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Series Preface

Mechanical engineering, an engineering discipline born of the needs of the
industrial revolution, is once again asked to do its substantial share in the
call for industrial renewal. The general call is urgent as we face profound
issues of productivity and competitiveness that require engineering solu-
tions, among others. The Mechanical Engineering Series is a series featur-
ing graduate texts and research monographs intended to address the need
for information in contemporary areas of mechanical engineering.
The series is conceived as a comprehensive one that covers a broad range

of concentrations important to mechanical engineering graduate education
and research. We are fortunate to have a distinguished roster of consulting
editors, each an expert in one of the areas of concentration. The names of
the consulting editors are listed on page ii of this volume. The areas of
concentration are applied mathematics, biomechanics, computational me-
chanics, dynamic systems, and control, energetics, mechanics of materials,
processing, thermal science, and tribology.



Preface

This book is the result of almost 30 years of work in the field of rotor-
dynamics, which includes research, teaching, writing computer codes, and
consulting. It is the outcome of an interdisciplinary research team that
operated, and still operates, in the Mechanics Department and in the In-
terdepartmental Mechatronics Laboratory of Politecnico di Torino. The
aim is mostly to write in a systematic way what has been the subject of
a number of research papers, in such a way to give a consistent picture of
the dynamic behavior of rotating machinery.
The author must then give credits to many colleagues and Ph.D. students

who cooperated in various degree to this book: Much of the material they
produced in their thesis work or in subsequent research found its way in
these pages. An even greater number of students cooperated to this work in
a more subtle way: with their thesis work and their questions, but mainly
with their very presence that compels who tries to explain an involved
subject to clarify his own ideas and to work out all details. To all of them
goes the gratitude of the author.
A particular mention must be made to (in alphabetic order) Eugenio

Brusa, Stefano Carabelli, and Andrea Tonoli, who not only worked during
their doctoral thesis and subsequent research on these topics, but also who
were very helpful in the actual writing of this book, reading and correcting
the text, drawing figures, and doing much editorial work.
As usual, a deep gratitude goes to Franca for her support in the long

work related with this book, and for the help in reading and correcting
proofs.



viii Preface

As the title implies, this book is an attempt (only the reader can judge
whether it is successful) to go beyond what is usually referred to as ro-
tordynamics. The aim is that of dealing with the dynamic behavior of
systems having in common the feature of rotating. This definition includes
obviously those systems, like transmission shafts, turbine rotors, and gy-
roscopes, which are studied by rotordynamics, but also systems such as
rotating blades (like in helicopter rotors) or flexible spinning spacecraft.
Although rotordynamics usually deals only with the lateral behavior of ro-
tors, some mention is made here also to torsional and axial vibration or to
cases in which it is impossible to distinguish between them. However, the
author imposed a limitation: No mention will be made of the dynamics of
machines containing reciprocating parts, such as a crankshaft-connecting
rod-piston mechanism. This arbitrary decision is based on the grounds
that their vibration (mainly torsional vibration, but also axial and lateral
vibration) is a very specialized topic, dealt with in many handbooks and
textbooks and, above all, that to include it would have meant either to give
a very insubstantial account or to double the size of the book.
Another area in which a decision about where to stop was needed is

controlled rotors. A thorough study of the dynamics of many controlled
rotors, like those running on active magnetic bearings or supplied with
active dampers, would have implied a detailed study of their control systems
(hardware and, in case of digital systems, software) sensors and actuators
(with the critical issue of the power amplifiers). As is typical of mechatronic
systems, only an integrated and interdisciplinary approach allows us to
exploit the advantages of the potentialities modern technology has opened.
As this would have lead too far from the main topics of this book, these
areas will be touched only marginally.
The text is structured in two parts. The first one deals with what could

be defined as classic or basic rotordynamics. The contents are basically well
consolidated, although some incorrect statements can be found even in re-
cent papers published on well-known journals. The basic assumptions are
linearity, steady state operation, and at least some degree of axial symme-
try.
The second part, containing topics that are usually considered as special-

ized aspects of rotordynamics, could be titled advanced rotordynamics. The
mentioned assumptions are dropped, and more detailed models are built
for rotors departing from the classic configurations studied in rotordynam-
ics. The contents of this part are more research topics than consolidated
applications.
The contents and the credits for the various chapters are the following:

• Chapter 1: Introduction. The basic concepts, graphical representa-
tion, and methods of rotordynamics are illustrated in a qualitative
way. The expert reader, although familiar with these concepts, should
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not skip it altogether because the basic notation and the viewpoint
that will be followed in the whole text are described.

Part 1: Basic topics

• Chapter 2: Je cott rotor. The so-called Je cott rotor is the simplest
rotor model that can be conceived. Although unable to account for
some typical phenomena linked with rotordynamics, like gyroscopic
e ect or centrifugal sti ening, it allows us to gain a good insight
into the peculiarities of rotating systems. In particular, it is essential
for understanding the role of damping in rotordynamics. The topics
dealt with are as a whole standard, but the part on nonsynchronous
damping, studied together with E. Brusa and published in [1], is less
common.

• Chapter 3: Model with four degrees of freedom: Gyroscopic e ect. A
simple model in which a rigid body is substituted for the point mass
of the Je cott rotor is then studied, to allow the study of gyroscopic
e ects. This model is representative for the behavior of any rigid rotor
on compliant bearings and allows us to define a modal gyroscopic
system, on which modal decomposition of rotors can be based under
some assumptions.

• Chapter 4: Discrete multi-degrees-of-freedom rotors. The lateral be-
havior of a flexible rotor modeled as a discrete parameter beamlike
(1-D approach) system is then studied. Older approaches, like the
transfer matrices methods, are dealt with together with more modern
ones, like the finite element method (FEM). Some work on reduction
techniques by S. Carabelli and A. Tonoli [2] has been included.

• Chapter 5: Continuous systems: Transmission shafts. A short account
on modeling simple rotors as continuous system is then included. This
chapter can be considered more of academic rather than of practical
relevance.

• Chapter 6: Anisotropy of rotors or supports. If either the rotor or
the stator are not isotropic, it is still possible to obtain a closed-form
solution for the linearized steady-state dynamics. Such systems are
studied with particular reference to the backward whirling caused
by unbalance in isotropic rotors on asymmetric supports and to the
instability ranges of nonsymmetric rotors on isotropic supports.

• Chapter 7: Torsional and axial dynamics. The axial and torsional
dynamics of rotors is briefly dealt with. Considering that the torsional
and axial behavior is una ected by the rotation of the system (at
least if the basic assumptions of linearity and small displacements
are made), just a brief account is reported.
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• Chapter 8: Rotor-bearings interaction. The interaction between the
behavior of the rotor and of the bearing is a complex subject, mainly
because of the nonlinear behavior of the latter. The approach here fol-
lowed is the classic one: The nonlinearity of the bearings is accounted
for in computing their working conditions, and then the dynamic be-
havior is linearized assuming small displacements about the static
equilibrium position (at speed). Rolling elements and lubricated and
magnetic bearings are dealt with.

Part 2: Advanced topics

• Chapter 9: Anisotropy of rotors and supports. The assumption that
either the stator or the rotor is isotropic is dropped. No closed-form
solution is any more possible, although a truncated series solution
can be attempted.

• Chapter 10: Nonlinear rotordynamics. Here another assumption, that
of linearity, is dropped. The phenomena typical of nonlinear systems,
like jumps and even chaotic behavior are discussed.

• Chapter 11: Nonstationary rotordynamics. The spin speed is no more
assumed to be constant, or other parameters, like unbalance, are al-
lowed to change. In particular, the acceleration of the rotor through
a critical speed and the occurrence of a blade loss are dealt with in
detail. The work performed with C. Delprete [3] has been thoroughly
used.

• Chapter 12: Dynamic behavior of free rotors. Unconstrained rotating
objects, like spinning celestial bodies or spacecraft, can be considered
as rotors. The main aim of this section is to show that the assump-
tion of constant angular momentum, typical of the dynamic study of
free rotors, and that of constant angular velocity, typical of classic
rotordynamics, coincide when the small displacement and rotations
assumptions is made, so that the first can be approached with the
methods of the latter. The chapter is based on the work performed
with E. Brusa [4], [5].

• Chapter 13: Dynamics of rotating beams and blades. The e ect of
rotation, about an axis perpendicular to their longitudinal axis, on
the dynamic behavior of beams and the blades-rotor interaction is
studied using simple models. The well-known phenomena related to
propeller and helicopter rotors’ instability are dealt with, as well as
other less-known phenomena regarding the e ects of blade damping
on the stability of a bladed rotor.

• Chapter 14: Dynamics of rotating discs and rings. Turbine and com-
pressor discs are assumed, in classic rotordynamics, to behave as rigid
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bodies. In this chapter, this assumption is dropped and the e ects of
the flexibility of the discs are dealt with using simple models, starting
from that introduced about 80 years ago by Southwell [6].

• Chapter 15: Three-dimensional modeling of rotors. This chapter deals
with numerical modeling, mostly based on the FEM, of complex ro-
tors. The topics dealt with in Chapters 13 and 14 using simplified
models are here treated with the aim of building more accurate mod-
els, yielding precise quantitative results. The work performed with A.
Tonoli [7, 8] and the models developed by M. Silvagni in his Ph.D.
thesis are included [9].

• Chapter 16: Dynamics of controlled rotors. Active vibration control
is increasingly applied to rotors, either together with the use of active
magnetic suspension or with techniques using active dampers or the
control of more or less conventional bearings. As already stated, no
attempt in modeling in detail the control, sensor or actuator dynam-
ics is done, because it would lead too far from the central topics of
this book. The work performed with S. Carabelli on sensor-actuator
colocation [10] is reported.

• Appendix A: Vectors, matrices, and equations of motion. Some ba-
sic topics of system dynamics, particularly for the peculiar aspects
linked with rotating systems, are summarized in this appendix, which
owes much to the specific viewpoint of control theory for which the
author is indebted to S. Carabelli. The results on circulatory and
noncirculatory coupling published by Crandall [11] and relevant for
rotordynamics are reported.

• Appendix B: An outline on rotor balancing. As many very good books
have been written on rotor balancing, only a short account on the
basic topics are dealt with.

• Appendix E: Bibliography. Some of the books specifically devoted to
rotordynamics are listed in chronological order.

A CD-ROM comes with this book. It contains a simplified version of the
DYNROT code and two short videos.
DYNROT Finite Element code was developed by the author starting

in 1976. An initial version written in HPGL language for the early HP
desktop computers together with G. Brussino, then student at the Politec-
nico di Torino, was followed by a version in BASIC written together with
A. Gugliotta. In the subsequent years (almost 30), several versions have
been developed, mostly using MatLab language with the help of countless
researchers and students. The version reported here is DYNROT LIGHT,
which contains only the basic elements and is based on the one-dimensional
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approach seen in Chapter 4 (while the full-blown DYNROT has capabili-
ties also for studying bladed disks dynamics, with the possibility of time
domain study of nonlinear and nonstationary rotors). A basic advantage of
a MatLab code is its openness, so that the reader can understand how it
works and can modify any points.
The two videos, Gyroscopic E ect and Damping in Rotordynamics and

Dynamic Behaviour of Rotors on Anisotropic Supports, are based on exper-
iments on simple demonstrators and were produced in an e ort of showing
students some physical evidence of what can be interpreted as mathemat-
ical divertissement more than the description of real-world machinery.

Giancarlo Genta

Torino, April 2004



Contents

Preface vii

Contents xiii

Symbols xxi

1 Introduction 1

1.1 Linear rotordynamics . . . . . . . . . . . . . . . . . . . . . . 4
1.1.1 Equation of motion . . . . . . . . . . . . . . . . . . . 5
1.1.2 Rotating systems . . . . . . . . . . . . . . . . . . . . 6
1.1.3 Complex coordinates . . . . . . . . . . . . . . . . . . 7
1.1.4 Free vibration . . . . . . . . . . . . . . . . . . . . . . 9
1.1.5 Forced response . . . . . . . . . . . . . . . . . . . . . 23

1.2 Nonlinear rotordynamics . . . . . . . . . . . . . . . . . . . . 29
1.3 Nonstationary rotordynamics . . . . . . . . . . . . . . . . . 30
1.4 Time domain versus frequency domain . . . . . . . . . . . . 31

I Basic topics 33

2 Je cott rotor 35

2.1 Undamped Je cott rotor . . . . . . . . . . . . . . . . . . . . 35
2.1.1 Equations of motion . . . . . . . . . . . . . . . . . . 36
2.1.2 Free whirling . . . . . . . . . . . . . . . . . . . . . . 39



xiv Contents

2.1.3 Unbalance response . . . . . . . . . . . . . . . . . . 42
2.1.4 Response to external forces in the frequency domain 44

2.2 Complex coordinates in rotordynamics . . . . . . . . . . . . 46
2.2.1 Free whirling . . . . . . . . . . . . . . . . . . . . . . 46
2.2.2 Unbalance response . . . . . . . . . . . . . . . . . . 48

2.3 Je cott rotor with shaft bow . . . . . . . . . . . . . . . . . 49
2.4 Je cott rotor with viscous damping . . . . . . . . . . . . . . 51

2.4.1 Equations of motion . . . . . . . . . . . . . . . . . . 51
2.4.2 Some considerations on rotating damping . . . . . . 55
2.4.3 Free whirling . . . . . . . . . . . . . . . . . . . . . . 58
2.4.4 Unbalance response . . . . . . . . . . . . . . . . . . 62
2.4.5 Response to a static force constant in time . . . . . 66
2.4.6 Shaft bow . . . . . . . . . . . . . . . . . . . . . . . . 66
2.4.7 Frequency response . . . . . . . . . . . . . . . . . . . 68

2.5 Je cott rotor with structural damping . . . . . . . . . . . . 70
2.5.1 Equation of motion . . . . . . . . . . . . . . . . . . . 70
2.5.2 Free whirling . . . . . . . . . . . . . . . . . . . . . . 71
2.5.3 Mixed damping . . . . . . . . . . . . . . . . . . . . . 76
2.5.4 Unbalance response . . . . . . . . . . . . . . . . . . 77
2.5.5 Dependence of the loss factor on frequency . . . . . 77

2.6 Je cott rotor with nonsynchronous damping . . . . . . . . . 77
2.7 E ect of the compliance of the bearings . . . . . . . . . . . 80

2.7.1 Unbalance response . . . . . . . . . . . . . . . . . . 82
2.7.2 Free whirling . . . . . . . . . . . . . . . . . . . . . . 84

2.8 Rotating coordinates . . . . . . . . . . . . . . . . . . . . . . 85
2.9 Stability in the supercritical field . . . . . . . . . . . . . . . 89
2.10 Drag torque at constant speed . . . . . . . . . . . . . . . . . 90

3 Model with four degrees of freedom: Gyroscopic e ect 93

3.1 Generalized coordinates and equations of motion . . . . . . 94
3.1.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . 94
3.1.2 Equations of motion in real coordinates . . . . . . . 98
3.1.3 Equations of motion in complex coordinates . . . . . 101
3.1.4 Static and couple unbalance . . . . . . . . . . . . . . 102

3.2 Uncoupled gyroscopic system . . . . . . . . . . . . . . . . . 103
3.2.1 Complex coordinates . . . . . . . . . . . . . . . . . . 103
3.2.2 Real coordinates . . . . . . . . . . . . . . . . . . . . 106

3.3 Free whirling of the coupled, undamped system . . . . . . . 107
3.4 Response to unbalance and shaft bow . . . . . . . . . . . . 117
3.5 Frequency response . . . . . . . . . . . . . . . . . . . . . . . 120
3.6 Unbalance response: modal computation . . . . . . . . . . . 121
3.7 Modal uncoupling of gyroscopic systems . . . . . . . . . . . 123

3.7.1 Configuration-space approach . . . . . . . . . . . . . 123
3.7.2 State-space, complex-coordinates approach . . . . . 124
3.7.3 State-space, real-coordinates approach . . . . . . . . 127



Contents xv

4 Discrete multi-degrees-of-freedom rotors 139

4.1 Transfer matrices approach: the Myklestadt-Prohl method . 141
4.1.1 Undamped systems . . . . . . . . . . . . . . . . . . . 141
4.1.2 Damped systems . . . . . . . . . . . . . . . . . . . . 151

4.2 Lumped parameters sti ness method . . . . . . . . . . . . . 155
4.3 The finite element method . . . . . . . . . . . . . . . . . . . 156

4.3.1 Timoshenko beam element for rotordynamic analysis 159
4.3.2 Mass element . . . . . . . . . . . . . . . . . . . . . . 165
4.3.3 Spring element . . . . . . . . . . . . . . . . . . . . . 165
4.3.4 Assembling the structure . . . . . . . . . . . . . . . 166
4.3.5 Constraining the structure . . . . . . . . . . . . . . . 168
4.3.6 Damping matrices . . . . . . . . . . . . . . . . . . . 169
4.3.7 Transfer matrices methods and the FEM . . . . . . 169

4.4 Real versus complex coordinates . . . . . . . . . . . . . . . 170
4.5 Fixed versus rotating coordinates . . . . . . . . . . . . . . . 172
4.6 Complex state-space equations . . . . . . . . . . . . . . . . 173
4.7 Static solution . . . . . . . . . . . . . . . . . . . . . . . . . 174
4.8 Critical-speed computation . . . . . . . . . . . . . . . . . . 174
4.9 Computation of the unbalance response . . . . . . . . . . . 176
4.10 Plotting the Campbell diagram and the roots locus . . . . . 177
4.11 Reduction of the number of degrees of freedom . . . . . . . 183

4.11.1 Nodal reduction techniques . . . . . . . . . . . . . . 184
4.11.2 Modal reduction . . . . . . . . . . . . . . . . . . . . 191
4.11.3 Component mode synthesis . . . . . . . . . . . . . . 195

5 Continuous systems: Transmission shafts 201

5.1 The Euler-Bernoulli vibrating beam . . . . . . . . . . . . . 201
5.2 Other boundary conditions . . . . . . . . . . . . . . . . . . 209
5.3 E ect of the moments of inertia: Timoshenko beam . . . . . 213
5.4 Dynamic sti ness matrix . . . . . . . . . . . . . . . . . . . . 219

6 Anisotropy of rotors or supports 227

6.1 Isotropic rotors on anisotropic supports . . . . . . . . . . . 228
6.1.1 Je cott rotor on nonisotropic supports . . . . . . . . 228
6.1.2 E ect of damping . . . . . . . . . . . . . . . . . . . 233
6.1.3 System with many degrees of freedom . . . . . . . . 236

6.2 Nonisotropic rotors on isotropic supports . . . . . . . . . . 246
6.2.1 Nonisotropic Je cott rotor . . . . . . . . . . . . . . . 247
6.2.2 E ect of damping . . . . . . . . . . . . . . . . . . . 251
6.2.3 Response to a static force . . . . . . . . . . . . . . . 252
6.2.4 Anisotropic rotors with many degrees of freedom . . 256

7 Torsional and axial dynamics 265

7.1 Torsional free vibration . . . . . . . . . . . . . . . . . . . . 265
7.1.1 Lumped parameters approach . . . . . . . . . . . . . 265



xvi Contents

7.1.2 Consistent parameters approach . . . . . . . . . . . 270
7.1.3 Geared systems . . . . . . . . . . . . . . . . . . . . . 272

7.2 Forced vibrations . . . . . . . . . . . . . . . . . . . . . . . . 275
7.3 Torsional critical speeds . . . . . . . . . . . . . . . . . . . . 279
7.4 Axial vibration . . . . . . . . . . . . . . . . . . . . . . . . . 280

8 Rotor-bearings interaction 281

8.1 Rigid-body and flexural modes . . . . . . . . . . . . . . . . 282
8.2 Linearization of the characteristics of the bearings . . . . . 284
8.3 Rolling elements bearings . . . . . . . . . . . . . . . . . . . 291
8.4 Fluid film bearings . . . . . . . . . . . . . . . . . . . . . . . 298

8.4.1 Forces exerted by the oil film on the journal in sta-
tionary conditions . . . . . . . . . . . . . . . . . . . 298

8.4.2 Linearized dynamics of the bearing . . . . . . . . . . 305
8.4.3 Stability problems linked with the use of lubricated

bearings . . . . . . . . . . . . . . . . . . . . . . . . . 309
8.4.4 E ect of seals, clearances, and dampers . . . . . . . 313

8.5 Magnetic bearings . . . . . . . . . . . . . . . . . . . . . . . 316
8.6 Bearing alignment in multibearing rotors . . . . . . . . . . . 327

II Advanced topics 329

9 Anisotropy of rotors and supports 331

9.1 Nonisotropic Je cott rotor . . . . . . . . . . . . . . . . . . . 331
9.2 Equation of motion for an anisotropic machine with many

degrees of freedom . . . . . . . . . . . . . . . . . . . . . . . 339

10 Nonlinear rotordynamics 347

10.1 Nonlinear isotropic Je cott rotor . . . . . . . . . . . . . . . 348
10.1.1 Equation of motion . . . . . . . . . . . . . . . . . . . 348
10.1.2 Unbalance response circular whirling . . . . . . . 351

10.2 Nonlinear isotropic Je cott rotor running on nonsymmetric
supports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

10.3 Nonlinear anisotropic Je cott rotor running on symmetric
supports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

10.4 Systems with many degrees of freedom . . . . . . . . . . . . 377

11 Nonstationary rotordynamics 387

11.1 Nonstationary linear Je cott rotor . . . . . . . . . . . . . . 387
11.1.1 Equations of motion . . . . . . . . . . . . . . . . . . 387
11.1.2 Torsionally sti rotor with imposed acceleration . . 390
11.1.3 Torsionally sti rotor with imposed torque . . . . . . 393
11.1.4 Torsionally compliant rotor: small torsional vibra-

tions with imposed acceleration . . . . . . . . . . . . 394



Contents xvii

11.2 Nonstationary general Je cott rotor . . . . . . . . . . . . . 397
11.3 Nonstationary rotor with four degrees of freedom . . . . . . 401
11.4 Generic, torsionally sti , multi-degrees-of-freedom system . 404
11.5 Blade loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

12 Dynamic behavior of free rotors 413

12.1 Single rigid-body rotor . . . . . . . . . . . . . . . . . . . . . 414
12.1.1 General considerations . . . . . . . . . . . . . . . . . 414
12.1.2 Equations of motion . . . . . . . . . . . . . . . . . . 419

12.2 Large amplitude whirling of a linearily constrained rigid rotor431
12.3 Twin rigid-bodies free rotor . . . . . . . . . . . . . . . . . . 439

12.3.1 Linearized approach . . . . . . . . . . . . . . . . . . 440
12.3.2 Nonlinear approach . . . . . . . . . . . . . . . . . . 447

12.4 Multibody free rotors . . . . . . . . . . . . . . . . . . . . . 456

13 Dynamics of rotating beams and blades 465

13.1 Rotating pendulum . . . . . . . . . . . . . . . . . . . . . . . 466
13.2 Rotating pendulum constrained to oscillate in a plane . . . 470
13.3 Spring-loaded rotating pendulum . . . . . . . . . . . . . . . 472
13.4 Rotating string . . . . . . . . . . . . . . . . . . . . . . . . . 473

13.4.1 Rotating string constrained to oscillate in a plane . . 478
13.4.2 Rotating beam . . . . . . . . . . . . . . . . . . . . . 479

13.5 Dynamics of a row of rotating pendulums . . . . . . . . . . 484
13.5.1 Pendulums on a rigid support . . . . . . . . . . . . . 484
13.5.2 In-plane oscillations of pendulums on elastic supports 488
13.5.3 Spring-loaded pendulums on elastic supports . . . . 495
13.5.4 Damped pendulums on elastic supports . . . . . . . 498
13.5.5 Out-of-plane oscillations of pendulums on elastic sup-

ports . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
13.6 Interaction between the dynamics of the blades and the dy-

namics of the shaft . . . . . . . . . . . . . . . . . . . . . . . 509

14 Dynamics of rotating discs and rings 517

14.1 Rotating membranes . . . . . . . . . . . . . . . . . . . . . . 517
14.2 Rotating circular plate . . . . . . . . . . . . . . . . . . . . . 522
14.3 Disc-shaft interaction (modes with = 0 or = 1) . . . . 525
14.4 Uncoupled modes (modes with 2) . . . . . . . . . . . . 527
14.5 Vibration of rotating circular rings . . . . . . . . . . . . . . 528

14.5.1 Out-of plane flexural vibrations . . . . . . . . . . . . 532
14.5.2 In-plane flexural vibrations . . . . . . . . . . . . . . 535

14.6 Vibration of thin-walled, rotating cylinders . . . . . . . . . 538
14.7 Instability of rotating cylinders partially filled with liquid . 539

15 Three-dimensional modeling of rotors 541

15.1 Symmetry of the rotor . . . . . . . . . . . . . . . . . . . . . 542



xviii Contents

15.2 Simplified FEM elements for thin bladed-discs modeling . . 548
15.2.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . 549
15.2.2 Shape functions . . . . . . . . . . . . . . . . . . . . . 552
15.2.3 Kinetic and potential energy . . . . . . . . . . . . . 555
15.2.4 Element matrices . . . . . . . . . . . . . . . . . . . . 557

15.3 General finite element discretization . . . . . . . . . . . . . 558
15.3.1 Kinematics of the deformation of a rotating body . . 559
15.3.2 Kinetic energy . . . . . . . . . . . . . . . . . . . . . 561
15.3.3 Potential energy . . . . . . . . . . . . . . . . . . . . 564
15.3.4 Equations of motion of the element . . . . . . . . . . 565

15.4 Equation of motion in the inertial frame . . . . . . . . . . . 566
15.4.1 Velocity . . . . . . . . . . . . . . . . . . . . . . . . . 566
15.4.2 Kinetic energy . . . . . . . . . . . . . . . . . . . . . 567
15.4.3 Equations of motion of the element . . . . . . . . . . 568

15.5 Axi-symmetrical annular elements . . . . . . . . . . . . . . 568
15.5.1 Shape functions . . . . . . . . . . . . . . . . . . . . . 568
15.5.2 Kinetic and potential energy . . . . . . . . . . . . . 570
15.5.3 Equations of motion . . . . . . . . . . . . . . . . . . 572

15.6 Axi-symmetrical shell element . . . . . . . . . . . . . . . . . 573
15.6.1 Brick elements . . . . . . . . . . . . . . . . . . . . . 574

16 Dynamics of controlled rotors 583

16.1 Open-loop equations of motion . . . . . . . . . . . . . . . . 584
16.1.1 Real coordinates . . . . . . . . . . . . . . . . . . . . 584
16.1.2 Complex coordinates . . . . . . . . . . . . . . . . . . 585

16.2 Closed-loop equations of motion . . . . . . . . . . . . . . . 586
16.2.1 Ideal proportional control . . . . . . . . . . . . . . . 586
16.2.2 Ideal PID control . . . . . . . . . . . . . . . . . . . . 587
16.2.3 Dynamics of the control system . . . . . . . . . . . . 591

16.3 Rigid rotor on magnetic linearized bearings . . . . . . . . . 594
16.3.1 Equations of motion . . . . . . . . . . . . . . . . . . 595
16.3.2 Symmetrical system . . . . . . . . . . . . . . . . . . 599
16.3.3 Nonsymmetrical system . . . . . . . . . . . . . . . . 600
16.3.4 Geometric re-colocation . . . . . . . . . . . . . . . . 603

16.4 Modal control of rotors . . . . . . . . . . . . . . . . . . . . . 608

A Vectors, matrices, and equations of motion 617

A.1 Equation of motion . . . . . . . . . . . . . . . . . . . . . . . 617
A.1.1 Associated eigenproblem . . . . . . . . . . . . . . . . 618
A.1.2 Free response . . . . . . . . . . . . . . . . . . . . . . 621
A.1.3 Forced response . . . . . . . . . . . . . . . . . . . . . 622
A.1.4 State-space representation . . . . . . . . . . . . . . . 623
A.1.5 Frequency response . . . . . . . . . . . . . . . . . . . 624

A.2 Rotating systems . . . . . . . . . . . . . . . . . . . . . . . . 625
A.2.1 Real coordinates . . . . . . . . . . . . . . . . . . . . 626



Contents xix

A.2.2 Complex coordinates . . . . . . . . . . . . . . . . . . 627
A.3 Circulatory and noncirculatory coupling . . . . . . . . . . . 627

B An outline on rotor balancing 631

B.1 Rigid rotors . . . . . . . . . . . . . . . . . . . . . . . . . . . 632
B.2 Flexible rotors . . . . . . . . . . . . . . . . . . . . . . . . . 635

B.2.1 Modal balancing . . . . . . . . . . . . . . . . . . . . 636
B.2.2 Influence coe cients method . . . . . . . . . . . . . 639

C Rotordynamics videos 645

D DYNROT LIGHT rotordynamics code 647

E Books on rotordynamics 649

References 651

Index 657



Symbols

real part of a complex number, length, acceleration
imaginary part of a complex number, shaft bow, length
viscous damping coe cient, clearance
static o set

f( ) generalized forces vector
f modal force vector

gravitational acceleration
thickness
imaginary unit ( = 1), current

0 bias current
sti ness
length
mass
th Lagrangian coordinate

( ) principal function
complex conjugate of

q( ) Vector of the generalized coordinates (real or complex)
complex coordinate ( = + ), radius

r complex conjugate of r
Laplace variable, complex frequency (as in = 0 )

0 complex frequency in the rotor fixed frame
s state vector (transfer matrices methods)

time, air gap
, , , displacements in frame
, components of the displacement



xxii Symbols

reference frame
z state vector

area of the cross section
A dynamic matrix

magnetic field
B input gain matrix, matrix for discretization of stresses
C damping matrix, output gain matrix
C modal damping matrix

Young’s modulus
E sti ness matrix of the material

force
F Rayleigh dissipation function

Shear modulus
G gyroscopic matrix
G modal gyroscopic matrix
H circulatory matrix, angular momentum

area moment of inertia
I identity matrix
Im imaginary part
J inertia tensor

moment of inertia
polar moment of inertia
transversal moment of inertia
sti ness, gain, constant

K sti ness matrix
K modal sti ness matrix
L Lagrangian function
M mass matrix
M modal mass matrix

moment
N matrix of the shape functions

load factor (Ockvirk number)
quality factor
th generalized force

Re real part
radius

R rotation matrix
Sommerfeld number

T kinetic energy
T transfer matrix
U matrix of the right eigenvectors of the dynamic matrix
U potential energy

velocity, volume
phase angle, slenderness of a beam
phase angle, ratio 2, attitude angle, ratio
generic element of the compliance matrix phase angle
shear strain, ratio



Symbols xxiii

ratio , ratio
0 ratio ( )
L virtual work

virtual displacement
eccentricity

² strain vector
damping ratio, nondimensional coordinate ( = )
rotation
rotational sti ness, curvature
viscosity, coe cent of the nonlinear restoring force
magnetic dipole moment
Poissons’s ratio
rotor-fixed reference frame
density, complex coordinate in the rotor fixed frame ( = + )

radius of inertia =
p

radius of inertia =
p

decay rate ( = Re( )), stress
stress vector
complex coordinate ( = ), phase

, , rotation about , , axes
angular misalignment, shear factor, nondimensional coordinate = 0

angle
frequency, whirl speed ( = Im( ))
natural frequency

B compliance matrix
rotational damping coe cient
matrix of the eigenvectors
rotational speed
critical speed

Subscripts
bearing
non synchronous rotating, deviatoric, damping
field
fixed frame
inner
journal
mean
nonrotating, node
outer
pendulum
rotating, restoring force
rotating frame
global
left
right



xxiv Symbols

Notation
Scalar (real or complex)
complex conjugate of

q Vector (implicit notation: bold and lower case)
{ } Vector (explicit notation: curl braces)
{ } Vector of dimension
M Matrix (implicit notation: bold and upper case)
[ ] Matrix (explicit notation: square braces)
[ ]

×
Matrix of dimension ×

( ), q( ) Time dependance
˙( ), q̇( ) Time derivative
(̈ ), q̈( ) Time second order derivative
( )

=1
, (q )

=1
, (M )

=1
Collection of indexed elements

({q } )
=1

Collection of indexed vectors of dimension



1
Introduction

Rotordynamics is that branch of systems dynamics dealing with mechanical
devices in which at least one part, usually defined as rotor , rotates with
significant angular momentum. Following the ISO definition, a rotor is a
body suspended through a set of cylindrical hinges or bearings that allows it
to rotate freely about an axis fixed in space. This definition is, however, too
restrictive, because there are cases in which no material bearings constrain
the position of the rotation axis in space: A spinning projectile or space
vehicle thus can be also regarded as rotors; aside from the artificial rotors
built by human technology, it is also possible to find natural rotors like
spinning celestial bodies. The dynamic behavior of stars that spin at very
high speeds, as neutron stars, display features that are typical of rotors.
Rotors provided with material bearings to constrain their spin axis in

a more or less rigid way to a fixed position in space are usually referred
to as fixed rotors, whereas those that are not constrained in any way are
defined as free rotors. In the first case, the spin speed is usually considered
as constant or at least as imposed by a driving device, whereas the speed
of the latter is governed by the conservation of the angular momentum.
The parts of the machine that do not rotate are generally referred to

with the general definition of stator .
Rotordynamic studies related to technological applications date back to

the second half of the nineteenth century, when the increase of the rota-
tional speed of many machine elements made it necessary to include rota-
tion into the analysis of their dynamic behavior. However, the dynamics
of rotating systems, as far as rigid rotors is concerned, was already well
understood and the problem of the behavior of the spinning top had been
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successfully dealt with by several mathematicians and theoretical mechani-
cists.
The paper, On the centrifugal force on rotating shafts, published on The

Engineer in 1869 by Rankine [12] is considered the first paper fully devoted
to rotordynamics. It correctly states that a flexible rotating system has a
speed, defined by the author as critical speed, at which very large vibration
amplitudes are encountered. However, the author incorrectly predicts that
stable running above the critical speed is impossible.
Early attempts to build turbines, mainly steam turbines, at the end of

nineteenth century led to rotational speeds far higher than those common
in other fields of mechanical engineering. At these speeds, some peculiar
dynamic problems are usually encountered and must be dealt with to pro-
duce a successful design. De Laval had to solve the problem of correctly
understanding the behavior of a rotor running at speeds in excess of the
critical speed, i.e., in supercritical conditions, while designing his famous
cream separator and then his steam turbine. From the beginning, the suc-
cessful design of turbine engines depended on a thorough understanding of
rotordynamics.
A theoretical explanation of supercritical running was supplied first by

Föppl (1895)[13], Belluzzo (1905)[14], Stodola (1905)[15] (earlier works
were published in German), and Je cott in his famous paper of 1919 [16].
Although the first turbine rotors were very simple and could be dealt with
by using simple models, of the type now widely known as Je cott rotor ,
more complex machines required a more detailed modeling. Actually, al-
though a simplified approach like the above-mentioned Je cott rotor can
explain qualitatively many important features of real-life rotors, the most
important being self-centering in supercritical conditions and the di er-
ent roles of the damping of the rotor and of the nonrotating parts of the
machine, it fails to explain other features, such as the dependence of the
natural frequencies on the rotational speed. Above all, the simple Je cott
rotor does not allow us to obtain a precise quantitative analysis of the
dynamic behavior of complex systems, e.g., those encountered in gas- or
steam-turbines, compressors, pumps, and many other types of machines.
To cope with the increasing complexity of rotating systems, graphical

computation schemes were devised. They can be found in books and papers
from the first quarter of the century, like the mentioned books by Belluzzo
and Stodola, and were, without any doubt, the basic instrument for the
dynamic analysis of turbine rotors. A large number of papers dealing with
the flexural vibration of rotors and rotating shafts as well as with torsional
vibration in reciprocating machinery appeared in the years after World War
I. This trend continued for many years, fuelled by the increase of the size
of power-generating machinery, of the specific power of engines of all types,
and of the operational speed of machinery.
The availability of electromechanical calculators allowed us to develop

tabular computational procedures, mainly based on the transfer matrices
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approach, which eventually substituted graphical computations. In par-
ticular, Holzer’s method for the torsional vibrations of shafts and the
Myklestadt-Prohl method for the computation of the critical speeds of
turbine rotors were, and still are, widely used. These methods were im-
mediately automatized when digital computers became available.
In the years after World War II, the fast di usion of gas turbines and

turbojet engines gave a new thrust to rotordynamic studies. Apart from pa-
pers published on journals and books specifically dedicated to this subject,
rotordynamics was dealt with in a number of specialized conferences held
every year. This lead to an explosion of the number of specialized papers
and to the subdivision of the field in many very specialized branches with
sometimes di culties in recognizing clearly the unifying concepts laying
under increasingly di erentiating analytical procedures and jargon.
One example of these di culties is shown by the peculiar approach de-

veloped for the study of the attitude dynamics of spinning spacecraft: Al-
though the relevant phenomena are the same as those studied by main-
stream rotordynamics, there is very little exchange of information between
the specialists in the two fields and the di erent approaches make it di cult
to recognize such similarities, particularly as far as the e ects of damping
are concerned.
The wide di usion of the finite element method (FEM) deeply influenced

also the field of rotordynamics. Strictly speaking, usual general purpose
FEM codes cannot be used for rotordynamic analysis owing to the lack of
consideration of gyroscopic e ects. It is true that a gyroscopic matrix can
be forced in the conventional formulation and that several manufacturers
use commercial FEM codes to perform rotordynamic analysis, but the ro-
tordynamic field is one of these applications in which purposely written,
specialized FEM codes can give their best. Through FEM modeling, it is
possible to study the dynamic behavior of machines containing high-speed
rotors in greater detail and consequently to obtain quantitative predictions
with an unprecedented degree of accuracy.
Correct quantitative prediction is particularly important as the trends

of technology toward higher power density, lower weight, and faster ma-
chines tend to make worse all problems linked with the dynamic behavior
of rotating machinery.
Higher speeds are often a goal in themselves, like in machine tools or

other production machines in which spinning faster means directly increas-
ing productivity. In applications related to power generation or utilization,
a faster machine can develop or convert more power manipulating the same
torque. As torque is usually the critical factor in dimensioning machine el-
ements (shaft cross section, size of the conductors in electrical machinery,
etc.), increasing the speed allows us to make power devices lighter. The use
of materials able to withstand higher stresses allows us to reduce the mass
and the size of machinery, but stronger materials (e.g., high strength steels
or light alloys) are usually not sti er and then these lighter machines are
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more compliant and more prone to vibrate. Another trend is toward higher
operating temperature, both for increasing the thermodynamic e ciency
and because higher power density means that the same amount of heat
is generated in a smaller space, with less material, and hence lower ther-
mal capacity. Higher temperatures lead to higher thermal stresses, lower
damping, and often lower sti ness, which makes more severe strength and
vibration problems.
Rotordynamic analysis is not restricted to the design stage: It can supply

tools that are essential during testing and actual operation of machinery
and is essential to gain a deep insight of the working conditions and to
perform preventive maintenance.
The study of the mechanical signature, i.e., the vibration spectrum, of

a rotating machine allows us to identify operating problems even before
they become dangerous and to avoid the fact that the failure of a com-
ponent precipitates failure or damages to other parts. Any deviation of
the signature from its usual pattern provides a symptom, in many cases
easily interpreted, of a problem that is developing and allows the required
countermeasures in time to be taken.
Machines in general, but particularly those including fast rotating ele-

ments, are increasingly supplied with sensors to monitor the dynamic be-
havior, and they can even incorporate transducers, actuators, and control
systems for controlling it in an active way. As it is commonly said, they are
increasingly intelligent machines.
In spite of the progress that has been made in the recent years, or per-

haps as a consequence of it, the rotordynamics field is still a field of very
active research, both for the application of concepts that are well estab-
lished from decades to new areas and new applications and for achieving
a better understanding of the behavior of rotating systems. Nonlinear and
nonstationary rotordynamics and the behavior of actively controlled rotat-
ing machines are only examples of areas in which much research work is
still needed.
Every year many scientific conferences and seminars are devoted to ro-

tordynamics, and the number of papers presented at them or published in
scientific journals is in the thousands, and the state of the art is described
in a large number of books.

1.1 Linear rotordynamics

The equations describing the motion of even a simple rigid body with mass
and principal moments of inertia , , and referred to a reference

frame fixed to it in the three-dimensional space are actually complex,
particularly when dealing with the rotational degrees of freedom, and they
do not allow the direct use of any linear model. With reference to an inertial
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frame and a rotating frame fixed to the rigid body and coinciding
with its principal axes of inertia, the six equations of motion under the
action of the generic force and moment can be written in the form

¨ =
¨ =
¨ =

= ˙ + ( )

= ˙ + ( )

= ˙ + ( )

(1.1)

The three equations for the rotational degrees of freedom, which are the
well-known Euler equations, are clearly nonlinear in the angular velocity
.
However, a number of simplifications allow a linearized model to be ob-

tained that retains the basic features of the dynamic behavior of rotating
systems and allow us to describe it correctly, both in a qualitative and a
quantitative manner.
The rotor has, in its undeformed configuration, a well-defined rotation

axis, which coincides with one of the baricentrical principal axes of inertia.
This condition is exactly verified only if the rotor is perfectly balanced and
is only approximately true; however, in most cases the, unbalance, i.e., the
deviation from this ideal condition, is small and it is possible to deal with
it as a small perturbation. Also, all displacements and velocities, linear and
angular, can be assumed to be small, with the exception of the rotation
angle and angular velocity about the spin axis, which are not small but can
be considered as imposed by the driving system.

1.1.1 Equation of motion

The two assumptions of small unbalance and small displacements allow
the linearization of the equations of motion in a way that is consistent with
what is usually done in the dynamics of structures (see, for example, [17,
18, 19]). However, even in the case of the discretised model1 of a linear rotor
that is axially symmetrical about its spin axis and rotates at a constant spin
speed , the linearized equation of motion (dynamic equilibrium equation)
is of the following general form:

Mq̈(t)+ (C+G) q̇( )+ (K+H)q( )= f( ) , (1.2)

1 In the present text, time is always assumed to be continuous; hence, discretized
is always to be intended with respect to space coordinates. Note that the expression
“lumped parameters” is not a synonym of “discretized” because in the context of FEM,
consistent parameter systems, which are discretized but not lumped parameters, are
used.
Following a definition by Meirovitch, lumped parameters depend on the spatial posi-

tion only implicitly. On the other hand, distributed parameters depend explicitly on the

spatial coordinates. This definition, however, is more general and considers consistent
FEM models as lumped parameters systems.
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where q( ) is a vector containing the generalized coordinates, referred to
an inertial frame, M is the symmetric mass matrix, C is the symmetric
damping matrix, G is the skew-symmetric gyroscopic matrix, K is the
symmetric sti ness matrix, H is the skew-symmetric circulatory matrix,
and f( ) is a time-dependant vector in which all forcing functions are listed.

1.1.2 Rotating systems

When dealing with rotating systems, one of the forcing functions is usually
that caused by the residual unbalance that, although small, cannot never-
theless be neglected. Unbalance forces are harmonic functions of time, with
an amplitude proportional to 2 and a frequency equal to .
The gyroscopic matrix contains inertial, and hence conservative, terms

that, in the case of rotordynamics, are strictly linked with the gyroscopic
moments acting on the rotating parts of the machine. If the equation is
written with reference to a noninertial frame, terms linked with Coriolis
acceleration also are present in the gyroscopic matrix. The circulatory ma-
trix contains nonconservative terms linked with the internal damping of
rotating elements and, when using a linearized model for fluid bearings or
seals, with the damping of the fluid film surrounding the rotor. It is well
known that the presence of a circulatory matrix can cause instability, and
rotors are no exception to this rule.
Equation (1.2) is that of a nonnatural, circulatory system and hence

di ers from the typical equations encountered in dynamics of structures,
where all matrices are symmetric. It must be noted that in rotordynamics,
the gyroscopic and circulatory matrices G and H are proportional to the
spin speed , and when tends to zero, the skew-symmetric terms vanish
and the equation reduces to that of a still structure. Also, the damping
and sti ness matrices C and K may depend on the spin speed, often on its
square 2, and H can be a more complex function of .
Some cases that, strictly speaking, could not be studied using the afore-

mentioned assumptions can still be dealt with in the same way. Consider,
for example, the rotor of an aircraft gas turbine during maneuvered flight.
The direction of the axis of the rotor changes continuously in time, and
no small-angle assumption can be considered for this motion. However, the
motion of the rotor can be studied in a reference frame that is fixed to the
aircraft, provided that the motion of the latter can be considered indepen-
dent from the dynamic behavior of the first and the related inertia forces
are added. This way of splitting the problem into its dynamic and quasi-
static parts is possible if the characteristic times of the di erent phenomena
under study are widely di erent. In the example given earlier, this is clearly
the case if the frequencies that characterize the motion of the rotor of the
turbine with respect to the aircraft are of several Hertz (periods of fractions
of seconds), and the rotations of the airframe have characteristic times of
the order of several seconds. On the contrary, the seismic actions on the
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rotor of a machine in a building may have frequencies of the same order of
magnitude as those that characterize the rotor, and the problem may have
to be studied without any uncoupling being possible.
Equation (1.2) has been obtained with the assumption of axial symmetry

of the system about the spin axis. Actually, it still holds when the rotor is
axially symmetrical, but it runs on a general stator, without any particular
symmetry properties.
If, on the contrary, the rotor cannot be considered to be axially sym-

metrical, the study becomes very complicated, unless an axial symmetry
assumption can be made on the nonrotating parts of the system. In the
latter case, a rotating reference frame, i.e., one that rotates at the angular
velocity of the rotor, can be used and an equation similar to Equation (1.2),
although written with reference to a noninertial frame, is obtained.
If both stator and rotor are nonisotropic with respect to the rotation

axis, the equation of motion that models its behavior has coe cients that
are periodic in time, with a frequency equal to 2 No closed-form solution
of such equation is available, and even reaching an approximated solution
is far more complicated than in the case in which either the rotor or the
stator is axially symmetrical.
Most flexible rotors can be considered as beam-like structures. Under

fairly wide assumptions, the lateral behavior of a beam can be considered
as uncoupled from its axial and torsional behavior. The same uncoupling
is usually assumed in rotordynamics, with the di erence that no further
uncoupling between bending in the principal planes is possible.
When the flexural behavior can be uncoupled from the axial and torsional

ones, Equation (1.2) holds for the first one, and the torsional and axial
equations of motion are usually those of a natural, noncirculatory system.

1.1.3 Complex coordinates

If both stator and rotor are isotropic with respect to the rotation axis, very
simple models can be devised by introducing complex coordinates. Assume
that the spin axis coincides with the -axis of an inertial reference frame
(Figure 1.1). The lateral displacement of any point of the rotor can be
described in terms of the displacements in - and -directions or in terms
of a displacement vector in the -plane. The latter can be expressed in
the form of a complex number

( ) = ( ) + ( ) , (1.3)

where is the imaginary unit ( = 1). The use of complex coordinates is
somewhat equivalent to express the displacements in compact vector form

r( ) =

½
( )
( )

¾
, (1.4)
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FIGURE 1.1. Inertial frame and rotating frame for a rotor. Displacement
vector of point P and its components.

but it allows a far more convenient analytical form to be used to obtain
the solution of the equation of motion for rotors (see Section 2.2 for its
application to the undamped Je cott rotor).

Remark 1.1 In a similar way, complex coordinates for angular displace-

ments can be defined (Chapter 3).

In general, when using the complex-coordinates notation, the equation
of motion of a multi-degrees-of-freedom axisymmetrical rotating system
(Chapter 4) results in

M0q̈0( )+ (C0+ G0) q̇0( )+ (K0+ H0)q0( )= f 0( ) . (1.5)

Substituting the expression of the complex coordinates q0( ) into Equa-
tion (1.5) and separating the real and imaginary parts

q( ) =

½
Re(q0( ))
Im(q0( ))

¾
, (1.6)

the equation of motion (1.2) becomes
·
M0 0

0 M0

¸
q̈( ) +

µ·
C0 0

0 C0

¸
+

·
0 G0

G0 0

¸¶
q̇( )+

+

µ·
K0 0

0 K0

¸
+

·
0 H0

H0 0

¸¶
= f( ) .

(1.7)

Remark 1.2 The matrices that are symmetric when using the real coordi-

nates approach are real in the equation written in terms of complex coordi-

nates, whereas skew-symmetric matrices give way to symmetric, imaginary

terms. When using the complex-coordinates approach, all relevant matrices,

including the gyroscopic and circulatory ones, are then symmetric.
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Remark 1.3 Although complex coordinates allow us to greatly simplify the

equation of motion of axisymmetrical systems, they can be used as well in

the study of general, nonisotropic, rotating systems.

Remark 1.4 When the spin speed reduces to zero, the gyroscopic and cir-

culatory matrices vanish and the solution of the general equation of mo-

tion (1.7) is obtained as the sum of two equal and decoupled systems whose

solution coincides with that of the system in complex coordinates of Equa-

tion (1.5).

In the following chapters, the basics of rotordynamics are introduced
by a two degrees-of-freedom point mass model, the so-called Je cott rotor
(Chapter 2), a four degrees-of-freedom rigid body model (Chapter 3), and
a multi-degrees-of-freedom flexural body model (Chapter 4) by taking full
advantage of the complex coordinates notation.

1.1.4 Free vibration

The general solution of Equation (1.2) can be written by adding the com-
plementary function (the general solution of the homogenous equation) to
a particular integral of the complete equation. The former allows the free
behavior of the system to be studied.
As usual, the solution for free vibration can be written in the form

q( ) = q0 , (1.8)

where

= +

is the complex frequency . The natural frequency of the free motion (whirl
frequency) of the system is then the imaginary part of , whereas its real
part is the decay rate (i.e., the rate at which the amplitude decreases in
time) changed in sign: A negative value of characterizes a motion that
decays in time (stable motion), whereas a positive value characterizes an
unstable motion, growing exponentially in time.

Spin speed dependence Campbell diagram

As the spin speed can appear explicitly in the equation of motion, the
natural frequencies of a machine containing a rotor can depend on the
spin speed. When this occurs, the free behavior of the system is usually
summarized by a plot of the natural frequencies = Im( ) as functions
of . Because in many cases the frequencies of the exciting forces also
depend on the speed, they can be reported on the same plot, obtaining
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FIGURE 1.2. Four-quadrant Campbell diagram of a flexible rotor (the rotor of a
small turbojet).

what is generally known as a Campbell diagram2 (Figure 1.2). If damping
is present, a second plot, in which the decay rates are reported as functions
of the spin speed, can be plotted together with the Campbell diagram, as
in Figure 1.4. Alternatively, the natural frequency can be plotted against
the decay rate, obtaining what is generally referred to as a roots locus
(Figure 1.3).
The Campbell diagram of Figure 1.2 has been represented over four

quadrants. Clearly, it is symmetrical with respect to the axis, as the
sign of the spin speed, i.e., the direction of the rotation of the machine, has
no e ect on the natural frequencies. It is also symmetrical with respect to
the axis: The solutions for are either real or complex conjugate, and
hence if is the imaginary part of an eigenvalue, is the imaginary part
of another eigenvalue.

Remark 1.5 Both the Campbell diagram and the roots loci are symmetri-

cal with respect to the abscissa axis.

2A plot of the free vibration frequency as a function of the spin speed was extensively
used in a paper by Campbell [20] describing the results of very extensive testing on
rotating rubber membranes simulating turbine disks.
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FIGURE 1.3. Roots locus of a flexible rotor depending on spin speed as the
varying parameter.

Remark 1.6 The intersections of the various branches of the Campbell

diagram with the axis are the natural frequencies at standstill of the

system. If the system is axially symmetrical (i.e., the characteristics in

plane coincide with those in plane), the natural frequencies at standstill

are pairs of coincident values. With increasing speed, the values are no more

double: Two diverging branches start from each point on the axis of the

Campbell diagram.

Remark 1.7 The Campbell diagram can be plotted only in the case of

linear systems, because only in this case does the very concept of natural

frequencies apply. However, in the case of nonlinear systems, the Campbell

diagram of the linearized system may yield important information on the

behavior of the system.

As the Campbell diagram is symmetrical with respect to both the and
the axes, all of the information it conveys are contained in any one of
its quadrants and it is customary to draw only one of them, usually the
first quadrant. Such plot, together with the plot of the real part of the
eigenvalues as functions of the speed, is reported in Figure 1.4.
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FIGURE 1.4. Standard Campbell diagram (only the first quadrant is represented)
and decay rate plot of a flexible rotor.

Consider a pair of branches of the Campbell diagram of Figure 1.4 stem-
ming from a single natural frequency at standstill (the rotor is axially
symmetrical and the values on the -axis are double). As seen later in
Chapters 2 and 3, they can be interpreted as the frequencies of two cir-
cular whirling motions, one (the darker in Figure 1.4) occurring in the
same direction of the spin motion (forward or direct whirling) and one (the
lighter) in the opposite direction (backward or reverse whirling).
It is then possible to plot the Campbell diagram in such a way as to

di erentiate between forward and backward whirling, using a positive value
of , now interpreted as the speed of the free whirling motion, for the former
and a negative value for the latter.
The Campbell diagram of Figure 1.4, plotted to include both a positive

and negative value of the spin speed, takes now the aspect reported in
Figure 1.5.
In the four quadrant representation of the Campbell diagram, the lines

in the first one are related to forward whirling when spinning in forward
(i.e., counterclockwise) direction, the second is for reverse whirling when
spinning in clockwise direction, the third is for direct whirling in clockwise
direction, and the fourth is for reverse whirling in counterclockwise direc-
tion. As already said, the direction of the spinning motion is immaterial and
two quadrants are enough to convey all of the required information. The
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FIGURE 1.5. Campbell diagram of the same flexible rotor used for the previous
plots, but represented using a positive vale of for forward whirling and a nega-
tive one for backward whirling. Both positive and negative values of have been
represented.

usual way is to represent the first and the fourth quadrants, but sometimes
the first and second ones are plotted.
What has been said for the Campbell diagram applies also for the roots

locus. Also here the branches for forward whirling can be represented with
positive values of and those for backward whirling with negative values.
A plot of the type shown in Figure 1.6 is thus obtained, which is not
symmetrical with respect to the -axis.
The dependence of the dynamic response on the spin speed is also evident

when the transfer functions of the rotating structure are used. Figures 1.7
and 1.8 show the transfer function from force to acceleration for the same
rotor at standstill and at nominal rotating speed, respectively. Because of
axial-symmetry, at standstill, the structure response is that of two equal
and decoupled systems in the - and -directions: All of the eigenvalues of
the overall system are complex conjugate and have double multiplicity. At
the nominal spin speed, the gyroscopic e ect couples the response in - and
-directions: The eigenvalues are (have to be) complex conjugate but are
no longer coincident.
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FIGURE 1.6. Roots locus in which forward and backward whirling are reported
as positive and negative values of .

Each resonance peak in Figure 1.7 splits into two resonance peaks in
Figure 1.8. This splitting of the resonances is typical of rotating systems
that have a nonnegligible gyroscopic e ect.

Critical speeds

Often rotors are subjected to forces that vary in time, and sometimes their
time history is harmonic. This is the case, for example, of forces caused by
the unbalance of the rotor, which can be described as a vector rotating with
the same angular speed as the rotor and whose components in the fixed
reference frame vary harmonically in time with circular frequency equal
to the rotational speed . In other cases the time history is less regular,
but if it is periodical, it can always be represented as the sum of harmonic
components.
In these cases, the frequency of the forcing function or of its harmonic

components is often linked with the spin speed of the rotor and can be
plotted on the Campbell diagram. In the case of the excitation caused by
unbalance, for example, the forcing frequency can be represented on the
-plane of the Campbell diagram by the straight line = , i.e., by

the bisector of the first quadrant. In this case, the excitation is said to be
synchronous. The relationship linking the frequency of the forcing function
to the spin speed is often of simple proportionality and can be represented
on the Campbell diagram by a straight line through the origin.
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FIGURE 1.7. Frequency response of a rotor (on active magnetic bearings) at
standstill. The transfer function between the acceleration at the location of a
sensor and the force at the corresponding actuator is reported.

The spin speeds at which one of the forcing functions has a frequency
coinciding with one of the natural frequencies of the system are usually
referred to as critical speeds and can be identified on the Campbell dia-
gram by the intersections of the curves related to the natural frequencies
with those related to the forcing frequencies. A case in which the forcing
frequencies are proportional to is reported in Figure 1.9.
Not all of the intersections on the Campbell diagram are equally dan-

gerous. If the frequency of a forcing function coincides with the natural
frequency of a mode that is completely uncoupled from it (or, better, if the
modal force corresponding to the forcing function and the resonant mode
is vanishingly small), no resonance actually occurs. For example, if the fre-
quency of the driving torque (i.e., of the torsional moment on the rotor) is
coincident with a flexural natural frequency of the rotor and torsional and
flexural behavior are completely uncoupled, no resonance takes place. In
other cases, the resonance can be very weak and the damping of the system
can be su cient to avoid any measurable e ect.
There are, however, cases in which a very strong resonance takes place

and the rotor cannot operate at or near a critical speed without strong vi-
brations or even a catastrophic failure. In particular, the resonances caused
by the coincidence of one of the flexural natural frequencies with the spin
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FIGURE 1.8. Frequency response of a rotor (on active magnetic bearings) at a
speed of = 33000 rpm. Note the splitting of the resonance peaks caused by the
gyroscopic e ect.

speed are particularly dangerous; they can be detected on the Campbell
diagram by the intersection of the curves related to the natural frequencies
with the straight line = . They are usually referred to as flexural criti-
cal speeds, without further indications, and other critical speeds related to
bending behavior, which are usually less dangerous, are often said to be
secondary critical speeds.
The response to a synchronous excitation, like unbalance, causes a syn-

chronous whirling of the rotor; if the whole system is axi-symmetrical, a
circular synchronous whirling occurs. The situation occurring in this con-
dition is sketched in Figure 1.10: In (a), a whirling shaft is shown in its
deflected configuration, and in (b), the situation occurring in plane is
sketched. As the spin speed is equal to the whirl speed, the zone of the
cross section of the shaft subjected to tensile stresses (shaded part close to
point B) remains always under tensile loading, whereas that subjected to
compression is always compressed. The situation is similar to that of the
Moon, which always shows the same side to the Earth. In this condition,
the material constituting the rotor is subjected to a constant stress state,
which is good on one side as the rotor is not subjected to fatigue, but on
the other side, the internal damping of the material cannot be e ective in
dissipating energy and hence in limiting the amplitude, particularly when
the system is working at a speed close to a critical speed.
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FIGURE 1.9. Intersections on the Campbell diagram to locate the critical speeds.

The flexural critical speeds can, in fact, be defined as the speeds at which
the centrifugal forces due to the bending of the rotor are in indi erent
equilibrium with the elastic restoring forces, and from this point of view,
the situation is more similar to that characterizing elastic instability than
that typical of vibratory phenomena. A rotor operating at a critical speed
is then not subject to vibrations of any type but is a source of periodic
excitation that can cause vibrations, often very strong, in the nonrotating
parts of the machine.
In this condition, the amplitude of the vibration grows linearly in time

and only the damping of the stator and the supports (because the damping
of the rotor is completely ine ective in this case) and the unavoidable
nonlinearities, which show up when the amplitude grows, can prevent the
failure of the rotor. Actually, it is possible to design rotating machinery
in such a way that operation at a critical speed is possible for a limited
period of time, but it is, at any rate, necessary that the normal operating
range is either below the first critical speed or between two critical speeds
and that sustained operation in critical condition is avoided. An example
of a machine operating above the first critical speed is that of the common
domestic washing machine: In the transition between the washing and the
spinning modes, the crossing of a critical speed is generally easily detected
from strong vibrations, even without instruments.
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FIGURE 1.10. (a) Sketch of a shaft undergoing circular synchronous whirling,
i.e., with whirl speed equal to the spin speed ; (b) situation on the -plane:
The shaded area of the cross section is under tensile stress.

The speed range spanning from zero to the first critical speed is usu-
ally referred to as the subcritical range; above the first critical speed, the
supercritical range starts. A growing number of machines work in the super-
critical range, and then at least one of the critical speeds must be crossed
during startup and shut-down procedures.
If the Campbell diagram related to flexural vibrations is made by straight

lines parallel to the -axis, i.e., if the natural frequencies are independent of
the speed, the numerical values of the critical speeds coincide with those of
the natural frequencies at standstill, as can be seen from Figure 1.11. Some
confusion between the concepts of critical speed and the natural frequency
that can still be found can probably be ascribed to this fact. Even if the
numerical values are coincident, the two physical phenomena are di erent,
particularly where the stressing of the rotor is concerned.
In addition to flexural critical speeds, torsional critical speeds can also be

very dangerous, particularly in the case of reciprocating machinery. Many
devices whose aim is to reduce the amplitude of the vibrations induced by
critical speeds have been developed.
The very concept of critical speed has been defined with reference to a

linear system, and it is impossible to define critical speeds in this sense in
the case of nonlinear rotors. However, a more general definition of critical
speed, as a spin speed in which strong vibrations are encountered, is often
used. This definition, which also holds in the case of nonlinear rotors, has
a certain degree of arbitrarity, because the amplitude of the vibration de-
pends on the cause producing it. In the case of nonlinear rotors, the speed at
which the maximum amplitude is reached, i.e., the critical speed following
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FIGURE 1.11. Critical speed of a rotor whose Campbell diagram is flat.

the last definition, also depends on the strength of the exciting causes (for
example, the amount of unbalance in the case of flexural critical speeds).
The critical speeds of linear systems are, on the contrary, characteristic of
the system and are independent from the excitation.

Fields of instability

Rotors may develop an unstable behavior in well-defined velocity ranges.
The velocities at which this unstable behavior occurs must not, however, be
confused with the critical speeds of the rotor because the two phenomena
are completely di erent. The term unstable can have several meanings, and
di erent definitions of stability exist, one of the most common being that
introduced by Liapunov.
An equilibrium configuration of a system is stable, following Liapunov

criterion, if the system returns to a configuration close enough to the equi-
librium one when displaced from it. Of course, this displacement must not
be too large. If the system tends asymptotically in time to the equilibrium
configuration, the latter is asymptotically stable.3

3The definition of stability introduced by Liapunov is based on a state space repre-
sentation of the motion of the system. Consider a vector ( ) in the state space and
use the symbol | ( )| for its euclidean norm. Let 0 be an equilibrium position. Such
a position is stable if, for any arbitrarily small positive quantity , a positive quantity
exists such that the inequality

| ( ) 0| for 0 , (1.9)

holds if | (0) 0| .
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It is possible to demonstrate that a linear system is asymptotically stable
if all solutions for free motion defined by Equation (1.8) are such that all
values of have a negative real part; i.e., all 0.
However, the theoretical definition of stability introduced by Liapunov

may be di cult to apply in many engineering situations, and a technical
definition of stability can be used: The behavior of a machine is considered
stable when the amplitude of vibration in normal operation does not ex-
ceed a value considered acceptable. For rotating machinery, a definition of
technical stability was stated by A. Muszynska [21] in the terms:
A rotating machine is stable if its rotor performs a pure rotational motion

around an appropriate axis at a required rotational speed and this motion is

not accompanied by other modes of vibrations of the rotor, its elements or

other stationary parts of the machine, or, if such vibrations take place, their

amplitudes do not exceed admitted, acceptable values. The stable rotating

machine is immune to external perturbing forces, i.e., any random perturba-

tion cannot drastically change its behavior. Such a perturbation causes only

a transient decaying process leading to a previous regime of performance,

or to a new one, which is included in the acceptable limits.

The amplitude of free vibration of damped linear systems decays expo-
nentially in time, because of the energy dissipation caused by damping. In
the case of rotors, however, there is a source of energy, the centrifugal field,
that may in some cases cause an unbounded growth in time of the ampli-
tude of free vibrations. The ranges of the spin speed in which this growth
occurs, i.e., in which self-excited vibrations can develop, are usually called
instability fields or instability ranges, and the speed at which the first of
such field starts is the threshold of instability .
Instability ranges must not be confused with critical speeds: Critical

speeds are a sort of resonance between a natural frequency and a forcing
function acting on the rotor, and in instability ranges, true self-excited
vibrations occur. They need the presence of some source of energy to sustain
the vibration with increasing amplitude, and in this case, the energy can
be supplied by the kinetic energy linked with rotation at the spin speed .
It is easy to verify that the kinetic energy stored in the rotor is greater by
some orders of magnitude than the elastic potential energy the rotor can
store without failure.

This means that any trajectory starting within a multidimensional sphere (if the state
space has more than two dimensions, a circle in the case of a single-degree-of-freedom
system, whose state space has two dimensions) of radius centered in the equilibrium
point in the state space remains within a multidimensional sphere of radius for all
values of time. If

lim | ( ) 0| = 0 (1.10)

then the equilibrium position is asymptotically stable.
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FIGURE 1.12. Thin ring of mean radius rotating at the speed .

Consider, for example, a thin ring with radius and material density
rotating at speed (Figure 1.12). As the hoop stress in the ring is simply

= 2 2 ,

the relationship linking the kinetic energy with the stress is

T =
1

2
2 2 =

1

2

The maximum potential energy the ring can store in an axi-symmetrical
tensile deformation is

U =
1

2

2

=
1

2

2

,

where , , and are the Young’s modulus, the volume of the material,
and the ultimate strength, respectively. Note that the material has been
assumed to be linear up to failure. The ratio between the kinetic energy
and the potential energy corresponding to a deformation causing the failure
of the ring (at failure = ) is

T

U
=

By introducing the expression of the hoop stress into the last equation,
it is easy to see that ratio is nothing other than the ratio
between the speed of sound in the material and the peripheral velocity
at failure of the ring, whose value is usually far greater than 10. The kinetic
energy stored in the rotor is then at least one or two orders of magnitude
greater than the energy needed to deform the rotor until failure occurs.
Similar considerations would hold for other geometrical configurations or
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deformation patterns. It is then su cient that a small portion of the kinetic
energy of the rotor is transformed into deformation potential energy to
cause failure.

Remark 1.8 A structural system is inherently stable, as it can only dissi-

pate energy, unless some mechanism that may supply energy to it is present.

This is the case of the inverted pendulum (energy supplied by the gravi-

tational field), aeroelastic vibrations (energy supplied by the aerodynamic

field and ultimately by the kinetic energy of the aircraft), rotors (energy

supplied by rotation), and active controlled systems (energy supplied by the

controller). In all of those cases, instability may occur and the designer

must study very carefully the conditions that assure a stable working of the

system.

It is easy, at least from a theoretical point of view, to predict the onset
of unstable working conditions in a linear system by assuming that the free
motion has a time history expressed by Equation (1.8) and by studying
the sign of the decay rate, i.e., the sign of the real part of the complex
frequency .
At vanishingly small speeds, all values of = Re ( ) are obviously nega-

tive (at least if the system does not contain active devices), because there
is no external source of energy that can excite vibration. With increasing
speed, the decay rate of some modes can decrease in absolute value show-
ing a reduction of stability. If at a certain value of the spin speed one
of them vanishes and then becomes positive, that speed is the threshold of
instability of the system.
A threshold of instability is clearly visible in the decay rate plot of Fig-

ure 1.4: One of the values of becomes positive at a speed slightly lower
than 150,000 rpm.
Actually, it can be very di cult to estimate the decay rates with enough

precision, because they are influenced by many factors that are very di cult
to evaluate, one of them being damping. Often, it is only possible to perform
a first-approximation theoretical or numerical study, whose results must be
verified experimentally.
As a general rule, if the conditions for uncoupling of flexural, axial, and

torsional behavior are met, only the first can give way to self-excited vi-
bration. There are many mechanisms that may cause unstable conditions,
including internal rotor damping caused by material damping and friction
between the various components assembled by bolting, riveting, shrink fit-
ting, and so on; rubbing between stator and rotor; fluid forces in journal
bearings and seals; and energy dissipation caused by eddy currents. All
of the mentioned mechanisms are potentially dangerous, but they do not
necessarily always cause instability. The better known destabilizing e ects
are those caused by material damping in the rotor and lubricated jour-
nal bearings. The latter can cause the well-known oil whip phenomenon,
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consisting in very strong vibrations starting from a speed that is, in many
cases, almost twice the first flexural critical speed.
To make it easier to distinguish between critical speeds and fields of

instability, the following features may be listed:
Critical speeds

• They occur at well-defined values of the spin speed.

• The amplitude grows linearly in time if no damping is present. It
can be maintained within reasonable limits, and as a consequence, a
critical speed can be passed.

• The value of the speed is fixed, but that of the maximum amplitude
depends on the amplitude of the perturbation causing it. In particu-
lar, the main flexural critical speeds do not depend on the amount of
unbalance, but the amplitude increases with increasing unbalance.

Fields of instability

• Their span is usually large. Often, all speeds in excess of the threshold
of instability give way to unstable behavior.

• The threshold of instability, if it exists, is usually located in the su-
percritical range.

• The amplitude grows exponentially in time. It grows in an uncon-
trollable way, and then working above the threshold of instability is
impossible. When it falls within the working range, the system must
be modified to raise it well above the maximum operating speed. Only
possible nonlinearities of the system can prevent the amplitude from
growing without limits, giving way to a limit cycle.

Some tables that can help in the identification of the causes of anoma-
lies in the dynamic behavior of rotating machinery are here reported from
Ehrich and Childs [22] (Tables 1.1-1.3).

1.1.5 Forced response

Response to unbalance

By introducing the forcing function caused by unbalance into the equation
of motion (1.2), it is possible to obtain the response of the system in terms
of the displacement vector q( ) and then to compute the stressing of the
rotor and the vibration it induces on the nonrotating parts of the machine.
If the system has axial symmetry, the response to unbalance is a circular
whirling taking place at the spin speed of the machine. The rotor then
does not vibrate, but simply spins in a deflected configuration; the material
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Forced or resonant vibrations Self-excited vibrations

Relationship be-
tween frequency
and speed

Frequency is equal to (i.e., syn-
chronous with) the spin speed
or a whole number or rational
fraction of spin speed.

Frequency is nearly constant
and essentially independent of
spin speed or any external exci-
tation or/and is at or near one
of the shaft natural frequen-
cies.

Relationship be-
tween amplitude
and speed

Amplitude will peak in a nar-
row band of spin speed wherein
the rotor’s natural frequency
is equal to the spin speed or
to a whole number multiple or
a rational fraction of the spin
speed and is independent on
external excitation.

Amplitude will suddenly in-
crease at a threshold speed and
continues at high or increas-
ing levels as spin speed is in-
creased.

Whirl direction Almost always forward
whirling.

Generally forward whirling,
but backward whirling has
been reported.

Rotor stressing Static stressing in case of syn-
chronous whirling.

Oscillatory stressing at fre-
quency equal to .

Correcting actions 1. Introduce damping to limit
peak amplitudes at critical
speeds.
2. Tune the system’s critical
speeds to be outside the work-
ing range.
3. Eliminate all deviations
from axial symmetry in the
system as built or as induced
during operation (e.g., balanc-
ing).

1. Increase damping to in-
crease the threshold of instabil-
ity above the operating speed
range.
2. Raise the rotor natural fre-
quencies as high as possible.
3. Identify and eliminate the
instability mechanism.

Influence of damp-
ing

Addition of damping may re-
duce peak amplitude but does
not a ect the spin speed at
which it occurs.

Addition of damping may raise
the speed at which instability
occurs but usually does not af-
fect the amplitude after onset.

Influence of system
geometry

Excitation level and hence am-
plitude are dependent on some
lack of axial symmetry in the
rotor mass distribution or ge-
ometry or external forces ap-
plied to the rotor. Amplitudes
may be reduced by refining the
system to make it more ax-
isymmetric or balanced.

Amplitudes are independent of
system axial symmetry. Given
an infinitesimal deflection to
an otherwise axisymmetric sys-
tem, the amplitude will self-
propagate for whipping speeds
above the threshold of instabil-
ity.

TABLE 1.1. Characterization of forced and self-excited rotor vibrations.
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Mechanism Ratio Direction

Internal rotor damping 0 2 1 ( =
0,5)

Forward

Hydrodynamic bearings,
labyrinth, or liquid seals

0 5 (0 45
0 48)

Forward

Blade-tip clearance excita-
tion

Dependent on fluid force
levels

Forward

Centrifugal pump and com-
pressor whirl

Dependent on fluid force
levels

Forward

Propeller and turboma-
chinery whirl

Dependent on fluid force
levels

Backward, if the vertex of
the cone described in the
whirl motion is after the ro-
tor (referring to the direc-
tion of the fluid flow). For-
ward in the opposite case

Excitation due to fluid
trapped in rotors

0 5 1 0
(0 7 0 9)

Forward

TABLE 1.2. Diagnostic table of self-excited vibrations of rotating machinery.

Mechanism Correcting action

Internal rotor damping Minimize number of separate elements in rotor; restrict
span of rabbets and shrink-fitted parts; provide secure
lock up on assembled elements.

Hydrodynamic bearings Install tilting pad or rolling elements bearings.

Labyrinth seals Add swirl brakes at seal inlets to reduce the inlet
tangential velocity. Replace rotor-mounted labyrinth
vanes with stator-mounted vanes. Replace labyrinth
seals with honeycomb seals.

Liquid seals for pumps Introduce swirl webs or brakes at seal inlet; roughen
stator elements.

Blade-tip clearance No ready measures that do not a ect the unit operating
e ciency.

Centrifugal pump and com-
pressor whirl

Not well understood.

Propeller and turboma-
chinery whirl

Modify mode shapes to minimize angular motion of the
plane of turbomachinery.

Excitation due to fluid
trapped in rotors

Introduce drain holes to eliminate fluid accumulation
or axial webs to inhibit rotation of fluid.

TABLE 1.3. Design correcting actions to reduce instability.
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FIGURE 1.13. Amplitude of the unbalance response for a damped
axi-symmetrical rotor. The plot refers to the same small turbojet engine used
for Figure 1.2.

that constitutes the rotating parts of the machine is not subject to fatigue
(at least, to the high number of stress cycles linked with high-frequency
vibration) and its damping plays no role in its behavior. In the case of
an undamped system (actually it is enough that the nonrotating damping
vanishes) the amplitude goes to infinity in correspondence of the critical
speed. Real-world machines, which are always damped, show a more or less
pronounced vibration peak at the critical speed; to reduce its amplitude,
the designer must increase nonrotating damping.
In the case of rotors running on nonisotropic bearings or stator, the

whirling becomes elliptical, and in certain cases backward whirling may
occur. If both stator and rotor are nonisotropic, the response becomes poly-
harmonic and the motion quite complex.
The unbalance response is usually reported in graphical form as a plot

of the amplitude of the circular orbit (or, in case of elliptical whirling, of
the semi-axes of the elliptical orbit) at a selected location as a function of
the spin speed (Figure 1.13).
A more complete graphical representation of the unbalance response of

a rotor, particularly useful in the case of the elliptical whirling of a rotor
running on an anisotropic stator, is the plotting of the orbital tube (Fig-
ure 1.14). The orbits are plotted in a tridimensional graph, stacked along
the spin-speed axis. The tube starts as a point at zero speed and then
enlarges, taking an elliptical cross section. At very high speed, because of
self-centering, it tends to a circular cylinder with radius equal to the ec-
centricity. The projection on the -plane (orbital view) directly gives the
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FIGURE 1.14. Orbital tube representation. (a) Three-dimensional view of the
tube; (b) projection on the -plane; (c) and (d) projection on the - and
-planes.

orbits at various speeds, superimposed on each other. The projections on
the - and -planes give the peak-to-peak amplitude as a function of
the spin speed.

Polyharmonic motion

Unbalance is not the only forcing function acting on a rotor, and seldom
the measured response is harmonic. The synchronous component of the
vibration of a rotating machine is always present and in most cases is
the largest one, but it is usually accompanied by other components. In
rotordynamic jargon, the synchronous component is usually referred to as
the 1× component, whereas those with frequencies that are multiples of
the spin frequency are called 2×, 3×, 4×, etc. components.
The experimental analysis of the vibrations caused by rotating machinery

yields much useful information on the working conditions and allows the
discovery of possible problems before consequences become too severe and,
in some cases, even predicts their occurrence. The ultimate aim of the anal-
ysis is to diagnose the state of the machine to be able to perform preventive
maintenance. To monitor the dynamic behavior of the machine, it is often
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FIGURE 1.15. Cascade plot of a rotor.

su cient to attach transducers that can measure the acceleration, velocity,
or displacement in selected locations. In some machines, the transducers
can be mounted permanently, and the signal they supply can be monitored
continuously or at regular intervals or even only when working anomalies
become apparent. Di erent kinds of transducers are available, but presently
they are almost always connected to electronic data-acquisition systems
that can perform various types of analysis and supply the relevant infor-
mation in the form the user feels is more expedient. In particular, it is very
useful to perform a harmonic analysis of the output of the transducers to
obtain the acceleration or displacement spectrum. A very common way of
representing these spectra is the so-called cascade plot: A tridimensional
plot in which the spectra obtained at di erent spin speeds are reported in
the planes with constant in a tridimensional space (Figure 1.15). Of-
ten, the frequency is reported in Hertz, and the spin speed is in revolutions
per minute or revolutions per second.
Usually, the terms cascade plot and waterfall plot are used for two di er-

ent types of diagrams. In the first, the spectra are plotted at di erent spin
speeds; in the second, they are obtained at the same speed but at di erent
times. The waterfall plot is not used to study the behavior of the machine
in di erent working conditions but to follow the evolution in time of its
dynamic behavior.
In the cascade plot, it is possible to identify, at each speed, the frequencies

of the various motions of the rotor. If di erent transducers are placed in
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di erent radial planes, then by comparing the phases of the relevant signals,
it is possible to assess the direction of the various whirl components. From
the frequency and phase information, it is possible to study the causes that
produce the vibration and to decide the proper correcting actions.
For example, the synchronous component is usually linked with un-

balance and can be corrected by performing a more accurate balancing,
whereas a component with frequency equal to twice the rotational speed
is generally linked with rotor anisotropy and can be corrected by making
it more symmetrical. As a general rule, balancing the rotor has very little
e ect on all of the nonsynchronous components.
Each machine produces a characteristic vibration spectrum, which is of-

ten referred to as the mechanical signature of the machine. Any alteration
in time of the signature, as evidenced by a waterfall plot, is the symp-
tom of an anomaly of the working conditions and must be considered very
carefully. It can actually be linked with a problem that has occurred or is
developing. Diagnosing problems before they actually occur, is important
to reduce costs associated with maintenance and with the unavailability of
the machine.

1.2 Nonlinear rotordynamics

Linearity is only an idealization of the actual behavior of any system, and
real-world rotors always deviate, to a greater or lesser extent, from lin-
earity. Classic rotordynamic analysis is typically a linearized analysis, and
many of the concepts seen above, like the critical speeds or the instability
threshold, are valid only within the limits imposed by linearity. Although
rotors are often linear in their nominal conditions, at least if the displace-
ments remain within the limits allowable in operation, other components
like bearings, dampers, and seals can display a severe nonlinear behavior.
The alternatives of considering these elements as rigid (e.g., in the case of
bearings), to neglect them (e.g., seals) or to linearize their behavior, are
very common, but in many cases the results obtained in this way may be an
unsatisfactory approximation. Another possible cause of nonlinearity is the
presence of a crack in some structural element, which causes a di erence
between local tensile and compressive characteristics. If nonlinearities are
not neglected, many of the tools and concepts typical of rotordynamics, like
the Campbell diagram and the critical speed analysis, lose their meaning
and the attention must be concentrated on the unbalance response and on
the spectral analysis of the vibration records. But this is only one aspect
of the problem: When a system is highly nonlinear, new phenomena can
develop, particularly those related with the presence of subharmonics and
superharmonics and of chaotic vibrations. Chaotic motion was found in
numerical simulations on simple mathematical rotor models, and results
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that indicate the possible presence of chaotic phenomena have been found
in test results on turbojet engines.
If the system is isotropic with respect to the rotation axis, the unbalance

response takes the form of circular whirling, even if this solution may be no
more unique and other solutions may exist, each one with its own basin of
attraction. As usual with nonlinear systems, it is possible that the response
shows jumps from one equilibrium configuration to another one and that
the configuration taken at any given speed during the spin-up of the system
is di erent from that taken at the same speed when decelerating. If axial
symmetry is not granted, as it may occur also in the case of isotropic
systems operating in asymmetrical conditions, e.g., when a lateral load acts
on the rotor, the whirling is no more circular and no closed-form solution
can be found. The only way to study the unbalance response is by numerical
integration in time of the nonlinear equations of motion.
At any rate, whether it is possible to reach a closed-form solution or not,

it is no more possible to distinguish between a free and a forced behavior,
and unbalance influences both the vibration frequency and the stability of
the system.
A definition of critical speed as the speed at which the unbalance re-

sponse of the rotor has a peak has been introduced to extend critical speed
analysis to nonlinear rotors, but such a definition has the drawback that the
critical speeds obtained in this way depend on the unbalance of the rotor. A
similar consideration holds for the stability analysis: When the amplitude
of the whirl motion grows, nonlinear phenomena become more and more
important and a limit cycle may be reached. A rotor that is unstable in
the small may reach stable working conditions because of nonlinearities;
whether these conditions can be accepted or not depends on the resulting
whirl amplitude and the design specifications of the specific machine.

1.3 Nonstationary rotordynamics

Rotordynamic analysis is usually performed at constant spin speed. A fast
accelerating rotor may, however, behave in a way that is di erent from the
behavior in steady-state running. In other cases, it may be the unbalance
that changes quickly in time, as in the so-called blade-loss conditions of
turbine rotors.
Even if the rotor can be assumed to behave in a linear way, in case of

spin speed variations, not only the matrices appearing in Equation (1.2)
become time-dependent, but they are also di erent because a number of
terms linked with angular acceleration enter the equation of motion. In
this condition, the solution must be obtained through numerical integration
in time, and as a consequence, there is little advantage in linearizing the
equation of motion.
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Similarly, the blade-loss problem is studied through numerical integration
in time, and nonlinearities add little to the complexity of the problem.
A further cause of variation of the angular velocity is present in free

rotors: In this case, there is no device that keeps the spin speed constant and
the amplitude of the motion may be larger. The motion of free rotors must
then be studied under the condition that the angular momentum remains
constant, i.e., that the spin speed and the whirl speed vary continuously in
such a way that the total angular momentum is conserved.

1.4 Time domain versus frequency domain

Classic rotordynamics deals, as already stated, with linear (or at least lin-
earized) systems, operating in steady-state condition. The analysis is based
on a frequency domain approach and yields a comprehensive insight on the
way any particular rotor behaves in the di erent conditions. The fact that
the natural frequencies and the mode shapes depend on the speed makes
things more complicated than in standard structural dynamics, but it does
not change the basic approach. Frequency domain solutions allow us to
perform parametric and optimization studies, in which a number of config-
urations are studied to refine the design or to assess its robustness against
the variation of the values of some parameters or working conditions.
When the steady-state assumption is dropped, frequency domain solu-

tions become impossible and the only way to solve the relevant equations is
by numerical integration in time. The same occurs in the case of nonlinear
rotors, even if in rotordynamics circular whirling is an exact solution for
the nonlinear case (on the contrary, in structural dynamics, nonlinearities
make it impossible for the system to vibrate with harmonic time history).
However, even if circular whirling is possible, other solutions, which can-
not be obtained through frequency domain analysis, may be present, and
general solutions, describing the behavior of the system without the need
to specify the particular working conditions, do not exist.
The time domain approach, based on the numerical integration in time

of the di erential equations of motion, although today very popular, has
the notable drawback of allowing us to solve only particular cases, without
yielding a complete insight on the relevant phenomena. Keeping this in
mind, time domain modeling allows us to perform di erent types of tran-
sient analysis, such as blade loss or critical speed crossing, dropping the
usual assumptions of linearity and axial symmetry of at least either the
stator or the rotor.
The possible frequency and time domain approaches for the various types

of models are summarized in Table 1.4.
An approach that allows us to perform time domain simulation is using

standard multibody codes. In this case, the rotor is not dealt as such (i.e,.
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Frequency domain Time
Type of analysis System Eigenanalysis Unbal. res. domain

Linear, st. state Isot. (R or S)(a) YES YES Possible
Nonisotropic Approx.(b) Approx.(b) YES

Nonlin., st. state Isotropic (all) NO YES(c) YES
Nonisot. (R or S)(a) NO NO YES

Transient Any NO NO YES

TABLE 1.4. Frequency and time domain analysis for di erent types of rotors. (a)
Either rotor or stator or both; (b) only a finite number of the infinite harmonics
present in the response can be computed; (c) the closed-form solution is one of
the possible solutions (perhaps not the stable one).

the usual assumptions that make rotordynamics a peculiar field of system
dynamics are neglected) but as a general spinning body. This is, for ex-
ample, the traditional way to analyze the dynamic behavior of spinning
spacecraft. As the study is not limited to small displacements about an
equilibrium position and the spin speed is not constrained to remain con-
stant, free rotors can be studied in the correct condition of conservation of
angular momentum. For fixed rotors, it is possible to model the drive sys-
tem either as a device that imparts a constant (or controlled) velocity or a
constant (or controlled) torque. This has a cost in terms of computational
complexity, particularly if the system contains compliant bodies, and above
all of the impossibility of gaining a deep general insight of the dynamic be-
havior of the system, comparable with that obtained once eigenvalues and
eigenvectors are known.
Finally, when resorting to the time domain approach, there is no pos-

sibility of using the hysteretic damping model. Although for nonrotating
damping it is possible to use the standard methods of structural dynamics
for transforming hysteretic into viscous damping, in the case of rotating
damping, things are much more complicated.



Part I

Basic topics



2
Je cott rotor

The simplest model that can be used to study the flexural behavior of
rotors consists of a point mass attached to a massless shaft. As its dynamic
behavior was deeply studied in a paper published by Je cott in 1919 [16], it
is often referred to as Je cott rotor ; however, this attribution is incorrect
as August Föppl in 1895 published a paper [13] in which its behavior is
correctly analyzed (he referred to it as De Laval rotor) and Stodola [15]
and Belluzzo [14] described it in their books on turbomachinery of the first
years of the twentieth century.
Although the Je cott rotor model is an oversimplification of real-world

rotors, it retains some basic characteristics and allows us to gain a qual-
itative insight into important phenomena typical of rotordynamics, while
being much simpler than more realistic models.

2.1 Undamped Je cott rotor

The three schemes sketched in Figure 2.1(a)-(c) yield the same results, as
long as the system is

• Undamped, i.e., no damping e ect is associated either to the springs
or to the shaft,

• Axially symmetrical.

The overall sti ness providing the restoring force can be considered the
sti ness of the shaft, the supporting structure, or a combination of the two.
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FIGURE 2.1. Perfectly balanced Je cott rotors. In (a), the rotor consists of a
point mass on a flexible shaft running on sti bearings. In (b), the shaft is sti
while the bearings are compliant. In (c), both the shaft and the bearings are
considered as deformable bodies.

Point P, in which mass is fixed, is always contained in the -plane. This
statement is justified by the uncoupling between axial and radial motions
and relies on the small displacement assumptions that are at the base of
linear structural analysis. In the study of the flexural behavior, a model
with only two degrees of freedom can then be used.
The mentioned schemes are, however, too much idealized: In practice,

it never occurs that point P in which mass is located exactly coincides
with the elastic center C of the cross section of the shaft, i.e., with the
point at which the elastic reaction of the shaft acts. However small may be
the distance between points C and P, the presence of the eccentricity , as
in Figure 2.2(a) and (b), causes a static unbalance that can strongly
a ect the behavior of the system.
As in elementary rotordynamics, the spin speed of the system is as-

sumed to be constant; taking as initial time ( = 0) the instant in which
vector P-C is parallel to the -axis, the angle between P-C and the -axis
is = .

2.1.1 Equations of motion

Two choices for the generalized coordinates are possible: either coordi-
nates C and C of point C, i.e., the geometric or elastic shaft center, or
coordinates P and P of point P, i.e., the center of mass.
Using the first alternative, by far the most common one, the position and

velocity of point P can be expressed as
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FIGURE 2.2. Unbalanced Je cott rotor, with unbalance . (a) Sketch of the
system; (b) situation in the -plane.
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A Lagrange equation can be written in the form

µ
(T U)

˙

¶
(T U)

= , (2.4)

where are the Lagrangian coordinates, here C and C.
Assuming that an external force acts on point P in -plane (e.g., the

weight of the rotor in case the axis of rotation is horizontal), forces can be
easily obtained by assuming a virtual displacement of point C [ C C ] .
As the angular velocity is imposed by the driving system (i.e., angle =
does not depend on the generalized coordinates), the virtual displacement
of point P is [ C C ] and the virtual work L of a force with compo-
nents and acting on point P is
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L = C + C . (2.5)

The generalized forces can then be computed as = L .
By performing the relevant derivatives and remembering that the spin

speed has been assumed to be constant, the following equations of motion
are then obtained:

½
¨C( ) + C( ) =

2 cos( ) + ( ) ,

C̈( ) + C( ) =
2 sin( ) + ( ) ,

(2.6)

where forces ( )and ( ) are considered as generic functions of time
whereas unbalance forces are of the same amplitude but in time quadrature.
As usual, the general solution of Equation (2.6) can be obtained by

adding the general solution of the homogeneous Equation (the comple-
mentary function)

½
¨C( ) + C( ) = 0 ,

C̈( ) + C( ) = 0 ,
(2.7)

to the particular integral of the complete equation. Equations (2.7) yield the
free motion of the perfectly balanced Je cott rotor, whereas Equations (2.6)
yield the response to the static unbalance and the response to a external
force acting in the -plane. Note that, owing to linearity, it is possible to
study separately the response to unbalance and that to a static force.
As already stated, it is possible to use the coordinates P and P of

point P (center of gravity) as generalized coordinates. In this case, the
position of point C can be expressed as

C-O = rC ( ) =

½
C ( )

C( )

¾
=

½
P( ) cos( )

P( ) sin( )

¾
. (2.8)

The kinetic and potential energies are
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¢
, (2.9)

U =
1

2

¡
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P +
2 2 [ P cos( ) + P sin( )]

¢
. (2.10)

By introducing the Lagrangian function and the generalized forces
and in the Lagrange equations, the following equations of motion of
point P are then obtained:

½
¨P( ) + P( ) = cos( ) + ( ) ,

P̈( ) + P( ) = sin( ) + ( ) .
(2.11)
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2.1.2 Free whirling

The equations of motion along each axis are coincident with the equation
of the free motion of a system with a single degree of freedom. A purely
mathematical approach to the solution of Equations (2.7) is to assume an
exponential solution

½
C( ) = C0 ,

C( ) = C0 ,
(2.12)

and solve for

½ ¡
2
C0 + C0

¢
= 0 ,¡

2
C0 + C0

¢
= 0 .

(2.13)

As 6= 0 and a nontrivial solution is sought, i.e., C0 6= 0 and C0 6= 0, it
implies that ½

2 + = 0 ,
2 + = 0 .

(2.14)

The absolute value of that satisfies Equation (2.14) coincides with the
natural frequency of the nonrotating system

=
p

,

and the four solutions ± (actually two solutions, each one with mul-
tiplicity 2) are purely imaginary, owing to the conservative nature of the
system.
Because of the symmetry of the system about - and -axes, the motion

of point C is given by the combination of two harmonic motions taking
place along axes and with the frequency coinciding with the natural
frequency of the nonrotating shaft

½
C( ) = 1 + 2 ,

C( ) = 1 + 2 .
(2.15)

Constants 1, 2, 1, and 2 can be determined from the initial condi-
tions on the positions C(0) and C(0) and on the velocity ˙C(0), and ˙C(0)

C(0) = 1 + 2 ,

C(0) = 1 + 2 ,
˙C(0) = ( 1 2) ,
˙C(0) = ( 1 2) .

(2.16)

Substitution into Equations (2.15) gives the solution in terms of the
initial conditions

½
C( ) = C(0) cos( ) + 1 ˙C(0) sin( ) ,

C( ) = C(0) cos( ) + 1 ˙C(0) sin( ) ,
(2.17)
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FIGURE 2.3. Response of the Je cott rotor to the free vibration. (a) Real (in
and ) and complex (in = + ) representation of the orbit of point C; (b) and
(c) representation of coordinates ( ) and ( ) of point C in the vector planes as
projections on the - and -axes of rotating vectors and .

which coincides with the responses of two decoupled harmonic oscillators.
As usual, the solution can also be expressed in terms of amplitude and
phase angles ½

C( ) = cos ( ) ,

C( ) = cos
¡ ¢

,
(2.18)

where

C(0) = cos ,

C(0) = cos ,
˙C(0) = sin ,
˙C(0) = sin .

(2.19)

The equation of the motion as expressed by Equations (2.18) can be
represented in a graphical form as shown in Figure 2.3. The trajectory
of point C may be seen as that of vector rC( ) whose coordinates C( )
and C( ) at time are given by harmonic functions (2.18) of amplitudes
and , and phases and . They can also be thought of as the

projection of rotating vectors and on the auxiliary axes and of
Figure 2.3.
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Remark 2.1 It is worth noticing that although point C moves in the phys-
ical -plane, vectors and rotate in auxiliary vector planes where only

one dimension has a physical meaning. This dimension is represented in

Figure 2.3 by a continuous line, and the other dimension is auxiliary and

is represented by a dotted line.

Remark 2.2 The trajectory of point C may be circular, elliptical, or recti-
linear in any direction in the -plane depending on the initial conditions.

Although in the vector planes [Figure 2.3(b) and (c)] the rotating vectors

and rotate at constant angular velocity , in the physical -plane

vector O-C rotates at nonconstant angular velocity but with a period equal

to 2 .

Remark 2.3 It can be appreciated that, if the initial conditions are such

that the orbit is circular, the center line of the rotor rotates inflected but it

does not vibrate in the plane containing the rotation axis. In this sense, the

dynamic response is a whirling instead of a vibration. If the condition of

synchronous whirling is added, no point of the rotor is subjected to vibration.

Remark 2.4 The natural frequency of the Je cott rotor is and is in-

dependent from the spin speed . The flexural critical speed, defined as the

speed at which the frequency of rotation is the same as the natural frequency,

coincides with the natural frequency of the nonrotating system:

= =

r
. (2.20)

Remark 2.5 In the present case, the natural frequency of the rotor (i.e.,

the whirl speed) does not depend on the spin speed : The Campbell dia-

gram of a Je cott rotor is then made of horizontal straight lines. As al-

ready stated, the flexural critical speed, defined as the speed at which the

natural frequency of the system is coincident with the frequency of rota-

tion, coincides with the natural frequency of the nonrotating system, i.e.,

Equation (2.20).

Matrix form and lambda matrix

The same result may be obtained recasting the system of Equations (2.7)
in matrix form

rC( ) =

½
C( )

C( )

¾
,

·
0

0

¸
r̈C( ) +

·
0

0

¸
rC( ) = 0 , (2.21)

and using the general theory to solve the equations of motion [see ap-
pendix A, characteristic Equation (A.12)]
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det

·
2 + 0
0 2 +

¸
= 0 , (2.22)

i.e.,
2 4 + 2 2 + 2 = 0 . (2.23)

A quadratic equation in 2 is so obtained. Solving it in 2, a double
solution 2 = is found, accounting for the four solutions with double
multiplicity that are also the eigenvalues of the associated eigenproblem.
For what concerns the eigenvectors, the system is clearly decoupled and
made of two single degree-of-freedom systems, and thus the eigenvectors
may be chosen unitary and orthogonal

r1 =

½
1
0

¾
r2 =

½
0
1

¾
, (2.24)

and the resulting time solution

rC( ) =
2X
=1

r
³

+
´

(2.25)

that may be expanded to Equations (2.15) and following.

2.1.3 Unbalance response

According to the equation of motion (2.6), when neglecting the external
forces, the unbalance forces are represented as periodic forces in quadrature
and with frequency equal to the rotational speed. The particular solution,
i.e., the steady-state solution, of such a set of di erential equations has the
form

½
C( ) = C0

cos ( ) ,

C ( ) = C0
sin ( ) = C0

cos( + 2) .
(2.26)

By introducing it into the equation of motion, the latter transforms into
the algebraic equation

½ ¡
2
¢

C0
= 2 ,¡

2
¢

C0
= 2 ,

(2.27)

which yields

C0
= C0

=
2

2
=

2

2 2
=

2

2

1
2

2

, (2.28)

where is the critical speed defined by Equation (2.20).
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FIGURE 2.4. Amplitude and phase of the unbalance response of an undamped
Je cott rotor.

The amplitudes of the two harmonic motions in - and -planes are
equal and they are out of phase of 90 : The response is then a circular
whirling occurring at speed , i.e., a circular synchronous whirling. Vec-
tor C-O rotates with velocity in the -plane remaining in line with
vector P-C. The value of velocity that causes the denominator of the
expressions for C0

and C0
in Equation (2.28) to vanish, i.e., which causes

the amplitude to reach an infinite value, is coincident with the flexural
critical speed of the rotor.
The amplitude of the circular orbit of point C caused by the pres-

ence of the unbalance , i.e., the unbalance response, coincides with ei-
ther C0

or C0
. It can be expressed as a function of the speed in the nondi-

mensional form derived from Equation (2.28)

¯̄
C-O

¯̄
=

p
( C0

cos )2 + ( C0
sin )2

= (2.29)

=
C0 =

C0 =
2 2

1 2 2
(2.30)

and plotted as in Figure 2.4.
In the subcritical range, i.e., , the whirling amplitude grows from

zero tending to infinity at the critical speed . Both C0
and C0

remain
positive, showing that the phase of the response with respect to the exci-
tation is 0; i.e., points O, C and P are aligned in that order [Figure 2.5(a)].
In the supercritical range, i.e., , the values of C0

and C0
are

negative, and their absolute values decrease monotonically with the speed.
When the speed tends to infinity, the amplitudes tend to . The response
is out of phase of 180 with respect to the excitation, and points O, C,
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FIGURE 2.5. Unbalance response of an undamped Je cott rotor: situation in
-plane for the cases of (a) subcritical running and (b) supercritical working of

the undamped Je cott rotor.

and P are aligned in the order OPC [Figure 2.5(b)]. When the speed tends
to infinity, point P tends to point O. This phenomenon is usually referred
to as self-centering and indicates that the rotor tends to rotate about its
center of mass instead of its geometrical center.

Remark 2.6 The coincidence of the critical speed, computed from the un-

balance response or from the free behavior of the system, with the natural

frequency of the undamped nonrotating system, is a peculiar characteristic

of the Je cott model or, more generally, of all those rotors in which the

natural frequency does not depend on the speed, and must not be considered

a general feature.

Remark 2.7 When the dynamic behavior is dominated by the sti ness,

as it occurs in subcritical range, i.e.,
p

, rotation takes place

about a point close to the geometrical center, whereas when the behavior

is dominated by the inertia as in supercritical range, i.e.,
p

, the

system rotates about a point close to the center of mass.

2.1.4 Response to external forces in the frequency domain

The frequency domain approach is an alternative method of solving di er-
ential equations using the Laplace transform. It allows us to compute the
system response to a generic but Laplace-transformable force function, i.e.,
those functions for which the following expression exists:

ˆ( ) =

Z

0

( ) = L{ ( )}

The di erential time domain equation (2.6) with external force only
½

¨C( ) + C( ) = ( ) ,

C̈ ( ) + C( ) = ( ) ,
(2.31)
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is Laplace transformed as follows:

½
( 2 + )ˆC( ) = ˆ ( ) + C =0

+ ˙C =0
,

( 2 + ) Ĉ( ) = ˆ ( ) + C =0
+ ˙C =0

,
(2.32)

where

ˆC( ) = L{ C( )} =

Z

0

C( ) (2.33)

with . The system response in then obtained algebraically as

ˆC( ) =
1
2 +

h
ˆ ( ) + C (0) + ˙C(0)

i
,

Ĉ( ) =
1
2 +

h
ˆ ( ) + C(0) + ˙C(0)

i
,

(2.34)

where the first term on the right-hand side is the forced solution and the
other two are the free response to nonzero initial conditions.
The so-called transfer function from input forces to output positions are

defined as follows in the complex variables and for zero initial conditions:

ˆC( )

ˆ ( )
=

1
2 +

,

Ĉ( )

ˆ ( )
=

1
2 +

.
(2.35)

Unbalance force

The transfer function of a system is a complex function and may be rep-
resented in terms of its module and phase as a function of the complex
variable . In particular with = these diagrams are called Bode’s di-
agrams, which give, frequency by frequency, the change of amplitude and
phase of the output function, here a displacement, with respect to the input
function, here a force.
Given the module of the transfer function

¯̄
¯̄
¯
ˆC( )

ˆ ( )

¯̄
¯̄
¯ =

¯̄
¯̄ 1

2 +

¯̄
¯̄ (2.36)

and the amplitude of the sinusoidal unbalance force 2 whose frequency
is , the amplitude of the sinusoidal displacement at the frequency of the
spin speed = is obtained as

|ˆC( )| =

¯̄
¯̄ 2

2 +

¯̄
¯̄ , (2.37)

which is the same result already obtained in equation (2.28).
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Static force

The particular solution of the equation in which only a static (and constant
in time) force is applied is

½
C( ) = 0 ,

C( ) = 0 .
(2.38)

By introducing Equation (2.38) into the equation of motion (2.6), the
following solution is obtained:

0 = ,

0 = .
(2.39)

Under the e ect of a static force, the rotor takes the same static defor-
mation that characterizes the nonrotating system. As will be seen later,
this is because, so far, damping has not been included in the model.

2.2 Complex coordinates in rotordynamics

The simplicity of the Je cott rotor is used to introduce the complex coordi-
nates’ formalism for rotordynamics. As the center of the shaft, i.e., point C,
moves in a plane, it is very expedient to express vector C-O by means of a
complex number

C( ) = C( ) + C( ) (2.40)

usually referred to as a complex coordinate.1 By multiplying the second of
Equations (2.6) by the imaginary unit and adding the two equations, a
single complex equation is obtained

C̈( ) + C( ) =
2 + ( ) , (2.41)

where the nonrotating force is ( ) = ( ) + ( ).

2.2.1 Free whirling

The solution of the homogeneous di erential equation expressing the free
motion of the system is

C( ) = C0
, (2.42)

1 It is common to use the letter instead of for the complex coordinate. Here is
used to avoid confusion with the -coordinate of the reference frame .
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where C0
is, generally speaking, a complex number C0

= C0
+ C0

.
By introducing this solution into the homogeneous equation of motion, a
homogeneous algebraic equation is obtained

¡
2 +

¢
C0
= 0 (2.43)

that has nontrivial solution C0
6= 0 only if 1 2 = ±

p
. The general

solution of the characteristic equation (2.43) can be split in its real and
imaginary parts

= + . (2.44)

From the comparison with the values of 1 2, it follows that

1 2 = 0 , 1 2 = ±
p

= ± . (2.45)

The general solution of the homogenous equation of motion is then

C( ) = 1 + 2 (2.46)

= ( ) + ( ) (2.47)

with 1 and 2 non-necessarily conjugate complex numbers (because the
dynamic solution C( ) is a complex valued function), and ( ) and ( )
rotating vectors in the physical plane.
Using real coordinates, the motion was split into the composition of two

vibrations along the axes: Among the four solutions, two were related to the
motion in direction and two to the motion in direction [see Figure 2.3
and mode shapes of Equation (2.24)]. In the present case, the solution is
obtained as the sum of two vectors rotating in forward and in backward
directions.
The motion expressed by Equation (2.46) is then the superimposition of a

circular forward or direct whirl motion (i.e., occurring in the same direction
as the spin speed that will always be considered positive) and a circular
backward whirl motion. They both occur at an angular velocity, often called
whirl speed, equal to the natural frequency of the nonrotating system.
The result of the superimposition of the two motions depends on the

initial conditions, i.e., on the values of complex constants 1 and 2. If,
for example, 2 is equal to 0 a circular forward whirling occurs, and if the
two constants are equal and real, a harmonic vibration along a direction at
45 with respect to the -axis takes place.

Remark 2.8 Vector rC ( ) of Equation (2.25) and complex number C ( )
are di erent mathematical representations of the same physical phenomenon.

The result obtained obviously does not depend on which solution is used.

When real coordinates are used, is the natural frequency of two har-
monic motions in two planes [see Equation (2.18)] and their signs have no
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physical meaning. Vector can be used to express the motion in the
form of Equations (2.15) and interpreted as a rotating vector in the auxil-
iary vector planes of Figure 2.3 whose real components only have a physical
meaning.
When complex coordinates are used, is a true angular velocity, and

the relevant vector rotates in the physical space. The deflected shape rotates
about the undeformed configuration with angular velocity , although no
rotation of a material object takes place with that speed. As a consequence,
its sign states the direction of rotation of the deflected configuration.

2.2.2 Unbalance response

The particular integral of Equation (2.41) for the unbalance response is

C( ) = C0

By introducing it into Equation (2.41), the latter transforms into the
algebraic equation

( 2 + ) C0 =
2

which yields

C0
=

2

2 2
(2.48)

where is the critical speed defined by Equation (2.20). The value of the
amplitude 0 so obtained is real, and as a consequence, vector (C-O), i.e.,

C, rotates with velocity in the -plane remaining in line with vector
(P-C). The value of that causes the denominator of the expression for

0 in Equation (2.48) to vanish, i.e., the amplitude to reach an infinite
value, is coincident with the flexural critical speed of the rotor. This result
obviously coincides with that obtained earlier using real coordinates.
If instead of using Equation (2.6), which describes the motion of point C,

Equation (2.11) describing the motion of point P was used, and introducing
the complex coordinate

P = P + P , (2.49)

the relevant equation of motion would have been

P̈ + P = + . (2.50)

The response to unbalance is in this case P( ) = P0 , where the
amplitude P0 is

P0 = 2
=

2

2 2
. (2.51)

Remembering that P0 = 0 + , this result coincides with that of Equa-
tion (2.48).
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FIGURE 2.6. Je cott rotor with shaft bow. (a) Sketch. Full line: undeflected
configuration; dashed line: deflected configuration. (b) Situation in -plane.

Self-centering becomes even more clear when using complex coordinates:
When the speed tends to infinity, the amplitude of the orbit of point C tends
to . The sign of the solution determines the equilibrium configurations
as shown in Figure 2.5(a) and (b). When the solution is positive, in the
subcritical field, points O, C, and P are aligned in the mentioned order and
the center of mass of the rotor lies outside the deformed configuration of
the shaft. In the supercritical field, however, point P lies between points C
and O, and when the speed tends to infinity, the amplitude 0 tends to ,
or point P tends to point O.

