happen if u(t , x)= ϕ(x) to prevent u(t , x) < ϕ(x) from
happening? We will assume that there should be some restoring quantity in the differential
equation that prevents u(t , x) < ϕ(x): call it w(t , x). If u(t , x) > ϕ(x), we should take
w(t , x)= 0 so that the heat equation applies. If u(t , x)= ϕ(x), we should take w(t , x) ≥ 0
so as to “push” the solution away from u(t , x)<ϕ(x). So our system of conditions becomes

∂u

∂ t
= ∇2u−w(t , x), u(0, x)= u0(x) for x ∈�,

0≥ w(t , x)⊥ u(t , x)−ϕ(x)≥ 0 for x ∈�.

This is a complementarity formulation of a parabolic obstacle problem. To turn this into
a maximal monotone differential inclusion, we need to construct a closed convex set K ={

z ∈ H 1
0 (�) | z(x)≥ ϕ(x) for all x ∈�

}
. Provided ϕ(x)≤ 0 on ∂� and ϕ ∈ H 1(�), K is

a nonempty closed convex set in H 1
0 (�). Now, considering K ⊂ H 1

0 (�),

NK (u)=
{
w ∈ H 1

0 (�)′ |w ≤ 0 and w(x) (u(x)−ϕ(x))= 0 for all x ∈�
}

.

Now NK (u)= ∂ IK (u), where IK : H 1
0 (�)→R∪{∞} is the indicator function for K . Then

φ+ IK is a proper convex lower semicontinuous function on H 1
0 (�). However, what we

4Harmonic analysts go beyond even this level of regularity to consider u0 ∈ L1(�) or even measures.
Much of this work requires the maximum principle for the heat equation, while the maximal monotone
operator approach does not require it, making the maximal monotone approach more appropriate for systems
of partial differential equations.
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really need is a proper convex lower semicontinuous function on L2(�). The obvious way
to do this is to set

ψ(u)=
{

φ(u)+ IK (u) if u ∈ H 1
0 (�),

+∞ otherwise.

This is clearly a convex function (since φ, IK are convex, and H 1
0 (�) is a convex sub-

set of L2(�)) and proper (since ψ(ϕ+) = φ(ϕ+) <∞, where ϕ+(x) = max(ϕ(x), 0) for
ϕ ∈ H 1

0 (�)). The harder part is to show that ψ is lower semicontinuous. So suppose that
uk → u in L2(�), and that limsupk→∞ψ(uk ) <∞. (If limsupk→∞ψ(uk) =∞, there is
nothing to prove.) This means that for sufficiently large k, uk are bounded in H 1

0 (�). Ig-
noring the finite set of uk �∈ H 1

0 (�), let ‖uk‖H1
0 (�) ≤ C for all k. Since the uk are bounded

in H 1
0 (�), there is a weakly convergent subsequence uk ⇀ û in H 1

0 (�). Since H 1
0 (�)

is compactly embedded into L2(�), uk → û in L2(�) in a suitable subsequence; there-
fore û = u. Thus u ∈ H 1

0 (�). Also, since uk ⇀ u weakly in H 1
0 (�), by Mazur’s lemma

ψ(u)= φ(u)+ IK (u)≤ limsupk→∞ φ(uk)+ IK (uk)= limsupk→∞ψ(uk). Thus ψ is lower
semicontinuous.

This means that our obstacle problem can be treated as a maximal monotone differ-
ential inclusion

0 ∈ ∂u

∂ t
+ ∂ψ(u), u(0)= u0 ∈ dom∂ψ .

Note that the closure of the domψ is taken in L2(�). This means that we can take u0 to be
any function in L2(�) where u0 ≥ ϕ. Thus solutions exist and are unique for this problem.

A word of warning though: we should be careful about identifying ∂ψ with −∇2+
NK . The reason is that ∂ (φ1+φ2)= ∂φ1+ ∂φ2 does not always hold.

An alternative approach to this is to note that −∇2 : X = H 1
0 (�)→ H 1

0 (�)′ = X ′ is
a Lipschitz (between these spaces), maximal monotone operator. Then, since K ⊆ X =
H 1

0 (�) is a nonempty closed convex set, NK is also a maximal monotone operator X →
P(X ′). By Lemma 2.32, since dom(−∇2) = X and dom(NK ) = K �= ∅, we have (in X )
interior(dom(−∇2))∩dom(NK )= K �= ∅, so −∇2+ NK is a maximal monotone operator
X → X ′. Now we take H = L2(�), which we identify with H ′ to form a Gelfand triple
X ⊂ H = H ′ ⊂ X ′. Now JX = I −∇2. For any 0 < α < 1,

(−∇2+ NK +α I
)−αJX is

monotone. So, by Lemma 4.7, −∇2+ NK + α I is maximal monotone. So our obstacle
problem

∂u

∂ t
= ∇2u− NK (u)

= α u−
(
−∇2u+ NK (u)+α u

)
has a right-hand side of the form “Lipschitz−Maximal monotone,” and so it has unique
solutions for given initial values. In fact, if u1,0 is one initial value for solution u1(·), and
u2,0 is another initial value for solution u2(·), then

‖u1(t)−u2(t)‖L2(�) ≤ eα t
∥∥u1,0−u2,0

∥∥
L2(�) .

Since this is true for all 0 < α < 1, we can take α as small as we please so that in the limit
α ↓ 0,

‖u1(t)−u2(t)‖L2(�) ≤
∥∥u1,0−u2,0

∥∥
L2(�) .
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4.2.4 Uniqueness of solutions and maximal monotone operators

While having a differential inclusion of the form

dx

dt
(t) ∈ f (t , x(t))−�(x(t)), x(t0)= x0

with f (t , x) Lipschitz in x and � maximal monotone is sufficient to ensure uniqueness of
solutions, it is far from being necessary. In fact, maximal monotone operators are tightly
constrained in certain respects. Consider, for example, the differential inclusion

dx

dt
(t) ∈ f (t , x(t))− g(x(t))Sgn(φ(x(t))), x(t0)= x0, (4.20)

where φ : Rn → R, and Sgn(u)= {+1} if u > 0, {−1} if u < 0, and [−1,+1] if u = 0. We
assume that if φ(x)= 0, then ∇φ(x) �= 0, and that f and g are Lipschitz.

If the set-valued function �(x) := −g(x)Sgn(φ(x)) is “Lipschitz−maximal mono-
tone,” then this set-valued function must satisfy the following one-sided Lipschitz condi-
tion: there is an L such that

〈y−w, x− z〉 ≤ L ‖x− z‖2 for all x , z, y ∈�(x), w ∈�(z).

Pick a point x∗ such that φ(x∗)= 0. Let n∗ = ∇φ(x∗).
First we show that∇φ(x∗) g(x∗)≥ 0. For any η > 0 sufficiently small, φ(x∗+ηn∗)>

0 and φ(x∗ −ηn∗) < 0. Then the one-sided Lipschitz condition implies that(−g(x∗+ηn∗)− g(x∗−ηn∗)
)T (

2ηn∗
)≤ L

∥∥2ηn∗
∥∥2 .

Dividing by η > 0 and taking η ↓ 0 give

−g(x∗)T n∗ ≤ 0,

as desired. It turns out that the condition g(x∗)T n∗ = ∇φ(x∗) g(x∗) > 0 is sufficient to
guarantee uniqueness for (4.20); see Section 5.2.2.

We will now see that the one-sided Lipschitz condition implies that∇φ(x∗) and g(x∗)
must also be parallel.

Let d ∈Rn be a nonzero direction perpendicular to n∗: dT n∗ = 0. Let βH be a bound
for the Hessian matrix Hessφ(x) for x in a neighborhood of x∗. For η > 0 sufficiently
small,

φ(x∗+ηd+C η2 n∗) ≥ φ(x∗)+η∇φ(x∗)d+C η2∇φ(x∗)n∗

− 1

2
βH

∥∥∥ηd+Cη2 n∗
∥∥∥2

=
(

C
∥∥n∗

∥∥2− 1

2
βH ‖d‖2

)
η2+O(η3).

So if we choose C > 1
2βH ‖d‖2 /‖n∗‖2, we have φ(x∗+ηd+C η2 n∗)> 0 for all η> 0 suf-

ficiently small. Pick another vector d ′ �= 0 such that
(
d ′

)T
n∗ = 0. In the same way as above,

if we choose C sufficiently large and positive, we can ensure that φ(x∗+ηd ′ −Cη2 n∗) < 0
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for all η > 0 sufficiently small as well. Then, if the one-sided Lipschitz condition is satis-
fied, we have(

−g(x∗+ηd+C η2 n∗)− g(x∗+ηd ′ −Cη2 n∗)
)T (

η
(
d−d ′

)+2C η2 n∗
)

≤ L
∥∥∥η (

d−d ′
)+2C η2 n∗

∥∥∥2
.

Dividing by η > 0 gives(
−g(x∗+ηd+C η2 n∗)− g(x∗+ηd ′ −Cη2 n∗)

)T ((
d−d ′

)+2C ηn∗
)

≤ L η
∥∥(

d−d ′
)+2C ηn∗

∥∥2
.

Taking η ↓ 0 then gives

−2 g(x∗)T (
d−d ′

)≤ 0

for any d , d ′ perpendicular to n∗. So g(x∗) must be perpendicular to every vector perpen-
dicular to n∗; in other words, g(x∗) must be parallel to n∗ = ∇φ(x∗).

Functions of the form x #→ g(x)Sgn(φ(x)) are thus maximal monotone (or “Lipschitz
+ maximal monotone”) only under fairly restrictive assumptions on g and φ: whenever
φ(x)= 0, ∇φ(x) g(x) ≥ 0 with ∇φ(x) and g(x) parallel. Thus arbitrarily small perturba-
tions to g(x) on the surface φ(x)= 0 can destroy this property.

Nevertheless, uniqueness of solutions to (4.20) can be shown if∇φ(x) g(x)> 0 on the
surface φ(x)= 0. Away from this surface, uniqueness is clear by the Lipschitz properties
of f and g. Uniqueness can be shown via the uniqueness theorem for DVIs (Theorem 5.3
in Section 5.2.2). The DVI theorem can be applied to

dx

dt
(t)= f (t , x(t))+ g(x(t)) z(t), x(t0)= x0,

z(t) ∈ [−1,+1], 0 ≤ ( z̃− z(t)) φ(x(t)) for all z̃ ∈ [−1,+1].

In the borderline case of ∇φ(x) g(x)= 0 where g(x) is not necessarily parallel to ∇φ(x),
solutions are not necessarily unique. Take, for example, f (t , x) ≡ 0, φ : R2 → R given
by φ(x1, x2) = x1 and g(x1, x2)T = [0, 1]. Any absolutely continuous function x(·) with
x1(t)≡ 0 and x2(·) nondecreasing and Lipschitz with constant one is then a solution of the
differential inclusion. Thus solutions are not unique in this case.

4.3 Projected dynamical systems
Projected dynamical systems (PDSs) are a class of dynamical systems that have been in-
vestigated as a class by Nagurney, Dupuis, Cojocaru, Daniele, and Jonker (see [62, 63, 83,
187]); however, the first mathematical investigations of these concepts go back at least to
Henry [125] and extended by Cornet [65] to nonconvex sets which are nevertheless “reg-
ular” in the sense of Clarke [55]. The initial applications they had in mind were for the
dynamics of economic networks. The basic idea and theory come from maximal mono-
tone differential equations where the maximal monotone operator used is the normal cone
operator NK for a closed convex set K .
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Suppose that f : [0, T ]× X → X , where X is a Hilbert space (where we identify X
and X ′), x #→ f (t , x) is Lipschitz continuous with constant L for all t , and t #→ f (t , x) is
continuous for all x ∈ K . Then consider the differential inclusion

0 ∈ dx

dt
+ NK (x)+ f (t , x), x(0)= x0 ∈ K . (4.21)

This represents a dynamical system which “usually” satisfies the differential equation dx/
dt(t) = − f (t , x(t)), provided x(t) ∈ interior K . But when x(t) reaches the boundary ∂K
the trajectory is prevented from leaving K because NK (x) is part of the differential inclu-
sion. Here it is important that NK (x) can be unbounded since otherwise f (t , x) could be
sufficiently large to overcome its effect and x(t) could leave K .

Since NK is a maximal monotone operator, solutions exist and are unique for this
differential inclusion. But, by the theory of the previous section on maximal monotone
differential inclusions, any solution satisfies

d+x

dt
(t)= (−NK (x(t))− f (t , x(t)))0 for all t ≥ 0,

where C0 is the minimal norm point of a closed convex set C: C0=�C (0)= argminz∈C ‖z‖.
So, if we set g = f (t , x(t)) and C = NK (x(t)), we have

d+x

dt
(t)=�−C−g(0) = −�C+g(0)

=−�C (−g)− g.

However, the projections onto a closed convex cone C and its polar cone C◦ = −C∗ satisfy
z =�C (z)+�C◦(z) for all z in a Hilbert space X identified with X ′ by Moreau’s decom-
position theorem (Lemma B.7). Thus −�C (−g)− g = (−g)−�C(−g)=�C◦(−g). But
C = NK (x(t)), so C◦ = TK (x(t)). Thus

d+x

dt
(t)=�TK (x(t ))(− f (t , x(t))). (4.22)

That is, we replace − f (t , x(t)) with its projection on the tangent cone TK (x(t)) at x(t).
This keeps the solution from leaving K . Another way of formulating this is to note that

�TK (x)(v)=�′K (x ; v),

the directional derivative of �K at x in the direction v. Thus a PDS can be formulated as

d+u

dt
(t)=�′K (x(t);− f (t , x(t))). (4.23)

The characterizations (4.22) and (4.23) are useful, but the fundamental theory behind PDSs
comes from maximal monotone differential inclusions.

In terms of DVIs, suppose that the set K ⊆ Rn is represented in terms of convex
functions K = { x | gi (x)≤ 0, i = 1, 2, . . . , m }, where each gi is a convex function. Pro-
vided the Slater constraint qualification (B.22) holds, the tangent cone TK (x) is given by
the linearization of the constraints:

TK (x)=
{

z | ∇gi (x)T z ≤ 0, where gi (x)= 0, i = 1, 2, . . . , m
}

,
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so the normal cone is

NK (x)= co {∇gi (x) | gi (x)= 0, i = 1, 2, . . . , m } .
The maximal monotone differential inclusion can be represented by the DCP

0= dx

dt
(t)+

m∑
i=1

λi (t)∇gi (x(t)),

0≤ λi (t)⊥ gi (x(t))≥ 0 for all i and t ≥ 0.

Provided the matrix [∇gi (x) | gi (x)= 0, i = 1, 2, . . . , m ] has full rank for all x , this DCP
has index-one. To go beyond index-one problems in general requires a weaker and more
general notion of solution. This is needed for impact problems (which are index two in
general), for example. In the next section we investigate an approach which has been used
to provide a mathematical foundation for impact problems.

4.4 Sweeping processes
Sweeping processes are a true generalization of maximal monotone differential inclusions
rather than a subclass. These were invented by Moreau [178, 180], and the concept was ex-
tended and applied by Moreau [179, 182] and others such as Castaing, Monteiro Marques,
Valadier, and Kunze (see [49, 166, 174, 130, 149]). Sweeping processes provide a way to
introduce discontinuous changes, as we will see.

4.4.1 Pure sweeping processes

The basic idea is that there is a time-dependent state vector x(t) which stays within a mov-
ing closed convex set C(t) but otherwise tries not to move. The set C(t) “sweeps” the state
vector along with it as it moves. If C(t) changes continuously, then the state vector x(t)
should also change continuously (but not necessarily smoothly, as it can transition from be-
ing still to suddenly being swept along). But if C(t) changes discontinuously (particularly
when C(t) becomes smaller), then x(t) can jump.

Recall that we can use the Hausdorff metric dH (see (2.10)) to define a distance
between closed and bounded sets.

To measure how much of an “excess” one set has over another, we can use the one-
sided “metric”:

δH (A, B)= sup
a∈A

d(a, B),

so that the Hausdorff metric is dH (A, B) = max(δH (A, B), δH (B , A) ). This one-sided
metric satisfies δH (A, A)= 0 and δH (A,C)≤ δH (A, B)+δH (B ,C), but usually δH (A, B) �=
δH (B , A).

The basic assumptions needed for sweeping processes are the following:

1. C(t) is a closed and bounded convex set for all t .

2. There is a function r (t) such that δH (C(s), C(t))≤ r (t)− r (s) for all t ≥ s.

3. 0 ∈ dx/dt(t)+ NC(t )(x(t)).
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The nature of the function r determines the regularity of the solution. Since r is a nonde-
creasing function, it is at worst a function of bounded variation. If r is absolutely contin-
uous, then the solution x(t) is absolutely continuous and 0 ∈ dx/dt + NC(t )(x(t)) can be
interpreted as a differential inclusion. But if r is not absolutely continuous, then dx/dt
cannot be interpreted as an ordinary derivative; if r has a jump, then x can also jump.

One way of establishing the existence of solutions for these problems is by means of
a time discretization: xn ≈ x(tn), tn = t0+n h, and

xn+1 =�C(tn+1)(xn).

This is called the catching-up algorithm [174]. This will be used to establish existence
of solutions in Section 4.4.4. Before we deal with that, we describe in what sense the
differential inclusion is understood, as measures do not have pointwise values.

4.4.2 Measure differential inclusions

Measure differential inclusions (MDIs) are a variant on the concept of differential inclu-
sions which allows the solutions to have discontinuities. It cannot be an arbitrary (discon-
tinuous) function, but rather the solution must be a function x(·) with bounded variation,
so that the differential measure dx(·) is a measure. See Section A.4 for a definition of dif-
ferential measures. MDIs were first formally named by Moreau [179, 180], although they
were previously used (but not named) by Schatzman [219, 220]. The theory was further
developed by Monteiro Marques [174] in the context of sweeping processes and later by
Stewart [240, 241].

An MDI has the form

dx

dt
(t) ∈�(t , x(t)), (4.24)

where x(·) is a function of bounded variation and �(t , x(t)) is closed and convex and can
be an unbounded set. What is different about MDIs is how to interpret the inclusion. This
is necessary because measures do not have pointwise values, and we cannot assume that
x(·) is an absolutely continuous function.

There is an additional issue: Since x(·) can be discontinuous, what should we use
for the value x(t) in the right-hand side? Usually we take the limit from above x(t+) =
lims↓t x(s) which exists for any function of bounded variation. Using x(t+) makes the for-
mulation consistent with the theory of maximal monotone operators: if �(t , x)=−�(x),
where � : X →P(X )=P(X ′) is a maximal monotone, then a solution of the MDI dx/dt ∈
−�(x(t+)) is necessarily of bounded variation, while solutions of dx/dt ∈ −�(x(t−)) are
not. Later we will see an example of this.

Consider the basic MDI

dx

dt
(t) ∈�(t)⊆ X . (4.25)

As for ordinary differential inclusions, we will assume that

• � is a measurable function [a,b]→ P(X ), and

• �(t) is a closed convex set for all t .
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For x(·) of bounded variation, the differential measure dx(·) is a measure whose variation
measure |dx |(·) is finite. That is, |dx |(E) <∞ for any Borel set E ⊆ [a,b]. Moreau,
Monteiro Marques, and Schatzman all assumed that �(t) is a closed convex cone. The
formulation of what (4.25) means can then be given like this: if µ = dx , the Radon–
Nikodym derivative (see Section A.4)

dµ

d |µ| (t) ∈�(t) for |dx |-almost all t . (4.26)

Requiring that �(t) is always a cone is rather restrictive: ordinary differential equations
cannot be represented as MDIs of this kind. In the theory of ordinary differential equations,
solutions x(·) are absolutely continuous. In the language of measures, this amounts to
saying the dx is an absolutely continuous measure with respect to the Lebesgue measure
(which we can represent as dt). The ordinary derivative (existing almost everywhere in
the Lebesgue measure) is then dx/dt(t) = d(dx)/d(dt)(t), where the right-hand side is a
Radon–Nikodym derivative. But d(dx)/d(dt) is ugly notation, so we use dx/dt instead.

To incorporate ordinary differential equations, we must give a special place to the
Lebesgue measure, and we do this by using the Lebesgue decomposition dx = µs +µac
where µac is absolutely continuous with respect to the Lebesgue measure, and µs is singu-
lar with respect to the Lebesgue measure. That is, there is a Lebesgue integrable function
h where µac(E) = ∫

E h(t)dt for all Borel E , and there is a Lebesgue null set F where
µs(E) = µs(E ∩ F) for all Borel E . The singular part µs can contain things like Dirac-δ
functions as well as more exotic measures.

The absolutely continuous part is the “nice” part, and we can identify the absolutely
continuous part of dx/dt with h(t). Thus the absolutely continuous part of the MDI can be
understood as

h(t)= dµac

dλ
(t) ∈ �(t) for Lebesgue almost all t , (4.27)

where λ is the Lebesgue measure.
Since the singular part involves things like momentarily infinite values, we should

think of µs as belonging to the vectors in �(t) “at infinity.” For convex sets K ⊆ X there
is a natural “limit” at infinity: the recession cone

K∞ =
{

lim
k→∞ tk yk | tk ↓ 0 as k →∞, yk ∈ K

}
=

⋂
s>0

s(K − y) for any y ∈ K .

For the absolutely continuous part we can think of the measure differential µac as having
pointwise values: those of h(t). For the singular part we use the idea of Moreau and others
but with �(t) replaced by its recession cone:

dµs

d |µs | (t) ∈�(t)∞ for |µs | almost all t . (4.28)

Combining (4.27) and (4.28) we have a definition of what “dx/dt ∈ �(t)” means for x(·)
having bounded variation. It should be noted that if �(t) is a cone for all t , then (4.27) and
(4.28) together are equivalent to (4.26).
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While it is very useful to have a suitable definition of a concept, it is even better if we
can use the concept to prove results, especially about convergence. In the case of measures,
what we usually have is weak* convergence, treating the space of (signed) measures on,
say, the interval [a,b] as the dual space to C[a,b], the space of continuous functions on
[a,b]. Unfortunately, the Lebesgue decomposition of a measure is not stable under weak*
convergence. Consider, for example, a “bed of nails” measure on [0,1]:

µm(t)= 1

m

m−1∑
j=0

δ

(
t− j

m

)
. (4.29)

(Think of m nails pointing up with spacing 1/m between them.) The weak* limit of this
sequence of measures as m →∞ is simply the Lebesgue measure. (If the nails are close
enough together, it feels like a flat board; I have actually felt this at a science museum!)
However,µm is purely singular; that is, its absolutely continuous part is zero. Nevertheless,
the weak* limit has no singular part at all. Conversely, consider a standard “approximation”
to the Dirac-δ function:

ψh(t)=
{

1/h, 0≤ t ≤ h,
0 otherwise.

Each ψh gives a measure ψh λ that is absolutely continuous. But its weak* limit is the
Dirac-δ measure. Thus the weak* limit of a purely absolutely continuous measure can be
purely singular.

An alternative definition is given in [240, 241]: We say “dµ/dt ∈�(t)” in the sense
of MDIs if for every continuous φ : [a,b]→R+ not identically zero,∫

[a,b]φ dµ∫
[a,b]φ dt

∈ co
⋃

t :φ(t )>0

�(t). (4.30)

This is called the weak definition. On the other hand, (4.27)–(4.28) is called the strong
definition. Clearly if µk ⇀

∗ µ and µk satisfy (4.30), then µ also satisfies (4.30). But when
can we tell if the two concepts are equivalent? Fortunately, they are equivalent under mild
conditions, especially if X = Rn . If X = Rn , then (4.27)–(4.28) is equivalent to (4.30),
provided

(MDI-H1) min{‖y‖ | y ∈�(t) } is a locally bounded function of t;

(MDI-H2) �(t) is a closed convex set for all t , and graph� is closed;

(MDI-H3) the recession cone �(t)∞ is a pointed cone for all t .

A simple example can show why the pointedness condition (MDI-H3) is necessary. Let
d(t) = [cos(t), sin(t)]T ∈ R2, and set �(t) = {

z ∈ R2 | d(t)T z≥ 0
}
. If φ : [a,b]→ R+ is

not identically zero, then it is nonzero on an open interval (c,d). But each �(t) is a half-
space, and provided t �≡ s (mod 2π), co (�(s)∪�(t))= R2—the entire plane. This means
that the right-hand side of (4.30) in this case is always R2, and any measure µ with values
in R2 is a solution of “dµ/dt ∈ �(t)” according to the weak definition. However, this is
definitely not the case with the strong definition. (You could try µ = −d(t)ν, where ν is
any nonzero and nonnegative measure.)
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In practice, conditions (MDI-H1), (MDI-H2), and (MDI-H3) for equivalence of the
weak and strong definitions for MDIs hold for X =Rn . However, the situation for infinite-
dimensional problems is more complex: According to [240] the Banach space X should be
a separable reflexive space, �(t) ⊆ L+ RBX , where L is a strongly pointed cone (that is,
L∗ should have a nonempty interior), R > 0, and BX is the closed unit ball in X . That is, in
infinite dimensions, to prove equivalence we assume that X is a separable reflexive space,
and replace condition (MDI-H3) with the requirement that

(MDI-H3b)�(t)⊂ R B+ L, where L is strongly pointed; that is, L∗ has nonempty interior.

Theorem 4.9. Suppose that �(t)⊆Rn satisfies conditions (MDI-H1)–(MDI-H3) above. A
function of bounded variation x : [0, T ]→ Rn is a solution of the MDI

dx

dt
(t) ∈�(t) (4.31)

in the strong sense if and only if it is a solution to (4.31) in the weak sense.

In finite dimensions, note that it is sufficient to have � (t)∞ pointed for all t instead
of (MDI-H3) �(τ )⊆ L+ R BX for all τ in a neighborhood of t .

Monteiro Marques [174] and Moreau [180] both use a simpler version of the strong
solution condition, which is applicable for closed convex cone-valued functions� : [a,b]→
P(X ): writing µ = dx for the differential measure, they simply require that the Radon–
Nikodym derivative

dµ

d (λ+|µ|) (t) ∈�(t) for λ+|µ| almost all t . (4.32)

The equivalence of weak and strong solution concepts for MDIs avoids some of the
complexity of dealing with the strong solution concept that Monteiro Marques and Moreau
had to deal with. In particular, in showing that discrete-time approximations do indeed
converge to solutions, weak* convergence of the discrete-time measures is all that can
usually be shown. The weak solution concept can usually be shown to hold in the limit
easily, while the Lebesgue decomposition is not continuous under weak* limits of measures
and Radon–Nikodym derivatives are also not very well behaved with respect to weak*
convergence.

The proof of equivalence of the weak and strong solution concepts involves tak-
ing sequences φk → χE pointwise as k →∞ for E an open set to obtain µ(E)/λ(E) ∈
co

⋃
t∈E �(t), where λ is the Lebesgue measure. Then by taking nested unions and inter-

sections we can show that for any Borel E ′ ⊂ E , E open, µ(E ′)/λ(E ′) ∈ co
⋃

t∈E �(t) if
λ(E ′) > 0 and µ(E ′) ∈ [

co
⋃

t∈E �(t)
]
∞ if λ(E ′)= 0. Taking Radon–Nikodym derivatives

then gives dµac/dt(t) ∈ co
⋃

t∈E �(t) and dµsing/d
∣∣µsing

∣∣ (t) ∈ [
co

⋃
t∈E �(t)

]
∞ when-

ever E is an open set containing t . The pointedness property of �(t)∞ combined with the
closed graph of � and t #→ �(t)∞ is then used to remove the unions, giving the strong
formulation.

4.4.3 Moreau’s product rule

Moreau’s product rule is a rule for obtaining the measure differential of the product of two
functions of bounded variation. This generalizes the usual rule for absolutely continuous
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functions:

d

dt
(u v)= du

dt
v+u

dv

dt
.

However, if u and v are functions of bounded variation, then “du/dt” and “dv/dt” are
measures with impulses at the jumps of u and v, respectively. The trouble then is that the
“u(t)” may not be defined at a particular time t , where there is a jump in u. However, one-
sided limits u(t±) and v(t±) are well defined. The following rule applies to a wide variety
of situations in both finite and infinite dimensions.

Lemma 4.10. Suppose β : X × Y → Z is a continuous bilinear form with X, Y , and Z
Banach spaces, and with u : [a,b]→ X, v : [a,b]→ Y functions of bounded variation;
then z(t)= β (u(t), v(t)) is a function of bounded variation [a,b]→ Z and

dz = β(u+, dv)+β(du, v−)

in the sense of differential measures.

Proof. Consider a partition P : a = t0 < t1 < · · ·< tN−1 < tN = b. Then

z(ti+1)− z(ti)= β(u(ti+1), v(ti+1))−β(u(ti), v(ti ))

= β(u(ti+1), v(ti+1))−β(u(ti+1), v(ti ))

+β(u(ti+1), v(ti ))−β(u(ti), v(ti ))

= β(u(ti+1)−u(ti), v(ti ))+β(u(ti+1), v(ti+1)− v(ti )),

so

‖z(ti+1)− z(ti)‖ ≤ ‖β‖
[‖u(ti+1)−u(ti )‖‖v(ti )‖+‖u(ti+1)‖‖v(ti+1)− v(ti )‖

]
.

Adding over i = 0, 1, . . . , N −1 and taking the supremum over all such partitions P give

b∨
a

z ≤ ‖β‖
[
‖v‖∞

b∨
a

u+‖u‖∞
b∨
a

v

]
,

so z(·) has bounded variation, and thus dz is a differential measure.
To show the product rule, consider a continuous function ζ : [a,b]→ Z ′; we will

show that ∫
[a,b]

〈ζ , dz〉 =
∫

[a,b]

〈
ζ , β(u+, dv)+β(du, v−)

〉
.

Such integrals can be approximated by Riemann–Stieltjes integrals: for any ε > 0 there is
a δ > 0 where for any partition P with

|P| := max
i=0,1,...,N−1

|ti+1− ti | ≤ δ

we have ∣∣∣∣∣
∫

[a,b]
〈ζ , dz〉−

N−1∑
i=0

〈ζ (ti ), z(ti+1)− z(ti)〉
∣∣∣∣∣ ≤ ε.
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Now if we let u P (t)= u(ti+1) for ti ≤ t < ti+1, and vP (t)= v(ti ) for ti < t ≤ ti+1, then as
|P| → 0, u P (t)→ lims↓t u(t) = u(t+); similarly vP (t)→ v(t−) as |P| → 0. Let ζP (t) =
ζ (ti ) for ti ≤ t < ti+1. Clearly ζP → ζ uniformly as |P| → 0 by uniform continuity of ζ .
On the other hand,

N−1∑
i=0

〈ζ (ti ), z(ti+1)− z(ti)〉 =
∫

[a,b]
〈ζP (t), β(u P(t), dv(t))+β(du(t), vP (t))〉 .

By the dominated convergence theorem for general measures and pointwise convergence
of

〈ζP (t), β(u P (t), ·)〉→ 〈
ζ (t), β(u+(t), ·)〉 in Y ′,

〈ζP (t), β(·, vP (t))〉→ 〈
ζ (t), β(·, v−(t))

〉
in X ′,

we have the limit ∣∣∣∣∫
[a,b]

〈ζ , dz〉−
∫

[a,b]

〈
ζ , β(u+, dv)+β(du, v−

〉∣∣∣∣≤ ε.

As ε > 0 is arbitrary, we have the equality∫
[a,b]

〈ζ , dz〉 =
∫

[a,b]

〈
ζ , β(u+, dv)+β(du, v−)

〉
for any continuous ζ . Thus

dz = β(u+, dv)+β(du, v−),

as desired.

Note that we can reverse the roles of u and v to obtain the equivalent formula

dz = β(u−, dv)+β(du, v+).

In the case where u = v and β is symmetric, we have

dz = β(u−+u+, du).

These equalities have a number of applications to impulsive differential equations, just
as the standard product rule has many applications to smooth differential equations. We
will see one application in the next section and another in the section on the existence of
solutions for rigid-body dynamics with Coulomb friction.

4.4.4 MDIs and discontinuous sweeping processes

Consider the sweeping process governed by the differential inclusion

dx

dt
(t) ∈ −NC(t )(x(t+))+ f (t , x(t)). (4.33)
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We deal with these problems in several steps. The first is to treat the basic problem

dx

dt
(t) ∈ −NC(t )(x(t+)). (4.34)

From this we can use a shifting technique to reduce a problem of the form

du

dt
(t) ∈ −NC(t )(u(t+))+ f (t) (4.35)

to a problem of the form (4.34). Perturbation bounds combined with a Picard-type iteration
will bring us to the general problem (4.33).

A point about the formulation is that solutions can be discontinuous, as C(t) can be
discontinuous in t , often forcing the solution to jump. It is important that the right-hand
side depends on the postjump state u(t+).

The crucial assumption is that

δH (C(s), C(t))≤ r (t)− r (s) for all s < t ,

where r is a nondecreasing function, which therefore has bounded variation. We assume
that r (·) is right continuous, so that r (s+)= limt↓s r (t)= r (s) for all s. We define C+(s)=
{ limk→∞ xk | xk ∈ C(tk), tk ↓ s } and assume that C(·) is also right continuous in the sense
that

C(s)= C+(s) for all s. (4.36)

There are two main ways of analyzing systems like this. One is to use a time dis-
cretization (e.g., the “catching-up” algorithm), and the other is to use a regularization (e.g.,
the Yosida approximation). If we “freeze” C(t), then this system is covered by the section
on maximal monotone differential inclusions. However, since C(t) changes, and discontin-
uously, this no longer applies. However, we can use this as a starting point for our analysis.
Let P : 0 = t0 < t1 < · · · < tN = T be a partition of the interval [0, T ]. We define the
piecewise constant CP (t)= C(ti ) for ti ≤ t < ti+1. The solution for this piecewise constant
problem

du P

dt
(t) ∈ −NCP (t )(u(t+)), u(t0)= u0 ∈ C(t0)

is easily shown to be the result of the catching-up algorithm [174, 178]: u P (t) = ui for
ti ≤ t < ti+1, where

ui+1 =�C(ti+1)(ui ).

In Moreau [178], existence of a solution is shown by showing convergence of the approxi-
mate solutions u P as P becomes more refined. Unlike the approach in the previous section,
we need to make sure that P contains most of the jumps of r (·); that is, the catching-up
algorithm needs to know when to jump. This is needed to ensure uniform convergence of
the u P (·), rather than just pointwise convergence. A basic geometric tool to analyze the
results of refining the partition is the following lemma.
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Lemma 4.11. If C is a closed convex set in a Hilbert space X, then for any x , y ∈ X,

‖x−�C (y)‖2 ≤ ‖x− y‖2+2d(x , C)d(y, C).

Proof. Let u =�C (x) and v =�C (y). Then

‖x−�C (y)‖2−‖x− y‖2

= 〈x− v, x− v〉− 〈x− y, x− y〉
= 〈2x− v− y, y− v〉
= 2 〈x−u, y− v〉+2 〈u− v, y− v〉−‖y− v‖2

≤ 2 〈x−u, y− v〉−‖y− v‖2 (as u ∈ C)

≤ 2 ‖x−u‖ ‖y− v‖ = 2d(x , C)d(y, C),

as desired.

Now if P ′ is a refinement of P (that is, P ⊂ P ′), then we can bound the difference
between u P and u P ′ at certain times according to the following lemma from [174].

Lemma 4.12. Let P : 0 = t0 < t1 < · · · < tN = T and let P ′ be a refinement of P. For
an interval Ii =

[
ti , ti+1

)
, denote the intervals of P ′ contained in Ii by J1 =

[
t ′1, t ′2

)
, J2 =[

t ′2, t ′3
)
, . . . , Jm =

[
t ′m , t ′m+1

)
and let Jm+1 =

[
t ′m+1, t ′m+2

)
be the following interval of P ′ (if

i = N −1, set Jm+1 = ∅). Then whenever σ ∈ J1 and τ ∈ Ii ∪ Jm+1 with σ ≤ τ we have

‖u P (τ )−u P ′(τ )‖2−‖u P (σ )−u P ′(σ )‖2 ≤ 2
(
r (t−i+1)− r (ti )

)2
.

Proof. Let xi = u P (ti ) and y j = u P ′ (t) for t ∈ J j . Then y j+1 = �C(t ′j+1)(y j ), and so by

Lemma 4.11 we have∥∥xi − y j+1
∥∥2−∥∥xi − y j

∥∥2 ≤ 2d(xi , C(t ′j+1))d(y j , C(t ′j+1)).

Adding over j = 0, 1, . . . , k−1 (k ≤ m) gives

‖xi − yk+1‖2−‖xi − y1‖2 ≤ 2
k−1∑
j=1

d(xi , C(t ′j+1))d(y j , C(t ′j+1)).

But xi ∈C(ti )=C(t ′1), so d(xi , C(t ′j+1))≤ δH (C(t ′1), C(t ′j+1))≤ r (t ′j+1)−r (t ′1)≤ r (ti+1)−
r (ti ). On the other hand, since y j ∈ C(t ′j ), we have

d(y j , C(t ′j+1))≤ δH

(
C(t ′j ), C(t ′j+1)

)
≤ r (t ′j+1)− r (t ′j ).

Summing over j = 1, 2, . . . , k−1 (k ≤ m) gives

‖xi − yk+1‖2−‖xi − y1‖2 ≤ 2
k−1∑
j=1

d(xi , C(t ′j+1))d(y j , C(t ′j+1))

≤ 2
k−1∑
j=1

(r (ti+1)− r (ti))
(

r (t ′j+1)− r (t ′j )
)

≤ 2 (r (ti+1)− r (ti ))2 .
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Thus, for any σ ∈ Ii and τ ∈ Ii with σ ≤ τ , we have

‖u P (τ )−u P ′(τ )‖2 ≤ ‖u P (σ )−u P ′(σ )‖2+2
(
r (t ′m)− r (ti )

)2

≤ ‖u P (σ )−u P ′(σ )‖2+2
(
r (t−i+1)− r (ti)

)2
.

We now consider the case with τ ∈ Jm+1. Now xi+1 = �C(ti+1)(xi ) and ym+1 =
�C(t ′m+1)(ym), but t ′m+1= ti+1, and projection onto a convex set is nonexpansive, so ‖xi+1−
ym+1‖ ≤ ‖xi − ym‖. Thus, for τ ∈ Jm+1,

‖u P (τ )−u P ′(τ )‖2 ≤ ‖u P (σ )−u P ′(σ )‖2+2
(
r (t−i+1)− r (ti)

)2
,

as desired.

With this lemma done, we can show uniform convergence of the approximations u P
for suitable partitions P , and we can show that the limits are solutions.

Theorem 4.13. Suppose C : [0, T ]→P(X ), X is a Hilbert space with closed convex values
that is continuous from the right in the sense of (4.36), and

δH (C(s), C(t))≤ r (t)− r (s) for all t ≥ s.

Then solutions exist for the sweeping process

du

dt
(t) ∈ −NC(t )(u(t+)), u(0)= u0

in the sense of MDIs. Furthermore, such a solution can be constructed by limits of approx-
imate trajectories using the catching-up algorithm.

Proof. To complete the existence proof, we construct partitions P such that

N−1∑
i=0

(
r (t−i+1)− r (ti)

)2

is arbitrarily small. Since

N−1∑
i=0

(
r (t−i+1)− r (ti )

)≤ r (tN )− r (t0) = r (T )− r (0)

is bounded, it suffices to ensure that maxi
(
r (t−i+1)− r (ti)

)
is sufficiently small. Choosing

ε > 0, we start with all jumps t with r (t+)− r (t−) ≥ ε/2 in P . Since r (·) has bounded
variation, there is only a finite number of such points. Then it is possible to add points
so that the total variation on each open interval (ti , ti+1) is less than ε/2. Then r (ti+1)−
r (t−i )≤ ε for all i . Then, from the bounds in Lemma 4.12, if P ′ is a refinement of P ,

‖u P (t)−u P ′(t)‖ ≤ 2 (r (T )− r (0)) ε.
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Thus we can choose a uniformly convergent subsequence uk → u where uk = u Pk and Pk+1
is a refinement of Pk for all k.

We now need to show that the limit u(·) indeed solves the sweeping process. First
u P (t) ∈ CP (t) for all partitions P in the sequence used to construct u(·). We can without
loss of generality assume that |Pk | → 0 as k →∞, where |P| = maxi=0,1,...,N−1 ti+1− ti .
Taking pointwise limits, if t ∈⋃

k Pk , we have u(t) ∈ C(t). Then using right continuity of
u(·) (being the uniform limit of right continuous functions) we have u(t) ∈ C(t) for all t .

Now we wish to show that the MDI

du

dt
(t) ∈ −NC(t )(u(t+))

holds. From the catching-up process, u P (·) satisfies the MDI

du P

dt
(t) ∈ −NCP (t )(u P (t+)).

That is, if ũ P (t) ∈ CP (t) for all t , we have

0≤
∫

[0,T ]
〈̃u P (t)−u P(t), du P (t)〉 .

Now suppose ũ(t) ∈ C(t) for all t . Set ũ P (t) = �CP (t )(̃u(t)). For ti ≤ t < ti+1 in the
partition P , we have

‖ũ P (t)− ũ(t)‖ = d (̃u(t), CP (t)) = d (̃u(t), C(ti ))

≤ δH (C(ti ), C(t)) ≤ r (t)− r (ti) ≤ ε

for given ε > 0 and P = Pk with k sufficiently large. Thus ũ P (·) → ũ(t) uniformly as
P = Pk and k →∞.

Note that in a partition P , ‖u P (ti+1)−u P(ti )‖ ≤ r (ti+1)− r (ti ), and u P is constant
over intervals (ti , ti+1). Thus the variation of u P is

N−1∑
i=0

‖u P (ti+1)−u P(ti )‖ ≤
N−1∑
i=0

[
r (ti+1)− r (ti )

]
= r (tN )− r (t0) = r (T )− r (0).

Thus the differential measures du P are uniformly bounded.
Taking P = Pk and k →∞ gives ũ P − u P → ũ− u uniformly. On the other hand,

du P ⇀∗ du weak* as measures because u P → u pointwise. (Alternatively we could use
Alaoglu’s theorem to produce a weak* convergent subsequence.) Then

0≤
∫

[0,T ]
〈̃u P (t)−u P(t), du P (t)〉 →

∫
[0,T ]

〈̃u(t)−u(t), du(t)〉

for all ũ : [0, T ]→ X with ũ(t) ∈ C(t) for all t . Thus the Radon–Nikodym derivative of
du with respect to its variation |du|, which we denote by du/ |du|, satisfies du/ |du| (t) ∈
−NC(t )(u(t+)), and u(·) satisfies the MDI.
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Uniqueness can be shown via Moreau’s product rule (Lemma 4.10): suppose that

du

dt
(t) ∈ −NC(t )(u(t+)),

dv

dt
(t) ∈ −NC(t )(v(t+)).

Let w = u− v. Then

d ‖w‖2 = d 〈w, w〉 = 〈
w++w−, dw

〉
= 2

〈
w+, dw

〉− 〈
w+−w−, dw

〉
.

Note that
〈
w+−w−, dw

〉
is a purely atomic measure, which can be written as〈

w+(t)−w−(t), dw(t)
〉=∑

s

∥∥w(s+)−w(s−)
∥∥2

δ(t− s) ≥ 0,

where the sum is taken over all s, where w(s+) �=w(s−). Thus

d ‖w‖2 ≤ 2
〈
w+, dw

〉
= 2

〈
u+− v+, du−dv

〉
= 2

〈
u+− v+,

du

|du|+ |dv| −
dv

|du|+ |dv|
〉

(|du|+ |dv|) ,

where |du| is the variation measure of du, and du/ (|du|+ |dv|) is the Radon–Nikodym
derivative of the measure du with respect to |du|+ |dv|. Now

du/ (|du|+ |dv|) (t) ∈ −NC(t )(u(t+)),

and similarly for v, so from the monotonicity of x #→ NC(t )(x), we have

d ‖w‖2 ≤ 0.

That is, for t ≥ s, ‖w(t)‖ ≤ ‖w(s)‖. If u(0)= v(0), then w(0)= 0, and so w(t) = 0,
and u(t) = v(t), for all t ≥ 0. Thus, given the initial conditions, the solution is unique.
Furthermore, we have the fact that u(0) #→ u(t) is a nonexpansive map for t ≥ 0.

Sweeping processes of the form

du

dt
(t) ∈ −NC(t )(u(t+))+ψ(t), u(t0)= u0

have solutions for all ψ ∈ L1(0, T ; X ). These problems can be reduced to basic sweeping
processes by setting

v(t)= u(t)−
∫ t

t0
ψ(τ )dτ ,

D(t)= C(t)−
∫ t

t0
ψ(τ )dτ ,

ρ(t)= r (t)+
∫ t

t0

‖ψ(τ )‖ dτ .
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Then v solves the basic sweeping process

dv

dt
(t) ∈ −ND(t )(v(t+)), v(t0)= u0,

and δH (D(s), D(t)) ≤ ρ(t)−ρ(s) for all t ≥ s. Furthermore, we can construct u(·) from
v(·).

This can be used to “bootstrap” the general problem (4.33):

du

dt
(t) ∈ −NC(t )(u(t+))+ f (t , u(t)), u(t0)= u0

with f (t , ·) Lipschitz with Lipschitz constant k(t), k(·)∈ L1(0, T ), and f (·,0)∈ L1(0, T ; X ).
Set u(0)(t) = u0 for all t , and from this we can start a Picard-type iteration: Let u( j+1) be
the solution of

du( j+1)

dt
(t) ∈ −NC(t )(u( j+1)(t+))+ f (t , u( j )(t)), u( j+1)(t0)= u0.

The iteration map u( j ) #→ u( j+1) is a contraction map on a sufficiently small interval [t0, T ].
To show this, consider

du

dt
(t) ∈ −NC(t )(u(t+))+φ(t), u(t0)= u0,

dv

dt
(t) ∈ −NC(t )(v(t+))+ψ(t), u(t0)= u0.

Using the same techniques as used above to show uniqueness for the basic sweeping pro-
cess, for w = v−u,

d ‖w‖2 (t)≤ 2
〈
w(t+), ψ(t)−φ(t)

〉
dt or(∥∥w(t+)

∥∥+∥∥w(t−)
∥∥)

d ‖w‖ (t)≤ 2
∥∥w(t+)

∥∥ ‖φ(t)−ψ(t)‖ dt .

Since
∥∥w(t+)

∥∥≤ ∥∥w(t−)
∥∥ for all t , d ‖w‖ (t) ≤ ‖φ(t)−ψ(t)‖ dt , and so

‖u(t)− v(t)‖ ≤ ‖u(t0)− v(t0)‖+
∫ t

t0
‖φ(t)−ψ(t)‖ dt .

From this we can show that the Picard iteration above has Lipschitz constant
∫ T

t0
k(τ )dτ < 1

for T − t0 > 0 sufficiently small. By the contraction mapping principle on a sufficiently
small interval, there is one and only one solution of (4.33). By continuation arguments it
can be shown that there is one and only one solution on the interval [t0,∞).

There are a number of generalizations of the idea of sweeping processes. Some
of these deal with nonconvex C(t), but they satisfy a bound on the nonconvexity so that
the nearest point projection map �C(t ) is well defined and Lipschitz in a suitably small
neighborhood of C(t). Another approach is to allow operators more general than the normal
cone operator, such as

du

dt
(t) ∈ −�(t ,u)+ f (t ,u), u(t0)= u0,

where �(t , ·) is a maximal monotone operator. Care must be taken to make sure that �(t ,u)
does not vary “too much” with changes in t . Systems of this kind and generalizations are
considered in [170, 234].
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4.5 Linear complementarity systems
Linear complementarity systems (LCSs) have already been discussed (3.8)–(3.10). We first
review their formulation:

dx

dt
(t)= Ax(t)+ Bz(t)+ E f (t), x(0)= x0, (4.37)

w(t)= Cx(t)+ Dz(t)+ F f (t), (4.38)

0≤ w(t)⊥ z(t) ≥ 0 for almost all t . (4.39)

The function f (t) is an external input. LCSs were introduced by Çamlıbel, Heemels, Schu-
macher, Weiland, and van der Schaft in a series of papers [48, 123, 124, 264]. Their theory
is mainly based on the use of Laplace transforms:

L f (s)=
∫ ∞

0
e−st f (t)dt . (4.40)

If this is applied to (4.37)–(4.38), we get

sLx(s)− x0 = ALx(s)+ B Lz(s)+ E L f (s),

Lw(s)= C Lx(s)+ DLz(s)+ FL f (s).

Solving for Lx(s) we now have

Lw(s)=
[

D+C (s I − A)−1 B
]
Lz(s)

+C
[
(s I − A)−1 x0+

(
F+ (s I − A)−1 E

)
L f (s)

]
.

If we consider the complementarity condition (4.39) componentwise, we see that 0 ≤
wi (t) ⊥ zi (t) ≥ 0 for almost all t and all i . If we seek solutions that are piecewise an-
alytic, then on any piece t1 ≤ t ≤ t2 we have either yi (t)≡ 0 or ui (t) ≡ 0. The conditions
“zi (t)≥ 0” and “wi (t)≥ 0” are the most problematic from this point of view. However, the
small t behavior of zi (t) and wi (t) is closely related to the large s behavior of Lzi (s) and
Lwi (s), respectively. If wi (t) > 0 for an interval [0, ε) with ε > 0 and grows no faster than
exponentially, then for sufficiently large s > 0, Lwi (s) > 0. This idea leads to the follow-
ing definition: f : R+ → R is initially positive if and only if L f (s) > 0 for all sufficiently
large s > 0. We say f : R+ → R is initially nonnegative if f is initially positive, or it is
initially zero (that is, f (t)= 0 for all t ∈ [0,ε′) for some ε′ > 0). A better justification for
the definition of “initially positive” can be found in the following lemma.

Lemma 4.14. If f : R+ →R grows no faster than exponentially and it is analytic on [0,ε)
for ε > 0, and is initially positive (in the sense just described), then there is an ε′ > 0 such
that f (t) > 0 for 0 < t < ε′.

Proof. First we introduce a definition: a vector [a1, a2, a3, . . . , ap] is lexicographically
positive if there is a 1 ≤ j ≤ p such that a j > 0 and ai = 0 for all i < j . In other words, a
vector is lexicographically positive if the first nonzero entry is positive.

For f analytic on [0,ε), there is a 0<ρ < ε such that f has a Taylor series expansion:

f (t)= f (0)+ f ′(0) t+ f ′′(0)
t2

2!
+ f ′′′(0)

t3

3!
+·· ·
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for 0≤ t < ρ. The Laplace transform is asymptotically

L f (s)= f (0)s−1+ f ′(0)s−2+ f ′′(0)s−3+ f ′′′(0)s−4+·· ·+O(s−m−1)

as s →+∞ on the real axis. Now L f (s) > 0 for sufficiently large s > 0 if and only if
the vector [ f (0), f ′(0), f ′′(0), f ′′′(0), . . .] is lexicographically positive. Suppose the first
nonzero entry is f (k)(0). Then, for 0≤ t < ρ,

f (t)= f (k)(0)
tk

k!
+ f (k+1)(0)

tk+1

(k+1)!
+ f (k+2)(0)

tk+2

(k+2)!
+·· ·

= f (k)(0)
tk

k!
+O(tk+1).

If f (k)(0) > 0, then f (t) > 0 for all 0 < t < ε′ for some ε′ > 0.

The idea now is to look for solutions of the Laplace transformed CP:

Lw(s)=
[

D+C (s I − A)−1 B
]
Lz(s)

+C
[
(s I − A)−1 x0+

(
F+ (s I − A)−1 E

)
L f (s)

]
,

0≤ Lw(s)⊥ Lz(s) ≥ 0 for sufficiently large s > 0.

Provided f is a Bohl distribution (3.23), we assume that all the Laplace transforms Lw(s),
Lz(s), and L f (s) are rational functions of s, at least for considering the short-time behavior
of the solutions. This essentially assumes that there is a time interval [0,ε), ε > 0, on which
the active sets { i = 1, . . . , n | wi (t)= 0 } and { i = 1, . . . , n | zi (t)= 0 } do not change. To
simplify the expressions, let

G(s)= D+C (s I − A)−1 B ,

Lq(s)= C
[
(s I − A)−1 x0+

(
F+ (s I − A)−1 E

) L f (s)
]

.

This gives us the rational complementarity problem (RCP) [123]: Given G(s) and Lq(s)
rational functions, find Lz(s) and Lw(s) rational functions of s so that

Lw(s)= G(s)Lz(s)+Lq(s), (4.41)

0≤ Lw(s)⊥ Lz(s)≥ 0 for sufficiently large s > 0. (4.42)

Since we are interested in the behavior of G(s) for large s > 0, we use a Laurent series
expansion

G(s)= G0+G1 s−1+G2 s−2+G3 s−3+·· · .
The matrices Gi can be computed explicitly in terms of A, B , C , and D using the formula
for G(s):

G0 = D,

G1 = C B ,

G2 = C AB ,

G3 = C A2 B , etc.
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The index of the LCS (4.37)–(4.39) is the smallest value of k such that G0+G1s−1+·· ·+
Gks−k is nonsingular for sufficiently large s > 0. Thus, if D is nonsingular, then the index
is zero. If D+C Bs−1 is nonsingular for sufficiently large s > 0, then the index is one.

The existence theory of the RCP (4.41)–(4.42) can be developed using standard linear
complementarity theory.

Theorem 4.15. Suppose that G(s) is a P-matrix for all sufficiently large s > 0 and that
G(s), L f (s) are real rational functions of s. Then there is a solution Lw(s) and Lz(s) to
(4.41)–(4.42) with both Lw(s) and Lz(s) rational functions of s.

Proof. Consider a sequence of real numbers sk →∞ as k →∞. Since G(s) is a P-
matrix for sufficiently large s > 0, for sufficiently large k there is a unique solution to
LCP(Lq(sk), G(sk)); denote it by ẑ (k) so that

ŵ (k) = G(sk) ẑ (k)+Lq(sk),

0≤ ŵ (k) ⊥ ẑ (k) ≥ 0.

Let the active set Ik = { i | ẑ (k)
i > 0 }. Since every active set is a subset of {1, 2, . . . , n }, there

are only finitely many possible values for Ik . At least one will be repeated infinitely often:
Suppose Ik = J for infinitely many k. Let J be the complement of J : J = {1, 2, . . . , n}\J .
Splitting the equation ŵ (k) = G(sk) ẑ (k)+Lq(sk) into components in J and in J , we get

0= G(sk)J J ẑ (k)
J +Lq(sk)J , ẑ (k)

J
= 0,

ŵ
(k)
J
= G(sk)J J ẑ (k)

J +Lq(sk)J , ŵ
(k)
J = 0.

Since G(sk) is a P-matrix, all principal submatrices are invertible, so we have

ẑ (k)
J =−G(sk)−1

J J Lq(sk)J ≥ 0,

ŵ
(k)
J = Lq(sk)J −G(sk)J J G(sk)−1

J J Lq(sk)J ≥ 0.

If we write ẑ J (s) = −G(s)−1
J J Lq(s)J and ŵJ (s) = Lq(s)J −G(s)J J G(s)−1

J J Lq(s)J , we
have two rational functions of s that are nonnegative for infinitely many sk →∞. Since
G(s) and Lq(s) are rational functions of s, so are û J (s) and ŷJ (s). Combining these facts
shows that for all sufficiently large s > 0, ẑ J (s) ≥ 0 and ŵJ (s) ≥ 0. Since for sufficiently
large s > 0, G(s) is a P-matrix, LCP(Lq(s), G(s)) has a unique solution, which must there-
fore be given by ẑ J (s) and ŵJ (s). This choice of active set gives the solution of the RCP
(4.41)–(4.42).

Note that the fact that G(s) and Lq(s) are rational functions of s is used in showing
that ẑ J (sk)≥ 0, ŵJ (sk)≥ 0 for infinitely many sk →+∞ implies that ẑ J (s)≥ 0, ŵJ (s)≥ 0
for all sufficiently large s > 0. This is also true if G(s) and Lq(s) are “meromorphic at
infinity”; that is, G(1/z) and Lq(1/z) are analytic functions in a neighborhood of z = 0 and
have a finite order pole at z = 0.

Another fact about this result is that not only is the solution unique, but the active set
I (s)= { i | zi (s) > 0 } is also constant for sufficiently large s > 0.

With the solution of the RCP, we can identify the active set and hence find the active
set for a suitably small time interval, at least provided ẑ (s) = Lz(s)= O(1/s) as s →∞.
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Slower decay indicates that the solution includes Dirac-δ functions or its derivatives, and
so it cannot be analytic on [0,ε) for any ε > 0. If Lz(s) = O(1) as s → +∞, then no
derivatives of Dirac-δ functions can appear in the solution. Since ẑ (s) = Lz(s) ≥ 0, the
strength of a Dirac-δ function in the solution must be greater than or equal to 0. If the
strength of the δ-function is zero, then Lz(s) = O(1/s) and everything works out. So
let’s consider what happens if the strength of the δ-function is positive. It is then possible
that immediately after the δ-function, the solution might go negative. For example, if
z(t)= δ(t)−1, Lz(s)= 1−1/s > 0 for s > 1. Now consider the LCS

d2x

dt2
= z(t)+1, x(0)= 0,

dx

dt
(0)=−1,

w(t)= x(t),

0≤ w(t)⊥ z(t) ≥ 0 for all t .

This gives the RCP

0≤ Lw(s)= 1

s2 Lz(s)− 1

s2 +
1

s3 ⊥ Lz(s)≥ 0.

The solution to this is Lz(s) = 1− 1/s, so that z(t) = δ(t)− 1. Immediately after the δ-
function, we need to formulate and solve a new RCP for different initial conditions for
x(·): x(0+)= 0, dx/dt(0+)= 0. This gives the RCP

0≤ Ly+(s)= 1

s2 Lu+(s)+ 1

s3 ⊥ Lu+(s)≥ 0,

which has the solution Lz+(s) = 0, Lw+(s) = 1/s3. That is, for immediately after the
δ-function, we have z(t) ≡ 0. In fact, the solution for all times is z(t) = δ(t), and w(t) =
x(t)= 1

2 t2 for t > 0.
This process of restarting the problem with new initial conditions when the RCP

indicates the presence of a δ-function or one of its derivatives can be repeated if necessary
until an analytic function is obtained.

This RCP approach to LCSs can be extended to problems with infinite-dimensional
dynamics with A a bounded linear operator X → X (X a Banach space), as long as the
complementarity conditions apply in finite dimensions. That is, we require that B : Rm →
X and C : X → Rm . Then G(s) = D+C (s I − A)−1 B is analytic for |s| > ρ(A), where
ρ(A) is the spectral radius of A.5 For |s|> ‖A‖ we have

(s I − A)−1 = s−1 (I − A/s)−1

= s−1 I + s−2 A+ s−3 A2+·· · ,
so G(s) is analytic at s =∞. Consider the following example:

dxi

dt
(t)= xi+1(t)+bi z(t), xi (0)= x0

i ,

w(t)=
∞∑

i=1

ci xi (t)+d z(t),

0≤ w(t)⊥ z(t)≥ 0 for all t .
5The spectral radius ρ(A) of a linear operator X → X is the supremum of

∣∣λ∣∣ over λ in the spectrum of
A: the spectrum of A is the set of all λ ∈ C where λI − A is not invertible. For X = Rn , ρ(A) is simply the
maximum absolute value of the eigenvalues of A.
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We assume that X = �2, the space of square summable sequences:

�2 =
{

(x1, x2, x3, . . .) |
∞∑

i=1

|xi |2 <∞
}

.

We will assume that b = (b1, b2, b3, . . . ) and c = (c1, c2, c3, . . .) ∈ �2. The matrix for A is

A =


0 1

0 1
0 1

0
. . .
. . .

 ,

which is the well-known shift operator on �2. The resolvent (s I − A)−1 can be computed
explicitly: solving (s I − A)z = w for z ∈ �2 and w ∈ �2 can be done as follows. For each
i ≥ 1 we have s zi − zi+1 =wi . If we write zi+1 in terms of zi , we expect to see exponential
growth for |s| > 1. So we work in the reverse direction: zi = (zi+1+wi )/s. This means
we can write zi as an infinite sum zi =∑∞

k=0 s−k wi+k . This gives

(s I − A)−1 =


s−1 s−2 s−3 s−4 · · ·

s−1 s−2 s−3 · · ·
s−1 s−2 · · ·

s−1 · · ·
. . .

 ,

which is a bounded operator �2 → �2 for |s|> 1.Then we can compute

G(s)= d+
∞∑

k=1

s−k
∞∑

i=1

ci bi+k ,

which gives us the Laurent series for G(s) at infinity. Solutions thus exist if for s > 0
sufficiently large, d+ s−1 ∑∞

i=1 ci bi+1 > 0.

4.6 Convolution complementarity problems
Convolution complementarity problems (CCPs) introduce a different kind of dynamics and
have the following form: Given m : [0, T ]→ Rn×n , q : [0, T ]→ Rn , and a closed convex
cone K ⊆ Rn where q(0) ∈ K ∗, find z : [0, T ]→ Rn such that

K " z(t)⊥ (m ∗ z)(t)+q(t)∈ K ∗ for almost all t , (4.43)

(k ∗ z)(t)=
∫ T

0
k(t− τ ) z(τ )dτ . (4.44)

This can be used to represent the LCS (3.8)–(3.10) by setting k(t)= D δ(t)+C eAt B and
q(t) = C eAt x0 for t ≥ 0. The index of the CCP is the smallest index r such that the
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distributional derivative m(r)(t) has a Dirac-δ function at t = 0. This definition is equivalent
to the index described above for DVIs. However, r need not be an integer; we can also use
fractional derivatives [145] (see Chapter 7).

CCPs can be used to solve certain problems involving partial differential equations
with complementarity conditions, as long as the dynamics are linear and time invariant, and
the complementarity conditions are finite dimensional, such as impact of a rod at one end.

4.6.1 Index-zero CCPs

First, we will consider index-zero problems. In particular, suppose that m(t) = m0 δ(t)+
m1(t), where m1 is an integrable function. Then (4.43) becomes

K " z(t)⊥ m0 z(t)+ (m1 ∗ z) (t)+q(t) ∈ K ∗ for almost all t .

This can be solved by means of a Picard iteration: Given z(0), compute z(1), z(2), . . . by the
iteration

K " z(k+1)(t)⊥ m0 z(k+1)(t)+
(

m1 ∗ z(k)
)

(t)+q(t) ∈ K ∗ (4.45)

for almost all t . Then we can transform the problem if m0 has the uniqueness property for
the GCP

K " z ⊥ m0 z+q ∈ K ∗. (4.46)

Let us assume that m0 is a strongly monotone matrix (that is, m0+mT
0 is positive definite).

Let q #→ z = solK ,m0 (q) be the solution operator for the static problem (4.46). If m0 is
a strictly monotone matrix, then solK ,m0 is a Lipschitz function with Lipschitz constant
1/λmin( 1

2 (m0+mT
0 )). Then the Picard iteration (4.45) leads to

z(k+1)(t)= solK ,m0

((
m1 ∗ z(k)

)
(t)+q(t)

)
for almost all t .

The operator z(·) #→ y(·), where y(t)= solK ,m0 ((m1 ∗ z) (t)+q(t)), is a Lipschitz operator
C[0, T ]→ C[0, T ] with Lipschitz constant∫ T

0
‖m1(t)‖ dt/λmin

(
1

2
(m0+mT

0 )

)
.

For sufficiently small T > 0,
∫ T

0 ‖m1(t)‖ dt/λmin( 1
2 (m0 +mT

0 )) < 1, and so we have a

contraction map. (We will choose T > 0 so that
∫ T

0 ‖m1(t)‖ dt ≤ 1
2λmin( 1

2 (m0+mT
0 )).)

Then by the contraction mapping theorem there is a unique fixed point; thus there is a
unique fixed point in C[0, T ] and one and only one solution in C[0, T ].

The solution can be extended to [T , 2T ] by means of a “shift” technique: let s= t−T
for T ≤ t ≤ 2T ; then put q1(s) = q(T + s)+ ∫ T

0 m1(T + s − τ ) z(τ )dτ . Then using the
techniques of the previous paragraph we have a solution of

K " z1(s)⊥ m0 z1(s)+ (m1 ∗ z1) (s)+q1(s) ∈ K ∗ for 0≤ s ≤ T .

Then we set z(t)= z1(t− T ) for T ≤ t ≤ 2T . The process can be repeated indefinitely, so
there is a unique solution z(t) for t ≥ 0.
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There is a point that should be understood about the connection between the matrix
m0 and the cone K . If m0 is strongly monotone, then there are no restrictions on what
the closed convex cone K can be. However, if we restrict K , then more general matrices
m0 are allowed. The crucial condition is that the solution operator solK ,m0 for the static
problem (4.46) needs to be Lipschitz. This is the case if, for example, K = Rn+ and m0 is a
P-matrix, which can be very far from being strongly monotone.

4.6.2 Index-one CCPs

Index-one CCPs have the following form: Given m(·) and q(·), find z(·), where

K " z(t)⊥ (m ∗ z) (t)+q(t) ∈ K ∗ for almost all t ,

where m(·) is an integrable function and m(0+) is a suitable nonsingular matrix. It turns
out that we need significantly stronger conditions for existence and uniqueness of solutions
to index-one problems than for index-zero problems. The question of uniqueness has some
subtleties to it that has led to some apparently simple open questions [245].

The simplest example of an index-one CCP is to have m(t)= m0 for all t > 0. Then
(m ∗ z)(t) = m0

∫ t
0 z(τ )dτ . Let w(t) = m0

∫ t
0 z(τ )dτ + q(t) so that dw/dt(t) = m0z(t)+

q ′(t). Then we can turn this problem into a DCP:

dw

dt
= m0z(t)+q ′(t), w(0)= q(0),

K " z(t)⊥w(t) ∈ K ∗ for almost all t .

Typically we require that q ′ be integrable (so that q is absolutely continuous), and of course,
q(0) ∈ K ∗. In general, we can show that if q ∈ W 1,p(0, T ; Rn) and q(0) ∈ K ∗, then the
solution z ∈ L p(0, T ; Rn). We show existence and uniqueness of solutions to index-one
CCPs in Section 4.6.2 under suitable conditions.

4.6.3 Index-two and higher-index CCPs

Index-two CCPs involve kernel functions m(t) which are asymptotically m(t) ∼ m0t as
t ↓ 0. Such problems can be considered as a starting point for understanding simple impact
problems such as

d2x

dt2 (t)= f (t)+ N(t), x(0),
dx

dt
(0) given

0≤ x(t)⊥ N(t) ≥ 0 for all t .

As might be expected for such a problem, the solution N(t) is typically a measure, as it
can contain impulses. Furthermore, solutions might exist, but they cannot be expected to
have unique solutions when impact occurs. After all, for rigid-body dynamics we need
a coefficient of restitution to determine the velocities immediately after impact. Indeed,
existence can be proved for the CCP: Given m : [0, T ]→ Rn×n and q : [0, T ]→ Rn , find
z : [0, T ]→Rn satisfying

K " z(t)⊥ (m ∗ z) (t)+q(t) ∈ K ∗ for all t ,

provided m(0+)= 0, m′(0+) = m0, m′′ in L∞(0, T ; Rn×n ), and q ′′ is in L p(0, T ; Rn) and
q(0) ∈ K ∗.
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4.6.4 Fractional index problems

Fractional index problems do exist, but the dynamics are not generated by ordinary dif-
ferential equations. These are most easily described in terms of CCPs. These are CCPs
where m(t) ∼ tα−1 m0/%(α) as t ↓ 0, where m0 is, say, strongly monotone, and α is not
an integer. Existence of solutions can be shown for 0 < α < 1 and 1 < α < 2 by means of
index reduction and the differentiation lemmas (see Section 3.4). Uniqueness can be shown
for 0 < α < 1 if m0 is symmetric positive definite, but not for 1 < α < 2 at the time of this
writing.

The first CCP to appear as such in the literature is of this kind and is due to Petrov
and Schatzman [207]. They obtained a CCP of this kind with α = 1 1

2 from studying the
impact problem for a viscoelastic rod (impact occurs at x = 0):

utt = ux x +β ut x x , t > 0, 0 < x < L,

0= ux (t , L)+β ut x(t , L),

N(t) = ux (t ,0)+β ut x (t ,0),

0≤ N(t) ⊥ u(t ,0)≥ 0.

By means of constructing a Green’s function or fundamental solution for this problem, they
found

u(t ,0)=
∫ t

0
m(t− τ ) N(τ )dτ +q(τ ),

where m(t) ∼ const t1/2 as t ↓ 0 and const is a positive constant. The function q(·) is
obtained from the initial values u(0, x) and ut (0, x) for 0 < x < L. Existence of solutions
can be shown either by the original techniques of [207] or by more recent techniques [243].
Furthermore, it can be shown that the contact forces do no work, and therefore the energy
loss can be accounted for from the viscous term β ut x x alone.

Other fractional index CPs can be found in [249], which also develops the theory of
such problems for 0 < α < 1.

4.7 Parabolic variational inequalities
Parabolic variational inequalities (PVIs) are VIs involving the first derivative of the un-
known functions with respect to time which have the form

u(t) ∈ K , (4.47)

0≤
〈̃
u−u(t),

du

dt
(t)− f (u(t))

〉
for all ũ ∈ K , (4.48)

where K is a closed convex set in a Banach space X . Discussions of PVIs can be found in
[25, 189]. PVIs can be represented as differential inclusions or as DVIs.

An example of a PVI is the oxygen uptake in a biological tissue, described in Sec-
tion 1.4.3. Oxygen diffuses through a tissue which absorbs the oxygen at a fixed rate as
long as it is available. But if the oxygen concentration drops to zero, the cells in the tissue
are assumed to go into hibernation and resume normal uptake when the oxygen concentra-
tion becomes positive again. The main variable is u(t ,x) being the concentration of oxygen
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at point x at time t . Where the oxygen concentration is positive, the following reaction-
diffusion equation holds:

∂u

∂ t
= ∇ · (D∇u)− rmax.

The set K = {
u ∈ H 1(�) | u ≥ 0

}
represents nonnegative oxygen concentrations. When

u(t ,x)= 0, this partial differential equation becomes inoperative. Instead we simply ensure
that u(t ,x) ≥ 0; that is, the oxygen concentration does not become negative. This can be
represented by the VI

u(t ,x)≥ 0 & 0≤ (̃u−u(t ,x)) ·
[
∂u

∂ t
−∇ · (D∇u)+ rmax

]
for all ũ ≥ 0

for all t and x. Alternatively, this can be represented by the complementarity formulation

∂u

∂ t
=∇ · (D∇u)− rmax+ s(t ,x),

0≤ s(t ,x)⊥ u(t ,x)≥ 0 for all t and x.

4.7.1 Comparison with maximal monotone differential inclusions

To represent (4.47)–(4.48) as a differential inclusion, note that (4.48) is equivalent to

0 ∈ du

dt
− f (u(t))+ NK (u(t)) (4.49)

by (2.41). The representation (4.49) leads directly to existence and uniqueness results via
the theory of maximal monotone differential inclusions (Section 4.2) for Lipschitz f since
NK is a maximal monotone operator. We just need u(0) ∈ K .

In Gelfand triples, we need to be a little careful in how we apply the theory of
maximal monotone differential inclusions, as we need to ensure that the operator − f +
NK : X → P(X ′) in a Gelfand triple X ⊂ H = H ′ ⊂ X ′ can be turned into a maximal
monotone plus Lipschitz operator (− f + NK )H : H → P(H ) as we identify H = H ′. Re-
call that for � : X →P(X ′), �H (u)=�(u)∩H for u ∈ X and �(u)= ∅ otherwise (4.19).
For example, if we take X = H 1(�) and H = L2(�) for a domain � ⊂ Rd , we can set
K = {w ∈ X | w(x) ≥ ϕ(x), for all x ∈ % } for a suitable subset % ⊂ � and ϕ : %→ R.
Then we can take f : H 1(�)→ H−1(�) to be f (u)=±∇2u. Then f (u)=+∇2u leads to
maximal monotone L2(�)→ P(L2(�)) by Lemma 4.7, while f (u)=−∇2u does not.

4.7.2 Comparison with DVIs

To turn (4.49) into a DVI we note that z(t) ∈ NK (u(t)) just means z(t) ∈ ∂ IK (u(t)), and
by the Fenchel duality theorem (Theorem B.15), this is equivalent to u(t) ∈ ∂

(
I ∗K

)
(z(t))=

∂σK (z(t)). That is, z(t) minimizes the convex lower semicontinuous function v #→ σK (v)−
〈u(t), v〉. This is a VI of the second kind:

z(t) ∈ X & 0≤ σK ( z̃ )−σK (z(t))+〈 z̃− z(t),−u(t)〉 for all z̃ ∈ X .

Thus we can represent a PVI as a DVI with index one.

Downloaded 03 Nov 2011 to 160.36.192.127. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php



146 Chapter 4. Variations on the Theme

The converse is only partly true; DVIs are in fact a larger class of problems. Consider
the index-one DVI

dx

dt
= f (x(t))+ B(x(t)) z(t),

z(t) ∈ K & 0≤ 〈 z̃− z(t), G(x(t))〉 for all z̃ ∈ K .

Then the VI is equivalent to −G(x(t)) ∈ NK (z(t))= ∂ IK (z(t)). Again using Fenchel dual-
ity, this is equivalent to

z(t) ∈ ∂
(
I ∗K

)
(−G(x(t)))= ∂σK (−G(x(t))).

If G is affine, then the feasible set for x(t) is convex, which is always the case for PVIs.
For general nonlinear G this is not so. Assume for now that K is a closed convex cone.
Then σK = IK ∗ , and

dx

dt
∈ f (x(t))+ B(x(t))∂ IK ∗(−G(x(t))).

For G affine and B constant with B =∇G∗,

dx

dt
∈ f (x(t))− NG−1(K ∗)(x(t)),

or equivalently,

x(t) ∈ G−1(K ∗) & 0≤
〈
x̃− x(t),

dx

dt
− f (x(t))

〉
for all x̃ ∈ G−1(K ∗).

That is, under these conditions the DVI is also a PVI.
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Chapter 5

Index Zero and Index One

In this chapter we will consider index-zero and index-one DVIs and various special cases
and generalizations. Index-zero inequalities are the easiest kind of DVI to solve since the
“algebraic” part of the solution (the part where derivatives do not appear) can be found
in terms of the “differential” part of the solution. Substituting this into the differential
equation gives an ordinary differential equation without an unknown “algebraic” variable.
Thus we can reduce these problems to the study of ordinary differential equations.

Index-zero problems can typically be reduced to Lipschitz differential equations.
Index-one DVIs, on the other hand, are considerably more interesting. However, index-zero
problems can be used as a starting point for many different approximations and analyses of
index-one and other problems.

5.1 Index-zero problems
5.1.1 Existence and uniqueness

Consider the index-zero DVI in the general form:

dx

dt
(t)= f (t , x(t), z(t)), u(t0)= u0, (5.1)

z(t) ∈ K for all t , (5.2)

0 ≤ 〈 z̃− z(t), F(t , x(t), z(t))〉 (5.3)

for all z̃ ∈ K and almost all t .

The VI part (5.2)–(5.3) has a unique solution z(t), given t and x(t), provided F(t , x(t), ·) is,
say, strongly monotone. The existence and uniqueness results for index-zero problems are
usually obtained by showing equivalence with a Lipschitz ordinary differential equation.
Consider the parametrized variational inequality VI(F(t , x , ·), K ):

z ∈ K & 0≤ 〈 z̃− z, F(t , x , z)〉 for all z̃ ∈ K .

147
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The solution of this VI gives us a map (t , x) #→ z = ψ(t , x); ψ(t , x) is a singleton if, for
example, F(t , x , ·) is uniformly strongly monotone:

〈F(t , x , z1)− F(t , x , z2), z1− z2〉 ≥ η ‖z1− z2‖2

for some η > 0 independent of t and x . We also assume that F(t , x , z) is Lipschitz in x :

‖F(t , x1, z)− F(t , x2, z)‖ ≤ L F (t) ‖x1− x2‖
for all x1, x2, and z ∈ K , where L F (·) is an integrable function on [t0, t1]. We also suppose
that F(t , x , z∗) is integrable in t for some fixed z∗ ∈ K :∥∥F(t , 0, z∗)

∥∥≤ βF (t),

where βF (·) is an integrable function on [t0, t1]. Now suppose z1 solves VI(F(t , x1, ·), K )
and z2 solves VI(F(t , x2, ·), K ); that is, z1 = ψ(t , x1) and z2 = ψ(t , x2). Then z1, z2 ∈ K ,
so

0≤ 〈z2− z1, F(t , x1, z1)〉 ,
0≤ 〈z1− z2, F(t , x2, z2)〉 .

Adding gives

0≤−〈z2− z1, F(t , x2, z2)− F(t , x1, z1)〉
≤ −〈z2− z1, F(t , x1, z2)− F(t , x1, z1)〉

+ 〈z2− z1, F(t , x1, z2)− F(t , x2, z2)〉
≤ −η ‖z2− z1‖2+‖z2− z1‖ ‖F(t , x1, z2)− F(t , x2, z2)‖
≤ −η ‖z2− z1‖2+‖z2− z1‖ L F (t) ‖x1− x2‖ .

Rearranging and dividing by ‖z2− z1‖ give

‖z2− z1‖ ≤ L F (t)

η
‖x1− x2‖ .

We also need a bound on the solutions z of VI(F(t , x , ·), K ): To bound ‖z‖, note that
if z∗ is a fixed element of K ; then

0≤ 〈
z∗ − z, F(t , x z)

〉
≤− 〈

z∗ − z, F(t , x , z∗)− F(t , x , z)
〉

+ 〈
z∗ − z, F(t , x , z∗)

〉
≤−η ∥∥z∗ − z

∥∥2+∥∥z∗ − z
∥∥ ∥∥F(t , x , z∗)

∥∥ ,

and so rearranging and dividing by ‖z∗ − z‖ give∥∥z∗ − z
∥∥≤ 1

η

∥∥F(t , x , z∗)
∥∥

≤ 1

η
(βF (t)+‖x‖) ,

and so ‖z‖ ≤ ‖z∗‖+ (βF (t)+‖x‖)/η.
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We need our dynamics to be governed by a Lipschitz function

‖ f (t , x1, z1)− f (t , x2, z2)‖ ≤ Lx (t) ‖x1− x2‖+ Lz ‖z1− z2‖
(Lx integrable on [t0, t1]) and also with a bound

‖ f (t , 0, 0)‖ ≤ β f (t),

where β f is an integrable function on [t0, t1].
Combining these results shows first that ψ(t , ·) is Lipschitz with constant L F (t)/η;

this in turn shows that f̃ (t , x) := f (t , x , ψ(t , x)) is Lipschitz in x with constant Lx (t)+
Lz L F (t)/η, which is an integrable function of t . Furthermore, we can bound

∥∥ f̃ (t , 0)
∥∥ by

an integrable function. Then our DVI (5.1)–(5.3) is equivalent to the ordinary differential
equation

dx

dt
(t)= f̃ (t , x(t)), x(t0)= x0,

which has a unique solution on [t0, t1] by the well-known theorem on existence and unique-
ness of Lipschitz ordinary differential equations (Theorem C.1).