2.3 Je cott rotor with shaft bow

Eccentricity is not the only imperfection whose e ects can be studied by
means of the Je cott rotor model: The shaft of Figure 2.1(a) can be slightly
bent in its undeflected configuration (Figure 2.6, full line). Note that the
direction of the bow is generally not coincident with the direction of the
eccentricity : In the figure, it is assumed that the eccentricity has the
direction of -axis when = 0, whereas the bow of the shaft has a direction
that at the same time makes an angle with the same axis.
As usual, as the system is linear, the e ects of unbalance and shaft bow

can be studied separately and then the results can be added to each other.
At time , the position of point O’ can be expressed as
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(O’ O) =

½
O’

O’

¾
=

½
cos( + )
sin( + )

¾
, (2.52)

where is the bow of the shaft. The elastic reaction of the shaft tends to
bring back point C (deflected position of point O’) toward O’. The potential
energy is then

U =
1

2
(C O’)2 =

1

2

n
[ C cos( + )]2 + [ C sin( + )]2

o
,

(2.53)
i.e.,

U =
1

2

£
2

C +
2

C +
2 2 C cos( + ) 2 C sin( + )

¤
. (2.54)

By introducing Equation (2.54) instead of (2.3) into the Lagrange equa-
tions, the latter yields2½

¨C + [ C cos( + )] = 2 cos( ) + ,

C̈ + [ C sin( + )] = 2 sin( ) + ,
(2.55)

i.e.,

½
¨C + C = cos( + ) + 2 cos( ) + ,

C̈ + C = sin( + ) + 2 sin( ) + ,
(2.56)

or, in complex coordinates,

C̈ + C = + 2 + . (2.57)

The particular solution of the equation containing only the term linked
with shaft bow is

C =
2

2 2
. (2.58)

i.e., is a synchronous circular whirling. The response to a shaft bow is
reported in nondimensional form in Figure 2.7.
Apart from the phase , this result is similar to the unbalance response,

with the di erence being that now the response is larger at lower speed
(up to the critical speed) and smaller at higher speeds, tending to zero for

. Note that also here a sort of self-centering occurs at high speed,
as the e ect of shaft bow disappears. At low speed, the e ect of shaft
bow can be more important than that of unbalance, whereas the opposite
occurs in the supercritical range. Recalling that the response here computed
is because of shaft bow alone, when the speed tends to infinity and the
response tends to zero, the rotor spins about point C, which coincides with
point P and the rotor is self-centered.

2The term due to shaft bow is similar to the term due to the motion of the contraints
in the equation of motion for vibrating systems, written with reference to an inertial
frame.
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FIGURE 2.7. Nondimensional response of an undamped Je cott rotor to a shaft
bow.

2.4 Je cott rotor with viscous damping

2.4.1 Equations of motion

When considering a damped rotor, it is very important to distinguish be-
tween the damping e ects that can be associated with the stationary parts
of the machine, usually referred to as nonrotating damping, and those di-
rectly associated with the rotor, or rotating damping . The former usually
has a stabilizing e ect that the designer can use to achieve the required
stability in the whole working range of the machine. The latter, on the
contrary, can reduce the amplitude of vibration in subcritical conditions
but shows destabilizing e ects in the supercritical range. Designers must
then be very careful when studying machines operating in the supercritical
range, taking into account that all mechanisms increasing energy dissipa-
tion within the rotor (such as material damping, friction in threaded, riv-
eted, shrink-fitted connections in built-up rotors, splined shafts, intershaft
dampers in multishaft machines, and so on) can cause severe instability
problems.
The model of Figure 2.1 can be extended to the damped system by adding

to the right-hand side of Equation (2.6) the generalized forces caused by
damping. Because the generalized coordinates chosen are the displacements
in the - and -directions of point C, such forces are the components in the
directions of the - and -axes of damping forces applied to the point mass
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FIGURE 2.8. Definition of the rotating frame O .

in point C. The force caused by viscous nonrotating damping is proportional
to the speed of point C in a nonrotating reference frame

=

½ ¾
=

½
˙
˙

¾
, (2.59)

where is the nonrotating damping coe cient.
The force caused by viscous rotating damping is proportional to the

speed of point C as observed by a reference frame rotating with the same
speed of the rotor. It follows that for the study of rotating damping, a
rotating reference frame O must be introduced (Figure 2.8). The origin
and -axis of the rotating frame are the same as those of the fixed reference
frame O of Figure 2.1, but axes and rotate in the -plane at the
same speed of the rotor. When the rotational speed is constant, the angle
between the two reference frames is simply given by .
The force caused by rotating viscous damping can be expressed in the

rotating reference frame O as proportional to the speed of point C,
expressed in the rotating frame

=

½ ¾
=

½
˙

˙

¾
. (2.60)

The coordinates and of point C in the rotating frame can be
expressed as functions of the coordinates of the same point in the fixed
frame as
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½ ¾
= R

½ ¾
, (2.61)

where the rotation matrix R is simply

R =

·
cos( ) sin( )
sin( ) cos( )

¸
. (2.62)

By di erentiating Equation (2.61), the velocity of point C can be ex-
pressed as

½
˙

˙

¾
= R

½
˙
˙

¾
+ Ṙ

½ ¾
, (2.63)

where

Ṙ =

·
sin( ) cos( )
cos( ) sin( )

¸
. (2.64)

From Equation (2.60), the force caused by rotating viscous damping can
be expressed in the O frame as a function of the displacement and
velocity of point C in the O frame

=

½ ¾
=

µ
R

½
˙
˙

¾
+ Ṙ

½ ¾¶
(2.65)

The same force can be expressed in the fixed reference frame simply by
multiplying Equation (2.65) by the rotation matrix R 1 = R

= R =

µ
R R

½
˙
˙

¾
+R Ṙ

½ ¾¶
. (2.66)

As usual with rotation matrices, R R = I. With simple computations,
it follows that

R Ṙ =

·
0 1
1 0

¸
. (2.67)

The force caused by rotating damping is then simply

=

½
˙
˙

¾ ·
0 1
1 0

¸½ ¾
. (2.68)

Introducing the Expressions (2.59) and (2.68) for the forces caused by
nonrotating and rotating damping on the right-hand side of the equation
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of motion (2.6) and writing the results in matrix form, it follows that

·
0

0

¸½
¨
¨

¾
+

·
+ 0
0 +

¸½
˙
˙

¾
+

+

µ·
0

0

¸
+

·
0

0

¸¶½ ¾
=

=

½
2 cos( )
2 sin( )

¾
+

½ ¾
.

(2.69)

The presence of rotating damping gives thus way to skew-symmetric
terms in the sti ness matrix, i.e., to a circulatory matrix. The circulatory
matrix vanishes when tends to zero, as it should be expected: When the
spin speed vanishes, the rotor becomes a stationary system and its equation
of motion becomes that of a natural system.
Instead of writing explicitly the forces due to nonrotating and rotating

damping, the equation of motion (2.69) could be obtained by introducing
the Rayleigh dissipation function into the Lagrange equation. Its expression
is

F =
1

2

¡
˙2 + ˙2

¢
+
1

2

³
˙2 + ˙ 2

´
. (2.70)

By introducing Equation (2.63) into Equation (2.70), it follows that

F =1

2

¡
˙2 + ˙2

¢
+

+1

2

Ã½
˙
˙

¾
R +

½ ¾
Ṙ

!µ
R

½
˙
˙

¾
+ Ṙ

½ ¾¶
.

(2.71)
By performing the products and remembering thatR R = I and Ṙ Ṙ =
2I, it follows that

F =
1

2
( + )

¡
˙2 + ˙2

¢
+
1

2
2
¡
2 + 2

¢
+

½
˙
˙

¾
R Ṙ

½ ¾
,

(2.72)
i.e.,

F =
1

2
( + )

¡
˙2 + ˙2

¢
+
1

2
2
¡
2 + 2

¢
+ ( ˙ ˙ ) .

(2.73)
By introducing Equation (2.73) into the Lagrange equation

µ
(T U)

˙

¶
(T U)

+
F

˙
= (2.74)

the equation of motion (2.69) is readily obtained.
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Also in this case it is possible to resort to complex coordinates: By mul-
tiplying the second Equation (2.69) by the imaginary unit and adding it
to the first one, the following equation is obtained

¨ + ( + ) ˙ + ( ) = 2 + . (2.75)

Equation (2.75) is formally identical to the equation of motion of a mass
suspended on a spring with complex sti ness and a viscous

damper with damping coe cient + on which a force with harmonic
time history with frequency and amplitude 2 and a constant force
are acting.

Remark 2.9 What is skew-symmetric in real coordinates is imaginary

when complex coordinates are used: This is a general rule.

2.4.2 Some considerations on rotating damping

As it is clear from the equations seen in the previous section, nonrotating
damping, i.e., the damping associated with the nonrotating parts of the
machine, has the same role in rotordynamics as in the dynamics of natural,
noncirculatory systems. This consideration holds in general.
Rotating damping, i.e., the damping associated with the rotor, performs

two tasks: one is that of dissipating energy (in the equation of motion of
linear rotors, this is seen by its presence in the damping matrix) and the
other is that of transferring energy from the rotation of the system to its
vibration (this can be seen from its presence into the circulatory matrix).
To better understand this feature, some examples can be mentioned.

First consider a rotating dashpot in which a spherical pendulum oscillates
[23] [Figure 2.9(a)]. The force the pendulum receives from the fluid is pro-
portional to a damping coe cient and to the velocity of the pendulum
with respect to the fluid. Assume that at a certain instant the pendulum
moves in radial direction [Figure 2.9(b)]. Vector (P-O) can be expressed
using the complex notation as = + , whereas the absolute velocity
is ˙ = ˙ + ˙. If the fluid was not moving ( = 0), the only force acting
on the pendulum would be ˙. If the dashpot rotates, the absolute veloc-
ity must be added to the velocity of the fluid with respect to the inertial
frame. In point P, such velocity is equal, in modulus, to multiplied by the
modulus of and has a direction that is perpendicular to the radius. By
remembering that to rotate a vector by 90 in complex notation, it must
be multiplied by , the velocity vector that must be added is . As ˙ is
the absolute velocity of point P, the velocity of the same point relative to
the fluid is

P
= ˙ .
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FIGURE 2.9. Example of rotating damping: a spherical pendulum in a rotating
dashpot. (a) Sketch of the system; (b) situation in -plane when the pendulum
moves radially toward the center; (c) situation in -plane when the pendulum
moves on a circular orbit with whirl frequency (thin arrows: velocities, thick
arrows: forces).

As the force caused by the fluid is assumed to be of the viscous type, the
pendulum receives a force from the rotating fluid whose value is

P
=

P
= ( ˙ ) .

In the equation of motion a term made by an imaginary coe cient mul-
tiplying the displacement [ in Equation (2.75)] is thus present. As an
imaginary term in complex coordinates is equivalent to a skew-symmetric
term in real coordinates, the presence of a circulatory matrix is thus justi-
fied. The meaning of the imaginary unit in the formula is clear: The relevant
component of the force is rotated by 90 with respect to the direction of
the radius (the direction of vector is radial).
Assume now that the pendulum performs a circular forward whirling

motion with whirl speed [Figure 2.9(c)]. The absolute velocity ˙ has
now a direction perpendicular to the radius and its value is | ˙| = | |. The
velocity of the fluid with respect to the inertial frame is again perpendicular
to the radius, and its value is The total force received by the pendulum
from the rotating fluid is thus ( ): If the spin speed is higher than
the whirl speed, such force produces a counter clockwise moment that tends
to sustain the whirl motion, transferring energy from rotation to whirling,
a mechanism that can cause instability. On the contrary, if the spin speed
is lower than the whirl speed, the moment caused by the damping force
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FIGURE 2.10. Shaft with hysteretic damping. (a) Hysteresis cycle of the material
in -plane; (b) sketch of the whirling system, seen when line (C-O) is aligned
with -axis; (c) and (d) situation in -plane in circular whirling, respectively,
with (subcritical whirling) and (supercritical whirling).

is in a clockwise direction and tends to oppose the whirl motion, i.e., to
subtract energy from it.
A second example of rotating damping is that of the structural damping

of a shaft. Internal damping can be modeled by modifying the stress-strain
curve, which in a linear elastic material is a straight line, into an elliptical
hysteresis cycle [Figure 2.10(a)]. During a stress cycle, the point on the
plane moves on the ellipse in clockwise direction. The area under the line
ABD, gone through during loading, is the energy supplied to the material,
whereas the area under the line DE is the energy given back by the material
during unloading. The area of the ellipse is then the energy dissipated by
hysteresis. Actually, for structural materials, the ellipse is so narrow that
it can hardly be distinguished from its larger axis OD.
Consider a compliant shaft running on sti bearings and performing a

generic circular whirling motion at the whirl speed [24]. Point C whirls on
a circle centered on O [Figure 2.10(b)]. The situation in -plane is shown
in Figure 2.10(c) and (d): The circle ABDEFG is the outline of the shaft,
and the letters indicate the corresponding points on the hysteresis cycle of
the material with reference to Figure 2.10(a).; the dashed circle is the orbit
of C during circular whirling.
Due to the combination of the whirl and the spin motions, the material is

subject to a strain cycle whose period, seen in the inertial frame, is that of
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a rotation of the deflected configuration about point O, i.e., corresponding
to the whirl speed . As the shaft rotates with speed , it goes through the
hysteresis cycle at the frequency : If the whirling motion is synchronous
( = ) the material doesn’t go through the hysteresis cycle and rotating
damping plays no role in the behavior of the system, as already stated.
Points B and F on the hysteresis cycle [Figure 2.10(a)] are those in which

the strain vanishes. The corresponding points B and F on the cross section
of the shaft in Figure 2.10(c) and (d) define the neutral line BF of strains.
The fibers on the side of D with respect to BF are stretched and those
on the other side are shortened. The points in which the stress vanishes
are A and E; line AE is then the neutral line of stress, and the fibers on
the side of D with respect to AE are under tensile stress whereas those
on the other side are compressed. The elastic reaction of the shaft, that in
absence of damping would be directed toward point O, is perpendicular to
the neutral line of stresses and then has a small component perpendicular
to line (C-O)
If the rotation is slower than the whirl motion [ , Figure 2.10(c)],

the elastic reaction of the shaft has a moment about point O that opposes
the whirl motion: Rotating damping tends to quench the whirl motion.
On the contrary, if the rotation is faster than the whirl motion [ ,

Figure 2.10(d)], the elastic reaction of the shaft has a moment about O
with the same direction of the whirl motion and tends to drive it, with the
e ect of transferring energy into the whirl motion and exciting it.

2.4.3 Free whirling

Equation (2.75) can be solved, as usual, by adding a particular integral
to the complementary function. The solution of the homogeneous equation
yielding the behavior of a perfectly balanced rotor is the usual one,

C = C0
, (2.76)

where both the amplitude C0
and the complex frequency = + are

expressed by complex numbers. By introducing this solution into Equation
(2.75), the following characteristic equation is obtained

2 + ( + ) + = 0 (2.77)

The roots of this quadratic equation with complex coe cients are

= + =
+

2
±

r
( + )2 4 ( )

4 2
(2.78)

The real and imaginary parts of the complex frequency can be separated
by resorting to the formula



2.4 Je cott rotor with viscous damping 59

± + = ±

s
2 + 2 +

2
+ sgn( )

s
2 + 2

2
(2.79)

where sgn( ) indicates the sign of the imaginary part From Equation (2.78)
it follows that the solutions are3

1 2 =
+

2
± 1

2

rq
2 +

¡ ¢2
,

1 2 = ±
sgn( )

2

rq
2 +

¡ ¢2
+ ,

(2.80)

where subscripts 1 2 indicate the solutions with positive and negative signs,
respectively, and

=
( + )2

4 2
(2.81)

Two solutions of the characteristic Equation (2.77) can be found for each
value of the spin speed . They are not conjugate, because Equation (2.77)
has complex coe cients.
The general solution of the homogeneous equation of motion is then

= 1
( 1+ 1) + 1

( 2+ 2) . (2.82)

The two complex constants 1 and 2 are to be determined from the
initial conditions.
Because of the not null value of 1 2, the motion of point C has an

amplitude varying exponentially with time. The resulting motion is then
given by the superposition of two logarithmic spirals. The analysis of the
stability and of the whirl direction of the two spiral motions can be made
by taking the signs of the two solutions of Equation (2.80) into account.
If is negative, the amplitude decays in time and point C tends to

point O. The rotor has a stable behavior because the whirl motion tends to
reduce its amplitude. If is positive, the amplitude grows exponentially:
The motion is unstable, as any small perturbation can trigger this self-
excited whirling.

Solution 1 + 1

The sign of 1 in Equation (2.80) is always the same as the rotating speed
, and the corresponding logarithmic spiral is in forward direction. The

3 In equation (2.79) the term in sgn( ) is included, to take into account the possibility
that the spin speed is negative. In general, however, the spin speed is assumed to be
positive (first and fourth quadrants of the Campbell diagram) and the term sgn( ) =
sgn( ) is neglected.
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sign of 1 can be positive or negative, leading to a self-excited or damped
motion, respectively. With simple computations, the condition for stability
can be shown to be

r µ
1 +

¶
(2.83)

The rotor is then stable in the subcritical range, i.e., when the speed
is lower than the critical speed

p
of the undamped system. In the

supercritical field, stability depends on the value of ratio between the
nonrotating and the rotating damping. If there is no nonrotating damping
( = 0) , the motion is unstable in the whole supercritical range. Increasing
nonrotating damping, the threshold of instability becomes higher.

Solution 2 + 2

The sign of 2 in Equation (2.80) is opposite to the rotating speed . As 2

is always negative, the corresponding spiral motion is in backward direction
and it is stable. Usually this motion damps out quite fast, and this solution
is of little practical interest.

Campbell diagram and root locus

Equation (2.80) can be rewritten in the following nondimensional form:

= ( + )±

rq
2 + 2 2 ,

= ±sgn( )

rq
2 + 2 2 + ,

(2.84)

where
=

p
, =

p
,

=
p

, = [1 ( + )2] 2 ,

= 2 , = 2 .

(2.85)

The nondimensional values of and are then functions of the spin
speed and of only two parameters and . A plot of and
as functions of the nondimensional spin speed is shown in Figure 2.11
(Campbell diagram). Four values of have been considered, and rotating
and nonrotating damping have been assumed to be equal ( = ).
The whirl speed is little a ected by the presence of damping: A value

of = 0 1 is already high, and in most cases, the curve ( ) cannot be
distinguished from that of the undamped case.
The roots locus is shown in Figure 2.12. It is the representation on the

complex plane of the solutions 1 2 = 1 2 + 1 2 of the characteristic
equation (2.77) for a number of values of the whirl speed . As solutions

1 2 are not conjugate, the locus is not symmetrical with respect to the real
axis. As already evidenced in the Campbell diagram, for high enough values
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FIGURE 2.11. (a) Campbell diagram and (b) decay rate plot of a damped Je cott
rotor with = , for three di erent values of

of the rotating speed , the forward solution enters the first quadrant and
the system becomes unstable. The locus representing the backward solution
remains in the third quadrant for all values of the rotating speed: This
solution does not give way to instability.

Free whirling in real coordinates

The same results could be obtained without resorting to the complex coor-
dinates. By introducing the Solution (2.12) into the homogeneous equation
associated with Equation (2.69), the following characteristic equation can
be obtained:

det

·
2 + ( + ) +

2 + ( + ) +

¸
= 0 . (2.86)

It is a fourth-degree equation with real coe cients: It has four solutions
that are either real or complex conjugate pairs. They are still expressed
by Equation (2.80), but this time, all combinations of the double signs are
possible. Clearly by resorting to real coordinates all information regarding
the direction of whirl motion is lost and it is impossible to state from the
study of the eigenvalues that backward whirling is always stable, whereas
forward whirling can be unstable. It is still possible to assess the direction
of each mode, but this information must be obtained from the study of the
eigenvectors and eigenvalues.
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FIGURE 2.12. Roots locus of the same Je cott rotors as in Figure 2.11.

2.4.4 Unbalance response

If the rotor is not perfectly balanced, it is necessary to resort to the non-
homogeneous Equation (2.75). By resorting to complex coordinates, the
particular integral, i.e., the response to static unbalance , is

C = C0
(2.87)

The amplitude of the unbalance response is then obtained by introducing
the particular integral into the equation of motion (2.75), obtaining

C0
( 2 + + ) = 2 (2.88)

Rotating damping does not enter Equation (2.88): Unbalance produces
a forward synchronous excitation, i.e., an excitation that rotates in the
-plane at the same speed as the rotor, and the latter rotates in the

deflected configuration but is not subject to deformations that change in
time.
The amplitude C0

is expressed by a complex number. By separating the
real and the imaginary part, it follows that
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FIGURE 2.13. Unbalance response of a damped Je cott rotor: nondimensional
amplitude and phase as functions of the nondimensional spin speed.

Re( C0) =
2( 2)

( 2)2 + 2 2
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2
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2
3

(1 2)2 + 4 2 2
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2

q
(1 2)2 + 4 2 2

= arctan

µ
2

1 2

¶

(2.89)

The amplitude and phase of C0
are plotted in nondimensional form

as functions of the speed in Figure 2.13. The di erent curves have been
obtained with di erent values of the nonrotating damping . The equation
yielding the unbalance response is identical to that yielding the amplitude
of the response of a vibrating system with a single degree of freedom to a
harmonic excitation whose amplitude is proportional to the square of the
frequency. The damped resonance peak lies on the right of the undamped
resonance and not on the left, as in the case of vibrating systems forced by
an excitation whose amplitude is independent from the frequency.
The situation in the -plane is shown in Figure 2.14. As angle is

always negative, point C always lags the line forming an angle with the
-axis, i.e., lags -axis. The delay is exactly 90 at the critical speed. The
plot of the real and imaginary parts of the complex amplitude C0

yields
directly the trajectory of point C in the -plane (full line in Figure 2.15).
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FIGURE 2.14. Configurations taken by the system when working in the subcrit-
ical and supercritical range and at the critical speed.

By adding vector to vector C0
, the trajectory of point P is obtained

(dashed line in Figure 2.15).
The plot of the trajectory of C is very similar to a Nyquist diagram, with

the important di erence that the latter is plotted in the Argand plane,
and the former gives the actual position of point C in the -plane in the
physical space.

Remark 2.10 The term trajectory has been used with an extended mean-
ing: All of these figures were obtained neglecting the angular acceleration,

and the points of the trajectories refer to steady-state conditions at di erent

speeds and are not successive positions during an acceleration of the rotor.

However, if the acceleration is very slow and dynamic e ects linked to it
can be neglected, the curves of Figure 2.15 can be assumed to be at least a
good approximation for the actual trajectories in the -plane. From them,
it is clear that self-centering is strictly linked with an increase of phase
from 0 to 180 , i.e., with a rotation of point C in the -plane. The

typical situations in the subcritical regime, at the critical speed, and in the
supercritical regime are shown in Figure 2.14.
If point C was constrained to remain on the -axis, no self-centering

would occur, as in the case of the system sketched in Figure 2.16, where
mass is allowed to move along a rotating guide and is constrained to the
center of rotation O by a spring of sti ness . The system is only apparently
similar to the Je cott rotor of Figure 2.1: If the length of the guide was
infinite, it would behave similarly to a Je cott rotor in the subcritical field,
but in supercritical conditions, point P would not come back to the self-
centered position and would remain at infinity (or, in real life, at the end
of the guide).
As a final result, the motion of point C can be considered as the su-

perimposition of a backward inward-spiral motion, which usually decays
very quickly in time, a forward spiral motion, whose amplitude can be de-
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FIGURE 2.15. Nondimensional trajectories of points C and P in the rotating
plane O .

creasing, constant, or increasing in time depending on the stability of the
system, and a circular synchronous motion, with constant amplitude. As
the frequency of the forward and backward free motions is the same, they
can add to each other, giving way to elliptical whirling or straight vibra-
tion depending on the initial conditions; however, the decay rate of the
forward motion is smaller than that of the backward component, and with
time, the trajectory of the free whirling becomes more and more similar to
that related to forward whirling alone. The amplitude of the circular forced
whirling depends on the spin speed and the eccentricity .

Maximum amplitude of the response

If nonrotating damping is very low, the maximum amplitude of the unbal-
ance response is obtained at a speed that is very close to the critical speed
of the undamped system. With increasing damping, the speed of maximum
amplitude increases: By di erentiating the third Equation (2.89) with re-
spect to and equating the derivative to zero, it follows that

( max)
=

1q
1 2 2

. (2.90)

The corresponding peak amplitude is

| C0 |max =
1

2
q
1 2

, (2.91)
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FIGURE 2.16. Rotating system in which point mass P is constrained to move
along -axis: It cannot undergo self-centering.

i.e., if the damping is low enough to neglect 2 with respect to unity

| C0 |max
1

2
= . (2.92)

The ratio | C0 |max 1 2 is usually referred to as the quality factor,
and symbol is used for it. It gives immediately an idea of the magnitude
of the response of the system while crossing a critical speed.

2.4.5 Response to a static force constant in time

The response to a static force that is constant in time is a static dis-
placement C , which can be computed from the equation

( ) C = , (2.93)

i.e.,

C = =
2 + 2 2

( + ) . (2.94)

The static deflection depends in this case on the spin speed, and the
displacement does not occur in the same direction as the force: The presence
of rotating damping causes a lateral deflection of the system, which grows
with increasing speed.

2.4.6 Shaft bow

If a bow is present, Equation (2.75) becomes

C̈ + ( + ) ˙C + ( ) C =
2 + + . (2.95)
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FIGURE 2.17. Response of a damped Je cott rotor to a shaft bow: nondimen-
sional amplitude and phase as functions of the nondimensional spin speed.

The particular solution of the equation containing only the nonhomoge-
neous term for the shaft bow is of the type of the second Equation (2.87),
i.e., = 0 , where

C0
=
( 2) +

. (2.96)

The response for some values of the nonrotating damping ratio is
reported in nondimensional form in Figure 2.17.
The response of the rotor is in general a combination of the response

to bow and to unbalance, which add to each other with their own phases.
At low speed, the first one dominates, whereas in the supercritical range,
the second is more important. As an example, the response of a Je cott
rotor with equal bow and eccentricity ( = ) and with a phasing of 90
is reported in Figure 2.18. Note that at very low speed, the phasing of the
response is 90 , i.e., that of the shaft bow, whereas at very high speed, it
tends to 180 , i.e., the system is self-centered.
The speed at which the response to a shaft bow is maximum is

( max)
=

q
1 2 2 , (2.97)

and the corresponding peak amplitude is

|
C0
|max =

1

2
q
1 2

. (2.98)
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FIGURE 2.18. Response of a damped Je cott rotor to a combination of shaft
bow and unbalance, with = and = 90 Nondimensional amplitude and
phase as functions of the nondimensional spin speed.

2.4.7 Frequency response

The previous sections dealt with the response of a Je cott rotor to excita-
tions caused by unavoidable imperfections of the shaft, such as unbalance
or bow. This type of excitation is synchronous, i.e., is characterized by a
frequency equal to the spin speed and can be modeled as a force that is
nonrotating in the rotating reference frame O .
Rotors can be subjected to excitations whose frequency is unrelated to

the rotational speed. Consider a perfectly balanced Je cott rotor excited
by a force whose time history is harmonic with an arbitrary frequency
. The equation of motion in complex coordinates is still Equation (2.41)
with vanishing unbalance and

( ) = 0 . (2.99)

Note that Equation (2.99) describes a force that rotates in -plane with
angular velocity .
The particular integral of the equation of motion is

C( ) = C . (2.100)

The complex amplitude C can be readily obtained by substituting the
solution (2.100) into the equation of motion (2.41)

£
2 + ( + ) + ( )

¤
C = 0 . (2.101)

The amplitude of the response can be expressed in terms of the frequency
response ( )
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C ( ) = ( ) 0 , (2.102)

where

( ) =
1

2 + [ ( + ) ]
. (2.103)

Rotating damping causes the frequency response to depend explicitly on
the spin speed . Note that the response is that of a linear system with
equivalent damping

= +

µ
1

¶
. (2.104)

At standstill what matters is the sum of rotating and nonrotating damp-
ing and the response to a static force [Equation (2.94)] is obtained. With in-
creasing speed, damping decreases, and when = , i.e., when the system
is excited at a frequency equal to the spin speed (synchronous whirling),
the total damping reduces to nonrotating damping. With further increase
of the speed, damping reduces even more and when

= 1 + ,

the system behaves as if it was undamped. At higher speeds, it behaves
as a system with negative damping4 and its response is unstable in a field
close to the natural frequency.
The response to a harmonic forcing function at standstill and for three

values of the speed (0 5 , , and 1 8 ) of a Je cott rotor with damping
ratios = = 0 1 is reported in Figure 2.19. Although the rotor is heavily
damped, the response shows a resonance peak whose amplitude increases
with the speed.
In the case of arbitrary excitation ( ), the response of the system can

be more easily obtained by resorting to a Laplace domain representation.
The equation of motion (2.41) is transformed as

£
2 + ( + ) +

¤
C( ) =

2
1

+ ( ) , (2.105)

where is the complex variable of the Laplace transform. The system re-
sponse can then be expressed by introducing the transfer function ( )

C( ) = ( )

·
2

+ ( )

¸
, (2.106)

4This statement must be interpreted in the sense that it has the same frequency
response of a system with negative damping.
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FIGURE 2.19. Nondimensional frequency response of a perfectly balanced Jef-
fcott rotor to a nonsynchronous harmonic excitation at four di erent values of
the spin speed = 0, = 0 5 , = , and = 1 8 . System with damping
ratios = = 0 1

where

( ) =
1

2 + ( + ) +
. (2.107)

The transfer function allows us to characterize completely the system by
applying the standard methods of system theory. The response to unbalance
and external forces can thus be studied, and the computation of the poles
of the transfer function allows us to obtain the natural frequencies and to
study the stability. The equation yielding the poles

2 + ( + ) + = 0 (2.108)

obtained by equating to zero the denominator of the transfer function, co-
incides with Equation (2.77) yielding the natural frequencies of the system.

2.5 Je cott rotor with structural damping

2.5.1 Equation of motion

Rotating and nonrotating damping have been assumed to be of the viscous
type. This can be a realistic model for nonrotating damping, particularly
when dampers of the squeeze-film type are used, but for the rotating damp-
ing, a structural (or hysteretic) damping model is usually better suited.
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It is well known that, in the case of a vibrating system with a single de-
gree of freedom with mass , sti ness , and loss factor , vibrating at the
frequency , hysteretic damping is equivalent to a viscous damping with
damping coe cient = | | [25]. It is also well known that in most
cases, i.e., when damping is small enough, the correct solution can be ap-
proximated by introducing an equivalent damping coe cient independent
from the vibration frequency, = | |.
In the case of rotors, however, this approach can be used only for the non-

rotating damping. For the rotor, the expression of the equivalent damping
must be modified into = , where is the frequency at which
the material goes through the hysteresis cycle. Although for nonrotating
damping it coincides with | |, modulus of the imaginary part of the com-
plex whirl frequency = + , it takes the value | | for rotating
damping.
If both rotating and nonrotating damping are of structural type, they can

be accounted for in Equation (2.75) in terms of equivalent viscous damping

=
| |

, =
| |

, (2.109)

and the equation of the motion in terms of complex coordinates becomes

C̈ +

µ
| |

+
| |

¶
˙C +

µ
| |

¶
C =

2 + ,

(2.110)
where the unbalance forces and the nonrotating static forces have been
added similarly to Equation (2.75).

Remark 2.11 Equation (2.110) must not be taken at face value, because it

holds only when function C( ) is harmonic [26]. This is a general problem
with hysteretic damping and will not be discussed further here; however, the

following equations written in the frequency domain are correct.

2.5.2 Free whirling

The solution of the homogeneous dynamic Equation (2.110) can be found
in the same form used for the case of the undamped rotor and of the rotor
with viscous damping

C = C0
. (2.111)

By introducing the solution into the equation of the motion, the following
characteristic equation is obtained:

( + )
2
+

µ
| |

+
| |

¶
( + ) +

| |
= 0 . (2.112)
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By separating the real and the imaginary parts of Equation (2.112), it
follows that

( ¡
2 2

¢
+

³
| |

+
| |

´
+ = 0 ,

2 +
| |
+

| |
= 0 .

(2.113)

The second Equation (2.113) can be used to compute the decay rate

=
1

2
[ sgn( ) + sgn( )] . (2.114)

Three cases can thus be identified:

• Subcritical forward whirling 0 and 0: The expression in
braces is always positive, and the decay rate is negative. The system
is stable.

• Supercritical forward whirling 0 and 0: The sign of the
expression in braces depends on whether . The following
two cases can be identified

— : The expression is positive, and the decay rate is
negative. The system is stable.

— : The expression is negative, and the decay rate is
positive. The system is unstable.

• Backward whirling 0 and 0: The expression in braces is
always negative, but the decay rate is negative. The system is stable.

If only rotating damping is acting ( = 0), the system is stable in back-
ward and forward subcritical whirling, whereas it is unstable in forward
supercritical whirling; i.e., the threshold of instability coincides with the
critical speed. Rotating hysteretic damping is stabilizing in subcritical con-
ditions and destabilizing in supercritical condition, exactly like rotating
viscous damping.

Remark 2.12 This result has been well known for many years (see, for

example, [27]); however, incorrect statements suggesting that rotating hys-

teretic damping is always destabilizing can be found in the literature (e.g.,

[28], and [29]). The misunderstanding comes also from a misquotation of

the book by Dimentberg [27].

By introducing the value of the decay rate so computed into the first
Equation (2.113), an equation allowing us to compute the whirl speed
can be written as

5 4 3+ 2+
( )2

4 2
+

2 2 2 2

4 2
= 0 , (2.115)
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where the upper signs hold in case of backward or subcritical whirling and
the lower ones in case of supercritical whirling.
To avoid solving Equation (2.115), a simplified equation is usually ob-

tained by neglecting the real part of the complex frequency in the com-
putation of the term proportional to ( + ). Equation (2.112) becomes

( + )
2
+ +

µ
| |

+
| |

¶
= 0 (2.116)

The term neglected operating in this way
µ
| |

+
| |

¶
(2.117)

is quite small with respect to , at least if the real part of the complex
frequency is small and the whirl frequency is di erent enough from .
Note that at the threshold of instability ( = 0), the imaginary part of the
whirl frequency vanishes and then Equation (2.116) yields exact results.
Equation (2.116) can be then rewritten in terms of the sign of the whirl

speed and of the speed di erence

( + )2 + + [sgn( ) + sgn( ) ] = 0 . (2.118)

With reference to Figure 2.20, the -plane has been split in four re-
gions according to the values assumed by functions sgn( ) and sgn( ).
Di erent hatches have been used in the same figure to indicate the regions
where forward, backward, subcritical, or supercritical motions occur.
Because of the presence of the sign functions, Equation (2.118) is nonlin-

ear and the solution requires a minimum amount of iteration to be found.
The complex frequency + can be obtained from Equation (2.118) as
the square root of a complex number

+ = ±

r
[sgn( ) + sgn( ) ] . (2.119)

The computation of the explicit values of and can be done by means
of Equation (2.79) introduced in the case of damping of viscous type. The
real and imaginary parts and are in this case

= ; =
1
[sgn( ) + sgn( ) ] (2.120)

As shown in Figure 2.20, four di erent cases are possible for the sign func-
tions. For each of the four cases, the general solution of Equation (2.79)
gives way to two values of the complex frequency + . The pair of so-
lutions found for each case must be checked against the assumptions for
functions sgn( ) and sgn( ) relative to that case to assess the only one
that is consistent with the assumptions and therefore acceptable.
Each of the four possible cases are discussed in the following in order to

analyze the stability and the whirl frequency and direction.
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FIGURE 2.20. Signs of the terms in and in the characteristic equation
for systems with hysteretic damping.

Case 1. sgn( ) = 1; sgn( ) = 1. (first quadrant, subcritical; second
quadrant).

From Equation (2.79),

= ±
1

2

qp
2 + ( + )2 ,

=
1

2

qp
2 + ( + )2 + .

(2.121)

Among the two possible signs a ecting the solution, only the lower signs
are acceptable as they give way to positive whirl speed in accordance with
the assumption sgn( ) = 1 at the base of this case. The solution of this
case is then

=
1

2

qp
2 + ( + )2

=
1

2

qp
2 + ( + )2 +

. (2.122)

Taking the assumption that sgn( ) = 1 into account, this solution is
valid for , i.e., in subcritical conditions.
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Case 2. sgn( ) = 1; sgn( ) = 1 (third quadrant, subcritical; fourth
quadrant).

A discussion similar to that performed in the Case 1 can be done in this
case. The result is

=
1

2

qp
2 + ( + )2

=
1

2

qp
2 + ( + )2 +

. (2.123)

As in Case 1, this solution is valid for subcritical conditions.

Case 3. sgn( ) = 1; sgn( ) = 1 (first quadrant, supercritical).

The complex frequency is

= sgn( )
1

2

qp
2 + ( + )2

=
1

2

qp
2 + ( + )2 +

0 .

(2.124)

Case 4. sgn( ) = 1; sgn( ) = 1 (third quadrant, supercritical).

The complex frequency is

= sgn( )
1

2

qp
2 + ( + )2

=
1

2

qp
2 + ( + )2 +

0 .

(2.125)

Stability

Case 1 and Case 2 have a negative real part of the complex frequency,
the corresponding motion is then stable. With reference to Figure 2.20, the
two cases include the backward motion and the forward subcritical motion.
Case 3 and Case 4 have a real part whose sign is a function of the

di erence . In the case

, (2.126)

the system is stable at any speed. If, on the contrary, it is not satisfied, the
threshold of instability coincides with the critical speed, and no supercrit-
ical running is possible.
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2.5.3 Mixed damping

The case in which there are di erent types of damping can be studied in
the same way. If rotating damping is of the structural type and nonrotating
damping is viscous, Equation (2.112) becomes

( + )
2
+

µ
+
| |

¶
( + ) +

| |
= 0 . (2.127)

By neglecting the term

| |
(2.128)

and introducing the complex frequency , Equation (2.127) becomes

2 + + + sgn( ) = 0 (2.129)

By operating in the same way as seen for the case of systems with viscous
damping, and taking into account the sign function, three cases can be
identified:

• Case 1: forward subcritical whirling

=
2

1

2

vuut
s

2 +

µ ¶2
+

1

2

vuut
s

2 +

µ ¶2
+ ,

(2.130)
where

=
2

4 2
(2.131)

• Case 2: forward supercritical whirling

=
2
+
1

2

vuut
s

2 +

µ ¶2
+

1

2

vuut
s

2 +

µ ¶2
+ .

(2.132)

• Case 3: backward whirling

=
2

1

2

vuut
s

2 +

µ ¶2
1

2

vuut
s

2 +

µ ¶2
+ .

(2.133)
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Again, there is no stability problem in forward subcritical and backward
whirling, whereas in the case of forward supercritical whirling, a minimum
value of the nonrotating damping can be found

r

Also in this case, the system is either always stable or the threshold of
instability coincides with the critical speed.

2.5.4 Unbalance response

In the case of the unbalance response, rotating damping has no influence
on the behavior of the system. If nonrotating damping is of the structural
type, the amplitude and phase of the unbalance response are

| C0 | =

2

p
(1 2)2 + 2

= arctan

µ
1 2

¶ (2.134)

2.5.5 Dependence of the loss factor on frequency

Note that the assumption of constant loss factor is only a rough approxi-
mation. The very model of hysteretic damping loses its validity when the
frequency at which the hysteresis cycle is gone through (| | for nonrotating
damping and | | for rotating damping) tends to zero.
If the dependence of the loss factor from the frequency is known, the

free whirling frequencies can be computed iteratively. Because the whirl
speed is little influenced by the value of the damping, the procedure can
converge quickly. For the computation of the unbalance response, however,
the dependence of damping from the frequency introduces no computa-
tional di culty. Other e ects, such as the dependence of damping from the
value of the maximum stress, introduce nonlinearities into the model and
make the solution very di cult.

2.6 Je cott rotor with nonsynchronous damping

In the sections above, damping was assumed to be either stationary or
rotating at the same speed of the rotor. There may be cases in which the
energy dissipating element rotates at a speed di erent from both 0 and ;
i.e., damping is rotating in a nonsynchronous way. It can be either rotating
in the same direction of the rotor (corotating damping) or in the opposite
direction (counter-rotating damping).
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Consider a damped Je cott rotor running at constant speed and assume
that a damper, with damping coe cient , rotating at a speed =
, is present together with the usual nonrotating and rotating damping
and . A positive value of characterizes corotating damping and

a negative value characterizes counter-rotating damping. By resorting to
complex coordinates, the equation of motion (2.75) can be written in the
form

C̈ + ˙C + ( ) C =
2 (2.135)

where is the total damping ( = + + ). The same equation can be
written using real coordinates

·
0

0

¸½
¨C
¨C

¾
+

·
0

0

¸½
˙C
˙C

¾
+

+

·
+

¸½
C

C

¾
= 2

½
cos( )
sin( )

¾
.

(2.136)
The homogeneous equation associated with Equation (2.135) allows us

to study the stability of the system. By assuming a solution of the type

C = C0
, the following characteristic equation is obtained:

2 + + = 0 (2.137)

Equation (2.135) can be written in nondimensional form using the same
nondimensional quantities used for Equation (2.84) to which the obvious
relationship

= = p (2.138)

is added. The solutions of the characteristic equation can be shown to be

= ±

q
+
p

2 + 2 , (2.139)

(
= ±

p
+ 2 + 2 if 0 ,

=
p

+ 2 + 2 if 0 ,
(2.140)

where

=
(1 2)

2
, =

2
, and = + . (2.141)

The upper and lower signs indicate forward and backward whirling, re-
spectively.
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From Equation (2.140), it follows immediately that when 0, the
backward mode is always stable. The condition for stability of the forward
mode is

q
+
p

2 + 2 , i.e., . (2.142)

By introducing the ratio = between the speed of rotation of
the damper and the spin speed, the condition for stability becomes

+
(2.143)

A particular case is that of counter-rotating damping with = 1. The
nondimensional threshold of instability, which for synchronous damping
( = 0) has a value , is now equal to ( ).
If 0 the forward mode is always stable. The condition for stability

of the backward mode is

q
+
p

2 + 2 , i.e., (2.144)

or

or
1

1 +
. (2.145)

A stability chart is shown in Figure 2.21. Forward modes are always
stable for counter-rotating damping with | | , whereas for
counter-rotating damping with a speed lower (in absolute value) than the
mentioned value and for corotating damping, the condition for stability
is expressed by Equation (2.142). Backward modes are always stable for
corotating or for counter-rotating damping with | | , whereas
for counter-rotating damping with a speed higher (in absolute value) than
the mentioned value, the condition for stability is expressed by Equation
(2.144).
It is possible to find a value of that assures a stable working of the

machine at any speed for each value of rotating damping. A fairly large
zone about = 1, where the value of the threshold of stability is very
high, can be found. No threshold of instability exists if = 1.
Note that nonsynchronous damping can make the system unstable even

at standstill (i.e., for = 0), the condition for stability being

| |
+ +

(2.146)

In the case of nonrotating systems, the sign of has no meaning because
the direction of the rotation of the damper is immaterial.
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FIGURE 2.21. Stability chart for the forward and backward whirl modes. Nondi-
mensional parameter as a function of .

2.7 E ect of the compliance of the bearings

The solutions obtained in the previous sections were based on the assump-
tion that both the rotating and nonrotating damping work for the whole
displacement of point C. Actually this is not the case in most real-life appli-
cations, as the compliance of rotor systems can be usually ascribed partially
to the rotor itself and partially to the stator, and the two forms of damp-
ing are usually acting separately: Nonrotating damping can be ascribed to
the stator while rotating damping can be associated with the rotor (Figure
2.22)
Assuming that damping is of the viscous type and neglecting the mass of

the bearings, the simplest model of the system can be written in the form

·
0 0
0

¸½
¨
¨

¾
+

·
+

¸½
˙
˙

¾
+

µ·
+

¸
+

· ¸¶½ ¾
=

½
0
2

¾
, (2.147)

where and are the complex displacements of the bearings (point B)
and of point C, and and and are the sti ness and the damping
of the stator and the rotor, respectively.
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FIGURE 2.22. Compliant Je cott rotor on deformable bearings, as in Figure
2.1(c), but with damping added to both rotor and stator.

If the system is undamped, the first equation can be solved in , yielding

=
+

. (2.148)

By introducing Equation (2.148) into the second Equation (2.147) and
neglecting damping, it follows that

¨ +
+

= 2 . (2.149)

The system behaves as a Je cott rotor with a sti ness equal to that of
the two springs and in series. As already stated, the system of Figure
2.1(c) is equivalent to those of Figures 2.1(a) and (b). The critical speed is
then

=

s

( + )
. (2.150)

This is not the case for the damped system, which cannot be dealt with
as a single degree-of-freedom system (two in real coordinates). As the mass
of the bearings has been neglected, the system is a third-order one, in
complex coordinates.
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2.7.1 Unbalance response

The unbalance response can be obtained in the usual way, assuming that

½ ¾
=

½
0

0

¾

and obtaining

µ
2

·
0 0
0

¸
+

·
0

0 0

¸
+

·
+

¸¶½
0

0

¾
=

= 2

½
0
1

¾
.

(2.151)
As expected, the damping of the shaft does not enter the equation for

synchronous whirling. It is easy to expect that the system behaves as an
undamped system in both cases with = 0 and : In the former
case because there is no damping, whereas in the latter because the bearings
cannot move and the only compliant part of the system is the shaft, whose
damping does not enter the equation for synchronous whirling. Moreover,
the first system has a critical speed expressed by Equation (2.150), whereas
the critical speed of the second is

p
.

For all intermediate values of damping (0 ), the amplitude will
be limited, with a value of yielding a minimum peak amplitude of the
response of point C.
Solving the first Equation (2.151) in

0

0
=

0 + +
, (2.152)

and introducing it in the second one, it yields

0
= 2

+ +
2 ( + ) + ( 2)

. (2.153)

By introducing the following nondimensional parameters:

=
1

, = , =
2

,

where 1 =
p

is the critical speed of a Je cott rotor with a sti ness
equal to that of the bearings alone, it follows that

0 = 2
1

1 2 (1 + ) + 2 (1 2)
,

0 = 2
1 + + 2

1 2 (1 + ) + 2 (1 2)
.

(2.154)
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FIGURE 2.23. Je cott rotor on compliant bearings: nondimensional unbalance
response for = 2 and = 1

The amplitudes and the phases of the response are then

¯̄
¯ 0

¯̄
¯ = 2

1q
[1 2 (1 + )]2 + 4 2 2 (1 2)2

,

= arctan

"
2

¡
1 2

¢
1 2 (1 + )

#
,

¯̄
¯ 0

¯̄
¯ = 2

q
(1 + )2 + 4 2 2 2

q
[1 2 (1 + )]2 + 4 2 2 (1 2)2

,

= arctan

·
2

(1 + ) [1 2 (1 + )] + 4 2 2 (1 2)

¸
.

(2.155)
The nondimensional response depends only on the nondimensional speed
and two nondimensional parameters, namely, and . As an example,

the unbalance response for = 2 and = 1 is reported in Figure 2.23.
Note that = 1 is a high value of the bearing damping, and in practice, it
requires the presence of a purposely added damper.
By di erentiating the third Equation (2.155) with respect to and

equating the derivative to zero, it is possible to compute the speed at which
the peak of the response of point C is located. By performing the relevant
derivatives, the following cubic equation in 2 can be found:

32 4 3 6 + 16 2 2
£
2 2 (1 + )

¤
4+

+
n
2 (1 + )2

£
2 (1 + )

¤
+ 12 2 2

o
2 + 2 (1 + )2 = 0 .

(2.156)
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FIGURE 2.24. Je cott rotor on compliant bearings: peak amplitude of the orbit
of point C as a function of the damping ratio of the bearings, for various values
of the sti ness ratio .

By solving Equation (2.156) for various values of and , it is possible
to obtain the plot of Figure 2.24 in which the peak amplitude is reported
as a function of the damping ratio of the bearings, for various values of
the sti ness ratio . Note that = 0 means that , i.e., that the
shaft is rigid while the bearings are compliant (system of Figure 2.1(a) with
damping added).

Remark 2.13 For each value of , there is an optimum value of the damp-

ing, i.e., a value of the damping that minimizes the peak of the unbalance

response. Such a value increases with increasing : The more compliant is

the shaft, the higher the damping of the bearings must be.

2.7.2 Free whirling

The solution for free whirling is½ ¾
=

½
0

0

¾
.

Operating as usual, the algebraic equation for free whirling is thus

·
+ + ( + ) ( )

( ) 2 + + ( )

¸½
0

0

¾
= 0 .

(2.157)
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FIGURE 2.25. Je cott rotor on compliant bearings: nondimensional threshold of
instability as a function of ratio for various values of the sti ness ratio
and for a fixed value of the damping ratio = 1.

The relevant eigenproblem can be written in the following nondimen-
sional form:

det

·
1 + + 2 [ (1 + ) ] 1 2 ( )

1 2 ( ) 2 + 1 + 2 ( )

¸
= 0 ,

(2.158)
where = is the ratio between the rotating and nonrotating damping
and = 1 is the nondimensional whirl frequency. The solution depends
now on three nondimensional parameters, and it is impossible to plot a
chart that summarizes the behavior of the system, like the one of Figure
2.24. As an example, the nondimensional threshold of instability is
plotted as a function of ratio for various values of the sti ness ratio
and for a fixed value of the damping ratio = 1 in Figure 2.25.

Remark 2.14 The threshold of instability decreases with increasing ratio

, i.e., with increasing compliance of the rotor.

2.8 Rotating coordinates

In the previous sections, the equations of motion were written with refer-
ence to the inertial frame O . There is, however, no di culty in writing
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them with reference to the rotating frame O defined in Figure 2.8. By
solving Equation (2.61) in and and remembering that R 1 = R ,
it follows that ½ ¾

= R

½ ¾
, (2.159)

where R is

R =

·
cos( ) sin( )
sin( ) cos( )

¸
. (2.160)

By di erentiating Equation (2.159), the velocity and the acceleration of
point C can be expressed as

½
˙
˙

¾
= R

½
˙

˙

¾
+ Ṙ

½ ¾
, (2.161)

½
¨
¨

¾
= R

½
¨

¨

¾
+ 2Ṙ

½
˙

˙

¾
+ R̈

½ ¾
, (2.162)

where

Ṙ =

·
sin( ) cos( )
cos( ) sin( )

¸
, (2.163)

R̈ = 2

·
cos( ) sin( )
sin( ) cos( )

¸
= 2R . (2.164)

The force caused by a rotating viscous damping, with damping coe cient
, can be expressed in the O -frame. By introducing Equations (2.159),

(2.161), and (2.162) into the equation of motion (2.69), the latter yields
·

0
0

¸
R

½
¨

¨

¾
+

µ·
+ 0
0 +

¸
R + 2

·
0

0

¸
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¶
×

×
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˙
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+

µ·
0
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¸
R +

·
0
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·
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¸
×

×Ṙ 2

·
0

0

¸
R
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=

½
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2 sin( )

¾
+
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.

(2.165)
By premultiplying Equation (2.165) by R, it follows that
·

0
0

¸½
¨

¨

¾
+

µ·
+ 0
0 +

¸
+ 2

·
0

0

¸¶
×

×

½
˙

˙

¾
+

µ·
0

0

¸
2

·
0

0

¸
+

·
0

0

¸¶½ ¾
=

=

½
2

0

¾
+

½
cos( ) + sin( )
cos( ) sin( )

¾
.

(2.166)
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Equation (2.166) contains two skew symmetric matrices, one linked with
Coriolis acceleration (it is often referred to as gyroscopic matrix because
it adds to the damping matrix, even if it has little to do with gyroscopic
moments), and a circulatory matrix similar (but not equal) to the one
present in the equation written in the inertial frame. Note that a matrix
proportional to 2 linked with the centrifugal acceleration acting on point
C is also present. This terms is like a negative sti ness proportional to the
square of the spin speed.
The same result could be obtained in a simpler way by defining a complex

coordinate in the rotating frame

= + = . (2.167)

The position, velocity, and acceleration of point C can then be expressed
as functions of complex coordinate

=
˙ = ( ˙ + )
¨ =

¡
¨ + 2 ˙ 2

¢ (2.168)

By introducing Equation (2.168) into the equation of motion of the
damped system (2.75) and rearranging the various terms, it follows that

¨+ ( + +2 ) ˙ + ( 2+ ) = 2+ (2.169)

Again the main di erences between Equation (2.75) written in the iner-
tial frame and Equation (2.169) are the presence in the latter of the terms
2 ˙ linked with Coriolis acceleration and 2 caused by the centrifu-
gal acceleration. As already stated, the skew-symmetric terms present in
the equation written in real coordinates correspond to imaginary terms in
the complex-coordinates equations. Note also that the forces caused by un-
balance are constant, in both direction and modulus, in the rotating frame,
whereas a stationary force is seen as a force rotating backward with velocity
.
To show the di erences and similarity between the fixed-frame and the

rotating-frame approach, the relevant homogeneous equations for an un-
damped, perfectly balanced, Je cott rotor, written in complex coordinates,
are reported in the following table:
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Fixed (inertial) frame Rotating frame

Equation of motion
¨+ = 0 . ¨ + 2 ˙ + ( 2) = 0

Solution

= 0 . = 0

0

.
Characteristic equation

2 + = 0 . 02 + 2 0 + 2 = 0 .
Solution in the Laplace domain

= ±
q

. 0 =

µ
±
q ¶

.

Campbell diagram

Conversion into inertial coordinates:

= 0 = ±
q

.

Remark 2.15 In the Campbell diagram plotted with reference to the rotat-

ing frame 0( ), the critical speed is seen as an intersection with the -axis.

In the rotating frame, the critical speed is then a sort of resonance with a

static force (unbalance force in the rotating frame are constant in amplitude

and direction), and hence it is a condition similar to elastic instability.
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2.9 Stability in the supercritical field

The steady-state unbalance response of an undamped or damped Je cott
rotor was computed in the preceding sections without reaching any con-
clusion about the stability of the equilibrium position. As the system is
linear, the results about the stability of the free motion apply as well for
the unbalance response: A simple way to state the stability of the equilib-
rium position is by observing that the complete solution of the equation of
motion can be obtained by adding the solution for free whirling to the un-
balance response. When the first one leads to a stable behavior, the overall
behavior of the system is stable. The equilibrium position is then stable in
the whole supercritical range up to the previously computed threshold of
instability.
Another way to reach the same conclusion is by studying the motion in

the small of point C in the vicinity of the above-mentioned equilibrium
position that can be obtained in terms of rotating coordinates from Equa-
tion (2.169). This procedure is typical of the study of the behavior in the
small of nonlinear systems, but it can be applied for linear ones as well. By
equating to zero all derivatives of the generalized coordinates with respect
to time and neglecting static forces, the equilibrium position

0
is simply

0
=

2

2 +
. (2.170)

Note that Equation (2.170) coincides with that obtained from Equations
(2.87) and (2.88). The motion in the small in the vicinity of point

0
can

be expressed as

( ) =
1( ) + 0 (2.171)

By introducing Equation (2.171) into the equation of motion (2.169) and
remembering the expression for the equilibrium position (2.170), the fol-
lowing equation for the motion about the equilibrium position is obtained:

¨
1
+ ( + + 2 )˙

1
+ ( 2 + )

1
= 0 (2.172)

The solution of Equation (2.172) is of the usual type 1 = 10

0

, yielding
a spiral motion about the equilibrium position whose amplitude can be
either decreasing or increasing in time depending on the sign of the real
part of the complex frequency 0. By introducing this solution into Equation
(2.172), the following characteristic equation allowing the computation of
the complex frequency is readily obtained:

0 2 + [( + ) + 2 ] 0 + 2 + = 0 (2.173)

The solution of the characteristic equation is
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0 = + 0 =
+

2
±

r
( + )2 4 ( )

4 2
(2.174)

By comparing Equation (2.174) with Equation (2.78), it is immediately
clear that the real parts of the two expressions are equal and the imaginary
parts di er by a term equal to . This result is expected because the for-
mer is expressed in a frame of reference that rotates at an angular velocity
equal to with respect to the one in which Equation (2.78) is expressed.
Because the real part of the complex frequency is the same as that given
by Equation (2.78), when Condition (2.83) for stability is satisfied, the mo-
tion about the equilibrium position is, in the rotating reference frame, a
decaying spiral and the equilibrium position is stable.

2.10 Drag torque at constant speed

If the system has damping properties, energy is dissipated during whirling
motion. If no driving torque is applied to the rotor, the spin speed decays
in time: The assumption of constant spin speed postulates then that some
energy is supplied by a driving system to compensate for the energy losses.
The latter can be seen as a form of resistance to motion caused by rotor-
dynamic e ects, which must be added to the bearing drag and all other
forms of drag (e.g., aerodynamic drag) that can contribute to the overall
resistance to motion.
Consider a Je cott rotor supplied with both rotating and nonrotating

damping, running at constant spin speed . Assume also that, owing to
unbalance, it performs a circular whirling motion with amplitude 0 and
frequency , i.e., = C0

, where | C0 | is given by the third Equation
(2.89). The force caused by nonrotating damping is thus equal to ˙C,
and the power it dissipates is

= | ˙C|
2 = 2 2

C0
(2.175)

Rotating damping does not have any e ect, as the system is whirling in a
synchronous way. The power supplied by the motor is simply = .
By equating the power supplied by the motor to that dissipated by damping
and remembering the expression of the amplitude of the whirling motion
caused by unbalance [Equation (2.89)], it follows that

= 2

C0
=

2 2
5

(1 2)2 + 4 2 2
(2.176)

Equation (2.176) yields then the torque needed to drive the rotor at
constant speed against the drag provided by nonrotating damping caused
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FIGURE 2.26. Nondimensional plot of the drag torque caused by nonrotating
damping as a function of for two di erent values of the damping ratio :
= 0 1 and = 0 2.

by the unbalance of the rotor. A nondimensional plot of this drag torque
as a function of speed is shown in Figure 2.26 for two di erent values of
the damping ratio . Note that the drag depends on the square of the
eccentricity and is strong only in case of much unbalanced rotors. In many
cases, it is neglected, because it is considered as vanishingly small owing to
the assumption of small unbalance that is underlying the linearization of
the model. It has a peak at the critical speed, whose value is

=
2

2
(2.177)

If the rotor is slowly accelerated through the critical speed (no account
has been taken for the e ect of angular acceleration in the above formulas)
and the driving torque is smaller than the value given by Equation (2.177),
the rotor stalls, i.e., it fails to go through the critical speed. All of the power
supplied by the driving system is dissipated by nonrotating damping, and
acceleration is no longer possible. Obviously, the value so computed must
be added to that required to overcome all other forms of drag, such as
aerodynamic or bearing drag.
In the high supercritical range, the torque needed to operate at constant

speed grows linearly with . From Equation (2.176), it follows that

lim = 2 2 (2.178)



3
Model with four degrees of freedom:
Gyroscopic e ect

In the Je cott model, the rotor was assumed to be a point mass, and
consequently, no allowance was taken for its moments of inertia. This as-
sumption, while greatly simplifying the analysis, precludes the possibility
of studying phenomena that considerably influence the dynamic behavior
of rotors, and in particular that cause the natural frequencies of bending
modes to depend on the spin speed, i.e., cause the Campbell diagram to be
di erent from a number of straight lines running in a horizontal direction.
The simplest model to evaluate this e ect is shown in Figure 3.1(a) or (b):
either a rigid body attached to a compliant massless shaft or a rigid rotor
spinning on compliant bearings. A more complex system is that of Figure
3.1(c) in which both the bearings and the rotor are compliant. As it was the
case for the Je cott rotor, the three cases of Figure 3.1 coincide if damping
is neglected.
The present model is not much di erent from the Je cott rotor of Figure

2.1, with the only di erence that a rigid body with nonvanishing moments
of inertia is located in point C instead of a point mass. One of the principal
axes of inertia coincides, in the undeformed position, with -axis and its
ellipsoid of inertia has axial symmetry with respect to the same axis. The
principal moments of inertia of the rigid body will be referred to as the polar
moment of inertia about the rotation axis and transversal moment of
inertia about any axis in the rotation plane.
If , the body is usually referred to as a disc; the limiting case is

that of an infinitely thin disc in which = 2 . If , the rotor is
usually referred to as a long rotor . A particular case is when = ; i.e.,
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the inertia ellipsoid degenerates into a sphere; as it will be shown later, this
configuration must be avoided in the case of fast spinning rotors.
Assume also that, owing to small errors, the position of point P, in which

the center of gravity of the rigid body is located, does not coincide with
that of point C, the center of the shaft.1 The distance between the two
points is the eccentricity . Moreover, the axis of symmetry of the rigid
body does not coincide exactly with the rotation axis, the angle between
them being a small angular error . These two errors, which are assumed
to be small, cause a static unbalance and a couple unbalance, respectively.
Strictly speaking, the system has six degrees of freedom, and six gener-

alized coordinates must be defined for the study of its dynamic behavior.
The uncoupling among axial, flexural, and torsional behavior seen for the
Je cott rotor will be shown to hold also in this case, and a model with
four degrees of freedom is adequate for the study of the flexural behavior
at constant speed, at least under wide simplifying assumptions.

3.1 Generalized coordinates and equations of
motion

3.1.1 Kinematics

The generalized coordinates will be defined with reference to the frames
shown in Figure 3.2(a).

• Frame O : Inertial frame, with origin in O, and -axis coinciding
with the rotation axis of the rotor.

• Frame O with origin in O, and -axis coinciding with that of
the preceding frame: Axes rotate in the -plane with angular
velocity , in the case of constant speed operation. It will be referred
to as a rotating frame.

• Frame C 0 0 0 with origin in C: Its axes remain parallel with those
of frame O . 0 0-plane remains parallel to -plane.

• Frame C with origin in C: Its -axis coincides with the rotation
axis of the rigid body in the deformed position, and - and -axes
are defined by the following rotations:

1Point C is the geometric center of the cross section of the shaft where the rigid body
is located. It is an elastic center in the sense that the elastic reaction of the shaft tends
to put point C on the line connecting the centers of the bearings in the undeflected
postion.
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FIGURE 3.1. Rotor with four degrees of freedom. (a) Rigid body on a massless
compliant shaft, (b) rigid rotor on compliant bearings, and (c) rotor in which
both the bearings and the shaft are compliant. In (a) and (c), the disc is assumed
to be a rigid body.

• - Rotate the axes of C 0 0 0 frame about the 0-axis of an angle
0 until the 0-axis enters the rotation plane of the rigid body

in its deformed configuration. Let the axes so obtained be the
- and -axes. The rotation matrix allowing one to express the
components of a vector in C 0 -frame from those in C 0 0 0-
frame (or in the inertial frame, because the directions of the axes
coincide) is

R1 =
1 0 0
0 cos( 0) sin( 0)
0 sin( 0) cos( 0)

(3.1)

- Rotate the frame obtained after the mentioned rotation, about
the -axis until 0-axis also enters the rotation plane of the rigid
body in its deformed configuration. Let the axis so obtained be
the -axis and the rotation angle be . After the two mentioned
rotations, -axis coincides, apart from the angular error , with
the symmetry axis of the rigid body in its deformed configura-
tion. Frame C is centered in the center of the shaft of the
rigid body and follows it in its whirling motion. However, it does
not rotate with the spin speed . It will then be referred to as
whirling frame. Let the matrix expressing this second rotation
be

R2 =
cos( ) 0 sin( )

0 1 0
sin( ) 0 cos( )

(3.2)
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FIGURE 3.2. Reference frames used in the study of a rotor with four degrees
of freedom. The symbol in the boxes indicate whether the axis (a) or plane (p,
indicated with the double arc) is parallel or perpendicular to an axis.

• Frame C with origin in C: It is obtained from frame C by
rotating - and -axes in -plane of an angle equal to rotation angle
of the rotor corresponding to the spin speed. If rotation occurs with

constant spin speed , angle is equal to . Frame C is actually
fixed to the rigid body, although not being centered in its center of
gravity owing to the eccentricity , and not being principal of inertia
owing to the angular error . It will be referred to as rotating and
whirling frame . The matrix allowing one to express a vector in the
C -frame from the components in the C -frame is

R3 =
cos( ) sin( ) 0
sin( ) cos( ) 0

0 0 1
(3.3)



3.1 Generalized coordinates and equations of motion 97

from to translation rotation

O C 0 0 0
£

C C 0
¤

-
C 0 0 0 C 0 - R1

C 0 C - R2

C C - R3

C P123
£

0
¤

R4

TABLE 3.1. Summary of the transformations between the various reference
frames in terms of displacement vectors and rotation matrices.

where = in constant-speed operation.

• Frame P123, principal axes of inertia of the rigid body: As already
stated, the rotor is assumed to be slightly unbalanced. As the angular
position of the rotor in the C -frame is immaterial, the principal
axis of inertia corresponding to the moment of inertia will be as-
sumed to lie in a plane parallel to -plane. As the static unbalance
cannot be assumed to lie in the same plane as the couple unbalance,
the eccentricity cannot be assumed to lie along the -axis, as was the
case of the Je cott rotor. The conditions of unbalance are summa-
rized in Figure 3.2(b), where the static unbalance is shown to lead
the couple unbalance of a phase angle . A fourth rotation matrix
R4 allowing passage from the rotor system of reference C to the
principal axes of the rigid body P123 is thus defined

R4 =
cos( ) 0 sin( )

0 1 0
sin( ) 0 cos( )

(3.4)

The transformations needed to pass from one reference frame to the
others are reported in Table 3.1

Take the -, - and -coordinates of point C and angles 0 , , and
as generalized coordinates of the rigid body. A small displacement assump-
tion on coordinates , , , 0 , and will allow great simplification of
the problem. Coordinate , on the contrary, cannot be considered small.
The velocity of the center of gravity (point P) and the angular velocity

expressed in the principal system of inertia must be computed to com-
pute the kinetic energy of the rigid body. The position of point P is easily
obtained

(P O) = +R
1
R
2
R3

0
(3.5)
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The small-displacement assumption allows the linearization of the trigono-
metric functions of angles 0 and and the neglect of some terms, which
are of the same order of magnitude as those that are neglected when trun-
cating the series for the trigonometric functions after the first term.2 Equa-
tion (3.5) then reduces to

(P O) =
+ cos( + )
+ sin( + )

+
£

0 sin( + ) cos( + )
¤ (3.6)

where the unbalance has been expressed in terms of amplitude and phase
( and ) instead of using the components = cos( ) and = sin( ).

3.1.2 Equations of motion in real coordinates

The equations of motion of the rotor are obtained following a Lagrangian
approach from the expressions of the kinetic and potential energies. The
generalized coordinates of the system are five: , , , 0 and ; is
not considered as a Lagrangian coordinate because the angular velocity has
been assumed to be constant. Only the lateral and axial behavior of the
system is then considered, and the torsional dynamics is not studied here.

Kinetic energy

The kinetic energy of the system is easily computed as the sum of the
translational kinetic energy of its center of mass plus the rotational kinetic
energy

T = T + T =
1

2
2

P +
1

2
0

123
J 0

123
, (3.7)

where P is the velocity of the center of mass,
0

123
is the angular velocity

vector expressed in the 123 reference frame and

J =
0 0

0 0
0 0

(3.8)

is the inertia tensor of the rigid body expressed in the same reference frame.

2All terms of order higher than two in the expression of the kinetic energy give
way to nonlinear terms in the equations of motion. By linearizing the expressions of the
displacements and the velocities, the expression of the kinetic energy is then simplified in
such a way to yield linearized equations of motion. The results so obtained were checked
against those obtained by computing the kinetic energy using the complete expression of
the displacements and then making the simplifications at the end of the computations.
The two procedures yield, as expected, identical results.



3.1 Generalized coordinates and equations of motion 99

The velocity of the center of gravity of the rotor is easily computed by
performing the derivatives of vector (P O) with respect to time. Remem-
bering that ˙ = and angle are constant, it follows that

P =

˙ sin( + )
˙ + cos( + )

˙ +
h
( 0

˙ ) cos( + ) + ( + ˙
0) sin( + )

i

(3.9)
In the third line of Equation (3.9), there are two terms: The first is the

velocity in the axial direction caused by the displacement of point C in the
same direction, and the second is the velocity in the axial direction caused
by the eccentricity and rotations of the cross section of the shaft. It is easy
to verify that the last term causes a coupling between bending and axial
behavior of the rotor; however, if the eccentricity is small, it is negligible
when compared with the first one. In the following developments, all terms
containing the product of the eccentricity or the angular error by a small
quantity will be neglected and no axial-flexural coupling will be obtained.
The translational kinetic energy is then

T =
1

2

n
˙ 2 + ˙ 2 + ˙ 2 + 2 2 + 2

h
˙ sin( + ) + ˙ cos( + )

io
.

(3.10)
The angular velocity 0

123
can be computed as the sum of three angular

velocity vectors acting in di erent directions: ˙ 0 along the 0-axis, ˙

along the -axis, and ˙ along the -axis. Using the relevant rotation ma-
trices, the components of the angular velocity along the principal axes of
inertia of the rotor 0

123
are

0

123
= R4 R3 R2

˙
0

0
0

0 0 0

+

0
˙

0
0

+

0
0
˙

(3.11)
By remembering the small-displacement assumptions, Equation (3.11)

reduces to

0

123
=

˙
0 cos( ) + ˙ sin( )
˙

0 sin( ) + ˙ cos( )
˙

0

£
cos( ) +

¤
+ ˙ sin( ) +

(3.12)

As the components of 0

123
are referred to the principal axes of inertia,

neglecting the small terms, the rotational kinetic energy can be computed
as
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T = 1

2

n
( ˙
2

0 + ˙ 2 + 2 2) + ( 2 + 2 ˙
0 )+

+2 ( )
h
˙

0 cos( ) + ˙ sin( )
io

.
(3.13)

Potential energy

The only forces and moments acting on the rigid body in P that will be
considered are those caused by the elastic reaction of the shaft. Because
the behavior of the shaft is assumed to be linear, they are linked to the
generalized coordinates by the sti ness matrix of the shaft; moreover, the
lateral behavior of the rotor is again uncoupled from the axial and torsional
behavior and only the forces and displacements in -plane and the related
rotations need to be considered. The situation in the -plane is similar to
that in the -plane, but if the same elements of the sti ness matrix are
used, owing to the axial symmetry of the shaft, the di erent sign convention
in the two coordinate planes compels the use of opposite signs for the
elements with subscripts 12 and 21 in the sti ness matrices related to the
two planes:

K =

·
11 12

12 22

¸
K =

·
11 12

12 22

¸
(3.14)

The sti ness matrices K and K can be obtained in di erent ways,
e.g., using the formulas reported on many stress analysis handbooks or
through the finite element method (see Chapter 4). They can be also ob-
tained by inverting the compliance matrix

K = B 1 =

·
11 12

12 22

¸ 1

, (3.15)

where the various are the coe cients of influence of the system. In the
present case, 11 is the displacement of point P caused by a unit force
applied in the same point;

12
=

21
is the rotation in the same point

caused by a unit force or the displacement caused by a unit torque and
22

is the rotation caused by a unit torque. The computation of the compliance
and the sti ness matrices will be shown in detail in the examples at the
end of this chapter.
The potential energy is thus

U =
1

2

½ ¾
K

½ ¾
+
1

2

½
0

¾
K

½
0

¾
(3.16)

By introducing the Lagrangian function T U into Lagrange equation
(2.4) and performing the relevant derivatives, the equations of motion of
the undamped rotor with four degrees of freedom are readily obtained
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¨ + 11 + 12 = 2 cos( + )
¨ + 11 12 0 = 2 sin( + )
¨

0 + ˙
12 + 22 0 = 2( ) sin( )

¨ ˙
0 + 12 + 22 = 2( ) cos( )

(3.17)

Equations (11.28) can be written in the following matrix form:

0 0 0
0 0 0
0 0 0
0 0 0

¨

¨

¨

¨
0

+

0 0 0 0
0 0 0
0 0 0 0
0 0 0

˙

˙

˙

˙
0

+

+

11 12 0 0

12 22 0 0
0 0 11 12

0 0 12 22 0

= 2

cos( + )
( ) cos( )

sin( + )
( ) sin( )

(3.18)
If 0 is used instead of 0 as the generalized coordinate for rotations

about the -axis, the sti ness matrix assumes a more regular pattern with
all terms positive and the skew-symmetric gyroscopic matrix, containing
the polar moments of inertia, is replaced by its transpose.

3.1.3 Equations of motion in complex coordinates

Also, in the current case, it is possible to define a set of complex coordinates
that allow the equations of motion to be written in a more compact form

½
= +
= 0

(3.19)

Note that by defining the complex coordinate for rotation in this way,
the real part of the coordinates refers to the behavior in -plane and the
imaginary part refers to the behavior in -plane. Moreover, the ( ) sign
in the definition of takes care of the di erent conventions of sign in the
two inflection planes. All alternative definitions of , e.g.,

= 0 +

would lead to more complicated equations with a mixing between the fea-
tures occurring in the two inflection planes: Almost all advantages of com-
plex coordinates would be lost.
Multiplying the second Equation (11.28) by the imaginary unit and

adding it to the first one, and multiplying the third equation by and
adding it to the fourth one, reduces the equations of motion to
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½
¨+ 11 + 12 = 2 ( + )

¨ ˙ + 12 + 22 = 2( )
(3.20)

or, in the more compact form,

Mq̈ Gq̇+Kq = 2f (3.21)

The vector of complex coordinates, mass matrix, gyroscopic matrix, sti -
ness matrix, and vector of unbalances in Equations (3.21) are, respectively,

q =

½ ¾
M =

·
0

0

¸
G =

·
0 0
0

¸

K =

·
11 12

12 22

¸
f =

½
( )

¾
(3.22)

Note that all matrices are symmetric when using the complex coordinates
notation, and that when using real coordinates, the gyroscopic matrix is
skew symmetric.
The presence of damping can be accounted for in a very easy way if the

viscous or hysteretic damping models can be accepted. As in the case of
the Je cott model, it is important to distinguish between nonrotating and
rotating damping and to introduce separately the two damping matrices. In
the case of viscous damping, the equation of motion of the damped system
is

Mq̈+ (C +C G)q̇+ (K C )q = 2f (3.23)

where the structure of matrices C and C is similar to that of the sti ness
matrix.
Again rotating damping causes the presence of a circulatory matrix,

which in real coordinates is skew-symmetric and in complex coordinates
is symmetric but imaginary.

3.1.4 Static and couple unbalance

The conditions of unbalance have been summarized in Figure 3.2(b), with
the principal axis of inertia corresponding to the moment of inertia
of the rigid body lying in a plane parallel to -plane and with the static
unbalance leading the couple unbalance of a phase angle . This is generally
enough for the study of an isotropic rotor because the angular position of
the rotor in the C -frame is immaterial. However, in many cases, the
position of - and -axes is fixed with respect to the rotor and does not
depend on the couple unbalance, which in general can be assumed to lead
the plane parallel to -plane by an angle .
The vector of the generalized forces caused by unbalance then becomes
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FIGURE 3.3. Cylindrical and conical whirling of a rigid rotor on compliant bear-
ings (the label bearings axis refers to the undeformed position).

f =

½
( )

¾
(3.24)

3.2 Uncoupled gyroscopic system

3.2.1 Complex coordinates

As can be seen from equation (3.20), the two equations uncouple if 12 = 0,
i.e., if the translational degrees of freedom are elastically uncoupled from
the rotational ones. Translational motion occurs with the axis of the rotor
remaining parallel to itself and is referred to as cylindrical whirling ; rota-
tional motion occurs about the center of mass and is called conical whirling
(Figure 3.3). This can occur, for instance, in the case of a rigid rotor on
two equal bearings with the center of mass exactly at midspan, which is a
situation not uncommon in practice. The equation of motion reduces to

½
¨+ 11 = 2 ( + )

¨ ˙ + 22 = 2( ) ( + )
(3.25)

The first Equation (3.25) is identical to the equation of motion of a
Je cott rotor and needs no further study. The second equation describes
the behavior of the simplest gyroscopic system that can be conceived. The
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free whirling of the undamped system can be studied using the homoge-
neous equation associated with the second Equation (3.25); by introducing
a solution of the type = 0 , it yields the following algebraic linear
equation:

0

¡
2 + + 22

¢
= 0 (3.26)

The characteristic equation yielding the whirling frequencies is

¡
2 + + 22

¢
= 0 (3.27)

whose solutions are

=
±
q

2 2 4 22

2
=

±
q

2 2 + 4 22

2
. (3.28)

By remembering that = + , it follows that

=
±
q

2 2 + 4 22

2
,

= 0 ,

(3.29)

or, in nondimensional form,

=
2
±

s
2 2

4
+ 1 ,

= 0 ,

(3.30)

where

=

can have values spanning from 0 to 2. The nondimensional whirl frequency
= 0 and spin speed = 0 have been obtained using the natural

frequency of the system at standstill 0 =
p

22 . Equation (3.30) has
been plotted for di erent values of in Figure 3.4.

Remark 3.1 As it was shown for the case of the Je cott rotor, the eigen-

values would have been 4 if real coordinates had been used. Owing to axial

symmetry, they are two identical pairs, given by Equation (12.22).

The main features of the Campbell diagram are the following:

• The curves are not horizontal straight lines, except if = 0, i.e., if
the gyroscopic e ect vanishes.

• The frequency of backward whirling decreases in absolute value with
increasing speed, and tends to 0 for .
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FIGURE 3.4. Nondimensional Campbell diagram for the rotational motions of a
rotor with four degrees of freedom in which translational and rotational motions
are uncoupled. Five values of = have been considered: = 0, 0 5, 1, 1 5,
and 2

• The frequency of forward whirling increases with increasing speed,
and the relevant curve has an inclined asymptote with equation =

• If 1, i.e., the rotor is disk-like, there is no intersection of the curve
with the line = i.e., there is no critical speed.

• If 1, i.e., the rotor is a long rotor, the curve intersects the line
= and there is a critical speed linked with conical motion. The

value of this critical speed can be easily obtained by introducing =
= into Equation (12.21), obtaining

=

s
22

=

r
22 1

1
. (3.31)

• If = 1, i.e., the rotor is a spherical rotor, the curve does not intersect
the line = , but tends asymptotically to it for There is
no critical speed linked with conical motion, but the situation is in
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FIGURE 3.5. Campbell diagram for a rotor with complete uncoupling between
conical and cylindrical whirling. Cases with the natural frequency at standstill of
the cylindrical mode (a) higher and (b) lower than that of the conical mode.

a way similar to that of a field of instability. Although not giving
way to any self-excited vibration, the response to unbalance grows
steadily with increasing speed and no self-centered configuration can
be achieved at high speed.

The complete Campbell diagram for a rotor with complete uncoupling
between conical and cylindrical whirling can thus be obtained by superim-
posing the plot of Figure 3.4 with the Campbell diagram of the Je cott ro-
tor, obtaining a plot of the type shown in Figure 3.5(a) or (b). The first plot
refers to a case in which the natural frequency at standstill of the cylindrical
mode is higher than that of the conical mode, i.e.,

p
11

p
22 .

In this case, the two branches of the plot intersect in the first quadrant.
The second figure refers to a case in which the natural frequency at stand-
still of the cylindrical mode is lower than that of the conical mode, i.e.,p

11

p
22 , and the intersection occurs in the fourth quadrant.

3.2.2 Real coordinates

If real coordinates are used, the equations of motion are

¨ + 11 = 2 cos( + )
¨ + 11 = 2 sin( + )
¨

0 + ˙ + 22 0 = 2( ) sin( )
¨ ˙

0 + 22 = 2( ) cos( )

(3.32)

The first two are the same equations already seen for the Je cott rotor,
and the other two can be written in matrix form as
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·
0

0

¸½
¨

¨
0

¾
+

·
0

0

¸½
˙

˙
0

¾
+

+

·
22 0
0 22

¸½
0

¾
= ( ) 2

½
cos( )
sin( )

¾
(3.33)

By assuming a solution of the type =
0

, =
0

, the
homogeneous equation yields the characteristic equation

det

·
2 + 22

2 + 22

¸
= 0 , (3.34)

i.e.,
4 2 + 2

¡
2 22 +

2 2
¢
+ 2

22
= 0 . (3.35)

Its solution is

2 =
22

2 2

2
±

s
22
+

2 2

4
, (3.36)

or in terms of ,

= ±
2
±

s
22
+

2 2

4
, (3.37)

which coincides with Equation (3.30). The only di erence is that the so-
lutions found through the real coordinates approach are twice in number
and their sign loses any meaning.

3.3 Free whirling of the coupled, undamped system

If no uncoupling is possible, i.e., 12 6= 0, the free whirling of the undamped
system can be studied using the homogeneous equation associated with
Equation (3.20). By introducing a solution of the type

½ ¾
=

½
0

0

¾

into the equation of motion, the following algebraic linear equations are
readily obtained:

½
0

¡
2 + 11

¢
+ 0 12 = 0

0 12 + 0

¡
2 + + 22

¢
= 0

(3.38)
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The characteristic equation allowing computation of the whirl frequency
is

det

·
2 + 11 12

12
2 + + 22

¸
= 0 (3.39)

As the solutions of the eigenproblem (3.39) are imaginary, it is handy
to use directly as an unknown, instead of = . In this case, Equation
(3.39) yields

4 3 2

µ
11
+

22

¶
+

11
+

11 22
2

12 = 0 (3.40)

Equation (3.40) has four real roots, two of which are positive. The Camp-
bell diagram of the system is of the type shown in Figure 3.6: At each speed
, four whirl modes, occurring at di erent frequencies, are possible. Two of
them occur in the forward direction and two in the backward direction. The
plot refers to a rigid rotor on two equal compliant bearings: When the rotor
is at midspan ( = 2), 12 = 0 and conical and cylindrical modes are un-
coupled: The plot is of the type of Figure 3.5(a) as the natural frequency at
standstill of the cylindrical mode is higher than that of the conical mode.
Otherwise the modes mix with each other and it is no more possible to
speak of conical or cylindrical whirling. It is usually still possible to speak
of modes that are mostly cylindrical and modes that are mostly conical;
however, following a branch of the plot, the mode can transform from one
type to the other (e.g., the mode related to the first forward mode is conical
at low speed, to become more and more cylindrical with increasing speed).
Because all solutions of Equation (3.40) are real, the corresponding eigen-

vectors q are also real.
If the initial conditions are taken in such a way that 0 and 0 are real,

at time = 0, both and 0 vanish: The -axis is contained in a plane
also containing the -axis and rotating about the latter with a constant
angular velocity equal to the whirl speed . The axis of the rotor describes
a cone whose axis is the rotor axis in its undeformed position. Because the
deflected shape is contained in a plane, the motion could have been studied
in such a plane from the beginning, using a model with only two degrees
of freedom. This model, however, cannot be used to study the damped
system, and a more general model was preferred from the beginning.
Actually, the free whirling of the system can be more complex because

the motion is the combination of all four circular whirling motions that
occur at di erent frequencies

q =
4X
=1

q (3.41)
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FIGURE 3.6. Campbell diagram of a system made by a rigid rotor on two iden-
tical elastic supports.

Remark 3.2 The gyroscopic terms couple the behavior in the planes pass-

ing through the rotation axis and make it impossible for the system to per-

form elliptical or rectilinear motions.

An equation of the type of Equation (3.41) can yield elliptical motions
only in the case in which two of the eigenfrequencies have the same
modulus and opposite sign, as was the case for the Je cott rotor and for
the horizontal branches of a rotor with uncoupling between conical and
cylindrical whirling. The introduction of gyroscopic moments causes for-
ward whirl frequencies to be di erent from backward whirl frequencies and
causes all whirl motions to be circular. Obviously the four circular modes
can add to each other, yielding Lissajous curves.
To avoid solving Equation (3.40) in , the Campbell diagram can be

obtained solving the same equation in . The equation is linear in this
unknown, and a closed-form solution can be easily found
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=
4 ( 11 + 22)

2 + 11 22
2

12

( 2
11)

(3.42)

From Figure 3.6, it is clear that the Campbell diagram has three horizon-
tal asymptotes: Two for backward motions and one for forward whirling.
Another asymptote has the equation

= (3.43)

The intersections between the curve ( ) with the bisector of the first
quadrant = yield the conditions for forward synchronous whirling, i.e.,
the critical speeds. By introducing condition = into Equation (3.40),
the following quadratic equation in 2 is obtained:

4 ( ) 2
£
( ) 11 22

¤
11 22 +

2

12
= 0 (3.44)

By neglecting the negative solutions corresponding to the intersections
of curve ( ) with the straight line = lying in the third quadrant of
the -plane, the following values of the critical speed are obtained:

=

vuut 11( ) 22 ±
q
[ 11( ) + 22]

2 4 ( ) 2

12

2 ( )
(3.45)

Introducing ratio
0 = ,

which has the dimensions of the square of a length, Equation (3.45) can be
written in the more compact form

=
1

2

vuut
11

22

0
±

sµ
11 +

22

0

¶2
4

2

12

0
(3.46)

Note that

0 =

µ
1
¶
= 2

µ
1
¶
, (3.47)

where is the radius of inertia of the rigid body related to its polar

moment of inertia ( =
p

).

If ( 1 or 0 0), as happens in the case of long rotors, there
are two real solutions and, as a consequence, two values of the critical speed.
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If, on the contrary, or 1, as happens in the case of discs, one
of the solutions is imaginary and only one critical speed exists.
The same behavior of the critical speeds as functions of the values of
and was already clear from Figure 3.6 for the case with uncoupled

translational and rotational motions ( = 0 5).

Example 3.1 Cantilever rotor with four degrees of freedom (the Stodola-Green

rotor).

An interesting example is the so-called Stodola-Green rotor: a disc attached at

the end of a prismatic cantilever beam. The simplest model is shown in Figure

3.7(a), where the moments of inertia of the disc are neglected and the Je cott

rotor model is used. The model studied here [Figure 3.7(b)] on the contrary takes

into account also the latter and is based on a model with four degrees of freedom.

To compute the sti ness matrix, the compliance of the system is evaluated first.

As in the previous cases, a unit force and a unit bending moment are applied at

the free end of the beam. Apply first a force ; the displacement and the rotation

of the same point can be computed by using the formulas available in various

handbooks

=

3

3
=

2

2
, (3.48)

where and are, respectively, the Young’s modulus of the material and the area

moment of inertia of the cross section of the shaft.

Then apply a unit bending moment . The displacement of the center of

mass and the rotation are

=

2

2
= . (3.49)

The compliance and sti ness matrices are then

B =
6

·
2
2

3

3 6

¸
, (3.50)

K = B
1
=

3

·
12 6

6 4
2

¸
. (3.51)

The natural frequency at standstill of the Je cott rotor model (i.e., of a system

with negligible moments of inertia) is

0 =

r
3

3
. (3.52)

If the moments of inertia are taken into account, the natural frequencies depend

on the spin speed and can be computed using Equation (3.40), which can be written

in nondimensional form by introducing parameters

= =
2
=

³ ´
2

, (3.53)
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FIGURE 3.7. The so-called Stodola-Green rotor: a disc attached at the end of
a prysmatic cantilever beam. (a) Model in which the moments of inertia of the
disc are neglected (Je cott model); (b) model with four degrees of freedom; and
(c) and (d) mode shapes at standstill of model (b).

where =
p

is the radius of inertia of the disc corresponding to the mo-

ment of inertia , and the nondimensional whirl and spin speed

=
0

=
0

. (3.54)

Parameter is vanishing small for a point mass rotor [the Je cott rotor of Figure

3.7(a)], and the speeds are made nondimensional with the whirl speed of the same

Je cott rotor.

The free response of the system can thus be studied using the homogeneous

equation

µ
2

·
1 0

0

¸
+

·
0 0

0

¸
+

·
4 2

2
4

3

¸¶½
0

0

¾
= 0 . (3.55)

The characteristic equation takes the form

4 3
4

µ
1 +

1

3

¶
2
+ 4 +

4

3
= 0 (3.56)

The nondimensional natural frequencies of the system depend then on only two

parameters, namely, ratio , assessing the importance of the transversal moment

of inertia with respect to the mass, and the product , assessing the importance

of the gyroscopic e ect.
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FIGURE 3.8. Nondimensional natural frequency of the Stodola-Green rotor as
a function of ratio . The various curves refer to values of the nondimensional
speed spanning from 0 to 3, with increments of 0.2.

The dependence of the frequencies on such parameters is summarized in the

plot of Figure 3.8. If 0 the behavior of the rotor tends to that of the Je cott

model: The nondimensional frequency of the first mode tends to 1 and does not

depend on the speed, whereas the frequency of the second mode tends to infinity

(there is only one mode). With increasing , the e ect of the speed increases

and the frequency of the second mode (both forward and backward) is increasingly

lower. Note that = 1 is a very high value and corresponds to a very large disc,

with a radius of inertia equal to the length of the beam. Values lower than 0.1 are

more realistic for actual systems.

The nondimensional Campbell diagram is reported in Figure 3.9. Note that the

overall pattern is di erent not only from that of Figure 3.5 but also from that of

Figure 3.6. Here the coupling between the two modes is strong, and actually it is

impossible to speak of conical and cylindrical whirling. The two curves for the two

modes are far from each other, and they do not tend to cross, neither in the first

nor in the fourth quadrant.

The mode shapes, computed for = 0 1 at varying speed, are reported in Figure

3.10. For vanishing small speed, they coincide with those sketched in Figure 3.7(c)
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FIGURE 3.9. Nondimensional Campbell diagram of the Stodola-Green rotor.
Note that the spin speed has been corrected multiplying it by ratio , to summa-
rize the behavior of the system with only four sets of lines (for the four modes),
with parameter . The curves have been computed for = 0 01, 0 02, 0 05, 0 1,
0 2, 0 5, and 1. Full lines: first mode, forward and backward; dashed lines: second
mode, forward and backward.

and (d), and obviously they are identical from forward and backward motions.

Note that at very high speed, the first forward mode and the second backward one

tends to be cylindrical and the other two to be conical.

Example 3.2 Compliant rotor on two bearings located at two opposite sides.

Consider a rotor made by a rigid gyroscopic body attached to a flexible uniform

shaft running on rigid bearings (Figure 3.11, inset sketch). The sti ness matrix

can be computed using the finite element method, by modeling the shaft with two

beam elements and then applying a static reduction technique (see Chapter 4).

Alternatively, here the compliance matrix is obtained and then inverted.

Apply a unit force in the center of mass of the rigid body. The displacement

of the same point and the rotation can be computed by using the formulas
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FIGURE 3.10. Mode shapes at varying speed (for spanning from 0 and 50)
for a Stodola-Green rotor with = 0 05.

available in various handbooks

=
3

2
( )

2
,

=
3

( ) ( 2 ) .

(3.57)

Then apply a unit bending moment . The displacement of the center of

mass and the rotation are

=
3

( ) ( 2 ) ,

=
3

¡
2

3 + 3
2
¢
.

(3.58)

The compliance matrix is then obtained by assembling in matrix form the dis-

placements and rotations caused by a unit force and a unit moment

B =
1

3

·
2
( )

2
( ) ( 2 )

( ) ( 2 )
2

3 + 3
2

¸
. (3.59)
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FIGURE 3.11. Influence of the gyroscopic moment on the critical speeds of a
flexible rotor on two bearings located at opposite sides of the center of mass
(inset the sketch of the system).

The sti ness matrix in plane is then

K = B
1
=

3

( )

2
3 + 3

2

2( )2

2

( )

2

( )
1

(3.60)

The Campbell diagram and the critical speeds can be computed as shown in

the previous sections. The influence of the gyroscopic moment on the critical

speeds can be shown by plotting the values of the critical speed or, better, of ratio

, where is the critical speed computed neglecting gyroscopic e ects

(i.e., using the Je cott rotor model), as functions of , 0 or, better, of nondi-

mensional parameter 0 2
= ( )

2. The graph, plotted for various values

of , is shown in Figure 3.11. If the rotor is at midspan, i.e., if = 0 5, the

translational and rotational motions are uncoupled. The gyroscopic moment has

no e ect on critical speeds in the case of the discs and causes a second critical

speed to be present in the case of long rotors; one of the critical speeds can be com-

puted using the Je cott rotor model. In all other cases, a disc-type rotor causes

an increase in the critical speed, which is sometimes explained by saying that the

gyroscopic moment causes a sti ening of the system, which is only a phenomeno-

logical explanation because no actual sti ening takes place. In the case of a long

rotor, the critical speed decreases and a second critical speed, usually higher than

the first, occurs. Note that the values of |( )| 2 are in practice small,

particularly in the case of long rotors, and Figure 3.11 holds only for a narrow
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zone about the ordinate axis. On the right of this narrow zone, the discs are too

thin and they can no longer be considered rigid bodies, and on the left the rotor

becomes too long and thin to be considered rigid again.

Remark 3.3 If the ellipsoid of inertia is close to be a sphere, i.e., is

close to , the value of the critical speed is sensitive to the values of the

parameters of the system. This situation must be avoided, particularly for

rotors that spin at a speed far higher than the first critical speed.

Example 3.3 The considerations drawn from Figure 3.11, although obtained

for a particular case, are, however, qualitatively applicable in general.

3.4 Response to unbalance and shaft bow

In the previous sections, the shaft has been assumed to be perfectly straight
in its undeflected configuration. This cannot be exactly the case in an actual
situation, and as it has been seen for the Je cott rotor, a certain bow may
be present. However, when dealing with shaft bow in the context of the
present model, not only the bow but also the angular misalignment
caused by the predeformations of the shaft must be accounted for (Figure
3.12). The angular misalignment must not be confused with angle
defined in Figure 3.2(b): The former defines the position toward which the
tangent to deflected configuration of the shafts is recalled when no forces
are applied to it, and the second defines the direction of the principal axis
of the rotor at rest. The bow and the angular misalignment do not lie, in
general, in the -plane, but form angles and with it.
The elastic restoring forces act to bring point C toward O’ (which rotates

in -plane with velocity ) instead of O, and then the reaction forces do
not depend on the displacements and and on angles 0 and ,
but on cos ( + ), sin( + ), 0 sin( + ), and

cos ( + ).
By introducing these values of the generalized displacements into the

Expression (3.16) of the potential energy of the system, and performing
the relevant computations, the equation of motion of the damped system
in complex coordinates becomes

Mq̈+ (C +C G)q̇+ (K C )q =

2

½
( )

¾
+K

½ ¾ (3.61)

The particular integral of Equation (3.61) can be expressed in the form
= 0 , = 0 , i.e.,

q = q0 =

½
0

0

¾
. (3.62)
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FIGURE 3.12. Undeflected configuration of a bowed shaft, in the rotating frame
at standstill. Point O’ is the undeflected position of the center of the shaft (as the
system is shown in the undeflected configuration, point C coincides with point
O’).

By introducing the particular integral into the equation of motion, the
following algebraic equation is obtained

£
2 (M G) + C +K

¤
q0 =

2

½
( )

¾
+K

½ ¾
.

(3.63)
The amplitudes and of the response are, in general, complex num-

bers, even in the case of undamped systems (i.e., even in the case the matrix
of the coe cients is real) because static and couple unbalances and the bow
do not lie in the same plane, i.e., the phase angles , , , and are,
in general, not equal to zero. As it was the case for the Je cott rotor, the
response to unbalance is similar to the response to an excitation propor-
tional to the square of the frequency, and it starts from 0 at standstill.
The response to shaft bow, on the contrary, is similar to the response to
an excitation with constant amplitude, taking a nonzero value at standstill
and decreasing to zero, after one or two resonance peaks (the number of
peaks in the response depends on the number of critical speeds) at high
speed.
To study separately the e ects of static and couple unbalance, consider

first an undamped system with eccentricity and vanishing phase The
amplitude of the response is
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FIGURE 3.13. Amplitude of the unbalance response for the same rotor of Fig-
ure 3.6 with = 4 (a) Response to static unbalance; (b) response to couple
unbalance.

0 =
2
( ) 2 + 22

0 =
2 12

(3.64)

where

= ( ) 4 + [ 11( ) 22]
2 + 11 22

2

12

In the case of couple unbalance with phase = 0, the response is

0 =
2( )

12

0
= 2( )

2
11

(3.65)

Equations (3.64) and (3.65) are plotted in Figure 3.13 for the same rotor
as in Figure 3.6 with = 4. As is clear from the figure, in the current
case, self-centering occurs at speeds in excess of the critical speed in the
case of static unbalance, whereas a certain self-centering also occurs in the
subcritical field in the case of couple unbalance.
This is because the system has only one critical speed, because ,

and the natural frequency at standstill related to the rotational mode is
lower than that linked with the translational mode.
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3.5 Frequency response

The previous sections dealt with the response of a four degrees-of-freedom
rotor to excitations caused by unavoidable imperfections of the shaft, such
as unbalance or bow. As it was the case for the Je cott rotor, also in the
present case, this type of excitation is synchronous, i.e., is characterized by
a frequency equal to the spin speed and can be modeled as a force that is
nonrotating in the rotating reference frame O .
Consider now a harmonic excitation whose frequency is unrelated to the

rotational speed. Consider a perfectly balanced rotor with four degrees of
freedom excited by a force and a bending moment whose time
history is harmonic with an arbitrary frequency . The equation of motion
in complex coordinates is still Equation (3.61) with vanishing unbalance
and bow, but with forcing function

f ( ) =

½
0

0

¾
. (3.66)

Note that Equation (3.66) describes a force and a moment that rotate in
-plane with angular velocity .
The particular integral of the equation of motion is

q( ) = q0 =

½
0

0

¾
. (3.67)

By substituting the Solution (3.67) into the equation of motion (3.61),
an algebraic equation, which can be used to compute the amplitude of the
response, is obtained

©
2M+ [ G+ (C +C )] +K C

ª
q0 =

½
0

0

¾
. (3.68)

The amplitude of the response can be expressed in terms of the frequency
response G( )

q0( ) = G( )f0 , (3.69)

where

G( ) =
£
K 2M+ G+ (C +C ) C

¤ 1

. (3.70)

The e ects of rotating damping are the same already seen for the Je cott
rotor. Also in the present case, an equivalent, speed-dependent damping can
be defined as

C = C +C

µ
1

¶
. (3.71)

With increasing speed, the system behaves as if the damping was de-
creased, and it is possible that, at high speed, instability occurs, owing to
the destabilizing e ect of rotating damping.
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3.6 Unbalance response: modal computation

The frequency domain Equation (3.63) for synchronous whirling is formally
identical to the equation of a vibrating system with mass matrix equal to
M G excited by harmonic forces having frequency [30]. If the system
is undamped, it is possible to perform a modal analysis of a vibrating
system having the same sti ness matrix K as the rotating system, and a
mass matrix equal to M G. The eigenvectors q of such a system then
uncouple the modes, and it is possible to compute the unbalance response
(also the response to a shaft bow, but in this section the latter will be
neglected) by superimposing the modal responses to the various modal
forces.

Remark 3.4 Modal uncoupling is strictly linked to the m- and k-orthogona-

lity of the eigenvectors and, hence, with the symmetry of the mass and

sti ness matrix. As the gyroscopic matrix is symmetrical only when using

the complex coordinates approach, the modes are uncoupled only when the

equations are written in terms of complex coordinates.

Remark 3.5 As matrixM G may be negative defined, not all its eigen-

values in 2 are necessarily positive. In particular, if , one of the

two eigenvalues is negative and only one real critical speed exists, as ex-

plained above.

Let be the matrix of the eigenvectors (because the system has just two
complex degrees of freedom, there are only two eigenvectors)

=
£
q1 q2

¤
, (3.72)

The modal transformation can be expressed as

M = (M G) , (3.73)

K = (K) f = f ,

where both M and K are diagonal matrices, but in the present case, not
all elements of the former are positive. Vector f contains the modal unbal-
ances related to the various modes. By dividing the modal equations in the
frequency domain by the modal masses, the corresponding values of the
modal sti ness are the squares of the critical speeds and the two algebraic
equations yielding the modal responses

0
, corresponding to Equations

(3.64) and (3.65), are

¡
2 2

¢
0 =

2 . (3.74)

The modal response

0
=

2

¡
2 2

¢ (3.75)
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FIGURE 3.14. Modal response for the modes with positive (full line) and negative
(dashed line) eigenvalue.

corresponds to the unbalance response of a Je cott rotor with = and
critical speed .
The modes characterized by a negative modal mass, or better, by a neg-

ative value of 2 , do not resonate, i.e., do not have a critical speed. How-
ever, mathematically the solution of the equation yielding the critical speed
exists, but it is imaginary. The so-called imaginary critical speed

=
q¯̄

2
¯̄

(3.76)

has a physical meaning. The nondimensional modal responses for a mode
with positive eigenvalue (real critical speed) and negative eigenvalue (imag-
inary critical speed) are reported in Figure 3.14. In the former case, the
plot coincides with the response of a Je cott rotor (Figure 2.4), whereas in
the latter, there is no resonance, but the mode self-centers at high speed.
At the imaginary critical speed , the response is half of the self-centered
response.
Here this property was shown for a system with two degrees of freedom,

but it holds in general (see Chapter 4).

Remark 3.6 The modes whose imaginary critical speed lies within the

working range contribute to self-centering together with the modes having

a real critical speed.

Remark 3.7 The response close to a critical speed is dominated by the

resonating mode, and it can be obtained considering only one mode.
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The last properties supply the theoretical foundations on which the
modal balancing procedure is based (see Appendix B).
The considerations seen above apply, strictly speaking, only in case of un-

damped systems. The presence of damping (nonrotating damping, because
rotating damping has no e ect on the unbalance response of isotropic sys-
tems) couples all equations of motion even if modal coordinates are used
and makes modal analysis impossible. However, if the system is lightly
damped, the modal approach still supplies a very good approximation of
the response.

3.7 Modal uncoupling of gyroscopic systems

3.7.1 Configuration-space approach

The equation of motion of a gyroscopic (and possibly circulatory, if rotating
damping is present) systems cannot be uncoupled in the usual way. It is still
possible to use the eigenvectors of the undamped natural system (i.e., of
a system obtained by neglecting the gyroscopic, damping and circulatory
matrices) to perform the modal transformation, but the resulting modal
equations are generally not uncoupled.
This procedure can be performed either by using real or complex coor-

dinates: Here the latter approach will be followed to simplify the relevant
computations. The starting equation for the modal transformation in com-
plex coordinates is Equation (3.23). Let be the eigenvector matrix of
the undamped natural system. In the present case (rotor with two complex
degrees of freedom), the eigenvalues are

1 =

s
22 + 11 +

2
,

2 =

s
22 + 11

2
,

(3.77)

where

= , =

q
( 22 11)

2 + 4 12
2 .

Note that the two values of are the natural frequencies of the un-
damped system at standstill.
After normalizing them in such a way that the modal masses have unit

values, the eigenvectors are

=

p
2 + 4 2

12

p
2 + 4 2

12

2 12p
2 + 4 2

12

2 12p
2 + 4 2

12

, (3.78)
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where
= 22 + 11 + ,
= 22 + 11 .

By performing the usual modal transformation, it follows that

M¨ + (C +C G) ˙ + (K C ) = 2f (3.79)

where are the modal complex coordinates related to the two modes, and

M=

·
1 0
0 1

¸
K=

·
2

1
0

0 2

2

¸
, (3.80)

are the modal mass matrix and the modal sti ness matrix, respectively.
They are both diagonal.
The modal gyroscopic matrix

G=
4 2

12

1
2+4 2

12

1q
( 2+4 2

12 )( 2+4 2
12 )

1q
( 2+4 12 )( 2+4 2

12)
1

2+4 2
12

(3.81)
is not diagonal, because the eigenvectors are m-orthogonal and k-orthogonal
but are not g-orthogonal.
Also the nonrotating and rotating modal damping matrices C and C

are not diagonal, but their explicit expression is too complicated to be
reported here. As the coupling e ect of damping in gyroscopic system is
the same as in natural damped systems, nothing will be added here.
The point for rotating system is the coupling caused by gyroscopic terms

that can be avoided only if the gyroscopic matrix is a linear combination
of the mass and sti ness matrices (case similar to proportional damping
described by Rayleigh) or follow the same rule defined by Caughey for the
damping matrices (generalized proportional damping, see [17]). However,
these instances are even less likely for the gyroscopic matrix than for the
damping matrix, so gyroscopic coupling is always present.

3.7.2 State-space, complex-coordinates approach

The equations of motion can be written with reference to the state space.
Using again complex coordinates and defining the complex state vector as

z =
£
q̇ q

¤
, (3.82)

the state space equation corresponding to the configuration space Equation
(3.23) is

ż =

·
M 1(C +C G) M 1(K C )

I 0

¸
z+ 2

·
M 1

0

¸
f .

(3.83)
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Note that the dynamic matrix A depends on the speed and is complex,
owing to the presence of gyroscopic and circulatory terms. Its eigenvalues
yield the complex whirling frequencies of the system.
It is well known that if the matrix U of the complex right eigenvectors of

the dynamic matrix A is obtained, it is possible to uncouple the equations
of motion in the form

˙̄z = U 1AUz̄+U 1Bu , (3.84)

where modal dynamic matrix A = U 1AU is a complex diagonal matrix
and z̄ = U 1z are the modal states of the system. Equation (3.84) is a set
of 2 uncoupled equations, if the number of complex degrees of freedom is
and hence in the present case is a set of four equations. Note that also in the
case of a damped gyroscopic system, this uncoupling can be performed, but
because the dynamic matrix of the system is a function of the spin speed
, it requires us to recalculate the modal dynamic matrix and the modal
input gain matrix for each value of the speed. This implies the solution of
an eigenproblem of order 2 for each value of the speed, which is however
exactly what is needed for plotting the Campbell diagram.
In the case of an undamped gyroscopic system, the eigenvalues of the

dynamic matrix A are imaginary and the eigenvectors have the first
elements that are imaginary and the other ones that are real.
Although Equation (3.84) is all what is needed for uncoupling the equa-

tions of motion (written with reference to the state space) of any damped
gyroscopic system, a further elaboration aimed to obtain uncoupled equa-
tions in the configuration space, i.e., aimed to split the multi-degrees-of-
freedom rotor into a number of uncoupled single-degree-of-freedom rotors,
may be useful. If the eigenvalues are ordered in such a way that the forward-
backward pairs are placed one after the other, the diagonal matrix A had
the form

A=

1+ 0 0 0
0 1 0 0
0 0 2+ 0

0 0 0

. (3.85)

The system with complex degrees of freedom can be split into gyro-
scopic systems with a single degree of freedom, whose equations of motion
are

¨ +
¡ ¢

˙ +
¡ ¢

= 2 . (3.86)

The modal parameters can be easily computed by solving the eigenprob-
lem related to the homogeneous Equation (3.86) and equating the solution
to the th pair of eigenvalues ( + and , where the signs + and identify
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the forward and backward modes) of the original system

1 Im ( ) Re ( ) 0
0 Re ( ) Im ( )
1 Im ( +) Re ( +) 0
0 Re ( +) Im ( +)

=

Im ( )
2

Re ( )
2

2 Im ( )Re ( )

Im ( +)
2 Re ( +)

2

2 Im ( +)Re ( +)

.

(3.87)
Equation (3.87) is easily solved in closed form, yielding

= Im( ) Im ( +) + Re ( )Re ( +) ,
= 1 [Im ( ) + Im ( +)] ,
= Re ( ) Re ( +) ,
= 1 [Re ( ) Im ( ) + Re ( +) Im ( +)] .

(3.88)

Note that by definition Im ( +) is positive and Im ( ), is negative.
In the case of the undamped system, the eigenvalues are imaginary and

= Im( ) Im ( +).
The modal parameters of the system can thus be used to write a state-

space equation

ż = Az+Bu , (3.89)

where the structure of the dynamic matrix is

A =

A1 0 0

0 A2 0

0 0 A

, (3.90)

with

A =

·
+ + +

1 0

¸
=

· ¡ ¢ ¡ ¢
1 0

¸
.

(3.91)
The transformation matrix to obtain the state variables z from z̄ is the

matrix of the eigenvectors of matrix A, or better, because there are
uncoupled systems, there are eigenvector matrices of the various matrices

A . Let U1 = eigenvectors (A ), and it is easy to verify that

U1 =

·
+

1 1

¸
. (3.92)

To transform the whole system in terms of the modal coordinates z
defined by Equation (3.89), the augmented eigenvector matrix U1 can be
defined as

U1 =

U11 0 0

0 U12 0

0 0 U1

. (3.93)
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The transformation from the physical complex coordinates and those of
the uncoupled modal system is then

z = U1z = U1U
1z . (3.94)

The input gain matrix B is then

B = U1U
1B . (3.95)

The modal force to be included into Equation (3.86) includes not only
the inputs u but also their derivatives u̇. This is because all rows of matrix

B can be nonzero. By di erentiating the first row of the -th state space
modal equation with respect to time and substituting the expression of
the second state space coordinate into the first equation, the configuration
space equation of the th modal system is

¨ +
¡ ¢

˙ +
¡ ¢

=
¡ ¢

B2 u+B1 u̇ ,
(3.96)

where B2 and B1 are the second and the first row of the input gain matrix

B related to the th mode.
Equation (3.96) can then be used to compute the modal forces caused

by unbalance or the modal control forces caused by active devices.

3.7.3 State-space, real-coordinates approach

If no damping is present, a more traditional way, based on the real coordi-
nates approach, to uncouple the equations of motion of a gyroscopic system
is as follows. The modal equations are written in nonstandard form:

·
M0 0

0 K0

¸
ż+

·
G0 K0

K0 0

¸
z = 2

·
I

0

¸
f 0 , (3.97)

where M0, K0, G0, and f 0 are the mass, sti ness, and gyroscopic matrices
and the unbalance force vector for the real coordinates approach (their
expression can be found in Equation (3.18); their size is 4×4), and the
state vector z contains the generalized velocities and the displacements in
the direction of - and -axes.
Usually symbolsM and G are used for the two matrices

M =

·
M0 0

0 K0

¸
G =

·
G0 K0

K0 0

¸
. (3.98)

The first one is symmetrical, and the second one is skew-symmetrical
(and a function of ). The eigenproblem

det
¡

M 1G
¢
= 0 (3.99)
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yielding the whirl complex frequencies of the system has then a number
of pure imaginary complex conjugate solutions (in the present case, there
are four pairs, corresponding to the four whirling speeds of the system).
Note that because real coordinates have been used, no information on the
direction of whirling can be obtained from eigenvalues.
Also, the eigenvectors are conjugate. By introducing the whirling fre-

quency = and separating the real and the imaginary parts of the solu-
tions, a new eigenproblem, this time with real symmetric, positive-defined
matrices, can be obtained

det
¡

2M 1 +K
¢
= 0 , (3.100)

where
K =G M 1G . (3.101)

Equation (3.100) can be interpreted as the eigenproblem related to a
natural undamped system with mass matrix M and sti ness matrix K .
Such a system can be uncoupled by the matrix of the eigenvectors obtained
from the Eigenproblem (3.100).

Remark 3.8 This approach for uncoupling gyroscopic systems cannot be

used for free rotors: If the sti ness matrix K0 is singular, also matrix M

is such and cannot be inverted. Equation (3.100) cannot then be used to

uncouple the system.

Remark 3.9 The methods described in the present section allow modal

uncoupling of the equations of motion of a gyroscopic system, but they have

the drawback of needing a new modal analysis for each value of the spin

speed , which is considered. Apart from this, the first approach, being

based on complex coordinates, can be used only for systems that possess

axial symmetry, but works also in the case of damped (and circulatory)

systems. The second one does not require any symmetry assumption, but it

cannot be applied to damped systems and free rotors.

Example 3.4 Modal analysis of a cantilever rotor with four degrees of freedom.

Consider the same Stodola-Green rotor studied in Example 3.4, but study its

dynamic behavior through modal analysis, assuming a value of ratio =
2
=

0 8.

The homogeneous equation of motion of the undamped system written with

reference to the complex coordinates in the time domain is

·
1 0

0

¸½
¨

¨

¾
+

·
0 0

0

¸½
˙

˙

¾
+

·
4 2

2
4

3

¸½ ¾
= 0 ,

(3.102)
where

=
3

3
. (3.103)
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FIGURE 3.15. Nondimensional Campbell diagram of a Stodola-Green rotor with
= 0 8. The nondimensional quantities are =

p
; =

p
.

Standard modal analysis

The modal analysis of the natural system is easily performed. The natural fre-

quencies and the eigenvectors are

1 = 0 5579

r
2 = 2 3142

r
, (3.104)

=
1
·
0 5184 0 8552

0 9561 0 5796

¸
, (3.105)

and coincide with the natural frequencies and the mode shapes of the system at

standstill.

The modal mass matrix and the modal sti ness matrix are respectively

M=

·
1 0

0 1

¸
K=

·
0 3112 0

0 5 3555

¸
. (3.106)

The modal gyroscopic matrix

G=

·
0 7313 0 4433

0 4433 0 2687

¸
(3.107)

is not diagonal, as expected.

The Campbell diagram is reported in Figure 3.15. The solutions obtained using

a nonmodal procedure and a modal computation taking into account the coupling

between the equations of motion caused by the gyroscopic matrix are completely

superimposed (full lines).

The same computation was repeated by neglecting gyroscopic coupling (i.e., the

out-of-diagonal terms of the modal gyroscopic matrix). The results are reported
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on the same figure, dashed lines. It is clear that the errors introduced by neglecting

modal coupling are unacceptable except for very low speed.

Uncoupling in the space state, complex coordinates.

The dynamic matrix is

A =

·
0 0

0 1

¸ ·
4 2
2 4

3

¸

·
1 0

0 1

¸ ·
0 0

0 0

¸ . (3.108)

Note that the dynamic matrix A depends on the speed and is complex. Its

eigenvalues and eigenvectors must be computed for each value of the speed. For

instance, if = 2
p

, the eigenvalues and the eigenvectors are

1 = 2 1636

r
2 = 0 1857

r
, (3.109)

3 = 1 4131

r
2 = 2 9362

r
,

U =

0 8593

0 2926

0 3972

0 1352

0 0822

0 1630

0 4427

0 8779

0 5767

0 5777

0 4081

0 4088

0 3760

0 8687

0 1281

0 2959

. (3.110)

The modal dynamic matrix A = U 1AU can thus be obtained; its elements

coincide with the complex whirling frequencies. When = 2
p

, its value is

A =

2 1636

0

0

0

0

0 1857

0

0

0

0

1 4131

0

0

0

0

2 9362

. (3.111)

The equations of motion are thus uncoupled. The system can then be reduced

to two uncoupled undamped single-degree-of-freedom (if complex coordinates are

used) gyroscopic systems, whose modal mass, sti ness, and gyroscopic terms are

functions of the spin speed. For instance, if = 2
p

, they are

M1 = 1 G1 = 0 6137 , K1 = 0 2624 ,

M2 = 1 G2 = 0 3863 , K2 = 6 3526 .

The modal sti ness and the modal gyroscopic term are plotted as functions of

the nondimensional speed in Figure 3.16.

Uncoupling in the space-state, real coordinates

Matrices M and G have eight rows and eight columns, because each one of

them is made by four matrices referred to the real coordinates approach, whose

size is 4×4. They are

M =

·
M0 0

0 K0

¸
G =

·
G0 K0

K0 0

¸
, (3.112)
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FIGURE 3.16. Modal sti ness and modal gyroscopic terms for the two modal
systems equivalent to the Stodola-Green rotor as functions of the nondimensional
speed.

where

M
0
=

1 0 0 0

0 0 0

0 0 1 0

0 0 0

K
0
=

4 2 0 0

2
4

3
0 0

0 0 4 2

0 0 2
4

3

, (3.113)

G
0
=

0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

. (3.114)

Matrix

K =G M
1
G (3.115)

is readily computed, and the natural system characterized by matrices M and

K can be decomposed modally in eight single-degrees-of-freedom systems. By

normalizing the eigenveectors to obtain unit modal masses, the modal sti ness

can be computed at the various speeds. If = 2
p

, for instance, the modal

sti ness matrix is

K =
£
0 0345 1 997 4 681 8 621 0 0345 1 997 4 681 8 621

¤
.

As the system is axially symmetrical, each modal system has multiplicity 2. At

standstill, forward and backward modes are equal and two modal masses with mul-

tiplicity 4 are found. The values of the modal sti nesses are reported as functions

of the speed in Figure 3.17.
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FIGURE 3.17. Modal sti nesses of a Stodola-Green rotor as functions of the
speed. Modal uncoupling referred to real coordinates. Each value has a multiplic-
ity 2.

Example 3.5 Rigid rotor on two bearings located at two opposite sides.

Consider a rigid rotor running on two bearings, located at the two opposite

sides of the center of mass (Figure 3.18).

The mass and the gyroscopic matrices are

M =

·
0

0

¸
G =

·
0 0

0 p

¸
, (3.116)

which hold also for the following three examples and will not be repeated.

To compute the compliance matrix, apply a unit force in point G. The reac-

tion forces 1 and 2 the bearings apply on the rotor in -plane are

1 = ,

2 = .

(3.117)

The corresponding displacements 1 and 2 are then

1 =
1

1

=
1

,

2 =
2

2

=
2

.

(3.118)
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FIGURE 3.18. Sketch of a rigid rotor on compliant bearings. The center of mass
is between the bearings.

The displacement of the center of mass and the rotation are

= 1 + ( 2 1) = 2

³
2

2
+

2

1

´
=

1 2
2

¡
2

1 +
2

2

¢
,

= 2 1 = 2

³
2 1

´
=

1 2
2 ( 1 2) .

(3.119)

Then apply a unit bending moment in point G. The reaction forces 1 and

2 the bearings apply on the rotor in -plane are

1 = ,

2 = .

(3.120)

The corresponding displacements 1 and 2 are then

1 =
1

1

=
1

,

2 =
2

2

=
2

.

(3.121)

The displacement of the center of mass and the rotation are then

= 1 + ( 2 1) = 2

³
2 1

´
=

1 2
2 ( 1 2) ,

= 2 1 = 2

³
1

2
+

1

1

´
=

1 2
2 ( 1 + 2) .

(3.122)

The compliance matrix is then obtained by assembling in matrix form the dis-

placements and rotations caused by a unit force and a unit moment

B =
1

1 2
2

·
2

1 +
2

2 1 2

1 2 1 + 2

¸
. (3.123)



134 3. Model with four degrees of freedom: Gyroscopic e ect

The sti ness matrix in -plane is then

K = B
1
=

·
1 + 2 1 + 2

1 + 2
2

1 +
2

2

¸
. (3.124)

Remark 3.10 As expected, if 1 = 2, translational and rotational

motions uncouple and the system behaves as a Je cott rotor plus a single-

degree-of-freedom gyroscopic system.

Another important particular case is that with two identical bearings, 1= 2= .

The sti ness matrix then simplifies as

K =

·
2 +

+
2
+

2

¸
. (3.125)

The Campbell diagram of Figure 3.6 and the unbalance response of Figure 3.13

refer to this case.

The equation for the undamped response to static unbalance can be written in

the following nondimensional form:

Ã
2

·
1 0

0 1

¸
+

"
1

2

2

2
+

2

2 2

#!½
0

0

¾
=

2

½
1

0

¾
, (3.126)

where the nondimensional spin speed and the radius of inertia are

=

p
2 =

p
.

Unbalance response

The unbalance response for the system of Figure 3.6 with = 4 but with

= 0 5 and four di erent values of is plotted in Figure 3.19. The first plot

refers to the case with = 1 6: The rotor is a disc, and only one critical speed is

present. There is only one resonance peak. The last plot refers to the case with

= 0 6: a long rotor with two critical speeds and two resonance peaks. The other

two plots are for almost identical rotors with very close to 1 ( = 1 001 and

= 0 999). Note that the two responses are di erent in the high supercritical

regime. As expected, because is very close to 1, the response is very sensitive

to the values of the parameters and a very large response at high speed can be

expected.

Unbalance response; modal computation

Using the same data as above ( = 0 25, = 0 5, and = 1 6), the

eigenvalues and the corresponding eigenvectors are

2
=

½
0 8584

1 9417
q1 =

½
0 9621

0 2726

¾
q2 =

½
0 1676

0 9859

¾
. (3.127)

There is only one critical speed: = 0 9265; the imaginary critical speed is

= 1 3934.
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FIGURE 3.19. Undamped response to static unbalance in nondimensional form
for the system of Figure 3.6 with = 4, = 0 5 and four di erent values of
:1 6, 1 001, 0 999, and 0 6.

The eigenvectors can be normalized in such a way that the first modal mass is

equal to 1 and the second one to 1. As the matrix that is nonpositive defined

is the mass matrix, it is better that the nonpositive modal matrix is M; however,

a more standard normalization in which the modal mass matrix is an identity

matrix could be used, but it would result in an imaginary eigenvector.

The matrix of the normalized eigenvectors and the modal matrices are

=

·
1 0250 0 2249

0 2904 1 3232

¸
, (3.128)

M =

·
1 0

0 1

¸
K =

·
0 8584 0

0 1 9417

¸
. (3.129)

The unbalance force vector for a unit eccentricity and the corresponding modal

unbalances are

f =

½
1

0

¾
f =

½
1 0250

0 2249

¾
. (3.130)
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FIGURE 3.20. Nondimensional unbalance response of the system of Figure 3.19.
Response to a static unbalance in modal form (a, full line first mode, dashed line
second mode) and in physical coordinates (b). Response to a couple unbalance
in modal form (c, full line first mode, dashed line second mode) and in physical
coordinates (d).

The modal responses are plotted in Figure 3.20(a) and then recombined to yield

the responses in terms of physical coordinates in Figure 3.20(b). Note that this

result coincides with that reported in Figure 3.19(a), although here a linear scale

has been used for the spin speed.

In case of a unit couple unbalance (or better, a unit value of the product ),

the unbalance force vector and the corresponding modal unbalances are

f =

½
0

1

¾
=

½
0

0 6

¾
f =

½
0 1742

0 7939

¾
. (3.131)

The responses are plotted in Figures 3.20(c) and (d).

Example 3.6 Rigid overhung rotor on two bearings.

A case similar to that of the previous example is shown in Figure 3.21, but now

the two bearings are located on the same side of the center of mass.

Again the compliance matrix is obtained by applying a unit force and a unit

bending moment in point G. The reaction forces 1 and 2 the bearings apply
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FIGURE 3.21. Sketch of a rigid rotor on compliant bearings. The bearings are
on the same side with respect to the center of mass.

on the rotor in -plane are, for the two cases, respectively,

1 =

2 =

1 =

2 =

. (3.132)

The corresponding displacements 1 and 2 are then

1 =
1

1

=
1

2 =
2

2

=
2

1 =
1

1

=
1

2 =
2

2

=
2

. (3.133)

The displacement of the center of mass and the rotation are, respectively,

= 1 + ( 2 1) = 2

³
2

2
+

2

1

´
=

1 2
2

¡
2

1 +
2

2

¢
,

= 2 1 = 2

³
2
+

1

´
=

1 2
2 ( 1 + 2) ,

(3.134)

= 1 + ( 2 1) = 2

³
2
+

1

´
=

1 2
2 ( 1 + 2) ,

= 2 1 = 2

³
1

2
+

1

1

´
=

1 2
2 ( 1 + 2) .

(3.135)

The compliance matrix and the sti ness matrix in -plane are then

B =
1

1 2
2

·
2

1 +
2

2 1 + 2

1 + 2 1 + 2

¸
, (3.136)

K = B
1
=

·
1 + 2 1 2

1 2
2

1 +
2

2

¸
. (3.137)
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In the case of the overhung rotor, the terms outside of the main diagonal of

the sti ness matrix never vanish and translational motions never uncouple from

rotational ones.



4
Discrete multi-degrees-of-freedom
rotors

The models seen in the previous two chapters allow us to understand the
basic features of the dynamic behavior of rotating systems and the main
di erences between rotordynamics and standard structural dynamics. Al-
though suited for qualitative studies, they are unable to give accurate quan-
titative predictions for the complicated rotors encountered in real-world
machinery, owing to their complexity.
At the macroscopic level typical of machine design, flexible bodies can be

modeled as continuous systems, and linear elastic rotors can be studied by
writing the relevant di erential equations describing the behavior of linear
elastic continua. Such equations are partial derivative di erential equations,
containing the derivatives with respect to time, usually up to the second
derivative, as well as derivatives with respect to space coordinates. The
computational di culties developing both from the di erential equations
and, even more, from the boundary conditions, can, however, be tackled
only in a few simple cases (see Chapter 5). The solution of most problems
encountered in engineering practice requires dealing with complex rotors,
and the use of continuous models is, consequently, ruled out; the only feasi-
ble approach is the discretization of the continuum to obtain a discretized
model written in terms of ordinary di erential equations, containing only
derivatives with respect to time.
The substitution of a continuous model, characterized by an infinite num-

ber of degrees of freedom, with a discrete one, sometimes with a very large
but finite number of degrees of freedom, is usually referred to as discretiza-
tion. This step is of primary importance in the solution of practical prob-
lems, because the accuracy of the results depends largely on the adequacy of
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the discrete model to represent the actual system. The same discretization
techniques widely used in structural dynamics can be applied in rotordy-
namics, provided that modifications aimed to introduce gyroscopic e ects
and other features typical of rotating systems are introduced.
After the discretization procedure has been applied, another problem,

which is nowadays far less severe because of the growing power of comput-
ers, develops: The size of the discrete model, obtained through discretiza-
tion, is usually very large, and in some cases, it may contain many hun-
dreds, or even thousands, of degrees of freedom. Before the widespread use
of computers, the solution of an eigenproblem containing matrices whose
order was greater than a few units was very di cult and usually beyond
actual possibilities. Many techniques were aimed at reducing to a mini-
mum the size of the eigenproblem or transforming it into a form that could
be solved using particular algorithms. The possibility of solving very large
eigenproblems did actually change the basic approach to all problems in
structural dynamics, and then also rotordynamics, making many popular
methods obsolete.
The most common methods used in rotordynamics can be subdivided

into two wide classes, the so-called lumped-parameters methods and the
finite element method (FEM).
In the first case, the mass of the system (rotor and stator, if the latter

is included in the system) is lumped into a certain number of rigid bodies
(sometimes simply point masses) located at given stations in the deformable
body. These lumped masses are then connected by massless fields that
possess elastic and, sometimes, damping properties. Usually the properties
of the fields are assumed to be uniform in space. Because the degrees of
freedom of the lumped masses are used to describe the motion of the system,
the model leads intuitively to a discrete system. Although the mass and
gyroscopic matrices of such systems are easily obtained, it is often di cult
to write the sti ness matrix, or, alternatively, the compliance matrix. To
avoid such di culty, together with that linked to the solution of large
eigenproblems, an alternative approach can be followed. Instead of dealing
with the system as a whole, the study can start at a certain station and
proceed station by station using the so-called transfer matrices.

Remark 4.1 Methods based on transfer matrices were very common in the

past, because they could be worked out with tabular manual computations or

implemented on very small computers. Their limitations are now making

them yield to the finite element method.

A separate class can be assigned to the FEM. As the FEM is widely
used in many fields of engineering analysis (structural, thermal, magnetic,
etc.), only a short account will be given here. In the FEM, the body is
subdivided into a number of regions, called finite elements, as opposed
to the vanishingly small regions used in writing the di erential equations
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for continuous systems. The deformed shape of each finite element is as-
sumed to be a linear combination of a set of functions of space coordinates
through a certain number of parameters, considered as the degrees of free-
dom of the element. Usually such functions of space coordinates (called
shape functions) are simple and the degrees of freedom have a direct phys-
ical meaning: Generalized displacements at selected points of the element,
usually referred to as nodes. The analysis then proceeds to writing a set
of di erential equations of the same type as those obtained for discrete
systems.
Actually, the use of the FEM can be limited to the writing of the sti ness

matrix to be introduced into a lumped-parameters approach. Alternatively,
the mass and gyroscopic matrices of the system can be obtained using the
FEM approach. In this case, they are said to be consistent , because are
obtained in a way that is consistent with that used for the computation of
the sti ness matrix.
Although often considered as a separate approach, the dynamic sti ness

method will be regarded here as a particular form of the FEM in which
the shape functions are obtained from the actual deflected shape in free
vibration.
Very often, rotors are assumed to be beam-like systems and are then

modeled using beam elements, with inertial properties modeled using either
the lumped or the consistent approach. Although there is no di culty in
using other types of elements, the relevant gyroscopic matrices are generally
not available to users of standard finite element codes.

4.1 Transfer matrices approach: the
Myklestadt-Prohl method

4.1.1 Undamped systems

The Myklestadt method was originally developed for the dynamic study of
nonrotating beams, particularly cantilever aircraft wings [31]. It was then
generalized by Prohl to include gyroscopic moments and since then has been
the standard method for the dynamic study of rotors [32], particularly for
the computation of critical speeds, for decades.
The system is lumped in a number of rigid bodies (often referred to as

disks, particularly in the case of turbines) located at chosen points, often
called stations, connected with each other by massless beams (fields) to
which the elastic properties of the structure are ascribed. In many cases,
the system lends itself very well to this discretization, as many turbine
rotors are actually made of massive disks, connected together by lengths
of shaft. In other cases, the discretization can be a more or less arbitrary
procedure.
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If the system possesses axial symmetry, an approach similar to that seen
for complex coordinates in four degrees-of-freedom rotors can be used. Each
end of a field has then four coordinates (displacements in and direc-
tions and rotations 0 and ), which can be grouped into two complex
coordinates (displacement and rotation ) and two generalized forces
(shear force and bending moment ) represented by using the com-
plex notation. The state vectors are then of order four, and the transfer
matrices are four by four. In nonisotropic systems, the displacements and
rotations along - and -axes must be considered and the order of vectors
and matrices is eight (real coordinates approach). However, in this case,
the main advantage of the Myklestadt-Prohl method, i.e., its simplicity, is
lost and it is better to use the FEM. There is no conceptual di culty in
also considering damping properties.
The Myklestadt-Prohl method is used for the study of free whirling and

the evaluation of the critical speeds but also for the computation of the
response, if external forces are included in the model. Distributed forces
are usually substituted by concentrated forces acting at the stations. The
generalized displacements at the nodes are assumed to be generalized co-
ordinates.

Remark 4.2 As usual with transfer matrices methods, it is suited only for

the study of in-line systems: The various fields must be connected to each

other in series.As the structure is usually read like a written line, from left

to right, each beam-like field has a left end, where it is connected to the

preceding beam, and a right end, where the following beam starts.

If the inertial properties of the system are lumped in nodes, including
the nodes at both ends, the fields are 1 (Figure 4.1). The compu-
tation starts at the first station, the station at the left, and ends at the
last (right) station. It is clear that no branched systems or systems with
multiple connections can be studied (unless by approximate approaches in
which a branch is concentrated in the station where it stems from the main
structure), and this is a serious drawback.
The aforementioned characteristics explain why the transfer-matrices

method is now yielding to methods based on the study of the system as
a whole, without having to go through it step by step from one station to
the next.
The method is based on the definition of state vectors and transfer matri-

ces. A state vector is a vector containing the generalized displacements and
forces related to the degrees of freedom that characterize the ends of each
field, considered as insulated from the rest of the structure. Consequently,
each field has two state vectors, one at the left end and one at the right
end. The state vectors s at the ends of a field are linked by the transfer
matrix of the field
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FIGURE 4.1. Mylestadt-Prohl method. (a) Sketch of the section included between
the ( 1)th and the ( + 1)th station of a system made of discs and beams; (b)
forces and moments acting on the th node and the th field in the -plane.

s = T s (4.1)

where subscript refers to the th field and and designate the right
and left ends, respectively, and T is the transfer matrix of the th field.
The left end of the th field and the right end of the ( 1)th field are
located at the th station, and between them there is the th lumped mass.
The corresponding state vectors do not coincide because the mass exerts
generalized inertia forces on the node. They are linked by the transfer
matrix of the th station (or node) T

s = T s
1
. (4.2)

The station transfer matrix contains inertia forces caused by the lumped
mass that, in harmonic free vibrations, are functions of the square of the
frequency of vibration. On the contrary, the field is massless and the field
transfer matrix is independent of the frequency.
If there is a linear elastic constraint at the th node, its sti ness can be

introduced into the expression of the station transfer matrix. In this way,
it is possible to use the transfer-matrices method for systems in which the
constraints are applied to nodes other than the first and last ones. The case
of rigid constraints can be dealt with by introducing elastic constraints with
very high sti ness.
Usually an element made of a node and a field is considered, and instead

of writing Equations (4.1) and (4.2), a single relationship linking the state
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vector at the right of the th field with that at the right of the ( 1)th
field is stated

s = T T s
1
= T s

1
, (4.3)

where the transfer matrix T is the product of the transfer matrix of a
station and that of a field.
The state vector at the left of the first station s0 and that at the right

of the last station s can be linked together by the equation

s = T T 1T 2 · · · ·T2T1s0 = T s0 (4.4)

The overall transfer matrix

T =
1Y
=

T (4.5)

is the product of all transfer matrices of all stations and fields from the last
to the first, in the correct order. Note that the product of matrices depends
on the order in which it is performed, so the overall transfer matrix must
be computed by strictly following the aforementioned rule. If the system
performs harmonic oscillations, the overall transfer matrix is a function of
the frequency of the oscillations of the system.
To compute the transfer matrices, consider the field as a beam, bent in

the -plane. The shear force at the right end is equal to the shear force at
the left end, because no force acts on the field

= . (4.6)

The bending moment at the right end is equal to the bending moment
at the left end, increased by the moment caused by the shear force at the
left end (for the signs, see Figure 4.1b)

= , (4.7)

where is the length of the th field.
The displacement at the right end is equal to the displacement at the

left end, increased by the displacements caused by the rigid rotation and
to the deformation of the field

= + + . (4.8)

The rotation at the right end is equal to the rotation at the left end
increased by the rotation caused by bending deformation of the field

= + . (4.9)

The increments of displacement and rotation and caused by the
deformation of the field can be computed through the beam theory as the
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Cross section = 0 3

Circular 7+6

6(1+ )
1 128

Annular (thin) 4+3

2(1+ )
1 88

Annular (7+6 )(1+ )
2
+4 (5+3 )

6(1+ )(1+ )2

³
=

´
1 128 + 3 026

(1+ )2

Square 12+11

10(1+ )
1 18

Square (thin) 48+39

20(1+ )
2 30

TABLE 4.1. Values of the shear factor for beams with di erent cross section.
The formula for an annular cross section with inner and outer diametrs and
coincides with the formulas for solid circular and thin-walled annular sections

when = 0 and = 1, respectively.

th field can be considered as a prismatic beam clamped at the left end and
loaded at the right end by a force and a moment [17]

=
³

3

6
+

´
+

2

2
,

=
2

2
+ ,

(4.10)

where is the shear factor. Its value depends on the shape of the cross
section, and for circular or annular beams, a value = 10 9 is usually
considered. More precise values (taken from [33]) referred to cross sections
with two symmetry planes, i.e., whose sti ness is isotropic, are reported in
Table 4.1 as functions of the Poisson’s ratio of the material.
By writing the relationships obtained above in matrix form, the following

expression for the field transfer matrix can be obtained:

=

1
3

6
+

2

2

0 1
2

2
0 0 1 0
0 0 1

(4.11)

Now consider the th node. The displacement and the rotation at the left
of the node are equal to the displacement at the right

½ ¾
=

½ ¾

1

(4.12)

The force at the right is equal to the force at the left increased by the
inertia force caused by mass , which in circular whirling conditions is

2 ; if a constraint with sti ness is located at the node, the force
at the left of the node must be increased by

=
1
+
¡

2 +
¢

1
(4.13)
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The moment at the right is equal to the moment at the left increased by
the inertia torque added to the gyroscopic moment1 ( 2 + ) .
If a constraint with angular sti ness is located at the node, the moment
must be further increased by

=
1
+
¡

2 + +
¢

1
(4.14)

Using matrix notation, the following expression for the transfer matrix
of the th node is obtained:

=

1 0 0 0
0 1 0 0

2 + 0 1 0
0 2 + + 0 1

1

(4.15)
Usually the transfer matrices method is used to compute the critical

speeds: In this case, = = and Equation (4.15) reduces to

=

1 0 0 0
0 1 0 0

2 + 0 1 0
0 2 ( ) + 0 1

1

(4.16)
Once the transfer matrices of all nodes and all fields have been obtained,

there is no di culty in computing the global transfer matrix.
The boundary conditions must then be introduced. Consider, for in-

stance, that both ends are simply supported: The displacement and the
bending moment must vanish in both s and s0. Equation (4.4) then be-
comes

0

0

=

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

0

0
0

(4.17)

The first and fourth columns of the global transfer matrix can be can-
celed, because they multiply elements equal to zero in the state vector. The
first and last equations (4.4) reduce to the homogenous equation

1This way of accounting for gyroscopic moments implies not only harmonic motion
but also the use of complex coordinates. Gyroscopic moments are proportional to the
velocities ˙ 0 and ˙ , i.e., to the complex velocity ˙ , which in harmonic motion is
proportional to , and then the imaginary unit cancels with the other imaginary unit,
which multiplies the gyroscopic term when complex coordinates are used.
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·
12 13

42 43

¸½ ¾

0

= 0 (4.18)

which yields a solution di erent from the trivial one only if

det

·
12 13

42 43

¸
= 12 43 42 13 = 0 (4.19)

Because the elements of the global transfer matrix are functions of 2

(of if the gyroscopic moments are accounted for), this condition leads
to an equation in , coinciding with the characteristic equation of the
eigenproblem yielding the natural frequencies of the system.
The transfer-matrix approach is used to avoid solving an intricate eigen-

problem, and an approach alternative to the solution of the characteristic
equation in 2 is usually followed. A value of the frequency is assumed,
and the transfer matrices are computed and multiplied to each other to
obtain the overall transfer matrix. After canceling the rows and columns
following the constraint conditions, its determinant is computed: If it van-
ishes, the frequency assumed is one of the natural frequencies. If this does
not occur, a new frequency is assumed and the computation is repeated.
By plotting the value of the determinant as a function of the frequency, it
is easy to obtain as many natural frequencies as needed. Operating along
these lines, no matrix of an order greater than that of the state vector
must be dealt with. When the appropriate rows and columns of the overall
transfer matrix have been canceled, the size of the determinant to be com-
puted is usually not greater than 2. This explains why the method could be
used without resorting to computers, even if long computations are usually
involved.
The other boundary conditions can be dealt with in a similar way: If an

end is clamped, both rotation and displacement vanish, whereas if it is free,
the shear force and the bending moment are equal to zero. Six out of the
many possible combinations of boundary conditions are reported here:

Right end Left end Equation

Free Free 31 42 41 32 = 0

Free Supported 32 43 42 33 = 0

Free Clamped 33 44 43 34 = 0

Supported Supported 12 43 42 13 = 0

Clamped Free 11 22 21 12 = 0

Clamped Clamped 13 24 23 14 = 0

As already stated, the value of the determinant of the matrix of the co-
e cients is plotted as a function of the frequency (or of the critical speed

), and the values of the frequency for which it vanishes are obtained by
searching the intersection of the curve with the - (or -) axis. Eigenfre-
quencies that are very close to each other may be di cult to find, as a very
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FIGURE 4.2. Rotor of a small turbojet engine. a): picture of the rotor; b) sketch
of the FEM model.

small pitch may be required in the computation of the determinant. This
disadvantage of transfer matrices methods is, however, not very serious.
It must be noted that the order in which the state variables are listed

in the state vector can be di erent from the one shown here. Before using
any formula from other books, it is necessary to verify the meaning of the
subscripts of the elements of the transfer matrix.

Example 4.1 Rotor of a very small turbojet.

Consider the rotor of a small turbojet engine [Figure 4.2(a)]. A simple lumped

parameters model is shown in Figure 4.2(b): It is made of 19 nodes or stations

connected with 18 Timoshenko beams elements, two concentrated masses and two

springs simulating the bearings.

The shaft between nodes 5 and 16 is modeled using beams with vanishing density

and other properties coinciding the actual properties of the material (steel). The

turbine wheel (between nodes 16 and 18) is modeled using two large beams, mostly

for obtaining a realistic drawing, whose very large diameter coupled with the same

Young’s modulus of the material results in a very sti part of the shaft. This

models reasonably well the high sti ness of this part if the rotor, caused by the

presence of the wheel on the shaft. The inertial properties are introduced with a

concentrated mass in node 17, whereas the density of the beam elements is set

to zero. The compressor wheel is modeled in the same way, using three massless

(density equal to zero) beams, with a Young’s modulus equal to that of aluminium,

plus a concentrated mass. The two bearings are modeled using two springs. The
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Field. # 1 2 3 4 5 6 7 8 9

[mm] 12 16 16 60 8 8 13 14.5 14.5
[mm] 6 9 13 10 6.5 3.5 18 17 17
[kg/m2] 7810 0 0 0 7810 7810 7810 7810 7810
[GN/m2] 210 72 72 72 210 210 210 210 210

Field. # 10 11 12 13 14 15 16 17 18

[mm] 14.5 13 8 8 20 10 60 60 10
[mm] 17 18 3.5 5.5 2 3 3.8 3.7 8.5
[kg/m2] 7810 7810 7810 7810 7810 7810 0 0 7810
[GN/m2] 210

TABLE 4.2. Characteristics of the fields ( : diameter; : length; density; :
Young’s modulus).

Mass # 1 2 Spring. # 1 2

Node # 4 17 Node # 6 13
[g] 72.1 65.8 [MN/m] 1 1
[kgm2] 2.026 ×10 5 2.099 ×10 5 [Nm/rad] 0 0
[kgm2] 1.219 ×10 5 1.074 ×10 5

TABLE 4.3. Characteristics of concentrated masses and springs ( : mass; :
polar moment of inertia; : diametral moment of inertia; : sti ness; bending
sti ness).

front nut is modeled with a further beam. The properties of the beams, masses,

and springs are listed in Tables 8.2 and 4.3.

The mass of each field is then computed and subdivided into two equal concen-

trated masses located at the end nodes of each field. The transfer matrices of the

fields and of the stations are computed by assuming various values of the speed

ranging from 0 to 16,000 rad/s, and then multiplied to obtain the global transfer

matrix. The value of the determinant, which vanishes at the critical speeds, is

then obtained. The result is reported in Figure 4.4. In the speed range considered,

the determinant vanishes at three values of the speed, reported in Table 4.4.

The field transfer matrices were computed by taking into account also the de-

formation caused by shear; for the node transfer matrices, the mass of each field

was lumped at its end and no moment of inertia of the fields was accounted for.

The only moments of inertia introduced into the computation were then those of

the turbine and compressor wheels, lumped in nodes 4 and 17.

2,500 2,718 14,920

TABLE 4.4. Values of the first three critical speeds (in rad/s), computed using
the Myklestadt-Prohl method.
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FIGURE 4.3.

FIGURE 4.4. Value or the determinant of the global transfer matrix (after intro-
ducing the end conditions) as a function of the speed. a): range between 0 and
16,000 rad/s; b): range between 0 and 3,000 rad/s.

If real coordinates are used instead, the state vector has a size of 8 and
the transfer matrices have 8 rows and columns. If the state vector is defined
as

s =
£ ¤

, (4.20)

the field transfer matrix of an axi-symmetrical beam is simply

T =

"
T

0

0

0 T
0

#
, (4.21)

where T
0

is the transfer matrix of the field referred to the complex coordi-
nates expressed by Equation (4.11). The two submatrices are equal because

instead of has been chosen as the degree of freedom for rotation in
the -plane.
The transfer matrix of the node has an altogether di erent structure,

because gyroscopic moments couple the two inflection planes. When the
rotor spinning at speed performs a harmonic oscillation in the two planes
with frequency , the moment at the left of a node is

=
1
+
¡

2 +
¢

1 1
. (4.22)
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2 337 2 500 2 723 2 726 7 650 12 950 14 920

TABLE 4.5. Values of the first seven critical speeds (in rad/s), computed using
the Myklestadt-Prohl method, using real coordinates. * Values at the crossing of
the = line, which are not actually true critical speeds.

A similar expression holds also for moment . The node transfer
matrix is then

T =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

2 + 0 1 0 0 0 0 0
0 2 + 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 2 + 0 1 0
0 0 0 0 2 + 0 1

.

(4.23)
For the computation of the critical speed, it is su cient to substitute
for both and . However, as the use of real coordinates does not

allow us to distinguish between forward and backward whirling, the inter-
sections of the Campbell diagram with both the = and the =
lines are found. The latter are solutions of the mathematical problem but
are not critical speeds in the actual sense and so must be discarded. The
boundary conditions are imposed in the same way seen for the complex
coordinates approach, the only di erence being that now the determinant
to be computed is that of a 4× 4 and not of a 2× 2 matrix.

Example 4.2 Repeat the computations of the critical speeds of the turbojet stud-

ied in Example 4.1 using the real coordinates approach.

The computation is repeated in the speed range from 0 to 16,000 rad/s, following

the same lines seen in the previous example. The results are reported in Figure

4.5. In the speed range considered, the determinant vanishes at seven values of

the speed, reported in Table 4.5. Three of them correspond with the intersections

of the Campbell diagram with the = line and are the true critical speeds

of the systems. The other four are the intersections with the = line, i.e.,

represent the conditions of backward synchronous whirling.

4.1.2 Damped systems

If the system is damped, the computation of the free vibration frequencies
and of the decay rates can proceed as already stated. Using a complex
coordinates approach and assuming that the solution is of the type

½ ¾
=

½
0

0

¾
, (4.24)
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FIGURE 4.5. Value of the determinant of the global transfer matrix (after intro-
ducing the end conditions) as a function of the speed. (a) Range between 0 and
16,000 rad/s; (b) range between 0 and 9,000 rad/s.

the transfer matrices of the nodes and of the fields can be complex because
of gyroscopic moments or to rotating damping. If, for instance, only the
damping of the supports is added, the field transfer matrices are the same
as above, whereas the transfer matrix of a node where a damped support
with damping coe cient for displacement and for rotations is present,
becomes

T =

1 0 0 0
0 1 0 0

2 + + 0 1 0
0 2 + + + 0 1

. (4.25)

In a similar way, it is possible to define the complex transfer matrices of
other elements, remembering that nonrotating damping must be multiplied
by = while rotating damping by ( ) = ).
There is no di culty, in particular if a software able to deal with complex

numbers is available, to multiply the various transfer matrices and then to
compute the determinant. The point is that the unknown frequency to be
computed is now complex; i.e., the unknowns are two and not a single one.
Several iterative schemes have been suggested, mostly based on Newton-

Raphson technique. A simple numerical procedure is the following.
Let

= det

·
12 13

42 43

¸
(4.26)

in the case of a simply supported rotor. In the other cases, use the relevant
determinant to define . The complex equation = 0, allowing us to
compute the complex frequency can be split in its real and imaginary
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parts ½
Re ( ) = 0 ,
Im ( ) = 0 .

(4.27)

A starting value (0) of is assumed: In the case of a lightly damped
system, it can be equal to times the value of the natural frequency of the
undamped system which has been previously computed. As is a function
of , it can be expanded in series about the value it takes for = (0)

½
Re ( ( ))
Im ( ( ))

¾
=

½
Re
¡ ¡

(0)
¢¢

Im
¡ ¡

(0)
¢¢
¾
+ S

³
(0)

´½ Re ( ) Re
¡
(0)
¢

Im ( ) Im
¡
(0)
¢
¾
,

(4.28)
where the Jacobian matrix is

S ( ) =

"
Re( )

Re( )

Re( )

Im( )

Im( )

Re( )

Im( )

Im( )

#
. (4.29)

The algorithm to compute the value of at the ( + 1)th iteration from
the known value at the th iteration is then
½
Re
¡
( +1)

¢
Im
¡
( +1)

¢
¾
=

½
Re
¡
( )
¢

Im
¡
( )
¢
¾

S
³

( )

´ 1
½
Re
¡ ¡

( )
¢¢

Im
¡ ¡

( )
¢¢
¾
.

(4.30)
At each iteration, the values of and of the Jacobian matrix S are then

needed. The first one can be computed by multiplying all of the transfer
matrices and then computing the determinant; the first row of S can be
obtained by increasing the real part of by a small quantity, computing
again and approximating the derivatives with the incremental ratios. A
further computation of with the imaginary part of incremented by a
small quantity is needed to compute the second row of S. The product of
all transfer matrices must then be computed three times at each iteration.
As usual with the Newton-Raphson technique, if the solutions are many,

there is no guarantee that the algorithm converges to the required one
and the basin of attraction of the solutions may be very complex, often
displaying a fractal geometry. Furthermore, the iteration can lock in a cycle,
failing to converge to a solution.
Alternatively, it is possible to write the characteristic polynomial by mul-

tiplying the transfer matrices leaving as an unknown, and then obtaining
the complex roots of the polynomial, which has complex coe cients.

Example 4.3 Compute the frequencies of free whirling and the corresponding

decay rates for the turbojet studied in Example 4.1 at a speed =10,000 rad/s,
when a viscous damper with a damping coe cient = 100 Ns/m is added at each

support.

The undamped system is studied first. The computation of the natural frequen-

cies is performed using the complex coordinates approach, assuming a range of
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FIGURE 4.6. Value or the determinant of the global transfer matrix (after in-
troducing the end conditions) at 10,000 rad/s as a function of the frequency. (a)
Range between -16,000 and 16,000 rad/s; (b) range between -5,000 and 5,000
rad/s.

Mode # 1 2 3 4 5 6 7

Undam. -13,973 -7,063 -2,716 -2,078 2,698 2,780 13,300
Damped -13,948 -7,057 -2,695 -2,068 2,683 2,755 13,300

-480 -59 -360 -226 -347 -353 -66

TABLE 4.6. Values of the frequencies of free whirling (in rad/s) in the range be-
tween 16 000 and 16 000 rad/s at a speed = 10 000 rad/s, for the undamped
system and a system with dampers with = 100 Ns/m at the support locations.
In the latter case also, the decay rate (in 1/s) is reported.

frequencies spanning from 16,000 to 16,000 rad/s. The plot reporting the values

of the determinant as a function of the frequency is reported in Figure 4.6. In

the frequency range considered, the determinant vanishes at seven values of the

frequency, four of which correspond to backward whirling modes. The results are

reported in Table 4.6, second row.

The complex frequencies of the damped system are then computed using the

Newton-Raphson method. The increment of the real and imaginary parts of for

the numerical computation of the Jacobian matrix is of 0.1 1/s. Each computation

was started using the natural frequency of the undamped system. The results are

reported in the last two rows of Table 4.6.

To investigate the convergency properties of the Newton-Raphson algorithm,

the computation was repeated with many di erent starting values of the real and

imaginary parts of (201 values of the real part and 641 for the imaginary part,

for a total of 128,841 computations). The map of the basins of attraction of

the solutions is reported in Figure 4.7. The di erent shades of gray identify the

basins of attraction, whereas the solutions are shown with the circles. The basins
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FIGURE 4.7. Basins of attraction of the solutions (shown by the circles) in the
-plane. The enlargement on the right shows a zone in which they have a marked

fractal behavior.

of attraction are fairly well behaved, but zones in which they are interwoven and

even zones in which they are fractal can be found, as shown by the enlargement

on the right. There are even small zones in which no convergence was obtained

after 100 iterations.

4.2 Lumped parameters sti ness method

The discretization is performed as seen for the Myklestadt-Prohl method,
with the important di erence that the method is not restricted to in-line
systems. If complex coordinates are used, the relevant equations are either
Equation (3.21) or (3.23), depending on whether damping is neglected. The
size of all matrices and vectors is equal to the number of complex degrees
of freedom, coinciding with the number of degrees of freedom related to
bending behavior in the - and -planes. Mass, sti ness, and damping
matrices M, K, and C are those related to the flexural behavior of the
nonrotating system in the -plane, and the choice of the relevant plane
depends on the way in which the complex coordinates were defined. This
is obvious because the equation of motion must be the same describing the
free behavior of the nonrotating system when the spin speed tends to
zero.
The sti ness matrix can be directly obtained using the FEM (see Section

4.3) or by inverting the compliance matrix, computed from the coe cients
of influence [17].
If the complex coordinates are ordered as follows:
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q =
£

1 1 2 2

¤
(4.31)

matrices M and G and vector f of the unbalances are, respectively,

M = diag
£

1 1 2 2

¤

G = diag
£
0

1
0

2
0

¤
(4.32)

f =
£

1 1
1 (

1 1
)

1
1 ( )

¤

The phases and are needed to take into account the possible di er-
ent orientations in space of the vectors expressing static and couple unbal-
ances and . Rotating damping matrix C can be built in the same way
as for general damping matrices, taking into account only the contribution
to the overall energy dissipation caused by rotating parts of the machine.
In the case of nonisotropic systems, the complex coordinates approach

can still be used, but the order of all matrices and vectors is at any rate
doubled (see Chapter 6). The same occurs when real coordinates are used;
also in this case, the number of degrees of freedom is doubled compared
with that resulting from the complex coordinates approach.

4.3 The finite element method

The finite element method is a general discretization method for the solu-
tion of partial derivative di erential equations, and consequently, it finds
its application in many other fields beyond rotordynamic analysis. The aim
of this section is not to provide a complete survey of the method, which
can be dealt with only in a specialized text, [34, 35, 36] but to describe its
main features to relate it to the other discretization techniques. The FEM
is based on the subdivision of the structure into finite elements, i.e., into
parts whose dimensions are not vanishingly small. Many di erent element
formulations have been developed, depending on their shape and charac-
teristics (beam elements, shell elements, plate elements, solid elements, and
many others); however, the elements commonly used in elementary rotor-
dynamics are just beam, mass, and spring elements.
Each element is essentially the model of a small deformable solid in which

a limited number, usually quite small, of degrees of freedom is substituted
for the infinity of degrees of freedom typical of continuous models. Inside
each element, the displacement ( ) of the point of coordinates
is approximated by the linear combination of a number of functions, the
shape functions, which are assumed arbitrarily
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u( ) = N( )q( ) (4.33)

where u is the displacement, written as a vector of order 3 in the three-
dimensional space (sometimes of higher order, if rotations are also consid-
ered), q is a vector in which the generalized coordinates of the element
are listed, andN is the matrix containing the shape functions. There are as
many rows in N as in u and as many columns as the number of degrees
of freedom.
Usually the degrees of freedom of the elements are the displacements at

given points, which are referred to as nodes. In this case, Equation (4.33)
is usually reduced to the simpler form

( )
( )
( )

=
N( ) 0 0

0 N( ) 0

0 0 N( )

q ( )
q ( )
q ( )

(4.34)
where the displacements in each direction are functions of the nodal dis-
placements in the same direction only. Matrix N, in this case, has only one
row and as many columns as the number of nodes of the element. Equation
(4.34) has been written for a three-dimensional element; a similar formula-
tion can also be easily obtained for one- or two-dimensional elements.
The shape functions are, as already stated, arbitrary. The freedom in the

choice of such functions is, however, limited, because they must satisfy sev-
eral conditions. A first requirement is a simple mathematical formulation,
which is needed to lead to developments that are not too complex. Usually
a set of polynomials in the space coordinates is assumed. To get results
that are closer to the exact solution of the di erential equations, which
constitute the continuous model discretized by the FEM, while reducing
the size of the elements, the shape functions must

• Be continuous and di erentiable up to the required order, which de-
pends on the type of element

• Be able to describe rigid-body motions of the element leading to van-
ishing elastic potential energy

• Lead to a constant strain field when the overall deformation of the
element dictates so

• Lead to a deflected shape of each element that matches the shape
of the neighboring elements. This means that when the nodes of two
neighboring elements displace in a compatible way, all of the interface
between the elements must displace in a compatible way.



158 4. Discrete multi-degrees-of-freedom rotors

Another condition, which is not always satisfied, is that the shape func-
tions must be isotropic, i.e., must not show particular geometrical prop-
erties that depend on the orientation of the reference frame. Sometimes
not all of these conditions are completely met; in particular, there are ele-
ments that fail to completely satisfy the matching of the deflected shapes
of neighboring elements.
The nodes are usually located at the vertices or on the sides of the

elements and are common to two or more of them, but points that are
internal to an element can also be used.
The equation of motion of each element can be written through Lagrange

equation, but there are plenty of alternative formulations, all leading to the
same final expressions.
The strains can be expressed as functions of the derivatives of the dis-

placements with respect to space coordinates. In general, it is possible to
write a relationship of the type

²( ) = B( )q( ) (4.35)

where ² is a column matrix in which the various elements of the strain
tensor are listed (it is commonly referred to as a strain vector , but it is such
only in the sense that it is a column matrix) and B is a matrix containing
appropriate derivatives of the shape functions with respect to the , ,
coordinates. B has as many rows as the number of components of the strain
vector and as many columns as the number of degrees of freedom of the
element.
If the element is free from initial stresses and strains and the behavior

of the material is linear, the stresses can be directly expressed from the
strains

( ) = E² = E( )B( )q( ) (4.36)

where E is the sti ness matrix of the material. It is a symmetric square
matrix whose elements can theoretically be functions of the space coordi-
nates but are usually constant within the element. The potential energy of
the element can be easily expressed as

U =
1

2

Z
² =

1

2
q

µZ
B EB

¶
q (4.37)

The integral in Equation (4.37) is the sti ness matrix of the element

K =

Z
B EB (4.38)

Because the shape functions do not depend on time, the generalized
velocities can be expressed as

u̇( ) = N( )q̇( ) (4.39)
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If all generalized coordinates are related to displacements, the kinetic
energy and the mass matrix of the element can be expressed as

T =
1

2
q̇

µZ
N N

¶
q̇

M =

Z
N N

(4.40)

When some generalized displacements are physically rotations, Equation
(4.40) must be changed to introduce moments of inertia, but its basic struc-
ture remains the same. In the case of a non-natural (gyroscopic) system,
the gyroscopic matrix can be obtained together with the mass matrix by
taking also the spin speed into account when computing the kinetic energy.
As already stated, the FEM is often used just to compute the sti ness

matrix to be used in the context of the lumped-parameters approach. In
this case, the consistent mass matrix (4.40) is not computed and a diagonal
matrix obtained by lumping the mass at the nodes is used. The advantage is
that of dealing with a diagonal mass matrix, whose inversion is far simpler
than that of the consistent mass matrix. The accuracy is, however, reduced
or, better, a greater number of elements is needed to reach the same ac-
curacy; as a consequence, the convenience between the two formulations
must be assessed in each case. Generally speaking, the consistent approach
leads to values of the natural frequencies that are higher than those com-
puted using the elastic continuum model, whereas those obtained using the
lumped-parameters approach are smaller.
If a force distribution p( ) acts on the body, the virtual work L

linked with the virtual displacement u =N q and the nodal force vector
f can be expressed in the form

L =

Z
q N p( )

f( ) =

Z
N p( )

(4.41)

In a similar way, it is possible to obtain the nodal force vectors corre-
sponding to surface force distributions or to concentrated forces acting on
any point of the element.
The equation of motion of the nonrotating element is then the usual one

for discrete undamped nonrotating systems

Mq̈+Kq = f( ) (4.42)

where vector f contains all forces acting on the element.

4.3.1 Timoshenko beam element for rotordynamic analysis

As already stated, rotors are usually modeled as beam-like structures. Sev-
eral beam formulations have been developed that di er from each other,
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FIGURE 4.8. Beam element: geometrical definitions and reference frame.

owing to the number of nodes and degrees of freedom per node and to
the theoretical formulation: Some of them are Euler-Bernoulli element, i.e.,
do not take into account shear deformation, whereas others include shear
deformation following the simplified approach introduced by Timoshenko
(Timoshenko beam elements). The element that will be studied here is of-
ten referred to as a simple Timoshenko beam [37, 38]. It has two nodes at
the ends of the beam and six degrees of freedom per node, and it consists of
a prismatic homogeneous beam with uncoupled axial, torsional, and flexu-
ral behavior. The relevant geometrical definitions and the reference frame
used for the study are shown in Figure 4.8.
Each cross section has six degrees of freedom, three displacements, and

three rotations, and the total number of degrees of freedom of the ele-
ment is 12. The vector of the nodal displacements, i.e., of the generalized
coordinates of the element, is

q = [
1 1 1 1 1 1 2 2 2 2 2 2

] (4.43)

As the beam has the properties needed to perform a complete uncoupling
among axial, torsional, and flexural behavior in each of the coordinate
planes, it is expedient to subdivide vector q into four smaller vectors

q = [
1 2

] , q 1 = [ 1 1 2 2
] ,

q = [
1 2

] , q 2 = [ 1 1 2 2
] .

(4.44)

The flexural behavior of the beam element can thus be described using
the complex coordinates vector

q = [
1
+

1 1 1 2
+

2 2 2
] . (4.45)

A way of including shear deformation in the analysis without incurring
in the so-called locking problem, a severe overestimate of the sti ness of
the element, is to use the following shape functions:
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11 =
1 + (1 ) 3 2 + 2 3

1 +
12 =

1 + 1

2
(1 ) 2 + 2

1 +

13 =
+ 3 2 2

1 +
14 =

1

2
(1 ) + 2

1 +

21 = 6
1

(1 + )
22 =

1 + (1 ) 4 + 3 2

1 +

23 = 6
1

(1 + )
24 =

2 + 3 2

1 +
(4.46)

where = is a nondimensional coordinate,

=
12

2

and is the shear factor. When the slenderness of the beam increases,
the value of decreases, tending to zero for a Euler-Bernoulli beam. In
the present chapter the beam is assumed to be axially symmetrical, i.e.,
= , and and related to - and -planes are equal.
Equation (4.34) can thus be written in the form

½ ¾
=

·
11 12 13 14

21 22 23 24

¸ 1

1

2

2

,

½ ¾
=

·
11 12 13 14

21 22 23 24

¸ 1

1

2

2

.

(4.47)

Note that Equation (4.47) refers to the behavior in -plane, but holds
also for complex coordinates, because the generalized coordinate for rota-
tions about 0- axis is instead of . In this way, the matrices referred
to bending in -plane are the same as those referred to -plane (if the
system is isotropic). Some of the generalized coordinates are related to
rotations; as a consequence, Equations (4.38) and (4.40) cannot be used
directly to express the sti ness and mass matrices. The potential energy
obtained can be computed by adding the contributions caused by bending
and shear deformations

U =
1

2

"µ ¶2
+

µ ¶2#
+
1

2

¡
2 + 2

¢
. (4.48)
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The shear deformation is linked with the displacements by the rela-
tionships

= = . (4.49)

By using the symbols N1 and N2 to express the first and second rows of
matrix N in Equation (4.47) and q and q for the vectors of the general-
ized coordinates in - and -planes, remembering Equations (4.47) and
integrating over the whole beam, the expression for the potential energy of
the element is

U =
2

Z
1

0

q N
2

N2q +
2

Z
1

0

q N
2

N2q +

+
6

Z
1

0

q N
3
N3q +

6
Z
1

0

q N
3
N3q , (4.50)

whereN3 =N2 N1. By introducing the sti ness matrix, the expression
of the potential energy reduces to

U =
1

2
q Kq +

1

2
q Kq . (4.51)

As already stated, a ( ) sign is present before in vector q in Equation
(4.50), as shown in Equation (4.47). In this way, the two sti ness matrices
in Equation (4.51) are identical, which is essential for introducing complex
coordinates. By introducing the expressions of the shape functions into
that of the potential energy and performing the integrations, the bending
sti ness matrix is obtained

K =
3(1 + )

12 6 12 6
(4 + ) 2 6 (2 ) 2

12 6
symm (4 + ) 2

(4.52)

The length of the beam can be considered as a rigid body, and its
kinetic energy can be computed using Equations (3.10) and (3.13)

T =
1

2

¡
˙ 2 + ˙ 2

¢
+
1

2

h
( ˙
2

+ ˙ 2) + ( 2 + 2 ˙ )
i
. (4.53)

In the case of an axi-symmetrical cross section, = 2 . By introducing
the shape functions into Equation (4.53), it yields

T = 1

2

¡
q̇ N

1
N1q̇ + q̇ N

1
N1q̇

¢
+ 1

2

¡
q̇ N

2
N2q̇ +

+q̇ N
2
N2q̇

¢
+ ( 2 2 q̇ N

2
N2q ) .

(4.54)



4.3 The finite element method 163

The kinetic energy of the element is then

T =
1

2

Z
1

0

¡
q̇ N

1
N1q̇ + q̇ N
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N1q̇
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+
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(4.55)
i.e.,

T = 1

2
q̇ M q̇ + 1

2
q̇ M q̇ + 1

2
q̇ M q̇ + 1

2
q̇ M q̇ +

+ 2 2 q̇ M q .
(4.56)

Matrices M and M are the mass matrices linked with translational
and rotational inertia

M =
420(1 + )2

1 2 3 4

2
5 4

2
6

1 2

symm 2
5

, (4.57)

M =
30 (1 + )2

7 8 7 8

2
9 8

2
10

7 8

symm 2
9

, (4.58)

where

1 = 156 + 294 + 140 2
2 = 22 + 38 5 + 17 5 2

3 = 54 + 126 + 70 2
4 = 13 + 31 5 + 17 5 2

5 = 4+ 7 + 3 5 2
6 = 3 + 7 + 3 5 2

7 = 36 8 = 3 15

9 = 4+ 5 + 10 2
10 = 1 + 5 5 2

The consistent mass and gyroscopic matrices of the element are thus

M =M +M G =2M . (4.59)

A linear distribution of static unbalance can be defined by assuming that
the centers of mass of the various cross sections lie on a straight line con-
necting the eccentricities

1
and

1
in the directions of and axes at

node 1 and
2
and

2
at node 2. A couple unbalance can be defined by

stating an angle (or, better, angles and to account for the phas-
ing of the unbalance) at nodes 1 and 2. The consistent unbalance vector
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to be introduced into the equation of motion of the element can thus be
computed through Equation (4.41)

f = a1

½
1
+

1

2
+

2

¾
+ a2

½
1 1

2 2

¾
(4.60)

where

a1 =
120(1 )

42 + 40 18 + 20
(6 + 5 ) (4 + 5 )
18 + 20 42 + 40
(4 + 5 ) (6 + 5 )

a2 =
12(1 )

6 6
(1 + 4 ) ( 1 + 2 )
6 6

( 1 + 2 ) (1 + 4 )

.

If the beam element is loaded by an axial force, it behaves as if its sti ness
was increased (tensile axial forces) or decreased (compressive axial forces).
Within the frame of the FEM, this e ect can be easily accounted for by
using the geometric matrix.
Consider the flexural vibration in the -plane of a Timoshenko beam

element, on which a constant and known axial force is acting. If force
is not known but results from the bending loads acting on the element,

an iterative procedure must be followed to solve the resulting nonlinear
problem: The unknown axial force caused by to the loads must be
computed first, and then the same force can be introduced in a further
dynamic computation as .
Taking into account the lateral inflection of the beam, the axial strain in

correspondence of the neutral axis of the beam, which is usually expressed
as = , becomes

= +
1

2

µ ¶2
(4.61)

If the small term linked with lateral deflection is also considered, the
elastic potential energy caused by the axial strain becomes

U =
1

2

Z

0

2 =
1

2

Z

0

"
+
1

2

µ ¶2#2

1

2

Z

0

µ ¶2
+
1

2

Z

0

µ ¶2
(4.62)

The last expression has been obtained by neglecting the term in ( )4.
The first term of the potential energy has already been taken into account
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in the computation of the axial sti ness matrix of the element. The second
one causes an increase of the potential energy, which can be considered
by adding a suitable matrix, the so-called geometric sti ness matrix, or
simply geometric matrix, to the sti ness matrix of the element for lateral
deformations. Assuming that the axial force is constant, the increment
of potential energy can be written in terms of matrix K

1
for the flexural

behavior in the -plane in the form

U =
1

2

Z

0

µ ¶2
=
1

2
q K

1
q (4.63)

where

K
1
=
30 (1 + )2

1 2 1 2

2
3 2

2
4

1 2

symm 2
3

,

1 = 36 + 60 + 3 2
2 = 3

3 = 4 + 5 + 2 5 2
4 = 1 + 5 + 2 5 2

The geometric matrix can thus be added to the sti ness matrix, being
immaterial whether the complex coordinates or the real coordinates ap-
proach is used. Note that if the beam is axially symmetrical, the values
of parameter in the two inflection planes coincide and the geometric
matrices in the two planes are equal (if is used instead of as gen-
eralized coordinate; otherwise, the signs of some elements of the matrices
are di erent).

4.3.2 Mass element

Consider a concentrated mass or, better, a rigid body located at the th
node. The mass and the gyroscopic matrices are the same seen for the rotor
with four degrees of freedom and introduced into Equation (3.21). The size
of the relevant matrices is 2×2 if complex coordinates are used or 4×4 when
using real coordinates.

4.3.3 Spring element

Consider a spring element, i.e., an element that introduces a concentrated
sti ness between two nodes, say node 1 and node 2, of the structure. When
the nodes have a two complex degrees of freedom, the generalized coordi-
nates of the element are

q = [
1
+

1 1 1 2
+

2 2 2
]

and the sti ness matrix is
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K =

0 0
0 0

0 0
0 0

(4.64)

where and are the sti ness for displacements and rotations, respectively.
When using real coordinates, the sti ness matrix has eight rows and

columns. Spring elements are very useful in rotordynamics as they can be
used to model joints between shafts or linearized bearings located between
a rotor and a stator, which are both modeled. If the stator is not included
in the model, a similar element with a single node can be used to model a
compliant constraint of the shaft.

4.3.4 Assembling the structure

The equations of motion of the element are written with reference to a
local or element reference frame that has an orientation determined by the
features of the element. In a beam element, for example, the -axis usually
coincides with the axis of the beam, whereas - and -axes are principal
axes of inertia of the cross section. In rotordynamics, usually the various
local reference frames of the elements have the same -axis, which coincides
with the axis of rotation. If the rotor is axially symmetrical the position
of - and -axes in -plane is immaterial and it is possible to assume a
global reference frame for the whole system that coincides with the reference
frames of all elements.
If this is not the case, the orientation in space of any local frame can

be expressed, with reference to the orientation of the global frame, by a
suitable rotation matrix

R = (4.65)

where , , and are the direction cosines of the axes of the former in
the global frame. The expressions q and q of the displacement vector
q of the th node in the local and global reference frames are linked by the
usual coordinate transformation

q = Rq (4.66)

Remark 4.3 The mentioned coordinate transformation holds only if the

generalized coordinates are defined in a way consistent with the reference

frames. No three-dimensional rotation can be performed by premultiplying

by the rotation matrix if the complex coordinates defined above are used

or if the generalized coordinate for rotation about -axis is . Complex
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coordinates are suited only for systems in which all of the elements share

the common -axis and rotations are only in the -plane.

The generalized coordinates in the displacement vector of the element
can be transformed from the local to the global reference frame using a
similar relationship in which an expanded rotation matrix R0 is used to
deal with all of the relevant generalized coordinates. It is essentially made
by a number of matrices of the type of Equation (4.65) suitably assembled
together. In the case of a beam element where the generalized coordinates
are ordered as in Equation (4.43), the expanded rotation matrix has 12
rows and columns

R0 =

R 0 0 0

0 R 0 0

0 0 R 0

0 0 0 R

(4.67)

The assumption of small displacements and rotations allows considera-
tion of the rotations about the axes as the components of a vector, which
can be rotated in the same way as displacements.
Because the inverse of a rotation matrix is coincident with its transpose,

the expressions of the mass, gyroscopic and sti ness matrices of the element
rotated from the local to the global frame are

M = R0 M R0 G = R0 G R0 , and K = R0 K R0 .

Similarly, the nodal load vector can be rotated using the relationship

f = R0 f

Once the mass, gyroscopic, and sti ness matrices of the various elements,
have been computed with reference to the global frame, it is possible to
easily obtain the matrices of the whole structure. The generalized coor-
dinates of the structure can be ordered in a single vector q . The matrices
of the various elements can be rewritten in the form of matrices of order
× , containing all elements equal to zero except those that are in the rows
and columns corresponding to the generalized coordinates of the relevant
element. Because the kinetic and potential energies of the structure can be
obtained simply by adding the energies of the various elements, it follows
that

M =
X

M G =
X

G K =
X

K (4.68)

In practice, the various matrices of size × for the elements are never
written: Each term of the matrices of all elements is just added into the
global mass and sti ness matrices in the correct place. If the generalized
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coordinates are taken into a suitable order, the assembled matrices have a
band structure; many general-purpose computer codes have a routine that
reorders the coordinates in such a way that the bandwidth is the smallest
possible.
The nodal force vector can be assembled in a similar way

f =
X

f

The forces exchanged between the elements at the nodes cancel each
other in this assembling procedure, and the force vectors that must be
inserted into the global equation of motion of the structure are only those
related to the external forces.

4.3.5 Constraining the structure

One of the advantages of the FEM is the ease with which the constraints
can be defined. If the th degree of freedom is rigidly constrained, the
corresponding generalized displacement vanishes, and as a consequence, the
th column of the sti ness and mass matrices can be neglected, because they
multiply a displacement and an acceleration, respectively, that are equal to
zero. As one of the generalized displacements is known, one of the equations
of motion can be neglected when solving for the deformed configuration of
the system. The th equation can thus be separated from the rest of the set
of equations, which amounts to canceling the th row of all matrices and
of the force vector. Note that the th equation could, in this case, be used
after all displacements have been computed to obtain the value of the th
generalized nodal force, which, in this case, is the unknown reaction of the
constraint.
To rigidly constrain a degree of freedom, it is su cient to cancel the

corresponding row and column in all matrices and vectors. This approach
allows simplification of the formulation of the problem, which is particularly
useful in dynamic problems, but this simplification is often marginal, as
the number of constrained degrees of freedom is very small, compared with
the total number of degrees of freedom. To avoid restructuring the whole
model and rewriting all the matrices, rigid constraints can be transformed
into very sti elastic constraints.
If the th degree of freedom is constrained through a linear spring with

sti ness , the potential energy of the structure is increased by the poten-
tial energy of the spring

U =
1

2
2 (4.69)

To take the presence of the constraint into account, it is su cient to
add the sti ness to the element in the th row and th column (i.e.,
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the th element on the main diagonal) of the global sti ness matrix. This
procedure is very simple, which explains why a very sti elastic constraint
is often added instead of canceling a degree of freedom in the case of rigid
constraints. An additional advantage is that the reaction of the constraint
can be obtained simply by multiplying the very high generalized sti ness
by the corresponding very small generalized displacement .

4.3.6 Damping matrices

It is possible to take into account the damping of the structure in a way
that closely follows what has been said for the sti ness. If elements that can
be modeled as viscous dampers are introduced into the structure between
two nodes or between a node and the ground, a viscous damping matrix
can be obtained using the same procedures used for the sti ness matrix
of spring elements or elastic constraints. Actually, the relevant equations
are equal, once the damping coe cient is substituted for the sti ness and
the velocity for the displacements. If the damping of some of the elements
can be modeled as hysteretic damping, within the limits of validity of the
complex sti ness model, an imaginary part of the element sti ness matrix
can be obtained by simply multiplying the real part by the loss factor.
Note that if there is a geometric sti ness matrix, the imaginary part of the
sti ness matrix must be computed before adding the geometric matrix to
the sti ness matrix.
Viscous or structural damping matrices are then assembled following the

same rules seen for mass and sti ness matrices. The real and imaginary
parts of the sti ness matrices must be assembled separately, because, when
the loss factor is not constant along the structure, they are not proportional
to each other.
In rotordynamics, the damping matrices of rotating elements must be

assembled separately from those of the nonrotating ones, and the result
is that a rotating damping matrix and a nonrotating damping matrix are
obtained. Their role is that already seen in the case of the Je cott rotor
and of the rotor with four degrees of freedom.

4.3.7 Transfer matrices methods and the FEM

Although the FEM and the transfer matrices methods work in di erent
ways, they are essentially equivalent. Consider for instance the relationship
between the forces and the displacements through the sti ness matrix in
-plane for a beam element [equation (4.52)] and partition it as

½
1

1

¾

½
2

2

¾ =

·
K11 K12

K
12

K22

¸
½

1

1

¾

½
2

2

¾ . (4.70)
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The first two equations can be solved as
½

2

2

¾
= K 1

12

½
1

1

¾
K 1

12
K11

½
1

1

¾
. (4.71)

Equation (4.71), together with the last two Equation (4.70), yield

½
2

2

¾

½
2

2

¾ =

·
K 1

12
K11 K 1

12

K
12

K22K
1

12
K11 K22K

1

12

¸
½

1

1

¾

½
1

1

¾ .

(4.72)
Equation (4.72) is the transfer matrix formulation for a field having the

characteristics of a Timoshenko beam element and is identical to Equation
(4.11), but for the signs of the last two elements of the state vector at node
1. This is because of the di erent sign conventions used for generalized
forces in the two methods. By introducing the values of the elements of
the sti ness matrix obtained from Equation (4.52), the transfer matrix of
Equation (4.11) can be readily found.
The two methods are then equivalent, but for the fact that the Myklestadt-

Prohl method is based on the lumped approach, and the FEM is based on
the consistent approach, and each one of them can be obtained starting
from the other. If lumped mass matrices are used in the context of the
FEM, the same results that can be obtained from the Myklestadt-Prohl
method are reached.

4.4 Real versus complex coordinates

The equations of motion of axi-symmetrical rotors have been obtained
in the preceding sections with reference to a set of complex coordinates
of the type defined by Equation (3.19). The general equation for an axi-
symmetrical rotor is then

Mq̈+(C +C G)q̇+(K+K 2 C )q = 2f +f ( ) (4.73)

where the term K 2 has been explicitly added to account for centrifugal
sti ening, which can be present when also the compliance of disks and
blades is considered. f and f ( ) are, respectively, the force caused by
unbalance and a generic force nonrotating force vector, function of time.
The use of complex coordinates is very expedient in the case of axi-

symmetrical systems, particularly if damping is neglected, because it allows
the study of the system using a model whose size is just half the size
of the same problem expressed in real coordinates. Note that even if the
coordinates are complex, all relevant matrices are real and the computation
of the critical speeds, the undamped Campbell diagram, and the undamped
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unbalance response does not involve actual working with complex numbers,
as it will be shown in detail in the following sections.
Another advantage of the use of complex coordinates is that of obtaining

the response in terms of rotating vectors that rotate in the physical space,
directly giving complete information about the orbits of the various nodes
and the direction of the whirling motions. Using real coordinates, however,
the rotating vectors are defined with reference to the Argand plane and
the whirling motion is obtained as the compositions of harmonic vibrations
in the directions of - and -axes. The main limitation of the complex
coordinate approach is that it deals with di culty with elliptical orbits,
as those occurring in the case of non-axi-symmetrical machines, as will be
seen in Chapter 6.
Equation (4.73) can be rewritten by separating the real part of each

equation from the imaginary part, obtaining

·
M 0

0 M

¸
ẍ+

µ ·
0 G

G 0

¸
+

·
C 0

0 C

¸¶
ẋ+ (4.74)

µ·
K+K 2 0

0 K+K 2

¸
+

·
0 C

C 0

¸¶
x =

= 2 [f cos( ) + f sin( )] + f ( )

where

x = [Re(q) Im(q) ] , C = C +C ,

and

f = [Re(f ) Im(f ) ] , f = [ Im(f ) Re(f ) ]

are the cosine and sine components of the unbalance. Vector f ( ) is similar
to the vector with the same name in the complex coordinates approach,
but it contains the - and -components of the forces instead being based
on the complex representation.
Note that in the case of complex coordinates, all matrices were symmetri-

cal, but the use of real coordinates results in skew-symmetrical gyroscopic
and rotating damping (circulatory) matrices. The real coordinates x de-
fined earlier di er from the standard real coordinates used for the study
of nonrotating systems for what the sign of the rotational degrees of free-
dom related to rotation about the -axis is concerned. In many cases, a
generalized form of Equation (4.74) is used, in which the sign conventions
for rotational coordinates are the standard ones used in the FEM. The
equation of motion of the damped system is then

·
M 0

0 M

¸
ẍ +

µ ·
0 G

G 0

¸
+

·
C 0

0 C

¸¶
ẋ +
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+

µ· ¡
K+K 2

¢
0

0
¡
K+K 2

¢
¸
+

·
0 C

C 0

¸¶
x =

(4.75)

= 2

½
f cos( ) f sin( )
f sin( ) + f cos( )

¾

where matrices with subscript are the same as for complex coordinates,
and matrices with subscript are similar, except for the sign of elements
with subscripts made by two numbers whose sum is an odd number. Ma-
trices with subscripts and have signs that di er from those of the
corresponding matrices in Equation (4.73) and are such that the global gy-
roscopic and rotating damping matrices are skew-symmetrical. Vector x
is a vector containing the generalized coordinates and is of the type of the
vector of the generalized coordinates of Equation (4.74).
The order of the degrees of freedom shown in Equations (4.74) and (4.75),

with all coordinates related to the -plane listed one after the other, fol-
lowed by those related to the other plane, is just an indication because it
would lead to matrices with a very large bandwidth. Actually, the degrees
of freedom are mixed at the element level and the structure of the matrices
shown holds for the matrices of the elements and not for those related to
the whole structure.
In the following section, the real coordinates equation will be written in

the form

M0ẍ+ (C0 + G0) ẋ+
¡
K0+K0 2 + C0

¢
x = (4.76)

= 2 [f cos( ) + f sin( )] + f ( )

4.5 Fixed versus rotating coordinates

Although the flexural behavior of rotating axi-symmetrical systems can be
studied using an inertial reference frame, as seen in the preceding sections,
it is possible to use a set of coordinates based on the rotating frame O

. A set of complex coordinates r, related to the coordinates q, can
thus be obtained by the relationship

r = q , (4.77)

and the equation of motion (4.73) transforms into the following equation:

Mr̈+

·
C +C + (2M G)

¸
ṙ+

+

·
K 2(M G K ) + C

¸
r = 2f

(4.78)
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The same considerations seen for Equation (2.169), obtained for the Jef-
fcott model, also hold for Equation (4.78). Also in the case of rotating
coordinates, it is possible to choose between the complex coordinates ap-
proach seen earlier and an alternative formulation of the problem based on
real coordinates. The relevant equation can be easily obtained by separating
the real and imaginary parts of Equation (4.78). The gyroscopic, Coriolis,
and nonrotating damping terms give way to skew-symmetrical matrices.
The use of rotating coordinates, which is not very convenient in the case of
axi-symmetrical systems, becomes advisable when dealing with machines
including a nonisotropic rotor (see Chapter 6).

4.6 Complex state-space equations

All preceding equations can be written with reference to the state space,
yielding the usual state-space equation

ż = Az+Bu (4.79)

If complex coordinates are used, the state vector referred to an inertial
reference frame is

z =

½
q̇

q

¾
(4.80)

The corresponding state matrix and product Bu caused by unbalance
are, respectively,

A =
M 1

µ
C +C G

¶
M 1

µ
K+ 2K C

¶

I 0

(4.81)

Bu = 2

½
f

0

¾
(4.82)

Note that the dynamic matrix is complex, because of the presence of the
gyroscopic and rotating damping (circulatory) terms, and as a consequence,
its eigenvalues are nonconjugated. When the roots locus, with the spin
speed used as a parameter, is plotted, it is not symmetrical with respect
to the real axis. This was also the case for the Je cott rotor, as shown in
Figure 2.12, but in the current case, it also occurs for the undamped system
owing to the gyroscopic term.
State-space equations can also be written with reference to real coordi-

nates, in which case a real dynamic matrix is always obtained, or rotating
coordinates.
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4.7 Static solution

In this section, the term static solution will be referred to as the compu-
tation of the deformed shape and of the stress and strain fields of a rotor
under the e ects of constant forces. The relevant equation yielding the
static displacement is easily obtained by adding a vector of static or nonro-
tating forces f to the right-hand side of Equation (4.73) and neglecting all
terms containing the time derivatives of the generalized coordinates. There
is no di culty in introducing the hysteretic damping matrix K00, i.e., the
imaginary part of the complex sti ness matrix related to the rotating part
of the system into the equation of motion. Following the same procedures
as in Section 2.4.5, and remembering that in the case of a static solution
the whirl speed vanishes, the relevant equation, which takes into account
also centrifugal sti ening, is

µ
K+ 2K C K00

¶
q = f (4.83)

Using the real coordinates approach and neglecting hysteretic damping,
Equation (4.83) becomes

¡
K0+K0 2 + C0

¢
x = f , (4.84)

where matrix C0 is skew symmetric. If hysteretic damping also was in-
cluded, matrix (K00)

0
would have been skew symmetric.

Neglecting centrifugal sti ening, from Equation (4.83), it is clear that, in
the case of an undamped rotor, the static solution of the rotating system
coincides with that of the corresponding nonrotating structure, but when
rotating damping is present, the deflected shape is influenced by the spin
speed. This e ect is easily understood if the force vector is assumed to
be real, i.e., if all forces and moments act in the same plane, e.g., in the
-plane, as in the case of a rotor loaded by self-weight. The presence of

imaginary terms in the matrix of the coe cients of Equation (4.83) results
in a complex displacement vector q. The presence of damping then causes
a lateral deviation of the deformed shape of the rotor from the plane in
which all loads are acting. In the case of viscous damping, this deviation
depends on the spin speed. Its measurement in a rotating-bending fatigue
test has been suggested several times and was actually used to measure the
internal damping of materials.
Using the real coordinates approach, the coupling between the two in-

flection planes is caused by the skew-symmetric rotating damping matrix.

4.8 Critical-speed computation

Critical speeds are usually computed with reference to the undamped sys-
tem. They can be easily computed from the homogeneous equation of mo-
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tion (4.73) in which all damping matrices have been neglected, yielding free
whirling. By assuming a solution of the type q = q

0
for the free circular

whirling, the following algebraic homogeneous equation is obtained:

µ
2(M G K ) +K

¶
q0 = 0 (4.85)

The critical speeds can thus be computed by solving the eigenproblem

det

µ
2(M G K ) +K

¶
= 0 (4.86)

Note that the size of the eigenproblem, in which only real quantities are
involved, is equal to the number of complex degrees of freedom. Math-
ematically, the problem is the same as for the computations of the nat-
ural frequencies of an undamped vibrating system whose mass matrix is
M G K . The only di erence is that in the current case, the mass
matrix can be nonpositive definite. The eigenvectors in this case describe
the shapes the system takes at the critical speeds. All of their properties,
typical of vibrating systems, and in particular their orthogonality with re-
spect to the mass and sti ness matrices, still hold, because they are related
only to the symmetry of the relevant matrices. It is also possible to use
the eigenvectors, which can be obtained from Equation (4.86) to perform
a modal analysis and to obtain a diagonal sti ness and mass matrix, as
described in Section 3.6 for systems with two complex degrees of freedom.
However, if matrixM G K is nonpositive definite, some of the modal
masses are negative and the corresponding eigenvalues are imaginary.

Remark 4.4 The e ects of gyroscopic moments and centrifugal sti ening

on the critical speeds are similar: Both increase their values, and if they

are high enough, they make some of them disappear.

Remark 4.5 As rotating damping is destabilizing only in the supercritical

field, they reduce the destabilizing e ect of rotating damping or, better,

increase the speed at which instability ranges eventually start. As it will

be shown in Chapter 13, this e ect is particularly strong in the case of

bladed discs, and it prevents the damping of blades from causing instability.

There are cases where forcing functions whose frequency is a multiple of
the spin speed are present: As will be seen later, very often the excitation
provided by constant forces on slightly nonsymmetrical rotors is accounted
for by intersecting the Campbell diagram with the straight line = 2 ,
whereas the excitation caused by lubricated journal bearings is studied
using the straight line = 2. The secondary critical speeds occurring at
the intersection of the generic straight line = can be computed from
the eigenproblem
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µ
2( 2M G K ) +K

¶
q0 = 0 (4.87)

Also, in this case, the use of complex coordinates allows us to perform
the modal analysis of the system using mode shapes that are - and -
orthogonal.
If real coordinates are used, the equation yielding the critical speeds is

det

µ
2(M0 G0 K0 ) +K0

¶
= 0 , (4.88)

or, for secondary critical speeds

det

µ
2( 2M0 G0 K0 ) +K0

¶
= 0 (4.89)

Remark 4.6 Equations (4.86) and (4.88) are not exactly equivalent. The

first one states the conditions for resonant forward synchronous whirling,

whereas the second for resonant synchronous whirling, being immaterial

whether it is forward or backward. Together with the true critical speeds,

also resonant conditions for backward whirling are obtained.

4.9 Computation of the unbalance response

The response to a generic unbalance distribution can be easily obtained by
computing a particular integral of Equation (4.73), in the form q = q0 .
The algebraic equation yielding the response of the damped system is

µ
2(M G K ) + C +K

¶
q0 =

2f (4.90)

In the case of undamped systems, Equation (4.90) has no solution when
the spin speed coincides with a critical speed and the matrix of the coef-
ficients is singular. If vectors and angles are not all contained in the
same plane, i.e., phases and are not all equal, vector f is complex
and the solution q is also complex: Physically, this means that the deflected
shape is a skew line. However, the matrix of the coe cients of Equation
(4.90) remains real, if damping is not accounted for, and no actual working
with complex numbers is needed: The real and imaginary parts of the so-
lution can be obtained separately, solving two sets of real linear equations
with the same matrix of the coe cients.
The computation of the response to an arbitrary unbalance distribution

is formally similar to the computation of the response of a vibrating sys-
tem excited by a harmonic forcing function, the di erences being that the
rotational speed is used in the equation instead of the frequency , the
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excitation vector 2f is proportional to 2, and the mass matrix of the
system is M G K , which may be nonpositive definite. Some of its
eigenvalues may be negative, in terms of 2, and then some of the critical
speed may be imaginary, as was seen in detail in Sections 3.3 and 3.6. The
response in terms of displacement is more similar to an inertance than to
a dynamic compliance.
When damping is not neglected, the response to unbalance is very similar

to the response to harmonic excitation of a damped vibrating system, but
only nonrotating damping enters the equation of motion. The matrix of
the coe cients never becomes singular, because it has no real eigenvalues.
It is, however, complex, and, if software for use with complex numbers is
not available, the solution of Equation (4.90) involves the solution of a set
of equations whose size must be doubled to work with real numbers: The
number of equations is then equal to the number of real coordinates, and
there is little computational advantage to using complex coordinates in this
case.
When using real coordinates, the solution for the unbalance response can

be assumed to be

x = x0 cos( ) + x0 sin( ) (4.91)

By introducing this solution into Equation (4.76) and separating the sine
and cosine terms, the following algebraic equation yielding the response is
obtained:

·
K0+ C0 2 (M0 K0 ) (C0 + G0)

(C0 + G0) K0 + C0 2 (M0 K0 )

¸½
x0
x0

¾
=

= 2

½
f

f

¾
.

(4.92)
The response to unbalance of an axi-symmetrical system could also be

studied using rotating coordinates. In this case, the response is nothing
other than the static response to forces that are constant in both modu-
lus and direction, and the critical speeds are a sort of elastic instability
condition, in which the sti ness matrix of the system becomes singular.

4.10 Plotting the Campbell diagram and the roots
locus

To plot the Campbell diagram, it is necessary to compute the whirl fre-
quencies of the system as functions of the spin speed. If the stability of the
system has to be studied, damping must also be taken into account. This
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does not make the problem conceptually more complicated, but it makes
actual computation much longer. In the case of viscous damping, the basic
equation is the homogeneous equation associated with Equation (4.73)

Mq̈+ (C +C G)q̇+ (K+ 2K C )q = 0 (4.93)

The roots locus is directly obtained by computing the eigenvalues of
the dynamic matrix (4.81); to take into account structural damping, it
is su cient to add the expression ± K00 ± K00, where the double signs
have the same meaning seen in Equation (2.116) and in Figure 2.20, to the
sti ness matrix K
However, the Campbell diagram is often computed using a solution of

the type q = q0 instead of q = q0 . In this case, it is possible to find
the complex whirl frequencies as eigenvalues of the matrix

·
M 1( G+ C + C ) M 1(K+ 2K ± K00 ± K00 C )

I 0

¸
(4.94)

Operating in this way, a real eigenproblem must be solved in the case of
undamped systems.
If the Campbell diagram has to be plotted by scanning the -plane

using values of the spin speed , an eigenproblem of order 2 , where
is the number of complex degrees of freedom, must be solved times. The
computation is then very time-consuming, and large-scale condensation
may be necessary to keep computer time within reasonable limits.
In the case of damped systems, the solution of a complex eigenproblem

requires a further doubling of the size of the relevant matrices, if software for
use with complex algebra is not available. Moreover, if structural damping
is present, several eigenproblems with the di erent signs included in Equa-
tion (4.94) must be solved for each value of the spin speed. A maximum of
four eigenproblems must be solved, in the case where all forms of damping
are present. After obtaining the solutions, there is no di culty in checking
where the real part of the various solutions is located in the Campbell dia-
gram and then in choosing which eigenvalues are to be discarded, following
the scheme of Figure 2.20. The computation of the damped Campbell di-
agram is then much heavier than that of the undamped diagram. In most
cases, however, the presence of damping has little e ect on the values of the
whirl frequencies, while deeply a ecting the decay rate. A good strategy is
that of first studying the undamped system to locate the critical speeds and
the general pattern of the whirl frequencies and then computing the com-
plex whirl frequencies at some selected values of the speed, mainly in the
supercritical range, where the occurrence of instability can be suspected.
In the case of undamped systems, a solution of the type

q = q0
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allows an eigenproblem with real matrices to be obtained while assuming
that

q = q0

the dynamic matrix turns out to be complex. On the contrary, if damping
is not neglected, the two notations lead to similar complexities and the
second solution can be used with advantage.
If the real-coordinates approach is used, the size of the problem is doubled

and the information on the direction of the whirl motion included in the
eigenvalues is lost: To distinguish between forward and backward modes,
the eigenvectors must be studied.
Assuming a solution of the type

x = x0 ,

the eigenvalues of matrix

M0 1

µ
C0+ G0

¶
M0 1

µ
K0 + 2K0 + C0

¶

I 0

(4.95)

must be found.
As it is easily seen from Equation (4.94), the reasons for which the Camp-

bell diagram of an axi-symmetrical rotor may be not flat (i.e., not made
of straight lines parallel to the -axis) are three: The presence of gyro-
scopic e ect, of centrifugal sti ening, and of rotating damping. Centrifugal
sti ening has the same e ect for backward and forward whirling: an in-
crease of the whirl speed. Gyroscopic e ect causes the forward whirl speed
to increase and the backward whirl speed to decrease (in absolute value).
Rotating damping (within the small damping assumption) has usually a
negligible e ect on the whirl speed, and its e ect on the decay rate is large.

Example 4.4 Compute the critical speeds, the Campbell diagram, and the un-

balance response of the rotor of Example 4.1 using the FEM.

The rotor is modeled using 18 beam, 2 mass, and 2 spring elements, for a total

of 36 degrees of freedom. An eccentricity of 1 m of the compressor wheel has

been assumed for the computation of the unbalance response.

Critical speeds. The values of the first three critical speeds are reported in

Table 4.7; the values earlier obtained using the Myklestadt-Prohl method are also

reported for comparison. The di erence between the results obtained using the

Myklestadt method and the FEM is small, and it is mainly because in the latter,

the consistent mass matrix has been used. The mode shapes corresponding to the

first three critical speeds are reported in Figure 4.9. The first two are mainly rigid-

body modes, a conical and a cylindrical one, whereas the third mode involves larger

deformations of the shaft.

Campbell diagram The Campbell diagram of the system is reported in Figure

4.10. The rigid-body modes are not much a ected by gyroscopic e ects, because
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FEM 2,511 2,726 14,866
Myklestadt 2,500 2,718 14,920

TABLE 4.7. Values of the first three critical speeds, computed using the FEM
and the Myklestadt-Prohl method.

FIGURE 4.9. Mode shapes corresponding to the first three critical speeds.

the polar moment of inertia of the whole rotor is small if compared with the

transversal moment of inertia; the third mode on the contrary is much more

speed-dependent. This can be ascribed to the fact that the compressor and, above

all, the turbine discs are much more similar to thin discs.

Unbalance response. The undamped unbalance response is plotted, in am-

plitude and phase, in Figure 4.11. As damping was not taken into account, the

values corresponding to the crossing of the critical speeds are larger than the ac-

tual ones. Note the large plateau extending for the whole working range of the

machine (between 50,000 and 120,000 rpm), followed by an antiresonance.

Example 4.5 Consider the very simple model of a twin spool turbine [39] shown

in Figure 4.12(a). The two rotors are shown separately in Figure 4.12(b).

The model consists of 13 nodes (26 complex degrees of freedom), 11 timoshenko

beam elements, 4 concentrated mass elements, and 4 spring elements to model the

bearings, which are assumed to be isotropic.

The characteristics of the beam elements are shown in Table 4.8. The material

is the same for both rotors and is characterized by = 206 9 GN/m2 and =

8304 kg/m3. The characteristics of the mass and spring elements are shown in

Table 4.9. The mass elements are considered as thin discs, with p = 2 .

The spin speed of the hig-pressure rotor is assumed to be 1.5 times that of the

low-pressure rotor, which is assumed as a reference.

The critical speeds are readily computed, obtaining the following values 864

rad/s ( 8254 rpm), 1,602 rad/s (15,298 rpm), and 2,287 rad/s (21,839 rpm).

These are are the critical speeds caused to the unbalance of the low-presssure
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FIGURE 4.10. Campbell diagram.

FIGURE 4.11. Response to a static unbalance caused by an eccentricity of 1 m
of the compressor wheel. The amplitude and phase of the orbit of the center of
the compressor are plotted.
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FIGURE 4.12. Simple FEM model of a twin spool turbine. (a) Assembled model;
(b) models for the high-pressure and low-pressure rotors (underlined numbers
designate elements).

Element # 1 2-3 4-5 6-7 8-11 9-10

[mm] 0 0 0 0 38.1 38.1

0
[mm] 30.4 30.4 30.4 30.4 50.8 50.8
[mm] 76.2 88.9 76.4 50.8 50.8 76.2

TABLE 4.8. Characteristics of the beam elements ( : inner diameter; : outer
diameter; : length;).

rotor. The unbalance of the high-pressure rotor causes other critical speeds, which

can be found by intersecting the Campbell diagram with the line = 1 5 : 548

rad/s (5,232 rpm), 1,054 rad/s (10,067 rpm), 1,517 rad/s (14,490 rpm) and 2,408

rad/s (23,000 rpm), again in terms of the spin speed of the low-pressure rotor.

Note that only the critical speeds lower than 3,000 rad/s have been reported.

The Campbell diagram is reported in Figure 4.13.

Mass # 1 2 3 4

Node # 2 7 10 12
[g] 4.904 4.203 3.327 2.227

p [kgm
2] 0.02712 0.02034 0.01469 0.00972

Spring. # 1 2-3 4

Node # 1 8-9 from 6 to 13
[MN/m] 26.2795 17.519 8.7598

TABLE 4.9. Characteristics of concentrated masses and springs ( : mass; :
diametral moment of inertia; : sti ness).
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FIGURE 4.13. Campbell diagram of a twin spool turbine. is the speed of the
low-pressure rotor.

4.11 Reduction of the number of degrees of
freedom

The FEM usually yields models of very large size: It is not uncommon to use
models with thousands or tens of thousands of degrees of freedom. Although
that does not constitute a problem for modern computers, when studying
static problems, in dynamic analysis, the solution of an eigenproblem of
that size can still be a formidable problem. This is particularly true in
rotordynamics, when the Campbell diagram of a complex rotor is to be
plotted and a large eigenproblem must be solved for many values of the
spin speed .
As the FEM is a displacement method, i.e., first solves the displacements

and then computes stresses and strains as derivatives of the displacements,
the precision with which displacements, and all other quantities directly
linked with them, including mode shapes and natural frequencies, are ob-
tained is far greater, for a given mesh, than that achievable for stresses
and strains. Conversely, this means that the mesh needs to be much finer
when solving the stress field, which is typical of static problems, than when
searching for natural frequencies and mode shapes. Because it is often ex-
pedient to use the same mesh for both static and dynamic analysis, a re-
duction of the number of degrees of freedom for dynamic solution is useful,
particularly when only a limited number of natural frequencies is required.
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Two approaches can be used: reducing the size of the model or leaving
the model as it is and using algorithms that search only the lowest natural
frequencies. Although the two are more or less equivalent, the first leaves
the choice of which degrees of freedom to retain to the user and the sec-
ond operates automatically. As a consequence, a skilled operator can use
advantageously reduction techniques, which allow us to obtain very good
results with very few degrees of freedom. A general-purpose code for rou-
tine computations, which is sometimes used by analysts who are not very
well trained, on the contrary, can advantageously use the second approach.

Remark 4.7 Before computers were available, remarkable results were ob-

tained using models with very few (often a single) degrees of freedom, but

this required great computational ability and physical insight.

4.11.1 Nodal reduction techniques

Static reduction

The term static reduction is used for a procedure to reduce the size of the
sti ness matrix. It is based on the subdivision of the generalized coordinates
q of the model into two types: master degrees of freedom q1 and slave
degrees of freedom q2. When used to solve a static problem (or, better, a
problem in which only the sti ness properties of the system are involved,
because in the computation of the static deformation of a damped rotor
also its damping properties enter the analysis), it yields exact results, i.e.,
the same results that would be obtained from the complete model.
The sti ness matrix and the nodal force vector can be partitioned follow-

ing the distinction between master and slave coordinates, and the equation
expressing the static problem becomes

·
K11 K12

K21 K22

¸½
q1
q2

¾
=

½
f1
f2

¾
(4.96)

Note that matrices K11 and K22 are symmetrical, and K12 = K
21
are

neither symmetrical nor square. Solving the second set of Equations (4.96)
in q2, the following relationship linking the slave to the master coordinates
is obtained:

q2 = K 1

22
K21q1 +K

1

22
f2 (4.97)

Introducing Equation (4.97) into Equation (4.96), the latter yields

K q1 = f (4.98)

where ½
K = K11 K12K

1

22
K
12

f = f1 K12K
1

22
f2
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FIGURE 4.14. Rotor with four real degrees of freedom on compliant bearings.

Equation (4.98) yields the master generalized displacements q1. The slave
displacements can be obtained directly from Equation (4.97) simply by
multiplying some matrices.
The subdivision of the degrees of freedom between vectors q1 and q2 can

be based on di erent criteria. The master degrees of freedom can simply be
those in which the user is directly interested. Another type of choice can
be that of physically subdividing the structure into two parts. The second
practice, which can be generalized by subdividing the generalized coordi-
nates into many subsets, is generally known as solution by substructures or
substructuring .
Static reduction does not introduce any approximation into the model

in the case of static analysis. It can be used also in dynamic analysis with-
out introducing approximations only if no generalized inertia is associated
with the slave degrees of freedom. In this case, static reduction is advis-
able because the mass matrix of the original system is singular and the
condensation procedure allows removal of the singularity. Generally speak-
ing, however, the mass matrix is not singular and it is not possible to just
neglect the inertia linked with some degrees of freedom.

Example 4.6 Rotor with four degrees of freedom on compliant bearings.

Consider a rotor of the same type of that studied in Section 3.6.3, but with

a compliant shaft and bearings that may include also damping (Figure 4.14).

The system can be modeled using 12 real degrees of freedom or 6 complex ones,

namely, the displacements and rotations of points A, G, and B. The generalized

coordinates, expressed using the complex coordinates approach, are

q =
£ ¤

(4.99)
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Undamped system. The shaft can be modeled using two Euler-Bernoulli beam

elements. The sti ness matrix of the first one is

K1 =
1 1

3

1

12 6 1 12 6 1

4
2

1 6 1 2
2

1

12 6 1

symm 4
2

1

= (4.100)

= 1

4 2 1 4 2 1

4

3

2

1 2 1
2

3

2

1

4 2 1

symm 4

3

2

1

where 1 = 3 1 1

3

1. A similar expression, with subscript 2 instead of 1, can

be used for the second element. By assembling the two matrices and adding the

constraints, the sti ness matrix of the whole system is

K =

4 1 + 1 2 1 1 4 1 2 1 1 0 0
4

3 1
2

1 2 1 1
2

3 1
2

1 0 0

4 ( 1 + 2) 2 ( 1 + 2) 4 2 2 2 2

4

3

¡
1
2

1 + 2
2

2

¢
2 2 2

2

3
2
2

2

4 2 + 2 2 2 2

symm. 4

3 2
2

2

.

(4.101)

As the shaft and the bearings are assumed to be massless, the mass and gyro-

scopic matrices are

M =

0 0 0 0 0 0

0 0 0 0 0

0 0 0

0 0

0 0

symm. 0

G =

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0

0 0

symm. 0

.

(4.102)
A first reduction of the number of degrees of freedom can be performed by elimi-

nating the rotational degrees of freedom at the supporting points and . As

the mass and gyroscopic matrices have vanishing rows and columns corresponding

to them, static reduction can be used. It does not introduce any error, and only

the condensation of the sti ness matrix is required. By subdividing the coordinates

into master and slave

q1 =
£ ¤

q2 =
£ ¤

, (4.103)

the sti ness matrix can be partitioned

K11 =

4 1 + 1 4 1 2 1 1 0

4 ( 1 + 2) 2 ( 1 1 + 2 2) 4 2

4

3

¡
1
2

1 + 2
2

2

¢
2 2 2

symm. 4 2 + 2

, (4.104)

K21 =K12 =

·
2 1 1 2 1 1

2

3 1
2

1 0

0 2 2 2
2

3 2
2

2 2 2 2

¸
(4.105)
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K22 =

·
4

3 1
2

1 0

0
4

3 2
2

2

¸
(4.106)

The reduced sti ness matrix is then

K =K11 K12K
1

22 K21 =

1 + 1 1 1 1 0

1 + 2 1 + 2 2

1
2

1 + 2
2

2 2 2

symm. 2 + 2

(4.107)
and the matrices expressing the inertia properties are

M = diag
©
0 0

ª
G = diag

©
0 0 0

ª
(4.108)

As the system is undamped, no generalized forces caused by damping or inertia

act on points A and B: In this case, a further static reduction procedure, aimed

at eliminating the generalized coordinates and can be performed without

introducing any approximation into the model. Now master and slave coordinates

are

q
0

1 =
£ ¤

q
0

2 =
£ ¤

. (4.109)

The sti ness matrix can be partitioned

K
0

11 =

·
4 ( 1 + 2) 2 ( 1 + 2)

symm. 4

3

¡
1
2

1 + 2
2

2

¢
¸

(4.110)

K
0

21 =K
0

12 =

·
1 1 1

2 2 2

¸
K
0

22 =

·
1 + 1 0

0 2 + 2

¸
(4.111)

The reduced sti ness matrix is then

K
0

=K
0

11 K
0

12K
0 1

22 K
0

21 =

"
1 1

1+ 1
+ 2 2

2+ 2

1 1 1

1+ 1
+ 2 2 2

2+ 2

symm.
2
1 1 1

1+ 1
+

2
2 2 2

2+ 2

#

(4.112)
and the matrices expressing the inertia properties are

M = diag
© ª

G = diag
©
0

ª
. (4.113)

Note that in this case the model reduces to a rotor with four (real) degrees of

freedom, of the type studied in Chapter 3.

Symmetrical system. In this case, the system is symmetrical, i.e., the two

shafts and the two supports are equal, and the equations of motion uncouple

K
0

= 2

"
+

0

0
2

+

#
(4.114)

For the translational degree of freedom (cylindrical mode), the shaft and the

bearings behave like two springs, with sti ness and in series, whereas for the
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rotational degree of freedom (conical mode), they are like two torsional springs,

with sti ness 2 and 2 in series.

Damped system. The first reduction to four complex (eight real) degrees of

freedom can be performed in the usual way, whereas the second one, although

being still possible as an approximation, introduces errors that may be large if

the system is much damped. In particular, the damping at the bearings may be

large enough to prevent from performing this second reduction. For this reason,

reference will be made to the four complex degrees of freedom model expressed by

Equations (4.107) and (4.108).

The damping of the system must be subdivided into nonrotating and rotating

damping. The former is easily modeled using a viscous damping matrix

C =

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 2

(4.115)

Rotating damping is best modeled in this case by using the hysteretic damping

approach. If the loss factor is constant, the rotating damping matrix is simply

given by the loss factor multiplied by the sti ness matrix of Equation (4.107) from

which the sti ness of the bearings has been removed

K” =

1 1 1 1 0

1 + 2 1 + 2 2

1
2

1 + 2
2

2 2 2

symm. 2

(4.116)

Guyan reduction

The so-called Guyan reduction is based on the assumption that the slave
generalized displacements q2 can be computed directly from master dis-
placements q1, neglecting inertia forces and external forces f2. In this case,
Equation (4.97), without the last term, can also be used for dynamic solu-
tion. By partitioning the mass matrix in the same way seen for the sti ness
matrix, the part of the kinetic energy of the rotor that depends only on the
generalized velocities can be expressed as

T1 =
1

2

½
q̇1

K 1

22
K21q̇1

¾ ·
M11 M12

M21 M22

¸½
q̇1

K 1

22
K21q̇1

¾
(4.117)

The kinetic energy is then

T =
1

2
q̇
1
M q̇1 (4.118)

where the condensed mass matrix is

M =M11 M12K
1

22
K
12

£
M12K

1

22
K
12

¤
+

+K12K
1

22
M22K

1

22
K
12

(4.119)
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By operating in the same way for the part of the kinetic energy of the
rotor in which the products of generalized velocities and displacements are
present, a reduced gyroscopic matrix can be defined

G =G11 G12K
1

22
K
12

£
G12K

1

22
K
12

¤
+

+K12K
1

22
G22K

1

22
K
12

(4.120)

In a similar way, also the damping matrices can be reduced. By writing
the expressions of the Rayleigh dissipation function, the condensed damp-
ing matrices can be obtained

C = C11 C12K
1

22
K
12

£
C12K

1

22
K
12

¤
+

+K12K
1

22
C22K

1

22
K
12

(4.121)

Equation (4.121) holds separately both for the rotating and the nonro-
tating damping matrices; also, structural damping matrices can be reduced
using Equation (4.119), in whichM has been substituted with K00.
Guyan reduction is not much more demanding from a computational

viewpoint than static reduction because the only matrix inversion is that
of K22, which has already been performed for the computation of the con-
densed sti ness matrix. In addition, if matricesM and G are diagonal, two
of the terms of Equations (4.119) and (4.120) vanish.2

Although approximate, it introduces errors that are usually very small,
at least if the choice of the slave degrees of freedom is appropriate. Inertia
forces related to slave degrees of freedom are actually not neglected, but
their contribution to the kinetic energy is computed from a deformed con-
figuration obtained on the basis of the master degrees of freedom alone.
If the relevant mode shapes are only slightly influenced by the presence
of some of the generalized masses or if some parts of the structure are so
sti that their deflected shape can be determined by a few coordinates, the
results can be very good, even when very few master degrees of freedom
are used.
Also, the reduction of damping matrices introduces errors that depend on

the choice of the slave degrees of freedom but are usually very small when
the degrees of freedom in which viscous dampers are applied or, in the case
of hysteretic damping, where the loss factor of the material changes, are
not eliminated. Alternatively, these degrees of freedom can be neglected
when their displacement is well determined by some master displacement,
as in the case of very sti parts of the structure.

2Here implicit reference is made to the complex coordinates approach: In real coor-
dinates, G cannot be diagonal, because it is skew-symmetric.
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FEM Myklestadt

Master degrees of freedom 2 10 19 All

[rad/s] 2,512 2,511 2,511 2,511 2,500
[rad/s] 2,759 2,726 2,726 2,726 2,718
[rad/s] — 14,942 14,872 14,866 14,940

TABLE 4.10. Values of the first three critical speeds, computed using the FEM
(di erent condensation schemes) and the Myklestadt-Prohl method.

Example 4.7 Repeat the computation of the critical speeds of the same turbojet

rotor studied in Example 4.1, using di erent reduction schemes. Three condensa-

tion schemes for Guyan reduction are considered; a large-scale reduction in which

only two degrees of freedom are retained (translations at nodes 4 and 17), and

two more detailed schemes, in which 10 and 19 master degrees of freedom are

considered. In the latter case, all translational degrees of freedom were retained.

The results are reported in Table 4.10.

Note that if a condensation scheme with only two master degrees of freedom is

used, the model reduces to that of a rotor with four real (two complex) degrees of

freedom. The corresponding reduced matrices are

K =

·
7 208 1 907

1 907 7 628

¸
× 105 M =

·
0 1091 0 0151

0 0151 0 1080

¸
(4.122)

G =

·
0 0036 0 0032

0 0032 0 0036

¸
.