Modifications to the assumptions can be made: Lz can be made a function of time as
well Lz(t), and so can η to give η(t). The crucial issue is whether Lx (t)+ Lz(t) L F (t)/η(t)
is an integrable function of t .

Note that the solution x(t) is absolutely continuous in t . If f (t , x , z) is continuous in
t as well, then f̃ (t , x) is Lipschitz in x and continuous in t , so x(·) is then a C1 function.
However, since ψ(t , x) is unlikely to be differentiable in x , we do not expect that x(·) will
be a C2 function.

5.1.2 Index-zero CPs

Now we suppose that K is a closed convex cone. Then the problem becomes

dx

dt
(t)= f (t , x(t), z(t)), x(t0)= x0,

K " z(t)⊥ F(t , x(t), z(t)) ∈ K ∗.

Since it is often possible, especially for certain cones K such as K = Rn+, to extend the ex-
istence and uniqueness results for VIs, we can extend the existence and uniqueness results
for DVIs for certain cones K . Existence and uniqueness results for CP(�, Rn+) have been
developed (see [169] and [95, Section 3.5.2]). A particularly useful concept in this context
is that of a uniform P-function for K = Rn+ or more generally a uniform P(K )-function
where K =∏m

i=1 Ki .
Suppose that K =∏m

i=1 Ki and each Ki is a closed convex cone in Xi where X =∏m
i=1 Xi . A function � : X → X ′ is a uniform P(K )-function if there is an η > 0 where

max
i=1,2, ...,m

〈�i (y)−�i(z), yi − zi 〉 ≥ η ‖y− z‖2
X (5.4)

for all y, z ∈ X . Note that zi is the component or projection of z ∈ X =∏m
i=1 Xi in Xi .

The solution of CP(�, K ) is unique if � is a uniform P(K )-function. First
(∏m

i=1 Ki
)∗ =
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∏m
i=1 K ∗

i . Also, if y and z are two solutions, then

yi ∈ Ki , 0≤ 〈�(y)i , zi − yi 〉 for all i ,

zi ∈ Ki , 0≤ 〈�(z)i , yi − zi 〉 for all i .

Thus

0≥ 〈�(y)i −�(z)i , yi − zi 〉 for all i .

Taking the maximum over i gives

0 ≥ max
i
〈�(y)i −�(z)i , yi − zi〉 ≥ η ‖y− z‖2

X ,

and so y = z. Thus CP(�, K ) has at most one solution.
Now suppose that F(t , x , ·) is a uniform P(K )-function with the same parameter

η > 0 independent of t or x , and that F(t , ·, z) is Lipschitz with a Lipschitz constant L F
independent of t or z. Then the solution map z = ψ(t , x), where z satisfies that

K " z ⊥ F(t , x , z) ∈ K ∗,

is Lipschitz in x : if z1 = ψ(t , x1) and z2 = ψ(t , x2), we have for each i = 1, 2, . . . , m,

0 ≥ 〈
F(t , x1, z1)i − F(t , x2, z2)i , (z1)i − (z2)i

〉
= 〈

F(t , x1, z1)i − F(t , x1, z2)i , (z1)i − (z2)i
〉

+ 〈
F(t , x1, z2)i − F(t , x2, z2)i , (z1)i − (z2)i

〉
≥ 〈

F(t , x1, z1)i − F(t , x1, z2)i , (z1)i − (z2)i
〉− L F ‖x1− x2‖ ‖z1− z2‖ .

Taking the maximum over i = 1, 2, , . . . , m and using the uniform P(K ) property give

0≥ η ‖z1− z2‖2− L F ‖x1− x2‖ ‖z1− z2‖ .

Rearranging and dividing by ‖z1− z2‖ give

‖z1− z2‖ ≤ L F

η
‖x1− x2‖ ,

andψ(t , ·) is Lipschitz with constant L F/η. Substituting into the differential equation gives
an ordinary differential equation with Lipschitz right-hand side:

dx

dt
(t)= f (t , x(t), ψ(t , x(t))), x(t0)= x0.

5.1.3 Normal compliance for mechanical contact

For a number of reasons the Signorini contact conditions are not preferred by some investi-
gators interested in mechanical contact and impact problems. Instead, a common approach
is to use normal compliance, which involves representing contact by a stiff spring which
applies no force when there is no interpenetration. But when there is interpenetration, the
spring force is (for example) proportional to the depth of interpenetration. This can be
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represented or approximated by an index-zero DVI. For a state vector q and velocity vec-
tor v, we assume that there is a function ϕ(q) so that there is no penetration if ϕ(q) ≥ 0.
For normal compliance we typically have the normal contact force N = k∇ϕ(q)

[
ϕ(q)

]
−

where [u]− :=max(0,−u) and k is the stiffness of the normal compliance “spring.” If the
admissible set of states is {q | ϕi (q)≥ 0, i = 1, 2, . . . , m } and the normal contact force for
constraint ϕi (q)≥ 0 is λi , then (1.3)–(1.4) can be modified to allow normal compliance:

M(q)
dv

dt
=−∇V (q)+ k(q ,v)−

m∑
i=1

λi ∇ϕi (q), (5.5)

dq

dt
= v, (5.6)

0≤ λi ⊥ ϕi (q)+ 1

k
λi ≥ 0 for all i and t . (5.7)

Then, if ϕi (q)≥ 0, we have λi = 0, and if ϕi (q)≤ 0, we have λi = k
[
ϕi (q)

]
−. Here λ takes

the role of z in the above theory. The crucial function is F(q , v, λ) := ϕ(q)+λ/k, which
is clearly strongly monotone in λ with η = 1/k.

The main advantage of the normal compliance approach is that the equations of mo-
tion are just ordinary differential equations and not some more complex type of problem.
However, most bodies are stiff, which means that k is large. This naturally leads us to the
problem of what happens as k →∞, which is a main topic of Section 6.1.

5.2 Index-one problems
For index-one problems, the VI cannot be solved from knowing the time t and state x(t). In
these cases, one differentiation of F(t , x , z) in time will give a function which is invertible
in z. These are index-one problems. In these problems there is less regularity in z(t) than
in x(t), and this means that we will need some more structure in the problems. Specifically,
in this section we will concentrate on DVIs of the form

dx

dt
(t)= f (t , x(t))+ B(x(t)) z(t), x(t0)= x0, (5.8)

z(t) ∈ K for all t , (5.9)

0 ≤ 〈 z̃− z(t), G(x(t))〉 for all z̃ ∈ K and t . (5.10)

We will call these pure index-one DVIs. Pure index-one DVIs can be used to represent
resource limit problems, projected dynamical systems (PDSs), Coulomb friction problems
with known normal contact force, and many other kinds of systems.

Sometimes we have VIs which can be solved for some components of z(t); these
are mixed-index problems. The theory is somewhat complex, as the lack of regularity of
the “index-one” components should not be allowed to affect the “index zero” components.
Typically mixed-index problems have the form

dx

dt
(t)= f (t , x(t), z(t))+ B(x(t)) z(t), x(t0)= x0, (5.11)

z(t) ∈ K , (5.12)

0 ≤ 〈 z̃− z(t), F(t , z(t))+G(x(t))〉 for all z̃ ∈ K , (5.13)
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for all t . In addition we need conditions like

• F(t , ·) is a monotone function for all t , and

• 〈F(t , z1)− F(t , z2), z1− z2〉 = 0 implies f (t , x(t), z1)= f (t , x(t), z2).

Nevertheless, such a theory can be developed and usefully applied. Examples of mixed-
index problems include electrical circuits with ideal diodes.

In this section we will concentrate on problems of the form (5.8)–(5.10). Much of
the material in this section is based on [199].

5.2.1 Pure index-one DVIs

Pure index-one DVIs do not always have solutions, particularly if K is unbounded, as is the
case for DCPs (differential complementarity problems), where K is a cone. For example,
if K is a closed convex cone, then there are no solutions z(t) to the VI (5.9)–(5.10) if
G(x(t)) �∈ K ∗. Thus the state must often be constrained, and the initial value must also
satisfy G(x0) ∈ K ∗ if K is a cone.

Of crucial importance are the matrices ∇G(x(t)) B(x(t)) where ∇G(x) is the Jaco-
bian matrix of G(x) with respect to x . In finite dimensions, solutions exist if ∇G(x) B(x) is
uniformly positive definite, but uniqueness can be hard to establish without also assuming
symmetry of ∇G(x(t)) B(x(t)). These results can be extended in special cases (for exam-
ple, if ∇G(x) B(x) is a P(K )-matrix uniformly over t and x , with K =∏m

i=1 Ki to obtain
existence).

The existence proofs are based on a time discretization. Since, for K a cone, we must
have G(x(t))∈ K ∗ for all t , an implicit time discretization is needed. For our first existence
result, we will work in Rn and suppose that f , B , and G have suitable Lipschitz properties,
and that ∇G(x) B(x) is uniformly strongly L-copositive:

〈w, ∇G(x) B(x)w〉 ≥ η∇G B ‖w‖2 for all w ∈ L (5.14)

for all t , x , and w with η∇G B > 0.

Theorem 5.1. Suppose that X = Rn and

(DVI-A1) x #→ f (t , x) ∈ X is measurable in t, Lipschitz in x with constant L f , and
‖ f (t ,0)‖ ≤ β f ,0 for all t ,

(DVI-A2) K = C + L ⊂ X, where C is closed, convex, and bounded, and L is a closed
convex cone,

(DVI-A3) G(x0) ∈ L∗ (compatibility condition),

(DVI-A4) ∇G(x) B(x) is uniformly strongly L-copositive for all x , (5.14), with constant
η∇G B > 0,

(DVI-A5) B and ∇G are bounded and Lipschitz functions with bounds βB and β∇G and
Lipschitz constants L B and L∇G , respectively.

Then there is a solution to the DVI (5.8)–(5.10).
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Proof. The proof here uses a simple implicit time-stepping approach based on the Euler
method. It is, however, explicit for f (t , x) and implicit for much of the VI part. The crucial
bounds for the solutions of the VI come from (2.47).

At each time step we solve the following VI: Given x�, find z� such that

x�+1 = x�+
∫ t�+1

t�
f (τ , x�)dτ +h B(x�) z�, (5.15)

z� ∈ K & 0≤
〈̃
z− z�, G(x�)+∇G(x�)

(
x�+1− x�

)〉
(5.16)

for all z̃ ∈ K . This has a solution since z� #→ G(x�)+∇G(x�)
(
x�+1− x�

)
is an affine map

z� #→ b�+h∇G(x�) B(x�) z� with h∇G(x�) B(x�) strongly L-copositive and K = C+ L.
From Lemma 2.16 we have the bound based on (2.47)∥∥∥z�

∥∥∥≤ γ
(

1+d(b�/h, L∗)
)

,

where γ depends on C , L, and η∇G B . Note that G(x0)= G(x0) ∈ L∗, so d(G(x0), L∗)= 0.
In general, b� = G(x�)+∇G(x�)

∫ t�+1
t�

f (τ , x�)dτ , so

d(b�, L∗)≤ d(G(x�), L∗)+
∥∥∥∇G(x�)

∥∥∥∫ t�+1

t�

∥∥∥ f (τ , x�)
∥∥∥ dτ

≤ d(G(x�), L∗)+hβ∇G

[
β f ,0+ L f

∥∥∥x�
∥∥∥]

.

Now

G(x�+1)= G(x�)+
∫ 1

0
∇G

(
x�+ s

(
x�+1− x�

))(
x�+1− x�

)
ds

= G(x�)+∇G(x�)
(

x�+1− x�
)

+
∫ 1

0

[
∇G

(
x�+ s

(
x�+1− x�

))
−∇G(x�)

]
ds

×
(

x�+1− x�
)

.

With L∇G the Lipschitz constant of ∇G,

G(x�+1)= G(x�)+∇G(x�)

[∫ t�+1

t�
f (τ , x�)dτ +h B(x�) z�

]
+η�,

∥∥∥η�∥∥∥ ≤ 1

2
L∇G

∥∥∥x�+1− x�
∥∥∥2

.

Now

G(x�)+∇G(x�)

[∫ t�+1

t�
f (τ , x�)dτ +h B(x�) z�

]
∈ L∗,

since it appears on the right-hand side of the inner product in the VI (5.16). Thus d(G(x�+1),

L∗) ≤ ∥∥η�∥∥ ≤ 1
2 L∇G

∥∥x�+1− x�
∥∥2

. For f (t ,0) bounded by β f ,0, from the Lipschitz
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constant we have∥∥∥x�+1− x�
∥∥∥≤ h

[
β f ,0+ L f

∥∥∥x�
∥∥∥+βB

∥∥∥z�
∥∥∥]

, so

d(G(x�+1), L∗)/h ≤ 1

2
L∇G h

[
β f ,0+ L f

∥∥∥x�
∥∥∥+βB

∥∥∥z�
∥∥∥]2

,∥∥∥z�
∥∥∥≤ γ

[
1+β∇G

(
β f ,0+ L f

∥∥∥x�
∥∥∥+d(G(x�), L∗)/h

)]
,∥∥∥x�+1

∥∥∥≤ ∥∥∥x�
∥∥∥+h

[
β f ,0+ L f

∥∥∥x�
∥∥∥+βB

∥∥∥z�
∥∥∥]

.

Substituting the bound on z�+1 and d(G(x�+1), L∗) into the other inequalities above gives∥∥∥x�+1
∥∥∥≤ ∥∥∥x�

∥∥∥+h
[
β f ,0+ L f

∥∥∥x�
∥∥∥+βB

∥∥∥z�
∥∥∥]

,∥∥∥z�+1
∥∥∥≤ γ

[
1+β∇G

(
β f ,0+ L f

∥∥∥x�
∥∥∥+d(G(x�), L∗)/h

)]
≤ γ

[
1+β∇Gβ f ,0+β∇G L f

(∥∥∥x�
∥∥∥+h

[
β f ,0+ L f

∥∥∥x�
∥∥∥+βB

∥∥∥z�
∥∥∥])

+1

2
hβ∇G LG

[
β f ,0+ L f

∥∥∥x�
∥∥∥+βB

∥∥∥z�
∥∥∥]2

]
.

Setting θ�;h = ∥∥x�
∥∥ and ψ�;h = ∥∥z�

∥∥ we can apply the nonlinear discrete Gronwall-type
Lemma 5.2 (which follows this proof), with

ρ0(θ ,ψ)= β f ,0+ L f θ+βBψ ,

σ0(θ )= γ
[
1+β∇Gβ f ,0+β∇G L f θ

]
.

Thus, for any finite T > t0 and ε > 0, we have for sufficiently small h > 0,∥∥∥x�
∥∥∥≤ θ̂ (t�)+ ε,∥∥∥z�
∥∥∥≤ γ

[
1+β∇Gβ f ,0+β∇G L f θ̂ (t�)

]+ ε,

where θ̂ (t) grows exponentially in t (with growth rate (1+βBγβ∇G ) L f ). Thus, on any
finite interval [t0, T ],

∥∥x�
∥∥ and

∥∥z�
∥∥ are uniformly bounded, independently of h > 0.

Set xh to be the interpolant

xh(t)= x�+
∫ t

t�
f (τ , x�)dτ + (t− t�) B(x�) z�

for t� ≤ t ≤ t�+1, zh (t)= z� for t� < t < t�+1, and x̃h(t) = x� for t� < t < t�+1. Since the
functions xh(·) are uniformly Lipschitz and uniformly bounded in Rn , by the Arzela–Ascoli
theorem, there is a uniformly convergent subsequence. Let x̂(·) be the limit of such a se-
quence. Note that we also have uniform convergence of x̃h(·)→ x̂ (·). Since the functions
zh(·) are uniformly bounded in L∞(0, T ; Rm), there is a further weak* convergent subse-
quence zh (·) ⇀∗ ẑ (·). We wish to show that x̂ (·) and ẑ (·) together satisfy the conditions of
the DVI (5.8)–(5.10).
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First note that dxh/dt(t)= f (t , x̃h(t))+B (̃xh(t)) zh(t) for almost all t , and that xh(t0)=
x0. Thus for s < t in the interval [t0, T ] we have

xh(t)− xh(s)=
∫ t

s

[
f (τ , x̃h(τ ))+ B (̃xh(τ )) zh(τ )

]
dτ .

Taking limits in the appropriate subsequence then gives

x̂(t)− x̂(s)=
∫ t

s

[
f (τ , x̂ (τ ))+ B( x̂ (τ )) ẑ (τ )

]
dτ .

Note that because zh(·) ⇀∗ ẑ (·) weak*, it is important that the right-hand side of (5.8) be
linear in z. Note that the set of functions{

ζ ∈ L2(t0, T ;Rm ) | ζ (t) ∈ K for all t
}

is a closed convex set, and it is also weakly closed by Mazur’s lemma. Since zh(·) ⇀∗ ẑ (·)
in L∞(t0, T ; Rm) we have zh(·)⇀∗ ẑ (·) in L2(t0, T ; Rm), but weak and weak* convergence
in L2(t0, T ; Rm) are identical since it is a reflexive space. Thus the weak limit ẑ (·) has the
property that ẑ (t) ∈ K for all t .

Finally, we need to show that for any continuous z̃ : [t0, T ]→ K , we have

0≤
∫ T

t0
〈 z̃(t)− ẑ (t), G( x̂ (t))〉 dt .

Now for each � we have

0≤
〈

1

h

∫ t�+1

t�
z̃(τ )dτ − z�, G(x�)+

∫ t�+1

t�
f (τ , x�)dτ +h∇G(x�)B(x�) z�

〉
.

Let ηh(t) = ∫ t�+1
t�

f (τ , x�)dτ +h∇G(x�)B(x�) z� for t� ≤ t < t�+1. Summing over � from
zero to r gives

0≤
∫ tr+1

t0

〈 z̃(τ )− zh(τ ), G (̃xh(τ ))+ηh(τ )〉 dτ .

Note that ‖ηh(t)‖ ≤ h
[
β f ,0+ L f ‖x̃h(t)‖+βBβ∇G ‖zh(t)‖]. Since x̃h(·) and zh(·) are uni-

formly bounded on [t0, T ], ‖ηh‖L∞ → 0 as h ↓ 0. Also G (̃xh(·)) converges uniformly to
G (̂x (·)) by continuity of G. Then weak convergence zh (·) ⇀ ẑ (·) is enough to obtain con-
vergence of the integrals. Setting r = *(T − t0)/h+, by boundedness of the integrand, we
have

0≤
∫ T

t0
〈 z̃(τ )− zh(τ ), G (̃xh(τ ))+ηh(τ )〉 dτ +O(h).

Taking limits in the appropriate subsequence then gives

0≤
∫ T

t0

〈 z̃(τ )− ẑ (τ ), G( x̂ (τ ))〉 dτ .
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Since this holds for all continuous z̃ : [t0, T ]→ K , by standard arguments,

0≤ 〈 z̃− ẑ (t), G( x̂ (t))〉
for all z̃ ∈ K for almost all t , as desired. By redefining ẑ (t) on a null set, we can make this
hold for all t . Thus x̂ (·) and ẑ (·) form a solution of (5.8)–(5.10), as desired.

Note that a side effect of this proof is that it is clear that G (̂x (t)) ∈ L∗ for all t .
An important element of this proof is the following nonlinear discrete Gronwall

lemma.

Lemma 5.2. Suppose that

θ�+1;h ≤ θ�;h+hρ(θ�;h ,ψ�;h ; h), θ0;h = θ0,

ψ�+1;h ≤ σ (θ�;h ,ψ�;h ; h), 0≤ ψ0;h ≤ σ (θ0,0; h),

where ρ and σ satisfy the following:

1. ρ(θ ,ψ;h) and σ (θ ,ψ;h) have nonnegative values and are nondecreasing in θ and
ψ;

2. ρ(θ ,ψ;h) and σ (θ ,ψ;h) are locally Lipschitz in (θ ,ψ) with Lipschitz constant inde-
pendent of h > 0;

3. ρ(θ ,ψ;h) → ρ0(θ ,ψ) and σ (θ ,ψ;h) → σ0(θ ) as h ↓ 0 uniformly in (θ ,ψ) over
bounded sets.

Then, if the solution θ̂ of

d θ̂

dt
(t)= ρ0(θ̂(t), σ0(θ̂ (t))), θ̂ (0)= θ0 (5.17)

is finite on [0, T ], then for every ε > 0 there is an h∗0 > 0 such that

θ�;h ≤ θ̂ (t�)+ ε,

ψ�;h ≤ σ0(θ̂(t�))+ ε,

where t� := �h ∈ [0, T ] whenever 0 < h ≤ h∗0.

Proof. Note first that given ρ0, σ0, and θ0, θ̂ is the unique solution of the differential
equation (5.17) since θ #→ ρ0(θ ,σ0(θ )) is locally Lipschitz. For η > 0 let

d θ̂η
dt

(t)= ρ0(θ̂η(t), σ0(θ̂η(t))+η)+η, θ̂η(0)= θ0.

By continuous dependence of solutions on parameters, θ̂η(t)→ θ̂ (t) as η ↓ 0 uniformly in
t ∈ [0, T ]. Thus, for η > 0 sufficiently small,

∣∣θ̂η(t)− θ̂(t)
∣∣ < ε for all t ∈ [0, T ]. We now

need to show that for sufficiently small h > 0, if �h ≤ T ,

θ�;h ≤ θ̂η(t�) and ψ�;h ≤ σ0(θ̂η(t))+η.
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Given η > 0, let R(η)= θ̂η(T )+σ0(θ̂η(T ))+η. Note that R(η) is a nondecreasing function
of η > 0.

Show true for �= 0: Clearly, from the initial values, θ0;h = θ0 = θ̂η(t0) and ψ0;h ≤
σ (θ0,0; h)≤ σ0(θ0)+η= σ0(θ̂η(t0))+η, as desired.

Suppose true for k = �; show true for k = �+ 1: Suppose that θ�;h ≤ θ̂η(t�) and
ψ�;h ≤ σ0(θ̂η(t�))+η and that (�+1)h ≤ T . Then

θ�+1;h ≤ θ�;h+hρ(θ�;h ,ψ�;h ; h)

≤ θ̂η(t�)+hρ(θ̂η(t�),σ0(θ̂η(t�))+η)

since ρ(θ ,ψ;h) is nondecreasing in θ and ψ . But since ρ has nonnegative values, θ̂η is
also nondecreasing, and combined with the fact that ρ(θ ,ψ; h) and σ (θ ,ψ; h) are also
nondecreasing in θ and ψ , we have

hρ(θ̂η(t�),σ0(θ̂η(t�))+η)≤
∫ t�+1

t�
ρ(θ̂η(τ ),σ0(θ̂η(τ ); h)+η)dτ

≤
∫ t�+1

t�

[
ρ0(θ̂η(τ ),σ0(θ̂η(τ ))+η)+η

]
dτ

=
∫ t�+1

t�
d θ̂η/dt(τ )dτ = θ̂η(t�+1)− θ̂η(t�).

Therefore,

θ�+1;h ≤ θ̂η(t�+1)≤ R0(η).

On the other hand,

ψ�+1;h ≤ σ (θ�;h ,ψ�;h ; h)

≤ σ0(θ�;h)+η

≤ σ0(θ̂η(t�+1))+η ≤ R0(η),

also as desired.
Thus by induction, the result holds for all �, where �h ≤ T .
Taking η> 0 sufficiently small, we have the result that for given ε > 0 and sufficiently

small h > 0,

θ�;h ≤ θ̂ (t�)+ ε,

ψ�;h ≤ σ0(θ̂ (t�))+ ε,

provided 0≤ �h ≤ T .

For infinite-dimensional problems we have some additional complications due to the
lack of compactness. One method of overcoming these problems is to use (or assume)
pseudomonotonicity (see Section 2.5). For example, a crucial part of the proof of Theorem
5.1 is that there is a solution z� of

z� ∈ K & 0≤
〈̃
z− z, b�+∇G(x�)B(x�) z�

〉
for all z̃ ∈ K .
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Strong L-copositivity of ∇G(x�)B(x�) is sufficient in finite dimensions to show existence
of solutions, but in infinite dimensions we need to make an additional assumption, such
as pseudomonotonicity. If we have pseudomonotonicity of ∇G(x�)B(x�), then z #→ b�+
∇G(x�)B(x�)z is also coercive since ∇G(x�)B(x�) is strongly L-copositive, and so by
Theorem 2.36 the VI has a solution.

Thinking in terms of finite-dimensional approximations to an infinite-dimensional
problem, consider the DVI

dx

dt
(t)= f (t , x(t))+ B(x(t)) z(t), x(t0)= x0,

z(t) ∈ K & 0≤ 〈 z̃− z(t), G(x(t))〉 for all z̃ ∈ K .

Consider x(t) ∈ X and z(t) ∈ Z , with X and Z reflexive Banach spaces. Then G : X → Z ′,
f : [t0, T ]× X → X , and B : X → L(Z , X ).

Pick finite subsets {u1, u2, . . . , um} ⊂ C and {v1, v2, . . . , vm} ⊂ L, and let Zm =
span{u1, v1, u2, v2, . . . , um , vm} and Km = C ∩ Zm + L ∩ Zm . Then there is an approxi-
mation (xm(t), zm(t)) that satisfies the approximate DVI

dxm

dt
(t)= f (t , xm(t))+ B(xm(t)) zm (t), x(t0)= x0,

zm (t) ∈ Km & 0≤ 〈 z̃− zm(t), G(xm(t))〉 for all z̃ ∈ Km .

We can prove that solutions exist for this approximate DVI (even though xm(t) may be in an
infinite-dimensional space) since precompactness of the set of values zm (t) gives precom-
pactness of the values xm(t). The problem is that if m →∞, we have weak convergence of
a subsequence of the zm(·) and xm(·), which is not enough to prove that the DVI is satisfied
in the limit without some more assumptions about the nature of f , B , and G.

We make the following additional assumptions.

(DVI-A6) The functions ∇G(x)= G0+∇G1(x), B(x)= B0+ B1(x), where ∇G1(x) and
B1(x) are collectively compact; that is,

⋃
x

(∇G1(x)BX
)

is precompact in Z ′
and

⋃
x

(
B1(x)BX

)
is precompact in X .

(DVI-A7) The function f (t , x) = f (x) for all t and x , and f being compact and um ⇀

u weakly in X implies f (um) → f (u) strongly in X , ∇G(um) → ∇G(u) in
L(X , Z ′), and B(um)→ B(u) in L(Z , X ).

(DVI-A8) The operator G0 B0 : Z → Z ′ is monotone and self-adjoint.

Assumptions (DVI-A6) and (DVI-A7) essentially require that ∇G and B be not too far
from being constant and ∇G(x) B(x) not too far from being monotone and self-adjoint.

These assumptions are fairly strong, and weaker conditions can be found for exis-
tence of solutions to DVIs. However, we will see how these conditions give existence of
solutions for infinite-dimensional problems. Let us suppose that we have a subsequence in
which zm(·) ⇀ z(·) weakly in L2(0, T ; Z ) and xm(·) ⇀ x(·) in L2(0, T ; X ). Then z(t) ∈ K
for almost all t . Also suppose that for sufficiently large m in the subsequence, z̃(t) ∈ Km .
(If not, then since Km ⊆ Km+1 ⊆ ·· · , we can project z̃(t) onto Km∗ for some m∗ in the
subsequence.)
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Then, for all m sufficiently large in the subsequence,

0 ≤ 〈 z̃(t)− zm(t), G(xm(t))〉
=

〈
z̃(t)− zm(t), G(x0)+

∫ t

t0
∇G(xm(τ ))

dxm

dτ
(τ )dτ

〉
= 〈 z̃(t)− zm(t), G(x0)〉+

∫ t

t0

〈 z̃(t)− zm(t), ∇G(xm(τ )) f (xm(τ ))〉 dτ

+
∫ t

t0

〈 z̃(t)− zm(t), ∇G(xm(τ )) B(xm(τ )) zm(τ )〉 dτ .

Note that f is a continuous compact function X → X , and by the Arzela–Ascoli theorem
there is a uniformly convergent subsequence of m, where f (xm(·))→ f (x(t)) by (DVI-A7).
Integrating over t0 ≤ t ≤ T , we get

0 ≤
∫ T

t0

〈 z̃(t)− zm(t), G(xm(t))〉 dt

=
∫ T

t0
〈 z̃(t)− zm(t), G(x0)〉 dt

+
∫ T

t0

∫ t

t0
〈 z̃(t)− zm(t), ∇G(xm(τ )) f (xm(τ ))〉 dτ dt

+
∫ T

t0

∫ t

t0

〈 z̃(t), ∇G(xm(τ )) B(xm(τ )) zm(τ )〉 dτ dt

−
∫ T

t0

∫ t

t0

〈zm (t), ∇G(xm(τ )) B(xm(τ )) zm(τ )〉 dτ dt .

The first term converges to
∫ T

t0
〈 z̃(t)− z(t), G(x0)〉 dt; the second term converges to∫ T

t0

∫ t

t0
〈 z̃(t)− z(t),∇G(x(τ )) f (x(τ ))〉 dτ dt

using (DVI-A7); the third term converges to
∫ T

t0

∫ t
t0
〈̃z(t), ∇G(x(τ )) B(x(τ )) z(τ )〉 dτ dt again

using (DVI-A7); for the fourth term, note that ∇G(xm(t)) B(xm(t)) → ∇G(x(t)) B(x(t))
uniformly in t since the xm(·) are uniformly Lipschitz. Now ∇G(x(t)) B(x(t))−G0 B0 is a
compact operator for all t , and by continuity in t and compactness of the interval [t0, T ], in
a (further) subsequence

(∇G(x(t)) B(x(t))−G0 B0) zm(t)

→ (∇G(x(t)) B(x(t))−G0 B0) z(t) as m →∞.

Thus

(∇G(xm(t)) B(xm(t))−G0 B0) zm(t)

→ (∇G(x(t)) B(x(t))−G0 B0) z(t) as m →∞,
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and so ∫ T

t0

∫ t

t0

〈zm(t), (∇G(xm(t)) B(xm(t))−G0 B0) zm(τ )〉 dτ dt

converges to ∫ T

t0

∫ t

t0

〈z(t), (∇G(x(t)) B(x(t))−G0 B0) z(τ )〉 dτ dt .

The remainder is ∫ T

t0

∫ t

t0

〈zm (t), G0 B0 zm(τ )〉 dτ dt .

But G0 B0 is self-adjoint by (DVI-A8), so

〈zm(t), G0 B0 zm (τ )〉 = 〈zm(τ ), G0 B0 zm(t)〉 ;
thus the remaining term is

1

2

∫ T

t0

∫ T

t0

〈zm (t), G0 B0 zm (τ )〉 dτ dt

= 1

2

〈∫ T

t0
zm(t)dt , G0 B0

∫ T

t0
zm(τ )dτ

〉
,

which is a convex quadratic function of
∫ T

t0
zm(t)dt , which converges weakly to

∫ T
t0

z(t)dt .
Hence, by Mazur’s lemma,

liminf
m→∞

1

2

∫ T

t0

∫ T

t0

〈zm(t), G0 B0 zm(τ )〉 dτ dt

≥ 1

2

∫ T

t0

∫ T

t0

〈z(t), G0 B0 z(τ )〉 dτ dt .

Combining all these results, we have

0≤
∫ T

t0

〈 z̃(t)− z(t), G(x0)〉 dt

+
∫ T

t0

∫ t

t0
〈 z̃(t)− z(t),∇G(x(τ )) f (x(τ ))〉 dτ dt

+
∫ T

t0

∫ t

t0

〈 z̃(t), ∇G(x(τ )) B(x(τ )) z(τ )〉 dτ dt

−
∫ T

t0

∫ t

t0

〈z(t), ∇G(x(τ )) B(x(τ )) z(τ )〉 dτ dt

=
∫ T

t0

〈 z̃(t)− z(t), G(x(t))〉 dt ,

and the weak limit is indeed a solution of the original problem in infinite dimensions.
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This approach cannot deal with unbounded operators unless there are some special
conditions included, as the bounds on zm (t) depend on f (xm(t)). If f (x) is an unbounded
operator, then we lose the bounds on zm (t). If, for example, f (x) generates a semigroup
that leaves K invariant, then by alternating time steps for dx/dt = f (x) and for the DVI
without f (x), bounds on zm(t) can be found independent of m.

An alternative approach for infinite-dimensional problems is to use PVIs as discussed
in Section 4.7, although then G(x) must be affine and B = ∇G∗. To turn the DVI into
something like a PVI, the VI part

z(t) ∈ K & 0≤ 〈 z̃− z(t), G(x(t))〉 for all z̃ ∈ K

can be represented as

0 ∈ G(x(t))+ NK (z(t))

= G(x(t))+ ∂ IK (z(t)).

Using Fenchel duality, v ∈ ∂φ(u) if and only if u ∈ ∂φ∗(v), and we can rewrite the VI as

z(t) ∈ ∂ I ∗K (−G(x(t))).

Substituting this into the differential equation gives the differential inclusion

dx

dt
(t) ∈ f (x(t))+ B(x(t))∂ I ∗K (−G(x(t))), x(t0)= x0.

If G is affine and B =∇G∗, then under a constraint qualification,

dx

dt
(t) ∈ f (x(t))− ∂

(
I ∗K ◦−G

)
(x(t)), x(t0)= x0,

which is a maximal monotone differential equation, and all of the associated theory applies.
However, if G(x) is nonlinear, then I ∗K ◦−G is usually neither convex nor convex plus
Lipschitz. In such cases, it is necessary to fall back on theory such as described earlier in
this section.

5.2.2 Uniqueness of solutions of index-one DVIs

While ∇G(x) B(x) positive definite is (apart from technical conditions) sufficient to guar-
antee existence of solutions to index-one DVIs, it is certainly not sufficient to guarantee
uniqueness. If K is a closed convex cone, then the DVI is a DCP. A natural assumption
might be that if the associated LCP(K , q ,∇G(x) B(x)) has a unique solution for all x and
q , then the DCP also has unique solutions. However, this is not true, even if ∇G(x) and
B(x) are constant.

Examples of nonuniqueness for DCPs with ∇G(x) and B(x), and even constant
f (t , x , z), were found by Bernard and el Kharroubi [30], where ∇G(x) B(x) is a P-matrix
and K = R3+. The nontrivial solutions for the DCP of Bernard and el Kharroubi look like
Figure 5.1. Mandelbaum [164] went further and showed nonuniqueness for a system with
∇G(x) B(x) positive definite but not symmetric, K = R2+, and f (t , x , z) nonconstant. In
fact, f (t , x , z) in Mandelbaum’s counterexample is a complicated function that can be C∞
but not analytic.

Downloaded 03 Nov 2011 to 160.36.192.127. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php



162 Chapter 5. Index Zero and Index One

Both of these examples involve solutions that are reverse Zeno. That is, for one of
the solutions the active set I (t) := { i | zi (t) = 0 } changes infinitely often in an interval
[t∗, t∗ + ε) for any ε > 0.

This appears to contradict the theory of LCSs [124], which says that solutions to

dx

dt
= A x(t)+ B z(t), x(t0)= x0,

w(t)= C x(t)+ D z(t),

0≤ w(t)⊥ z(t)≥ 0 for all t

are unique, provided D+ s−1C B is a P-matrix for sufficiently large positive s. However,
these results are not contradictory: the theory of LCSs considers only Bohl distributions as
solutions, which immediately rules out reverse Zeno solutions.

Uniqueness in general can be proved in finite-dimensional problems provided that
∇G(x) B(x) is symmetric positive definite.

Theorem 5.3. Consider the DVI

dx

dt
= f (t , x)+ B(x) z(t), x(t0)= x0, (5.18)

z(t) ∈ K , (5.19)

0 ≤ ( z̃− z(t))T [F(z(t))+G(x(t))] for all z̃ ∈ K , (5.20)

where f , B, G, and F are all Lipschitz with ∇G also continuous. Assume that F : Rn →
Rn is monotone and that∇G(x) B(x) is symmetric positive definite. Then the solution (x , z)
is unique.

The proof here follows [244]. Before we go on to the proof of this result, we first
begin with a lemma in linear algebra inspired by the BFGS optimization method.

Lemma 5.4. Let C = {
(U , V ) | V T U is symmetric positive definite

}
. There is a map

Q : C → Rn×n where whenever V T U is symmetric positive definite, U = Q(U , V ) V and
Q(U , V ) is symmetric positive definite. Furthermore, this map is locally Lipschitz.

Proof. Suppose that U is n×m; then P := V T U is m×m and V is also n×m. Note that
the rank of both U and V must be m. Fix Q0 to be a symmetric positive definite n× n
matrix. (We could put Q0 = I , for example.) Then put

Q = (I −V P−1U T )T Q0(I −V P−1U T )+U P−1U T .

This formula is inspired by the DFP and BFGS quasi-Newton update formulas (see
[192, pp. 196–198]). Clearly Q is symmetric and positive semidefinite. Since Q0 and P−1

are positive definite, if x T Qx = 0, then (I − V P−1U T )x = 0 and U T x = 0. The latter
equation implies that (I −V P−1U T )x = x−V P−10= x , so the only x where x T Qx = 0
is x = 0. Thus Q is positive definite.
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To show Q V =U we carry out a simple calculation, noting that V T U = P = PT =
U T V :

Q V = (I −V P−1U T )T Q0(I −V P−1U T )V +U P−1U T V

= (I −V P−1U T )T Q0(V −V P−1 P)+U P−1 P

= (I −V P−1U T )T Q0(V −V )+U =U .

For the final part, we note that P #→ P−1 is locally Lipschitz for positive definite P ,
so from the formula we see that (U , V ) #→ Q is a locally Lipschitz map.

We can now continue with a proof of our main uniqueness result.

Proof of Theorem 5.3. Suppose there are two solutions (x1, z1) and (x2, z2). Let

t∗ = sup { t ≥ t0 | x1(t)= x2(t), z1(s)= z2(s) for almost all t0 ≤ s ≤ t} .
By shifting the initial time we can assume without loss of generality that t∗ = +∞ or
t∗ = t0. If there are indeed two distinct solutions, then t∗ < +∞, so we can assume that
t∗ = t0. We will show that this leads to a contradiction.

Let P(x)=∇G(x) B(x), which is a symmetric positive definite matrix for all x . Thus
by Lemma 5.4 there is a locally Lipschitz function Q(x) where Q(x) is symmetric positive
definite for all x and ∇G(x)= B(x)T Q(x) for all x .

Let

βx =max{‖x1(t)‖, ‖x2(t)‖ | t0 ≤ t ≤ t0+1}+1,

βz =max{‖z1(t)‖, ‖z2(t)‖}+1.

Note that Rz ∈ L1(t0, t0+ 1). On the closed ball { x | ‖x‖ ≤ βx} the functions f , B , ∇G,
and Q have Lipschitz constants denoted, respectively, by L f , L B , L∇G , and L Q , and the
functions are bounded, respectively, by β f , βB , β∇G , and βQ . We restrict our attention to
t ∈ [t0, t0+1]. Finally, let ηQ =min{λmin(Q(x)) | ‖x‖ ≤ βx }.

Now, since z1(t), z2(t) ∈ K ,

〈z2(t)− z1(t), G(x1(t))+ F(z1(t))〉 ≥ 0,

〈z1(t)− z2(t), G(x2(t))+ F(z2(t))〉 ≥ 0.

Adding gives (after some rearrangement)

〈z2(t)− z1(t), G(x2(t))+ F(z2(t))−G(x1(t))− F(z1(t))〉 ≤ 0.

Since F is monotone, 〈z2(t)− z1(t), F(z2(t))− F(z1(t))〉 ≥ 0, so

〈u2(t)−u1(t), G(x2(t))−G(x1(t))〉 ≤ 0. (5.21)

Now
G(x2(t))−G(x1(t))=∇G(x1(t))(x2(t)− x1(t))+h(t),

where ‖h(t)‖ ≤ L∇G‖x2(t)− x1(t)‖2. But P(x) :=∇G(x) B(x) is symmetric positive def-
inite and locally Lipschitz continuous. Thus both ∇G(x) and B(x) must have full rank.
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Then (5.21) can be rewritten as〈
u2(t)−u1(t), B(x1(t))T Q(x1(t))(x2(t)− x1(t))

〉
≤ βz(t) L∇G‖x2(t)− x1(t)‖2.

Thus

〈B(x1(t))u2(t)− B(x1(t))u1(t), Q(x1(t))(x2(t)− x1(t))〉 ≤ βz(t) L∇G‖x2(t)− x1(t)‖2,

which implies that

〈B(x2(t))u2(t)− B(x1(t))u1(t), Q(x1(t))(x2(t)− x1(t))〉
≤ (βz(t) L∇G +βQ L B )‖x2(t)− x1(t)‖2.

Using the differential equation (5.18), we get〈
x ′2(t)− f (x2(t))− x ′1(t)+ f (x1(t)), Q(x1(t))(x2(t)− x1(t))

〉
≤ (βz(t) L∇G +βQ βz(t) L B )‖x2(t)− x1(t)‖2.

Since f is locally Lipschitz, we get〈
x ′2(t)− x ′1(t), Q(x1(t))(x2(t)− x1(t))

〉
≤ (βz(t) L∇G +βQ(βz(t) L B + L f ))‖x2(t)− x1(t)‖2.

Since Q is Lipschitz and symmetric,

d

dt

[
1

2
〈x2(t)− x1(t), Q(x1(t))(x2(t)− x1(t))〉

]
≤ (βz(t) L∇G +βQ(βz(t) L B + L f )+ L Q(β f +βBβz(t)))‖x2(t)− x1(t)‖2

≤ 2
βz(t) L∇G +βQ(βz(t) L B + L f )+ L Q(β f +βB βz(t))

ηQ

× 1

2
〈x2(t)− x1(t), Q(x1(t))(x2(t)− x1(t))〉 .

A Gronwall lemma can then give the result that

〈x2(t)− x1(t), Q(x1(t))(x2(t)− x1(t))〉
≤ eC(t ) 〈x2(t∗)− x1(t∗), Q(x1(t∗))(x2(t∗)− x1(t∗))

〉= 0,

where

C(t) :=
∫ t

t∗
2(βz(s)L∇G +βQ(βz(s)L B+ L f )+ L Q(β f +βBβz(s)))ds/ηQ .

As x1(t∗) = x2(t∗), for some ε > 0, x2(t) = x1(t) for all t ∈ [t∗, t∗ + ε], contradicting the
assertion that t∗ <+∞. Hence the solution of the DVI is unique.
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Figure 5.1: Nontrivial solutions for the DCP of Bernard and el Kharroubi. Reprinted with
permission.

This result not only establishes uniqueness, but the proof can also be used to show
that the solution map x(t0) #→ x(t) for fixed t > t0 is also locally Lipschitz. This proof
makes no use of the structure of K . Simpler problems for which sharper conditions can be
found include linear G and constant B .

A question arises here: How important is symmetry to uniqueness? In certain sit-
uations we can show that there are plenty of matrices ∇G and B which give uniqueness
without ∇G B being symmetric [245]. Understanding this requires a deeper understanding
of how the matrix ∇G B relates to the solutions of the DVI. To go deeper into these issues,
[245] considers DCPs of the form

dw

dt
(t)= M z(t)+q(t), w(0)=w0, (5.22)

K ∗ "w(t)⊥ z(t) ∈ K , (5.23)

which were essentially those studied by Mandelbaum [164] and Bernard and el Kharroubi
[30]. For existence we need w0 ∈ K ∗. The example of nonuniqueness of Bernard and
el Kharroubi was for K = R3+ and

M =
 1 3 0

0 1 3
3 0 1

 ,

which is a P-matrix, but is not positive definite. Then, with q(t)≡− [1, 1, 1]T and w0 = 0,
there are both the zero solution w(t)≡ 0 and a “cobweb” solution that spirals out from the
origin in finite time. A similar solution is in Stewart [236, Appendix C]. See Figure 5.1.
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Mandelbaum was able to construct an example with K = R2+ and

M =
[

1 −2
1 1

]
,

with a nonanalytic q(·) giving nonunique solutions. Note that this matrix M is not only a
P-matrix (which gives uniqueness for the static problem) but is also positive definite. The
basis of this nonuniqueness result is the following result of Mandelbaum [164].

Lemma 5.5. The DCP (5.22)–(5.23) with K =Rn+ has unique solutions for all w0 and q(·)
if and only if the only pair (ζ ,ω) satisfying

dω

dt
= M ζ (t), ω(0)= 0, (5.24)

ω(t)◦ ζ (t)≤ 0 for all t (5.25)

with the inequality in (5.25) understood componentwise is ω ≡ 0 and ζ ≡ 0 (almost every-
where).

Note that “◦” is the componentwise or Hadamard product: (a ◦b)i = ai bi . While a
natural generalization to Mandelbaum’s result would be to replace “◦” by a general Jordan
algebra, this does not in fact hold. At the time of this writing, it is not known exactly which
matrices M ensure uniqueness of solutions of (5.22)–(5.23), except for 1× 1 and 2× 2
matrices. For the 1×1 case, M simply needs to be a positive number. For the 2×2 case,

M =
[

a b
c d

]
gives unique solutions for (5.22)–(5.23) with K =R2+ if and only if a > 0, d > 0, ad−bc >
0, and ad+bc≥ 0 [245]. This set strictly includes all symmetric positive definite matrices,
but it is definitely smaller than the set of all strictly monotone matrices (whose symmetric
part is positive definite).

Proving nonuniqueness via Mandelbaum’s theorem for specific examples involves
finding ζ and ω not identically zero satisfying (5.24)–(5.25). In the case of M = [

1 −2
1 1

]
,

this can be done geometrically; see Figure 5.2.
Since we must have ζ (t) ◦ ω(t) ≤ 0 for all t , we must have ζ1(t)ω1(t) ≤ 0 and

ζ2(t)ω2(t) ≤ 0. If ω(t) is in the first quadrant where ω1(t), ω2(t) > 0, we must have
ζ1(t), ζ2(t) ≤ 0. Similarly we obtain constraints on the signs of ζ1(t) and ζ2(t) depend-
ing on the quadrant that ω(t) belongs to. In Figure 5.2, the dashed lines show the directions
of dω/dt for ζ1(t) > 0, ζ2(t) = 0 and for ζ1(t) = 0, ζ2(t) > 0. Naturally we pick the ad-
missible direction for dω/dt which moves away from the origin as fast as possible, in the
hopes of leaving the origin. This gives the cobweb dynamics apparent in Figure 5.2.

To show the opposite, that it is not possible to leave the origin, we can use a Lyapunov
function argument. That is, we seek a function V (ω) such that we can guarantee that V has
a global minimum at zero, and that (d/dt) V (ω(t)) ≤ 0 for all t . Typically, the function V
is Lipschitz but not smooth, and care must be taken when crossing discontinuities of ∇V .
For more details, see [164, 245].
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ω 1

ζ
1

ω 2

ζ
2

Figure 5.2: Geometry of Mandelbaum’s counterexample to uniqueness of solutions.
Reprinted with permission.

5.3 Convolution complementarity problems
In this section we return to the topic of CCPs first mentioned in Section 4.6. In Sec-
tion 4.6.1, index-zero CCPs are shown to have solutions which are unique under mild
conditions. While Section 4.6.2 treats index-one CCPs, it does not establish their main
properties, particularly existence and uniqueness of solutions. This we do in this section.

Recall from (4.43)–(4.44) that a CCP in finite dimensions has the following form:
Given m : [0, T ] → Rn×n and q : [0, T ] → Rn and a closed convex set K ⊂ Rn , find
z : [0, T ]→Rn satisfying

K " z(t)⊥ (m ∗ z)(t)+q(t) ∈ K ∗, where

(m ∗ z)(t)=
∫ t

0
m(t− τ ) z(τ )dτ .

As an example of how this can be applied in practice, consider a rod impacting a table
as discussed in Section 6.2.4. This problem can be represented as a CCP for the normal
contact force N(t) with the kernel function

m(t)= c−1

[
H (ct)+

∞∑
k=1

2 H (ct−2k�)

]
. (5.26)

In (5.26), H (s) is the Heaviside function H (s) = +1 for s > 0, H (s) = 0 for s < 0, and
H (0) is either undefined or 1/2. Also c is the wave speed in the rod, and � is the length
of the rod. Despite the fact that this is a mechanical impact problem formally with index
two, we see that the CCP representing it is in fact an index-one CCP: m(0+) = c−1 > 0.
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Furthermore, even though m(·) is a discontinuous function, it has bounded variation on any
finite interval, and on a sufficiently small interval (0, T ∗) it is constant.

CCPs of index one turn out to be useful in studying, for example, certain mechanical
impact problems, even though these problems are formally of index two. Another applica-
tion of CCPs that cannot be easily treated by other means is the example of a diode at the
end of a transmission line in (1.13)–(1.15); see also Figure 1.10.

5.3.1 Existence of solutions to CCPs

First we give an existence result for a general class of index-one CCPs. The following theo-
rem was first proved in [242] for K =Rn+ and m(0+) a P-matrix using a time-discretization
argument. The argument used here is a shorter one using a differentiation lemma.

Theorem 5.6. Suppose that M0 is a symmetric positive semidefinite matrix and m : [0, T ]→
Rn×n has bounded variation with M0+ρm

(
0+

)
strongly K -copositive for a closed convex

cone K and ρ > 0. Then, provided q(0) ∈ K ∗ and q ∈ W 1,2(0, T ; Rn), there is a solution
to the CCP

K " z(t)⊥ M0z(t)+ (m ∗ z)(t)+q(t) ∈ K ∗ for all t . (5.27)

The solution z ∈ L2(0, T ; Rn).
If M0 = 0 and instead of q ∈ W 1,2(0, T ; R) we have q ∈ W 1,p(0, T ; R), 1 ≤ p ≤∞,

then a solution z exists for (5.27) with z ∈ L p(0, T ; R).

Proof. Suppose for now that q ∈ W 1,2(0, T ; Rn). Consider the approximate problem

K " zε(t)⊥ (M0+ ε I )zε (t)+ (m ∗ zε) (t)+q(t) ∈ K (5.28)

for all t . Since M0 + ε I is positive definite, there is a well-defined Lipschitz solution
operator solε(b)= z for the LCP

K " z ⊥ (M0+ ε I )z+b " K ∗.

Thus (5.28) can be represented as

zε(t)= solε ((m ∗ zε) (t)+q(t)).

Standard Picard iterations

z(k+1)
ε (t)= solε

((
m ∗ z(k)

ε

)
(t)+q(t)

)
converge by a contraction mapping argument over C ([0, T ] ; Rn), at least on sufficiently
small intervals

[
0, T ∗

]
, T ∗ > 0. Standard continuation arguments allow us to extend this
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existence result to intervals [0, T ] for any T > 0. The solutions zε are absolutely continuous
since for t > s,

‖zε (t)− zε(s)‖ ≤ Lε ‖(m ∗ zε) (t)+q(t)− (m ∗ zε) (s)−q(s)‖ (5.29)

≤ Lε

[(
‖m‖L∞ +

s∨
0

m

)
‖zε‖L∞ (t− s)+‖q(t)−q(s)‖

]
,

and q is absolutely continuous. Note that m ′ does exist in the sense of distributions and is
a measure.

We now wish to obtain bounds on the solutions zε that are independent of ε > 0. We
do this using the differentiation lemma (Lemma 3.2) applied to (5.28):〈

zε(t),
d

dt
((M0+ ε I ) zε(t)+ (m ∗ zε) (t)+q(t))

〉
= 0

for almost all t . That is,

0=
〈
zε(t),

d

dt
[(M0+ ε I ) zε(t)]

〉
+

〈
zε(t),

d

dt
(m ∗ zε) (t)

〉
+ 〈

zε(t), q ′(t)
〉

= d

dt

1

2
〈zε(t), (M0+ ε I )zε(t)〉+

〈
zε(t),

d

dt
(m ∗ zε) (t)

〉
(5.30)

+ 〈
zε(t), q ′(t)

〉
.

Note that whenever the derivative exists,

d

dt
(m ∗ zε) (t)

= lim
h↓0

1

h

[∫ t+h

0
m(t+h− τ ) zε(τ )dτ −

∫ t

0
m(t− τ ) zε(τ )dτ

]
= lim

h↓0

1

h

[∫ t

0
(m(t+h− τ )−m(t− τ )) zε (τ )dτ

+
∫ t+h

t
m(t+h− τ ) zε(τ )dτ

]
.

Now

h−1
∫ t

0
(m(t+h− τ )−m(t− τ )) zε(τ )dτ

=
∫ t

0
h−1

∫
[0,h)

m′(t+ s− τ )ds zε(τ )dτ .
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Now h−1
∫

[0,h) m′(t + s − τ )ds → m′(t − τ ) weak* as measures over τ . Furthermore,

lims↓0 m(s)= m
(
0+

)
. So

d

dt
(m ∗ zε) (t)= m

(
0+

)
zε (t)+

∫
[0,t )

m′(t− τ ) zε(τ )dτ .

Integrating (5.30) over [0, T ] gives

0= 1

2
〈zε (T ), (M0+ ε I )zε(T )〉− 1

2
〈zε(0), (M0+ ε I )zε (0)〉

+
∫ T

0

〈
zε(t), m

(
0+

)
zε (t)

〉
dt

+
∫ T

0

∫
[0,t )

〈
zε(t), m ′(t− τ ) zε(τ )

〉
dτ dt

+
∫ T

0

〈
zε(t), q ′(t)

〉
dt .

Since zε(0)= solε (q(0))= 0, we can remove the terms involving zε(0), and so we obtain
the inequality∫ T

0

〈
zε(t),−q ′(t)

〉
dt ≥ 1

2
〈zε (T ), M0zε(T )〉+

∫ T

0

〈
zε (t), m

(
0+

)
zε(t)

〉
dt

+
∫ T

0

∫
[0,t )

〈
zε(t)m′(t− τ ) zε(τ )

〉
dτ dt

≥ 1

2
〈zε (T ), M0zε(T )〉+

∫ T

0

〈
zε (t), m

(
0+

)
zε(t)

〉
dt

−‖zε‖2
L2(0,T )

T∨
0+

m,

where
∨b

a+ m = lims↓a
∨b

s m. That is,

‖zε‖L2(0,T )

∥∥q ′
∥∥

L2(0,T ) ≥
1

2

∥∥∥M1/2
0 zε(T )

∥∥∥2+
∫ T

0

〈
zε(t), m

(
0+

)
zε (t)

〉
dt

−‖zε‖2
L2(0,T )

T∨
0+

m.

To bound
∫ T

0

〈
zε(t), m

(
0+

)
zε(t)

〉
dt ,∫ T

0

〈
zε(t), m

(
0+

)
zε(t)

〉
dt

=
∫ T

0

〈
zε (t),

(
m

(
0+

)+ρM0
)

zε (t)
〉
dt−ρ

∫ T

0
〈zε(t), M0zε (t)〉 dt

≥ η‖zε‖2
L2(0,T )−ρ T

∥∥∥M1/2
0 zε

∥∥∥2

L∞(0,T )
,
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where η > 0 is the constant for strong K -copositivity. If we pick T ∗ ≥ T > 0, then

‖zε‖L2(0,T ∗)

∥∥q ′
∥∥

L2(0,T ∗) ≥
1

2

∥∥∥M1/2
0 zε(T )

∥∥∥2−ρ T
∥∥∥M1/2

0 zε
∥∥∥2

L∞(0,T ∗)

+η‖zε‖2
L2(0,T ∗)−‖zε‖2

L2(0,T ∗)

T∨
0+

m.

Taking the supremum over T ∈ (0, T ∗] gives

‖zε‖L2(0,T ∗)

∥∥q ′
∥∥

L2(0,T ∗) ≥
(

1

2
−ρ T

)∥∥∥M1/2
0 zε

∥∥∥2

L∞(0,T ∗)
+

(
η−

T∨
0+

m

)
‖zε‖2

L2(0,T ∗) .

Note that
∨T

0+ m → 0 as T ↓ 0. So, for sufficiently small T > 0, we can make∨T
0+ m ≤ 1

2η and ρ T ≤ 1/4, so that

‖zε‖L2(0,T ∗)

∥∥q ′
∥∥

L2(0,T ∗) ≥
1

4

∥∥∥M1/2
0 zε

∥∥∥2

L∞(0,T ∗)
+ η

2
‖zε‖2

L2(0,T ∗) .

This shows first, uniform boundedness of ‖zε‖L2(0,T ∗) and, second, uniform pointwise
boundedness of M0zε .

By Alaoglu’s theorem, there is a weakly convergent subsequence (also denoted by
zε) where zε ⇀ ẑ. We wish to show that ẑ is a (weak) solution of the CCP (5.27). Note
that zε(t) ∈ K for all t , and since L2(0, T ; K ) is closed convex set, it is also weakly closed.
Thus the limit satisfies ẑ(t) ∈ K for almost all t . Similarly,

(M0+ ε I )zε+m ∗ zε+q ⇀ M0̂z+m ∗ ẑ+q ,

and so by the same arguments M0̂z(t)+ (m ∗ ẑ) (t)+q(t) ∈ K ∗ for almost all t . Finally, to
show the orthogonality condition, note that since z(·) #→ ∫ T

0 〈z(t), M0z(t)〉 dt is a continu-
ous convex function on L2(0, T ), by Mazur’s lemma,

0= limsup
ε↓0

∫ T

0
〈zε(t), (M0+ ε I ) zε(t)+ (m ∗ zε) (t)+q(t)〉 dt

≥
∫ T

0
〈 ẑ(t), M0̂z(t)+ (m ∗ ẑ ) (t)+q(t)〉 dt .

Since the final integral can never be negative, as ẑ (t) ∈ K and M0̂z (t)+ (m ∗ ẑ ) (t)+q(t) ∈
K ∗ for almost all t , we conclude that ẑ does indeed solve the CCP (5.27).

The results so far show just that there is a solution ẑ ∈ L2(0, T ; Rn), provided q ′ ∈
L2(0, T ; Rn). To extend this result to the case M0 = 0 and q ∈ W 1,p(0, T ; Rn), consider a
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sequence qε→ q in W 1,p(0, T ; Rn) with each qε ∈ L2(0, T ; Rn) and qε(0)= q(0)∈ K ∗. In
particular, take

qε(t)= q(0)+
∫ t

0
max

(
1, ε

∥∥q ′(t)
∥∥)−1

q ′(τ )dτ ,

so that
∥∥q ′ε(t)

∥∥ ≤ ∥∥q ′(t)
∥∥ for almost all t . There exists a corresponding solution zε ∈

L2(0, T ; Rn). Note that if M0 = 0, then m(0+) is a strongly K -copositive matrix and
there is a constant η0 > 0 such that 〈z, m0z〉 ≥ η0 ‖z‖2 for all z ∈ K . Now m ∗ zε is in
W 1,2(0, T ; Rn), and so it is absolutely continuous and differentiable almost everywhere.
Thus, by the differentiation lemma (Lemma 3.3),

0=
〈
zε(t),

d

dt
((m ∗ zε) (t)+qε(t))

〉
for almost all t . Writing m(t) = m(0+) H (t)+m1(t), where H is the Heaviside function
H (t)= 0 if t ≤ 0 and H (t)= 1 if t > 0, we note that

(m ∗ zε)′ = m′ ∗ zε = m(0+)zε+m′1 ∗ zε .

Thus the differentiation lemma implies

0= 〈
zε (t), m(0+)zε(t)

〉+ 〈
zε (t),

(
m′1 ∗ zε

)
(t)

〉
+ 〈

zε (t), q ′ε(t)
〉
,

and so

η0 ‖zε (t)‖2 ≤ ‖zε (t)‖ [∥∥(
m′1 ∗ zε

)
(t)

∥∥+∥∥q ′ε(t)
∥∥]

.

Dividing by ‖zε(t)‖ for ‖zε(t)‖ �= 0 (the inequality is obviously true otherwise) we get

η0 ‖zε(t)‖ ≤ ∥∥(
m′1 ∗ zε

)
(t)

∥∥+∥∥q ′ε(t)
∥∥ .

Now m ′1 is a measure (perhaps better written as a differential measure dm1) which has no
atom at zero: dm(t)= m(0+)δ(t)+dm1(t) in the sense of differential measures. Then we
have the bound

∥∥(
m ′1 ∗ zε

)
(t)

∥∥= ∥∥∥∥∫
(0,t ]

dm1(τ ) zε(t− τ )dτ

∥∥∥∥
≤

∫
(0,t ]
|dm1(τ )| ‖zε(t− τ )‖ dτ

= (|dm1| ∗ ζε) (t),

where ζε(t)= ‖zε(t)‖. Note that |dm1| is the variation measure of dm1. Thus

η0 ζε(t) ≤ (|dm1| ∗ ζε) (t)+∥∥q ′(t)
∥∥
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since
∥∥q ′ε(t)

∥∥≤ ∥∥q ′(t)
∥∥ for all ε > 0. By Lemma C.3, letting µ(τ )= ∫

(0,τ ] |dm1|, we have

ζε(t)≤ ∥∥q ′(t)
∥∥+∫

(0,t ]

∥∥q ′(t− τ )
∥∥ eµ(t )−µ(τ ) dµ(τ )

for all ε > 0 and almost all t . Note that the right-hand side is in L p(0, T ) since t #→ ∥∥q ′(t)
∥∥

is in L p(0, T ) and by Young’s lemma for convolutions with measures (A.20). Taking weak
limits of the zε ⇀ z, z is a solution of the DVI which is in L p(0, T ; Rn), as required.

Note that solving an index-one CCP behaves like a differentiation of q(t). The
method of proof (especially for the case q ∈ W 1,p(0, T ; Rn)) also demonstrates the power
of the differentiation lemmas of Section 3.4.

These results can be extended to infinite dimensions under some additional restric-
tions. For example, if M0 = 0, we have existence of solutions if m0 is strongly K -copositive
and can be written as the sum of a compact linear operator and a monotone linear operator.

5.3.2 Uniqueness for CCPs

Uniqueness of solutions requires both a little more regularity and some restrictions on the
structure of the problem. If m(t)= m0 for all t > 0, then we can easily show uniqueness if
m0 is symmetric and positive definite: If we have two solutions

K " z1(t)⊥ (m ∗ z1)(t)+q(t) ∈ K ∗,
K " z2(t)⊥ (m ∗ z2)(t)+q(t) ∈ K ∗,

then we set wi = (m ∗ zi ) (t)+ q(t), ζ (t)= z1(t)− z2(t), and ω(t) = w1(t)−w2(t). Since
K " zi (t) ⊥ wi (t) ∈ K ∗ for almost all t , we have

〈ζ (t), ω(t)〉 = 〈z1(t)− z2(t), w1(t)−w2(t)〉
= 〈z1(t), w1(t)〉− 〈z1(t), w2(t)〉

− 〈z2(t), w1(t)〉+ 〈z2(t), w2(t)〉 ≤ 0

for almost all t . Now ω(t) = (m ∗ ζ ) (t) and we are assuming m(t) = m0 for all t > 0, so
this means that for any τ > 0,

0 ≥
∫ τ

0
〈ω(t), ζ (t)〉 dt =

∫ τ

0
〈(m ∗ ζ )(t), ζ (t)〉 dt

=
∫ τ

0

〈∫ t

0
m0 ζ (s), ζ (t)

〉
ds dt

=
∫ τ

0

∫ t

0
〈m0 ζ (s), ζ (t)〉 ds dt .

Downloaded 03 Nov 2011 to 160.36.192.127. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php



174 Chapter 5. Index Zero and Index One

If m0 is symmetric, this is half of the integral over the square [0,τ ]× [0,τ ]:

0 ≥ 1

2

∫ τ

0

∫ τ

0
〈m0 ζ (s), ζ (t)〉 ds dt

= 1

2

〈
m0

∫ τ

0
ζ (s)ds,

∫ τ

0
ζ (t)dt

〉
.

Thus
∫ τ

0 ζ (s)ds = 0 for all τ > 0; thus ζ (s) = 0 for almost all s > 0. This means that
z1(s)= z2(s) for almost all s > 0, and so the solution is (essentially) unique.

Dealing with a nonconstant kernel function m(t) requires using integration by parts
twice to obtain a suitable inequality which shows uniqueness. This method can also show
a weak kind of continuity of the solution map q(·) #→ z(·).

Theorem 5.7. Suppose that M0 is a symmetric positive semidefinite matrix and that m(·)
and m0 = m(0+) satisfy the following assumptions:

• m0 is symmetric positive definite on range(M0)⊥. That is, if u, v �= 0 are in range(M0)⊥,
then 〈u, m0v〉 = 〈v, m0u〉 and 〈u, m0u〉> 0.

• (
m0−mT

0

)
range M0 ⊆ (range M0)⊥,

(
m0−mT

0

)
(range M0)⊥ ⊆ range M0.

• m : [0, T ]→ Rn×n has bounded variation with m ′ also a function of bounded varia-
tion on an interval (0, T ∗), T ∗ > 0.

Then the CCP

K " z(t)⊥ M0z(t)+ (m ∗ z) (t)+q(t) ∈ K ∗ for all t (5.31)

has a unique solution.

This result extends the result in [242] by allowing M0 �= 0; that is, there can be an
index-zero part as well as an index-one part. A pure index-zero problem requires M0 only
to be strongly monotone in order to show existence and uniqueness. A pure index-one
problem has M0 = 0, in which case we need m0 = m(0+) to be symmetric as well as
positive definite for this proof to hold.

Proof. Suppose that z1 and z2 are two solutions of (5.31). Let ζ (t)= z1(t)− z2(t). If we let
w1=M0z1+m ∗z1+q , w2=M0z2+m ∗z2+q , andω(t)=w1(t)−w2(t), by complemen-
tarity we have 〈ω(t), ζ (t)〉 ≤ 0 for all t . If z1 �= z2, we let t∗ =min { t ≥ 0 | z1(t) �= z2(t) }.
By shifting the initial time, if t∗ <∞, we can make t∗ = 0. Our task then is to show
uniqueness of solutions on some sufficiently small interval

[
0, T̂

]
, T̂ > 0.

Integrating 〈ω(t), ζ (t)〉 ≤ 0 over an interval
[
0, T̂

]
we get

0≥
∫ T̂

0
〈ζ (t), M0ζ (t)+ (m ∗ ζ )(t)〉 dt . (5.32)
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We look carefully at∫ T̂

0
〈ζ (t), (m ∗ ζ ) (t)〉 dt =

∫ T̂

0

∫ t

0
〈ζ (t), m(t− τ )ζ (τ )〉 dτ dt

= 1

2

∫ T̂

0

∫ T̂

0
〈ζ (t), m̃(t− τ )ζ (τ )〉 dτ dt ,

where

m̃(t)=
{

m(t), t > 0,
m(−t)T , t < 0.

Note that m̃ may not be continuous at zero if m(0+) is not symmetric. Let m0 = m(0+).
Also, let Z (t) = ∫ t

0 ζ (τ )dτ . Then we can write, using ν(t) = m̃ ′(t) and σ (t) = ν′(t) for
t �= 0 and integration by parts,∫ T̂

0

∫ T̂

0
〈ζ (t), m̃(t− τ )ζ (τ )〉 dτ dt

=
∫ T̂

0

∫ T̂

0

〈
Z ′(t), m̃(t− τ ) Z ′(τ )

〉
dt dτ

=
∫ T̂

0

[ 〈
Z (t), m̃(t− τ ) Z ′(τ )

〉∣∣t=τ−
t=0 + 〈

Z (t), m̃(t− τ ) Z ′(τ )
〉∣∣t=T̂

t=τ+

−
∫ T̂

0

〈
Z (t), ν(t− τ ) Z ′(τ )

〉
dt

]
dτ

=
∫ T̂

0

[〈
Z (τ ), m̃(0−) Z ′(τ )

〉− 〈
Z (τ ), m̃(0+) Z ′(τ )

〉]
dτ

+
∫ T̂

0

〈
Z (T̂ ), m̃(T̂ − τ ) Z ′(τ )

〉
dτ

−
∫ T̂

0

∫ T̂

0

〈
Z (t), ν(t− τ ) Z ′(τ )

〉
dτ dt

=
∫ T̂

0

〈
Z (τ ),

(
mT

0 −m0

)
Z ′(τ )

〉
dτ

+
∫ T̂

0

〈
Z (T̂ ), m̃(T̂ − τ ) Z ′(τ )

〉
dτ

−
∫ T̂

0
〈Z (t), ν(t− τ ) Z (τ )〉|t=τ−t=0 dτ

−
∫ T̂

0
〈Z (t), ν(t− τ ) Z (τ )〉|t=T̂

t=τ+ dτ

−
∫ T̂

0

∫ T̂

0
〈Z (t), σ (t− τ ) Z (τ )〉 dτ dt
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=
∫ T̂

0

〈
Z (τ ),

(
mT

0 −m0

)
Z ′(τ )

〉
dτ

+ 〈
Z (T̂ ), m̃(T̂ − τ ) Z (τ )

〉∣∣τ=T̂−
τ=0 +

∫ T̂

0

〈
Z (T̂ ), ν(T̂ − τ ) Z (τ )

〉
dτ

−
∫ T̂

0

〈
Z (τ ),

(
ν(0−)− ν(0+)

)
Z (τ )

〉
dτ

−
∫ T̂

0

〈
Z (T̂ ), ν(T̂ − τ ) Z (τ )

〉
dτ

−
∫ T̂

0

∫ T̂

0
〈Z (t), σ (t− τ ) Z (τ )〉 dτ dt

= 〈
Z (T̂ ), m0 Z (T̂ )

〉+∫ T̂

0

〈
Z (τ ),

(
mT

0 −m0

)
Z ′(τ )

〉
dτ

+
∫ T̂

0

〈
Z (τ ),

(
ν(0+)− ν(0−)

)
Z (τ )

〉
dτ

−
∫ T̂

0

∫ T̂

0
〈Z (t), σ (t− τ ) Z (τ )〉 dτ dt . (5.33)

We split ζ (t)= ζ1(t)+ ζ2(t), where ζ1(t) ∈ range M0 and ζ2(t)⊥ range M0, and let Z1(t)=∫ t
0 ζ1(τ )dτ , Z2(t)= ∫ t

0 ζ2(τ )dτ . Let λM be the smallest nonzero eigenvalue of M0; λM > 0.
Note that ‖Zi (τ )‖ ≤ τ 1/2 ‖ζi‖ L2(0,τ ).

Returning to (5.32), substituting (5.33) gives

0≥
∫ T̂

0
〈ζ (t) M0ζ (t)〉 dt+ 〈

Z (T̂ ), m0 Z (T̂ )
〉

+
∫ T̂

0

〈
Z (τ ),

(
mT

0 −m0

)
ζ (τ )

〉
dτ

+
∫ T̂

0

〈
Z (τ ),

(
ν(0+)− ν(0−)

)
Z (τ )

〉
dτ

−
∫ T̂

0

∫ T̂

0
〈Z (t), σ (t− τ ) Z (τ )〉 dτ dt .

The biggest difficulty is with the antisymmetric part of m0:

∫ T̂

0

〈
Z (τ ),

(
mT

0 −m0

)
ζ (τ )

〉
dτ .
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Here we need to use the splitting and the properties that
(
m0−mT

0

)
range M0 ⊆ (range M0)⊥

and
(
m0−mT

0

)
(range M0)⊥ ⊆ range M0. From the splitting Z (t)= Z1(t)+ Z2(t), Z1(t) ∈

range M0, Z2(t) ∈ (range M0)⊥; then

∫ T̂

0

〈
Z (τ ),

(
mT

0 −m0

)
Z ′(τ )

〉
dτ

=
∫ T̂

0

〈
Z1(τ ),

(
mT

0 −m0

)
Z ′2(τ )

〉
dτ

+
∫ T̂

0

〈
Z2(τ ),

(
mT

0 −m0

)
Z ′1(τ )

〉
dτ

=
〈
Z1(τ ),

(
mT

0 −m0

)
Z2(τ )

〉∣∣∣τ=T̂

τ=0

−
∫ T̂

0

〈
Z ′1(τ ),

(
mT

0 −m0

)
Z2(τ )

〉
dτ

+
〈
Z2(τ ),

(
mT

0 −m0

)
Z ′1(τ )

〉
dτ

=
〈
Z1(T̂ ),

(
mT

0 −m0

)
Z2(T̂ )

〉
+2

∫ T̂

0

〈
Z2(τ ),

(
mT

0 −m0

)
ζ1(τ )

〉
dτ .

Note the following bounds: for suitable constants α and λm ,

∫ T̂

0
〈ζ (t) M0ζ (t)〉 dt ≥ λm ‖ζ1‖2

L2(0,T̂ ) ,〈
Z (T̂ ), m0 Z (T̂ )

〉≥ λm
∥∥Z2(T̂ )

∥∥2−α
∥∥Z1(T̂ )

∥∥∥∥Z (T̂ )
∥∥ .

Also note that

∣∣∣∣∣
∫ T̂

0

〈
Z2(τ ),

(
mT

0 −m0

)
ζ1(τ )

〉
dτ

∣∣∣∣∣ ≤ T̂ 1/2
∥∥∥mT

0 −m0

∥∥∥ ‖Z2‖L∞(0,T̂ ) ‖ζ1‖L2(0,T̂ ) ,∣∣∣∣∣
∫ T̂

0

〈
Z (T̂ ), ν(T̂ − τ ) Z (τ )

〉
dτ

∣∣∣∣∣≤ T̂ 1/2 ‖ν‖L∞(0,T̂ )

∥∥Z (T̂ )
∥∥ ‖Z‖L∞(0,T̂ ) ,∣∣∣∣∣

∫ T̂

0

〈
Z (τ ),

(
ν(0+)− ν(0−)

)
Z (τ )

〉
dτ

∣∣∣∣∣≤ T̂
∥∥ν(0+)− ν(0−)

∥∥ ‖Z‖2
L∞(0,T̂ )

,∣∣∣∣∣
∫ T̂

0

∫ T̂

0
〈Z (t), σ (t− τ ) Z (τ )〉 dτ dt

∣∣∣∣∣ ≤ T̂ ‖σ‖M(0,T̂ ) ‖Z‖2
L∞(0,T̂ ) .
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As T̂ ↓ 0, ‖σ‖M(0,T̂ ) → 0. With these bounds we obtain

0≥ λM ‖ζ1‖2
L2(0,T̂ )

+λm
∥∥Z2(T̂ )

∥∥2−α
∥∥Z1(T̂ )

∥∥∥∥Z (T̂ )
∥∥

−
∥∥∥mT

0 −m0

∥∥∥ ∥∥Z1(T̂ )
∥∥∥∥Z2(T̂ )

∥∥
−2T̂ 1/2

∥∥∥mT
0 −m0

∥∥∥ ‖Z2‖L∞(0,T̂ ) ‖ζ1‖L2(0,T̂ )

− T̂
(∥∥ν(0+)− ν(0−)

∥∥+‖σ‖M(0,T̂ )

)
‖Z‖2

L∞(0,T̂ )
.

Using ‖Z (τ )‖ ≤ ‖Z1(τ )‖+‖Z2(τ )‖ ≤ τ 1/2 ‖ζ1‖L2(0,τ )+‖Z2(τ )‖, we obtain for 0 < T̂ ≤
T̃ ≤min(1, T ∗),

0≥ λM ‖ζ1‖2
L2(0,T̂ )

+λm
∥∥Z2(T̂ )

∥∥2

−αT̃ 1/2 ‖ζ1‖L2(0,T̃ )

(
T̃ 1/2 ‖ζ1‖L2(0,T̃ )+‖Z2‖L∞(0,T̃ )

)
−3T̃ 1/2

∥∥∥mT
0 −m0

∥∥∥ ‖ζ1‖L2(0,T̃ ) ‖Z2‖L∞(0,T̃ )

− T̃
(∥∥ν(0+)− ν(0−)

∥∥+‖σ‖M(0,T̃ )

)
×

(
T̃ 1/2 ‖ζ1‖L2(0,T̃ )+‖Z2‖L∞(0,T̃ )

)2

≥ λM ‖ζ1‖2
L2(0,T̂ )+λm

∥∥Z2(T̂ )
∥∥2

−C T̃ 1/2
(
‖ζ1‖2

L2(0,T̃ )
+‖Z2‖2

L∞(0,T̃ )

)
for a suitable positive constant C . (Note that this uses the inequality ab ≤ 1

2 (a2+ b2).)
Taking the supremum over 0 < T̂ ≤ T̃ gives

0≥ λM ‖ζ1‖2
L2(0,T̂ )+λm

∥∥Z2(T̂ )
∥∥2−C T̃ 1/2

(
‖ζ1‖2

L2(0,T̃ )+‖Z2‖2
L∞(0,T̃ )

)
.

Therefore, provided λM , λm >C T̃ 1/2, or equivalently if T̃ <min(λM/C , λm/C)2, we have
‖ζ1‖L2(0,T̃ ) = ‖Z2‖L∞(0,T̃ ) = 0, and we must have ζ1 ≡ 0 and Z2 ≡ 0. Thus ζ1 ≡ ζ2 ≡ 0

and z1 ≡ z2 on (0, T̃ ). Thus we have uniqueness.

The role of symmetry here is quite important. The antisymmetry of the index-one
matrix m0−mT

0 has to be controlled by the index-zero matrix M0. If M0 = 0, for a pure
index-one problem, this proof requires m0 to be symmetric, which is essentially equivalent
to the requirement that ∇G(x) B(x) be symmetric in the DVI case.

5.4 Application: Circuits with diodes
Diodes are electrical devices that are intended to allow current to pass in only one direction.
There is, of course, some nonideal behavior, but unless we wish to model these nonideal
characteristics, we are led to consider DCPs. While a diode itself has a static voltage-
current relationship, many other circuit elements such as capacitors and inductors do not
(see Figure 5.3).
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−
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i
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+
R resistor vR = R iR

−

C

v
C

+

i

capacitor iC = C
dvC

dt

−

i
L

v
L

+
inductor vL = L

diL

dt

Figure 5.3: Circuit elements and their behavior.

5.4.1 Obtaining differential equations from circuits

The method described below is not the only method for obtaining differential equations
from circuits. For more information, see, for example, [136].

Circuits without diodes are modeled by differential equations or by differential al-
gebraic equations. To generate these models, the circuit needs to be analyzed. Circuits,
such as those shown in Figure 1.6 in Section 1.3, are given as networks or graphs with
nodes (specific points in the circuit) and edges (circuit elements). Each node has an associ-
ated voltage and each edge has an associated current. Since it is only the voltage differences
across each circuit element that results in currents, there is one node that is usually assigned
zero voltage. In engineering terms, this is the “earth” node of the circuit.