These reduced matrices are referred to the displacements at nodes 4 and 17,

i.e., at the locations of the compressor and turbine wheels. As the center of mass

of the rotor is at 90.34 mm from the front end, the distances of nodes 4 and 17

from the center of mass are = 62 34 mm and = 62 46 mm. If the rotor was a

rigid body, the transformation matrix to pass from the coordinates of the center

of mass (displacement and rotation) to those of nodes 4 and 17 was

T =

·
1 62 34

1 62 46

¸
. (4.123)

The sti ness, mass, and gyroscopic matrices transformed using matrix T are

K =

·
1865 2 727

2 727 4 292

¸
× 103 M =

·
0 247 5 566× 10 5

5 566× 10 5
7 276× 10 4

¸

(4.124)

G =

·
0 881 0 000370

0 000370 0 0525

¸
× 10 3

.

The matrices obtained assuming that the rotor is rigid are

K =

·
2000 2 318

2 318 4 421

¸
× 103 M =

·
0 266 0

0 7 256× 10 4

¸
(4.125)
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G =

·
0 0

0 4 426× 10 3

¸
.

The fact that the matrices obtained using a rigid rotor model, at least for what

the sti ness and mass matrices are concerned, are close to those expressed by

Equation (4.124) shows that the first two modes are close to be rigid-body modes

for the rotor, in which all of the flexibility is concentrated in the bearings.

Dynamic reduction

The reduction can be operated directly on the dynamic sti ness matrix
(dynamic reduction). This procedure does not introduce approximations,
but the frequency must be stated before performing it. It can then be useful
for the computation of the response, but not for computing the natural
frequencies or plotting the Campbell diagram, except if an iterative scheme,
similar to that described when dealing with the Myklestadt-Prohl method,
is used.
Dynamic reduction can be a powerful tool in the study of systems that

are partly nonlinear, because it allows us to reduce the number of equations,
eliminating all degrees of freedom not directly involved in the nonlinearities.

4.11.2 Modal reduction

Configuration space approach

In structural dynamics, a common way to reduce the order of the problem
is that of resorting to modal coordinates and then considering only a re-
duced number of modes. Modal reduction is always approximated, but its
accuracy is usually very good, even when only a reduced number of modes
are considered, particularly when the modes are completely uncoupled, as
it occurs when undamped systems are studied.
As already stated in Section 3.7, the eigenvectors of the undamped nat-

ural systems (i.e., the eigenvectors of matrixM 1K) can be used to define
the modal coordinates of any gyroscopic, damped (and circulatory) system.
However, the modal equations are not uncoupled, because the gyroscopic
and the damping matrices (and the centrifugal sti ening matrix, if present)
are not diagonalized by the eigenvectors of the undamped natural systems.
As a result of this coupling, the number of modes required to obtain a
good result can be large. Note that if all modes are used, the results are
exact, but the mathematical model obtained through modal reduction is
as complex as the original one.

Example 4.8 Repeat the computation of the critical speeds and of the Campbell

diagram of the rotor of Example 4.1 by resorting to modal reduction with three

modes.

The FEM model of the rotor has 36 degrees of freedom. By computing the

eigenvector matrix of the natural system, normalizing it in such a way that the
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Modal (3 modes) 2,513 2,726 16,638
Modal (3 modes, uncoupled) 2,514 2,726 16,624
Non modal (36 d.o.f.) 2,511 2,726 14,866

TABLE 4.11. Values of the first three critical speeds, computed using the modal
approach (three modes) and the complete FEM model.

modal masses have a unit value, and then using only the first three modes, the

following modal matrices are obtained

M =
1 0 0
0 1 0
0 0 1

K =
0 5866 0 0
0 0 7414 0
0 0 9 7145

× 107 (4.126)

G =
0 0717 0 0093 0 0071
0 0093 0 0021 0 0225
0 0071 0 0225 0 6485

.

An uncoupled model can be obtained by neglecting the out of diagonal elements of

the gyroscopic matrix. In this case, the uncoupled model can be predicted to yield

results that are not much di erent from those of the coupled model, because the

system is not strongly gyroscopic.

Critical speeds. The values of the first three critical speeds obtained from both

the coupled and uncoupled models are reported in Table 4.11; the values earlier

obtained from the complete model are also reported for comparison. Note that a

very good approximation has been obtained for the first two critical speeds and a

fair one for the third.

Campbell diagram. The Campbell diagram, limited to the first three modes, is

reported in Figure 4.15. The lines related to the coupled and uncoupled models are

completely superimposed. The results of the complete FEM model are also reported

for comparison: It is clear that the frequencies of the first two modes are computed

with good precision through the modal approach, whereas the approximation on

the third forward mode is worse.

State-space approach; complex coordinates

The same modal transformation based on a state-space complex coordi-
nates representation seen in Section 3.7 for the system with four real de-
grees of freedom can be applied also to multi-degrees-of-freedom systems.
The system with complex degrees of freedom can be transformed into
uncoupled single-degree-of-freedom gyroscopic systems, each one with

its modal mass, sti ness, gyroscopic term, and rotating and nonrotating
damping. However, all of these modal parameters are speed dependent:
This means that the modal transformation must be performed for all val-
ues of the speed the analyst wants to study. The relevant equations are
reported in Section 3.7 and will not be repeated here.
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FIGURE 4.15. Campbell diagram, limited to the first three modes, computed
using the modal and the nonmodal approach.

M G K

Modal system #1 1 0.0546 5.156 ×106

Modal system #2 1 0.0168 8.026 ×106

Modal system #3 1 0.5970 8.885 ×107

TABLE 4.12. Values of the modal mass, sti ness and gyroscopic term for the first
three modal systems at a speeds = 15 000 rad/s.

Example 4.9 Find the modal parameters for the first three modes as functions

of the speed for the rotor of Example 4.1.

Owing to the size of the matrices, no intermediate result can be shown. The

modal sti ness and gyroscopic terms for the first three modal systems are reported

in Figure 4.16 (the modal masses have unit values). The values at a speed =

15 000 rad/s are reported in Table 4.12; The Campbell diagram for the first three

forward and backward modes is not reported, because it coincides with that of the

complete system.

State-space approach; real coordinates

If the system is undamped, the modal transformation based on a state-space
real coordinates representation seen in Section 3.7 can also be applied. If
the system has complex coordinates, it has 2 real coordinates and the
space state has dimension 4 . At each speed, a modal analysis yielding the
4 modal masses (which can be set at unit value by normalizing the eigen-
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FIGURE 4.16. Modal sti ness and gyroscopic terms for the first three modal
systems as functions of the speed.

vectors) and modal sti ness must be performed. Note that if the system is
axially symmetrical, the modal systems are identical in pairs, i.e. for each
mode is repeated with reference to and plane. Moreover, as stated
in section 3.7, there is no possibility of distinguishing between forward and
backward modes from the eigenvalues or the modal parameters. The rele-
vant equations are identical to those reported in section 3.7 (except for the
size of the matrices) and will not be reported here.

Example 4.10 Find the modal parameters for the first three modes as functions

of the speed for the rotor of Example 4.1, using the state-space real coordinates

approach.

The size of the matrices is fairly large: The system has 38 degrees of freedom in

each plane, leading to a total of 76 real degrees of freedom. Matrices M0, K0 and

G0 have then 76 rows and columns, whereas matrices M and K in Equation

(3.100) have 152 rows and columns.

By performing a modal analysis on matrices M and K , the speed-dependent

modal parameters of the system can be found. The modal sti ness for the first 14

modal systems are reported in Figure 4.17 (the modal masses have unit values).

Fourteen modal systems are needed to find the lowest seven natural frequencies

(they come in pairs) corresponding to the first three forward and backward modes,

plus the fourth backward mode whose frequency is lower than that of the third

forward mode at high speed and must be included not to lose the latter. The values
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FIGURE 4.17. Modal sti ness K for the first 14 modal sytems.

at a speed = 15 000 rad/s are 3 60 × 106, 7 34 × 106, 7 38 × 106, 8 77 × 106,

3 549 × 106, 1 505 × 108, and 2 224 × 108, each one with multiplicity 2. They

correspond to the squares of the whirl frequencies.

4.11.3 Component mode synthesis

When substructuring is used, the degrees of freedom of each structure can
be divided into two sets: internal degrees of freedom and boundary degrees
of freedom. The latter are all degrees of freedom that the substructure has
in common with other parts of the structure. They are often referred to as
constraint degrees of freedom because they express how the substructure is
constrained to the rest of the system. Internal degrees of freedom are those
belonging only to the relevant substructure. The largest possible reduction
scheme is that in which all internal degrees of freedom are considered as
slave coordinates and all boundary degrees of freedom are considered as
master coordinates. In this way, however, all modes in which the motion
of the internal points of the substructure is important with respect to the
motion of its boundary are approximated in a rough way.
A simple way to avoid this drawback is to also consider as master coor-

dinates, together with the boundary degrees of freedom, some of the modal
coordinates of the substructure constrained at its boundary. This procedure
would obviously lead to exact results if all modes were retained, but be-
cause the total number of modes is equal to the number of internal degrees
of freedom, the model obtained has as many degrees of freedom as the origi-
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nal one. As usual with modal practices, the computational advantages grow
with the number of modes that can be neglected. The relevant matrices are
partitioned as seen for reduction techniques, with subscript 1 referring to
the boundary degrees of freedom and subscript 2 to the internal degrees of
freedom. The displacement vector q2 can be assumed to be equal to the
sum of the constrained modes q0

2
, i.e., the deformation pattern caused by

the displacements q1 when no force acts on the substructure, plus the con-
strained normal modes q00

2
, i.e., the natural modes of free vibration of the

substructure when the boundary generalized displacements q1 are equal to
zero.
The constrained modes q0

2
can be expressed by Equation (4.97) once the

force vector f2 is set equal to zero.
When the present reduction technique is applied to nonrotating struc-

tures, there is no problem in computing the natural modes of vibration of
the relevant substructures. In rotordynamics, the modes computed at the
relevant velocity should be introduced, but this causes further di culties.
The reduction should be repeated for each value of the spin speed consid-
ered in the computations, and the modes are more di cult to define (see
Section 4.4.3.). As a result, a further approximation is introduced, by using
the modes of the undamped substructures computed at standstill, i.e., the
modes of the undamped, nongyroscopic system. The constrained normal
modes can thus be computed by solving the eigenproblem

¡
2M22 +K22

¢
q
00

2
= 0 (4.127)

A similar consideration holds also in the case in which the sti ness matrix
is itself a function of the speed, as it occurs when centrifugal sti ening is
present.
This approximation is acceptable, provided that the gyroscopic moments

acting on the substructure do not influence greatly its behavior at the speed
of interest or that a larger number of constrained normal modes are used.
Clearly, an exact solution is at any rate reached if all of them are retained,
but the usefulness of the reduction technique vanishes.
Once the eigenproblem has been solved, the matrix of the eigenvectors
can be used to perform the modal transformation q00

2
=

2
. The gen-

eralized coordinates of the substructure can thus be expressed as

½
q1
q2

¾
=

½
q1

K 1

22
K21q1 + 2

¾
=

=

·
I 0

K 1

22
K21

¸½
q1

2

¾
=

½
q1

2

¾ (4.128)

Equation (4.128) defines a coordinate transformation, allowing the ex-
pression of the deformation of the internal part of the substructure in terms
of constrained and normal modes. Matrix expressing this transformation
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can be used to compute the new mass, gyroscopic, sti ness, and, where
needed, damping matrices and force vector

M = M G = G K = K

C = C f = f
(4.129)

If there are constrained coordinates and internal coordinates and if
only constrained normal modes are considered ( ), then the size of
the original matricesM, G, ... is + , whereas that of matricesM , G ,
... is + .

Remark 4.8 It is easy to verify that if = 0, i.e., if no constrained normal
modes are considered, this formulation reduces to Guyan reduction.

Once the coordinate transformation of the substructures has been per-
formed, they can be assembled in the same way already seen for elements:
The boundary coordinates belong to a number of substructures and are
actually assembled whereas the modal coordinates are typical of only one
substructure at a time, in the same way as the coordinates of internal nodes,
when elements with such nodes are used. Actually each substructure can
be regarded as a large element, sometimes referred to as a superelement ,
and the relevant procedures do not di er from those that are standard in
the FEM.
The main advantage of substructuring is that of allowing the construction

of the model and the analysis of the various parts of a large structure in an
independent way. In particular, in rotordynamics, it can be very expedient
to study separately the stator and the rotor of the machine, and then to
connect them at the bearing locations or, in the case of multishaft machines,
to study the various rotors separately. In a sense, this way of reducing the
size of the model is ideally suited for rotordynamic analysis as rotating
machinery are usually made of di erent parts connected with each other
in a very limited number of locations, the bearings and the dampers, if
present.
The results can then be assembled, and the behavior of the structure can

be assessed from that of its parts. If this is done, however, the connecting
nodes must be defined in such a way that the same boundary degrees of
freedom are considered in the analysis of the various parts. It is, however,
possible to use algorithms allowing us to connect otherwise incompatible
meshes.
All of the methods discussed in this section, which are closely related

to each other and are found in the literature in a variety of versions, are
general for discrete systems and can be used outside the FEM even if they
became popular only with the use of the latter, owing to the large number
of degrees of freedom.
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Comp. mode synth. (1 mode) 2,527 2,737 17,797
Comp. mode synth. (2 modes) 2,512 2,734 17,520
Comp. mode synth. (3 modes) 2,512 2,727 15,014
Non modal (36 d.o.f.) 2,511 2,726 14,866

TABLE 4.13. Values of the first three critical speeds, computed using the com-
ponent modes synthesis approach with one, two, and three modes (three, four,
and five degrees of freedom) and the complete FEM model.

Example 4.11 Consider the rotor of Example 4.1 as made by two substruc-

tures, the rotor and the bearings.

The sti ness, mass, and gyroscopic matrices are built in the same way as for

the previous examples, with the di erence being that now the sti ness matrix is

computed without taking into account the bearings. The sti ness matrix is then

singular. The bearings are located at nodes 6 and 13, so the displacements at

these nodes are taken as master degrees of freedom. All matrices are accordingly

partitioned: Matrices with subscript 11 have two rows and two columns, those

with subscript 12 have two rows and 36 columns, and matrices with subscript 22

have 36 rows and columns.

The eigenproblem related to matrices M22 and K22 is then solved, yielding the

36 natural frequencies and mode shapes of the rotor with locked bearings. The

transformation matrix is then built.

Consider first the case in which only the first modal coordinate is used as master

degree of freedom, in addition to the displacements at the bearings. Matrix has

then 38 rows and 3 columns. The reduced matrices of the rotor are then

K =

0 0 0

0 0 0

0 0 7 4584

× 105 M =

0 1519 0 0157 0 0192

0 0157 0 1453 0 0014

0 0192 0 0014 0 0096

G =

0 005009 0 005009 0 001650

0 005009 0 005009 0 001650

0 001650 0 001650 0 005078

.

To assemble the bearing to the structure, a sti ness of 106 N/m is added to

the terms K11 and K22. The values of the three critical speeds obtained from the

reduced model are reported together with those obtained from the complete model

in Table 4.13. The Campbell diagram obtained from the same model is shown

in Figure 4.18. Clearly, this approximation is fair, but the approximation in the

computation of the third mode is hardly acceptable.

The computation was repeated keeping two and thee modal coordinates of the

rotor (a total of four and five degrees of freedom). The results have been reported

in Table 4.13 and Figure 4.18.

Example 4.12 Compute the Campbell diagram and the critical speeds of the

twin spool turbine of Example 4.5 using the component mode synthesis approach.
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FIGURE 4.18. Campbell diagram obtained using the component mode synthesis
approach with (a) one mode and (b) three modes. Also, the plot obtained using
the complete model has been reported.

Assume the low-pressure rotor as substructure 1 and the high-pressure rotor

as substructure 2. The first has a total of 16 degrees of freedom, 3 of which are

taken as master coordinates (displacements at nodes 1, 6, and 8) in the modal

reduction. The second substructure has a total of 10 degrees of freedom, 2 of which

are taken as master coordinates (displacements at nodes 9 and 13).

Assuming the modal coordinate of the first deformation mode of each substruc-

ture as a further degree of freedom, the model has a total of 7 (4 + 3) degrees

of freedom. The computations of the gyroscopic matrices of the substructures are

performed by referring to the spin speed of each one of them.

The matrices related to the two substructures (4 × 4 and 3 × 3 matrices) are

assembled to obtain 7 × 7 matrices. At this point, the gyroscopic matrix of the

second substructure is multiplied by 1.5.

The springs simulating the bearings are then added. Those attached at nodes

2, 8, and 9 are simply accounted for by adding the relevant sti ness on the main

diagonal of the sti ness matrix. The spring simulating the intershaft bearing is

1 2 3 4 5 6 7

Comp. mode synth. 549 865 1,057 1,539 1.603 2.287 2,323
Non modal 548 864 1,054 1,517 1,602 2,287 2,408

TABLE 4.14. Values of the first seven critical speeds (in rad/s), computed using
the component modes synthesis approach with one mode for each substructure
(seven degrees of freedom) and the complete FEM model (26 degrees of freedom).
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then added between the two substructures (nodes 6 and 13). This element is the

only element that supplies a coupling between the two parts of the sti ness ma-

trix, following the physical configuration of the system. The mass and gyroscopic

matrices are made by two uncoupled parts.

The results in terms of the first seven critical speeds are compared with those

obtained in Example 4.5 from the complete model in Table 4.14. Both the critical

speeds caused by resonance with the low-pressure and the high-pressure rotors are

listed.



5
Continuous systems: Transmission
shafts

Transmission shafts are often easily modeled as beams rotating about their
axis. If such beams are prismatic and homogenous, i.e., their geometric and
material properties are constant along their length, it is possible to resort
to continuous models, based on the beam theory. Moreover, if they are
slender, it is possible to neglect both shear deformation and the moments
of inertia of their cross section. In this case, usually referred to as Euler-
Bernoulli beam, there is no gyroscopic e ect and the Campbell diagram is
made of straight lines. The behavior of the rotating system can be deduced
from that at standstill, and the usual results typical of vibrating slender
beams are used. In most catalogs of tubular transmission shafts with Hook
joints, for instance, a formula for the computation of the critical speed is
reported that coincides with the well-known expression yielding the first
natural frequency of a simply supported Euler-Bernoulli beam.
The dynamic behavior of a slender nonrotating beam is analyzed in the

following sections, together with a more complete analysis of the behavior
of a beam rotating about its axis.

5.1 The Euler-Bernoulli vibrating beam

The study of the elastic behavior of beams dates back to Galileo, with
important contributions by Daniel Bernoulli, Euler, De Saint Venant, and
many others. A beam is essentially an elastic solid in which one dimension
is prevalent over the others. Often the beam is prismatic (i.e., the cross
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FIGURE 5.1. Straight, prysmatic and untwisted beam. a): Reference frame; b):
generalized coordinates and generalized forces for the generic cross section.

sections are all equal), homogeneous (i.e., with constant material charac-
teristics), straight (i.e., its axis is a part of a straight line), and untwisted
(i.e., the principal axes of elasticity of all sections are equally directed in
space). The unidimensional nature of beams allows simplification of the
study: Each cross section is considered as a rigid body whose thickness in
the axial direction is vanishingly small; it has six degrees of freedom, three
translational and three rotational. The problem is then reduced to a unidi-
mensional problem, in the sense that a single coordinate, namely, the axial
coordinate, is required.
Setting the -axis of the reference frame along the axis of the beam

(Figure 5.1), the six generalized coordinates of each cross section are the
axial displacement , the lateral displacements and , the torsional
rotation about the -axis, and the flexural rotations and about
axes and . Displacements and rotations are assumed to be small, so that
rotations can be regarded as vector quantities, which simplifies all rotation
matrices by linearizing trigonometric functions. The three rotations will
then be considered as components of a vector in the same way as the three
displacements are components of vector u. The generalized forces acting on
each cross section and corresponding to the six degrees of freedom defined
earlier are the axial force , shear forces and , the torsional moment

about the -axis, and bending moments and about - and
-axes.
From the aforementioned assumptions, it follows that all normal stresses

in directions other than ( and ) are assumed to be small enough to be
neglected. When geometric and material parameters are not constant along
the axis they must change at a su ciently slow rate in order not to induce
stresses and , which cannot be considered in this model. If the axis of
the beam is assumed to be straight, the axial translation is uncoupled from
the other degrees of freedom, at least in first approximation. If the area
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Type of behavior Degrees of freedom Generalized forces

Axial Displacement Axial force

Torsional Rotation Torsional moment

Flexural Displacement Shearing force
( -plane) Rotation Bending moment

Flexural Displacement Shearing force
( -plane) Rotation Bending moment

TABLE 5.1. Generalized coordinates and forces of a generic cross section of a
beam. Uncoupling axial, torsional, and flexural behavior.

center of all cross sections coincides with their shear center, which happens
if all cross sections have two perpendicular planes of symmetry, also the
torsional-rotation degree of freedom is uncoupled from the others. If the
planes of symmetry of all sections are equally oriented (the beam is not
twisted) and - and -axes are perpendicular to such planes, the flexural
behavior in -plane is uncoupled from that in -plane (Table 5.1).
Consider the flexural behavior in -plane and assume that both shear

deformation and rotational inertia of the cross sections are negligible com-
pared with bending deformation and translational inertia, respectively. The
latter assumption allows us to consider each cross section as a point mass
instead of a rigid body whose axial thickness is vanishingly small. This as-
sumption leads to a good approximation if the beam is very slender, i.e., if
the thickness in the -direction is much smaller than length . Note that,
at any rate, the thickness must be small enough to use beam theory.
The relevant degrees of freedom are displacement and rotation .
The inertia force acting on the length of the beam is (Figure 5.2)

2

2
=

2

2
,

and the resultant of the forces caused by the other parts of the beam is

µ
+
1

2

¶ µ
1

2

¶
= .

The equilibrium equation for translations in -direction of the length
of the beam is then

2

2
= + ( ) (5.1)

where ( ) is a generic external force acting in -direction.
If the rotational inertia of the length of the beam is neglected, and no

distributed bending moment acts on the beam, the equilibrium equation
for rotations about -axis of the length of the beam is

+ = 0 (5.2)
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FIGURE 5.2. (a) Sketch of a beam deflected in -plane; (b) forces and moments
acting on the length of the beam.

By introducing Equation (5.2) into Equation (5.1), it follows that

2

2
=

2

2
+ ( ) (5.3)

Neglecting shear deformation and using elementary beam theory, the
bending moment is proportional to the curvature of the inflected shape
of the beam; the latter is approximated as the second derivative of the
displacement

=
2

2
(5.4)

where is the area moment of inertia of the cross section of the beam
about -axis. The following equilibrium equation can thus be obtained:

( )
2

2
+

2

2

·
( )

2

2

¸
= ( ) (5.5)

where the mass per unit length and the bending sti ness are, respectively,

( ) = ( ) ( ) ( ) = ( ) ( ) (5.6)

In the case of a prismatic homogeneous beam, Equation (5.5) reduces to

2

2
+

4

4
= ( ) (5.7)
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The solution of the homogeneous equation associated with Equation (5.5)
can be expressed as the product of a function of time ( ) and a function
of the space coordinate ( )

( ) = ( ) ( ) (5.8)

Introducing Equation (5.8) into the homogeneous equation associated
with Equation (5.5) and separating the variables, it follows that

1

( )

2 ( )
2
=

1

( ) ( )

2

2

·
( )

2 ( )
2

¸
(5.9)

The function on the left-hand side depends on time but not on the space
coordinate . Conversely, the function on the right-hand side is a function
of but not of . The only possibility of satisfying Equation (5.9) for all
values of time and of coordinate is to state that both sides are constant
and that the two constants are equal. This constant can be indicated as

2. The condition on the function of time on the left-hand side is

1

( )

2 ( )
2
= constant = 2 (5.10)

i.e.,

2 ( )
2
+ 2 ( ) = 0 (5.11)

Neglecting a proportionality constant that will be introduced later into
function ( ), Equation (5.11) yields a harmonic oscillation with frequency

( ) = sin( + ) (5.12)

The solution of the equation of motion for the free bending oscillations
of the bar is then

( ) = ( ) sin( + ) , (5.13)

i.e., each point of the bar performs a harmonic motion with frequency ,
phase and amplitude ( ).
Function ( ) is said to be the principal function. The resultant motion

is then a standing wave, with all points of the bar vibrating in phase. By
introducing Equation (5.13) into Equation (5.9), it follows that

2 ( ) ( ) =
2

2

·
( )

2 ( )
2

¸
, (5.14)

or in the case of constant parameters,

2 ( ) =
4 ( )

4
. (5.15)
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The general solution of Equation (5.15) is

( ) = 1 sin ( ) + 2 cos ( ) + 3 sinh ( ) + 4 cosh ( ) , (5.16)

where

2 =

s
. (5.17)

Equation (5.16) expresses the mode shapes of bending vibration of the
beam, after constants have been computed from the boundary condi-
tions.
On each end of the beam, two boundary conditions must be stated, for

a total of four boundary conditions allowing us to compute constants .
If the translational degree of freedom is locked, the function ( ) in the
relevant point must be equated to zero. If it is free, the shear force must
vanish; i.e., the third derivative

3 ( )
3

must be equated to zero. If the rotational degree of freedom is locked, the
rotation of the cross section vanishes, i.e.,

( )
= 0

whereas if it is free, what vanishes is the bending moment:

2 ( )
2
= 0

The case usually considered in rotordynamics is that with both ends sim-
ply supported, i.e., with vanishing displacements and bending moments at
both ends. This is the case, for instance, of a transmission shaft supported
by hook joints at both ends, if the inertia of the joints is negligible.
Assuming that the origin is at the left end of the beam of length , the

first condition yields
(0) = ( ) = 0 (5.18)

i.e.,
½

2 + 4 = 0 ,

1 sin ( ) + 2 cos ( ) + 3 sinh ( ) + 4 cosh ( ) = 0 .
(5.19)

The second condition implies that the curvature of the beam, i.e., with
the usual approximations, 2 2, vanishes at both ends

·
2 ( )

2

¸

=0

=

·
2( )
2

¸

=

= 0 . (5.20)
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With simple computations, Equation (5.20) yields

½
2 4 = 0 ,

1 sin ( ) + 2 cos ( ) 3 sinh ( ) 4 cosh ( ) = 0 .
(5.21)

The first Equation (5.19) and the first Equation (5.21) yield 2 = 4 = 0.
The second Equation (5.19) and the second Equation (5.21) yield

1 sin ( ) = 0 , 3 sinh ( ) = 0 . (5.22)

The second condition leads to 3 = 0. The first one yields a solution
di erent from the trivial solution, with all = 0, only if = , i.e., if

=
2 2

2

s
= 1 2 3 (5.23)

Equation (8.2) yields the natural frequencies of the bending vibrations
of the beam. Constant 1 is not determined, which is obvious because it is
the amplitude of the mode of free vibration. The mode shapes are

( ) =
0
sin( ) (5.24)

where

= .

If the beam is clamped on one side (e.g., at the left end) and free at the
other one (like the Stodola-Green rotor, but without the mass at the end),
the boundary conditions are

(0) = 2 + 4 = 0 ,

h
( )

i
=0

= ( 1 + 3) = 0 ,

h
2
( )

2

i
=

= 2 [ 1 sin ( ) 2 cos ( ) + 3 sinh ( )+

+ 4 cosh ( )] = 0 ,h
3
( )

3

i
=

= 3 [ 1 cos ( ) + 2 sin ( ) + 3 cosh ( )+

+ 4 sinh ( )] = 0 .

(5.25)

The first and second equations state that the displacement and the ro-
tation vanish at the left end, whereas the third and the fourth ones state
that at the right end, the bending moment and the shear force are nil. By
solving the first and second equations in 4 and 3 and substituting in the
following two equations, it follows that
·
sin ( ) + sinh ( ) cos ( ) + cosh ( )
cos ( ) + cosh ( ) sin ( ) + sinh ( )

¸½
1

2

¾
=

½
0
0

¾
. (5.26)
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Boundary condition; = 0 1 2 3 4 4

Free-free 0 4.730 7.853 10.996 14.137 ( + 1 2)

Supported-free 0 1 25 2 25 3 25 4 25 ( + 1 4)

Clamped-free — 1.875 4.694 7.855 10.996 ( 1 2)

Supported-supported — 2 3 4

Supported-clamped — 3.926 7.069 10.210 13.352 ( + 1 4)

Clamped-clamped — 4.730 7.853 10.996 14.137 ( + 1 2)

TABLE 5.2. Values of constants = for the various modes with di erent
boundary conditions.

To obtain a solution di erent from the trivial solution with all = 0,
the determinant of the coe cients of the homogeneous Equation (5.26)
must vanish, i.e.,

cos ( ) cosh ( ) + 1 = 0 . (5.27)

This equation cannot be solved in closed form; however, its numerical
solution is straightforward, yielding = 1 875, = 4 694, = 7 855,
= 10 996, ... For large values of , Equation (5.27) reduces to

cos ( ) 0 , (5.28)

yielding ( 1 2) .
Operating in the same way for the other boundary conditions, the fol-

lowing general expression for the natural frequencies can be obtained

=
2

2

s
(5.29)

where the values of constants = depend on the boundary conditions
(Table 5.2).
The mode shapes corresponding to the di erent boundary conditions are

plotted in Figure 5.3.

Remark 5.1 The classic formulas found in vibration handbooks for the

computation of natural frequencies and critical speeds of transmission shafts

are based on Equation (5.29).

The situation in the -plane is clearly very similar to that already stud-
ied with reference to the -plane. The physical problem is clearly the same;
however, there are some di erences in the equations because in the -
plane, the positive direction for rotations is from -axis to -axis, whereas
in the -plane, a rotation is positive if it goes from -axis to -axis. Actu-
ally, the di culties of notation arising from the di erences existing in the
two planes could be easily circumvented by assuming instead of
as the generalized coordinate for rotation. If the corresponding generalized
force is taken as instead of , the situation in the two planes is
exactly the same.
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FIGURE 5.3. First four mode shapes (plus the rigid body modes, when they
exist) for an Euler-Bernoulli beam with di erent boundary conditions.

Also in the present case, it is possible to resort to complex coordinates,
defining them in the same way as seen for discrete systems.

5.2 Other boundary conditions

The boundary conditions in which the two degrees of freedom at each end
are either locked or free are just two particular cases of a more general
situation, in which the boundary conditions may be di erent. For instance,
the end of the beam may be supported by an elastic constraint, supplying a
force proportional to the displacement through a constant , the sti ness
of the spring. As in the beam the shear force is the derivative with respect
to of the bending moment; the condition stating that the shear force is
equal to the reaction of the constraint can be written in the form:
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·
3 ( )

3

¸

=

= [ ( )]
=

, (5.30)

i.e.

3 [ 1 cos ( ) + 2 sin ( ) + 3 cosh ( ) + 4 sinh ( )] =
= [ 1 sin ( ) + 2 cos ( ) + 3 sinh ( ) + 4 cosh ( )] ,

(5.31)
where is the coordinate of the constraint.
In a similar way, if the elastic constraint is a spring that exerts a bending

moment proportional to the rotation through the rotational sti ness , the
boundary condition is

·
2 ( )

2

¸

=

=

·
( )
¸

=

. (5.32)

If at the end of the beam there is a concentrated mass , the boundary
condition can be written by stating that the shear force equals the inertia
force, which in harmonic motion is proportional to the displacement and
the square of the frequency

·
3 ( )

3

¸

=

= 2 [ ( )]
=

. (5.33)

The case of a moment of inertia can be dealt with by equating the
bending moment with the inertia torque

·
2 ( )

2

¸

=

= 2

·
( )
¸

=

. (5.34)

Consider for instance the case of a beam supported at both ends by
elastic constraints with sti ness and negligible bending sti ness [Figure
5.4(a)]. The boundary conditions are

3 ( 1 + 3) = ( 2 + 4) ,

2 ( 2 + 4) = 0 ,

3 [ 1 cos ( ) + 2 sin ( ) + 3 cosh ( ) + 4 sinh ( )] =
= [ 1 sin ( ) + 2 cos ( ) + 3 sinh ( ) + 4 cosh ( )] ,

2 [ 1 sin ( ) 2 cos ( ) + 3 sinh ( ) + 4 cosh ( )] = 0 .
(5.35)
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FIGURE 5.4. Prismatic Euler-Bernoulli beam. (a) Supported at both ends by
elastic constraints. (b) Clamped at one end and with a mass attached at the
other end.

By introducing the nondimensional sti ness ratio

=
3

,

the characteristic equation in the nondimensional unknown can be writ-
ten in the form

det

( )3 ( )3

0 1 0 1

( )
3

( )
3

( )
3

( )
3 = 0 ,

(5.36)
where

= cos ( ) = sin ( ) = cosh ( ) = sinh ( )

Equation (5.36) can be solved numerically, obtaining the values of =
to be inserted into Equation (5.29) to obtain the natural frequencies.

Example 5.1 Study the e ect of the sti ness of the bearings on the natural

frequencies of a shaft simply supported at its ends.

The problem can be easily solved by introducing di erent values of the sti ness

of the supports or, better, of the nondimensional parameter into Equation

(5.36). The plot reported in Figure 5.5 shows the first four natural frequencies

of the beam as functions of . Note that for = 0, the values for the free-

free conditions are found, whereas for , the beam is supported on rigid

constraints at both sides.
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FIGURE 5.5. First four natural frequencies, in terms of parameter = , for
a beam on elastic supports as functions of the nondimensional sti ness .

Another interesting case is that of Figure 5.4(b): a beam clamped on one
side (e.g., on the left) with a concentrated mass at the other end.
The boundary conditions in this case are

2 + 4 = 0 ,

( 1 + 3) = 0 ,

3 ( 1 + 2 + 3 + 4 ) = 2 ( 1 + 2 + 3 + 4 ) ,

2 [ 1 2 + 3 + 4 ] = 0 .
(5.37)

By introducing into Equation (5.37) the value of the frequency given by
Equation (5.29) and the nondimensional mass ratio

=

and solving the first two equations in 3 and 4, the characteristic equation
reduces to

det

·
+ ( ) +
+ ( ) +

¸
= 0 . (5.38)
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FIGURE 5.6. First four natural frequencies, in terms of parameter = , for
a beam clamped at one end and with a mass at the other one as functions of the
nondimensional mass .

It is easy to verify that for = 0, the results coincide with those for
a clamped-free beam, whereas for , the natural frequencies for
a clamped-supported beam are obtained. For = 1, for instance, the
results are 1 = 1 248, 2 = 4 031, 3 = 7 134, 4 = 10 257, ..., which
are lower than those for the clamped free beam (the presence of the added
mass lowers the natural frequencies, as expected). The results are reported
in Figure 5.6.

5.3 E ect of the moments of inertia: Timoshenko
beam

In the case of the Euler-Bernoulli beam, the rotational inertia of the cross
section and shear deformation were not taken into account. Moreover, gy-
roscopic e ect caused by rotation of the beam about -axis causes the
behavior of the beam in - and -planes to be coupled.
Neglecting external distributed forces that may act on the beam, the

equilibrium equation for translations is still Equation (5.1), without the
term in , together with a similar equation for the behavior in the -plane
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2

2
= ,

2

2
= .

(5.39)

If the beam is axially symmetrical and no distributed bending moments
act on the beam, the equilibrium equations for rotations about - and -
axes of the length of the beam can be computed starting from Equation
(5.2), in which also inertia torques and gyroscopic moments are accounted
for

=
2

2
2 ,

+ =
2

2
2 ,

(5.40)

where is the spin speed of the shaft and the polar moment of inertia of
the cross section is = 2 .
By di erentiating Equations (5.40) with respect to and introducing

them into Equations (5.39), it follows that

2

2
+

2

2

2

2
+ 2 = 0 ,

2

2

2

2
+

2

2
+ 2 = 0 .

(5.41)

If shear deformation is neglected, the rotation of the cross section is
simply

= = . (5.42)

The bending moment can be linked to the inflected shape of the beam
by the relationships

=
2

2
=

2

2
. (5.43)

Equations (5.41), can thus be written in the form

2

2
+

4

4

2

2

µ
2

2

¶
2

2

2

µ ¶
= 0

2

2
+

4

4

2

2

µ
2

2

¶
+ 2

2

2

µ ¶
= 0

(5.44)
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By introducing the complex coordinate = + , Equations (5.44)
reduce to

2

2
+

4

4

2

2

µ
2

2

¶
+ 2

2

2

µ ¶
= 0 . (5.45)

Equation (5.45) can be used for the computation of the Campbell di-
agram and of the critical speeds, but it has a disadvantage, linked with
the assumptions used to obtain it: When the slenderness of the beam is
low enough and the rotational inertia of the cross sections becomes impor-
tant in determining its dynamic behavior, also shear deformations are large
enough to require their inclusion in the model. A beam based on the Tim-
oshenko beam model needs to be considered, and shear deformation can be
taken into account as a deviation of the direction of the deflected shape of
the beam not accompanied by a rotation of the cross section. The latter is
then no more perpendicular to the deformed shape of the beam, and the
rotation of the cross section in the two inflection planes can be expressed
as

= = (5.46)

The shear strains and are linked to the shear forces by the rela-
tionship

= = , (5.47)

where the already mentioned shear factor depends on the shape of the
cross section, even if there is not a complete accord on its value. For a
circular beam, a value of 10/9 is usually assumed; for other shapes, the
expressions reported in Table 4.1 can be used.

Remark 5.2 In rotordynamics, the so-called Euler-Bernoulli and Timo-

shenko beam di er from each other because the latter includes (a) shear

deformation, (b) inertia of the cross section for rotations about - and -

axes, and (c) gyroscopic e ect.

Equation (5.46) can thus be written in the form

= = + (5.48)

The bending moment has no e ect on the shear deformation: If the lat-
ter is accounted for, the relationship linking the bending moment to the
inflected shape of the beam becomes

= = (5.49)
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By solving Equation (5.48) in and and introducing it into Equation
(5.39), it follows that

2

2
=

µ
2

2

¶

2

2
=

µ
2

2
+

¶ (5.50)

Operating in the same way as with Equation (5.40), it follows that

2

2
+ 2 =

µ
+

¶
+

2

2
,

2

2
2 =

µ ¶
+

2

2
.

(5.51)

By di erentiating equations (5.50) with respect to and eliminating
and , the following equations can be obtained:

4

4

µ
1 +

¶
4

2 2
+

2 4

4
+

+2

·
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3

3

¸
+
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(5.52)

If the complex coordinate = + is introduced, Equations (5.52)
reduce to

4

4

µ
1 +

¶
4

2 2
+

2 4

4
+

+2

·
2

2

µ ¶
3

3

¸
+

2

2
= 0 .

(5.53)

The solution of Equation (5.53) is

( ) = ( ) (5.54)

which yields
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4 ( )
4
+

·
2

µ
1 +

¶
2

¸
2 ( )

2
+

+

·
4 2 3 2

¸
( ) = 0 .

(5.55)

The same considerations regarding the form of the eigenfunctions seen in
the preceding section also hold in this case. If the beam is simply supported
at both ends, the same eigenfunction seen in the case of the Euler-Bernoulli
beam =

0
sin( ) still holds. From Equation (5.55), it is thus possible

to obtain the characteristic equation

4 2 3

h
1 +

2 2

2

³
1 +

´i
2+

+2
2 2

2 +
4 4

4 = 0 .

(5.56)

By introducing the nondimensional frequency and speed

=
2

2

q =
2

2

q , (5.57)

obtained by dividing them by the value of the first natural frequency of
the Euler-Bernoulli beam, the characteristic equation can be expressed in
nondimensional form as

4 2 3 2

2 2

2

µ
1 + +

2

2 2

¶
+ 2

2 2

2
+

4 4

4
= 0 ,

(5.58)
where the slenderness of the beam and are

=
q

= =

and is the radius of inertia of the cross section.
The results obtained from Equation (5.58) for a beam with circular cross

section ( = 10 9) and material with = 0 3 are reported in the form of
a nondimensional Campbell diagram for two di erent values of the slen-
derness in Figure 5.7. Note that the Campbell diagrams have been plotted
showing the first and second quadrants, to expand the scale more than
the scale. The e ects of both shear deformation and rotational inertia
tend to lower the value of the natural frequencies, as seen by the intersec-
tions with the -axis (for an Euler-Bernoulli beam, they should be at the
values 1, 4, 9, and 16).
A particular transformation can be devised to plot figures like Figure

5.7, in which some branches of the plot extend to very high values of the
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FIGURE 5.7. Nondimensional Campbell diagram of a Timoshenko beam simply
supported at the ends with two di erent values of the slenderness ( = 5 and
= 30). The first four natural frequencies have been plotted.

abscissas or the ordinates, whereas other stay about the origin, without
amplifying too much the zone about the origin as it occurs with logarithmic
scales. The transformation is very simple: The quantity spanning from 0
to infinity is transformed into the quantity ¯ laying in the interval [0, 1]
using the relationship

¯ =
1

. (5.59)

Figure 5.8 has been obtained by transforming Figure 5.7 by using Equa-
tion (5.59) for both the - and -axes.
From the figure, it is clear that even with a fairly low value of the slen-

derness ( = 30), the Campbell diagram is reasonably flat and only very
high-frequency modes are a ected by the gyroscopic e ect. In Figure 5.7
they are out of the plot, because their nondimensional frequency is higher
than 50. As a consequence, the critical speeds and the whirling frequencies
can be computed with su cient precision, even neglecting gyroscopic ef-
fect and computing the natural frequencies at standstill. The e ect of shear
deformation is, however, not negligible.
The plot computed for a slenderness of five shows a greater gyroscopic

e ect. However, the higher branches of the Campbell diagram, which have
an asymptote whose equation is = 2 , do not intersect the line = ,
i.e., do not give way to critical speeds. The critical speeds are, even in this
case, not very far from the natural frequencies at standstill, as the relevant
branches of the Campbell diagram are still close to horizontal straight lines.
A slenderness equal to five is at any rate too low: The Timoshenko beam
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FIGURE 5.8. Same as Figure 5.7 but with the scales transformed using Equation
(5.59). The whole Campbell diagram spanning from - to is reported.

model is an approximation, because it is based on the beam theory, and
the very model of a one-dimensional solid is no more satisfactory for very
low values of .

5.4 Dynamic sti ness matrix

The finite element method yields results that, even in the case of beam
elements, are approximated (although they can be very close to the correct
ones) because the shape functions cannot yield the exact inflected shape.
To overcome this limitation, which is more apparent than real, an exact
method has been developed for beam elements, in which the expression of
the deflected shape obtained through the continuous model is assumed.
In the case of a homogeneous, prismatic Euler-Bernoulli beam performing

harmonic oscillations with frequency in the -plane, for example, the
general solution of Equation (5.7) yielding the deflected shape with any
boundary condition is

( ) = 1 sin( ) + 2 cos( ) + 3 sinh( ) + 4 cosh( ) (5.60)

where = 4

p
.

Constants can be obtained from the boundary conditions, i.e., from
the nodal generalized displacements. Note that in this case, the shape func-
tions that can be obtained from Equation (5.60) depend on the frequency
of the harmonic motion. They can be used to compute the mass and

sti ness matrices of the element in the usual way. In this case, these ma-
trices contain the frequency of the harmonic motion, and it is possible
to directly write the dynamic sti ness matrix
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K =K 2M

which for the Euler-Bernoulli beam, is [40]

K =
3 [1 cos( ) cosh( )]

1 2 3 4

2
5 4

2
6

1 2

symm 2
5

, (5.61)

where

1 =
3 [sin( ) cosh( ) + cos( ) sinh( )] 2 =

2 sin( ) sinh( )

3 =
3 [sin( ) + sinh( )] 4 =

2 [cos( ) cosh( )]

5 = [sin( ) cosh( ) cos( ) sinh( )] 6 = [sinh( ) sin( )]

and

= = 4

s
4

A similar approach can be used, at least in principle, for any element,
provided that an expression of the type of Equation (5.60) can be obtained
from a continuous model. The dynamic matrices of the various elements
can be assembled in the same way seen for mass and sti ness matrices.
When the response to harmonic excitation has to be computed, the fre-
quency of the motion is known and the computation is straightforward.
On the contrary, when computing the natural frequencies of the system,
the solution of the eigenproblem is complicated because it is impossible to
express it in standard form and then apply the usual numerical methods.
The solution follows the lines seen for methods based on transfer matrices:
A value of the frequency is assumed, and the determinant of the dynamic
sti ness matrix is computed. The determinant is not equal to zero, unless
a natural frequency has been chosen, and new values of the frequency are
assumed. A plot of the value of the determinant as a function of the fre-
quency is then drawn. From the plot, the values of the frequency causing
the determinant to vanish can be obtained. The problem here is that the
determinant of a fairly large matrix has to be computed many times and
this is, from a computational point of view, far more involving than solving
an eigenproblem in standard form using standard techniques.
The dynamic sti ness matrix, which is now a function of the frequency,

can be expressed as a power series in the frequency . By performing the
series expansion of the trigonometric and hyperbolic functions included
into Equation (5.60), it is possible to show that only even powers of are
present:

K = K
0
+ 2K

2
+ 4K

4
+
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The first term K
0
is

K
0
=

3

12 6 12 6
4 2 6 2 2

12 6
symm 4 2

(5.62)

It depends only on the elastic properties and coincides with the sti ness
matrix of the Euler Bernoulli beam.
The second term K

2

K
2
=

420

156 22 54 13
4 2 13 3 2

156 22
symm 4 2

(5.63)

depends only on the inertial properties and coincides, except for the sign,
which is obviously changed, with the mass matrix.
The third term K

4

K
4
=

2 2 5

69854400

25488 5352 23022 5043
11362 5043 1097 2

25488 5352
symm 1136 2

(5.64)

and all other terms of the series depend on both inertial and sti ness prop-
erties and represent a correction of the potential and kinetic energy of the
element caused by a more precise formulation of the displacement field. The
standard approach can thus be thought of as a truncation at the second
term of the series for the exact dynamic sti ness matrix.
The dynamic sti ness matrix approach was sometimes used in rotordy-

namics; however, its drawbacks, mainly those of leading to long and costly
computations and of being applicable only to harmonic motion, are greater,
in the opinion of the author, than its advantage of giving a better approx-
imation, which can be obtained simply by using a finer mesh, with far
less computational di culty. Note that the term exact used in this context
means simply that it leads to the same results of the beam theory, i.e., of
the continuous model. All of the approximations linked to that model are,
however, present.

Example 5.2 Compute the natural frequencies of a beam on two identical elas-

tic supports with = 3 = 100 located at its end using the dynamic

sti ness approach, and compare the results obtained with those computed through

the FEM.

A sketch of the system is shown in Figure 5.4(a). If the beam is modeled with

a single element, the dynamic sti ness matrix is, after assembling the sti ness of
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1 2 3 4

Dynamic sti ness 1 el. 2.877 4.663 6.076 8.276

FEM (consistent) 1 el. 2.974 4.751 6.551 9.973
2 el. 2.881 4.711 6.101 8.758
4 el. 2.877 4.667 6.086 8.307

FEM (lumped) 1 el. 3.761 3.761 - -
2 el. 2.935 4.472 4.770 -
4 el. 2.892 4.646 5.641 7.167
8 el. 2.881 4.661 5.964 7.939

TABLE 5.3. Values of the first four natural frequencies (or better, of nondimen-
sional parameter = =

4
p

4 ) for a beam on two elastic supports
computed using the dynamic sti ness matrix approach and the FEM.

the end supports

K =
3

1 + 2 3 4

2
5 4

2
6

1 + 2

symm 2
5

where

= 1 cos( ) cosh( ) , =

3

.

To study the general case of the beam with any length, instead of using the rota-

tions at the end nodes
1
and

2
as degrees of freedom, the products are used.

The vector of the generalized coordinates is then

q =
£

1 1 2 2

¤
.

The equation yielding the natural frequencies is then

det

1 + 2 3 4

5 4 6

1 + 2

symm 5

= 0

No closed-form solutions can be found, but there is little di culty in plotting the

determinant as a function of and then finding the values of , which cause the

determinant to vanish. Such a plot is reported in Figure 5.9.The first four values

of are reported in Table 5.3. The values obtained using the dynamic matrices

approach coincide with those computed using the beam theory. In the same table,

the results computed using the standard FEM approach and a di erent number of

elements are reported.

By using the consistent mass matrices, fairly good results are obtained by ap-

proximating the structure with just two elements, particularly for what the first

two natural frequencies are regarded. A larger number of elements are required

for higher order modes. When using the lumped mass matrix, a large number of

elements is required to obtain a comparable accuracy.
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FIGURE 5.9. Determinant of the dynamic sti ness marix as a function of the
frequency.

Example 5.3 Propeller shaft for a front engine, rear-wheel drive, motor car.

Consider the propeller shaft of a motor car with front engine and gearbox and

rear-wheel drive. The shaft is made in two sections, with a hook joint between

them and a central elastic support, attached to the vehicle body. The shaft is

connected to the gearbox and the final drive through elastic joints. A model of the

system is shown in Figure 5.10.

Also, the output shaft of the gearbox and the input shaft of the final drive have

been included in the model. The various shafts have been modeled using 14 Tim-

oshenko beam elements (because the shafts are very slender, also Euler-Bernoulli

beams could have been used). Three spring elements plus six concentrated mass

elements were used to model the joints, whereas a further spring element was used

for the central support. The bearings (two on the input shaft of the final drive and

three on the output shaft of the gearbox) were modeled as rigid constraints, by

eliminating the relevant degrees of freedom.

The first three values of the critical speeds are reported in Table 5.4, together

with the first three natural frequencies at standstill. The modes corresponding to

the first three critical speeds are shown in Figure 5.11.

All computations were performed using a reduction scheme with ten master

degrees of freedom. The first mode is a rigid-body mode, in which the two parts

of the shaft vibrate on the central support. This mode could be obtained simply

by reducing the whole system to a single-degree-of-freedom system, by condensing

everything on the translational degree of freedom of node 9 or 10. The result is
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FIGURE 5.10. FEM model of a transmission shaft. The output shaft of the
gearbox and the input shaft of the final drive have been included in the model.

[rad/s] [rad/s]

Master degrees of freedom 1 10 1 10

I 118.2 117.9 117.1 117.0
II — 1236 — 1061
III — 1891 — 1507

TABLE 5.4. Values of the first three critical speeds together with the first three
natural frequencies at standstill

a single-degree-of-freedom system with a mass of 5.29 kg and a sti ness of 72 6

kN/m. The fact that the critical speed obtained using this model is close to that

obtained through more complex models shows that the first mode is actually a

rigid-body mode.

The Campbell diagram is reported in Figure 5.12. Note that although the first

mode is almost independent from the speed, as expected for a transmission shaft,

the other modes show a stronger dependence. This is mostly because of the polar

moments of inertia of the joints.

For evaluating the unbalance response, an unbalance grade G40 (see Appendix

B), typical of automotive transmission shafts, is assumed. If the maximum speed

of the drive shaft is 1,000 rad/s, such unbalance corresponds to an eccentricity of

about 40 m. The response is reported in Figure 5.13, in terms of amplitude and

phase of the orbit of node 10. For the computation of the amplitude when crossing

the critical speed, a hysteretic damping with loss factor = 0 05 has been assumed

for the central support. The amplitude of the orbit and the modulus of the force

exerted on the body of the car during the critical speed crossing are, respectively,

310 m and 26 N. Note that after the critical speed, the system self-centers almost

completely; however, the value of the amplitude of the orbit is smaller than 40

m, because the eccentric mass is only that of the joint, and not all the mass

associated with node 10.
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FIGURE 5.11. Modes corresponding to the first three critical speeds of the trans-
mission shaft.

FIGURE 5.12. Campbell diagram of the transmission shaft, computed using ten
master degrees of freedom.
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FIGURE 5.13. Response to a static unbalance (grade G40) of the central joint.



6
Anisotropy of rotors or supports

All of the models studied in the preceding sections are based on the as-
sumptions of axial symmetry of the whole system. There are many cases,
however, in which some of the parts of the machine that are included in the
model do not possess axial symmetry. If either the stator or the rotor are
isotropic about the axis of rotation, the rotordynamic analysis can still be
performed in closed form without great di culties. If on the contrary both
lack axial symmetry, the computation of the natural frequencies, critical
speed, and unbalance response becomes far more di cult and closed-form
solutions are not available.
It must be noted that there are cases in which the system displays a

nonisotropic behavior, even if all of the parts of the machine are geomet-
rically axi-symmetrical. This occurs particularly when the rotor runs on
lubricated journal bearings: Under the e ect of external forces, the journal
takes an eccentric position within the bearing and reacts in di erent ways
to the forces in the various planes through the rotation axis.
In the following sections, the dynamic behavior of both an axially sym-

metrical rotor running on anisotropic supports and an asymmetrical rotor
supported by isotropic bearings will be dealt with. A very simple configu-
ration, based on the Je cott rotor, will be studied first. After the relevant
phenomena have been qualitatively understood using this simplified model,
a more complete study, allowing quantitative results to be obtained in the
case of very complex systems, will be expounded.
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FIGURE 6.1. Force-displacement relationship for an anisotropic support. (a)
Force and displacement ; (b) polar plot of the displacements caused by a
force with constant modulus and varying direction.

6.1 Isotropic rotors on anisotropic supports

6.1.1 Je cott rotor on nonisotropic supports

Consider the case of the rotor in Figure 2.1(b) but assume now that the
sti ness of the supports is not isotropic in the -plane. All other assump-
tions made in Section 4.5, in particular, the linearity of the system and the
assimilation of the rotor to a point mass, will be retained. The motion will
be studied in the -plane.
The anisotropic nature of the supports makes the displacement to occur

in a direction that is in general di erent from that of the applied force.
Consider the case of Figure 6.1(a), in which the support is made by two
springs acting in the direction of - and -axis with sti ness and ,
respectively. If the components of the force are

½
= cos ( ) ,
= sin ( ) ,

the components of the displacement are

= = cos ( ) ,

= = sin ( ) .

(6.1)

If the force is kept constant in modulus while its direction changes,
the displacement describes an ellipse in -plane [Figure 6.1(b)], whereas
if it is the modulus of the displacement that is kept constant, the force
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describes an ellipse in the -plane. The modulus of the sti ness is then

| | =
| |

| |
= q

2 sin2 ( ) + 2 cos2 ( )
. (6.2)

The polar plot of the sti ness, defined as
½

= | | cos ( ) ,
= | | sin ( ) ,

(6.3)

is an ellipse, the so-called ellipse of elasticity , provided that | | is reported
in the direction of the force and not in the direction of the displacement.
If axes and are directed along the axes of the ellipse of elasticity, i.e., in

the direction of the springs of Figure 6.1(a), the force and the displacement
have the same direction ½

= ,
= .

(6.4)

Note that here the forces are the reactions of the support and not the
forces acting on it, as shown by the negative sign.
If axes and are not the axes of the ellipse of elasticity, the force-

displacement relationship cannot be expressed by Equation (6.4), but be-
comes ½ ¾

=

· ¸½ ¾
(6.5)

with = .
In the case of the Je cott rotor, axes and will be assumed to coincide

with the axes of the ellipse of elasticity, i.e., to be the principal axes of
elasticity of the supporting structure, without loss of generality.

Remark 6.1 In the case of rotors with a larger number of degrees of free-

dom, the ellipses of elasticity at the various nodes can be directed in a

di erent way and no reference frame in which Equation (6.4) holds may

exist.

Assume that the sti ness along the -direction is lower than that along
the -direction. By introducing the two di erent values of the sti ness into
the equation of motion (2.6), the latter transforms into

½
¨ + = 2 cos( ) +
¨+ = 2 sin( ) +

(6.6)

From the homogeneous equation, it is clear that there are two natural
frequencies, one (the lower) related to the motion in the -plane and the
other related to the motion in the -plane:

1
=

r
2
=

r
(6.7)
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They are not influenced by the spin speed, and then the Campbell dia-
gram is made by two horizontal straight lines. Note that in this case, the
free motions in the two planes occur at di erent frequencies, so that the
two harmonic motions cannot combine to make circles or ellipses.
The fact that the two natural frequencies are independent of the spin

speed causes the two critical speeds to coincide with them:

1
=

1
=

r
2
=

2
=

r
(6.8)

At the first critical speed, the motion reduces to a straight vibration
along the -axis, and at the other critical speed, it reduces to a straight
motion along the -axis.
The unbalance response can be obtained directly from Equation (6.6),

assuming a solution of the type
½

= 0 cos( )
= 0 sin( )

(6.9)

The response in each plane is then equal to the response of the Je cott
rotor, computed using the sti ness related to that plane. The amplitudes
of the two harmonic motions are

0 =
2

2
0 =

2

2
, (6.10)

and the orbit in -plane is an ellipse whose axes are directed along - and
-axes.
The unbalance response can be subdivided into three speed ranges (Fig-

ure 6.2):

• From standstill to the first critical speed [Figure 6.3(a) and (b)]: The
responses in the two planes have the same sign and are out of phase
from each other by 90 , as clearly seen from Equations (6.9) and
(6.10), where the response is expressed by a sine and a cosine function.
The orbit grows mainly along the -axis and has the shape of an
elongated ellipse. Approaching the first critical speed, the axis of the
orbit along the -axis tends to infinity.

• From the first to the second critical speed [Figure 6.3(c), (d), and (e)]:
The response along the -axis is negative, having already crossed the
critical speed; that along the -axis is positive. When they combine,
they give way to an elliptical motion in the backward direction. Near
the first critical speed, the ellipse is elongated along the -axis (c),
and near the second one, it is elongated in the other direction (e).
There is an intermediate speed at which the amplitudes in the two
planes are equal and the orbit is circular (d). Unbalance, an excitation
that by definition is applied in the forward direction, can thus excite
a backward synchronous whirling of the rotor.



6.1 Isotropic rotors on anisotropic supports 231

FIGURE 6.2. Je cott rotor on anisotropic supports. Amplitude of the motion
along -axis (where the sti ness is lower) and along -axis.

• Above the second critical speed [Figure 6.3(f) and (g)]: The signs
of the amplitudes in both planes are the same, and they both tend
to the same value, namely, to . An elliptic forward whirling that
tends to become circular with increasing speed is so obtained; self-
centering takes place normally. It could easily be expected that in
the high supercritical field, the elastic anisotropy has little influence
on the dynamic behavior of the rotor: The behavior of the system is
dominated by inertia forces that are clearly isotropic.

The behavior of the Je cott rotor on anisotropic supports was studied
using real coordinates. Although not very common, it is also possible to
use complex coordinates to study nonsymmetric systems. As usual, it is
possible to add the first Equation (6.6) to the second equation multiplied
by the imaginary unit . By introducing the mean sti ness

= ( + ) 2 (6.11)

and the deviatoric sti ness

= ( ) 2 , (6.12)

the equation for the unbalance response in terms of complex coordinates is

¨+ + = 2 (6.13)

where is the conjugate of the complex number . The solution of the
homogeneous equation is of the type

= 1 + 2
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FIGURE 6.3. Je cott rotor on anisotropic supports. Orbits at di erent values of
the speed. (a) and (b) subcritical; (c), (d), and (e) between the critical speeds;
(f) and (g) supercritical (the letters refer to Figure 6.2).

which gives way to elliptical orbits. It can be introduced into the homoge-
neous equation of motion, yielding

µ
2

·
0

0

¸
+

· ¸¶½
1

2

¾
=

½
0
0

¾
(6.14)

Equation (6.14) yields an eigenproblem in , yielding the values of the
whirl frequencies coinciding with those expressed by Equation (6.7).
The particular integral allowing us to compute the unbalance response

is

= 1 + 2

By introducing it into the equation of motion and solving for the am-
plitudes of the forward and backward components 1 and 2, the following
unbalance response is obtained:

=
2

( 2)( 2)

·
( 2)

¸
(6.15)

It is easy to demonstrate that the orbits expressed by Equation (6.15)
coincide with those expressed by Equation (6.10). The possibility of back-
ward whirling to be excited by unbalance is, however, more obvious when
complex coordinates are used: At the speed =

p
, the amplitude

of the forward component vanishes, and the orbit is a circular backward
whirl with amplitude 0 = .
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FIGURE 6.4. Composition of the harmonic motions in the direction of -
and -axes into an ellipse in -plane (peak-to-peak amplitudes pp = 2 0

and. pp = 2 0).

6.1.2 E ect of damping

If the system is damped, the equation of motion can be written in the form

·
0

0

¸½
¨
¨

¾
+

·
+ 0
0 +

¸½
˙
˙

¾
+

+

· ¸½ ¾
= 2

½
cos( )
sin( )

¾
.

(6.16)

Although in the case of undamped systems [Equation (6.6)] the unbal-
ance response takes the form of an ellipse with both axes aligned with the
principal axes of elasticity of the supports ( - and -axes), now the ellipse
is rotated; i.e., the phases of the two harmonic motions are no more equal
to 0 and 90 (Figure 6.4). The unbalance response can thus be written in
the form ½

= 0 cos( ) ,
= 0 cos( ) ,

(6.17)

where 0 and 0 are the peak amplitudes of the displacements along the
axes and and are the phase delays with respect to the common phase
reference. By introducing the solution (6.17), the average parameters of the
system
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0 =

r
+

2
=

r
(6.18)

=
+

2
p
2 ( + )

=
2
p
2 ( + )

, (6.19)

the anisotropy parameters

=
+

=
+

(6.20)

and the nondimensional speed

=
0

(6.21)

into Equation (6.16), the equation yielding the nondimensional amplitudes

0 and 0 and the phases of the harmonic motions along the two axes
becomes

1 + 2 2 2 0
2 1 + 2 0 2
2 0 1 2 2
0 2 2 1 2

0 cos

0 sin

0 cos

0 sin

=

(6.22)

= 2

1
0
0
1

,

where
= (1 + ) + and = (1 ) + .

Also in the case of damped systems, a range in which backward whirling
occurs may exist between the two critical speeds of the undamped system,
located at speeds equal to

p
and

p
. This range is smaller than

that characterizing the undamped system, which spans from one critical
speed to the other, and reduces with increasing nonrotating damping. If
the latter is large enough, it disappears altogether.
To assess the direction of the whirling motion, it is expedient to introduce

the di erence of the two phases

= . (6.23)

Defining angle = , the equations describing the elliptical orbit
(6.17) become ½

= 0 cos( + ) ,
= 0 cos .

(6.24)
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Note that during a whole revolution of the shaft, (0 2 ).
To demonstrate the dependence of the whirling direction with , define
as the angle of vector with -axis

= arctan
³ ´

= arctan

·
0 cos

0 cos( + )

¸
(6.25)

The velocity at which such vector rotates is

=
( )

=
0 0 sin

2

0
cos2 ( + ) + 2

0
cos2

. (6.26)

For = 0, it becomes

=
0 0 sin

2

0
cos2 + 2

0

(6.27)

The sign of is determined by the sign of its numerator, i.e., by
the sign of sin , positive for (0 180 ) (whirling direction coincident
with the rotational speed, forward whirling), negative for (180 360 )
(backward whirling). The speeds at which the reversal of the whirl speed
occurs are thus identified by the condition = 180 .
The nondimensional amplitudes and angle for a rotor with = 1 5

( = 0 2), = 0 05, = 0, and = 0 are reported as functions of the
nondimensional spin speed in Figure 6.5(a).
At low speed, the orbit grows as an ellipse with larger axis in the direction

in which the supports are softer, and at the critical speed, its amplitude is
limited and its direction is slightly misaligned with the principal direction
of the supports [Figure 6.5(b)]. The orbit then starts to rotate in the -
plane and to become thinner: If at a certain speed it reduces to a line, a
reversal of the direction of whirling occurs. The backward orbit continues
to rotate, getting more circular, and at a certain speed, circular backward
whirling may or may not take place. Then the ellipse becomes very thin
again, reduces to a line, returns to forward whirling, and after a rotation
of almost 90 , the crossing of the second critical speed takes place. After
the second critical speed, the orbit tends again to circularize, until self-
centering occurs at high speed.
This behavior is clearly shown in the orbital tube representation and its

related views of Figures 6.6 and 6.7.

Remark 6.2 As the orbit is not circular, the unbalance response is influ-

enced by rotating damping as well as nonrotating damping.

Remark 6.3 The main feature of rotors on anisotropic supports is the

eventual presence of backward whirling in the unbalance response: Because

acting in forward direction (unbalance) can thus produce a backward re-

sponse.
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FIGURE 6.5. (a) Nondimensional amplitudes and angle for a rotor with
= 1 5 ( = 0 2), = 0 05, = 0, and = 0 as functions of the

nondimensional spin speed . (b) Nondimensional values of the major axis
and the minor axis of the elliptical orbit. (c) Inclination of the orbit (defined
in Figure 6.4) as functions of the nondimensional speed. The minor axis vanishes
at the speed in which the reversal of the whirling direction occurs.

Example 6.1 First vibrational mode of the motor car transmission shaft stud-

ied as Example 5.3, but on anisotropic supports.

Consider the propeller shaft of a motor car with front engine and gearbox and

rear-wheel drive already studied in the mentioned example (Figure 5.10) and as-

sume that the central support is not isotropic, with a sti ness of 120 kN/m in

vertical direction and of 80 kN/m in horizontal direction, instead of being isotropic

with a sti ness of 100 kN/m.

By proceeding in the same way already seen in Example 5.3, a Je cott rotor

model with mass = 5 292 kg and two values of the sti ness equal to 87.12 kN/m

and 58.08 kN/m in vertical and horizontal direction, respectively, are obtained.

This leads to a mean sti ness = 72 58 kN/m and a deviatoric sti ness =

14 43 kN/m.

The natural frequencies are 128.3 rad/s and 104.8 rad/s instead of 117.1 rad/s.

6.1.3 System with many degrees of freedom

The equation of motion of a general multi-degrees-of-freedom axi-symmetrical
system is Equation (4.75), if real coordinates with the standard definition of
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FIGURE 6.6. Nondimensional orbital tube for the Je cott rotor on anisotropic
supports studied in the previous figures. The color scale (in the black and white
representation the gray scale) is used to stress the information on the amplitude
of the orbit.

the rotational degrees of freedom are used. For convenience, that equation
is repeated here

·
M 0

0 M

¸
ẍ +

µ·
(C +C ) 0

0 (C +C )

¸
+

+

·
0 G

G 0

¸¶
ẋ +

µ· ¡
K+K 2

¢
0

0
¡
K+K 2

¢
¸
+

+

·
0 C

C 0

¸¶
x = 2

½
f cos( ) f sin( )
f sin( ) + f cos( )

¾

Matrices with subscripts and di er from each other only because of the
usual sign conventions used for - and -planes: If the degrees of freedom
are listed in such a way that the elements of vector x with odd subscript
are related to translations and those with even subscript to rotations, all
elements of the relevant matrices with subscript or are identical to
those of the matrices with subscripts or if their subscripts add to
give an even number. They have equal absolute value but opposite sign
otherwise.
The same equation can be written in the form of Equation (4.74)

·
M 0

0 M

¸
ẍ+

µ ·
0 G

G 0

¸
+

·
C +C 0

0 C +C

¸¶
ẋ+
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FIGURE 6.7. Nondimensional unbalance response of the Je cott rotor on
anisotropic supports studied in the previous figures. (a) Orbital tube; (b) or-
bital view; (c) and (d) projections on the - and -planes, respectively. The
light zone identifies the speed range in which backward whirling occurs.

µ·
K+K 2 0

0 K+K 2

¸
+

·
0 C

C 0

¸¶
x = 2

½
Re(f )
Im(f )

¾

if the coordinates related to rotations about -axis, and their related gen-
eralized forces (moments) are taken with the ( ) sign.
If complex coordinates are used, the relevant equation of motion is Equa-

tion (4.73)

Mq̈+ (C +C G)q̇+ (K+K 2 C )q = 2f

The sti ness matrix for the flexural behavior in - and -planes of a
general nonisotropic system can be written in the form

K =

·
K K

K K

¸
(6.28)

where submatrices K and K are di erent from each other and matrices
K andK are nonvanishing except in the case in which axes and are
principal axes of elasticity for the whole system. However, they are usually
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linked by the relationship K = K , which comes from the consideration
that the sti ness matrix must be symmetrical if it can be obtained from
the potential energy of the system. An important exception to this rule
is the case of the elements used to model lubricated bearings: When lin-
earizing their behavior, the sti ness matrix has components that should be
more properly included into the circulatory matrix, because they are skew
symmetric.
The same considerations hold also for the mass and damping matrices.

The matrices of the stator take then a form similar to Equation (6.28),
whereas those related to the rotor are those typical of isotropic system.
The overall matrices of the system (except for the rotating damping matrix)
have the form of Equation (6.28), and the equation of motion of the rotor
is

·
M M

M M

¸
ẍ+

µ ·
0 G

G 0

¸
+

·
C C

C C

¸¶
ẋ+

+

µ·
K K

K K

¸
++

·
0 C

C 0

¸¶
x =

= 2

½
Re(f )
Im(f )

¾
+

½
Re(f )
Im(f )

¾
(6.29)

where also a vector of nonrotating forces f has been added to the forces
caused by unbalance f and the real-coordinates vector is defined as in
Equation (4.74).
Also in the case of a nonisotropic system, it is possible to resort to com-

plex coordinates, by introducing the mean and deviatoric matrices. For the
sti ness matrix, they are defined as

K =
1

2
(K +K ) +

1

2
(K K ) ,

K =
1

2
(K K ) +

1

2
(K +K )

(6.30)

Note that, except in the mentioned case of elements used for the lin-
earized modeling of hydrodynamic bearings, the matrices with subscripts
and are equal and the mean matrices are real. On the contrary, de-

viatoric matrices are, in general, complex. Similarly, it is possible to define
also mean and deviatoric matrices for the mass and nonrotating damping
properties of the system. Note that, owing to the isotropy of the rotor, no
rotating damping deviatoric matrix exists. Using the complex-coordinates
approach and the definitions of mean and deviatoric matrices given by
Equation (6.30), the equation of motion describing the flexural behavior of
a general system with an isotropic rotor and a nonisotropic stator can be
shown to be [41]
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M q̈+ (C G)q̇+ (K C )q+M q̈+

+C q̇+K q = F + 2F , (6.31)

where q is the conjugate of q
Equation (6.31) involves actually working with complex coordinates, be-

cause deviatoric matrices are generally complex, and consequently, the
advantage of resorting to complex coordinates depends on the time and
cost-e ectiveness of the available subroutines for computations involving
complex numbers.
The solution for static loading is similar to the corresponding solution

for axi-symmetrical systems, i.e., a constant vector x = x0 (or q = q0 if
complex coordinates are used), leading to the equation

µ·
K K

K K

¸
+

·
0 C

C 0

¸¶
x0 =

½
Re(f )
Im(f )

¾
(6.32)

or, if complex coordinates are used,

(K C )q0 +K q
0
= f (6.33)

The inflected shape is a line (generally a skew line) fixed in space. Ro-
tating damping couples the behavior in the - and -planes, even if the
coordinate planes are planes of symmetry for the stator.
The unbalance response is a synchronous elliptical whirling. The solution

of the equation of motion can be expressed in the form

q = q1 + q2

i.e., as the sum of two circular whirling motions taking place at speed
in opposite directions. Both q1 and q2 are, generally speaking, complex
vectors that physically correspond to elliptical orbits not having axes
and as axes of symmetry. The unknowns of the problem are then 4
in number, i.e., the imaginary and real parts of two vectors of size . By
introducing this solution into the equation of motion (6.31), the latter yields

·
A11 A12

A21 A22

¸½
q1
q
2

¾
= 2

½
f

0

¾
(6.34)

where

A11 =
2(M G) + C +K

A12 =
2M + C +K

A21 =
2M C +K

A22 =
2(M +G) (C + 2C ) +K

(6.35)
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Remark 6.4 As already noted for the Je cott rotor on nonisotropic sup-

ports, rotating damping now enters the equation yielding the unbalance re-

sponse: The shaft no longer rotates in the deformed configuration but actu-

ally vibrates, in the sense that each part of it experiences stresses that vary

with time.

In the case of undamped systems, Equation (6.34) reduces to

µ·
K K

K K

¸
2

·
M G M

M M +G

¸¶½
q1
q2

¾
=

= 2

½
f

0

¾
(6.36)

which is real if the stator is symmetrical with respect to the coordinate
planes. Note that the mean mass matrix is always real and coincides with
its conjugate.
By equating to zero the determinant of the matrix of the coe cients

of Equation (6.36), an eigenproblem in 2 is obtained, which allows the
critical speeds to be computed. At certain speeds, vector q1 vanishes; this
physically corresponds to a circular backward whirling motion caused by
unbalance, as was shown in Section 6.1 for the Je cott rotor.
The equation corresponding to Equation (6.36), but obtained using real

coordinates, is very similar, and the complexity of the actual computations
to be performed is also similar.
In the case of free whirling, the orbits of the system are elliptical. The

relevant solution of the homogeneous equation of motion is of the type

q = q1 + q2

which leads to the following algebraic equation:

µ
2

·
M M

M M

¸
+

·
G 0

0 G

¸
+

·
C C

C C

¸
+

+

·
K K

K K

¸ ·
C 0

0 C

¸¶½
q1
q2

¾
= 0 (6.37)

The corresponding solution in terms of real coordinates is x = Re(x0 ),
which yields the following algebraic equation:

µ
2

·
M M

M M

¸
+

·
0 G

G 0

¸
+

·
C +C C

C C +C

¸
+

+

·
K K

K K

¸
+

·
0 C

C 0

¸¶
x0 = 0 (6.38)
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[rad/s]

Isotropic Non isotropic

I 117
104 7

128 1

II 1061
1061 1

1061 3

III 1507
1507 0

1507 2

TABLE 6.1. Values of the first six natural frequencies at standstill for the trans-
mission shaft on nonisotropic supports.

In the case of an undamped system whose stator is symmetrical with
respect to the coordinate planes, the two approaches are exactly equivalent,
because both lead to a set of 2 real algebraic equations. The eigenvalues
from Equation (6.37) are real, whereas those from Equation (6.38) are
imaginary. The eigenvectors of the former are real, and those of the latter
are made up of real and imaginary terms, depending on the phasing of the
various motions added to give the various orbits. In the most general case,
Equation (6.37) yields a set of 2 complex equations, and Equations (6.38)
are always real. In the author’s opinion, however, the physical interpretation
is more straightforward in the case of the former equation, even if it is not
su cient to find out the sign of the eigenvalue to assess whether the
whirl motion occurs in the forward or backward direction. In fact, if is a
solution of the eigenproblem, is also a solution, and consequently, each
mode is found twice, with opposite signs of Re( ).

Remark 6.5 There are modes, sometimes referred to as mixed modes, in
which the whirling occurs in the forward direction at some points of the

rotor and in the backward direction at other points.

Although only the study of the eigenvectors can make clear which mode
occurs in the forward or backward direction, the authors feel that the physi-
cal interpretation of the solution is somehow more clear when using complex
coordinates.

Example 6.2 Transmission shaft on anisotropic supports.

Consider the propeller shaft of a motor car with front engine and gearbox and

rear-wheel drive already studied as Example 5.3 (Figure 5.10). Assume that the

central support is not isotropic, with a sti ness of 120 kN/m in vertical direction

and of 80 kN/m in horizontal direction, instead of the isotropic value of 100 kN/m

assumed in the previous example.

By proceeding in the same way already seen in Example 5.5.1, the first six

values of the natural frequencies, computed using ten master degrees of freedom,

at standstill are reported in Table 6.1.

The lack of symmetry of the central support has a large e ect on the first

mode, which were computed with very good accuracy by using the Je cott rotor
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FIGURE 6.8. Unbalance response at node 10 in a speed range close to the first
critical speed. (a) Size of the two semi-axes of the elliptical orbit; (b)amplitudes
in vertical ( ) and horizontal ( ) directions.

model obtained condensing the whole structure on node 10 (Example 6.1). The

other modes, which are mostly a ected by the characteristics of the rotor, which

is isotropic, are essentially the same as those of Example 5.3.

The unbalance response at node 10 at the crossing of the first two critical speeds

is plotted in Figure 6.8.

Note that there are two values of the speed at which the small axis of the

elliptical orbit vanishes: The speed range between these two values is characterized

by backward whirling; however, there is no speed at which the orbit reduces to a

circle. The orbital tube is reported in Figure 6.9.

Example 6.3 Consider the small turbojet studied in Example 4.1, but assume

that the vertical sti ness of the supports is = 4 MN/m, whereas the horizontal

sti ness is = 1 MN/m Compute the critical speeds by using the Myklestadt-

Prohl method. As the stator is not axially symmetrical, the real coordinates ap-

proach must be followed and the transfer matrices have eight rows and columns.

The transfer matrix of the nodes in which the supports are located must take into
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FIGURE 6.9. Orbital tube of the system of Figure 6.8.

2 415 2 725 4 590 5,275 7 800 13 383 15 018

TABLE 6.2. Values of the first seven critical speeds (in rad/s), computed using
the Myklestadt-Prohl method, using real coordinates.

account the anisotropy of the latter, and Equation (4.16) becomes

T =

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0
2

+ 0 1 0 0 0 0 0

0
2

+ 0 1 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0
2

+ 0 1 0

0 0 0 0
2

+ 0 1

.

The determinant of the global sti ness matrix, computed in the speed range

from 0 to 16,000 rad/s after introducing the free-free end conditions, is reported

in Figure 6.10. In the speed range considered, the determinant vanishes at seven

values of the speed, reported in Table 6.2.

Example 6.4 Repeat the computations performed in the previous example by

using the component mode synthesis by considering the rotor as made by two

substructures, the rotor, and the bearings. Plot the Campbell diagram of the rotor.

The rotor is axially symmetrical, and as a consequence, its modal characteris-

tics are identical in the two planes. The sti ness, mass, and gyroscopic matrices
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FIGURE 6.10. Value or the determinant of the global transfer matrix (after
introducing the end conditions) as a function of the speed. (a) Range between 0
and 16,000 rad/s; (b) range between 0 and 9,000 rad/s.

of the rotor can be built in the same way seen in Example 4.10. The bearings are

located at nodes 6 and 13, so the displacements at these nodes are taken as mas-

ter degrees of freedom. All matrices are accordingly partitioned: Matrices with

subscript 11 have two rows and two column, those with subscript 12 have two

rows and 36 columns, and matrices with subscript 22 have 36 rows and columns.

The reduced matrices for the rotor are then computed: They have + 2 rows

and columns, if is the number of pairs of identical modes (in the two planes)

considered. The expressions for K ,M , and G are those seen in Example 4.10.

As the stator is not axially symmetrical, either the deviatoric matrices of the

stator are written or the computation is carried on using real coordinates. Al-

though in this case the first alternative is straightforward, here the real coordi-

nates approach is followed. The reduced sti ness, mass, and gyroscopic matrices

are then computed

K
0

=

·
K 0

0 K

¸
M

0

=

·
M 0

0 M

¸
G

0

=

·
0 G

G 0

¸
.

Their size is 2 ( + 2). To assemble the bearings to the structure, a sti ness of

10
6 N/m is added to the terms

0

11 and
0

22, whereas a sti ness of 4× 10
6 N/m

is added to the elements on the diagonal of the sti ness matrix in position + 3

and + 4.

The values of the first seven critical speeds obtained from a model in which

three mode shapes of the rotor are retained and reported in Table 6.3.

The Campbell diagram obtained from the same model is shown in Figure 6.11.

As the real coordinates approach has been used, only the part with positive of

the plot has been reported.
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2 417 2 723 4 602 5,272 7 778 13 570 15 106

TABLE 6.3. Values of the first seven critical speeds (in rad/s), computed using
the component mode synthesis approach (three modes).

FIGURE 6.11. Campbell diagram of the small tyurbojet on anisotropic supports
computed through component mode synthesis. Three modes of the rotor have
been retained.

6.2 Nonisotropic rotors on isotropic supports

If the rotor is not axially symmetrical, a fixed observer sees the elastic,
damping and in some cases inertial properties of the system to vary pe-
riodically in time. As such properties vary following an elliptical pattern
with the angle of rotation, the same situation repeats identically every half
a revolution, i.e., with a frequency equal to 2 . The equation of motion
written in the inertial reference frame is thus a linear di erential equation
with periodic coe cients, whose period is
However, if the nonrotating parts of the machine are axially symmetrical,

an observer that rotates together with the rotor sees all system properties
as constants. The equation of motion is then a linear di erential equation
with constant coe cients in a rotating reference frame. Note that such
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reference frame is not inertial, and the equation of motion includes the
usual noninertial terms (e.g., Coriolis and centrifugal acceleration, etc.).

6.2.1 Nonisotropic Je cott rotor

Consider a Je cott rotor of the type shown in Figure 2.1(a), in which the
sti ness of the shaft is not isotropic. The polar diagram of the sti ness is
now an ellipse whose axes can be assumed, without loss of generality, to lie
along the - and -axes. It is then possible to write an equation similar to
Equation (6.4) but referred to the O -frame:

= =

The equation of motion of an isotropic Je cott rotor written with refer-
ence to the rotating frame is Equation (2.166)
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By introducing two di erent values of the sti ness in - and -direction,
neglecting damping and introducing a phase angle between -axis and
the unbalance vector , the equation of motion of an anisotropic undamped
Je cott rotor is
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(6.39)

The unbalance response is easily obtained as a steady-state solution of
Equation (6.39)

=
2 cos( )

2
=

2 sin( )
2

(6.40)

which represents a circular whirling in a fixed reference frame.
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The denominators of Equation (6.40) vanish for two values of the spin
speed, which are the critical speeds of the system

=

r
=

r
(6.41)

By introducing the mean and deviatoric sti ness in the rotating frame

=
+

2
=

2
(6.42)

the same equation can be written with reference to the complex coordinate
= +

¨ + 2 ˙ 2 + + = 2 (6.43)

The free whirling of the system can easily be obtained from the homoge-
neous Equation (6.43) or (6.39), being immaterial whether real or complex
coordinates are used. In the first case, the solution of the homogeneous
Equation (6.39) is

=
0

0

= 0

0

where 0 is the Laplace variable in the rotating frame

0 = + 0 (6.44)

and 0 is the whirl speed in the -plane; it does not coincide with the
whirl speed in the -plane, but it is linked to it by the relationship

0 = . (6.45)

The homogeneous Equation (6.39) then yields an eigenproblem in 0

·
2 + 02 2 2 0

2 0 2 + 02 2

¸½
0

0

¾
= 0 (6.46)

By introducing the anisotropy parameter

= =
+

(6.47)

and the nondimensional whirl and spin speeds

0 =
0

0

=
0

=
0

0 =
0

0

(6.48)

computed with reference to the natural frequency of the average system

0 =

r
+

2
=

r
(6.49)
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the characteristic equation can be written in nondimensional form

0
4

+2 0
2

(1 +
2

) + (1
2

)2 2 = 0 (6.50)

The anisotropy parameter spans in the range 1, 1, with the central
value 0 for isotropic systems. If axis is chosen in such a way that ,

is negative. By first solving Equation (6.50) in 0
2

it follows that

0
2

=
³
1 +

2
´
±
p
4 2 + 2 (6.51)

The expression under the radical sign in Equation (6.51) is always posi-

tive: The two solutions for 0
2

are then always real. The one with the lower
sign ( ) is always negative and yields two imaginary solutions in 0 , one
positive and one negative, i.e., two oscillatory solutions in the -plane,
corresponding to circular whirling. The solution with the upper sign (+) is
negative only if

4

2
2

+ 1 2 0

As was assumed to be negative and with absolute value smaller than
unity, the last condition can be written in the form

1 + 1 ; (6.52)

i.e.,

r r
(6.53)

If Condition (6.53) is satisfied, the characteristic Equation (6.50) has
four imaginary roots — two positive and two negative. The whirling of the
system is then an undamped circular whirling, and no instability is present.
However, as could be expected from an undamped system, the amplitude
of the whirl orbit does not decay in time.
If the value of the spin speed lies between the two critical speeds of

the system, as shown by Condition (6.52), one of the solutions for 0
2

is
positive, and together with the two imaginary solutions, two real roots,
with opposite signs, are found. A positive real solution in 0 then exists,
which corresponds to an unstable behavior of the system, with amplitude
growing indefinitely with exponential law.

Remark 6.6 The presence of an elastic anisotropy of the rotating parts of

the system causes the occurrence of an instability range spanning from the

lowest to the highest critical speed.

The Campbell diagram ( ) and the decay rate plot ( ) for a system
with = 2 ( = 1 3) obtained from Equation (6.51) is plotted in
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FIGURE 6.12. Nondimensional Campbell diagram and plot of the decay rate
against the speed for a nonisotropic Je cott rotor on isotropic supports with

= 2 ( = 1 3).

Figure 6.12. Note that ( ) has been obtained as

= 0 + = Im( 0) +

The same conclusions already seen can be drawn from the figure. At low
speed, up to the first critical speed, there are four imaginary solutions.
Those on branches and of the curve come from the Solution (6.51)
with the lower sign ( ) and are a forward and a backward whirl. Those
on branch come from the solution with the upper sign (+) and are one
backward and one forward or both forward, depending on the value of .
At high speed, above the second critical speed, the situation is similar, the
di erence being that the solutions coming from the expression with the
upper sign (+) are both forward motions and lie on branch of the curve.
If the value of the speed lies in the instability range spanning between the
critical speeds, there are two imaginary solutions, on branches and of
the curve, and two real ones ( 0 = 0, and then in correspondence to the
real roots = ), reported in the plot ( ). The positive real solution
causes the behavior of the system to become unstable.
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The system of Figure 2.16 can be considered as a limiting case of an
asymmetrical rotor: The sti ness along the -axis is infinitely high, causing
a second critical speed that tends to infinity. The field of instability then
extends for all values of that are above the critical speed.

6.2.2 E ect of damping

The equation of motion of a nonisotropic Je cott rotor written with refer-
ence to the rotating frame can be obtained from Equation (2.166)
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(6.54)

By introducing the solution for free whirling

=
0

0

=
0

0

into the homogenous Equation (6.54), the following characteristic equation
is obtained:
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¸
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(6.55)
Equation (6.55) can be written in nondimensional form by introducing

the same parameters seen for the undamped system, plus the damping
ratios

= p
2 ( + )

=
+

2
p
2 ( + )

(6.56)

and the anisotropy parameter for damping

= =
+

. (6.57)

The characteristic equation in nondimensional form is then
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where

1(
0 ) = 1 + 2 + 0 2 + 2 0 [ (1 + ) + ] ,
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(6.59)
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By solving the determinant, it follows
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(6.60)
Also in the case of damped systems an instability range may exist be-

tween the two critical speeds of the undamped system, located at speeds
equal to

p
and

p
. This range is smaller than that characterizing

the undamped system, which spans from one critical speed to the other,
and reduces with increasing damping. If the latter is large enough, the
instability range may disappear altogether. The nondimensional Campbell
diagram ( ) and the decay rate plot ( ) for a system with = 2
( = 1 3), = 1 3, = 0 2, and = 0 1 obtained from Equation
(6.60) is plotted in Figure 6.13. The roots locus is reported in Figure 6.14.

Remark 6.7 On the decay rate plot, the e ect of damping is that of moving

down the loop, which in undamped systems is centered on the -axis, until

it lies all in the negative half-plane, showing that no instability is present.

Remark 6.8 Although rotating damping has a stabilizing e ect, together

with nonrotating damping, for what this instability range is concerned, it

can cause the system to become unstable at high speed.

6.2.3 Response to a static force

All conditions in which there is resonance between one of the natural fre-
quencies of the system and an exciting force di erent from that caused by
unbalance will be referred to as secondary critical speeds. It is well known
that when constant bending forces, such as the self-weight of a rotor whose
axis is horizontal, act on the rotor, the critical speeds and the Campbell
diagram are not influenced by the presence of such forces. Whirling takes
place about the deflected configuration of the rotor, but because of linear-
ity, the two e ects, namely, static bending and whirling, do not interact. It
is, however, well known that the weight of a rotor with a horizontal axis can
cause the occurrence of secondary critical speeds, whose values are about
half those of primary critical speeds or, more exactly, are located at the
intersections on the Campbell diagram of the curves for free whirling with
the straight line = 2 . The presence of these secondary critical speeds is
linked to the deviations from a perfect axial symmetry of the rotor.
In the case of the Je cott rotor studied in the preceding section, these

secondary critical speeds are easily deduced from Figure 6.12. In the figure,
an intersection of branch of the curve with the -axis is clearly visible.
The system has, at a well-determined speed, a natural frequency that is
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FIGURE 6.13. Nondimensional Campbell diagram and plot of the decay rate
against the speed for a nonisotropic damped Je cott rotor on isotropic supports
with = 2 ( = 1 3), = 1 3, = 0 2, and = 0 1. Note that the
system is always stable in the speed range shown in the figure.

vanishingly small and then a sort of resonance with a static force, i.e., with
a force constant in modulus and direction, is possible at that speed.
The phenomenon may be easier to understand with reference to the

rotating frame O , where condition = 0 is seen as 0 = . A constant
force in the -plane, as self-weight of a horizontal rotor, is seen in the -
plane as a force rotating with speed , which can cause resonance when
the natural frequency of the system has the same frequency. The same
phenomenon can also be seen in a di erent way. When the sti ness of the
shaft is not isotropic in the -plane, its polar diagram is an ellipse, the
ellipse of elasticity. The functions of time expressing the sti ness ( ) and
( ) are periodic in time, if the angular speed is constant, and their

period is equal to half a revolution (frequency equal to 2 ). The conditions
for resonance occur when the curves on the Campbell diagram intersect
the straight line = 2 .
The two ways of seeing the same phenomenon are equivalent: From Fig-

ure 6.12, it is clear that at the same value of the speed at which a branch of
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FIGURE 6.14. Nondimensional roots locus for the same system of Figure 6.13.

the curve intersects the -axis, another one intersects the line = 2 .
The value of the secondary critical speed for the Je cott rotor of Figure
6.12 can be obtained by looking for a solution

= = 2 (6.61)

in the inertial reference frame. The same solution in the rotating frame
(and in nondimensional terms) is

0 = = . (6.62)

By introducing Solution (6.62) into Equation (6.50) and solving in ,
it follows that

=
1

2
=

p
+

(6.63)

If and tend to a single value , 0 and the value of the
secondary critical speed tends to

=
1

2

r
=
1

2
(6.64)

Remark 6.9 Equation (6.64) holds only in the case of a Je cott rotor; in

all other cases, the secondary critical speeds can be found at the intersec-

tions of the curve ( ) with the line = 2 .
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Remark 6.10 Also, inertial anisotropy, i.e., di erence in the moments of

inertia about transversal baricentrical axes, has e ects similar to those seen

for elastic anisotropy.

All secondary critical speeds characterized by the condition , as
is the case for those excited by self-weight, occur in the subcritical region
and usually cannot trigger unstable behavior. The internal damping of the
rotor is in these conditions stabilizing, and generally speaking, no unstable
behavior is expected in the subcritical region.
The response to a static force can be studied directly using Equation

(6.39) (Equation (6.54) if the system is damped). Assume that the force is
applied along the -axis (this does not detract from the generality of the
solution, as a static force is fixed to the stator, which is isotropic): In the
rotating frame, it is seen as a force rotating backward at the speed For
the study of the response of the undamped system, a solution of the type

½
=

1 cos( ) + 2 sin( ) ,
=

1
cos( ) +

2
sin( ) ,

(6.65)

can then be introduced into Equation (6.39), in which the unbalance term
has been neglected, obtaining
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(6.66)
By adding the first equation to the fourth and the third one to the second,

it follows that
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(6.67)

The first and second Equations (6.66) yield
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2
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(6.68)

The motion of point C in the rotor fixed frame is then a backward el-
liptical whirling. By transforming it in the fixed reference frame, it follows
that ½

= cos( ) sin( ) ,
= sin( ) + cos( ) ,

(6.69)
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i.e., remembering Equation (6.65),

½
= 1 cos

2( ) 2 sin
2( ) ,

= (
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) sin( ) cos( ) ,

(6.70)

or ½
= 1
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2
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2
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(6.71)

The motion of point C is then the combination of a static displacement
in direction, i.e., in the direction of the static applied force , with
amplitude

1

2
(
1 2

) =
+ 8 2

2 4 2 ( + )
, (6.72)

plus a circular whirling motion, occurring at frequency 2 , with amplitude

1

2
( 1 + 2) = 2 4 2 ( + )

. (6.73)

The whirl amplitude decreases with increasing speed, tending to zero
when the speed tends to infinity, whereas the static displacement tends to
2 ( + ).
If , i.e., the rotor tends to be isotropic, the whirling component

vanishes, whereas the static component tends to , as expected.
When

=

p
+

i.e., when the Campbell diagram crosses the = 2 line, 1 2 and

1 + 2 .
The presence of damping couples the behavior in - and -planes, and

it makes the static component no more aligned with the load.

6.2.4 Anisotropic rotors with many degrees of freedom

As already stated, the study of a system in which the rotor has no axial
symmetry while the stator is isotropic is best performed with reference to
a rotating frame, in which the equation of motion is a di erential equation
with constant coe cients.
The equation of motion, written in rotating coordinates for an isotropic

system is Equation (4.78). If real coordinates are used instead of complex
ones, it becomes
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where C = C +C , the real-coordinates vector is

x = [Re(r) Im(r) ]

and the complex coordinates vector is simply

r = q .

Note that in the rotating frame, the unbalance forces (vector f ) are seen as
forces constant in time, whereas static forces (vector f ) are seen as rotating
backward at the spin speed . The circulatory and gyroscopic matrices are
skew-symmetric, as expected.
If the rotor is nonisotropic, the equation of motion in real coordinates

transforms into1
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Note that although in the Je cott rotor the anisotropy was caused by the
elastic and damping properties of the material, in multi-degrees-of-freedom
rotors, the anisotropy can also be caused by the inertia properties, i.e., to
di erent values of the moments of inertia in the -plane.
By introducing the mean and deviatoric matrices, it is possible to obtain

an equation written in term of complex coordinates
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(6.75)
+M r̈+C ṙ+

¡
2M +K

¢
r = F + 2F

The deviatoric matrices related to the stator vanish, owing to its isotropy.
The solution for the free whirling of the system is of the type

r = r1
0

+ r2
0

1Centrifugal sti ening (matrix K ) is not included in the following equations to
simplify the formulation. There is no di culty in including the relevant terms into the
equations of motion when needed.
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i.e., an elliptical whirling with reference to the rotating frame . By
introducing it into the equation of motion (6.75), the following algebraic
equation is obtained:
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By expressing the same solution in the fixed frame, it yields

q = r1 + r2
(2 + )

The orbits are then elliptical when seen in the rotating frame, but become
Lissajous curves when seen in the fixed frame. The equation of motion could
be written directly in terms of fixed coordinates, obtaining an equation in
which , referred to the inertial frame, is present instead of 0, referred to
the rotating frame
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In the current case, the study of the unbalance response is easier than
that of the response to a static loading because the first gives way to a
deformed configuration that is stationary with respect to the system of
reference.
The solution of Equation (6.75) for static loading is of the type

r = r1 + r2

leading to the equation
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2

¾
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½
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(6.78)

where

A11 = C +K
A12 = C +K
A21 = C +K
A22 = 2 2(2M G) (C + 2C ) +K
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The same solution can be written with reference to the fixed frame as

q = r = r1 + r2
2

The obvious meaning of r1 is then the mean inflected shape, which is fixed
in space, whereas that of r2 is a component of the deflected shape, which
rotates at a speed equal to 2 . A static loading then causes the onset of
vibrations, which are seen by the stator as occurring with a frequency 2
and by the rotor with a frequency .
By equating to zero the matrix of the coe cients of Equation (6.78), an

eigenproblem in is obtained. It yields the values of the secondary criti-
cal speeds caused by a constant load distribution, as seen in the previous
section for the Je cott rotor.
The solution of the problem related to a given unbalance distribution is

straightforward, leading to a synchronous circular whirling. The solution
of the equation of motion is constant, r = r0, leading to the equation

£
2(M G) +K + C

¤
r0 +

¡
2M +K

¢
r0 =

2f (6.79)

A constant solution in the rotating frame, once written in the fixed ref-
erence frame, is of the type

q = r0

Remark 6.11 The response to unbalance is a pure circular synchronous

whirling, and rotating damping has no e ect on the behavior of the sys-

tem because the rotor does not vibrate but merely rotates in the deflected

configuration.

Remark 6.12 The main feature of the behavior of anisotropic rotors on

isotropic supports is the presence of one or more fields of instability (which

can be reduced by adding damping to the system), and the presence of a

vibration occurring at a frequency equal to 2 , together with the usual static

component, in the response to a static force.

Example 6.5 Nonisotropic high-speed rotor.

Consider a very unconventional rotating machine: a rotating gravitational qua-

drupole built with the aim of calibrating the detector used for demonstrating exper-

imentally the existence of gravitational waves. The aim of the machine is that of

spinning a rotor with the largest possible gravitational quadrupole moment (which

coincides with the di erence between the mass principal moments of inertia about

two axes perpendicular to the spin axis) at a rotational frequency equal to half the

resonance frequency of the detector. In the case under examination, this means a

spin speed of 27,450 rpm = 457.5 Hz, leading to a very high peripheral velocity,

namely, 575 m/s. A schematic drawing of the rotor is reported in Figure 6.15.
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FIGURE 6.15. Schematic drawing of the rotor of a high speed machine used for
calibrating a gravitational waves detector.

The bar must spin in a vacuum. To keep the pressure in the chamber in which

the bar is housed lower than that in the bearings’ case, five stages of a turbo-

molecular pump are fitted to the shaft (note that in the 3D plot, the blades are

not represented). The whole machine is derived from a turbomolecular pump, with

the gravitational quadrupole and a point used to measure the distance between the

spin axis and the detector, added on top. The angular contact bearings are soft

mounted using a conventional elastomeric damped support, as in the case of the

machine from which this device derives.

A FEM model is shown in Figure 6.16. The bar and the stages of the pump

are modeled as rigid bodies. However, although the former is modeled using an

asymmetrical mass element, the latter are modeled using beam elements, just to

avoid computing separately their masses and moments of inertia. The same is

done for the rotor of the electric motor.

A plot of the first six critical speeds as functions of the sti ness of the bearings

is reported in Figure 6.17.

The first four critical speeds, i.e., those related to the two rigid-body modes in

each one of the two coordinate planes containing the spin axis, must be as low as

possible, to be easily passed, whereas the fifth one must be above the working speed

range. The latter condition is always verified, and a sti ness of 1× 106 N/m can



6.2 Nonisotropic rotors on isotropic supports 261

FIGURE 6.16. FEM model of the rotating gravitational quadrupole.

FIGURE 6.17. First six critical speeds as functions of the sti ness of the bearings.

be chosen. The corresponding values of the critical speeds are reported in Table

6.4

The fifth critical speed is then at 32,699 rpm, i.e., 120% of the maximum

operating speed. Such safety margin is usually considered su cient.

The lack of symmetry of the rotor causes the critical speeds to split and some

fields of instability to be present, at least in the case of the undamped system. The

Campbell diagram and the decay rate plot are reported in Figure 6.18. It is clear

that a very strong instability range is present above the fifth critical speed, but

other, weaker, instabilities are present within the working range of the machine.

To stabilize the system, damping must be added. If the supports have a struc-

tural damping with = 0 8, no instability is encountered within the working range

of the machine, as shown by the decay rate plot of Figure 6.19. From the plot,

it is clear that during spin-up, a frequency field at about 18,000 rpm in which
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[rad/s]

178.0 181.9 470.9 491.7 3,424 4,885

TABLE 6.4. Values of the first six critical speeds.

FIGURE 6.18. Campbell diagram and decay rate plot for the undamped system.

the machine has a low margin of stability is encountered, but the threshold of

instability is at about 33,000 rpm.

The values of the first six natural frequencies, with the corresponding decay

rates, at the operating speed of 27,450 rpm are reported in Table 6.5.

Backward Forward
Im( ) [rad/s] Re( ) [1/s] Im( ) [rad/s] Re( ) [1/s]

71 2 38 8 281 3 79 7

131 1 45 7 807 0 122 0

377 5 137 3 2283 44 1

1417 60 5 3467 44 1

3537 44 5 4943 122 0

4337 47 5 5469 79 7

TABLE 6.5. Values of the first six natural frequencies at the operating speed of
27,450 rpm.
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FIGURE 6.19. Decay rate plot of the damped system.



7
Torsional and axial dynamics

The lateral dynamics of rotating systems was studied in the previous chap-
ters under the assumption of complete uncoupling. Actually, even if in ele-
mentary rotordynamics such uncoupling is always assumed to hold, many
phenomena encountered in actual rotors can be explained only by torsional-
lateral or axial-lateral coupling. The physical mechanisms causing such
coupling can be of di erent type, from the geometry of the shaft, which
can be di erent from a simple straight beam (an important case is that of
crankshafts), to the presence of twisted blades. Although these e ects are
present also in the case of linearized models, usually coupling becomes im-
portant only when nonlinear e ects are taken into account. Also, unbalance
can cause such coupling: As this e ect is a second-order e ect, it needs to
be taken into account only in case of rotors with very large unbalance.
Only uncoupled torsional and axial vibrations will be considered in the

present chapter. Moreover, no parts of the machine performing reciprocat-
ing motion will be considered.

7.1 Torsional free vibration

7.1.1 Lumped parameters approach

If the rotor is assumed to be a beamlike structure and its torsional behavior
is studied using a lumped parameters approach, each node has a single
degree of freedom, namely, torsional rotation, and a single generalized force,
the torsional moment, acts on it. Moreover, the rotor is free to rotate and, as
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a consequence, in the torsional study it can be considered as an insulated
system, with both ends free. This is true only when the whole rotating
system is considered, including all transmission shafts, gearing etc. In the
study of a turbo-alternator, for instance, both the rotor of the turbine and
of the electrical machine must be included in the model, together with the
shaft, which couples them, and the gearing, which may be interposed in
between.
There are, however, cases in which only a part of the rotating system

is considered, to simplify the problem. This can occur when a part of the
machine has a very large moment of inertia, so large that the cross section
of the shaft in which it is located can be considered as constrained. This is
the case of marine propellers, and a propulsion system of a ship driven by a
turbine is sometimes studied considering the turbine rotor and the propeller
shaft as constrained at the propeller location. On the opposite side, when
a coupling that is torsionally very soft is interposed between two parts of a
rotor, it is possible to assume that the coupling does not react with a torque
to the relative rotation and the two parts can be considered as uncoupled
from each other.

Transfer matrices approach

In all cases, when the system reduces to a single shaft on which a number
of moments of inertia are located, it is possible to deal with such an in-line
system using the transfer-matrices method. The Holzer method has been
for decades the most common tool for dealing with torsional vibrations of
engines and drivelines. It is very similar to the Myklestadt method seen in
Section 4.1, for beamlike structures vibrating in bending.

Remark 7.1 Nowadays it is however possible, and more computationally

e cient, to resort to a sti ness approach writing the sti ness matrix of

each span of the shaft, modeled as a beam element, and assembling them

into a global sti ness matrix. This allows us to study also branched systems.

Consider a lumped torsional system, i.e., a system consisting of rigid
discs connected by straight shafts possessing all the properties needed for
the uncoupling of the torsional modes from flexural ones [Figure 7.1(a)].
The model can result from the lumping of a more or less uniform continuous
system or from a system that is actually made of concentrated rotors and
lightweight shafts. Let the torsional generalized coordinate of each station
be the rotation and the torsional moment be . The state vectors is
then

s =

½ ¾
, (7.1)

and its order is 2.
If the stations are located at the positions of the lumped moments of

inertia, the field transfer matrices are easily computed by considering that



7.1 Torsional free vibration 267

FIGURE 7.1. Holzer’s method. (a) Sketch of a lumped parameter torsional sys-
tem; (b) torques acting on the th node and field.

1 1.5 2 3 4 6 10
7.14 5.10 4.37 3.80 3.56 3.34 3.19 3.00

TABLE 7.1. Values of coe cient for the computation of 0

p of rectangular cross
sections.

the moment at the left is equal to the moment at the right because no
moment acts along the field, whereas the rotation at the right end is equal
to the rotation at the left end increased by the twisting of the field,

= +
0

, (7.2)

where the torsional moment of inertia 0 coincides with the polar moment
of inertia if the cross section is circular or annular, whereas in other
cases the two quantities are di erent. The values for 0 for the cases of
greater practical interest can be found in the literature. If the cross section
is elliptical with axes and , for instance, the following formula can be
used:

0 =
3 3

5 1 ( 2 + 2)
(7.3)

whereas in the case of a rectangular cross section with sides and ( )

0 =
3

(7.4)

where is reported as a function of ratio in Table 7.1.
The station transfer matrix is obtained by considering that the rotation

at the left of the th station (i.e., the rotation at the right of the ( 1)th
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field) is equal to the rotation at the right, whereas the moment at the right
of the station is equal to that at the left of the station, increased by the
concentrated moment acting on it. If no external moment is included in the
model, the latter is only caused by the inertia reaction, which, in harmonic
motion, is proportional to the square of the frequency and to the rotation

. If the station is constrained by a torsional spring of sti ness , the

moment also acts on the node.

The equations defining the field and station transfer matrices are, re-
spectively,

½ ¾
=

1
0

0 1

½ ¾

½ ¾
=

·
1 0

2 + 1

¸½ ¾

1

(7.5)

Once the transfer matrices have been obtained, it is easy to multiply
them to obtain the overall transfer matrix. Equation (4.4) takes the simple
form

½ ¾
=

·
11 12

21 22

¸½ ¾

0

(7.6)

The boundary conditions are easily assessed. If the end at the left is
free, moment

0
must vanish. The second column of the matrix is of no

interest, because it multiplies a vanishing moment. If the end at the right
is also free, as often happens with torsional systems, the second equation
(7.6) reduces to

= 21
0
= 0 (7.7)

yielding a solution di erent from the trivial one
0
= 0 only if 21 = 0.

Working in the same way for the other end conditions, the following
equations yielding the natural frequencies can be obtained:

Right end Left end Equation

Free Free 21 = 0

Free Clamped 22 = 0

Clamped Free 11 = 0

Clamped Clamped 12 = 0

As already said for transfer matrices methods, the solution is usually
obtained numerically, plotting the appropriate element as a function of
, and looking for the values of the frequency at which the curve crosses
the frequency axis
In the case of the Holzer method, the structure of the transfer matrix

is so simple that it is possible to write the relevant equations in a more
explicit way. The inflected shape can be obtained by setting an arbitrary
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value (usually a unit value) for
0
, if the left end is clamped, or for

0
if

it is free, and computing the state vectors after having introduced a value
of the frequency. Assume that the left end is free. The equations can be
reformulated by eliminating the moments and writing the rotation at the
( +1)th station as function of the rotations at the th and ( 1)th station

+1
=

µ
1

2

1 +
1

¶
1

1
, (7.8)

where the rotations are referred to the nodes. From the assumed value
at the first node (node 0), the rotation at node 1 can be computed from
Equation (7.8)

1
=

µ
1

2

0

1

¶
0
. (7.9)

In a similar way, the rotations at all nodes can be computed. If also the
last node is free, the constraint condition can be written in the form

X
=0

2 = 0 , (7.10)

which has an immediate meaning: Because both ends are free, the sum of
all the inertia torques 2 must vanish. Equation (7.10) is generally
not satisfied, as the arbitrary value of the frequency does not coincide
with one of the natural frequencies of the system. By changing the values
of the frequency and by plotting

P
=0

2 as a function of , it is
straightforward to find the values of the frequency at which the total inertia
torque vanishes, i.e., the natural frequencies of the system. Note that the
value of the first natural frequency is 0, and the corresponding mode is a
rigid rotation.
The mode shapes are so obtained. The arbitrarity because the rotation

at the first node was chosen arbitrarily is not inconvenient, because only
the shape of the modes is defined; and can be removed by normalizing the
eigenvectors.

FEM approach

Instead of using the transfer matrices method, it is possible and, when
computers are used, more convenient, to resort to the sti ness approach.
The mass matrix is a diagonal matrix, containing the moments of inertia,
whereas, in the case of in-line systems, a tridiagonal sti ness matrix is
obtained. In the case of a system without constraints, the sti ness matrix
is singular and rigid rotations are possible. It cannot be inverted, and the
compliance matrix is not available.
The equation of motion for the study of the free behavior of the system

is
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1 0 · · · 0 0
0 2 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · 1 0
0 0 · · · 0

¨
1

¨
2

· · ·
¨

1

¨

+

+

1 1 · · · 0 0

1 1 + 2 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · 1 +
0 0 · · ·

1

2

· · ·

1

= 0 .

(7.11)

The sti ness matrix of a branched or multiple-connected system can
be built using the assembly procedures in Sections 4.3.4 and 4.3.5. It is
no longer tridiagonal, even if it usually has a band structure, and it is
possible to resort to the algorithms commonly used to reorder the list of
the generalized coordinates to reduce the bandwidth to a minimum. The
mass matrix, on the contrary, is always a diagonal matrix if the model is
based on the lumped-parameters approach.

7.1.2 Consistent parameters approach

The inertia of the shafts, which in the lumped parameters approach can
be considered by concentrating it in the nodes at the ends of the various
elements, can be accounted for in a more detailed way by resorting to the
consistent parameters approach, typical of the finite elements method.
Consider the two-nodes beam element whose lateral behavior was studied

in Section 4.3.1 (Figure 4.8). The degree of freedom of each cross section
involved in the torsional behavior is the torsional rotation, and hence, the
element has two degrees of freedom: The rotations about -axis at the nodes

q =

½
1

2

¾
. (7.12)

Because each point of the element has a single degree of freedom, the
vector u of the displacements of the internal points of the element (defined
by Equation 4.33) has a single component and matrix N has one row
and two columns (the element has two degrees of freedom). can be
expressed as a polynomial in , or, better, in the nondimensional axial
coordinate =

= 0 + 1 + 2
2 + 3

3 + (7.13)

The polynomial must yield the values of the rotations
1
and

2
, re-

spectively, at the left end (node 1, = 0) and at the right end (node 2,
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= 1). These two conditions allow computing only two coe cients and
then the polynomial expression of the displacement must include only two
terms, i.e., the constant and the linear terms. With simple computations
[17], the matrix of the shape functions is obtained:

N = [1 ] (7.14)

The shear strain can be expressed as = , or, using vector
², which in this case has only one element,

² =

·
(1 )

¸½
1

2

¾
(7.15)

Matrix

B =

·
(1 )

¸
=
1
[ 1 1] (7.16)

has one row and two columns.
The torsional moment is linked to the rotation of the cross section

by the usual formula

= 0 (7.17)

The potential energy of a length of beam is

U =
1

2
=
1

2

0

q B Bq . (7.18)

The sti ness matrix can be obtained by integrating Equation (7.18)

K =

Z

0

0

B B =

0 Z
1

0

·
1 1
1 1

¸
=

0 ·
1 1
1 1

¸

(7.19)
The kinetic energy of a length of beam is

T =
1

2
˙ 2 =

1

2
q̇TN Nq̇ . (7.20)

The mass matrix is then

M =

Z

0

N N =

Z
1

0

·
(1 )2 (1 )

(1 ) 2

¸
=

=
6

·
2 1
1 2

¸
(7.21)
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FIGURE 7.2. Geared system: Sketch of the (a) actual system and of the (b)
equivalent system. (c) Planetary gear train: sketch of the system and notation.

7.1.3 Geared systems

Consider the system sketched in Figure 7.2(a) in which the two shafts
are linked by a pair of gear wheels, with transmission ratio . For the
study of the torsional vibrations of the system, it is possible to substitute
the system with a suitable equivalent system, in which one of the two
shafts is substituted by an expansion of the other [Figure 7.2(b)]. This
substitution can be performed only if no allowance is taken for backlash,
which would introduce nonlinearities. Assuming also that the deformation
of gear wheels is negligible, the equivalent rotations can be obtained from
the actual rotations simply by dividing the latter by the transmission
ratio = 2 1:

= (7.22)

The kinetic energy of the th flywheel, whose moment of inertia is , and
the elastic potential energy of the th span of the shaft are, respectively,

T = 1

2

˙ 2 = 1

2

˙
2

U = 1

2

¡
2

+1

2
¢
= 1

2

³
2

+1

2
´ (7.23)

where the equivalent moment of inertia and sti ness are, respectively,

= 2 , = 2 (7.24)

If the system includes a planetary gear train, the computation can be
performed without di culties. The equivalent sti ness can be computed
simply from the overall transmission ratio, whereas in the computation of
the equivalent inertia, the total kinetic energy of the rotating parts must
be taken into account. The angular velocities of the central gear 1, of the
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ring gear 2, of the revolving carrier , and of the intermediate pinions
of the planetary gear shown in Figure 7.2(c) are linked by the equation

1

2

=
2

1

= ( 1 )
1

(7.25)

The kinetic energy of the system made of the internal gear, with moment
of inertia 1, the ring gear, with moment of inertia 2, the revolving carrier,
with moment of inertia , and intermediate pinions, each with mass
and moment of inertia , is

T =
1

2

£
1

2

1
+ 2

2

2
+ ( + 2) 2 + 2

¤
(7.26)

The equivalent moment of inertia, computed with reference to the shaft
of the internal gear spinning at speed 1, is

=
2T
2

1

= 1+ 2

µ
2

1

¶2
+( + 2)

µ

1

¶2
+

µ

1

¶2
(7.27)

If the deformation of the meshing teeth must be accounted for, it is
possible to introduce into the model two separate degrees of freedom for
the two meshing gear wheels, modeled as two di erent inertias, and to
introduce between them a shaft whose compliance simulates the compliance
of the transmission. This is particularly important when a belt or flexible
transmission of some kind is used instead of the sti er gear wheels. In a
machine, there may be several shafts connected to each other, in series or in
parallel, by gear wheels with di erent transmission ratios. The equivalent
system is defined with reference to one of the shafts, and the equivalent
inertia and sti ness of the elements of the other ones are all computed using
the ratios between the speeds of the relevant element and the reference one.
The equivalent system will then be made of a set of elements, in series or in
parallel, following the scheme of the actual system, but with rotations that
are all consistent. If the compliance of the gears is to be taken into account
in detail, the nonlinearities caused by the contacts between the meshing
teeth and backlash must be considered.

Example 7.1 Multi-engine marine propulsion system.

Consider a marine unit made by four in-line, six cylinder engines driving two

propellers through gear wheels. The engines work in pairs, the two engines being

assembled with the flywheels one close to the other, connected through a shaft. The

two pairs are located side by side, driving a common shaft through gear wheels

with a transmission ratio equal to 0.9. Two propeller shafts are driven with a

transmission ratio of 0.4 from the central intermediate shaft.

A detailed sketch of the system is shown in Figure 7.3.

The engines are modeled with six equivalent flywheels for the crank-connecting

rod-piston systems, a moment of inertia for the flywheel and six equivalent shafts
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FIGURE 7.3. Sketch of a marine unit with 4 in-line, six cylinder engines driving
2 propellers (the numbers of the elements are underlined).

Node # [kg/m2] Element # [kN/m]

1, 8, 15, 22 5 51× 10 3 1 5, 8 12 392
2, 5, 9, 12, 16, 19, 23, 26 4 89× 10 3 15 19, 22 26 392
3, 4, 10, 11, 17, 18, 24, 25 6 02× 10 3 6, 13, 20, 27 455
6, 12, 20, 27 6 25× 10 3 7, 14, 21, 28 67.63
7, 14, 21, 28 6 753× 10 2 29 28.66
29 0 1416 30, 31 4.1122
30 0 4025

31,32 1 5552

TABLE 7.2. Data for the nodes and the elements.

that model the torsional sti ness of the various parts of the crankshaft. The com-

pliance of the gearings is neglected, and consequently, the inertia of the first three

gear wheels is reduced to the engine shaft and concentrated in node 29. The in-

ertia of the other three gear wheels is reduced to the same shaft and concentrated

in node 30. The data for a lumped parameters model, all reduced to the engines’

shafts, are reported in Table 7.2.

The mass matrix is diagonal, and because the system is not in-line, the sti -

ness matrix is not tridiagonal. By assembling the mass and sti ness matrices

and computing the eigenvalues of the matrix M 1K, the natural frequencies are

readily obtained. Note that, as usual with torsional systems, the sti ness matrix

is singular and it is not possible to compute matrix K 1M. The first eigenvalue

is vanishing, because a rigid-body mode is present. The following three eigenfre-

quencies are as follows:

1 = 51 42 rad/s, 2 = 100 94 rad/s, 3 = 359 3 rad/s.

The corresponding mode shapes are reported in Figure 7.4.

The first mode is characterized by an oscillation of the propellers in opposite

directions while the whole system from node 1 to node 30 remains still. The fre-

quency of the propellers on their shafts is 51.42 rad/s, the same value obtained
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FIGURE 7.4. First three mode shapes of the marine unit. The rigid-body mode
has not been plotted.

for the first natural frequency of the system. In the second mode, the propellers

oscillate together in one direction, and the four engines oscillate in the opposite

one. In the third mode, the propellers are almost stationary, and the gear wheels

of the final drive oscillate in the opposite direction than the engines.

7.2 Forced vibrations

The torques acting on rotating machines are very often periodic, with a
period coincident with the period of rotation or with one of its multiples or
submultiples. In such cases, it is possible to express the driving or resisting
torques acting on the nodes of the lumped parameter system used to model
the actual rotor in the form of a Fourier series and to study the response
to each one of the harmonic terms separately. The total response will then
be the sum of the response to the di erent harmonics. The same approach
holds also in the case in which the consistent approach is used to compute
the nodal forces corresponding to a torsional moment distribution.
Once the forcing functions have been obtained, there is no di culty in

computing the response of the system at various speeds. Note that torsional
systems are usually lightly damped and the evaluation of the response to
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the harmonics of the forcing function that are not in resonance with the
torsional natural frequencies of the rotor can be performed by resorting to
an undamped model. However, in the case in which a forcing function has
a frequency close to a natural frequency, no useful result can be obtained
without introducing damping into the model.
A vector of the driving functions, whose terms are expressed by trigono-

metric series, can be added on the right-hand side of the equation of motion
(7.11), to which a damping matrix has also been added

M¨ +C ˙ +K =
X
=1

m sin( 0 ) +
X
=1

m cos( 0 ) (7.28)

where m and m indicates the vectors in which the coe cients of the
terms in cosine and sine of the moments are listed, 0 is the fundamental
frequency, usually a multiple or a submultiple of the rotation frequency,
and is the number of harmonics that is considered. Note that the static
component of the torque has been neglected, but it could be considered
without di culties.
The solution of Equation (7.28) can be obtained directly by adding the

responses to the various harmonic components:

=
X
=1

=
X
=1

sin( 0 ) +
X
=1

cos( 0 ) (7.29)

The amplitudes of the components in sine and cosine of the response can
be obtained by solving the following linear set of equations:

·
K 2

0
2M 0C

0C K 2
0
2M

¸½ ¾
=

½
m

m

¾
(7.30)

If damping is neglected, as is customary when the response in conditions
that are far from resonance is to be obtained, Equation (7.30) uncouples
into two separate linear sets of equations. Equation (7.30) must be solved
at each rotational speed and for each harmonic of the forcing function;
however, the computation may be fairly simple, because the order of the
matrices, equal to the number of the degrees of freedom of the system, is
usually small.
The amplitude of the oscillations at each node of the system, caused by

each harmonic component of the forcing function, can be easily computed.
Once the amplitudes are known, there is no di culty in obtaining the
dynamic stressing of each span of the shaft. The maximum value of the
shear stress in the shaft spanning from the th to the ( +1)th node is



7.2 Forced vibrations 277

( ) =
(

+1
)

(7.31)

where is the torsional section modulus of the relevant shaft element
[42]. The torsional displacements at the nodes are not in phase, and then
it is impossible to obtain the twist angle of each span as the di erence
of amplitude between the end sections. The components in phase and in
quadrature must be accounted for separately, and the amplitude of the
twist angle, which is needed to compute the stress, must be obtained from
the two components. The shear stress so computed is variable in time with
polyharmonic time history; the time histories of the stresses caused by the
various harmonics, each with its amplitude, phase, and frequency, should
then be added to each other and to the static stressing, and the fact that
their consequences on the overall fatigue of the shaft are di erent should
be considered.
In practice, a much simpler approach is followed, not because of the long

computations involved, which with a modern computer could be dealt with
without problem, but because the phasing of the harmonics can be di cult
to evaluate (near the resonance the phase is quickly variable) and predicting
the fatigue life of a machine element subject to polyharmonic stressing is
still di cult. The amplitudes of the stress cycles caused by the various
harmonics are computed and added together, often limiting the sum to the
few most important harmonics. This procedure leads to overestimating the
amplitude of the variable component of the stress and then is conservative.
The shear stresses so computed must be added to those from other causes
and, using a suitable failure criterion, to stresses caused by bending, axial
forces, shrink fitting, surface forces, and so on.
Although the response of the system in conditions far from resonance

can be computed from an undamped model, the response at resonance
can be obtained only after the damping of the system has been evaluated,
and the precision of the results is strictly dependent on the precision with
which damping is known. Because the resonant conditions are usually the
most dangerous, this part of the dynamic analysis is very important, and
the di culty in achieving a good estimate of the damping is one of the
factors limiting the usefulness of the dynamic analysis in the current case
and compels one to resort to extensive experimentation. When damping
is mostly caused by the internal damping of the material constituting the
various shaft elements, there is no di culty in introducing a proportional
damping with modal damping ratio equal for all modes: = 2, where
is the loss factor of the material of the crankshaft.
In many torsional systems, however, damping is frommany causes, among

which friction between moving parts, electromagnetic forces, and the pres-
ence of fluid in which some rotating parts move can be important. Neglect-
ing them would lead to a large underestimate of damping, and it is usually
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necessary to resort to experimental results, obtained from machines simi-
lar to the one under study and to empirical or semiempirical formulas and
numerical values reported in the literature [43, 44].
Generally, the damping caused by the various elements connected to the

shaft (propellers, brakes, electrical machines) can be evaluated by assuming
that they provide a braking torque on the relevant node that is proportional
to the instantaneous angular velocity at the power through coe cient 00

( ) = 00

"
+
X
=1

˙ ( )

#
(7.32)

where subscript refers to the th node of the model and denotes the
th harmonic. Note that all harmonics are assumed to act in phase, which
is clearly an approximation but does not a ect the results obtained later.
This type of damping is clearly nonlinear, but it can be linearized by in-
troducing in the computation a viscous damping for each harmonic, which
is equivalent from the viewpoint of energy dissipation. By introducing the
harmonic time history of each component of the velocity ˙ ( ), the energy

dissipated in a cycle is

L =

Z

0

00

"
+
X
=1

0
0

cos( 0 )

# +1

(7.33)

By computing the ( +1)th power of the binomial within the integral
sign, it follows that

L =

Z

0

00 +1 +

µ
+ 1
1

¶Z

0

00
0

X
=1

0

cos( 0 ) +

+
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+ 1
2
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0

cos( 0 )
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+ .

(7.34)
The first integral of Equation (7.34) is constant and corresponds to the

average power = 00 +1 applied in the relevant node. It can be used to
compute coe cient 00, because the average power is generally known.
The second integral vanishes, and the third contains terms in the squares

of cosine function and terms in which there are products of cosines with
di erent arguments; the latter vanish once they are integrated over a whole
period. The fourth term also vanishes. If the series (7.34) is truncated after
the fourth term, the braking torque, excluding the contribution caused by
the constant term, is

L =

µ
+ 1
2

¶
00 1

0

X
=1

2

0

(7.35)
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corresponding to that caused by a viscous damper with equivalent damping
coe cient

=

µ
+ 1
2

¶
00 1 (7.36)

If = 1, there is a true viscous damper and coincides with 00. If
= 2, as is often assumed in the case of propellers, 00 is expressed in S.I.

units as Nms2 and = 3 00 . If = 3, 00 is expressed in S.I. units in
Nms3 and = 6 00 2.
The damping matrix of the system can be obtained by applying in the

various nodes the viscous dampers whose damping coe cients have been
computed above and is diagonal. This way of evaluating the damping of
the system is clearly an approximation that can, in many cases, be very
rough. However, it is often used in practice because there are no simple
alternatives.

7.3 Torsional critical speeds

As stated in the previous section, often the torsional moments acting on
the nodes of the system are periodic and their fundamental frequency is
a multiple or a submultiple of the rotation frequency. In the case of two-
stroke-cycle internal-combustion engines or other reciprocating machines in
which the duration of the working cycle corresponds to a single revolution
of the crankshaft, for instance, the frequency of the various harmonics is
equal to whole multiples of the rotational speed = , whereas in the
case of four-stroke-cycle internal-combustion engines, the frequency of the
fundamental harmonic is equal to half of the rotational speed and the
frequency of the th harmonic is = 2. Note that there are cases
in which a large number of harmonics with nonvanishing amplitude are
present, particularly in the case in which the torques vary very quickly,
in comparison with the time needed to perform a revolution. Again an
example is that of internal combustion engines, in which more than 20
harmonics usually need to be taken into account.
In most cases the torsional natural frequencies of the system are inde-

pendent from the rotational speed. The resonance conditions, defining the
torsional critical speeds, can then be studied using a Campbell diagram of
the type shown in Figure 7.5. There are many resonance conditions, and
it is very di cult, usually impossible, to avoid some of them being located
within the working range of the machine. Not all resonance conditions are
equally dangerous, and the dynamic stressing of the rotor at the various
critical speeds must be evaluated to understand their severity.



280 7. Torsional and axial dynamics

FIGURE 7.5. Campbell diagram for a six-cylinder, four-stroke in-line inter-
nal-combustion engine for the computation of the resonance conditions: The first
20 harmonics of the forcing function and the first torsional natural frequency 1

are plotted.

7.4 Axial vibration

Axial vibration of straight rotors are usually uncoupled with torsional and
lateral vibrations and can be studied separately. Moreover, their natural
frequencies are higher than those of other vibration modes and very little
excitation acts on axial modes. As a consequence, the study of the axial
vibration of rotors is usually omitted.
The simplified models used for the study of axial vibrations are very sim-

ilar to those seen in the context of torsional vibrations: In lumped param-
eters or consistent models, each node has only a single degree of freedom,
as it was the case for torsional vibrations. A di erence is that although
the models used for the study of torsional vibrations are underconstrained,
rotors are axially kept in position by the thrust bearing, usually modeled
as an elastic constraint. All other bearings are often not considered; they
allow axial displacements of the order of magnitude of those encountered
in axial vibration. Once the model has been obtained, there is no di -
culty in studying free vibrations. Usually, an in-line system is obtained and
transfer-matrices procedures, like the Holzer method, can be used even if
more modern approaches based on the FEM are more common now.
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Almost all rotors are supported by some sort of bearings, i.e., cylindrical
hinges that keep the axis of rotation in a given position in space. There
are, however, cases of rotors that are completely free in space, like spinning
spacecraft or celestial bodies. They are usually defined as bearingless or
free rotors, and they will be studied in detail later. In the present chapter,
the influence of the characteristics of the bearing on the behavior of fixed
rotors will be studied in detail.
Like any material body, bearings cannot be infinitely sti and hence

cannot constrain the axis of rotation to remain exactly in the required po-
sition. Depending on whether the sti ness of the bearings is low or high
if compared with the sti ness of the rotor, the latter can be said to be
soft mounted or hard mounted. Hard-mounted rotors are used when the
characteristics of the machine require that the rotor has a well-determined
position in space and that forces applied to it do not cause deformations
exceeding the allowable limits. An example of rotors that have to be hard
mounted are the spindles of machine tools. In other cases, on the con-
trary, it is not so important to keep the position of the rotor under strict
tolerances and larger displacements are acceptable, although there is an
advantage in having the critical speed of the machine low enough to al-
low an easy passage into the supercritical regime to exploit self-centering.
This is the case of many turbomachines and centrifugal pumps, in which,
however, the displacements of the rotor cannot be too high to avoid the
need of leaving a large gap between rotor and stator, which would degrade
the fluid dynamics performance. A case in which large displacements are
allowed and a particularly soft suspension is used is that of the domestic
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washing machines, where the possibility of exploiting self-centering is very
important.
With reference to the Je cott rotor, and particularly to Figure 2.22, it

can be said that a hard-mounted rotor tends to rotate about its geometric
center C (clearly if the bow of the shaft itself is neglected), whereas a
soft-mounted rotor tends to rotate about its mass center P.
In the case of hard-mounted rotors, it is sometimes possible to neglect the

compliance of the bearings and to study the dynamic behavior assuming
that the bearings are sti .
On the contrary, in the case of soft-mounted rotors (and often for not-

so-hard-mounted ones), the compliance of the bearings must be accounted
for. There are also cases in which not only the bearings, but also the whole
supporting structure introduces a compliance that cannot be neglected.
The simplest alternative to considering the bearings as rigid bodies is

that of modeling them as linear springs and dampers. If the compliance
of the supporting structure is neglected, they are just elastic and damped
constraints applied to the rotor, whereas if also the nonrotating parts of the
machine are modeled, the bearings are considered as springs and dampers
connecting the rotor with the stator. However, all of the bearings used
in real-world machines (rolling elements, hydrodynamic, magnetic, ...) dis-
play a more or less pronounced nonlinear behavior, and linearized models
are always approximations that in most cases are acceptable only if the
amplitude of the vibration is small.
Bearings have also another role, apart from keeping the axis of rotation

in a position close to the nominal one: They provide the nonrotating damp-
ing needed for operation in the supercritical range. If the bearings are not
able to supply enough damping, purposely designed dampers can be added
to achieve the required stability. As bearings exert forces on the rotor, it is
possible to use them to supply also control forces to perform an active con-
trol of the vibrations of the system. This is the case of magnetic bearings,
but other types of bearings can be used to transfer the forces generated by
actuators of di erent types. Bearings may also be supplied with sensors to
measure the displacements of the rotor, both to close the loop in case the
latter is actively controlled or simply to monitor the working conditions of
the machine.

8.1 Rigid-body and flexural modes

In the case of soft-mounted rotors, the lowest natural frequencies are usually
related to rigid-body modes of the rotor, i.e., modes in which the rotor
behaves as a rigid body on soft supports. Strictly speaking, perfectly rigid-
body modes are possible only in the case of free rotors, i.e., if the sti ness of
the bearings is vanishingly small. The natural frequencies of the rigid-body
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modes is equal to zero. In actual cases in which the sti ness of the bearings
is small, but not zero, no exactly rigid-body mode can exist; however, if
the rotor is much sti er than the bearings, some modes exist in which the
deformation of the rotor is very small if compared with that of the bearings
and the natural frequencies, although not being zero, are small. These are
still referred to as rigid-body modes, even if this is an approximation. If the
system is axially symmetrical (both the rotor and the stator), there are two
of such modes, linked with mainly conical and cylindrical whirling, even if
only particular symmetry conditions allow us to have really conical and
really cylindrical modes. The higher order modes involve the deformation
of both the rotor and the stator, and they are often defined as flexural
modes or deformation modes.
In rigid-body modes, there is, by definition, no deformation of the rotat-

ing parts of the machine and rotating damping has no e ect on its behavior.
In the supercritical range, no instability is usually related with modes of
this type, at least for what the destabilizing e ect of rotating damping is
concerned. The damping of the bearings, on the contrary, is very e ective
in stabilizing the motion. However, as it will be seen later, the destabilizing
e ects of lubricated bearings can destabilize rigid-body modes.

Remark 8.1 As already stated, no true rigid-body mode exists. However,

when the natural frequency related to a mode is much higher than the highest

values of the forcing frequency actually present, that mode is considered as

a rigid-body mode. In particular, because in rotors synchronous excitation

caused by unbalance is usually the most important excitation, a rotor whose

critical speeds linked with deformation modes are well above the working

range, is considered as a rigid rotor.

Flexural modes, on the contrary, involve actual deformation of the shaft
and hence are a ected by rotating damping. If the relevant mode shape in-
volves also some deformation of the bearings or, in general, of nonrotating
parts of the machine, stability in the supercritical range may be granted
if the stabilizing e ect of nonrotating damping overcomes the destabilizing
one of rotating damping. If, on the contrary, the mode shape is such that
the deformation of the bearings (of the stator in general) is very small, the
mode is easily unstable in supercritical conditions. If the rotor has some
sort of active control of the vibrations, when the displacement in corre-
spondence to the sensors is vanishing small, the mode is not observable.
When the displacement at the actuator location is vanishing, the mode is
not controllable.
For stability reasons, often soft-mounted rotors work in supercritical con-

ditions with respect to rigid-body modes (to exploit self-centering) and in
subcritical conditions with respect to flexural modes to assure stability.
When the sti ness of the bearings is not much smaller than that of the

rotor, it is no more possible to speak of rigid-body modes not even in an



284 8. Rotor-bearings interaction

approximated way, because both the rotor and the supporting structure
inflect in a comparable way. Finally, in the case of hard-mounted rotors,
the deformation of the bearings is usually negligible with respect to that
of the rotor.
To state whether a mode can be considered as a rigid-body mode or a

deformation mode, the ratio between the potential energy (caused by the
modal deformation) stored in the bearings and that stored in the whole
system can be defined. Such modal bearing deformation index of the th
mode q can be defined as

=

P
=1

q Kq
(8.1)

where K is the sti ness matrix of the rotor-bearing system and is the
sti ness of the th bearing. The values of are between 0 and 1. It
tends to zero in case of sti bearings, to increase with increasing bearing
flexibility. However, when the sti ness of the bearings vanishes, rigid body
modes are characterized by = 1 (both energies of the rotor and the
bearings are vanishingly small).
These considerations are summarized in Figure 8.1 for the same system

studied in Figure 5.5: a constant diameter shaft supported at both ends by
two identical springs. Instead of plotting the product = as a function
of the nondimensional sti ness of the supports as in Figure 5.5, the
first four nondimensional natural frequency

= ( )2 = 2

s
= 1 2 3 4 (8.2)

are reported, together with the mode shapes for some values of .
Also the values of (computed through a discretized FEM model) are

reported.
The figure deals with very slender beammodeled using the Euler Bernoulli

scheme, and consequently, the natural frequencies are not a ected by the
spin speed. The critical speeds then coincide with the natural frequencies
at standstill. In other cases, the gyroscopic e ect may be non-negligible,
and separate computations for the natural frequencies at di erent speeds
and for the critical speeds must be performed, obtaining plots similar to
that of Figure 8.1.

8.2 Linearization of the characteristics of the
bearings

Consider a bearing whose behavior is both nonlinear and axially symmet-
rical. The radial load acting on the bearing is linked with the radial
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FIGURE 8.1. Nondimensional natural frequency at standstill as a function of
the ratio between the sti ness of the supports and the sti ness of the beam
for a constant diameter beam supported by two identical bearings at the ends.
The first four mode shapes for di erent values of are also shown.

displacement by the nonlinear relationship = ( ). If the bearing is
axially symmetrical, the force-displacement characteristics are independent
of the direction in the radial plane and the displacement occurs in the same
direction of the applied force. Using real coordinates, the radial force can
be written in the form

=
³
| |2
´
,

=
³
| |2
´
,

(8.3)

where | | =
p

2 + 2 is the modulus of the displacement of the bearing

and
³
| |2
´
is a function that depends on the characteristics of the bearing.

The ( ) sign denotes a restoring force. By using the complex coordinate
= + Equation (8.3) becomes

= + =
³
| |2
´
. (8.4)



286 8. Rotor-bearings interaction

To study the dynamic behavior of the rotor, it is possible to compute the
point of the characteristics ( ) in which the bearing operates under the
e ect of the static forces and then to linearize the characteristics about that
point. Let the static force be 0 = 0

+
0
and the static displacement

be 0 = 0 + 0. The Jacobian matrix containing the derivatives of the
components of the force with respect to the displacements is

S = 0
=

" #

= 0

=

=

³
| 0|

2

´
+ 2 2

0

µ
(| |2)
(| |2)

¶

= 0

2 0 0

µ
(| |2)
(| |2)

¶

= 0

2 0 0

µ
(| |2)
(| |2)

¶

= 0

³
| 0|

2

´
+ 2 2

0

µ
(| |2)
(| |2)

¶

= 0

.

(8.5)
The sti ness matrix of the bearing for small motions about the static

equilibrium position coincides with the Jacobian matrix = 0
. Note that

the linearized characteristics of the bearings are not isotropic: Not only
the element with subscript 11 is in general di erent from the element with
subscript 22, but also the elements with subscripts 12 and 21 do not vanish.
The axes of the ellipse of elasticity of the linearized bearing do not coincide
with the - and -axes, except for the case in which the static force, and
hence the static displacement, are directed along the coordinate axes.

Consider, for instance, a case in which function
³
| |2
´
is given by the

equation

³
| |2
´
=

³
1 + | |2

´
. (8.6)

Equation (8.6) can be considered the expression of generic nonlinear

function
³
| |2
´
truncated at the second term of its series expansion. Pa-

rameter has the dimensions of a length at the power 2. Constant is
usually positive, a condition necessary to lead to a stable static equilibrium
position at = 0. If is positive, the behavior of the bearing is said to be
of the hardening type, because its sti ness increases with the displacement.
On the contrary, if is negative, the bearing is said to be of the softening
type. Equation (8.6) is reported in nondimensional form in Figure 8.2. The

restoring force obtained using Expression (8.6) for function
³
| |2
´
is usu-

ally defined as a Du ng type force, because nonlinear systems with forces
of this type were studied extensively by G. Du ng in 1918 [45].
By introducing Equation (8.6) into the Expression (8.5), the following

sti ness matrix of the linearized bearing is obtained:

K = 0
=

·
1 +

¡
3 2

0
+ 2

0

¢
2 0 0

2 0 0 1 +
¡
2

0
+ 3 2

0

¢
¸
. (8.7)
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FIGURE 8.2. Function
¡
| |2

¢
expressed by Equation (8.6) for di erent values

of . The values of are normalized in the range 0 1.

If the rotor is statically determined, as it is the case of a rotor on two
bearings, there is no di culty in computing the static loads on the bear-
ings and, once the forces are known, to compute the static displacements
at the bearing locations. This involves the solution of a set of two non-
linear equations (8.3) in which the forces and are known and the
displacements and are the unknowns. As the force and the displace-
ment have the same direction, the simplest way is to compute the modulus

of the resultant force on the bearing | | =
q

2 + 2; from the force, the

displacement is obtained from the equation

| | = | |
³
| |
2

´
, (8.8)

which in some cases can be solved in closed form [for instance, if
³
| |
2

´
is

expressed by Equation (8.6)] or in general can be solved using an iterative
procedure like the Newton-Raphson algorithm. Once the modulus of the
displacement | | has been obtained, its components are computed as

= | |
| |

= | |
| |

. (8.9)

If the compliance of the stator of the machine is accounted for, these
displacements must be considered as relative displacements of the shaft
with respect to the corresponding points on the stator. The components 0

and 0 of the displacement of each bearing allow us to compute through
Equation (8.5) the sti ness matrix of that bearing. The sti ness matrices
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of the bearings may then be assembled into the model of the system. Note
that identical bearings may lead to di erent sti ness matrices owing to the
fact that di erent loads cause the bearings to work in a di erent point
of the force-displacement characteristics. Moreover, nonlinearity causes the
bearing to behave in an anisotropic way, even if it is geometrically axially
symmetrical.
If the system is not statically determinate, like a rotor on three or more

bearings, the loads on the bearings depend on the deformation of both the
stator and the rotor and on possible misalignments. A coupled problem
that is far more complex must be solved. The equation allowing the static
deflected configuration of the rotor to be studied is Equation (4.83), written
with reference to a set of complex coordinates. By writing explicitly the
forces caused by weight, it yields

µ
K+ 2K C K00

¶
q = f + M( + ) (8.10)

where vector f contains static forces, not including weight, whereas the
elements of vector + vanish in correspondence with rotational degrees
of freedom and are equal to the cosines of the angle between the vertical
direction and the - and -axes for translational coordinates. Note that
the deformed equilibrium position depends on the angular velocity only if
there is viscous damping. The internal damping of the rotor will be assumed
to be of the structural (hysteretic) type, and centrifugal sti ening will be
neglected to allow the computations referred to the rotor to be performed
only once. However, there is no di culty modifying the equations to also
take into account viscous damping
As when the Newton-Raphson technique is used for the solution of a

nonlinear set of equations, there is some advantage to resorting to real
coordinates, Equation (8.10) can be rewritten in the form

K

½
x

y

¾
= f (8.11)

where

K =

·
K K00

K00 K

¸
f =

½
fxn
fyn

¾
+

½
M

M

¾
,

and vectors x and y contain the real and imaginary parts, respectively,
of the complex coordinates of the rotor. The sti ness matrix is singular
because the rotor has been considered unsupported, and this part of the
system is underconstrained.
It is possible to separate the vectors of the generalized coordinates into

two subsets: the first, labeled with subscript 1, containing the displace-
ments at the supporting points (i.e., the nodes of the rotor at which the
bearings are connected), and the second, with subscript 2, containing all
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other generalized displacements. The bearings will be assumed to react only
to translations of the rotor, so the first set contains a number of elements
equal to twice the number of the bearings. If the model of the bearing is
modified to also include the moment caused by to angular displacements,
the inclusion of the rotational degrees of freedom in this set of displace-
ments is straightforward. By partitioning accordingly the relevant matrices
and vectors, it follows that

·
K
11

K
12

K
21

K
22

¸
½
x

y

¾

1½
x

y

¾

2

=

½
f
1

f
2

¾
(8.12)

By applying the usual techniques of static reduction and assuming the
generalized coordinates of the first group as master degrees of freedom,
Equation (8.10) reduces to

K

½
x

y

¾

1

= f (8.13)

where the expressions of the condensed matrices are the usual ones and
the internal generalized coordinates of the rotor are expressed by Equation
(4.98).
The model of the stator can be built in a way similar to that seen for the

rotor, with two important di erences. The stator does not need to be axi-
ally symmetrical, and because it is stationary, its static deformation is not
a ected by its damping. The equilibrium equation for the stator is Equation
(8.11) where subscript has been substituted with . MatricesM and K
are, in general, symmetrical and contain the coupling terms between the
behavior in the - and -planes. Also, in this case, it is possible to sepa-
rate the vectors of the generalized coordinates into two subsets: The first,
labeled with subscript 3, containing the displacements at the supporting
points (i.e., the nodes of the stator at which the bearings are connected),
and the second, with subscript 4, containing all other generalized displace-
ments, and then to resort to static reduction techniques.
The equilibrium equation referred to the displacements of the bearings is

then Equation (8.13) where subscripts and 1 have been substituted with
and 3, respectively. It can be reduced with the usual algorithm.
Note that because the interface between stator and rotor is represented

by the bearings, which react only to translations, the sets of generalized
coordinates with subscripts 1 and 3 contain only displacements and no
rotations. This allows the use of conventions for the rotations of the stator
and the rotor that are not consistent and the use of any standard FEM code
to build the model of the stator even if the conventions for rotations about
the -axis are di erent from those used in the model of the rotor. Any type
of element can be used in both models, provided that the displacements
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at the interface are measured with reference to the same axes used for the
rotor.
Consider the th bearing; the displacements of the node of the rotor in

which the bearing is located can thus be indicated as
1
and

1
, whereas

the displacements of the corresponding point of the stator can be indicated
as

3
and

3
(where subscripts 1 and 3 refer to the above-mentioned

partitioning of the generalized coordinates).
The relative displacements and of the rotor with respect to the

stator at the bearing location are then

½ ¾
=

½
1 3

1 3

¾
(8.14)

Equation (8.14) takes into account the possibility that the center of the
th bearing may be displaced by the quantities and , with respect
to the nominal position when no force acts on it. Equation (8.14) allows
the computation of the relative displacement of the bearing and then of
the forces and that the rotor receives from the stator, by using the
nonlinear bearing characteristics. The interaction between stator and rotor
can then be expressed by applying the forces on the rotor and the stator,
which the two exchange through the bearing (remembering that they are
equal in magnitude and opposite in sign)

K

½ ¾

1

+

½
f

f

¾
= f

K

½ ¾

3

½
f

f

¾
= f

(8.15)

If the number of bearings is , Equation (8.15) is a set of 4 nonlin-
ear equations with the 4 unknowns representing the displacements of the
stator and of the rotor in the - and -directions. The number of non-
linear equations can, however, be reduced because the actual unknowns
of the nonlinear part of the equation are the di erences between the dis-
placements of the rotor and the stator, which are only 2 in number.
Because the reduced sti ness matrix of the rotor is generally singular and
cannot be inverted, the second set of Equations (8.15) can be multiplied
by K K 1 and added to the first, obtaining the following nonlinear
equation, which can be solved by resorting to the Newton-Raphson iterative
technique:

K x+A

½
f ({ })
f ({ })

¾
= f (8.16)

where

x =

½
x1 x3
y1 y3

¾
A = I+K K 1

f = f K K 1 f
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Once the values of the relative displacements x of the bearings in the
static equilibrium position have been computed, their sti ness matrices
can be easily obtained. Note that if the bearing characteristics depend on
the speed or if the damping of the rotor is modeled as viscous damping,
the solution of the static problem must be repeated for each value of the
speed at which the natural frequencies are to be computed.
The dynamic study in the small can thus be performed using a linear

model of the whole system. As the presence of nonlinear bearings makes the
nonrotating parts of the machine to behave in an anisotropic way, even if
everything does possess geometrical axial symmetry, both real or complex
coordinates may be used. Both free whirling and unbalance response may be
studied, but the latter only if the amplitude of the response is small enough
not to exceed the limits of linearization. As a last consideration, it must be
noted that if the static forces acting on the bearings are vanishingly small,
as in the case of a vertical bearing without static loading, the linearized
model may in some cases supply only a very rough approximation of the
actual behavior of the system: If a clearance is present in the bearing or
if the sti ness in the central position vanishes, the equilibrium position is
not well defined. This, however, is usually a sign of a poor design, which is
usually solved by adding some preload.
To study the motion in the large and to find the limit cycles that can

occur in the cases in which the motion in the small is unstable, it is nec-
essary to study the complete nonlinear problem by resorting to numerical
integration of the equations of motion, but this goes beyond the scope of
the present chapter.

8.3 Rolling elements bearings

The sti ness of rolling element bearings depend on both the load and the
preload, showing a pronounced nonlinear behavior. In general, it may be
said that roller bearings are sti er than ball bearings and generally more
linear. Bearings used in high-speed machines have a light preload or, par-
ticularly in the case of roller and needle bearings, may have no preload at
all. In this case, a certain play within the bearing can be expected.
Generally speaking, a bearing is considered as a constraint that reacts

only in radial and axial direction, while leaving the shaft completely free
for what the rotational degrees of freedom are concerned. This is exactly
verified only in the case of particular bearing geometries, like oscillating
ball or roller bearings, and it is just an approximation for other geometries,
like deep groove or angular contract bearings. The rotational sti ness is,
however, very low and this justifies the practice of neglecting it with any
type of rolling elements bearings.
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FIGURE 8.3. Force-displacement characteristics of two rolling element bearings.
(a) Preloaded pair (X layout) of angular contact ball bearings (SKF 71907 c/PG)
with a preload of 160 N. (b) Cylindrical roller bearing (SKF BC1B 649247B)
with no preload. For each bearing, the characteristics at two di erent speeds are
reported, together with a simple analytical approximation (dashed lines).

By applying the Hertz theory regarding the contact stresses and strain
in the rolling elements and the races, the radial displacement (or ) is
proportional to 2 3, 3 4, 0 9 ( indicates the radial force), respectively,
for ball bearings, roller bearings with linear contact on one race and a point
contact on the other one, and roller bearings with linear contact on both
races. Similar relationships hold also for the case of axial displacements and
forces [46].
The force-displacement characteristic ( ) is the of the hardening type,

i.e., the force increases more than linearly with the displacement. The actual
characteristics of rolling elements bearings are, however, strongly a ected
by many features, like the deformation of the races, clearances, and so on,
and more complex formulations must be used.
The force-displacements characteristics of a roller bearing and an angular

contact preloaded pair are reported in Figure 8.3. Note that the charac-
teristic depends slightly on the speed (the curves obtained at two di erent
values of the speed are reported). Also, two simple analytical approxima-
tions (dashed lines) are plotted in the figure. For the preloaded pair, a cubic
expression of the type of Equation (8.6) with

= 0 95× 108 , = 4 25× 108 ,

with the force expressed in N and the displacement in m, can be used.
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For the roller bearing, a linear characteristic with clearance is suitable.

The analytical expression of function
³
| |2
´
is given by the equation

= 0 for | | ,

| | = (| | )

| |
for | | .

(8.17)

The clearance and the sti ness of the bearing in the figure are, respec-
tively,

= 2 8× 10 5m = 4 44× 108N/m .

The sti ness in the deflected position 0, 0 can be computed through
Equation (8.5), which yields

K = 0
=

·
1 0
0 1

¸
+
( 2

0
+ 2

0
)
3 2

·
2

0 0 0

0 0
2

0

¸
. (8.18)

If the force acts along one of the coordinate axes, say -axis, the sti ness
matrix simplifies as

K = 0
=

·
1 0
0 1

0

¸
, (8.19)

the ellipse of elasticity is less and less elongated with increasing loading,
and the sti ness in -direction vanishes with vanishing load. However, if the
load tends to zero, the contact becomes unilateral and no linearized model
can be used. The axes of the ellipse are directed along - and -axes.

Example 8.1 Turbojet rotor on rolling elements bearings. Rigid-body model.

Consider the rotor of the very simple turbojet engine whose simplified draw-

ing is shown in Figure 8.4. The rotor, which includes a single-stage centrifugal

compressor and a single-stage axial turbine, is supported on a deep groove ball

bearing and a roller bearing. In the subsequent analysis, the stator of the machine

is considered as a rigid body; in this first study, also the rotor is assumed to be

rigid.

The sti ness of the bearings depends on the load. The mass of the whole rotor

has been evaluated in 17.040 kg, with its center of mass located at 188.6 mm from

the front (compressor) end. The distances of the front and rear bearings from the

center of mass are 175.6 mm and 42.4 mm, respectively. In these conditions, the

radial loads caused by weight are 32.49 N and 134.67 N for the ball and the roller

bearings, respectively.

Following the Hertz theory for the deformation of bodies in contact, the dis-

placements at the bearings are assumed to be proportional to 2 3 and 0 9. The

force-displacement characteristic of the ball bearing is then

(
=

¡
2
+

2
¢1 4

,

=
¡

2
+

2
¢1 4

,
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FIGURE 8.4. Simplified drawing of the rotor of a turbojet engine.

where the constant is evaluated, following the data reported in the book by Palm-

gren [46], as = 10
10 in S.I. units. Following Equation (8.5), the Jacobian matrix

about the static inflected position is

S = 0
=

" #

= 0

=

=

"
| 0|

1 2
+

1

2

2

0 | 0|
3 2 1

2 0 0 | 0|
3 2

1

2
0 0 | 0|

3 2 | 0|
1 2

+
1

2

2

0 | 0|
3 2

#
,

where | 0| =
p

2

0
+ 2

0
.

If the load acts in the direction of -axis, the static displacement in -direction

vanishes and the sti ness of the bearing is simply

S = 0
=

" #

= 0

=

·
3

2 0 0

0 0

¸
.

By computing the static displacement under load, the sti ness of the ball bearing

(in N/m) can be assumed to be

½
= 6 96× 106 3

= 2 261× 108 ,
= 4 64× 106 3

= 1 510× 108 .
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( = 0)[rad/s] [rad/s]
Isotropic Nonisotropic Isotropic Nonisotropic

I 2,027 870 2,301 866
II 6,025 2,725 10,046 2,751
III - 5,375 - 5,048
IV - 6,613 - 10,107

TABLE 8.1. Values of the first four natural frequencies at standstill and of the
first four critical speeds. Rigid-body model.

For the roller bearing, a characteristic of the type = | 0|
1 1

with a value

for constant equal to 4 8 × 108 can be assumed, to which a clearance must be
added. The characteristics is close to a straight line, so a linear characteristic

with clearance can be used. The value of the sti ness for a clearance of some

micrometers is = 1 2 × 108. By assuming a clearance of 10 m, and using

Equation (8.5), the linearized sti ness of the roller bearing is

½
= 1 20× 108 ,
= 1 21× 107 .

Note that the roller bearing is less sti than the ball bearing; this is because the

latter is very lightly loaded, the load being much smaller than the load capacity.

The other relevant data are the moments of inertia of the rigid rotor, = 0 233

kg m2 and = 0 168 kg m2. The matrices referred to the - and - planes are

M =M =

·
17 040 0

0 0 233

¸
, G =

·
0 0

0 0 168

¸
,

K =

·
3 461 0 346

0 346 0 0719

¸
× 108 , K =

·
1 631 0 260

0 260 0 0468

¸
× 108 .

The mean sti ness matrix, used to study the dynamics of an averaged system,

is

K =

·
2 546 0 303

0 303 0 0593

¸
× 108 .

The first four natural frequencies at standstill and the first four critical speeds,

computed using both the anisotropic model and the ’averaged’ model with isotropic

characteristics are reported in Table 8.1.

Example 8.2 Turbojet rotor on rolling elements bearings. FEM.

Now consider also the flexibility of the rotor, using the finite element model

shown in Figure 8.5. The model consists of 21 nodes, 20 beam elements to model

the shaft, 2 mass elements to model the compressor and turbine wheels, and 2

spring elements to model the bearings. The inner races of the bearings are in-

cluded into the model, which may result in overestimating the sti ness, because

they add probably more sti ness in the model than in the real object. The same is



296 8. Rotor-bearings interaction

FIGURE 8.5. Sketch of the finite element model of the turbojet of Figure 8.4.

( = 0)[rad/s] [rad/s]
Isotropic Nonisotropic Isotropic Nonisotropic

I 1,539 831 2,103 809
II 2,832 1,707 3,975 1,492
III 4,825 2,365 38,524 2,700
IV 7,540 3,262 43,477 3,487

TABLE 8.2. Values of the first 4 natural frequencies at standstill and of the first
4 critical speeds. FEM model.

for the connection between the turbine wheel and the shaft, which in the model is

one piece with the latter, whereas in the actual machine is fit on it. On the con-

trary, the sti ening e ect of the compressor wheel on the shaft has been neglected,

which may result in underestimating the sti ness. The latter problem may be al-

leviated by adding some massless beam elements to model the sti ening e ect of

the compressor wheel, as it was done in Example 4.1; However, in that case, the

compressor wheel was locked in place using a nut on the shaft, whereas here it is

bolted on a single section (the disc at midshaft) and its sti ening e ect is much

lower and depends strictly on the fit between the shaft and the wheel. Note that the

fit changes with the speed and the temperature (in both cases, the wheel expands

more than the shaft) and it may be wise to neglect the sti ening altogether, unless

experimental data are available. A short massless beam element has been used to

connect the mass element modeling the turbine wheel to the shaft.

The first four natural frequencies at standstill and the first four critical speeds,

computed using both an anisotropic model and an averaged model with isotropic

characteristics are reported in Table 8.2.

Note that the first mode, particularly when the nonisotropic model is used, was

computed with a fair accuracy also using the rigid-body model: This suggest that

the deformations occur mainly in the bearings, as it will be shown later when

plotting the mode shape. The other modes are mainly deformation modes, and

the rigid-rotor model yields values of the frequencies that are much higher than

the correct ones.
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FIGURE 8.6. Campbell diagram of the turbojet of Figure 8.5.

The Campbell diagram is reported in Figure 8.6. The first four modes are nei-

ther forward nor backward modes, because some of the nodes of the shaft whirl in

one direction and others in the opposite one. However, the fact that the first two

are characterized by a whirl frequency that decreases with the speed, whereas that

of the other two increases, shows that the first two modes are mainly backward

modes and the other ones are mainly forward modes.

The mode shapes corresponding to the critical speeds are shown in Figure 8.7.

From the shape of the orbits, it is clear that the first two modes occur mostly

in the horizontal ( ) plane, with the turbine wheel (node 21, at the right end)

whirling along a circular orbit owing to its own gyroscopic e ect in the second

mode. The third mode is mainly a mode in the vertical plane. As shown in the

sketch of the axes, the forward direction for whirling (forward whirling) is coun-

terclockwise when looking at the rotor from the origin. The turbine wheel whirls

in forward direction in the second and third mode, and in backward direction in

the first mode, whereas the compressor whirls in forward direction in the first and

in backward direction in the others.

An unbalance corresponding to grade 2.5 at 20,000 rpm has been given to the

turbine wheel. This corresponds to an eccentricity of 1.2 m and to a static un-

balance = 7 6 gmm. The response computed at the turbine wheel (node 21)

and at the rear bearing (node 14) is reported in Figure 8.8.

Note that although the damping of the bearings has been assumed small ( =

0 01), the orbits, which are elliptical, are very small.
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FIGURE 8.7. First three mode shapes at the critical speeds for the turbojet of
Figure 8.5. Note that the orbits are elliptical and that their direction is forward
or backward depending on the node considered (mixed modes).

8.4 Fluid film bearings

8.4.1 Forces exerted by the oil film on the journal in

stationary conditions

The study of journal bearing is much more complex than that of rolling el-
ements bearings: In this case, the forces that support the rotor are supplied
by a fluid film whose behavior depends on many parameters in a complex
way and above all on the spin speed. It is then impossible to supply a sin-
gle plot like the one of Figure 8.3 from which a single characteristic of the
bearing can be obtained.
Above all, the force supporting the shaft is in this case not directed in

the same way as the displacement, so that Equation (8.3) does not hold
any more. In the simplest case, as it will be shown later, the direction of
the force is even perpendicular to that of the displacement. In the present
section, the behavior of journal bearings will be dealt with in a simplified
way: The reader can find a more detailed analysis in many specialized texts,
like the book Journal-Bearing Databook by Someya [47].



8.4 Fluid film bearings 299

FIGURE 8.8. Unbalance response of the turbojet of Figure 8.5. Semi-axes of the
elliptical orbits at nodes 14 and 21.

Consider the journal bearing sketched in Figure 8.9(a). Assume that
the bearing is perfectly aligned, i.e., that the axes of the bearing and the
journal are parallel. The nonrotating reference frame O is centered in
the center of the bearing and has the directions of its axes fixed in space,
and the directions of the axes of reference frame O 0 0 , whose axis 0

contains the center of the journal C, are not fixed in space if point C moves
about point O. In this section, the way of working of the bearing will be
defined as stationary if the coordinates and of the center of the journal
are independent from time , and consequently, reference frame O 0 0 is
also fixed in space and the attitude angle is constant.
Assume that the pressure is linked to the thickness of the fluid film by

the well-known Reynolds equation [48]

1

6

"
1
2

µ
3

¶
+

µ
3

¶#
= + 2 , (8.20)
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FIGURE 8.9. Lubricated journal bearing; (a) geometrical definitions, (b) position
of the journal when a load acts along the -axis; solution obtained for stationary
conditions from Equation (8.27).

where is the viscosity of the lubricant and = , subscripts and
referring to the bearing and the journal, respectively. Usually, the bearing
does not rotate; hereafter, it will be assumed that = 0 and = .
The film thickness is easily expressed as a function of the coordinates

of the center of the journal with respect to the center of the bearing

= [1 cos( ) sin( )] = [1 cos( 0)] (8.21)

where the clearance is simply given by the di erence of the radii =
and the nondimensional eccentricity and coordinates are = ,

= , and = .
Equation (8.20) can be used to obtain the pressure distribution in the

fluid film. However, if a numerical solution is considered as not general
enough, some simplifications must be introduced to allow the pressure to
be computed in closed form. If the bearing is assumed to be very long, it is
possible to neglect the fluid flow and pressure gradient in axial direction,
obtaining the so-called long-bearing approximation, often associated with
the name of Sommerfeld. Equation (8.20) reduces to

1

6 2

µ
3

¶
= ( 2 ˙) sin( ) ( + 2 ˙) cos( ) (8.22)

If the center of the journal does not move, i.e., in stationary conditions,
Equation (8.22) reduces to

1

6 2

µ
3

¶
= [ sin( ) cos( )] .



8.4 Fluid film bearings 301

By introducing the variable 0 and remembering that the viscosity can
be considered as constant, it follows that

0

µ
3

0

¶
= 6 2 sin 0 (8.23)

By integrating Equation (8.23), it yields:

0
= 6

Ã
2
!2

cos 0 +¡
1 cos 0

¢2

where is a constant of integration. By introducing the thickness 0 (still
unknown), corresponding to the point where 0 vanishes, it follows that

0
= 6

Ã
2
!2 "

1¡
1 cos 0

¢2 0¡
1 cos 0

¢3
#
. (8.24)

The integration of Equation (8.24) is not straightforward. Sommerfeld
[49] resorted to the substitution:

¡
1 + cos 0

¢
=

1 2

1 cos
(8.25)

and, stating the condition (0) = (2 ), obtained the following pressure
distribution:

0 = 6

µ ¶2
2 + 2

2 cos( 0)

[1 cos( 0)]3
sin( 0) (8.26)

The pressure 0 obtained from Equation (8.26) is plotted in nondi-
mensional form as a function of 0 for di erent values of in Figure 8.10.
Pressure 0 is the pressure at

0 = 0, i.e., in the point at which the oil
film is at its minimum thickness. It can be easily computed by assuming
that the pressure attains a known value at the locations in which the oil
supply is located. The components of the force the journal receives from the
oil film in the 0- and 0-directions can be obtained simply by integrating
the pressure profile on the journal surface

0 =

Z
2

0

( 0) cos(
0) = 0

0 =

Z
2

0

( 0) sin(
0) = 12

µ ¶2
(2 + 2) 1 2

(8.27)
where is the length of the bearing in the axial direction.
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FIGURE 8.10. Pressure distribution on the journal along angle 0 for di erent
values of the nondimensional eccentricity . Long bearing assumption; Equation
(8.26).

The force exerted by the oil film on the journal is then directed along 0-
axis, and the displacement is directed along 0-axis. The journal is displaced
in a direction perpendicular to the direction of the load, as shown in Figure
8.9(b), in which the load is assumed to act in the vertical direction. By
linearizing the expression of the forces about the central position (vanishing
), the following expression is obtained:

½ ¾
= K

½ ¾
= 6

µ ¶3 ·
0 1
1 0

¸½ ¾
(8.28)

Note that the sti ness matrix obtained from the linearization of the bear-
ing has vanishing elements on the main diagonal and is skew symmetrical.
It is then more a circulatory matrix than a sti ness matrix.

Remark 8.2 The fact that the sti ness matrix is skew symmetrical is

linked to the particular oversimplified formulation used. In general, it is

a nonsymmetric matrix, which can be decomposed into a symmetric and a

skew symmetric matrix, i.e., into sti ness and circulatory matrices.

From Figure 8.9, it is clear that when the eccentricity is high and the in-
let pressure is low, very low values of the absolute pressure can be reached
in some parts of the oil film, or even negative absolute pressures, which is
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physically without meaning. When the pressure becomes lower than the va-
por pressure of the lubricant at the relevant temperature, cavitation occurs
and the oil film ruptures. A usual approach for the study of bearings with
partially cavitated oil film is assuming that the pressure in the noncavitated
part of the bearing is equal to that which can be computed by assuming a
complete oil film. Because the pressure in the cavitated part of the bearing
can be neglected, the same formulas already seen for the computation of
the forces can be used, provided that the integration is performed between
angles 1 and 2, which define the region on which the oil film extends.
A simple approach, usually referred to as fully cavitated bearing, is as-

suming that the oil film extends between 0 = and 0 = 2 , i.e., in the
region in which the value of the pressure is higher than 0. Once angles

1 and 2 have been defined, there is little di culty computing the static
forces corresponding to a given displacement of the journal, i.e., to a pair
of values and of the coordinates of point C

f =
6

3

2

Z
2

1

cos( )

Z
2

1

sin( )

(8.29)

where

=
sin( ) cos( )

3
= 1 cos( ) + sin( ) .

The integrals in Equation (8.29) must be solved numerically, but this
does not imply long and costly computations.
If the bearing is relatively short and the long-bearing approach does

not seem to be applicable, the flow in the circumferential direction may be
neglected, obtaining the so-called short-bearing approximation. By neglect-
ing the term linked with the circumferential pressure gradients in Reynolds
Equation (8.20) and introducing into the latter the expression of the film
thickness, it follows that

1

6

µ
3

¶
= ( 2 ˙) sin( ) ( + 2 ˙) cos( ) (8.30)

By operating in the same way as for the long-bearing Sommerfeld ap-
proximation, the following expressions for the forces in static conditions
and the sti ness and damping matrices are obtained

f =
3

2 2

Z
2

1

cos( )
Z

2

1

sin( )

(8.31)

where and have the same expression as in Equation (8.29)[50].
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Apart from the plain lubricated bearing, there are many other bear-
ing types (cylindrical grooves, multilobe, tilting pads, etc.), mostly evolved
with the aim of reducing the inherent instability (see below) of plain bear-
ings. In the case of complex geometries, there is no chance of obtaining a
closed-form solution, or even a solution computed with simple numerical
integrations. The possible approaches either use experimental results or
perform a more complex numerical modeling of the fluid film. When the
results obtained experimentally or by numerical modeling are presented in
the form of general charts applicable to a given family of bearings, nondi-
mensional parameters, related to the average pressure

=
2

(8.32)

are commonly used. One of them is the Sommerfeld number, defined as

=
2

µ ¶2
=

µ ¶2
(8.33)

A low Sommerfeld number corresponds to low-speed, high-load working
conditions. The Sommerfeld number is well suited to the study of long
bearings. For the short-bearing model, the load factor

=
2

µ ¶2µ
2

¶2
=

µ ¶2µ
2

¶2
(8.34)

is commonly used. Barwell [51] in 1956 proposed calling the load factor the
Ocvirk number, and here it will be referred to with the symbol . The two
nondimensional parameters are linked by the relationship

=
1
µ
2

¶2
(8.35)

Note that a low value of the Sommerfeld number corresponds to a high
value of the load factor and vice versa.
The position of the center of the journal in stationary conditions is uni-

vocally determined, given a certain type of bearing, once the Sommerfeld
number (or any other relevant nondimensional parameter) is stated. Charts
giving the nondimensional coordinates of the center of the bearing and
, or better, the eccentricity and the attitude angle , as functions of

the Sommerfeld number, summarize the static behavior of the bearing. The
attitude angle defines the direction of the displacement of the center of the
journal with respect to the direction of the force , as shown in Figure
8.11(a). In the case of an uncavitated long bearing, the attitude angle is
then equal to 90 for any value of the Sommerfeld number.
In many cases, the minimum thickness of the oil film = 1 is

given instead of the eccentricity. The graph giving the eccentricity and the
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FIGURE 8.11. Lubricated journal bearing; (a) definition of the attitude angle
(load acting along -axis); (b) eccentricity and attitude angle as functions of
the load factor for a fully cavitated short bearing.

attitude angle as functions of the load factor for a fully cavitated short
bearing is reported in Figure 8.11(b).
In the case of short bearings, to pass from the load factor to the Sommer-

feld number the ratio must be stated. The same plot of Figure 8.11 is
reported in Figure 8.12 as a function of the Sommerfeld number, for a short
bearing with = 1, together with a similar plot for a two-lobes bearing
reported as Computation 12 on the already mentioned book edited by T.
Someya [47]. Note that in the latter case, may take values larger than
1: The clearance is not uniform around the journal, so when the attitude
angle approaches 90 , a far larger clearance than that used to define is
available.
A lubricated journal bearing does not work at standstill, i.e., with a van-

ishingly low Sommerfeld number. In this case, the eccentricity is at its max-
imum value (for cylindrical bearings = 1) and the attitude angle is equal
to 0: The journal touches the bearing at the bottom. When a minimum
speed is reached, the oil film is formed and the bearing works properly.
With increasing speed (increasing Sommerfeld number), the eccentricity
reduces, i.e., the journal tends to work more centered in the bearing, and
the attitude angle increases. At very high speed (or low load, i.e., at high
values of the Sommerfeld number), the eccentricity further reduces, and
the attitude angle tends, for cylindrical bearings, to 90 , approaching the
theoretical situation for a noncavitated long bearing.

8.4.2 Linearized dynamics of the bearing

Once the stationary conditions have been defined, there is no di culty in
computing the linearized dynamics of the system. If the bearing is dis-
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FIGURE 8.12. Eccentricity and attitude angle as functions of the Sommerfeld
number for a fully cavitated short bearing with = 1 and for a two-lobes
bearing (see T. Someya (editor), Journal-Bearing Databook, Springer, Berlin,
1989, calculation n. 12).

placed of a small quantity , from the static equilibrium position
(corresponding to the static force ) and moves with a speed ˙ , ˙, the
force the journal receives from the fluid film can be expressed as

f = f

"
˙ ˙

˙ ˙

# ½
˙

˙

¾ " # ½ ¾
.

(8.36)

Equation (8.36) holds if the inertia of the oil film is neglected. The lin-
earized behavior of the bearing is then expressed by a set of coe cients: the
eight derivatives of the components of the force with respect to the displace-
ments (sti ness coe cients) and the velocities (damping coe cients). This
way of linearizing the behavior of lubricated bearings is usually referred to
as the eight-coe cients model.
In the case of the long-bearing assumption, the expressions of the eight

coe cients are

K =

·µ ¶¸
=

6
3

(2 + 2) 3

·
1 + 2 4 + 5

6 + 5 1 + 3

¸

C =

·µ
˙

¶¸
=
6

3

2 3

·
7 8

9 10

¸
(8.37)

where
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Again, the integrals in Equations (8.37) must be solved numerically,
which is straightforward.
By using the short bearing assumption, the following expressions for the

sti ness and damping matrices are obtained:

K =

·µ ¶¸
=

3

2 3

·
1 + 2 4 + 5

6 + 5 1 + 3

¸
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(8.38)
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The eight coe cients summarizing the linearized behavior of the di erent
bearings are reported in nondimensional form as functions of the Sommer-
feld number in many handbooks. The plots or tables may be computed
using numerical methods (e.g., the FEM) or measured experimentally. As
an example, the sti ness and damping parameters of the same bearings of
Figure 8.12 (a plain cylindrical bearing, modeled using the short bearing
model, and a two-lobe bearing) are reported in Figure 8.13. The coe cients
are made nondimensional by dividing them by the constant
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FIGURE 8.13. Elements of the sti ness and damping matrices as functions of
the Sommerfeld number for a fully cavitated short bearing with = 1 and for
a two-lobe bearing (see T. Someya (editor), Journal-Bearing Databook, Springer,
Berlin, 1989, calculation n. 12). The elements are made nondimensional through
constant = .

= .

In both cases, the out-of-diagonal terms of the sti ness matrix are di er-
ent, showing that the sti ness matrix is nonsymmetric. In other terms, the
presence of lubricated bearings introduce a circulatory matrix, and hence
a destabilizing e ect, into the equation of motion. This is typical of lu-
bricated bearings, except for some types, which are purposely designed to
avoid instability: Tilting pad bearings have the out-of-diagonal elements
vanishingly small. The damping matrix of the first bearing is symmetrical,
whereas that of the second one is almost such.
If also the inertia of the oil film must be accounted for, it is possible

to resort to more complex models, like the 12-coe cient model in which
4 further coe cients are used to define a mass matrix. The data for its
implementation are, however, not readily available.
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8.4.3 Stability problems linked with the use of lubricated

bearings

It is very well known that rotors running on journal bearings show partic-
ular dynamic problems linked intrinsically with the behavior of the fluid
film within the bearings. These problems are usually referred to as oil whirl
and oil whip.
The first phenomenon is a whirling of the rotor, which takes place at

a frequency of about half the speed of rotation (sometimes referred to as
half-frequency whirl) and is superimposed on the other whirling motions,
particularly the synchronous whirling caused by unbalance. Its amplitude
is usually not large and does not constitute an actual problem. At a speed
that is usually not far from twice the first critical speed, the motion becomes
more severe and can rapidly degenerate in a very violent, often destructive,
whirling that takes place at a frequency almost independent of the speed
and coincident with the first natural whirl frequency of the rotor at the
relevant speed. This motion is usually referred to as oil whip.
A very simple heuristic explanation of the phenomenon accounts for the

fact that the whirling takes place at about half the rotational frequency
by noting that the oil in a plain journal bearing moves around at a speed
that is about half of the peripheral velocity of the journal, providing a sort
of rotating damping whose speed of rotation is about half the spin speed.
In the region of the Campbell diagram, which lies below the straight line
whose equation is = 2, the behavior of the system is unstable, and the
threshold of instability can be found easily by intersecting the lowest branch
of the Campbell diagram with the mentioned line of equation = 2
(Figure 8.14). If the lowest branch of the Campbell diagram is a horizontal
straight line, as is the case of the Je cott rotor, the threshold of instability
occurs at twice the critical speed of the rotor.
Note that this way of reasoning assumes that the presence of the bearings

does not change deeply the natural frequencies of the rotor, i.e., that the
bearing are much sti er than the latter. If this does not occur, the Campbell
diagram is changed and it has little meaning to refer to the diagram of the
rotor on sti bearings. Moreover, if the bearings’ dynamics a ects deeply
the behavior of the rotor, their anisotropy (because of the load) makes the
distinction between forward and backward modes to lose importance, and
the intersection of the = 2 line with all branches of the Campbell
diagram must be considered.
The mentioned heuristic explanation also accounts for the fact that the

frequency of the oil whirl is slightly lower than half the rotational speed,
usually in the range of 0.45 to 0.48 . The average velocity of the oil film
is slightly lower than half the peripheral speed of the journal, depending
on the clearance and the exact velocity profile.
However, the phenomenon is much more complex, and the actual behav-

ior of the lubricant film must be modeled in some detail. In particular, the
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FIGURE 8.14. Oil whip and oil whirl on the Campbell diagram.

intrinsic nonlinear nature of the bearing cannot be neglected, which makes
the study of the dynamic behavior of the system much more complex than
the simple linear rotor dynamics study that is often su cient when no al-
lowance is taken for the compliance of journal bearings. In particular, the
whirl-whip transition is not as abrupt as shown in Figure 8.14, and because
the system is nonlinear, the free and self-excited vibrations are not really
independent from the forced vibrations, like the unbalance response: It is
well known that in many cases, an increase of the unbalance, while increas-
ing the forced vibrations of the rotor, decreases the tendency to instability
and consequently rises the threshold of instability and lowers the amplitude
of the self-excited vibration, when present.
A detailed study of the stability in the small can, however, be performed

by using the eight-coe cients model, i.e., by remaining within the simplifi-
cation of linearized models. No interaction between free and forced behavior
can be obtained in this way, but the study of the motion in the small allows
us to obtain much information on the dynamic behavior of the rotor in a
straightforward way.
The inherent instability of plain journal bearings makes them unsuitable

for high-speed supercritical machinery, and many other bearing configura-
tions have been developed with the aim of overcoming this di culty. In
particular, tilting pad bearings allow the instability problem to be solved
completely at the cost of a reduction of damping at low speed and of added
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overall complexity. Among the many papers and books existing on this
subject, those by Tondl [52] and Muszynska [21] are worth mentioning.

Example 8.3 Study the dynamic behavior of the rotor described in Example

4.5 (Figure 4.14), running on a pair of plain lubricated bearings.

Consider the following data:

• Inertial properties: = 20 kg, = 0 2 kg m2, = 0 25 kg m2

• Shaft geometric and material data: diameter = 30 mm, 1 = 100 mm,

2 = 200 mm, = 2 1× 1011 N/m2

• Bearings data: = 12 mm, = 12 mm, = 35 m, = 0 02 N/sm2

The rotor is axially symmetrical, so the complex coordinates approach will be

first followed. Assuming as generalized coordinates the displacements at the bear-

ings and at the disc and the rotation of the latter, the 4×4 sti ness matrix is
[Equation (4.107)]

K =

1 0020 1 0020 0 0501 0

1 0020 1 1272 0 0376 0 1252

0 0501 0 0376 0 0050 0 0125

0 0 1252 0 0125 0 1252

× 108 .

Note that the sti ness of the bearings has not been included into the computa-

tions. To avoid a singular mass matrix, a concentrated mass of 0.001 kg is added

at the bearing locations. The mass and gyroscopic matrices are [Equation (4.108)]

M = diag
©
0 001 20 0 2 0 001

ª
G = diag

©
0 0 0 25 0

ª
.

As the bearings are not isotropic, the study is performed using the real coordi-

nates approach. The relevant matrices are then

K
0

=

·
K 0

0 K

¸
, M

0

=

·
M 0

0 M

¸
, G

0

=

·
0 G

G 0

¸

The forces on the bearings are easily computed:

1 =
2

1 + 2

= 130 8 N , 2 =
1

1 + 2

= 65 4 N

The Sommerfeld numbers are then

1 =
1

µ ¶
2

= 8 24× 104 , 2 =
2

µ ¶
2

= 16 48× 104 .
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For instance, at a speed of 500 rad/s, their values are

1 = 0 412 , 2 = 0 824 ,

Assuming two fully cavitated plain cylindrical bearings, at that speed, the ec-

centricity and the attitude angles are (Figure 8.12)

1 = 0 51 , 1
= 53 44 , 2 = 0 36 , 2

= 64 03 .

The eight coe cients of the two bearings can be obtained from Figure 8.13. At

500 rad/s, they are

K1 =
1

·
3 162 3 826

0 580 2 002

¸
=

·
1 182 1 430

0 217 0 748

¸
× 107 ,

K2 =
2

·
2 180 4 091

1 680 2 212

¸
=

·
4 073 7 645

3 139 4 134

¸
× 106 ,

C1 =
1

·
6 297 1 864

1 864 2 515

¸
=

·
4 707 1 393

1 393 1 880

¸
× 104 ,

C2 =
2

·
7 216 2 106

2 106 4 327

¸
=

·
2 697 0 787

0 787 1 617

¸
× 104 .

The four elements of matrices K1 and C1 must be assembled in position 11, 15,

51, and 55 of the sti ness matrix K
0

and of the global damping matrix, whereas

the elements of matrices K2 and C2 must be assembled in position 44, 48, 84,

and 88.

The model of the system is then completed, and the whirling frequencies can be

computed. At 500 rad/s, there are six real values of

1 = 841 , 2 = 7096 3 = 1 202× 107 ,

4 = 1 308× 107 , 5 = 3 111× 107 6 = 5 278× 107 ,

representing six nonoscillatory (overdamped) modes, plus 5 pairs of complex con-

jugate solutions

7 8 = 199± 355 , 9 10 = 176± 666 11 12 = 642± 816 ,

13 14 = 136± 1504 , 15 16 = 864± 2265 ,

related to oscillatory modes.

The real part of all solutions is negative: The system is stable at 500 rad/s.

The computations can be repeated for di erent values of the speed, obtaining

the Campbell diagram and the decay rate plot (Figure 8.15). The Campbell di-

agram of the rotor on rigid supports is reported on the same figure: As it was

easily predictable from the observation that the elements of the sti ness matrix of

the shaft are of the same order of magnitude of those of the bearings, the latter

have a deep influence on the dynamic behavior of the system. The static working

conditions of the bearings are reported in Figure 8.16
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FIGURE 8.15. Campbell diagram and decay rate of a rotor on plain lubricated
bearings (full lines). The Campbell diagram is compared with that of the rotor
on sti bearings (dashed lines).

From the decay rate plot, it is clear that a threshold of instability is present.

Its value is = 959 rad/s. Note that, even if the bearing is fully cavitated, the

threshold of instability is not far from the intersection of the line related to the

first mode with the line = 2.

Example 8.4 Repeat the previous example, substituting a pair of tilting pad

bearings to the plain lubricated bearings.

The values of the eight coe cients for a five tilting pad bearing with the load

between the pads are reported in Figure 8.17; the data are taken from [47], calcu-

lation n. 40. Note that coe cients , , , and are equal to zero, as

typical of tilting pads bearings.The rotordynamic study is repeated and the Camp-

bell diagram and the decay rate plot (Figure 8.18), together with the Campbell

diagram of the rotor on rigid supports.

No instability is present, even at high speed. Note that the whirling frequencies

are lowered with respect to the previous case, showing that the bearings are less

sti .

8.4.4 E ect of seals, clearances, and dampers

Problems similar to those linked with lubricated journal bearings are also
encountered in all other cases in which a fluid is interposed between the
stator and the rotor, like, for example, in labyrinth and liquid seals. In all
cases, one of the most e ective measures aimed at reducing the instability
problems is to decrease the peripheral velocity of the fluid around the shaft.
This can be done using antiswirl vanes, by roughening the stator walls, or
by injecting the fluid in the tangential, backward direction.
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FIGURE 8.16. Eccentricity and attitude angle of the two bearings as functions
of the speed.

A linearized analysis of the e ect of such elements can be performed using
the eight-coe cients model: Charts similar to those seen for the bearings
can be obtained also for the various types of seals. In the simplest cases,
it is even possible to use the short- or the long-bearing model; otherwise,
the relevant coe cients may be computed using numerical methods (e.g.,
the FEM) or measured on purposely designed test rigs. In many cases, the
clearance in seals is much larger than that in bearings, and this causes
the forces exerted by the first ones to be far smaller than those caused by
the latter. In this case, the static equilibrium position of the shaft can be
computed by neglecting the presence of the seals, which are then introduced
in the following dynamic analysis.
The instability of bearings and seals is because the fluid entrained by

the rotor moves around, and thus its damping acts as a sort of rotating
damping, although its velocity is smaller than the spin speed (usually close
to half of it, as already said). It is then clear that no destabilizing e ect
can be produced by a nonrotating fluid film that, thanks to its viscosity,
supplies a nonrotating, and hence stabilizing, damping.
A damper can thus be made by a journal, connected with the shaft

through a bearing (usually a rolling elements bearing) and prevented from
rotating by a pin, which can whirl in a bearing. Such an arrangement is
usually referred to as a squeeze-film damper (Figure 8.19). The oil between
the nonrotating journal and bearing is prevented from moving axially by
seals at the ends. Radial movements of the journal cause the oil to move
circumferentially, and this movement provides the required damping.
By using the models seen in the previous section, it is easy to state that

the sti ness of the oil film is vanishingly small, because no relative angular
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FIGURE 8.17. Sti ness and damping coe cients for a five tilting pad bearing
with the load between the pads as function of the Sommerfeld number (T. Someya
(editor), Journal-Bearing Databook, Springer, Berlin, 1989, calculation n. 40).

velocity between journal and bearing exists. The damper does not exert any
steady-state force on the shaft and can be neglected in the computation of
the static equilibrium position. If the bearing is cylindrical and the oil is
prevented from moving axially, the long-bearing assumption can be used,
and the eight-coe cient model is expressed by Equations (8.37). From the
first equation, it is clear that the sti ness matrix K vanishes (owing to
the vanishing value of the spin speed ), and that the damper can supply
only damping forces. If the damper works in the central position, the forces
received by the journal can be computed in closed form as

½ ¾
= C

½
˙
˙

¾
= 12

µ ¶3 ·
1 0
0 1

¸½
˙
˙

¾
(8.39)

The damping matrix is not only symmetrical, but also even diagonal and
the e ect is stabilizing.
In the damper of Figure 8.19(b), the journal is connected to the bearing

by a spring and the device can provide both a damping and a restoring
force. More than a damper, it can then be defined as a damped support.
Squeeze-film dampers are very common, particularly in the case of ro-

tors running in supercritical conditions, where nonrotating damping must
be added to achieve the required stability. In machines containing coaxial
rotors spinning at di erent speeds, like multishaft turbines, it is also pos-
sible to use intershaft dampers, i.e., dampers located between two shafts
rotating at di erent speeds. They must, however, be designed with great
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FIGURE 8.18. Campbell diagram and decay rate of a rotor on tilting pad bearings
(full lines). The Campbell diagram is compared with that of the rotor on sti
bearings (dashed lines).

care because the element that dissipates energy in this case spins with the
velocity of one of the two rotors, usually the slower one, and then they can
have a destabilizing e ect in particular working conditions.

Remark 8.3 Squeeze film dampers are intrinsically nonlinear devices, and

although their behavior in the small may be linearized through the eight-

coe cients approach, they introduce nonlinearities into the system. The

aforementioned linearization holds only for motions with very small ampli-

tude.

8.5 Magnetic bearings

Magnetic bearings use electromagnetic forces to keep the rotor in place,
without any material contact between stator and rotor. They can drasti-
cally reduce bearing drag, while completely avoiding the presence of lu-
bricant and wear. The field in which the advantages of magnetic bearings
are most important is, however, that of the dynamic behavior of the rotor:
The sti ness and damping of the bearing system can be tailored for the
application and can be adjusted following the operating conditions. In the
case of active bearings, the control system can be used not only to maintain
the rotor in the required position as a rigid body, minimizing the e ects of
unbalance and reducing the needs of strict balancing tolerances, but also
to control the deformation modes. As a magnetic suspension must keep the
suspended body in the required position, constraining rigid-body motion, a
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FIGURE 8.19. Squeeze-film dampers: (a) Damper and (b) damped support.

complete suspension must constrain the six modes of a rigid body in space.
In the case of a rotor, one of the rigid-body modes (namely rotation about
the axis) must be left unconstrained and a five-axis suspension is needed.1

If the axial suspension can be considered as uncoupled, the lateral suspen-
sion must deal with the four rigid-body modes, to which the flexural modes
of the rotor must be added.
Electromagnetic forces can be exerted by a passive device, based on per-

manent magnets or on uncontrolled electromagnets, or by an active device
outfitted by a suitable control system. Strictly speaking, the two types
of magnetic suspension systems should be defined as uncontrolled or con-
trolled, because a device based on an uncontrolled electromagnet is active
in the sense that it receives energy from the outside. However, the use
of the terms active and passive with this meaning is well established in
magnetic-bearing technology and will be followed in this section.
A magnetic suspension based on a five-passive-axes layout is unstable

(the so-called Earnshaw theorem [53, 54]), except if diamagnetic or super-
conducting materials [55] are used.2 The choice is then between the use of
a hybrid suspension system, in which at least one of the degrees of freedom

1Actually the electric motor (if present) can be considered as a part of the suspension
system, and because it takes care of the sixth axis, also a rotor on active magnetic
bearings driven by an electrical machine can be considered as restrained by a six-axes
suspension.

2 It is possible to use electrodynamic phenomena or even gyroscopic moments (see
Section 12.1.3) to stabilize a fully passive magnetic suspension. As such types of sus-
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FIGURE 8.20. Sketch of an electromagnetic actuator of a magnetic bearing.

of the rotor is constrained by a mechanical bearing and that of a device
that is at least partially active. The solutions span from one-active-axis sus-
pensions, in which two passive radial bearings control the four degrees of
freedom linked with the lateral behavior of the rotor, and one axial active
bearing restrains axial motion to fully active five-axis suspensions, with
active radial and axial bearings.
In this section, only plain radial heteropolar electromagnetic actuators

will be dealt with; for other layouts, the reader may refer to the specialized
literature [56]. Each actuator of a magnetic bearing, controlling two of the
rigid-body lateral degrees of freedom of the rotor, can be assumed to be
made by four electromagnets as shown in Figure 8.20: Coils 1 and 3 are
responsible for the force in the -direction and coils 2 and 4 for the force in
the -direction. Other arrangements, in which the pole pieces are aligned in
axial direction (homopolar bearings), are also possible, but their working
is essentially similar.
As a first approximation, the force exerted by a single coil depends on

the current and the air gap between stator and rotor following the law

=

µ ¶2
(8.40)

where is a constant that includes all design parameters of the actuator.

pensions are seldom considered for rotating machinery, they will not be dealt with here.
Also diamagnetic and superconducting suspension will not be dealt with.
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Remark 8.4 Another cause of approximations is the assumption that the

force exerted by the actuator in one direction is independent from that ex-

erted in other directions. Coupling e ects depend on the exact geometry of

the actuator.

Usually, to linearize the overall behavior of the bearing, the coils are
fed with a constant current, referred to as bias current , equal for the two
opposite electromagnets of the same axis, on which the control current is
superimposed. A so-called static compensation current 0

0
(of opposite sign

on the two coils of the same axis) is also superimposed to the bias current

0 of the two coils acting in the same direction to withstand any static load.
The sum of the bias and compensation current in coils 1 and 3 acting in

the -direction can be written as 0+
0

0
and 0

0

0
. The total -component

of the force exerted by the actuator is

=

"µ
0 +

0

0
+

¶2 µ
0

0

0

+ +

¶2#
(8.41)

where , , and are, respectively, the control current, the radial clear-
ance, the static o set, and the radial displacement, and the constants
of the two coils are assumed to be equal. Equation (8.41) holds only if

0
0

0
0: In the opposite case, the controller should switch o the

coil for which this relationship is not verified, and the system works in
nonlinear conditions.
An actuator that works with a bias current high enough to allow all coils

to be always energized is said to work as a “class A” actuator whereas a
“class B” actuator works with at least one coil switched on and o .
The force expressed by Equation (8.41) can be linearized about the con-

dition with = 0, = 0 as

= 0 + + (8.42)

where

0 =

"µ
0 +

0

0

¶2 µ
0

0

0

+

¶2#

=

µ ¶
= 0
= 0

= 2

·
0 +

0

0

( )2
+

0
0

0

( + )2

¸
(8.43)

=

µ ¶
= 0
= 0

= 2

·
( 0 +

0

0
)2

( )3
+
( 0

0

0
)2

( + )3

¸

If the actuator operates in a central position, i.e., if = 0, Equation
(8.43) reduces to
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0 = 4
0
0

0

2
= 4

0

2
= 4

2

0
+ 0

0

2

3
(8.44)

The force 0 acting on the bearing determines the value of the current
0

0
and hence a ects the sti ness of the bearing. As a consequence, if the

static forces acting in the - and -directions are not equal, as in the case
of horizontal rotors, the behavior is anisotropic even if the geometrical
and electrical characteristics are equal in the two directions. This e ect is
particularly strong in the case of bearings operating with low bias currents.
In the case in which the sensors and the actuators related to a bearing

are located in the same cross section of the shaft (colocated bearing), each
actuator is controlled following the data supplied by a single sensor (decen-
tralized control) and the control current is proportional to the displacement
and the velocity measured by the sensor (ideal PD controller), and the lin-
earized model of the magnetic bearing is equivalent to a mechanical bearing
with a sti ness and damping given by the relationship

= + ,
= ,

(8.45)

where the gains of the control chain are , gain of the sensor; gain
of the power amplifier; proportional gain of the controller; and ,
derivative gain of the controller. Note that , is the negative sti ness,
expressing the instability of the bearing in open-loop conditions.
This seldom applies, because usually it is impossible to perfectly colocate

the sensor and the actuator, the controller (but also the sensors and the
power amplifiers) has its own dynamics and often a more complex control
strategy is used. In particular, sensor-actuator non-colocation may induce
instabilities in the system and must be dealt with in detail at the design
stage.
The dynamics of a rotor running on magnetic bearings can still be stud-

ied using a linearized model (provided that all relevant elements may be
linearized) through a multi-degrees-of-freedom model in the state space,
introducing a suitable number of states of the control loop together with
the mechanical states, positions, and velocities. Non-colocation can thus
be accounted for very easily, by simply introducing suitable nodes in the
sensor and actuator locations, and so its e ects on stability can be assessed.
A sketch and a block diagram of a rotor on two magnetic bearings are re-
ported in Figure 8.21; some details on dynamics of the control loop will be
dealt with in Chapter 16.
Magnetic bearings are very well suited for soft-mounted rotors, owing

to the possibility of tailoring sti ness and damping in the required way.
However, in many cases, it may be di cult to control adequately high-
frequency deformation modes, so in many cases rotors on magnetic bearings
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FIGURE 8.21. Rigid rotor on a four-axis active magnetic suspension: (a) Sketch
of the system; (b) block diagram, evidencing gyroscopic coupling between the -
and -planes.

work in a speed range located between the rigid-body critical speeds and
the critical speeds related to deflection modes of the rotor.

Example 8.5 Je cott rotor on an ideal magnetic bearing with a proportional-

derivative (PI) controller.

Assume the following data: mass = 3 kg, actuator constant = 1 5246 ×

10
6 Nm2/A2, nominal air gap = 0 75 mm, bias current 0 = 3 A, proportional

gain of the controller = 1 25 V/m, derivative gain = 0 001129 Vs/m, gain

of the sensor = 7500 V/m, gain of the power amplifier = 1 027 A/V.

Using complex coordinates, the equation of motion of the rotor is

¨ = +
2

+ .

The static force is equal to the weight of the rotor acting in vertical di-

rection. If the direction of -axis is vertical, it is expressed by a real number.

The control force is made by two components, namely a proportional and a

derivative one

= ˙ ,

where and are expressed by Equation (8.45). The final equation of motion of

the Je cott rotor is thus

¨+ ( ) ˙ + ( + ) =
2

+ .

The linearized characteristics of the bearings are linked to the bias and com-

pensation currents through the relationships (8.44)

0 = 4
0
0

0

2
= 4

0

2
= 4

2

0 +
0

0

2

3
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FIGURE 8.22. Nondimensional unbalance response of the Je cott rotor on mag-
netic bearings.

The static force is equal to the weight in vertical direction ( -axis) and 0 in

horizontal direction ( -axis). The corresponding compensation currents are

0

0 = 0

2

4 0

= 0 9048 A
0

0 = 0

The current and displacement bearing sti ness is

= = 32 525 N/A = 1 419× 105 N/m = 1 301× 105 N/m

As the bearings are almost isotropic, they will be assumed to be such and an

average value of = 1 36× 105 N/m .

By introducing the values of the various gains into the homogeneous equation

of motion, the following characteristic equation is obtained:

3
2
+ 282 83 + 1 7715× 105 = 0 ,

whose poles are

= 47 14± 238 4 .

The two complex pairs correspond to the two damped whirl frequencies, one

forward and one backward, as is typical for a damped Je cott rotor.

The unbalance response is easily computed and coincides with that of a standard

isotropic Je cott rotor. It is reported in nondimensional form in Figure 8.22.

Example 8.6 Study the radial suspension of a rigid, isotropic rotor supported

by a five-active-axis magnetic suspension with perfectly colocated bearings and an
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ideal PD controller (Figure 8.21). The main inertial and geometric data are

= 3 kg; = 0.02 kg m2; = 0.015 kg m2; = 200 mm; = 100 mm.

Neglecting the e ect of weight on the position of the rotor and on the gains of the

bearings, compute the gain matrix of the control system assuming that each bear-

ing is controlled separately and that a complete axial symmetry is required. Plot

the Campbell diagram, and compute the control forces at 20,000 rpm if the rotor

has a residual static unbalance following the ISO quality grade G 2.5. The control

system should provide uncoupling between translational and rotational modes and

locate the first critical speed in the vicinity of 2,500 rpm = 261.8 rad/s.

Using complex coordinates and considering only static unbalance, the equation

of motion of the rotor is

·
0

0

¸½
¨

¨

¾ ·
0 0

0

¸½
˙

˙

¾
= f +

2

½
1

0

¾
+ f ,

where the control force is made by two components, namely a proportional and

a derivative one

f = Kq Cq̇ .

Indicating the displacements at the bearing locations (sensor and actuator, owing

to the colocation assumption) with 1 and 2, the forces acting on the rotor are

½
1

2

¾
=

·
1 0

0 2

¸½
˙1

˙2

¾ ·
1 0

0 2

¸½
1

2

¾
,

where the derivative and proportional overall gain (the latter including the soft-

ening open-loop e ect of the actuator ) are expressed by Equation (8.45). The

relationship linking the displacements at the bearing locations and the displace-

ment and rotation at the mass center of the rotor is

½
1

2

¾
=

·
1

1

¸½ ¾
= T

½ ¾
.

A similar relationship can be written for the control forces. The relationship

yielding the control forces at the center of mass of the system is then

f = T

·
1 0

0 2

¸
T

½
˙

˙

¾
T

·
1 0

0 2

¸
T

½
1

2

¾
.

The closed-loop dynamic matrix is then

A =

1 2 4 5

2 3 5 6

1 0 0 0

0 1 0 0

where 1 = 1
+

2
, 2 = 1

+
2
, 3 =

2

1
+

2

2
, 4 = 1

+
2
,

5 = 1
+

2
, and 6 =

2

1
+

2

2
.
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FIGURE 8.23. Campbell diagram and decay rate for the rigid rotor on magnetic
bearings.

Uncoupling between translational and rotational modes implies that
1
=

2
, and

1
=

2
, and the condition on the critical speed of the correspond-

ing undamped system yields
p
(

1
+

2
) = = 261 8. The values of the

sti ness gains thus obtained are
1
= 6 85 × 104 Nm, and

2
= 1 37 × 105

Nm and yield the following terms to be included in the closed-loop gain matrix:

4 = 1
+

2
= 2 056× 105 N/m and 6 =

2

1
+

2

2
= 4,110 Nm/rad.

The damping gains can be obtained assuming a given value for the damping

ratio of a particular mode, say, the translational mode. Assuming a damping ratio

of 1/3, the following values are obtained:
1
= 349 1 Ns/m,

2
= 174 5 Ns/m,

1 = 1
+

2
= 523 6 Ns/m, and 3 =

2

1
+

2

2
= 10 47 Nsm/rad. The

Campbell diagram and the decay rate plot are reported in Figure 8.23.

The static deflection of the system is immediately obtained: = =

0.14 mm. Note that the control system can be set to compensate for the static

deflection and to maintain the rotor in the center of the bearing notwithstanding

the weight.

Because of uncoupling between translational and rotational rigid-body modes,

the response to static unbalance can be plotted by resorting to the equation for

translational motion alone
¡

2
+ 1 + 4

¢
( + ) =

2

The amplitude of the response to static unbalance is plotted in nondimensional

form in Figure 8.24. Note that the system is very much damped, and the rotor

self-centers very quickly in the supercritical range. Unbalance quality grade G 2.5

at 20,000 rpm = 2,094 rad/s corresponds to an eccentricity = 1 19 m, i.e., with

a mass of 3 kg, to a residual unbalance = 3 58 g mm. The response of the

system at 20,000 rpm is ( + )0 = 1 204 0 102 m.
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FIGURE 8.24. Unbalance response of a rigid rotor on magnetic bearings.

The total control force acting on the rotor is simply

= ( 1 + 4) ( + ) =
2
( + ) +

2

The modulus of the control force is then | | = 1 347 N, and it is shared between

the two bearings following their sti ness (2/3 on bearing 1 and 1/3 on bearing

2). Note that the control forces are very small, even if the balancing quality grade

is not very high. Actually, very smooth running is obtained with even less strict

balancing tolerances.

Example 8.7 Consider a rotor running on a one-active-axis magnetic suspen-

sion. The radial bearings are of the passive type, based on permanent magnets.

The axial suspension must be active, because the passive radial bearings have

a negative (destabilizing) axial sti ness. The mass of the rotor is = 0.8 kg,

and the linearized axial sti ness of the radial suspension is = 5× 104 N/m.

The axial actuator is made by a couple of electromagnets whose force-current

characteristic is =
0

2 2
4

2, where is the current,
0
= 4 × 10 7 is

the vacuum permeability, = 1 2 × 10 3m2 is the surface of the pole pieces,

= 160 is the number of turns, and = 0.5 mm is the nominal air gap.

The axial position is measured by a sensor that outputs a voltage proportional

to the axial displacement from the nominal position (air gap of 2.5 mm) through

the law = 0 + , where constants 0 and take the values 0.85 V and 300

V/m, respectively, when the input voltage to the sensor is 12 V.

The quadratic law linking the magnetic force to the current in the coil compels a

choice between two alternatives: to use a control system that supplies the coil with

a current proportional to the square root of the displacement in such a way that

a restoring force proportional to the displacement is exerted or to add a constant
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FIGURE 8.25. Active axial magnetic bearing. (a) Scheme of the control system;
(b) force-displacement characteristics.

current (bias current) to the current proportional to the displacement supplied

by the control system. In the latter case, the coils exert two forces, which in the

equilibrium position are equal and opposite; when the shaft is displaced axially,

the force caused by one coil is reduced and the other increases and the restoring

e ect is obtained. A detailed scheme of the control system, following the second

of the two approaches, is shown in Figure 8.25(a).

Note that the voltage signal 2 = 1 1 is di erentiated to supply an input

to the current generators that is proportional to both the axial displacement and

velocity. A damping e ect is thus obtained. The voltage supplied to the current

generators driving the coils is then

5 = 4 1 1 1 2 = 4 1( + 2 ˙ )

where the upper signs hold for the coil nearer the end at which the sensor is located.

The current supplied to the coils is then = 3 5 = 0 ± 1 3( + 2 ˙ ), the

upper sign being referred to coil 1. When both coils are operating, the force they

exert (positive if directed upward, i.e., in a direction to cause an increase of the

displacement ) is

=
0

2

4
0

·
2

2

( )2

2

1

( + )2

¸

The expression of the force can be linearized, obtaining

=
0

2

4

·
1 3( + 2 ˙ )

0

¸

The total sti ness and damping of the axial suspension are, respectively,

=
0

2

4
0

·
1 3

0

¸
=

0

2

4
0 1 3 3
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The second term in brackets is the open-loop sti ness, which is negative. It can

cause the axial instability of the bearing, which, if the current is not controlled,

is unstable.

To achieve a stable behavior in the axial direction, the sti ness must be positive.

Assuming the following values for the current 0 and the gains, 0 = 1 A, 1 = 10,

2 = 3×10
4 s, and 3 = 0 9 A/V, the values of the axial sti ness and damping

are = 58 100 N/m and = 125 Ns/m.

The system is then axially stable. The axial natural frequency and the damping

ratio are = 269 rad/s and = 0 29. The force-displacement characteristic

of the axial suspension is reported in Figure 8.25(b). The curve obtained from

the linearized equation is compared with those obtained from the nonlinearized

equation and the curve obtained when no constant current is supplied ( 0 = 0).

8.6 Bearing alignment in multibearing rotors

If the rotor is supported on more than two bearings, the loads on the latter
cannot be found without considering the deformations of both stator and
rotor. Moreover, as in all statically undermined structures, the stress dis-
tribution and the loads in the supports depends on their exact placement.
A solution to this di culty is to introduce concentrated flexibility in

the structure to make it statically determined: In the case of a rotor, this
can be easily implemented by splitting it in several spans and introduc-
ing flexible joints between them. This is easily done in lightly loaded long
transmission shafts, which need to be supported in several points to raise
(or lower, if needed, by soft mounting some supports) the critical speed.
Examples are the propeller shafts of front-engine, rear-wheel drive motor
cars and trucks and the transmission powering the tail rotor in helicopters.
As an added bonus, the stressing of the shaft becomes independent from
the deformations of the supporting structure.
However, this solution cannot be used in general. There are cases in

which the very high torque to be transmitted rules out the use of flexible
joints. A case is that of the connection between large steam turbines and
alternators, where the shafts of the various machines are rigidly coupled to
one another. The alignment of the various parts of the rotor must be done
very accurately, and the supports must be set with great accuracy. This is,
however, not enough: Even if the alignment was perfect, the stresses caused
by self-weight may be large, and because they are seen as cyclic stresses
with a frequency equal to the rotation frequency of the rotor, they may
cause fatigue problems.
In these cases, it is a common practice to set the supports in such a way

that the loads on the bearings and the stresses in the rotor are the same
as in the case in which the various rotors are disconnected. This can be
easily done by inserting shims under the supports of all rotors except one
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FIGURE 8.26. Aligning the supports of a rotor to account for static deformation.
(a) Inflected shape of the two spans when the joint is disconnected; (b) inflection
of the rotor after the supports of the second span have been raised. Note that all
deformations are grossly exaggerated.

(which is taken as a reference) in such a way that the displacements and
the rotations at the mating ends are the same, so as not to be disturbed
by connecting the joints.
Consider the situation shown in Figure 8.26(a). The two rotors inflect

under their own weight, and at the interface, the first one has a displace-
ment

1
and a rotation

1
. The corresponding displacement and rotation of

the second rotor are
2
and

2
Note that in the figure, both displacements

are positive, and 1 is positive and 2 is negative.
To compensate for the di erence in displacement at the connection, the

second rotor must be raised of

=
1 2

, (8.46)

and to realign the inflected configurations of the two parts, the second rotor
must be rotated of an angle

=
1 2

. (8.47)

As usually the two rotations 1 and 2 have opposite signs, is the
sum of the absolute values of the two angles.
Assuming that angles are small, the two supports of the second rotor

must then be raised of
= + . (8.48)
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9
Anisotropy of rotors and supports

One of the assumptions on which the analysis presented in the preceding
chapters was based is the axial symmetry of either the stator or the rotor.
Under this assumption, the equations of motion could be reduced to a set
of di erential equations with constant coe cients.
If on the contrary both the stator and the rotor lack axial symmetry,

it is impossible to find a reference frame in which the equation of mo-
tion has constant coe cients. If the assumption of linearity is retained,
a linear di erential equation with periodic coe cients is obtained, which
cannot in general be solved in closed form. The alternatives are then the
numerical solution in the time domain or the approximation of the solution
using a truncated series; however, linearity guarantees the existence of a
unique solution. Moreover, a general solution, which can be found as the
superimposition of the general solution of the homogenous equation and a
particular integral of the complete equation, still exists.

9.1 Nonisotropic Je cott rotor

Consider a nonisotropic Je cott rotor running on nonisotropic bearings,
and let and be the values of the sti ness of the bearing in the -
and -directions and and the values of the sti ness of the rotor in
directions of the rotating - and -axes (Figure 9.1).
Assuming as generalized coordinates the displacements in - and -

direction of the bearing ( 1 and 1) and those of the geometrical center
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FIGURE 9.1. Sketch of a nonisotropic Je cott rotor running on nonisotropic
bearings.

of the rotor (point C, 2 and 2), the equation of motion of the system is

0 0 0 0
0 0 0 0
0 0 0
0 0 0

¨1
1̈

¨2
2̈

+ (K +K )

1

1

2

2

=

=

0
0

+ 2

0
0

cos ( )
sin ( )

(9.1)

where

K =

0 0 0
0 0 0
0 0 0 0
0 0 0 0

K =
R

·
0

0

¸
R R

·
0

0

¸
R

R

·
0

0

¸
R R

·
0

0

¸
R

and the rotation matrix is

R =

·
cos ( ) sin ( )
sin ( ) cos ( )

¸
.
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It is possible to introduce the mean and deviatoric stu ness of both the
rotor and the stator

= 1

2
( + ) , = 1

2
( ) ,

= 1

2
( + ) , = 1

2
( ) ,

(9.2)

and the nondimensional ratios

= =
( )

( + )
= =

( )

( + )
= . (9.3)

The sti ness matrix can then be easily computed, obtaining

K +K =

1
1 +

1 1 +
1 + 1

, (9.4)

where

= cos (2 ) , = (1 + ) + 1 + ,
= sin (2 ) , = (1 ) + 1 .

The first two Equations (9.1) can be solved separately, yielding the fol-
lowing values for 1 and 1:

1 =

£
1 2 + (1 ) + (1 ) cos (2 )

¤
2 + (1 ) sin (2 ) 2

(1 + )
2 2 2 2 2 cos (2 )

,

1 =
(1 + ) sin (2 ) 2 +

£
1 2 + (1 + ) (1 + ) cos (2 )

¤
2

(1 + )
2 2 2 2 2 cos (2 )

.

(9.5)
By introducing Equation (9.5) into Equation (9.1), the following equation

of motion containing only the coordinates of point C can be obtained:

[1 + cos (2 )]

·
0

0

¸½
¨2
2̈

¾
+

+

·
+ + cos (2 ) sin (2 )

sin (2 ) cos (2 )

¸½
2

2

¾
= (9.6)

= [1 + cos (2 )]

·½ ¾
+ 2

½
cos ( )
sin ( )

¾¸
,
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where

=
1 +

¡
1 2

¢
2

(1 + )2 2 2 2
,

=

¡
1 2

¢

(1 + )2 2 2 2
,

= 2

¡
1 2

¢

(1 + )
2 2 2 2

,

=
(1 + )2 2 2 2

.

By multiplying the second Equation (9.6) by the imaginary unit and
adding it to the first one, and introducing the complex coordinate =

2 + 2 and its conjugate , the following equation is readily obtained:

¡
1 + 2 + 2

¢
¨+

¡
+ + 2

¢
= (9.7)

=

µ
1 +

2
2 +

2
2

¶µ
+ 2

¶
.

Equation (9.7) is a linear di erential equation with periodic coe cients,
with period equal to half of the rotation period of the rotor (i.e., equal to

), and it cannot be reduced to an equation with constant coe cients
simply by resorting to a change of reference frame.
Linear equations with variable coe cients are studied by the Floquet

theory: As in the case of linear equations with constant coe cients, they
can be solved by adding a particular integral of the complete equation to
the general solution of the homogeneous equation. However, no general
method exists to reach such a solution. Because the coe cients are peri-
odic functions of time with period , the solution of the homogeneous
equation associated with Equation (9.7) is of the type

= 1( ) + 2( )

where both vectors 1 and 2 are periodic functions of time with the same
period as the coe cients, i.e., with fundamental frequency equal to 2 .
The general solution is then the sum of a number of terms of the type
mentioned earlier, each with its value of , plus a solution of the complete
equation.
The study of the stability of the system can then be performed in the

same way as in the case with constant 1 and 2.
Unknown functions 1 and 2 can be expressed by trigonometric series
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=
X
=

µ
1

( +2 ) + 2
( +2 )

¶
(9.8)

By introducing Equation (9.5) into the homogeneous equation associated
with Equation (9.7), the following algebraic equation is readily obtained:

X
=

µ
1

( +2 ) + 2
( +2 ) + 1

[ +2( +1) ] +

+ 2
[ +2( 1) ] + 1

[ +2( 1) ] + 2
[ +2( +1) ] +

+ 1
( +2 ) + 2

( +2 ) +

+ 1
[ +2( 1) ] + 2

[ +2( +1) ]

¶
= 0 .

(9.9)
By separately equating to zero the various terms of Equation (9.9), the

following infinite set of algebraic equations is readily obtained:

1 0

2 1 0

1 0 1

1 0 1

0 1 2

0 1 2

1 2

×

1 1

2 1

10

20

11

21

12

= 0

(9.10)
where

= ( + 2 )2 + , = ,

= ( + 2 )2 , = .

The homogeneous Equation (9.10) has solutions di erent from the trivial
one only if the matrix of the coe cients is singular. An eigenproblem,
similar to the one linked with the well-known Hill’s infinite determinant, is
obtained. The bandwidth of the determinant is five in the present case, and
it is three in the latter. Approximate solutions for the eigenproblem can
then be obtained by considering a limited array of rows by columns,
centered on the matrices with subscript 0. Let these limited matrices be
denoted by Z , and let the number 0 be Z0.
The first-order approximation can, for example, be obtained by consid-

ering matrix

Z1 =

·
0

0

¸
.
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= 0 = 1 = 2 = 3 = 4 = 5 = 6

±0.6374 ±0.5621 ±0.5349 ±0.5246 ±0.5215 ±0.5196 ±0.5187
±0.7046 ±0.5941 ±0.5484 ±0.5368 ±0.5292 ±0.5258

±0.6567 ±0.5824 ±0.5622 ±0.5448 ±0.5375
±0.7467 ±0.6557 ±0.6058 ±0.5659 ±0.5540

±0.7142 ±0.6339 ±0.5885 ±0.5752
±0.7670 ±0.6870 ±0.6424 ±0.6103

±0.7364 ±0.6778 ±0.6258
±0.7743 ±0.7171 ±0.6628

±0.7532 ±0.6981
±0.7793 ±0.7322

±0.7615
±0.7816

TABLE 9.1. Nondimensional frequencies at standstill for various values of .

Matrices Z contain terms in 2 and that are inside the terms in
and : The relevant eigenproblem can this be written in the form

det
£
M 2 +G +K

¤
= 0 , (9.11)

where matrices M, G, and K have the same expression of the matrix in
Equation (9.10), once the constants , , , and are given the values

= 1 , = 0 ,
= , = 0 ,

for M
= 4 , = 0 ,
= 4 , = 0 ,

for G, and
= 4 2 2 + , = ,

= 4 2 2 , = ,

for K.
Note that in general matrices G and K are in this case neither positive

definite nor symmetrical. As the eigenproblem is not in standard form, the
size of the matrices must be doubled and the values of are the eigenvalues
of the matrix ·

M 1G M 1K

I 0

¸

Example 9.1 Consider a Je cott rotor with = 0 4, = 0 4, and = 0 8.

By dividing the speeds and the frequencies by
p

, and solving the eigen-

problem with di erent values of , the nondimensional frequencies at standstill

reported in Table 9.1 can be found.
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= 0 = 1 = 2 = 3 = 4 = 5 = 6

±0.6374 ±0.5621 ±0.5609 ±0.5616 ±0.5616 ±0.5616 ±0.5616
±0.7046 ±0.7103 ±0.7113 ±0.7114 ±0.7114 ±0.7114

±1.3588 ±1.2909 ±1.2890 ±1.2886 ±1.2886
±2.6387 ±1.4378 ±1.4387 ±1.4384 ±1.4384

±2.5615 ±2.5612 ±2.5616 ±2.5616
±2.7069 ±2.7107 ±2.7113 ±2.7114

±3.3588 ±3.2909 ±3.2890
±4.6387 ±3.4378 ±3.4387

±4.5615 ±4.5612
±4.7069 ±4.7107

±5.3588
±6.6387

TABLE 9.2. Nondimensional frequencies at a nondimensional speedp
= 1 for various values of .