The equations connecting the different components are the two Kirchhoff laws:

• the total current flowing into any node is zero, and

• the sum of voltage differences around any loop is zero.

To ensure that the total current flowing into any node is zero, we create new current vari-
ables. This we do by creating a set of loops so that any consistent set of currents can be
represented in terms of currents around each loop. We then require that the sum of voltage
drops around each loop be zero.

To handle these problems, we need a more formal way of describing graphs or net-
works. For other sources for graph theory, see, for example, [33, 79, 117, 263, 266]. A
graph is then a collection of nodes together with a set of edges that join these nodes:6 the
graph G = (V , E), where V is the collection of nodes, and E is a set of edges e with two
functions start, end: E → V , where start(e) is the starting vertex of e, and end(e) is the
end vertex of e. We denote the set of vertices of a graph G by V (G) and the set of edges
of G by E(G). Each edge e ∈ E may have information other than just the start and end
nodes, such as the circuit element for that edge. A subgraph H = (W , F) of G = (V , E)
consists of a subset of the nodes W ⊆ V and a subset of the edges F ⊆ E of G with
start( f ), end( f ) ∈ W for every f ∈ F . We say that an edge e is incident to a node x if

6Technically, this is the description of a hypergraph.
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x = start(e) or x = end(e). A graph is connected if for any two nodes x �= y ∈ V there is a
sequence x = s0, e1, s1, e2, s2, . . . , em , sm = y where edge ei is incident to nodes si−1 and
si . This path can be written as

x = s0
e1−→ s1

e2−→ s2
e3−→ ··· em−→ sm = y.

A sequence like this is called a path. If a path has the same starting and ending points
(x = y), it is called a cycle. A cycle with one edge is called a loop. Note that we are
ignoring the orientation of the edges in defining paths. We need undirected paths in order
to define trees and spanning trees below. On the other hand, orientations will be needed to
define the direction of current flow in a network, and some circuit elements (such as diodes)
have a definite direction.

The tool we need from graph or network theory is the minimal spanning tree (MST).
A tree is a connected graph or network with no cycles. The MST T of G is a connected
subgraph of G that includes all nodes of the original graph, but this is not true of any
strict subgraph of T . Note that T is a tree since, if it were not, it would contain a cycle,
and an edge can be removed from a cycle without making the graph disconnected. Each
edge e in G, but not the MST T , would create one (and only one) cycle if added to T .
Every connected graph G has an MST, and furthermore, it can be efficiently computed
[64]. If G is not connected, then G can be split into connected components. A connected
component is a subgraph H of G that is connected, while no strictly bigger subgraph of
G is connected. In terms of electrical circuits, the connected components of a network
are simply independent circuits and can be analyzed separately. In what follows, we will
assume that the graph G representing an electrical circuit is connected.

For an electrical circuit G with an MST T , each edge e in G but not T can be assigned
a current variable ie. The edge e must be given a direction for the current to flow in (say,
from x = start(e) to y = end(e)). Currents in the opposite direction correspond to negative
values for ie. The current in the loop must go in the same direction as in the edge e. Let ce
denote this directed cycle:

x
e−→ y

e1−→ s1
e2−→ s2 → ··· em−→ sm = x ,

where ei is in T for i = 1, 2, . . . , m. The current in any directed edge f ∈ E(T ) is then
given by

i f =
∑

e∈E(G)\E(T )

b f ,e ie (5.34)

with b f ,e = ±1 according to whether the edge f appears in the forward (+1) or opposite
(−1) direction in the cycle ce. If f does not appear in the cycle ce, then we set b f ,e = 0.

Each circuit element has an associated transfer function between current velocity,
which is also known as the impedance function in terms of Laplace transforms:

L f (s)=
∫ ∞

0
e−st f (t)dt . (5.35)
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The impedance functions for the different components are given via the following formulas:

resistor v = R i , Lv(s)= RLi (s) zR(s)= R,

capacitor
dv

dt
= C i , sLv(s)− v(0)= C Li (s), zC (s)= C s−1,

inductor v = L
di

dt
, Lv(s)= L sLi (s)− L i (0), zL (s)= L s.

We can include voltage sources to obtain the general formulation for an edge e

Lve(s)= ze(s)Lie(s)+Lve,0(s), (5.36)

where Lve,0(s) is the Laplace transform of the voltage sources plus the additional term due
to the initial conditions at time t = 0 if appropriate.

For now, let us suppose that our circuit has the property that if we remove all the
diodes (and current sources, if any), we are left with a connected network. This is not true
for many interesting and useful circuits (such as the bridge rectifier, as shown in Figure 5.6),
but it will simplify the analysis. The more complex case will be dealt with later.

Let H be the circuit graph G with all diodes and current sources removed, and sup-
pose that H has an MST T . Note that because H is G with some edges removed, T is
also an MST for G. For any edge e of G that is neither a diode nor a current source,
e ∈ E(H )\E(T ). This has a unique cycle ce formed by e and the tree T . From the Kirch-
hoff voltage law, ∑

f ∈ce

b f ,e v f (t)= 0. (5.37)

Since b f ,e = 0, if f �∈ ce, we can write this as∑
f ∈E(H )

b f ,e v f (t)= 0.

Note that e is included in the cycle ce, and that be,e =+1. Taking Laplace transforms gives∑
f ∈E(H )

b f ,eLv f (s)= 0.

Substituting for Lv f (s) in terms of Li f (s) via (5.36) gives∑
f ∈E(H )

b f ,e z f (s)Li f (s)+
∑

f ∈E(H )

b f ,eLve,0(s)= 0 for all e ∈ E(H )\E(T ).

Using the representation of ie in terms of ig , g ∈ E(H )\E(T ), in (5.34) gives∑
f ∈E(H )

b f ,e z f (s)
∑

g∈E(H )\E(T )

bg, f Lig(s)+
∑

f ∈E(H )

b f ,eLve,0(s)= 0

for all e ∈ E(H )\E(T ). This can be better understood in matrix-vector terms. Let

v0(t)= [
ve,0(t) | e ∈ E(H )

]
,

i(t)= [
ie(t) | e ∈ E(H )\E(T )

]
,

Z H (s)= diag(ze(s) | e ∈ E(H )),

B = [
b f ,e | f ∈ E(H ), e ∈ E(H )\E(T )

]
.
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Then

BT Z (s) BLi(s)+ BT Lv0(s)= 0. (5.38)

This system of equations can be solved for Li(s): The matrix Z H (s) is diagonal with pos-
itive diagonals for s > 0, and so it is positive definite for s > 0. The matrix B has linearly
independent columns since for each e ∈ E(H )\E(T ) we have be,e =+1, but for any other
g ∈ E(H )\E(T ), in column g, be,g = 0 since e is not part of the cycle formed by g and
T . Then letting b•,g be column g of B , if

∑
g∈E(H )\E(T )αgb•,g = 0, taking the component

for e ∈ E(H )\E(T ), we get
∑

g∈E(H )\E(T )αgbe,g = αebe,e = αe = 0. So B has linearly
independent columns: Bα = 0 implies α = 0. Combining positive definiteness of Z H (s)
and linear independence of columns of B gives BT Z H (s)B positive definite, and so it is
invertible. Thus we can solve the system of equations (5.38) to obtain

Li(s)=
(

BT Z H (s) B
)−1

BT Lv0(s). (5.39)

Note that BT Z H (s)B is a matrix of rational functions of s, and so
(
BT Z H (s)B

)−1
is also

a matrix of rational functions of s, and therefore it is the Laplace transform of a matrix
of distributions consisting of Dirac-δ functions, their derivatives, and sums of products of
polynomials and (possibly complex) exponentials.

5.4.2 Incorporating diodes

We need to include the “external” current sources and diodes which are elements in E(G)\
E(H ). For given current sources, we do not need to solve any equations to find the current.
For the diodes we have the complementarity between the reverse voltage and the forward
current. For any edge g ∈ E(G)\E(H ) we have a unique cycle formed by g and T which
we call cg . Recall that H is obtained from G by removing certain edges, but no nodes are
removed. For such an edge g ∈ E(G)\E(H ) we define b̃ f ,g =±1 for f ∈ cg with the sign
depending on whether f appears in the forward direction (+1) or in the reverse direction
(−1) in cg , and b̃ f ,g = 0 if f �∈ cg . These form the matrix B̃ whose rows are edges in E(G)
and columns are edges in E(G)\E(H ).

Every edge in H has an associated impedance, but this is not so for the edges in
E(G)\E(H ) which represent diodes or current sources. There is the possibility that the
network may be degenerate in the sense that there is a cycle that does not pass through any
impedance element (resistor, capacitor, or inductor). A cycle consisting of a pair of ideal
diodes in series as shown in Figure 5.4 is an example. The current passing through such
a loop is undefined (although small but nonzero resistances will ensure that this current is
zero in any realization of this circuit). We will therefore make the following assumption:

any cycle in G must pass through an impedance element. (5.40)

If g represents a current source, then ig(t) is already given to us. If g represents
a diode, then the sum of voltages around the cycle cg minus g is the reverse voltage
−vg(t) on the diode. This is because from Kirchhoff’s voltage law the sum of vg(t) and∑

f ∈cg\{g} b̃ f ,gv f (t) is zero. Because cg\{g} is a path in H , it consists only of R, L, or C
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Figure 5.4: Diode loop: the current passing through these ideal diodes is undefined.

elements and voltage sources. So we can compute Lvg(s) in terms of the currents Li f (s),
f ∈ E(H ). In particular, wherever g represents a diode we have the equations

−Lvg(s)=
∑

f ∈cg\{g}
b̃ f ,g z f (s)Li f (s)+

∑
f ∈cg\{g}

b̃ f ,g Lv f ,0(s),

where v f ,0(t) is the voltage source on edge f ∈ E(H ). If g ∈ E(H )\E(T ), however, we
have the equations

0=
∑
f ∈cg

b f ,g z f (s)Li f (s)+
∑
f ∈cg

b f ,g Lv f ,0(s).

On the other hand, i f (t) is determined by the currents in the edges E(H )\E(T ) and
E(G)\E(H ):

i f (t)=
∑

e∈E(H )\E(T )

b f ,e ie(t)+
∑

k∈E(G)\E(H )

b̃ f ,k ik(t).

In matrix-vector terms, if we additionally define

v0(t)= [
ve,0(t) | e ∈ E(H )

]
,

vext (t)=
[
ve(t) | e ∈ E(G)\E(H )

]
,

iext (t)=
[
ie(t) | e ∈ E(G)\E(H )

]
,

B̃ = [
b̃ f ,e | f ∈ E(H ), e ∈ E(G)\E(H )

]
,

the equations relating Laplace transforms of current and voltage are[
0

Lvext (s)

]
= [

B B̃
]T

Z H (s)
[

B B̃
][ Li(s)

Liext (s)

]
(5.41)

+ [
B B̃

]T Lv0(s).

First note that Z H (s) is a diagonal matrix with positive diagonal entries for s > 0, and

so it is symmetric positive definite. It is clear that
[
B , B̃

]T
Z H (s)

[
B , B̃

]
is also symmetric

and positive semidefinite. It is positive definite if
[
B , B̃

]
has linearly independent columns,

or equivalently, that Bα+ B̃α̃ = 0 implies that both α and α̃ are zero.
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If αe represents the current flowing through cycle ce for edge e ∈ E(H )\E(T ), and α̃g

represents the current flowing through cycle cg for edge g ∈ E(G)\E(H ), then
(
Bα+ B̃α̃

)
f

is the current flowing through edge f ∈ E(H ). Taking e ∈ E(H )\E(T ), we can check that(
Bα+ B̃α̃

)
e = αe, so αe = 0. These vectors do not have components associated with edges

in E(G)\E(H ), so we cannot simply take the g component to show that α̃g = 0. How-
ever, the equation Bα+ B̃α̃ = 0 means that there is no net current in any edge e ∈ E(H ).
Therefore, the only net current represented by α̃ must occur in E(G)\E(H ). If this flow
is nonzero, there must be a cycle in E(G)\E(H ), which is ruled out by (5.40). Thus the
current flow in g ∈ E(G)\E(H ) must be α̃g = 0, as desired.

Thus
[
B , B̃

]
has linearly independent columns, and so

[
B , B̃

]T
Z H (s)

[
B , B̃

]
is pos-

itive definite for all s > 0.
We can decompose the matrix on the left-hand side of (5.41) in block form:

Z (s) =
[

Z11(s) Z12(s)
Z21(s) Z22(s)

]
= [

B B̃
]T

Z H (s)
[

B B̃
]

.

We can then relate Lvext (s) to Liext (s) by means of the Schur complement matrix Ẑ (s) :=
Z22(s)− Z21(s) Z11(s)−1 Z12(s):

Lvext (s)= Ẑ (s)Liext (s)+
[

B̃T − Z21(s) Z11(s)−1 B
]
Lv0(s).

5.4.3 Bounds on Ẑ(s) and index one

Since the entries of Z H (s) are rational functions of s, it can be shown that the entries of Ẑ (s)
are also rational functions of s. The impulse response represented by Z H (s) is therefore a
linear combination of products of polynomials and (possibly complex) exponentials, and
Dirac-δ functions and its derivatives. However, we want to show that Ẑ (s) and Ẑ (s)−1 are
bounded by βZ s for a suitable constant βZ for large s > 0. This is crucial for establishing
that these circuit problems are index zero or index one, or a mixture of index one and index
zero.

We use the natural ordering on symmetric matrices: A . B if and only if uT Au ≤
uT Bu for all u, and A≺ B if and only if uT Au < uT Bu for all u �= 0. Note that 0. A if and
only if A is positive semidefinite and 0≺ A if and only if A is positive definite. Note also
that A . B and C . D imply that A+C . B+ D; A . B implies that X T AX . X T B X ;
0≺ A. B implies that 0≺ B−1 . A−1. Also, λmin (A) I . A. λmax (A) I , where λmin (A)
and λmax (A) are, respectively, the minimum and maximum eigenvalues of A.

For s ≥ 1, since Z H (s) is a diagonal matrix with entries of the form either R or
C−1 s−1 or L s, ζmin s−1 I . Z H (s). ζmax s I for suitable positive constants ζmin and ζmax .
Clearly, [

B B̃
]T

Z H (s)
[

B B̃
]. [

B B̃
]T

ζmax s
[

B B̃
]

. ζmax s
[

B B̃
]T [

B B̃
]

. ζmax s σmax
([

B B̃
])2

I .

On the other hand, using the same techniques,[
B B̃

]T
Z H (s)

[
B B̃

]0 ζmin s−1 σmin
([

B B̃
])2

I .
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Combining these gives positive constants cmin and cmax where

0≺ cmin s−1 I . Z (s). cmax s I ,

and so Z (s)−1 . c−1
min s I . If we write

Y (s)= Z (s)−1 =
[

Y11(s) Y12(s)
Y21(s) Y22(s)

]
,

then Y22(s) = Ẑ (s)−1. Since Y (s) . c−1
min s I , it follows that Y22(s) . c−1

min s I , and so
Ẑ (s)−1 . c−1

min s I . On the other hand,

Ẑ (s)= Z22(s)− Z21(s) Z11(s)−1 Z12(s)

. Z22(s) . cmax s I .

That is,
0≺ cmin s−1 I . Ẑ (s). cmax s I .

This means that the diagonal entries ẑkk (s), which are rational functions of s, satisfy the
inequalities

0 < cmin s−1 ≤ ẑkk(s)≤ cmax s.

The off-diagonal entries ẑkl (s) have an upper bound: |̂zkl (s)| ≤ cmax s. Writing ẑkk (s) as
a rational function pkk(s)/qkk(s), this means that the degrees of the polynomials pkk and
qkk differ by at most one. For the off-diagonal entries, if ẑkl (s) = pkl(s)/qkl (s), then the
degree of pkl is no more than the degree of qkl plus one. This is the essence of a mixed
index-zero and index-one problem. However, if the degree of the numerator is more than
the degree of the denominator in any of these entries, the impulse response represented
includes derivatives of Dirac-δ functions, which our current theory does not allow.

To simplify the discussions of degrees, define the relative degree of a rational func-
tion z(s)= p(s)/q(s) to be

rdegz = deg p−degq . (5.42)

The problem, then, is that some entries ẑkl (s) of Ẑ (s) have rdeg ẑkl > 0. Since Ẑ (s) is pos-
itive definite for s > 0, we have | ẑkl (s)| ≤ √ ẑkk (s) ẑll (s), so from asymptotics for large s,
rdeg ẑkl (s) ≤ 1

2 (rdeg ẑkk (s)+ rdeg ẑll (s)). Thus we need only look at diagonal entries to
determine whether this is a potential problem. If rdeg ẑkk (s) ≤ 0 for all k, then there is no
need to swap currents and voltages.

Assume, for the moment, that for every diode there is a cycle through the diode and
H that does not pass through an inductor. Then Z (s)Liext (s) represents a convolution∫∞

0 M(t − τ ) iext (τ )dτ where LM(s) = Z (s). Note that M(t) = M0 δ(t)+ M̃(t), where
M0 = lims→∞ Z (s), and M̃(t) is a smooth function of t , except at t = 0, where there can
be a jump discontinuity. Clearly M0 is a symmetric positive semidefinite matrix. This
is the index-zero part of a CCP. Solutions exist and are unique, as can be verified via
Theorems 5.6 and 5.7.

If we remove the assumption that every diode is in a cycle that does not pass through
an inductor, then L−1 Z (t) may contain derivatives of Dirac-δ functions. To compensate for
this, we swap current and voltage variables. In RC diode networks, this is not necessary.
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5.4.4 Swapping currents and voltages

The idea here is to swap certain diode currents for the corresponding voltages as the primary
variables. Doing this will ensure that the resulting matrix function relating to primary
variables is the Laplace transform of a Dirac-δ function plus a well-behaved function of
time. The result is a CCP that is a mixed index-zero and index-one problem. However, we
will be able to apply the existence and uniqueness theorems of CCPs from Section 4.6 to
these diode problems.

We separate the diodes into groups, C diodes, R diodes, and L diodes, as follows.
The C diodes are the diodes for which there is a path through H that passes only through
capacitors connecting the nodes of the diode; the R diodes are the diodes for which there
is no path only through capacitors, but there is a path through H containing no inductors;
the L diodes are the remaining diodes where every path through H connecting the diode’s
nodes passes through an inductor. Let EDC , ED R , and EDL be the set of edges for C
diodes, R diodes, and L diodes, respectively. Then, if we separate out the entries of the
Ẑ (s) matrix according to this classification, if e ∈ EDC , then ẑe,e(s)∼ z∞e,e/s as s →∞; if
e ∈ ED R, then ẑe,e(s) ∼ z∞e,e as s →∞; if e ∈ EDL , then ẑe,e(s) ∼ z∞e,e s as s →∞. We
can partition the matrix Ẑ (s) according to this partitioning of E(G)\E(H )= EDC ∪ED R∪
EDL:

Ẑ (s)=
 ẐC (s) ẐC ,R(s) ẐC ,L(s)

Ẑ R,C (s) Ẑ R(s) Ẑ R,L(s)

Ẑ L ,C (s) Ẑ R,L(s) Ẑ L (s)

 .

Partitioning the diode voltage and current vectors accordingly gives

 LvC (s)
LvR(s)
LvL(s)

=
 ẐC (s) ẐC ,R(s) ẐC ,L(s)

Ẑ R,C (s) Ẑ R(s) Ẑ R,L(s)

Ẑ L ,C(s) Ẑ R,L(s) Ẑ L (s)


 LiC (s)

LiR (s)
LiL (s)

 .

From symmetry and positive definiteness of Ẑ (s) it is easy to check that

Ẑ R,C(s)= ẐC ,R(s)T =O(s−1),

Ẑ R,L(s)= Ẑ L ,R(s)T =O(1),

ẐC ,L(s)= Ẑ L ,C(s)T =O(1)

as s →∞. However, the last bound is not sharp. In fact, it can be shown that

ẐC ,L(s)= Ẑ L ,C (s)T =O(s−1).

Consider a jump discontinuity in the current of a C diode. Then this jump in current will
flow through the path in H passing only through capacitors connecting the nodes of the
diode. Such a jump will not create a jump discontinuity in the voltages at any nodes in the
circuit; rather there can be jumps only in the derivatives of the voltages of the nodes. Thus
there is no jump in the voltages of any L diode, and hence Ẑ L ,C (s)=O(s−1) as s →∞.
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We will now swap the roles of vL and iL : note that (after suppressing dependence
on s)

LvL = Ẑ L ,CLiC + Ẑ L ,RLiR + Ẑ LLiL .

Then

LiL = Ẑ−1
L

(
LvL −

[
Ẑ L ,C Ẑ L ,R

][ LiC
LiR

])
.

Now we wish to write vC and vR in terms of iC , iR , and vL :[ LvC

LvR

]
=

[
ẐC ẐC ,R

Ẑ R,C Ẑ R

][ LiC
LiR

]
+

[
ẐC ,L

Ẑ R,L

]
LiL

=
([

ẐC ẐC ,R

Ẑ R,C Ẑ R

]
−

[
ẐC ,L

Ẑ R,L

]
Ẑ−1

L

[
Ẑ L ,C Ẑ L ,R

])[ LiC
LiR

]
+

[
ẐC ,L

Ẑ R,L

]
Ẑ−1

L LvL

= Ẑ Schur

[ LiC
LiR

]
+

[
ẐC ,L

Ẑ R,L

]
Ẑ−1

L LvL .

Note that Ẑ Schur is the Schur complement of Ẑ with respect to Ẑ L . Combining these, we
get  LvC

LvR

LiL

=
 Ẑ Schur

ẐC ,L Ẑ−1
L

Ẑ R,L Ẑ−1
L

−Ẑ−1
L Ẑ L ,C −Ẑ−1

L Ẑ R,C Ẑ−1
L


 LiC

LiR

LvL

 . (5.43)

Since Ẑ L(s)−1 = O(s−1), we have Ẑ L(s)−1 Ẑ L ,C (s) = O(s−1) and Ẑ L(s)−1 Ẑ R,C(s) =
O(s−1). Also

Ẑ Schur (s).
[

ẐC (s) ẐC ,R(s)

Ẑ R,C(s) Ẑ R(s)

]
=O(1).

In fact,

lim
s→∞ Ẑ Schur (s)=

 0 0 0

0 Ẑ∞R 0
0 0 0

 , Ẑ∞R = lim
s→∞ Ẑ R(s).

Note that Ẑ∞R is the impedance matrix for the R diodes in the circuit where all the capacitors
are replaced by short circuits and the inductors are replaced by open circuits. Note that this
matrix is symmetric positive definite.

We can turn our dynamic circuit problem into a CCP. The key is that (5.43) is equiv-
alent to  vC

vR
iL

= M ∗
 iC

iR
vL

+q(t),
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where LM(s) = Z̃ (s). Now M(t) = M0 δ(t)+m(t), where δ is the Dirac-δ function, and
m(t) is a smooth function of t . Note that

M0 = lim
s→∞ Z̃ (s),

m(0+)= lim
s→∞s

(
Z̃ (s)−M0

)
.

From our representation of Z̃ (s), we already have

M0 =
 0 0 0

0 Ẑ∞R 0
0 0 0

 .

To compute m(0+), we have to check the asymptotics of Z̃ (s) to order s−1. Let us use the
superscript “∞” to indicate limits or asymptotics, such as ẐC (s)∼ s−1 Ẑ∞C , Ẑ L (s)∼ s Ẑ∞L ,
Ẑ R,L(s)∼ Ẑ∞R,L as s →∞. Then

m(0+)= lim
s→∞s

(
Z̃ (s)−M0

)=
 Ẑ∞C Ẑ∞C ,R 0

Ẑ∞R,C ∗ +Ẑ∞R,L

(
Ẑ∞L

)−1

0 −(
Ẑ∞L

)−1
Ẑ∞R,C

(
Ẑ∞L

)−1

 .

The conditions for existence of a solution to the CCP as given in Theorem 5.6 are that
M0 is symmetric positive definite, m(t) has bounded variation on finite intervals (which
is true), q(·) belongs to a suitable L p space, and m(0+) is, for example, positive definite
on range(M0)⊥. For uniqueness, we also need m(0+) to be symmetric positive definite on
range(M0)⊥. This is equivalent to requiring that (after dropping the middle block row and
column) [

Ẑ∞C 0

0
(
Ẑ∞L

)−1

]
be positive definite, which is evidently true. The last requirement is that the antisymmetric
part of m(0+) map range(M0) into range(M0)⊥ and map range(M0)⊥ into range(M0). For
the circuit problem, the antisymmetric part of m(0+) is 0 0 0

0 0 +Ẑ∞R,L

(
Ẑ∞L

)−1

0 −(
Ẑ∞L

)−1
Ẑ∞R,C 0

 .

Since range(M0) consists of vectors of the block form 0
uR
0

 ,

it can be easily checked that m(0+) satisfies the conditions for uniqueness as well as ex-
istence. Thus we have existence and uniqueness for solutions of the problem of RLC
circuits with diodes, provided the graph G with all diodes and current sources removed is
connected.
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Figure 5.5: Circuit without solution for an ideal diode.

5.4.5 Comparisons with other approaches

This may appear to be a lot of work to show the existence and uniqueness of solutions.
However, it is important to remember that this is for ideal diodes. There are other well-
known nonlinear models of diodes for which the current passed is a smooth monotone
function of the voltage. Why not just use the well-known existence results for differential
equations with smooth right-hand sides?

The scale on which large changes in these continuous models is measured is for
many applications very small. At room temperature, the forward current increases by a
factor of e ≈ 2.718 with a difference in the voltage of ≈ 26mV. For small signal analysis,
for which voltage variations of µV (10−6V) to mV (10−3V) are typical, the continuous
model is appropriate. But for power system applications with voltages ranging from tens
to thousands of volts, this is a very small range. In order to use the continuous model as a
continuous model, it becomes important to restrict the time steps in the transition region to
keep the voltage change during a time step much smaller than ≈ 26mV. Thus, there is a
performance drop for using the continuous model.

On the other hand, the ideal diode model is a limit of singular perturbations, of which
the continuous diode model is one. The ideal diode model should give solutions close
to the continuous diode model. But there are degenerate situations for which the diode
model clearly has no solutions, such as forward biasing a diode with a voltage source (see
Figure 5.5). Such situations typically indicate some bad behavior of the continuous model.
This might appear in the form of extreme values or extreme sensitivity in solutions of
the continuous model. Sensitivity to small perturbations typically appears in ideal diode
models as nonuniqueness of solutions. Being able to prove existence and uniqueness of
solutions for these (nondegenerate) situations thus tells us some important things about the
behavior of solutions of the continuous model, and hopefully practical information about
the behavior of real circuits.

Uniqueness is sometimes an undesirable property. For example, if we consider static
electrical circuits, the techniques of this section that resistor-diode networks with given
voltage and current sources indicate that the solution is unique. This means that there are
no bistable resistor-diode networks. Thus no memory circuits can be built out of diodes
and (linear) resistors. However, transistors can be used to build flip-flops as a basic kind of
memory circuit. This requires the property of nonuniqueness, at least for the static case.

Another approach is the use of LCSs (see Section 4.5). These systems offer an almost
entirely algebraic approach to understanding these systems. Unfortunately, LCSs restrict
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Figure 5.6: Bridge rectifier circuit.

our attention to Bohl distributions, which are linear combinations of Dirac-δ functions
and their derivatives, and products of polynomials and (real or complex) exponentials. If
we consider voltage or current sources that are not of this form, LCSs cannot help us.
Considerable success has been found with the LCS approach for passive systems [48]. A
passive system is a differential equation with an input and an output,

dx

dt
(t)= f (x(t), z(t)), x(t0)= x0,

w(t)= h(x(t), z(t)),

together with an “energy storage” function V (x) where for t2 ≥ t1,

V (x(t2))−V (x(t1))≤
∫ t2

t1
〈w(t), z(t)〉 dt .

A linear passive system can have a quadratic energy storage function; most interest is when
V (x)= x T K x , where K is positive definite. Even so, active devices with external voltage
and current sources, such as bipolar junction transistors (BJTs) or field-effect transistors
(FETs), need a different approach.

5.4.6 What if H is not a connected subgraph of G?

In the previous sections we assumed that H , the subgraph of the circuit with the resistors,
capacitors, and inductors, is a connected subgraph of the entire circuit G. While this as-
sumption helps create the system describing the circuit, it is often not true. An example we
have already seen is the bridge rectifier circuit shown in Figure 5.6.

If H is not a connected subgraph of G, then the diode currents are not independent.
For example, in the bridge rectifier circuit, if iD,k is the current in the forward direction in
diode Dk , then iD,1+ iD,3 = iD,2+ iD,4. Let vD,k denote the reverse voltage difference for
diode Dk . While

0≤ iD,k ⊥ vD,k ≥ 0 for each k,

we need to reduce the number of primary current variables. To do this in a systematic way,
consider the graph obtained by collapsing the connected components of H down to single
nodes. The net current into these nodes must sum to zero, but voltages are not well defined
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Figure 5.7: Quotient graph G/H for bridge rectifier.

on these collapsed nodes. Call this collapsed or quotient network G/H . We assume that
every edge of this quotient network is a diode. We assume that G, the entire circuit, is a
connected network, and so G/H is also a connected network. We can, as we did before,
find an MST T ′ for G/H . Every edge e in G/H not in T ′ defines a unique cycle c′e in
G/H .

Note that if H were connected, then G/H would consist of a single node with a loop
for each diode. For the case of the bridge rectifier, H has two connected components: one
containing the voltage source, and the other with the R, L, and C components. This circuit
has a slight violation of our usual rules in that the current from the voltage source does not
pass through a resistor before leaving H ; the possibility therefore exists that the voltage
source could be short circuited. However, the orientation of the diodes prevents this.

The quotient graph G/H for the bridge rectifier is shown in Figure 5.7. Also shown
are the three loops obtained from an MST T ′ of G/H . Let B ′ be the matrix b′f ,e for
e ∈ E(G/H )\E(T ′) and f ∈ E(G/H ) where

b′f ,e =


+1 if f ∈ c′e in the forward direction,

−1 if f ∈ c′e in the reverse direction,
0 if f �∈ c′e.

We use the currents ie, e ∈ E(G/H )\E(T ′) as our primary variables; the current in edge
f ∈ E(G/H ) is then

i f =
∑

e∈E(G/H )\E(T ′)
b′f ,e ie.

If e �∈ E(T ′), this becomes just ie = ie.
However, each edge f ∈ E(G/H ) represents a diode, and so its current must be non-

negative: i f ≥ 0. If i∗ = [
ie | e ∈ E(G/H )\E(T ′)

]
is the vector of these primary variables,

we have the constraint that iD = B ′i∗ ≥ 0, where iD is the vector of all diode currents, to
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ensure nonnegative current in each diode. In the bridge rectifier example,

i2, i3 ≥ 0,

i1− i2 ≥ 0,

i1− i3 ≥ 0.

The set of admissible values of i∗ is then

K = {
i∗ | B ′i∗ ≥ 0

}
.

Thus we do not have a standard linear complementarity relationship between i∗ and the
associated voltages v∗. However, we do have a generalized complementarity relationship
between them, as we will see.

First, K is clearly a closed convex cone. In fact, it is also a polyhedral cone, but this
is not the most important thing. For a GCP we need v∗ ∈ K ∗, the dual cone to K . By
Lemma 2.10,

K ∗ = (
B ′

)T
Rn+.

Now the sum of the diode voltage differences around the loop for edge e ∈ E(G/H )\E(T ′)
is given by

v∗ = (
B ′

)T vD ,

where vD is the vector of reverse diode voltages. Now we must have vD ∈ Rn+; thus any
v∗ ∈ K ∗ can be represented by nonnegative diode voltages. Finally,(

i∗
)T v∗ = (

i∗
)T (

B ′
)T vD

= (
B ′i∗

)T vD = iTDvD ,

so we have generalized complementarity between i∗ and v∗:

K " i∗ ⊥ v∗ ∈ K ∗.

If we write Lv∗(s)= Z (s)
[Li∗(s)+Liext(s)

]+Lvext (s), we can represent the circuit prob-
lem again as a CCP; the kernel function of the CCP is the distribution M(t) where LM(s)=
Z (s). As before, the entries of Z (s) are rational functions and the diagonal entries have rel-
ative degree no more than one and no less than minus one. If the relative degrees of the
entries of Z (s) are less than or equal to zero, then we can proceed as above and show exis-
tence and uniqueness of solutions. If some entries have relative degree one, then we need
to find a way to “flip” currents and voltages, as done in Section 5.4.4, to obtain a CCP
for which we can show that solutions exist. In the case of RC circuits with diodes, we
do not need to perform this “flip,” and we immediately have existence and uniqueness of
solutions.

5.4.7 Active elements and nonlinear circuits

Active elements such as transistors provide some additional challenges to analysis, as they
include new voltage or current sources that depend on currents or voltages elsewhere in
the circuit, providing opportunities for feedback that can strongly affect the analysis. As
with fixed voltage and current sources, certain configurations are impermissible (such as
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Figure 5.8: Ebers–Moll BJT models.

two current sources in series or two voltage sources in parallel). Current sources in series
with a diode, but in the reverse direction, are also impermissible. So we cannot prove
results stating that solutions exist for any circuit. Also, the model used for the active device
can have an effect on the existence of solutions. In this section we will consider bipolar
junction transistors as the active devices; these are closely related to diodes, and the models
we use are piecewise linear. Figure 5.8 shows Ebers–Moll models for BJTs.

A problem with the simplified Ebers–Moll model (see Figure 5.8(c)), even if we use
a threshold model for the diode, is that it does not handle the “saturated” condition of the
transistor. This occurs when, in order to make iC = β iB , we need to make the voltage
across the current source negative; this means that the current source (inside the transistor)
must be an energy source, which is impossible. Rather, the voltage from the emitter (E)
to the collector (C) cannot go below the threshold voltage VT for the diode. In the full
Ebers–Moll model (see Figure 5.8(b)), the voltage across the current source between the
collector (C) and the base (B) with current αF iDE cannot go below −VT , and the voltage
between the collector and the emitter (E) cannot go below zero.
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Figure 5.10: Bistable static flip-flop.

For example, to analyze an astable flip-flop as shown in Figure 5.9, we need the full
Ebers–Moll model, as we have to deal with saturation of the transistors; that is, when one
of the transistors Q1 or Q2 is turned “off,” the other is turned fully “on.”

A crucially important point about the full Ebers–Moll model is that the factors αR
and αF are both less than one.

An important difference between the case of diodes and transistors is that transistor
circuits can be multistable; that is, there can be more than one static solution for a circuit
with transistors. An example is the bistable flip-flop as shown in Figure 5.10.
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If transistor Q1 is “on,” then there is effectively no resistance between its collector
(C) and its emitter (E), and so the voltage at C of Q1 is essentially zero, so that there is
no current flowing through R3 or R6. This means that the voltage at the base (B) of Q2
is below the threshold voltage, and so no current passes through the base of Q2. Hence
no current flows from the collector to the emitter of Q2, and the voltage at B of Q1 is
Vs R5/ (R2+ R4+ R5). With the current gain of the transistor β sufficiently large and
Vs 1 VT , transistor Q1 is turned “on,” completing the feedback loop. Conversely, provided
the circuit is symmetric (R1 = R2, R3 = R4, and R5 = R6), the converse situation with Q2
turned “on” and Q1 turned “off” is equally possible. Note that the circuit can be “flipped”
by supplying an external current to the base of the transistor turned “off.” The time needed
to do this can be arbitrarily short, since there are no memory elements (capacitors or in-
ductors) in the circuit. In theory, the circuit could “flip” spontaneously. The mathematical
formulation does not prevent this. In practice it does not flip, but this can be explained by
saying that each transistor has a small but significant pool of electrons or holes at the base of
the transistor, and that this pool must be drained of electrons (or holes) before it can switch.
Thus the circuit shows hysteretic behavior because of a memory element (effectively a
small capacitance) that exists in physical transistors but not in the Ebers–Moll models.

The existence of bistable flip-flop circuits complicates the dynamic analysis in that
we must either create a formulation which is explicitly hysteretic or include small memory
elements. Including such elements can make the mathematical formulation well defined,
but this may be at the cost of requiring numerical methods to use excessively small step
sizes.

At the time of this writing, the restrictions that must be placed on idealized BJT
circuits in order to obtain existence and uniqueness of solutions is an open question. For
example, including a capacitor between the base and emitter of each transistor may be
sufficient to obtain existence and uniqueness, as well as having a physical justification.

5.5 Application: Economic networks
The applications we consider in this section are about networks where at each node or
vertex of the network there is a constraint, typically related to a resource limit, that makes
the system nonsmooth. Dynamic versions of these networks, which are our main concern
here, have variables associated with each node and differential equations for these variables.
Each node influences neighboring nodes.

These networks are considered “economic” networks in a fairly broad sense. Most
of these networks involve decisions being made at the nodes by independent agents, often
by performing some kind of short-time optimization. A simple example of this is traffic
networks. The static situation is often modeled by the Wardrop equilibrium: on a road
network, everyone is trying to get to their destinations as fast as possible. However, the
time needed to traverse a particular section of road depends on how congested it is. That is,
more cars on the road segment makes the traffic go slower. So the decision that each driver
needs to make depends on the choices of all the other drivers.

A less “economic” model is that of queuing networks. A queue is a sequence of
items which must be “processed” in some way. These items may be people with purchases
to make at a supermarket, or employees waiting to find openings in order to advance their
careers, or perhaps parts in a factory that must be sorted, assigned, assembled, and finally
installed in a finished product. In all cases, there are a number of queues in which items
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await some kind of processing. In some cases, the “items” can make their own decisions
about which queues to join; in others, the decisions are predetermined. Each queue has its
own differential equation relating the number of items in the queue to the rate of process-
ing (or serving) the items in the queue. If the items can choose which queue to join, for
example, using a simple rule such as “Join the shortest queue!”, then there is additional
nonsmoothness in the complete system.

Other sources of economic network problems include market networks where goods
are traded between people in neighboring towns or networks where computers “bid” to
take part of the load of a large parallel computation. Related problems include differential
games, market games (which can describe a small number of competitors trying to max-
imize profits through price and market share), and Cournot equilibria. There are a large
number of these kinds of problems, and they are relevant to a large number of situations in-
volving separate individuals or agents, each trying to maximize their personal reward. (This
reward should not necessarily be regarded as material gain; one can imagine humanitarian
organizations using different strategies to try to reach and help more, and more isolated,
people than other organizations. The point is that there is some kind of competition.)

Whatever kind of situation needs to be described, there are a number of important
modeling decisions to be made about dynamic economic models. Care should always be
taken with behavioral models. Trying to model intrinsically complex things (such as hu-
man beings) by simple and simplistic models should always be taken with a grain of salt.
Economists have been surprised by the importance of emotion in traders and businessmen
(and women), who are presumably just trying to make money. Also, historical data about
behavior often reflects conditions holding at the time the data was collected. Change the
conditions, and the behavior changes too, often confounding predictions based on historic
data.7

Nevertheless, there are often simple rules that seem to be well followed in many
situations. “Join the shortest queue!” is perhaps one of them. Taking the quickest route in
a road network is probably another. Different people will have slightly different objectives.
Some people have more time, and may take a slightly longer route in order to avoid road
congestion, or may prefer a more scenic route. If the great majority of people have the same
objective (shortest time home, less time in queues), this may not make much difference to
the model, and finding appropriate parameters to model this behavior may be considerably
more effort than it is worth in terms of modeling the overall system. There is another
general behavioral strategy which may be appropriate that can be summarized as “Don’t
change unless you have to!”8 Change requires effort, even if it is only mental effort. If
a person’s objective is to minimize this effort, then they will do what they can to avoid
change. This can mean that if the environment (such as road congestion) changes slowly,
then decisions do not change until drivers realize that they have to change their decisions.
This can result in a huge number of drivers suddenly taking new routes, long after they
become available. Or perhaps, they recall old routes, long neglected, when they realize that
the highway they are accustomed to using takes an hour longer than it used to.

Another issue that is especially important in decision-making situations is the infor-
mation available and when decisions are made. Consider, for example, the differences be-
tween the static traffic equilibrium problem and various versions of the dynamic traffic flow

7This is known as the Lucas critique regarding economic behavior, especially in regard to macroeco-
nomic policy.

8The subject of viability theory is essentially devoted to this idea.
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problem. In the static problem, the drivers are assumed to have developed a sense for how
congested various roads are through trial and error, television reports, and news from their
friends. This historical data that each driver has painstakingly built up over the years is nec-
essarily crude and limited, but is reasonably good for modeling the daily commute between
home and work. Information and computer technology can change this situation radically.
Each day, each driver can plan a separate route to and from work. Further, this can change
during the drive. Congestion information can be transmitted to vehicles, which can then
process the data along with a computerized road network, to arrive at a currently optimal
route. Decisions can be taken only at intersections, which are nodes in the road network. If
the decision of which route to take is made before the journey starts, then there may well be
the uncomfortable situation of thousands of drivers converging on a previously empty road
since it had no congestion at the time the decisions were made. For a workable system,
then, we would expect decisions to be made fairly often, based on global and local data.

5.5.1 Traffic networks

As noted in the previous section, the starting point for traffic flow models is usually the
Wardrop equilibrium. This is a continuum model of traffic flow (fractional cars are al-
lowed), which is also static (flows are assumed to exist for all time), but allows for conges-
tion (time needed to traverse a road segment is a function of the flow rate on that segment).
Since, in equilibrium, cars cannot accumulate either on road segments or at intersections,
conservation of flow must hold. That is, the flow rate is the same at each point in a road
segment, and the net inflow to an intersection or node is zero. It is also assumed that the
decisions of a single driver do not significantly change the congestion on each segment.

Wardrop’s formulation [267] of the principle for which he is best known was “The
journey time on all the routes actually used are equal, and less than those which would be
experienced by a single vehicle on any unused route.” To turn this into a more mathematical
statement, we need to set up a framework for traffic networks. These we will represent as
directed graphs or networks. That is, the traffic network will be represented by a graph
G = (V , E) where V is the set of vertices or nodes and E is the set of edges. Nodes
represent intersections while edges represent road links. The edges are directed, in that for
each edge e ∈ E there are nodes start(e) and end(e) representing the starting and ending
nodes of e. Two-way roads are regarded as a pair of edges e, g where start(e)= end(g) and
start(g)= end(e). The traffic flow along edge e is denoted by fe for the static problem and
fe(t) for the dynamic problem.

We use directed networks even for a road network consisting only of two-way roads.
The alternative of using the net flow through a pair of edges e and g with start(e)= end(g)
and start(g)= end(e) given by fe− fg does not properly represent the congestion that can
occur. For example, the net flow can be zero with no cars traveling in either direction or if
there is an equal and large traffic flow in each direction (which would be highly congested).

At each node x ∈ V , there must be conservation of flow, except that certain nodes
will act as sources and others will act as sinks for the flow. Thus, the net flow into an edge
plus the source for the node must be zero. If we introduce the node-edge incidence matrix

wx ,e =


+1, x = end(e),

−1, x = start(e),
0 otherwise,

(5.44)
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then the net flow into a node x is given by

0= hx +
∑
e∈E

wx ,e fe, (5.45)

where hx is the net source of flow for node x . We might, for example, consider a node
representing a suburb to be a source node for the morning commute (hx > 0), while it
would be sink for the evening commute (hx < 0) when workers are returning home. The
sum of the net source flows over all nodes must be zero in order to have conservation of
cars:

0=
∑
x∈V

hx .

Often, traffic models have a single source and a single sink. If there are multiple sinks
(that is, destinations), then we need to be careful to identify the flows associated with
each destination: fe,d is the flow on edge e with destination d . Let D ⊂ V be the set of
destination nodes. Then

fe =
∑
d∈D

fe,d . (5.46)

Furthermore, we need to ensure that the source flows are labeled with the destination node:
hx ,d is the amount of flow originating at node x with destination d . Conservation of flow
must hold for each destination node:

0= hx ,d +
∑
e∈E

wx ,e fe,d for all d ∈ D. (5.47)

The time needed to travel edge e depends on the total flow along edge e: τ̂e = ϕe( fe).
Here ϕe : R→ R is a nondecreasing function with ϕe(0) > 0.

Let τx ,d be the optimal travel time from node x to destination node d . Clearly, τd ,d =
0. Suppose that e is an edge with x = start(e) and y = end(e). Then, since τx ,d is the
optimal travel time from x to d ,

τx ,d ≤ τy,d +ϕe( fe). (5.48)

But drivers with destination d would use this edge e only if we have equality. If there is a
strict inequality, then edge e will give a travel time to d greater than the optimal, and there-
fore drivers going to d would choose another route. Thus we obtain the complementarity
conditions

0≤ fe,d ⊥ τx ,d− τy,d +ϕe( fe)≥ 0 (5.49)

for all nodes x , y ∈ V , destinations d ∈ D, and edges e where x = start(e) and y = end(e).
This can be rewritten in terms of the node-edge incidence matrix as

0≤ fe,d ⊥
∑
x∈V

wx ,e τx ,d+ϕe( fe)≥ 0 for all e ∈ E , d ∈ D. (5.50)
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If, for simplicity, we consider a single destination (D = {d∗}), we can drop the subscript d
and put the system into matrix-vector form using the following vectors:

f= [
fe,d∗ | e ∈ E

]
,

τ = [
τx ,d∗ | x ∈ V

]
,

h= [
hx ,d∗ | x ∈ V

]
,

ϕ(f)= [
ϕe( fe,d∗) | e ∈ E

]
,

W = [
wx ,e | x ∈ V , e ∈ E

]
.

Then

0= h+W f, (5.51)

0≤ f ⊥ W T τ +ϕ(f)≥ 0. (5.52)

This can be rewritten in terms of VIs as

0= h+W f, (5.53)

f≥ 0 & 0≤
〈̃
f− f, W T τ +ϕ(f)

〉
for all f̃≥ 0. (5.54)

This is an example of a VI with Lagrange multipliers as described in Section 2.4.4. The
vector of Lagrange multipliers is τ , which is associated with the constraint 0 = h+W f.
Following the approach of Section 2.4.4, let K = {g | h+Wg= 0, g≥ 0 }. Clearly K is
closed and convex, and f ∈ K . We can write K = L ∩M , where M = {g | h+Wg= 0 }
and L =Rn+. Both L and M are polyhedral sets, so we do not need to worry about constraint
qualifications. The equivalent VI version of (5.53)–(5.54) is then

f ∈ K , (5.55)

0≤ 〈̃
f− f, ϕ(f)

〉
for all f̃ ∈ K . (5.56)

Existence and uniqueness of solutions of the VI follow from the fact that ∇ϕ(f) is a diag-
onal matrix with positive diagonal entries bounded away from zero, and so ϕ is a strongly
monotone function.

5.5.2 Dynamic traffic models

The basic Wardrop model is very powerful, but it describes a static situation. A dynamic
version of this is the Boston traffic equilibrium model of Friesz et al. [107]. The essential
idea is that individual drivers choose the route to take at a given intersection based on the
current congestion values. The flow into a road does not necessarily have to equal the
flow out of a road, as the road can absorb and release a number a vehicles; however, as
the number of cars on a road increases, so does the congestion, and so the speed of the
traffic on the road will decrease. Because of this we need to introduce more variables. In
particular, we need to distinguish between the flow rate into an edge and the flow rate out
of an edge, as these can be different, unlike the static situation.

The model developed here is not the full Boston traffic equilibrium model of Friesz
et al. [107], as the model developed here does not impose the usual “first-in-first-out” queue

Downloaded 03 Nov 2011 to 160.36.192.127. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php



200 Chapter 5. Index Zero and Index One

discipline of single lane roads. However, the “first-in-first-out” discipline can be approx-
imated by subdividing a road without intersections into a sequence of shorter segments.
The limit as the number of segments goes to infinity is a partial differential equation that
is commonly used for modeling traffic on road segments (see, for example, [118]). This
partial differential equation does preserve the “first-in-first-out” discipline.

The basic variables are ne,d (t), the number of vehicles on edge e ∈ E with destination
d ∈ V , f +e,d (t) the rate of inflow of vehicles to edge e with destination d , and f −e,d (t) the rate
of outflow of vehicles from edge e with destination d . The basic law of conservation is that

dne,d

dt
(t)= f +e,d (t)− f −e,d (t). (5.57)

The time to traverse edge e for entering traffic depends only on the total number of ve-
hicles on the edge: τ̂e = ϕe(ne(t)), where ne(t) =∑

d∈D ne,d (t). As before, D is the set
of destination nodes. We assume that ϕe(ne) is an increasing function of ne. Let τx ,d (t)
be the anticipated minimal time (based on current congestion) to travel from node x ∈ V
to the destination d ∈ D. The simplest version of the Wardrop equilibrium is that drivers
choose the exit at an intersection (or node) so as to give this anticipated minimum time.
That is, the inflow f +e,d to an edge e of vehicles with destination d can be positive only if

τy,d = τ̂e+ τx ,d for y = end(e) and x = start(e). Otherwise, f +e,d = 0 and τy,d > τ̂e+ τx ,d .
This can be represented as

0≤ τ̂e−
∑
x∈V

wx ,eτx ,d ⊥ f +e,d ≥ 0 for all e ∈ E , d ∈ D. (5.58)

In addition, τd ,d = 0; that is, the time to reach destination d from node d is zero. These
complementarity conditions represent the drivers’ decisions.

The outflows f −e,d , on the other hand, depend on the local traffic conditions. For an
edge e we will assume that there is a natural speed ve that depends on the vehicle density
ρe := ne/�e where �e is the length of edge e. The natural flow rate on edge e would then
be the product of the density and the speed, which is ρe ve(ρe)= (ne/�e)ve(ne/�e), which
we can write as ne ψe(ne). Note that ve(ρe) is a positive, decreasing function of ρe. We
do not allow ve(ρe)= 0 for any value of ρe: this would mean that no vehicles could leave
the edge. The time to traverse edge e can be determined in terms of the length and natural
velocity on the edge: τ̂e = ϕe(ne)= �e/ve(ne/�e).

The total outflow f −e =∑
d f −e,d can then be written as

f −e = ne ψe(ne).

The outflow f −e,d with destination d is simply f −e multiplied by the fraction of vehicles on
e with destination d:

f −e,d =
ne.d

ne
ne ψe(ne)

= ne,d ψe(ne).

In addition to these conditions, we need conservation of flows to hold. That is, cars
are neither “created” nor “destroyed,” but they must be accounted for. Some nodes can
act as sources or sinks (parking lots, or residential suburbs, for example). Assuming that
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drivers leave their source nodes at predetermined times, the sources have predetermined
flow rates: hx ,d (t) is the rate at which cars with destination d leave node x at time t .
The sinks do not have predetermined flow rates: vehicles arrive when they can, and road
conditions will affect the time taken for the journey. But the sink for the flows for cars with
destination d is precisely the node d . So we set f +e,d (t)= 0 whenever d = start(e); that is,
no vehicle with destination d leaves node d .

If a node x �= d , then the outflow from x (with destination d) must be equal to the
inflow to x (with destination d) plus the source of vehicles (with destination d). Thus

hx ,d (t)=
∑

e:start(e)=x

f +e,d (t)−
∑

e:end(e)=x

f −e,d (t)

=
∑
e∈E

[
w+x ,e f +e,d (t)−w−x ,e f −e,d (t)

]
, (5.59)

where

w+x ,e =
{

1 if x = start(e),
0 otherwise,

w−x ,e =
{

1 if x = end(e),

0 otherwise.

Note that wx ,e = w+x ,e−w−x ,e for all x ∈ V and e ∈ E .
Several points should be noted about this model:

1. The nodes of the traffic network are, in the short time limit, decoupled because vehi-
cles can be “stored” on the edges connecting the nodes.

2. The problem formulation is asymmetric in that the rules governing f +e,d are very

different from the rules governing f −e,d . This is also very different from the static
problem where these must be the same quantity.

3. Generically, for a fixed node x ∈ V , we expect the values τ̂e+ τy,d with start(e)= x
and end(e)= y to be different for different neighboring y. If this is true for all x ∈ V ,
then f +e,d = 0 for all edges e with start(e) = x and end(e) = y where y is not the

optimal choice from node x , and for the edge e∗ that is optimal, f +e∗ ,d is determined
uniquely by the flow constraints. Thus the model is a piecewise smooth differential
equation or inclusion.

Various modifications to this model can be made. One might be to require that “saturated”
nodes cannot accept more vehicles. This requirement can be modeled using VIs. How-
ever, the conservation conditions (5.59) would need to be modified to allow vehicles at
source nodes to stay at the source node if all outgoing edges are saturated. Various other
modifications to the models can be made, and DVIs provide a convenient way of doing so.

5.5.3 Existence

To show existence of solutions, we can represent this system as a differential inclusion.
First, it should be noted that the τx ,d are Lipschitz functions of n = [

ne,d | e ∈ E , d ∈ D
]
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given recursively by

τx ,d = min
e:start(e)=x

τ̂e(ne)+ τend(e),d , (5.60)

τd ,d = 0. (5.61)

If we order the nodes x ∈ V by the number of edges from the destination d , then we
can define τx ,d in terms of τy,d where y ranges over previous nodes in the ordering. The
conditions on the f +e,d values are

f +e,d ≥ 0, (5.62)

f +e,d = 0 if τstart(e),d < τend(e),d + τ̂e(ne), (5.63)

hx ,d (t)=
∑
e∈E

[
w+x ,e f +e,d (t)−w−x ,e f −e,d (t)

]
for all x �= d . (5.64)

Thus the set of permissible values of f+ = [ f +e,d | e ∈ E , d ∈ V ] forms a closed convex set.

Noting that f −e,d (t)= ne,d (t)ψe(ne(t)) is a function of n(t), we can write

dn
dt

(t) ∈ �(t ,n(t)), where

�(t ,n)=
{[

f +e,d −ne,dψe(ne)
]

e∈E ,d∈D
| f+ satisfies (5.62)–(5.64)

}
.

By continuity of τx ,d in n, we can show that the graph of �(t , ·) is closed. The values
�(t ,n) are closed convex sets. And finally, for bounded hx ,d (·), �(t ,n) is contained in a
common closed bounded set. Thus, by Theorem 4.3, there are solutions for this differential
inclusion for any initial conditions n(t0)= n0.

Existence of solutions can also be shown by means of the DVI theory in this chapter.
Again, we can treat τx ,d as a function of n via (5.60)–(5.61). However, we note that for
given x �= d ∈ V , the conservation condition (5.59) means that∑

e:start(e)=x

f +e,d = hx ,d (t)+
∑

e:end(e)=x

ne,d ψe(ne).

We can therefore write

f +e,d =
hx ,d (t)+

∑
e:end(e)=x

ne,d ψe(ne)

 βe,d

with βe,d ≥ 0 and
∑

e:start(e)=x βe,d = 1. Note that we need hx ,d (t)≥ 0 for x �= d to do this.
Writing βx ,d =

[
βe,d | start(e)= x

] ∈ Rmx ,d , then βx ,d belongs to the unit simplex 'x ,d in
mx ,d dimensions, where mx ,d is the number of edges e with start(e)= x , provided x �= d .
We can then modify the complementarity conditions (5.58) to be a VI in βx ,d :

βx ,d ∈ 'x ,d ,

0≤ 〈̃
βx ,d−βx ,d ,

[
τ̂e(ne)+ τend(e),d (n) | start(e)= x

]〉
for all β̃x ,d ∈'x ,d .
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This shows that the DVI has index one. However, the function

Gx ,d(n)= [
τ̂e(ne)+ τend(e),d (n) | start(e)= x

]
(5.65)

is only Lipschitz, not differentiable everywhere. We can, however, take smooth approxi-
mations for the purpose of showing existence of solutions. Using the βe,d variables, the
differential equation (5.57) should be modified to read as

dne,d

dt
=

hstart(e),d (t)+
∑

e′:end(e′)=x

ne′,d ψe′ (ne′ )

 βe,d −ne,d ψe(ne).

Thus the B(t ,n) matrix is diagonal with diagonal entries

Be,d (t ,n)= hstart(e),d (t)+
∑

e′:end(e′)=start(e)

ne′,d ψe′ (ne′ ),

which are positive. The set K over which the DVI is based is

K =
∏

x∈V ,d∈D:x �=d

'x ,d ,

a Cartesian product of simplexes. This set is bounded, and so we can apply Theorem 5.1
to show existence of solutions for smooth approximations to Gx ,d(n). Taking limits of
the resulting approximate solutions (weakly for βx ,d(·), uniformly for n(·)), we obtain a
solution of the DVI for the dynamic traffic problem here.

5.5.4 Uniqueness

At the time of this writing, there is no proof of uniqueness. However, we can obtain some
insights into possible instabilities. Suppose that there are two solutions n(1)(·) and n(2)(·)
with the same initial values n(1)(t0) = n(2)(t0) = n0. Suppose also that there is only one
destination: D = {d}. Let

t∗ = sup
{

t | t ≥ t0 and n(1)(t)= n(2)(t)
}

,

and n∗ = n(1)(t∗) = n(2)(t∗) by continuity. Showing uniqueness is equivalent to showing
t∗ = +∞, and so we just need to show uniqueness for t close to t∗. Clearly we need to
consider the matrix ∇G(n) B(t ,n). Again, we note that G(n) is not smooth in n in general,
which complicates the analysis, but the main problem here is lack of symmetry in ∇G(n).
The matrix B(t ,n) is diagonal with diagonal entries, which we can assume for now to be
positive. The structure of ∇G(n) is block upper triangular with blocks consistent with
the Cartesian product structure of K . To see this, note that we can order the nodes V
according to τx ,d (n∗), with ties broken arbitrarily. Since τ̂e(n∗e ) > 0 for all edges e, τx ,d (n)
can depend only on τy,d(n) for n ≈ n∗ if τx ,d (n∗) > τy,d(n∗). For any node x �= d , we can
write Gx ,d(n)= [

Ge,d (n) | e : start(e)= x
]

with

Ge,d (n)= τ̂e(ne)+ τend(e),d (n).
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Thus, for n ≈ n∗, Gx ,d(n) depends only on nx ,d and ny,d with τx ,d(n∗) > τy,d(n∗). This
dependence is Lipschitz, and Gx ,d(n) depends smoothly on nx ,d .

If we are focusing on a node x �= d , and the edges e with start(e) = x , with nx ,d =[
ne,d | start(e)= x

]
we see that ∇nx ,d Gx ,d (n) is diagonal with entries τ̂ ′e(ne) for e where

start(e) = x . Thus ∇nx ,d Gx ,d(n) Bx ,d(n) is diagonal with positive diagonal entries. If we
could consider nx ,d in isolation, then we could show uniqueness of solutions.

The problem is that there is a feedback loop in the dynamics from ny,d with τy,d(n∗)>
τx ,d(n∗) as well as the forward dependence of nx ,d on ny,d with τy,d(n∗) < τx ,d(n∗). In par-
ticular, if start(e) = x , Be,d (n) depends on ne′,d , where end(e′) = x . This dependence, in
spite of the fact that it is Lipschitz, has the potential to destroy uniqueness.

We could attempt to generalize Theorem 5.3 to systems where ∇G has block up-
per triangular structure with symmetric positive definite blocks consistent with a Cartesian
product structure of K : K =∏m

i=1 Ki . Consider a system

dxi

dt
= fi (x)+ Bi(x)zi (t), xi (t0)= xi,0, (5.66)

zi (t) ∈ Ki & 0≤ 〈̃zi − zi (t), Gi (x)〉 for all z̃i ∈ Ki , (5.67)

i = 1, 2, . . . , m, where ∇xi Gi (x) Bi (x) is symmetric positive definite and Gi (x) depends
only on x j with j ≤ i . We make the usual assumptions that all functions involved are
bounded and Lipschitz. Then there is a symmetric positive definite matrix Qi (x) that is
locally Lipschitz where ∇xi Gi (x) = Bi (x)T Qi (x). In what follows, we use the notation
f (s)=O(g(s)) as s → 0 to mean that there are constants C and s0 > 0 such that ‖ f (s)‖ ≤
C g(s) for all s with |s| ≤ s0. In this case, the “hidden constants,” C and s0, depend on
the bounds and Lipschitz constants of the functions defining the problem, but not on other
quantities. We also use the notation ‖u‖C =

√〈u, Cu〉 for C a symmetric positive definite
matrix; if x(1) and x(2) are two solutions of the system (5.66)–(5.67) with u = x(1)− x(2),
v= z(1)− z(2), we have

d

dt

(
1

2
‖ui‖2

Qi (x(1))

)
≤

〈
dui

dt
, Qi (x(1))ui

〉
+O

(
‖ui‖2

)
=

〈
fi (x(1))− fi (x(2))+ Bi (x(1))z(1)

i − Bi (x(2))z(2)
i , Qi (x(1))ui

〉
+O (‖ui‖‖u‖)

=
〈
B(x(1))z(1)

i − B(x(2))z(2)
i , Qi (x(1))ui

〉
+O (‖ui‖‖u‖)

=
〈
Bi (x(1))vi , Qi (x(1))ui

〉
+O (‖ui‖‖u‖)

=
〈
vi , Bi (x(1))T Qi (x(1))ui

〉
+O (‖ui‖‖u‖) .

On the other hand,

0≥
〈
z(1)

i − z(2)
i , Gi (x(1))−Gi(x(2))

〉
from the VI (5.67). We need to replace Gi (x(1))−Gi (x(2)) by terms using ∇xi Gi (x(1)) =
Bi (x(1))T Qi (x(1)) and perturbations due to the dependence of Gi (x) on x j , j < i . This
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gives

Gi (x(1))−Gi (x(2))=∇xi Gi (x(1))ui +O
(
‖ui‖2

)
+

∑
j : j<i

O (∥∥u j
∥∥)

.

Thus, using boundedness of z(1) and z(2),〈
vi , Bi (x(1))T Qi (x(1))ui

〉
≤O

(
‖ui‖2

)
+

∑
j : j<i

O (∥∥u j
∥∥)

,

and so

d

dt

(
1

2
‖ui‖2

Qi (x(1))

)
≤O (‖ui‖‖u‖)+

∑
j : j<i

O (∥∥u j
∥∥)

=O (‖ui‖Qi (x(1)) ‖u‖Q(x(1))
)+ ∑

j : j<i

O
(∥∥u j

∥∥
Q j (x(1))

)
.

If we set ηi (t) = ‖ui (t)‖2
Qi (x(1)(t )), then we have the differential inequalities for suitable

constant C > 0,

dηi

dt
≤ C

 m∑
j=1

η j +
i−1∑
j=1

η
1/2
j

 , i = 1, 2, . . . , m,

using η
1/2
i η

1/2
j ≤ 1

2

(
ηi +η j

)
. If t∗ = sup

{
t | x(1)(t)= x(2)(t)

}
, then ηi (t∗) = 0 for all i .

We want to show that ηi (t)= 0 for all i for at least a small time interval
[
t∗, t∗ + ε

]
, ε > 0.

However, for m = 2, this is not true. Scaling the time variable by C we can remove this
constant, giving the system

dη1

dt
≤ η1+η2,

dη2

dt
≤ η

1/2
1 +η2

with ηi (t∗) = η2(t∗) = 0. But the system dη1/dt = η2, dη2/dt = η
1/2
1 has the solution

η1(t)= t4/144, η2(t)= t3/48 which satisfies the above differential inequalities for m = 2.
Thus we cannot conclude from this that solutions are unique, but there are strong limits on
how the nonuniqueness can arise.
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Chapter 6

Index Two: Impact Problems

Mechanical impact problems are a rich source of finite-dimensional and infinite-dimensional
DVIs. Unlike resource-constrained problems, these are all at least formally index two since
Newton’s laws of motion give second order differential equations.

We distinguish between rigid-body dynamics with impact, which give finite-dimen-
sional problems, and elastic-body dynamics with impact, which give infinite-dimensional
problems. For elastic-body dynamics there can be contact over the domain of the body, or
over all or part of the boundary of the body. Also, a body can be elastic or viscoelastic. For
the infinite-dimensional problems, the regularity of the solution both in time and space can
be crucial for the existence of solutions and their behavior.

If the (normal) contact force is known, then determining the Coulomb friction forces
and the resulting motions can be represented as an index-one problem of a variational
kind. However, with both the normal and the Coulomb friction forces to be determined,
the problems can no longer be represented as optimization problems. Impact problems
with Coulomb friction remain the most challenging problems involving mechanics with
constraints.

6.1 Rigid-body dynamics
Rigid-body and particle models of mechanics have been in existence since Newton’s Prin-
cipia Mathematica. Impact problems for particles was a topic considered by Newton (see
Stronge [253, p. 28]). One of the features of rigid-body impacts is that the contact forces
must include impulses, that is, Dirac δ-functions. Including such irregular “functions” com-
plicates the theory for these problems. First, we work in a space of measures, and we look
for weak solutions. Second, we need to interpret the differential inclusions in a new way.

Rigid-body models use only a finite number of parameters to describe the state of the
system: three for a particle in R3, three for a rigid body in R2, and six for a rigid body in
R3. For rigid bodies in three dimensions, the issue of how to represent the orientation of
a body is a common problem; the main representations in common use are Euler angles,
unit quaternions, 3× 3 orthogonal matrices, and Rodrigues parameters. Each method has
some advantages and disadvantages: Euler angles have singularities as a coordinate sys-
tem; unit quaternions use four numbers to represent an orientation, and each orientation is

207
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208 Chapter 6. Index Two: Impact Problems

represented by two different unit quaternions; and Rodrigues parameters (while using three
parameters) require occasional transformations to avoid singularities.

Whatever means is used to represent the state of a rigid body, we can represent the
state in a generalized coordinate vector q(t) which can contain angles as well as positions of
centers of mass, for example. We will also assume that there is a generalized velocity vec-
tor, which can contain angular as well as ordinary velocities. Typically v(t)= dq/dt(t), but
with different representations of orientations, the relation dq/dt(t) = G(q(t))v(t) allows
more flexibility. For example, the orientation of a body can be represented by quaternions,
while the velocity may use the ordinary angular velocity vector. Then the dimensions of
q(t) and v(t) are different: q(t) ∈ R4, while v(t) ∈ R3 and G(q(t)) is not even a square
matrix.

However, we represent a system of rigid bodies; when there is impact, the forces can
be impulses and the velocities can be discontinuous. This means that Newton’s second
law, that mass times acceleration is the applied force, must be understood in a generalized
or distributional sense, as neither the acceleration nor the applied force is a conventional
function of time. To understand such systems, we need to turn to ideas such as MDIs as
described in Section 4.4.4. This approach of using measures and MDIs can be found in
books by Monteiro Marques [174], Brogliato [42], and Glocker [111].

6.1.1 Lagrangian formulation of mechanics

Rigid-body dynamics without contact is often described in terms of Lagrangian or Hamil-
tonian mechanics. Hamiltonian mechanics is often preferred by people in theoretical me-
chanics because of the special properties of the resulting differential equations. Here we
will use Lagrangian mechanics, which are a little easier to work with for external, frictional,
and dissipative forces.

Lagrangian mechanics without constraints start with a Lagrangian function

L(q , v)= T (q , v)−V (q), (6.1)

where T (q , v) is the kinetic energy, and V (q) is the potential energy, associated with con-
figuration (generalized coordinate vector) q and generalized velocity v = dq/dt . Note that
q can contain angular and orientation as well as translational components, so v can contain
angular velocities as well as ordinary translational velocities. Usually the kinetic energy is
a quadratic homogeneous function of the velocity

T (q , v)= 1

2
vT M(q)v, (6.2)

where M(q) is the mass matrix. For systems of particles, M(q) is a constant diagonal
matrix with the masses of the particles on the diagonal. For rigid bodies, using a suitable
method for representing orientations such as Euler angles or quaternions, together with the
coordinates of the center of mass, the mass matrix is partly diagonal (with the masses of
the rigid bodies on the diagonal) and partly block diagonal 3×3 or 4×4 matrices (for the
moment of inertia matrices).

The kinetic energy function can sometimes be quadratic but not homogeneous in v:

T (q , v)= 1

2
vT M (q) v+b (q)T v+ c (q) . (6.3)
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6.1. Rigid-body dynamics 209

For example, when rotating or other moving reference frames are used so that q ≡ constant
does not mean that the body is stationary this leads to nonzero b(q) or c(q). A common
example of this are Coriolis forces that arise due to fact that coordinate systems fixed in
the Earth are, in fact, rotating. These Coriolis forces are not true forces, but rather are
pseudoforces that arise because of rotating coordinate systems. For example, if we use
Earth-based coordinate systems with q̇(t) the position of a particle of mass m (in an Earth-
based coordinate system) and the Earth’s angular velocity is �, the velocity of the particle
is q̇+�×q= v+�×q, and so its kinetic energy is

1

2
m ‖v+�×q‖2

2 =
1

2
mvT v+m (�×q)T v+ 1

2
m ‖�×q‖2

2 .

Nevertheless, even in these systems, the kinetic energy function will be taken to have the
form (6.3). The potential energy function V (q) can come from gravitational, electrical,
magnetic, or other forces. As such, there is no general form for V (q).

For the remainder of the chapter we will assume that T (q , v) is quadratic homoge-
neous in v.

The fundamental equations for Lagrangian mechanics come from the so-called prin-
ciple of least action. This name is actually a misnomer, and it should be called the principle
of stationary action. The action is the functional

S
[
q
]

:=
∫ b

a
L

(
q(t),

dq

dt
(t)

)
dt , (6.4)

where a < b are arbitrary times.
The principle of stationary action is that the “gradient” of S[q] with respect to q (with

q(a) and q(b) fixed) is zero. That is,

d

dα
S
[
q+αη

]∣∣
α=0 = 0 (6.5)

for all sufficiently smooth functions η : [a,b]→Rn with η(a)= η(b)= 0. This variational
condition is equivalent to the Euler–Lagrange equations:

0= d

dt
∇vL(q , v)−∇q L(q , v), (6.6)

v = dq

dt
. (6.7)

Assuming that the kinetic energy is quadratic homogeneous (6.2), we obtain the differential
equations

M (q)
dv

dt
= k (q , v)−∇V (q), (6.8)

dq

dt
= v, (6.9)

where

ki (q , v)= 1

2

∑
j ,k

(
∂m jk

∂qi
(q)− ∂mik

∂q j
(q)− ∂m ji

∂qk
(q)

)
,

with mij (q) the (i , j ) entry of the mass matrix M(q).
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6.1.2 Frictionless problems

Frictionless impact problems for rigid bodies can be represented in terms of inequality
constraints on the generalized coordinates:

ϕi (q)≥ 0, i = 1, 2, . . . , m. (6.10)

In order to enforce these constraints, we need to introduce some Lagrange multipliers λ.
Physically, the Lagrange multipliers represent generalized forces that ensure that the con-
straints are not violated. Since the constraints ϕi (q) ≥ 0 must be enforced at all times,
there must be a new Lagrange multiplier for each time t; that is, λ is a function of t: λ(t).
Incorporating this into the Lagrangian function gives

L(q , v, λ)= T (q , v)−V (q)−λTϕ(q). (6.11)

Naively applying the Karush–Kuhn–Tucker conditions to the action leads to the system

M (q)
dv

dt
= k(q , v)−∇V (q)+∇ϕ(q)Tλ, (6.12)

dq

dt
= v, (6.13)

0≤ λ⊥ ϕ(q)≥ 0. (6.14)

This is a DCP with index two:

d

dt
ϕ(q)= ∇ϕ(q)v,

d2

dt2
ϕ(q)= d

dt

[∇ϕ(q)
]
v+∇ϕ(q) M (q)−1

[
k(q , v)−∇V (q)+∇ϕ(q)Tλ

]
,

so that λ can be determined from q and v and
(
d2/dt2

)
ϕ(q).

A simple example

The example in Section 1.1 of a ball of mass m and radius r colliding with a table-top can
be easily treated with this approach. The only generalized coordinate is the height of the
ball y above the table-top. The Lagrangian is

L(y, v)= 1

2
mv2+mgy.

The constraint is

ϕ(y) := y− r ≥ 0.

This gives the system

dv

dt
=−mg+λ,

dy

dt
= v,

0≤ λ⊥ y− r ≥ 0.
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6.1. Rigid-body dynamics 211

The Lagrange multiplier λ can be easily identified as the normal contact force N(t) from
(1.1).

As noted in Section 3.2.4, these problems do not have unique solutions unless we
impose some additional conditions. Usually we assume that there is a given coefficient of
restitution 0 ≤ e ≤ 1 where dy/(t+)=−e dy/dt(t−) for any t where y(t)− r = 0. This is
extended to general mechanical impact problems by requiring that

ni (q(t))T v(t+)=−e ni (q(t))T v(t−) whenever ϕi (q(t))= 0.

There is more on the issue of modeling partially elastic impacts in Section 6.1.4.

6.1.3 Coulomb friction

The standard Coulomb law for frictional contact [71] can be summarized as follows:

• the friction force is in the opposite direction to the direction of the slip velocity;

• the magnitude of the friction force never exceeds µ (the coefficient of friction) times
the normal contact force; and

• if there is nonzero slip, then the magnitude of the friction force is exactly µ times the
normal contact force.

A remarkable property of this law is that it implies that the frictional force does not depend
on the apparent area of contact; this characteristic was first announced by Amontons [9] in
1699, and it was considered very anti-intuitive at the time [37, p. 14].

Coulomb’s law for frictional contact is a semiempirical law, and there are many vari-
ations on it; for more details see Section 1.2. The theoretical foundations for this law are
weak, and dry friction is a physically complex phenomenon. Engineering practice has led
a number of researchers to develop models of dry friction that modify Coulomb’s laws.
However, in this book, we will stay with slight modifications of Coulomb’s basic laws, but
allowing for anisotropic friction.

Often these laws are written in a straightforward way: if Ni is the normal contact
force for the i th contact point and Fi the corresponding friction force,

Fi =−µi Ni
vrel

‖vrel‖2
if vrel �= 0, (6.15)

‖Fi‖2 ≤ µi Ni if vrel = 0. (6.16)

This is often the simplest way to formulate Coulomb friction, but there are other ways.
Even if we stay with Coulomb’s basic laws, we can reformulate them in a way that

makes the complementarity and variational aspects more visible. One approach is to use
the maximum dissipation principle of Erdmann [91]. One begins with the set of possible
friction forces Fi (q) for a given contact i in a given configuration q for unit normal contact
force at this contact. This set Fi (q) should depend continuously on q (provided contact i
is maintained) and be a closed, bounded, and convex set. For isotropic Coulomb friction,
Fi (q) is a disk centered on the origin with diameter µi , the coefficient of friction for con-
tact i ; for a particle, the disk lies in the plane orthogonal to the normal direction vector at
q . If we use generalized coordinates, then orthogonality can be lost, and the shape is no
longer a disk. However, Fi (q) will remain a closed, bounded, and convex set.
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212 Chapter 6. Index Two: Impact Problems

If contact i is broken, then we can take Fi (q) = {0}. In this way, Fi is an upper
semicontinuous set-valued map with closed convex and bounded values. In some situations,
it can be convenient to allow Fi (q) to be something other than a disk. For example, for ice
skating, the friction force on a skate clearly depends on the angle between the slip velocity
and the direction of the blade of the skate. Another use is to include a frictional torque,
such as arises if the steering wheel of a car is turned while the car is stationary. In this case,
the frictional torque is due to the fact that contact occurs at more than just a single point.

The friction force for the contact i must then satisfy

Fi = arg max
F∈Ni Fi (q)

−〈v, F〉 , (6.17)

where v is the (slip) velocity of the system at contact i , and Ni is the normal contact force
for contact i . This maximal dissipation principle can be expressed as a VI:

Fi ∈ Ni Fi (q) & 0≤ 〈
F̃i − Fi , v

〉
for all F̃i ∈ Ni Fi (q). (6.18)

Another way is to use VIs of the second kind. This is based on the support function of
Fi (q): The support function of a closed convex set C is

σC (p)= sup
x∈C
〈x , p〉 .

Note that Fi minimizes F #→ v · F over F ∈ Ni Fi (q), and so F minimizes the function
F #→ v · F+ INi Fi (q)(F) where IC is the indicator function where IC (x)= 0 if x ∈ C and
IC (x)=+∞ otherwise. Thus, 0∈ v+∂ INi Fi (q)(Fi ) or−v ∈ ∂ INi Fi (q)(Fi ). Using Fenchel
duality, this is equivalent to

Fi ∈ ∂ I ∗Ni Fi (q)(−v).

The dual of the indicator function IC is the support function σC . So we can formulate the
condition for Fi as

Fi ∈ ∂σNi Fi (q)(−v).

Noting that σαC (p)= ασC (p) for any α ≥ 0, we get

Fi ∈ Ni ∂σFi (q)(−v).

From the definition of subdifferential, this can be written as

Ni σFi (q)(−w)≥ Ni σFi (q)(−v)+〈Fi , v−w〉 (6.19)

for all w. If Fi (q) is, for example, the disk of radius µi (the coefficient of friction for
contact i ) in the plane generated by orthonormal vectors d1 and d2, then σFi (q)(p) =
µi

∥∥[d1,d2]T p
∥∥

2. Note that the formulation (6.19) is a VI of the second kind. This formu-
lation has become particularly common in the literature for elastic bodies with Coulomb
friction.

Note that given Ni , Fi is the solution of a monotone VI. However, in general rigid-
body dynamics, we do not know the normal contact forces Ni a priori. The separate prob-
lems of determining the normal contact forces Ni , and given the Ni to compute the friction
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6.1. Rigid-body dynamics 213

forces Fi , can both be represented as monotone VIs. The combined problem of finding
both the normal contact forces Ni and the friction forces Fi , however, cannot. This makes
rigid-body dynamics with Coulomb friction difficult, even from a theoretical point of view.

An important concept in rigid-body dynamics with Coulomb friction is the friction
cone for a given contact i , which is the set

F̃i (q) := {Ni ni (q)+ Fi | Fi ∈ Ni Fi (q), Ni ≥ 0 } .
This is a closed convex cone in the space of forces. It is the cone generated by the set
ni (q)+Fi (q). The friction cone for the entire systems with contacts i = 1, 2, . . . , N is
the Cartesian product F̃ (q)=∏N

i=1 F̃i (q). This represents all contact forces acting on the
system.

An alternative approach to formulating the maximum dissipation principle can be
found in [198]. This uses a representation for the set F̃i (q) in terms of level sets:

F̃i (q)= {
Ni ni (q)+ Fi | φi j (q , Ni , Fi )≤ 0, j = 1, 2, . . . , mi

}
,

where each φi j has a number of important properties apart from smoothness conditions:

• φi j (q , Ni , Fi ) is convex in Fi ;

• φi j (q , Ni ,0)≤ 0 for all Ni ≥ 0 with equality if and only if Ni = 0;

• if φi j (q ,0, Fi )≤ 0 for all j , then Fi = 0;

• φi j (q , Ni ,0) is positively homogeneous in Ni with order γi ≥ 1 (that is, φi j (q , Ni ,0)=
Nγi

i φi j (q ,1,0)).