Note that the value computed with = 0 does not coincide exactly with the nat-

ural frequency obtained using the average value of the sti ness
p

= 0 667.

When the speed vanishes, the various values correspond to the natural frequen-

cies in the various positions of the rotor: Obviously there should be an infinity

of natural frequencies, spanning from a minimum value (the natural frequency

in the “softest” direction when the springs with minimum sti ness are aligned;

in the example,
p

= 0 5164) and a maximum value (in the example,p
= 0 7888).

The same computation performed at a nondimensional speed
p

= 1

yields the results reported in Table 9.2.

Note that in practice, there are only four distinct values of the natural frequency

(in the example,
p

= ±0 5616 and ±0 7114), whereas the other values

can be obtained by adding to them ± , with = 1 2, 3, .... This explains the

apparent inconsistency of the number of the eigenvalues, which tend to infinity

when increasing the size of the matrix Z : While obtaining a better precision,

solutions whose real parts are equal to those already obtained plus a multiple of

2 are obtained.

The Campbell diagram and the decay rate plot computed using = 3 and

= 15 are shown in Figure 9.2. In the figure labeled = 3, only four branches

of the plot are shown; from them all other branches can be obtained by simply

adding multiples of the speed 2 .

Remark 9.1 Three fields of instability can be detected from the decay rate

plot. They are caused by the rotating anisotropy and can be avoided only by

adding damping to the system.

The response to a static force can be obtained by introducing a solution
of the type
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FIGURE 9.2. Campbell diagram and the decay rate plot for a Je cott rotor with
= 0 4, = 0 4, and = 0 8, computed using = 3 and = 15. Nondimen-

sional frequency, decay rate, and speed = Re(
p

), = Im(
p

),

=
p

.

=
X
=

2 , (9.12)

i.e.,

= 0 +
X
=1

1
2 +

X
=1

2
2 , (9.13)

into the complete Equation (9.7). In the latter equation, the mean response,
the forward components, and the backward components are written sepa-
rately.
In a similar way, the unbalance response can be obtained by introducing

a solution of the type

=
X
=1

(2 +1) ; (9.14)

i.e.,

=
X
=1

1
(2 +1) +

X
=1

2
(2 1) (9.15)
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A number of harmonics (in theory, an infinity of them) is then present in
the response. However, the present model does not include damping, and
there is little interest in obtaining the undamped response, as the ampli-
tudes of all harmonics have infinitely high peaks. If damping is introduced
into the model, a further degree of freedom must be considered, because it
is no more possible to solve the equation of motion for 1 and 1 as it was
the case for the first two Equations (9.1) and the system has to be dealt
with as shown below for multi-degrees-of-freedom systems.

9.2 Equation of motion for an anisotropic machine
with many degrees of freedom

The mass and sti ness matrices, related to flexural behavior, of an anisotro-
pic beam or spring element whose principal axes of inertia and elasticity
lie in the - and -planes (hereafter designated by subscripts and ),
can be written in the form

M =

·
M 0

0 M

¸
K =

·
K 0

0 K

¸
(9.16)

As usual, if the generalized coordinate for rotation in the -plane is
instead of , the matrices related to the - and -planes of an isotropic
element are equal. In this way, the introduction of complex coordinates is
straightforward.
When assembling the structure, assume that the global reference frame

has the same -axis as those of each element, but that the -axes of the
elements are rotated of an angle with respect to the global reference
frame. The rotation matrix is

R0 =

·
cos( ) I sin( ) I
sin( ) I cos( ) I

¸
(9.17)

and the sti ness matrix in the global reference frame is

K =

·
cos2( )K + sin2( )K sin( ) cos( )(K K )
sin( ) cos( )(K K ) sin2( )K + cos2( )K

¸
(9.18)

By introducing the mean and deviatoric sti ness matrices of the elements

K =
1

2
(K +K ) K =

1

2
(K K )

Equation (9.18) can be written as

K =

·
K +K cos(2 ) K sin(2 )
K sin(2 ) K K cos(2 )

¸
(9.19)
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If the element belongs to the rotor, angle must be substituted by + ,
or, in the case of constant spin speed equal to , by + .
All of the aforementioned considerations hold for mass and damping ma-

trices and for elements other than beam or spring elements. Note that, in
general, all mean and deviatoric matrices of structural elements are sym-
metrical, with the exception of the sti ness and damping matrices of the
elements used to model lubricated journal bearings in linearized theories
(see Section 8.4.2). Once all matrices of the elements have been obtained
and expressed in the global reference frame, it is possible to assemble the
various elements to obtain the matrices related to the whole structure.
Obviously, the rotating elements must be assembled separately from the
nonrotating elements.
Because of the presence of the deviatoric matrices (it is su cient that a

single element has a nonvanishing deviatoric matrix), the structure of the
assembled matrices is more complex than that of Equation (9.16). For the
sti ness matrix, it follows that

K =

·
K K

K K

¸
(9.20)

Because of the presence of the coupling terms with - and -subscripts,
a new definition of the mean and deviatoric matrices for the whole structure
is needed

K =
1

2
(K +K ) +

1

2
(K K ) ,

K =
1

2
(K K ) +

1

2
(K +K )

(9.21)

Note that, except in the mentioned case of elements used for the lin-
earized modeling of hydrodynamic bearings, the matrices with subscripts
and are equal and the mean matrices are real. On the contrary, de-

viatoric matrices are, in general, complex. Using the complex-coordinate
approach and the definitions of mean and deviatoric matrices given by
Equation (9.21), the equation of motion describing the flexural behavior of
a general system containing stationary elements and elements rotating at
constant spin speed can be shown to be [41]

M q̈+ (C G)q̇+ (K C )q+M q̈+

+M 2 (q̈+ 2 q̇) +C q̇+C 2 q̇+ (9.22)

+K q+ (K C ) 2 q = F + 2F

Matrices and vectors with subscript are related to the rotating ele-
ments, and those with subscript are related to the stator of the machine.
The mean matrices without or subscripts are related to the whole
system and are obviously the sum of the corresponding nonrotating and
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rotating mean matrices. The nonrotating force vector is related to static
forces, and the rotating vector is related to forces that are stationary in a
reference frame rotating at the spin speed . Because the latter are usually
unbalance forces, their magnitude is proportional to the square of the spin
speed. Note that the complex conjugate of the vector of the generalized
coordinates is present in the terms related to deviatoric matrices, and that
all terms containing the deviatoric matrices of rotating elements have co-
e cients that are periodic functions of time, with periods equal to half the
period of rotation.
Like the equation of motion for the nonisotropic Je cott rotor, studied

in Section 5.1.1., Equation (9.22) is a linear di erential equation with pe-
riodic coe cients. If all deviatoric matrices vanish, as with axisymmetrical
systems, it reduces to the usual constant coe cient equation typical of
isotropic rotors.
As already stated, linear equations with variable coe cients can be solved

by adding a particular integral of the complete equation to the general
solution of the homogeneous equation. However, no general method exists
to reach such a solution, particularly for large sets of equations. Because
the coe cients are periodic functions of time with period , the solution
of the homogeneous equation associated with Equation (9.22) is of the type

q = q1( ) + q2( )

where both vectors q1 and q2 are periodic functions of time with the same
period, i.e., with fundamental frequency equal to 2 . The general solution
is then the sum of a number of terms of the type mentioned earlier, each
with its value of , plus a solution of the complete equation. The study of
the stability of the system can then be performed in the same way as in
the case with constant q1 and q2.
Unknown functions q1 and q2 can be expressed by trigonometric series

q =
X
=

µ
q1

( +2 ) + q2
( +2 )

¶
(9.23)

By introducing Equation (9.23) into the homogeneous equation associ-
ated with Equation (9.22), the following algebraic equation is readily ob-
tained:

X
=

µ
A q1

( +2 ) +B q2
( +2 ) +C q

1

( +2 ) +

+D q
2

( +2 ) +E q
1

[ +2( 1) ] +E q
2

[ +2( +1) ]

¶
= 0

(9.24)
By separately equating to zero the various terms of Equation (9.24), the

following infinite set of algebraic equations is readily obtained:
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F 2 A 1 D 1

C 1 B 1 E0

F 1 A0 D0

C0 B0 E1

F0 A1 D1

C1 B1 E2

F1 A2 D2

×

q1 1

q2 1

q10

q20
q11

q21
q12

= {0}

(9.25)
where

A = ( + 2 )2M + ( + 2 )G+ ( + 2 )C +K C

B = ( + 2 )2M ( + 2 )G+ ( + 2 )C +K + C

C = ( + 2 )2M + ( + 2 )C +K
D = ( + 2 )2M + ( + 2 )C +K
E = [ 2 2 (2 1) 4 2( 1)]M + ( + 2 )C +

+K C

F = [ 2 2 (2 + 1) 4 2( + 1)]M + ( + 2 )C +
+K + C

(9.26)
The homogeneous Equation (9.25) has solutions di erent from the trivial

one only if the matrix of the coe cients is singular. The situation is very
similar to that seen for the Je cott rotor, but here the bandwidth of the
determinant is 3 instead of 5. Approximate solutions for the eigenproblem
can then be obtained by considering a limited array of 2 rows by 2
columns, in terms of matrices (the actual number of rows and columns
is 2 × ), centered on the matrices with subscript 0. Let these limited
matrices be denoted by Z , and let matrix A0 be Z0. It can readily be
seen that the solution of the zero-order approximation involving matrix
Z0 coincides with the solution of a symmetrical system having the mean
properties of the actual system.
By inspecting Equations (9.26), it is clear that matrices A and B

contain the mean properties of the system, matrices C and D are related
to the unsymmetrical characteristics of the stator (hence, they vanish when
the stator is symmetrical), and matrices E and F are related to the
unsymmetrical properties of the rotor.
The first-order approximation obtained by considering that matrix

Z1 =

·
A0 B0
C0 D0

¸

coincides with the solution of a system with isotropic rotor (with mean
properties) running on an asymmetrical stator (with the actual properties).
The equation that allows the study of a system with a symmetrical stator

and an asymmetrical rotor can be written as
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·
B0 E1
F0 A1

¸½
q
20

q11

¾
= 0 (9.27)

The infinite set of Equations (9.25) and the corresponding nonhomoge-
neous set that includes the forcing functions represent a general model for
rotating machinery. The solution of the eigenproblem, however, is not easy.
The equations must be rearranged to obtain an eigenproblem in standard
form, which results in a further doubling of the size of the problem, becom-
ing 4 , and then a problem of a very large order must be faced. It must
be noted that if Re( ) is the real part of the solution of the eigenproblem,
then Re( ) + 2 and Re( ) 2 (for any value of ) is the real part of
a solution. This explains the apparent inconsistency of the number of the
eigenvalues, which tend to infinity when increasing the size of the matrix
Z : While obtaining a better precision, solutions whose real parts are equal
to those already obtained plus a multiple of 2 are obtained. Vectors q
with greater than 1 usually add only a small ripple on the basic solu-
tion, which is given by the vectors with 1. Third-order approximations
should, consequently, give results that accurately simulate the behavior of
the actual system.
Solutions for nonhomogeneous problems, like those related to the re-

sponse to static loading and unbalance, can be obtained in a similar way.
In the former case, the solution can be expressed by the series

q = q0 +
X
=1

q1
2 +

X
=1

q2
2 (9.28)

The mean response, the forward components, and the backward compo-
nents are written separately in Equation (9.28) . By using this expression of
the deflected shape, the following infinite set of equations can be obtained
from the equation of motion (9.25):

A0q0 +C0q0 +E1q11 = f ,
F0q0 +A1q11 +D1q21 = {0} ,
C1q11 +B1q21 +E2q12 = {0} ,
F1q21 +A2q12 +D1q22 = {0} ,

(9.29)

where the relevant matrices can be obtained from Equation (9.26) by setting
= 0. Here, again, a good approximation can be obtained by considering

only the components q0, q11, and q21, i.e., by resorting to a reduced set
formed by the first three equations (9.29) in which the term in E2 has been
neglected. The size of the problem is thus reduced to 3 equations.
The response to an arbitrary unbalance distribution is similarly obtained

by assuming a solution of the type
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FIGURE 9.3. Sketch of an asymmetric rigid rotor on asymmetric elastic supports.

q =
X
=1

q1
(2 +1) +

X
=1

q2
(2 1) (9.30)

By using the Expressions (9.30) for the deflected shape, the following
infinite set of equations can be obtained from the equation of motion (9.25):

A0 D0

C0 B0 E1
F0 A1 D1

C1 B1 E2

q10
q
20

q11
q
21

= 2

f

{0}
{0}
{0}

(9.31)

Here the relevant equations can be obtained from Equation (9.26) by
setting = . In this case, a good approximation can be obtained by
considering only the first four equations in which the term in E2 has been
neglected. The size of the problem thus reduces to 4 equations.

Example 9.2 Anisotropic system with four degrees of freedom.

Consider a rigid unsymmetrical rotor running on two identical anisotropic bear-

ings (Figure 9.3). It can be modeled as a four degrees-of-freedom (two complex)

system of the same type studied as Example 3.1 but with anisotropic properties

added. Assume that the principal directions of both supports are the same, so that

matrices K and K vanish. The only mean and deviatoric matrices that are

not equal to zero are

M = M =

·
1 0

0
2

¸
M = M =

·
1 0

0
2

¸
,

K = K =

·
2 ¡ ¢

2

+
¡ ¢2

¸
K = K ,
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G = G =

·
0 0

0 p
2

¸
,

where is the length of the shaft ( = + ) and

=
1

2
( + ) =

1

2
( ) ,

=
1

2
( + ) =

1

2
( ) .

Equations (9.26) can be written in nondimensional form

A =
2
M + (G 4 M ) +

2
¡
2 G 4

2
M

¢
+K

B =
2
M (G + 4 M )

2
¡
2 G + 4

2
M

¢
+K

C = D = K

E = [
2

2 (2 1) 4
2
( 1)] M

F = [
2

2 (2 + 1) 4
2
( + 1)] M

where the nondimensional spin and whirl speeds are =
p

and =p
.

The behavior of the system is thus controlled by five nondimensional parame-

ters:
2 p 2

(or ).

Note that there are physical limits to some of these parameters: 0 p 2,

1 1, 1 1, and 1 1. Even more strict

limitations are present because when p approaches its lower or upper limit,

the system no more behaves like a rigid body.

Consider a case with

2
= 0 3 p

2
= 0 35 = 0 35 = 0 2 = 0 25.

The Campbell diagram and the decay rate plot computed using three harmonics

in the series are reported in Figure 9.4. The presence of instability ranges, also

caused by the lack of damping, is clear.

The orbits may be far from being circular or elliptical, as shown in the three-

dimensional plot of the fourth mode shape at a nondimensional speed = 1

reported in Figure 9.5. The orbits are reported for a time equal to one period

of the fundamental harmonic. Not only the orbits are noncircular, but they are

qualitatively much di erent from station to station of the rotor. In the case shown,

the left bearing and the center of mass whirl on a less complicated pattern than

the right bearing.
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FIGURE 9.4. Campbell diagram and decay rate plot computed using three har-
monics.

FIGURE 9.5. Orbits and mode shape of the fourth mode at a nondimensional
speed = 1.



10
Nonlinear rotordynamics

Another of the assumptions on which the analysis seen in Part 1 was based
is that of linearity. If this assumption is dropped, no general solution of the
equations of motion can be achieved and the alternatives are the numerical
solution by step-by-step integration in the time domain or the search for
approximate solutions, using the classic approximation techniques typical
on nonlinear dynamics.
The di erence between the behavior of axi-symmetrical and nonisotropic

systems is even larger in the case of nonlinear rotors than that already seen
for linear ones. If the system is axially symmetrical, circular whirling is an
exact solution for the unbalance response, although the nonlinearity of the
system makes it possible for other solutions to exist. This di erentiates the
behavior of a nonlinear rotating system from that of a nonlinear oscillator,
where no closed-form solutions can usually be found. The closed-form so-
lutions (in some cases, a single solution, but in other cases, the existence of
multiple solutions has been confirmed) constitute attractors, whose basins
of attraction share the phase space with other possible solutions of di erent
type, if and when they exist at all. The impossibility of demonstrating that
a solution exists and that it is unique leads to the possible existence, even
in those cases, of multiple solutions, with the jump phenomenon typical of
nonlinear dynamics, polyharmonic, and even chaotic solutions.
On the contrary, if no axial symmetry exists, particularly if the nonro-

tating parts of the machine are nonisotropic, a situation similar to that
characterizing nonlinear vibrating systems occurs: No closed-form solution
of the equations of motion can be found. As already seen for the case of the
linearized behavior of bearings, introducing a constant force acting in ra-
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dial direction into the model of a geometrically isotropic system may cause
a departure from isotropy.
Note that nonlinearity makes it impossible to define critical speeds, at

least in the usual terms, and to plot the Campbell diagram; the study is
then generally limited to the computation of the response of the system to
given forcing causes, usually unbalance distributions. It is still possible to
define critical speeds as those speeds at which the response of the system
becomes very large, but the fact that these speeds depend on the particular
unbalance distribution that has been assumed makes their definition of
limited use. The nonlinearity of the problem makes it impossible to study
separately the e ects of static and dynamic loads and the free whirling of
the system, and the dynamic behavior can be strongly influenced by the
presence of static loads.

10.1 Nonlinear isotropic Je cott rotor

10.1.1 Equation of motion

The simplest model that can be used to study the flexural behavior of non-
linear rotors is a Je cott rotor, consisting of a point mass connected to
a massless shaft and running on massless bearings. The shaft and the non-
rotating parts of the machine act on mass with forces that are in general
nonlinear functions of displacement and velocity, expressed in the nonrotat-
ing O and rotating O reference frames, respectively (Figure 10.1).
The angular velocity is assumed to be constant.
Such a system has complete axial symmetry about the nominal rotation

axis. The center P of mass is not located exactly in the center C of the
cross section of the shaft, and the eccentricity causes a static unbalance
, which a ects strongly the behavior of the system. The nonlinearity

of the problem makes it impossible to study separately the response to
rotating forces, as those caused by unbalance, to nonrotating forces, as
those caused by self-weight, and the free whirling of the system.
The motion in the - and -planes can be studied using the complex

coordinates defined by Equations (2.40) and (2.167)

= + = + = .

The forces exerted on point C by both the rotating and the nonrotating
parts of the machine can be subdivided into a restoring force , which
has the direction of the displacement, and a damping force , which has
the direction of the velocity. Owing to the axial symmetry, the absolute
value of these forces depends in general only on the absolute values of
the displacement and the velocity. As the expression of the velocity in the
rotating frame is di erent from that in the fixed frame, the forces caused
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FIGURE 10.1. Isotropic nonlinear Je cott rotor. The system is the same as shown
in Figure 2.2, but here the restoring and the damping forces are nonlinear func-
tions of the displacement and the velocity, respectively.

by the nonrotating and rotating parts of the system can be expressed as

= (| | | ˙|) ,

= (| | | ˙ |) ,

= (| | | ˙|) ˙ ,

= (| | | ˙ |) ( ˙ ) ,

(10.1)

where , , , and are scalar functions of the amplitudes of the dis-
placement and the velocity; the directions of the forces are given by vectors
, ˙, and ˙ . In the following, the restoring forces expressed by the
first two Equations (10.1) are assumed to depend only on the displacement
whereas the damping forces expressed by the other two equations are as-
sumed to depend only on the speed. In these conditions, the former can
be obtained from a potential energy, and the damping forces imply the ex-
istence of a Rayleigh-type dissipation function. The potential energy from
which function (| |) is obtained and the dissipation function for (| ˙|)
must be written in the fixed frame, and those used to obtain (| |) and
(| ˙ |) must be written in the rotating one. A consequence of axial

symmetry is that the elastic restoring forces caused by the shaft or the sup-
porting structure play the same role, and a function (| |) = (| |)+ (| |)
can be defined:
The above assumptions lead to the following nonlinear equation of mo-

tion written in the inertial coordinate frame

¨+ (| ˙|) ˙ + (| ˙ |)( ˙ ) + (| |) = 2 + (10.2)
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where is an external nonrotating force. Without any loss of generality,
can be assumed to be real, which amounts to assuming that at time = 0,
-axis coincides with -axis.
For a qualitative study of the e ects of nonlinearity, functions and

can be expanded in Taylor series and truncated. Owing to the larger impor-
tance of the nonlinearity of the restoring force than that of the damping
force, (| |) will be truncated at the first nonlinear term, whereas only
the constant terms of (| ˙|) and (| ˙ |) will be considered. As the
restoring force is an odd function of the displacement, the term linear in | |
will not be considered and an expression of the restoring force of the same
type of that included in the well-known Du ng’s equation is assumed [see
Equation (8.6)]

= (1 + | |2) , (10.3)

or in terms of real coordinates,

=
£
1 +

¡
2 + 2

¢¤
,

=
£
1 +

¡
2 + 2

¢¤
.

(10.4)

The sti ness is usually positive, and in this case, the force may be
said to be attractive, but there are cases in which it takes a negative value
(repulsive force). The parameter of nonlinearity may be either positive
or negative. The possible cases are reported in the following table:

Attractive Repulsive
Hardening 0; 0 0; 0
Softening 0; 0 0; 0

For attractive systems, see Figure 8.2.
The equation of motion (10.2) reduces to

¨+ ˙ + (1 + | |2) = 2 + (10.5)

where = + .
Equation (10.2) can be written in nondimensional form by introducing

the nondimensional coordinate and time

= =
p
| |

and parameters

= 2 = p
| |

=
2
p
| |

=
2
p
| |

. (10.6)

is the ratio between the spin speed and the critical speed of the lin-
earized system (in the case of attractive restoring force; for repulsive restor-
ing force, the linearized system is unstable). The nondimensional amplitude
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has been obtained by dividing the amplitude by the eccentricity , as it
is common for linear systems. If the eccentricity is nil, any other parameter
having the dimensions of a length may be used.
The following nondimensional equation of motion is thus obtained:

00 + 2 0 + (±1 + | |2) 2 = 2 +
| |

, (10.7)

where prime indicates di erentiation with respect to the nondimensional
time and the (±) sign becomes (+) for attractive systems and ( ) for
repulsive ones.
For the study of the stability of the circular whirling, it is useful to rewrite

Equation (10.7) in the rotating coordinate frame O using the complex
coordinate (or, better, its nondimensional equivalent = )

00 + 2 [ + ] 0 + (±1 + | |2) +
¡

2 + 2
¢

=

= 2 +
| |

(10.8)
Equations (10.2) and the following ones can be used to study the free

behavior of the system (free circular whirling), the e ect of a static load
(of weight, for example), or that of an eccentricity of mass . The presence
of nonlinear terms, however, makes it impossible to perform a general study
by superimposing the various solutions and to obtain noncircular whirling
by adding forward and backward whirling of di erent amplitudes.

10.1.2 Unbalance response circular whirling

Amplitude and phase

Consider the case in which no nonrotating force acts on the system. A
possible solution to the equation of motion (10.2) is

= 0
( + ) ; (10.9)

i.e.,

=
0

(10.10)

where 0 = 0
is a real, positive number and the phase is defined in the

range [ 0]. 0 could have been assumed to be a complex number, instead
of introducing the phase
By introducing Solution (10.9) into the equation of motion, the following

nonlinear algebraic equation is readily obtained:

£
2 + (| 0|) + (| 0|)

¤
0 = 2 (10.11)
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Note that Equation (10.11) is an exact solution of the nonlinear equation
of motion and not just an approximation of the fundamental harmonics of
the response. As a consequence, there are no higher order harmonics in the
response. This does not mean that there cannot be higher order harmonics,
because circular whirling is only one of the possible solutions; however, it
will be demonstrated to be stable and has been found both experimentally
and by numerical experimentation.

Remark 10.1 Also in the nonlinear case, when the unbalance response is

a circular synchronous whirling, rotating damping has no influence on the

steady state response of the system.

By separating the real and imaginary parts of Equation (10.11), the latter
yields ½ £

2 + (| 0|)
¤
0 =

2 cos ( ) ,
(| 0|) 0 =

2 sin ( ) .
(10.12)

The amplitude and the phase of the response can then be computed from
the equations

n£
2 + (| 0|)

¤2
+ [ (| 0|)]

2
o

2

0
= 2 2 4 ,

= artg

½
(| 0|)£
2 + (| 0|)

¤
¾
.

(10.13)

By introducing the simplified expressions for function (quadratic) and
(constant) and writing the equations in nondimensional form, Equations

(10.13) reduce to

2

0

6 + 2
¡
±1 2

¢
0
4 + (1 + 4 + 4 2 2 2 2) 2

0

4 = 0 ,

= artg

½
2

2 +
¡
±1

0

2
¢
¾
,

(10.14)
where the upper signs are for attractive systems and the lower ones for
repulsive systems.
The first Equation (10.14) is a cubic equation in 0

2 and can be solved
in closed-form.
Note that the equation yielding the amplitude of the orbit is nonlinear

and, like all nonlinear equations may have multiple solution, or even no real
solution at all. In the case of the cubic Equation (10.14), the real solutions
are either 1 or 3. When more than one solution is possible, the system may
settle in any of them, depending both on the operating parameters and
on its history, and in some cases, it may shift from one to the other. This
is a phenomenon usually referred to as the jump: In the case of nonlinear
rotors, for instance, the amplitude of the orbit can increase while slowly
increasing speed up to a point, when a sudden decrease of the amplitude is
experienced. This is a downward jump, which is in many cases essential to
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achieving self-centering at high speed. On the contrary, when slowing down,
the amplitude may suddenly jump up. The speed at which this occurs may
be di erent (usually lower) than that at which a jump occurs during the
run-up phase.

Backbone and limit envelope

The backbone can be obtained as the unbalance response of a nonlinear
system with vanishing eccentricity and damping from the equation of mo-
tion referred to the rotating coordinate frame or, simply, by equating to
zero the left-hand side of the first Equation (10.12)

£
2 + (| 0|)

¤
0 = 0 , (10.15)

or in nondimensional form, for a Du ng-type nonlinearity,

0
=

s
2 1

. (10.16)

The backbone defines, in the case of vibrating systems, the conditions for
a sort of nonlinear resonance; here the situation on the backbone is similar
to that occurring at a critical speed.

Remark 10.2 A result that is similar to the classic solution of Du ng’s

equation for vibrating systems is so obtained. Some important di erences,

however, must be mentioned: here is the spin speed and not a circular

frequency, and the excitation is proportional to 2. In the case of Du ng’s

equation, such a solution is only a first approximation of the fundamen-

tal harmonic of the response, whereas here the solution gives the whole re-

sponse. This can be related to the fact that in the present case, the nonlinear

element does not oscillate along the force-displacement characteristic but it

rotates, maintaining a given deformation. Most considerations regarding

multiple solutions and the jump phenomenon, however, hold. These con-

siderations hold in general, regardless of the particular law (| |).

Remark 10.3 In the case of linear systems, the solution in terms of is

independent from the eccentricity, although this clearly does not hold in the

present case. When tends to zero, also vanishes and tends to the

solution of the linearized system, if it exists at all.

The limit envelope can be obtained simply by introducing = 2
into the second Equation (10.12)

(| 0|) 0 =
2 ; (10.17)

i.e., in nondimensional form for the case with constant,

0 =
2

(10.18)
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The intersection point between backbone and limit envelope gives a good
estimate of the point at which the jump phenomenon occurs.

Stability of the circular synchronous whirling

The equation of motion (10.7) (without the external nonrotating force ,
or the equation corresponding to Equation (10.2), but written in rotating
coordinates) can be written in the form of a set of four first-order di erential
equations in the state space

z0 = f(z) , (10.19)

where z =
£

0 0
¤

is the state vector, and are the
nondimensional rotating coordinates, and f is a vector function of z

f =

2 2 1 2
2 2 2 1
1 0 0 0
0 1 0 0

z+ (10.20)

+

¡
2 + 2

¢
¡

2 + 2
¢

0
0

+

2

0
0
0

.

The study of the stability in the neighborhood of an equilibrium condition
(stability in the small), characterized by the state variables z = z (by
definition of equilibrium point f(z ) = 0), can be performed by expressing
the state vector as

z = + z , (10.21)

where is a small displacement from the equilibrium state (in the state
space). The state equation

( + z )0 = f( + z ) (10.22)

can then be linearized by expanding function f( + z ) in Taylor series in
the neighborhood of z and truncating the series after the second term,
yielding

0 = J(z ) , (10.23)

where J(z ), the Jacobian matrix of function f(z) computed in the equi-
librium state z , acts as the dynamic matrix of the linearized system.
The explicit expression of the Jacobian matrix J(z) is

2 2 1
¡
3 2 + 2

¢
2 2

2 2 2 2 1
¡

2 + 3 2
¢

1 0 0 0
0 1 0 0

.

(10.24)
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The motion in the small can be expressed in the form

= 0 , (10.25)

where are the Liapunov exponents. They can be found by solving the
eigenproblem

[J(z ) I] 0 = 0 . (10.26)

The characteristic equation can be expressed in nondimensional form as

4 2 11
3 + ( 11 + 12 13 24)

2+ (10.27)

+ [ 11 ( 13 + 24) + 12 ( 14 + 23)] + 13 24 14 23 = 0 .

Equation (10.27) can be solved in closed-form, and the nondimensional
eigenvalues can be obtained. If any one of the real parts of the eigenvalues
is positive, the system is unstable following Liapunov criterion; if all real
parts of are negative the system is asymptotically stable. When the real
part of at least one is equal to zero, the system undergoes undamped
oscillations.

Remark 10.4 Although rotating damping does not a ect the amplitude of

the unbalance response, it enters into the equation yielding the Liapunov

exponents and can be a critical factor in assessing the stability. This feature

was already present in the linear system.

Attractive systems

The linear part of the restoring force is actually restoring, because it tends
to pull point C (see Figure 10.1) toward the axis of rotation, and the upper
signs shown in the previous equations apply. Depending on the sign of ,
the system can be hardening ( positive) or softening ( negative).
As the unbalance response of the system depends on four nondimensional

parameters, it is impossible to summarize all possible cases in a small num-
ber of plots. However, typical results can be obtained for di erent parameter
combinations and general considerations can be drawn.
The results obtained for two hardening attractive and two softening at-

tractive systems are reported in Figure 10.2. The nondimensional ampli-
tude

0
of the orbit of point C is plotted against the nondimensional spin

speed ; solid lines denote stable solutions, whereas dashed lines imply
instability. Also, the backbone of the response and the limit envelope have
been plotted. The results are typical and qualitatively very similar to those
usually linked with Du ng oscillators, with the obvious and already men-
tioned di erence that in the latter case, they are only first approximations
of the response. Increasing the nonlinear parameter , the slope of the
backbone decreases, as usual.
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FIGURE 10.2. Unbalance response of attractive nonlinear Je cott rotors of the
(a) hardening and (b) softening type. (a) Curve 1: = 0 3, = 0 15, = 0 3;
Curve 2: = 0 42, = 0 15, = 0 6 The dashed line DE is superimposed
to the solid line C’E. (b) Curve 1: = 0 01, = 0 005, = 0 05; Curve 2:
= 0 01, = 0 005, = 0 15.

Consider an acceleration of a hardening attractive rotor from standstill,
which occurs at a rate small enough to allow the use of the model based
on steady-state whirling (the angular acceleration is so small that at any
instant, the motion can be approximated with a steady-state motion with
the corresponding parameters). The amplitude grows along the path AB
in figure 10.2(a). When the conditions of point B are reached, any further
speed increase will cause the amplitude to jump down to conditions on the
line CE. Then the rotor self-centers going on toward E until instability
is reached and no circular whirling is possible anymore. When spinning
down, the rotor follows line EC up to point C. Any further decrease of
speed causes the amplitude to jump up to a point on line AB, to proceed
then toward point A. Note that the maximum amplitude reached during
speeding up is larger than that obtained during spinning down.
In the case of hardening systems, to obtain the jump, the nonrotating

damping ratio must be larger than a minimum value, which increases
with increasing nonlinearity parameter ; otherwise, the backbone and
the limit envelope do not intersect each other. This e ect is shown in Fig-
ure 10.3. Branches AB and A’B’ of the curves are stable. The self-centered



10.1 Nonlinear isotropic Je cott rotor 357

solution, when it exists, is stable only up to a certain speed (branch CD).
Above this threshold of instability, the circular whirling is unstable in the
small (branch DE). This does not imply necessarily instability in the large
for the system: Attractors di erent from equilibrium points may develop in
this region. The unstable solutions belonging to the interval BC, B’C’ are
obviously responsible for the jump.
The di erences with the usual results obtained for damped Du ng’s

equation are that the peak amplitude occurs now at the right of the back-
bone instead of at the left (the same thing happens in linear systems), and
for low values of the damping, the curves do not close. This suggests a
greater di culty in experiencing the jump phenomenon and, consequently,
self-centering.
It is easily predictable that self-centering is much more di cult in the

case of nonlinear rotors than in the linear case, and that higher nonrotating
damping is needed to work in the supercritical range, because the jump,
which is needed to obtain the self-centered configuration, takes place when
the energy supplied by the forcing function is not su cient to sustain the
motion with higher amplitude. In rotating systems, the forcing function is
caused by unbalance, and the amount of energy supplied by the centrifugal
field is large. This can be seen from the shape of the limit envelope, which
may not cross the backbone.
Also in the case of the two softening attractive systems with di erent

nonlinear parameters , the response is similar to that of a Du ng oscil-
lator of the corresponding type; in that case, however, the approximations
in some parts of the response curves of the latter are unacceptable whereas
in the present case, an exact response is again obtained. Also, in this case,
an increase of leads to a decrease in the backbone slope.
The small values adopted for damping parameters and cause the

instability of both the branches at the left and the right of the nonlinear
resonance peak (BC, CD, and B’C’, C’D’), up to the crossing of the back-
bone. In the corresponding frequency ranges BD and B’D’, no standard
jump phenomenon may occur and the basin of attraction of stable circu-
lar whirling solutions vanishes. In all of the mentioned unstable ranges, as
well as at speeds beyond the instability threshold corresponding to points
E and E’, only numerical integration of the equation of motion can give
information about the possibility of stability in the large and on the nature
of the attractors.

Remark 10.5 The values for used to plot the responses are large, which

can mean either a very large unbalance or a very large nonlinearity. The

figures reported here are aimed to show the response of a Je cott rotor,

which behaves in a much nonlinear way, either because of its very nonlinear

nature or because its large unbalance causes it to operate in a very nonlinear

part of its characteristic.
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FIGURE 10.3. Nondimensional response of a nonlinear hardening attractive Jef-
fcott rotor, with various values of nonrotating damping. If damping is too low,
the backbone and the limit envelope do not intersect, and no jump is possible.
The plot has been obtained for a nondimensional nonlinear parameter = 0 25

and various values of the nondimensional damping .

Repulsive systems

Nonlinear rotors with repulsive behavior have been rarely considered in
the literature; however, the total restoring force acting on the rotor of an
electric motor running on lightly preloaded ball bearings is of the type
here described as repulsive because it results from the combination of an
unstabilizing e ect, the so-called unbalanced magnetic pull of the electro-
magnetic field, and a stabilizing reaction of the bearings. If the latter are
lightly preloaded, the linear term caused by the first e ect overcomes the
linear term of the bearing force. In such systems in fact, the centered static
equilibrium configuration

0
= 0 is unstable in the small and no linearized

analysis is possible. In the case of hardening repulsive systems, there is
another equilibrium condition that, at least at standstill, is stable while
softening repulsive systems are unstable also in the large: Because the lat-
ter are of little practical interest, they will not be studied any longer.
The unbalance response and stability in the small of some di erent

damped and undamped hardening repulsive Je cott rotors with di erent
values of are studied in Figure 10.4. Figure 10.4(a) is representative of
systems with 1; in this case, if the system is undamped, three equi-
librium positions can always be found. On the contrary, if 1 [Figure
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FIGURE 10.4. Unbalance response of repulsive nonlinear Je cott rotors of the
hardening type. (a) Curve 1: undamped ( = = 0) system with = 0 8;
Curve 2: = 0 3, = 0 01, = 0 8. (b) Curve 1: undamped ( = = 0)
system with = 1 5; Curve 2: = 0 3, = 0 01, = 1 5. (c) undamped
system with = 1 (d) = 0 5, = 0 01, = 0 8.

(10.4b)] there is a spin-speed range where the undamped system has only
one equilibrium configuration (frequency range FD).
For small values of , the number of solutions is modified by the in-

troduction of damping, which leads to a spin-speed range where only an
unstable configuration exists (Figures 10.4(a) and (b), ). If the
nonrotating damping is small, the intersection between the backbone and
the limit envelope occurs in A’; this excludes the possibility of a connec-
tion between the curves A’B’ and A’C’ [Figure 10.4(a)] or A’B’ and D’C’
[Figure 10.4(b)] for speed values . The system cannot experience
a jump during a slow acceleration phase and achieve spontaneously the
self-centered configuration.
Figure 10.4(c) shows the case of an undamped hardening repulsive system

with nonlinear parameter = 1. It can be considered as a limiting case
between the undamped systems of Figure 10.4(a) and Figure 10.4(b). If
damping was present, a path similar to that of Figure 10.4(c) would have
been obtained with 1. In this case, an increase of from 0 leads to
a decrease of the distance between points F’ and D’ of Figure 10.4(b). If



360 10. Nonlinear rotordynamics

the nonrotating damping is high enough to avoid an intersection between
backbone and limit envelope [Figure 10.4(d)], only one solution can be
found for every value of . In this case, the self-centered solution represents
the only possible synchronous motion.

Noncircular whirling

When circular synchronous whirling is possible, point C moves along a
circumference in -plane, a solution that in the rotating frame cor-
responds to a fixed point. By resorting to a state-space approach, circular
synchronous whirling corresponds, in the phase space related to the rotating
coordinates, to a fixed point attractor. As already stated, such attractor,
when exists, is only one of the possible attractors of the system. When
no point attractor exists, the motion may be stable in the large and other
types of attractors can be possible. Steady-state solutions that can be rep-
resented in the rotating frame by limit cycles and strange, i.e., chaotic,
attractors are then possible.
As no general solution of the equation of motion can be found, the study

of noncircular whirling can be performed only through numerical experi-
mentation by integrating numerically in time the equation of motion. Even
in the simplest case of a nonlinear Je cott rotor modeled using Equation
(10.7), a large number of numerical experiments needs to be performed
since the time history of the system is defined by four parameters , ,
, and and by the four initial conditions

0
,

0
, 0

0
, and 0

0
. Only a few

typical results will be reported in the following pages: three values of each
one of parameters , and , corresponding to a hardening attractive,
a softening attractive, and a hardening repulsive system, were chosen, and
each case was studied at various values of the speed . In all cases, the
system has been considered to be initially at rest in the origin of the state
space (

0
=

0
= 0

0
= 0

0
= 0).

Hardening attractive system. The numerical integration has been per-
formed using the same values of the parameters of Figure 10.2(a), Curve 1.
The trajectories in the -plane for six values of the speed are reported
in Figure 10.5. All trajectories have been plotted in the same scale except
that in Figure 10.5(f), where a smaller scale is used. Three speed ranges in
which the trajectories tend to di erent attractors can be identified.

• For 0 1 966, after the transient motion, the system falls on
the stable attractor, a stable focus, which corresponds to the higher
amplitude solutions of Figure 10.2(a) [ = 1, Figure 10.5(a)]. In-
creasing the trajectory initially tends, during the transient mo-
tion, to the unstable solution located on line BC of Figure 10.2(a)
(a saddle point), to reach finally the stable focus [ = 1 966, Fig-
ure 10.5(b)]. The origin of the phase space lies within the domain of
attraction of the non self-centered solution.
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FIGURE 10.5. Trajectories in the -plane of an attractive nonlinear Je cott
rotor of the hardening type with = 0 3, = 0 15, = 0 3. In all cases
the initial conditions are

0
=

0
=

0

0
=

0

0
= 0. The numerical integration

was performed over a time at least su cient to perform 10,000 revolutions of the
rotor; the duration of the numerical experiment is always very long in comparison
with the time needed to extinguish all transient motion.

• For 1 967 4, the system reaches the self-centered solution [line
CD Figure 10.2(a)]. For the lower values of , the self-centered condi-
tion is reached without oscillation, although the system tends initially
to the saddle point [ = 1 967, Figure 10.5(c)]. For higher values of

the system self-centers with an oscillatory motion [ = 3, Fig-
ure 10.5(d)], which is decreasingly damped as the speed increases and
nears the threshold of instability. The origin of the phase space lies
within the domain of attraction of the self-centered solution.

• For 4, the speed is higher than the threshold of instability and
no point attractor exists. The trajectory tends to a limit cycle, whose
amplitude increases with [Figures 10.5(e)] and 10.5(f)].

When multiple solutions exist, the solution that is actually obtained
depends on the initial conditions. In the case of a Du ng-type hardening
attractive restoring force, when more than one solution is present, they are
three: A larger one, with a phase laying in the field 0 90 , which
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FIGURE 10.6. Trajectories in the rotating plane starting from four di erent
points, one belonging to the domain of attraction of the lowest solution and
three to the other domain. Values of parameters: = 2, = 0 2, = 0 2,
= 0 03.

is stable, an intermediate, unstable one (in the state space it is a saddle
point) and a smaller, stable solution with phase 90 180 . As
already shown, the smallest solution (the self-centered one) is stable only
up to a certain speed, which depends essentially on the ratio between the
nonrotating and rotating damping.
An example of trajectories starting from di erent points in the -

plane (di erent values of
0
and

0
) but all with 0

0
= 0

0
= 0 are shown

in Figure 10.6. The figure has been obtained in conditions yielding three
stationary solutions, two of which are stable.
The trajectories tend to the stable solutions, even if a certain attraction

is also felt toward the saddle point, which is unstable. By integrating the
equations of motion of the system for di erent values of the speed, using as
starting positions di erent pairs of values of coordinates , the domains
of attraction of the various solutions at di erent speeds can be obtained.
The results for some values of the speed are reported in Figure 10.7. The
figure was obtained using the same parameter values as for Figure 10.3 and
integrating numerically the equations of motion 81,000 times for each value
of the speed until a stable equilibrium position was found. In some cases, a
few hundred steps were su cient; in others, the motion had to be followed
for thousands of steps.
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FIGURE 10.7. Basins of attraction in the -plane of the equilibrium positions
at di erent values of the speed computed by numerically integrating the equations
of motion; the same values of the parameters as in Figure 10.3.

The two domains of attraction are clearly well defined, and the unstable
solution lies on the separatrix of the two attraction domains. At low speed,
when the self-centered solution just starts existing, its domain of attraction
is very small. By increasing the speed, the domain of attraction of the self-
centered solution grows, and at the speed at which the jump occurs, it
extends for the whole plane. The physics of the phenomenon consequently
does not show any critical dependence on the initial conditions, and chaotic
behavior was never encountered.
Softening attractive system. The parameters of the system are the same

used for plotting curve 2 in Figure 10.2(b). The trajectories in the
plane for six values of the speed are reported in Figure 10.8. Two velocity
ranges in which the system behaves in a completely di erent way have been
found.

• For 0 0 6104, after the transient motion dies out, the sys-
tem falls on the stable attractor corresponding to line A’B’ of Fig-
ure 10.2(b). Some examples of transient motion are reported in Fig-
ures 10.8, from (a) to (d). The trajectories show a lobed pattern, and
the number of lobes increases with . The overall trajectory has a
polygonal shape, until the fixed point attractor is reached.

• For 0 6105, the trajectories of the system always diverge [Fig-
ures 10.8(e) and 10.8(f)]: The system is unstable in the large as well
as in the small. Note that for 1 15 2 32, there is a stable so-



364 10. Nonlinear rotordynamics

FIGURE 10.8. Trajectories in the -plane of an attractive nonlinear Je cott
rotor of the softening type with = 0 01, = 0 005, = 0 15. In all cases,
the initial conditions are

0
=

0
=

0

0
=

0

0
= 0.

lution corresponding to branch D’E’ in Figure 10.2(b). However, all
numerical simulations reported in Figure 10.8 were performed start-
ing from the origin of the state space, and evidently such point is
outside the domain of attraction of the stable solution. A section of
the domain of attraction in the -plane has been obtained for a
value of the speed = 1 8. The domain of attraction of the stable
circular whirling was seen to be a regular zone about the stable so-
lution, but its boundaries are uncertain as there is an ample zone in
which the convergence or the divergence are extremely slow. In some
trajectories, even after 12,000 revolutions, there is no clue to under-
stand whether the point attractor will eventually be reached or the
trajectory will end diverging.

Hardening repulsive system. The parameters of the system are the same
used for plotting Curve 2 in Figure 10.4(b). The trajectories in the -
plane for nine values of the speed are reported in Figure 10.9. Seven velocity
ranges in which the system behaves in a di erent way have been found.

• For 0 0 555, the trajectory tends to a limit cycle that is
circular at very low speed to become increasingly deformed with in-
creasing [Figures 10.9(a) and 10.9(b)]. Increasing the system
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FIGURE 10.9. Trajectories in the -plane of a repulsive nonlinear Je cott
rotor of the hardening type with = 0 3, = 0 01, = 1 5. In all cases, the
initial conditions are

0
=

0
=

0

0
=

0

0
= 0.

tends to remain for a longer time near a point that will become the
equilibrium position for higher values of .

• For 0 556 4 125, the attractor coincides with the stable equi-
librium point corresponding to the higher amplitude solutions of Fig-
ure 10.4(b), Curve 2. The length and the complexity of the transient
motion increase with increasing [Figures 10.9(c) and 10.9(d)].

• For 4 125 4 179, the trajectory keeps on falling on the same
stable attractor, but at the beginning of the transient motion, the
system tends to a saddle-point [Figure 10.9(d)].

• For = 4 179, the domain of attraction of the self-centered solution
includes the origin of the phase space: The phase projection passes
through the saddle-point and falls on that stable point attractor on
the lower branch of Curve 2, Figure 10.4(b) [Figure 10.9(e)].
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• For 4 179 7 078, the trajectory at the end falls on the at-
tractor corresponding to the self-centered equilibrium position, but
for 7 078, initially the system tends to a limit cycle, which is
unstable [Figure 10.9(f)].

• For 7 078 12 695, the system, after some revolutions on the
same unstable limit cycle mentioned above, reaches a new limit cycle
that is stable [Figure 10.9(g)].

• For 12 695 43 9, after the transient motion, the system
reaches the attractor corresponding to the self-centered equilibrium
point [Figure 10.9(h)].

• For 43 9, the system tends to a limit cycle [Figure 10.9(i)].

The system shows a complex behavior, characterized by attractors of
both the fixed point and the limit cycle type. In some cases, the transient
to reach the limit cycle is long, and the attractor has an intricate shape.
However, never strange attractors were found.

Free circular whirling

The free response of the system can be computed by solving the homo-
geneous Equation (10.2), modeling a perfectly balanced Je cott rotor. A
possible solution is also in this case a circular whirling, although not syn-
chronous. It can be expressed in the form

= 0 . (10.28)

Remark 10.6 This solution is again an exact solution of the equation of

motion.

By introducing the solution for circular free whirling into the homoge-
neous equation of motion, the following algebraic equation is obtained:

2 + (| 0|) + (| 0 0|)( 0 0) + (| 0|) 0 = 0 (10.29)

In the case of linear damping, it reduces to

©
2 + (| 0|) + + ( )

ª
0 = 0 (10.30)

Equation (10.30) has a solution di erent from the trivial solution 0 = 0
only if the expression in braces is equal to zero. An equation in is so
obtained, which yields the frequency and the decay rate of the free whirling

= Re ( ) =
2

±
1

2

vuut
+

s
2 +

µ ¶2

= Im( ) = ±
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+
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2 +

µ ¶2

(10.31)
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where

=
(| 0|)

2

4 2

or for a Du ng-type restoring force,

=
(±1 + | 0|

2) 2

4 2

Equation (10.31) is very similar to the corresponding expression for the
linear case, with the di erence that here the whirl speed is a function of
the amplitude of the motion. As is obvious for a nonlinear system, the
Campbell diagram loses any meaning. A three-dimensional plot in which
the amplitude | 0| is reported as a function of and can, however, be
introduced. The , —plane of the tridimensional plot coincides with the
Campbell diagram of the linearized system. The second Equation (10.31)
defines a surface expressing all of the possible conditions of free whirling; it
can be considered as the backbone of the system at varying spin speed .
The intersection of the surface with the | 0| —plane expresses the relation-
ship linking the frequency of free circular vibration with the amplitude at
standstill: It is then the backbone of the nonrotating system for a whirling
mode in the -plane.
One of the mentioned plots has been reported in nondimensional form in

Figure 10.10. The figure has been plotted for a system with a Du ng-type
hardening attractive restoring force with = = 0 3. The Campbell
diagram of the linearized system coincides with that plotted in Figure 10.3
(curve for the corresponding value of the damping ratio). The stability
threshold of the linearized system is at = 2.
The intersection of the surface with the plane of equation = gives

the conditions for free synchronous whirling: It then coincides with the
backbone of the unbalance response shown in Figure 10.3.
From the first Equation (10.31), it is possible to obtain the condition for

stability

r
(| 0|)

µ
1 +

¶
(10.32)

The threshold of stability depends on the amplitude, as shown in Fig-
ure 10.10, where the unstable part of the surface is dashed. If the spin
speed is lower than the threshold of instability of the linearized system,
the motion is always stable and the amplitude of free whirling decays to
zero. On the contrary, when the linearized analysis shows an unstable be-
havior in the small, the nonlinear e ects reduce the instability, and the
result is a motion with growing amplitude until the border separating the
full lines from the dotted lines is reached. The amplitude corresponding to
these conditions is that of a sort of limit cycle that constitutes an attractor
for all free whirl motions. The amplitude of the limit cycle is a function of
the speed and grows with increasing .
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FIGURE 10.10. Tridimensional plot for the study of the free whirling of the
nonlinear Je cott rotor with a Du ng-type hardening attractive nonlinearity
studied in Figure 10.3.

Note that the nonlinearity of the system ensures that the stability condi-
tion for the unbalance response will not coincide with the stability condition
of the free whirling, i.e., of the perfectly balanced system.
Some solutions found in the literature in which chaotic behavior of an

axi-symmetrical rotor has been found are available. However, a key factor
that can trigger chaotic behavior of rotating systems seems to be the lack
of axial symmetry, either because of geometric or material anisotropy or
to the presence of mechanisms such as bearing clearance or static loading,
which make an isotropic system operate in an o set position. At any rate, it
must be stressed that the domains of attraction should be plotted in phase
space, which in the current case has four dimensions (two positions and
two velocities) and not in the space of the configurations as in Figure 10.7.

10.2 Nonlinear isotropic Je cott rotor running on
nonsymmetric supports

Consider the Je cott rotor studied in the previous section, but add a non-
linear restoring force caused by two nonlinear spring systems acting, re-
spectively, in - and -planes. Note that although in the case of linear
supports, the sti ness varies in the -plane following an elliptical pattern,
in the case of nonlinear supports, more complicated patterns are obtained
and the fact that the elastic characteristics of the supports in - and -
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planes are equal does not mean that the supports are isotropic. Owing to
the lack of axial symmetry of the system, the restoring and the nonrotating
damping forces do not have the same directions as the displacement and
the velocity. Rotating forces are in general still expressed by the second
and fourth Equations (10.1), whereas for nonrotating forces, the following
equations hold:

½ ¾
=

½
( ˙ )
( ˙)

¾
,

½ ¾
=

½
( ˙ ) ˙
( ˙) ˙

¾
,

(10.33)

where subscripts and refer to the restoring and damping force, re-
spectively. Moreover, the forces in - and -planes are assumed to act
independently from each other.
The above assumptions lead to the following nonlinear equation of mo-

tion written in the inertial coordinate frame O :

¨ + ( ˙) ˙ + (| ˙ |)( ˙ + ) + (| |) + ( ) =
= 2 cos ( ) + ,

¨+ ( ˙) ˙ + (| ˙ |)( ˙ ) + (| |) + ( ) =
= 2 sin ( ) +

(10.34)

Note that, in order to simplify the notation, restoring forces are explicitly
written as functions of the displacements only and damping forces of the
velocity; there is, however, no di culty in introducing a more complex
dependence into the equation. Note also that rotating forces are functions
of the modulus of the displacement | | =

p
2 + 2 and of the velocity,

whereas nonrotating forces are functions of their components in - and
-directions.
In a way that is similar to what has been done above for axi-symmetrical

systems, functions will be assumed to be of the Du ng type (they depend
only on the displacements and contain only a constant and a quadratic
term), whereas functions are assumed to be constant.
Equation (10.34) reduces then consequently to

¨ + ˙ + + (±1 + | |2) + (±1 + 2) =
= 2 cos ( ) + ,

¨+ ˙ + (±1 + | |2) + (±1 + 2) =
= 2 sin ( ) +

(10.35)

where = + and = + . The values of the sti ness are
assumed to be positive, and the double signs take care of the possibility of
having attractive or repulsive systems, whereas is positive or negative for
hardening and softening systems, respectively.
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FIGURE 10.11. Polar plot of the restoring force. Ratios and have
been reported on the axes, and the curves refer to di erent values of the nondi-
mensional displacements and .

By neglecting the presence of a rotating restoring force and introducing
the nondimensional coordinates = , = and time =

p
and parameters

= = 2 = p =
2

( = ) ,

(10.36)
the following nondimensional equation of motion is obtained:

(
00 + 2 0 + 2 + (±1 + 2) = 2 cos ( ) +

| |
,

00 + 2 0 2 + (±1 + 2) = 2 sin ( ) +
| |

(10.37)
where prime denotes di erentiation with respect to . The behavior of the
system depends then on six parameters ( , , , , , ), and on the
nondimensional spin speed .
Note that the system is not isotropic even if the parameters related to
- and -directions are equal, owing to nonlinearities. The polar plot of
Figure 10.11 shows clearly that the restoring force tends to be isotropic for
small displacements, whereas for large displacements, when nonlinearities
are significant, the curve tends to a square instead of a circle. The figure
has been obtained for a hardening case, but similar results would have been
obtained in the case of a softening system.
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The solution of the equation of motion (10.37) is easily performed by
numerical integration. However, it can also be approximated by the poly-
harmonic expression

=
P
=0

cos ( ) +
P
=0

sin ( ) ,

=
P
=0

cos ( ) +
P
=0

sin ( ) ,
(10.38)

which has been truncated after terms. By introducing the truncated
series (10.38) into the equation of motion and balancing the harmonics, a
set of nonlinear algebraic equations is obtained. Each harmonics introduces
four unknowns and four equations, and the computations may be involving
even if only few harmonics are considered.
If only the fundamental harmonic of the unbalance response is retained,

the solution is an elliptical whirling. Note that if the system is linear, the
elliptical solution (in the fixed frame) is the exact solution of the equation
of motion. In the rotating frame, the solution is a stationary solution, su-
perimposed on a vibration component with frequency 2 , as is well known.
If rotating damping is vanishingly small, the two pairs of equations de-

scribing the behavior in - and -planes uncouple, and in each plane, the
same equations commonly used to compute a first approximation of the
response of a Du ng oscillator are found. The nonlinear set of equations
can be easily solved using the Newton-Raphson algorithm. Problems can,
however, be encountered owing to the presence of multiple solutions whose
basins of attraction may have very complicated shapes. The solution so ob-
tained is, however, just an approximation, and no actual elliptical whirling
can take place. The backbone of the response can be computed in a very
simple way, obtaining, in each coordinate plane, the same backbone typical
of a Du ng oscillator.
The response of a hardening attractive system is shown in Figure 10.12.

Note that fields in which multiple solutions exist can be found. The method
used to obtain the response does not allow one to know whether other
solutions exist or whether the solutions found are stable. The velocity range
considered can be divided into three parts:

• Up to = 1 75 there is only one solution, a forward elliptical
whirling.

• For 1 75 2 50, there are two solutions, a forward and a
backward elliptical whirling.

• For 1 75 2 50, there are two solutions, one of which is backward
elliptical whirling and the other is a forward whirling, which is in-
creasingly circular at increasing speed. The latter can be considered
as the self-centered solution. Note that in the whole frequency range,
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FIGURE 10.12. Semiaxes of the elliptical response as functions of the nondi-
mensional speed. Hardening attractive system. Data: = 2; = 0 25;

= = 0 25; = 0 034. Fundamental harmonic of the response.

a high solution exists and no downward jump is expected during a
run-up of the rotor.

The orbits at some selected values of the speed ( = 1 2 3) are plot-
ted in Figure 10.13. The first approximation (fundamental harmonic only)
and the results obtained through numerical integration of the equation of
motion are reported. Note that all solutions reported in Figure 10.12 have
been found using harmonic balance and numerical integration: The last
results indicate that all solutions (also those causing backward whirling)
correspond to stable whirling. Note that in the cases shown, the funda-
mental harmonics yields already a very close approximation and that by
including also a further harmonics (the third), a result that is completely
superimposed to the numerical solution is obtained.
The results obtained for the symmetrical nonlinear Je cott rotor run-

ning on nonisotropic bearings show a close similarity with those typical of
the linear case. In the latter case, if damping is neglected, three velocity
ranges can be defined. In the lowest, spanning up to the first critical speed,
unbalance causes forward elliptical whirling with larger axis situated in the
direction of lowest sti ness. In the highest, starting at the highest critical
speed, forward elliptical whirling with larger axis situated in the direction
of larger sti ness is obtained. However, the orbit tends to become circular
at a very high speed. Between the critical speeds, forward unbalance causes
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FIGURE 10.13. Orbits at three di erent values of the speed for the system of
Figure 10.12. Note that di erent scales have been used.

elliptical backward whirling, which at an intermediate speed becomes cir-
cular. The presence of damping restricts the intermediate field, making the
speeds at which the reversal of whirling direction occurs, closer to each
other. At these speeds, whirling degenerates to a vibration along a straight
line in a direction, making an angle with the principal axes of elasticity
of the supports. There is a value of the damping above which backward
whirling is no longer possible and forward whirling occurs at all speeds.
The nonlinearity of the systems modifies these results in the following

way:

• No exact solution of the equation of motion is possible, and the shape
of the orbit is no longer elliptical. Numerical simulation has, however,
shown that in most cases, the orbit obtained is not distinguishable
from an elliptical orbit, and even in the cases in which higher order
harmonics are important, it is su cient to take into account only a
further one (the third) to obtain very good results. This result has
been obtained for supports with cubic sti ness characteristics and
holds only for supports with symmetrical characteristics. Moreover,
being based on numerical experiments, this conclusion does not ex-
clude the possibility of very complicated whirling patterns, periodic
or even chaotic, which, however, might not be very common.

• At speeds higher than the lowest critical speed of the linearized sys-
tem, multiple solutions can exist. Some of them consist in forward
whirling and others in backward whirling. As a general, empirical
rule, when a solution can be considered as a combination of vibra-
tions in - and -directions, occurring both with the larger or the
smaller amplitude, whirling takes place in forward direction and back-
ward whirling occurs when a large vibration combines with a small
vibration.
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• The presence of damping complicates this picture, and very high
damping makes backward whirling impossible. Rotating damping cou-
ples the behavior in - and -planes and destabilizes the system,
as in the case of isotropic rotors.

The above-mentioned conclusions, drawn from the Je cott rotor model,
are believed to hold qualitatively for real-life rotors, which are much more
complex. However, the presence of gyroscopic e ects will result in a stronger
coupling between the inflection planes, even in cases of very low damping.

10.3 Nonlinear anisotropic Je cott rotor running
on symmetric supports

Consider the same model studied in the previous section, but now assume
that the elastic nonlinear restoring force is caused by two nonlinear spring
systems acting, respectively, in - and -planes. By operating in the same
way as for the previous section and assuming a Du ng-type restoring force
and linear damping, defining nondimensional coordinates and parameters
as in Equation (10.37) and neglecting the nonrotating external force, the
above assumptions lead to the following nonlinear equation of motion writ-
ten in the rotating coordinate frame:

00 + 2
³

+
´

0 2 0 + (±1 2 + 2) +

2 = 2 cos ( ) ,
00 + 2

¡
+

¢
0 + 2 0 + (± 2 + 2) +

+2 = 2 sin ( ) ,

(10.39)

where is the angle between the direction of static unbalance and -axis.
An exact solution of Equation (10.39) is circular whirling defined by con-
stant values of =

0
and =

0
. By introducing such a solution into

the equation of motion (10.39), it reduces to the algebraic equation
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½
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(10.40)
which yields the in phase and in quadrature components of the amplitude
of the orbit. In this case, the situation is very close to that characterizing
the unbalance response of an axi-symmetrical Je cott rotor. If no nonro-
tating damping is present, the two equations are uncoupled and the system
responds to the components of unbalance in each coordinate plane as an
isotropic rotor with the properties related to that plane. The presence of
damping introduces a coupling that modifies the quantitative results but
not the type of the response.
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The typical feature of linear nonisotropic rotors is the presence of fields of
instability at speeds laying between the critical speeds, which are narrowed
by the presence of damping, both rotating and nonrotating, until they
disappear for large values of the damping coe cients. The study of the
stability in the small of the solution expressed by Equation (10.40) can be
performed in the same way seen for isotropic systems (Section 5.5.1). The
equilibrium condition in the space state is characterized by z = z , and
consequently, the state vector can be expressed as

z = + z , (10.41)

where z =
£

0 0
¤
is the state vector and is a small dis-

placement from the equilibrium position (in the state space).
The equation of motion can be expressed as

( + z )0 = f( + z ) , (10.42)

where the function f(z) obtainable from Equation (10.40) is
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The Liapunov exponents allowing the study of the stability in the small
are then the eigenvalues of the Jacobian matrix J(z) of function f(z), whose
explicit expression is
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(10.44)
As usual, if any one of the real parts of the eigenvalues of J(z) is

positive, the system is unstable following Liapunov criterion; if all real
parts of are negative, the system is asymptotically stable. When the real
part of at least one is equal to zero, the system behaves as an ubdamped
system.
The response of a hardening attractive system is reported in Figure 10.14.

Note that no speed range in which no stable solution exists can be found.
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FIGURE 10.14. Amplitude of the circular response as a function of the nondi-
mensional speed. Hardening attractive system, with = 2; = = 0 25;

= = 0 03; = 0 22; = 45 .

This result, which is conflicting with those obtained for linear systems,
can be ascribed to the relatively high values of damping and nonlinearity
coe cients used. However, several computer simulations performed with
decreasing values of both showed that even with vanishingly small damp-
ing and nonlinearity coe cients, at least one stable solution exists at any
speed. This inconsistency with the results obtained for linear systems is
only apparent: The presence of a vanishingly small nonlinearity causes a
stable solution to be present where one should expect instability, but the
amplitude of this solution is very large, tending to infinity when the non-
linearity tends to zero: A stable solution with unbounded amplitude is then
found instead of an unstable solution.
Obviously circular whirling, although being an exact solution, is not nec-

essarily unique; alternative solutions, linked with noncircular orbits must
be found through numerical integration of the equations of motion (10.40).
The Je cott rotor model is inadequate for the study of a system in which

both the stator and the rotor are nonisotropic. The complexity of this prob-
lem suggests to resort to a numerical approach, using the equations that
will be introduced when dealing with multi-degrees-of-freedom systems.
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10.4 Systems with many degrees of freedom

A very general mathematical model of a nonlinear rotor can be obtained
from Equation (9.22) by adding a generic vector function f( ˙ ) to
take into account the behavior of the nonlinear part of the system

M q̈+

µ
C G

¶
q̇+

µ
K C

¶
q+M q̈+

+M 2 q̈+C q̇+

µ
C + 2 M

¶
2 q̇+K q+

+

µ
K + C

¶
2 q+ f( ˙ ) = 2f + f

(10.45)

Equation (10.45) has been obtained with the only assumption of uncou-
pling among flexural, axial, and torsional behavior. If the system is axially
symmetrical, it reduces to

Mq̈+

µ
C +C G

¶
q̇+

µ
K C

¶
q+

+f( 0 ˙0 ) =
2f + f

(10.46)

If no nonrotating force acts on the structure, a possible solution for the
unbalance response is a circular whirling that can be expressed as

q = q0 . (10.47)

Remark 10.7 Also, in the case of multi-degrees-of-freedom systems, cir-

cular whirling is an exact solution of the equation of motion, not just an

approximation of the fundamental harmonic of the response, as is custom-

ary in nonlinear vibrating systems.

Introducing this solution into Equation (10.46) and considering the pres-
ence of a nonrotating structural damping matrix K00, the unbalance re-
sponse of a nonlinear rotor with many degrees of freedom is readily ob-
tained

µ
K 2(M G) + ( C +K00)

¶
q0 + f ( 0 ) =

2f (10.48)

To reduce the size of the problem, a combined Guyan and static reduc-
tion technique can be used, particularly when fewer generalized coordinates
are directly linked with nonlinearities, as when dealing with a rotor that
is linear in itself but runs on nonlinear bearings. A first reduction of the
number of degrees of freedom is performed by eliminating those not directly
involved in nonlinearities, with a small fraction of the total mass associ-
ated with them. This procedure, basically a Guyan reduction, introduces
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approximations, which are usually very small if the degrees of freedom to
be dropped are chosen with care. The equations of motion are then di-
vided into two groups: a linear and a nonlinear set of equations. A second
dynamic condensation procedure, to be applied at each value of the spin
speed at which the unbalance response is to be obtained, can then follow
to eliminate all linear degrees of freedom.
In some particular cases, the solution of the nonlinear problem can easily

be performed, because it reduces to that of a single nonlinear equation. This
includes the case of an undamped linear rotor supported by two nonlinear
bearings, one of which has a behavior that can be approximated by a cubic
characteristic. For the solution of the general problem, in which the nonlin-
ear functions have complicated expressions and there are many degrees of
freedom, the Newton-Raphson method seems to be the most appropriate
choice. In this case, it is advisable to write the equation of motion using
real coordinates instead of complex ones.
The iterative algorithm allowing the computation of the solution of Equa-

tion (10.48), after introducing a set of real coordinates, at the ( +1)th
iteration from that at the th iteration is

x +1 = x S( ) 1p( ) (10.49)

where is a relaxation constant and the vector of the unknown x, the
elements of Jacobian matrix S( ), and functions p( ) are defined as

x =

½
Re(q)0
Im(q)0

¾
=

½
x

x

¾
=

( )

p(x) =

·
K 2(M G) (C +K00)

(C +K00) K 2(M G)

¸
x+

+{ (x)} 2

½
Re(f)
Im(f)

¾
(10.50)

If there is no damping in the system and the unbalance distribution is
contained in a plane (i.e., vector f is real), the computation of the response
is much simpler because vector q0 is also real. All aforementioned equations
still hold, but they can be written directly using the unknowns q0. The
number of equations is, consequently, halved, and, in some particular cases,
the solution of the nonlinear part can be reduced to the solution of a single
nonlinear equation.
Because the backbone curves are related to the undamped system, they

can be computed using the same approach as for the latter, simply by
neglecting the forcing vector f in the definition of functions p(q0).
The convergence of the generalized Newton-Raphson method can be, in

some cases, a source of potential problems. The basins of attraction of
the solutions may take very complicated shapes, or the computation can
lock itself into a cycle without reaching any actual solution of the basic
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FIGURE 10.15. Basins of attraction of the solutions for the equilibrium posi-
tions of the system of Figure 10.7 at a speed = 2, computed through the
Newton-Raphson iterative technique.

equation. For example, the domains of attraction of the various solutions
plotted for the Je cott rotor already studied in Figure 10.7 are reported in
Figure 10.15. The map has been plotted for a value of the nondimensional
speed = 2, at which three solutions (two stable and an unstable one)
exist.
The structure of the map is fractal, as can be seen by enlarging selected

zones, and the unstable solution also has a nonvanishing attraction domain.
A consequence of the fractal structure of the map is that there are zones in
which very small changes of the initial values assumed for the computation
cause large di erences on the solution obtained. When comparing the maps
of Figures 10.7 and 10.15, it is clear that the fractal nature of the second
is strictly linked with the mathematical procedure used for the solution of
the Equation (i.e., the Newton-Raphson technique) and has nothing to do
with the actual physical behavior of the system. No improvement of the
mathematical behavior of the equations has been obtained by introducing
a relaxation factor. The map of the domains of attraction changes but
retains its fractal structure and the characteristics of showing a domain
of attraction of the unstable solution; however, the number of iterations
increases.
The results obtained for the Je cott rotor show fairly good convergence

characteristics of the Newton-Raphson technique. Obviously this does not
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guarantee an equally well-behaved nature of the general mathematical
model for systems with many degrees of freedom. The following considera-
tions, however, can be extrapolated and used as guidelines in the solution
of more complex problems:

• It seems that numerical damping is not of great use in avoiding non-
convergence.

• Attractive stable cycles can be found, particularly in the fields just
above a critical speed of the linearized system. After each iteration, it
is necessary to check not only whether convergence has been obtained,
but also whether the computation has been locked in a stable cycle.

• When this occurs, the computation can be started again using a dif-
ferent set of initial values. When operating in a self-centered branch,
a good guess could be trying to start from a vector x obtained by
multiplying the one of the preceding attempt by a constant smaller
than one; in a high branch of the response, a constant greater than 1
can be used.

• The fractal nature of the domains of attraction can cause large dif-
ferences in the results to be produced by small changes in the trial
vector x. The solution may also converge on an unstable branch of
the response.

• The stable branches should be obtained using as a trial vector the
result obtained in the previous computation.

• The aforementioned considerations also hold for the computation of
the various branches of the backbone. Here, however, a trivial solution
with all the elements of x vanishingly small exists, and therefore, the
procedure must be started outside the basin of attraction of the trivial
solution. A suggestion is to start at a speed just above a critical speed
of the linearized system (for hardening systems) with a trial vector
proportional to the eigenvector of the linearized system corresponding
to the mentioned critical speed.

Example 10.1 System with four degrees of freedom on nonlinear bearings.

Consider a rigid, vertical, symmetrical rotor running on two identical nonlinear

isotropic bearings. It can be modeled as a system with four real (two complex)

degrees of freedom of the same type studied in Section 3.6.1 but with nonlinear

properties. However, the fact that the axis of rotation is vertical and no external

forces act in radial direction allows us to consider the rotor as an isotropic system

and ensures that circular whirling is a possible solution for the unbalance response.

The rotor, a flywheel, has a working range between 8,500 and 17,000 rpm, a mass

= 125 kg and moments of inertia p = 2.272 kg m2 and = 1.477 kg m2.

It is supported by a pair of ball bearings whose nonlinear characteristics can be
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approximated by the expression = 2×107(1+1010(| |)2) and whose damping

properties can be modeled as hysteretic damping applied only to the linear part of

the sti ness with loss factor = 0.08. Knowing that the span between the bearings

is 400 mm and that the center of gravity is at 30% of the span, study the response

to a static unbalance = 438 × 10 6 kg m and state whether self-centering is

possible. Compute the forces exerted on the stator.

Because the distances of the center of gravity of the rotor from the bearings

are = 120 mm and = 280 mm, respectively, the matrices entering into the

mathematical model of the linearized system are

M =

·
125 0

0 1 477

¸
G =

·
0 0

0 2 272

¸

K =

·
2

2
+

2

¸
=

·
40 3 2

3 2 1 856

¸
× 106

In this case, it is expedient to use as generalized coordinates the displacements

at the bearing locations. The complex coordinates and can be obtained from

the complex coordinates 1 and 2 using a transformation matrix T

½ ¾
= T

½
1

2

¾
=
1
·
1 1

¸½
1

2

¾

The equation of motion of the undamped system is then

M

½
1̈

2̈

¾
G

½
˙1

˙2

¾
+K

½
1

2

¾
+

½
| 1|

2
1

| 2|
2
2

¾
=

2
f

where

M = T MT G = T GT

K = T KT =

·
0

0

¸
f = T f =

½ ¾

The solution for circular whirling can be obtained from Equation (10.48):

µ
2
(M G ) +K (1 + )

¶½
10

20

¾
+

½
| 10 |

2
10

| 20 |
2
20

¾
=

2
f

The solution can be performed using the Newton-Raphson algorithm. The ex-

pression of the Jacobian matrix is simply

S =

µ
2
(M G ) +K (1 + )

¶
+ 3

·
| 10 |

2
0

0 | 20 |
2

¸

Note that all matrices and vectors are complex, and if software allowing the

use of complex numbers is available, there is no need to double the number of

equations to work with real numbers.

The solution is performed twice. By increasing the speed from zero, the higher

branch is obtained, and by reducing the speed from the maximum value the lower,
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FIGURE 10.16. (a) Amplitude of the orbit of the center of gravity of the nonlinear
and linearized rotors. (b) Bearing forces as functions of the speed.

the self-centered branch is computed. At each speed, the solution obtained in the

previous computation is chosen as the starting solution. The results are plotted

in Figure 10.16. From the figure, it is clear that self-centering is not possible,

because of the low value of nonrotating damping. Correspondingly, the forces on

the bearings are very high.

Example 10.2 Chaotic motion of a Je cott rotor on plain Journal bearings.

Consider a Je cott rotor running on plain journal bearings, and apply the short

bearing model. The equation of motion, written using real coordinates, under the

e ect of unbalance and weight is

½
¨ = ( ˙ ˙) +

2
cos ( ) ,

¨ = ( ˙ ˙) +
2
sin ( ) ,

where and are the forces exerted on the bearings on the rotor.

By, introducing the nondimensional coordinates and time , , and and

parameter

= , = , = , = ,

where is the clearance of the bearings, and indicating as 0 and 00 the derivatives

with respect to , the following nondimensional equation is obtained:

00

=
1

2

³
0 0

´
+ cos ( ) ,

00

=
1

2

³
0 0

´
+ sin ( ) 2 .

The forces exerted on the journal can be expressed as functions of the load

factor [Ocwirk number, Equation (8.34)]

= ,
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where

=

³ ´
2
µ
2
¶
2

and , and are the length and radius of the bearing and the viscosity of the

oil.

Introducing a further nondimensional parameter

=

2

,

the equations can be written in a very simple form

00

=
1

³
0 0

´
+ cos ( ) ,

00

=
1

³
0 0

´
+ sin ( ) ,

which depend only on three parameters, namely, , , and .

To easily integrate in time the equation of motion, it is expedient to resort to

the state space approach

0

1 = 3 ,
0

2 = 4 ,
0

3 =
1

( 1 2 3 4) + cos ( ) ,
0

4 =
1

( 1 2 3 4) + sin ( ) .

where

1 = 2 = 3 =
0

4 =
0

.

Following the suggestion in [57, 58], functions and can be approximated

by the equation

½ ¾
=

q
( 2

0

)
2
+ ( + 2

0

)
2

1 2 2

½
3 sin ( ) 2 cos ( )

3 + cos ( ) 2 sin ( )

¾
,

where angle defining the arc ( + ) in which the oil film is cavitated is

= artg

Ã
+ 2

0

2
0

!

2
sign

Ã
+ 2

0

2
0

!

2
sign

³
+ 2

0
´

and functions , , and are

( ) =
2 + [ cos ( ) sin ( )]

1 2 2
,

( ) =
2p

1 2 2

(

2
+ artg

"
cos ( ) sin ( )p
1 2 2

#)
,

( ) =
cos ( ) + sin ( )

1 [ cos ( ) + sin ( )]
2
.

Following [57], a set of values of parameters , , and giving way to chaotic

motion is

= 10 = 0 3 = 70.
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The steady-state values of the attitude angle and of the eccentricity for a

fully cavitated short bearing working at = 10 are

= 0 706 = 38 6 .

The equations of motion were integrated numerically in time using an adap-

tive Runge-Kutta algorithm, starting from an initial state with initial conditions

[0 0001 1 0 0001 0 0001]. Some of the results, recorded after 900 periods

( = 5 655) of the forcing function have passed to let the system reach steady-

state chaotic conditions, are reported in Figure 10.17.

The time histories ( ) and ( ) of the journal center are reported in (a)

and (b). The projections of the state trajectories in
0

- and
0

-planes are

reported in (c) and (d), and the trajectory in the configuration space is re-

ported in (g). The integration was performed for 30 periods of the forcing function,

from = 5 655 to = 5 843.

The Poincaré sections in
0

-,
0

-, and -planes are reported in (e),

(f) and (h). To plot the Poincaré sections, the integration was performed for a

much longer time, 4,200 periods after the initial 900. The fractal nature of the

Poincaré sections is well visible and together with the computation of the Liapunov

exponents and the spectra reported in [57] substantiates the claim that the behavior

is chaotic.
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FIGURE 10.17. Chaotic response of a Jefcott rotor on plain journal bearings,
modeled as fully cavitated short bearings, with = 10 = 0 3 = 70. (a)
and (b) Time history of the journal center; (c) and (d) evolution of the state in

0

- and
0

-planes; (e) and (f) Poincaré sections in
0

- and
0

-planes;
(g) trajectory in -plane; (h) Poincaré section in -plane.



11
Nonstationary rotordynamics

The dynamic study of rotors is usually performed assuming that the spin
speed is maintained constant by a suitable driving device. As seen in Chap-
ter 2, the torque exerted by the driving system must overcome not only the
bearing drag, but also a peculiar form of drag caused by rotordynamic
reasons or, to use a di erent phrasing, must supply a power equal to that
dissipated by the rotating and nonrotating damping.
When studying the unbalance response, it was clearly stated that the

plot of the amplitude as a function of speed had to be interpreted as a rep-
resentation of the amplitude of the synchronous whirling occurring during
steady-state working at di erent values of the spin sped and not as the
amplitude during an acceleration or a spinning down of the rotor. In many
cases, this is, however, just a theoretical statement, because the angular
accelerations encountered in operation are so low that their e ects on the
overall dynamic behaviour are very weak.
In the present chapter, on the contrary, the assumption of constant speed

is removed and the e ects of nonstationary operation on the dynamic be-
havior of rotors are studied.

11.1 Nonstationary linear Je cott rotor

11.1.1 Equations of motion

As usual, the study is started using the simplest rotor model: the Je cott
rotor. The scheme of the system is again that sketched in Figure 2.2(a)
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FIGURE 11.1. Sketch of an accelerating Je cott rotor.

and (b), with the di erence that now angle is no more equal to but
must be considered as a variable, together with the coordinates C and C

of point C or coordinates P and P of point P (Figure 11.1). Note that a
driving torque is applied to the rotor by the shaft and that, although the
Je cott rotor is considered to be a point mass, a polar moment of inertia
is associated with it. This is needed to study the acceleration of the

rotor once the external torque is imposed. No assumption has been made
on the torsional behavior of the shaft: It may be sti , and then the torque
applied to the disc is equal to the torque applied to the end of the shaft,

or compliant, in which case additional degrees of freedom can be added to
study the torsional vibration that may occur.
By following the usual practice of choosing as generalized coordinates

those of point C, the position and velocity of point P can be expressed by
Equations (2.1) and (2.2), modified as

P-O =

½
P

P

¾
=

½
C + cos( )

C + sin( )

¾
, (11.1)

P =

½
˙P
˙P

¾
=

½
˙C ˙ sin( )

˙C + ˙ cos( )

¾
. (11.2)

The kinetic and potential energy are still expressed by Equations (2.3)
with slight modifications

T =
1

2

n
˙2C + ˙2C +

2 ˙2 + 2 ˙ [ ˙C sin( ) + ˙C cos( )]
o
+
1

2
˙2

(11.3)

U =
1

2

¡
2

C +
2

C

¢
. (11.4)
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Assuming that an external force acts on point P in -plane (e.g., the
weight of the rotor in case the axis of rotation is horizontal), to obtain
the generalized forces to be introduced into the equation of motion, the
virtual displacement of point P must be written

½
P

P

¾
=

½
C sin( )

C + cos( )

¾
. (11.5)

The virtual work of force with components and acting on point P
and of the moment is

L = C + C + [ sin( ) + cos( )] . (11.6)

The equations of motion can then be obtained from the Lagrange equa-
tion, written in the form

µ
(T U)

˙

¶
(T U)

= .

By performing the relevant derivatives and remembering that the spin
speed = ˙ has no more been assumed to be constant, the following
equations of motion are obtained:

¨C

h
˙2 cos( ) + ¨ sin( )

i
+ C = ,

C̈

h
˙2 sin( ) ¨ cos( )

i
+ C = ,¡

+ 2
¢
¨ + [ ¨ sin( ) + ¨cos( )] = sin( ) + cos( ) .

(11.7)
By introducing the complex coordinate C = C + C and the nonrotat-

ing force = + , the equations of motion become

(
C̈ + C

³
˙2 ¨

´
= ,¡

+ 2
¢
¨ + Im

¡
¨

¢
= + Im

¡ ¢
,

(11.8)

By introducing the terms related to rotating and nonrotating damping,
the first Equation (11.8) becomes

C̈ + ˙C + ( ˙ ) C

³
˙2 ¨

´
= , (11.9)

where = + is the total damping. The equations of motion can be
written in a rotating reference frame. By remembering the transformation
allowing us to express the inertial complex coordinate and its derivatives
in terms of the rotating coordinate [Equation (2.168)], the equation of
motion in the rotating frame can be obtained



390 11. Nonstationary rotordynamics

(
¨ + ( + 2 ˙) ˙ + ( ˙2 + ˙ + ¨) ( ˙

2 ¨) =¡
+ 2

¢
¨ + Im

³
¨ + 2 ˙ ˙ + ¨ ˙2

´
= + Im

¡ ¢

(11.10)
or, using real coordinates,

·
0

0

¸½
¨

¨

¾
+

·
2 ˙

2 ˙

¸½
˙

˙

¾
+

"
˙2 ˙ ¨

˙ + ¨ ˙2

#
·

·

½ ¾ (
˙2

¨

)
=

½
cos( ) + sin( )
sin( ) + cos( )

¾
(11.11)

( + 2)¨ +
³
¨ + 2˙ ˙ + ¨ ˙2

´
= sin( ) + cos( )

By solving the second Equation (11.11) in ¨ and substituting it into the
third one, the latter simplifies as

¨
³
˙ + ˙ +

´
= (11.12)

Finally, by solving Equation (11.12) in ¨ and substituting it into the first
two equations (11.11) and writing the equations of motion in the space
state, it follows that

˙1 = 1 + 2 2 3

¡
2

3

¢
4 + 3 5 +

2

3
+ 5 + 2 5+

+ 3 4 5 +
2

5
+ cos ( 6) + sin ( 6) ,

˙2 = 2 2 1 3

¡
2

3

¢
5 3 4 +

2

3 5 ( 4 + )+

2 ( 4 + ) 3 4 ( 4 + ) 5 ( 4 + ) sin ( 6)+

+ cos ( 6) ,
˙3 = + ( 2 + 3 4 + 5) ,

˙4 = 1 ,
˙5 = 2 ,
˙6 = 3 ,

(11.13)
where 1 = ˙ , 2 = ˙ , 3 = ˙ = , 4 = , 5 = , and 6 = .

11.1.2 Torsionally sti rotor with imposed acceleration

The equations of motion (11.7) and following are nonlinear in the variable
, and their general solution is impossible. Although there is no di culty
in performing a numerical integration in the time domain, some simplified
solution can yield interesting results.
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Assume that the rotor is torsionally sti , and the driving device imposes
a given law ( ) As a consequence also, the spin speed ( ) = ˙( ) and
the angular acceleration ( ) = ¨( ) are known, the simplest case being
a constant acceleration. The first two Equations (11.7) uncouple from the
third and yield the lateral behavior of the rotor. Once the first two have
been solved yielding the laws C( ) and C( ), the third one can be solved
in the torque and yields the driving (or braking) torque that must be
supplied to obtain the prescribed law ( )
By neglecting also nonrotating forces, the equations of motion can thus

be written in the form

¨C + C =
h
˙2 cos( ) + ¨ sin( )

i
,

C̈ + C =
h
˙2 sin( ) ¨ cos( )

i
,

(11.14)

=
¡

+ 2
¢
¨ + [ ¨ sin( ) + ¨cos( )] .

Even if in the literature some solutions for the constant acceleration
case can be found [27], they are so complicated that today it is easier to
perform the numerical integration of the equations of motion. If the angular
acceleration is constant

¨ = = constant,

it is possible to introduce the following nondimensional time and coordi-
nates

= = =
1

= ,

where =
p

is the critical speed of the Je cott rotor and 1 =
is the time needed to reach the critical speed from standstill. The other
nondimensional parameters are

=
2

=
2

= =
2
.

The nondimensional equation in real, rotating coordinates is thus

(
00

00

)
+
2
· ¸( 0

0

)
+

1
2

·
1 2 2

2 + 1 2

¸
×

×

½ ¾
=

1
2

½
2
¾

(11.15)

2 2
= 2

0

2
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FIGURE 11.2. Motion of a Je cott rotor with = 0 1 and = 0 01 crossing
a critical speed with constant acceleration. Nondimensional plot for some values
of the angular acceleration: (a) Time history of the amplitude; (b) trajectory in
the rotating plane .

The amplitude of the motion of a Je cott rotor with = 0 1 and
= 0 01 accelerating from standstill to a speed equal to three times the

critical speed with constant acceleration is plotted in nondimensional form
in Figure 11.2(a). Note that the nondimensional time and the nondimen-
sional velocity coincide, because time has been made nondimensional
with reference to time 1 needed to reach the critical speed. With very
low values of the acceleration, the motion follows a pattern very similar
to that seen for the steady-state case, as was easily predicted. With in-
creasing values of the acceleration, the peak amplitude is reduced and the
self-centered conditions are reached after some oscillations are damped out.
The oscillations become stronger with increasing acceleration.
The trajectory of point C in the rotating plane is shown in Figure 11.2(b).

From this plot, it is clear that the oscillations are actually the result of a
spiral motion of the system taking place about the self-centered position.
Note that the threshold of instability is never exceeded and the motion is
stable. When the speed becomes higher than the threshold of instability, the
spiral stops decaying and starts growing as the unstable behavior develops.
The driving torque needed to perform the acceleration is shown in Figure

11.3.
Actually, the nondimensional torque plotted is only the amount of torque

that exceeds the value needed to accelerate a perfectly balanced rotor.
Also, strong oscillations are visible here in the supercritical field. In Fig-
ure 11.3, the curve related to a vanishingly small acceleration computed
through Equation (2.176) has also been plotted.
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FIGURE 11.3. Nondimensional driving torque needed to perform the acceleration
through the critical speed. Same system of Figure 11.2.

11.1.3 Torsionally sti rotor with imposed torque

A slightly more complex, although more realistic, case is a torsionally sti
rotor that accelerates under the e ect of a given torque, or better, of a given
law ( ). The relevant Equations (11.13), possibly without the terms
related to the nonrotating forces, allow us to compute the laws ( ) and
˙ ( ) and the lateral motions of the rotor caused by the imposed driving
torque. Although the only way to solve the resulting nonlinear problem
is by numerical integration in the time domain, some general insight on
the behavior of the system can be obtained by writing the equations in
nondimensional form and studying a number of cases.
The following nondimensional state variables and time can be introduced:

1 =
˙

p 2 =
˙p 3 = =

˙
p (11.16)

4 = = 5 = = 6 = =

r
.

The behavior of the system is then governed by just four nondimensional
parameters:

=
2

=
2

=
2

=
2
.
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The nondimensional state equation is then

0

1
= 2 1 + 2 2 3

¡
1 2

3

¢
4 + 2 3 5 +

2

3
+ 5 +

2
2 5+

+
2

3 4 5 +
1 2

5
,

0

2
= 2 2 2 1 3

¡
1 2

3

¢
5 2 3 4 +

2

3 5 ( 4 + 1)+
2

2 ( 4 + 1)
2

3 4 ( 4 + 1)
2

5 ( 4 + 1) ,

0

3
= + 1 (2 2 + 2 3 4 + 5) ,

0

4
= 1 ,

0

5
= 2 ,

0

6
= 3 ,

(11.17)
where prime indicates di erentiation with respect to Ratio is the
nondimensional acceleration that would result by neglecting rotordynamics
e ects.
The results for an acceleration with constant driving torque for the same

system studied in Figures 11.2 and 11.3 ( = 0 1 and = 0 01) are
reported in Figure 11.4. A value = 1000 has been assumed for the
nondimensional moment of inertia, and three values of , namely, 100,
5.5, and 4.5, have been considered.
The curves for = 100 practically coincide with those for = 0 1

in the previous analysis. The driving torque is high enough to produce a
constant acceleration, and the assumption of constant torque practically
coincides with that of constant acceleration.
The minimum value of the torque to allow the system to accelerate be-

yond the critical speed can be obtained from Equation (2.177)

=
2

2
;

i.e., in nondimensional terms,

=
1

2
. (11.18)

In the present case, because = 0 1, the nondimensional driving torque
must be equal to at least = 5, to avoid stalling. Actually, the simulation
shows that for = 5 5, the rotor barely succeeds in accelerating beyond
the critical speed, whereas for = 4 5, the rotor stalls.

11.1.4 Torsionally compliant rotor: small torsional vibrations

with imposed acceleration

A further case of some interest is that of a torsionally compliant Je cott
rotor, driven with a stated law 0( ) ( ( ) = ˙

0( )). Assume, for instance,
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FIGURE 11.4. Constant torque acceleration of the same Je cott rotor studied in
Figures 11.2 and 11.3. = 0 1, = 0 01, p = 1000 The various curves refer to
di erent values of , namely, 100, 5.5, and 4.5. (a) Nondimensional amplitude
versus nondimenional speed; (b) trajectory in the rotating plane; (c): speed
as a function of time; (d) rotation angle as a function of time.

that the law ( ) is imposed at the upper end of the system of Figure 11.1,
and that the torsional sti ness and the damping coe cient of the part of
the shaft between point C and the section in which such law is imposed
are, respectively, and . The law ( ) and its derivatives are linked with
the angle of torsion of the shaft by the relationships

= 0 + ˙ = + ˙ ¨ = ˙ + ¨ .

Using rotating coordinates, the equations of motion are Equations (2.169)
in which the torsion of the shaft is used instead of as a generalized
coordinate and torque has been substituted by ˙ . Note also
that the rotating frame is obtained from the fixed one by multiplying the
coordinate by 0 , whereas in the terms that come from cos ( ) and
sin ( ), a term ( 0+ ) = 0 is present.
Equations (2.169) become
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Equations (11.19) can be linearized under the assumption that angle

and all its derivatives are small. By neglecting the nonlinear terms and
separating the real and the imaginary parts of the equations, it follows
that

0 0
0
0

¨

¨
¨

+
2 2

2 0
2 0

˙

˙
˙

+

2 ˙ ˙

+ ˙ 2 2

˙ 2 + [ cos( 0) sin( 0)]

=

(11.20)

=

2 + cos( 0) + sin( 0)
˙ sin( 0) + cos( 0)
˙ [ sin( 0) cos( 0)]

From Equations (11.20) it is clear that the first two equations (the lateral
behavior of the shaft) are very weakly coupled with the third one, express-
ing the torsional behavior, because the coupling terms are of the order of .
If the unbalance is considered as small as the displacements and rotations,
as it is usually the case, the coupling terms are of the same order as the
other terms that are dropped in the linearization process. Furthermore, by
stating that is constant ( ˙ = 0), Equations (11.20) can be used to study
the torsional-flexural coupling at constant speed.
Equations (11.20) can be written in nondimensional form, using the

transformations:

= = = ,

where =
p

is the critical speed of the Je cott rotor. The other
nondimensional parameters are

=
2

=
2

= =
˙

2
,

=
2
p =

r
=

2
= .
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Note that is the ratio between the torsional and the flexural natural
frequency. The nondimensional equation is thus

1 0 0
0 1 1
0 1 2

00

00

00

+ 2 0
0

0

0

0

+

+
1 2 2

2 + 1 2 2

2 + cos( 0) sin( 0)
=

(11.21)

=

2 + cos( 0) + sin( 0)
sin( 0) + cos( 0)

2 sin( 0) + cos( 0)
.

11.2 Nonstationary general Je cott rotor

As seen in the previous sections, if the assumption of constant angular
velocity is dropped, the rotordynamics equations do not yield closed-form
solutions. As a consequence, there is little di culty in introducing other
e ects, like nonlinearity or lack of isotropy of both the stator and the
rotor, which have the same result of preventing from obtaining closed-form
solutions.
The equations of motion can be easily modified to accommodate the

terms needed to describe nonlinearity and lack of isotropy. As an example,
consider an isotropic Je cott rotor with a Du ng-type restoring force and
linear damping, performing an acceleration with constant rate ˙ = . The
equation of motion can be written in nondimensional form, using the same
nondimensional variables and constants as seen for the case of Equation
(11.15).
The nondimensional equation governing the lateral behavior of the sys-

tem is then

(
00

00

)
+
2
· ¸( 0

0

)
+

1
2

·
1 2 2

2 + 1 2

¸
×

×

½ ¾
+

¡
2 + 2

¢½ ¾
=

1
2

½
2
¾

(11.22)

where the nondimensional nonlinearity parameter is defined as

= 2 .
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The equation allowing us to compute the driving torque cannot be ob-
tained from the third Equation (11.15) or, which is the same, from Equation
(11.12), but the last Equation (11.11) must be used. The latter becomes,
in nondimensional form,

2 2
=

¡
+ 00 + 2 0

¢
2

where = + 2

A typical result of the numerical integration of Equation (11.22) is shown
in Figure 11.5, where the results for both an acceleration and a deceleration
maneuver are reported. The values of the nondimensional parameters used
for the simulation are = 0 01, = 0 11, = 0 1, and = 0 03. In the
same figure, the solutions obtained from the usual steady-state approach
also are reported (dashed lines). Note that the values of the parame-
ters are such that the system undergoes a downward jump and achieves a
self-centered condition. As in the linear case, the presence of the angular
acceleration reduces the peak amplitude; however, although in the linear
system, the displacement peak occurs at a speed that is higher than that
characterizing the maximum steady-state amplitude, the jump here occurs
at a lower speed. The curve related to spin down is di erent from that
related to the acceleration phase. This occurs also for linear rotors, when
angular acceleration is accounted for, but here this e ect is far greater be-
cause both acceleration and nonlinearity contribute to it. An oscillation
with frequency that increases with increasing speed is present. By com-
puting its period from the numerical results, it is clear that it occurs at
a frequency that is almost exactly equal to twice the rotation frequency.
This oscillation is present also in the linear case and can create numerical
di culties as it compels us to resort to very short time steps in order to
simulate correctly the acceleration phase. This is particularly true in the
case of very slow accelerations, when the number of rotations and hence
of periods performed during the whole acceleration is very large. It is true
that the amplitude of this oscillation proved to be decreasing with decreas-
ing angular acceleration (when the acceleration tends to zero, the same
occurs to the amplitude of the oscillation and the response tends to the
classic steady-state unbalance response), but the presence of this sort of
natural frequency of the system can drive the integration algorithm to in-
stability. Tests performed in di erent cases with various algorithms (central
di erences, Newmark, Houbolt, and Wilson theta algorithms) suggest that
even unconditionally stable ones are prone to su er from this problem.
This high-frequency oscillation reduces then the advantages of writing the
equation of motion in the rotating frame instead of using an inertial one.
The driving torque has been reported in Figure 11.5(b) as a function of

the spin speed.
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FIGURE 11.5. Rotor response during acceleration and deceleration, compared
with the steady-state unbalance response. (a) Amplitude; (b) driving torque.
= 0 01, = 0 11, = 0 1, and = 0 03.

Another example is a linear Je cott rotor with nonrotating elastic aniso-
tropy undergoing a constant-rate acceleration. Assume that - and -axes
of the nonrotating reference frame are principal axes of elasticity, and conse-
quently, the terms and of the sti ness matrix vanish. The equation
of motion for the flexural behavior can be written in the rotating frame:
The fact that some coe cients are time-dependent is not a severe drawback,
because the solution must be anyway obtained through numerical integra-
tion in time. Written in the same nondimensional form seen for Equation
(11.15), it reduces to
(
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+
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·
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¸
×

×

½ ¾
+

1
2

½
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¾
=

1
2

½
2
¾

(11.23)
where = is the di erence between the sti ness in the - and
-planes and all the nondimensional parameters have been computed with

reference to the average sti ness . The behavior of the system depends
again only on four nondimensional parameters, , , , and . The
equation yielding the driving torque coincides with that for the previous
case. If tends to zero, Equation (11.23) has a steady-state solution
coinciding with the usual expression yielding the unbalance response of a
linear nonisotropic Je cott rotor, consisting in an elliptical whirling, with
the axes of the ellipses not coinciding with - and- axes, owing to the
presence of damping.
A typical result of the numerical integration of Equation (11.23) is shown

in Figure 11.6, where only an acceleration maneuver is reported. The values
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FIGURE 11.6. Acceleration of a Je cott rotor running on linear nonsymmet-
rical supports through its two critical speeds. Amplitude of the motion during
the acceleration, compared with the steady-state amplitude. As the steady-state
whirling is elliptical, the length of the smaller and larger axes of the orbits are
shown. = 0 01, = 0 11, = 0 1, and = 0 2.

of the nondimensional parameters used for the simulation are = 0 01,
= 0 11, = 0 1, and = 0 2. Since the orbits of steady-state solu-

tion are elliptical, the larger and smaller axes have been reported (dashed
lines). The pattern of the solution related to the accelerating rotor shows
very strong oscillations, which in this case are mainly from asymmetry. If
the acceleration tends to zero, the pattern would be at any rate oscillatory
(in the rotating frame), the oscillations spanning between the smaller and
larger axes of the steady-state elliptical solution.
In the high supercritical range, the di erence between the steady-state

and the accelerating solutions is small, whereas when crossing the critical
speed, a larger di erence can be found. The frequency of the oscillation
proved to be close to twice the rotation frequency, the same as that of the
steady-state solution, as dictated by the elliptical whirling.
The trajectories in both the nonrotating plane and the rotating plane
are shown in Figure 11.7. It is clear that the study of the trajectory in

the rotating plane is simpler also in this case, although point P describes
complex orbits in both.
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FIGURE 11.7. Trajectories of the same accelerating rotor of Figure 11.6, in the
(a) rotating and in the (b) nonrotating planes

11.3 Nonstationary rotor with four degrees of
freedom

To take into account the e ects of gyroscopic moments on nonstationary
rotordynamics, a simple four degrees-of-freedom model, similar to the one
studied in Chapter 3, can be considered. However, for greater generality,
all six degrees of freedom of the rigid body attached to the shaft will be
considered. The expression of the velocity of the center of gravity of the
rotor is still Equation (3.9), where, however, ˙ must be introduced instead
of the constant angular velocity .
The translational and rotational kinetic energy are still expressed by

Equation (3.10) and Equation (3.13) with some obvious small modifica-
tions. Their sum is

T =
1

2

n
˙ 2 + ˙ 2 + ˙ 2 + 2 ˙2 + 2 ˙

h
˙ sin( + ) +

+ ˙ cos( + )
io
+
1

2
( ˙
2

0 + ˙ 2 + 2 ˙2) + (11.24)

+
1

2
(˙
2

+ 2˙ ˙ 0 ) + ˙ ( )
h
˙

0 cos( ) + ˙ sin( )
i
.

The forces and moments acting on the rigid body in point C (Figure 3.2)
that will be considered are those caused by the elastic reaction of the shaft.
As all six degrees of freedom of the shaft are considered, such forces and
moments are , , , , , and . The virtual work is
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The equations of motion can be written using Lagrange equations
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By computing from the last equation and introducing it into the
fourth one, and neglecting nonlinear terms, the latter simplifies as

¨
0 + ˙ ˙ ( )

h
¨ cos( ) ˙2 sin( )

i
= . (11.29)

The third equation is completely uncoupled from the other ones, showing
that the axial behavior of the system can be studied separately.
The first two equations are strongly coupled with the fourth and fifth

ones, exactly in the same way already seen for the steady-state behavior of
the system. By introducing the complex coordinates
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½
= +
= 0

and by linking the forces exerted by the shaft on the rigid body with the
displacements through the sti ness matrix, they yield
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or by introducing the usual matrix notation,
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they can be written in the form
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f (11.31)

Finally, the last equation can be written in the form
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As usual, the presence of damping can be accounted for by introducing
the nonrotating and rotating damping matrices into Equation (11.31)

Mq̈+ (C +C ˙G)q̇+ (K ˙C )q =
³
˙2 ¨

´
f (11.33)

Often an alternative form of the second Equation (11.30) related to the
complex degree of freedom can be found in the literature. It can be
reduced to

¨
³
˙ ˙ + ¨

´
+ 12 + 22 = 2( )

³
˙2 ¨

´
(11.34)

and it is equivalent to the second Equation (11.30) here considered, pro-
vided that bending moments are expressed in the frame instead of

. In the case of small displacements, it is customary to refer all forces
to the undeflected configuration of the structural member, and the two
approaches should lead to equivalent results. Actually, this occurs if the
angular acceleration ¨ is the second derivative of one of the generalized
coordinates and can be considered a small quantity, as in the case of tor-
sional vibrations of a system rotating at constant speed. In this case, term
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¨ is one of the terms that are dropped when linearizing the equations.
A di erent situation occurs in the case in which the angular acceleration is
imposed and ¨ can be theoretically arbitrarily large. Here Equation (11.30)
will be used without the modification (11.34) for two reasons: It seems
more correct to relate the bending moments to the -frame, i.e., to the
deflected configuration of the system, when the two approaches lead to dif-
ferent results, and the term ¨ is at any rate far smaller than the term
˙ ˙ , except perhaps if the rotor starts from standstill, and even then only

in the first instants of motion. In the case of synchronous whirling, their
ratio is equal to ˙ 2. It must be stressed that the second term in the

expression
³
˙2 ¨

´
cannot be neglected even if it is far smaller than the

first one. Actually, in expression
³
˙ ˙ + ¨

´
there is the arithmetic sum of

two terms, one of which is negligible with respect to the other one, whereas

in expression
³
˙2 ¨

´
two vectors perpendicular to each other are added,

as the imaginary unit suggests. Even if the absolute value of the out-of-
plane term ¨ is very small, its presence can be very important because no
other force acts in its direction. Self-centering cannot be explained at all if
this term is neglected.

11.4 Generic, torsionally sti ,
multi-degrees-of-freedom system

If the elastic behavior of the system is such that axial, torsional, and flex-
ural behavior are uncoupled, the same considerations seen in the previous
section for the simple model with six degrees of freedom also hold for more
complex models. In particular, within the frame of the linearized theory,
the axial degrees of freedom are uncoupled from flexural ones. If the rotor
is torsionally sti , i.e., the torsional rotations of all cross sections are equal,
and the acceleration is performed with an imposed law ( ) [and then with
stated laws ( ) and ˙ ( )], the flexural behavioral can also be studied in-
dependently using equations of the type of Equation (11.33)]. The only
equation for the rotational degree of freedom is of the type of Equation
(11.32). By introducing the usual complex coordinates, it follows that

Mq̈+ (C +C G)q̇+ (K C )q = ( 2 ˙ )f

= ˙ +=
³
f q̈

´ (11.35)

where is the total moment of inertia of the rotor about the -axis,
also taking into account the presence of static and couple unbalance. By
introducing ¨ = 0 and the solution for steady-state whirling into the last
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Equation (11.35), the driving torque needed to maintain a constant angular
velocity is readily obtained. To perform the numerical integration in time
of Equation (11.35) it is easier to resort to rotating coordinates, as seen for
the case of the Je cott rotor. The relevant equations of motion are then
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¸
ṙ+

·
K 2(M G)+
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¸
r = ( 2 ˙ )f

= ˙ +=

·
f

µ
r̈+ ˙ r+ 2 ṙ 2r

¶¸
(11.36)

Note that the rotating reference frame used for Equation (11.36) rotates
at a variable spin speed ( ).
However, as the solution of Equation (11.36) must be at any rate per-

formed by integrating it numerically in the time domain, there is no di -
culty in introducing nonlinear terms [a generic vector function f( ˙ )]
and mean and deviatoric matrices to account for both rotating and nonro-
tating anisotropy. The resulting equation is

+M q̈+

µ
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¶
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¶
2 q+ f( ˙ ) =

¡
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¢
f + f

(11.37)

Equation (11.37) has been obtained with the only assumption of uncou-
pling among flexural, axial, and torsional behavior.
The equation that allows us to describe the rotational degree of freedom

of the system, which is just one caused by the assumption of a torsionally
rigid rotor, is again the second Equation (11.35), which is not a ected by
either nonlinearities or deviations from axial symmetry.
In general, it is reasonable to expect that the time history of the ac-

celerating system has a simpler expression in the rotating frame, where
a slow variation of generalized coordinates in time should occur, than in
the fixed frame, where the relevant quantities vary with a frequency equal
to the rotational speed. However, if the system is nonisotropic, the unbal-
ance response is at least polyharmonic and then fast variation can occur
in both the rotating and nonrotating frames. By introducing the rotating
coordinates into Equation (11.37), it yields
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The equation yielding the driving torque is still the second Equation

(11.36).
If the angular acceleration is not vanishingly small, Equation (11.38)

must be integrated numerically in time, and as a consequence, there is no
conceptual di culty taking into account both nonlinearities and asymme-
try. If software allowing us to deal with complex quantities is available,
there is no need to split the equation into its real and imaginary parts be-
fore integrating: Once laws ˙ ( ), ( ), and ( ) are stated, the numerical
integration is straightforward.

Remark 11.1 Equation (11.38) is a powerful tool to study by numerical

integration in time many di cult rotordynamics problems, like constant

speed whirling of unsymmetrical rotors or chaotic behavior caused by the

simultaneous presence of nonlinearities and asymmetry.