For example, the standard friction cone can be represented by φi1(q , Ni , Fi ) = ‖Fi‖2
2 −

(µi Ni )2 ≤ 0 with Fi ⊥ ni (q), which satisfies the above conditions with γi = 2. If we
have such a representation of the friction cone, then the maximum dissipation principle can
be represented by a specially structured nonlinear CP. In [198] it is shown that solutions
exist for static or incremental frictional contact problems represented in this way. Such
formulations can be used for time-stepping methods in dynamic problems, for example.

6.1.4 Modeling of partially elastic restitution

The modeling of partly elastic impacts cannot be reduced to modeling with DVIs, differen-
tial inclusions, or related techniques. As noted in Section 3.2.4, since this is an index-two
DVI, we cannot expect uniqueness just from specifying the DVI. Instead, we need to im-
pose an additional constraint to handle coefficients of restitution. Note that coefficients of
restitution come into the formulation only when there are impulsive forces. Often it is bet-
ter to give a complementarity or VI formulation of the impact law than to simply write, for
example,

〈
n, v(t+)

〉=−e
〈
n, v(t−)

〉
for Newton’s impact law with coefficient of restitution

e. This is particularly true when there are multiple simultaneous impacts and it becomes
unclear if the condition can even be satisfied. Take, for example, a ball colliding with a
frictional wall after rolling, as shown in Figure 6.1.

Because the wall is rigid, there will be an impulse to the left at contact 1. Because
of friction and because the ball is rolling, there will be an upward frictional impulse, also
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N

F1

1

contact 2

contact 1

ball

Figure 6.1: Ball rolling into a corner: an example of failure of a naive model of inelastic
impact.

at contact 1. Because of this, the ball will have an upward velocity after impact, and there
will be no impulsive forces at contact 2. However,

〈
n2, v(t−)

〉 = 0 (n2 being the normal
inward direction vector), so naive application of Newton’s impact law would imply that〈
n2, v(t+)

〉= 0 as well. Instead, we should use the formulation

0≤ N∗i ⊥
〈
ni (q(t)), v(t+)+ ev(t−)

〉≥ 0

for all i where ϕi (q(t))= 0, (6.20)

where N∗i is the impulse at the i th contact. This way, we can still have
〈
n2, v(t+)

〉
> 0 in

Figure 6.1, as long as there is no impulse at contact 2 (N∗2 = 0).
In Poisson’s impact law, the impact is divided into two parts: the compression phase

and the expansion phase. The compression phase is essentially purely inelastic. At the end
of the compression phase, the normal component of the velocity is zero. The total impulse
of the normal contact force during expansion is taken to be the coefficient of restitution
times the total impulse during compression. If we write the total impulse during the com-
pression for contact i as N (c)

i and the total impulse for expansion as N (x)
i , then following

[12] we can use the formulation

0≤ N (c)
i ⊥

〈
ni (q(t)), v(t (c))

〉
≥ 0,

0≤ N (x)
i − e N (c)

i ⊥ 〈
ni (q(t)), v(t+)

〉≥ 0

for all i where ϕi (q(t))= 0, (6.21)

where v(t (c)) is the velocity after the compression phase (N (c)
i ) and v(t+) is the veloc-

ity after both compression and expansion phases (N (c)
i + N (x)

i ). Normally, N (x)
i = e N (c)

i .
However, there can be situations in which the second complementarity condition is needed
to prevent interpenetration.

Both Newton’s and Poisson’s impact laws can violate conservation of energy. In the
case of Newton’s law of impact, the problem is when the direction of slip reverses during
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6.1. Rigid-body dynamics 215

impact due to friction, as described by Stronge [252, 253]. Stronge’s model of the motion
of a rigid body in contact is a little different from being perfectly rigid. Rather, Stronge
essentially solves a singular perturbation problem: the obstacle is not taken to be rigid, but
to have a spring with very large stiffness which becomes active when there is contact, and
we look at the limit as the stiffness of this spring goes to infinity. From the way it is solved
in [252], we write the velocity as a function of the impulse-so-far 0 ≤ P ≤ N∗1 for a single
contact and treat the configuration q(t) as constant during impact. Applying the equations
of motion then gives a differential equation for the velocities in terms of dv/d P .

To handle this, Stronge introduced an energy-based impact law [253, p. 69]. In this
formulation, the impact is separated into two phases: the compression phase and the ex-
pansion (or decompression) phase. At the end of the compression phase the relative normal
velocity at the contact point is zero, which determines the work done by the normal contact
force during the compression phase (−Wc). The total impulse at contact i is then N (c)

i . The
additional impulse N (x)

i ≥ 0 is then determined so that the work done by the normal contact
force during this phase Wx is a given fraction e2∗ of Wc.

The trouble with this approach, as with all other attempts to create a law of restitution
for rigid-body models, is that it requires the imposition of a physical law a priori, which
did not previously exist. Ideally, the model of restitution is a result of the model, not an
input to it. The essential problem is the lack of uniqueness inherent to index-two DVIs.

In fact, there are a number of reasons why any rigid-body restitution law would be
inadequate in giving physically realistic results in general situations. Evidence of the diffi-
culty in setting up such a mechanism can be seen in the experimental results of Stoianovici
and Hurmuzlu [250]. In their experimental setup, slender steel bars were dropped onto a
flat hard steel anvil. High-speed video cameras captured the motion of the bars, and wires
were connected to both the bar and the anvil in order to determine when there is true contact
between bar and anvil. When the bars were dropped while oriented vertically, the ratio of
the postimpact normal velocity and the preimpact normal velocity was close to one, indi-
cating essentially perfectly elastic impacts according to the Newton impact law. However,
as the angle of the bars from the vertical was increased, the observed Newton coefficient of
restitution dropped from near one to less than half and, for more slender rods, to around 0.1.
For the more slender rods, this drop occurred over a smaller change in angle and was more
dramatic. After this drop, the observed Newton coefficient of restitution started increas-
ing and oscillated erratically about 0.6 to 0.7 for angles far from vertical. This behavior
was found not only in the experimental results, but in numerical simulations as well, using
a finite-dimensional approximation of the elastic behavior of the rod. Experimental and
computational results are shown in Figure 6.2. Qualitatively similar results that compare
well were computed by Paoli and Schatzman [203].

Clearly, from these results, the Newton impact law is far from being physically cor-
rect, even for slender steel bars. However, if we look at the remarkable drop in the ob-
served Newton coefficient of restitution for the most slender bars from around 0.9 for being
dropped vertically to 0.1 for an angle of about 16◦ from vertical, it should become clear
that both the Poisson model of impact and the Stronge energy-based model of impact are
also incorrect. In fact, if there is no friction, the velocity depends affinely on the impulse
parameter P since the configuration changes negligibly during an impact. Thus the Pois-
son coefficient and the Stronge coefficient are identical with the Newton coefficient for
frictionless impacts.
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Figure 6.2: Results from [250] for steel bars impacting a steel anvil at different angles from
horizontal. All bars have width 12.7 mm with lengths (a) 100 mm, (b) 200 mm, (c) 300 mm,
(d) 400 mm, (e) 600 mm. Reprinted with permission.

Also, the simplistic division of an impact into a compression phase and an expansion
phase is often far from reality. The number of “microcollisions” (periods of electrical
contact between bar and anvil) reported by Stoianovici and Hurmuzlu is commonly much
more than one (up to 19 for the most slender bar). Also, the impact time goes from a
minimum near 100µs to a maximum of over 4 ms, again for the most slender bar; the ratio
between largest to smallest impact times is about 40. Both the number of “microimpacts”
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and the contact times indicate complex dynamics within an apparently simple impact. The
erratic behavior of the apparent coefficient of restitution for angles far from vertical also
indicates complex dynamics that cannot be represented by simple algebraic relations.

If none of the available models of restitution is applicable, what is to be done? There
is one situation in which all models essentially agree, which is the case of zero coefficient of
restitution: perfectly inelastic impacts. Beyond this case, the answer is to incorporate elas-
tic vibrations into the models of impact. Here there are difficulties, both computational and
theoretical, but these will be discussed in the sections on elastic and viscoelastic impacts.

6.1.5 Technical issues

Even though for rigid bodies we are essentially dealing with ordinary differential equations,
our contact conditions for the normal contact forces Ni are index two. On the other hand,
the conditions for the Coulomb friction forces Fi are index one. Index-two problems, as
we have seen in Section 3.2.4, have two technical obstacles we will have to deal with.
The first is that the solutions can contain Dirac-δ functions. This occurs very naturally in
mechanical contact problems for rigid bodies, as their velocity is unaffected until the bodies
make contact, when the velocities of one or both bodies must change instantaneously. This
clearly means that the instantaneous acceleration must contain Dirac-δ functions. This
makes our contact equations impulsive. Unlike many other approaches to dealing with
impulsive systems, our contact problems do not have impulses at a priori known times.

The natural way of handling these impulsive systems mathematically is in terms of
measures and spaces of measures. This leads to a different issue, which is how to interpret
these kinds of equations with measures when the right-hand side of our differential “equa-
tions” are sets. This is a natural way of handling the Coulomb friction part of the problem:
we use differential inclusions (see Section 4.1). For handling the combination of differen-
tial inclusions and impulses, the theory of MDIs was set up, as described in Section 4.4.2.

The interaction of the normal and Coulomb friction forces can be very important. In
fact, a famous paradox due to Painlevé [194], which was claimed to show the nonexistence
of solutions to rigid-body dynamics with contact and Coulomb friction forces, is due to this
interaction. The resolution which is hinted at in, for example, Delassus [76, 77] involves
impulses without collisions. This idea finds fuller expression in the works of Moreau [179,
181], Monteiro Marques [174], and Stewart [237, 238]. This paradox has been a stumbling
block for many people working on rigid-body dynamics with friction. The resolution of the
paradox, however, is something many people have experienced writing on a blackboard:
when the chalk goes in the “wrong” direction, it can jump and jitter, leaving a trail of chalk
dots on the board. These dots are evidence of (approximate) Dirac-δ functions. Indeed,
anyone wanting to understand how parts of mechanical systems can suddenly jam instead of
smoothly sliding should understand the interaction of normal and frictional contact forces.

6.1.6 Painlevé’s paradox

Painlevé’s paradox is normally described as appearing when a rod is sliding in the “wrong”
direction across a frictional surface. The situation is essentially that shown in Figure 6.3.

Let us proceed in a naive way, as Painlevé did, assuming that all the forces are
bounded and the solutions are smooth. Then the equations of motion for the rod can be
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mg
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Coefficient of friction
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θ
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(x  , y  )c c

velocity

Figure 6.3: Painlevé’s paradox.

written as

m
d2x

dt2
= F ,

m
d2y

dt2
= N −mg,

J
d2θ

dt2
= �

2
F sinθ − �

2
N cosθ .

Note that J is the moment of inertia for the rod. For the rod sliding to the left (the “wrong”
direction), Coulomb’s laws say that F = µN , where µ is the coefficient of friction. Substi-
tuting this into our equations of motion gives

m
d2x

dt2 = µN ,

m
d2y

dt2 = N −mg,

J
d2θ

dt2 =
�

2
[sinθ µ− cosθ ] N .

For the contact conditions we need to follow the position of the contacting point (xc, yc)
which is at

xc = x− �

2
cosθ ,

yc = y− �

2
sinθ .
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The second derivative gives

d2 yc

dt2 = d2 y

dt2 −
�

2
cosθ

d2θ

dt2 +
�

2
sinθ

(
dθ

dt

)2

= N

m
− g− �

2
cosθ

�

2J
[sinθ µ− cosθ ] N + �

2
sinθ

(
dθ

dt

)2

= 1

m

[
1− m�2

4J
cosθ (sinθ µ− cosθ )

]
N + �

2
sinθ

(
dθ

dt

)2

− g.

If we choose 0 < θ < π/2, µ sufficiently large, and J/(m�2) sufficiently small, then we
can make

1− m�2

4J
cosθ (sinθ µ− cosθ ) < 0.

Assuming that yc = 0, dyc/dt = 0, and dθ/dt = 0 at some time, then no matter how large
N is, we will always get dyc/dt < 0: penetration is inevitable! This contradicts the basic
assumptions of rigid-body dynamics, and so there cannot be any solution to this problem.

Or so Painlevé thought.

6.1.7 Resolution of Painlevé’s paradox

The problem with this approach is that it implicitly excludes the possibility of impulsive
forces: all functions must be sufficiently differentiable. Clearly there must be impulsive
forces in a collision in rigid-body dynamics, but it is less clear that there can be impulsive
forces in other situations. However, this is one of those situations.

How can impulsive forces lead to a solution? Even if we allow N to contain Dirac-δ
functions, we still get the inequality going the wrong way for d2 yc/dt2. The flaw in the
argument is the assumption that “F = µN .” This is true as long as dxc/dt < 0, but if we
have dxc/dt = 0, then we require only that “|F | ≤ µN .” We can then allow other, smaller
values for F/N , and so we obtain a solution.

To see that we really do get a solution, we can set up the problem as a 4×4 linear CP
for the impulsive forces. We can follow the approach of using complementarity-based time-
stepping methods proposed for this problem, such as can be found in [238, 247, 248], but
with the step size h > 0 set to zero. Alternatively, we can derive such conditions directly.
We will assume that N(t) = N∗ δ(t − t∗)+ N1(t) and F(t) = F∗ δ(t − t∗)+ F1(t), where
t∗ is the time of the impulsive forces, and N1 and F1 are smooth functions or, at worst,
measures but with no impulsive component at t = t∗.

We can obtain a solution by assuming that the maximum dissipation principle applies
to the postimpact velocity:

F∗ = argmin x ′c(t∗+)F

over all F ∈ [−µN∗,+µN∗].

This can be written as a CP if we write F∗ = F∗+−F∗−: 0≤ F∗±, and we include an additional
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variable λ. Our complementarity conditions can be written as

0≤ F∗+ ⊥ λ+ x ′c(t∗+)≥ 0,

0≤ F∗− ⊥ λ− x ′c(t∗+)≥ 0,

0≤ λ ⊥ µN∗ − F∗+− F∗− ≥ 0.

On the other hand, the normal contact force can be described in terms of a CP in which we
now need to include a coefficient of restitution e: for yc(t∗)− r = 0 we have

0≤ e y′c(t∗−)+ y′c(t∗+)⊥ N∗ ≥ 0.

To complete the system we have to add the effects of the impulsive forces on x ′c(t∗+) and
y ′c(t∗+):

x ′(t∗+)= x ′(t∗−)+ 1

m
F∗,

y ′(t∗+)= y ′(t∗−)+ 1

m
N∗,

θ ′(t∗+)= θ ′(t∗−)+ �

2J

[
F∗ sinθ− N∗ cosθ

]
,

so, using x ′c = x ′ + (�/2)sinθ θ ′, y ′c = y ′ − (�/2)cosθ θ ′, we have

x ′c(t∗+)= x ′c(t∗−)+ 1

m
F∗ + �2

4J
sinθ

[
F∗ sinθ− N∗ cosθ

]
,

y ′c(t∗+)= y ′c(t∗−)+ 1

m
N∗ − �2

4J
cosθ

[
F∗ sinθ − N∗ cosθ

]
.

The LCP generated is

0≤
 N∗

F∗+
F∗−
λ



⊥
 +a11(θ ) +a12(θ ) −a12(θ ) 0
+a12(θ ) +a22(θ ) −a22(θ ) 1
−a12(θ ) −a22(θ ) +a22(θ ) 1

µ −1 −1 0


 N∗

F∗+
F∗−
λ

+
 (1+ e)y ′c(t∗−)

+x ′c(t∗−)
−x ′c(t∗−)

0

≥ 0,

where

a11(θ )= 1

m
+ �2

4J
cos2 θ ,

a12(θ )=− �2

4J
sinθ cosθ ,

a22(θ )= 1

m
+ �2

4J
sin2 θ .
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The question naturally arises: Do solutions exist for this CP? The answer is given, in fact,
by Lemke’s algorithm. To see this, note that the matrix a11(θ ) a12(θ ) −a12(θ )

a12(θ ) a22(θ ) −a22(θ )
−a12(θ ) −a22(θ ) a22(θ )


is symmetric positive semidefinite, and its null space is one dimensional, generated by the
vector [0, 1, 1]T . First, the matrix

M =
 +a11(θ ) +a12(θ ) −a12(θ ) 0
+a12(θ ) +a22(θ ) −a22(θ ) 1
−a12(θ ) −a22(θ ) +a22(θ ) 1

µ −1 −1 0


of the CP is copositive: if z ≥ 0, then zT Mz ≥ 0. The inequality holds because the upper
left principal 3× 3 matrix is positive semidefinite, and, apart from the µ > 0 entry, the
remainder of the matrix is antisymmetric. If z ≥ 0 and zT Mz = 0, then

z = α

 0
1
1
0

+β

 0
0
0
1

 , α, β ≥ 0, while b =
 (1+ e)y′c(t∗−)

+x ′c(t∗−)
−x ′c(t∗−)

0

 .

From this, 〈z, b〉 = 0, and by Theorem 6.1 in Section 6.1.9 there is a solution to the LCP.
This solution provides a resolution of the paradox of Painlevé.

6.1.8 Approaches to the general problem of existence

There are two main approaches commonly used to establish existence of solutions to rigid-
body dynamics with Coulomb friction:

• use a penalty approximation for the normal contact force and take the rigid limit
(where stiffness goes to +∞);

• use a time-stepping method which respects the no-interpenetration condition (or a
linearization of it), and take the limit as the time step goes to zero.

Both involve a limiting process for which considerable analysis is needed. There is also
some difference in how we set up the approximations that can have an important effect on
the limiting solution; in particular, the coefficient of restitution of the solutions obtained
by different processes can be quite different. It is more natural to set up penalty methods
that conserve energy, and hence give coefficient of restitution e = 1 in the limit, while for
implicit time-stepping methods it is much more natural to obtain a coefficient of restitution
e = 0 in the limit. There are, however, ways of incorporating different coefficients of resti-
tution into either method. See, for example, [200, 201, 202, 204] for penalty methods and
[12, 13, 14] for time-stepping methods that incorporate coefficients of restitution between
zero and one. Both approaches are amenable to numerical treatment, but the penalty ap-
proach becomes a two-stage method: first approximate the differential equations and then
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solve the differential equations using some (usually standard) time-stepping method. How-
ever, as the penalty parameter approaches its limit, the time step used must be decreased
accordingly to prevent numerical instability. This “tuning” of the time step, if not done
carefully, can have disastrous effects on a simulation. On the other hand, using the comple-
mentarity framework for performing a time step usually leads to more difficult problems,
especially when Coulomb friction is included. However, recent work seems to have made
some progress on both of these problems [206, 256], and it is hard to see at this time which
approach will become the dominant one, or if either will dominate the other.

Whatever approach is used, there are several steps we can take to obtain existence of
solutions. The first is to obtain energy bounds, from which we obtain momentum bounds.
This, in turn, can be used to bound integrals of the normal contact forces. Then we can
obtain weak* convergence of the normal contact forces as measures, pointwise convergence
of the velocities, and uniform convergence of the trajectories. The task is then to show that
the limits indeed satisfy all the conditions for a solution.

6.1.9 Proving existence with Coulomb friction

We will set up an MDI formulation of the problem with Coulomb friction with inelastic
impacts. The treatment of this section follows [238], which provides a complete proof
of the existence of solutions to rigid-body dynamics that includes Coulomb friction (and
Painlevé’s problem), at least for one contact. Partially elastic impacts without friction are
treated in [163, 201, 202, 205], while inelastic impacts with friction for particles is treated
in [174]. For full details of the proof, see [238].

The objective

The objective of the proof is to show the existence of solutions to the system (understood
in the DVI and MDI senses):

M(q)
dv

dt
= k(q ,v)−∇V (q)+n(q) N(t)+ D(q)β(t), (6.22)

dq

dt
= v, (6.23)

0≤ ϕ(q(t))⊥ N(t) ≥ 0, (6.24)

β(t) ∈ N(t) K & 0≤ v(t)T D(q)
[
β̃−β(t)

]
for all β̃ ∈ N(t) K . (6.25)

We suppose that ϕ : Rn → R is a scalar function. Recall that

ki (q ,v)=−1

2

∑
j ,k

[
∂mij

∂qk
+ ∂mik

∂q j
− ∂m jk

∂qi

]
v j vk .

Here, M(q) is the mass matrix, V (q) is the potential energy function, n(q)= ∇ϕ(q) is the
inward normal vector for the feasible set {q | ϕ(q)≥ 0 }, D(q) is the matrix of direction
vectors of the friction set (for unit normal contact force), and K is the set generating the
set of friction forces for unit normal contact force: {D(q)β | β ∈ K }. For the proof, K
is taken to be the unit simplex

{
β | β ≥ 0, eTβ = 1

}
where e is the vector of ones of the

appropriate size. The function k(q ,v) is the generalized pseudoforce due to a nonlinear
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representation of the configuration of the system. The normal contact force is n(q(t)) N(t),
and the friction force is D(q(t))β(t). Both β(t) and N(t) can be measures, v(t) is a function
of bounded variation, M(q) is symmetric positive definite for all q , and all functions are at
least Lipschitz and are typically smooth.

For the impact law, we assume that the impact law is perfectly inelastic: if ϕ(q(t))=
0,

0≤ n(q(t))T v(t+)⊥ N(t) ≥ 0. (6.26)

Since v(·) can be discontinuous, we interpret the Coulomb friction law (6.25) as applying to
the postimpact velocity. We have already seen that something like this is needed to resolve
Painlevé’s paradox. We thus require that

β(t) ∈ N(t) K & 0≤ v(t+)T D(q(t))
[
β̃−β(t)

]
(6.27)

for all β̃ ∈ N(t) K .

In all that follows, h > 0 is the step size for a discrete (or numerical) approximation.

Time stepping

Time stepping is basic to the method of proof. We use approximations q�≈ q(t�), v�≈ v(t�)
with t�= t0+�h. At each time step we solve a CP, which we list here for one contact, which
represents the above system with K the unit simplex:

M(q�+1)(v�+1− v�)= n(q�)N�+1+ D(q�)β�+1 (6.28)

+h
[
k(q�,v�)−∇V (q�)

]
,

q�+1−q� = hv�+1, (6.29)

0≤ β�+1 ⊥ λ�+1e+ D(q�)T v�+1 ≥ 0, (6.30)

0≤ N�+1 ⊥ n(q�)T v�+1 ≥ 0, (6.31)

0≤ λ�+1 ⊥ µN�+1− eTβ�+1 ≥ 0, (6.32)

provided ϕ(ql)+ h n(ql )T vl ≤ 0. If ϕ(ql)+ h n(ql )T vl > 0, then we assume that there is
no contact, and so N�+1 = 0 and β�+1 = 0. The variable λ�+1 is a Lagrange multiplier
associated with the maximal dissipation principle for Coulomb friction.

That solutions exist for this problem is based on an LCP

0≤
 N

β

λ

⊥
 nT M−1n nT M−1 D 0

DT M−1n DT M−1 D e
µ −eT 0

 N
β

λ

+
 nT b

DT b
0

≥ 0 (6.33)

with b = h M−1(k(q ,v)−∇V (q)). Solutions exist for this problem, and if we fix M , n and
D can be computed by Lemke’s algorithm. The proof of this is instructive, as the matrix
above is copositive but not copositive plus. Note that cols(D) is the set of columns of D.

Downloaded 03 Nov 2011 to 160.36.192.127. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php



224 Chapter 6. Index Two: Impact Problems

Theorem 6.1. If n �∈ spancols(D), M is symmetric positive definite, and µ > 0, then solu-
tions exist for (6.33).

This proof requires results from Section 2.2.1, which the reader may refer to in order
to understand the proof.

Proof. From the reversibility lemma (Lemma 2.9) applied to Lemke’s algorithm, Lemke’s
algorithm for the LCP

0≤ z ⊥ M̃z+q ≥ 0

can fail only if there is an unbounded ray

(z, w, s)= (z0, w0, s0)+α (z∞, w∞, s∞) , α ≥ 0,

for the system

0≤ z ⊥w = M̃z+ s d+q ≥ 0

with s0 > 0, s∞ = 0, and z∞ �= 0. Here d is a vector with only positive entries used for
starting Lemke’s algorithm. The matrix

M̃ =
 nT M−1n nT M−1 D 0

DT M−1n DT M−1 D e
µ −eT 0


is copositive (z ≥ 0 implies zT M̃z ≥ 0) since the upper left 2×2 block [n, D]T M−1 [n, D]
is positive semidefinite, µ> 0, and the remainder of the matrix is antisymmetric. However,
if z ≥ 0 and zT M̃z = 0, then with zT = [

N , βT , λ
]
, we have

0= (Nn+ Dβ)T M−1 (Nn+ Dβ)+µNλ,

giving Nn+ Dβ = 0 and Nλ = 0. Since n �∈ spancols(D), we have N = 0 and Dβ = 0.
However, it is still possible to have λ > 0, so M̃ is not strictly copositive.

From the properties of the unbounded ray,

0= zT∞w∞ = zT∞M̃z∞,

0= zT∞w0 = zT∞
(
M̃z0+ s0d+q

)
,

0= zT
0 w∞ = zT

0 M̃z∞.

If we write zT∞ =
[
N∞, βT∞, λ∞

]
, then from the previous calculations, N∞ = 0, Dβ∞ = 0.

But

(
M̃+ M̃T

)
z∞ =

 nT M−1 (nN∞+ Dβ∞)+µλ∞
DT M−1 (nN∞+ Dβ∞)

µN∞


=

 µλ∞
0
0

 ≥ 0.
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Thus M̃T z∞ ≥−M̃z∞, and since z0 ≥ 0, zT∞M̃z0 = zT
0 M̃T z∞ ≥−zT

0 M̃z∞ = 0, we have

0= zT∞
(
M̃z0+ s0d+q

)
≥ s0 zT∞d+ zT∞q .

But zT∞q = [N∞, βT∞, λ∞]
[
nT b,

(
DT b

)T , 0
]T = (N∞n+ Dβ∞)T b = 0; thus 0 ≥ s0 zT∞d .

As s0 > 0, we have zT∞d = 0. But d is a vector with strictly positive entries and z∞ ≥ 0,
so z∞ = 0. Thus w∞ = 0. Combined with s∞ = 0, we see that (z∞, w∞, s∞)= 0, and so
we do not really have an unbounded ray. Thus Lemke’s method does not fail, but rather
succeeds in finding a solution of the complementarity problem (6.33), and so a solution
exists.

It is possible to use the results for this LCP to solve the system (6.28)–(6.32) with
M = M(q�+1), as there is some nonlinear feedback from the solution of the LCP and
M(q�+1) in (6.28). Details can be found in [238].

Bounds on the discrete-time solutions

The first and most important bound is the energy bound. If we write M(q�+1)= M�+1, and
k� = k(q�,v�)−∇V (q�), then a discrete energy bound is proved first:

1

2
(v�+1)T M�+1v�+1+ (k�)T q�+1 ≤ 1

2
(v�)T M�+1v�+ (k�)T q�.

To show this, start with

(v�+1)T M�+1(v�+1− v�)= 1

2

[
(v�+1)T M�+1v�+1− v� T M�+1v�

]
+ 1

2
(v�+1− v�)T M�+1(v�+1− v�)

and then substitute the right-hand side of (6.28) for M�+1(v�+1−v�). With this, bounds on
the kinetic energy K E� = 1

2v
� T M�v� can be found of the form

K E�+1 ≤ K E�+h

[
a+b

(
K E�

)1/2+ c
(

K E�
)3/2

]
for positive constants a, b, and c which depend only on the problem data. A discrete
nonlinear Gronwall lemma like Lemma 5.2 can then be applied to show short-time bounds,
independent of h > 0, on the velocities

∥∥v�∥∥ ≤ Bv for 0 ≤ �h ≤ T ∗ for some T ∗ > 0. We
can define numerical trajectories: qh(·) is the piecewise linear interpolant of qh(t�) = q�,
and vh (·) is the piecewise constant interpolant vh(t) = v�+1 for t� < t ≤ t�+1. Then these
functions are uniformly bounded as h ↓ 0 and qh(·) are uniformly Lipschitz on

[
0, T ∗

]
.

The next step is to show that the variation of vh (·) is uniformly bounded on
[
0, T ∗

]
.

This is equivalent to showing that
∫ T ∗

0 Nh (t)dt is uniformly bounded, where Nh (·) is the
piecewise constant interpolant Nh (t) = N�+1/h for t� < t ≤ t�+1. To prove this we need
an additional condition: the cone

F̃ (q)= {n(q) N + D(q)β | β ∈ N K }
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friction
cone

friction
cone

ball

wallwall

Figure 6.4: Example of jamming. The friction coefficient is large enough that a horizontal
contact force from the left can be matched by an opposing force on the right without causing
the ball to move or spin. Reprinted with permission.

must be a pointed cone. That is, we require that F̃ (q) not contain a vector subspace other
than {0}. Without this it is possible to have jamming where there is no bound on the contact
forces. An example of jamming is shown in Figure 6.4.

Since F̃ (q) is a pointed cone in a finite-dimensional space, there is a vector ζ where
for all w ∈ F̃(q), ζ Tw ≥ ‖w‖. Now

ζ T
(
v�+1− v0

)
=

�∑
j=0

ζ T
[
h k j +n(q j ) N j + D(q j )β j

]

≥ ζ T h
�∑

j=0

k j +
�∑

j=0

∥∥∥n(q j ) N j + D(q j )β j
∥∥∥

≥ ‖ζ‖ (t�+1− t0) max
0≤ j≤�

∥∥∥k j
∥∥∥+η

�∑
j=0

N j ,

where η > 0 is the distance between n(q) and {D(q)β | β ∈ K }. Since v�+1 is bounded
from the kinetic energy bounds, and k j are uniformly bounded for 0 ≤ j h ≤ T ∗, we see
that

∑�
j=0 N j are also uniformly bounded for �h ≤ T ∗. Thus

∫ T ∗
0 Nh (t)dt are uniformly

bounded, and
∑�

j=0

∥∥v j+1− v j
∥∥=∨T ∗

0 vh(·) is uniformly bounded as h ↓ 0. Also, if we

take βh(t) = β� for t� < t ≤ t�+1, then we also have
∫ T ∗

0 βh (t)dt uniformly bounded as∥∥β�
∥∥≤ N� maxw∈K ‖w‖.

These results hold only on a “sufficiently short” time interval
[
0, T ∗

]
. To extend

this further, we need stronger bounds to prevent “blowup” of the velocities in finite time.
This involves using energy bounds refined using uniform bounded variation of vh (·). The
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bounds obtained have the form

v� T M�v�+V (q�)≤ v0 T M0v0+V (q0)

+O(h)

1+
�−1∑
j=0

∥∥∥v j+1− v j
∥∥∥
 .

Mild conditions on V (q) then ensure that the numerical (and continuous) problems have
solutions whose bounds do not go to infinity in finite time. Bootstrapping these results
allows us to obtain uniform bounds on both vh (·) and its variation over any finite interval
[0, T ].

Obtaining limits

Thus on the interval
[
0, T ∗

]
we can use the Arzela–Ascoli theorem, Alaoglu’s theorem, and

Helly’s selection theorem to prove the existence of a subsequence of h ↓ 0 in which

qh(·) → q(·) uniformly,

Nh (·) ⇀∗ N(·) weak* as measures,

βh(·) ⇀∗ β(·) weak* as measures,

vh(·) → v(·) pointwise almost everywhere,

with q(·) continuous, N(·) and β(·) measures, and v(·) having bounded variation.
From the theory of MDIs we have

M(q)
dv

dt
∈ k(q ,v)−∇V (q)+ F̃(q(t)),

dq

dt
= v,

with the first inclusion understood in the sense of MDIs, by Theorem 4.9.
It should also be noted that β(t) ∈ N(t) K in the sense that the Radon–Nikodym

derivative dβ/d N(t) ∈ K for N-almost all t .

Inelastic impacts

To show that we have inelastic impacts in the single-contact case, at least in the one-contact
case, we first show that

(n�+1)T v�+1 ≤max
(

0, (n�)T v�
)
+ K h

for some number K independent of h. So over a number of steps we have

n(qh(t+ ε))Tvh (t+ ε)≤max
(

0, n(qh(t− ε))Tvh (t− ε)
)
+ K (2ε+h) .

Taking limits as h ↓ 0 gives

n(q(t+ ε))T v(t+ ε)≤max
(

0, n(q(t− ε))Tv(t − ε)
)
+2 K ε.
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Finally, taking ε ↓ 0,

n(q(t))T v(t+)≤max
(

0, n(q(t))T v(t−)
)

.

Then, if ϕ(q(t))= 0, we must have n(q(t))Tv(t+)≥ 0 and n(q(t))T v(t−)≤ 0. Thus

n(q(t))T v(t+)= 0,

as desired.

Coulomb friction in the limit

Showing that the Coulomb friction law holds in the limit requires a number of steps. The
essential part of this is to accurately estimate the changes in energy over an arbitrarily small
time interval. The preparation for this involves showing that

n(q�+1)T v�+1−µ

∥∥∥D(q�+1)T v�+1
∥∥∥∞

≥ n(q�)T v�−µ

∥∥∥D(q�)T v�
∥∥∥∞+O(h).

This can be done using the complementarity formulation of the time stepping. Taking limits
of the difference over many steps, we then have

n(q(t+ ε))Tv(t + ε)− µ

∥∥∥D(q(t+ ε))T v(t+ ε)
∥∥∥

≥ n(q(t))T v(t)−µ

∥∥∥D(q(t))T v(t)
∥∥∥+O(ε).

We then apply the following lemma.

Lemma 6.2. Suppose that µn ⇀∗ µ weak* as measures, µn ≥ 0, and θn → θ pointwise.
Suppose also that θn are uniformly bounded, and for all ε > 0 sufficiently small θn(t+ε)≥
θn(t)− K ε for all t (K independent of t, n, and ε > 0). Then, if θnµn ⇀∗ ν as measures,
ν ≥ µθ+.

With this, if Nh ⇀∗ N and Nh
[
n(qh)T vh −

∥∥D(qh)T vh
∥∥∞]

⇀∗ ν in a suitable sub-
sequence, then ν ≥ N

[
n(q)T v+−∥∥D(q)v+

∥∥∞]
. This can then be applied to obtain an

energy balance.
The energy function is

E(t)= E(q(t),v(t)), where

E(q ,v)= 1

2
vT M(q)v+V (q).

The function t #→ E(t) is a function of bounded variation because q(·) is Lipschitz and
v(·) has bounded variation. The main problem in computing the differential measure d E
is vT M(q)v because it involves a product of functions of bounded variations. There is,
however, the product rule discovered by Moreau [177, 180] (Lemma 4.10): If u and v have
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bounded variation and ψ(t) = 〈u(t), v(t)〉, then dψ = 〈
du, v+

〉+ 〈
u−, dv

〉 = 〈
du, v−

〉+〈
u+, dv

〉
. With this rule,

d
(
vT M(q)v

)
= dvT M(q)v−+ (

v+
)T

d (M(q)v)

= dvT M(q)v−+ (
v+

)T (d(M(q))v+M(q)dv)

= (
v−+ v+

)T
M(q)dv+ vT d(M(q))v.

The measure differential d(M(q)) can be written out in terms of its components:

d(mij (q))=
∑

k

∂mij

∂qk
(q(t))

dqk

dt
(t)dt

=
∑

k

∂mij

∂qk
(q(t))vk(t)dt ,

where “dt” is the Lebesgue measure. So

vT d(M(q))v =
∑
i, j ,k

∂mij

∂qk
(q(t))vi (t)v j (t)vk(t)dt

=−2vT k(q ,v)dt .

Thus

d E = 1

2

(
v−+ v+

)T
M(q)dv+ 1

2
vT d(M(q))v+ vT∇V (q)dt

= (
v+

)T
M(q)dv+

[
vT∇V (q)−2vT k(q ,v)

]
dt− 1

2

(
v+− v−

)T
M(q)dv

= (
v+

)T [
n(q) N + D(q)β+ k(q ,v)dt−∇V (q)dt

]
+

[
vT∇V (q)− vT k(q ,v)

]
dt− 1

2

(
v+− v−

)T
M(q)dv

= (
v+

)T [
n(q) N + D(q)β

]− 1

2

(
v+− v−

)T
M(q)dv.

Since n(q(t))T v+(t)= 0 whenever ϕ(q(t))= 0, it follows that
(
v+

)T
n(q) N = 0.

If Eh(t)= E(qh(t),vh (t)), then from the discrete formulation,

Eh(t ′2)− Eh(t ′1)

=−1

2

∑
�h∈(t ′1,t ′2)

(v�+1− v�)T M(q�+1)(v�+1− v�)

+
∑

�h∈(t ′1,t ′2)

N�+1[n(q�+1)T v�+1−µ‖D(q�+1)T v�+1‖∞]+O(h)

=−
∫ t ′2

t ′1
Nh µ‖D(qh)T vh‖∞ dt− 1

2

∫ t ′2

t ′1

(
v+h − v−h

)T
M(qh)dvh +O(h).
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The functional u #→ ∫[
t ′1,t ′2

] (u+−u−
)T

M(q)du is a nonnegative quadratic (and therefore

convex) functional. The difficulty we have to face is that although vh ⇀∗ v, we cannot
conclude that∫

[
t ′1,t ′2

] (v+− v−
)T

M(q)dv ≤ liminf
h↓0

∫
[
t ′1,t ′2

] (
v+h − v−h

)T
M(q)dvh ,

as we might expect from Mazur’s lemma. The reason is that we have only weak* conver-
gence, rather than weak convergence, and Mazur’s lemma applies to weakly convergent
sequences.

Let us suppose that (restricting to a further subsequence if necessary)(
v+h − v−h

)T
M(qh)dvh ⇀∗ σ ,

Nh

[
n(qh)T vh −µ‖D(qh)T vh‖∞

]
⇀∗ ν.

We first note that σ ≥ 0. We already know that ν ≤ N
[
n(q)T v+−µ‖D(q)T v+‖∞

]
. Thus

d Eh ⇀∗ d E (since Eh → E pointwise)

= −1

2
σ + ν.

Thus d E ≤ N
[
n(q)T v+−µ

∥∥D(q)T v+
∥∥∞]=−µN

∥∥D(q)T v+
∥∥∞. Recall that

d E = (
v+

)T [
n(q) N + D(q)β

]− 1

2

(
v+− v−

)T
M(q)dv

= (
v+

)T
D(q)β− 1

2

(
v+− v−

)T
M(q)dv

≤ −µN
∥∥∥D(q)T v+

∥∥∥∞ .

At any t where v is continuous,
(
v+− v−

)T
M(q)dv= 0, and since eTβ ≤µN (interpreted

in the sense of measures if necessary), we have(
v+

)T
D(q)β =−µN

∥∥∥D(q)T v+
∥∥∥∞ ,

which is the maximum dissipation principle for Coulomb friction. Note that we do not need
v to be absolutely continuous in order to obtain this result; continuity of v is sufficient.

Another condition under which we can prove the maximum dissipation principle is
under Erdmann’s condition [91]:

0 < n(q)T M(q)−1 [
N n(q)+ D(q)β

]
(6.34)

whenever eTβ ≤ µN , N �= 0. Geometrically, this means that accelerations due to the
contact forces must be in the admissible region. Erdmann noted that under this condition,
Painlevé’s paradox cannot occur. For particles (as discussed by Monteiro Marques [174]),
M(q)= m I and the columns of D(q) are orthogonal to n(q) so that (6.34) holds.
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To prove that the maximal dissipation principle holds in this case, it is important that
if there is a jump in the velocity, then this jump occurs in one time step of the discretization
rather than being spread out over several time steps. To explain in more detail, let

0 < γ (q) :=min
{

n(q)T M(q)−1 [
n(q)+ D(q)β

] | eTβ ≤ µ
}

and let γ ∗ > 0 be a lower bound of γ (q) for q in a given bounded region containing the
numerical and limiting trajectories. Then

n(q(t))T [
v(t+ ε)− v(t+)

]≥ γ ∗

2

∫
(t ,t+ε)

N +O(ε). (6.35)

But if q(t) is on the boundary of the admissible region, then n(q(t))T v(t+) = 0; indeed,
n(q(t))T v(t + ε) = O(ε), so

∫
(t ,t+ε) N = O(ε) and N is bounded over sufficiently small

intervals (t , t+ ε). Thus v is Lipschitz over such intervals, and so we can conclude that the
maximum dissipation principle holds over such intervals.

The problem remaining is to treat the case where q(t) is on the boundary of the
admissible region, but n(q(t))T v(t−) < 0. In the time-stepping method, if n�T v� < 0 but
N� > 0, then n�T v�+1 = 0. The bound (6.35) can be applied to the time-stepping method to
show that N�+k is bounded for 0 ≤ k h < ε, and so

∥∥v�+k − v�
∥∥ =O(k h)=O(ε). Taking

the time step h ↓ 0, the limiting velocity jump occurs essentially in one time step. Since
the maximum dissipation principle is built into the time-stepping method, the maximum
dissipation principle holds in the limit at the velocity jump.

The final task is to show that even if Erdmann’s condition fails but the friction force
is one dimensional (which is the case in the Painlevé paradox), the maximum dissipation
principle still holds. Again, the only point of difficulty is at velocity jumps. If there is a ve-
locity jump at time t and D(q(t))T v(t+)= 0, then any atom β ({t}) satisfying the constraint
eTβ ({t}) ≤ µN ({t}) satisfies the maximum dissipation principle. So we consider the case
D(q(t))T v(t+) �= 0. In the one-dimensional friction case, D(q) = [+d1(q),−d1(q)

]
. The

main task is then to show that in a sufficiently small interval (t− ε, t+ ε) the slip velocity
d1(q�)T v� does not change sign. If this were to happen for arbitrarily small h > 0, then in
the limit we must have

0= n(q(t))T M(q(t))−1 [
n(q(t))±µd1(q(t))

]
,

which would imply n(q(t))T M(q(t))−1d1(q(t))= 0, and Erdmann’s condition would hold;
a contradiction. Thus solutions exist even for the Painlevé paradox.

Thus Painlevé’s paradox does not lead to a contradiction in rigid-body dynamics.
Rather it can result in impulsive or unbounded forces without a collision.

6.1.10 Limits of rigid-body models

Clearly all real materials have some elasticity; no material is perfectly rigid, just as no
material is perfectly elastic or viscoelastic, or even a continuum. But the problem with
rigid-body dynamics with impact is deeper than this. The fundamental problem is a lack
of uniqueness of solutions of index two, which is why the coefficient of restitution is intro-
duced (see Section 6.1.4).
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(b) (c)

rod before impact

rod after impact

table
A

B D

table
A

B D

table
A

B D

torsion spring

C

(a)

Figure 6.5: Chatterjee’s example showing that rigid-body dynamics is not the limit as stiff-
ness goes to infinity; (a) rigid-body model; (b) torsion spring model; (c) fully elastic model.

It is natural to try to justify a model, or to truly understand it, by trying to derive it
as a limit of a more sophisticated but difficult to analyze model. The natural path here is to
incorporate elasticity or some approximation to it, and to see if we can recover the rigid-
body model by taking the stiffness of the elastic elements to infinity. This could at least
be used to determine an intellectually justifiable basis for models of restitution. However,
the limit as stiffness goes to infinity of more sophisticated models with elastic elements is
not rigid-body dynamics under any model of restitution. This can be seen in the example
of Chatterjee [50]. Although Chatterjee claims to be critiquing the use of complementarity
conditions for modeling restitution, the example in fact undermines any kind of algebraic
restitution law.

The example in [50] is essentially a rod that is lying on a table with one end extended
beyond the edge of the table. An impulse is applied to the end of the rod not supported by
the table. This is illustrated in Figure 6.5.

To approximate the elasticity of the rod, consider a torsion spring located at C. How-
ever, the hinge at C means that the section of the rod CD rotates clockwise. If BC were less
than CD, then the point D would rotate into the table without an impulse at D, no matter
how stiff the torsion spring at C is. Furthermore, the strength of the impulse at D is inde-
pendent of the stiffness of the torsion spring. Taking the stiffness of the torsion spring to
infinity still gives an impulse at D, contradicting the behavior expected from a rigid-body
model. Although only the torsion spring model is analyzed in [50], physical experiments
indicate that the same behavior is seen in real rods which are fully elastic.

If rigid-body models do not accurately reflect physical reality, we should consider
the next step in sophistication for our models: elastic and viscoelastic bodies. Because
these result in partial differential equations, we must work in infinite-dimensional spaces
and deal with some of their additional technical difficulties.

6.2 Elastic bodies in impact
Elastic bodies are governed by partial differential equations rather than ordinary differential
equations; typically the main variable in these equations is the displacement field u(t , x) ∈
Rd where the point x in the undeformed body �⊂ Rd is deformed to ψ(t ,x)= x+u(t ,x).
From this displacement field we construct a strain tensor ε(t ,x) which measures the local
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xτ (   )x

(   )xn

(   )xn
x
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(surface in    )

(   )

Ω
Figure 6.6: Relationship between stress and traction: traction τ (x) is the force per unit area
acting on surface ' at x ∈'.

deformation, which in turn is used to determine the local stress tensor σ (t ,x). The stress
tensor indicates the forces per unit area acting on small pieces of surface inside the mate-
rial, as illustrated in Figure 6.6. Note that the force acting on a given surface ' ⊂ � of
dimension d−1 is given by the integral∫

'

τ (x)d S(x)=
∫
'

σ (x)n(x)d S(x),

where τ (x) is the traction at x and σ (x) is the rank-two stress tensor at x. We can consider
the stress tensor to be a d×d matrix, and σ (x)n(x) to be ordinary matrix-vector multipli-
cation. Note that this force is acting on the body in the −n(x) direction of the surface '.

Details of how to formulate contact conditions can be found in [121, 229], for exam-
ple.

There are several important properties of both the strain and stress tensors: they
are both rank-two tensors: ε(t ,x)= [

εi j (t ,x)
]d

i, j=1 and σ (t ,x)= [
σi j (t ,x)

]d
i, j=1, and they

are both symmetric as rank-two tensors: εi j (t ,x) = ε j i (t ,x) and σi j (t ,x) = σ j i (t ,x). The
relationship between stress and strain tensors at a given point in a material is called the con-
stitutive relation and defines the nature of the material. Usually there is a simple functional
relationship, but sometimes other relationships are used to model memory effects, viscous
behavior, and plastic behavior. These issues are part of continuum mechanics; more on this
area can be found in textbooks such as [51, 112, 233, 261].

In this book we will focus on linearized elasticity and viscoelasticity where the fol-
lowing relationships are assumed to hold:

εi j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
, (6.36)

σi j =
d∑

k,l=1

Aijkl εi j for pure elasticity, (6.37)

σi j =
d∑

k,l=1

Aijkl εi j +
d∑

k,l=1

Bijkl
∂εi j

∂ t
(6.38)

for Kelvin–Voigt viscoelasticity.
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Note that (6.36) is actually the infinitesimal strain tensor. For large displacement problems,
there is the possibility of geometric nonlinearities, and this must be replaced with a non-
linear function of ∇u, such as the Cauchy strain tensor [261, p. 42]. The rank-four tensors
Aijkl and Bijkl are assumed to have a number of important properties: there is ηA > 0,
where

Aijkl = A jikl = Aijlk = Akli j ,
d∑

i, j ,k,l=1

Aijklξi j ξkl ≥ ηA

d∑
i, j=1

ξ2
i j

for all symmetric rank-two tensors. This assumes a linear relationship between the stress
and strain tensors. In general, there can be material nonlinearities, and these relationships
need to be replaced by a nonlinear function σ = σ (ε).

An important special case is where the elastic (or viscoelastic) materials are assumed
to be isotropic. This means that the constitutive equations are invariant under rotations.
That is, if Q is an orthogonal matrix of determinant one, then under the transformation
ξ ′kl =

∑
i, j qki ql jξi j and η′kl =

∑
i, j qki ql jηi j we have∑

i, j ,k,l

Ai j klη
′
i j ξ

′
kl =

∑
i, j ,k,l

Ai j klηi j ξkl.

This greatly reduces the number of free parameters down to two:

Aijkl = λδi j δkl +µ
(
δikδ j l+ δilδ j k

)
,

where δi j is the Kronecker δ function:

δi j =
{

1 if i = j ,
0 otherwise.

The parameters λ and µ are known as Lamé parameters. The formula for the stress tensor
can be simplified to

σi j = λ
∑

k

εkk δi j +2µεi j

in the linear isotropic elastic case.
The equations of motion for elasticity for an elastic or viscoelastic body can be writ-

ten in the form

ρ(x)
∂2u
∂ t2

= divσ (t ,x)+ f(t ,x) inside �, (6.39)

where ρ(x) is the mass density, and f(t ,x) is the density of the other forces acting throughout
the body (with respect to volume), such as gravity or electromagnetism. Note that divσ is
a vector field given by the formula

(divσ )i =
d∑

j=1

∂σi j

∂x j
. (6.40)
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In the case of isotropic linear elasticity this can be reduced to

ρ
∂2u
∂ t2

= (λ+µ)∇ (∇ ·u)+µ∇2u+ f(t ,x). (6.41)

As with other partial differential equations, we also need boundary conditions to determine
the behavior of the body. Usually these are one of two types:

u(t ,x)= g(t ,x), given deformation, or

σ (t ,x)n(x)= τ (t ,x), given traction

boundary conditions. For the traction boundary conditions, τ (t ,x) is the density (with
respect to surface area) of the forces acting on the boundary of the body; n(x) is the outward
unit normal vector on the boundary of the body �.

6.2.1 Formulating the contact conditions

We will denote the region of the boundary with given displacement by %D ⊆ ∂�, and the
region with given traction by %N ⊆ ∂�. We cannot deal with both conditions applied at the
same point, so %D ∩%N = ∅. What remains is the region of potential contact

%C = ∂�\ (%D ∪%N ) .

For linearized elastic bodies in contact with a rigid obstacle, we have the following lin-
earized contact conditions:

σ (t ,x)n(x)=−N(t ,x)n(x)+F(t ,x),

where N(t ,x) is the normal contact force at x at time t , which must be inward to the body,
and F(t ,x)⊥ n(x) is the frictional force at x at time t . The fact that N(t ,x) must be inward
to the body is the reason for the negative sign, as n(x) is the outward normal direction
vector at x ∈ ∂�.

All that remains is to give the relationships between the displacement field u(t ,x) on
the boundary and the contact forces. The usual Signorini conditions (see Section 2.6) for
the normal contact force N(t ,x) are

0≤ N(t ,x)⊥ n(x) ·u(t ,x)−ϕ(x)≥ 0 (6.42)

for all x ∈ %C , t ≥ 0.

Here ϕ(x) is the gap function which measures the distance between the undeformed object
at x and the rigid obstacle. This is illustrated in Figure 6.7.

The standard Coulomb friction law can be written in several different forms, as is the
case for rigid-body dynamics. One of the most direct formulations is

σ (t ,x)n(x)=−N(t ,x)n(x)+F(t ,x) on %C , (6.43)

F(t ,x)⊥ n(x) on %C , (6.44)
∂u
∂ t

(t ,x) ·F(t ,x)=−µN(t ,x)

∥∥∥∥∂u
∂ t

(t ,x)

∥∥∥∥ on %C , (6.45)

‖F(t ,x)‖ ≤ +µN(t ,x). (6.46)
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ϕ(   )x
Ω

x

n
obstacle

1

Figure 6.7: Illustration of an elastic body in contact with a rigid obstacle.

Alternatively, we can use a VI formulation:

σ (t ,x)n(x)=−N(t ,x)n(x)+F(t ,x) on %C , (6.47)

F(t ,x)⊥ n(x) on %C , (6.48)

µN(t ,x) ‖w(t ,x)‖ ≥ µN(t ,x)

∥∥∥∥∂u
∂ t

(t ,x)

∥∥∥∥ (6.49)

+F(t ,x) ·
(
∂u
∂ t

(t ,x)−w(t ,x)

)
on %C

for any sufficiently smooth field w(t ,x).
Note that most of these conditions are given in terms of integrals over %C in order to

put them in the weakest form possible. This is commonly done by means of a VI of the
second kind (see Section 2.3.1):∫

%C

F ·wd S ≤
∫
%C

µN

(∣∣∣∣∂uT

∂ t
+wT

∣∣∣∣− ∣∣∣∣∂uT

∂ t

∣∣∣∣) d S (6.50)

for all w, where zT = z− (z ·n)n is the tangential component of z, |v| is the Euclidean
or 2-norm of the vector v ∈ Rd , and n is the outward unit normal vector to %C . The re-
formulation (6.91) replaces (6.48)–(6.49). Integration over time with smooth w : [0, T ]→
H 1(�) makes for an even weaker formulation.

6.2.2 Formulating contact between two bodies

This formulation can be extended between two elastic or viscoelastic bodies that undergo
small deformations. Then we take �=�1∪�2, where �1 and �2 are disjoint regions in
Rd (see Figure 6.8). To formulate the contact conditions for N , for a given point x1 ∈ %C ,1,
the potential contact region of ∂�1, we can use the nearest point x2 = π(x1) ∈ ∂�2. Here π
is simply the nearest point projection onto ∂�2. The potential contact region %C ,2 ⊆ ∂�2
must be consistent with %C ,1 ⊆ ∂�1, so we assume that %C ,2 = π(%C ,1).

Let u1 be the displacement field on �1 and u2 the displacement field on �2. Further-
more, let N1(t ,x1)n1(x1)+F1(t ,x1) the contact force at x1 and N2(t ,x2)n2(x2)+F2(t ,x2)
the contact force at x2. Since x1 ≈ x2, we have nearly opposite normal direction vectors
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ϕ(   )
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n2
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Ω2Ω1
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Figure 6.8: Contact between two elastic bodies.

n1(x1) ≈ −n2(x2). Then we can use a gap function ϕ(x1) = n1(x1) · (x2−x1) on the po-
tential contact %C ,1 region of ∂�1. From Newton’s third law, that every action has an
equal and opposite reaction, the contact force at x1 ∈ ∂�1 must be the negative of the con-
tact force at x2 ∈ ∂�2. We can represent this (approximately) by having the frictionless
components satisfy

N1(t ,x1)= N2(t ,x2), x1 ∈ %C ,1, x2 = π(x1) ∈ %C ,2, (6.51)

and the frictional components satisfy

F1(t ,x1)=−F2(t ,x2), x1 ∈ %C ,1, x2 = π(x1) ∈ %C ,2. (6.52)

The conditions for frictionless contact can then be represented by

0≤ N1(t ,x1)= N2(t ,x2)

⊥ n1(x1)T (u2(t ,x2)−u1(t ,x2))−ϕ(x1)≥ 0

for all x1 ∈ %C ,1, x2 = π(x1). (6.53)

For frictional contact we use (6.53) for the normal contact forces, and for the friction forces
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we modify (6.50) as follows:∫
%C,1

F1(t ,x1)T w(x1)d S(x1)

≤
∫
%C,1

µN1

(∣∣∣∣∂u1 T

∂ t
− ∂u2 T

∂ t
+wT

∣∣∣∣− ∣∣∣∣∂u1 T

∂ t
− ∂u2 T

∂ t

∣∣∣∣)d S(x1) (6.54)

for all smooth w(x1). In this expression, u2 is evaluated at u2(t ,x2) = u2(t ,π(x1)). As
noted above, F2(t ,x2)=−F1(t ,x1), where x1 = π(x1).

6.2.3 Technical issues

Since dealing with elastic or viscoelastic bodies means using partial differential equations
(and their generalizations) rather than ordinary differential equations (and their gener-
alizations), we have to deal with infinite-dimensional spaces and unbounded operators.
These have their own difficulties and leave an imprint on the theory used to deal with
the associated DVIs. Usually these difficulties appear in the form of compactness or
(pseudo)monotonicity conditions.

There is one respect in which things are actually easier than the finite-dimensional
(rigid body) theory. Since stronger impulse responses for the operators involved result
in less singular solutions, the solutions for elastic and viscoelastic impact problems tend
to have less singular solutions for the contact forces than those that exist for rigid-body
problems. The contact forces in rigid-body dynamics typically include Dirac-δ functions,
while in elastic-body dynamics the forces are typically integrable or L2 in time. However,
even with this, finding a suitable space in which the normal contact forces must reside is
difficult. While the contact forces must be in the space of measures on [0, T ]×%C , this is
too large a space for many purposes, including showing that solutions exist.

Some of these issues can be resolved if Kelvin–Voigt viscoelasticity is used. With this
model of viscoelasticity, the equations without the contact conditions essentially become
parabolic. This has a great many advantages from the point of view of proving existence
results; many of these stem from the fact that the solution map for the differential operator
u(0) #→ u(t) is a compact operator. There are a number of other features of these viscoelas-
tic equations which give tighter bounds on crucial quantities. The improved regularity of
the solutions helps to show existence results. The downside of using viscoelasticity is that
the contact forces generally become more singular. To avoid dealing with this, the problems
are reformulated as VIs in which the normal contact forces do not appear.

The inclusion of Coulomb friction generally makes the difficulties much worse. If the
frictional and normal contact forces can be decoupled, then we can obtain the results that
we would expect. Once the frictionless problem is solved, we can use the solution to find
the friction forces via a monotone PVI. This is essentially the same situation as arises in the
so-called Tresca friction, where the normal force is given a priori and contact is assumed.

However, with rare exceptions, problems in elasticity couple together the normal and
frictional (tangential) forces which result in crucial kinds of instabilities. There is, indeed,
a nonexistence result which has been shown for the special case of a two-dimensional
hyperelastic9 neo-Hookean (that is, the Cauchy stress tensor is proportional to the Cauchy

9Hyperelastic materials, such as rubber, do not change volume. For small deformation problems, this
amounts to requiring that ∇ ·u= 0.
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strain tensor) elastic body with Coulomb friction, provided that the coefficient of friction
exceeds a certain threshold value [212].

To circumvent some of the difficulties associated with these issues, various modifica-
tions of the Coulomb friction, and even the Signorini conditions, have been used in order to
obtain existence of solutions. One of the simplest modifications is to replace the Signorini
conditions with a penalty or a stiff spring approximation [165, 193]. Another is to write
the Signorini conditions in terms of the normal velocity. Combined with the use of Kelvin–
Voigt viscoelasticity, this reduces the frictionless problem to essentially a PVI. Even so,
existence has been shown only for the velocity-based “Signorini” conditions, provided the
coefficient of friction does not exceed a certain threshold value [88, 89]. An alternative
is to use a nonlocal friction law, where the normal contact force is replaced by a suitable
smoothed local average [56, 154]. None of these modifications has a compelling physi-
cal basis, and it may be that solutions, even for Kelvin–Voigt viscoelasticity, do not exist
beyond a certain threshold value of the coefficient of friction. If so, then this would be
an instance where mathematical nonexistence results have important physical implications:
the observed macroscopic value of Coulomb friction coefficients may well be a result of
the limits due to frictional instabilities, rather than to microscopic behavior.

6.2.4 Routh’s rod

This is the simplest elastic-body impact problem, where a one-dimensional body (moving
in a line) impacts a rigid obstacle at one end. This is illustrated in Figure 1.2. This problem
was first solved by Routh in [216, pp. 442–444] in 1860 for the case where the rod is
initially moving with a constant, uniform velocity until impact. The more general problem
of showing that the rod impacting a rigid obstacle with initially finite energy has a solution
which is unique (and can be approximated numerically) is much more recent. Since the
rod impacts the obstacle only at an end (x = 0) of the domain (� = (0,�)), this is called a
thin obstacle problem since contact can occur only on a set that has Lebesgue measure zero
of the domain �. In fact, it is sometimes called a boundary thin obstacle problem since
contact can occur only on the boundary ∂�, rather than in the interior of the domain of the
problem.

The equations of motion in a one-dimensional linear elastic medium reduce to the
wave equation:

∂2u

∂ t2 = c2 ∂
2u

∂x2 , 0 < x < �, t > 0, (6.55)

where u = u(t , x) is the displacement field. The free end has no traction, so ∂u/∂x(t ,�)= 0
for all t . At the left end, which can contact the obstacle, we have Signorini-type conditions:

−∂u

∂x
(t ,0)= N(t), (6.56)

0≤ N(t) ⊥ u(t ,0)≥ 0 (6.57)

for all t . The approach we take is to represent this problem as a CCP. To do this, we
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consider the impulse response function:

∂2w

∂ t2
= c2 ∂

2w

∂x2
, 0 < x < �, t ≥ 0,

−c2 ∂w

∂x
(t ,0)= δ(t),

∂w

∂x
(t ,�) = 0, t ≥ 0,

w(0, x)= 0,
∂w

∂ t
(0, x) = 0, 0 < x < �.

This can be done fairly easily using d’Alembert solutions:

w(t , x)= c−1

[ ∞∑
k=0

H (ct− x−2k�)+
∞∑

k=0

H (ct+ x− (2k+2)�)

]
,

where H (s)= 1 if s > 0 and H (s)= 0 if s < 0 is the Heaviside function. Also, there is the
solution due to the initial conditions:

∂2û

∂ t2 = c2 ∂
2û

∂x2 ,

−∂ û

∂x
(t ,0)= 0,

∂ û

∂x
(t ,�) = 0,

û(0, x)= u0(x),
∂ û

∂ t
(0, x) = v0(x),

where u0 is the initial displacement and v0 is the initial velocity. Using the standard theory
for linear differential equations,

u(t , x)= û(t , x)+
∫ t

0
N(τ )w(t − τ , x)dτ .

Substituting this for (6.57) gives

0≤ N(t)⊥ û(t ,0)+
∫ t

0
w(t− τ ,0) N(τ )dτ ≥ 0 (6.58)

for t ≥ 0. We have reduced the problem to a CCP. The kernel of the CCP is

w(t ,0)= c−1

[
H (ct)+

∞∑
k=1

2 H (ct−2k�)

]
. (6.59)

In any finite interval, t #→ w(t ,0) has bounded variation and w(0+,0) = c−1 > 0. So, ap-
plying Theorem 5.6, we see that solutions exist. In the interval (0,2�/c), w(·,0) is constant,
and so we can apply Theorem 5.7 to show that solutions are unique.

It should be noted that although this problem is formally an index-two problem, the
CCP we obtain is an index-one CCP, and this is the secret of the success of the CCP ap-
proach. The core of the approach is the Neumann to Dirichlet operator for the wave equa-
tion. The Neumann to Dirichlet map takes ∂u/∂n|∂� #→ u|∂� for solutions to the given
homogeneous partial differential equation.
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Of particular interest here is the matter of conservation of energy. It is well known
that the wave equation by itself conserves energy:

E[u,∂u/∂ t]= 1

2

∫ �

0

[(
∂u

∂x

)2

+
(
∂u

∂ t

)2
]

dx , (6.60)

at least if we have only fixed displacement or fixed traction boundary conditions. However,
it is not clear if energy should be conserved. For rigid-body dynamics we must have a
coefficient of restitution. But in this model there is no coefficient of restitution, and yet we
have uniqueness of solutions. Do we have conservation of energy? The answer is yes, and
showing this involves a differentiation lemma for CPs.

Let us start by looking at the rate of change of energy:

d

dt
E[u,∂u/∂ t]= d

dt

1

2

∫ �

0

[(
∂u

∂x

)2

+
(
∂u

∂ t

)2
]

dx

=
∫ �

0

[
∂u

∂x

∂2u

∂ t ∂x
+ ∂u

∂ t

∂2u

∂ t2

]
dx

=
∫ �

0

[
∂u

∂x

∂2u

∂ t ∂x
+ ∂u

∂ t

∂2u

∂x2

]
dx

=
∫ �

0

[
∂

∂x

(
∂u

∂x

∂u

∂ t

)
− ∂2u

∂x2

∂u

∂ t
+ ∂u

∂ t

∂2u

∂x2

]
dx

= ∂u

∂x

∂u

∂ t

∣∣∣∣x=�

x=0
= N(t)

∂u

∂ t
(0, t).

Physically, this says that the rate of change in the energy of the rod is simply the rate at
which the normal contact force does work on the rod. This, in turn, is zero. The reason is
that we have the CP

0≤ N(t) ⊥ u(t ,0)≥ 0. (6.61)

Further, we have regularity results. Since t #→ û(t ,0) is in H 1(0, T ) (that is, ∂ û/∂ t(·,0) ∈
L2(0, T )), from CCP theory we have N ∈ L2(0, T ) by Theorem 5.6. In turn, ∂u/∂ t(·,0)
is also in L2(0, T ). Thus N ∂u/∂ t|x=0 is in L1(0, T ) and the energy E[u] is an absolutely
continuous function of t . But we can apply the differentiation lemma (Lemma 3.2) to show
that (6.61) implies

0= N(t)
∂u

∂ t
(0, t) for almost all t .

Thus the normal contact force does no work on the rod, and hence energy is conserved:
E[u,∂u/∂ t]= constant.

6.2.5 Vibrating string

A vibrating string making contact with a rigid obstacle is another example of contact with
elastic bodies. As before, we have a one-dimensional elastic body and the wave equation
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0 u (t,x)

N (t,x)
ϕ(x)

l = x= x

Figure 6.9: Vibrating string example.

holds within the body, at least where there is no contact. Unlike the previous example,
we allow contact over most of the domain of the partial differential equation. This means
that we cannot use finite-dimensional CCPs to describe the dynamics of the system with
contact. This problem has been treated in a number of papers, such as [2, 8, 52, 221, 222].
For our analysis, we have a gap function ϕ(x) which represents an obstacle u(t , x)≥ ϕ(x),
as illustrated in Figure 6.9.

The equations of motion then become

∂2u

∂ t2 =
∂2u

∂x2 + f (t , x)+ N(t , x), (6.62)

0= u(t ,0) = u(t ,�), (6.63)

0≤ N(t , x)⊥ u(t , x)−ϕ(x)≥ 0, (6.64)

u(0, x)= u0(x),
∂u

∂ t
(0, x) = v0(x) (6.65)

for t ≥ 0 and 0 < x < �. This is an example of a thick obstacle problem: contact can occur
over a part of the domain that has positive Lebesgue measure.

For consistency we have to assume that ϕ(0), ϕ(�)≤ 0. In fact, we will need slightly
stronger conditions to prove existence:

ϕ(0), ϕ(�) < 0. (6.66)

To begin the process of showing the existence of a solution, we will choose to start
with the penalty approach; that is, we will obtain approximate solutions uε ≈ u and Nε ≈ N .
We approximate the constraint u−ϕ ≥ 0 by a system of stiff springs:

Nε (t , x)= 1

ε
(uε(t , x)−ϕ(x))− , (6.67)

where s− = max(−s, 0) is the negative part of s. Since this is an approximation to the
constraint u−ϕ ≥ 0, the solutions obtained must be approximate as well:

∂2uε

∂ t2
= ∂2uε

∂x2
+ f (t , x)+ Nε(t , x), 0 < x < �, (6.68)

0= uε(t ,0) = uε(t ,�). (6.69)
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The penalty term (uε(t , x)−ϕ(x))− /ε has its own contribution to the energy of the string:

Eε[uε ,∂uε/∂ t]=
∫ �

0

[
1

2

(
∂uε

∂ t

)2

+ 1

2

(
∂uε

∂x

)2

(6.70)

+ 1

2ε

[
(uε(t , x)−ϕ(x))−

]2

]
dx .

As the penalty parameter goes to zero, note that the penalty term of the energy penalizes
violations of the constraint u− ϕ ≥ 0 more and more strongly. However, this can cause
difficulties in trying to prove conservation of energy in the limit.

The first result that we need to establish is that solutions exist (in appropriate spaces)
for the penalty approximation (6.67)–(6.69). This is typically not hard to show from a more
abstract point of view. Let A =−∂2/∂x2 be the partial differential operator acting on the
Sobolev space X := H 1

0 (0,�) = {
w ∈ H 1(0,�) |w(0)=w(�)= 0

}
. Let H = L2(0,�) be

the pivot space in a Gelfand triple X = H 1
0 (0,�) ⊂ H = L2(0,�) = H ′ ⊂ X ′ = H 1

0 (0,�)′.
Then (6.68)–(6.69) can be written in the form

∂2uε

∂ t2
=−Auε+ f (t)+ 1

ε
ψ [uε] (6.71)

with ψ : X → H the Lipschitz operator given by ψ [w] (x)= (w(x)−ϕ(x))−. The function
f : [0, T ]→ H is given by f (t)(x)= f (t , x) from the data to the problem. We assume that
f ∈ L2(0, T ; H ). With initial conditions u(0, x)= u0(x) and ∂u/∂ t(0, x)= v0(x), we can
use an abstract version of the “variation or parameters” method for ordinary differential
equations:

uε(t)= cos
(
A1/2t

)
u0+A−1/2 sin

(
A1/2t

)
v0

+
∫ t

0
A−1/2 sin

(
A1/2(t− τ )

) [
f (τ )+ 1

ε
ψ [uε(τ )]

]
dτ .

Note that A1/2 is a well-defined self-adjoint elliptic operator since A is a self-adjoint el-
liptic operator. Note also that since f : [0, T ] → H and ψ : X → H are Lipschitz, then
A−1/2 f : [0, T ]→ X is in L2(0, T ; X ) andA−1/2ψ : X → X is Lipschitz. Also, sin(A1/2t)
and cos(A1/2t) are bounded linear operators X → X and H → H , in fact with norm less
than or equal to 1 for all t . We can then use the Picard iteration to show the existence of
solutions: consider the map C(0, T ; X )→ C(0, T ; X ) given by u #→ w where

w(t)= cos
(
A1/2t

)
u0+A−1/2 sin

(
A1/2t

)
v0

+
∫ t

0
A−1/2 sin

(
A1/2(t− τ )

) [
f (τ )+ 1

ε
ψ [u(τ )]

]
dτ .

A Lipschitz constant for this map is (1/ε) Lψ ‖A−1/2‖L(H ,X ) T , where Lψ is the Lipschitz
constant forψ : X → H . This can be determined from the Lipschitz constant for the imbed-
ding of X = H 1

0 (0,�) into H = L2(0,�). The map H = L2(0,�)→ H = L2(0,�) given by
u #→ (u−ϕ)− has Lipschitz constant one since the maps R→R given by s #→ (s−ϕ(x))−
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have Lipschitz constant one. Whatever the precise values of these constants (which can
depend on which of many equivalent norms we choose for H 1

0 (0,�)), what is important is
that for any ε > 0 we can choose 0 < T < ε/(Lψ ‖A−1/2‖L(H ,X )). This makes the map
u #→ w a contraction, so by the contraction mapping theorem, there is a unique fixed point
which solves the differential equation (6.71).

We should now turn to the question of energy bounds for the penalty problem. First
we do some calculations:

d

dt
Eε[uε ,∂uε/∂ t]= d

dt

∫ �

0

[
1

2

(
∂uε

∂ t

)2

+ 1

2

(
∂uε

∂x

)2

+ 1

2ε

[
(uε(t , x)−ϕ(x))−

]2

]
dx

=
∫ �

0

[
∂uε

∂ t

∂2uε

∂ t2 +
∂uε

∂x

∂2uε

∂ t ∂x
− 1

ε
(uε(t , x)−ϕ(x))−

∂uε

∂ t

]
dx

=
∫ �

0

[
∂uε

∂ t

(
∂2uε

∂x2 +
1

ε
(uε(t , x)−ϕ(x))−

)
+ ∂uε

∂x

∂2uε

∂ t ∂x
− 1

ε
(uε(t , x)−ϕ(x))−

∂uε

∂ t

]
dx

=
∫ �

0

∂

∂x

(
∂uε

∂ t

∂uε

∂x

)
dx = ∂uε

∂ t

∂uε

∂x

∣∣∣∣x=�

x=0
= 0

since uε(t ,0)= uε (t ,�)= 0 for all t . Thus the energy with the penalty term is conserved by
solutions to the penalty equations. Since, by assumption, the initial conditions u0(x)≥ ϕ(x)
for all x , we see that Eε[uε(0, ·),∂uε/∂ t(0, ·)]= E[uε(0, ·),∂uε/∂ t(0, ·)]. Thus

E
[
uε(t , ·),∂uε/∂ t(t , ·)] ≤ Eε

[
uε (t , ·),∂uε/∂ t(t , ·)]

= Eε

[
uε (0, ·),∂uε/∂ t(0, ·)]

= E
[
uε (0, ·),∂uε/∂ t(0, ·)]= E [u0,v0] ,

which is bounded independently of ε > 0.
From the energy bounds we have immediate bounds, independent of ε > 0, on

1. the kinetic energy, which is 1
2 ‖∂uε/∂ t‖2

L2(0,�)
,

2. the elastic energy, which is 1
2 ‖∂uε/∂x‖2

L2(0,�), from which we obtain bounds on
‖uε‖H1(0,�), and

3. the penalty energy, which is
∥∥(uε−ϕ)−

∥∥2
L2(0,�) /(2ε), so that

∥∥(uε−ϕ)−
∥∥

L2(0,�) =
O(ε1/2).

Let E∗ = E [u0,v0] be this bound on the energy. The kinetic energy bounds will be used to
obtain momentum bounds (essentially bounds on the integral of the velocity), which in turn
will give integral bounds on the normal contact forces. In particular, we will take w(x)=
x (�− x), which is strictly positive on (0,�). Then, by the Cauchy–Schwarz inequality,∫ �

0
w(x)

∂uε

∂ t
(t , x)dx ≤

[∫ �

0
w(x)2 dx

]1/2 [∫ �

0

(
∂uε

∂ t
(t , x)

)2

dx

]1/2

≤ constant
(
E∗

)1/2 for all t .
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On the other hand, if we write Nε (t , x)= (uε(t , x)−ϕ(x))− /ε,

d

dt

∫ �

0
w(x)

∂uε

∂ t
(t , x)dx =

∫ �

0
w(x)

∂2uε

∂ t
(t , x)dx

=
∫ �

0
w(x)

[
∂2uε

∂x2
(t , x)+ Nε(t , x)

]
dx

= w(x)
∂uε

∂x
(t , x)

∣∣∣∣x=�

x=0
−

∫ �

0
w′(x)

∂uε

∂x
(t , x)dx

+
∫ �

0
w(x) Nε (t , x)dx .

The first term in the final expression is zero since w(0) = w(�) = 0. The second term
is bounded by

[∫ �

0 w′(x)2 dx
]1/2 (E∗)1/2. Integrating the above expression over the time

interval [0, T ], we get∫ �

0
w(x)

∂uε

∂ t
(t , x)

∣∣∣∣t=T

t=0
dx =−

∫ T

0

∫ �

0
w′(x)

∂uε

∂x
(t , x)dx

+
∫ T

0

∫ �

0
w(x) Nε (t , x)dx dt .

Using the bounds we have already obtained,∣∣∣∣∫ T

0

∫ �

0
w(x) Nε (t , x)dx dt

∣∣∣∣
≤

(
2

[∫ �

0
w(x)2 dx

]1/2

+ T

[∫ �

0
w′(x)2 dx

]1/2)(
E∗

)1/2 .

Since w ≥ 0 and Nε ≥ 0, we have integral bounds on Nε . We would rather not have w(x)
in the integral bounds. If we can show that Nε (t , x)= 0 for x < η or x > L− η for some
η > 0 (independent of ε), then we can bound∫ T

0

∫ �

0
Nε (t , x)dx dt ≤ 1

w(η)

∫ T

0

∫ �

0
w(x) Nε (t , x)dx dt .

In fact, this is true from the compatibility condition (6.66) and using the Cauchy–Schwarz
inequality: for x < y,

|uε(t , x)−uε(t , y)| ≤
∫ y

x

∣∣∣∣∂uε

∂x
(t , z)

∣∣∣∣ dz

≤
[∫ y

x
12 dz

]1/2
[∫ y

x

∣∣∣∣∂uε

∂x
(t , z)

∣∣∣∣2

dz

]1/2

≤ |y− x |1/2
∥∥∥∥∂uε

∂x
(t , ·)

∥∥∥∥
L2(0,�)

≤ |y− x |1/2 (
E∗

)1/2
.
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Thus uε is uniformly Hölder continuous with exponent 1/2. In particular, since uε(t ,0)= 0
for all t , |uε (t , x)| ≤ x1/2 (E∗)1/2. For x > 0 sufficiently small we must have uε (t , x)>ϕ(x)
for all t . Thus, there is an η > 0 such that Nε (t , x)= 0 for 0≤ x ≤ η. A similar argument
gives the corresponding result that there is an η > 0 such that Nε (t , x)= 0 for �−η≤ x ≤ �.

Thus we have a bound on
∫ T

0

∫ �

0 Nε (t , x)dx dt independent of ε > 0. Treating Nε as a
measure on [0, T ]× [0,�], we can apply Alaoglu’s theorem to show that there is a weakly*
convergent subsequence Nε ⇀

∗ N̂ in the space of measures M ([0, T ]× [0,�]). We restrict
our attention to this subsequence, which we also denote by Nε . At the same time, the uε

are uniformly bounded in L∞(0, T ; X ). Thus there is a weakly* convergent subsequence
uε ⇀

∗ û in L∞(0, T ; X ). We now wish to show that u = û and N = N̂ solve (6.62)–(6.65).
We need to show that N ≥ 0; that is, N is a nonnegative measure. Since each Nε ≥

0 and we have weak* convergence Nε ⇀
∗ N̂ in M ([0, T ]× [0,�]), for any nonnegative

continuous function ψ : [0, T ]× [0,�]→ R we have

0≤
∫ T

0

∫ �

0
ψ(t , x) Nε (t , x)dx dt →

∫
[0,T ]×[0,�]

ψ N̂ ,

and so
∫

[0,T ]×[0,�]ψ N̂ ≥ 0 for all continuous ψ ≥ 0. Treating M ([0, T ]× [0,�]) as the dual
space of C ([0, T ]× [0,�]), we see that N is a nonnegative measure.

On the other hand,
∥∥(uε−ϕ)−

∥∥
L∞(0,T ; L2(0,�)) ≤ constantε1/2. Now uε ⇀∗ û in

L∞(0, T ; X )= L∞(0, T ; H 1
0 (0,�)) means that for any ψ ∈ L1(0, T ; H−1(0,�)),∫ T

0

∫ �

0
ψ(t , x)uε(t , x)dx dt →

∫ T

0

∫ �

0
ψ(t , x) û(t , x)dx dt .

To get around the fact that L∞ spaces are not reflexive, note that L∞(0, T ; X )⊂ L2(0, T ; X ),
and weak* convergence in L∞(0, T ; X ) implies weak* convergence in L2(0, T ; X ). Since
L2(0, T ; X ) is reflexive (the dual is L2(0, T ; X ′)), weak* and weak convergence are the
same in L2(0, T ; X ). Now the function

u #→
∫ T

0

∫ �

0

[
(u−ϕ)−

]2
dx dt

is a convex and continuous function on H 1
0 (0,�). By Mazur’s lemma,

0≤
∫ T

0

∫ �

0

[
(̂u−ϕ)−

]2
dx dt ≤ liminf

ε↓0

∫ T

0

∫ �

0

[
(uε−ϕ)−

]2
dx dt

in the subsequence

≤ liminf
ε↓0

T constantε1/2 = 0.

Thus (̂u−ϕ)− = 0 for almost all (t , x); or equivalently, u(t , x)≥ ϕ(x) for almost all (t , x).
We need to show that û and N̂ satisfy the differential equation (6.62). First note

that since N̂ ∈ M ([0, T ]× [0,�]) = C ([0, T ]× [0,�])′ = C(0, T ; C [0,�])′, and since
C [a,b] (the space of continuous functions [a,b] → R) contains H 1(a,b), then we get
C(0, T C [0,�]) ⊃ C(0, T ; H 1

0 (0,�)). Thus M ([0, T ]× [0,�]) ⊂ C(0, T ; H 1
0 (0,�))′. So, if

ψ : [0, T ] → X = H 1
0 (0,�) is a smooth (and therefore continuous) function, then we get

Downloaded 03 Nov 2011 to 160.36.192.127. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php



6.2. Elastic bodies in impact 247

∫ T
0

∫ �

0 ψ uε dx dt → ∫ T
0

∫ �

0 ψ û dx dt and
∫ T

0

∫ �

0 ψ Nε dx dt → ∫ T
0

∫ �

0 ψ N̂ dx dt as ε ↓ 0 in
the subsequence. Then we use integration by parts to show that (6.62) is satisfied in the
limit. Suppose that ψ : [0, T ] → X = H 1

0 (0,�) is indeed a function in Cm (0, T ; X ) for
sufficiently large m, which can be determined later. For now, let us also suppose that
ψ(T , x)= ∂ψ/∂ t(T , x)= 0. Then

0=
∫ T

0

∫ �

0
ψ

[
∂2uε

∂ t2
+Auε+ Nε

]
dx dt

=
∫ �

0
ψ

∂uε

∂ t

∣∣∣∣t=T

t=0
dx−

∫ �

0

∂ψ

∂ t
uε

∣∣∣∣t=T

t=0
dx

+
∫ T

0

∫ �

0

∂2ψ

∂ t2 uε dx dt+
∫ T

0

∫ �

0
ψ(t , x)Auε (t , x)dx dt

+
∫ T

0

∫ �

0
ψ(t , x) Nε (t , x)dx dt .

Each integral over [0, T ]× [0,�] converges to the appropriate limit. The integrals over [0,�]
with t = 0 and t = T reduce to∫ �

0
ψ

∂uε

∂ t

∣∣∣∣t=T

t=0
dx =

∫ �

0

[
ψ(T , x)

∂uε

∂ t
(T , x)−ψ(0, x)

∂uε

∂ t
(0, x)

]
dx

=−
∫ �

0
ψ(0, x)v0(x)dx ,∫ �

0

∂ψ

∂ t
uε

∣∣∣∣t=T

t=0
dx =

∫ �

0

[
∂ψ

∂ t
(T , x)uε(T , x)− ∂ψ

∂ t
(0, x)uε(0, x)

]
dx

=−
∫ �

0

∂ψ

∂ t
(x ,0)u0(x)dx .

Thus taking limits in the subsequence gives

0=
∫ �

0

(
∂ψ

∂ t

∣∣∣∣
t=0

u0− ψ|t=0 v0

)
dx

+
∫ T

0

∫ �

0

∂2ψ

∂ t2
û dx dt+

∫ T

0

∫ �

0
ψ(t , x)Aû(t , x)dx dt

+
∫ T

0

∫ �

0
ψ(t , x) N̂ (t , x)dx dt .

Undoing the integration by parts we did before now gives

0=
∫ T

0

∫ �

0
ψ

[
∂2û

∂ t2 +Aû+ N̂

]
dx dt ,

so that û and N̂ do indeed satisfy the differential equation (6.62).
The only remaining task to show that û and N̂ solve our problem is to show that

N̂ ⊥ û−ϕ.
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Now, for every ε > 0,
∫ T

0

∫ �

0 Nε (uε−ϕ) dx dt ≤ 0, as Nε (t , x)= 0 whenever uε(t , x)>

ϕ(x). We want to take limits (within some subsequence) to get
∫ T

0

∫ �

0 N (u−ϕ) dx dt ≤ 0
for the limits N and u. Then, since u−ϕ ≥ 0 and N ≥ 0, we would have to conclude that∫ T

0

∫ �

0 N (u−ϕ) dx dt = 0, and we would have a solution of the problem. The trouble with
this is that we have weak* convergence of Nε ⇀

∗ N̂ and uε ⇀
∗ û, and this is not enough

to conclude that the limit of the integral is the integral of the limit.
To complete the result, we need an additional compactness result or property to use.

To do this we need to introduce some other spaces in which we can get the right kind of
convergence. Let us review the spaces (and kinds of convergence) we have:

Nε ⇀
∗ N̂ weak∗ in M ([0, T ]× [0,�])⊂M(0, T ; H 1

0 (0,�)′),
uε ⇀

∗ û weak∗ in L∞(0, T ; H 1
0 (0,�)).

Currently these spaces do not even have a duality pairing: L∞ is the dual of L1, not
the larger space M of measures. However, we can do better than M ([0, T ]× [0,�]) ⊂
M(0, T ; H−1(0,�)); M [0,�], the space of measures on [0,�], is also in H−1/2−η (0,�) for
any η > 0 since every function in H 1/2+η (0,�) is continuous (Theorem A.8). Thus we can
imbed

M ([0, T ]× [0,�])=M (0, T ; M [0,�])⊂M
(

0, T ; H−1/2−η (0,�)
)

.

Even noting the compact imbedding H 1
0 (0,�) ⊂ H 1/2+η (0,�) we have the problem that

M [a,b] is the dual of C [a,b], not L∞ (a,b), and we have only weak* convergence in L∞.
We need some compactness results for the spaces L p (a,b; X ) or C (a,b; X ) where X

is a Banach or Hilbert space compactly imbedded in another. There is an extra ingredient
that we have not used yet. The velocity v = ∂u/∂ t is bounded from the energy bounds:
∂uε/∂ t is uniformly bounded in L∞

(
0, T ; L2 (0,�)

)= L∞ (0, T ; H ), independently of ε >
0. Here we use the compactness theorem of Seidman (Theorem A.6).

Since we know that ∂uε/∂ t is uniformly bounded in L∞
(
0, T ; L2 (0,�)

)
, and X =

H 1
0 (0,�)⊂ H 3/4 (0,�)= Z ⊂ L2 (0,�)= Y with X ⊂ Z compact and Z ⊂ Y continuous, we

can apply this theorem to show that uε belongs to a compact subset of C(0, T ; H 3/4(0,�)).
Possibly by restricting to a further subsequence, we can show that uε → û strongly in
C(0, T ; H 3/4(0,�)). Taking η= 1/4, we have Nε ⇀ N̂ weakly* in M([0, T ]; H−3/4(0,�)).
Now we have duality pairing between N̂ and û as well as strong convergence of at least
one of the functions. Thus we can take limits and get

〈
N̂ , û−ϕ

〉= 0, and so û and N̂ are a
solution.

Note that our result is a pure existence result. No one has been able to prove unique-
ness except in special circumstances (see, for example, Schatzman [221]). In general, we
still need a coefficient of restitution, which has not been included in the formulation, and
conservation does not hold in general for solutions of (6.62)–(6.65). For example, consider
u0(x)= sin (πx/�) and v0(x)= 0 for all x , while ϕ(x)= 0 for η ≤ x ≤ �−η but ϕ(x) < 0
if either x < η or x > �− η with 0 < η < �/2. Then the solution u(t , x) = cos(π t/�) for
0 ≤ t ≤ �/(2π). But at t∗ = �/(2π) we have u (t∗, x)= 0 for all x . At contact, we could
set ∂u/∂ t(t∗+, x) = 0 for η ≤ x ≤ �− η, for example. Since the wave equation has finite
speed of propagation, all the energy in η < x < �− η would be lost. Or we could set
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∂u/∂ t(t∗+, x)= −e∂u/∂ t(t∗−, x) with a coefficient of restitution e for η < x < �− x and
obtain different solutions for different 0≤ e ≤ 1.

Our method of construction should lead to conservative solutions since solutions of
our penalty method conserve the penalty energy

Eε

[
uε ,

∂uε

∂ t

]
=

∫ �

0

[
1

2

(
∂uε

∂ t

)2

+ 1

2

(
∂uε

∂x

)2

+ 1

2ε

[
(uε (t , x)−ϕ(x))−

]2

]
dx .

We have used the energy bound to show that the energy in the penalty part of the energy∫ �

0

1

2ε

[
(uε(t , x)−ϕ(x))−

]2
dx

is bounded in order to show that
∥∥(u−ϕ)−

∥∥
L∞(0,T ; L2(0,�)) =O(ε1/2). However, we do not

know if this energy goes to zero, or goes to zero uniformly, as ε ↓ 0. For the example
of the previous paragraph with u(t , x) = cos(π t/�) sin (πx/�) for 0 ≤ t ≤ t∗, we could
see that in the penalty approximation, we would get the same solution for 0 ≤ t ≤ t∗, but
once contact is made, there would be considerable energy transferred to this penalty part.
Since we have only weak* convergence in L∞

(
0, T ; H 1

0 (0,�)
)
, we cannot conclude that

the nonpenalty energy E[uε ,∂uε/∂ t] converges to E [̂u,∂ û/∂ t]. By using Mazur’s lemma,
all we can really tell is that E [̂u(t , ·),∂ û/∂ t] ≤ E∗ for all t ≥ 0, which does not imply that
the solution is necessarily even dissipative.

Schatzman’s paper [221] is remarkable in that it shows that for concave obstacles it
is possible to find solutions which do indeed conserve energy. The coefficient of restitution
is explicitly set to one: ∂u/∂ t(t+, x)=−∂u/∂ t(t−, x) for any (t , x) where u(t , x)= ϕ(t , x).
The method of analysis is via the method of characteristics, and the technical difficulties
of applying this approach to general obstacles (where there can be infinitely many separate
reflections in finite time) meant that the obstacle was restricted to being concave. Whether
there are solutions which conserve energy for arbitrary smooth obstacles is an open ques-
tion.

Another issue that the reader may wonder about is the insistence for the strict inequal-
ities ϕ(0), ϕ(�) < 0. While this may appear to be simply for mathematical convenience,
there is a physical reason for this restriction. If we allow, for example, ϕ(0)= 0, there can
be reflections at x = 0 from contact occurring arbitrarily close to x = 0. This can result in a
feedback loop with reflections causing contacts causing reflections, and so on, in arbitrarily
short times. This effect could be strong enough to destroy solutions, although that is not
clear at present.

While this example is very simple and can be treated by some simpler or more spe-
cific methods (such as by Schatzman [221]), the principles used here are much more general
and can be used in a wider class of problems.

6.2.6 Abstract treatment of a class of elastic bodies

There is a wider class of problems than both the Routh rod and vibrating string problems
that can be treated in this fashion. It does not include all, or even the most important,
elastic-body impact problems. However, it is an important class of problems and provides
important insights. The development of this section follows [3].
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250 Chapter 6. Index Two: Impact Problems

We start with two Gelfand triples, one for the displacements and another for the
forces. This can be later reduced to a single Gelfand triple, but using both can make the
way the method works clearer. These Gelfand triples are

X ⊂ H = H ′ ⊂ X ′,
W ⊂ Z = Z ′ ⊂W ′

with the displacement field u(t) ∈ X and the normal contact forces N(t) ∈W ′. The imbed-
dings in the Gelfand triples are assumed to be compact.

The set of admissible displacements is given by u(t)−ϕ ∈ K with K a closed convex
cone in X . Connecting them is a continuous linear operator β : X → W with β(X ) dense
in W . The equations of motion are

ρ
∂2u

∂ t2 =−Au(t)+ f (t)+β∗N(t), (6.72)

K ∗ " N(t) ⊥ βu(t)−ϕ ∈ K (6.73)

with A : X → X ′ a linear elliptic or semielliptic operator, f : [0, T ]→ H in L2 (0, T ; H ),
and K ∗ the dual cone to the cone K .

Example 6.1 (Routh’s rod). Take X = H 1 (0,�) and H = L2 (0,�) for the displacement
field, and take W = Z = R for the contact force. The connecting map is the trace oper-
ator β : H 1 (0,�)→ R given by w #→ w(0) because we have contact only at the left end-
point of the interval [0,�]. The cone K = R+ to indicate that u(t ,0) ≥ 0. The operator
A = −∂2/∂x2. Note that the adjoint operator β∗ : W ′ = R→ X ′ = H−1 (0,�) is simply
multiplication by the Dirac-δ function β∗N(t) = N(t)δ(x), which is a force concentrated
at the left endpoint of the rod.

Example 6.2 (Vibrating string). Take X = H 1
0 (0,�) and H = L2 (0,�) for the displace-

ment field, but this time, take W = H 1 (η,�−η) for some η > 0. (See the compatibility
constraint (6.66) and the discussion of it in the previous section for more explanation.) Take
Z = L2 (η,�−η). The connecting map β : X → W is the restriction to the subinterval:
w #→w|(η,�−η). The cone K is the cone of nonnegative functions in H 1

0 (0,�). The operator
A is again −∂2/∂x2. The adjoint operator β∗ : W ′ = H−1 (η,�−η)→ X ′ = H 1

0 (0,�)′ is
simply the extension of a distribution by zero:∫ �

0
β∗N(t , x)ψ(x)dx =

∫ �−η

η

N(t , x)ψ(x)dx .

Example 6.3 (Euler–Bernoulli beam). The equations of motion for an Euler–Bernoulli
beam without contact are fourth order in space:

ρ A
∂2u

∂ t2 =−E I
∂4u

∂x4 + f (t , x), 0 < x < �.

Here E is Young’s modulus, A is the cross-sectional area of the beam, I is the second
moment of area of the cross section of the beam, and ρ is the density. Since we have a
fourth order equation, we need a higher order Sobolev space for the displacements. We
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include in this example clamped boundary conditions at x = 0, where the displacement
field u(t ,0)= ∂u/∂x(t ,0)= 0, and free boundary conditions at x = �:

X = H 2
cf (0,�) =

{
w ∈ H 2 (0,�) |w(0)= ∂w/∂x(0)= 0

}
.

Again, H = L2 (0,�). For contact at the free end, we take W = Z =R with β : X →W to be
the trace operator given byw #→w(�). The cone K =R+ for the condition u(t ,�)−ϕ≥ 0. If
we have contact over the length of the beam, then we take W = H 2 (η,�), Z = L2 (η,�) with
β : X → W given by the restriction w #→ w|(η,�). In this case K is the set of nonnegative
functions in H 2 (η,�).

Example 6.4 (General linear frictionless elastic bodies). Here we take X = H 1
(
�; Rd

)
,

where d is the dimension of the body (usually two or three) and H = L2 (�). The spaces
for the contact forces are on the boundary %c ⊆ ∂�, so we take W = H 1/2 (%c) and
Z = L2 (%c) with the connecting map β : X = H 1

(
�; Rd

) → W = H 1/2 (%c) given by
βw(x) = n(x) ·w(x) for x ∈ %c. Note that, apart from the dot product with the unit out-
ward normal vector, this is essentially the trace map H 1 (�)→ H 1/2 (%c) onto a part of the
boundary of �. To represent the condition that n(x) ·u(t ,x)−ϕ(x)≥ 0 on %c, we take K
to be the cone of nonnegative functions in H 1/2 (%c). The operator A is the negative of the
usual elasticity operator. For isotropic elasticity this is Au = − (λ+µ)∇ (∇ ·u)−µ∇2u,
where λ and µ are the usual Lamé parameters. Note that the adjoint operator β∗ : W ′ =
H−1/2 (%c)→ X ′ = H−1

(
�; Rd

)
is multiplication by the surface measure ν%c times the

outward normal vector n(x). Thus β∗N(t ,x) is a surface measure with values in Rd .

6.2.7 Proving existence

We can prove existence of solutions for problems in this framework (6.72)–(6.73) under
some important conditions. These conditions are inspired by the one-dimensional examples
above. Unfortunately, they do not extend to general frictionless elastic bodies.

The critical condition is that the dual cone K ∗ is strongly pointed; that is, K is a
solid cone, with nonempty interior. This holds in the one-dimensional examples essentially
because H 1 (0,�) and H 2 (0,�) are contained in the space of continuous functions, so that
the norm is stronger than the supremum norm sup0≤x≤� | f (x)|. This means that cones of
nonnegative functions can have nonempty interior. However, in H 1(�) for � a domain in
Rd for d ≥ 2, this is not the case. Similarly, H 1/2(∂�) is contained in C(∂�) if d = 1 but
not for d ≥ 2. At the time of this writing, there are as yet no existence proofs for general
linearly elastic bodies contacting rigid obstacles. See the next section for more information.

Penalty approximation

We can create a penalty approximation to the rigid obstacle problem. For a closed con-
vex set C , we can use the Yosida approximation for the normal cone function u #→
λ−1 (u−�C(u)) where �C is the nearest point projection in the pivot space H of the
Gelfand triple. For the vibrating string problem, this gives exactly the penalty approxima-
tion used in Section 6.2.5. Since u(t)−ϕ ∈ K for all t in our problem, we take C = ϕ+K .
Then we have the differential equation

∂2uε

∂ t2
=−Auε(t)+ f (t)− 1

ε
β∗

(
βuε−�ϕ+K (βuε)

)
. (6.74)
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To show the existence of solutions to the penalty differential equation, we use the same
method as for the vibrating string problem: from the variation of parameters formula,

uε(t)= cos
(
A1/2t

)
u0+A−1/2 sin

(
A1/2t

)
v0

+
∫ t

0
A−1/2 sin

(
A1/2(t− τ )

) [
f (τ )+ 1

ε
ψ [uε(τ )]

]
dτ ,

where ψ [w]=−β∗ (βw−�ϕ+K (βw)
)
. Because β∗β is a bounded operator X → X ′ but

not X → X or even X → H , we need a further step to show existence of solutions for the
penalized problem. We use the Galerkin method. Let Xm be a finite-dimensional subspace
of X for m = 1, 2, 3, . . . with Xm ⊂ Xm+1 for all m and

⋃∞
m=1 Xm = X . We will use the

particular choice Xm = span{φ1, φ2, . . . , φm} where (A+A∗)φi = λiφi , where λi is the
i th smallest eigenvalue of A+A∗. We look for solutions um,ε : [0, T ]→ Xm which satisfy

d2

dt2

〈
uε,m , v

〉
(6.75)

=
〈
−Auε,m + f (t)− 1

ε
β∗

(
βuε,m −�ϕ+K

(
βuε,m

))
, v

〉
for all v ∈ Xm . Note that we are using duality pairings, which are equivalent to inner
products in H . Let �m =�Xm , the orthogonal (or nearest point) projection onto Xm using
the inner product in H . Then (6.75) is equivalent to

d2uε,m

dt2
=�m

(
−Auε,m + f (t)− 1

ε
β∗

(
βuε,m −�ϕ+K

(
βuε,m

)))
.

This is now a finite-dimensional ordinary differential equation with a Lipschitz right-hand
side, and so it has solutions for initial conditions uε,m(0)=�mu0 and duε,m/dt(0)=�mv0.

Energy bounds

The energy functional for the penalty term has to be included as it was for the vibrating
string problem:

Eε

[
uε,m ,

∂uε,m

∂ t

]
= 1

2

〈
∂uε,m

∂ t
,
∂uε,m

∂ t

〉
+ 1

2

〈
uε,m , Auε,m

〉+ 1

2ε
d

(
βuε,m , ϕ+ K

)2 .

Note that d(a, B)=minb∈B ‖a−b‖H is the distance from the point a to the (closed convex)
set B; the distance is measured in the space H . The rate of change of the energy is then

d

dt
Eε

[
uε,m ,

∂uε,m

∂ t

]
=

〈
∂uε,m

∂ t
,
∂2uε,m

∂ t2

〉
+

〈
∂uε,m

∂ t
, Auε,m

〉
+ 1

ε

〈
βuε,m−�C (βuε),

∂

∂ t

(
βuε,m−�C (βuε,m)

)〉
,

where C = ϕ+ K . Now note that for any w ∈ H , 〈w−�C (w), �C (w)− z〉 ≥ 0 for all
z ∈ C . So take w = x(t) and z =�C (x(t±h)) with h > 0. Then,

〈x(t)−�C(x(t)), �C (x(t))−�C(x(t±h))〉 ≥ 0.
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If t is a point of differentiability of �C (x(t)), then dividing by h and taking h ↓ 0 give〈
x(t)−�C(x(t)),± d

dt
�C (x(t))

〉
≥ 0.

That is, 〈x(t)−�C(x(t)), (d/dt)�C (x(t))〉 = 0. In particular, since ∂uε,m/∂ t(t) ∈ Xm for
all t ,

d

dt
Eε

[
uε,m ,

∂uε,m

∂ t

]
=

〈
∂uε,m

∂ t
,
∂2uε,m

∂ t2

〉
+

〈
∂uε,m

∂ t
, Auε,m

〉
+ 1

ε

〈
βuε,m−β�C (βuε,m), β

∂uε,m

∂ t

〉
=

〈
∂uε,m

∂ t
,−Auε,m − 1

ε
β∗

(
βuε,m−�C (βuε,m)

)〉
+

〈
∂uε,m

∂ t
, Auε,m

〉
+ 1

ε

〈
βuε,m −�C(βuε,m), β

∂uε,m

∂ t

〉
= 0.

That is, Eε

[
uε,m ,∂uε,m/∂ t

]
is constant, and so it is equal to the initial energy

E∗m =
1

2

〈
�Xmv0, �Xmv0

〉+ 1

2

〈
�Xm u0, A�Xm u0

〉
≤ 1

2
〈v0, v0〉+ 1

2
〈u0, Au0〉 = E∗

for Xm = span {φ1, φ2, . . . , φm}. We do not really need Xm = span {φ1, φ2, . . . , φm}, just
that the projections�m : H → Xm have uniformly bounded norms as operators X → Xm ⊂
X .

Once we have bounds Eε

[
uε,m ,∂uε,m/∂ t

] ≤ E∗ we automatically have bounds for

E
[
uε,m ,∂uε,m/∂ t

] = 1
2

∥∥∂uε,m/∂ t
∥∥2

H + 1
2

〈
uε,m , Auε,m

〉
that are independent of ε > 0 and

m. These are the energy bounds that we need.

Momentum and contact impulse bounds

Here we need to use strong pointedness of K ∗. With this assumption there is a w ∈ K
where

〈w, ψ〉 ≥ ‖ψ‖X ′ for all ψ ∈ K ∗.

Actually we need something a little stronger:

β∗
(
K ∗)∩ X−θ strongly pointed in X−θ with 0 < θ < 1, (6.76)

where X−θ = X ′θ is the dual interpolation space as defined in Section 3.3.2. Thus we want
a w ∈ K where

〈w, ψ〉 ≥ ‖ψ‖X−θ for all ψ ∈ β∗
(
K ∗)∩ X−θ . (6.77)

Note that a consequence of this is that β∗ (K ∗)⊂ X−θ .
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We can, without loss of generality, take w ∈ Xm for sufficiently large m. Since
�mw→w in Xθ as m→∞, for sufficiently large m, ‖w−�mw‖Xθ

< 1, and we can then
scale �mw by 1/

(
1−‖w−�mw‖Xθ

)
to obtain the strong pointedness condition (6.77).

Now we can take the penalty equations and take duality pairings with w:〈
w,

∂2uε,m

∂ t2

〉
= 〈

w,−Auε,m
〉+ 〈

w, β∗Nε,m (t)
〉

=− 〈Aw, uε,m
〉+ 〈

w, β∗Nε,m (t)
〉
.

Integrating over [0, t] gives〈
w,

∂uε,m

∂ t
(t)

〉
−〈w, v0〉 = −

∫ t

0

〈Aw, uε,m(τ )
〉
dτ +

∫ t

0

〈
w, β∗Nε,m (τ )

〉
dτ .

The left-hand side is bounded from the energy bounds by 2 ‖w‖H (E∗)1/2. Also the in-
tegrand

〈Aw, uε,m(τ )
〉

is bounded by ‖Aw‖X ′
∥∥uε,m(τ )

∥∥
X ≤ C ‖Aw‖X ′ (E∗)1/2 for some

constant C independent of ε and τ . This leaves
∫ t

0

〈
w, β∗Nε,m (τ )

〉
dτ bounded. Using

(6.77), we then have a bound∫ T

0

∥∥β∗Nε,m (τ )
∥∥

X−θ dτ ≤ constant.

Thus, by Alaoglu’s theorem, we have weak* convergence of a subsequence in the space of
measures with values in X−θ , M (0, T ; X−θ ).

Taking limits

Take a subsequence of ε ↓ 0 where β∗Nε,m ⇀∗ β∗ N̂ weakly* in M (0, T ; X−θ ). Now,
by Seidman’s theorem (Theorem A.6), since uε,m is uniformly bounded in L∞ (0, T ; X )
and ∂uε,m/∂ t is uniformly bounded in L∞ (0, T ; H ), we can find a further subsequence
uε,m → û in C (0, T ; Xθ ), as X = X1 is compactly imbedded in Xθ for 0 < θ < 1.

Now we show that βû(t)−ϕ ∈ K for all (or almost all) t , and that N̂ is a measure
with values in K ∗, or equivalently, β∗ N̂ has values in β∗(K ∗).

Now we can further restrict our attention to subsequences where uε,m ⇀ û weakly in
L p (0, T ; X ) for any 1 < p <∞. Since these are reflexive Banach spaces, weak and weak*
convergence are the same in them. Consider the functional

�[u]=
∫ T

0

1

2
d (βu(t), ϕ+ K )2 dt ,

where d(x ,C) is the distance from x to C using the norm for H . This is a convex continuous
functional on L2 (0, T ; X ), and so by Mazur’s lemma it is weakly lower semicontinuous on
this space. Also, from the energy bounds, �[uε,m] ≤ constantε1/2. Thus taking limits in
the weakly convergent subsequence gives �[ û ] ≤ 0. Since �[u] ≥ 0 for all u, it follows
that �[ û ] = 0, and that d (β û (t), ϕ+ K ) = 0 for almost all t; as ϕ+ K is closed, this
means that β û (t)−ϕ ∈ K for almost all t .
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To see that N̂ is a measure with values in K ∗, suppose that z : [0, T ]→ K is contin-
uous. Since β∗Nε ⇀

∗ β∗ N̂ weakly* in M (0, T ; X−θ )⊂M(
0, T ; X ′

)
,

0≤
∫ T

0

〈
β∗Nε (t), z(t)

〉
dt →

∫
[0,T ]

〈
β∗ N̂ (t), z(t)

〉
dt .

Since this is true for all continuous z : [0, T ]→ K , N̂ is a measure with values in K ∗.
Finally, we have to show that

∫ T
0

〈̂
u(t)−ϕ, β∗ N̂ (t)

〉
dt = 0. Now we know that〈

uε,m(t)−ϕ, β∗Nε (t)
〉≤ 0, as the definition of Nε,m implies that Nε,m (t)∈ NK

(
βuε,m(t)−ϕ

)
,

using the inner product in H . However, we already have uε,m → û strongly in C (0, T ; Xθ )
and β∗Nε,m ⇀∗ β∗ N̂ in M (0, T ; X−θ ). Thus

0 ≥
∫ T

0

〈
uε,m(t)−ϕ, β∗Nε,m (t)

〉
dt

→
∫ T

0

〈
û (t)−ϕ, β∗ N̂ (t)

〉
dt ≥ 0,

so we obtain complementarity in the limit.

6.2.8 General elastic bodies

The problem of impact of three-dimensional elastic bodies with rigid obstacles still re-
mains out of reach. However, there are a number of partial results and techniques that are
important for handling this and related problems.

An important technique for handling boundary thin obstacle problems is to remove
the normal contact forces from consideration. If we have a complementarity formulation

ρ
∂2u

∂ t2 =−Au+ f (t)+β∗N(t),

K ∗ " N(t) ⊥ βu(t)−ϕ ∈ K for all t ,

then if K ∗ is not strongly pointed (or equivalently, if K is not a solid cone), we can-
not get the bounds on

∫ ‖N(t)‖ dt needed to complete the proof of existence. In fact,∫ ‖N(t)‖ dt may be infinite, so that N is not a measure of bounded variation. Rather
than try to work through the theory of measures that have only weakly bounded variation
(where

∫ |〈ψ , N(t)〉| dt ≤ C for all ψ with ‖ψ‖ ≤ 1), we can reformulate boundary con-
tact problems as VIs. In fact, even in other circumstances, this is a common technique
[56, 120, 152, 154].

If we set

K̃ = {w ∈ X | βw ∈ K } ,
then K̃ is a closed convex cone in X and our CP becomes

K̃ ∗ " β∗N(t) ⊥ u(t)− ϕ̃ ∈ K̃ for all t ,

where βϕ̃ = ϕ. That is, ϕ̃ is an extension of ϕ. The equivalent VI is that

u(t) ∈ ϕ̃+ K̃ for all t &

0≤
〈
w(t)−u(t), ρ

∂2u

∂ t2
(t)+Au(t)− f (t)

〉
for all t and w(t) ∈ K̃ .

Downloaded 03 Nov 2011 to 160.36.192.127. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php



256 Chapter 6. Index Two: Impact Problems

Let K = {
z ∈W 1,p (0, T ; X ) | z(t) ∈ ϕ̃+ K̃ for all t

}
for some p which will be fixed later.

An integral version of the VI is

u ∈K &
∫ T

0
ψ(t)

〈
w(t)−u(t), ρ

∂2u

∂ t2
(t)+Au(t)− f (t)

〉
dt ≥ 0

for all w ∈ K and smooth ψ : [0, T ]→ R+. Now assume that w : [0, T ]→ K̃ is smooth
and ψ(T )= 0. We can later shift T if we need to avoid technical issues having to do with
the solution at t = T . Now we can use integration by parts to reformulate the problem as

u ∈ K &

0≤ ψ(0) 〈u0−w(0), ρv0〉−
∫ T

0
ψ(t)

〈
∂w

∂ t
(t)− ∂u

∂ t
(t), ρ

∂u

∂ t
(t)

〉
dt

+
∫ T

0
ψ(t) 〈w(t)−u(t), Au(t)− f (t)〉 dt

−
∫ T

0
ψ ′(t)

〈
w(t)−u(t), ρ

∂u

∂ t
(t)

〉
dt for all w ∈K. (6.78)

With this reformulation, we have removed the normal contact forces, and we have
only first order derivatives in time appearing in the integrands.

We could attempt to repeat the process described in the previous section, but since
we do not have N , we do not (apparently) need strong pointedness. Then we should be able
to prove existence of solutions. We need to check what will happen with a few quadratic
integrals with the weak convergence uε,m ⇀ û in L p (0, T ; X ) and ∂uε,m/∂ t ⇀ ∂ û/∂ t in
L p (0, T ; H ). These integrals are

+
∫ T

0
ψ(t)

〈
∂u

∂ t
(t), ρ

∂u

∂ t
(t)

〉
dt ,

−
∫ T

0
ψ(t) 〈u(t), Au(t)〉 dt ,

−
∫ T

0
ψ ′(t)

〈
u(t), ρ

∂u

∂ t
(t)

〉
dt .

The third is not a problem since by compactness of X in H we can use Seidman’s theorem
(Theorem A.6) to show that uε,m → û strongly in C (0, T ; H ). This combined with weak
convergence ∂uε,m/∂ t ⇀ ∂ û/∂ t in L p (0, T ; H ) for any 1 < p <∞ gives convergence of
this integral. The second integral is also not a problem since the integral is a concave
function of u, so by Mazur’s lemma,

limsup
ε↓0, m→∞

−
∫ T

0
ψ(t)

〈
uε,m(t), Auε,m(t)

〉
dt ≤−

∫ T

0
ψ(t) 〈̂u(t), Aû(t)〉 dt ,

which keeps the inequalities pointing in the same direction, which would allow us to show
that the VI holds in the limit. On the other hand, the first integral is convex, so using
Mazur’s lemma would result in inequalities going in the wrong direction. If we could show
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that the velocities ∂uε,m/∂ t were uniformly bounded in Xθ for any θ > 0, we would be able
to obtain convergent subsequences and hence show the existence of solutions in the limit.

Some existence theorems of this type have been shown. However, there are usually
some special limitations, or the problem is modified, usually by incorporating Kelvin–Voigt
viscoelasticity. Introducing Kelvin–Voigt viscoelasticity makes the viscoelasticity operator
essentially a parabolic operator, so that the solutions of the viscoelastic system tend to be
much smoother. However, as we will see, it also makes the contact forces more singular in
response. This can complicate the analysis.

6.2.9 Wave equation: Existence via compensated compactness

This existence result is due to Kim [146]. The problem here is apparently fairly general.
The wave equation applies in the domain, and we have contact on at least part of the bound-
ary. It is however a scalar system. More formally,

∂2u

∂ t2
=∇2u in �,

N(t ,x)=−∂u

∂n
(t ,x), x ∈ ∂�,

0≤ N(t ,x)⊥ u(t ,x)−ϕ(x)≥ 0, x ∈ ∂�,

with given initial values u(0,x)= u0(x), ∂u/∂ t(0,x)= v0(x), and with fixed displacement
(u(t ,x)= g(x) for x ∈ %d ) or given traction (∂u/∂n(t ,x)= τ (x) for x ∈ %t ) boundary con-
ditions on the remainder of the boundary.

Kim starts in the same way as is done above: use a sequence of finite-dimensional
Galerkin approximations and obtain energy bounds for these approximations. This shows
that the Galerkin approximations uε,m are uniformly bounded in time in the energy space
H 1 (�). Since Kim uses the VI formulation, he is not concerned about bounds for the
normal contact forces N . By Alaoglu’s theorem, there is a weak* limit û of a suitable
subsequence of uε,m . Taking weak limits as m →∞ for ε > 0 fixed gives a solution uε of
the wave equation satisfying the penalty approximation.

The problem is now to show that the weak* limit uε ⇀
∗ û satisfies the VI (6.78).

The problem, as mentioned above, is that
∫
� (∂uε/∂ t)2 dx and 〈uε , Auε〉 =

∫
�
|∇uε |2 dx

do not converge to the appropriate limits under weak or weak* convergence. However,
Kim invokes the div-curl lemma of compensated compactness, which implies, from the
fact that ∂2uε/∂ t2−∇2uε = 0 and the boundedness of ∂uε/∂ t and ∇uε in L2 (�), that∫ T

0

∫
�
ψ[(∂uε/∂ t)2−|∇uε |2]dx dt does converge to

∫ T
0

∫
�
ψ[(∂u/∂ t)2− |∇u|2]dx dt , at

least for ψ smooth with compact support in �. This deals with the difficult integrals in the
VI (6.78). There are some additional technicalities in dealing with the fact that ψ has to
be zero in a neighborhood of the boundary ∂�. Kim deals with this by showing that the
integrals close to the boundary are small as the thickness of this boundary layer goes to
zero. The result is that the limit indeed satisfies (6.78).

If the div-curl lemma could be generalized to the elasticity operators (even for just
the isotropic constant coefficient version), then frictionless contact for elastic bodies would
be a solved problem. Although considerable effort has been put into this, as yet there is no
sign that this can be done. Other ideas are needed to find a solution to this problem.
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6.2.10 Wave equation: In a half-space

A different approach was taken by Lebeau and Schatzman [156], which treats the wave
equation in a half-space �= R+×Rn−1 with Signorini contact conditions on ∂�= {0}×
Rn−1. For x ∈ �, put x = (

x1, x′
)

with x′ ∈ Rn−1. The basic idea is to use the Neumann
to Dirichlet operator for the wave equation, representing the operator in terms of Fourier
integrals. The approach below is a loose description of their results; for more details see
their paper.

The wave equation can be written as

∂2u

∂ t2
= ∂2u

∂x2
1

+∇2
x′u.

Taking Fourier transforms of this equation with respect to t and x′ gives

−ω2 û (ω, x1,ξ ′)= ∂2û

∂x2
1

(ω, x1,ξ ′)− ∣∣ξ ′∣∣2
û (ω, x1,ξ ′).

That is,

∂2û

∂x2
1

(ω, x1,ξ ′)=
(∣∣ξ ′∣∣2−ω2

)
û (ω, x1,ξ ′).

Solving this differential equation in x1 gives

û (ω, x1,ξ ′)= α+(ω,ξ ′)exp

(
+

(∣∣ξ ′∣∣2−ω2
)1/2

x1

)
+α−(ω,ξ ′)exp

(
−

(∣∣ξ ′∣∣2−ω2
)1/2

x1

)
.

Using the convention that Re
(∣∣ξ ′∣∣2−ω2

)1/2≥ 0, which is equivalent to choosing the princi-
pal branch of the complex square root function, we must have α+(ω,ξ ′)= 0 for û(ω, x1,ξ ′)
to be a tempered distribution. Thus we write

û(ω, x1,ξ ′)= α(ω,ξ ′)exp

(
−

(∣∣ξ ′∣∣2−ω2
)1/2

x1

)
.

Now −∂u(t ,x)/∂x1(t ,0,x′)= N(t ,x′), so

FN(ω,ξ ′)= α(ω,ξ ′)
(∣∣ξ ′∣∣2−ω2

)1/2
, so that

û (ω, x1,ξ ′)= FN(ω,ξ ′)(∣∣ξ ′∣∣2−ω2
)1/2 exp

(
−

(∣∣ξ ′∣∣2−ω2
)1/2

x1

)
.

In particular,

û (ω,0,ξ ′)=
(∣∣ξ ′∣∣2−ω2

)−1/2 FN(ω,ξ ′).
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The map N(·, ·) #→ u(·, 0, ·) is the Neumann to Dirichlet operator for the wave equation on
the half-space

{(
x1,x′

) | x1 ≥ 0
}
. Care must be taken with this Fourier representation of

the Neumann to Dirichlet operator, as
(∣∣ξ ′∣∣2−ω2

)−1/2
has a branch cut with endpoints at

ω = ±|ξ ′|. To make sure that we stay on the principal branch, we can replace ω with the
limit ω+ ia as a ↓ 0. Apart from a factor of e−at , the operator represented by the Fourier
multiplier

(∣∣ξ ′∣∣2− (
ω+ ia

)2)−1/2 is independent of a > 0, thanks to the Cauchy residue
theorem of complex analysis. It is particularly important to choose the correct branch, as
one choice gives the causal operator (u(t ,0,x′) depends on N(τ ,y′) for τ < t), while the
other is anticausal (u(t ,0,x′) depends on N(τ ,y′) for τ > t). We choose, of course, the
causal operator.

In fact, Lebeau and Schatzman do not deal with the Neumann to Dirichlet operator,
but rather with its inverse, the Dirichlet to Neumann operator, which is represented by the
Fourier multiplier

(∣∣ξ ′∣∣2−ω2
)1/2, understood using the principal branch of the square root

function applied to |ξ ′|2− (ω+ ia)2 with a > 0. As ω→±∞,
(∣∣ξ ′∣∣2−ω2

)1/2 ∼ iω. The
difference is (∣∣ξ ′∣∣2−ω2

)1/2− iω=
∣∣ξ ′∣∣2(∣∣ξ ′∣∣2−ω2

)1/2+ iω
.

The denominator (using the principal branch) is bounded above and below by multiples
of max

(|ω| , ∣∣ξ ′∣∣). If A is the Dirichlet to Neumann operator, then we note that iω is the
Fourier multiplier for the operator ∂/∂ t . The operator

C =A− ∂

∂ t

is represented by the Fourier multiplier

∣∣ξ ′∣∣2
/

[(∣∣ξ ′∣∣2−ω2
)1/2+ iω

]
.

The operator A can be restricted in time to form AT given by

AT u = (A [ET u]) χ[0,T ]

with ET the operator that extends a function with domain [0, T ] to domain R by zero. The
corresponding operator CT is a (causal) operator

L2(0, T ; H 1/2(Rn−1))→ L2(0, T ; H−1/2(Rn−1)).

While neither AT nor CT is elliptic on a suitable space, there is a positivity property for
AT :

〈w, ATw〉 =
∫
{(ω,ξ ′)||ξ ′|≥|ω|}

√∣∣ξ ′∣∣2−ω2
∣∣ŵ(ω,ξ ′)

∣∣ dωdξ ′

+ 1

2

∫
Rn−1

∣∣w(T ,x′)
∣∣2

dx′.
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We use a penalty approximation which we can represent via the trace operator β : H 1(Rn−1×
R+)→ H 1/2(Rn−1) as

∂2uε

∂ t2
=∇2uε+β∗Nε ,

0≤ βuε(t)−ϕ ⊥ ε βuε(t)+ Nε(t)≥ 0.

By means of energy bounds for the penalty approximation we can show that ∂uε/∂ t and
∇uε are uniformly bounded in L2(0, T ; L2(Rn−1×R+)), and therefore wε := βuε are uni-
formly bounded in L2(0, T ; H 1/2(Rn−1)) and ∂wε/∂ t are uniformly bounded in
L2(0, T ; H−1/2(Rn−1)). Thus there is a subsequence ε ↓ 0 in which wε ⇀ ŵ weakly
in L2(0, T ; H 1/2(Rn−1)) and ∂wε/∂ t ⇀ ∂ŵ/∂ t weakly in L2(0, T ; H−1/2(Rn−1)). Since
w #→ 〈w, AT w〉 is a nonnegative quadratic function, it is convex, and so by Mazur’s lemma,

〈ŵ, AT ŵ〉 ≤ liminf
ε↓0

〈wε , AT wε〉 .

Thus, taking limits in the subsequence,

0= liminf
ε↓0

〈wε−ϕ, ATwε〉
≥ 〈ŵ−ϕ, AT ŵ〉 ≥ 0,

with the last inequality holding because we can show ŵ− ϕ ≥ 0 and AT ŵ ≥ 0 as weak
limits of nonnegative functions and distributions are nonnegative. Thus we have

0≤ ŵ−ϕ ⊥AT ŵ ≥ 0,

and we have a solution of the contact problem for the wave equation on a half-space.
Not only can we show that there is a solution, but it can also be shown that energy

is conserved. This can be done by writing the work done on the half-space by the contact
force in terms of ŵ and AT ŵ and using a differentiation lemma for CPs.

It is difficult to extend this approach to other problems. Firstly, to apply the method
to something other than a half-space or a slab requires much more difficult and delicate
Fourier analysis. The technique of “straightening the boundary” can be applied to this
problem, but the resulting partial differential equation has varying coefficients and can also
have infinitely many reflections in finite time. On the other hand, even if we keep the
half-space geometry but try to apply the method to the equations of elasticity, there is the
problem of multiple wave speeds, and it is unclear what∫

{(ω,ξ ′)||ξ ′|≥|ω|}
√∣∣ξ ′∣∣2−ω2

∣∣ŵ(ω,0,ξ ′)
∣∣ dωdξ ′

should be replaced with in the positivity result. The positivity result could be weakened
if we can show that the negative part is in some way “compact” with respect to the main
“positive” part of the operator.
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A[ε ]σ e = [ εB
dt
dσ ]v=

(a) Maxwell model

= [ ]εBσv dt
d

= ]A[εeσ

(b) Kelvin–Voigt model

Figure 6.10: Maxwell and Kelvin–Voigt models of viscoelasticity.

At the time of this writing, there is no proof of existence of solutions to the equations
of elasticity with Signorini contact conditions in more than one dimension. However, if we
allow viscoelasticity of a Kelvin–Voigt type, we can go much further, as we will see in the
next section.

6.3 Viscoelastic bodies
Practical dynamic models of real elastic materials have to include the effects of viscosity.
Viscosity is due to energy losses arising from the rate of “stretching” or “compression” of
the material. There are a number of models of viscoelasticity, the simplest of which are the
Maxwell and Kelvin–Voigt models. These are often represented in continuum mechanics
textbooks with a spring (representing elastic forces) either in series (Maxwell model) or in
parallel (Kelvin–Voigt model) with a damper (representing viscosity). This is illustrated in
Figure 6.10. These can be represented in terms of the relationship between the stress (σ )
and strain (ε) tensors.

If the spring and damper are in series as in the Maxwell model, then the strain or de-
formation tensor ε = εe+εv , the sum of the strain tensors for the elastic and viscous defor-
mation, but the stress tensor is the same for both the elastic and viscous terms. If the spring
and damper are in parallel as in the Kelvin–Voigt model, the stress tensor σ = σe + σv ,
the sum of the elastic and viscous stresses, but the strain tensors are the same for both the
elastic and viscous terms. The operators A and B shown in Figure 6.10 are linear operators
mapping tensors to tensors Rn×n → Rn×n satisfying the same symmetry and positive defi-
niteness properties as for the pure elasticity operator as discussed in Section 6.2. Note that
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we can represent A and B in terms of components:

(A ε)i j =
∑
k,l

ai j klεkl ,(
B
∂ε

∂ t

)
i j
=

∑
k,l

bi j kl
∂εkl

∂ t
.

In terms of components, the symmetry and positive definiteness conditions are

ai jkl = a j ikl = ai j lk = akli j ,

bi jkl = b j ikl = bi j lk = bkli j ,∑
i, j ,k,l

εi j ai j klεkl ≥ ηA

∑
i, j

εi j εi j ,

∑
i, j ,k,l

∂εi j

∂ t
bi j kl

∂εkl

∂ t
≥ ηB

∑
i, j

∂εi j

∂ t

∂εi j

∂ t

with ηA, ηB > 0.
The Maxwell model can be formulated as follows: ε = εe + εv with σ = A εe =

B ∂εv/∂ t so that ∂εv/∂ t = B−1 A εe. Then the total rate of strain tensor is ∂ε/∂ t = ∂εe/∂ t+
∂εv/∂ t = A−1 ∂σ/∂ t+ B−1σ . Solving this differential equation for σ gives

σ (t , x)= e−AB−1t σ (0, x)+
∫ T

0
e−AB−1(t−τ ) A

∂ε

∂ t
(τ , x)dτ . (6.79)

Recall the total strain tensor ε = 1
2

(∇u+∇uT
)

where u is the (total) displacement field.
Then we can use σ in the standard equations for the displacement field u(t ,x):

ρ
∂u
∂ t
= divσ + f(t ,x).

Note that the short-time behavior of the Maxwell model is essentially the same as the
purely elastic model; over time there is dissipation of energy. The theoretical behavior of
Maxwell viscoelasticity in terms of existence of solutions is essentially the same as for pure
elasticity, and it suffers the same kind of difficulties.

On the other hand, the Kelvin–Voigt model is easier to formulate:

ρ
∂u
∂ t
= divσ + f(t ,x)

= div

(
A ε+ B

∂ε

∂ t

)
+ f(t ,x).

From the mathematical viewpoint, the advantage of the Kelvin–Voigt model is that it is es-
sentially a parabolic partial differential equation instead of a hyperbolic differential equa-
tion. That means that the solution operator for the Kelvin–Voigt model is a compact oper-
ator. This makes it easier to prove existence of solutions for frictionless impact problems,
but uniqueness is still beyond reach.
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6.3.1 Frictionless impact for Kelvin–Voigt viscoelastic bodies

For displacement field u : �→ Rd with � a domain in Rd , the linearized strain tensor
is ε [u] = 1

2

(∇u+∇uT
)
, which defines the linearized strain operator. We can define the

differential operators A and B from H 1 (�) to H−1 (�) given by

Au=−div(A ε [u]) , (6.80)

Bv=−div(B ε [v]) . (6.81)

For boundary conditions we use

u(t ,x)= g(x), x ∈ %D , (6.82)

σ (t ,x)n(x)= τ (t ,x), x ∈ %N , (6.83)

σ (t ,x)n(x)=−N(t ,x)n(x), x ∈ %C , (6.84)

0≤ N(t ,x)⊥−n(x) ·u(t ,x)+ϕ(x)≥ 0, x ∈ %C . (6.85)

A formal representation of the linearized Kelvin–Voigt viscoelastic impact problem without
friction as a VI is

u(t) ∈ K ,

0 ≤
〈̃
u−u(t), ρ

∂2u
∂ t2

(t)+Au(t)+B ∂u
∂ t

(t)− f(t)
〉

for all ũ ∈ K ,

u(0)= u0,
∂u
∂ t

(0) = v0,

where K = {
u ∈ H 1 (�) | u satisfies (6.82) and βu≥ ϕ

}
and βu=−n ·u|%C . The function

f : [0, T ]→ H−1(�) represents the external (that is, nonviscoelastic) forces and the natural
or traction boundary conditions.

If ũ : [0, T ] → H 1 (�) is smooth, then we can use integration by parts to create a
weaker formulation of the VI: choose ψ : [0, T ] → R, where ψ is smooth, ψ(t) ≥ 0 for
all t , ψ(t)= 1 for t ∈ [0, T −2η], and ψ(t)= 0 for t ∈ [T −η, T ] for some η > 0. Then

u(·) ∈ K, and

0 ≤
∫ T

0
ψ(t)

〈̃
u(t)−u(t), ρ

∂2u
∂ t2

(t)+Au(t)+B ∂u
∂ t

(t)− f(t)
〉

dt

=
∫ T

0
ψ(t)

[〈
∂ ũ
∂ t

(t)− ∂u
∂ t

(t), ρ
∂u
∂ t

(t)

〉
+

〈̃
u(t)−u(t), Au(t)+B ∂u

∂ t
(t)− f(t)

〉]
dt

+ ψ(t)

〈̃
u(t)−u(t), ρ

∂u
∂ t

(t)

〉∣∣∣∣t=T

t=0

−
∫ T

0
ψ ′(t)

〈̃
u(t)−u(t), ρ

∂u
∂ t

(t)

〉
dt for all ũ ∈K, (6.86)

where

K =
{

w ∈ L2(0, T ; H 1(�)) | βw(t)+ϕ ≥ 0 and w(0)= u0

}
.
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To create an approximate problem with solution uε of lower order, set

Nε (t ,x)= [−n(x) ·uε(t ,x)+ϕ(x)]− /ε on %C

with ε > 0. In more abstract terms, Nε =−ε−1� ′ ◦ (βuε+ϕ), where �(s)= 1
2

[
s−

]2 is a
convex function. Then we set

ρ
∂2uε

∂ t2 =−Auε (t)−B ∂uε

∂ t
(t)+ f(t)+β∗Nε (t). (6.87)

Theorem 6.3. Suppose that f ∈ L2(0, T ; L2(�))+W 1,2(0, T ; H−1(�)) and the density ρ

is bounded away from zero. Let K = {
z ∈ H 1(�) | βz+ϕ ≥ 0

}
. Then solutions exist for

(6.86) for given initial displacement (u(0)= u0 ∈ K ⊂ H 1(�)) and velocity (∂u/∂ t(0)=
v0 ∈ L2(�)) for any time interval [0, T ]. Furthermore, the solution

u ∈ L∞(0, T ; H 1(�))∩W 1,2(0, T ; H 1(�))∩W 2,2(0, T ; H 1
0 (�)′).

Essentially this result was shown by Cocou and Ricaud [58, 59], although the method
of proof used there is based on a Ky Fan minimax theorem. Subsequent papers, which
extended this result, include Cocou [56] and Kuttler and Shillor [154], both of which in-
corporate a nonlocal Coulomb friction law. The method of proof used here follows [154].

Proof. We show existence on a sufficiently small interval [0, T ] with T > 0. Throughout
the proof we will consider t ∈ [0, T ]. The extension to showing existence of a solution on
an arbitrary time interval can be accomplished by continuation arguments.

Let Eε be the approximate energy function

Eε [u,v]= 1

2
〈v, ρv〉+ 1

2
〈u, Au〉+ 1

ε

∫
%C

� ◦ (βu+ϕ) d S.

Since H 1(�) is a separable Hilbert space, we choose a basis {φ1, φ2, φ3, . . .} for
H 1(�) where φi ∈ K for each i and set Xm = span{φ1, φ2, . . . , φm}. We use φ1 = u0. The
Galerkin approximation um,ε is then given by

〈
w, ρ

∂2um,ε

∂ t2

〉
=

〈
w,−Aum,ε(t)−B ∂um,ε

∂ t
(t)+ f(t) (6.88)

+β∗Nm,ε (t)

〉
for all w ∈ Xm ,

Nm,ε =−1

ε
� ′ ◦ (

βum,ε+ϕ
)

. (6.89)

This is a finite-dimensional Lipschitz differential equation, and so it has solutions (which
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are unique). Then, with vm,ε = ∂um,ε/∂ t , at time t ,

d

dt
Eε

[
um,ε , vm,ε

]= 〈
vm,ε , ρ

∂vm,ε

∂ t

〉
+ 〈

vm,ε , Aum,ε
〉

+ 1

ε

∫
%C

� ′ ◦ (
βum,ε+ϕ

) ·βvm,ε d S

= 〈
vm,ε ,−Aum,ε−Bvm,ε+ f(t)+β∗Nm,ε

〉
+ 〈

vm,ε , Aum,ε
〉+ 1

ε

∫
%C

� ′ ◦ (
βum,ε+ϕ

) ·βvm,ε d S

≤ 〈
vm,ε , f(t)

〉+ 〈
βvm,ε , Nm,ε + ε−1� ′ ◦ (

βum,ε+ϕ
)〉

= 〈
vm,ε , f(t)

〉
.

Integrating gives the inequality

Eε

[
um,ε (t), vm,ε(t)

]≤ Eε [u0, v0]+
∫ t

0

〈
vm,ε(τ ), f(τ )

〉
dτ .

We wish to turn this into a bound on um,ε and vm,ε that is independent of m in suitable
spaces. First, note that if we write f(t) = f1(t)+ f2(t) with f1 ∈ L2(0, T ; L2(�)) and f2 ∈
W 1,2(0, T ; H−1(�)), then∫ t

0

〈
vm,ε(τ ), f1(τ )

〉
dτ ≤ ∥∥vm,ε

∥∥
L2(0,t ; L2(�)) ‖f1‖L2(0,T ; L2(�)) ,∫ t

0

〈
vm,ε(τ ), f2(τ )

〉
dτ

= 〈
um,ε(τ ), f2(τ )

〉∣∣τ=t
τ=0−

∫ t

0

〈
um,ε(τ ), f′2(τ )

〉
dτ

≤ ‖u0‖H1(�) ‖f2(0)‖H−1(�)+
∥∥um,ε(t)

∥∥
H1(�) ‖f2(t)‖H−1(�)

+∥∥um,ε
∥∥

L2(0,T ; H1(�)) ‖f2‖W 1,2(0,T ; H−1(�)) .

Since ρ ≥ ρ0 > 0 over �, where ρ0 is a constant, we have a bound of the form

ρ0

2

〈
vm,ε(t), vm,ε(t)

〉+ 1

2

〈
um,ε(t), Aum,ε (t)

〉
+ 1

ε

∫
%C

� ◦ (
βum,ε(t)+ϕ

)
d S

≤ C
(

1+∥∥vm,ε
∥∥

L2(0,t ; L2(�))+
∥∥um,ε (t)

∥∥
H1(�)+

∥∥um,ε
∥∥

L2(0,t ; H1(�))

)
for all m, ε > 0 and t > 0, and C is a constant that is independent of m, ε, and t , provided
0 ≤ t ≤ T . In what follows, C will continue to be a quantity that is independent of m, ε,
and t , provided 0 ≤ t ≤ T , but its value may be different in different occurrences. Since
A is semielliptic, 〈z, Az〉 ≥ ηA ‖z‖2

H1(�)
−µA ‖z‖2

L2(�)
for suitable constants ηA > 0 and
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µA ≥ 0. Also, �(s)≥ 0 for all s. Thus

ρ0

2

∥∥vm,ε(t)
∥∥2

L2(�)+
ηA

2

∥∥um,ε (t)
∥∥2

H1(�)−
µA

2

∥∥um,ε(t)
∥∥2

L2(�)

≤ C
(

1+∥∥vm,ε
∥∥

L2(0,t ; L2(�))+
∥∥um,ε(t)

∥∥
H1(�)+

∥∥um,ε
∥∥

L2(0,t ; H1(�))

)
≤ C

(
1+ T 1/2

∥∥vm,ε
∥∥

L∞(0,T ; L2(�))+ T 1/2
∥∥um,ε

∥∥
L∞(0,T ; H1(�))

+∥∥um,ε (t)
∥∥

H1(�)

)
.

But um,ε (t) = u0+
∫ t

0 vm,ε(τ )dτ , so
∥∥um,ε(t)

∥∥
L2(�) ≤ ‖u0‖L2(�)+ T

∥∥vm,ε
∥∥

L∞(0,t ; L2(�)).
Then taking the maximum over t ∈ [0, T ] gives

ρ0

2

∥∥vm,ε
∥∥2

L∞(0,T ; L2(�))+
ηA

2

∥∥um,ε
∥∥2

L∞(0,T ; H1(�))

− µA

2

(
‖u0‖L2(�)+ T

∥∥vm,ε
∥∥

L∞(0,T ; L2(�))

)2

= ρ0−µAT

2

∥∥vm,ε
∥∥2

L∞(0,T ; L2(�))

ηA

2

∥∥um,ε
∥∥2

L∞(0,T ; H1(�))

− µA

2

(
‖u0‖2

L2(�)+2T
∥∥vm,ε

∥∥
L∞(0,T ; L2(�))

)
≤ C

(
1+ T 1/2

∥∥vm,ε
∥∥

L∞(0,T ; L2(�))+ T 1/2
∥∥um,ε

∥∥
L∞(0,T ; H1(�))

+∥∥um,ε
∥∥

L∞(0,T ; H1(�))

)
.

Choosing T > 0 sufficiently small so that ρ0−µA T ≥ ρ0/2 we can remove the “µA” term
from the above inequality to obtain

ρ0

4

∥∥vm,ε
∥∥2

L∞(0,T ; L2(�))+
ηA

2

∥∥um,ε
∥∥2

L∞(0,T ; H1(�))

≤ C
(

1+∥∥vm,ε
∥∥

L∞(0,T ; L2(�))+
∥∥um,ε

∥∥
L∞(0,T ; H1(�))

)
.

Thus both
∥∥vm,ε

∥∥
L∞(0,T ; L2(�)) and

∥∥um,ε
∥∥

L∞(0,T ; H1(�)) are bounded independently of m
and ε > 0.

Since each term of Eε [u, v] is nonnegative, this means that

1

ε

∫
%C

� ◦ (
βum,ε(t)+ϕ

)
d S ≤ E0+

∫ t

0

〈
vm,ε(τ ), f(τ )

〉
dτ ;

note that the right-hand side is bounded independently of m, ε, and t ∈ [0, T ]. There is a
constant C where ∫

%C

� ◦ (
βum,ε(t)+ϕ

)
d S ≤ C ε.

There is an additional bound that we can extract using the loss of energy through viscosity.
Note that

d

dt
Eε

[
um,ε , vm,ε

]= 〈
vm,ε(t), f(t)

〉− 〈
vm,ε(t), Bvm,ε(t)

〉
.
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Thus

Eε

[
um,ε (t), vm,ε(t)

]= E0+
∫ t

0

〈
vm,ε(τ ), f(τ )

〉
dτ

−
∫ t

0

〈
vm,ε(τ ), Bvm,ε(τ )

〉
dτ ,

and so ∫ t

0

〈
vm,ε(τ ), Bvm,ε(τ )

〉
dτ ≤ E0+

∫ t

0

〈
vm,ε(τ ), f(τ )

〉
dτ

since Eε [u, v]≥ 0 for all u and v. Using 〈z, Bz〉≥ ηB ‖z‖2
H1(�)−µB ‖z‖2

L2(�) for constants

ηB > 0 and µB ≥ 0 and the bound on
∥∥vm,ε

∥∥
L∞(0,T ; L2(�)), we can obtain a bound∥∥vm,ε

∥∥
L2(0,T ; H1(�)) ≤ C

independent of m and ε > 0.
There is an additional bound that we will need on ∂vm,ε/∂ t in L2(0, T ; H 1

0 (�)′). To
do this we use duality: suppose φ : [0, T ]×�→ Rd is a smooth function that is zero in a
neighborhood of the boundary ∂�. Then∫ T

0

∫
�

φ(t ,x) ·ρ(x)
∂vm,ε

∂ t
(t ,x)dxdt

=
∫ T

0

∫
�

φ(t ,x) · [−Aum,ε (t ,x)−Bvm,ε(t ,x)+ f(t ,x)
]

dxdt

=
∫ T

0

∫
�

φ(t ,x) · [−div
(

Aε
[
um,ε

])−div
(
Bε

[
vm,ε

])+ f
]

dxdt

=
∫ T

0

∫
�

(
ε [φ] : Aε

[
um,ε

]+ ε [φ] : Bε
[
vm,ε

]+φ · f)dxdt

≤ C ‖φ‖L2(0,T ; H1
0 (�))

(∥∥um,ε
∥∥

L2(0,T ; H1(�))+
∥∥vm,ε

∥∥
L2(0,T ; H1(�))

+‖f‖L2(0,T ; H−1(�))

)
≤ C ‖φ‖L2(0,T ; H1

0 (�)) .

Taking the supremum over all φ smooth and zero in a neighborhood of ∂� shows that
ρ ∂vm,ε/∂ t is bounded independently of m, ε > 0 in L2(0, T ; H 1

0 (�))′, so ρ ∂vm,ε/∂ t is
bounded in L2(0, T ; H 1

0 (�)′) independently of m, and ε > 0.
With these bounds, by Alaoglu’s theorem, there are weakly* convergent subsequences

(also denoted by vm,ε and um,ε , respectively)

vm,ε ⇀
∗ v̂ in L∞(0, T ; L2(�)),

∂vm,ε

∂ t
⇀∗ ẑ in L2(0, T ; H 1

0 (�)′),

um,ε ⇀
∗ û in L∞(0, T ; H 1(�)) as m →∞ and ε ↓ 0
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in the subsequence. Clearly this implies weak convergence:

vm,ε ⇀ v̂ in L2(0, T ; L2(�)) and L2(0, T ; H 1(�)),
∂vm,ε

∂ t
⇀ ẑ in L2(0, T ; H 1

0 (�)′),

um,ε ⇀ û in L2(0, T ; H 1(�)).

Note that for s < t we have v̂(t)− v̂(s)= ∫ t
s ẑ(τ )dτ taking limits in H 1

0 (�)′. Thus we can
justify ŵ = ∂ v̂/∂ t . By Seidman’s theorem and Simon’s theorem (Theorems A.6 and A.7)
we can have, perhaps by taking further subsequences, vm,ε→ v̂ strongly in C(0, T ; H−δ(�))
for any δ > 0, vm,ε→ v̂ strongly in L2(0, T ; L2(�)), um,ε→ û strongly in C(0, T ; H 1−δ(�))
for any δ > 0.

We can then apply Mazur’s lemma to (u, v) #→ ∫ T
0 Eε [u(t), v(t)] θ (t)dt , where θ is a

continuous nonnegative function. Since E [u, v] is a convex function of u and v, so is this
functional on L2(0, T ; L2(�))× L2(0, T ; H 1(�)). Hence∫ T

0
E [̂u(t), v̂(t)] θ (t)dt ≤ liminf

m→∞

∫ T

0
E

[
um,ε (t), vm,ε(t)

]
θ (t)dt

≤ liminf
m→∞

∫ T

0

[
E0+

∫ t

0

〈
vm,ε(τ ), f(τ )

〉
dτ

]
θ (t)dt

=
∫ T

0

[
E0+

∫ t

0
〈̂v(τ ), f(τ )〉 dτ

]
θ (t)dt ,

where E0 = Eε [u0, v0] = E [u0, v0] for βu0+ϕ ≥ 0. Since this is true for all continuous
nonnegative θ , for almost all t ,

E [ û (t), v̂ (t)]≤ E0+
∫ t

0
〈 v̂ (τ ), f(τ )〉 dτ .

We now wish to show that the limits ( û, v̂ ) satisfy the VI (6.86). First we assume that
ũ : [0, T ]→ Xm ∩ K is in W 1,2(0, T ; H 1(�)) and that ũ(0)= u0. Now from the Galerkin
approximation (6.88)–(6.89),

0=
〈̃
u(t)−um,ε(t), ρ

∂2um,ε

∂ t2
(t)+Aum,ε(t)+B ∂um,ε

∂ t
− f(t)−β∗Nm,ε (t)

〉
.

The term
〈̃
u(t)−um,ε(t), β∗Nm,ε (t)

〉≥ 0 since〈̃
u(t)−um,ε(t), β∗Nm,ε (t)

〉
= 〈

βũ(t)−βum,ε(t), Nm,ε (t)
〉

= 〈
(βũ(t)+ϕ)− (

βum,ε (t)+ϕ
)
, Nm,ε (t)

〉
.

Since Nm,ε (t) ≥ 0 and βũ(t)+ϕ ≥ 0 on %C ,
〈
βũ(t)+ϕ, Nm,ε (t)

〉≥ 0. On the other hand,

− 〈
βum,ε(t)+ϕ, Nm,ε (t)

〉= ε−1 〈
βum,ε+ϕ, � ′ ◦ (

βum,ε+ϕ
)〉

= ε−1
∫
%C

(
βum,ε+ϕ

) ·� ′ ◦ (
βum,ε+ϕ

)
d S.
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But s� ′(s) = −s s− ≥ 0 for s < 0 and zero for s ≥ 0. So the integral over %C must be
nonnegative. Combining the two inequalities gives

〈̃
u(t)−um,ε(t), β∗Nm,ε (t)

〉≥ 0.
Thus

0≤
〈̃
u(t)−um,ε(t), ρ

∂2um,ε

∂ t2 (t)+Aum,ε(t)+B ∂um,ε

∂ t
− f(t)

〉
.

Multiplying by ψ(t) ≥ 0 and integrating over [0, T ] give

0 ≤
∫ T

0
ψ(t)

〈̃
u(t)−um,ε(t), ρ

∂2um,ε

∂ t2 (t)+Aum,ε(t)+B ∂um,ε

∂ t
− f(t)

〉
dt

=
∫ T

0
ψ(t)

〈
∂um,ε

∂ t
(t)− ∂ ũ

∂ t
(t), ρ

∂um,ε

∂ t
(t)

〉
dt

+ψ(t)

〈
um,ε(t)− ũ(t), ρ

∂um,ε

∂ t
(t)

〉∣∣∣∣t=T

t=0

−
∫ T

0
ψ ′(t)

〈
um,ε (t)− ũ(t), ρ

∂um,ε

∂ t
(t)

〉
dt

+
∫ T

0
ψ(t)

〈̃
u(t)−um,ε(t), Aum,ε (t)+B ∂um,ε

∂ t
− f(t)

〉
dt . (6.90)

The term

ψ(t)

〈
um,ε (t)− ũ(t), ρ

∂um,ε

∂ t
(t)

〉∣∣∣∣t=T

t=0
= 0,

provided ũ(0)= u0 since ψ(T )= 0.
From

∂um,ε/∂ t = vm,ε ⇀ v̂ weakly in L2(0, T ; H 1(�)),

vm,ε → v̂ strongly in L2(0, T ; H 1−δ(�)),

um,ε ⇀ û weakly in L2(0, T ; H 1(�)),

we have, with ṽ= ∂ ũ/∂ t ,∫ T

0
ψ(t)

〈
vm,ε(t)− ṽ(t), ρvm,ε(t)

〉
dt →

∫ T

0
ψ 〈 v̂− ṽ, ρv̂〉 dt ,∫ T

0
ψ ′(t)

〈
um,ε (t)− ũ(t), ρvm,ε(t)

〉
dt →

∫ T

0
ψ ′ 〈 û− ũ, ρv̂ 〉 dt ,∫ T

0
ψ(t)

〈
ũ, Aum,ε (t)+Bvm,ε

〉
dt →

∫ T

0
ψ 〈 ũ, Aû+Bv̂〉 dt ,∫ T

0
ψ(t)

〈
um,ε(t), f(t)

〉
dt →

∫ T

0
ψ 〈 û, f 〉 dt

as m →∞ and ε ↓ 0.
The remaining terms require Mazur’s lemma: for

∫ T
0 ψ

〈
um,ε , Aum,ε

〉
dt ,∫ T

0
ψ 〈 û, Aû 〉 dt ≤ liminf

m→∞, ε↓0

∫ T

0
ψ

〈
um,ε , Aum,ε

〉
dt .
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For
∫ T

0 ψ
〈
um,ε , Bvm,ε

〉
dt we use the fact that B is self-adjoint:∫ T

0
ψ

〈
um,ε , Bvm,ε

〉
dt =

∫ T

0
ψ

d

dt

1

2

〈
um,ε , Bum,ε

〉
dt

= ψ(t)
1

2

〈
um,ε(t), Bum,ε(t)

〉∣∣∣∣t=T

t=0

− 1

2

∫ T

0
ψ ′

〈
um,ε , Bum,ε

〉
dt

=−1

2
〈u0, Bu0〉− 1

2

∫ T

0
ψ ′

〈
um,ε , Bum,ε

〉
dt .

Now, since ψ is nonincreasing, ψ ′ ≤ 0, and so∫ T

0
−ψ ′ 〈 û, B û〉 dt ≤ liminf

m→∞, ε↓0

∫ T

0
−ψ ′ 〈um,ε , Bum,ε

〉
dt .

Reversing the integration by parts for
∫ T

0 −ψ ′ 〈 û, B û〉 dt , we get∫ T

0
ψ 〈 û, B v̂〉 dt ≤ liminf

m→∞, ε↓0

∫ T

0
ψ

〈
um,ε , Bvm,ε

〉
dt .

Combining the above inequalities and taking the liminf of (6.90), we get

0≤
∫ T

0
ψ(t)

〈̃
u (t)− û(t), ρ

∂2 û
∂ t2

(t)+A û(t)+B ∂ û
∂ t
− f(t)

〉
dt

for all ũ : [0, T ]→ Xm ∩K that are in W 1,2(0, T ; H 1(�)) and ũ(0)= u0, and ψ : [0, T ]→
[0,1] smooth and nonincreasing with ψ(t) = 1 for t ∈ [0, T −2η] and ψ(t) = 0 for t ∈
[T −η, T ]. Since

ρ
∂2 û
∂ t2 +Aû+B ∂ û

∂ t
− f ∈ L2(0, T ; H 1

0 (�)′)

for any ũ : [0, T ]→ K that is in C(0, T ; H 1(�)), we have approximations ũm : [0, T ]→
Xm ∩K in W 1,2(0, T ; H 1(�)) where ũm → ũ as m →∞. Hence

0≤
∫ T

0
ψ(t)

〈̃
u (t)− û(t), ρ

∂2 û
∂ t2

(t)+A û(t)+B ∂ û
∂ t
− f(t)

〉
dt

holds for any ũ : [0, T ]→ K that is in L2(0, T ; H 1(�)) since C(0, T ; H 1(�)) is dense in
L2(0, T ; H 1(�)). Furthermore, we can take limits over ψ converging pointwise to χ[0,T ) to
establish that û is a solution of the VI

û (t) ∈ K &

0≤
〈̃
u− û (t), ρ

∂2 û
∂ t2 (t)+A û (t)+B ∂ û

∂ t
− f(t)

〉
for all ũ ∈ K

for almost all t .
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6.3. Viscoelastic bodies 271

While this establishes existence for a general class of impact problems for viscoelas-
tic bodies, uniqueness is an open problem as of the time of this writing. The methods can be
easily adapted for other impact problems which have a similar structure, and the operators
A and B need not be second order, such as for a viscoelastic version of the Euler–Bernoulli
beam. However, in this approach, it is important that the contact forces are applied on the
boundary of �.

The reader interested in viscoelastic bodies in frictionless impact should also consider
the papers [207, 208] by Petrov and Schatzman. Both of these papers consider viscoelastic
wave equations of Kelvin–Voigt type:

∂2u

∂ t2 =∇2u+α∇2 ∂u

∂ t
+ f (t ,x) in �

with Signorini conditions on the boundary. In [207], the problem is a viscoelastic rod,
and so � is one dimensional, with contact at one end. The approach in the analysis is to
treat the problem as a CCP to be solved for the normal contact force, which is a scalar
function of time. In [208], the problem is in a half-space �= (0,∞)×Rd−1. The analysis
in both of these papers is based on Fourier transforms, and they give some deep results.
In particular, it should be noted that in the former paper [207], not only is existence of
solutions proved, but it is shown that all solutions satisfy an energy balance. That is, it
is shown that the change in the energy 1

2

∫ �

0

[(
∂u/∂ t

)2+ (
∂u/∂x

)2]
dx is the work done

by the external forces f (t , x) minus the losses due to the viscosity. More details on this
approach will be given in the next chapter. In [208], the authors are not quite able to obtain
this result for the viscous wave equation in a half-space, but are still able to obtain strong
regularity results for the trace of u on the boundary ∂�= {0}×Rd−1.

6.3.2 Coulomb friction

At the time of this writing, existence results for viscoelastic impact with friction have been
proven only for modified friction laws [56, 154] or under non-Signorini contact conditions
[87, 88, 89]. Alternatively, static and quasi-static contact problems have been shown to
have solutions [10, 57, 60, 85, 86, 148, 183, 230]. No results have been shown for the
dynamic contact problem with purely elastic bodies under Signorini contact conditions
and the standard local Coulomb friction laws.

In fact, there is an important nonexistence result due to Renardy [212] for a linearized
model of a slab of a two-dimensional hyperelastic10 material sliding over a frictional sur-
face if the friction coefficient exceeds a certain threshold. Careful study of Renardy’s re-
sults shows that there is a frictional instability resulting from a feedback loop where the fric-
tion forces cause displacements in the normal direction, resulting in changes to the normal
contact forces, which in turn change the friction forces. As the spatial scale goes to zero,
the time scale for the instability also goes to zero, so that in the high (spatial) frequency
limit, the exponential rate of the instability goes to infinity. Application of Agmon’s con-
dition [270, p. 280 ff.] (or alternatively, via the Lopatinsky–Shapiro conditions—see [270,
p. 148 ff.] or [128]) shows that there are no solutions to such partial differential equation
except for extremely specific initial and boundary conditions.

10A material is hyperelastic if it does not change volume, or equivalently in the linearized case, divu= 0.
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272 Chapter 6. Index Two: Impact Problems

As noted in the section on rigid-body dynamics with impact, the Signorini conditions
and the Coulomb friction laws are each monotone separately, but combined they can be
highly nonmonotone.

We will use the time-integrated version of (6.50) as our formulation of Coulomb
friction: ∫ T

0

∫
%C

F ·wd S ≤
∫ T

0

∫
%C

µN

(∣∣∣∣∂uT

∂ t
+wT

∣∣∣∣− ∣∣∣∣∂uT

∂ t

∣∣∣∣) d S (6.91)

for all w, where N =−n ·σ [u] ·n is the inward normal contact force on %C , and

F= σ
[
u, ∂u/∂ t

] ·n+ N n

is the friction force on %C . The regularity results from the existence results for frictionless
Kelvin–Voigt viscoelasticity with impact (Theorem 6.3) are not sufficient to show that N =
−n ·σ [

u, ∂u/∂ t
] ·n even makes sense: u ∈ L∞(0, T ; H 1(�)) means that the strain tensor

ε [u] ∈ L∞(0, T ; L2(�)), and so σ
[
u,∂u/∂ t

] ∈ L∞(0, T ; L2(�)), and there is no “trace” of
an L2(�) function on a part of the boundary such as %C ⊆ ∂�.

The approach of Cocou [56] and Kuttler and Shillor [154] is to use a smoothing
operator to create a nonlocal version of the Coulomb friction law. This approach is to use
(6.91) with

N(t) = ∣∣n ·Rσ
[
u(t), ∂u/∂ t(t)

] ·n∣∣ or

N(t) =max
(
0,−n ·Rσ

[
u(t), ∂u/∂ t(t)

] ·n)
,

where R : L2(�)→ H 1(�) is a compact nonlocal smoothing operator. One way of creat-
ing a suitable R is to use an extension operator E : L2(�)→ L2(Rd ) where Eφ|� = φ,
followed by convolution with a suitable smooth nonnegative function ψ with compact sup-
port: Rφ = ψ ∗ Eφ. (The extension operator can be extension by zero: Eφ(x) = φ(x) if
x ∈� and Eφ(x)= 0 if x �∈�.)

As with the frictionless case, we can use a Galerkin approach combined with a
penalty approximation to obtain a set of approximate solutions um,ε . The resulting finite-
dimensional DVI has solutions: it is a differential inclusion of Filippov type. The problem
then is to show that some subsequence converges in a suitable sense, and that the limit
indeed solves the problem, at least in terms of a suitably weak variational formulation.

Most of the argument follows that of the frictionless case. The standard energy
bounds give weak* convergence um,ε ⇀

∗ û in C1/2(0, T ; H 1(�)) (the space of Hölder con-
tinuous functions [0, T ]→ H 1(�) with exponent 1/2) and vm,ε ⇀

∗ v̂ in L2(0, T ; H 1(�))∩
L∞(0, T ; L2(�)), where vm,ε = ∂um,ε/∂ t and v̂ = ∂ û/∂ t . For the friction forces, we use
strong convergence of Nm,ε =

∣∣n ·Rσ
[
um,ε ,∂um,ε/∂ t

] ·n∣∣ → N̂ in L2(0, T ; H 1/2(%C ))
coming from compactness of R.

Downloaded 03 Nov 2011 to 160.36.192.127. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php



Chapter 7

Fractional Index Problems

Perhaps, it . . . prompted l’Hospital to ask [about dn y/dxn] “What if n be
1/2? ”. Leibnitz, in 1695, replied “It will lead to a paradox ” but added . . .
“From this apparent paradox, one day useful consequences will be drawn.”

Virginia Kiryakova

Fractional index differential variational inequalities (DVIs) are not mixed-index DVIs. In
fact, of the problems considered in this book, only convolution complementarity problems
(CCPs) can be considered to have a noninteger index. However, they can arise naturally, as
in the example of Petrov and Schatzman [207] for a viscoelastic rod striking a rigid surface
at one end. Using the notation (·)t = ∂ (·)/∂ t and (·)x = ∂ (·)/∂x , the equations of motion
for this situation are

utt = ux x +β ut x x , t > 0, 0 < x < L, (7.1)

0= ux (t , L)+β ut x (t , L), t > 0, (7.2)

N(t) = ux (t ,0)+β ut x (t ,0), t > 0, (7.3)

0≤ N(t) ⊥ u(t ,0)≥ 0, t > 0. (7.4)

The orthogonality condition “N(t) ⊥ u(t ,0)” means that N(t)u(t ,0) = 0 for almost all t;
together with the nonnegativity conditions, this is equivalent to

0=
∫ T

0
N(t)u(t ,0)dt .

From the fundamental solution for this partial differential equation we can construct a CCP
for N(t):

u(t ,0)=
∫ t

0
k(t− τ ) N(τ )dτ +q(t),

0≤ N(t) ⊥ u(t ,0)≥ 0, t > 0.