11.5 Blade loss

Another important case of nonstationary working condition occurs when
the unbalance of a rotor changes very quickly, i.e. when the characteristic
times of the change of unbalance are comparable with the natural frequen-
cies of the system. An instance in which this occurs is when a small part of
the rotor detaches and flies away, leaving the rotor in a strongly unbalanced
condition. The release of a blade from a turbine disc (blade loss) is perhaps
the most likely example of an occurrence of this type.
An accident in which a small fragment, or a whole blade, detaches from

a fast rotating machine has usually severe consequences, which can even
include the total destruction of the rotor of the machine, with the projection
of fast-moving fragments able to do much damage. If the fragment is small,
however, it might be possible that the rotor, the bearings, and the other
parts of the system can withstand the added loads for a time su cient
to stop the machine. In this case, the danger may come only from the
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fragment. A containment structure can be provided, which must fulfill the
two tasks of containing the fragment, i.e., of preventing it to fly around,
and of nesting it, i.e., stopping it in a position clear from the other parts
of the rotor, in such a way that no secondary damage is caused.
The loads on the rotor caused by the loss of a blade or any other part

can be easily computed by considering the unbalance as variable in time.
In the simple case of a Je cott rotor spinning at constant speed , the
relevant equation of motion is Equation (2.75), slightly modified to take
into account that now is not constant

¨ + ( + ) ˙ + ( ) = ( ) 2 + . (11.39)

Remark 11.2 This approach is only a first approximation to the correct

solution of the problem, because the mass of the rotor changes in time,

owing to the loss of the fragment, which also carries away a part of the

energy of the system. To attempt to solve the problem in a more correct

way by inserting = ( ) into the expression of the Lagrangian function
would not solve the problem. Nevertheless, Equation (11.39) can be used

when the mass of the fragment is negligible when compared with the mass

of the rotor.

For an order of magnitude evaluation of the e ect of the blade loss,
consider a perfectly balanced undamped Je cott rotor, which at time = 0
instantly acquires the unbalance 0 aligned along -axis. By resorting to
real coordinates, the relevant equation of motion is

½
¨C( ) + C( ) = 0 ( )

2 cos( ) ,

C̈( ) + C( ) = 0 ( )
2 sin( ) ,

(11.40)

where ( ) is the unit step function
½

= 0 for 0 ,
= 1 for 0 .

The solution of Equation (11.40) can be easily obtained by considering
that after the time = 0, the unbalance is constant, and hence the solution
is the general solution for constant unbalance with the initial conditions

C = C = 0 and ˙C = ˙C = 0 for = 0.
The general solution of the homogeneous equation is

½
C( ) = 1 sin( ) + 2 cos( ) ,

C( ) = 1 sin( ) + 2 cos( ) ,
(11.41)

where =
p

. The particular solution of the complete equation is
Equation (2.28) ½

C( ) = 0 cos( ) ,

C( ) = 0 sin( ) ,
(11.42)
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where 0 is the steady-state amplitude of the unbalance response

0 = 0

2

2
= 0

2

2 2
. (11.43)

The initial conditions on the position yield

2 + 0 = 0 2 = 0 (11.44)

whereas those on the velocity are

1 = 0 , 1 + 0 = 0 (11.45)

The solution for the blade loss of an undamped Je cott rotor is thus

(
C( ) = 0 [cos( ) cos( )] ,

C( ) = 0

h
sin( ) sin( )

i
.

(11.46)

The response to the blade loss depends on the speed of the rotor or, bet-
ter, on ratio , i.e. . An upper limit for the maximum amplitude
in direction is then twice the steady-state amplitude, whereas an upper
limit of that in -direction is the steady-state amplitude multiplied by 1+

. The actual maximum values may be lower than that, depending on
whether is a rational number. The orbits obtained for four di erent
values of are reported in Figure 11.8. The response is made nondi-
mensional by dividing it by the steady-state amplitude. In the subcritical
field, the overshoot is about 2 and the maximum amplitude occurs in the
-direction (i.e., in the direction in which the unbalance points at time
= 0 or the direction opposite to that in which the blade is cast). In the
supercritical field, the maximum amplitude occurs in -direction and the
overshoot is about 1+ . Close to the critical speed, the amplitude
grows almost linearly in time and the orbit is close to a logarithmic spiral,
at least at the beginning. Owing to the very large value of the steady-state
amplitude, much time is needed to reach it.
If damping is taken into account, it is advisable to use directly Equation

(11.39) and to work using complex coordinates.
Operating in the usual way, the solution can be obtained by adding the

general solution of the homogeneous equation to the particular integral of
the complete equation

C( ) = 1
1 + 2

2 + 0 , (11.47)

where 1 and 2 are two complex constants to be computed from the ini-
tial conditions, 1 and 2 are the two solutions (2.78) of the characteristic
Equation (2.77), and 0 is the complex steady-state amplitude of the un-
balance response given by Equation (2.89). The initial conditions yield the
following set of two complex equations:
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FIGURE 11.8. Orbits following the loss of a blade in an undamped Je cott rotor
for four di erent values of . A subcritical case ( = 0 42), a supercritical
case ( = 2 52), and two cases close to the critical speed ( = 0 999 and

= 1 001). The steady-state orbit is reported in two cases with a dashed
line.

½
1 + 2 = 0 ,

1 1 + 2 2 = 0 ,
(11.48)

yielding the constants 1 and 2.
The same responses shown in Figure 11.8 but for a damped Je cott rotor

with = 0 04 and = 0 01 are plotted in Figure 11.9. The system reaches
the steady-state orbit, but particularly in the case of supercritical working,
the overshot may be large.
In case of more complex models, or when also the initial unbalance is

accounted for, the equations of motion can be integrated numerically in
time introducing a time-varying unbalance.

Example 11.1 Blade loss on a turbojet.

Consider the turbojet engine described in Example 8.2. Assume that a blade of

the turbine is lost while spinning at 15,000 rpm, and compute the resulting orbit.

As the blade has a mass of 0.025 kg and its center of mass is located at a radius

of 147 mm, the static unbalance of the turbine wheel after a blade has been lost is

= 3675 gmm. It is very large unbalance, corresponding to a balancing grade



410 11. Nonstationary rotordynamics

FIGURE 11.9. Same plot as in Figure 11.8 but for a damped Je cott rotor with
= 0 04 and = 0 01.

G1270 at 20,000 rpm. The design unbalance (G2.5) can then be neglected in the

study of the blade loss dynamics.

By introducing the relevant value of the unbalance in node 21 (center of mass of

the turbine wheel) and integrating numerically in time the equations of motion, the

results shown in Figure 11.10 are obtained. The orbit in the fixed frame obtained

in the first instants after the loss of the blade (full line) and the orbit after 0.5

s (dashed line) are reported in Figure 11.10(a). The same orbits, but plotted in

the rotor-fxed frame, are shown in Figure 11.10(b). Note that after 0.5 s, the

steady-state conditions have practically been reached and in the rotating frame

the orbit reduces to a point. The time history of the amplitude is reported in

Figure 11.10(c).

The whirling amplitude is very large, and it is likely that a failure of the bearings

or of the rotor occurs. Even if the rotor can withstand the large unbalance loads,

the use of a linearized model for such large amplitudes is questionable.
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FIGURE 11.10. (a) Orbit of the center of mass of the turbine wheel following
the loss of a blade, plotted in the fixed frame. First instants after the loss of the
blade (full line) and after 0.5 s (dashed line). (b) Same as (a), but plotted in the
rotor-fxed frame. (c) The time history of the amplitide.



12
Dynamic behavior of free rotors

Rotors are defined by the ISO as bodies rotating about a fixed axis, con-
strained to do so by bearings, acting as cylindrical hinges. Bearings may
be more or less compliant, but even in this case, their deformations are
considered to be small if compared with the dimensions of the system. The
dynamic study of rotors is thus usually performed under the assumptions
of small displacements and rotations. These assumptions allow a number
of linearizations of both the inertial and the elastic terms in the equa-
tions of motion. The assumptions of small displacements and rotations are
retained even when studying the behavior of nonlinear rotors, the nonlin-
earities being usually ascribed to bearings (of the fluid, rolling elements or
even magnetic type), dampers, or other causes, as the presence of cracks.
Moreover, the angular velocity is assumed to be constant, or at least

a known function of time, because the presence of a driving system that
controls the spin speed is postulated.
However, there are rotating systems that are not constrained by bearings,

like spinning spacecraft or celestial bodies. They can after all be consid-
ered as rotors and are often defined as free rotors, as opposed to the more
conventional fixed rotors, supported in bearings.
Although the absence of the bearings does not change the nature of the

problem, the displacements can be far greater in the case of free rotors and
this makes the small displacements and, above all, small rotations assump-
tions more problematic. Moreover, although in the case of fixed rotors the
spin speed is assumed to be constant (or, more in general, a known function
of time), free rotors are usually studied under the assumption of constant
angular momentum. Spinning spacecraft attitude dynamics and rotordy-
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namics are usually seen as two separate branches of dynamics, each one
with its own notation, distinctive approach, and limitations, whereas they
can be dealt with in a unified approach.
Spacecraft attitude dynamics usually deals with single rigid bodies or

with multibody systems, in which the inertial properties of only one of
them is considered as relevant for the study of the dynamic behavior of the
spacecraft [59, 60]. For the attitude control and guidance, the spacecraft
is assumed to be a single rigid body, with its flexible parts not a ecting
significantly the overall dynamic behavior of the vehicle. However, space-
craft made of several bodies with relevant mass and moments of inertia
connected through very compliant structural element require a reconsider-
ing of this assumption. The low sti ness (or better, the low value of the
natural frequency) of the structure causes the attitude dynamics to be cou-
pled with the vibration dynamics; such coupling can make the vibration
isolation of the payload more di cult and, above all, can cause stability
problems.
This issue is usually taken into account using multibody dynamics codes,

which are based on the numerical integration in time of a complete nonlin-
ear model of the system. They allow us to simulate the spacecraft attitude
and vibration dynamics in detail, but this interaction is still di cult to
investigate in a general way.
The experience in the field of conventional fixed rotors can help in clari-

fying some of these aspects, provided that the consequences of the assump-
tions of small displacements and, above all, of constant spin speed, which
are usually done in rotordynamics, are fully understood. In particular, the
constant speed assumption may cause a violation of the conservation of the
angular momentum: This issue must be clarified before the usual models
seen for fixed rotors can be used for free rotors as well.

12.1 Single rigid-body rotor

12.1.1 General considerations

Consider a free rotor made of a single rotating rigid body free in space.
Let be the angular velocity expressed in the rotor-fixed frame G ,
centered in the center of mass, with axes coinciding with the principal
axes of inertia of the rigid body. As no assumption is made on the shape of
the body, the moments of inertia about the principal axes of inertia may be
all di erent from each other. Without loss of generality, let .
The inertia tensor is then

J =
0 0

0 0
0 0

. (12.1)
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The angular momentum and the kinetic energy of the rigid body are then

H = J = , (12.2)

T =
1

2
J =

1

2

¡
2 + 2 + 2

¢
. (12.3)

As no forces and moments act on the body, both the angular momentum
and the kinetic energy remain constant.
By writing the kinetic energy in terms of the components of the angular

momentum instead of the components of the angular velocity, the condition
that it remains constant yields

2T =

Ã
2

+
2

+
2
!
= constant. (12.4)

As the direction of the angular velocity (i.e., the direction of the axis of
rotation) and then of the angular momentum is not known in the rotor-
fixed frame (in the inertial frame, the direction of the angular momentum
is constant, but the rotor-fixed frame moves with respect to the inertial
frame during whirling), the condition of constant angular momentum may
be written, in the rotor-fixed frame, only by considering its modulus

|H|
2
= 2 + 2 + 2 = constant. (12.5)

The last condition states that vector H is bound to remain on a sphere
with radius |H| in the rotor-fixed frame. The condition on the kinetic energy
T states that vector H is bound to remain on an ellipsoid in the rotor-fixed
frame. Its equation is

2

2
+

2

2
+

2

2
= 1 . (12.6)

The semi-axes of such an ellipsoid are

=
p
2T ,

=
p
2T ,

=
p
2T .

(12.7)

As vector H must lie on both the sphere and the ellipsoid, it must lie
on the intersection between them. The intersection between the sphere and
the ellipsoid is then the locus of the points defining the possible trajectories
of H in the rotor-fixed frame. Both the sphere and the ellipsoid, and then
the locus of H, depend on the initial condition, which define the values of
both |H| and T .
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Rotation about axis (min. ) (max. ) (interm. )

Ellipsoid external to internal to intersects
sphere sphere sphere

Intersection 2 points 2 points line
Behavior stable stable indi erent

TABLE 12.1. Behavior of a rigid free rotor without damping.

Consider a rigid body spinning about -axis, i.e., the axis of minimum
moment of inertia (like in the case of long rotors). Initially, both and

vanish; the modulus of the angular momentum is |H| =
0
, and that

of the kinetic energy is 2T = 2

0

.
The semi-major axes of the ellipsoid are

=
0
= |H| ,

=
0

q
= |H|

q
,

=
0

q
= |H|

q
.

(12.8)

As the ellipsoid is all external to the sphere, being tangent
to it on its shortest axis. The intersection is a pair of points, and then the
position of H is fixed also in the rotating frame. The only possible motion
is a steady state rotation about -axis, which means that rotation about
the axis with minimum moment of inertia is stable.
In a similar way, if the rigid body spins about -axis, i.e., the axis of

maximum moment of inertia (like in the case of disc rotors), the ellipsoid
can be demonstrated to lie all inside the sphere being tangent to it on its
longest axis. Again the intersection reduces to a pair of points, and the only
possible motion is a steady state rotation about -axis, which means that
also rotation about the axis with maximum moment of inertia is stable.
On the contrary, if the rigid body spins about axis , i.e., the axis of

intermediate moment of inertia, the ellipsoid lies partly inside and partly
outside the sphere and the intersection is a line. The situation for the case
with = 0 5 and = 2 is reported in Figure 12.1. The angular
momentum vector can move freely on the sphere-ellipsoid intersection, or
better, all positions, on such an intersection are indi erent equilibrium
points. Rotation about the axis with intermediate moment of inertia is
then unstable in the sense that any small disturbances will cause the rotor
to move in a complex way, with large precessions.
These possibilities are summarized in Table 12.1.
The intersections for di erent initial conditions are plotted in Figure

12.2(a) for the case of a rotor with = 0 8 and = 1 2 . The plot
of the angular velocity is reported in Figure 12.2(b). The intersection of
the sphere (ellipsoid in the case of the angular velocity) with the -axis
represents the stable situation of rotation about the axis with minimum
moment of inertia. If the initial conditions are close to a rotation about -
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FIGURE 12.1. Intersection between sphere and ellipsoid when the body spins
initially about the axis with intermediate moment of inertia. Case with = 0 5

and = 2 .

axis, the locus is a small circle, showing that the rotor whirls with a small
amplitude. A similar situation occurs at the intersection with the -axis,
representing a stable rotation about the axis with maximum moment of
inertia.
The intersection with -axis represent the unstable rotation about the

axis with intermediate moment of inertia. In this case, the trajectory of H
in the rotor-fixed frame is large and the rotor may have a complex tumbling
motion.
Many rotors have a gyroscopic geometry; i.e., two of the principal mo-

ments of inertia are equal. As already seen in Chapter 3, two cases are
possible: The moment of inertia di erent from the others may be greater
than the other two ( = ; disc rotor) or smaller ( = ;
long rotor). The plots of the angular momentum vector for these two cases
are reported in Figures 12.3(a) and (b), respectively. Rotation about the
axis with a moment of inertia di erent from the other two ( in the first
case, in the second one) is stable, and rotation about the other two axes
is unstable.

Remark 12.1 The above considerations hold only for the case of a per-

fectly rigid rotor. Actually, no real-life rotating system is such, and small

deformations are always present. These deformations involve always some



418 12. Dynamic behavior of free rotors

FIGURE 12.2. (a) Loci of the angular momentum for a free rotor with = 0 8

and = 1 2 . (b) Loci of the angular velocity for the same rotor.

dissipation of energy and, bacause we have assumed that the rotor does not

interact with the outside world (free rotor), this energy can be dissipated

only at the expense of the kinetic energy.

As the angular momentum is bound to remain constant, the sphere repre-
sented in Figure 12.1 remains constant, whereas the ellipsoid, representing
the condition of constant kinetic energy, shrinks in time (the axes expressed
by Equation (12.7) decrease with decreasing T ).
If the rotor is spinning about the axis with maximum moment of inertia,

the ellipsoid is, as already said, all internal to the sphere and is tangent to
it along the -axis. In this case, the ellipsoid cannot contract any further,
because there would be no intersection (i.e., a violation of the condition
of constant angular momentum), and the only possible motion is rotation
about the axis with maximum moment of inertia, which is stable. No energy
dissipation can occur.
If the rotation occurs in a situation close to this one, the rotor whirls with

decreasing amplitude while losing energy, until its rotation occurs about -
axis (trajectory starting from point A in Figure 12.4). Also, in the case of
a quasi-rigid, damped rotor, rotation about -axis is stable. The opposite
occurs in the case of a rotation about the axis with the smallest moment
of inertia: While becoming smaller, the ellipsoid intersects the sphere more
and more far from the intersection with the -axis (trajectory starting
from point B in Figure 12.4). The rotor whirls with increasing amplitude
and finally will end to spin about -axis. In the case of a quasi-rigid, damped
rotor, rotation about -axis is unstable.
The various possible situations are summarized in Table 12.2.
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FIGURE 12.3. Plots of the loci of the angular momentum vector for the two cases
of (a) = (axis is symmetry axis), disc rotor, and (b) =

(axis is symmetry axis), long rotor.

Rotation about axis (min. ) (max. ) (interm. )
Behavior unstable stable unstable

TABLE 12.2. Behavior of a slightly damped quasi-rigid free rotor.

Remark 12.2 If the presence of internal damping of the rotor is accounted

for, the rotation of a free, quasi rigid disc rotor is stable, whereas that of a

free long rotor is not.

12.1.2 Equations of motion

Instead of using the classic approach based on the Euler angles and Euler
equations to describe the dynamics of a rigid body, the same generalized
coordinates and reference frames seen in Chapter 3 for rotors with four
degrees of freedom will be used. In the present case, the assumptions of
small displacements and rotations are not adequate, and thus all six degrees
of freedom of the rigid body will be accounted for.
The rotor can be sketched as in Figure 3.1(b), where the two springs

modeling the bearings are not present. The absence of the bearings allows
us to neglect both the static and the couple unbalance, which were defined
with reference to geometric center of the shaft C. In the present case, point
C cannot be defined and the position of the body is defined by the position
of its center of mass, i.e., point P (or G) in Figure 3.2. Also, axes are
directly the principal axes of inertia.
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FIGURE 12.4. Loci of the angular momentum for a slightly damped quasi-rigid
free rotor with = 0 8 and = 1 2 . Trajectories starting from points A
and A’ are stable; those starting from B are unstable.

The reference frames O (inertial frame), O (rotating frame),
G (whirling frame), and G (rotor-fixed frame) are the same as de-
fined in Chapter 3; also the rotation matrices R1, R2, and R3 are defined
in the same way. The -, -, and -coordinates of point G and angles ,
, and are taken as generalized coordinates of the system.
As , , and are the coordinates of the center of mass, the transla-

tional kinetic energy is simply

T =
1

2
( ˙ 2 + ˙ 2 + ˙ 2) (12.9)

For the computation of the rotational kinetic energy, the angular velocity
must be expressed in the rotor-fixed reference frame G . Remembering
that there is no couple unbalance, Equation (3.11) simplifies as

= R3R2

˙
0
0

+R3

0
˙
0

+
0
0
˙

(12.10)

Without resorting to small angles assumptions, Equation (12.10) yields

=

˙ cos( ) cos
¡ ¢

+ ˙ sin( )
˙ sin( ) cos

¡ ¢
+ ˙ cos( )

˙ sin
¡ ¢

+ ˙
(12.11)
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No assumption of gyroscopic body will be made: The inertia tensor ex-
pressed in the same reference frame G is then

J =
0 0

0 0
0 0

. (12.12)

As the components of are referred to the principal axes of inertia, the
rotational kinetic energy can be easily computed as

T = 1

2

£
˙ cos( ) cos

¡ ¢
+ ˙ sin( )

¤2
+

+1

2

£
˙ sin( ) cos

¡ ¢
+ ˙ cos( )

¤2
+ 1

2

h
˙ sin

¡ ¢
+ ˙
i2
.

(12.13)
The equations of motion can be obtained as usual through the Lagrange

equation. By performing the relevant derivatives, the six equations of mo-
tion are obtained

¨ =
¨ =
¨ =

(12.14)

©£
cos2( ) + sin2( )

¤
cos2( ) + sin2( )

ª
¨ +

+( ) sin( ) cos( ) cos( )¨ + sin( )¨+

2( ) sin( ) cos( ) cos2( ) ˙ ˙ +

+
©
( )

£
cos2( ) sin2( )

¤
+

ª
cos( ) ˙ ˙ +

2
©£

cos2( ) + sin2( )
¤ ª

cos( ) sin( ) ˙ ˙ +
( ) sin( ) cos( ) sin( ) ˙ 2 =£

sin2( ) + cos2( )
¤
¨ + ( ) sin( ) cos( ) cos( )¨ +

+2( ) sin( ) cos( ) ˙ ˙ +
©
( )

£
cos2( ) sin2( )

¤
+

} cos( ) ˙ ˙ +
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cos2( ) + sin2( )
¤
·

· cos( ) sin( ) ˙ 2 =
¨ + sin( )¨

©
( )

£
cos2( ) sin2( )

¤ ª
·

· cos( ) ˙ ˙ + ( ) sin( ) cos( ) cos2( ) ˙ 2 +
( ) sin( ) cos( ) ˙ 2 =

(12.15)
The three equations governing the translational motion are completely

uncoupled from those describing rotations and coincide with the equations
of motion of a point mass.
The six generalized forces vanish in the case of a free rotor on which

no external forces are acting. Otherwise, they must be computed once the
physical characteristics of the system that controls the motion of the rotor
are defined.
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In the simplified case of an axially symmetrical (gyroscopic) rotor ( =

= , = ), by solving the last Equation (12.15) in ¨ and substituting
it into the second one, the equations of motion for rotations reduce to

¨ =

µ
2

¶
tan( ) ˙ ˙

cos( )
˙ ˙ +

sin( )

cos2( )

¨ =

µ
1

¶
sin( ) cos( ) ˙ 2 + cos( ) ˙ ˙ +

¨ = sin( )¨ cos( ) ˙ ˙ +

(12.16)
In case of a body rotating about -axis, with small angular displacements

about the two other axes, angles and and their derivatives can be
regarded as small quantities, whereas no such assumption can be done for
and ˙ . In this case, Equations (12.16) reduce to

¨ + ˙ ˙ =

¨ ˙ ˙ =
¨ =

(12.17)

By remembering that = , = , and = [a
consequence of applying the small angle assumption to Equation (11.26)],
Equations (12.17) coincide with Equations (11.30) and (11.32) once that
unbalance has been neglected.
In the case of a free rotor, where the generalized forces vanish, the third

equation states that the angular velocity is constant

˙ = constant (12.18)

Remark 12.3 This is an important result, because it shows that if angles

and are assumed to be small, constant angular velocity is a result

of constant angular momentum. This allows us to use with confidence for

spinning spacecraft dynamics the results obtained for classic rotordynamics,

if the amplitude of the precessional motion is small. This assumption is

acceptable in most cases, because the attitude control system is designed to

keep precession within small limits.

In the case of constant angular velocity, the rotational dynamics about
- and - axes (angles and ) can be studied separately and the first
two Equations (12.17) coincide with Equations (11.28), once the elastic
reaction of the bearings and unbalance have been neglected.
By introducing the usual complex coordinate

= 0 ,

and neglecting the external forces, the first two Equations (12.17) reduce
to
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¨ ˙ ˙ = 0 . (12.19)

The free whirling of the free rotor can thus be studied by introducing a
solution of the type =

0
into Equation (12.19), obtaining the following

algebraic linear equation:

0

¡
2 +

¢
= 0 (12.20)

The characteristic equation yielding the whirling frequencies is

2 + = 0 (12.21)

whose solutions are

½
1 = 0 ,

2 = .
(12.22)

A free spinning rigid body has then five vanishing natural frequencies,
plus a natural frequency that is proportional to the spin speed, the constant
of proportionality being ratio . The Campbell diagram of a free rigid
rotor is shown in Figure 12.5 for di erent values of . The and
scales are made nondimensional using an arbitrary value of the spin speed

0.

Remark 12.4 From Figure 12.5, it is clear that in the case of disc ro-

tors ( ), the curve lies in the subcritical range, and hence rotating

damping cannot destabilize the system. The opposite occurs for long rotors

( ): This result is the same as that shown in Section 12.1.1, obtained

using a di erent approach.

Example 12.1 The Levitron: a case of a quasi-free rotor.

A good example of the dynamics of a free rigid rotor, very loosely constrained,

is the LevitronTM : a small toy built with the aim of demonstrating that gyroscopic

moments can, in certain conditions, stabilize passive magnetic levitation. It con-

sists of a permanent magnet in the form of a spinning top, which can float about

an equilibrium position located above a heavy base containing a magnetized ce-

ramic square slab. The top is spun by hand on a plastic lifter plate located on

the permanent magnet and then slowly raised to levitation height, approximately

40 mm above the surface of the base. At this point, the top leaves the plate and

spins in mid-air for over 2 minutes, fully trapped in three dimensions inside the

magnetic field provided by the base, until its spin velocity decreases, owing

to air drag, to about 100 rad/s.

Figure 12.6(a) shows a sketch of the Levitron: The small top with mass , polar

and transversal moments of inertia p and , is made of a nonmagnetic spindle

inserted into a toroidal permanent magnet; the base is a square slab, uniformly

magnetized perpendicularly to the plane surface, and it has a large circular hole
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FIGURE 12.5. Campbell diagram of a free rigid rotor for di erent values of p .
The and scales are made nondimensional using an arbitrary value of the spin
speed 0.

at its center, whose purpose is to provide an approximately field-free region where

the top can be spun up before being lifted.

The inertial reference frame O’ 0 0 is centered on the center of the circular

hole of the magnet [Figure 12.6(b)] with the -axis being regarded as a symmetry

axis for the divergence- and curl-free magnetic field, which at a short distance

from this axis, can be considered as completely described by its axial and

radial components (if the magnet was cylindrical instead of a square slab

with a central circular hole, this assumption would have been exact). The angular

momentum , and the angular speed are represented in the same figure. The

top can be regarded as a magnetic dipole with moment vector (fixed magnitude

) centered in G and directed along its axis of symmetry. The gradients of the

magnetic field compensate for the gravitational force by generating a repulsive

force that acts on in the presence of (whose gyroscopic e ect prevents the

top from overturning and falling) and must provide the mechanism for the top to

levitate in a stable way above the base.

The magnetic field can be computed by expanding its components about the

equilibrium point (which is unstable when the top does not spin), located on the

-axis at the height 0 corresponding to the condition of vertical equilibrium

between the gravitational force and the upward magnetic force

=

¯̄
¯̄
= 0

. (12.23)
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FIGURE 12.6. (a): Sketch of the Levitron: (1) spinning top, (2) toroidal ceramic
magnet, (3) lifter plate, (4) fixed base, (5) square ceramic magnet with central
hole. (b): Inertial reference frames O’ 0 0 , centered in the center of the magnet,
and O , centered in the static equilibrium position of the top.

The inertial frame O has its origin O in the equilibrium point ( 0
=

0
= 0, = 0). Using the curl- and divergence-equations = 0 and

· = 0, the second-order Taylor’s expansion gives [6]

=
1

2
0 0 + ,

=
1

2
0 0 + , (12.24)

= 0 + 0 + 0

2 1

2
0

¡
2
+

2
¢
+ ,

where 0, 0, and 0 are, respectively, the values of the vertical component ,

of the axial derivative of and of the semi-curvature of at the equilibrium

point ( = = = 0)

0 =

¯̄
¯̄

= = =0

, 0 =
1

2

2

2

¯̄
¯̄

= = =0

. (12.25)

The equations of motion of the system are Equations (12.14) and Equations

(12.16), where the generalized forces can be obtained from the potential energy

U , sum of the gravitational term U = , and the magnetic one U = · .

The magnetic dipole moment , expressed in the inertial frame O , must

be computed first. Remembering that the components of vector with respect to

the principal reference frame G are 0, 0 and , the following expression is

obtained:

=

sin
¡ ¢

sin ( ) cos
¡ ¢

cos ( ) cos
¡ ¢ . (12.26)
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The potential energy is then

U = sin
¡ ¢ ¡
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(12.27)

The generalized forces corresponding to the translational and rotational degrees

of freedom are
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(13)

A set of six nonlinear coupled di erential equations is thus obtained; its solution

may be attempted only by numerical integration in time.

However, it is possible to linearize the equations about the equilibrium position

to study the stability in the small of the system. Such a linearization yields

¨ = 0 + 0

2
,

= 0 0

2
,

=
2 0 ,

= 0

2
+ 0 ,

= 0

2
+ 0 ,

= 0.

(12.28)

Owing to linearization, the third Equation (vertical motion) and the last one

(spin) uncouple from the equations describing the lateral behavior, which involve
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the , , and coordinates. Moreover, both the spin velocity = and

the angular momentum are constant.

By introducing the usual complex coordinates = + and = , the

equations of motion for the two (complex) degrees of freedom rotor are obtained

½
0

0

2
= 0,

0

2 0 = 0.
(12.29)

The system behaves then as a two degrees-of-freedom rotor with a sti ness

matrix

K =
1

2

·
2 0 0

0 2 0

¸
. (12.30)

The stability in the small can be studied by introducing the time histories ( ) =

0 and ( ) =
0

into the equations of motion. The characteristic equation

is

det

·
2

0
0

2

0

2

2
0

¸
= 0.; (12.31)

i.e.,

4 3

µ
0
+

0

¶
2
+

p 0
+

2 4 0 0
2

0

4
= 0. (12.32)

Figure 12.7 shows the real and imaginary parts of the values of obtained from

Equations (12.32) as functions of the spin speed, assuming the following data:

= 0 02135 kg, p = 2 2× 10
6 kgm2,

= 1 32× 10 6 kgm2, = 0 65 Am2,

0 = 0 0136 T, 0 = 0 322 T/m ,

0 = 1 12 T/m
2.

From the plot of the real part of , it follows clearly that at low speed and at

very high speed the system is unstable, whereas an intermediate speed range in

which its behavior is stable exists. In this range, there are four whirling modes,

the conical (the fastest modes, 3 and 4, both forward) and the cylindrical (the

slowest, 1 and 2, one backward and one forward) ones. The coupling between the

two conical (rotational) modes 3 and 4 produces the lower stability limit min ,

whereas the coupling between one of the two cylindrical (translational) modes 2

and the slow conical one 3 is responsible for producing the maximum speed for

stability max. The two limits min and max are plotted in Figure 12.7 by dashed

vertical lines.

The physical reason for the existence of the lower limit min is obvious: Because

the e ect on stability caused by the gyroscopic moment is proportional to the spin

velocity , if the top is spun too slowly, then it becomes unstable against rotation

and tips over; hence, the magnetic force acting on it will be oriented downward,

i.e., acting in the same direction as the gravitational force, thus pulling quickly

the top to the base.

Having previously remarked that the lower stability limit takes its origin from

the coupling between the two conical modes, to compute analytically the value of
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FIGURE 12.7. Real and imaginary parts of the values of obtained from equa-
tions (12.32), assuming the following data: = 0 02135 kg, p = 2 2 ·10

6 kgm2,
= 1 32 · 10 6 kgm2, = 0 65 Am2, 0 = 0 0136 T, 0 = 0 322 T/m and

0 = 1 12 T/m
2

min , it is su cient to study the stability of the rotational motion (described by

the and degrees of freedom), considered as uncoupled with the translational

one. Using the complex variable , the equation of the whirl motion becomes

p 0 = 0. (12.33)

For the two rotational natural frequencies to be real, the determinant of the

characteristic equation must be positive; then the spin speed must satisfy the

condition

min =

s
4 0

2
p

. (12.34)

By using the same numerical values as for Figure 12.7, a value min = 98

rad/s is obtained.

If the top is spun too fast, its axis becomes too sti and cannot respond quickly

enough to the changing direction of the magnetic field. Then the magnetic dipole

moment, which has the same direction of the axis of the top, can be considered as

fixed in space, and according to Earnshaw’s theorem, the system becomes unstable

for translational motions. The upper stability limit is produced by the coupling

between the slow conical mode and the faster of the two cylindrical ones. As the

existence of this limit does not depend on the presence of the fast conical mode, it

is possible to compute max by using the fast top assumption, i.e., by substituting

= 0 in the equations of motion (12.29).
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Using the variables and , the following third-order set of di erential equa-

tions is obtained: ½
+ 0 + 0

2
= 0,

˙ 0

2 0 = 0,
(12.35)

whose characteristic equation is

4
3

4 0

2
+ 4 0 +

2 2
4

2

0 0 = 0. (12.36)

The condition for stability is then

max =
max

r
3 3

0 , (12.37)

where

max
=

s
1 +

2

·
( ) +

q
( )

2
+ 64

¸
(12.38)

( ) = 1 18 27
2
, =

3

0

4 0 0

1

With the same numerical values as for Figure 12.7, max = 235 rad/s.

As the present model, even in its nonlinear version, is based on an approxi-

mate expression of the magnetic field close to the equilibrium position, it cannot

simulate the motion of the top under instability conditions, but it just predicts

and simulates its behavior in conditions close to the instability limits.

Consider first a numerical simulation at a spin velocity slightly higher than the

minimum speed for stability, namely, = 99 rad/s. Assuming that initially the

state is close to the equilibrium conditions, the time histories ( ), ( ), ( ),

and ( ) reported in Figure 12.8 are obtained. Also, the results obtained using the

fast top assumption, i.e., by neglecting the term in , have been reported, in order

to give a comparison between a simplified model often found in the literature and

the exact one. The results obtained using the linearized equations of motion are

not presented, because they are practically coincident with those obtained using

the nonlinear ones.

The results of the numerical simulation performed at a spin velocity roughly

halfway between the two stability limits, = 150, rad/s are reported in Figure

12.9.

In the first case ( = 99 rad/s), the radial vibrational behavior described by the

simplified model is close to that predicted by the exact one [see Figure 12.8(a)],

as the translational natural frequencies in the horizontal plane 1 and 2 com-

puted by the two models are nearly the same. The only di erence involves the

high-frequency harmonic component, corresponding to the slow whirl mode 3,

for which the two models give the values of about 40 rad/s and 70 rad/s, respec-

tively. Figure 12.8(b) clearly shows that the fast top model is less accurate than

the exact one in simulating the vertical motion of the top; in fact, the first model

describes oscillations with constant amplitude (equal to the initial one 0) about
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FIGURE 12.8. Results of the numerical simulation for the case = 99 rad/s
with initial conditions 0 = 1 mm, 0 = 1 mm,

0
= 10 mm/s,

0
= 0 02

rad. Time histories of (a) coordinate , (b), coordinate , (c) angle , (d) spin

velocity ˙ . The nonlinear solution of the exact model (full lines) is compared with
that of the fast top model (dashed lines).

the equilibrium position = 0, and the second one yields a time history char-

acterized by a sinusoidally modulated amplitude, with a maximum value as large

as 0, but not centered in the position = 0. More evident di erences can be

seen in the simulation of the rotational behavior, described by the time history of

angle [Figure 12.8(c)]; such di erences can be ascribed to the facts that the

simplified model is not able to predict the existence of the lower limit for stability

min and that the simulation has been performed at a spin velocity just close

to this speed. Although the simulation performed using the fast top model shows

a stable behavior of the top, consisting in regular oscillations of its axis with a

maximum amplitude as large as the initial one
0
= 0 02 rad, the exact solution

has a larger amplitude (with a maximum value of about 0 1 rad) and higher fre-

quencies of oscillation (associated with the two whirl modes 3 = 70 rad/s and

4 = 95 rad/s). Referring to Figure 12.8(d), one notes that although by resorting

to the fast top assumption the spin speed is constant, by using the exact model, it

oscillates and is, as an average, higher than the value taken at time = 0. The

maximum di erence between the exact history of and the constant value = 99

rad/s predicted by the simplified model is of 0 7%.
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FIGURE 12.9. Same as Figure 12.8, but with = 150 rad/s and initial conditions

0 = 1 mm, 0 = 1 mm,
0
= 10 mm/s,

0
= 0 05 rad, and ˙

0
= 1 rad/s.

In the case of the spin velocity = 150 rad/s the simplified model gives good

results, particularly in predicting the translational behavior (both horizontal and

vertical) of the top [see Figures 12.9(a) and 12.9(b)]. More evident di erences

with respect to the results provided by the exact model can be found in the time

history of angle [Figure 12.9(c)]; the amplitude of the oscillations is nearly

the same, whereas the frequency contents are di erent, owing to the fact that

the simplified model does not predict the fast whirl mode and provides the value

3 = 24 rad/s for the slow one, and the exact model gives 3 = 28 rad/s. The

frequency of the oscillations of the spin speed is now higher [Figure 12.9(d)];

the maximum di erence from the constant value = 150 rad/s is lower than in

the first case (0 2%).

12.2 Large amplitude whirling of a linearily
constrained rigid rotor

Equations (12.14) and (12.15), or Equations (12.14) and (12.16) for the
case of a gyroscopic body, can be used also for the study of large amplitude
whirling of a constrained rigid rotor, once the generalized forces caused by
the bearings are introduced into the equations of motion.
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FIGURE 12.10. Elastically constrained rigid rotor. (a) Sketch of the system, and
(b) deflected configuration

Consider a rigid body rotating about two cylindrical hinges located on
one its principal axes of inertia ( -axis), and assume that the ellipsoid of
inertia is round; i.e., its moments of inertia in a plane perpendicular to the
rotation axis are equal (Figure 12.10). Assume that the center of mass G
is not exactly coincident with point C, located on the axis connecting the
two bearings, and that its eccentricity lies, for simplicity, on its -axis.
This does not detract from the generality of the model, because the body
is axi-symmetrical. No couple unbalance is assumed. Let and be,
respectively, the moments of inertia about the baricentrical principal axis,
which coincides with the rotation axis but for the eccentricity , and any
axis in the rotation plane passing through point G.
This model coincides, except for the lack of couple unbalance, with that

of Figure 3.1(b). The only di erences are that here axes are centered
in the center of mass G instead of point C and that no assumption of small
displacements and rotations is made. Assume that the elastic and damping
behavior of the bearings is linear and isotropic, with sti ness and damping
. This implies that the axial sti ness is equal to the radial one, but this does
not constitute a limitation of the present model. If the usual assumptions of
small displacements and rotations are made, the lateral, axial, and torsional
behaviors can be shown to be uncoupled and the former can be studied by
resorting to four degrees of freedom, which can be coupled two by two in
just two complex coordinates. The model coincides, apart from the couple
unbalance here neglected, with the four degrees-of-freedom model described
in Chapter 3.
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The coordinates of points P (with = 1 2) in which the bearings are
located on the rotor (expressed in the rotor-fixed frame) are (Figure 12.10)
as follows:

(P1 G) =
£

0
¤T

(P2 G) =
£

0
¤T
.
(12.39)

The couple unbalance could be introduced into the model by simply
assuming di erent vales of the - and -coordinates of points P1 and P2 .
This would complicate formally the equations, but no conceptual di culty
would result.
The coordinates of the first (upper) point in the fixed reference frame

are

(P1 O) = RT
1
RT
2
RT
3

0 + (12.40)

The coordinates of the second point are expressed by the same equation
in which is introduced instead of .
The coordinates of the corresponding points of the stator P (with =

1 2) are, in the inertial frame,

(P1 O) =
£
0 0

¤T
(P2 O) =

£
0 0

¤T
.

The potential energy stored in the th spring of sti ness is

U =
1

2

£
(P O) (P O)

¤T £
(P O) (P O)

¤
(12.41)

The complete nonlinear expression of the potential energy can be ob-
tained by introducing the expressions of the rotation matrices into Equa-
tion (12.40) and the latter into Equation (12.41). This yields

U1 =
1

2

µ
2 + 2 + 2 + 2 + 2 2 + 2

£
cos( ) cos( )+ (12.42)

+ sin( )
¤
+ 2

£
cos( ) sin( ) sin( ) sin( ) cos( )+

cos( ) sin( )
¤
+ 2

£
cos( ) sin( ) cos( )+

sin( ) sin( ) + + cos( ) cos( )
¤
+

2
£
cos( ) sin( ) cos( ) sin( ) sin( )

¤
+ (12.43)

2 2 cos( ) cos( )

¶
. (12.44)

The generalized forces are then
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1
= U

1

=
£

cos( ) cos( ) + sin( )
¤

1
= U

1

=
£

cos( ) sin( ) sin( ) sin( ) cos( )+

cos( ) sin( )
¤

1
= U

1

=
£
+ cos( ) sin( ) cos( ) sin( ) sin( )+

+ cos( ) cos( )
¤
,

(12.45)

1

= U
1

=

½
[ cos( ) sin( ) cos( )+

+ sin( ) sin( ) cos( ) cos( )] + [ cos( ) sin( ) sin( )+

sin( ) cos( ) cos( ) sin( )] + [cos( ) sin( ) sin( )+

+ sin( ) cos( )] + 2 cos( ) sin( )

¾
,

1

= U
1

=

½ £
cos( ) sin( ) + cos( )

¤
+

+
£

cos( ) cos( ) sin( ) + sin( ) sin( )
¤
+

+
£
cos( ) cos( ) cos( ) sin( ) cos( )

¤
+

cos( ) cos( ) cos( ) + 2 sin( ) cos( )

¾
,

1
= U

1

=

½
sin( ) cos( ) + 1[ sin( ) sin( ) sin( )+

cos( ) cos( )] + [ sin( ) sin( ) cos( )+

cos( ) sin( )] + [sin( ) sin( ) cos( ) + cos( ) sin( )]

¾
.

(12.46)
By substituting for , the generalized forces caused by the second

spring are readily obtained.
To account for damping, the Rayleigh dissipation function can be written.

Consider a linear viscous damper located between points P (on the rotor)
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and P (on the stator). Assuming that the element in which the energy
dissipation occurs is stationary, the generalized damping forces caused by
the th damper can be computed from the Rayleigh dissipation function

F =
1

2
˙(P O)

T ˙(P O) (12.47)

where ˙(P O) is equal to the relative velocity of points P and P (in
the fixed reference frame) because the latter is stationary. By di erentiating
Equation (12.40), the velocity of the upper point P1 is

˙(P1 O) =
³
˙ TRT

2
RT
3
+ ˙ RT

1

TRT
3
+ ˙RT

1
RT
2

T
´

0 +

+

˙

˙

˙
;

(12.48)
i.e.,

˙(P1 O) = ˙ V+ ˙ W+ ˙P+

˙

˙

˙
(12.49)

where

V = TRT
2
RT
3

0 W = RT
1

TRT
3

0

P = RT
1
RT
2

T 0 ,

=
sin( ) cos( ) 0
cos( ) sin( ) 0

0 0 0
,

=
sin( ) 0 cos( )

0 0 0
cos( ) 0 sin( )

,

=
0 0 0
0 sin( ) cos( )
0 cos( ) sin( )

,

By introducing the column of the generalized coordinates,

q =
£ ¤

(12.50)
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the usual expression of the Rayleigh dissipation function for the damper at
point P1 is obtained:

F =
1

2
q̇ C1q̇ , (12.51)

where the time-dependent matrix C is

C1 =

1 0 0 VT I1 WT I1 PT I1

1 0 VT I2 WT I2 PT I2

1 VT I3 WT I3 PT I3

VTV WTV PTV

Symm. WTW PTW

PTP

and I1, I2, and I3 are the first, second, and third columns of the identity
matrix (i.e., the unit vectors directed along -, -, and -axes), respec-
tively.
The generalized forces caused by the presence of this damper, to be

inserted in the equations of motion, are

Q1 = C1q̇ (12.52)

To obtain the forces caused by the damper located between points P2
and P2 , must be substituted for in all equations.
Equations (12.14) and (12.16), together with the expressions of the gen-

eralized forces , are thus a set of six nonlinear di erential equations
allowing us to simulate the behavior of the system during whirling with
large amplitude. It is easy to verify that these equations can be linearized,
under the assumption of small displacements , , and rotations
and , whereas rotation and the spin speed ˙ are arbitrary large, and
small unbalance , obtaining

¨ + 11[ ˙ + ˙ sin( )] + 12 ˙ + 11[ cos( )] + 12 = 0
¨ + 11[ ˙ ˙ cos( )] 12 ˙ + 11[ sin( )] 12 = 0
¨ + 11

˙ + 11 = 0 ,

¨ + ˙ ˙ 21[ ˙ ˙ cos( )] + 22 ˙ + 21[ sin( )]+
+ 22 = 0

¨ ˙ ˙ + 21[ ˙ + ˙ sin( )] + 22 ˙ + 21[ cos( )]+
+ 22 = 0

¨ = 0
(12.53)

where

K =

·
2

2 + 2

¸
C =

·
2

2 + 2

¸
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Apart from the di erences caused by referring the equation of motion
to point G instead of point C, Equations (12.53) are those commonly used
in linearized rotordynamics. It is easy to verify that the uncoupling among
axial, torsional, and lateral behavior holds and that the last equation states
that the angular velocity ˙ is constant. In the linearized system, there is
no di erence between the assumption of constant angular momentum and
that of constant spin speed.
As the system is damped and unbalanced, there is energy dissipation in

the bearings (even if they are assumed to be frictionless) caused by the
whirling motion. If this e ect is accounted for as shown in Chapter 11, the
last equation of motion becomes

¨ + 2 Im

(
F
T
·

4(M G) + C+K

¸ 1

F

)
= 0 (12.54)

where the symbols are referred to the complex notation for steady state
whirling. The term expressing the rotordynamic drag in the bearings is
then quadratic in the eccentricity (included in vector F), which is a small
parameter, and hence in a linearized model, it should be dropped. How-
ever, it will be retained in the following numerical simulations to show the
importance of such phenomenon in practical applications.
The number of independent parameters involved in the equations of mo-

tion is large, and hence, it is impossible to draw general conclusions: Only
a few numerical simulations will be reported here.
Consider a rigid rotor with the following characteristics: mass = 10

kg, moments of inertia = 0 1 kgm2, = 0 15 kgm2, distances between
the bearings and the center of mass = 100 mm and = 200 mm, and
sti ness and damping of the bearings = 5× 106 N/m and = 100 Ns/m,
respectively. The linearized analysis yields a single critical speed at 957
rad/s (9139 rpm) and two natural frequencies at standstill equal to 921.2
rad/s (146.6 Hz) and 1628 rad/s (259.1 Hz).
Three values of the eccentricity will be considered, namely, = 1 m, 0.1

mm and 1 mm. Assuming a maximum speed of 20,000 rpm, they correspond
to balancing grades = 2, = 200 and = 2 000: The first one is
a fairly accurate balancing, as common in gas turbines; the second is a
rough balancing, as for crankshafts of car engines; and the third is so rough
that it is not included in ISO 1940 standards. Actually the last value,
corresponding to an unbalance of 10,000 g mm, is too high for any practical
application; it has been chosen as a sort of limiting case.
The simulations were performed using a standard fourth order Runge-

Kutta algorithm with adaptive timestep at speeds close to the critical
speed, one slightly lower (942.5 rad/s = 9,000 rpm) and one slightly higher
(963.4 rad/s = 9,200 rpm). Some typical results are reported in Table 12.2.
In the case of small unbalance, the results from the nonlinear model are

practically coincident with those obtained from the linearized theory. The
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Orbit radius (in 1 s)
[ m] [rpm] [ m] [ m]

linear nonlin. linear nonlin. lin. nonlin.

1 9,000 28.9 28.9 0 94× 10 6 1 12× 10 6 0 1 14× 10 4

9,200 42.6 42.6 2 11× 10 6 2 35× 10 6 0 3 07× 10 4

100 9,000 2,880 2,880 6 8× 10 3 7 7× 10 3 0 1.14
9,200 4,260 4,260 21 1× 10 3 23 5× 10 3 0 3.08

1000 9,000 28,800 28,800 0.074 0.074 0 114
9,200 45,500 44,200 0.094 0.108 0 308

TABLE 12.3. Some results of the simulation of the behavior of a fixed rotor with
di erent values of the eccentricity and at di erent speeds close to the critical
speed. The radius of the orbit, the speed reduction in 1 s, and the amplitude
of the axial displacement are reported.

slowing of the rotor is almost negligible, and close to that predicted by the
linearized model and the amplitude of the axial vibration is very small: The
flexural-torsional and flexural-axial coupling is then completely negligible.
Also in the case of the intermediate unbalance (100 m), the results

obtained are still close to those obtained from the linearized model, as also
shown by the increase of the orbit radius that is proportional to the increase
of eccentricity. The amplitude of the axial vibration is still negligible, and
the slowing down, although no more negligible, is still small and close to
that predicted by Equation (12.54): The flexural-torsional and flexural-
axial coupling is still negligible.
With the largest value of the unbalance, the rotor slows at a high rate

because much energy is dissipated by the supports. When the initial spin
speed is higher than the critical speed, the rotor slows quickly and enters the
subcritical regime with a sudden drop of speed (see Figure 12.11, in which
an initial speed of 1000 rad/s has been assumed). The radius of the orbit
oscillates in time during the critical speed crossing as described in Chapter
10. However, even in this case, the time history of the lateral displacement is
close to that computed using the linearized model, and the amplitude of the
axial displacement is small if compared with that of the lateral one (about
0.26%), showing a very weak flexural-axial coupling. The time history of
the speed shows that a certain flexural-torsional coupling is present, as
the system undergoes some torsional oscillations that are not predicted
by the linearized model [Equation (12.54)]; however, the approximation
of the linearized model is generally not bad even for what the decrease
of speed is concerned (note that in a strictly linearized model even the
drop of speed caused by damping vanishes). The time histories of the orbit
amplitude computed using the nonlinear and the linearized models cannot
be compared directly, because they are much influenced by the decrease of
the spin speed, but the latter model yields still reasonable results, even if
the amplitude is definitely very large.
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FIGURE 12.11. Single rigid-body fixed rotor; results of the numerical simulation
with an eccentricity of 1 mm and starting speed 9200 rpm. Time history of (a)
lateral displacement in -direction, (b) radius of the orbit, (c) axial displacement,
and (d) spin speed.

Remark 12.5 The example shows that the usual linearized model is still

applicable even in the case of large unbalances and large whirling orbits.

Note that the simulations have been performed in the worst conditions, i.e.,

with an unrealistically high unbalance and at speeds very close to the critical

speed (in Figure 12.11, the critical speed is actually crossed).

12.3 Twin rigid-bodies free rotor

The aim of this section is to show that the concepts of critical speeds
and of self-centering apply as well to multibody free rotors, caused by
the presence of elastic and damped connections between the carrier and
the inner masses of the system. Also, the role of damping (nonrotating,
rotating, synchronous) on the stability of multibody free rotors can be
fully understood only if it is studied with reference to a frame fixed to
the element in which the energy dissipation occurs. However, the lack of a
stator (a set of nonrotating parts) makes a deformable free rotor prone to
instability, because all damping is of the rotating type.
Consider a free rotor, made of two rigid axi-symmetrical bodies connected

with each other through linear elastic springs and viscous dampers. This
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FIGURE 12.12. Twin rigid-bodies free rotor. Reference frames and position of
the springs. The dampers (not represented) are located in parallel to the springs.

model is the simplest, allowing us to study a spinning spacecraft: In this
case, it is possible to identify a part, the carrier, which can be dealt with as a
rigid body, to which all other parts, themselves modeled as rigid bodies, are
connected. Assume that the centers of mass of the two bodies are coincident
in the undeflected position and that they are linked together, for instance,
by six linear springs and viscous dampers arranged in the way shown in
Figure 12.12. The values of the sti ness and damping coe cient of the links
located on the - and -axes are equal ( 2 and 2), in such a way that the
system possesses axial symmetry. Also, the inertial properties of the two
rigid bodies are axially symmetrical. Reference frames 1 1 1 and 2 2 2

are fixed to the first and second body, respectively, whereas frame is
an inertial frame.
The two bodies are assumed to be perfectly balanced, i.e., the geometrical

centers C of the connection system coincide with the mass centers G and
the principal axes of inertia coincide with the principal axes of elasticity.

12.3.1 Linearized approach

By resorting to the usual assumptions of linearized, steady state rotordy-
namics, the lateral behavior uncouples from the axial and torsional dynam-
ics and the equation of motion for the former is

Mq̈ Gq̇+Cq̇+ (K C )q = F , (12.55)

where the vector of the complex coordinates

q = { 1 2 1 2
}
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contains the complex displacements and rotations (defined in the usual
way) of both bodies, C = C + C is the total damping matrix and the
mass and gyroscopic matrices are

M =

1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 2

,

G =

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 2

.

The sti ness and rotating damping matrices are usually full, symmetrical
matrices, whereas the nonrotating damping matrix vanishes, because there
is no nonrotating element in the system. Assuming that the positions of the
centers of mass of the two bodies are coincident in the undeflected position
and that the spring and damper systems are symmetrical with respect to
the plane, the sti ness matrix reduces to

K =

0 0
0 0

0 0
0 0

.

The rotating damping matrix has the same structure, with the damping
coe cient for translations and for rotations instead of and . With
reference to the spring and damper arrangement shown in Figure 12.12,
the values of the overall sti ness and damping are

½
= 2 1+4 2 ,
= 2( 1

2 + 2
2) ,

(12.56)

½
= 2 1 + 4 2 ,
= 2( 1

2 + 2
2) .

(12.57)

The set of four equations uncouples into two sets, one for cylindrical
(translational) whirling

½
1 1̈ + ( ˙1 ˙2) + ( ) ( 1 2) = 1 ,

2 2̈ + ( ˙2 ˙1) + ( ) ( 2 1) = 2 ,
(12.58)

and one for conical (rotational) whirling

1
¨
1 1

˙
1
+

³
˙
1

˙
2

´
+ ( ) (

1 2
) = 1 ,

2
¨
2 2

˙
2
+

³
˙
2

˙
1

´
+ ( ) (

2 1
) = 2 .

(12.59)
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By using as complex coordinates the displacement of the center of mass
of the system G and the relative displacement

(
G = 1 1 + 2 2

1 + 2
,

= 2 1 ,
(12.60)

the equations for translational motions reduce to

½
G̈ = ,
¨+ ˙ + ( ) = .

(12.61)

The two equations uncouple from each other. The first one describes the
motion of a point mass = 1 + 2 located in the center of mass of
the system under the action of the force = 1 + 2. The second one
is that of a Je cott rotor with mass moving under the action of force
, where

=
1 2

1 + 2

=
1 2 2 1

1 + 2

. (12.62)

The model described by Equation (12.61) has then two rigid-body modes
with natural frequency equal to zero and two modes with nonvanishing nat-
ural frequency, one forward and one backward. The former may be stable or
unstable, and the second one is always stable. A plot of the nondimensional
natural frequency and nondimensional decay rate defined as

= p = Im

Ã
p

!

and

= p = Re

Ã
p

!

as functions of the nondimensional spin speed =
p

is reported
in Figure 12.13. The various curves refer to values of the rotating damping
ratio =

p
4 spanning from 0 to 1. Note that the forward mode is

unstable in the whole supercritical range because the only damping present
is rotating damping.
A similar coordinate transformation can be introduced also for the rota-

tional degrees of freedom

(
G =

1 1
+ 2 2

1 + 2

,

=
2 1

.
(12.63)

The equations for rotations, however, do not uncouple in general. They
reduce to
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FIGURE 12.13. Plot of the nondimensional natural frequency and nondi-
mensional decay rate as functions of the nondimensional spin speed

=
p

. The various curves refer to values of the rotating damping
ratio =

p
4 spanning from 0 to 1.

½
( 1 + 2) ¨G ( 1 + 2) ˙G ( 2 1) ˙ = 1 + 2 ,

¨ ( 2 1) ˙G
˙ + ˙ + ( ) = ,

(12.64)
where

= 1 2

1
+

2

= 1 2 2 1

1
+

2

,

1 =
1

1

2 =
2

2

= 1 2
( 1 + 2)

(
1
+

2
)
2

.

If 1 = 2, the two equations uncouple from each other. The first one
describes the attitude motions of a rigid body with transversal and polar
moments of inertia equal to

1
+

2
and 1 + 2 under the action of

the moment 1+ 2. The model described by the first equation has then
two rigid-body modes, one with natural frequency equal to zero, and one
with natural frequency proportional to the spin speed (Figure 12.5). The
latter may be stable or unstable depending on the value of , i.e., depending
whether the system as a whole is a disc or a long rotor.
The second Equation (12.64) describes the conical whirling of an uncou-

pled rotor with four degrees of freedom [see Chapter 3, Figure 3.3(b)]. The
data of the equivalent rotor are transversal moment of inertia: ; polar
moment of inertia 1 ; sti ness ; and rotating damping coe cient .
This system has two nonvanishing natural frequencies related to deforma-
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FIGURE 12.14. Disc rotor with 1 = 2 = 1 5. Plot of the nondimensional natural
frequency and nondimensional decay rate as functions of the nondimen-
sional spin speed =

p
. The various curves refer to values of the

rotating damping ratio =
p
4 spanning from 0 to 1.

tion modes, one forward (stable or unstable) and one backward (always
stable). The results for the undamped system are shown in Figure 3.4.
Two plots of the nondimensional natural frequency and nondimen-

sional decay rate , now defined as

= p = Im

Ã
p

!

and

= p = Re

Ã
p

!

as functions of the nondimensional spin speed =
p

are re-
ported in Figures 12.14 (disc rotor with 1 = 2 = 1 5) and 12.15 (long
rotor with 1 = 2 = 0 5). The various curves refer to values of the rotating
damping ratio =

p
4 spanning from 0 to 1. Note that in the case

of the long rotor the forward mode is unstable in the whole supercritical
range, whereas in the case of the disc rotor, stability is always assured
(there is no critical speed related to conical whirling, so the system never
works in the supercritical range).
Owing to the large number of independent parameters, the only way to

compare the results obtained through the linearized approach with those
that will be obtained using the full nonlinear equations is to perform a
large number of numerical simulations. Only four cases are reported here,
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FIGURE 12.15. Same as Figure 12.14 but for a long rotor with 1 = 2 = 0 5.

Case n. 1 2 3 4

1 = 2 [kg] 20 20 20 20

1/ 2 [kgm
2] 0.015 / 0.014 0.015 / 0.014 0.010 / 0.010 0.010 / 0.010

1/ 2 [kgm
2] 0.010 / 0.010 0.010 / 0.010 0.015 / 0.014 0.015 / 0.014

= [m] 0.25 0.25 0.25 0.25

1 = 2 [N/m] 4× 106 2,000 4× 106 4,000

1/ 2 [Ns/m] 45.1 / 68 1.01 /1.52 79.5 / 56.6 2.51 / 1.79
[N/m] 24× 106 12,000 24× 106 24,000

[Nm/rad] 1× 106 500 1× 106 1,000
[Ns/m] 362.2 8.1 385.6 13.6
[Nms/rad] 14.14 0.316 17.02 0.538

TABLE 12.4. Data for the four cases considered.

to obtain some indications that can be shown to yield a good qualitative
understanding of the e ect of such assumptions. In all cases, the values of
the damping coe cients have been chosen in such a way that the rotational
flexural and torsional vibrations are characterized by a damping ratio =
0 1 (quality factor 5). The relevant data are listed in Table 12.4. Cases
number 1 and 2 refer to free rotors with polar moment of inertia larger
than the transversal moment of inertia (disc rotors). As a consequence,
they have no critical speeds related to rotational modes. On the contrary,
cases 3 and 4 deal with rotors with a polar moment of inertia smaller
than the transversal one (long rotors). In this case, two critical speeds are
present, one linked to the rotational and one to the translational mode.
The main results of the linearized analysis are reported in Tables 12.5

and 12.6, separately for translational and rotational modes, which are de-



446 12. Dynamic behavior of free rotors

Case n. 1 2 3 4

Undamped [rad/s] 1550 34.64 1550 48.99

Damped, = 0 [rad/s] 1549 34.64 1549 48.99
[1/s] -18.1 -0.41 -19.13 -0.68

Damped, = 1000 [rad/s] -1549 -36.38 -1549 -50.78
[1/s] -29.8 -11.5 -31.7 -14.1
[rad/s] 1549 36.38 1549 50.78
[1/s] -6.4 10.7 -6.8 12.7

TABLE 12.5. Natural frequencies of the undamped system and complex eigen-
frequencies at standstill ( = 0) and a spin speed of 1000 rad/s (backward and for-
ward whirling) of the four free rotors described in Table 12.4; cylindrical whirling
(bold figures designate instability).

Case n. 1 2 3 4

Undamped [rad/s] 14140 316 11751 372
[rad/s] 11751 263 14140 447
[rad/s] — — 21213 671

Damped, = 0 [rad/s] 14071 315 11692 369.8
[1/s] -1414 -31.6 -1175 -85

Damped, = 1000 [rad/s] -13360 -65.5 -11352 -163
[1/s] -1442i -42.6 -1241 -85

1 [rad/s] 1450 65.5 690 687

1 [1/s] -1 15× 10 8 -3.9 1.49×10 9 0.44

2 [rad/s] 14815 1541 12043 857

2 [1/s] -1386 -16.6 -1109 10.3

TABLE 12.6. Results for the linearized analysis of the conical whirling of the
four free rotors described in Table 12.4. Flexural and torsional undamped natural
frequencies, critical speed, and complex eigenfrequencies at standstill ( = 0) and
at a spin speed of 1000 rad/s (bold figures designate instability).

coupled. The rotors have been considered both at standstill and spinning
at 1000 rad/s.
The flexural (translational) and axial natural frequencies of the un-

damped system which coincide with each other and with the critical
speed are shown in Table 12.5 together with the frequency and the
decay rate of the damped whirl motion (real and imaginary parts of )
at standstill ( = 0) and at a spin speed of 1000 rad/s. At = 1000 rad/s,
both the forward and backward cylindrical modes are considered
The results reported in the table show clearly that the forward cylindrical

whirl mode is unstable in cases 2 and 4: Owing to the low value of the
sti ness, at 1000 rad/s, the system is in the supercritical range and hence
rotating damping makes it unstable.
The results for the linearized analysis of the conical whirling modes of

the four free rotors described in Table 12.4 are reported in Table 12.6.



12.3 Twin rigid-bodies free rotor 447

As 1 6= 2 the attitude modes and the deformation (di erential) modes
are coupled (the two equations (12.64) do not uncouple). The flexural and
torsional natural frequencies and and the critical speed of the
undamped system are reported together with the complex eigenfrequencies
at standstill ( = 0) and at a spin speed of 1000 rad/s for backward and
forward whirling. Note that cases 1 and 2 refer to disc rotors, and there
is no critical speed related to conical whirling. At standstill, there is only
one natural frequency di erent from zero. Although the system spins, there
is only one backward mode with nonvanishing whirl speed, whereas both
forward modes have a whirl speed di erent from zero. Instability develops
at 1000 rad/s in cases 3 and 4.
As a conclusion of the linearized analysis, it follows that:

• Case 1: very sti disc rotor. At a spin speed of 1000 rad/s, the system
operates in the subcritical range and all modes are stable.

• Case 2: soft disc rotor. At 1000 rad/s, the system operates in the
supercritical range and the forward cylindrical mode is unstable.

• Case 3: very sti long rotor. At 1000 rad/s, the system operates in
the subcritical range and all deformation modes are stable. However,
owing to the fact that , the forward conical attitude mode is
slightly unstable. The value of the decay rate, although positive, is
very low and the time needed for the instability to develop may be
very long.

• Case 4: soft long rotor. At 1000 rad/s, the system operates in the
supercritical range with respect to both the cylindrical mode and the
conical mode; both deformation modes are then unstable. Also, the
conical attitude mode is unstable and the positive value of the decay
rate is fairly high.

12.3.2 Nonlinear approach

As the two rigid bodies constituting the system of Figure 12.12 are axially
symmetrical about -axis, their dynamic behavior can be studied using the
nonlinear Equations (12.14) and (12.16), written for each one of the bodies.
The expression of the potential energy and of the Raylegh dissipation func-
tion caused by the springs and dampers and of the generalized forces are
so long that it is not worthwhile to report here their complete expression.
The reader can refer to [4].
A set of 12 coupled, nonlinear di erential equations is thus obtained. Ow-

ing to their complexity, only numerical integration is possible. However, a
simplification that does not detract much from the generality of the model
can be introduced. Although the displacements and rotations of each in-
dividual body with respect to the inertial frame are generally large owing
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to the free-rotor nature of the system, the di erential displacements and
rotations of one with respect to the other are small. A model based on this
assumption will be referred to as a semilinearized model.
This approach allows the generalized forces caused by the springs and

the dampers to be computed in closed form, obtaining [4]
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Note that a further linearization, obtained by assuming that also the
absolute displacements and rotations are small, yields the usual equations
of rotordynamics. Also, in this case, the two assumptions of constant spin
speed and constant angular momentum coincide in the linearized model.
The destabilizing e ect of rotating damping is clearly present in the equa-
tions. The four cases seen in the previous section will be again dealt with.
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Case 1

Case 1 refers to a disc rotor with a sti connection between the two bod-
ies, i.e., with flexural natural frequencies at standstill far higher than the
maximum spin speed. The linearized results at 1000 rad/s show that the
rigid-body conical precessional motion, occurring at 1450 rad/s (i.e., at
the frequency ) is completely uncoupled from the mode involving
relative motions of the two parts of the system. The former is very little
damped, with a decay rate of about 10 8 1/s, and the second one is very
much damped (decay rate of 1386 1/s) and its frequency is not much af-
fected by the spin speed up to above 1000 rad/s. Also, the translational
mode is always damped in the whole speed range considered.
The results of a numerical simulation performed using the nonlinear,

the semilinearized, and the fully linearized models are reported in Figure
12.16. All initial generalized displacements and velocities are equal to zero,
except for

1
= 0 12 rad,

2
= 0 08 rad, ˙

1
= ˙

2
= 145 rad/s,

and ˙1 = ˙
2 = 1000 rad/s. Note that the displacements remain vanishingly

small as the coupling terms of the damping matrix depend linearly on
the displacements, and hence, the initial conditions assumed make them to
remain equal to zero for the whole integration time. The result is a whirling
motion with a peak-to-peak amplitude of about 0.2 rad (more than 10 )
in which the two bodies move together, after a short transient in which
the oscillations of one relative to the other are quickly damped out. The
frequency of the motion resulting from the nonlinear model is 1436 rad/s,
whereas that of the semilinearized model is 1450 rad/s. The latter value
coincides with that obtained from the frequency domain computation for
the linearized model. They di er from each other by less than 1% even if
the amplitude of the motion is large. Note the quick damping of di erential
motions of the two bodies, whereas the overall whirling of the system is
almost undamped (this could be easily expected owing to the values of
the decay rate of the linearized model, see Table 12.6); the oscillations in
the angular velocity show clearly the lateral-torsional coupling, not
predicted by the linearized model; such coupling is, however, not strong
even if the amplitude is large and does not a ect the lateral behavior.
Figure 12.16(d) shows that the energy dissipation caused by the damping
of the di erential oscillations is large but the results of the fully nonlinear
solution almost coincide with those of the semilinearized solution.
The results shown in Figure 12.16 support the claim that the linearized

solution is still accurate in predicting the lateral behavior even at ampli-
tudes as large as 10 (peak to peak) and that the torsional-lateral coupling
is not too strong.
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FIGURE 12.16. Twin rigid-bodies rotor; results of the numerical simulation for
case 1. Time history of (a) angles , (b) angles , (c) spin speed of the two
rotors , and (d) total and kinetic energy. The plots are related to di erent
time intervals.

Case 2

Case 2 deals with a rotor having the same inertial properties of the pre-
vious one, but with a very soft connection. The cylindrical (translational)
mode is a supercritical one (i.e., the corresponding whirl speed is smaller
than the spin speed or, which is the same, the spin speed is higher than the
critical speed related to the translational mode), and the linearized analy-
sis shows that it is unstable. Owing to uncoupling, the cylindrical modes
are not excited, and the related instability does not show up. The conical
(rotational) modes are subcritical because there is no critical speed linked
to rotational degrees of freedom.
The linearized results at 1000 rad/s show that the rigid-body precessional

motion occurs at 1425 rad/s (i.e., at a frequency slightly lower than )
and is strongly coupled with the forward mode involving relative motions of
the two parts of the system, which occurs at 1541 rad/s. As a result, both
modes are very strongly damped, with decay rates of the order of 4 and 17
1/s. The presence of the damper between the two bodies cause not only the
di erential motions to die out quickly, but also the overall whirling to decay.
The results of a numerical simulation performed using the nonlinear, the
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FIGURE 12.17. Same as Figure 12.16, but for case 2.

semilinearized, and the fully linearized models are reported in Figure 12.17.
The initial conditions are the same as in the previous example, except for
˙

1
= ˙

2
= 142 5 rad/s. The result is a decaying whirling motion with

an initial peak-to-peak amplitude of about 0.2 rad (more than 10 ). Note
that the instability of the translational mode would, in an actual case, drive
to instability also the rotational one; this e ect is not accounted for in the
simulation owing to the initial displacements and velocities that have been
assumed to be exactly equal to zero.
The time history of angles and show that a sort of beat is present,

owing to the fact that two natural frequencies are close. The overall mo-
tion is damped. Figure 12.17(c), related to the spin speed of the rotor

, shows that a lateral-torsional coupling, not predicted by the lin-
earized model, is again present but is not very strong even if the amplitude
is large and does not a ect the lateral behavior. The plot of the time history
of the total and kinetic energy shows that the fully nonlinear solution gives
results that are di erent from the semilinearized solution; the di erence
between the two is, however, magnified by the very expanded scale and the
relative error is still small. Except for this last result, the fully nonlinear
solution is completely superimposed to the semilinearized solution and the
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FIGURE 12.18. Same as Figure 12.17(d), but for an amplitude of the motion
divided by 10.

linearized model yields similar results, but overestimates the frequency by
about 1%.
To investigate on the discrepancies between the time history of the to-

tal and kinetic energy computed using the nonlinear and semilinearized
solutions the simulation has been repeated with initial conditions on the
displacements and velocities (except the spin speed) divided by 10 (Figure
12.18). The peak-to peak amplitude is now of about 1 , and the results of
the two model are very close to each other.

Case 3

The rotor of case 3 has a very sti connection between the bodies and
operates at the nominal speed (1000 rad/s) in the subcritical regime. The
linearized analysis shows that it is very weakly unstable in the small: The
imaginary part of the whirl speed of the first forward mode is negative,
but its absolute value is so small (1.49 ×10 9 1/s) that a very long time
is expected to be needed to develop an actual unstable behavior (doubling
the amplitude takes more than 14 years). This type of behavior is typical
of all free rotors in which .
The rigid-body precessional motion, occurring at 690 rad/s (i.e., at the

frequency ) is completely uncoupled from the mode involving rela-
tive motions of the two parts of the system. The former is slightly unstable,
as said above, and the second one is very much damped and its frequency is
not much a ected by the spin speed. The results of a numerical simulation
performed using the nonlinear, the semilinearized, and the fully linearized
models are reported in Figure 12.19. The initial conditions are the same as
for the previous cases, except for ˙

1
= ˙

2
= 69 rad/s. The result is
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FIGURE 12.19. Same as Figure 12.16, but for case 3.

a whirling motion with a peak-to-peak amplitude of about 0.2 rad (more
than 10 ) with the two bodies moving together, after a short transient in
which the oscillations of one relative to the other are quickly damped out.
Figure 12.19(b) shows that the buildup of the amplitude is so slow that

the time history is practically coincident with that of an undamped system.
From Figure 12.19(d) it is clear that the time history of the total and kinetic
energy computed using the fully nonlinear solution is almost superimposed
to the semilinearized solution as in case 1.

Case 4

Owing to the very soft springs, at 1000 rad/s, the rotor of case 4 operates
in supercritical conditions for both modes. The linearized analysis shows
that the rotor of case 4 is very unstable in all forward modes, particularly
in the translational and second rotational ones. However, also the first
rotational forward mode is unstable, possibly owing to the closeness of the
two rotational modes.
The results of a numerical simulation performed using the nonlinear,

the semilinearized and the fully linearized models are reported in Figure
12.20. The initial conditions are the same as for case 3. The result is a
whirling motion with an initial peak-to-peak amplitude of about 0.2 rad
(more than 10 ); the amplitude quickly grows to very large values. Note
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FIGURE 12.20. Same as Figure 12.16, but for case 4.

that in practice, the instability of the translational modes would add to
that of the rotational modes owing to the coupling that would start as
soon as the amplitude of the former starts to be non-negligible.
The time history of the total and kinetic energy shows that in this case,

as in case 2, the nonlinear solution gives results that are not in good ac-
cordance with the semilinearized solution, but the same considerations on
the smallness of the relative error still hold.
To show the e ects of the nonlinearities caused by large amplitudes, the

simulation for case 2 has been repeated with initial conditions with larger
values of and ˙ :

1
= 0 48 rad,

2
= 0 32 rad, and ˙

1
= ˙

2
=

570 rad/s (Figure 12.21).
Owing to the very large amplitude (about 60 peak to peak), the lin-

earized solution gives results that are quantitatively incorrect, while being
qualitatively correct. The semilinearized solution, is on the contrary reli-
able in predicting the behavior of the system, except for the kinetic energy,
as it was already noted in Figure 12.17.

Remark 12.6 The assumption of constant angular velocity can be ob-

tained from that of constant angular momentum, typical of free rotor dy-

namics, when small amplitude motion is considered. The stability consid-
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FIGURE 12.21. Same as Figure 12.17 (case 2), but with di erent initial condi-
tions. The very large amplitude makes the linearized solution incorrect, whereas
the semilinearized one retains its applicability.

erations drawn from classic rotordynamic analysis hold for the study of the

stability in the small of free rotors and spacecraft.

Remark 12.7 The axial and torsional motions are coupled with the lateral

behavior of the rotor. However, this coupling becomes vanishingly small with

reducing amplitude of the latter (for the torsional motion, this statement

can be seen as a consequence of the previous point). The axial-flexural and

torsional-flexural decoupling is then applicable to the motion in the small

of both fixed and free rotors.

Remark 12.8 The linearized analysis holds with good precision even for

motions occurring with angular amplitudes up to several degrees. This al-

lows us to use the classic linearized rotordynamic approach to the study of

all fixed rotors (which is fairly obvious) but also in general to free rotors, at

least if they are provided of an attitude control system (which can be intro-

duced into the model) preventing large amplitude motion from occurring.
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[kg] p [kg m
2 ] [kg m2 ]

Upper mass 10 0.1 0.08
Central body 100 28 16
Lower mass 5 0.06 0.04

TABLE 12.7. Inertial data for the small satellite.

12.4 Multibody free rotors

In the case of multibody rotors the nonlinear equations become so com-
plicated that it is useless to write explicitly a nonlinear or semilinearized
model. Actually, this occurs even in the case of a twin-bodies rotor when
the centers of mass do not coincide in the undeflected position, as it was
assumed in the previous sections.
As a consequence, the study of the motion in the large of the system can

be performed only by numerical integration in time of a model built through
the usual multibody approach and no general solution can be achieved.
However, if the assumption of small displacements and rotations (for dis-

placements, it is enough that the relative displacements are small, whereas
all rotations must be small) holds, it is possible to write an explicit lin-
ear di erential equation in the generalized coordinates and to obtain an
approximate frequency-domain solution.
A consequence of the linearization is the uncoupling of the axial, tor-

sional, and flexural behavior, which holds if the geometry of the system
complies with the conditions seen for this uncoupling when dealing with
the beam theory. The linearized equation of motion for an axi-symmetrical
system, written with reference to the complex coordinates, is still Equation
(12.55), where matrix K is singular, owing to the fact that the rotor is free
in space, and matrix C coincides with C (because C vanishes) and is
singular.
The fact that the centers of mass of the various bodies do not coincide

makes it impossible to uncouple translational modes from rotational ones,
and attitude modes can be separated from deformation modes only through
the methods of modal analysis, and with the relevant limitations related to
gyroscopic and damped system. This feature will be shown clearly in the
following example.

Example 12.2 Example: small spinning satellite.

Consider a small spinning satellite made by a central axi-symmetrical body

carrying at the poles two long slender booms, whose longitudinal axis lies along

the spin axis. Two concentrated masses are located at the ends of booms. A sketch

is inset in Figure 12.22. The inertial data of the system are summarized in Table

12.7.

The two booms are 5 m long, and the cross-sectional area and the transversal

area moment of inertia are = 400 mm2 and = 2 × 10 6 m4 The material
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of the beams have a Young modulus = 7 2 × 1010 N/m2, an apparent density

= 4000 kg/m3, and an average loss factor =0.01. Note that a system of this

kind is unrealistic, and its purpose is only to show some properties of multibody

free rotors.

By modeling the system using three mass and two beam elements, the following

matrices are readily obtained:

M =

11 486 1 047 0 514 0 620 0 0

1 033 0 620 0 715 0 0

102 971 0 0 514 0 620

17 906 0 620 0 715

symm. 6 486 1 047

0 993

,

G =

0 00095 0 00039 0 00095 0 00039 0 0

0 10266 0 00039 0 00067 0 0

0 00191 0 0 00095 0 00039

28 00532 0 00039 0 00067

symm. 0 00095 0 00039

0 06266

,

K =

0 3445 0 8612 0 3445 0 8612 0 0

2 8731 0 8612 1 4331 0 0

0 68900 0 0 3445 0 8612

5 7462 0 8612 1 4331

symm. 0 3445 0 8612

2 8731

× 104 .

The imaginary part of the complex sti ness matrix (caused by the presence of

structural damping) is K” = 0 01K

The rigid-body inertial property of the system are = 123 kg, = 28 2 kg m2,

and = 452 kg m2 and the position of the center of mass is at 4,797 mm from

the upper end. The satellite behaves as a long rotor; hence, a rigid-body instability

can be expected. There are five rigid body modes with a natural frequency equal

to zero (three lateral, one axial and one torsional) plus a rigid-body mode with

natural frequency = p = 0 0624 .

The damped eigenfrequencies at standstill are reported in Table 12.8.

The axial and torsional dynamics will be dealt no further.

The Campbell diagram is reported in Figure 12.22. The system has a critical

speed = 11 45 rad/s (109 rpm), at which the first deformation mode becomes

unstable, with a decay rate Re( ) = 0 057 1/s. The following critical speed, at

which another mode becomes unstable, is high, namely at 162 rad/s.

The whirl frequencies and decay rate of the first four forward and backward

modes at = 10 rad/s are reported in Table 12.9.

The speed is lower than the first critical speed, and then all deformation modes

are stable. As expected, the second rigid-body mode is slightly unstable, and its

frequency is very close to that computed using a rigid-body model (0.6206 against

0.624).
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Flexural
Frequency Decay rate

0 (double) 0
11.41 rad/s ( 1.82 Hz) 0.057 1/s
48.75 rad/s ( 7.76 Hz) 0.244 1/s
175.17 rad/s ( 27.88 Hz) 0.876 1/s
190.62 rad/s ( 30.34 Hz) 0.953 1/s

Axial Torsional
Frequency Decay rate Frequency Decay rate

0 0 0 0
529.55 rad/s 2.65 318.88 rad/s 1.59
(84.28 Hz) (50.75 Hz)
703.01 rad/s 3.51 403.07 rad/s 2.02
(111.89 Hz) (64.15 Hz)

TABLE 12.8. Damped eigenfrequencies at standstill.

Forward Backward
Mode [rad/s] Decay rate [1/s] [rad/s] Decay rate [1/s]

1 0 0 0 0
2 0.6206 2.295×10-5 0 0
3 11.44 0.0570 11.38 0.0570
4 55.92 0.2412 42.62 0.2411

TABLE 12.9. Whirl frequencies and decay rate of the first four forward and
backward modes at = 10 rad/s.

Instead of using consistent mass and gyroscopic matrices, it was possible to

lump the mass of the beam at its ends, a procedure yielding diagonal matrices

M = diag
¡£
12 0 08 104 16 7 0 04

¤¢
,

G = diag
¡£
0 0 1 0 28 0 0 06

¤¢
.

The rigid-body properties are slightly di erent, because a larger value of the transver-

sal moment of inertia is found ( = 486 kg m2), the mass is the same, and the

polar moment of inertia and the position of the center of mass are only marginally

a ected. The whirl frequencies of the first four forward and backward modes at

= 10 rad/s modify as shown in Table 12.10

To uncouple rigid-body and deformation modes, a coordinate transformation

similar to the one seen in Equations (12.60) and (12.63) can be performed:

G =
1 1 + 2 2 + 3 3 ,

1 = 1 2 ,

3 = 3 2 ,

(12.67)

G =
1 1+ 2 2+ 3 3 ,

1
=

1 2
,

3
=

3 2
,

(12.68)
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FIGURE 12.22. Cambell diagram and decay rate plot for the satellite of Example
12.1.

Forward Backward
Mode [rad/s] Decay rate [1/s] [rad/s] Decay rate [1/s]

1 0 0 0 0
2 0.5773 2.085×10-5 0 0
3 10.70 0.0534 10.65 0.0534
4 62.03 0.2603 45.14 0.2603

TABLE 12.10. Whirl frequencies and decay rate of the first four forward and
backward modes at = 10 rad/s for the lumped parameters model.

where

= 1 + 2 + 3 = 1 + 2 + 3 . (12.69)

The coordinate transformation matrix T is defined by the relationship

1

2

1

3

=

1 0 2 0 3 0

0 1 0 21 0 3

1 0 1 0 0 0

0 0 1 0 1 0

0 1 0 1 0 0

0 0 0 1 0 1

1

1

2

2

3

3

.
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By applying this transformation to the matrices related to the lumped parame-

ters system, it follows that

M =

123 0 0 0 0 0

16 12 0 0 0 0

10 83 0 683 0 0

6 601 0 0

symm. 0 0796 1 985× 10 4

0 0399

,

G =

0 0 0 0 0 0

28 16 0 0 0 0398 0 0099

0 0 0 0

0 0 0

symm. 0 0997 0 00020

0 0599

,

K =

0 0 0 0 0 0

17 225 1 722 1 722 4 221 4 263

0 344 0 0 853 0 004

0 344 0 009 0 857

symm. 2 831 0 032

2 852

× 104 .

The imaginary part of the sti ness matrix (hysteretic damping matrix) is pro-

portional to the sti ness matrix, because the loss factor has been assumed to be

constant in the structure. Any coordinate transformation yields a damping matrix

proportional to the sti ness matrix, so the former will be dealt with no further.

By inspecting the matrices, it is clear that:

• The element 11 of all matrices is uncoupled from all the others: The rigid-

body translational motion is fully uncoupled and is that of a point mass free

in space.

• The structure of the mass matrix is such that also the rotational motion is
uncoupled, and that the di erential translational modes are uncoupled from

di erential rotational modes.

• The structure of the gyroscopic matrix shows that rotational di erential
modes are coupled with the rigid-body rotational mode.

• The last two points are the same as seen in Section 12.2.1 for a twin-bodies
system with coinciding centers of mass.

• The sti ness matrix couples all equations, except for the first one, related
to the rigid-body translational motion.

• The matrix transformation shown leads then to a strong elastic coupling.
This could be expected, because rotation G , with all equal to zero does

not describe a rigid-body motion of the system, owing to the fact that the

centers of mass of the various bodies are not coincident.
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A transformation in which G is really a rigid-body motion is that in which

Equation (12.67) is substituted by

G =
1 1 + 2 2 + 3 3

1 + 2 + 3
,

1 = 1 2 + G ,

3 = 3 2 G ,

(12.70)

where and are the distances from the centers of mass of the first and the third

body to that of the second.

The coordinate transformation is then

1

2

1

3

=

1 0 2 0 3 0

0 1 0 21 0 3

1 1 0 0 0

0 1 0 1 0

0 1 0 1 0 0

0 0 0 1 0 1

1

1

2

2

3

3

.

The mass matrix becomes

M =

123 0 0 0 0 0

486 04 57 56 36 42 467 59 1 166

10 83 0 683 57 28 0 143

6 601 36 24 0 0904

symm. 465 35 1 161

0 0428

,

the gyroscopic matrix is the same as that for the previous computation, and the

sti ness matrix becomes

K =

0 0 0 0 0 0

0 0 0 0 0

0 344 0 0 861 0

0 344 1 722 0 861

symm. 11 486 4 306

2 873

× 104 .

Now the rotational motion is elastically uncoupled, but the mass matrix couples

all motions except rigid-body translation.

Consider again the consistent parameter system. The alternative of resorting

to modal analysis does not allow a much better uncoupling. The modal transfor-

mation can be started as usual, by computing the eigenvectors of the undamped

nongyroscopic system and then normalizing them in such a way that all elements

of the modal mass matrix on the main diagonal are equal to 1. In the present

case, however, this does not guarantee that the modal mass matrix is an identity

matrix (M= I), because there are two modes (the first two, if they are ordered

in ascending order) with equal eigenfrequency (in the present case with vanishing

eigenfrequency, because they are rigid-body modes). When this occurs, all linear
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combinations of the eigenvectors are eigenvectors, and then the two eigenvectors

that are found are not necessarily the two that are -orthogonal.

As a consequence, the element 12 of the modal mass matrix is not in general

null (M12 6= 0).
Let the two rigid-body eigenvectors be q1 and q2, and the sought -orthogonal

eigenvectors be ½
q3 = q1 + q2 ,

q4 = q1 + q2 .

The conditions leading to unit modal masses and to M12 = 0 are

q3Mq3 = ( q1 + q2) M ( q1 + q2) = 1 ,

q4Mq4 = ( q1 + q2) M ( q1 + q2) = 1 ,

q3Mq4 = ( q1 + q2) M ( q1 + q2) = 0 .

As the unknown coe cients are 4, a further condition can be added. In this

case -orthogonality is at any rate verified, because the first two modes are rigid-

body modes, and the first two lines and columns of the modal sti ness matrix are

at any rate equal to zero. As a fourth condition, the first modal gyroscopic term

will be assumed to vanish

q3Gq3 = ( q1 + q2) G ( q1 + q2) =G11 = 0 ,

which means that the first mode is a nongyroscopic one; i.e., the first modal

system is a free Je cott rotor.

By remembering that q1Mq1 = q2Mq2 = 1, the four conditions become

2
+

2
+ 2 M12 = 1 ,

2G11 +
2G22 + 2 G12 = 0 ,

2
+

2
+ 2 M12 = 1 ,

+ + ( + )M12 = 0 .

Performing the relevant computations, the (complex conjugate) values of the

four constants are = 0 274+0 394 , = 0 274 0 3945 , = 0 2585 0 4177 ,

and = 0 2585 + 0 4177 .

The matrix of the normalized eigenvectors is then

=

0 0902 0 2254 0 1726 0 0546 0 0577 0 0297

0 0 0470 0 0696 0 1454 0 8983 0 5141

0 0902 0 0096 0 0376 0 0005 0 0118 0 0033

0 0 0470 0 0140 0 2178 0 0270 0 0930

0 0902 0 2445 0 3012 0 1035 0 0676 0 1090

0 0 0470 0 0936 0 1566 0 5403 0 9610

.
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Mode

1 1 0 0.0000 0 0
2 1 0 0.0621 -0.0000 0.0000

0 3 1 130 0.0067 0.1141 0.0004
4 1 2377 1.3319 0.4875 0.3246
5 1 30686 0.1214 1.7517 0.1064
6 1 36335 0.3270 1.9061 0.3116

1 1 0 0.0000 0 0
2 1 0 0.0621 -0.0000 -0.0000

= 10 3 1 130 0.0067 0.1141 0.0004
4 1 2383 1.3306 0.4824 0.3216
5 1 30685 0.1214 1.7517 0.1064
6 1 36374 0.3285 1.9050 0.3099

TABLE 12.11. Modal parameters at standstill ( = 0) and at a spin speed
= 10 rad/s for the spining satellite.

The modal mass matrix is an identity matrix, and the gyroscopic and sti ness

matrices are

G =

0 0 0 0 0 0

0 0623 0 0184 0 2854 0 0382 0 1275

0 0067 0 0856 0 0011 0 0384

1 3319 0 1563 0 5499

symm. 0 1214 0 0851

0 3270

,

K = diag
¡£
0 0 130 2 377 30 684 36 333

¤¢
.

The first two modes are now rigid-body modes, and the first one is, as expected,

a purely cylindrical mode, and the second is a conical mode with the apex in

the center of mass. In this way, the first mode is a translational mode, and the

first row and column of the modal gyroscopic matrix vanishes. Otherwise, the

gyroscopic matrix is full, showing a complete gyroscopic coupling of all other

modes, as easily expected in a gyroscopic system.

To uncouple the equations of motion, it is possible to resort to the methods seen

in Section 3.7.

By applying the state-space, complex coordinates approach, the values of the

complex frequencies can be computed as functions of speed, and from them, through

Equation (3.87), the frequency-dependent modal parameters (modal mass, gyro-

scopic term, sti ness, rotating and nonrotating damping) can be obtained. The

system can thus be decoupled in a number of uncoupled, speed-dependent gyro-

scopic systems with two degrees of freedom.

By operating in this way, the values reported in Table 12.11 are obtained.



13
Dynamics of rotating beams and
blades

The rotors studied in the previous sections were modeled as beamlike struc-
tures, spinning about the axis of the beam. In many machines, however,
there are elongated elements, which can often be modeled as beams, with
their axis lying in radial direction, as for instance turbine or propeller
blades. In the simplest models, the dynamics of these elements is neglected,
and the blades are assumed to be rigid bodies, which contribute to the in-
ertia of the system but not to its compliance. The dynamics of the blades
is then studied separately.
When the aim of the study is to compute the critical speeds, the approx-

imations linked with neglecting blade (and disc) compliance are usually
acceptable, because the slope of the branches of the Campbell diagram
linked with blades (and discs) vibration is higher than that of the =
line and they do not give way to additional critical speeds.
There are, however, cases where the dynamics of the blades cannot be

neglected and influences the dynamics of the whole machine. Moreover, the
dynamic behavior of the blades is influenced by the rotational speed and
the rotor-blades interaction may give way to dangerous phenomena such
as instability.
The present chapter is devoted to give a qualitative understanding of the

main phenomena related to the blade dynamics, whereas a more quantita-
tive approach will be seen in the chapter dealing with the tridimensional
modeling of rotors.
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FIGURE 13.1. Rotating pendulum. (a) Sketch of the system and generalized co-
ordinates, (b) Campbell diagram, (c) situation in the -plane, and (d) situation
in a plane containing the -axis.

13.1 Rotating pendulum

The simplest model for an unidimensional object attached to a rotor in a
radial direction is a rotating pendulum. Although having little in common
with a blade (e.g., a turbine or compressor blade), it can shed some light on
the gyroscopic and centrifugal sti ening e ects. Moreover, rotating pendu-
lums have been used as torsional vibration dampers and constitute a good
first approximation model for the blades of helicopter rotors; their study
has then a practical interest.
A rotating pendulum can be described as a pendulum attached to the

outer radius of a rotating disc, whose angular velocity will be considered
as constant [Figure 13.1(a)].
As the angular velocity of the disc is imposed, the system has only

two degrees of freedom, and angles (between the projection of line PC
on the plane of the disc and radius OC) and (between line PC and the
mentioned plane) can be assumed to be the generalized coordinates. All
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other force fields except the centrifugal field (e.g., the gravitational field)
are neglected. The position of point P is

(P-O) =
cos( ) + cos( ) cos( + )
sin( ) + cos( ) sin( + )

sin( )
(13.1)

By di erentiating the expressions of the coordinates with respect to time,
the velocity of point P is readily obtained

P =
sin( ) ˙ sin( ) cos( + ) ( + ˙) cos( ) sin( + )

cos( ) ˙ sin( ) sin( + ) + ( + ˙) cos( ) cos( + )
˙ cos( )

(13.2)
The kinetic energy of the mass located in point P is then

T =
1

2
| P |

2 =
1

2

£
2 2 + ˙ 2 2 + 2( + ˙)2 cos2( )+

2 ˙ sin( ) sin( ) + 2 ( + ˙) cos( ) cos( )
¤

(13.3)

The equations of motion can be obtained by resorting to Lagrange equa-
tions. They are clearly nonlinear, because of the presence of trigonometric
functions of the generalized coordinates. The derivatives appearing in the
first equation, the one related with the motion in the plane of rotation, are

T

˙
=

h
2( + ˙) cos2( ) + cos( ) cos( )

i
,³

T

˙

´
=

h
2¨ cos2( ) 2 2( + ˙) ˙ cos( ) sin( )+

˙ sin ) cos( ) ˙ cos( ) sin( )
i
,

T =
h

˙ sin( ) cos( ) ( + ˙) cos( ) sin( )
i

(13.4)

Operating in the same way also for the second equation, the following
nonlinear equations of motion are obtained:

½
¨ cos2( ) 2 ( + ˙) ˙ cos( ) sin( ) + 2 cos( ) sin( ) = 0 ,
¨ + ( + ˙)2 cos( ) sin( ) + 2 sin( ) cos( ) = 0

(13.5)

The equations of motion can be linearized for the study of the small
oscillations of the pendulum about the static equilibrium position

½
¨ + 2 = 0 ,
¨ + 2( + ) = 0

(13.6)

As usual, the expression of the kinetic energy can be subdivided into
three terms:
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T0 =
1

2
2
£
2 + 2 cos2( ) + 2 cos( ) cos( )

¤
(13.7)

is independent from the generalized velocities. Its role is similar to that
of the potential energy and is usually referred to as dynamic potential .
Apart from a constant term, whose derivatives are nil, it yields the so-
called geometric sti ness terms in the linearized equation of motion. As
usual in rotating systems, they constitute a centrifugal sti ening and are
proportional to the square of the spin speed.

T1 =
£
˙ cos2( ) ˙ sin( ) sin( ) + ˙ cos( ) cos( )

¤
(13.8)

is linear in the generalized velocities.

T2 =
1

2
2
£
˙ 2 + ˙

2

cos2( )
¤

(13.9)

is quadratic in the generalized velocities and yields the inertial terms of the
equations of motion, which are also present in natural systems.
The linearized equations can also be obtained directly from an expression

of the kinetic energy truncated after quadratic terms. By introducing the
series for the sine and cosine or the generalized coordinates in which terms
of order greater than two are discarded, the kinetic energy can be written
as

T =
1

2

£
2( + )2 + ˙ 2 2 + ˙

2
2 2 ( + ) 2 2 2 + 2 ( + )˙

¤

(13.10)
The linearized expressions for three terms T0, T1, and T2 are

T0 =
1

2
2

·
( + )2

µ
+
2

¶
2 2

¸
, (13.11)

T1 = ( + )˙ . (13.12)

Note that T1 is independent of the displacements, and its derivatives in
the equations of motion are nil (the derivative with respect to ˙ is constant,
and hence, it yields no term once it has been di erentiated with respect
to time): There is no gyroscopic term in the linearized equations of the
rotating pendulum.

T2 =
1

2
2
£
˙ 2 + ˙

2¤
. (13.13)

Remark 13.1 As the linearized equations of motion are decoupled, the

motion in the rotation plane (in-plane motion) is uncoupled, within the

validity of the linearization of the equations of motion, from the motion
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in axial direction (out-of-plane motion). The former is the motion of a

pendulum whose length is within a constant force field whose acceleration

is 2, and the latter is the motion of the same pendulum within a constant

force field whose acceleration is ( + ) 2.

The natural frequencies of the motions outside and within the rotation
plane are, respectively,

1 =

r
1 + = 1 + 2 =

r
= , (13.14)

where

= (0 ) , (13.15)

where the limiting cases are = 0, infinitely long pendulum or infinitely
small disc, and , vanishingly short pendulum.
As the natural frequencies are proportional to the spin speed, it is pos-

sible to introduce ratio between the frequency and the speed:

= . (13.16)

The frequency of the out-of-plane oscillations 1 is always larger than
the spin speed ( 1 = 1 + 1). In the case of in-plane oscillations, two
cases can be defined:

• 0 1, i.e., the pendulum is longer than the radius at which
it is attached. In this case, here referred to as long pendulum, the
frequency is lower than the spin speed (

2 1).

• 1, i.e., the pendulum is shorter than the radius at which it is at-
tached. In this case, here referred to as short pendulum, the frequency
is higher than the spin speed (

2
1).

Instead of ratio , it is possible to use ratio

=
+

=
+ 1

(13.17)

between the radius of the disc and the outer radius = + of the
disc-pendulum assembly The values of 1 and 2 are

1 =
1
=

r
1

1 2 =
2
=

r
1

(13.18)

Remark 13.2 The natural frequencies are referred to the rotating frame,

i.e., are those seen by an observer that rotates at the speed This applies

everywhere in the present chapter, unless otherwise specified.
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The Campbell diagram, shown in Figure 13.1(b) for the case in which
= , is then made of two straight lines. A simple explanation of the

di erent behavior of the system in a plane containing the axis of rotation
and a plane perpendicular to it ( -plane) is shown in Figures 13.1(c) and
(d). In the former, the restoring force acting on the pendulum in a direction
perpendicular to line PC is

sin( ) 2( + )

In the -plane, the restoring force is

sin( ) 2( + )( )

As ( + ), the restoring force is 2 .
Equations (13.18) are plotted in Figure 13.2. From the figure, it is clear

that the frequency of the in-plane oscillations vanishes when 0; i.e., the
pendulum is hinged on the spin axis, and the frequency of the out-of-plane
oscillations tends to be equal to the spin speed in the same conditions. This
means that point P moves on a circle inclined with respect to the spin axis.
When the pendulum becomes very short ( 1, ), the frequencies
of the in-plane and out-of-plane oscillations tend to coincide and become
much higher than the spin speed.

Remark 13.3 Although in the case of the spherical pendulum, the oscil-

lations can take the form of any combination of harmonic motions in two

perpendicular planes, and hence can follow a straight line, an ellipse (ob-

viously projected on the spherical surface to which the bob of the pendulum

is constrained) or a circle, the rotating pendulum can oscillate only in the

two mentioned planes. This occurs because when two natural frequencies

are equal, any linear combination of the corresponding mode shapes is itself

a mode shape (case of the spherical pendulum); the rotating pendulum does

not have a pair of identical eigenfrequencies, and hence, the two modes (in-

plane and out-of-plane oscillations) cannot combine if not as the mixing of

two oscillations at di erent frequencies, giving way to a sort of Lissajous

figures.

13.2 Rotating pendulum constrained to oscillate in
a plane

If the pendulum is constrained to oscillate in a plane that neither is perpen-
dicular to the spin axis nor contains it, angles and are not independent.
If the plane of oscillation makes and angle with the axis of rotation
(Figure 13.3), they can be expressed as
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FIGURE 13.2. Ratios
1
and

2
between the natural frequencies of the pendulum

and the spin speed as functions of ratio = between the radius of the disc
and the outer radius = + of the disc-pendulum assembly and as function
of ratio = .

½
= 1 sin ( ) ,
= 1 cos ( ) ,

(13.19)

where 1 is the angle of oscillation of the pendulum in its plane.
The equation of motion can be obtained simply by substituting the Ex-

pressions (13.19) into Equation (13.3). To avoid long computations, only
the linearized approach is here followed, and Equation (13.10) is used to
express the kinetic energy. The substitution yields

T =
1

2

£
2( + )2 + ˙1

2 2
£
+ cos2( )

¤
1
2 + 2 ( + )˙1 sin( )

¤

(13.20)
The linearized equation of motion is then

¨
1 +

2
£
+ cos2( )

¤
1 = 0 (13.21)

yielding a natural frequency

=

r
+ cos2( ) =

p
+ cos2( ) . (13.22)

The limiting cases = 0 and = 90 yield, respectively, the out-of-plane
and the in-plane natural frequency.
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FIGURE 13.3. Rotating pendulum constrained to oscillate in a plane making
angle with the axis of rotation.

13.3 Spring-loaded rotating pendulum

In the rotating pendulums studied in the previous two sections, the restor-
ing e ect is only caused by the centrifugal field and the natural frequency
vanishes at zero speed. Consider now the case of a rotating pendulum in
which there are two springs supplying a restoring force toward the radial
direction. Let and be the sti ness of the springs acting in-plane and
out of the rotation plane. The potential energy caused by the springs is

U =
1

2
2 +

1

2
2 (13.23)

By introducing the derivatives of the potential energy into the linearized
equations of motion (13.6), the latter reduce to

½
2¨ +

¡
2 +

¢
= 0 ,

2¨ +
£

2 ( + ) +
¤
= 0

(13.24)

The out-of-plane and in-plane natural frequencies are then

1 =

r
2
+ 2

+
2 =

r
2
+ 2 . (13.25)

By introducing the natural frequencies at standstill

=

r
2

=

r
2
, (13.26)
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FIGURE 13.4. Nondimensional natural frequencies of a spring-loaded rotating
pendulum as functions of the nondimensional speed. The dashed lines refer to the
case in Figure 13.1(b) and to the constant natural frequency of the nonrotating
pendulum.

and remembering the definitions of ratios
1
and

2
between the natural

frequencies of the (springless) pendulum and the spin speed expressed by
Equation (13.18), the expressions of the natural frequencies reduce to

1 =
q

2 + 2 2

1 2 =
q

2 + 2 2

2
. (13.27)

Equations (13.27) are plotted in nondimensional form in Figure 13.4.
Both the natural frequency and the spin speed have been made
nondimensional by dividing them by for out-of-plane natural frequencies
and by for in-plane oscillations.

13.4 Rotating string

Consider a string, i.e., a one-dimensional body whose bending sti ness is
vanishingly small, attached at the outer radius of a rotating disc [Figure
13.5(a)]. The generic point P of the string, located at radius , moves to P’;

its displacement in the rotating frame is u = [ ] . The radius of
the disc is , the outer radius is , and the length of the string is = (

).
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FIGURE 13.5. Rotating string. (a) Sketch and reference frame. P is the position
of a generic point of the string in its undeflected position; it moves to P’ during
deformation. (b) Force acting on the length of the string; situation in -plane.

The coordinates of point P’ in the inertial frame are

(P’-O) =
( + ) cos( ) sin( )
( + ) sin( ) + cos( ) (13.28)

By di erentiating the expressions of the coordinates with respect to time
and assuming that the spin speed is constant, the velocity of point P is
readily obtained

P’ =
( + ) sin( ) + ˙ cos( ) cos( ) ˙ sin( )
( + ) cos( ) + ˙ sin( ) sin( ) + ˙ cos( )

˙
(13.29)

The kinetic energy of the length of the string located at point P’
[Figure 13.5(b)] is

T = 1

2
| P’|

2 = 1

2

£
2 ( + )

2
+ 2 2 + ˙2 + ˙2 + ˙ 2+

+2 ( + ) ˙ 2 ˙
¤

(13.30)
The equations of motion of the length of the string can be obtained

through the Lagrange equations. By performing the relevant derivatives, it
follows that

£
¨ 2 ( + ) 2 ˙

¤
= ,¡

¨ 2 + 2 ˙
¢
= ,

¨ = .
(13.31)
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The generalized forces acting on the length of the string are caused
by the tensile force in the string. With reference to Figure 13.5(b), in
which the situation in the -plane is shown (but an identical sketch could
be plotted for the -plane), it follows that

= ,

=
³

+
2

2

´
=

¡ ¢
,

=
³

+
2

2

´
=

¡ ¢
.

(13.32)

Assume that the string is infinitely sti in radial direction and that the
radial displacement and its derivatives are negligible. Under these condi-
tions, the first Equation (13.31) reduces to

2 = (13.33)

which can be readily integrated, yielding the tensile force in the string

=
1

2
2 2 . (13.34)

The integration constant can be computed by stating that the tensile
force must vanish at the end of the string ( = ), obtaining

=
1

2
2
¡
2 2

¢
. (13.35)

The two equations describing the motion in and planes are then
(
¨ 2 + 2 1

2

2
¡
2 2

¢ 2

2 = 0 ,

¨ + 2 1

2

2
¡
2 2

¢ 2

2 = 0 .
(13.36)

Remark 13.4 The equations describing the motion in the plane of rotation

( -plane) and in a plane containing the axis of rotation ( -plane) are

uncoupled but di erent from each other. Like in the case of the rotating

pendulum, the behavior in the two planes is di erent.

By introducing the nondimensional variable

= ,

and by assuming that the motion is harmonic in time

½
= ( ) cos( 2 ) ,
= ( ) cos( 1 ) ,

(13.37)

Equation (13.36) becomes
( ¡

2

2
+ 2

¢
2 + 1

2

2
¡
1 2

¢ 2

2 = 0 ,
2

1

2 + 1

2

2
¡
1 2

¢ 2

2 = 0 .
(13.38)
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The equations describing the shapes taken in the out-of-plane and in-
plane vibration of the rotating string are then

( ¡
1 2

¢ 2

2 2 + 2 2

1
= 0 ,¡

1 2
¢ 2

2 2 + 2
¡

2

2
+ 1
¢

= 0 ,
(13.39)

where

1
=

1

2
=

2
(13.40)

are the ratios between the frequencies of the out-of-plane and in-plane
oscillations and the spin speed.
The solution of the first Equation (13.39) can be assumed to be

=
X
0

. (13.41)

By introducing the Solution (13.41) into Equation (13.39) and balancing
the powers of , it follows that

+2 =
( + 1) 2 2

1

( + 1)( + 2)
. (13.42)

Solution (13.41) contains only two arbitrary coe cients, 0, which ap-
pears in all even terms of the series, and 1, which appears in all odd terms.
As the problem is a homogeneous one, the amplitude of the inflected shape
is not determined, and one coe cient, say, 1 can be left undetermined.
The ratio 0 1 can be determined using one of the boundary conditions,
e.g., the condition at the inner radius . As the string is attached to the
disc, at the inner radius, must vanish. This condition yields

0

1

=
+ 3

1

3 + 5

1

5 + 7

1

7 + · · ·

1 + 2

0

2 + 4

0

4 + 6

0

6 + · · ·
, (13.43)

where = .
The second boundary condition must be stated at the outer edge, which

is assumed to be free. From Figure 13.5(b) it follows that at a free edge, the
slope must be equal to the ratio between the acceleration caused
by vibration and the centrifugal acceleration

µ ¶

=1

= 2

1
( )

=1
; (13.44)

i.e.,

0
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µ
2

2

0
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1

+ · · ·+
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FIGURE 13.6. Values of as functions of the radii ratio for out-of-plane oscil-
lations (full lines) and in-plane oscillation (dashes lines) and of ratio .
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¸
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(13.45)
As the various ratios between coe cients that appear in Equation (13.45)

are functions of
1
, it can be regarded as an equation in

1
yielding the

natural frequencies of the system.
An exact solution can be found for the case = 0, i.e., of a string reaching

the axis of rotation. Constant 0 vanishes, and only a limited number of
terms of the series can be shown to be present. The values of

1
obtained

from Equation (13.45) are

1
=
p
(2 1) with = 1 2 3 4 . (13.46)

No exact solution can be found for other values of , but the series
converges quickly and numerical solutions can be obtained by truncating it
after a number of terms. The results of a number of numerical computations
are reported in Figure 13.6, full lines. Also, in this case, as in that of the
rotating pendulum, the first natural frequency is equal to the spin speed
when = 0 (

1 = 1) and then increases with increasing inner radius.
A similar computation can be performed for the case of in-plane oscilla-

tions. The two Equations (13.39) are identical, if 1 + 2

2
is substituted for

2

1
. Also the boundary conditions are identical; it follows that if 2

1
is an

eigenvalue for the equation of the out-of-plane oscillations, 2

2
= 2

1
1 is

an eigenvalue for the equation of the in-plane oscillations. For each out-of-
plane natural frequency, there is an in-plane natural frequency that can be
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obtained as

2 =
q

2

1
2 . (13.47)

The nondimensional natural frequencies for the in-plane oscillation are
reported as functions of in Figure 13.6, dashed lines. The first natural
frequency vanishes for = 0, and the in-plane frequencies get closer and
closer to the out-of-plane frequencies with increasing .
Also, in this case, it is possible to distinguish between long strings, with
1, and short strings, with 1.