The problem is that for this problem, k(t) ∼ k0 t1/2 for t > 0 small, so the theory of Sec-
tion 4.6.2 is not applicable.

273
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Another example comes from the heat equation with a source at the origin controlled
by a thermostat set at temperature U0, also at the origin [249]:

ut = ux x + z(t)δ(x), (7.5)

0≤ z(t)⊥ u(t ,0)−U0 ≥ 0. (7.6)

As usual, δ (·) is the Dirac-δ function. The unknown z (·) is the rate at which the source
produces heat. This also leads to a CCP:

u(t ,0)=
∫ t

0
k(t− τ ) z(τ )dτ+q(t),

0≤ z(t)⊥ u(t ,0)−U0 ≥ 0.

The function q (t) is the value that u(t ,0) would have if z (·)≡ 0.
This time we have k(t)∼ k0 t−1/2 for t > 0 small.
The theory of fractional differentiation and fractional integration [145, 147] can be

used to identify the index of these problems.

7.1 Fractional differentiation and integration
Fractional differentiation and integration are operators that can be represented in terms of
convolutions with particular distributions. In particular, indefinite integration is convolu-
tion with the constant one. The main tool to define these is the Laplace transform (see
Section C.2). Using the property that Laplace transforms of convolutions are products of
the Laplace transforms (L[

f ∗ g
]= L f ·Lg), we can investigate fractional integration and

differentiation in terms of Laplace transforms. In particular, for the constant function one,
L1(s)= s−1. Convolution with the Dirac-δ function does not change anything: ( f ∗δ = f )
and Lδ(s) = 1. On the other hand, δ′ ∗ f = f ′ and L[

δ′
]
(s) = s. So if the convolution

δ(α) ∗ f represents the αth derivative of f , then Lδ(α)(s)= sα . For α negative, the result is
a fractional indefinite integral.

Put α =−β < 0. Then δ(−β) is an ordinary function [0,∞)→ R given by

δ(−β)(t)= %(β)−1 tβ−1, t > 0,

where %(β) is Euler’s %-function:

%(β)=
∫ ∞

0
e−t tβ−1 dt .

Also note that δ(−β)(t) = 0 for t < 0. The Fourier transform of δ(−β) is interpreted in the
sense of distributions, and

F
[
δ(−β)

]
(ω)= (i ω)−β

with iω understood as having argument ±π/2 as a complex number. Thus, for ω > 0, we
understand (i ω)−β to be e−iβπ/2 ω−β , and for ω < 0 to be e+iβπ/2 |ω|−β .

For α > 0, the distribution δ(α) can be understood as the inverse Fourier transform
of ψα(ω)= (i ω)α using an appropriate branch of the function (that is, for ω > 0, (i ω)α =
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e+iαπ/2ωα , and for ω < 0, (i ω)α = e−iαπ/2 |ω|α). Alternatively, we can split α = m− γ

with m an integer and 0≤ γ < 1 and use

δ(α) ∗ f (t)= δ(m) ∗ δ(−γ ) ∗ f (t)

= dm

dtm

∫ t

0

(t− τ )γ−1

%(γ )
f (τ )dτ .

In this way we can calculate αth derivatives or integrals of a function f for any real value
of α.

Recall that for a CCP,

K " z(t)⊥ (m ∗ z) (t)+q(t) ∈ K ∗,

where K ∗ is the dual cone to K (see (B.8)), we say this is an index-zero CCP if m(t) =
m0 δ(t)+m1(t) with m0 nonsingular and m1 is a measure with no atom (or Dirac-δ function)
at t = 0; it is index one if m(t) is a function of bounded variation (locally) and m(0+) is
nonsingular. This can be generalized to say that the CCP has index α if δ(α) ∗m(t) =
m0 δ(t)+m1(t), where m0 is nonsingular and m1 is a measure with no atom at t = 0.
Simply put, if m(t) ∼ m0 tα−1 as t ↓ 0 with m0 nonsingular, then the CCP has index α.
Thus the problem of Petrov and Schatzman (7.1)–(7.4) has index 3/2, while (7.5)–(7.6)
has index 1/2.

7.2 Existence and uniqueness
There are two cases of fractional indexes that must be considered separately: index be-
tween zero and one, and index between one and two. We already have existence results
for index-zero and index-one CCPs. We can construct existence proofs for fractional index
problems by approximating a fractional index CCP with an index-zero or index-one CCP
as appropriate. The crucial tool is the Fourier transform (see Section C.4). In particular, we
note that

Fδ(α) (ω)= (iω)α .

If α is an integer, this is well defined, but for fractional α we have the problem that there
may be branch cuts in the complex plane:

arg iω =
{
+π/2+2mπ if ω > 0,

−π/2+2mπ if ω < 0.

If α is irrational, then (iω)α = ei(±1/2+2m)απ |ω|α can be made arbitrarily close to any
complex number with magnitude |ω|α by a suitable choice of m. We first need to show that
we can set m = 0; this is the principal branch of arg iω.

If we consider β < 0, then the integral
∫ +∞
−∞ e−iωt δ(β)(t)dt is not convergent, as δ(β)

is not an integrable function on the real line. But, for β < 0, the function t #→ e−εt δ(β)(t)
is integrable. In fact, for β < 0,∫ +∞

−∞
e−iωt e−εt δ(β)(t)dt = 1

%(|β|)
∫ ∞

0
e−(iω+ε)t t−1+|β| dt .
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Figure 7.1: Contour integral for change of variables.

This integral can be exactly computed via a change of (complex) variables which can be
justified (for ω > 0) via the contour integral shown in Figure 7.1 with 0 < η, R. From
Cauchy’s residue theorem, the integral around the contour is zero. Taking η ↓ 0 and R →
∞, we get

∫
CR

e−(iω+ε)t t−1+|β| dt and
∫

Cη
e−(iω+ε)t t−1+|β| dt both go to zero. Thus the

differences between the integrals over C1 and C2 go to zero. On C2 set t = (−i + ε/ω)s.
Then, for ω > 0,∫ ∞

0
e−(iω+ε)t t−1+|β| dt

=
∫ ∞

0
e−(iω+ε)(−i+ε/ω)s (−i + ε/ω)−1+|β| s−1+|β| (−i + ε/ω) ds

= (−i + ε/ω)|β|
∫ ∞

0
e−

(
ω+ε2/ω

)
s s−1+|β| ds

= (−i + ε/ω)|β|
(
ω+ ε2/ω

)−|β|
% (|β|) .

Taking ε ↓ 0 gives

Fδ(β)(ω)= i−|β|ω−|β| = (iω)β for β < 0.

Note that thanks to the branch cut, we remain in the principal branch of z #→ zβ , and that
(iω)β should be understood in this sense.

This may appear to be a diversion from our main concern, but we will need the sign
of the Fourier transform to have positive real part, and this requires the correct branch of
z #→ zβ .
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Consider first the CCP

K " z(t)⊥ (m ∗ z) (t)+q(t) ∈ K ∗, where

m(t)= m0 tα−1, 0 < α < 1,

and m0 is a symmetric positive definite matrix. Now F (m ∗ z)= (2π)−1Fm ·Fz. Applying
Plancherel’s theorem (3.34) to z(t)⊥ (m ∗ z) (t)+q(t), we have

0=
∫ ∞

0
〈z(t), (m ∗ z) (t)+q(t)〉 dt

= 1

2π
Re

∫ +∞

−∞
〈Fz(ω), Fm(ω)Fz(ω)+Fq(ω)〉 dω.

But here Fm(ω)= m0%(α) (iω)−α using the principal branch of z #→ z−α . In this branch,
for ω > 0, (iω)−α = e−iπα/2 ω−α , whose real part is cos(πα/2) ω−α . Similarly, for ω < 0,
the real part is cos(πα/2) |ω|−α . For 0 < α < 1, this is always a positive quantity. For
symmetric positive definite m0, there is an η0 > 0 where 〈w, m0w〉 ≥ η0 ‖w‖2 for all w.
Thus, for 0 < α < 1,

0≥ 1

2π
η0%(α) cos(πα/2)

∫ +∞

−∞
‖Fz(ω)‖2 |ω|−α dω

− 1

2π

∫ +∞

−∞
‖Fz(ω)‖

(
1+ω2

)−α/2 ‖Fq(ω)‖
(

1+ω2
)+α/2

dω

≥ η0 cos(πα/2) %(α) ‖z‖2
H−α/2 −‖z‖H−α/2 ‖q‖Hα/2 ,

which gives a uniform bound on the solution z in H−α/2(R; X ) in terms of the norm of q in
H+α/2(R; X ′). If the index α exceeds one, then cos(πα/2) can be negative, and this does
not give any bound on z. Note that we need symmetry of m0 since for w = u+ iv, ω > 0,
and λ= (iω)−α = ρ+ iσ ,

Re〈w, λm0w〉
= RewT m0λw

= Re
1

2
wT

[
m0λ+m0λ

T
]
w

= Re
1

2
(u+ iv)

T
[
m0 (ρ+ iσ )+mT

0 (ρ− iσ )
]

(u+ iv)

= ρ

2
wT

(
m0+mT

0

)
w+ σ

2
vT

(
m0−mT

0

)
u.

If 0 < α < 1 and m0 = mT
0 , we have

Re
〈
w, (iω)−α m0w

〉 ≥ cos(απ/2) |ω|−α ‖w‖2 > 0 (7.7)

for w �= 0. But if m0 �= mT
0 , then we have to restrict α further. In fact, we can obtain a

bound
Re

〈
w, (iω)−α m0w

〉≥ η ‖w‖2 (7.8)
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with η > 0, provided

0 < α <
2

π
tan−1

(
λmin

(
m0+mT

0

)∥∥m0−mT
0

∥∥
)

(7.9)

for m0 �= mT
0 , where λmin (B) is the minimum eigenvalue for a symmetric matrix B . Note

that for existence of solutions to index-zero problems we need only m0 to be positive defi-
nite, while uniqueness for index one requires that m0 also be symmetric.

To turn these observations into a reasonably general existence and uniqueness theo-
rem, we need to do a few things:

• create an approximate index-zero problem with kernel mε(t)= ε δ(t) I +m(t);

• remove the restriction that m(t) = m0 tα−1 so that we require only that Fm(ω) ∼
m0 (iω)−α for large |ω|;

• restrict our attention to a finite interval [0, T ] for compactness in the appropriate
Sobolev space;

• restrict X = Rn .

Theorem 7.1. Suppose that m(t) = m0 tα−1+m1(t), where 0 < α < 1 and m1 : [0, T ]→
Rn×n have the following properties:

• ω #→ ωαF (
m1χ[0,T ]

)
(ω) converges to zero uniformly as T ↓ 0;

• ∥∥F (
m1χ[0,T ]

)
(ω)

∥∥≤ C |ω|−β for some β > α for all T > 0;

• m0 is positive definite satisfying (7.9) (taking α < 1 if m0 is symmetric); and

• q ∈ H α/2(0, T ; Rn);

then there exists one and only one solution z ∈ H−α/2(0, T ; Rn) to the CCP

K " z(t)⊥ (m ∗ z)(t)+q(t) ∈ K ∗ for all t . (7.10)

A proof of a slightly weaker version of this result can be found in [249].

Proof. We prove this result for sufficiently small T > 0. Once we have this result on
a sufficiently small interval, we can extend the solution since for z1 ∈ H−α/2(0, T ; Rn),
we have m ∗ z1 ∈ H+α/2(0, T ; Rn). Let χE (t) = 1 if t ∈ E and χE (t) = 0 if t �∈ E . Let
ψ(t)= m0 tα−1. Then, using (7.8), 〈w, Fψ(ω)w〉 ≥ η‖w‖2 for all w for some η > 0.

Consider the index-zero approximate problem

K " zε(t)⊥ (ε I δ+m)∗ zε(t)+q(t) ∈ K ∗.
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Solutions exist and are unique for this problem, provided ε > 0 by the results in Sec-
tion 5.1.1. We wish to show that the zε have a convergent subsequence as ε ↓ 0. Let
γT =maxω

∥∥ωαF (
m1χ[0,T ]

)
(ω)

∥∥; γT → 0 as T ↓ 0. Note that

0=
∫ T

0
〈zε (t), (ε I δ+m)∗ zε(t)+q(t)〉 dt

=
∫ +∞

−∞
〈
zε(t)χ[0,T ](t),

(
ε I δ+ψ0+m1χ[0,T ]

)∗ (
zεχ[0,T ]

)
(t)+q(t)

〉
dt

= 1

2π

∫ +∞

−∞
〈F (

zεχ[0,T ]
)

(ω),

F (
ε I δ+ψ0+m1χ[0,T ]

)
(ω)F (

zεχ[0,T ]
)

(ω)+Fq(ω)
〉
dω

= 1

2π

∫ +∞

−∞

〈
F (

zεχ[0,T ]
)

(ω),(
ε I + m0

%(α)
ω−α+F (

m1χ[0,T ]
)

(ω)

)
F (

zεχ[0,T ]
)

(ω)+Fq(ω)

〉
dω

≥ 1

2π

[
ε
∥∥F (

zεχ[0,T ]
)∥∥2

L2+ (η−γT )
∫ +∞

−∞
ω−α

∥∥F (
zεχ[0,T ]

)
(ω)

∥∥2
dω

−∥∥zεχ[0,T ]
∥∥

H−α/2 ‖q‖Hα/2

]
≥ 1

2π

[
(η−γT )

∥∥zεχ[0,T ]
∥∥2

H−α/2 −
∥∥zεχ[0,T ]

∥∥
H−α/2 ‖q‖Hα/2

]
.

Thus, for sufficiently small T > 0, γT < η, and so

∥∥zεχ[0,T ]
∥∥

H−α/2 ≤ 1

η−γT
‖q‖Hα/2 .

Since H−α/2(0, T ; Rn) is a Hilbert space, there is a weakly convergent subsequence (which
we also denote by zε) by Alaoglu’s theorem. Let z ∈ H−α/2(0, T ; Rn) be the limit of such
a subsequence. Then by Mazur’s lemma we can show that z(t) ∈ K for almost all t via
weak convergence. On the other hand, m ∗ zε+q converges weakly to m ∗ z+q , so for any
smooth ξ : [0, T ]→ K we have

0 ≤
∫ T

0
〈εzε(t)+ (m ∗ zε) (t)+q(t), ξ (t)〉 dt

→
∫ T

0
〈(m ∗ z) (t)+q(t), ξ (t)〉 dt ,

taking limits ε ↓ 0 in the subsequence. Thus (m ∗ z) (t)+q(t) ∈ K ∗ for all t > 0. Note that
by positivity, the quadratic map u #→ ∫ T

0 〈u, m ∗u〉 dt is a convex function. Then, again by
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Mazur’s lemma, ∫ T

0
〈z(t), (m ∗ z) (t)+q(t)〉 dt

≤ liminf
ε↓0

∫ T

0
〈zε(t), (m ∗ zε) (t)+q(t)〉 dt

≤ liminf
ε↓0

∫ T

0
〈zε(t), εzε(t)+ (m ∗ zε) (t)+q(t)〉 dt

= 0,

so
∫ T

0 〈z(t), (m ∗ z) (t)+q(t)〉 dt ≤ 0. It cannot be negative since z(t) ∈ K and (m ∗ z)(t)+
q(t) ∈ K ∗ for almost all t . Thus we have existence of a solution on an interval [0, T ] for
T > 0 sufficiently small. This can be extended to any interval by means of shifting t = T
to t = 0 and incorporating the solution on [0, T ] into q .

To show uniqueness, suppose

K " z1(t)⊥ (m ∗ z1) (t)+q1(t) ∈ K ∗,
K " z2(t)⊥ (m ∗ z2) (t)+q2(t) ∈ K ∗.

Then, if ζ = z1− z2 and θ = q1−q2, we have

0≥
∫ T

0
〈ζ (t), (m ∗ ζ ) (t)+ θ (t)〉 dt

≥ (η−γT )
∥∥ζχ[0,T ]

∥∥2
H−α/2 −

∥∥ζχ[0,T ]
∥∥

H−α/2 ‖θ‖Hα/2 ,

and so
∥∥ζχ[0,T ]

∥∥
H−α/2 ≤ ‖θ‖Hα/2 / (η−γT ). In particular, if q1 = q2, then θ = 0, and so

ζ = z1− z2 = 0, establishing uniqueness.

Clearly the uniqueness result can be extended to show that the map q #→ z is a Lip-
schitz continuous map H+α/2(0, T ; Rn) → H−α/2(0, T ; Rn). This is the best regularity
result that we can expect as convolution with m maps H−α/2(0, T ; Rn) to H+α/2(0, T ; Rn).

7.3 Further regularity results
Differentiability lemmas can be used to get stronger regularity results with stronger as-
sumptions on q . In particular, for q smoother and q(0) ∈ K ∗ we can get stronger regularity
on the solution z. However, unlike most linear problems, making q arbitrarily smooth and
satisfying compatibility conditions cannot make the solution z arbitrarily smooth. There is
a natural limit to how smooth z can be, as we saw for DVIs in Section 3.2.

Theorem 7.2. If q ∈ H 1+α/2(0, T ; Rn) and q(0) ∈ K ∗ and the CCP (7.10) satisfies the
conditions of Theorem 7.1, the solution z is in H 1−α/2(0, T ; Rn).

Proof. For the approximate index-zero CCP

K " zε(t)⊥ εzε(t)+ (m ∗ zε) (t)+q(t) ∈ K ∗, (7.11)
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there are solutions that are absolutely continuous since q is absolutely continuous. We
use the differentiation property, Lemma 3.2: K " a(t) ⊥ b(t) ∈ K ∗ for all t implies that〈
a′(t), b′(t)

〉≤ 0, provided a and b are absolutely continuous. Applying this to (7.11) gives

0≥ 〈
z′ε(t), εz′ε(t)+ (

m ∗ z′ε
)

(t)+q ′(t)
〉
.

Integrating over [0, T ] and applying the bounds obtained in Theorem 7.1 for T > 0 suffi-
ciently small,

0≥ ε
∥∥z′ε

∥∥2
L2+ (η−γT )

∥∥z′ε
∥∥2

H−α/2 −
∥∥z′ε

∥∥
H−α/2

∥∥q ′
∥∥

Hα/2

so that ∥∥z′ε
∥∥

H−α/2 ≤ 1

η−γT

∥∥q ′
∥∥

Hα/2 .

To obtain the bound on zε itself, we use the fact that q(0) ∈ K to get zε(0) = 0. Thus zε
is uniformly bounded in H 1−α/2(0, T ; Rn). Thus by Alaoglu’s theorem there is a weakly
convergent subsequence; let z ∈ H 1−α/2(0, T ; Rn) be the weak limit in such a subsequence.
Using the techniques of Theorem 7.1 we can show that this weak limit is in fact a solution
of the CCP (which is unique by Theorem 7.1). Thus solutions lie in H 1−α/2(0, T ; Rn), as
desired.

This proof is one of the few occasions in which a differentiation lemma involving
two derivatives is useful.

7.4 Index between one and two
If the index α is between one and two, then cos(απ/2) < 0 and the arguments above do not
work. This is unfortunate since, as noted in the introduction to this chapter, index α = 3/2
naturally arises in studying impact of a viscoelastic rod. It is, however, possible to obtain
existence results, though it is unclear at the time of this writing whether uniqueness holds
for these problems or not. The problem then is a CCP of the form

K " z(t)⊥ (m ∗ z)(t)+q(t) ∈ K ∗

with m(t) ∼ m0 tα−1 with 1 < α < 2 for t small and positive, and m0 a positive definite
symmetric matrix.

To show existence we also use an index reduction strategy, but instead of reducing
the index to zero as was done for 0 < α < 1, we reduce it to one. Let

mε(t)= ε I H (t)+m(t),

where H (t)= 1 for t > 0 and H (t)= 0 for t < 0 is the Heaviside function. Provided m(·)
and q(·) are sufficiently smooth with q(0) ∈ K ∗, solutions to the index-one CCP

K " zε(t)⊥ (mε ∗ zε) (t)+q(t) ∈ K ∗

exist and are unique by Theorem 5.6. Using a one-derivative differentiation lemma (Lemma
3.2),

0= 〈
zε (t), ε zε(t)+ (

m ′ ∗ zε
)

(t)+q ′(t)
〉
.
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Integrating over a sufficiently small interval [0, T ] with T > 0, we note that

F [
m′

]
(ω)= iωFm(ω)∼ %(α)m0 (iω)1−α

in the principal branch. Now the real part of i1−α is cos((α−1)π/2), which is positive
for 1 < α < 2. Then we can apply the methods of Theorem 7.1 to show existence via
boundedness of zε in H−α/2(0, T ; Rn), provided q ∈ H 1+α/2(0, T ; Rn), but not uniqueness.
The usual approach to showing uniqueness is to suppose that z1 and z2 are two solutions
of the CCP and then set ζ = z1− z2; from linearity of the convolution and the fact that
K and K ∗ are dual cones, we have

∫
[0,T ] 〈ζ , m ∗ ζ 〉 ≤ 0. If the convolution operator ζ #→

m ∗ ζ is elliptic or positive definite, we can conclude that ζ ≡ 0, so z1 ≡ z2. However, in
this case the leading part of the Fourier transform of m is (iω)−α m0 and the real part of
(iω)−α = cos(απ/2) |ω|−α is negative, so this convolution operator is definitely not elliptic
or positive definite.

Further details can be found in [243].
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Chapter 8

Numerical Methods

8.1 Choices
Numerical methods for dynamic problems with inequality constraints take several forms.
The main families of methods are

• penalty methods, or the related index reduction methods,

• active set methods which track which inequality constraints are “active” (that is,
where the inequalities are equalities), and

• time-stepping methods, in which for each time step, a CP or VI is solved.

Penalty methods aim to turn a nonsmooth or discontinuous differential equation into one
that is smooth, and so we can use standard methods for differential equations. The true
trajectory is often made up of smooth pieces joined by “kinks” or “jumps,” so active set
methods aim to find the smooth pieces and the points at which a kink or jump occurs; once
the kink or jump is reached, a new smooth differential equation is set up for the next piece.
Time-stepping methods have the largest computational effort per time step, but they can be
very effective when the active inequalities change frequently.

Penalty methods are perhaps the most common methods used in practice, although
the other techniques (particularly time-stepping methods) are gaining popularity. Penalty
methods work by replacing the nonsmoothness of the original problem with a smooth, or at
least smoother, approximation. Then standard smooth ordinary differential equation solvers
can be applied to the smooth approximation. This naturally depends on both the time step
and the accuracy of the smooth approximation. Typically, the smooth approximation is a
stiff differential equation, which often means that small time steps are needed for accurate
solutions.

Active set methods can give the greatest accuracy, since the only errors are typically
those due to the smooth differential equation solver used for each piece. However, the
main difficulty in using them arises if the active set (the set of inequalities that happen to
be equalities) changes often. At each change of the active set, some special calculation
must be performed to identify the new active set. There can be problems if there is some
degeneracy in the problem so that determining the new active set can depend on the data of
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the problem in a sensitive way. Problems in which the active set changes infinitely often in
a finite time interval pose a particular challenge to these methods.

Time-stepping methods can be the most computationally expensive methods, but they
are usually not vulnerable to problems with degeneracies or rapid changes in the active set.
The main difficulty is that a CP or VI must be solved with each step. Fortunately, advances
in techniques for solving CPs and VIs have brought these methods to the forefront. In
particular, the development of nonsmooth Newton methods along with reformulations of
CPs and VIs as (nonsmooth) systems of equations means that for many time steps only a
single linear system must be solved. This brings the computational cost close to or less
than that for penalty or active set methods.

To explain these methods and give the reader a way of comparing these approaches,
we will focus mainly on the problems of mechanical impact and Coulomb friction. Me-
chanical impact problems are essentially index two, while Coulomb friction problems are
index one. These two problems give an overview and a means of comparing numerical
methods.

8.1.1 Methods for smooth differential equations

Numerical methods for smooth differential equations

dx

dt
= f (t , x), x(t0)= x0

have been around at least since Euler and his method. These methods were improved
by the work of Heun [126], Runge [218], and Kutta [150], which led to modern Runge–
Kutta methods [18, 46]. Another set of methods that have been widely used are multistep
methods, of which there are three main families: Adams–Bashforth methods [26], Adams–
Moulton methods [184], and the backward difference (BDF) methods [69].

Higher order methods all assume higher orders of smoothness in the differential equa-
tion and its solution. For many of the problems that we consider here, the solution is often
smooth (at least on certain intervals) even though the differential equation or inclusion
definitely is not smooth. For such problems, often it is appropriate to use methods for
smooth but stiff differential equations. Methods for such problems include many implicit
Runge–Kutta methods and BDF multistep methods and can be found in [18, 46, 119]. The
books [46, 119] in particular provide a great deal of information about their behavior both
theoretically and practically, and about advanced implementations including, for example,
adaptive control of step sizes.

An extreme example of a stiff differential equation

dx

dt
= f (t , x(t), y(t)), x(t0)= x0,

ε
dy

dt
= g(t , x(t), y(t)), y(t0)= y0

is the case where ε goes to zero, giving the ordinary differential algebraic equations (DAEs)

dx

dt
= f (t , x(t), y(t)), x(t0)= x0,

0= g(t , x(t), y(t)), y(t0)= y0.
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As with DVIs, the concept of index is very important for understanding DAEs and their
numerical methods. The index used for DAEs is the smallest integer k ≥ 0 such that the
equations

(
d j/dt j

)
g(t , x(t), y(t))= 0 for j = 0, 1, . . . , k (substituting dx/dt = f (t , x , y))

are sufficient to obtain a differential equation for y(t). As a result, the index for a DAE is
one more than the index for the corresponding DVI.

Methods for such problems were first developed by Gear and Petzold [110] based
on BDF multistep methods. More recently Runge–Kutta methods have been applied to
these problems. For a thorough discussion of methods for DAEs, see [15, 38, 46, 119],
although more recent Runge–Kutta methods for higher index problems can be found in
[131, 132, 133, 134].

8.2 Penalty and index reduction methods
Consider the mechanical impact illustrated in Figure 1.1:

m
d2y

dt2 = N −mg,

0≤ N(t) ⊥ y(t)− r ≥ 0.

This is an index-two problem, and it can have solutions with dy/dt(t) discontinuous and
N(t) impulsive.

The simplest approach to setting up a penalty approximation is to set Nε = (y− r )− /ε,
where ε > 0 is a small constant, where s− = max(0,−s). This can be represented as the
solution of the CP

0≤ Nε (t)⊥ ε Nε (t)+ yε(t)− r ≥ 0.

With this change, we have changed the index of the problem from two for the original
problem to zero for the penalty approximation. The penalty approximation is then

m
d2yε
dt2

= 1

ε
(yε− r )−−mg.

This is a Lipschitz differential equation, and so it has solutions which are unique, given
the initial conditions yε(t0) and dyε/dt(t0). These solutions can be found by standard
numerical methods, such as Euler’s method or a Runge–Kutta method. However, lack of
smoothness means that the rate of convergence of these methods is kept down at first order.
This can be improved by replacing (yε− r )− with a smooth function ϕ(r − yε) where ϕ is
nondecreasing, ϕ(s)= 0 for s ≤ 0, ϕ(s) > 0 for s > 0, and ϕ(s)→∞ as s →∞. Then the
corresponding smooth penalty approximation is

m
d2yε
dt2 = 1

ε
ϕ(r− yε)−mg.

For Coulomb friction with known contact forces, consider the “brick on a ramp”
problem illustrated by Figure 1.4, given by the differential inclusion

m
d2x

dt2
∈ −µmg (cosθ ) Sgn

(
dx

dt

)
+mg sinθ ,
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where Sgn(v) = {+1} if v > 0, {−1} if v < 0, and [−1,+1] if v = 0. A Lipschitz penalty
approximation can be obtained from the DVI formulation

m
d2x

dt2
= F+mg sinθ ,

dx

dt
· (F̃− F

)≥ 0 for all F̃ ≤∈ [−µN ,+µN] ,

F ∈ [−µN , +µN] ,

N = mg cosθ .

To do this we again reduce the index from one to zero by adding ε F to the VI term:

m
d2xε
dt2 = Fε +mg sinθ ,(

ε Fε + dxε
dt

)
· (F̃− Fε

) ≥ 0 for all F̃ ∈ [−µN , +µN] ,

Fε ∈ [−µN , +µN] ,

N = mg cosθ .

This is an index-zero DVI, and we can write Fε =−µNsat(ε−1 dxε/dt), where

sat(s)=


+1, +1≤ s,

s, −1≤ s ≤ +1,

−1, s ≤−1.

A smooth approximation can be constructed using a smooth increasing function ϕ(s)
where ϕ(s)→+1 as s→+∞ and ϕ(s)→−1 as s→−∞. Then with a penalty parameter
ε > 0 we have the smoothed approximation

m
d2xε
dt2

=−µmg (cosθ ) ϕ

(
1

ε

dxε
dt

)
+mg sinθ .

We can apply numerical methods for smooth ordinary differential equations to this prob-
lem. But we have to be careful that the step size we use goes to zero at the right rate to
match the size of ε as ε ↓ 0. In particular, we should have a step size h = h(ε)= o(ε); that
is, h(ε)/ε→ 0 as ε ↓ 0 .

8.3 Piecewise smooth methods
The basic idea of these methods is to decompose the solution into segments, each of which
is smooth. These pieces can then be joined as the solution is computed. Since the solution
is assumed to be smooth on each segment, we can use standard efficient numerical methods
for smooth problems on each segment.

Downloaded 03 Nov 2011 to 160.36.192.127. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php



8.3. Piecewise smooth methods 287

8.3.1 Index-zero problems

To be more specific, consider the DVI

dx

dt
= f (x(t), z(t)), x(t0)= x0, (8.1)

z(t) ∈ K & 0≤ 〈 z̃− z(t), F(x(t), z(t))〉 for all z̃ ∈ K . (8.2)

We will assume that the convex set K has a representation in terms of smooth convex
functions:

K = {w | φi (w)≤ 0, i = 1, 2, . . . , m } . (8.3)

We will assume that the Slater constraint qualification (B.22) holds: for some z∗,

φi (z∗) < 0 for all i .

Then the equivalent condition to the VI (8.2) is

0 ∈ F(x(t), z(t))+ NK (z(t)).

Using the representation

NK (z)= co {∇φi (z) | φi (z)= 0 } ,
we can write the equivalent formulation of the VI as

0= F(x(t), z(t))+
m∑

i=1

λi (t)∇φi (z(t)), (8.4)

0≤ λi (t)⊥−φi (z(t))≥ 0. (8.5)

For a given z ∈ K we have the active set

I(z)= { i | φi (z)= 0 } .
The crucial assumption is that there are times t0 < t1 < t2 < · · · where I(z(t))= Ik for all
t ∈ (tk , tk+1). Since z(t) ∈ K for all t , if j �∈ Ik , then λ j (t)= 0 for all t ∈ (tk , tk+1). On the
interval (tk , tk+1) we have the DAEs

dx

dt
= f (x(t), z(t)), x(t0)= x0, (8.6)

0= F(x(t), z(t))+
∑
i∈Ik

λi (t)∇φi (z(t)), (8.7)

0= φi (z(t)), i ∈ Ik , (8.8)

0= λi (t), i �∈ Ik . (8.9)

If x(t)∈Rn and z(t)∈Rm , then the number of equations and number of unknowns are both
n+m+|Ik |. Let wJ =

[
w j | j ∈ J ]

, where J is a finite set of indices and w is a vector
of the appropriate size.
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For an index-zero DVI we expect ∇z F(x , z) to be positive definite for all x and z.
The Jacobian matrix of the algebraic part of the DAEs with respect to

[
zT , λT

Ik

]T is[ ∇z F+∑
i∈Ik

λT
i Hessφi ∇φT

Ik∇φIk 0

]
(8.10)

evaluated at (x(t), z(t), λ(t)). Since ∇z F(x , z) is assumed to be positive definite, λi (t) ≥ 0
for all i , and φi is convex for all i , we can see that ∇z F(x , z)+ λT

Ik
HessφIk (z) should

also be positive definite. Provided also that ∇φIk (z(t)) has full rank, the matrix (8.10) is
nonsingular, so that the system (8.6)–(8.9) is a solvable system of DAEs. The index of this
system as a system of DAEs is one [15, 38].

8.3.2 Index-one problems

For index-one DVIs, we will assume that F(x , z)= G(x). Then (8.6)–(8.9) is still a system
of DAEs, but now with a higher index. Typically, we differentiate (8.7)–(8.9) with respect
to time to obtain equations for dz/dt and dλ/dt .

To illustrate this idea, consider the piecewise smooth but discontinuous differential
equations

dx

dt
= fi (x(t)), when hi (x(t)) < h j (x(t)), j �= i .

The hi functions are called indicator functions, as they indicate which right-hand side to
use for the differential equation. We assume that the functions fi and hi are smooth. This
can be represented in terms of DVIs as

dx

dt
=

m∑
i=1

θi (t) fi (x(t)), θ (t) ∈'m , (8.11)

0 ≤ 〈̃
θ − θ (t), h(x(t))

〉
for all θ̃ ∈'m , (8.12)

where

'm =
{
θ ∈ Rm | θi ≥ 0 for all i ,

m∑
i=1

θi = 1

}

is the standard unit simplex in Rm . The normal cone to 'm is given by

N'm (θ )=−cone{ei | θi = 0}+Re,

where e is the vector of ones of the appropriate size. The equivalent condition for solving
the VI that 0 ∈ h(x(t))+ N'm (θ ) can be parametrized as finding λi (t) and µ(t) such that

0= hi (x(t))−λi(t)+µ(t) for all i ,

0≤ θi (t)⊥ λi (t)≥ 0 for all i .
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If we let I(t)= {
i | hi (x(t))=min j h j (x(t))

}
be the active set at time t , then λi (t)= 0 for

all i �∈ I(t). Also, if i ∈ I(t), hi (x(t))+µ(t)= 0. If I(t) = Ik for all t ∈ (tk , tk+1) and all
functions involved are smooth, then differentiating this equation gives

0=∇hi (x(t))
dx

dt
(t)+µ′(t) for all i ∈ Ik , t ∈ (tk , tk+1) .

Substituting dx/dt =∑
i θi (t) fi (x(t)) gives the system of equations

0=
∑
j∈Ik

∇hi (x(t)) f j (x(t))θ j (t)+µ′(t) for all i ∈ Ik ,

1=
∑
j∈Ik

θ j (t).

A way of solving this system of (|Ik |+1)× (|Ik |+1) linear equations is to solve a slightly
smaller |Ik | × |Ik | system MIk (x(t)) θ̂(t) = e where M(x) = ∇h(x) f (x)+ α e eT with
f (x)= [

f1(x), f2(x), . . . , fm (x)
]

and α chosen to make M(x) nonsingular. Then set θi (t)=
θ̂i (t)/

∑
j∈Ik

θ̂ j (t) for i ∈ Ik and θi (t)= 0 for i ∈ Ik . This can be substituted into (8.11) to
give a smooth differential equation for x(t). This approach of differentiating the constraints
is common in treating DAEs, but it suffers from the problem of drift. That is, the solution
(while t ∈ (tk , tk+1)) should satisfy hi (x(t)) = h j (x(t)) for all i , j ∈ Ik . But due to the
limitations of numerical solution methods, inevitably this equality becomes false. Worse,
the differences hi (x(t))−h j (x(t)) can grow exponentially until they become large, and the
numerical solution loses all validity. There are a number of ways of dealing with this, as
described in [15, 38], for example.

The next step is to identify if there is a change in the active set in the current step and
then to accurately locate the switching time within the current step.

8.3.3 Switching for index-zero problems

The task is now to identify the new active set when it changes. From the theory of index-
zero DVIs, z(t) is Lipschitz continuous in t . From (8.4) we note that provided the vectors
∇φi (z(t)) for i ∈ I∗k are linearly independent, we have local Lipschitz continuity of the
λi (t) as well. Thus, if φi (z(t)) < 0, we have φi (z(t ′)) < 0 for all t ′ sufficiently close to
t; if λi (t) > 0, we have λi (t ′) > 0 for all t ′ sufficiently close to t . The only way there
can be a change in the active set is if there is an i where λi (t) = 0 = φi (z(t)). Let I0

k =
{ i | λi (tk)= 0= φi (z(tk)) }. Thus, at a switching time tk , I0

k �= ∅. The next switching time
tk+1 must be a zero of t #→min(mini∈Ik λi (t), mini �∈Ik −φi (z(t))).

There are many methods that can be used for locating the switching time. Bracketing
methods such as bisection [17, 44], Brent’s method [39], and Dekker’s method [75] are
most suitable for this task; the further point b from the final bounding interval [a, b] can be
used for the new starting time.

The last part of the method that needs to be implemented is to identify the new active
set after arriving at a switching time. Suppose that tk is a switching time, and let I∗k be the
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active set at t = tk . For the index-zero case, let

I∗k = { i | φi (z(tk))= 0 } ,
I0

k =
{

i ∈ I∗k | λi (tk)= 0
}

,

I+k =
{

i ∈ I∗k | λi (tk) > 0
}

.

From continuity arguments, Ik ⊆ I∗k . To determine Ik we need to look at the direction
in which the solution is moving. We first consider the index-zero case. For a function
f : (a, b)→ Rm let f ′+(t)= limh↓0 ( f (t+h)− f (t))/h be the forward directional deriva-
tive.

Recall that if φi (z(t)) < 0, then λi (t)= 0. So, if i �∈ I∗k , λi (t)= 0 for all t sufficiently
close to tk . If i �∈ Ik , then φi (z(t)) < 0 for all t > tk sufficiently close to tk , and so λ′i+(tk)=
0.

Since φi (z(t))≤ 0 for all i and φi (z(tk))= 0 for i ∈ I∗k , (φi ◦ z)′+ (tk)≥ 0 for all i ∈ I∗k .
Differentiating equation (8.7),

0= F(x(t), z(t))+
∑
i∈I∗k

λi (t)∇φi (z(t))T gives

0=∇x F(x(t), z(t)) x ′+(t)+∇z F(x(t), z(t)) z′+(t)

+
∑
i∈I∗k

(
λ′i+(t)∇φi (z(t))T +λi (t)Hessφi (z(t)) z′+(t)

)
.

Now x ′+(tk) = x ′(tk) = f (x(tk), z(tk)). If we write x(tk) = xk , z(tk) = zk , z′+(tk) = z′k ,
λ′i+(tk)= λ′i,k , then

0=∇x F(xk , zk) f (xk , zk)+∇z F(xk , zk) z′k
+

∑
i∈I∗k

(
λ′i,k ∇φi (zk)+λi,k Hessφi (zk) z′k

)
.

On the other hand,

0≤ λ′i,k ⊥−∇φi (zk) z′k ≥ 0 for all i ∈ I0
k ,

0=−∇φi (zk) z′k = 0 for all i ∈ I+k .

To tie these equations together, let

µ0
k =

[
λ′i,k | i ∈ I0

k

]
,

µ+k =
[
λ′i,k | i ∈ I+k

]
,

∇φ0
k =

[
∇φi (zk) | i ∈ I0

k

]
,

∇φ+k =
[∇φi (zk) | i ∈ I+k

]
.

Note that the matrices ∇φ0
k and ∇φ+k are formed by stacking the row vectors ∇φi (zk)

vertically. For simplicity of notation, let ∇x F(xk , zk) = ∇x Fk , ∇z F(xk , zk) = ∇z Fk , fk =
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f (xk , zk), and Ak = ∇z Fk +∑
i λi,k Hessφi (zk). In matrix-vector form, the conditions be-

come [
Ak

(∇φ+k )T

−∇φ+k 0

][
z′k
µ+k

]
=

[
−∇x Fk fk −

(∇φ0
k

)T
µ0

k

0

]
, (8.13)

0≤ µ0
k ⊥−∇φ0

k z′k ≥ 0. (8.14)

Solving the first linear system gives z′k = AS
(−∇x Fk fk −

(∇φ0
k

)T
µ0

k

)
, where

AS = A−1
k − A−1

k

(∇φ+k )T
[
∇φ+k A−1

k

(∇φ+k )T
]−1∇φ+k A−1

k .

If Ak is a positive definite matrix, so is AS . Substituting this formula for z′k into (8.14)
gives the LCP

0≤ µ0
k ⊥ νk := AS µ

0
k+ AS∇x Fk fk ≥ 0. (8.15)

Thus, if Ak is positive definite, there is a unique solution µ0
k . If

(
µ0

k

)
i > 0, then i ∈ Ik+1

and if (νk)i > 0, then i �∈ Ik+1. If the solution is strictly complementary (that is, for each i
either

(
µ0

k

)
i > 0 or (νk )i > 0), then we can write

Ik+1 = I+k ∪
{

i |
(
µ0

k

)
i
> 0

}
. (8.16)

If the solution is not strictly complementarity, then we have some ambiguity in the new
active set:

I+k ∪
{

i |
(
µ0

k

)
i
> 0

}
⊆ Ik+1 ⊆ I+k ∪

{
i | (νk)i = 0

}
.

Often this ambiguity can be resolved by looking at higher order derivatives of λi (t) and
z(t).

8.3.4 Switching for index-one problems

An example of how to determine the new active set in the index-one case of discontinuous
differential equations can be found in [236, Section 4.2].

In the index-one case, we no longer have continuity of z(t) or λ(t). However, the
condition of switching from one active set to another depends on x(t), which does depend
continuously on t . In particular, we consider the piecewise smooth discontinuous differen-
tial equation problem:

dx

dt
=

m∑
i=1

zi (t) fi (x(t)), x(t0)= x0,

z(t) ∈ 'm ,

0 ≤ 〈 z̃− z(t), h(x(t))〉 for all z̃ ∈'m ,

where 'm =
{
w ∈ Rm |w ≥ 0,

∑m
i=1 wi = 1

}
. The active set is

I(x(t))=
{

i | hi (x(t))=min
j

h j (x(t))

}
.
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If tk is a switching time, then let

I∗k =
{

i | hi (x(tk))=min
j

h j (x(tk))

}
.

By continuity of x(·) and h(·), the new active set Ik+1 ⊆ I∗k . If i , j ∈ Ik+1, then hi (x(t))=
h j (x(t)) for all t ∈ (tk , tk+1), so the forward directional derivatives ∇hi (x(tk)) x ′+(tk) =
∇h j (x(tk)) x ′+(tk). On the other hand, if∇hi (x(tk)) x ′+(tk)<∇h j (x(tk)) x ′+(tk) for i , j ∈ I∗k ,
then j �∈ Ik+1.

Let µk be the forward direction derivative of t #→ mini hi (x(t)) at tk . Also let xk =
x(tk). It is not immediately clear that x ′+(tk) exists, but we will assume that it does. If it does
not exist, we can at least consider limits of convergent subsequences (x(tk+h)− x(tk))/h
as h ↓ 0 and call that x ′+(tk). Then x ′+(tk) ∈ co{ fi (xk) | i ∈ Ik+1 } ⊆ co

{
fi (xk) | i ∈ I∗k

}
.

Writing x ′+(tk)=∑
i∈Ik+1

z∗k,i fi (xk) with z∗k ≥ 0 and
∑

i z∗k,i = 1, we can extend this vector
to indices i ∈ I∗k : z∗k,i = 0 if i �∈ Ik+1.

Now

µk = min
i∈I∗k

∇hi (xk) x ′+(tk).

Let v∗k,i =∇hi (xk) x ′+(tk)−µk ≥ 0. If v∗k,i > 0, then i �∈ Ik+1, so z∗k,i = 0. Thus

0≤ v∗k,i ⊥ z∗k,i ≥ 0 for all i ∈ I∗k .

Substituting for x ′+(tk) in terms of z∗k we have

v∗k,i =
∑
j∈I∗k

z∗k, j ∇hi (xk) f j (xk)−µk.

Let mij = ∇hi (xk) f j (xk), forming the matrix M = [
mij | i , j ∈ I∗k

]
, so that v∗k = M z∗k −

µk e. Again e is the vector of ones of the appropriate size. Since
∑

j∈I∗k z∗k, j = 1, if we add
α ≥ 0 to every entry of M , we have

v∗k =
(

M +α e eT
)

z∗k − (µk+α)e.

If we choose α > 0 sufficiently large, then µk + α > 0, and we can divide by µk + α to
obtain vk = v∗k / (µk+α) in terms of zk = z∗k/ (µk +α):

vk =
(

M+α e eT
)

zk − e,

0≤ vk ⊥ zk ≥ 0.

This is an LCP, and solutions exist if M + α e eT is strictly copositive, which is true if
mij +α > 0 for all i , j ∈ I∗k , for example. The new active set can then be identified if the
solution is strictly complementary:

Ik+1 =
{

i ∈ I∗k | zk,i > 0
}

.

In the case of solutions that are not strictly complementary, there is some ambiguity in the
new active set: {

i ∈ I∗k | zk,i > 0
}⊆ Ik+1 ⊆

{
i ∈ I∗k | vk,i = 0

}
.

As with the index-zero case, this ambiguity can often be resolved if we resort to higher
order derivatives. Details can be found in [236, Section 4.2].
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8.3.5 Algorithm development

By combining all these elements, it is possible to create numerical methods that produce
highly accurate solutions. However, there are a number of restrictions that we have made
about the structure of the system, particularly as we require a number of nondegeneracy
assumptions and that solutions to the associated CPs are strictly complementary. We are
also assuming that solutions are at least locally (around each switching point) piecewise
smooth. Thus we should also consider the issue of Zeno solutions: solutions which have
an infinite number of switching times in a bounded interval. In some situations this can
be ruled out. For example, for index-zero DVIs, if the data is analytic, then the result
of Sussman [254] for continuous piecewise analytic differential equations can be applied
to show that Zeno solutions do not exist. But for index-one DVIs, this is not necessarily
so [30].

Under the above nondegeneracy and strict complementarity assumptions, we have
existence of solutions even if they are Zeno solutions. Proving this requires application
of some axiom equivalent to the axiom of choice; see [236, Appendix C]. A more subtle
issue relates to uniqueness of solutions. Because of the assumption of a constant active set
for a suitable interval into the future (tk , tk + ε), reverse Zeno solutions, in which any such
interval contains infinitely many switches, are effectively invisible. Such solutions can be
generic, in the sense that arbitrary small perturbations of the data of the problem typically
do not destroy the reverse Zeno solutions. Thus solutions can appear to be unique, while
they are in fact not unique.

An issue that can arise in practice with these piecewise smooth methods is that the
number of switches, while finite, can be very large. This is particularly true in mechanical
impact problems in granular flow. Granular flow problems have a great number of particles
in motion and in close proximity to each other. Another example is with the solution of
partial differential equations that are DVIs. As the spatial grid is refined, the number of
switches in a given time interval can increase quite rapidly. The asymptotic rate at which
the number of switches increases with the reduction of the grid spacing depends on the
dimension of the problem.

Against these theoretical and practical difficulties of these methods, they have the
advantage that high order methods for differential equations and DAEs can be applied.
If high accuracy is required, then these piecewise smooth methods are the best methods
available for solving these problems. But if only moderate accuracy is required, or there
are large numbers of switches in the time interval under consideration, then time-stepping
methods are a good alternative.

8.4 Time stepping
Time stepping directly deals with the variational aspects of DVIs. At each time step, a
VI or CP is solved for an approximation of the DVI. The solution of the VI is then used
for determining the approximate solution at the end of the time step. Unlike the piecewise
smooth methods discussed in the previous section, these methods do not require explicit
tracking of the active set. Rather the current active set is determined from the solution to
the current VI. While piecewise smooth methods have to identify every change of active
set, time-stepping methods do not. As a result, time-stepping methods can handle large and
frequent changes in the active set.

Downloaded 03 Nov 2011 to 160.36.192.127. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php



294 Chapter 8. Numerical Methods

These methods place more emphasis on good, fast solvers for VIs or CPs. Unlike
smoothing or penalty methods which rely on good smooth differential equation solvers and
smoothing parameters that are not too extreme, or piecewise smooth methods that rely on
nondegeneracy and solution of LCPs at switching times, time-stepping methods require
solution of a VI or CP (or perhaps several such problems) at each step. Methods for static
VIs, such as nonsmooth Newton methods, are therefore particularly important for time-
stepping methods [195, 196, 211].

Time-stepping methods are also useful in a theoretical sense, in that they can be used
to show existence of solutions and without requiring nondegeneracy assumptions or strict
complementarity assumptions.

Time-stepping methods can be based on various methods for solving differential
equations, such as Euler’s method, the implicit Euler’s method, the midpoint rule, and vari-
ous Runge–Kutta methods. For index-one or index-two DVIs, the methods must be implicit
and satisfy some strong stability properties. The property of B-stability [45, 46, 68, 142]
is particularly important. To understand B-stability and its importance, we need to spend
some time looking at Runge–Kutta methods in general.

8.4.1 Runge–Kutta methods

Runge–Kutta methods are an important class of methods for solving ordinary differential
equations and can be easily adapted to the solution of differential inclusions, DAEs, and
partial differential equations. For deeper treatments of Runge–Kutta methods for smooth
differential equations, see [15, 18, 46, 119]. The simplest Runge–Kutta methods are the
fully explicit and fully implicit Euler methods: to solve the differential equation dx/dt =
f (x(t)), x(t0)= x0 to obtain approximate solutions x� ≈ x(t�)= x(t0+ �h),

x�+1 = x�+h f (x�) explicit Euler method,

x�+1 = x�+h f (x�+1) implicit Euler method.

Higher order Runge–Kutta methods have more stages: s > 1. An s-stage Runge–Kutta
method has the form

y�,i = x�+h
s∑

j=1

ai j f (y�, j ), i = 1, 2, . . . , s, (8.17)

x�+1 = x�+h
s∑

j=1

b j f (y�, j ). (8.18)

The constants ai j and b j together with ci :=∑s
j=1 ai j form the Butcher tableau:

c1 a11 a12 · · · a1s
c2 a21 a22 · · · a2s
...

...
...

. . .
...

cs as1 as2 · · · ass

b1 b2 · · · bs

or
c A

bT
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The most famous Runge–Kutta method is the fourth order method, which can be
represented compactly by the tableau (empty entries are zero)

1/2 1/2
1/2 1/2
1 1

1/6 1/3 1/3 1/6

Alternatively it can be written out as

y�,1 = x�,

y�,2 = x�+ 1

2
h f (y�,1),

y�,3 = x�+ 1

2
h f (y�,2),

y�,4 = x�+h f (y�,3),

x�+1 = x�+ 1

6
h

[
f (y�,1)+2 f (y�,2)+2 f (y�,3)+ f (y�,4)

]
.

This is an explicit method. The usual proofs of convergence of Runge–Kutta methods
assume that the solution and the function f are both smooth, which is rarely true of solu-
tions of DVIs, at least globally in time. The usual aim in the development of Runge–Kutta
methods has been obtaining high order accuracy. With less smooth solutions and for stiff
differential equations, the more important issue is stability rather than order of accuracy.
Examples of implicit methods, which typically have better stability properties, can be found
in Figure 8.1.

Runge–Kutta methods have been used for numerical solution of differential inclu-
sions by a number of authors [31, 81, 141, 143, 142, 144, 158, 159, 190, 191, 257, 258,
259]. Applying a Runge–Kutta method to a differential inclusion dx/dt ∈�(x(t)) leads to

y�,i = x�+h
s∑

j=1

ai j v�, j , i = 1, 2, . . . , s, (8.19)

v�, j ∈�(y�, j ), i = 1, 2, . . . , s, (8.20)

x�+1 = x�+h
s∑

j=1

b j v�, j . (8.21)

This is almost the same as replacing “ f ” with “�” and “=” with “∈” where appropriate.
However, this formulation makes sure that we pick the same element v�, j ∈�(y�, j ) rather
than allowing different elements to be used for different occurrences of �(y�, j ).

For the DVI
dx

dt
= f (x(t), z(t)), x(t0)= x0,

z(t) ∈ K & 0≤ 〈 z̃− z(t), F(x(t), z(t))〉 for all z̃ ∈ K ,

we can set

�(x)= { f (x , z) | z ∈ K & 0≤ 〈 z̃− z(t), F(x , z)〉 for all z̃ ∈ K } ,
so that solving the differential inclusion dx/dt ∈�(x) is equivalent to solving the DVI.
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Consider the case where x(t) ∈Rn and �(x) satisfies Filippov’s assumptions:

• �(x) is a closed, convex, and bounded set for all x ;

• x #→�(x) is upper semicontinuous;

• there is a constant C where 〈x , y〉 ≤ C
(
1+‖x‖2) for all y ∈�(x).

Proofs of convergence can be found for this case in [81, 191]; explicit Euler is covered by
[258]. The rate of convergence is much harder to determine and usually requires uniqueness
of solutions in order to do so. For example, suppose that � satisfies a one-sided Lipschitz
condition:

〈x1− x2, y1− y2〉 ≤ L ‖x1− x2‖2 whenever yi ∈�(xi ). (8.22)

Under the Filippov assumptions, the one-sided Lipschitz condition implies x #→ −�(x)+
L x is maximal monotone, and we can apply the theory of maximal monotone differential
inclusions. The implicit Euler method is the simplest method that we can use with general
maximal monotone differential inclusions:

x�+1 ∈ x�+h�(x�+1), (8.23)

which is equivalent to applying the resolvent operator Rh from (2.56) if we identify the
space X with its dual X ′. The question of the asymptotic size of the error ‖x�− x(t�)‖ for
this method has been investigated by Lippold [161] for the case � = −A− ∂φ where φ

is a lower semicontinuous convex function that is Lipschitz on its domain and A : X →
X ′ is linear and monotone, and also by Bastien and Schatzman [27] for general maximal
monotone differential inclusions in Gelfand triples. Both obtain

‖x�− x(t�)‖ =O(h1/2), t� ∈ [0, T ] ,

as h ↓ 0. Numerical simulations seem to indicate that

‖x�− x(t�)‖ =O(h),

but at the time of this writing, there is no proof of this except for the case where �(x) =
f (x)− NK (x) with f Lipschitz and K closed and convex.

For the general case where � satisfies the one-sided Lipschitz condition (8.22), we
need to restrict h so that 0 < h L < 1 in order to guarantee solutions of the time-stepping
problem (8.23).

These results can be extended to more complex Runge–Kutta schemes using (8.19)–
(8.21), provided that the Runge–Kutta scheme is B-stable, also known as algebraically
stable. B-stability of a Runge–Kutta method means that whenever (− f ) is a continuous
monotone function and

y(p)
�,i = x (p)

� +h
s∑

j=1

ai j f (y(p)
�, j ), i = 1, 2, . . . , s, (8.24)

x (p)
�+1 = x (p)

� +h
s∑

j=1

b j f (y(p)
�, j ) (8.25)
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1/2 1/2
1

0 0 0
1 1/2 1/2

1/2 1/2
(a) mid-point rule (b) trapezoidal rule

Figure 8.1: Butcher tableaus for (a) the midpoint and (b) trapezoidal rules.

for p = 1, 2, then
∥∥x (2)

�+1− x (1)
�+1

∥∥≤ ∥∥x (2)
� − x (1)

�

∥∥. This is a natural nonlinear stability con-
cept, but it appears rather formidable to check if it holds for a given method. Fortunately,
there is an easy equivalent algebraic condition [45, 68]:

M := diag(b)A+ AT diag(b)−b bT (8.26)

is positive semidefinite,

bi ≥ 0 for all i . (8.27)

Note that diag(b) is the diagonal matrix where the i th diagonal entry is bi . There are many
Runge–Kutta methods that are B-stable. Most of these were developed in order to improve
the order of accuracy. Since differential inclusions are often discontinuous and do not have
smooth solutions, the order of accuracy is often not particularly important.

One issue that is especially important for handling differential inclusions dx/dt ∈
�(x) is that the solution remains inside range� = { x |�(x) �= ∅}: if x� ∈ range�, then
x�+1 ∈ range�. The most common way to ensure this is for bT to be a row of A. This
property is known as stiff accuracy. In this way x�+1 = y�,i for some i (usually i = s) and
v�,i ∈�(y�,i ) �= ∅. Thus, for example, fully implicit Euler is stiffly accurate while neither
the explicit Euler nor the midpoint rules are stiffly accurate. However, the trapezoidal
method is stiffly accurate. Note that the midpoint and trapezoidal rules are second order
methods for smooth differential equations.

If the solution is smooth, then using a higher order Runge–Kutta method can give
high order accuracy in the numerical approximations [142], although the order of conver-
gence is often less than the order given for the method. This phenomenon is called order
reduction [18, 119], and it is well known for stiff differential equations and DAEs: the
effective order of the method is typically the stage order of the Runge–Kutta method. This
stage order is the largest q where

x(t�+ ci h)= x(t�)+h
s∑

j=1

ai j x ′(t�+ c j h)+O(hq+1) (8.28)

for all i . On the other hand, for nonstiff ordinary differential equations, what is often more
important is the quadrature order, which is the largest p where

x(t�+h)= x(t�)+h
s∑

j=1

b j x ′(t�+ c j h)+O(h p+1), (8.29)

which is usually significantly larger than q .
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To apply these methods to DVIs, we can set up a corresponding VI for the inclusions
v�,i ∈�(y�,i ): v�,i = f (y�,i , z�,i ) where

z�,i ∈ K , (8.30)

0 ≤ 〈
z̃− z�,i , F(y�,i , z�,i )

〉
for all z̃ ∈ K , (8.31)

y�,i = x�+h
s∑

j=1

ai j v�, j , i = 1, 2, . . . , s. (8.32)

For an index-zero DVI, if z #→ F(y, z) is strongly monotone, uniformly in y, then
we can apply the standard theory of Lipschitz differential equations to this Runge–Kutta
method to establish the existence of solutions to the Runge–Kutta equations for sufficiently
small h > 0.

For an index-one DVI
dx

dt
(t)= f (x(t))+ B(x(t)) z(t), (8.33)

z(t) ∈ K & 0≤ 〈 z̃− z(t), G(x(t))〉 for all z̃ ∈ K , (8.34)

proving the solvability of the Runge–Kutta equations is a bit more complicated. The follow-
ing treatment follows that of Kastner-Maresch [142], which applies Runge–Kutta methods
to differential inclusions with one-sided Lipschitz conditions. The main results of [142]
include not only solvability of the Runge–Kutta equations (provided the right-hand side set
�(x) satisfies a growth condition) but also that the accuracy of the computed solution is
the same as the stiff order of the method, provided that the solution is smooth. Of course,
we do not expect that the solution will be smooth for DVIs, but we would usually expect it
to be piecewise smooth. Thus Runge–Kutta methods can be combined with detect, locate,
and restart methods as described in Section 8.3 to accurately compute solutions of DVIs,
provided the solutions do not have infinitely many switches in a finite time.

First we show that the Runge–Kutta equations applied to an index-one DVI of the
form (8.33)–(8.34) has solutions under conditions on the method and the DVI that are not
too restrictive. These Runge–Kutta equations are

y�,i = x�+h
s∑

j=1

ai j
[

f (y�, j )+ B(y�, j) z�, j
]

, (8.35)

i = 1, 2, . . . , s,

z�, j ∈ K & 0≤ 〈
z̃− z�,i , G(y�,i )

〉
for all z̃ ∈ K , (8.36)

x�+1 = x�+h
s∑

j=1

b j
[

f (y�, j )+ B(y�, j) z�, j
]

. (8.37)

We will assume that the Runge–Kutta method

(RK1) is algebraically stable (8.26)–(8.27),

(RK2) is stiffly accurate (bT is a row of A),

(RK3) has A symmetrizable positive definite (D A+ AT D is positive definite for a diagonal
matrix D with positive diagonals),

(RK4) satisfies Butcher’s simplifying assumptions B(p) and C( p).
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1/3 5/12 −1/12
1 3/4 1/4

3/4 1/4

(a) order 1 (b) order 3
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√
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(c) order 5

Figure 8.2: Radau IIA methods of order 1 (s = 1), order 3 (s = 2), and order 5 (s = 3).

Butcher’s simplifying assumptions are

B(p) : k
s∑

k=1

b j ck−1
j = 1 for k = 1, 2, . . . , p,

which implies the quadrature order condition (8.29); and

C(q) : k
s∑

j=1

ai j ck−1
j = ck

i for i = 1, 2, . . . , s and k = 1, 2, . . . , q ,

which implies the stage order condition (8.28).
This might appear to be a formidable list of assumptions; however, important families

of methods satisfy these conditions, such as the Radau IIA methods, which have received
special attention as powerful methods for solving stiff differential equations. The Radau
IIA method with s stages has order 2s−1; the Radau IIA method with one stage is simply
the implicit Euler method. The Radau IIA methods with one, two, and three stages are
shown in Figure 8.2.

Kastner-Maresch [142] uses the assumptions (RK1), (RK3), and (RK4). However,
Kastner-Maresch does not require that the method be stiffly accurate (RK2). That is be-
cause he assumed that the differential inclusion dx/dt ∈ �(x) had �(x) bounded and
satisfying a growth condition. Here we want to include problems of the form dx/dt ∈
f (x)− NK (x). Conversely, for K = C + L, C bounded, and L a closed convex cone, we
require that G(x(t)) ∈ L∗ for all t . Thus we want G(x�+1) ∈ L∗ if G(x�) ∈ L∗ using this
method. This leads to the requirement of stiffly accurate methods. Without this condition,
other methods like the Gauss methods of order 2s for s stages can be used, as they can for
differential inclusions with a growth condition on �(x).

8.4.2 Existence of solutions to the Runge–Kutta system

The main purpose of this section is to show existence of solutions to the Runge–Kutta
conditions (8.35)–(8.37) under some reasonable conditions, at least for sufficiently small
h > 0. To do this, we set up an iterative sequence of VIs and show that the sequence of
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approximate solutions converges. Note that we assume that K is a cone to simplify much
of the analysis. Throughout much of the section, it is convenient to use tensor product
notation for vectors and matrices:

x⊗ y =
[
x1yT , x2yT , . . . , xs yT

]T
,

A⊗ B =


a11 B a12 B · · · a1s B
a21 B a22 B · · · a2s B

...
...

. . .
...

as1B as2B · · · ass B

 .

As usual, e denotes the vector of ones of the appropriate size.
Let z� = [zT

�,1, zT
�,2, . . . , zT

�,s]T and y� = [yT
�,1, yT

�,2, . . . , yT
�,s]T . Then we can write the

Runge–Kutta system (8.35)–(8.37) in tensor product form as

y� = e⊗ x�+h (A⊗ I )
[
f(y�)+B(y�)z�

]
, (8.38)

z� ∈ K s & 0≤ 〈 z̃− z�, G(y�)〉 for all z̃ ∈ K 2, (8.39)

x�+1 = x�+h
(

bT ⊗ I
)[

f(y�)+B(y�)z�
]

, (8.40)

where

f(v)T =
[

f (v1)T , f (v2)T , . . . , f (vs )T
]

,

G(v)T =
[
G(v1)T , G(v2)T , . . . , G(vs )T

]
,

B(v)= diag(B(v1), B(v2), . . . , B(v2)) ,

eT = [1, 1, , . . . , 1] .

Theorem 8.1. Suppose that the functions f , B, G, and∇G are bounded and Lipschitz with
∇G(x) B(x) symmetric and positive definite (uniformly in x), K is a closed convex cone,
and conditions (RK1) and (RK3) hold. Then provided G(x�) ∈ K ∗ there is h0 > 0 such that
for 0 < h ≤ h0, the Runge–Kutta system (8.35)–(8.37) has a solution. Furthermore, h0 is
independent of x�, and the solutions are bounded independently of h and x� for 0< h ≤ h0.

Note that given z(p)
�,i , i = 1, 2, . . . , s, and h > 0 sufficiently small, we can uniquely

solve the equations

y(p)
� = e⊗ x�+h (A⊗ I )

[
f(y(p)

� )+B(y(p)
� )z(p)

�

]
for y(p)

� . We suppose that f and B are Lipschitz with constants L f and L B , and B is a

bounded function with bound βB . Finally, we assume that z(p)
� is bounded by βz . Then, a

Lipschitz constant of the map z(p)
� #→ y(p)

� is

h ‖A‖ (βB + L Bβz)/ (1−h ‖A‖ (βB+ L Bβz)) .
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We approximate the system of VIs (8.35)–(8.36) by a “linearization” around z(p)
� :

z�,i ∈ K , (8.41)

0≤
〈̃

z�,i − z�,i , G(y(p)
�,i ) (8.42)

+h
s∑

j=1

ai j ∇G(x�)B(x�)
(

z�, j − z(p)
�,i

)〉

for all z̃�, j ∈ K , i = 1, 2, . . . , s. The solution z�,i to this system of VIs (i = 1, 2, . . . , s) is

the new iterate z(p+1)
�,i . Writing D = diag(d) for the diagonal matrix where D A+ AT D is

positive definite, we can multiply the inequality in (8.42) by di > 0 to get

z�,i ∈ K , (8.43)

0≤
〈̃

z�,i − z�,i , di G(y(p)
�,i ) (8.44)

+h
s∑

j=1

di ai j ∇G(x�)B(x�)
(

z�, j − z(p)
�,i

)〉

for all z̃�,i ∈ K , i = 1, 2, . . . , s. Combining the VIs for i = 1, 2, . . . , s gives the VI over
L := K × K ×·· ·× K :

z� ∈ L, (8.45)

0≤
〈̃
z�− z�, D⊗ I G(y(p)

� ) (8.46)

+ h D A⊗C�

(
z�− z(p)

�

)〉
for all z̃� ∈ L,

where G(y(p)
� ) = [G(y(p)

�,1 )T , . . . , G(y(p)
�,s )T ]T and C� = ∇G(x�)B(x�). We want the tensor

product D A⊗C� to be positive definite, as then we can guarantee existence of solutions
of (8.45)–(8.46) as well as bounds on these solutions. However, U and V positive definite
is not sufficient to guarantee that U ⊗V is also positive definite. Write U = Us +Ua and
V = Vs+Va, where Us (Ua) is the symmetric (antisymmetric) part of U , and Vs (Va) is the
symmetric (antisymmetric) part of V . Then the symmetric part of U⊗V is Us⊗Vs+Ua⊗
Va . Unless there is some control on Ua and Va , the effects of the antisymmetric parts can

overcome the positive definiteness of Us⊗Vs . As a simple example, take U = V =
[

1 2
−2 1

]
.

The eigenvalues of the symmetric part of U⊗V are 1±4, so U⊗V is not positive definite.
The assumption of symmetry for C� =∇G(x�) B(x�) simplifies this part of the proof. This
can be weakened to allow for some asymmetry in ∇G(x) B(x) as long as D A⊗∇G(x)B(x)
is uniformly positive definite.

The main idea of the proof is to show that the iteration z(p)
� #→ z� = z(p+1)

� de-
fined by (8.45)–(8.46) is, for

∥∥z(p)
�

∥∥ ≤ βz , a contraction mapping and maintains the prop-
erty that

∥∥z(p+1)
�

∥∥ ≤ βz . A crucial part of the proof is the relationship between d(D⊗
I G(y(p)

� ), (K s)∗) and
∥∥z(p+1)

�

∥∥. The VI (8.45)–(8.46) guarantees that D ⊗ I G(y(p)
� )+
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xk+1 xk

G )> 0(x

G )< 0(x

Figure 8.3: Spurious solution to implicit Euler method for a DVI.

h D A⊗C�

(
z(p+1)
� − z(p)

�

) ∈ (K s)∗. To bound the distance d(D⊗ I G(y(p+1)
� ), (K s)∗), we

must bound the nonlinearities in G by means of the Lipschitz constant of ∇G. This dis-
tance bound, in turn, involves

∥∥z(p+1)
� − z(p)

�

∥∥. Fortunately the fact that there is a factor of

O(h2) in the distance bound is sufficient to show that z(p)
� #→ z(p+1)

� is a contraction map
for sufficiently small h > 0. Details can be found in [246]. The question of whether this
result can be extended to K = C + L with C bounded and L a cone (rather than requiring
that K itself be a cone) is an open question at the time of this writing.

Uniqueness of the solution is also not known in general. The proof technique in-
dicates that amongst solutions with

∥∥z�,i
∥∥ ≤ βz (βz as given in the proof), the solution is

unique. This is probably all that is necessary in practice. However, unless there is some
control of the nonlinearities in f , B , and G, we cannot guarantee that there are no “spuri-
ous” solutions with

∥∥z�,i
∥∥ large. In [142] this is dealt with through a one-sided Lipschitz

condition for differential inclusions, which is a global condition. But, for DVIs, the fol-
lowing is a counterexample which shows the possibility of unbounded spurious solutions:
Consider the DVI

dx

dt
=∇G(x(t))T z(t),

0≤ z(t) & 0≤ ( z̃− z(t))G(x(t)) for all z̃ ≥ 0

with G : R2 → R given by G(x) = ‖x‖2
2 − 1. If we applied the implicit Euler method,

which is the Radau IIA method with one stage, we have the following CP to solve for step
size h > 0:

x�+1 = x�+2hx�+1 z�+1,

0≤ z�+1 ⊥ ‖x�+1‖2
2−1≥ 0.

This situation is illustrated by Figure 8.3, where x� = α ≥ 1. In this case we can have
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x�+1 =−e1 as shown in the figure. The corresponding value of z�+1 is given by

−e1 = αe1−2he1 z�+1,

or equivalently, z�+1 = (1+α)/ (2h). This spurious solution clearly goes to infinity as h
goes to zero.

8.4.3 Order of convergence for smooth solutions

Following Kastner-Maresch [142], it can be shown that if the solution of the DVI

dx

dt
= f (x)+ B(x) z(t), (8.47)

z(t) ∈ K & 0≤ 〈 z̃− z(t), G(x(t))〉 for all z̃ ∈ K (8.48)

is smooth on a time interval [t0, T ] with smooth f , B , and G, and ∇G(x) B(x) symmetric
positive definite, then a Runge–Kutta method satisfying (RK1)–(RK4) produces numerical
solutions that converge with the order of convergence at least equal to the stage order on
[t0, T ]. Note also that this generalization does not require that the corresponding differen-
tial inclusion

dx

dt
(t) ∈ f (x)+ B(x) {z(t) | z(t) satisfies (8.48)}

have the one-sided Lipschitz property, as assumed in [142]. The complete proof of high
order of convergence is beyond the scope of this book. However, highlights of the proof
follow. For details, see [246].

Theorem 8.2. Under the assumptions of Theorem 8.1, if x(·) is smooth on an interval
[t0, T ], and ‖x(t0)− x0‖ =O(hq ), then ‖x(t�)− x�‖ =O(hq ), where t� = t0+ �h ∈ [t0, T ].

The proof essentially follows [142], although [142] in turn uses a number of results of
[74]. In what follows, the hidden constants in “O” do not depend on h for h > 0 sufficiently
small. Since existence of (bounded) solutions of the Runge–Kutta system has already been
established, we start with the Runge–Kutta system in tensor form:

y� = e⊗ x�+h (A⊗ I )
[
f(y�)+B(y�)z�

]
, (8.49)

z� ∈ K s & 0≤ 〈 z̃− z�, G(y�)〉 for all z̃ ∈ K s , (8.50)

x�+1 = x�+h
(

bT ⊗ I
)[

f(y�)+B(y�)z�
]

. (8.51)

The main task is to prove some perturbation bounds where the Runge–Kutta system is
perturbed:

ŷ� = e⊗ x̂�+h (A⊗ I )
[
f(̂y�)+B(̂y�)̂z�+η�

]
, (8.52)

ẑ� ∈ K s & 0≤ 〈 z̃− ẑ�, G(̂y�)〉 for all z̃ ∈ K s , (8.53)

x̂�+1 = x̂�+h
(

bT ⊗ I
)[

f(̂y�)+B(̂y�)̂z�
]

. (8.54)

Specifically, we want to show that we can bound δy� := ŷ� − y� by C
(∥∥η�

∥∥+‖δx�‖
)
,

where δx� := x̂�− x�. From the usual technique for obtaining perturbation bounds in VIs,
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0 ≥ 〈
ẑ�− z�, (D⊗ I )

[
G(̂y�)−G(y�)

]〉
. Then we note that G(̂y�)−G(y�)= ∇G(y�)δy�+

O(‖δy�‖2). Following the uniqueness proof for index-one DVIs (Theorem 5.3), we can
write∇G(y)T =Q(y)B(y) with Q(y) block diagonal and symmetric positive definite. Since
Q(y) and B(y) are block diagonal, they commute with D⊗ I . Moving ∇G(y�) to the left
of the inner product and transposing then give

O(‖δy�‖2)≥ 〈Q(y�) (D⊗ I )B(y�)δz�, δy�〉 .
Premultiplying the difference of (8.49) and (8.52) by D A−1⊗ I gives(

D A−1⊗ I
)
δy� (8.55)

= D A−1e⊗ δx�+h (D⊗ I )
[O (‖δy�‖+

∥∥η�
∥∥)+B(y�)δz�

]
.

Since D A+ AT D is positive definite, so is A−T
(
D A+ AT D

)
A−1 = D A−1 + A−T D.

This means that D A−1 is also positive definite and hence strongly monotone. Taking the
inner product of (8.55) with Q(y�)δy� gives〈(

D A−1⊗ I
)
δy�, Q(y�)δy�

〉
= [O (‖δx�‖)+O (

h
(‖δy�‖+

∥∥η�
∥∥))]‖δy�‖

+h 〈Q(y�) (D⊗ I )B(y�)δz�, δy�〉 .
Since Q(y�)

(
D A−1⊗ I

)= D A−1⊗Q(x�)+O(h), for sufficiently small h > 0 there is an
α > 0 (independent of h) where

α ‖δy�‖2 =O (‖δx�‖+h
∥∥η�

∥∥)‖δy�‖+O
(
‖δy�‖2

)
.

Dividing by α ‖δy�‖ then gives ‖δy�‖ =O (‖δx�‖+h
∥∥η�

∥∥)
.

The second perturbation result we need is that if η� = 0, then there is a constant C ,
independent of h, where for sufficiently small h > 0 we have

‖δx�+1‖Q�+1
≤ (1+C h)‖δx�‖Q�

,

where Q� = Q(x�) and ‖u‖Q = 〈u, Qu〉1/2 is the norm generated by Q. The method of
proof follows Dekker and Verwer [74, Thm. 7.4.2], who considered the case of ordinary
differential equations with a one-sided Lipschitz condition. In the case here, there is an
additional difficulty, as the natural inner product to use changes with position. It is also
crucial that Q(x) be symmetric and that the Runge–Kutta method be algebraically stable.

Note first that with η� = 0, δy� = O (‖δx�‖) from the previous paragraphs. If we
define ξ � = f(̂y�)− f(y�)+B(̂y�)̂z� −B(y�)z�, then ξ� = h−1

(
A−1⊗ I

)[
δy�− e⊗ δx�

]
,

so
∥∥ξ �

∥∥ = O (
h−1 ‖δx�‖

)
. Expanding δx�+1 = δx�+ h

∑
j b jξ�j in ‖δx�+1‖2

Q�
and using

δx� = δv�j −h
∑

k a jkξ�k give

‖δx�+1‖2
Q�
= ‖δx�‖2

Q�
+2h

s∑
j=1

b j
〈
Q� δv�j , ξ�j

〉
+h2

s∑
i, j=1

(
bi b j −2b j a j i

) 〈
Q�ξ�i , ξ�j

〉
. (8.56)
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Since Q� is symmetric positive definite,
〈
Q�ξ�i , ξ�j

〉
forms a symmetric positive semidef-

inite matrix. On the other hand, from algebraic stability, diag(b)A+ AT diag(b)− bbT is
a positive semidefinite matrix, so the last term in (8.56) is nonpositive. Since algebraic
stability also requires that b j ≥ 0 for all j , we simply have to obtain a suitable upper bound
on

〈
Q� δv�j , ξ�j

〉
. Replacing Q� with Q(v�j ) introduces an error of O (‖δx�‖2). Also, ξ�j =

B(y�j )δz�j+O (‖δx�‖2). Using the VIs (8.50) and (8.53) along with ∇G(y)= B(y)T Q(y)
we obtain

〈
Q� δv�j , ξ�j

〉 ≤ O (‖δx�‖2). Finally, changing from Q� to Q�+1 in the norm
gives ‖δx�+1‖Q�+1

≤ (1+C h)‖δx�+1‖2
Q�

for some constant C . Combining these results
gives

‖δx�+1‖Q�+1
≤ (1+C h)‖δx�‖Q�

for some other constant C .
The first perturbation bound can be applied to the exact solution under Butcher’s

assumptions B( p) and C(q): for stage order q ≤ p we can take η� = O(hq+1) for ŷ�j =
x(t�+c j h), where x(·) is the exact solution. If x̃�+1 is the result of the Runge–Kutta system
with starting value x(t�), then the first perturbation bound gives δy�=O (∥∥η�

∥∥)=O(hq+1).
For stiffly accurate methods, then, ‖x̃�+1− x(t�+1)‖ =O(hq+1). Then

‖x�+1− x(t�+1)‖Q�+1
≤ ‖x�+1− x̃�+1‖Q�+1

+‖x̃�+1− x(t�+1)‖Q�+1

≤ (1+C h)‖x�− x(t�)‖Q�
+O(hq+1).

Application of a discrete Gronwall lemma (Lemma 5.2) gives the global error bound
‖x�+1− x(t�+1)‖Q�+1

=O(hq ) for t� ∈ [t0, T ] for smooth solutions x(·).

8.4.4 Runge–Kutta methods in practice

As noted in Section 8.3 on piecewise smooth solvers, by combining suitable Runge–Kutta
methods with techniques for detecting and locating where the smooth pieces join, we can
accurately compute piecewise smooth solutions of DVIs. Runge–Kutta methods can even
be used to solve the DAEs that arise in Section 8.3.

But the Runge–Kutta methods devised in this section can also be used for problems
without identifying the times where smoothness is lost. Of course, we expect only O(h)
accuracy if the derivative of the solution has a jump discontinuity, if this time is not located.
In many applications, there are such a large number of points of nonsmoothness that locat-
ing them all in order to obtain better than O(h) accuracy is not worthwhile. In this case, we
often settle for the simplest, lowest order method: the one-stage Radau IIA method, which
is the fully implicit Euler method.

The fully implicit Euler method when applied to maximal monotone differential in-
clusion

dx

dt
(t) ∈ −�(x(t)), x(t0)= x0

becomes a matter of applying resolvents:

x�+1 = Rh (x�), �= 0, 1, 2, . . . .
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This problem has been used and studied by various authors [27, 90, 161]. For infinite-
dimensional problems the solutions are typically not piecewise smooth. Theory so far gives
the bound O(h1/2) [27, 161] for the numerical solution of maximal monotone differential
inclusions, but in practice the error appears to behave more like O(h). Future studies should
uncover the reason for this state of affairs.
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Appendix A

Some Basics of Functional
Analysis

When talking about things like vector spaces, the important thing is not how the space is
defined or how it is constructed; what is important is how it behaves. This allows us to
apply ideas from one area of mathematics to another if the object of discussion behaves in
the right way. So we use an abstract definition of what a vector space is, rather than say “a
vector is a collection of real numbers x1, x2, etc., arranged like this: x = [x1, x2, . . . , xn].”
Then we can treat collections of functions as vectors if that gives us insight into the func-
tions.

Readers may wish to turn to texts on mathematical analysis and partial differential
equations for discussion of these topics in greater depth, such as [94, 151, 155, 168, 217,
213]. Specialized topics are treated in monographs: for vector-valued measures, see [78,
80]; for Sobolev spaces, see [1, 262]. A short but excellent book on optimization and fixed
point theorems is [106].

A.1 Metric spaces
Metric spaces consist of a set of points X together with a metric dX : X × X → R which
measures, in some way, the “distance” between the points. We will just use the notation d
when X is clear from context. The basic properties of a metric are

d(x , y)≥ 0, (A.1)

d(x , y)= 0 if and only if x = y, (A.2)

d(x , y)= d(y, x), (A.3)

d(x , y)≤ d(x , z)+d(z, x) (A.4)

for all x , y, z ∈ X . The last inequality (A.4) is known as the triangle inequality. For real
numbers the distance is given by d(x , y)= |x− y|. In a metric space we say that a sequence
xk converges xk → x as k →∞ if for any ε > 0 there is a K such that k ≥ K implies that
d(xk , x) < ε. We often write this as x = limk→∞ xk . An open set is a set U ⊆ X where for
any point x ∈U there is a δ > 0 such that if d(x , y) < δ, then y ∈U as well. A set C ⊆ X is
called closed if the complement X\C is open, or equivalently, for any convergent sequence
xk → x with xk ∈C we also have x ∈ C . This is often described by saying that “C contains
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its limit points.” For a general set A⊂ X , the set A together with limits of points in A is the
smallest closed set containing A, and is called the closure of A, denoted by A. The largest
open subset of A is called the interior of A and is denoted by int A.

The collection of all open sets in a space X is called the topology of X . A topology
has the properties that the empty set ∅ and X are open sets, arbitrary unions of open sets
are also open sets, and finite intersections of open sets are also open. A set A is closed
if and only if X\A := {x ∈ X | x �∈ A } is open. An excellent introduction to the study of
topologies, with or without metrics, is [185].

A neighborhood of a point x is an open set U containing x . The set A is compact (in
a metric space) if for every sequence xn ∈ A there is a subsequence xnk (nk →∞ if k→∞)
such that xnk → x ∈ A. (That is, every sequence in A has a convergent subsequence with
a limit in A.) The set A is precompact if A is compact. Compact sets are particularly
important in analysis. For example, any continuous function f : A → R with A compact
has a minimum and a maximum.

There is a definition of compactness based entirely on the notion of open sets: A
is compact if whenever U = {Uα | α ∈ J } is an open covering of A (that is, each Uα is
open and A ⊆⋃

α∈J Uα) there is a finite subset U ′ = {
Uα1 , Uα2 , . . . , Uαm

}
that is an open

covering of A. This concept is equivalent to the one given above for metric spaces. Thus
the concept of compactness can be extended to topologies beyond those defined by metrics.
The definition of compactness using open coverings leads to a useful theorem.

Lemma A.1. Suppose { Aα | α ∈ J } is a nonempty collection of compact sets, where any
finite subset has nonempty intersection: Aα1 ∩ Aα2 ∩·· ·∩ Aαm �= ∅. Then

⋂
α∈J Aα �= ∅.

A function f : X → Y between metric spaces is continuous if xk → x in X implies
that f (xk) → f (x) in Y , or equivalently, for any open set U in Y , the set f −1(U ) :=
{ x | f (x) ∈U } is also open. We say f is Lipschitz continuous with Lipschitz constant L f
if

dY ( f (x1), f (x2))≤ L f dX (x1, x2) for all x1, x2 ∈ X .

We say that f is a homeomorphism if f is continuous and has an inverse function f −1 : Y →
X ( f −1(y)= x if and only if f (x)= y) that is also continuous. If f : X →R is continuous
and X is compact, then f attains both its maximum and minimum on X . In general, if
f : X → Y is continuous and X is compact, then f (X ) := { f (x) | x ∈ X } is also compact.

A set A is dense in X if the closure of A in X is the whole of X : X = A. A set A is
separable if there is a countable subset { x1, x2, x3, . . .} that is dense in A. This is equivalent
to saying that for every ε > 0 and x ∈ A there is an xk such that d(x , xk) < ε. The real line
R is separable; we can take the rational numbers Q as a countable dense subset. Simple
arguments show that Rn is separable. Separable spaces are important in numerical analysis,
since computers can represent only a countable set of points. Unless we can approximate
arbitrary points in a set by a countable set, we cannot expect to do computations in that set.

Many spaces are metric spaces, such as the set of rational numbers Q, the set of
real numbers R, the unit circle

{
(x , y) | x2+ y2 = 1

}
, and the space of bounded func-

tions into a metric space f , g : A→ X with the distance between them given by d( f , g)=
supa∈A dX ( f (a), g(a)). An important property for metric spaces to have is completeness.
That is, all sequences that “should” converge do. As an example, consider the sequence of
rational numbers 1, 1.4, 1.41, 1.414, 1.4142, 1.41421, . . . These are the truncated decimal
expansions of

√
2. Clearly they “ought” to converge. However, they do not converge to
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a rational number. We say that Q is not complete. However, they do converge to a real
number: R is complete. When should a sequence xk converge? Cauchy’s answer was that

for all ε > 0 there is a K where i , j ≥ K implies d(xi , x j ) < ε; (A.5)

such a sequence is called a Cauchy sequence, and in a complete metric space, all Cauchy
sequences converge to a limit. Every metric space X that is not complete has an extension
space Y ⊃ X with dY (u, v)= dX (u, v) for all u, v ∈ X , and Y is complete. The closure of X
in Y is called a completion of X . Almost all spaces that we work with are complete metric
spaces. For example, the real numbers R represent the completion of the rational numbers
Q. Note that every bounded increasing (or bounded decreasing) sequence of real numbers
xn has a finite limit. If for every M ∈ R we have xn ≥ M for n sufficiently large, we say
limn→∞ xn =+∞ or xn →+∞ as n →∞.

The supremum sup(A) of a set of real numbers A is the smallest α such that α ≥ a
for every a ∈ A. If A has no such (finite) bound, we say sup(A) = +∞. The supremum
of a function f : X → R is sup f = sup f (X ). The infimum inf(A) of a set A ⊆ R is
the largest β such that β ≤ a for every a ∈ A. The infimum of a function f : X → R is
inf f = inf f (X ). The liminf or limit inferior of a sequence of real numbers xn , n= 1, 2, . . . ,
is liminfn→∞ xn = limn→∞ inf{xn , xn+1, xn+2, . . .}. Similarly, the limsup or limit superior
of a sequence of real numbers xn is limsupn→∞ xn = limn→∞ sup {xn , xn+1, xn+2, . . .}.

An important theorem for complete metric spaces is the Baire category theorem.

Theorem A.2. If X is a complete metric space, and if {Ui }∞i=1 is a countable collection
of open sets, each of which is dense in X (that is, the closure Ui = X for all i ), then the
intersection

⋂∞
i=1 Ui is also dense in X.

Note that countable intersections of open sets are called Gδ sets, while the comple-
mentary intersections (formed by taking complements) of countable unions of closed sets
are called Fσ sets. Since countable intersections of Gδ sets themselves are countable inter-
sections of open sets (and therefore Gδ sets as well), this theorem can be extended to say
that countable intersections of dense Gδ sets themselves are dense Gδ sets. The comple-
mentary result is that countable unions of Fσ sets that contain no open sets are also Fσ sets
that contain no open sets.

A variation on the idea of metric spaces is where the topology (or convergence cri-
terion) is given in terms of an infinite but countable family of metrics: xk → x in X if and
only if d j (xk , x)→ 0 as k →∞ for j = 1, 2, 3, . . . . For example, for each integer j ≥ 0,
the space C j (�) of j -times continuously differentiable functions on � is a complete metric
space with metric

d j ( f , g)= max
α:|α|≤ j

max
x∈�

∣∣Dα f (x)
∣∣ ,

where α is a multi-index and Dα f is the appropriate partial derivative of f as described
in Section A.5. However, the space of infinitely differentiable functions C∞(�) cannot be
given a single (or even a finite) set of metrics to define convergence. Instead we have the
infinite family d1, d2, . . . of metrics to define convergence: fk → f in C∞(�) if and only
if d j ( fk , f )→ 0 as k →∞ for all j .
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A.2 Vector and Banach spaces
Vector spaces are collections of objects called vectors (e.g., x , y, etc.) on which there exist
the operations of (vector) addition x + y and scalar multiplication αx with a scalar α. We
will deal with real vector spaces only, so scalars will be real numbers. Examples of vector
spaces include n-dimensional vectors Rn , the set of m × n matrices, and the continuous
real-valued functions on a closed bounded domain � (denoted by C(�,R) or C(�)).

If there is a finite set { z1, z2, . . . , zr } where every vector x in the space can be written
x = α1z1+α2z2+·· ·+αr zr for some scalars αi , then we say that the set { z1, z2, . . . , zr } is
a generating set for the vector space, and the vector space is finite dimensional. Otherwise
we say the vector space is infinite dimensional. We say the vectors z1, z2, . . . , zr are linearly
independent if the only time α1z1+α2z2+·· ·+αr zr = 0 is when α1 = α2 = ·· · = αr = 0.
If a generating set is also linearly independent, then we say the set is a basis for the vector
space, and in any representation of a vector x = α1z1+α2z2+ ·· ·+αr zr in terms of the
basis, the scalars αi are unique. Furthermore, we say that the dimension of the vector space
is r ; this does not depend on the choice of basis.

Normed vector spaces are vector spaces with a norm that gives a measure of the size
of a vector x : ‖x‖. Norms must satisfy the following conditions:

• ‖x‖ ≥ 0 for all vectors x , and ‖x‖ = 0 implies x = 0.

• ‖αx‖ = |α| ‖x‖ for all vectors x and scalars α.

• ‖x+ y‖ ≤ ‖x‖+‖y‖ for all vectors x and y.

Norms define a metric that is compatible with the vector space structure: dX (x , y) =
‖x− y‖X . Convergence in norm is understood in the sense of this metric as described
in the previous section. Examples of norms on Rn include the following:

• ‖x‖1 :=∑n
i=1 |xi | .

• ‖x‖2 := [∑n
i=1 x2

i

]1/2
.

• ‖x‖∞ :=maxi=1,...,n |xi | .
While there are many different norms we can use on Rn they are all equivalent in the sense
that if ‖·‖a and ‖·‖b are equivalent norms, there are constants Ca , Cb > 0 such that

1

Cb
‖x‖a ≤ ‖x‖b ≤ Ca ‖x‖a for all x .

Equivalence of norms means that xn → x in ‖·‖a if and only if xn → x in ‖·‖b; that is,
the choice of norm amongst equivalent norms does not affect convergence of sequences.
However, not all norms are equivalent in infinite-dimensional spaces.

Examples of norms on C(�) where � is a closed and bounded set in Rn include the
following:

• ‖ f ‖∞ :=maxx∈� | f (x)|.
• ‖ f ‖1 := ∫

�
| f (x)| dx .

• ‖ f ‖2 := [∫
� f (x)2 dx

]1/2
.

None of these three norms is equivalent on C(�).
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Norms are often obtained from inner products (u, v)X , which generalize the dot prod-
uct of vectors in Rn: (u, v) = u · v = uT v. In general, inner products must satisfy the
following assumptions:

• (x , x)X ≥ 0 for all x ∈ X , and (x , x)X = 0 implies x = 0;

• symmetry: (x , y)X = (y, x)X for all x , y ∈ X ; and

• bilinearity: (αx +βy, z)X = α (x , z)X+β (y, z)X , (x , αy+βz)X = α (x , y)X+β (y, z)X
for any x , y, z ∈ X and α, β ∈R.

We will leave off the subscript “X” if the space is clear from context. The norm generated
by the inner product is given by

‖x‖X =
√

(x , x)X .

A Banach space is a normed vector space that is also a complete space in the metric
defined by the norm. Examples of Banach spaces include

• Rn for any finite n ≥ 0,

• C(�) with the ‖·‖∞ norm for any closed and bounded �⊂ Rd .

Note that C(�) with either the ‖·‖1 or the ‖·‖2 norm is not a complete metric space. For
example, if � = [0,1], then the functions fk (x) = min(k, ln (1/x)) converge to the limit
f (x)= ln (1/x) in both of these norms, but f �∈ C(�). The ability to construct completions
based on a norm enables us to define a number of spaces easily. More explicit constructions
which show just what the functions in the space “look like” require more sophisticated tools
such as Lebesgue integration theory.

For example, we can define L p(�) for 1 ≤ p <∞ and � bounded in Rd as the
completion of C(�) in the norm

‖ f ‖L p(�) =
[∫

�

| f (x)|p dx

]1/p

.

Usually L p(�) is described as the set of measurable functions for which the Lebesgue
integral

∫
�
| f (x)|p dx is finite, although functions f and g that are equal almost every-

where (that is, the Lebesgue measure of { x ∈� | f (x) �= g(x) } is zero) are considered to
be the same function. The space L∞(�) is the space of essentially bounded functions from
� to R. That is, it is the space of functions f : �→ R where there is an M such that
{ x ∈� | | f (x)|> M } has Lebesgue measure zero. The norm for L∞(�) is given by

‖ f ‖L∞(�) = inf {M |measure({ x ∈� | | f (x)|> M})= 0 } ,

where measure (E) is the Lebesgue measure of a set E ⊆ Rd .
An operator is a continuous linear map A : X → Y between Banach spaces X and Y .

For all continuous linear maps, we can assign a norm

‖A‖L(X ,Y ) = sup
0 �=x∈X

‖Ax‖Y

‖x‖X
, (A.6)
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which is finite for continuous linear A, and which makes the space of continuous linear
maps L(X ,Y ) a Banach space. Differential operators like ∂/∂x and ∇2 unfortunately are
usually not continuous linear maps, at least not from a space X into itself. We can make
them continuous operators X → Y for suitable spaces X and Y . For example, ∇2 is a
bounded linear operator H 1(�)→ H−1(�) for bounded regions �⊂ Rd (see Section A.5
for more explanation).

An operator A : X → Y is called compact if it maps bounded sets to precompact
sets. This is equivalent to saying that A(BX ) is a compact subset of Y . Solution operators
for differential equations are often compact operators, although this can depend on the
Banach spaces used. In Rn all closed bounded sets are compact, so any linear operator
A : Rn → Rm is a compact operator.

A set S in a vector space X is absorbing if for any x ∈ X there is an α > 0 such that
αx ∈ S. Alternatively, S is absorbing if

⋃
α>0α S = X . The core of S is the set of all x ∈ S

where S− x is absorbing. The core of a set S is always a subset of the interior of S.

A.3 Dual spaces, Hilbert spaces, and weak convergence
Hilbert spaces are Banach spaces where the norm is generated by an inner product. Exam-
ples include Rn with the inner product (u, v) = uT v, which generates the usual Euclidean

norm: ‖x‖ = [∑n
i=1 x2

i

]1/2 =√x T x . Another example is the space L2(�) where the norm[∫
�
| f (x)|2 dx

]1/2
is generated by the inner product

( f , g)L2(�) =
∫
�

f (x) g(x)dx .

The dual space of a normed vector space X is the set of continuous linear functions
X →R (called linear functionals):

X ′ = { f : X →R | f continuous & linear} .
We usually denote the application of f ∈ X ′ to x ∈ X by

f (x)= 〈 f , x〉X ′×X

or just 〈 f , x〉 when it is clear what X and X ′ are. If X =Rn , then X ′ can be represented by
Rn: any linear function Rn →R can be represented by x #→ vT x = 〈v, x〉.

The space X ′ has a norm

‖ f ‖X ′ = sup
0 �=x∈X

|〈 f , x〉|
‖x‖X

= sup
x :‖x‖X=1

|〈 f , x〉| .

This is finite, as continuity implies ‖ f ‖X ′ is finite: to see why, suppose ‖ f ‖X ′ =+∞. Then
there would be a sequence xn with ‖xn‖X = 1 and |〈 f , xn〉|→∞. By changing the sign of
xn , if necessary, we can make 〈 f , xn〉 ≥ 0 for all n; thus 〈 f , xn〉 →+∞ as n →∞. Then
setting yn = xn/〈 f , xn〉 we have ‖yn‖X = ‖xn‖X /〈 f , xn〉 → 0 as n →∞, and so yn → 0
in X . However, 〈 f , yn〉 = 〈 f , xn〉/〈 f , xn〉 = 1 �→ 0 = 〈 f , 0〉, so f is not a continuous
function.
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Conversely, ‖ f ‖X ′ being finite means that f is continuous: Suppose xn → x . Then
|〈 f , xn〉− 〈 f , x〉| = |〈 f , xn− x〉| ≤ ‖ f ‖X ′ ‖xn− x‖X → 0 as n →∞.

This norm makes X ′ a normed vector space, and in fact, X ′ is also a Banach space. If
X is a Hilbert space, then there is the duality map JX : X → X ′ given by JX (x)= (x , ·)X .
Then 〈JX (x), y〉X ′×X = (x , y)X , where the former is a duality pairing and the latter is the
inner product on X . Sometimes we identify X with X ′ by identifying x with JX (x), but
usually we keep these distinct. In general, a map JX : X → X ′ (X not a Hilbert space) is
called a duality map if

‖JX (x)‖X ′ = ‖x‖X ,

〈JX (x), y〉 ≤ ‖x‖X ‖y‖X with equality if and only if y = x .

It is a standard result of functional analysis that X is a Hilbert space if and only if X has a
linear duality map.

The dual space of L p(�) can be represented by Lq (�), where 1/p+ 1/q = 1 and
1 < p <∞: any f ∈ L p(�)′ can be represented by h ∈ Lq (�) so that

〈 f , g〉L p(�)′×L p(�) =
∫
�

h(x) g(x)dx .

We usually identify the functional f ∈ L p(�)′ with the function h ∈ Lq (�). The dual space
of L1(�) is identified with L∞(�) in the same way; however, the dual space of L∞(�) is
not L1(�).

There is a natural map � : X → X ′′ given by 〈�(x), w〉X ′′×X ′ = 〈w, x〉X ′×X . (The
symbol “�” in music means that the “natural” note is played rather than the sharp or flat
that would usually be played according to the key of the musical piece.) Any space for
which � is an isomorphism is called reflexive. Hilbert spaces are automatically reflexive.
Most Banach spaces we deal with are reflexive, such as L p(�) for 1 < p <∞. However,
none of C(�), L1(�), or L∞(�) is reflexive.

A.3.1 Adjoints of linear operators

Given a continuous linear operator A : X → Y between Banach spaces X and Y , there is
the adjoint operator A∗ : Y ′ → X ′ which is defined by〈

A∗η, x
〉= 〈η, Ax〉 for all x ∈ X and η ∈ Y ′. (A.7)

If A is an m×n matrix so that A : Rn →Rm , then A∗ = AT , the transpose of A. There are
a number of important properties of adjoint operators:

• if X and Y are reflexive spaces (so we identify X and Y with X ′′ and Y ′′, respec-
tively), then A∗∗ = A;

• the norm ‖A∗‖L(Y ′,X ′) = ‖A‖L(X ,Y );

• if A is one-to-one, then A∗(Y ′) is dense in X ′ (that is, A∗(Y ′)= X ′);

• if A(X ) is dense in Y (that is, A(X )= Y ), then A∗ is one-to-one;

• if A is a compact operator, so is A∗.
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An operator A : X → X ′ is called self-adjoint if 〈Ax , y〉 = 〈Ay, x〉. If we identify X with
X ′ for a Hilbert space X , this means that (Ax , y)X = (Ay, x)X . In terms of adjoints, A is
self-adjoint means that A∗ : X ′′ → X ′ and A∗ ◦ �= A, where � is the natural map X → X ′′.
If X is reflexive and we identify X and X ′′, then this just means that A∗ = A.

A.3.2 Weak versus strong topologies

For more general notions of spaces and notions of convergence, the idea of topology was
invented. In essence it gives us a way of describing when a sequence converges to a limit.
In a Banach space, the strong topology is the topology generated by the norm of the space:

xn → x as n →∞ means ‖xn− x‖→ 0 as n →∞.

However, often we need less stringent notions of convergence. The notion of weak con-
vergence is motivated by the idea that all averages of a sequence of functions might con-
verge, even if the functions in the sequence do not. Consider, for example, the sequence
of functions in L2(0, 2π) given by xn(t)= sin(nt). The norm of xn in L2(0,2π) is

√
π for

all n. On the other hand, for any smooth or continuous (or even L2(0, 2π) function) φ,∫ 2π
0 φ(t) xn(t)dt → 0 as n →∞. Thus we have a weak limit xn ⇀ 0 but no strong limit:

xn �→ 0.
The general definition of weak convergence is as follows:

xn ⇀ x weakly in X means (A.8)

〈y, xn〉X ′×X → 〈y, x〉X ′×X for all y ∈ X ′.

A consequence of weak convergence is that supn ‖xn‖ <∞; that is, weakly convergent
sequences are bounded. Important results regarding weak convergence include Mazur’s
lemma.

Lemma A.3 (Mazur). If xn ⇀ x (weakly) in a Banach space X as n →∞, then there is a
sequence yn ∈ co{xn , xn+1, xn+2, . . .} where yn → x strongly.

An immediate consequence of this lemma is that if C is a (strongly) closed convex
set in X , then C is closed with respect to weak convergence; that is, if xn ⇀ x (weakly) as
n →∞ and xn ∈ C for all n, then the weak limit x ∈ C as well.

Closely related to weak convergence is weak* convergence: if X = Y ′, and Y a

Banach space, then xn
∗
⇀ x as n →∞ or xn converges weak* to x means that

〈xn , y〉Y ′×Y → 〈x , y〉Y ′×Y as n →∞ for all y ∈ Y . (A.9)

Because of the natural map � : Y → Y ′′ = X ′, weak convergence implies weak* conver-
gence. If X is a reflexive Banach space, then weak and weak* convergence are identical,
as we can then consider Y ′′ = Y . But sometimes weak* convergence is the right form of
convergence to consider: Alaoglu’s theorem says that if X = Y ′, Y a Banach space, then
every bounded set A ⊂ X is weak* precompact.

Another consequence of Mazur’s lemma is that if X is a reflexive Banach space and
φ : X → R∪ {∞} is a proper (infx φ(x) <∞), lower semicontinuous (xn → x implies
φ(x) ≤ liminfn→∞φ(xn)), weakly coercive (lim‖x‖→∞φ(x) =∞), and convex function,
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then φ has a minimum value infx φ(x)= φ(x∗) for some x∗ ∈ X . This is an important result
in convex analysis which will be used in the section on convex and nonsmooth analysis.

A.3.3 Compactness in particular spaces

Conditions for sets in certain Banach spaces to be compact have been extremely useful in
applications, especially for the Banach spaces C(0, T ) of continuous functions [0, T ]→ R

and L p(0, T ), and the spaces of vector-valued functions C(0, T ; X ) and L p(0, T ; X ). We
are not concerned just about compactness in the strong topology but also in the weak and
weak* topologies.

Recall that the norm used for C(0, T ) and C(0, T ; X ) is the supremum norm

‖ f ‖C(0,T ; X ) = max
t∈[0,T ]

‖ f (t)‖X ,

where for C(0, T ), ‖ f (t)‖X is just the absolute value of f (t). The main compactness
theorem for C(0, T ) and C(0, T ; X ) is the Arzela–Ascoli theorem, which is based on the
concept of equicontinuity.

Definition A.4. A set of functions F ⊂ C(0, T ; X ) is equicontinuous if for each t∗ ∈ [0, T ]
and ε > 0 there is a δ > 0 where |t− t∗|< δ implies ‖ f (t)− f (t∗)‖X < ε for all f ∈ F.

Theorem A.5 (Arzela–Ascoli). A set of functions F ⊂ C(0, T ; X ) is compact if and only
if it is bounded in the supremum norm and equicontinuous, and for each t ∈ [0, T ] the set
{ f (t) | f ∈ F } is compact in X.

A proof of this can be found in, for example, Lang [155]. This reduces for F ⊂
C(0, T ; Rn) to be precompact if F is bounded and equicontinuous. An important conse-
quence of the Arzela–Ascoli theorem is a compactness theorem of Seidman [224]. Here is
Seidman’s theorem (following Kuttler [151, pp. 499–501]).

Theorem A.6 (Seidman). If F is a bounded subset of L∞ (a,b; X ) with f ′ uniformly
bounded in L p (a,b; Y ) (1 < p ≤∞) for all f ∈ F, then F is precompact in C (a,b; Z )
for any Banach spaces X ⊂ Z ⊆ Y with the imbedding X ⊂ Z compact and the imbedding
Z ⊆ Y continuous.

Proof. First we show that for every ε > 0 there is a constant Cε where

‖x‖Z ≤ ε ‖x‖X +Cε ‖x‖Y for all x ∈ X . (A.10)

If this were not true, then for some ε there would be a sequence xn ∈ X such that ‖xn‖Z >

ε ‖xn‖X +n ‖xn‖Y . Without loss of generality, we suppose that ‖xn‖X = 1 for all n. Now
the imbedding X ⊂ Z is compact, so there is a convergent subsequence (also denoted by
xn) where xn → x∗ in Z . Note that x∗ �= 0, since ‖xn‖Z ≥ ε > 0 for all n. By continuity of
the imbedding Z ⊆ Y , xn → x∗ in Y . Dividing the inequality ‖xn‖Z > ε ‖xn‖X +n ‖xn‖Y
by n and taking limits, we get 0≥ ‖x∗‖Y , which implies that x∗ = 0, a contradiction. Thus
we must conclude that there is indeed a constant Cε making (A.10) true.

Downloaded 03 Nov 2011 to 160.36.192.127. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php



316 Appendix A. Some Basics of Functional Analysis

Now suppose we have f ∈ F bounded in L∞ (a,b; X ). Then, for any ε > 0 and s < t ,

‖ f (t)− f (s)‖Z ≤ ε ‖ f (t)− f (s)‖X +Cε ‖ f (t)− f (s)‖Y

≤ 2ε sup
g∈F

‖g‖L∞(a,b; X )+Cε

∫ t

s

∥∥ f ′(τ )
∥∥

Y dτ

≤ 2ε sup
g∈F

‖g‖L∞(a,b; X )+Cε

[∫ t

s

∥∥ f ′(τ )
∥∥p

Y dτ

]1/p

|t− s|1/q ,

where 1/p+ 1/q = 1. Since p > 1, we have 1 < q <∞, and so for any η > 0, we can
choose

ε = η/

(
2 sup

g∈F
‖g‖L∞(a,b; X )

)
,

δ =
(
η/

(
2Cε sup

f ∈F

∥∥g′
∥∥

L p(a,b;Y )

))q

.

Then whenever |t− s|< δ we have ‖ f (t)− f (s)‖Z < η for all f ∈ F , so that F is equicon-
tinuous. In addition, the set of values { f (t) | f ∈ F , t ∈ [a,b]} is bounded in X and there-
fore compact in Z . Thus we can apply the Arzela–Ascoli theorem (Theorem A.5) to see
that F is a precompact subset of C (a,b; Z ).

There are also the results of Simon [227] which can be helpful for establishing com-
pactness. See also the textbook of Kuttler [151] for more accessible discussion of these
theorems of Seidman and Simon.

Theorem A.7 (Simon). If F is a bounded subset of Lq (a,b; X ) with f ′ uniformly bounded
in L1 (a,b; Y ) for all f ∈ F, then F is precompact in L p (a,b; Z ) (1 ≤ p <∞) for any
Banach spaces X ⊂ Z ⊆ Y with the imbedding X ⊂ Z compact and the imbedding Z ⊆ Y
continuous.

A.4 Distributions and measures
Distributions can be constructed using a kind of duality trick, but instead of starting with
a Banach space of functions, we start with the nicest space of functions we usually work
with: the space of functions that can be differentiated as many times as we please but
are zero outside some bounded set. This space of functions is denoted by C∞0 (Rd ). The
functions φ ∈ C∞0 (Rd ) are called test functions. There is no norm for this space; in-
stead there is a family of seminorms ‖φ‖k,R = maxx :‖x‖≤R maxα:|α|≤k |Dαφ(x)| where

for α = (α1,α2, . . . ,αd ) (each αi is a nonnegative integer), |α| =∑d
i=1 αi and Dαφ(x) =

∂ |α|φ/∂xα1
1 ∂xα2

2 · · ·∂xαn
n (x). Convergence in C∞0 (Rd ) works like this: φn → φ as n →∞

if and only if there is a common R such that φn(x) = 0 for ‖x‖ ≥ R and all n, and
‖φn−φ‖k,R → 0 as n →∞ for all k.

Often the space C∞0 (Rd ) is denoted by D(Rd ). The space of distributions is the
dual space to D(Rd ). An integrable function ψ can be considered to be a distribution by
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identifying ψ with the functional D(Rd )→ R given by

φ #→ 〈ψ , φ〉 :=
∫
Rd

ψ(x)φ(x)dx .

Thanks to duality we can extend operations such as differentiation from the test functions
to distributions. To see this, suppose that ψ is a function with a continuous derivative. Then
in one dimension (d = 1) where φ(x)= 0 for |x | ≥ R,〈

ψ ′, φ
〉= ∫ +∞

−∞
ψ ′(x)φ(x)dx

=
∫ +R

−R
ψ ′(x)φ(x)dx

= ψ(x)φ(x)|x=+R
x=−R −

∫ +R

−R
ψ(x)φ′(x)dx

=−
∫ +∞

−∞
ψ(x)φ′(x)dx = − 〈

ψ , φ′
〉
.

Since differentiation is a continuous operator on C∞0 (Rd ), we can extend the differentiation
of distributions to general distributions (and not just ψ with continuous derivatives) by
defining 〈

ψ ′, φ
〉=− 〈

ψ , φ′
〉

for d = 1, and generally 〈∂ψ/∂xi , φ〉 = −〈ψ , ∂φ/∂xi〉. This means that we can differ-
entiate practically any function: if ψ(x) = |x |, then ψ ′(x) = sgn(x), and ψ ′′(x) = 2δ(x),
where δ is the Dirac-δ function (really a distribution) where 〈δ, φ〉 = φ(0). There are also
derivatives of the Dirac-δ function:

〈
δ′, φ

〉=− 〈
δ, φ′

〉=−φ′(0),
〈
δ′′, φ

〉=− 〈
δ′, φ′

〉= φ′′(0),
etc.

Most linear operations can be applied to distributions, but many nonlinear opera-
tions such as multiplication usually cannot. For example, δ2 does not exist, although the
distribution in two dimensions g(x , y)= δ(x)δ(y) does exist: 〈g, φ〉 = φ(0, 0).

For information about tempered distributions in relation to Fourier transforms, see
Section C.4.

Since we need to deal with inequalities, we need to understand what “ψ ≥ 0” means
for distributions (whether ordinary or tempered distributions). Since distributions are de-
fined in terms of duality, it is appropriate to define “ψ ≥ 0” also in terms of duality. Clearly
we understand what “φ ≥ 0” means for φ ∈ C∞0 (Rd ) since these are spaces of ordinary
functions: “φ ≥ 0” means “φ(x) ≥ 0 for all x ∈ Rd .” So we define “ψ ≥ 0” for distribu-
tions by

〈ψ , φ〉 ≥ 0 for all φ ∈ C∞0 (Rd ) where φ ≥ 0. (A.11)

It turns out that the only such distributions are measures [127].
Measures can be considered as functions that take sets as input and return a number,

which is a “measure” of the size of the set. The most common measure is the Lebesgue
measure λ where λ([a,b]) = b− a, the length of the interval [a,b]. The properties of a
measure µ are as follows:
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1. µ(∅)= 0 (the measure of the empty set is zero); and

2. if E =⋃∞
k=1 Ek and Ei ∩ E j = ∅ for i �= j , then µ(E) =∑∞

k=1 µ(Ek) (countable
additivity).

Note that it is not necessary for µ(E) to be defined for all subsets E . However, the sets E
should be closed under countable unions and intersections and also complements. Such a
collection of sets is called a σ -algebra. The σ -algebra generated by the collection of open
sets in a space X is the collection of Borel sets of X ; usually µ(E) is defined for every
Borel set E . We can allow +∞ to be a value; for example, the Lebesgue measure of the
entire real line is λ(R)=+∞.

Note that a function f : X → Y is called measurable if f −1(E) is a measurable set
in X whenever E is a measurable set in Y . Note that this definition depends on what σ -
algebras of measurable sets we choose for X and for Y . If X and Y are simply topological
spaces, we can use the σ -algebra of Borel sets in X and in Y . In that case, we say f is
Borel measurable if f is measurable with respect to these σ -algebras. Since f −1(E∪F)=
f −1(E)∪ f −1(F), f −1(E∩F)= f −1(E)∩ f −1(F), and f −1(Y\E)= X\ f −1(E), we can
show that f is Borel measurable if f −1(U ) is a Borel set in X for every open set U in Y .

Often we deal with nonnegative measures µ where µ(E) ≥ 0 for all (appropriate)
subsets E . Then condition 2 above for measures implies that if E1 ⊆ E2 ⊆ ·· · ⊆ Ek ⊆
Ek+1 ⊆ ·· · , then µ(Ek) ↑ µ(E) as k →∞, where E =⋃∞

k=1 Ek .
Constructing a measure from a nonnegative distribution involves some technical dif-

ficulties, but the basic idea starts with the realization that any test function φ can be written
as the difference of two nonnegative test functions: φ = φ1 −φ2. (It is tempting to set
φ1(x)=max(φ(x), 0) and φ2(x)=max(−φ(x), 0), but this would not give smooth functions
in general.) We want to show that we can assign a value for the measure µ(E)= 〈ψ , χE 〉
where χE (x)= 1 if x ∈ E and χE (x)= 0 otherwise for E either closed or open. We do this
by finding a decreasing sequence of test functions φk ↓ χE for E closed and an increasing
sequence of test functions φk ↑ χE for E open. For nonnegative distributions 〈ψ , φk〉 is
a monotone increasing or decreasing sequence that is also bounded. So these sequences
converge. The limit is µ(E). Proving that the µ so constructed is a measure is a standard
result of measure theory [61].

There is another way of thinking about measures. The space of bounded measures
on the Borel sets in a closed set A ⊆ Rd (denoted by M(A)) is the dual space to the space
of continuous functions A → R. The duality pairing is represented by integration over a
given measure:

〈µ, φ〉 =
∫

A
φ(x)dµ(x). (A.12)

The integral in (A.12) can be approximated by sums like this:

N∑
k=0

µ
(
φ−1 ([

yk , yk+1
)))

ηk ,

where y0 ≤ η0 < y1 ≤ η1 < · · · ≤ ηN−1 < yN . The duality M(A) = C(A)′ for compact
sets A can be very useful for applying Alaoglu’s theorem, showing the existence of weak*
convergent subsequences of a sequence of measures. One way of generating measures on
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an interval [a,b] is by functions g : [a,b]→ X which have bounded variation:

b∨
a

g = sup
P

N−1∑
i=0

‖g(ti+1)− g(ti)‖ , (A.13)

where P : a = t0 < t1 < t2 < · · · < tN = b ranges over partitions of [a,b] (N is not fixed,
but rather can go to∞). Then the differential measure dg is given by the Riemann–Stieltjes
integrals for continuous f : [a,b]→ R:∫

[a,b]
f dg = lim

|P |→0

N−1∑
i=0

f (τi ) (g(ti+1)− g(ti)) , (A.14)

where |P | = maxi |ti+1− ti | and τi ∈
[
ti , ti+1

]
for all i . Note that dg is a measure with

values in a Banach space X . If g(t) = t , then dg is the Lebesgue measure. Also, if
g : [a,b]→ R, then the Riemann–Stieltjes integrals are identical with the Bochner inte-
grals for continuous f : [a,b]→ X with the measure µ= dg.

Measures have a number of special properties. For all measures µ there is a related
nonnegative measure called the variation measure |µ|. This is defined by

|µ| (E)= sup
{E j}∞j=1

∞∑
j=1

∣∣µ(E j )
∣∣ . (A.15)

The collection
{

E j
}∞

j=1 ranges over all collections of disjoint µ-measurable sets whose

union is E =⋃∞
j=1 E j . Clearly |µ| is a nonnegative measure and |µ(E)| ≤ |µ| (E) for any

set for which µ(E) is defined. However, it is possible for |µ| (E)=+∞. Note that if µ is
already a nonnegative measure, then |µ| =µ. If |µ| (E) is finite for all E , we say that µ is a
measure with bounded variation. Measures of bounded variation can be written in the form
µ=µ+−µ−, where µ+ and µ− are nonnegative measures. In fact, µ+ = (|µ|+µ)/2 and
µ− = (|µ|−µ).

The integrals
∫

A φ(x)dµ(x), or
∫

A φ dµ for short, are defined not only for continuous
φ but also for a much larger class of functions. Suppose that ν is a nonnegative mea-
sure. A ν-measurable function φ ≥ 0 is ν-integrable if there is an increasing sequence of
step functions φk =∑Nk

j=1 ck, jχEk, j that converges pointwise to φ, and
∫

A φk(x)dν(x) =∑Nk
j=1 ck, j ν(Ek, j ∩ A) converges. The value of the limit is

∫
A φ(x)dν(x). A ν-measurable

function φ is ν-integrable if we can write φ = φ+ − φ− with both φ+, φ− ≥ 0 and ν-
integrable. In the case of functions φ : A → X with X a separable Banach space, we
can define the integrals in the same way: via pointwise limits of step functions φk =∑Nk

j=1 ck, jχEk, j with c j ,k ∈ X , each Ek, j ν-measurable. An alternative way of defining

these integrals is by subdividing X = ⋃∞
j=1 Fj (Fj ’s disjoint) with each Fj a Borel set

with diam Fj < δ for a given δ > 0. Picking x j ∈ Fk , we can approximate φ by φδ =∑∞
j=1 x jχφ−1(Fj ) and φδ → φ pointwise as δ ↓ 0. Then we take∫

A
φ dν = lim

δ→0

∞∑
j=1

x j ν(φ−1(Fj )).

These definitions give the same integral, which is known as the Bochner integral.
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The space of real-valued functions that are ν-integrable, ν ≥ 0 a measure on a mea-
sure space A, is written L1(ν) and is a Banach space with norm

‖φ‖L1(ν) =
∫
|φ(a)| dν(a).

The spaces L1(ν) and L1(ν; X ) of integral functions A→R and A→ X , respectively, have
been widely studied. Basic properties include the properties that f : A→ X is integrable if
and only if it is measurable and a #→ ‖ f (a)‖X is integrable. Perhaps the most important re-
sult is the dominated convergence theorem: if fk → f pointwise with each fk measurable,
and ‖ fk(a)‖X ≤ g(a), where g ∈ L1(ν) for all k and a ∈ A, then

lim
k→∞

∫
A

fk (a)dν(a)=
∫

A
f (a)dν(a). (A.16)

Given a ν-integrable function φ, we can define a new measure

νφ(E)=
∫

E
φ(a)dν(a).

When can a measure µ be represented like this? The answer is given by the Radon–
Nikodym theorem. We say that µ is absolutely continuous with respect to a nonnegative ν
measure if for ε > 0 there is δ > 0 such that for any measurable set E , ν(E) < δ implies
|µ(E)| < ε. The Radon–Nikodym theorem says that if µ is absolutely continuous with
respect to ν, then there is a ν-integrable function h such that for any measurable set E ,

µ(E)=
∫

E
h(x)dν(x).

The function h is called the Radon–Nikodym derivative of µ with respect to ν. This func-
tion is unique up to a set of ν-measure zero. It is denoted by h(x)= dµ/dν(x).

Vector measures are measures whose values belong to a vector space, most usu-
ally a Banach space. The same additivity properties hold. For vector measures the ab-
solute continuity property becomes the following: for ε > 0 there is a δ > 0 such that
ν(E) < δ implies ‖µ(E)‖X < ε, where the values of µ lie in the Banach space X . How-
ever, whether this implies that µ(E) = ∫

E h(x)dν(x) for all measurable E depends on X
and not the measure ν. For finite-dimensional Banach spaces Rn , absolute continuity im-
plies a Radon–Nikodym derivative exists since µ(E) = [µ1(E), µ2(E), . . . , µn(E) ]T and
each µi is a scalar-valued measure with its own Radon–Nikodym derivative dµi/dν, so
dµ/dν = [dµ/dν1, dµ/dν2, . . . , dµn/dν ]T . Any space X for which absolute continuity
of a measure with values in X implies a Radon–Nikodym derivative exists is said to have
the Radon–Nikodym property (RNP). All dual spaces have the RNP, so all Sobolev spaces
W s,p(�) with 1 < p ≤∞ have the RNP. However, L1(�) spaces usually do not have the
RNP.

If a space X has the RNP, then any absolutely continuous function f : [a,b]→ X
has a regular derivative f ′(t) = limh→0 ( f (t+h)− f (t))/h for Lebesgue almost all t . In
particular, if f : [a,b]→ X is Lipschitz, then it is differentiable almost everywhere. Here
is a simple example to show that L1(a,b) does not have the RNP. Let f : [a,b]→ L1(a,b)
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be the function f (t) = χ[a,t ). Note that χE is the characteristic function for E : χE (t) = 1
if t ∈ E and χE (t)= 0 otherwise. This is a Lipschitz function: for t > s,

‖ f (t)− f (s)‖L2(a,b) =
∥∥χ[a,t )−χ[a,s)

∥∥
L1(a,b)

= ∥∥χ[s,t )
∥∥

L1(a,b) =
∫ b

a
χ[s,t )(τ )dτ = |t− s| .

But there is no derivative d f/dt(t) for any t:

f ′(t)= lim
h→0

χ[a,t+h)−χ[a,t )

h

= lim
h→0

1

h
χ[t ,t+h).

The limit does exist in the sense of distributions: it is the Dirac-δ function s #→ δ(s− t),
not an element of L1(a,b). Thus there is no derivative of t #→ χ[a,t ), and L1(a,b) does not
have the RNP.

A useful tool in many situations is the convolution of functions: if f , g : Rd → R,

( f ∗ g) (x)=
∫
Rd

f (x− y) g(y)dy. (A.17)

For functions f , g : [0,∞)→ R we have the finite time convolution

( f ∗ g) (t)=
∫ t

0
f (t− s) g(s)ds. (A.18)

Note that convolution is a bilinear operation (that is, linear in each argument), and f ∗ g =
g ∗ f for either form. There is also Young’s lemma, where if p, q , r ≥ 1 and 1/p+1/q+
1/r = 2, then

‖ f ∗ g‖Lr ≤ ‖ f ‖L p ‖g‖Lq . (A.19)

If, say, g is actually a measure, then we also have the following bound:

‖ f ∗ g‖L p ≤ ‖ f ‖L p ‖g‖M . (A.20)

A.5 Sobolev spaces and partial differential equations
It was noted by Dirichlet that the solution u to the partial differential equation ∇2u = 0 in
� with u = g on ∂� is a minimizer of the integral∫

�

∇u ·∇u dx (A.21)

over all functions u where u = g on ∂�. But this integral is not defined for all u, and it
is not clear whether it has a true minimizer or just an infimum. Fortunately the theory of
Sobolev spaces (being a family of Banach spaces) can help us answer these questions. For
more details see, for example, [1].
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First we define the space of functions W m,p(�) for m a nonnegative integer, with
1≤ p ≤∞ and � an open subset of Rd . A multi-index for d dimensions is a d-tuple α =
(α1,α2, . . . ,αd ) where each αi is a nonnegative integer. We define |α| = α1+α2+·· ·+αd
as the order of α; the partial derivative Dα is given by

Dα f (x)= ∂ |α| f

∂xα1
1 ∂xα2

2 · · ·∂xαd
d

(x). (A.22)

Also we define xα = xα1
1 xα2

2 · · · xαd
d . Note that these partial derivatives will be understood

as being distributional derivatives where necessary. Then

W m,p(�)= {
f ∈ L p(�) | (A.23)

Dα f ∈ L p(�) for all multi-indexes α : |α| ≤ m
}

,

which is a Banach space with the norm ‖ f ‖W m,p(�) given by

‖ f ‖p
W m,p(�) =

∑
α:|α|≤m

∥∥Dα f
∥∥p

L p(�)

=
∑

α:|α|≤m

∫
�

∣∣Dα f (x)
∣∣p

dx . (A.24)

There are a number of equivalent norms for W k,p (�), such as

‖ f ‖′ pW m,p(�) = ‖ f ‖p
L p(�)+

∑
α:|α|=m

∥∥Dα f
∥∥p

L p(�) ,

‖ f ‖′′W m,p(�) = ‖ f ‖L p(�)+
∑

α:|α|≤m

∥∥Dα f
∥∥

L p(�) , etc.

Since convergence of sequences and boundedness of norms do not depend on which equiv-
alent norm is used, we will freely trade one norm for an equivalent norm according to
circumstance. However, we should be careful when we are considering convergence of a
sequence fk → f in W m,p(�) that the equivalent norm does not depend on k, or at least
that the constants demonstrating the equivalence do not depend on k.

In the special cases where p = 2 and �= Rd , equivalent norms can be developed in
terms of Fourier transforms:

‖ f ‖2
W m,2(Rd ) = (2π)−d

∫
Rd

(
1+|ξ |2

)m |F f (ξ )|2 dξ (A.25)

with |ξ | = (
ξ2

1 + ξ2
2 +·· ·+ ξ2

d

)1/2
. These spaces are often denoted by H m(Rd ). These are

Hilbert spaces, which have the inner product

〈 f , g〉Hm (Rd ) = Re (2π)−d
∫
Rd

(
1+|ξ |2

)m F f (ξ )Fg(ξ )dξ .

The formula can be extended to allow m to be any real value, including negative values.
While we cannot use the usual properties of Fourier transforms on a general domain � ⊂
Rd , we can define an equivalent norm for H m(�)=W m,2(�) using this approach:

‖ f ‖Hm (�) = inf
{‖g‖Hm (Rd ) | g|� = f

}
.
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An alternative approach to constructing a suitable norm for W m,p(�) for m ∈ R, m ≥ 0 is
to use the Sobolev–Slobodetskiı̆ norm: for s = m+β, with m an integer, 0 ≤ β < 1, and
1≤ p <∞,

‖ f ‖p
W m+β,p(�)

= ‖ f ‖p
L p(�)+

∑
α:|α|=m

∫
�

∫
�

|Dα f (y)− Dα f (x)|p
|x− y|d+pβ

dx dy.

For p =∞ we have

‖ f ‖W m+β,∞(�) =
∑

α:|α|=m

sup
x , y∈�

|Dα f (y)− Dα f (x)|
|y− x |β .

There are a number of important relationships between different Sobolev spaces and
other well-known spaces. The space of Lipschitz functions on � is simply W 1,∞(�);
the space of Hölder continuous functions of exponent 0 < β < 1 where | f (y)− f (x)| ≤
const |y− x |β for all x , y ∈� is Wβ,∞(�).

Duality of Sobolev spaces is straightforward for H m(�): we can identify H m(�)′
with H−m(�). An explicit identification can be done using Fourier transforms for �=Rd .

Often we can show that Wr ,p(�) can be imbedded in W s,t (�) with � ⊂ Rd . Usu-
ally we assume that the domain � has a Lipschitz boundary; that is, in a neighborhood
of any point on the boundary, the boundary can be represented locally as the graph of a
Lipschitz function. Some results require that the domain have a smooth boundary, where
the boundary can be represented locally as the graph of a smooth function. The imbedding
map is often compact (mapping bounded sets to sets whose closure is compact), which
is extremely useful in proving existence results. The theorem that shows most of these
connections is the standard Sobolev imbedding theorem.

Theorem A.8. Suppose that � is a bounded domain in Rd with a smooth boundary; then
the following imbeddings are compact:

• W m+�,p(�)→ W m,p(�) for � > 0, m ≥ 0, and 1≤ p ≤∞;

• W m+�,p(�)→ W m,r (�) for 1 ≤ r < dp/(d− �p), provided �p < d and � ≥ 0 is an
integer;

• W m+�,p(�)→ W m,p(�) for �p = d, and 1≤ p <∞, and � ≥ 0 is an integer;

• W m+�,p(�)→ Cm (�) for �p > d, and � ≥ 0 is an integer.

Differentiation has a straightforward effect on Sobolev spaces: provided m ≥ |α|, the
partial derivative operator Dα : W m,p(�)→ W m−|α|,p(�) is continuous. In fact, for any
real m, Dα : H m(�)→ H m−|α|(�) is continuous.

There are also results for what happens when we restrict the domain of the functions
to subsets of �. First, if �′ ⊂� and �′ is also a domain in Rd so that it has strictly positive
volume, then the imbeddings W m,p(�)→W m,p(�′) are continuous (but not compact). The
really interesting part is when we restrict ourselves to a subset % ⊂� which has a different
dimension. This is most used in dealing with % = ∂�, the boundary of the domain. It can
seem rather odd that this is possible since a function in W m,p(�) is in general not even
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defined on ∂�. Nevertheless, we can consider limits of values to define u(x) for almost
all x ∈ ∂� where u ∈ W m,p(�), provided m and p are sufficiently large. These results are
called trace theorems. The most useful example of these results is as follows.

Theorem A.9. Suppose that � is a domain in Rd with smooth boundary; then the trace
operator (extending restriction of the domain) γ : W m,p(�)→ W m−1/p,p(∂�) is contin-
uous and surjective for m > 1/p. Furthermore, for p = 2 there is an extension operator
ρ : W m−1/p,p(∂�)→W m,p(�) so that γ ◦ρ is the identity operator on W m−1/p,p(∂�). If
m = 1, then the boundary need only be Lipschitz.

Note that the trace operator on H m(�) is γ : H m(�)→ H m−1/2(∂�) for m > 1/2.
Modifications of the basic Sobolev spaces are typically defined and used as needed.

A common example is the Sobolev space of functions zero on the boundary ∂� of the
given domain �. This is important for partial differential equations such as ∇2u = 0 in �

with boundary conditions u = g on ∂�. If g ∈ H 1/2(�), then we can use the extension
operator H 1/2(∂�) → H 1(�) to obtain g̃ ∈ H 1(�), where g̃ on ∂� is equal to g. Let
w = u − g̃. Then ∇2w = −∇2 g̃ ∈ H−1(�) = H 1(�)′. But w on ∂� is g− g = 0, so
w ∈ H 1

0 (�)= { z ∈ H 1(�) | γ u = 0 }, where γ : H 1(�)→ H 1/2(∂�) is the trace operator.
Now H 1

0 (�) is a Banach space in its own right, and in fact a Hilbert space, since it is
a closed subspace of H 1(�). Since −∇2w is a distributional derivative, for any smooth
function φ zero on ∂�, we can use integration by parts:∫

�

φ
[
−∇2w

]
dx =

∫
�

∇φ ·∇wdx ,

which is defined and continuous in φ also for any φ ∈ H 1
0 (�). In fact, finding w solving

∇2w =−∇2 g̃ is equivalent to minimizing

1

2

∫
�

|∇w|2 dx+
〈
−∇2 g̃, w

〉
H−1×H1

over w ∈ H 1
0 (�). This function of w is closed, lower semicontinuous, and finite for any

w ∈ H 1
0 (�) and, as we shall see in the next section, has a minimizer. This gives the solution

w ∈ H 1
0 (�) for ∇2w = −∇2 g̃, and so u = w+ g̃ solves the Dirichlet problem with u ∈

H 1(�).

A.6 Principles of nonlinear analysis
There are a number of principles of nonlinear analysis that are applicable to a wide range of
situations. Amongst these are fixed point theorems and variational principles. The context
for these is typically Banach spaces, although they can often be applied to more general
situations. Nonlinear analysis is a very broad subject, but there are some excellent works
on the topic, such as Aubin and Ekeland [20] and Zeidler [275]. Zeidler also has a four-
volume treatment of nonlinear functional analysis which goes into many more topics in
considerable depth.

Fixed point theorems are theorems of the following form: if f : A→ A is a function
with certain properties (for example, f is continuous) and A has certain properties (for
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example, A is a bounded closed convex set in Rn), then there is a point x∗ ∈ A where
f (x∗)= x∗; that is, x∗is a fixed point of f .

The first is due to Banach and is known as the contraction mapping theorem.

Proposition A.10. Suppose that f : X → X, where X is a complete metric space, and f is
a contraction; that is, there is an α < 1 such that d( f (x), f (y))≤ α f (x , y) for all x , y ∈ X.
Then f has a unique fixed point x∗ ∈ X and for any x0 ∈ X, the sequence xk+1 = f (xk)
converges to x∗.

This theorem does not require any finite-dimensionality or compactness condition,
which makes it particularly useful when other (apparently more powerful) theorems do not
apply. On the other hand, if we are dealing with finite-dimensional spaces, then we can use
continuity alone for f . The most celebrated such result is the Brouwer fixed point theorem.

Proposition A.11. Suppose f : A→ A, where A is a closed convex set in Rn, is continuous.
Then f has a fixed point in A.

There are many sources as well as proofs of this theorem. Often it is given as an
easy consequence of homology theory in algebraic topology via the no-retraction theorem
of balls to spheres; see, for example, [215, pp. 3–5] or [232, pp. 193–194]. However, there
are many proofs that do not use algebraic topology, and even fairly easy proofs. A good
source for a number of these is [106].

A straightforward corollary of Brouwer’s theorem is that weakly coercive functions
(that is, functions where lim‖x‖→∞ 〈 f (x), x〉 = +∞) that map Rn → Rn and are continu-
ous have zeros.

Corollary A.12. Suppose that f : Rn →Rn is continuous and weakly coercive. Then there
is an x where f (x)= 0.

Proof. Choose R > 0 so that 〈 f (x), x〉 > 0 for all x with ‖x‖ ≥ R. Let B be the unit ball
in Rn . Then set g(x)= x−α(x) f (x), where

α(x)=
〈 f (x), x〉+

√
〈 f (x), x〉2+‖ f (x)‖2 (

R2−‖x‖2)
‖ f (x)‖2+1

.

Calculations show that ‖g(x)‖ ≤ R for all x with ‖x‖ ≤ R, and that α(x) > 0 for all x .
Both α(x) and g(x) are continuous in x . Then by Brouwer’s theorem there is a fixed
point x∗ ∈ R B: g(x∗)= x∗. That is, x∗ −α(x∗) f (x∗)= x∗, from which we observe that
f (x∗)= 0, as desired.

Because only continuity is required for this theorem, Brouwer’s fixed point theorem
is essentially a topological result; A does not need to be convex, but rather need only be
topologically equivalent to a closed convex set in finite dimensions. This result can be
extended to infinite-dimensional spaces, provided we add a compactness condition. This
gives the Leray–Schauder fixed point theorem.

Proposition A.13. Suppose f : A → A, where A is a compact convex set in a Banach
space X, is continuous. Then f has a fixed point in A.
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There is another generalization of Brouwer’s theorem due to Kakutani (see [106])
for convex set-valued functions that are upper semicontinuous (that is, for every x ∈ A and
ε > 0 there is a δ > 0 such that �(y)⊆�(x)+ ε B whenever ‖y− x‖< δ).

Proposition A.14. Suppose � : A→ P(A), where A is a compact convex set in a Banach
space X, is upper semicontinuous, where �(x) is a nonempty closed convex set for each
x ∈ A. Then � has a fixed point in the sense that there is an x∗ ∈ A where x∗ ∈�(x∗).

The proof of Kakutani’s theorem can be reduced to the Leray–Schauder or Brouwer’s
theorem by using piecewise linear approximations to �.

Other approaches to nonlinear analysis include minimax-type theorems, of which the
Ky Fan theorem is perhaps the archetype.

Proposition A.15. Let K be a compact convex subset of a Banach space, and suppose that
f : K × K → R is lower semicontinuous in the first variable and concave in the second
variable. Then there exists x∗ ∈ K such that supy∈K f (x∗, y)≤ supy∈K f (y, y).

Apart from the contraction mapping theorem, these theorems all rely on compactness
in some way or another in order to obtain existence of certain points (zeros, fixed points,
or solutions of certain inequalities). Without compactness, there are a few alternatives
that have been widely successful. One is to use variational methods, where we seek the
minimum of a certain function. Convex analysis (see the following chapter) provides much
of the theory for this approach, although extensions to nonsmooth nonconvex functions are
an active area of interest for many researchers. Another approach is to use monotonicity or
pseudomonotonicity to obtain existence of solutions. For more details on these approaches,
see Sections 2.5 and 4.2.
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Appendix B

Convex and Nonsmooth
Analysis

B.1 Convex sets and functions
For a Banach space X , a function φ : X → R∪{∞} is convex function if for all x , y ∈ X
and 0≤ θ ≤ 1,

φ(θx+ (1− θ )y)≤ θ φ(x)+ (1− θ )φ(y). (B.1)

Note that we take 0 ·∞ = 0, r ·∞ =∞ if r > 0, and r <∞ for any r ∈ R. The domain
of a convex function is domφ = { x | φ(x) <∞}. A set C ⊆ X is a convex set if whenever
x , y ∈ C and 0 ≤ θ ≤ 1 we have θx + (1− θ )y ∈ C . For a given convex set C there is the
indicator function

IC (x)=
{

0 if x ∈ C ,

∞ if x �∈ C .
(B.2)

If C is convex, so is IC ; if C is closed, then IC is lower semicontinuous; if C �= ∅, then IC
is proper.

A function φ : X → R∪{∞} is convex if and only if the epigraph

epiφ = { (x ,r ) ∈ X ×R | r ≥ φ(x) } (B.3)

is a convex set in X ×R. If φ is a lower semicontinuous function, that is, xk → x as
k →∞ implies liminfk→∞ φ(xk) ≥ φ(x), then epiφ is a closed set. If φ is proper, that is,
φ(x0) <∞ for some x0 ∈ X , then epiφ and domφ are nonempty.

A powerful tool for studying closed convex sets is the separating hyperplane theo-
rem: if K is a closed convex set in a Banach space X , and z �∈ K , then there are a y ∈ X ′
and β ∈R such that

0 > 〈y, z〉+β,

0 ≤ 〈y, x〉+β for all x ∈ K .

That is, the hyperplane { x ∈ X | 0= 〈y, x〉+β } separates K from z. We will use this as a
basic theorem, although it can be proved in terms of the Hahn–Banach theorem.

327
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A convex set C is called solid if intC �= ∅. Note that for a solid convex set, C = intC .
A cone C ⊆ X is a set where x ∈ C and α ≥ 0 implies αx ∈ C . A convex cone is a

set that is both convex and a cone. This can be expressed by the following conditions: if
x , y ∈ C and α ≥ 0, then αx ∈ C and x+ y ∈ C . Properties of convex cones are discussed
in Section B.1.3.

B.1.1 Support functions

An additional topic that often arises is that of support functions of convex sets. The support
function of a convex set K ⊆ X , with X a Banach space, is the function σK : X ′ →R∪{∞}
given by

σK (ξ )= sup
x∈K

〈ξ , x〉 . (B.4)

These are duals of the corresponding indicator functions: σK = I ∗K . (Dual convex functions
are defined in Section B.2.) Support functions are also not to be confused with the support
of a function.

Lemma B.1. Support functions have the following properties:

1. σK is a convex lower semicontinuous positively homogeneous function;

2. K = {
x | 〈ξ , x〉 ≤ σK (ξ ) for all ξ ∈ X ′

}
;

3. if K is also a cone, then K ◦ = −K ∗ = domσK := {ξ | σK (ξ ) <∞}.

Proof.

1. To show that σK is convex, note that it is the supremum of a family of linear (and
therefore convex) functions.

To show that σK is lower semicontinuous, suppose that ξ� → ξ in X ′ as �→∞.
For any ε > 0 there is an x ∈ K such that 〈ξ , x〉 + ε ≥ σK (ξ ) ≥ 〈ξ , x〉. Then
liminf�→∞ σK (ξ�) ≥ liminf�→∞〈ξ�, x〉 = 〈ξ , x〉 ≥ σK (ξ )− ε. Since this is true
for all ε > 0, we see that liminf�→∞σK (ξ�) ≥ σK (ξ ), and that σK is lower semi-
continuous.

To show that σK is positively homogeneous, note that for α ≥ 0,

σK (αξ )= sup
x∈K

〈αξ , x〉 = sup
x∈K

α 〈ξ , x〉 = α sup
x∈K

〈ξ , x〉 = ασK (ξ ).

2. It is easy to show that σK = σK , so we assume at the outset that K is closed.
Then z ∈ K implies that 〈ξ , z〉 ≤ supx∈K 〈ξ , x〉 = σK (ξ ). This shows that K ⊆{

x | 〈ξ , x〉 ≤ σK (ξ ) for all ξ ∈ X ′
}
. Suppose z �∈ K . Then there is a separating hy-

perplane: ζ ∈ X ′ and α ∈R where

〈ζ , z〉−α > 0,

〈ζ , x〉−α ≤ 0 for all x ∈ K .

Taking the supremum over x ∈ K , we see that α ≥ σK (ζ ). Thus σK (ζ )≤ α < 〈ζ , z〉.
Thus the reverse inclusion holds, and the two sets are equal, as desired.
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3. Suppose that K is a convex cone. Then, if ξ ∈ K ◦, we have 〈ξ , x〉 ≤ 0 for all x ,
and so σK (ξ ) = supx∈K 〈ξ , x〉 ≤ 0. In fact, since 0 ∈ K , we have σK (ξ ) = 0 for all
ξ ∈ K ◦, so K ◦ ⊆ domσK . Conversely, suppose that ξ ∈ domσK . If 〈ξ , x〉 > 0 for
any x ∈ K , noting that α x ∈ K as well, we see that

σK (ξ )≥ sup
α≥0
〈ξ , αx〉 = +∞,

contradicting our assumption that ξ ∈ domσK . Thus domσK ⊆ K ◦. Hence the two
sets are equal.

B.1.2 Convex projections in Hilbert spaces

Here we discuss properties of the convex projection (or “nearest point map”) �K for a
closed convex set K .

Lemma B.2. If X is a Hilbert space and K is a closed convex set, then �K : X → K ,
where �K (x) is the nearest point in K to x, is a well-defined Lipschitz continuous function
with Lipschitz constant one. The function �K is characterized by the property that

(x−�K (x), z−�K (x))≤ 0 for all z ∈ K . (B.5)

Furthermore, �K is a monotone function.

Proof. First we show that there is a nearest point in K to x . Suppose zm ∈ K is an infimizing
sequence so that ‖zm − x‖→ infz∈K ‖z− x‖ as m →∞. If we set R = infz∈K ‖z− x‖+1,
for m sufficiently large, ‖zm − x‖ ≤ R. Thus the sequence zm , m = 1, 2, . . . , is bounded.
By Alaoglu’s theorem there is a weak* convergent subsequence (also denoted by zm) with
weak* limit z∗. Since X is a Hilbert space, the subsequence is also weakly convergent. Now
z∗ ∈ K . If this were not true, by the separating hyperplane theorem there would be w ∈ X ′
and β ∈R such that 〈w, z〉+β ≥ 0 for all z ∈ K but 〈w, z∗〉+β < 0. Thus 〈w, zm〉+β ≥ 0
for all m, and since zm ⇀ z∗ weakly we have 〈w, z∗〉 + β = limm→∞〈w, zm〉 + β ≥ 0,
contradicting 〈w, z∗〉+β < 0. Thus z∗ ∈ K .

Now we show that there is only one nearest point in K to x . Suppose there were
more: z1 and z2. Then, as K is convex, θz1+ (1− θ )z2 ∈ K for any 0≤ θ ≤ 1. Now, as X
is a Hilbert space,

‖x− (θz1+ (1− θ )z2)‖2

= ‖x− z2− θ (z1− z2)‖2

= ‖x− z2‖2−2θ (x− z2, z1− z2)+ θ2 ‖z1− z2‖2 .

Taking derivatives with respect to θ at θ = 0, we see that

(x− z2, z1− z2)≤ 0

since z2 is a nearest point. We get a similar result for z1: (x− z1, z2− z1) ≤ 0 after swap-
ping the roles of z1 and z2. Adding these last two inequalities we get

‖z1− z2‖2 = (z1− z2, z1− z2)≤ 0,

which can occur only if z1 = z2. Thus �K (x) is well defined.
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Repeating the argument of the previous paragraph with z2 = z∗ (which is the nearest
point) and z1 = z a given point in K , we see that (x− z∗, z− z∗)≤ 0. That is,

(x−�K (x), z−�K (x))≤ 0 for all z ∈ K .

Note that the conditions w ∈ K and (x−w, y−w)≤ 0 for all y ∈ K are sufficient to
imply that w =�K (x) in a Hilbert space. To see this, note that

‖x− (w+ θ (y−w))‖2 = ‖x−w‖2−2θ (x−w, y−w)+ θ2 ‖y−w‖2

≥ ‖x−w‖2−2θ (x−w, y−w)≥ ‖x−w‖2 (B.6)

for 0≤ θ ≤ 1, and in particular, ‖x− y‖ ≥ ‖x−w‖ for all y ∈ K . Thus w =�K (x).
From (B.6) we also have (x−�K (x), �K (y)−�K (x)) ≤ 0 for all x , y. Swapping

the roles of x and y we get 〈y−�K (y), �K (x)−�K (y)〉 ≤ 0. Adding these inequalities
we get

(x− y−�K (x)+�K (y), �K (y)−�K (x))≤ 0,

so

0≤ (�K (y)−�K (x), �K (y)−�K (x))≤ (y− x , �K (y)−�K (x)) ;

and thus ‖�K (y)−�K (x)‖2 ≤ ‖y− x‖ ‖�K (y)−�K (x)‖ .

The second to last inequality implies that �K is a monotone function. The last inequality
shows (after division by ‖�K (y)−�K (x)‖) that �K is Lipschitz with Lipschitz constant
one.

B.1.3 Convex cones

Convex cones play a particularly important role in our theory: a set K is a cone if x ∈ K
and α ≥ 0 imply that α x ∈ K . In the next section we will meet some important cones such
as the tangent and normal cones. For now we will look at some of the important cones and
properties of cones.

One of the most common cones is the cone of nonnegative vectors, or the nonnegative
orthant:

Rn+ =
{

x ∈ Rn | xi ≥ 0 for all i
}

.

Another is the cone of nonnegative functions on a set �:{
f ∈ L2(�) | f (x)≥ 0 for all x ∈�

}
.

Half-spaces are also cones,

Hn := R+×Rn−1,

as is the full-space Rn . Clearly these are different kinds of cones. For example, a pointed
cone K is a cone where

K ∩ (−K )= {0} . (B.7)
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The half-space Hn is not a pointed cone, but Rn+ is pointed. Note that for any closed convex
cone, V := K ∩ (−K ) must be a vector space. If we find a complementary subspace W so
that V +W = X and V ∩W = {0}, then (K ∩W )∩ (−K ∩W ) = {0}, so that K ∩W is a
pointed cone.

A closed convex cone K has a dual cone K ∗ given by

K ∗ = {
w ∈ X ′ | 〈w, z〉 ≥ 0 for all z ∈ K

}
. (B.8)

Closely related is the polar cone to a cone K , which is K ◦ = −K ∗. If X is a reflexive
Banach space (such as a Hilbert space or Rn), then we can identify the space X with its
second dual X ′′. Under this identification K ∗∗ = K , or equivalently K ◦◦ = K , whenever
K is a closed convex cone.

Topology can interact with convexity in important ways. For example, a cone K is
solid if it has nonempty interior; that is, there are an x ∈ K and an r > 0 where x+r B ⊂ K ,
with B the unit ball in X . A solid closed convex cone K is the closure of its interior. In Rn ,
any closed convex cone K is solid if and only if K ∗ is pointed. However, this is not true in
infinite dimensions.

Consider, for example,

K =
{

x ∈ �2 | xi ≥ 0 for all i = 1, 2, 3, . . .
}

.

Identifying �2 with its dual space
(
�2

)′
, which we can do since it is a Hilbert space, we have

K = K ∗. That is, K is a self-dual cone. It is also clear that K is a pointed cone, as x=−y,
with xi , yi ≥ 0 for all i , can occur only if xi = yi = 0. Yet K does not contain any open
ball. Let x ∈ K , and take r > 0. We can find a y ∈ x+r B �∈ K . Since x ∈ �2, we have from
the definition of �2,

∑
i x2

i <+∞; thus xi → 0 as i →∞. Choose i , where |xi |< r/2. Let
ei be the i th unit basis vector in �2. Then y= x−r ei/2 ∈ x+r B but yi = xi −r/2 < 0, so
y �∈ K .

Sometimes we need a stronger concept than pointedness in infinite-dimensional prob-
lems: We say that a closed convex cone K is strongly pointed if K ∗ is a solid cone; that
is, it has nonempty interior. The most important property of strongly pointed cones is that
norms can be bounded below and above in terms of inner products or duality pairings.

Lemma B.3. If K is a strongly pointed cone in a Banach space X, then there is a ν ∈ K ∗
where

‖x‖X ≤ 〈ν, x〉 ≤ ‖ν‖X ′ ‖x‖X for all x ∈ K .

Proof. The second inequality is clear. Since K is strongly pointed, K ∗ is a solid cone. Pick
µ in the interior of K ∗. Then there is a δ > 0 such that µ+ δ BX ′ ⊂ K ∗. This means that
for every x ∈ K and ξ ∈ X ′ with ‖ξ‖X ′ < δ, we have 〈µ+ ξ , x〉 ≥ 0. Taking the infimum
over all ξ ∈ X ′ with ‖ξ‖X ′ < δ gives 〈µ, x〉−δ ‖x‖X ≥ 0. Setting ν = µ/δ and rearranging
give the desired result.

In finite dimensions there is no difference between a cone being pointed and being
strongly pointed.

Lemma B.4. If K ⊆Rn is a closed convex cone, then it is pointed if and only if it is strongly
pointed.
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Proof. (⇒) Suppose that K is pointed, so that K ∩ (−K )= {0}. Then 0 �∈ co(K ∩ S), where
S is the unit sphere in Rn : S = { x ∈Rn | ‖x‖ = 1 }. To see this, suppose 0 =∑m

i=1 θi xi ,
where θi ≥ 0 for all i ,

∑m
i=1 θi = 1, and xi ∈ K ∩ S. Choose j , where θ j �= 0; then 0 �=

θ j x j ∈ K and −θ j x j =∑
i:i �= j θi xi ∈ K . That is, 0 �= θ j x j ∈ K ∩ (−K ), contradicting

pointedness of K . So we see that 0 �∈ co(K ∩ S). Since K ∩S is a closed and bounded subset
of Rn , it is compact. By Carathéodory’s theorem on convex sets in Rn , every element of
co(K ∩ S) can be written as

∑n+1
i=1 θi xi , where θi ≥ 0 for all i ,

∑n+1
i=1 θi = 1, and xi ∈ K ∩S.

That is, co(K ∩ S) is the image under a continuous map of the Cartesian product 'n+1×
(K ∩ S)n+1; hence co(K ∩ S) is compact and also closed. By the separating hyperplane
theorem, there is a ν ∈Rn and an α where 〈ν, x〉−α ≥ 0 for all x ∈ K ∩ S, and 〈ν, 0〉−α <

0. Thus α > 0. For any 0 �= y ∈ K , we have 〈ν, y〉 = ‖y‖ 〈ν, y/‖y‖〉 ≥ α ‖y‖ > 0. This
shows that ν ∈ K ∗. Suppose that µ ∈ X ′ and ‖µ‖X ′ < α. Then ν+µ ∈ K ∗ since for any
0 �= y ∈ K we have 〈ν+µ, y〉 ≥ α ‖y‖−‖µ‖X ′ ‖y‖ = (α−‖µ‖) ‖y‖ ≥ 0. Thus ν lies in
the interior of K ∗, and so K is strongly pointed.

(⇐) Suppose that K is strongly pointed. By Lemma B.3, there is ν ∈ K ∗ such that
〈ν, x〉 ≥ ‖x‖ for all x ∈ K . If x ∈ K ∩ (−K ), then both x ,−x ∈ K , and so ‖x‖ ≤ 〈ν, x〉
and ‖x‖ ≤−〈ν, x〉; that is, 〈ν, x〉 ≤ −‖x‖ ≤ ‖x‖ ≤ 〈ν, x〉, which can be true only if x = 0.
That is, K ∩ (−K )= {0}, and K is a pointed cone.

Note that the dual of the dual cone K ∗∗ is the original cone K , provided K is a closed
convex cone in a reflexive space X that can be identified with X ′′. The proof is an exercise
in using the separating hyperplane theorem. First we show that K ∗ is a closed convex cone.

Lemma B.5. If K ⊆ X, with X a Banach space, then K ∗ is a closed convex cone.

Proof.
K∗ is closed: Suppose that yn ∈ K ∗ for all n and that yn → y as n →∞. Then, for every
x ∈ K , 〈yn , x〉 ≥ 0. Taking the limit as n →∞ we see that 〈y, x〉 ≥ 0 for every x ∈ K .
Thus y ∈ K ∗ as well. So K ∗ is closed.

K∗ is convex: Suppose y1, y2 ∈ K ∗ and 0 ≤ θ ≤ 1. Note that 〈y1, x〉 and 〈y2, x〉 ≥ 0 for
every x ∈ K . So

〈θy1+ (1− θ ) y2, x〉 = θ 〈y1, x〉+ (1− θ )〈y2, x〉 ≥ 0.

Since this is true for all x ∈ K , θy1+ (1− θ ) y2 ∈ K ∗ and K ∗ is convex.

K∗ is a cone: Suppose that y ∈ K ∗ and α ≥ 0. Then, for every x ∈ K ,

〈αy, x〉 = α 〈y, x〉 ≥ 0,

so αy ∈ K ∗.

Now we can go on to show that K ∗∗ = K . Since K ∗∗ ⊆ X ′′ we need to identify X
with X ′′ using the natural map � : X → X ′′ (see (2.1)). Identifying X with X ′′ means that
we identify �(x) with x .

Theorem B.6. If K is a closed convex cone in a reflexive Banach space X, with X identified
with X ′′, then K ∗∗ = K . (If we do not identify X with X ′′, then we have �(K )= K ∗∗.)
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Proof. First we show that K ⊆ K ∗∗. Suppose that x ∈ K . Then, for any η ∈ K ∗,
〈x , η〉X×X ′ = 〈η, x〉X ′×X ′′ ≥ 0 (identifying X with X ′′ via the natural map). So x ∈ (K ∗)∗ =
K ∗∗. Thus K ⊆ K ∗∗.

Now we show that K ∗∗ ⊆ K . If this were not true, then there would be a w ∈ K ∗∗\K .
Since K is a closed convex set, by the separating hyperplane theorem there are η ∈ X ′ and
β ∈ R such that 〈η, x〉+β ≥ 0 for every x ∈ K , but 〈η, w〉+β < 0. Since K is a cone, we
can set x = 0, so β ≥ 0. Thus 〈η, w〉 ≤ 〈η, w〉+β < 0. Also, since K is a cone, if x ∈ K ,
so is αx ∈ K for any α ≥ 0. Hence 0 ≤ 〈η, αx〉+β = α (〈η, x〉+β/α), provided α > 0,
so 〈η, x〉+β/α ≥ 0 for any α > 0. Taking α→∞ gives 〈η, x〉 ≥ 0 for any x ∈ K . Thus
η ∈ K ∗. But as w ∈ K ∗∗, 〈w, η〉 ≥ 0, contradicting our above result that 〈w, y〉< 0. Thus
our assumption that w ∈ K ∗∗\K is false. This shows that K ∗∗ ⊆ K .

Combining the two inclusions gives K = K ∗∗.

Vectors in a Hilbert space can be “split” into K and K ◦ much like vectors can be split
into components parallel and orthogonal to a vector space [176].

Lemma B.7 (Moreau). Let K be a closed convex cone in a Hilbert space X with X ′
identified with X. For all x ∈ X,

x =�K (x)+�K ◦(x). (B.9)

Furthermore, 〈�K (x), �K ◦(x)〉 = 0.

Proof. From (B.5), (x−�K (x), z−�K (x))X ≤ 0 for all z ∈ K . Let w = x−�K (x). First
we take z = 0 so that (w,−�K (x))X ≤ 0; then we take z = 2�K (x) so that (w, �K (x))X ≤
0; thus (w, �K (x))X = 0. Now, to show that w=�K ◦(x), we need 0≥ (x−w, u−w)X =
(�K (x), u−w)X for all u ∈ K ◦. But (�K (x), u)X ≤ 0 because u ∈ K ◦, and (�K (x), w)X =
0, so the inequality holds, as desired.

For some cones K ⊆ Rn , K ∗ = K . These are self-dual cones. The simplest example
is K = R+, the nonnegative real numbers. Since (K1× K2)∗ = K ∗

1 × K ∗
2 , the Cartesian

product of self-dual cones is self-dual; in particular, the nonnegative orthant consisting of
componentwise nonnegative vectors Rn+ is self-dual. Thus GCPs are truly a generalization
of CPs: just use K = Rn+ in a GCP to get the corresponding CP.

Here are some structural properties of dual cones.

Lemma B.8. Suppose K , K1⊆ X, and K2⊆ Y are closed convex cones. Then the following
hold:

1. (K1× K2)∗ = K ∗
1 × K ∗

2 .

2. For A : X →Y linear, continuous, and invertible, (A K )∗ = (
A−1

)∗
K ∗, where

(
A−1

)∗ =
(A∗)−1 : X ′ → Y ′, is the adjoint of the inverse A−1 : Y → X.

3. If K ⊆ K1, then K ∗
1 ⊆ K ∗.

4. If X = Y , then (K1+ K2)∗ = K ∗
1 ∩K ∗

2 .

5. If X = Y , then K ∗
1 + K ∗

2 ⊆ (K1∩K2)∗ = K ∗
1 + K ∗

2 .
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Proof.

1. Note that

(K1× K2)∗ = {
(ξ , η) ∈ X ′ ×Y ′ | 〈(ξ , η), (x , y)〉 ≥ 0 for all (x , y) ∈ K1× K2

}
= {

(ξ , η) ∈ X ′ ×Y ′ | 〈ξ , x〉+ 〈η, y〉 ≥ 0 for all x ∈ K1, y ∈ K2
}

.

Taking x = 0 shows that η ∈ K ∗
2 ; taking y = 0 shows that ξ ∈ K ∗

1 . So (K1× K2)∗ ⊆
K ∗

1 ×K ∗
2 . To show the reverse inclusion, if ξ ∈ K ∗

1 and η ∈ K ∗
2 , then for any (x , y) ∈

K1×K2, 〈(ξ , η), (x , y)〉= 〈ξ , x〉+〈η, y〉≥ 0, so K ∗
1×K ∗

2 ⊆ (K1× K2)∗. Combining
the two inclusions shows the two sets are equal.

2. Note that

(A K )∗ = {
η ∈ Y ′ | 〈η, Az〉 ≥ 0 for all z ∈ K

}
= {

η ∈ Y ′ | 〈A∗η, z
〉≥ 0 for all z ∈ K

}
=

{(
A∗

)−1
ξ | 〈ξ , z〉 ≥ 0 for all z ∈ K

}
= (

A∗
)−1

K ∗.

3. If K ⊂ K1 and ξ ∈ K ∗
1 , then 〈ξ , x〉 ≥ 0 for all x ∈ K1, so 〈ξ , x〉 ≥ 0 for all x ∈ K and

thus ξ ∈ K ∗. Note that this result does not rely on either K or K1 being closed.

4. We calculate

(K1+ K2)∗ = {
ζ ∈ X ′ | 〈ζ , x+ y〉 ≥ 0 for all x ∈ K1, y ∈ K2

}
= {

ζ ∈ X ′ | 〈ζ , x〉+ 〈ζ , y〉 ≥ 0 for all x ∈ K1, y ∈ K2
}

.

Clearly (K1+ K2)∗ ⊇ K ∗
1 ∩ K ∗

2 . To show the reverse inequality, set x = 0, so that
ζ ∈ (K1+ K2)∗ implies 〈ζ , y〉 ≥ 0 for all y ∈ K2. Similarly, setting y = 0 gives
〈ζ , x〉 ≥ 0 for all x ∈ K1. Thus z ∈ K ∗

1 ∩K ∗
2 , and (K1+ K2)∗ ⊆ K ∗

1 ∩K ∗
2 . Combining

the two inclusions gives equality: (K1+ K2)∗ = K ∗
1 ∩K ∗

2 .

5. Now we show that K ∗
1 + K ∗

2 ⊆ (K1∩K2)∗. Suppose that ζ = ξ +η with ξ ∈ K ∗
1 and

η ∈ K ∗
2 . For any w ∈ K1 ∩ K2, 〈ζ , w〉 = 〈ξ +η, w〉 = 〈ξ , w〉 + 〈η, w〉 ≥ 0; thus

η ∈ (K1∩K2)∗.
Finally, we show that K ∗

1 + K ∗
2 = (K1∩K2)∗. If L is a convex cone, but not nec-

essarily closed, then L ⊆ L so by item 3, L
∗ ⊆ L∗, and again L∗∗ ⊆ L

∗∗ = L by
Theorem B.6. Now K ∗

1 +K ∗
2 is a convex cone, but not necessarily closed, as we will

see later. Then

K ∗
1 + K ∗

2 =
(
K ∗

1 + K ∗
2

)∗∗ = (
K ∗∗

1 ∩K ∗∗
2

)∗
= (K1∩K2)∗∗ .

Thus K ∗
1 + K ∗

2 ⊆ (K1∩K2)∗ = K ∗
1 + K ∗

2 , as desired.
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Remark B.9. Note that we do not get equality in the last inclusion of Lemma B.8 (item 5).
Here is an example in R3: Take

K1 =
{
αe1+y | ‖y‖2 ≤ α, eT

1 y= 0
}

,

K2 =
{
αe2+y | ‖y‖2 ≤ α, eT

2 y= 0
}

.

Both of these cones are self-dual since they are both orthogonal transforms of the Lorentz
cone L2 (see (2.34)): (Q L2)∗ = Q−T L∗2 = Q L2.

Now K1+ K2 = K ∗
1 + K ∗

2 is not a closed set, and so it cannot be a dual cone: the
plane

{
x | (e1+ e2)T x= 0

}
is in K1+ K2, but the only part of this plane in K1+ K2 is

the line generated by e1 − e2: let P = { x1e1+ x2e2 | x1, x2 ∈R} be the (e1, e2) plane.
Then K1∩ P = { x1e1+ x2e2 | |x2| ≤ x1 } and K2∩ P = { y1e1+ y2e2 | |y1| ≤ y2 }. Setting
0≤ x1 =−x2 we have x1 (e1− e2)∈ K1∩ P; setting 0≤ y2 =−y1 we have−y2 (e1− e2) ∈
K2∩ P . Thus the entire line generated by e1− e2 is in K1∪K2 ⊂ K1+ K2.

But now consider z= ρ (e1− e2)+σe3, σ �= 0. Suppose z= x+y, with x ∈ K1 and
y ∈ K2. Write x = αe1+u, y = βe2+ v with eT

1 u = 0, eT
2 v = 0, ‖u‖ ≤ α, and ‖v‖ ≤ β.

Put u= u2e2+u3e3 and v= v1e1+v3e3; u2
2+u2

3 ≤ α2 and v2
1+v2

3 ≤ β2. So ρ (e1− e2)=
(α+ v1)e1+ (β+u2)e2 and therefore ρ = α+ v1 = −β− u2. This implies that α+β =
−v1− u2. Since |v1| ≤ β and |u2| ≤ α, this means that |v1| = β and |u2| = α; thus v3 =
u3 = 0 and so σ = 0. Thus z is not in K1+ K2.

However, we want to show that z ∈ K1+ K2. For α > |ρ|, put x(α)= (α+ρ/2)e1−√
(α+ρ/2)2−σ 2/4e2+ 1

2σe3 and y(α) = (α−ρ/2)e2−
√

(α−ρ/2)2−σ 2/4e1+ 1
2σe3.

Simple calculations show that x(α) ∈ K1 and y(α) ∈ K2, provided α ≥ (|ρ|+ |σ |)/2. Since√
(α+ρ/2)2−σ 2/4= α+ρ/2+O (1/α) as α→∞,

we have

x(α)+y(α)= [
(α+ρ/2)− (α−ρ/2)

]
e1+

[
(α−ρ/2)− (α+ρ/2)

]
e2

+σe3+O (1/α) .

Taking α→∞we see that x(α)+y(α)→ ρ (e1− e2)+σe3, so that z∈ K1+ K2, as desired.

B.1.4 Tangent cones and normal cones

We can define the tangent cone to K at a point x ∈ K as

TK (x)=
{

lim
j→∞

x j − x

t j
| x j ∈ K for all j , t j ↓ 0 as j →∞

}
. (B.10)

This represents the shape of K close to x .

Lemma B.10. Suppose that K is a closed convex set and x ∈ K . Then TK (x) is a closed
convex cone. Also, if x �∈ K , then TK (x)= ∅.

Proof. First we show that TK (x) is a cone: Suppose y ∈ TK (x) and α ≥ 0. We show that
αy ∈ TK (x). If α = 0, then αy = 0; 0 ∈ TK (x) since we can take x j = x for all j . If
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α > 0, then if y = lim j→∞
(
x j − x

)
/t j with x j ∈ K for all j and t j ↓ 0 as j →∞, then

αy = lim j→∞
(
x j − x

)
/
(
t j/α

) ∈ TK (x).
Now we show that TK (x) is convex. Suppose that y, z ∈ TK (x) and 0 ≤ θ ≤ 1.

We wish to show that θy + (1− θ )z ∈ TK (x). Let y = lim j→∞
(
y j − x

)
/s j and z =

lim j→∞
(
z j − x

)
/t j with y j , z j ∈ K and s j , t j ↓ 0 as j →∞. Let r j =min(s j , t j )> 0; r j ↓

0 as j →∞. Since x ∈ K and K is convex, for any 0≤ σ j ≤ 1, ŷ j = σ j y j+
(
1−σ j

)
x ∈ K .

Note that ŷ j − x = σ j
(
y j − x

)
. If we choose 0 ≤ σ j = r j/s j ≤ 1, then

(
ŷ j − x

)
/r j =

σ j
(
y j − x

)
/r j =

(
y j − x

)
/s j . Similarly we can find ẑ j = τ j z j +

(
1− τ j

)
x ∈ K with

τ j = r j/t j so that
(̂
z j − x

)
/r j = τ j

(
z j − x

)
/r j =

(
z j − x

)
/t j . Then

θy+ (1− θ )z = θ lim
j→∞

ŷ j − x

r j
+ (1− θ ) lim

j→∞
ẑ j − x

r j

= lim
j→∞

θ ŷ j + (1− θ )̂z j − x

r j
∈ TK (x).

To show that TK (x) is closed, suppose that y( j ) → y, y( j ) ∈ TK (x), so that y( j ) =
liml→∞

(
y( j )

l − x
)
/t ( j )

l with y( j )
l ∈ K and t ( j )

l ↓ 0 as l →∞. We can construct a sequence
l j as follows: l1 = 1;

l j+1 =min

{
l ≥ l j +1 | t ( j+1)

l ≤ 1

2
t ( j )
l j

and
∥∥∥y( j )−

(
y( j )

l − x
)
/t ( j )

l

∥∥∥ < 2− j
}

.

Note that t ( j )
l j
↓ 0 as j →∞. Then, setting z j = y( j )

l j
∈ K ,∥∥∥y−

(
z( j )− x

)
/tl j

∥∥∥≤ ∥∥∥y− y( j )
∥∥∥+∥∥∥y( j )−

(
z( j )− x

)
/tl j

∥∥∥
≤

∥∥∥y− y( j )
∥∥∥+2− j → 0 as j →∞.

Thus y ∈ TK (x).
To show that for x �∈ K , TK (x)=∅, note that the distance between x and K is positive,

as K is closed. Then, for any sequence x j ∈ K and t j ↓ 0 as j →∞,
∥∥(

x j − x
)
/t j

∥∥→+∞
as j →∞, and so

(
x j − x

)
/t j cannot have a limit as j →∞.

The tangent cone TK (x) is essentially the result of “blowing up” K around x and
taking the result to the limit. Note that the tangent cone can also be defined as

TK (x)=
⋃
t>0

1

t
(K − x) for x ∈ K . (B.11)

To see why, note that if r > s > 0, then for x ∈ K ,

1

r
(K − x)⊆ 1

s
(K − x)

since K is convex. Alternatively, we can write

TK (x)= cone(K − x) for x ∈ K , (B.12)
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where

cone(A)= {αx | α ≥ 0, x ∈ A } (B.13)

is the cone generated by a set A ⊆ X . Note that neither (B.11) nor (B.12) applies if x �∈ K ;
if x �∈ K , then TK (x)= ∅.

Closely related to the tangent cone is the normal cone:

NK (x)=−TK (x)∗ = TK (x)◦ ⊂ X ′ for x ∈ K , (B.14)

the negative of the dual to the tangent cone. If x �∈ K , then we define NK (x) = ∅. An
equivalent definition is that for x ∈ K ,

NK (x)= {η | 〈η, w− x〉 ≤ 0 for all w ∈ K } . (B.15)

Lemma B.11. Definition (B.14) is equivalent to (B.15).

Proof. Suppose x ∈ K and η ∈ TK (x)◦, so that 〈η, w〉 ≤ 0 for all w ∈ TK (x). Pick z ∈ K .
As K is convex, for all 0 ≤ θ ≤ 1, θz+ (1− θ )x ∈ K . Then, taking θ ↓ 0, we see that
z− x ∈ TK (x). So 〈η, z− x〉 ≤ 0 for all z ∈ K .

Suppose that x ∈ K and 〈η, w− x〉 ≤ 0 for all w ∈ K . Then, if z ∈ TK (x), then z =
lim j→∞

(
w j − x

)
/t j , where w j ∈ K and t j ↓ 0. Thus

〈η, z〉 = lim
j→∞

〈
η, w j − x

〉
/t j ≤ 0.

Since this inequality holds for all z ∈ TK (x), it follows that η ∈ TK (x)◦.

The normal cone is closely related to the projection operator since for all x ,

JX (x−�K (x)) ∈ NK (�K (x)) . (B.16)

The recession cone of a closed convex set K ⊆ X is denoted by K∞ and given by the
formula

K∞ :=
{

lim
i→∞ ti xi | xi ∈ K , ti ↓ 0 as i →∞

}
.

An equivalent expression for any x ∈ K is

K∞ =
⋂
t>0

t (K − x) . (B.17)

The recession cone is the set of all v ∈ X where for any x ∈ K we have x + αv ∈ K for
all α ≥ 0. Thus, for any x ∈ K ,

x+ K∞ ⊆ K .

If K is a cone as well as being closed and convex, then K = K∞. We can think of K∞ as
the set of directions in K “at infinity.” The recession cone can clearly be seen to be a closed
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convex cone (being the nested intersection of a family of closed convex sets in (B.17)). It
is also nonempty (provided, of course, that K �= ∅), as then 0 ∈ K∞.

It is tempting to think that if K is a closed convex set, then K is bounded if and only
if K∞ = {0}. It is certainly true that if K is bounded, then K∞ = {0}. The converse is also
true in finite dimensions. However, in infinite-dimensional spaces “K∞ = {0}” does not
necessarily imply that K is bounded. Consider, for example,

K =
x ∈ �2 |

∞∑
j=1

1

j
x2

j ≤ 1

 .

This is not a bounded set, as
√

j e j ∈ K for j = 1, 2, . . . . However, no ray belongs to K :
0 ∈ K , and for any x �= 0, 0+α x ∈ K means that α2 ∑∞

j=1 x2
j /j ≤ 1. This gives an upper

bound on α, and so we cannot take α→+∞. Thus K∞ = {0}.
In infinite dimensions, we also need to consider weak convergence. It turns out that

K∞ = {v ∈ X | tk xk ⇀v weakly, tk ↓ 0, xk ∈ K for all k } .
To show this, since strong convergence implies weak convergence,

K∞ ⊆ {v ∈ X | tk xk ⇀v weakly, tk ↓ 0, xk ∈ K for all k } .
To see the reverse inclusion, we use (B.17): K∞ =⋂

t>0 t(K − x) for some (or indeed,
any) x ∈ K . Then, if tk xk ⇀ v, for any s > 0 and sufficiently large k, 0 < tk < s, so
tk (xk− x) ∈ s (K − x). Now s (K − x) is a closed convex set, and so it is weakly closed,
and therefore the weak limit of tk (xk− x), which is v, must belong to s (K − x). Thus
v ∈⋂

s>0 s(K − x)= K∞.
Recession cones are not just of interest for their own sake. They can be important

for determining if certain properties hold. Consider, for example, that K is a closed convex
set, and L j , j = 1, 2, . . . , is a nested family of closed convex sets with L j+1 ⊆ L j for all j .
Is

∞⋂
j=1

(
K + L j

)= K +
∞⋂
j=1

L j ?

This turns out to depend on recession cones—at least for Rn!

Lemma B.12. Suppose K and L j , j = 1,2,3, . . . , are all convex and closed in Rn with
L1 ⊃ L2 ⊃ ·· · , and K∞∩ (−⋂∞

j=1(L j )∞)= {0}. Then

∞⋂
j=1

(K + L j )= K +
∞⋂
j=1

L j .

Proof. Clearly

K +
∞⋂
j=1

L j ⊆
∞⋂
j=1

(K + L j ).
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To show the reverse inclusion, suppose that z ∈ K + L j for all j . Then z = x j + y j ,
where x j ∈ K and y j ∈ L j . If the sequence x j is bounded, then so is the sequence y j ,
and by taking convergent subsequences, there are limits x∗ ∈ K and y∗ ∈⋂∞

j=1 L j where
z = x∗ + y∗.

Now suppose that ‖x j‖→∞ as j →∞, possibly by taking a subsequence. By re-
striction to a further subsequence, x j/‖x j‖= (z− y j )/‖x j‖→ x̂ ∈ K∞, and so y j/‖y j‖→
ŷ = −x̂ ∈ (Lk)∞ for all k. Thus 0 �= x̂ ∈ K∞∩ (−⋂∞

k=1(Lk)∞), contradicting the above
assumption. Thus the sequences x j and y j are bounded, and so z ∈ K +⋂∞

j=1 L j for all
z ∈⋂∞

j=1(K + L j ).
Hence

⋂∞
j=1(K + L j )= K +⋂∞

j=1 L j , as desired.

The “pointedness” assumption, K∞∩ (−⋂∞
j=1(L j )∞)= {0}, is necessary. Consider

the example K = { (x ,0) | x ≤ 0 } and L j = { (x , y) | x ≥ j |y| } for j = 1,2,3, . . . . Then
K + L j = R2 for all j , so

⋂∞
j=1(K + L j ) = R2. But K +⋂∞

j=1 L j = K + (R+×{0}) =
R×{0}. Note that in this case, K∞∩ (−⋂∞

j=1

(
L j

)
∞)=−R+×{0} �= {(0,0)}.

B.1.5 Existence of minimizers

In this section we show the existence of global minimizers of proper convex lower semicon-
tinuous functions φ : X →R∪{∞}, provided that they are coercive, φ(x)→+∞ if ‖x‖→
∞, and X is a reflexive Banach space. We can show that if ψ : Rn → R is continuous and
coercive, then ψ has a global minimizer: the level sets { x | ψ(x)≤ ψ(x0) } for some (any)
point x0 ∈ Rn are closed and bounded and therefore compact. Thus we have a global min-
imizer and a global maximizer. But this does not work in infinite dimensions. If we take
X = �2 = {

(x1, x2, x3, . . .) |∑∞
i=1 x2

i <∞}
, we can set ψ(x)=∑∞

i=1 x2
i / i + (1−‖x‖2

�2 )2,

which is continuous on �2 and has infimum zero, but we can never reach this infimum.
Thus convexity may be necessary.

On the other hand, we need coercivity even for nice convex functions. For example,
f (x)= ex is a convex function of x which is bounded below, with infimum zero. However,
we cannot reach zero. We can approach zero only by taking x →−∞. Thus coercivity
may be necessary.

Theorem B.13. If φ : X →R∪{∞} is proper, convex, lower semicontinuous, and coercive,
with X a reflexive Banach space, then there is a global minimizer x∗.

Proof. Suppose that φ(x0) <∞. If we apply the separating hyperplane theorem to epiφ
and the point (x0, φ(x0)− 1), then we get an affine lower bound for φ: φ(x) ≥ 〈ξ , x〉+β.
So φ is bounded below on bounded sets. Now the level set L0 := { x | φ(x)≤ φ(x0) } is a
closed (since φ is lower semicontinuous) and bounded (since φ is coercive) convex set. So
φ is bounded below on L0 and has an infimum. Let xk be an infimizing sequence: φ(xk)→
infx∈L0 φ(x) = infx∈X φ(x). Since X is reflexive, by Alaoglu’s theorem there is a weakly
converging subsequence (also denoted by xk), so xk ⇀ x∗ as k →∞. By Mazur’s lemma
there are zk ∈ co {xk , xk+1, . . .} such that zk → x∗ strongly. Now zk is a convex combination
of xk , xk+1, . . . , so infx∈X φ(x)≤ φ(zk) ≤ sup {φ(xk), φ(xk+1), . . .} → infx∈X φ(x) as k →
∞. Since φ is lower semicontinuous, φ(x∗) ≤ liminfk→∞ φ(zk) ≤ infx∈X φ(x). Adding
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the inequality infx∈X φ(x) ≤ φ(x∗), we see that φ(x∗) = infx∈X φ(x), and x∗ is a global
minimizer.

B.2 Subdifferentials and generalized gradients
The subdifferential of a convex function φ : X → R∪{∞} at x ∈ X is the set

∂φ(z)= {
g ∈ X ′ | φ(z)≥ φ(x)+〈g, z− x〉 for all z ∈ X

}
.

Subdifferentials ∂φ(x) are closed convex sets. As is shown in Section 4.2, the subdiffer-
ential of a proper lower semicontinuous convex function is a maximal monotone operator.
Also, ∂φ(x) �= ∅ for all x ∈ intdomφ. If φ is differentiable at x , then ∂φ(x)= {∇φ(x)}. For
proper lower semicontinuous convex functions, x∗ minimizes φ if and only if 0 ∈ ∂φ(x∗).

The following theorem summarizes the basic properties of subdifferentials of convex
functions.

Theorem B.14. Let φ, ψ : X →R∪{∞} be proper, convex, and lower semicontinuous and
X be a reflexive Banach space. Then the following hold:

1. The directional derivatives φ′(x ; v) = lims↓0 (φ(x+ s v)−φ(x))/s exist (possibly
with the value +∞). Furthermore, φ(z)≥ φ(x)+φ′(x ; z− x), and

∂φ(x)= {
g ∈ X ′ | 〈g, v〉 ≤ φ′(x ; v) for all v ∈ X

}
.

2. ∂φ(x) is a closed convex set,

3. Graph∂φ is a closed set in X × X ′.

4. ∂φ(x) �= ∅ whenever x ∈ intdomφ (and φ is Lipschitz on some neighborhood of x).

5. If φ is Gateaux differentiable at x, then ∂φ(x)= {∇φ(x)}.
6. x is a global minimizer of φ if and only if 0 ∈ ∂φ(x).

7. Provided φ+ψ is proper, then ∂ (φ+ψ) (x)⊇ ∂φ(x)+∂ψ(x) with equality if either
x ∈ intdomφ or x ∈ intdomψ .

Proof.

1. Now, for any 0 < θ < 1, φ(x + θ s v) = φ((1− θ )x + θ (x + sv)) ≤ (1− θ )φ(x)+
θ φ(x+ sv), and so (φ(x+ θ s v)−φ(x))/(θ s)≤ (φ(x+ s v)−φ(x))/s. That is, s #→
(φ(x+ sv)−φ(x))/s is a nondecreasing function of s > 0. Thus the limit as s ↓ 0
exists, although it can possibly have the value +∞. Hence φ(x + s v) ≥ φ(x)+
s φ ′(x ; v). Putting s= 1 and v= z−x for a given z shows that φ(z)≥φ(x)+φ′(x ; z−
x), as desired. For the characterization of the subdifferential, if 〈g, v〉 ≤ φ′(x ; v) for
all v, then clearly g ∈ ∂φ(x). Conversely, suppose that g ∈ ∂φ(x). Then, for any v,
(φ(x+ s v)−φ(x))/s ≥ (φ(x)+ s 〈g, v〉−φ(x))/s = 〈g, v〉. Taking the limit as s ↓ 0
shows that φ′(x ; v)≥ 〈g, v〉 for any v.
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2. First, ∂φ(x) is closed: Suppose gk → g and gk ∈ ∂φ(x). Then, for all y ∈ X , φ(y)−
φ(x)− 〈gk , y− x〉 ≥ 0. Taking k →∞ we get φ(y)− φ(x)− 〈g, y− x〉 ≥ 0 for
all y ∈ X , and so g ∈ ∂φ(x).

Second, ∂φ(x) is convex: Suppose g1, g2 ∈ ∂φ(x) and 0≤ θ ≤ 1. Then, for all y ∈ X
and i = 1, 2, φ(y)−φ(x)−〈gi , y− x〉 ≥ 0. Taking convex combinations of these
inequalities gives φ(y)−φ(x)−〈θg1+ (1− θ )g2, y− x〉 ≥ 0. Since this is true for
all y ∈ X , θg1+ (1− θ )g2 ∈ ∂φ(x), and ∂φ(x) is convex.

3. Suppose gk ∈ ∂φ(xk) and xk → x and gk → g as k →∞. Then, for every z ∈ X ,
φ(z)≥ φ(xk)+〈gk , z− xk〉. Taking liminfs, noting that liminfk→∞ φ(xk) ≥ φ(x) as
φ is lower semicontinuous, we obtain φ(z)≥ φ(x)+〈g, z− x〉. Thus g ∈ ∂φ(x) and
∂φ has a closed graph.

4. We show that ∂φ(x) �= ∅ if x ∈ intdomφ. Our first task is to show that φ is bounded
on some open set containing x . Let Ek = { z ∈ X | φ(z)≤ k }. Clearly domφ =⋃∞

k=1 Ek . Note that Ek ⊆ Ek+1. Since φ is lower semicontinuous, each Ek is closed.
The intersection

⋂∞
k=1

[
domφ\Ek

]= ∅. Thus, by the Baire category theorem, some
set domφ\Ek is not dense in domφ, and so Ek must contain an open set for some k.
So pick a point z ∈ domφ and an η > 0 such that z+η BX ⊂ domφ. Now, since x ∈
intdomφ, z+s(x− z) ∈ domφ for s ∈ [0,s∗] for some s∗ > 1. Put w= z+s∗(x− z).
Now, for any point y in the convex hull of z+η BX and w, y = θ w+ (1− θ )z′ with
z′ ∈ z+ η BX ⊂ Ek , so φ(y) ≤ θφ(w)+ (1− θ )φ(z′) ≤ max{k, φ(w) }. This convex
hull contains an open set around x . Thus φ is bounded on an open ball x+ ε BX for
some ε > 0.

We now show that |φ(y)−φ(x)| ≤ L ‖x− y‖ for y ∈ x+ εBX . Now we can choose
M so that φ(y) ≤ M for all y ∈ x + ε BX . Note that φ must be bounded below on
x+ε BX ; without loss of generality, let us suppose that φ(y)≥M for all y ∈ x+ε BX .
Thus, for any y ∈ x + ε BX , there is the point w = x + ε(x − y)/(2‖x− y‖) ∈ x +
ε BX : x = θy+ (1− θ )w where θ = ε/(ε + 2‖x− y‖). Thus φ(x)− φ(y) ≤ (θ −
1)φ(y)+ (1−θ )φ(w)≤ 2 M 2‖x− y‖/ (ε+2‖x− y‖)≤ (4M/ε)‖x− y‖. To get an
inequality in the reverse direction, note that if we set w = y+ s(y− x) for s > 0,
φ(y)≤ sφ(x)/(1+ s)+φ(w)/(1+ s) and so φ(y)−φ(x)≤ (φ(w)−φ(x))/(1+ s)≤
2 M/(1+ s). Since we can take any s > 0 where ‖w− x‖ = (1+ s)‖y− x‖ < ε,
taking 1+ s to the limiting value of ε/‖y− x‖ we get the bound φ(y)− φ(x) ≤
2 M ‖y− x‖/ε. Either way, we get |φ(x)−φ(y)| ≤ (4 M/ε)‖y− x‖. From this we
can see that the directional derivative at x , φ′(x ; ·) is Lipschitz and convex. Then, by
the Hahn–Banach theorem, there is a g ∈ X ′ where 〈g, v〉 ≤ φ′(x ; v) for all v ∈ X , so
g ∈ ∂φ(x) and ∂φ(x) �= ∅.

5. If φ is Gateaux differentiable at x , then for any v ∈ X ,

φ(x+ sv)−φ(x)

s
→ φ′(x ; v)= 〈∇φ(x), v〉 as s → 0.

Thus, for any z, putting s = 1 and v = z− x we get φ(z)≥ φ(x)+〈∇φ(x), z− x〉 for
all z ∈ X . Hence ∇φ(x) ∈ ∂φ(x). To show that nothing else is in ∂φ(x), suppose that
g ∈ ∂φ(x). Then φ(x+ s v) ≥ φ(x)+ s 〈g, v〉 for all s > 0 and v ∈ X . Taking limits
s ↓ 0 gives φ′(x ; v)= 〈∇φ(x), v〉 ≥ 〈g, v〉 for all v ∈ X . Replacing v with −v shows
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that the reverse inequality holds, and so 〈∇φ(x), v〉 = 〈g, v〉 for all v ∈ X . The only
way this can happen is if g =∇φ(x).

6. Now suppose that x is a global minimizer of φ. Then clearly φ(z)≥ φ(x)= φ(x)+
〈0, z− x〉 for all z, so 0 ∈ ∂φ(x). Conversely, suppose that 0 ∈ ∂φ(x). Then, for all
z, φ(z)≥ φ(x)+〈0, z− x〉 = φ(x), as desired.

7. Suppose g ∈ ∂φ(x) and h ∈ ∂ψ(x). Then, for any z ∈ X ,

φ(z)+ψ(z)≥ φ(x)+ψ(x)+〈g+h, z− x〉 ,
and so g+ h ∈ ∂ (φ+ψ). Conversely, suppose that x ∈ intdomφ. Then, by item 4,
φ is Lipschitz in a neighborhood of x . Then the directional derivative φ ′(x ; v) not
only exists but also is finite (bounded by the local Lipschitz constant of φ times
‖v‖). The directional derivative of ψ also exists, but it may be infinite. Then,
for any v ∈ X , the directional derivative (φ+ψ)′ (x ; v) = φ′(x ; v)+ψ ′(x ; v) ex-
ists, but it may be infinite. The subdifferential of a convex function f can be written
as ∂ f (x) = {

g ∈ X ′ | f ′(x ; v) ≥ 〈g, v〉 for all v
}
. Since we have (φ+ψ)′ (x ; v) =

φ′(x ; v)+ψ ′(x ; v) for all v ∈ X , we have equality of ∂ (φ+ψ) (x) and ∂φ(x)+
∂ψ(x).

The Baire category argument for item 4 is given in Borwein and Zhu (see
[36, Thm. 4.1.3]). Item 7 can be shown to hold if 0∈ int [dom∂φ−dom∂ψ] via Lemma 2.32.

B.2.1 Fenchel duality

An important concept in convex analysis is that of Fenchel dual of proper convex functions.
The Fenchel dual φ∗ : X ′ → R∪{∞} of a convex function φ : X → R∪{∞} is

φ∗(y)= sup
x∈X

〈y, x〉−φ(x). (B.18)

The main properties of Fenchel dual functions are given in the following theorem.

Theorem B.15. Suppose that X is a reflexive Banach space, and that φ : X → R∪{∞} is
proper, convex, and lower semicontinuous. Then the Fenchel dual φ∗ : X ′ → R∪{∞} is
also proper, convex, and lower semicontinuous. Also φ∗∗ = φ. Furthermore, for any x ∈ X
and y ∈ X ′, we have

φ(x)+φ∗(y)≥ 〈x , y〉
with equality if and only if y ∈ ∂φ(x), or equivalently, x ∈ ∂φ∗(y).

Proof. From the definition (B.18), φ∗ is the supremum of linear functions and is therefore
convex.

To show that it is lower semicontinuous, suppose that yk → y in X ′. Then

φ∗(yk)= sup
x∈X

〈yk , x〉−φ(x).
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For any ε > 0 choose xε such that 〈y, xε〉−φ(xε)≤ φ∗(y)≤ 〈y, xε〉−φ(xε)+ ε. Then

φ∗(yk) ≥ 〈yk , xε〉−φ(xε)

= 〈y, xε〉+ 〈yk− y, xε〉−φ(xε)

≥ φ∗(y)− ε−‖yk− y‖ ‖xε‖
→ φ∗(y)− ε as k →∞.

Thus liminfk→∞ φ∗(yk) ≥ φ∗(y)− ε. Since ε > 0 is arbitrary, liminfk→∞ φ∗(yk) ≥ φ∗(y)
and φ∗ is lower semicontinuous.

To show that φ∗ is proper, note that φ is proper, so that there is a point x ∈ X where
φ(x) <∞. Then, since epiφ is a closed, convex set, and (x , φ(x)− 1) �∈ epiφ, by the
separating hyperplane theorem, there must be (η, γ ) ∈ X ′ ×R and β ∈R such that〈[

η

γ

]
,

[
z
s

]〉
+β ≥ 0 for all z ∈ X , s ≥ φ(z),〈[

η

γ

]
,

[
x

φ(x)−1

]〉
+β < 0.

In particular, taking z = x and s = φ(x) in the first inequality gives 〈η, x〉+γ φ(x)+β ≥ 0.
On the other hand, the second inequality gives 〈η, x〉+γ φ(x)−γ +β < 0, so γ > 0. Again
using the first inequality but with z ∈ X and s = φ(z), we get

〈η, z〉+γ φ(z)+β ≥ 0.

Negating and dividing by γ > 0 give 〈−η/γ , z〉 − φ(z) ≤ −β/γ ; taking the supremum
gives φ∗(−η/γ )≤−β/γ <+∞, and so φ∗ is proper.

Suppose that x ∈ X and y ∈ X ′. Then

φ(x)+φ∗(y)= φ(x)+ sup
z∈X
〈y, z〉−φ(z)

≥ φ(x)+〈y, x〉−φ(x) = 〈y, x〉 .
This is known as weak duality.

We can now justify the term duality by showing that φ∗∗ = φ. First we show that
φ∗∗ ≤ φ:

φ∗∗(x)= sup
y∈X ′

〈x , y〉−φ∗(x)

= sup
y∈X ′

[
〈x , y〉− sup

z∈X
〈z, y〉+φ(x)

]
= sup

y
inf

z
〈x− z, y〉+φ(z).

Taking z = x in place of the infimum shows that

φ∗∗(x)≤ sup
y
〈x− x , y〉+φ(x) = φ(x) for all x ∈ X .
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On the other hand, we can show that φ ≤ φ∗∗: Suppose that φ(x) <∞. For ε > 0, since
(x , φ(x)− ε) �∈ epiφ, there are ηε ∈ X ′ and βε , γε ∈ R such that〈[

ηε
γε

]
,

[
z
s

]〉
+βε ≥ 0 for all z ∈ X , s ≥ φ(z),〈[

ηε
γε

]
,

[
x

φ(x)− ε

]〉
+βε < 0.

That is, 〈ηε , z〉+γε φ(z)+βε ≥ 0 for all z ∈ X while 〈ηε , x〉+γε φ(x)−γεε+βε < 0 . Note
that γε > 0. Dividing by γε and combining these inequalities give φ(x)< 〈−ηε/γε , x− z〉+
φ(z)+ ε. Then

φ∗∗(x)= sup
y

inf
z
〈x− z, y〉+φ(z)

≥ inf
z
〈x− z,−ηε/γε〉+φ(z)

≥ φ(x)− ε.

In the case where φ(x) =∞, we use the separating hyperplane theorem again, but using
(x , M) �∈ epiφ for arbitrary M ∈R. In either case we get φ∗∗(x)≥ φ(x) for all x . Combin-
ing the results shows that φ∗∗ = φ.

Now suppose that φ(x)+φ∗(y)= 〈y, x〉. Then, for any z ∈ X , φ(x)+〈y, z〉−φ(z)≤
〈y, x〉; rearranging gives φ(z)≥ φ(x)+〈y, z− x〉. In other words, y ∈ ∂φ(x).

To show the reverse implication, suppose that y ∈ ∂φ(x), so that φ(z) ≥ φ(x)+
〈y, z− x〉 for all z ∈ X . Then z #→ φ(z)−〈y, z− x〉 has a global minimum at z = x . So

φ∗(y)= sup
z
〈z, y〉−φ(z)

= sup
z
〈z− x , y〉−φ(z)+〈x , y〉

= −φ(x)+〈x , y〉 ,
and φ(x)+φ∗(y)= 〈x , y〉.

To show that φ(x)+φ∗(y) = 〈x , y〉 is equivalent to x ∈ ∂φ∗(y), apply the previous
two paragraphs to ψ =φ∗ and use ψ∗ = φ∗∗ = φ. Thenψ(y)+ψ∗(x)=〈x , y〉 is equivalent
to x ∈ ∂ψ(y); unwrapping the substitutions gives the result.

The difference φ(x)+φ∗(y)−〈y, x〉 is called the duality gap. If the duality gap is
zero, then φ∗(y) = 〈y, x〉−φ(x)= maxz∈X 〈y, z〉−φ(z). If φ∗ is a computable function,
then the duality gap is a way of determining how close a feasible point is to being optimal
for convex optimization problems.

B.2.2 Constrained convex optimization and KKT conditions

Minimizing a convex function subject to convex inequality constraints is a standard prob-
lem in nonlinear programming. Usually we have Lagrange multipliers and KKT (Karush–
Kuhn–Tucker or just Kuhn–Tucker) conditions. But this depends on the holding of some
constraint qualification.
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Consider the problem

min
x

f (x) subject to (B.19)

gi (x)≤ 0, i = 1, 2, . . . , m, (B.20)

with f and the gi ’s convex finite-valued functions. The feasible set is

K = { x | gi (x)≤ 0, i = 1, 2, . . . , m } , (B.21)

which is a closed convex set. Then (B.19)–(B.20) is equivalent to minimizing f + IK ,
where IK is the indicator function for K . The optimality condition then becomes 0 ∈
∂ ( f + IK ) (x). As long as f is finite valued on a neighborhood of K , this is equivalent to
0∈ ∂ f (x)+∂ IK (x)= ∂ f (x)+NK (x) by Theorem B.14(7). If f is differentiable throughout
K , we have the optimality condition

∇ f (x) ∈ −NK (x).

The usual rule for NK (x) where K is given by (B.21) with smooth gi is

NK (x)= cone {∇gi (x) | gi (x)= 0 } .
However, this can fail, even for just one constraint. Consider, for example, g(x , y)= x2+ y2

and K = { (x , y) | g(x , y)≤ 0 }. This rule would give NK (0,0) = {(0,0)}, whereas K =
{(0,0)}, and so in fact NK (0,0)=R2. The rule NK (x)= cone {∇gi (x) | gi (x)= 0 } applies
as long as the Slater constraint qualification holds, that is, if there is a point x̂ where

gi ( x̂ ) < 0 for all i = 1, 2, . . . , m. (B.22)

We handle this in two steps. The first is to show that the Slater constraint qualification for
a general locally Lipschitz function gives a nice formula for the normal cone.

Lemma B.16. Let K = { x ∈ X | φ(x)≤ 0 }, where φ is a locally Lipschitz convex function
and X a reflexive Banach space, and suppose that there is an x0 where φ(x0) < 0. Then,
for any x∗ with φ(x∗)= 0,

NK (x∗)= cone∂φ(x∗).

Proof. Note that the directional derivative φ′(x∗; v) is finite and defined for all v, positively
homogeneous, and convex in v. First, we show that TK (x∗) ⊆ {

v | φ′(x ; v) ≤ 0
}
. Let

v = limk→∞ (xk− x∗)/tk with xk ∈ K and tk ↓ 0. If L is a local Lipschitz constant for φ,
then

φ′(x∗; v)= lim
k→∞

φ(x∗+ tkv)−φ(x∗)
tk

≤ lim
k→∞

φ(xk)−φ(x∗)
tk

+ L

∥∥∥∥ xk− x∗

tk
− v

∥∥∥∥ ≤ 0,

so TK (x∗) ⊆ {
v | φ′(x∗; v) ≤ 0

}
. To show the reverse inclusion, we need the Slater con-

straint qualification: let v0 = x0− x∗. Now φ′(x∗; v0) ≤ φ(x∗ + v0)−φ(x∗) < 0. So, by
convexity of φ′(x∗; ·), for 0 < θ < 1 and v ∈ TK (x∗),

φ′(x∗; (1− θ )v+ θv0)≤ (1− θ )φ′(x∗; v)+ θ φ′(x∗; v0) < 0.
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Thus, for sufficiently small t > 0, φ (x∗ + t [(1− θ )v+ θv0])< 0, so taking t ↓ 0, (1−θ )v+
θv0 ∈ TK (x∗). Since TK (x∗) is a closed set, taking θ ↓ 0 gives v ∈ TK (x∗), as desired.

Then

TK (x∗)= {
v | φ′(x∗; v) ≤ 0

}
=

{
v | sup

ξ∈∂φ(x∗)
〈ξ , v〉 ≤ 0

}
. (B.23)

So NK (x∗) = TK (x∗)◦ = {η | 〈η, v〉 ≤ 0 for all v ∈ TK (x∗) } ⊇ ∂φ(x∗). Since NK (x∗) is a
cone, NK (x∗) ⊇ cone∂φ(x∗). To show the reverse inclusion, suppose that η ∈ NK (x∗)\
cone∂φ(x∗). By the separating hyperplane theorem, there is a z ∈ X where

〈η, z〉+β > 0,

〈αξ , z〉+β ≤ 0 for all α ≥ 0, ξ ∈ ∂φ(x∗).

Taking α = 0 gives β ≤ 0; taking α → +∞ gives 〈ξ , z〉 ≤ 0 for all ξ ∈ ∂φ(x∗). Thus
z ∈ TK (x∗) by (B.23). On the other hand, 〈η, z〉 > 0, contradicting NK (x∗) = TK (x∗)◦.
Thus we must conclude that NK (x∗) ⊆ cone∂φ(x∗). Combining the two inclusions gives
NK (x∗)= cone∂φ(x∗).

To get

NK (x)= cone {∇gi (x) | gi (x)= 0 } for

K = { x | gi (x)≤ 0, i = 1, 2, . . . , m}
requires an additional step. If we set gmax(x)=maxi=1,2, ...,m gi (x), then gmax is a locally
Lipschitz convex function and K = { x | gmax(x)≤ 0 }. So NK (x)= cone∂gmax(x). What
we now need is a formula for ∂gmax .

Lemma B.17. If φmax (x)=maxi=1,2, ...,m φi (x), where each φ : X → R is a locally Lips-
chitz convex function, then

∂φmax (x∗)= co
⋃

i:φi (x∗)=φmax (x∗)
∂φi (x∗). (B.24)

Proof. If φi (x∗) <φmax (x∗), then φi (x)< φmax(x) for all x in a neighborhood of x∗, so we
can ignore φi if this is so. So we assume without loss of generality that φi (x∗)= φmax (x∗)
for all i . Then

φ′max (x∗; v)= lim
t↓0

φmax (x∗+ tv)−φmax(x∗)
t

= lim
t↓0

max
i

φi (x∗ + tv)−φi (x∗)
t

=max
i

lim
t↓0

φi (x∗ + tv)−φi (x∗)
t

= max
i

φ′i (x∗; v).

So

∂φmax(x∗)= {
ξ | 〈ξ , v〉 ≤ φ′max(x∗; v) for all v

}
= {

ξ | 〈ξ , v〉 ≤ φ′i (x∗; v) for all v and i
} ⊇ ∂φi (x∗) for all i .
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Thus ∂φmax (x∗) ⊇ co
⋃

i ∂φi (x∗). Since each ∂φi (x∗) is closed, convex, and bounded, it
is also weakly compact (as X is a reflexive space), and so co

⋃
i ∂φi (x∗) is also weakly

compact and thus strongly closed.
To show the reverse inclusion, suppose that η ∈ ∂φmax(x∗)\co

⋃
i ∂φi (x∗). Then, by

the separating hyperplane theorem, there are z ∈ X and β ∈R such that

〈η, z〉+β > 0,

〈ξ , z〉+β ≤ 0 for all ξ ∈ co
⋃

i

∂φi (x∗).

The latter inequality reduces to 〈ξ , z〉+β ≤ 0 for all ξ ∈ ∂φi (x∗) for some i . Taking the
supremum over all such ξ ’s shows that maxi φ

′
i (x ; z)≤−β < 〈η, z〉 ≤ φ′max (x ; z), which is

a contradiction. Thus ∂φmax(x∗)= co
⋃

i:φi (x∗)=φmax (x∗) ∂φi (x∗).

This result can be extended to φ : X × A → R continuous, with φ(x ,a) convex and
Lipschitz in x . If φmax (x)=maxa∈A φ(x ,a), then

∂φmax (x∗)= co
⋃

a:φ(x∗,a)=φmax (x∗)
∂xφ(x ,a). (B.25)

Such formulas are proved in even more generality in, for example, Clarke [55] and are very
important for certain optimization problems.

Now if K = { x | gi (x)≤ 0, i = 1, 2, . . . , m } with gi convex and Slater’s constraint
qualification holds (for some x0, gi (x0) < 0 for all i ), then if x∗ ∈ K ,

NK (x∗)= cone co
⋃

i:gi (x∗)=0

∂gi (x∗)

=
{

m∑
i=1

λi ξi | λi ≥ 0, ξi ∈ ∂gi (x∗), λi · gi (x∗)= 0 for all i

}
.

The optimization criterion for (B.19)–(B.20) then becomes the existence of Lagrange
multipliers λi ≥ 0 such that λi gi (x)= 0 for all i and

0 ∈ ∂ f (x∗)+
m∑

i=1

λi ∂gi (x
∗), (B.26)

the convex subdifferential version of the KKT conditions.
What if the Slater constraint qualification fails? What should we use for the necessary

conditions? Fritz John came up with an answer for smooth (but generally nonconvex con-
straints) [135]. In the convex case it works like this: let φmax (x)= maxi φi (x). If Slater’s
constraint qualification fails, then φ′max (x ; v)≥ 0 for all v, so 0 ∈ ∂φmax (x). Thus there are
θi ≥ 0,

∑m
i=1 θi = 1, where 0 ∈∑m

i=1 θi ∂φi (x). We can combine this with (B.26) to give
the condition that

0 ∈ λ0 ∂ f (x)+
m∑

i=1

λi ∂gi (x
∗), (B.27)

where all λi ≥ 0 (including i = 0) and at least one of the λi ’s is strictly positive. This is
known as the Fritz John condition for optimality, and it holds even if constraint qualifica-
tions fail.
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B.2.3 Inf-convolutions

The inf-convolution of two proper convex lower semicontinuous functions f , g : X →R∪
{∞} is the function

( f � g)(x)= inf
y

f (y)+ g(x− y) (B.28)

= inf
y,z:x=y+z

f (y)+ g(z). (B.29)

Note that dom f � g = dom f + dom g. Now f � g is a convex function, but it is not
necessarily lower semicontinuous.

Lemma B.18. If f and g are convex functions, so is f � g.

Proof. Fix x1, x2 ∈ X and 0 ≤ θ ≤ 1; let x = θx1+ (1− θ )x2. For any ε > 0, choose y1,ε ,
y2,ε such that f � g(xi )+ ε ≥ f (yi,ε)+ g(xi − yi,ε), i = 1, 2. Set yε = θy1,ε+ (1− θ ) y2,ε .
Then

f � g(x)≤ f (yε)+ g(x− yε)

≤ θ f (y1,ε)+ (1− θ ) f (y2,ε)+ θg(x1− y1,ε)+ (1− θ )g(x2− y2,ε)

≤ θ
[

f � g(x1)+ ε
]+ (1− θ )

[
f � g(x2)+ ε

]
.

Since ε > 0 is arbitrary, we see that f � g is indeed convex.

Inf-convolutions are closely related to Fenchel duals: ( f � g)∗ = f ∗ + g∗. However,
we will need to use some results about inf-convolutions (and related functions) assuming
some properties of the domains of f and g. In particular, we want to give conditions under
which f � g is locally Lipschitz (which implies that it is locally lower semicontinuous).
Following the proof of Theorem B.14(4), if we can show that a convex function is locally
bounded above, then it is locally Lipschitz. The conditions under which we can prove
that f � g is locally Lipschitz are variously called constraint qualifications, or transver-
sality conditions. These kinds of conditions generalize what are ordinarily referred to as
constraint qualifications or transversality conditions well beyond their readily recognizable
forms.

Our basic result is the following.

Lemma B.19. If the domain of f � g contains an open set, then f � g is bounded in a
neighborhood of z0 for any z0 ∈ int (dom f +domg).

Note that it is sufficient to show that f � g is Lipschitz on a neighborhood of each
point in the interior of dom f + dom g. Before we give the proof of this lemma, we need
some preliminary results.

A set S is convex series closed if for θi ≥ 0,
∑∞

i=1 θi = 1 and xi ∈ S, x̂ =∑∞
i=1 θi xi

implies x̂ ∈ S.
The importance of these concepts is that they relate to the interior of convex series

closed sets. The proof follows Borwein and Zhu [36].

Lemma B.20. If S is convex series closed, then int S = int S.
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Proof. We know that S ⊆ S, so int S ⊆ int S. We want to show the reverse conclusion, so
suppose that z ∈ int S. Choose δ > 0 such that z+ δBX ⊂ S. Now, translating by −z,

δBX ⊂ S− z ⊂ S− z+ 1

2
δ BX .

Multiplying by 2−k gives 2−kδBX ⊂ 2−k(S− z)+2−k−1δBX . Expanding this gives

1

2
δBX ⊂ 1

2
(S− z)+ 1

22
(S− z)+·· ·+ 1

2k+1
(S− z)+ 1

2k+2
δBX .

Then, for any w ∈ 1
2δBX ,

w ∈
k+1∑
i=1

2−i (si − z)+2−k−1δBX . (B.30)

Since S is convex series closed, so is the translate S− z, and
∑∞

i=1 2−i (si − z) ∈ S− z; that
is,

∑∞
i=1 2−i si ∈ S. On the other hand, taking the limit as k →∞ of (B.30) gives

w =
∞∑

i=1

2−i (si − z) ∈ S− z.

Since this is true for all w ∈ 1
2δBX , it follows that z+ 1

2δBX ⊂ S, and so z ∈ int S. Hence
int S ⊂ int S, and the equality of the two interiors follows.

This has to be combined with the following result regarding closed convex absorbing
sets: A set A is absorbing if for any x ∈ X there is an α > 0 such that αx ∈ A.

Lemma B.21. If S is a closed convex absorbing set in a Banach space X, then 0 ∈ int S.

Proof. Note that if S is absorbing, so is S∩ (−S), so we assume without loss of generality
that S is balanced (that is, if x ∈ S, then −x ∈ S). Since S is absorbing,

⋃∞
k=1 k S = X .

Since this is a countable union of Gδ sets whose union is open, some k S contains an open
set by the Baire category theorem. Thus S contains an open set x0+ δ BX . So −x0+
δ BX ⊂ S as well; taking convex combinations with θ = 1/2 gives δ BX ⊂ S. In other
words, 0 ∈ int S.

Now we can return to the local Lipschitz property of inf-convolutions.

Proof of Lemma B.19. Suppose that z0 ∈ intdom f � g, and pick x0 ∈ dom f and y0 ∈
dom g, where z0 = x0 + y0. Without loss of generality, shift the values of f and g so
that f (x0) = g(y0) = 0. Let f̃ = f + Ix0+BX

and g̃ = g+ Iy0+BX
. Now f̃ and g̃ are

convex proper lower semicontinuous functions with f ≤ f̃ and g ≤ g̃, so f � g ≤ f̃ � g̃,
and we have to show just that f̃ � g̃ is locally bounded. Let Lα be the level set Lα :={

z | ( f̃ � g̃
)

(z) < α
}

for α > 0. First we show that Lα− z0 is absorbing; that is, for any z,
there is a θ > 0 such that z0+θ (z− z0)∈ Lα . To see this, we note that since dom f +dom g
contains a neighborhood of z0, z0+θ (z− z0) ∈ dom f +dom g for sufficiently small θ > 0.
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For such a θ there must be an x ∈ dom f and a y ∈ dom g where z0+θ (z− z0)= x+ y. Now
dom f and domg are convex sets, so for any 0 ≤ η ≤ 1, x0+η (x− x0) ∈ dom f and y0+
η (y− y0) ∈ dom g. Pick η > 0 sufficiently small so that η < 1/max(‖x− x0‖ , ‖y− y0‖);
thus x0 + η (x− x0) ∈ dom f̃ and y0+ η (y− y0) ∈ dom g̃. In fact, f̃ (x0+η (x− x0)) ≤
η f (x), g̃ (y0+η (y− y0)) ≤ η g(y), so

(
f̃ � g̃

)
(z0+ θη (z− z0)) ≤ η ( f (x)+ g(y)). If we

also make 0 < η < α/ ( f (x)+ g(y)), then z0+ θη (z− z0) ∈ Lα .
We now want to show that Lα is convex series closed. First, Lα is bounded, as

dom
(

f̃ � g̃
) = dom f̃ + dom g̃ ⊆ x0+ y0+ 2 BX . So consider z :=∑∞

i=1 θi zi with θi ≥
0 for all i and

∑∞
i=1 θi = 1 and zi ∈ Lα . This series certainly converges. We want to

show that it converges to an element of Lα . To do this, note that for any zi ∈ Lα there
must be xi ∈ dom f̃ and yi ∈ dom g̃ where xi + yi = zi and f̃ � g̃(zi ) ≤ f̃ (xi )+ g̃(yi ) ≤(

f̃ � g̃(zi )+α
)
/2 < α. Since the xi ∈ x0 + BX and yi ∈ y0 + BX , both xi and yi are

bounded, and so x :=∑∞
i=1 θi xi and y := ∑∞

i=1 θi yi converge. Since f̃ and g̃ are both
lower semicontinuous and convex, it follows that

f̃ � g̃(z)≤ f̃ (x)+ g̃(y)

≤
∞∑

i=1

θi
(

f̃ (xi )+ g̃(yi )
)
< α,

and so z ∈ Lα . Thus Lα is convex series closed.
Now Lα− z0 is a convex absorbing set, and so Lα− z0 is a closed convex absorbing

set. Hence, Lα contains an open neighborhood of z0 by Lemma B.20, and z0 ∈ int Lα . But
for convex series closed sets, int Lα = int Lα , so z0 ∈ int Lα . Thus f̃ � g̃ is locally bounded
above, and so f � g is also locally bounded above; hence f �g is locally Lipschitz around
every point in its domain.

B.2.4 Nonsmooth analysis: Beyond convex analysis

First we need some terminology for smooth functions. In particular, we say f : X →
Y (where X and Y are Banach spaces) is Fréchet differentiable at x ∈ X with derivative
∇ f (x), a continuous linear map X → Y , if

lim‖h‖→0

f (x+h)− f (x)−∇ f (x)h

‖h‖ = 0. (B.31)

We say that f : X → Y is Gateaux differentiable at x ∈ X with derivative∇ f (x), a contin-
uous linear map X → Y , if for all v ∈ X ,

lim
h→0

f (x+ tv)− f (x)

t
=∇ f (x)v. (B.32)

There are “weak” versions of these concepts where the limit is understood as a weak, rather
than strong, limit.

For nonsmooth and nonconvex functions there are generalizations of subdifferentials.
The best known are the generalized gradients of Clarke [53, 54, 55]. The definition of
these is a little involved, requiring a two-step definition. Given a locally Lipschitz function
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φ : X → R, we define the Clarke directional derivative

φ◦(x ; d)= limsup
x ′→x ;d ′→d ;h↓0

φ(x ′ +hd ′)−φ(x ′)
h

. (B.33)

Since φ is Lipschitz near x this is well defined and finite. Furthermore, φ◦(x ; d) is a
positively homogeneous (φ◦(x ; αd)= αφ◦(x ; d) for α≥ 0) and convex function of d . Then
we can define the Clarke generalized gradient

∂φ(x)= {
g ∈ X ′ | 〈g, d〉 ≤ φ◦(x , ; d) for all d ∈ X

}
. (B.34)

If X = Rn , then

∂φ(x)= co

{
lim

k→∞∇φ(xk) | xk → x as k →∞
}

. (B.35)

This relies on Rademacher’s theorem, which says that a Lipschitz function Rn → R is
differentiable almost everywhere. This can be generalized to certain Banach spaces called
Asplund spaces. Asplund spaces X have the property that any convex function φ : X →
R is Frechét differentiable on a Gδ set that is dense in domφ (see [16]). In fact, every
locally Lipschitz function φ : X → R is differentiable except on a dense subset of X (see
[210]), and (B.35) can be used for the Clarke generalized gradient. A Banach space X is
an Asplund space if and only if its dual X ′ has the RNP.

Clarke generalized gradients can be used for optimization: 0 ∈ ∂φ(x∗) is now a nec-
essary but not sufficient condition for x∗ to be a minimizer of a locally Lipschitz func-
tion φ. The condition 0 ∈ ∂φ(x∗) does not even mean that the directional derivatives
φ′(x∗; d) ≥ 0 for all d . The example of φ(x)=−|x | has 0 ∈ ∂φ(0), but φ′(x∗;±1)=−1.
If φ′(x ; d)= φ◦(x ; d) for all d , we say that φ is Clarke regular at x . If, for all z in a neigh-
borhood of x , we have φ(z)≥ φ(x)+φ◦(x ; d)−r ‖x− z‖2 for a fixed r , we say φ is r-prox
regular, or just prox-regular, if we do not wish to specify a particular r .

An alternative to Clarke’s generalized gradients for locally Lipschitz functions is the
Bouligand generalized gradient given by

∂Bφ(x)=
{

lim
k→∞∇φ(xk) | xk → x as k →∞

}
. (B.36)

From (B.35) and (B.36) we can develop Bouligand and Clarke generalized Jacobian ma-
trices for locally Lipschitz ψ : Rn → Rm :

∂Bψ(x)=
{

lim
k→∞∇ψ(xk) | xk → x as k →∞

}
,

∂ψ(x)= co

{
lim

k→∞∇φ(xk) | xk → x as k →∞
}

.

The Clarke generalized Jacobian allows us to generalize the inverse and implicit functions
to locally Lipschitz functions: if ψ : Rn → Rn and ∂ψ(x∗) contains no singular matrix,
then ψ is a local homeomorphism; in fact, there is a ball y∗ + r B with y∗ = ψ(x∗) where
there is a Lipschitz inverse function ψ−1 defined on y∗+r B with r > 0 and ψ−1(y∗)= x∗
(see [113]).
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Other versions of nonsmooth variational analysis and “generalized gradients” or
“generalized subdifferentials” can be found in, for example, the books of Mordukhovich
[175], Rockafellar and Wets [214], and Borwein and Zhu [36]. These different versions
of variational analysis can operate in different domains (finite-dimensional versus infinite-
dimensional spaces), different kinds of functions (“smooth + convex,” Lipschitz, or lower
semicontinuous), or with different applications in mind (control theory, differential equa-
tions, optimization, or solution of equations). We will not venture further into these differ-
ent notions of variational analysis and generalized differentiation except to say that while
many of the concepts developed elsewhere are sharper than, say, the Clarke generalized
gradient, they are often more difficult to compute and have less regularity. Nevertheless,
they often have applicability to numerous practical problems.

Downloaded 03 Nov 2011 to 160.36.192.127. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php



Appendix C

Differential Equations

We will consider here differential equation initial value problems of the form

dx

dt
(t)= f (t , x(t)), x(t0)= x0 ∈ X , (C.1)

where X is a given Banach space. We take this to mean that dx/dt exists almost every-
where, x(·) is an absolutely continuous function, dx/dt(t)= f (t , x(t)) for almost all t , and
finally that x(t0) = x0. This understanding of what a solution of a differential equation is
derives from the work of Carathéodory; we say that such a function is a solution in the
sense of Carathéodory.

C.1 Existence theory for Lipschitz ordinary differential
equations

The most basic result in the theory of differential equation initial value problems is that
if f (t , x) is a Lipschitz function of x , then a solution to (C.1) exists and is unique. A
refinement of this result is given below.

Theorem C.1. If ‖ f (t , x)− f (t , z)‖ ≤ L(t) ‖x− y‖ and ‖ f (t ,0)‖ ≤ k(t) for all t , x , and
y, and if L, k are locally integrable functions, then solutions (C.1) exist to in the sense of
Carathéodory. Furthermore, if z(·) is a solution of dz/dt = f (t , z(t)), z(t0) = z0 in the
same sense, then ‖x(t)− z(t)‖ ≤ exp(

∫ t
t0

L(τ )dτ ) ‖x0− z0‖.

Proof. We prove this using Picard iteration. First we write the problem in integral form:

x(t)= x0+
∫ t

t0
f (τ , x(τ ))dτ .

Next we create a fixed point iteration:

x (k+1)(t)= x0+
∫ t

t0
f (τ , x (k)(τ ))dτ , x (0)(t)= x0 for all t .

353
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The map z(·) #→ y(·) given by

y(t)= x0+
∫ t

t0
f (τ , z(τ ))dτ

is a Lipschitz continuous map C[t0, t1]→ C[t0, t1] with Lipschitz constant
∫ t1

t0
L(τ )dτ . To

see this, if z1 #→ y1 and z2 #→ y2, then

‖y2(t)− y1(t)‖ ≤
∫ t

t0
‖ f (τ , z2(τ ))− f (τ , z1(τ ))‖ dτ

≤
∫ t

t0
L(τ ) ‖z2(τ )− z1(τ )‖ dτ

≤
(∫ t1

t0
L(τ )dτ

)
sup

t0≤t≤t1
‖z2(t)− z1(t)‖ .

Thus if t1 > t0 is chosen sufficiently small, then
∫ t1

t0
L(τ )dτ < 1, and so the iteration is a

contraction map. Applying the contraction mapping theorem, there is one and only one
fixed point of the iteration which is the limit x(t) = limk→∞ x (k)(t), which is the solution
of (C.1) on [t0, t1].

The solution can be extended to an interval [t1, t2] where
∫ t2

t1
L(τ )dτ < 1 with the

“initial” value x(t1) given from the solution on [t0, t1]. This can be repeated; suppose we
choose tk+1 at stage k so that

∫ tk+1
tk

L(τ )dτ = 1/2. Then t∞ := limk→∞ tk =+∞; otherwise∫ t∞
t0

L(τ )dτ =+∞, which contradicts the assumption that L is locally integrable. Thus a
solution exists for all t ≥ t0.

The bound on ‖x(t)− z(t)‖ for different initial conditions follows by the Gronwall
lemmas of the following section.

Note that this theorem works in infinite dimensions as well as finite dimensions.
There is no need to impose compactness conditions. However, there are situations where
existence can be shown for initial value problems which rely on some compactness prop-
erties.

C.2 Gronwall-type lemmas
To carry out proofs for more general situations, we need a lemma originally due to Gronwall
[116], which in Bellman’s integral form [28] is something like this.

Lemma C.2. Suppose that r : [a,b]→ R is an absolutely continuous function such that
r ′(t)≤ β(t)r (t) for almost all t with β : [a,b]→ R integrable; then

r (t)≤ r (a) exp

(∫ t

a
β(τ )dτ

)
.

This result can be easily derived from the integral version of the lemma.

Lemma C.3. Suppose that r : [a,b]→R is an integrable function satisfying

r (t) ≤ α(t)+
∫ t

a
β(τ )r (τ )dτ , α, β ∈ L1(a,b).
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Then

r (t)≤ α(t)+
∫ t

a
α(τ )β(τ )exp

(∫ t

τ

β(s)ds

)
dτ

for all t . If α(t) is a constant α, this implies that

r (t)≤ α exp

(∫ t

a
β(τ )dτ

)
for all t .

In fact, the above results hold if β is a measure on [a,b] with β ({a}) = 0 and α is β-
integrable.

There are numerous variations and generalizations of these results, many of which
require positivity or monotonicity. Here is an example of a nonlinear Gronwall lemma,
which in integral form is due to Bihari [32].

Lemma C.4. Suppose that r : [a,b]→ R is an absolutely continuous function and that
θ : R→ R is a positive and nondecreasing function. Then, if r ′(t) ≤ θ (r (t)) for almost
all t , then r (t) ≤ ρ(t) for all t ∈ [a,b], where ρ is the unique solution of the differential
equation

ρ ′(t)= θ (ρ(t)), ρ(a)= r (a),

provided that
∫∞

r(a) ds/θ (s) > b−a.

In this version, θ might be a function that grows superlinearly (for example, θ (r )=
1+ r2), and so it can be used to give short-time existence bounds. The existence and
uniqueness of the solution, at least for a sufficiently short time interval, are not obvious a
priori, so this must be shown in the proof.

Proof. To show the existence of a solution to ρ′ = θ (ρ), we define ρ to be the inverse
function to ψ(s) := a + ∫ s

r(a) ds′/θ (s′). Now s′ #→ 1/θ (s′) is a locally bounded, posi-
tive, nonincreasing function, and so it is integrable. Thus ψ is absolutely continuous, and
ψ ′(s)= 1/θ (s) for almost all s. Hence, on finite intervals [s1, s2], 1/θ (s2)≤ψ ′(s)≤ 1/θ (s1)
for all s ∈ [s1, s2]. This implies that the inverse function ρ exists and is absolutely continu-
ous on [a, b]⊂ rangeψ . The usual differentiation rules show that ρ′(t)= θ (ρ(t)) for almost
all t; ρ(a)= r (a) as ψ(r (a))= a. Thus there is a solution of the differential equation for ρ.

To show that there is only one solution to the differential equation, suppose that
ρ′ = θ (ρ) and ρ(a) = r (a). Then since θ is positive and bounded on bounded intervals,
(d/dt)(ψ(ρ(t))= (1/θ (ρ(t)))ρ ′(t)= 1 for almost all t , where ψ is the function defined in
the previous paragraph. This together with ψ(r (a))= a implies that ψ and ρ are inverse
functions. Therefore ρ is unique, as ψ is unique.

Now, to show the bound, we first note that (d/dt)ψ(r (t)) = r ′(t)/θ (r (t)) ≤ 1 for
almost all t . Since ψ(r (a))= a, it follows that ψ(r (t)) ≤ t . Since ψ is strictly increasing,
this means that r (t)≤ ρ(t), as desired.

This result cannot only be used to show local boundedness when θ (r ) grows superlin-
early in r , but it can also be used to get subexponential bounds when θ (r ) grows sublinearly
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in r . An example of this is in mechanical systems with bounded external forces f(t):

m
d2x
dt2 =−∇V (x)+ f(t).

The energy is E(t) = 1
2 m ‖ẋ‖2 + V (x) ≥ infx V (x) =: Emin . The rate of change of the

energy can be bounded by

d E

dt
≤ f(t)T ẋ(t)

≤ ‖f(t)‖ ‖ẋ(t)‖
≤ C (E− Emin)1/2 .

Then the energy is bounded by the solution of dρ/dt = C (ρ− Emin)1/2, ρ(t0) = E(t0) >
Emin , which is ρ(t) = Emin + (2C t +√E(t0)− Emin)2, showing that the energy grows at
most quadratically in time for bounded external forces.

Discrete Gronwall lemmas have also been developed for handling time discretiza-
tions of differential equations and related systems. The simplest of these starts with

rk+1 ≤ rk +hβ rk for all k

and obtains a bound

rk ≤ eβ h k r0,

which depends only on the product h k and r0. Nonlinear versions have also been devel-
oped. One of these is Lemma 5.2 in Section 5.2.1.

C.3 Carathéodory’s existence theorem for continuous
ordinary differential equations

Gronwall lemmas (both continuous and discrete) can be used to show existence of solutions
to differential equations and inclusions. For example, consider Carathéodory’s existence
theorem for ordinary differential equations in finite dimensions with merely continuous
right-hand side (in the state variable). More formally, we have the following theorem.

Theorem C.5 (Carathéodory). Consider the differential equation

dx

dt
= f (t , x), x(t0)= x0 ∈Rn ,

where f (t , x) is continuous in x and measurable in t, with bounds ‖ f (t , x)‖ ≤ψ(t)θ (‖x‖)
where θ is continuous and monotone, and 0 < ψ ∈ L1

loc(R). Then solutions exist for the
above differential equation on a sufficiently small time interval

[
0, T ∗

]
, T ∗ > 0.

Proof. Note that we can assume without loss of generality that ψ(t) ≥ 1 for all t . We start
by using a modified explicit Euler method:

xh,k+1 = xh,k+
∫ tk+1

tk
f (τ , xh,k)dτ ,
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where
∫ tk+1

tk
ψ(τ )dτ = h > 0. Then

∥∥xh,k+1
∥∥ ≤ ∥∥xh,k

∥∥+∫ tk+1

tk

∥∥ f (τ , xh,k)
∥∥ dτ

≤ ∥∥xh,k
∥∥+∫ tk+1

tk
ψ(τ )dτ θ

(∥∥xh,k
∥∥)

= ∥∥xh,k
∥∥+h θ

(∥∥xh,k
∥∥)

.

Applying Lemma 5.2, then for sufficiently small h > 0 we have the bound∥∥xh,k
∥∥≤ φ

(∫ tk

t0
ψ(τ )dτ

)
+1 where

dφ

ds
(s)= θ (φ(s)), φ(0)= ‖x0‖ .

Since φ is bounded on a sufficiently small interval [0, s∗], s∗ > 0, then we have a uniform
bound on

∥∥xh,k
∥∥≤ φ∗ := φ(s∗)+1 for all h.

Choose T ∗ so that
∫ T ∗

t0
ψ(τ )dτ ≤ s∗. Let xh(t) be given by

xh(t)= xh,k+
∫ t

tk
f (τ , xh,k)dτ for tk ≤ t ≤ tk+1.

This is well defined on [t0, T ∗] and absolutely continuous there since it is the indefinite in-
tegrable of a locally integrable function. Furthermore, the functions xh are equicontinuous
since

‖xh(t)− xh(s)‖ ≤ (t− s) θ (φ∗) for t0 ≤ s ≤ t ≤ T ∗.

Since the discrete-time trajectories xh(t) are bounded by φ∗ in Rn , we can apply the Arzela–
Ascoli theorem to conclude that there is a uniformly convergent subsequence (also denoted
by xh) with a limit x̂ . The limit is clearly continuous. It is also a solution of the differential
equation. To see this, let x̃h(t)= xh,k for tk ≤ t < tk+1. Then, for s ≥ t ,

x̂(s)− x̂(t)= lim
h→0

xh(s)− xh(t)

= lim
h→0

∫ s

t
f (τ , x̃h(τ ))dτ

=
∫ s

t
lim
h→0

f (τ , x̃h(τ ))dτ

by the dominated convergence theorem. By continuity of f (t , x) in x ,

lim
h→0

f (τ , x̃h(τ ))= f (τ , lim
h→0

x̃h(τ )).

Now, for tk ≤ t < tk+1,

‖xh(t)− x̃h(t)‖ =
∥∥∥∥xh,k+

∫ t

tk
f (τ , xh,k)dτ − xh,k

∥∥∥∥
≤

∫ t

tk
ψ(τ )dτ θ (φ∗) ≤ h θ (φ∗),
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which goes to zero as h → 0. Thus limh→0 x̃h(t) = x̂(t) (taking the limit in the subse-
quence). So

x̂(t)− x̂(s)=
∫ t

s
f (τ , x̂(τ ))dτ

for all t0 ≤ s ≤ t ≤ T ∗ by the dominated convergence theorem. This immediately im-
plies that x̂ : [t0, T ∗] → Rn is absolutely continuous, and so it is differentiable almost
everywhere and its derivative is dx̂/dt(t) = f (t , x̂(t)) for almost all t . Finally, the ini-
tial conditions are correct, since xh(t0) = x0 for all h > 0, so the limit is x̂(t0) = x0, as
desired.

Unlike the case of Lipschitz continuous right-hand sides, we cannot guarantee unique-
ness of solutions. A simple counterexample is dx/dt =√|x |, x(0)= 0. Then x(t)= 0 and
x(t)= 1

4 t2 are both solutions.

C.4 Laplace and Fourier transforms
For dealing with linear differential equations, especially with constant coefficients, there
are few tools better than the Laplace and Fourier transforms. Laplace transforms can usu-
ally be applied only to one variable. The Laplace transform of a measurable function
f : [0,∞)→ X with X a Banach space is given by

L f (s)=
∫ ∞

0
e−st f (t)dt , (C.2)

provided t #→ e−st f (t) is integrable. Essentially, f needs to just be measurable and have
a growth rate that is at most exponential. Then for Re s sufficiently positive, L f (s) is well
defined and analytic in s. Provided the relevant Laplace transforms are well defined, the
following rules hold for constants α, β:

L[
α f +βg

]
(s)= αL f (s)+βLg(s),

L[
f ′

]
(s)= sL f (s)− f (0),

L[
t f (t)

]
(s)=− d

ds
L f (s),

L[
eat f (t)

]
(s)= L f (s−a),

L[
f ∗ g

]
(s)= L f (s)Lg(s),

where ( f ∗ g) (t) = ∫ t
0 f (τ ) g(t − τ )dτ is the convolution of two functions with domains

[0,∞). There is the Laplace inversion formula: if L f (s)= g(s), then

f (t)= 1

2π i

∫ c+i∞

c−i∞
est g(s)ds, i =√−1. (C.3)

The number c should be chosen so that g is analytic on the half-plane {s ∈ C | Res > c }
and g(s)→ 0 if |s| →∞ in this half-plane.
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If f : Rd →R, then the Fourier transform of f is given by

F f (ξ )=
∫
Rd

e−i〈x ,ξ 〉 f (x)dx . (C.4)

Now F f is defined for all f that are “sufficiently regular” (e.g., if f is integrable). If F f
is also “sufficiently regular,” then f can be recovered by the formula

F−1 f (x)= 1

(2π)d

∫
Rd

ei〈x ,ξ 〉F f (ξ )dξ . (C.5)

The main properties of the Fourier transform are, provided all integrals and derivatives are
well defined,

F [
α f +βg

]
(ξ )= αF f (ξ )+βFg(ξ ),

F
[
∂ f

∂xk
(x)

]
(ξ )= iξk F f (ξ ),

F [
xk f (x)

]
(ξ )=−i

∂

∂ξk
F f (ξ ),

F [
f ∗ g

]
(ξ )= F f (ξ )Fg(ξ ),

where

( f ∗ g) (x)=
∫
Rd

f (y) g(x− y)dy.

Perhaps the most important property is Plancherel’s theorem. A modern version of this
theorem follows.

Theorem C.6. If f , g ∈ L2(Rd ), then∫
Rd

f (x)g(x)dx = (2π)−d
∫
Rd

F f (ξ )Fg(ξ )dξ ,

where (·) is the complex conjugate of (·).

This can be used to extend the Fourier transforms to tempered distributions. Let
S(Rd ) be the set of functions φ where

x #→ xβ Dαφ(x) := xβ1
1 xβ2

2 · · ·xβd
d

∂α1+···+αdφ

∂xα1
1 ∂xα2

2 · · ·∂xαd
d

is bounded for all multi-indices α and β. Using the maximum values of these functions
as seminorms, we have φk → φ in S(Rd ) if maxx

∣∣xβ Dα (φk−φ) (x)
∣∣→ 0 as k →∞ for

all multi-indices α and β. It can be easily shown using the above rules that the Fourier
transform maps S(Rd ) into itself. Tempered distributions are the dual space S(Rd )′ of
functionals S(Rd )→ R. For a tempered distribution ψ we define its Fourier transform via

〈Fψ , Fφ〉 = (2π)d 〈ψ , φ〉 for all φ ∈ S(Rd ).

The same rules apply to the Fourier transform for tempered distributions, but the operations
(such as differentiation) must be considered in a distributional sense.
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δH (A, B) (one-sided Hausdorff
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diam F (diameter of set F), 319
divσ (divergence of σ ), 234
dµ/dν (Radon–Nikodym derivative),
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domφ (domain of convex function), 54,
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ε (strain tensor), 232
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σ (stress tensor), 233
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product), 41

x⊗ y (tensor product), 300
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B-stable, 296
Baire category theorem, 309, 341, 349
Bellman, Richard, 354
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Bohl distribution, 86, 162
Borel measurable, 318
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Boston traffic equilibrium, 199
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bounded variation, 125, 319
Butcher tableau, 294

Carathéodory, Constantin, 353
Carathéodory function, 30
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coercivity, 49, 339
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compact operator, 53, 89, 312
compact set, 308
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asymptotic, 19
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of semidefinite matrices, 41
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Mangasarian–Fromowitz (MFCQ),
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convex, 327
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set, 18

convolution, 358
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covering vector, 34

d’Alembert solution, 240
da Vinci, Leonardo, 6
Dantzig, George, 31
degree theory, 49
Delassus, Étienne, 217
dense, 308
dense operator, 88
differential complementarity problem

(DCP), 14, 79, 98, 124, 143,
152, 161, 210

differential games, 196
differential inclusion, 8, 83, 101, 217
differential measure, 125, 319
differential variational inequality (DVI),

77–92, 146–205, 213
index-one, 83
index-two, 84
index-zero, 82
mixed-index, 151
pure index-one, 151

diode, 9, 12, 178–192
Dirac-δ function, 3, 80, 84, 95, 117, 126,

142, 317
Dirichlet to Neumann operator, 259
distribution, 80, 86, 316

tempered, 359
div-curl lemma, 257
domain, 327
drift, 289
dual

Fenchel, 54, 145, 161, 212, 342,
348

dual cone, 19, 31, 39, 192, 250, 251,
275, 331

dual space, 17, 312
duality

weak, 343
duality gap, 344
Dunford–Pettis theorem, 103, 107

elastic rod, 5
elasticity, 233
elliptic operator, 42, 91, 243, 282
energy

kinetic, 208
potential, 208

energy-based impact law, 215
epigraph, 54, 327
equicontinuity, 107, 315
equi-integrable, 103, 107
equivalent norms, 310
Erdmann’s condition, 230
essentially bounded function, 311
Euclidean Jordan algebra, 41
Euler, Leonhard, 6
Euler–Bernoulli beam, 250
Euler–Lagrange equations, 209
Euler’s method, 106
evolution triple, 88

Fenchel dual, 54, 145, 161, 212, 342,
348

Fichera, Gaetano, 42
Filippov’s lemma, 103, 107
Fitzpatrick function, 57
fixed point, 325
flip-flop, 194
Fourier transform, 89, 90, 275, 322, 358
fractional derivative, 142
Fréchet differentiable, 350
friction, 5, 211

anisotropic, 211
coefficient, 6, 7
cone, 213
Coulomb, 6, 81, 101, 109, 110,

130, 151, 211, 228, 271, 285
elastic body, 235
jamming, 226
nonlocal, 239, 272
Painlevé’s paradox, 217
torque, 212
Tresca, 238
two-coefficient model, 6
variational inequality (VI), 212

friction coefficients, 6
Fritz John condition, 347
Frobenius inner product, 41
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Fσ set, 309
function

convex, 54
functional, 312

Galerkin method, 252, 257
% function, 274
gap function, 235
Gateaux differentiable, 350
Gδ set, 309
Gelfand triple, 88, 111, 117
generalized complementarity problems

(GCPs), 31
generalized gradient, 350
generalized Jacobian, 351
graph, 14, 179

directed, 197
Gronwall’s lemma, 109, 113, 354
GUS(K ), 41

Hadamard product, 41
Hahn–Banach theorem, 327, 341
Hausdorff metric, 21, 124
heat equation, 87, 118
Heaviside function, 240, 281
Heaviside model, 12
Heaviside, Oliver, 12
hemicontinuous, 21
H m(�), 322
Hölder continuity, 323
homotopy, 37, 50
hyperelastic, 238, 271
hypergraph, 179

ice cream cone, 40
ice skating, 212
impact law

energy-based, 215
Newton’s, 213
Poisson’s, 214

index, 8, 10, 13, 285
convolution complementarity

problem (CCP), 141
fractional, 144
linear complementarity system

(LCS), 139
one, 81, 83, 124, 143, 145, 147,

288, 291, 298

reduction, 283, 285
three, 82, 86
two, 81, 84, 143, 207
zero, 82, 142, 147, 287, 289, 298

indicator function, 63, 119, 212, 288,
327, 328

inf-convolution, 58, 348
infimum, 309
inner product, 311
integrable

function, 77, 80, 83, 102, 126, 142,
320

selection, 103
set-valued function, 103

interpolation space, 253
inverse image

strong, 22
weak, 22

John, Fritz, 347
Jordan algebra, 166
JX , duality map, 18, 313

Kakutani fixed point theorem, 326
Karush–Kuhn–Tucker (KKT) condition,

4, 8, 31, 68, 210, 344, 347
kinetic energy, 208
Kotel’nikov, S., 6
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