13.4.1 Rotating string constrained to oscillate in a plane

If the string is constrained to oscillate in a plane that is neither perpen-
dicular to the spin axis nor contains it, displacements and are not
independent. If the plane of oscillation makes and angle with the axis
of rotation, the displacement in - and -directions are linked with the
displacement by the relationships:

½
= sin ( ) ,
= cos ( ) .

(13.48)

The expression of the kinetic energy of a length of the string is then

T = 1

2
| P |

2 = 1

2

£
2 ( + )

2
+ 2 2 sin2 ( )+

˙2 + ˙ 2 4 ( + ) ˙ sin ( )
¤ (13.49)

Operating in the same way as seen for rotating pendulums, the equation
describing the motion in a plane inclined of angle with the -plane is

¨ 2 sin2 ( ) + 2
1

2
2
¡
2 2

¢ 2

2
= 0 (13.50)

or, in nondimensional terms

¡
1 2

¢ 2

2
2 + 2

£
2 + sin2 ( )

¤
= 0 (13.51)

The natural frequency of the string is thus

=
q

2

1
2 sin2 ( ) , (13.52)

where 1 = 1
and

1
is the ratio between the out-of-plane natural fre-

quency and the spin speed [Equation (13.40)].
A constrained string can be considered as an idealized model of a very

thin blade, with a negligible bending sti ness in the direction perpendicular
to its plane and a very high sti ness in its plane (Figure 13.7). The case
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FIGURE 13.7. Rotating beam: sketch and reference frames

with = 0 is then the case of a infinitely thin blade lying in the plane
of the disc (like the blade of a helicopter rotor with zero pitch), whereas
= 90 is the case of a blade parallel to the spin axis. The two cases

coincide with the out-of-plane and the in-plane oscillations of a string seen
in the previous section. The natural frequencies in all intermediate cases are
included between the limits so identified (i.e., the curves ( ) are included
between the dashed and the full lines in Figure 13.6).

13.4.2 Rotating beam

Consider a beam attached radially to a rotating disc. Assume that all as-
sumptions yielding a complete uncoupling among axial, bending, and tor-
sional behavior are satisfied and that the cross section has two symmetry
axes (Figure 13.7). The principal axis of elasticity of the cross section cor-
responding to the largest moment of inertia, axis makes an angle with
the plane of rotation and the beam is not twisted.
The limiting case of the previous section corresponds to the case in which

the moments of inertia of the cross section about the principal axes and
are 0 and .
Assume that the beam is slender enough to approximate its behavior

using the Euler-Bernoulli approach, i.e., neglecting the shear deformation
and the kinetic energy caused by rotation of the cross section about their
principal axes of inertia. The equation of motion for bending in -plane
(but the same holds also for -plane) can be obtained by adding the
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restoring force caused by the bending moment in the beam to the equa-
tion of motion of the string (Equation 13.50). Using the Euler-Bernoulli
approach, such a term can be expressed as

2

2

µ
2

2

¶
.

Remembering that Equation (13.50) has been divided by and releas-
ing the assumption of prismatic homogeneous beam, the equation of motion
of the length of the beam becomes

¨ 2 sin2 ( )

µ ¶
+
1 2

2

µ
2

2

¶
= 0 (13.53)

If the beam is homogeneous and prismatic, the equation motion simplifies
as

¨ 2 sin2 ( )+ 2
1

2
2
¡
2 2

¢ 2

2
+

4

4
= 0 (13.54)

By introducing the nondimensional variable = and assuming that
the motion is harmonic in time

= ( ) cos( ) , (13.55)

Equation (13.54) becomes

·
2

2
+ sin2 ( )

¸
+
1

2

¡
1 2

¢ 2

2 2 4

4

4
= 0 (13.56)

The boundary conditions depend on how the beam is constrained to the
disc and whether it is constrained at the outer edge. In the case of Figure
13.7, the outer edge ( = 1) is free; i.e., the bending moment and the shear
force are vanishingly small. This yields

µ
2

2

¶

=1

= 0

µ
3

3

¶

=1

= 0 (13.57)

The beam is clamped to the disc at its inner edge ( = = ), so
that its displacement and rotation vanish

( )
=
= 0

µ ¶

=

= 0 (13.58)

By introducing the nondimensional speed and frequency

=
4

=
4

, (13.59)
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the solution of the eigenproblem associated with Equation (13.41), i.e., the
value of the natural frequency , can be shown to depend, for each value
of ratio = , angle , and each set of boundary conditions, only
on a single parameter, namely, the spin speed . The Campbell diagram
( ) is then unique for a given geometrical configuration of the beam.
The solution of Equation (13.56) can be attempted by using a series of

the type of Equation (13.41). Relationships of the type of Equation (13.42)
can be found also in the present case, but here the number of coe cients
to be found using the boundary conditions is four (instead of two) and

the complexity of this approach is overwhelming.
For = 0, the natural frequencies of the nonrotating beam are obtained.

Their value is given by Equation (5.29)

=
2

( )
2

s
(13.60)

i.e.,

=
2

(1 )
2
, (13.61)

where the values of constants depend on the boundary conditions (Table
5.2).
If the beam is clamped at one end (inner edge) and free at the other one

(outer edge), as it often occurs for rotating blades, the mode shapes are
[17]

( ) = sin(
1
) sinh(

1
)

£
cos(

1
) cosh(

1
)
¤
, (13.62)

where

=
sin( ) + sinh( )

cos( ) + cosh( )
(13.63)

and 1 = ( ) (1 ) is a variable that takes the value 0 at the inner
end of the beam and 1 at the outer end. From the mentioned tables the
values of for the first four natural frequencies are 1.875, 4.694, 7.855,
and 10.996.
To obtain the structure of the equation yielding , taking rotation into

account without actually solving a very complex eigenproblem, Equation
(13.56) can be multiplied by ( ) and integrated along the beam

Z ½·
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(13.64)
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By introducing variable instead of and performing some computation,
it follows that
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(13.65)

The last integral can be shown to be
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As both
¯̄
¯ 3

3
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¯
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¯ 2
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vanish because of the boundary conditions,

it follows that Z
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(13.67)

In the same way, the second integral can be shown to be
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because also
¯̄
¯¡1 2

¢ ¯̄
¯
1

vanishes because of the boundary conditions.

Equation (13.65) then simplifies as
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(13.69)

which yields the natural frequency of the beam
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Equation (13.65) yields the natural frequency of the rotating beam, once
the mode shape ( ) is known, which implies solving the eigenproblem men-
tioned above. It can be used, however, to obtain approximated solutions.
As a first point, if the angular velocity vanishes, Equation (13.65) coin-

cides with Equation (13.60). This can be demonstrated by introducing the
mode shape of the nonrotating beam [Equation (13.62)] and integrating nu-
merically. This can be a way to compute the values of for a clamped-free
beam reported in Table 5.2.
The expression for the natural frequency then reduces to

=
q

2 + 2
¡

sin2 ( )
¢

(13.71)

where

=
1

2

R
1
¡
1 2

¢ ³ ´2
R
1

2

(13.72)

A lower bound for is easily computed by following the suggestion given
by Southwell for rotating plates [6], and computing an approximated value
of the natural frequency as

p
2 + 2 , (13.73)

where and are the natural frequencies of the nonrotating beam and
of the rotating strings.1 Operating in this way, the value of is the square
of reported in Figure 13.6, full line.
An upper bound can be obtained by introducing into Equation (13.72)

the inflected shape computed for a nonrotating beam and integrating nu-
merically. In the case of a beam starting from the axis of rotation ( = 0),
the values of the lower and upper bounds of for the first four modes are

mode # 1 2 3 4
(lower bound) 1 6 15 28
(upper bound) 1 1933 6 4782 17 8596 36 0554

In spite of the analytical complexity, a numerical solution, e.g., obtained
using the finite element method, is straightforward.
The nondimensional Campbell diagram for the first natural frequency of

the out-of-plane vibrations ( = 0) of a rotating beam with = = 0 5,
the inner edge clamped and the outer one free, is reported in Figure 13.8.
The lower and upper bounds for are in this case 2.5265 and 2.7642,

respectively. The corresponding values of the natural frequency obtained
using Equation (13.71) are reported, together with the value obtained using
the FEM, in Figure 13.8.

1A similar equation holds exactly in the case of a spring-loaded rotating pendulum.
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FIGURE 13.8. Nondimensional Campbell diagram for the first out-of-plane mode
of a clamped-free beam with = = 0 5 (full line). Also the value for
a nonrotating beam and for the rotating strings are reported. 1 and 2 are
the lower and upper bounds given by Equation (13.71).

In-plane blade vibration is seen, at a rotor level, as a torsional vibration,
whereas out-of-plane blade vibration is essentially an axial vibration of
the rotor. If the blades have an angle di erent from 0 or 90 , their
presence couple axial and torsional modes. Moreover, in most cases, blades
are twisted; i.e., angle is not constant.

13.5 Dynamics of a row of rotating pendulums

13.5.1 Pendulums on a rigid support

In the previous sections, the dynamic behavior of the blades has been stud-
ied at the level of a single unit. In real machinery, usually the blades are
integrated in rows and their global behavior interacts with the dynamics
of the disc (or discs) on which they are mounted and of the shaft. The
dynamic behavior of all parts must then be studied at a system level.
The simplest model for a row of blades is a system made of a number
of identical pendulums evenly spaced at the outer radius of a rotating

disc. Assume that they can oscillate only in axial direction. The system has
then a number of degrees of freedom, and angles [Figure 13.1(a)] can
be used as generalized coordinates. However, a coordinate transformation
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is possible:

= 0+ 1 cos ( )+ 2 sin ( )+ 3 cos (2 )+ 4 sin (2 )+ , (13.74)

where angle

= 2
1

(13.75)

is the angle at which the th pendulum is attached. The coordinate trans-
formation can thus be written in the form

=

1

2

3
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1 cos (
1
) sin (

1
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1 cos (
2
) sin (

2
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1 cos (
3
) sin (

3
)

0

1

2

= Tu .

(13.76)
The transformation matrix T must be square, so that the number of

harmonics that must be considered depends on the number of the blades.
Consider for instance the case of four pendulums. Angles are 0, , 2 ,
and 3 2, and matrix T is

T =

1 1 0 1
1 0 1 1
1 1 0 1
1 0 1 1

.

By applying the coordinate transformation (13.76) to the linearized equa-
tion of motion for the in-plane oscillations of the four pendulums [second
Equation (13.6)], it follows that

T Tü = 2 ( + )T Tu .

The result is a set of four identical equations of the type

¨ = 2 ( + ) .

As expected, the natural frequencies are all equal and are equal to the
frequencies of the pendulums, but the meaning of the equations is di erent:
Now they describe the motion of the row of pendulums as a single entity.
The first equation, in 0, describes the synchronous motion of all pendulums
[Figure 13.9(a)]. This mode is coupled with the axial vibrations of the disc.
The second and the third modes [Figures 13.9(b and (c)] regard two of

the pendulums that move with 180 phasing with each other, whereas the
other two do not move. These modes are coupled with rotations and
of the disc about - and -axes, respectively, and hence are coupled with
the flexural behavior of the shaft. Even in this case it is possible to define a
complex coordinate, in the same way already seen for the rotational degrees
of freedom of the shaft:

= 1 2 .
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FIGURE 13.9. Modes of the row of four pendulums oscillating in a direction
perpendicular to the rotation plane of the disc.

The fourth mode [Figure 13.9(d)] is a mode in which the pendulums
move at 180 phasing with each other. No inertia reaction is exerted on
the disc (if it is considered as a rigid body) or on the shaft, and hence it is
uncoupled with the dynamics of the latter. More modes would have been
found if more pendulums were present, but none of them would have been
coupled with the overall dynamics of the rotor (always assuming that the
disc to which they are attached is rigid).
Consider now four identical pendulums that can perform in-plane oscilla-

tions. Operating in the same way, the row of pendulums can be considered
as a single entity, and four modes are readily identified [Figure 13.10(a)].
The first mode, with all pendulums oscillating in phase, is coupled with
the torsional oscillations of the disc and of the shaft.
The second and the third modes [Figures 13.10(b) and (c)] regard two of

the pendulums that move with 180 phasing with each other, whereas the
other two do not move. These modes cause a shift of the center of mass in
- and -directions and are coupled with displacements C and C of the
disc along - and -axes, respectively, and hence are again coupled with the
flexural behavior of the shaft. It is possible to define a complex coordinate,
in the same way already seen for the displacement of the shaft:

= 2 + 1 .

The fourth mode [Figure 13.10(d)] is a mode in which the pendulums
move at 180 phasing with each other. No inertia reaction is exerted on
the disc (if it is considered as a rigid body) or on the shaft, and hence it is
uncoupled with the dynamics of the latter. Also in this case other modes
would have been found if more pendulums were present, but none of them
would have been coupled with the overall dynamics of the rotor.
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FIGURE 13.10. Modes of the row of four pendulums oscillating in the rotation
plane of the disc.

In the cases studied above, the pendulums could oscillate either in the
rotation plane or in a plane containing the spin axis. If the oscillation plane
is inclined with respect to the spin axis (by angle , Figure 13.7), the zero-
order mode couples with both the axial and the torsional vibrations of the
rotor. The first-order modes are coupled also in this case with the flexural
behavior of the rotor, and they do not introduce further coupling. The
higher modes are uncoupled from the dynamics of the shaft.

Remark 13.5 The presence of blades that are set at an angle with the axial

direction or that are twisted cause a torsional-axial coupling of the system.

It, however, does not cause any coupling between the flexural dynamics and

the resulting axial-torsional dynamics.

What has been said above applies to the case in which the pendulums
are identical and equispaced. If the first condition is not satisfied, each pen-
dulum has its own natural frequency and the transformation (13.76) does
not yield any more a set of uncoupled equations. Consider, for example, the
case of four equispaced pendulums of di erent lengths oscillating in axial
direction. Assume that the natural frequency of the th pendulum is

2 =
( + )

= 2 (1 + ) ,
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where is the root mean square (rms) value of the various natural frequen-

cies. From this definition, it follows that
P
4

= 0
By applying the transformation (13.76) to the equation of motion, it

follows that

diag
£
4 2 2 4

¤
ü =

= 2

4 1 3 2 4 1 + 3 2 4

2 + 1 + 3 0 1 3

2 + 2 + 4 4 2

symm 4

u .
(13.77)

The equations of motion are all coupled, and as a result, the dynamics of
the pendulums couples with the axial and the flexural behavior of the rotor
(and with the torsional behavior, if the in-plane oscillations were accounted
for). Coordinates are then not modal coordinates, and it is no more
possible to speak of zero-order, first-order, etc. modes. The modes, i.e., the
eigenvectors that can be computed from Equation (13.77), correspond to
the vibrations of the single pendulums.
This case is of practical interest, because in most applications, the tur-

bine blades are detuned , i.e., are not exactly equal with each other. These
small di erences in cross section, i.e., in mass and elasticity, are caused
by machining tolerances or even purposely introduced to avoid very strong
resonances of the row of blades as a single entity. The natural frequencies
of the blades are spread in a range, and the coupling causes the vibration of
the blades to be damped by the same damping mechanisms that are aimed
to damp the vibration of the rotor as a whole. This coupling, however, is
not so strong to prevent from studying the axial, torsional, and flexural
vibrations except when dealing with the damping of the vibration of the
blades.

13.5.2 In-plane oscillations of pendulums on elastic supports

Consider now the same row of rotating pendulums seen in the previous
section, but now assume that the rigid disc is soft-mounted on an elastic
support; assume also that the support is isotropic in the rotation plane
and that its radial sti ness is in any direction. Consider only the in-
plane vibrations of the system, and assume that the rotational speed is
constant.
The disc at which the pendulums are attached has a mass , and the

coordinates of its center are and [Figure 13.11(a)]. Neglecting the kinetic
energy caused by rotation, because it is constant and does not yield any
term of the equations of motion, its kinetic energy is

T =
1

2
| C |

2 =
1

2

¡
˙2 + ˙2

¢
. (13.78)
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FIGURE 13.11. (a) Sketch of the position of the th pendulum of the row. (b)
Geometrical interpretation of coordinates 1 and 2.

The potential energy of the spring is

U =
1

2

¡
2 + 2

¢
. (13.79)

The position in -plane of point P in which the bob of the th pendulum
is located is

(P -O) =

½
+ cos( ) + cos( + )
+ sin( ) + sin( + )

¾
(13.80)

where angle is
= + (13.81)

and is the angle defining the position of the th pendulum in the row.
As the latter is a constant, ˙ = .
The velocity of point P can be obtained by di erentiating the expressions

of the coordinates with respect to time

P =

½
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(13.82)

The kinetic energy of the mass located in point P is then
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(13.83)
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The total kinetic energy is then

T = T +
X
=1

TP . (13.84)

Note that, as usual, the expression of the kinetic energy contains a term
that is independent from the spin speed (T2), a second term linear in
(T1), and finally a term containing the square of the speed (T0).
By performing the relevant derivatives of the kinetic and potential energy,

and linearizing the results, the following + 2 linear equations of motion
can be obtained:

• First Equation (translation along -axis)

¨ +
P

=1

h
¨ sin( ) 2 ( + ) cos( )+

+ 2 sin( ) 2 ˙ cos( )
i
+ = 0 ,

(13.85)

where

= + (13.86)

is the total mass of the system. By remembering some trigonometric
identities and noting that

X
=1

sin( ) =
X
=1

cos( ) = 0 , (13.87)

it is possible to write the first equation in the form
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(13.88)

It is possible to simplify substantially the first equation of motion
by applying the coordinate transformation (13.76). By inverting the
transformation matrix, it is possible to write
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2

3

,

(13.89)
where = 2 everywhere, except for the last row in which = 2 if
is odd and = 1 if is even.



13.5 Dynamics of a row of rotating pendulums 491

By inspecting Equation (13.89), it is clear that the sums included into
Equation (13.88) are coordinates 1 and 2 and their time derivatives.
Equation (13.88) reduces to

¨ +
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2
1 + 2 ˙2

¢
sin( )+

+
2

¡
¨2 +

2
2 2 ˙1

¢
cos( ) + = 0 .

(13.90)

Note that in this equation, only three generalized coordinates (namely,
, 1, and 2) are present. Moreover, the equation is linear, but the
coe cients are periodic in time through angle .

• Second Equation (translation along -axis)

¨+
P

=1

h
¨ cos( ) 2 ( + ) sin( )+

2 cos( ) 2 ˙ sin( )
i
+ = 0 .

(13.91)

By operating in the same way seen for the first equation and using
the same coordinate transformation, Equation (13.91) reduces to

¨
2

¡
¨1 +

2
1 + 2 ˙2

¢
cos( )+

+
2

¡
¨2 +

2
2 2 ˙1

¢
sin( ) + = 0 .

(13.92)

• Last equations (rotations )

¨ sin( )+¨cos( )+¨ + 2 = 0 for = 1 ; (13.93)

i.e.,

[ ¨ sin( ) + ¨cos( )] cos( ) + [ ¨ cos( ) ¨sin( )] sin( )+

+¨ + 2 = 0 .
(13.94)

If the generic th equation of this group is written in the form = 0,
they can be substituted by their linear combinations

T 1p = 0 , (13.95)

where T is the coordinate transformation matrix defined in Equation
(13.76).

The first of these equation is simply

¨0 +
2

0 = 0 . (13.96)

It decouples from the other equations and states that the motion with
all pendulums oscillating in phase following a pattern of the type shown
in Figure 13.10(a) is not a ected by the lateral motion of the disc. It is,
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however, coupled with the torsional torsional behavior of the disc, which has
not been considered here. This motion will not be dealt with any further.
The following two equations yield:

¨ sin( ) + ¨cos( ) + ¨1 +
2

1 = 0 ,
¨ cos( ) ¨sin( ) + ¨2 +

2
2 = 0 .

(13.97)

They are coupled with the first two equations, showing that the motion
with all pendulums following a pattern of the type shown in Figure 13.10(b)
and (c) is coupled with the motion of the disc.
All of the following equations do not contain either or . They are all

of the type

¨ + 2 = 0 for = 3 1 . (13.98)

They show that all motions following a pattern of the type shown in
Figure 13.10(d), i.e., with the center of mass of the system of the pendulums
stationary in the center of the disc, are uncoupled with the motion of the
latter. These equations will not be dealt with any further.
The disc-pendulums interaction can thus be studied using a set of four

linear equations (with periodic coe cients) in the coordinates , , 1, and

2

¨ +
2

¡
¨1 +

2
1 + 2 ˙2

¢
sin( )+

+
2

¡
¨2 +

2
2 2 ˙1

¢
cos( ) + = 0 ,

¨
2

¡
¨1 +

2
1 + 2 ˙2

¢
cos( )+

+
2

¡
¨2 +

2
2 2 ˙1

¢
sin( ) + = 0 ,

¨ sin( ) + ¨cos( ) + ¨1 +
2

1 = 0 ,
¨ cos( ) ¨sin( ) + ¨2 +

2
2 = 0 .

(13.99)

The physical meaning of 1 and 2 is straightforward. Each one of the
terms that are added to yield 1 and 2 in Equation (13.89) are the pro-
jection of the displacements in the direction of the rotating axes and
[Figure 13.11(b)] of the displacement of point P (divided by 2), when
the center of the support is locked in its rest position. After adding all
of the terms, what is obtained is the displacement (divided by 2) of the
center of mass of the pendulums when they move following the pattern of
Figure 13.10(b) and (c).
Equations (13.99) can be transformed into a set of constant coe cients

equations by resorting to a further change of coordinates:

½
1 = 2 cos( ) 1 sin( ) ,

1 = 1 cos( ) 2 sin( ) ,
(13.100)

which amounts to writing the displacement of the center of mass of the
pendulums in an inertial frame instead of writing it with reference to the
rotating frame.
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By performing the relevant di erentiations with respect to time (e.g.,

¨1 =
¡
¨2 +

2
2 2 ˙1

¢
cos( ) +

¡
¨1 +

2
1 + 2 ˙2

¢
sin( )
(13.101)

and so on), the equations of motions transform into

¨ +
2
¨1 + = 0 ,

¨+
2 1̈ + = 0 ,

¨ + ¨1 + 2 ˙1
2 (1 ) 1 = 0 ,

¨+ 1̈ 2 ˙1
2 (1 ) 1 = 0 .

(13.102)

The set of equations can be further simplified by resorting to complex
coordinates ½

= + ,
= 1 + 1 .

(13.103)

By adding the first equation to the second multiplied by and the third
one to the fourth multiplied by , it follows that

½
¨ +

2
¨ + = 0 ,

¨ + ¨ 2 ˙ 2 (1 ) = 0 .
(13.104)

By introducing the nondimensional parameters

=
2

(0
1

2
) , (13.105)

the equation of motion can be written in the form

·
1

¸½
¨
¨

¾
2

·
0 0
0 1

¸½
˙
˙

¾
+

+

·
1 0
0 2 ( 1)

¸½ ¾
= 0 ,

(13.106)

where 1 =
p

is the natural frequency of mass on a spring with
sti ness .
By introducing the nondimensional speed and Laplace variable

=
1

=
1

, (13.107)

a nondimensional response depending only on and can be obtained
from the characteristic equation

det

·
2 + 1 2

2 2 2 + 2 ( 1)

¸
= 0 . (13.108)

By inspecting the sti ness matrix of the system, it is clear that the
condition = 1, i.e., = , is peculiar, because it corresponds to a singular
sti ness matrix. Two cases can be defined:
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• Short pendulums, (i.e., 1), where the sti ness matrix is
positive defined,

• Long pendulums, (i.e., 1), where the sti ness matrix is
negative defined.

Before attempting to solve Equation (13.108), an approximate solution
can be obtained by neglecting the terms outside the main diagonal. A first
equation

2 + 1 = 0 (13.109)

yields
= ± , (13.110)

which corresponds to the natural frequencies of the system oscillating on
its supports with the pendulum locked.
The second equation

2 2 + 2 ( 1) = 0 (13.111)

yields the solutions

=
³
1±

´
(13.112)

corresponding to the natural frequencies of the pendulums oscillating on
the locked support.
This is fully consistent with what has been obtained earlier on rotating

pendulums: The natural frequency for in-plane motion of a single rotating
pendulum is [Equation (13.14)]

=

r
= (13.113)

This value is computed with reference to the rotating frame. In the ro-
tating frame, the global motion of the pendulum row can be seen as a
forward moving wave, propagating at an angular velocity plus a back-
ward moving wave, propagating at an angular velocity . The forward
moving wave is seen in the fixed frame as a wave propagating in forward

direction with a speed + =
³
1 +

´
, which coincides with the

solution with (+) in Equation (13.112).
The backward wave is seen as in the fixed frame as a wave propagating

with a speed =
³
1

´
, coinciding with the solution with ( )

in Equation (13.112). This wave propagates in forward direction if 1,
i.e., in the case of long pendulums, and in backward direction if 1, i.e.,
in the case of short pendulums.
The nondimensional Campbell diagram and the decay rate plot for the

case of long pendulums with = 0 1 and = 0 2 are shown in Figure
13.12(a) and (b). A value = 0 1 corresponds to light pendulums, having a
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FIGURE 13.12. (a) and (b): Campbell diagram and the decay rate plot for the
case of long pendulums with = 0 1 and = 0 2. Note the field of instability.
(c) Campbell diagram and the decay rate plot for the case of short pendulums
with = 0 1 and = 2. In this case no field of instability exists.

total mass equal to one-quarter of the mass of the disc ( = 0 25 ).
A field of instability, with a threshold at = 1 24 is clearly present. Note
that, as expected, the threshold of instability is located in the supercritical
field.
A similar nondimensional Campbell diagram, but for the case of short

pendulums with = 0 1 and = 2, is reported in Figure 13.12(c). Here no
instability range is present.

Remark 13.6 Numerical experimentation has shown that the field of in-

stability is present wherever the traveling wave, which moves backwards in

the rotating frame, moves forward in the fixed frame, i.e., in the case of

long pendulums ( 1). The value of a ects the width of the instability

range, but not its presence. No instability was found for the case of short

pendulums ( 1).

13.5.3 Spring-loaded pendulums on elastic supports

Consider now the case in which the pendulums studied in the previous sec-
tion are loaded by a spring supplying a restoring force toward the radial
position. The terms of the equations of motion and the coordinate trans-
formations still hold, but some terms linked with the sti ness of the springs
must be added.
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The potential energy of the spring is

U =
1

2

X
=1

2 , (13.114)

where is the torsional sti ness of each spring.
The first two equations are not a ected by the presence of the springs,

whereas all other ones [Equations (13.93) or (13.94)] are easily modified
by adding a term coming from the derivatives of the potential energy with
respect to

¨ sin( ) + ¨cos( ) + ¨ +

µ
2 +

¶
= 0 for = 1 .

(13.115)
By performing the various changes of coordinates, the final equations to

study the interaction between the motion of the pendulums and that of the
suspension system [Equations (13.104)] become

(
¨ +

2
¨ + = 0 ,

¨ + ¨ 2 ˙ +
h

2
¡

1
¢
+ 2

i
= 0 .

(13.116)

Note that the term 2 is just the square of the natural frequency
of the pendulums at standstill (neglecting the gravitational acceleration as
consistent with the whole study). A further nondimensional parameter can
thus be added to the two seen above:

=
1

, (13.117)

namely, the ratio between the natural frequency of the pendulums at stand-
still and that of the whole system (with locked pendulums) on its supports.
The characteristic equation yielding the nondimensional natural frequen-

cies then becomes

det

·
2 + 1 2

2 2 2 +
£

2 ( 1) + 2
¤
¸
= 0 .

(13.118)
Again, the uncoupled dynamics of the system can be studied by neglect-

ing the terms outside the main diagonal. The first equation, dealing with
the system oscillating on its supports with the pendulum locked, is the
same as that of the previous case.
The second equation becomes

2 2 + 2 ( 1) + 2 = 0 (13.119)

and yields the solutions

= 1±

s
+

µ ¶2
(13.120)
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FIGURE 13.13. (a) and (b) Campbell diagram and decay rate plot for the case
of long pendulums with = 0 1 and = 0 2. Note the field of instability. The
same holds for (d) and (e), in which a di erent value of was used. (c) and (f)
Campbell diagram for the case of short pendulums with = 0 1 and = 2. In
these cases, no field of instability exists.

corresponding to the natural frequencies of the pendulums oscillating on
the locked support. This result is again consistent with what has been
obtained earlier on rotating pendulums on a fixed support.
For vanishing small speeds, two values of the frequency are found: =

± , i.e., two waves traveling in opposite directions (at standstill, the words
forward and backward lose meaning). With increasing speed, the wave trav-
eling in forward direction in the rotating frame travels always in forward
direction. The backward wave is seen in the fixed frame as a wave traveling
backward in the case of short pendulums ( 1). In the case of long pen-
dulums ( 1), the backward wave is seen in the fixed frame as a backward
wave at low speed and as a forward wave at high speed.
The nondimensional Campbell diagram and the decay rate plot for the

case of long pendulums with = 0 1 and = 0 2 are shown in Figure
13.13(a) and (b) for a system with = 2 and (d) and (e) for a system

with = 1 2. A value of 1 means that the frequency of the
pendulums is higher than that of the system on its supports.
In both cases, a field of instability is present and is located in the super-

critical field.
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The cases reported in Figure 13.13(c) and (f) are related to short pendu-
lums with = 0 1 and = 2 with = 2 and = 1 2, respectively.

Remark 13.7 The presence of the restoring force does not change the con-

clusion that a field of instability is present in the case of long pendulums

( 1) and not in the case of the short pendulums ( 1).

13.5.4 Damped pendulums on elastic supports

Consider now the same system studied in the previous section, but with
damping added. Two viscous dampers with damping coe cient act in
parallel with the springs of sti ness constraining the disc, whereas a
number of dampers with damping coe cient 2 act in parallel with the
springs with sti ness , constraining the motion of the pendulums (the
coe cient has been multiplied by 2 so that dimensionally all damping
coe cients are equivalent). A further number of viscous dampers with
damping coe cient are located between the bobs of two subsequent
pendulums. The latter have been introduced to simulate the damping acting
between the blades.
To obtain the equations of motion, a Rayleigh dissipation function

F =
1

2

¡
˙2 + ˙2

¢
+
1

2
2

X
=1

˙ 2 +
1

2
2
X
=1

³
˙ + ˙

+1

´2
, (13.121)

in which ˙
+1
= ˙

1
, must be introduced into the Lagrange equations.

The first two Equations (13.90) and (13.92) are modified by simply
adding a term ˙ and ˙, respectively, to the left-hand side.
The other Equations (13.115) become

¨ sin( ) + ¨cos( ) + ¨ +

µ
2 +

¶
+

+ ( + 2 ) ˙ ˙
1

˙
+1
= 0 for = 1 ,

(13.122)
where ˙

0
= ˙ .

These equations can be transformed using Equation (13.95). The first
transformed equation is of the same type of Equation (13.96), with a few
additional terms

¨0 + ˙0 +

µ
2 +

¶
0 = 0 , (13.123)

Not only does it decouple from the other equations, like in the previous
cases, but it does not contain any term in : The dampers located between
the pendulums do not a ect the motion of the row when it oscillates with
all pendulums in phase.
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The following two equations yield

¨ sin( ) + ¨cos( ) + ¨1 + ( + 2 ) ˙1 +
³

2 +
´

1+P
=1
˙ cos

¡
+1

¢ P
=1
˙ cos

¡
1

¢
= 0 ,

¨ cos( ) ¨sin( ) + ¨2 + ( + 2 ) ˙2 +
³

2 +
´

2+P
=1
˙ sin

¡
+1

¢ P
=1
˙ sin

¡
1

¢
= 0 .

(13.124)
By remembering that +1 = + and 1 = , where
= 2 is the angle between two subsequent pendulums, Equation

(13.124) reduces to

¨ + ¨1 + 2 ˙1 + ˙1 +
h

2
¡

1
¢
+ 2

i
1 + 1 = 0 ,

¨+ 1̈ 2 ˙1 + ˙1 +
h

2
¡

1
¢
+ 2

i
1 1 = 0 ,

(13.125)

where

=
1
{ + 2 [1 cos ( )]} =

1
½

+ 4 sin2
µ
2

¶¾
.

The set of equations can be further simplified by resorting to complex
coordinates and . By adding the first equation to the second multiplied
by and the third one to the fourth multiplied by , it follows that
(

¨ +
2
¨ + ˙ + = 0 ,

¨ + ¨ + ( 2 ) ˙ +
h

2
¡

1
¢
+ 2

i
= 0 .

(13.126)

Apart from parameters , , and there are two further parameters
linked with damping

=
2

and =
+ 4 sin2

³
2

´

2
. (13.127)

The characteristic equation yielding the nondimensional natural frequen-
cies then becomes

det

·
2 + 2 + 1 2

2 ( )

¸
= 0 , (13.128)

where

( ) = 2 + 2 + 2 ( 1) + 2 2
¡

+
¢
.

The uncoupled dynamics is easily studied. The motion of the system
with the pendulums locked is equivalent to that of a Je cott rotor with no
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rotating damping, and assuming that the system is underdamped ( 1),
the solutions for are

= ±

q
1 2 . (13.129)

The real part of is always negative, and the system is stable.
The motion of the pendulums on the locked support are governed by the

equation

2 + 2 + 2 ( 1) + 2 2
¡

+
¢
= 0 , (13.130)

yielding

= + ±
q

2 2 2 . (13.131)

Here the cases are two: If the damping is low, i.e., if 2 2 2

the solutions for are

= +

µ
±
q

2 + 2 2

¶
. (13.132)

On the contrary, if the damping is high, i.e., if 2 2 2 the
solutions for are

= ±
q

2 2 2 + . (13.133)

In all cases, the real part of is always negative, and the system is
stable.

Remark 13.8 This is a very remarkable result, because one would expect

that the damping applied to the pendulums, and above all that located be-

tween them, would have a destabilizing e ect, being rotating damping. How-

ever, it must be remembered that this applies to the uncoupled system, and

that the instability caused by the coupling of the disc and pendulum dynam-

ics is not included into the uncoupled model.

To study the interaction, the coupled system must be studied. Some nu-
merical results are shown in Figure 13.14: The nondimensional Campbell
diagram and the decay rate plot reported deal with the case of long pen-
dulums with = 0 1, = 0 2, and = 2, the same system studied
in Figure 13.13(a) and (b), but with damping added. Cases with di erent
combinations of nonrotating and rotating damping are shown. The
e ect of damping on the Campbell diagram is not large, because all values
of used are smaller than unity, whereas it is important on the decay rate
plot.
From the figure, it is clear that with a low value of both nonrotating

(disc) and rotating (pendulums) damping, the field of instability, although
reduced in comparison with the undamped case, is still present. An increase
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FIGURE 13.14. Campbell diagram (a, b, c) and decay rate plot (d, e, f) for
damped long pendulums with = 0 1, = 0 2. and p = 2. Di erent combi-
nations of nonrotating and rotating p damping.

of any form of damping is e ective in stabilizing the system, although a
large damping is needed to cancel completely the instability range.
The remaining equations, from the fourth one to the th are of the type

¨3 +
£

+ 4 sin2 ( )
¤
˙3 +

³
2 +

´
3 = 0 ,

¨4 +
£

+ 4 sin2 ( )
¤
˙4 +

³
2 +

´
4 = 0 ,

¨5 +
£

+ 4 sin2
¡
3

2

¢¤
˙5 +

³
2 +

´
5 = 0 .

(13.134)

These equations are uncoupled and describe the motion of the pendulums
with di erent phasing. No instability can be found from these equations.
Note that the equations are all equal, except for the role played by damping
, which increases with increasing order of the equations. If the pendulums

are many, the damping coe cient appearing in the last equation, that deal-
ing with the variable 1, is + 4 .

Remark 13.9 The study of the in-plane vibrations of a row of rotating

pendulums apply to cases in which there are at least three pendulums: If

they are only two, the ellipsoid of inertia of the system thought as a rigid
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body is no more axially symmetrical, and a further cause of instability is

present, namely, rotor anisotropy. This study has been used in the past to

deal with the instability of propellers and helicopter rotors.

13.5.5 Out-of-plane oscillations of pendulums on elastic

supports

To study the out-of-plane oscillations of the row of rotating pendulums seen
in the previous sections, assume that the rigid disc on which the pendulums
are located is rigidly constrained against translational motions along -, -
and -axes but can rotate about - and -axes being constrained in its
rotations by identical linear torsional springs. Assume also that the disc is
axially symmetrical and its moments of inertia are about - and -axes
and about -axis [Figure 13.11(a)]. The dynamics of the disc alone is
that of the uncoupled gyroscopic system studied in Section 3.2. No couple
unbalance is considered.
Assuming as generalized coordinates for the disc the angles and

defined in Chapter 3, the kinetic energy caused by rotations of the disc is
expressed by Equation (3.13)

T =
1

2

h ³
˙ 2 + ˙ 2

´
+

³
2 + 2 ˙

´i
. (13.135)

The potential energy of the springs with torsional sti ness , is

U =
1

2

¡
2 + 2

¢
. (13.136)

The position in -plane of point P where the bob of the th pendulum
is located is

¡
P O

¢
= R

1
R
2
R
3

+ cos( )
0

sin( )
, (13.137)

where now angles are the out-of-plane oscillation angles of the pendu-
lums, matrices R1, R2, and R3 are defined by Equations from (3.1) to
(3.3), and angle included in matrix R3 is

= + . (13.138)

By performing the relevant matrix multiplications, it follows that

¡
P O

¢
=

[ + cos( )] cos ( ) cos
¡ ¢

+ sin ( ) sin
¡ ¢

[ + cos( )] sin ( ) cos ( ) + [ + cos( )] cos ( ) ·
· sin

¡ ¢
sin ( ) sin ( ) cos

¡ ¢
sin ( )

[ + cos( )] sin ( ) sin ( ) [ + cos( )] cos ( ) ·
· sin

¡ ¢
cos ( ) + sin ( ) cos

¡ ¢
cos ( )

.

(13.139)



13.5 Dynamics of a row of rotating pendulums 503

By di erentiating the position of point P with respect to time and com-
puting the square of the speed, the kinetic energy of the th pendulum can
be computed

T = 1

2

h
2 ( + )

2
+ ˙ 2 ( + )

2
sin2( ) + ˙ 2 ( + )

2
cos2( )

2 2 ( + ) + 2 ˙ ( + )2 2 ˙ ( + ) cos( )+

+ ˙
2
2 2 ˙ ( + ) sin( ) + 2 ˙ ˙ ( + ) sin( )+

2 ˙ ˙ ( + )2 cos( ) sin( ) 2 ˙ ˙ ( + ) cos( )
i
.

(13.140)
As seen for the in-plane oscillations of the pendulums, if they are pro-

vided with a restoring spring with sti ness , a damper with damping
coe cient between the pendulums and the disc, and a further damper
with damping between each other, a potential energy and a Rayleigh
dissipation function can be defined

U =
1

2

X
=1

2 , (13.141)

F =
1

2
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˙ 2 + ˙ 2

´
+
1

2

X
=1

˙ 2 +
1

2

X
=1

³
˙ + ˙

+1

´2
. (13.142)

Nonrotating dampers with damping coe cients have also been in-
cluded into the system.
By adding the kinetic and potential energies of the disc and of the pen-

dulums, performing the relevant derivatives and remembering that because
the pendulums are equispaced,

P
=1
cos2( ) =

P
=1
cos2( ) =

2
,

P
=1
sin( ) cos( ) =

P
=1
sin( ) =

P
=1
cos( ) = 0 ,

the first two equations, those related with and , are

¨
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+ ˙ + +

( + )
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¨ + 2
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2
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+ ˙
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+ ( + )2

i
+ ˙ + +

+ ( + )
P

=1

h
¨ + 2

i
sin( ) = 0 ;

(13.143)
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i.e.,

¨ ˙ + ˙ + ( + ) cos( )
P

=1

h
¨ +

+ 2
¤
cos( ) + ( + ) sin( )

P
=1

h
¨ + 2

i
sin( ) = 0 ,

¨ + ˙ + ˙ + + ( + ) sin( )
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P
=1

h
¨ + 2

i
sin( ) = 0 ,

(13.144)
where

= +
2
( + )2 = + ( + )2 . (13.145)

By remembering the coordinate transformation expressed by Equation
(13.89), it follows that
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(13.146)
The following equations, those related with degrees of freedom , are
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(13.147)
i.e.,
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¨ 2 ˙
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2 ( + 1) + 2

i
+ 1

2 ( + 2 ) ˙ 2
˙

1 2
˙
+1
= 0 ,

(13.148)
where, as usual, = .
These equations can be combined linearly as seen for the case of in-

plane oscillations (13.95).
The first one of the combined equations decouples from all the others

and describes the motion with all pendulums oscillating in phase

¨0 +
2
˙0 + 0

·
2 ( + 1) +

2

¸
= 0 . (13.149)

Actually the complete uncoupling is because the disc was assumed to be
fixed in axial direction: In a general case, the equation for 0 is coupled
with the axial dynamics of the system.
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The following two equations are coupled with the first two equations
(those dealing with the motion of the disc):

( + 1)
h ³

¨ 2 ˙
´i
cos( ) + ( + 1)

h³
¨ + 2 ˙

´i
sin( )+

+¨1 + 1

h
2 ( + 1) + 2

i
+ 2 ˙1 = 0 ,

( + 1)
h³
¨ + 2 ˙

´i
cos( ) + ( + 1)

h³
¨ 2 ˙

´i
sin( )+

+¨2 + 2

h
2 ( + 1) + 2

i
+ 2 ˙2 = 0 ,

(13.150)
where

= + 4 sin2
µ
2

¶
.

All of the following equations do not contain either or . They are
all of the type

¨ +

·
2 ( + 1) +

2

¸
+

2
˙ = 0 for = 3 1 , (13.151)

where is a damping coe cient of the type of those appearing in Equation
(13.134), showing that the damping located between the pendulums is more
important in the equations with a high value of . As they are uncoupled
with the other ones, these equations will not be dealt with any further.
The disc-pendulums interaction can thus be studied using a set of four

linear equations (with periodic coe cients) in the coordinates , , 1,
and 2. They can be transformed into a set of constant coe cients equa-
tions by resorting to a further change of coordinates:

½
1 = 1 cos( ) + 2 sin( ) ,

1 = 1 sin( ) + 2 cos( ) ,
(13.152)

obtaining

¨ ˙ + ¨ 1 2 ˙
1 + ˙ + = 0 ,

¨ + ˙ + ¨ 1 + 2 ˙
1 + ˙ + = 0 ,

( + 1)
³
¨ 2 ˙

´
+ ¨ 1 2 ˙

1 + 2

³
˙
1 1

´
+

+
h

2 + 2

i
1 = 0 ,

( + 1)
³
¨ + 2 ˙

´
+ ¨

1
+ 2 ˙

1
+ 2

³
˙

1
+

1

´
+

+
h

2 + 2

i
1
= 0 .

(13.153)
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where = ( + ) 2.
This set of equations can be further simplified by resorting to complex

coordinates ½
= ,
=

1 1
.

(13.154)

By adding the first equation to the second multiplied by and the third
one to the fourth multiplied by , it follows that

¨ ˙ + ¨ 2 ˙ + ˙ + = 0 ,

( + 1)
³
¨ 2 ˙

´
+ ¨ 2 ˙ +

+ 2

³
˙

´
+
h

2 + 2

i
= 0 .

(13.155)

By introducing, together with the already mentioned parameter , the
nondimensional parameters

= =
( + )

2 + ( + )
2
, = , (13.156)

=
2
p , =

p

2 2
,

and the natural frequencies 1 =
p

and =
p

2, the equa-
tion of motion can be written in the form
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(13.157)
By introducing the nondimensional speed, Laplace variable, and fre-

quency

=
1

=
1

=
1

, (13.158)

a nondimensional response can be obtained from the characteristic equation

det

·
2 + (2 ) + 1 2 2

2 2
1+

( )

¸
= 0 , (13.159)

where
( ) = 2 + 2

¡ ¢
+ 2 + 2 2 .
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In this case, there is no value of , causing the sti ness matrix to be
singular. In this condition, there is no need in distinguishing between the
cases of short and long pendulums.
As usual, the uncoupled problem can be solved before attempting to

solve Equation (13.159). The first equation is

2 + (2 ) + 1 = 0 . (13.160)

It coincides with the equation of motion of an uncoupled system with
four degrees of freedom in which only nonrotating damping is present. Its
solutions are

= +
2
±

sµ
2

¶2
1 , (13.161)

and no instability is obtained.
The second equation

2 + 2
¡ ¢

+ 2 + 2 2 = 0 (13.162)

yields the solutions

= + ±
q

2 2 (1 + ) 2 . (13.163)

If damping and elastic restoring forces are neglected, Equation (13.163)
reduces to

=
³
1± 1 +

´
, (13.164)

which is consistent with what has been obtained earlier on rotating pendu-
lums: the natural frequency for out-of-plane motion, referred to the rotating
frame, of a single rotating pendulum is [Equation (13.14)]

=

r
+

= 1 + (13.165)

As in the previous case, the global motion of the pendulum row can be
seen in the rotating frame as a forward-moving wave, propagating at an an-
gular velocity , plus a backward-moving wave, propagating at an angu-
lar velocity . The forward-moving wave is seen in the fixed frame as a

wave propagating in forward direction with a speed + =
³
1 +

´
,

which coincides with the solution with (+) in Equation (13.163). What is
di erent from the in-plane oscillations of the pendulums, in the present
case, the backward wave is always seen in the fixed frame as a wave prop-
agating in backward direction. Its speed is =

¡
1 + 1

¢
,

coinciding with the solution with ( ) in Equation (13.163).
The nondimensional Campbell diagram a for the case of long pendulums

with = 0 1 and = 0 2 are shown in Figure 13.15 for two di erent values
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FIGURE 13.15. Campbell diagrams for the case of the out-of-plane oscillations
of a row of undampd pendulums with = 0 1, = 0 2, and = 1 6 and = 0 2.
Note that no field of instability is present.

of , namely, 1.6 (disc rotor) and 0.2 (long rotor; such a low value has been
used, even though it has little sense for a rotor with many pendulums, as
a limiting case). The nondimensional parameters are the same (except for
) as those used in Figure 13.12(a).
The decay rate plots are not shown because the real part of is identically

zero: No instability range is present in this case.

Remark 13.10 Although in the case of in-plane oscillations of the row of

pendulums an instability range was found in the case of long pendulums

owing to the coupling of the motion of the pendulums and of the supporting

disc, no such phenomenon was found for the case of out-of-plane oscilla-

tions.

Some numerical results for the complete system, with restoring force
and damping, are shown in Figure 13.16: The nondimensional Campbell
diagram and the decay rate plot reported deal with the same case in Figure
13.15, with = 0 1, = 0 2, and two values of , 1.6 and 0.2. The restoring
spring has a sti ness leading to = 2, and the damping parameters are
= 0 05 and = 0 1.
From the figure, it is clear that although rotating damping is much higher

than nonrotating damping, no field of instability is present.

Remark 13.11 Also in the case of out-of-plane oscillations, rotating damp-

ing of the pendulums does not trigger instability. In this case, instability
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FIGURE 13.16. Campbell diagram and the decay rate plot for the out-of-plane
oscillations of a row of damped pendulums with = 0 1, = 0 2 and two values
of , 1.6 and 0.2. The other data are p = 2, = 0 05 and p = 0 1.

cannot be caused by the interaction between the motion of the pendulums

and of the supports, so that the system is always stable.

13.6 Interaction between the dynamics of the
blades and the dynamics of the shaft

As the study of rotating pendulums has shown, the dynamics of an array of
blades that may surround a rotor can interact with the dynamics of the ro-
tor as a whole, to the point that instability ranges may occur. In particular,
the study of the behavior of pendulums suggests that in-plane vibration is
more dangerous, from this viewpoint, than out-of-plane vibration.
Unfortunately, there is no simple model to substantiate these statements.

The present section will be devoted to the construction and the solution of a
few highly idealized numerical models, attempting to extract some general
rules. These models will be based on the finite element method, using the
formulation that will be described in some details in Section 15.2. In a
way that is similar to what has been done for the study of pendulums
arrays, the dynamic behavior of the whole bladed array will be considered:
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for each mode of the single blades, a number (where is the number
of blades in the array) of harmonics in the angle will be considered. The
zeroth-order harmonics [like the one shown in Figures 13.9(a) or 13.10(a)]
couples with the torsional and axial dynamics of the shaft, whereas the
first-order harmonics [Figure 13.9(b) and (c) or Figure 13.10(b) and (c)]
are coupled with the flexural behavior. Higher order harmonics do not a ect
the behavior of the rotor as a whole, and they will not be considered here.
As the number of parameters is high, no attempt has been done to ex-

tract nondimensional parameters. Consider a system made by a rigid disc,
suspended on a spring system, with a number of prismatic blades. The data
are summarized in the following table:

disc inertial properties , , 8 kg, 2.6 kg m2, 4 kg m2

outer radius 100 mm
suspension sti ness , 107 N/m, 107 Nm/rad

blades number 10
square cross section 10 mm × 10 mm
length 500 mm

material 2.1× 1011 N/m3

7810 kg/m3

As the length of the blades is greater than the radius of the disc, they
can be defined as long blades, to use a term similar to that used for rotating
pendulums. In the case of pendulums, this leads to the existence of a field
of instability.
The model is made by a rigid mass element, a spring element, and ten

row-of-blades elements. The uncoupled dynamics is studied in Figure 13.17.
If the blades are rigid bodies, the behavior is that of an uncoupled four
degrees-of-freedom (real) system with the following inertial properties: =
11 92 kg, = 2 88 kg m2, and = 4 57 kg m2. The results are plotted as
dashed lines in the Campbell diagram of Figure 13.17; owing to uncoupling,
the translational modes are those of a Je cott rotor.
The full lines in the same figures are related to the dynamics of the flex-

ible blades on a rigid support. As the cross section of the blades is square,
at standstill the in-plane natural frequencies coincide with the out-of-plane
ones. As soon as the spin speed is nonvanishing, however, they di erentiate
and the curves related to the various modes split into two lines. The out-of-
plane natural frequencies (particularly the first one) increase more sharply
with the speed than the in-plane ones. Like in the case of long pendulums,
the lowest backward mode in the rotating frame becomes a forward mode
in the fixed frame. The simplified blade dynamics, computed using the nat-
ural frequency at standstill and then through Equation (13.73), is reported
in the same figure with dot-and-dash curves. Note that the results obtained
through Equation (13.73) are remarkably close to those obtained through
the FEM.



13.6 Interaction between the dynamics of the blades and the dynamics of the shaft 511

FIGURE 13.17. Uncoupled dynamics of a bladed disc on elastic supports. Full
lines: dynamics of the blades on a sti support; dot and dash curves: same as be-
fore but computed through an approximated formula [Equation (13.73)]; dashed
lines: dynamics of the rigid system on elastic supports.

The coupled dynamics is shown in Figure 13.18. The curves related to the
disc and blade dynamics interact with each other, and the first backward
mode (actually it is backward only in the rotating frame, in the inertial
frame, it is a forward mode) of the bladed array interacts with the forward
translational mode of the rigid system on elastic supports giving way to a
field of instability. The latter is very clearly evidenced by the decay rate
plot.
Consider now the case of blades with rectangular cross section, so that

there are no coincident natural frequencies at standstill. The cross section
of the blades in the model was modified, keeping the cross-sectional area
constant: A rectangle 2.5 mm × 40 mm is assumed. A di erent value of
the material density, namely, = 4 000 kg/m3, has been assumed.
The dynamic behavior is then much influenced by the angle the blade

makes with the axial direction: If = 90 (see Figure 13.7 for the definition
of ), the blade is aligned along the axial direction (lowest natural frequency
is in-plane), whereas if = 0, the blade is perpendicular to the axial
direction.
The Campbell diagram and the decay rate plot for the two limiting cases,
= 90 and = 0, are reported in Figure 13.19. The instability range

shifts toward higher speeds when decreases from 90 [Figure 13.19(a)
and (b)] to 0 [Figure 13.19(c) and (d)].
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FIGURE 13.18. Coupled dynamics of a bladed disc on elastic supports: Campbell
diagram and decay rate plot.

The speeds at which the field of instability starts and ends are reported
in Figure 13.20 as a function of angle .
From the plots of Figure 13.19, it is clear that in the case in which the

cross section of the blades is aligned with the axial direction, the frequency
of the in-plane modes are lower than those of the out-of-plane ones and
the relevant branches in the Campbell diagram do not cross. The opposite
occurs when = 90 .
To investigate the e ect of damping in blades, the same model was modi-

fied by assigning a loss factor to the various elements. All rotating elements
were given a very high damping ( = 0 1), whereas the only nonrotating
element, the spring supporting the system, was given a very low damping
( = 0 005). The results for the case = 90 are reported in Figure 13.21.
As expected, the e ect of damping on the Campbell diagram is not large,

and it influences deeply the decay rate plot. In a way that is similar to what
has been seen for the rotating pendulum, the damping associated with the
blades does not have a destabilizing e ect, although being a form of rotating
damping. The instability range is only slightly reduced by the presence of
damping, but all blade vibrations have a decay rate that is negative.
Note that to show the danger of instability, a speed range well in excess

to practical limits has been considered in this example. The stresses at the
root of the blades are reported in Figure 13.22: It is easy to see that they
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FIGURE 13.19. Bladed disc with blades with rectangular cross section.
Campbbell diagram and decay rate plot for the two limiting cases, = 90

(a) and (b) and = 0 (c) and (d).

are way too large even if the material density has been lowered. In an actual
case, this bladed disc would be limited to speeds well lower than 1000 rad/s
and no instability would have been present.

Remark 13.12 The damping associated with the blades, although rotating,

does not trigger instability even for modes in the supercritical range.

Remark 13.13 The instability threshold caused by the blades is very often

in excess of the maximum speed, which can be reached for strength consid-

eration and then is more of academic than of practical interest. However,

with the tendency toward high speeds made possible by stronger and lighter

materials, stability issues cannot be dismissed lightly.
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FIGURE 13.20. Bladed disc with blades with rectangular cross section. Speeds
at which the instability range starts and ends as functions of angle .

FIGURE 13.21. Campbbell diagram and decay rate plot for the bladed disc stud-
ied in Figure 13.19 (a) and (b) ( = 90 ), but with hysteretic damping added.
Rotating damping with loss factor = 0 1; nonrotating damping with = 0 005.
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FIGURE 13.22. Centrifugal stressing at the root of the blades as a function of
the speed.



14
Dynamics of rotating discs and rings

Many rotors, particularly many turbine rotors, are provided with thin, large
diameter parts, sometimes carrying one or more row of blades. If the ratio
between the outer diameter and the thickness is large, they are usually
referred to as discs.
In elementary rotordynamics, the discs are considered as rigid bodies at-

tached to the otherwise beam-like rotor. There are, however, cases in which
the dynamics of the discs becomes important, and the rigid-body assump-
tion is too rough for a detailed dynamic analysis. The simplest model for
a thin rotating disc is the rotating membrane.

14.1 Rotating membranes

A membrane is a very thin two-dimensional object, so thin that its bending
sti ness is vanishingly small and relies to in-plane stretching to maintain
its shape. In a rotating membrane, the in-plane stretching is supplied by
the centrifugal field. The dynamics of rotating membranes was studied by
Southwell and Lamb in 1921 [6].
Consider a circular membrane with constant thickness rotating about its

axis (Figure 14.1). The dynamic equilibrium equation for displacements in
axial direction of the element of area located in the position ( ) is

2

2
=
1

µ ¶
+

2

2

2
, (14.1)
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FIGURE 14.1. Rotating membrane. Sketch and reference frames.

where the radial and circumferential stresses and are functions of the
radius only.
By introducing the nondimensional radial coordinate

=

Equation (A.53) yields

2

2

2
=

2

2
+

µ
+
1

¶
+

2

2

2
. (14.2)

The solution of Equation (14.2) is of the type

= ( ) cos ( ) cos ( ) , (14.3)

where is an integer.
By introducing the Solution (14.3) into Equation (14.2), the latter yields

2

2
+

µ
+
1

¶ µ
2

2

2 2

¶
= 0 . (14.4)

The circumferential and radial stresses can be caused by di erent causes,
like centrifugal stressing, temperature gradients in the membrane, and
many other ones. If the stresses are only caused by rotation, their expression
is [61]
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(14.5)
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where is the Poisson’s ratio of the material and

=

The stress distribution expressed by Equation (14.5) has been obtained
for a membrane with a central hole, which does not exchange forces in
radial direction with the shaft [61].
By introducing Equation (14.5) into Equation (14.4), it follows
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+ (14.6)
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¸
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The natural frequency of the membrane is then proportional to the spin
speed, i.e.,

= (14.7)

where is a constant.
If there is no central hole, Equations (14.5) and (14.6) reduce to
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(14.9)
The solution of Equation (14.9) can be assumed to be

=
X
0

. (14.10)

Operating in the same way as seen for the rotating string, it follows that

+2 =
( + 2) 2 1+3

3+

2 8

3+

( + 2)2 2
. (14.11)

Southwell demonstrated that the solution of Equation (14.9) is a hy-
pergeometric series and solved the equation for the natural frequencies,
obtaining [6]

=

r
3 +

8
( + 2 ) ( + 2 + 2) 2

1 + 3

8
, (14.12)

where is the number of nodal diameters and is the number of nodal
circles. The Solution (14.12) has been obtained by assuming that only a
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FIGURE 14.2. Rotating membrane: values of = and mode shapes for a
number of values of and .

limited number of terms of the series (14.10) do not vanish. The result is
that only even terms are present if is even and odd terms if is odd;
the first term is that in , and the last one is that in +2 . The values
of = for a number of values of and and the corresponding mode
shapes are reported in Figure 14.2.
The solution obtained by Southwell refers to a free rotating unpierced

membrane. The mode with = 0 and = 0 is a rigid-body mode in
which the membrane translates along -axis and its natural frequency van-
ishes. In all modes with = 0, the center of the membrane undergoes a
displacement. This detracts from the applicability of this solution, but it
must be noted that it is impossible to consider a membrane constrained in
its center: a force applied to the center of a membrane causes a singularity
to be present. Note also that in all modes with 0, the center has zero
displacement: These modes apply to a constrained membrane as well.
The mode with = 1 and = 0 is a rigid-body mode, but its natural

frequency does not vanish owing to rotation.
The vibration of the membrane so obtained must be regarded as a vibra-

tion occurring in a rotating reference frame; i.e., the nodal lines are fixed
to the latter and rotate, with respect to the inertial frame, with the spin
speed However, the vibration of the membrane can be seen as the su-
perimposition of two waves that travel in forward and backward direction
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= 0 = 1 = 2 = 3 = 4

0 0 2.000 3.533 5.013 6.470
1 1.817 3.439 4.992 6.507 8.000
2 3.146 4.768 6.342 7.884 9.404
3 4.450 6.074 7.661 9.221 10.760
4 5.745 7.372 8.968 10.540 12.093
5 7.036 8.665 10.267 11.849 13.413
6 8.325 9.955 11.563 13.151 14.724

TABLE 14.1. Values of ratios = for forward modes with a di erent
number of diametral ( ) and radial ( ) nodes.

with speed This can be shown by noting that Solution (14.3) can be
written as

= ( ) cos ( ) cos ( ) =

1

2
( )

n
cos
h ³

+
´i
+ cos

h ³ ´io
.

(14.13)

The wave velocity ± is computed in the rotating frame; the value
computed in the fixed frame is then

= ± . (14.14)

The wave traveling in forward direction in the rotating frame gives way to
forward whirling of the membrane also in the fixed frame, with a frequency
(seen in the fixed frame) equal to

= + . (14.15)

The frequency (in the fixed frame) related to the wave traveling back-
wards is

= (14.16)

and yields a forward whirling if and to backward whirling oth-
erwise. The values of ratios = for forward and backward whirling
corresponding to the modes shown in Figure 14.2 are reported in Tables
14.1 and 14.2, respectively.
The speed at which the frequency in the fixed frame vanishes is often

referred to as critical speed, (is a sort of secondary critical speed) and is

= . (14.17)

To check whether the Southwell solution can be used for an actual mem-
brane, a numerical computation was performed using a rotordynamics FEM
code. The membrane was modeled using ten annular disc elements, with
very low thickness/outer radius ratio (10 7). The results are reported in
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= 0 = 1 = 2 = 3 = 4

0 0 0 0.467 0.988 1.530
1 1.817 -1.439 -0.992 -0.507 0.000
2 3.146 -2.768 -2.342 -1.884 -1.404
3 4.450 -4.074 -3.661 -3.221 -2.760
4 5.745 -5.372 -4.968 -4.540 -4.093
5 7.036 -6.665 -6.267 -5.849 -5.413
6 8.325 -7.955 -7.563 -7.151 -6.724

TABLE 14.2. Values of ratios = for backward modes with a di erent
number of diametral ( ) and radial ( ) nodes.

Free Constrained
= 0 = 1 = 1 = 0 = 1 = 1

0 0 2 0 0.445 2 0
1 1.817 3.439 -1.439 1.998 3.439 -1.439
2 3.146 4.769 -2.769 3.345 4.769 -2.769
3 4.450 6.076 -4.076 4.666 6.076 -4.076
4 5.745 7.375 -5.375 5.978 7.375 -5.375
5 7.040 8.677 -6.677 7.289 8.677 -6.677

TABLE 14.3. Values of ratios = for backward and forward modes with a
di erent number of diametral ( ) and radial ( ) nodes. Finite element solution
for a free and a constrained membrane.

Table 14.3. By comparing Table 14.3 with Tables 14.1 and 14.2, it is clear
that the natural frequencies for the modes with = 0 of the Southwell
solution coincide with those obtained from the FEM model in which the
membrane has been assumed to be free, whereas the e ect of a constraint
near the center somewhat increases the natural frequencies. However, ex-
cept for the case of the case with = 0, the di erence is not very great.
The computations for = 1 shows that the presence of the constraint
at the center does not a ect the value of the frequency and the Southwell
solution holds in general.

14.2 Rotating circular plate

Consider a circular plate with uniform thickness, rotating about its sym-
metry axis. By accepting the Kirkcho assumption and neglecting shear
deformations (which holds for fairly thin plates), the equation of motion of
the area element located in the position ( ) in a direction perpendicular
to its plane (Figure 14.1) is

2

2
=
1

µ ¶
+

2

2

2

2

3 (1 2)
4 , (14.18)
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m= 0 m= 1 m= 2 m= 3 m= 4

0 1.876 0.896 2.63 6.12 10.80
1 10.46 10.26 17.63 26.46 36.55
2 30.60 29.93 41.95 55.65 71.40
3 60.30 59.50 77.00 96.05 116.15
4 99.99 99.10 121.35 145.35 170.20

TABLE 14.4. Values of for a nonrotating circular plate clamped at its center
and free at the outer edge, with di erent number of diametral ( ) and radial
( ) nodes (the value for = 0, = 1 was not found in the literature and was
computed numerically).

where the biharmonic operator, in polar coordinates, is
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and is the thickness of the plate.
The first terms at the right-hand side are those linked to the sti ening

e ect caused by stressing (centrifugal or caused by other causes) that were
present also in the case of the membrane. The following term is linked with
the bending sti ness of the plate.
The solution of Equation (14.18) can in general be written in the form

= ( ) cos ( ) , (14.20)

obtaining
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3 (1 2)
4 + 2 = 0 . (14.21)

The natural frequency of a nonrotating circular plate can be written in
the form

=

s
2

3 4 (1 2)
, (14.22)

where coe cients for the various modes depend on the boundary con-
ditions and on the ratio between the inner and outer radius. For instance,
the values of for a plate clamped at the outer edge and free at the center
for various values of and are reported in Table 14.4 [62].
The frequencies so computed are referred to a frame that rotates together

with the disc. The natural frequencies in a fixed reference frame are then
computed using Equation (14.14): When the result is negative, a backward
whirl mode is found.
If only centrifugal stressing is considered, Equation (14.21) can be written

in nondimensional form

1
µ ¶

+
2
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2
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2
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µ ¶2
= 0 , (14.23)
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where the biharmonic operator refers to variables and and the nondi-
mensional quantities are

=
2 2

=
2 2

, (14.24)
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2
. (14.25)

For a given geometrical configuration (i.e., ratio = and boundary
conditions), the nondimensional frequency depends on a single parame-
ter, namely, the nondimensional speed . The nondimensional Campbell
diagram for a disc clamped at its center is shown Figure 14.3. The first
two modes with = 0 are shown in Figure 14.3(a), whereas the first two
backward and forward modes with = 1 are shown in Figure 14.3(b). To-
gether with the FEM solution, an approximation obtained through Equa-
tion (13.73) is also reported (dashed lines). The latter equation can be
written in the present case as

p
2 + 2 , (14.26)

where is the natural frequencies of the nonrotating disc and is the
natural frequency of the membrane rotating at the spin speed .
The natural frequency at speed can be rewritten with reference to the

fixed frame as

' ±
p

2 + 2 = ±

q
2 + 2 2 , (14.27)

where is the ratio between the natural frequency of the rotating mem-
brane and the spin speed.
Equation (14.27) yields a very good approximation for = 1; the ap-

proximation for the modes with = 0 is far worse.
Within the validity of Equation (14.27), the speed at which the backward

traveling wave is stationary in the fixed frame is

' q
2 2

(14.28)

and clearly exists only for the modes with .
From Figure 14.2, it is clear that, at least in the case of a membrane

without a central hole, no critical speed [in the sense defined by Equation
(14.28)] exists for modes with = 0 or = 1. For = 2, the first mode
has a critical speed because = 1 533 .
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FIGURE 14.3. Nondimensional Campbell diagram for a disc clamped at its cen-
ter. (a) First two modes with = 0; (b) first two backward and forward modes
with = 1. The dashed lines have been obtained using Equation (14.14).

14.3 Disc-shaft interaction (modes with = 0 or
= 1)

The vibrations of discs studied in the previous section are flexural, out-of-
plane vibrations. Clearly a disc can vibrate also in its plane, but at least in
the case of thin discs, the in-plane natural frequencies are far higher than
those related to bending. If the disc is very thick, this may be no more the
case, but the disc is very sti and its dynamics can usually be reduced to
that of a rigid body.
The flexural modes with = 0 involve only axial motion of the disc

and couple with the axial vibration of the rotor: They do not a ect lateral
behavior. Modes with = 1 on the contrary can be likened to rotations
of the disc about - and -axes and hence couple with the bending behav-
ior of the shaft. All other modes with 1 can be considered as local
modes, with little influence on the global behavior of the system, and will
be neglected in the study of the disc-shaft interaction.
A similar consideration holds also for in-plane modes, if they are consid-

ered at all. They too can be expressed in the form of Equation (14.13) and
subdivided following the value of . The in-plane modes with = 0 couple
with the torsional vibration of the rotor and have no e ect on its lateral
behavior. Modes with = 1 can be likened to displacements of the disc
in - and -directions and couple with the bending behavior of the shaft.
Again, all modes with 1 can be considered as local modes, with little
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FIGURE 14.4. Campbell diagram and decay rate plot of a thin disc on elastic
supports; same system studied in Section 15.6, but with a disc with thickness
= 10 mm instead of the blades. The system has a high rotating damping (loss
factor = 0 1 for the disc) and low nonrotating damping ( = 0 005 for the
springs).

influence on the global behavior of the system. They too will be neglected
in the study of the disc-shaft interaction.
Owing to the analytical complexity, it is impossible to solve the interac-

tion problem in a general way. A very simple case will be studied in some
detail in this section. Consider the bladed disc studied in Section 15.6, but
substitute a thin disc (thickness = 10 mm) for the blades, keeping all
other parameters at the same value. The Campbell diagram is reported
in Figure 14.4, together with a decay rate plot computed assuming a loss
factor = 0 1 for the disc and = 0 005 for the springs supporting the
system.
The Campbell diagram shows that the only in-plane mode, a rigid-body

translation of the whole system on the suspension spring, does not interact
with the bending modes, and its natural frequency, independent from the
speed, coincides with the value computed using the Je cott rotor model.
The frequencies of the bending modes increase quickly with the speed, and
they do not give way to any critical speed.
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The decay rate plot shows that the system is stable, in spite of the
high rotating damping and almost vanishing nonrotating damping. This,
however, can be expected: The damping of the disc has little destabilizing
e ect because the modes in which the disc deformations are involved are
subcritical (are above the = line).
The example studied shows that the disc deformation has a large e ect

on the Campbell diagram as a whole, but practically no e ect whatsoever
on the critical speed, even if the disc is a very thin and flexible one. This
is, however, mostly because of the uncoupling between translational and
rotational degrees of freedom (i.e., between cylindrical and conical modes),
with the first, not a ected by the disc flexibility, giving way to critical
speeds and the latter, highly a ected by the behavior of the disc, which
yield no critical speed.

Remark 14.1 As the forward modes involving mostly the discs and the

blades have a frequency that increases fast with the speed, if they remain

above the = line, they are essentially subcritical, even if the rotor as

a whole works in the supercritical range. A consequence is that rotating

damping associated with the discs and the blades have little destabilizing

e ect. The backward modes (or better, the modes that cause a wave moving

backward in the rotating frame) may in the fixed frame be seen as a backward

or a forward mode. In the former case, there is usually no problem, whereas

in the second one, they may lie in the supercritical range and may trigger

instability. As seen above, this is usually not the case for disc modes with

= 0 or = 1.

14.4 Uncoupled modes (modes with 2)

Some modes with 2 may cause a critical speed [in the sense defined by
Equation (14.28)] to be present. After the critical speed the wave traveling
backward in the rotating frame is seen as a low-frequency forward mode
in the fixed frame. Such mode is supercritical in the sense that the whirl
speed is lower than the spin speed. The nondimensional Campbell diagram
for the modes with = 2, = 0 and = 3, = 0 for a disc without a
central hole, computed using the approximated Formula (14.27), is reported
in Figure 14.5.
As expected, after the critical speed, a forward whirling with low fre-

quency occurs.
At the critical speed (always in the sense outlined above), a sort of res-

onance with a static force occurs. As the mode is an out-of-plane bending,
this force must be applied in a direction perpendicular to the disc rotation
plane and its modal force for the relevant mode must be nonvanishing. An
axi-symmetrical force distribution will not excite this mode, but a concen-
trated force on any given point (or short arc) of the periphery of the disc
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FIGURE 14.5. Same as Figure 14.4,. but for modes with = 2, = 0 and
= 3, = 0

will. This is the well-known case of the lateral force exerted on the blade
of a circular saw, or the pressure of the reading head on a computer floppy
disc or hard disc. This resonance occurs at high speed, particularly for high
values of .
Note that the value of the critical speed given by Equation (14.27) is

only an approximation, which can be demonstrated to be a lower bound to
the correct value.
In the case in which not only a lateral force, but also a nonrotating mass is

applied on the periphery of the disc, as in the case of a computer disc drive
in which the reading head can follow the disc in its lateral vibration, two
fields of instability can be identified. The lowest one starts immediately
after the critical speed [63]. If damping is also considered, the fields of
instability occurring above the critical speed merge and all speeds above

give way to unstable vibration. This occurs not only if rotating damping
is considered, but also if nonrotating damping is supplied, for instance, by
the system supporting the load.

Remark 14.2 The speed defined by Equation (14.27) is, in the case of a

disc with a lateral loading, a true threshold of instability. The term critical

speed is then in a sense a misnomer for it.

14.5 Vibration of rotating circular rings

A circular ring can vibrate in di erent ways, and extensional, torsional, in-
plane flexural, and out-of-plane flexural modes are usually identified. The
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FIGURE 14.6. Circular ring. (a) Sketch and reference frames; (b) forces acting
on a length of the ring.

natural frequencies of nonrotating circular rings are well described in the
literature, e.g., in [42, 64]. The rotation of the ring about its axis, however,
a ects its natural frequencies. To take this e ect into account, consider a
ring with mean radius and axial and radial thickness small when com-
pared with the radius. A generic point P of the ring has a displacement
whose components in radial, circumferential, and axial directions are , ,
and with reference to the rotating frame (Figure 14.6). Note that to be
consistent with [64], the radial displacement is positive inward.
The equilibrium equation of the length = of the ring can be

expressed in the form

+ + = 0 ,

+ + = 0 ,

+ + = 0 ,

(14.29)

+ + = 0 ,

+ + = 0 ,

+ + + = 0 ,

(14.30)
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where and are the mass forces and moments per unit length acting
on the length of the ring, and are the out-of-plane and in-plane
curvature of the deformed ring, and is the twist of the ring.
Equation (14.29) and (14.30) hold in general for a curved and twisted

beam. In the present case, an initial curvature is present only in the -
plane ( 0 = 0 and 0 = 1 ) and there is no initial twist ( 0 = 0).
Under these assumptions, the total curvatures and twist are

= 1
2

³
2

2

´
,

= 1
2

³
+ +

2

2

´
,

= 1
2

³
+

´
,

(14.31)

where is the rotation of the cross section of the ring.
The bending and torsional moments are linked with the curvatures and

twist of the beam by the usual formulas

= ( 0) = 2
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2

2

´
,

= ( 0) = 2

³
+

2

2

´
,

= 0 ( 0) =
0

2

³
+

´
.

(14.32)

Remembering that the radial displacement is positive toward the center
and assuming that the ring rotates at a constant speed , the position of
P in the fixed reference frame at time is

(P-O) =
( ) cos( ) + sin( )
( ) sin( ) cos( ) (14.33)

By di erentiating the expressions of the coordinates with respect to time
and assuming that the spin speed is constant, the velocity of point P is
readily obtained

P =
( ) sin( ) ˙ cos( ) + cos( ) + ˙ sin( )
( ) cos( ) ˙ sin( ) + sin( ) ˙ cos( )

˙
(14.34)

The kinetic energy of the length of the ring with cross-section area
located at point P is

T = 1

2
| P |

2 = 1

2

£
2 ( )

2
+ 2 2 + ˙2 + ˙2+

+ ˙ 2 2 ˙ 2 ( ) ˙
¤ (14.35)

The rotational kinetic energy of the length = of the ring about
its center of mass is here neglected, in a way that is consistent with the
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Euler-Bernoulli approach to the dynamics of beams. This is consistent also
with having neglected the shear deformation of the ring. As a consequence,
the mass moments per unit length acting on the length of the ring
vanish.
The mass forces per unit length

0
expressed in the 0 0 0 reference

frame can be easily computed through Lagrange equations. By performing
the relevant derivatives of the kinetic energy, it follows that

0
=

1
· µ

T

˙

¶
T
¸
=

£
¨ 2 ˙ + 2 ( )

¤
,

0
=

1
· µ
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˙

¶
T
¸
=

£
¨ + 2 ˙ 2

¤
,

0
=

1
· µ

T

˙

¶
T
¸
= ¨

(14.36)
The forces

0
appearing in Equations (14.29) are not expressed in the

0 0 0 frame, but in a frame whose axes are the local principal torsion-
flexure axes (to use the definition in [64]). Using the derivations in [64],
they can be computed by multiplying forces

0
by a suitable rotation

matrix

=
1 1

¡
+

¢
1
¡
+

¢
1

1

0

0

0

(14.37)

By neglecting all small terms, it follows that

=
£
¨ 2 ˙ + 2 ( )

¤
,

=
¡
¨ + 2 ˙ + 2

¢
,

=
¡
¨ 2

¢ (14.38)

By inspecting the various terms of the equations of motion, once the mass
forces and the expressions of the curvatures and twist have been inserted
into Equations (14.29) and (14.30), it is clear that all of them contain at
least one small quantity, except two terms of the first Equation (14.29),
which yield the equation

0 =
2 2 . (14.39)

Equation (14.39) yields the value of the circumferential force in the ring
caused by the centrifugal field and coincides with the usual value of the
stress in a rotating ring. In the following developments, the circumferential
force to be introduced into Equations (14.29) will be written in the form

+ 2 2 ,
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where is only the dynamic component of the force and is considered as
a small quantity.
If all quantities containing more than one small quantity are neglected,

the set of six equations (14.29) and (14.30) splits in two separate sets of
three equations, describing separately the out-of-plane and the in-plane
behavior of the ring.

14.5.1 Out-of plane flexural vibrations

The out-of-plane behavior of the ring can be studied using the third Equa-
tion (14.29) and the first and second Equations (14.30). By introducing
the expressions of the curvature and twist and the inertia forces into the
equations of motion, it follows that

2

µ
2

2

¶
=

¡
¨ 2

¢
,

+ = 0 ,

= 0 .

(14.40)

By introducing the Expressions (14.32) for the bending and torsional
moments into Equation (14.40) and eliminating one equation between the
first two, it follows that
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4
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2

2
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2

2
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2
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2

2
+

2

2

!
+

µ
2

2

¶
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(14.41)

where

=
0

(14.42)

If the cross section is circular or annular,

=
1

1 +
, (14.43)

where is the Poisson’s ratio of the material.
The out-of-plane bending and the torsional deformation of the ring are

thus coupled with each other. The solutions ( ) and ( ) can be
expressed as
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= cos ( )
X
=1

[ cos ( ) + sin ( )] ,

= cos ( )
X
=1

[ cos ( ) + sin ( )] ,

(14.44)

i.e., by an harmonic motion in time and by a trigonometric polynomial
(without the constant term) in angle
By introducing the expressions of and into Equation (14.41) and

balancing the various harmonics of the solution, it follows, for the generic
th harmonic, that

"
4 2 +

4 ¡
2 2 + 2

¢
2(1 + )

2(1 + )
¡

2 + 1
¢
#½ ¾

= 0

(14.45)
Identical expression can be obtained for the component in sine of the

solution, i.e., for the amplitudes and . By equating to zero the deter-
minant of the coe cients of Equation (14.45), the characteristic equation
allowing us to compute the natural frequency is obtained

=

s
4

2(1 2)2

(1 + 2)
+ 2 2 . (14.46)

At standstill ( = 0) the natural frequency of the ring is

=0 =

s
4

2(1 2)2

(1 + 2)
. (14.47)

In the case of a circular or annular cross section, the usual expression of
the natural frequency is obtained

=0 =

s
4

2(1 2)2

(1 + 2 + )
. (14.48)

In the case of a rotating string, i.e., of a ring with negligible bending
sti ness, the expression of the natural frequency reduces to

= . (14.49)

By introducing the nondimensional spin speed and natural frequency

=
=0

=
=0

, (14.50)
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FIGURE 14.7. Nondimensional natural frequency as a function of the nondimen-
sional spin speed for the out-of-plane vibrations of a rotating ring; mode shapes
with = 2, 3, 4 and 5. (a) Frequencies in the rotating frame; (b) forward and
backward frequencies in the fixed frame.

the frequency-speed relationship reduces to

=
p
1 + 2 2 . (14.51)

The above-mentioned natural frequencies are expressed with reference
to the rotating frame. Each value of the frequency produces two natural
frequencies, one related to a forward traveling wave and one to a backward
one, in the fixed frame. By using Equations (14.15) and (14.16), the forward
frequency is

= + = +

s
4

2(1 2)2

(1 + 2)
+ 2 2 , (14.52)

whereas the backward one is

= =

s
4

2(1 2)2

(1 + 2)
+ 2 2 . (14.53)

The nondimensional natural frequency (in the rotating frame) is plotted
as a function of the nondimensional spin speed in Figure 14.7(a). The same
plot, but plotted with reference to the fixed frame, is reported in Figure
14.7(b).
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14.5.2 In-plane flexural vibrations

The in-plane behavior of the ring can be studied using the first and second
Equations (14.29) and the third Equation (14.30). Operating in the same
way seen for the out-of-plane behavior, the equations of motion become

+ + 2
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¸
,
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(14.54)

By introducing the Expression (14.32) for the bending moment into
the third Equation (14.54), the latter becomes
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By eliminating and a single equation of motion is then obtained
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In the study of the flexural vibrations of the ring, it can be considered
as inextensible, i.e., the circumferential strain can be assumed to vanish.
In such a case, the radial and circumferential displacements are linked by
the equation

= , (14.57)

and Equation (14.56) reduces to
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(14.58)

Actually, the in-plane flexural modes can be subdivided in modes in
which the axial deformations are negligible (inextensional modes, similar
to the bending vibrations of beams), and other ones in which the axial de-
formations are predominant (extensional modes, similar to the axial vibra-
tions of beams). The natural frequencies of the latter are one or two orders
of magnitude higher than the frequencies of the former (at equal number
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of circumferential nodes) and are usually of small practical importance.
The natural frequencies of the former, computed by keeping into account
the extensional deformation, di er by far less than 1% from those obtained
by the inextensional approach [i.e., by using Equation (14.57)] [64]. In the
following sections, only the inextensional approach will be followed.
The circumferential displacement can be expressed by a trigonometric

polynomial (without the constant term) in angle and by a harmonic
motion in time

= cos ( )
P

=1
[ cos ( ) + sin ( )]+

+sin ( )
P

=1
[ cos ( ) + sin ( )] .

(14.59)

By introducing the expression for into Equation (14.56) and balanc-
ing the various harmonics of the solution, it follows, for the generic th
harmonic, that
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where
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The characteristic equations allowing us to compute the natural fre-
quency are identical:
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The four solutions are
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From the study of the eigenvectors [65, 66], it is possible to observe that
the solutions are actually just two: The one with the highest absolute value
(the one with the + sign within brackets) is a backward traveling wave,
whereas that with the lowest absolute value (the one with the — sign within
brackets) is a forward traveling wave. The corresponding values in the fixed
frame are

=
3 + 2

1 + 2

s
4

2(1 2)2

(1 + 2)
+ 2

2(1 2)2

(1 + 2)
2

, (14.65)
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FIGURE 14.8. Nondimensional natural frequency as a function of the nondimen-
sional spin speed for the in-plane vibrations of a rotating ring; mode shapes with
= 2, 3, 4 and 5. (a) Frequencies of the forward and backward traveling wave

in the rotating frame; (b) forward and backward whirling frequencies in the fixed
frame.
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At standstill ( = 0), the usual expression of the natural frequency is
obtained

=0 =

s
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(1 + 2)
. (14.67)

Also, in the present case, it is possible to express the frequency and
the spin speed in nondimensional form, by dividing them by the natural
frequency of the nonrotating ring. With reference to the rotating frame, it
follows that
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#
. (14.68)

The nondimensional natural frequencies for the forward and backward
traveling waves (in the rotating frame) are plotted as functions of the nondi-
mensional spin speed in Figure 14.8(a). The same plots, but with reference
to the fixed frame, are reported in Figure 14.8(b).

Remark 14.3 Also, in the case of rotating rings, in-plane vibration may

give way to a wave that travels in backward direction in the rotating frame
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but in the forward one in the fixed frame. This feature is potentially desta-

bilizing.

In the case of a rotating string loop, i.e., of a ring with negligible bending
sti ness, the solutions of the characteristic equation are, in the rotating
frame,

= ,

= 3
2

2+1
.

(14.69)

Note that the results reported above are not the only ones reported
in the literature. Di erent formulae can be obtained by accounting for
some small terms which appear in the equation of motion. Actually the
di erences among them are so small that it is a common opinion that from
the physical point of view, one cannot judge which theoretical model is better

[65], [67], in spite of a number of experimental investigations on the subject.

14.6 Vibration of thin-walled, rotating cylinders

Often the shafts of rotating machines are made of thin-walled tubes of
fairly large diameter (if compared with their thickness). In this case, apart
from the flexural, torsional, and axial vibrations, which can be dealt with
(more or less accurately depending on the slenderness of the shaft) using
the beam theory, there may be also vibrations of the cross section of the
rotating cylindrical shell, very similar to the in-plane vibrations of rings.
If the tube is very long (i.e., the length is large if compared with its

diameter), it is possible to model it as an infinitely long cylindrical tube,
and each cross section can be assimilated to a vibrating ring. By resorting
to the inxtensional theory, the frequencies of the forward and backward
traveling waves are still given by Equation (14.68), the only di erence being
in the value of the natural frequency at standstill ( = 0), which in the
present case must account for the added sti ness because Poisson’s e ect
tends to constrain (i.e., to increase the natural frequencies of) any flexural
deformation of the shell. The natural frequency of the tube at = 0 is

=0 =

s
2

12 4 (1 2)

2(1 2)2

(1 + 2)
, (14.70)

where is the Poisson’s ratio.
If the length of the cylinder is finite, the boundary conditions at the ends

must be introduced, and the natural frequencies depend not only on the
number of nodes in circumferential direction, i.e., on the order of the mode
based on the Fourier series in which the displacement is developed in

circumferential direction, but also on the number of nodes in axial direction,
i.e., on the axial order of the node .
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Although solutions exist for the simplest cases, like a constant thickness
cylinder with simply supported ends [68, 67], their complexity suggests to
resort to numerical solutions, particularly in the case of complex shapes,
like those occurring in real-life machinery.

14.7 Instability of rotating cylinders partially filled
with liquid

There are instances in which some fluid is trapped inside a rotor, either by
chance, like in the case of a steam turbine rotor, or by design, as in cen-
trifuges. Owing to the centrifugal field, the liquid is "plastered" against the
inside walls of the rotor, and it can move more or less freely; the combined
dynamics of the rotor and the fluid can lead to instability of the system.
The simplest model, which can apply to simple centrifuges, is that of a

Je cott rotor made of a rigid hollow cylinder suspended on linear springs, in
which a layer of fluid of thickness hangs against the bore of the cylinder.
The thickness is kept constant by the centrifugal field (if the inner radius
is constant), but waves can form on the free surface (inner surface) of the
fluid.
To study the uncoupled dynamics, consider first the cylinder running on

sti bearings. The motion of the fluid can be seen as a wave propagat-
ing in forward direction and one propagating in backward direction. The
frequency of these waves is [11]

=
1± 1 +

, (14.71)

where

=
1 + 2

1 2

and = is the ratio between the inner and outer radii of the fluid
layer. If the liquid layer is very thin, i.e., if is close to unity, it follows
that

' 1 '
±

. (14.72)

In the fixed frame, they are two waves propagating with angular velocity

= + =
1 + ± 1 +

. (14.73)

The wave velocity is always positive; i.e., both waves are seen in the fixed
frame as propagating in forward direction. The solution with ( ) is then a
wave that moves backward in the rotating frame but forward in the fixed
one. As seen in many other cases, this is prone to produce instability.
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FIGURE 14.9. Qualitative Campbell diagram for a cylindrical Je cott rotor par-
tially filled with liquid. Dashed lines: uncoupled dynamics. Full lines: coupled
dynamics.

By freezing the fluid in a cylindrical layer and freeing the suspension
springs (whose isotropic sti ness is ), and modeling the system as a Jef-
fcott rotor, the natural frequency of the whole system on the springs is
obviously

=

r
, (14.74)

where is the total mass of the rotor, fluid plus structural parts.
If the coupled dynamics is considered, a plot of the type of the qualitative

one shown in Figure 14.9 is then obtained.
A field of instability, located about the intersection of the lowest branch

of the dynamics of the fluid layer with the upper branch of the Je cott
rotor line is clearly visible.
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Three-dimensional modeling of rotors

As already stated, in many cases rotors are modeled as one-dimensional
bodies, made basically of beam-like shafts with rigid bodies attached to
them. This approach is typical of rotordynamics, both analytical and nu-
merical, and several rotordynamic codes, either based on the transfer ma-
trices approach or on the finite element method, follow this trend.
The one-dimensional mathematical models usually yield results that are

accurate enough for most practical purposes while simple enough to allow
relatively straightforward computations to be performed. However, rotors
are intrinsically more complicated than assemblies of slender shafts and
rigid bodies, and there are cases in which true three-dimensional modelling
is required. There are cases in which the shafts are very stub or have a
thin-walled tubular cross section, and neither the Euler-Bernoulli nor the
Timoshenko beam theory is adequate to model their behavior in detail or
thin bladed discs do not behave as rigid bodies. The e ects linked with
these deviation from the classic shafts-rigid-bodies models are usually felt
more strongly on the high-frequency modes, and the very reason for which
they are usually neglected is that the first critical speed and the lowest
vibration frequency (or, better, the low-frequency part of the Campbell
diagram) are little a ected by them.
There are, however, cases in which the search for a better agreement be-

tween simulation and experimental results; the presence of high-frequency
excitation that compels us to take into account also the high-frequency
response, the presence of very compliant parts like thin discs or long, slen-
der blades, or simply an unconventional rotor geometry makes the classic
approach inadequate. Moreover, in the previous two chapters it has been
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shown that the presence of flexible blades or discs may cause a rotating
system to become unstable.
Another reason for resorting to true 3D modeling is a practical one:

Although a beam-model must be created more or less "by hands", a tridi-
mensional model can be obtained automatically from the CAD drawings
of the machine. Usually automatic modeling results in a large number of
degrees of freedom, but this can be at least partially dealt with by using
reduction techniques, so that the construction of a 3D model can be today
less expensive (in particular for what the men-hours are concerned) than
that of a beam-like model. No doubt that this is the trend in the numerical
analysis community.
There is no di culty in modeling a rotor using a standard 3D FEM

code to study its dynamic behavior, but such codes usually do not take
into account that a rotor is a rotating structure and the very presence of a
spin speed induces several e ects that are not present in general structural
dynamics. They can be summarized as follows:

• Gyroscopic (and Coriolis),

• Centrifugal sti ening, and

• Rotating damping e ects.

The former, which in elementary rotordynamics is dealt with in the con-
text of rigid-body dynamics, a ects also the behavior of compliant rotating
bodies, as seen dealing with the dynamics of blades and discs. The second,
together with the sti ening caused by other load conditions like thermal
stressing in gas turbine or brake discs, cannot be accounted for in simple
beam-like models.
Many FEM codes can deal with centrifugal sti ening and similar e ects

because they can compute static stressing and stresses caused by rotation
and then use the geometric matrices approach to evaluate their e ects
on the natural frequencies. For gyroscopic and rotating damping e ects,
things are more complex. Many times it has been proposed to play some
tricks to account for these features within the frame of standard finite
element codes, but the only correct way for dealing with them is to develop
element formulations in which they are included since the beginning. So
correct 3-D approach rotordynamics is just a matter of developing adequate
formulations and implementing them in suitable FEM codes.

15.1 Symmetry of the rotor

The rotors studied in classic rotordynamics are mostly axi-symmetrical.
Even in this case, although it is possible to assume that axial symmetry
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holds for the geometrical configuration, the displacement field has no par-
ticular symmetry.
When both the rotor and the stator are symmetrical with respect to the

rotation axis, the study can be performed indi erently using a fixed frame
(inertial frame) or a rotating frame. The former is usually selected because
it simplifies the analytical formulation.
In Chapter 6, it has been stated that when the stator has no axial sym-

metry, the use of the inertial frame is mandatory (or, better, that if the
equations are written in a rotating frame, they transform into periodic coef-
ficient di erential equations). In a similar way, when the rotor is not axially
symmetrical, although axial symmetry holds for the stator, the study can
be performed in the rotating frame using a set of di erential equations
whose coe cients are constant in time. It is only when both stator and
rotor (or, in case of a multirotor machine, more than one element) have
no axial symmetry that an actual periodic coe cient di erential equation
must be dealt with, because no frame in which a constant coe cients equa-
tion can be written exists.
When either the stator or the rotor is axially symmetrical, it is a common

practice in finite element modeling to use elements that are axially sym-
metrical for what their geometry and properties are concerned, but whose
displacement field is expressed along the rotational angle by trigonomet-
ric polynomial. This approach allows us to deal with problems of higher
dimensionality without the need of a computationally complex fully multi-
dimensional approach.
As an example, a thin disc whose geometry is axially symmetrical can be

dealt with by neglecting its thickness, locating a certain number of nodes
along the radius and expressing the displacement field using any type of
shape function along the radius and by a trigonometric polynomial along
the polar angle. This approach, which will be dealt with in detail in Section
15.2, is often referred to as a 1 and one half dimensional approach. Its
advantages are mainly caused by the consideration that the coe cients of
the trigonometric polynomials that are taken as generalized coordinates are
much fewer than the generalized coordinates linked with the displacements
of nodes distributed along the polar angle as it would occur if a full two
dimensional approach was followed.
If the body cannot be modeled as a thin disc, it is possible to exploit

its symmetry by using annular (axy-symmetrical) elements and then ap-
proximating the dependence of the displacements on the polar angle by
trigonometric polynomials. Also, in this case, the degrees of freedom of
such a 2 and one half dimensional model are much fewer than those of a
full three dimensional model.
If the stator is not axially symmetrical, the equations of motion can

be written with reference to the inertial frame, whereas in the case of a
nonisotropic rotor, the use of a rotor fixed frame is mandatory. Up to this
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FIGURE 15.1. Possible symmetry classes for rotors. (a) No symmetry about the
rotational axis; (b) two orthogonal symmetry planes (symmetry of order 2); (c)
cyclic symmetry; (d) axial symmetry (symmetry of order ). (a) is equivalenmt
to (b) and (d) to (c).

point, there is no di erence in the general approach whether a beam-like,
a 2 and one half dimensional, or a full 3D model is used.
However, there is a symmetry class that is in a way intermediate between

an axial symmetry and no symmetry at all (note that in the case of rotors,
a symmetry with respect to one or two planes is equivalent to a complete
lack of symmetry): Cyclic symmetry [Figure 15.1(c)].
Many rotors, including bladed turbine rotors, display a cyclic symmetry,

i.e., can be considered as made of a number of identical sectors. Apart from
the obvious issue that modeling of such a rotor by exploiting this peculiar
symmetry makes the construction of the model far simpler, there are some
added considerations of great importance.
Firstly, in the case of a rigid body, any cyclic symmetry with order equal

or greater than three is equivalent to a symmetry of order infinity, i.e., to
axial symmetry (the ellipsoid of inertia becomes an ellipsoid of rotation).
A rigid three-bladed propeller is then dynamically equivalent to a disc. In
the same way, a planar linear elastic system with cyclic symmetry with
order equal to, or greater than, three is equivalent to an isotropic elastic
system (the ellipse of elasticity degenerates into a circle). A triangular
beam, whose cross section is an equilateral triangle, behaves elastically as
a circular beam.
In the case of flexible body with cyclic symmetry of order , a simi-

lar property holds. This can be proven by considering that any possible
eigenvector of the whole structure can be described in terms of the vectors
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describing the deformations of the identical substructures

u =
£
u1 u2 u3 u

¤
. (15.1)

D. L.Thomas [69] showed that the eigenvectors fall into three classes:

1. Eigenvectors in which all substructures displace in an identical way
(u1 = u2 = = u ).

2. Eigenvectors in which all substructures displace in an identical way,
but with a phasing of 180 from each other (u1 = u2 = u3 = ).

3. Eigenvectors of other types.

The eigenvectors of the first type, for example, zero-order axial, torsional
or radial extensional modes of disc-type structures, do not exhibit in general
degeneracy and result in distinct eigenfrequencies.
Eigenvectors of the second type can exist only if is even (otherwise

the last substructure would have the same deformation of the first one,
violating the continuity at the interface between them). They have the
same properties as those of the first type.
The eigenvectors of the third type exhibit a two-fold degeneracy, and the

eigenfrequencies come in pairs with identical values. This characteristic is
identical to what is typical for axi-symmetrical structures. An eigenvector
of this type can be rotated of any angle about the symmetry axis (i.e., the
spin axis), and the result is still an eigenvector with the same eigenvalue.
This does not mean that the sti ness, mass, gyroscopic, etc. matrices

are not a ected by an arbitrary rotation about the spin axis, but that the
eigenvalues and the eigenvectors are such. The dynamics of a rotor with
cyclic symmetry can be performed by using the nonrotating frame and, as a
consequence, that a rotor of this type running on an anisotropic stator can
be studied without resorting to an equation with periodic coe cients. In
this sense the rotor of Figure 15.1(c) is equivalent to that shown in Figure
15.1(d), whereas those shown in (a) and (b) are equivalent.
All this holds if the cyclic symmetry is at least of order 3: If the rotor is

made of two identical substructures rotated by 180 with respect to each
other the situation is that of Figure 15.1(b) and the eigenvectors do not
exhibit any particular degeneracy. As a result, the equation of motion must
be written in the rotating frame, and if also the stator is not isotropic, no
constant coe cient equation can be obtained.
Clearly, what has been said for a rotor with cyclic symmetry can be

repeated also for the case of a stator with cyclic symmetry of order 3 or
higher.

Example 15.1 Rim-with-spokes flywheel. Compute the out-of-plane natural fre-

quencies at standstill of a rim-with spokes flywheel on nonisotropic supports using
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FIGURE 15.2. Rim-with-spokes flywheel modelled using a number of beam ele-
ments. (a) Structure with symmetry of order 7; (b) one of the substructures.

a very simple FEM model based on straight beam elements to show that the be-

havior of a cyclic symmetry structure is the same as that of an axi-symmetric

structure.

A very simple model for a rim flywheel with seven spokes is shown in Figure

15.2. The rim is modeled with 14 straight Euler Bernoulli beam elements, whereas

the spokes consist of other seven beam elements of the same type. The degrees of

freedom for each node involved in the out-of-plane behavior are the axial displace-

ment , the bending rotation , and the torsional rotation ( -axis lies along

the axis of the beam, whereas -axis of each beam is parallel to the rotation axis).

The structure can be subdivided into (seven in the figure) identical sectors,

each one made by three beam elements. Each sector contains four nodes, node

1 being in common with all other sectors (and with the shaft), node 2 with the

preceding sector, and node 4 with the following one. The total number of degrees

of freedom for each sector is 12, and the whole structure contains 6 + 3 degrees

of freedom (45 in the case of the figure).

Assume that the rim has a circular cross section with a diameter of 50 mm and

a mean diameter of 1 m, the spokes have a circular cross section with a diameter

of 30 mm and that the whole structure is made of steel ( = 2 1 × 1011 N/m2,

= 7810 kg/m3, = 0 3). The sti ness of the support is = 10
8 N/m in axial

direction, = 10
11 Nm/rad for rotations about -axis, and = 10

6 Nm/rad

for rotations about -axis.

Angle and the length of the beams modeling the rim are, for = 7,

=
2

= 0 8976 rad , = 2 sin

µ
4

¶
= 222 5 mm .
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By remembering that in case of circular cross sections 0

p = = 2 , ordering

the generalized coordinates of each node as , , and , the sti ness matrix

of each beam of the rim is

K =
3

12 0 6 12 0 6
2

1+
0 0

2

1+
0

4
2

6 0 2
2

12 0 6
2

1+
0

symm. 4
2

.

Taking into account both the translational inertia and the rotational inertia of

the cross section, the mass matrix of each beam of the rim is

M =
420

156 0 22 54 0 13

140 0 0 70 0

4
2

13 0 3
2

156 0 22

140 0

symm. 4
2

+

+
30

36 0 3 36 0 3

0 0 0 0 0

4
2

3 0
2

36 0 3

0 0

symm. 4
2

.

Similar expressions hold for the spokes, once the radius is substituted for the

length and the relevant cross-section characteristics have been introduced.

The three beams constituting a substructure are then rotated by the relevant

angles (0 for the spoke, 1

4
( + 2 ) and 1

4
(3 + 2 ) for the rim elements) and

assembled in the usual way. The sti ness and mass matrices of each substructure

have 12 rows and 12 columns.

To assemble the various substructures, it is useful to use a map, i.e., a table

showing the correspondence between the generalized coordinates of the various

substructures and those of the whole system. Such a map is reported in Table

15.1.

The first substructure is already oriented in the right way, each of the following

ones is rotated by an angle with respect to the previous one. The matrices of the

structure are thus obtained by rotating and assembling those of the substructures.

The sti ness of the constraints is then added to the elements 11, 22, and 33 of

the sti ness matrix.

A first computation is then performed without adding the sti ness of the con-

straints, to compute the free-free natural frequencies. The first three modes are

rigid-body modes with natural frequency equal to zero. The eigenfrequencies from

the fourth to the twelfth are reported in Table 15.2.
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Substr. Generalized coordinate #

1 1 2 3 4 5 6 7 8 9 10 11 12
2 1 2 3 10 11 12 13 14 15 16 17 18
3 1 2 3 16 17 18 19 20 21 22 23 24
4 1 2 3 22 23 24 25 26 27 28 29 30
5 1 2 3 28 29 30 31 32 33 34 35 36
6 1 2 3 34 35 36 37 38 39 40 41 42
7 1 2 3 40 41 42 43 44 45 4 5 6

TABLE 15.1. Map for assembling the substructures.

Mode # 4 5 6 7 8 9 10 11 12

(rad/s) 1390 1390 1604 3774 3774 5531 5531 7205 7205
Type c c a c c c c c c

TABLE 15.2. Values of the first 12 free-free natural frequencies.

Type "a" designates eigenvectors in which all substructures displace in an iden-

tical way (the one reported is an axial "umbrella" mode) and "c" the eigenvectors

with a twofold degeneracy, identical to those typical for axi-symmetrical struc-

tures. As the symmetry is of odd order (7), there are no modes in which all

substructures displace in an identical way, but with a phasing of 180 from each

other.

The natural frequencies of the system on the elastic supports were then com-

puted (Table 15.3). To verify that the system behaves as an axi-symmetrical struc-

ture, the system has been modeled six times, with the flywheel rotated by 0, 5,

2 5, 3 5, etc. with respect to the axes of elasticity of the supports. As the ro-

tational sti ness about -axis is much lower than that about -axis, the first two

natural frequencies di er greatly from each other. The third mode is an axial um-

brella mode. Then some modes with two-fold degeneracy are maintained: They are

the modes in which no rotation about - and -axis occurs, and the two di erent

sti nesses can play no role. All results are reported with eight figures, to check

numerical approximations.

15.2 Simplified FEM elements for thin bladed-discs
modeling

If the rotor contains a thin axi-symmetrical bladed disc, it is possible to
extend the simple one-dimensional models in a straightforward way (1 1

2

dimensional models). The shafts can be modeled by using beams and the
discs can be assimilated to annular plates. As they are geometrically ax-
ially symmetrical, only the cross section is meshed as in the case of axi-
symmetrical plates, but the displacement field needs to allow considering
non-axi-symmetrical deformations. This can be easily done by assuming
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Angle [deg]
Mode 0 10.29 20.57 30.86 41.14 51.43

1 175.050 175.050 175.050 175.050 175.050 175.050
2 403.793 403.793 403.793 403.793 403.793 403.793
3 414.474 414.474 414.474 414.474 414.474 414.474
4 1390.328 1390.328 1390.328 1390.328 1390.328 1390.328
5 1390.328 1390.328 1390.328 1390.328 1390.328 1390.328
6 2347.196 2347.196 2347.196 2347.196 2347.196 2347.196
4 3773.669 3773.669 3773.669 3773.669 3773.669 3773.669
5 3773.669 3773.669 3773.669 3773.669 3773.669 3773.669
6 5971.796 5971.796 5971.796 5971.796 5971.796 5971.796
7 7204.965 7204.965 7204.965 7204.965 7204.965 7204.965
8 7204.965 7204.965 7204.965 7204.965 7204.965 7204.965
9 8097.518 8097.518 8097.518 8097.518 8097.518 8097.518

TABLE 15.3. Values of the first nine free-free natural frequencies of the con-
strained rotor, computed in di erent positions.

that the axial, radial, and circumferential displacements of all nodes of the
reference cross section are expressed by a Fourier series in angle (Figure
14.1).
In a similar way, the blades are modeled as rows of radial beams, in a

way similar to the rows of pendulums described in Chapter 13.
The beam elements modeling the shaft can be Timoshenko or Euler-

Bernoulli beam elements, with two end nodes. Each node has six degrees
of freedom: three displacements in -, - and - (axial) direction, and three
rotations about the same axes.
Each disc is modeled by a number of annular plates, located at a certain

axial coordinate (identified by the position of the midplane of the disc) and
extending radially. As the disc is reduced to its midplane, the displacement
field is a function of just two coordinates, the radius and the polar angle
. As already stated, the disc is assumed to be axially symmetrical and the
displacement field can be approximated along angle by a Fourier series.
The disc is located in a given point of the shaft [point C in Figure (15.3b)]:

If it was a rigid disc, like those modeled by a mass element in Chapter 4,
its midplane would lie in the plane containing the cross section of the
beam element. Such plane is identified by axes and in Figure 15.3. The
inflected configuration of the beam element is shown in Figure 15.3(a). The
disc is attached to one end of the beam, which in the undeflected position is
located in O and in C in the deformed configuration [7]. The displacement
of point C has then components , , and in the inertial frame.

15.2.1 Kinematics

The deflected configuration of the disc is sketched in Figure 15.3(b) (in the
figure an "umbrella" deformation, i.e., a deformation that is independent
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FIGURE 15.3. Simplified disc element. (a) Inflected configuration of the beam
element. The disc is attached to one end of the beam (point C). (b) Sketch of the
disc. Its deflected configuration (in the figure an "umbrella" deformation, i.e., a
deformation that is independent from the polar angle is represented) is referred
to the plane identified by the deflected position of the beam cross section in
C. The annular element is the dashed part of the disc, between radius 1 and
radius 2. (c) Geometrical definitions and nodes.

from the polar angle is represented). The axial displacements are re-
ferred to the -plane. The annular element is the dashed part of the disc,
between radius 1 and radius 2. Point P is a generic point of the element
belonging to the midplane of the disc.
The element has three nodes: a central node (referred to as node 0)

located in point C, center of the cross section of the shaft at the shaft-
disc interface, node 1 and node 2 at the inner and outer radii [Figure
15.3(c)]. Note that all of the elements in which a disc is subdivided have
in common the same central node (node 0), which guarantees that the
rigid-body behavior of all elements is consistent.
The C -frame coincides with the whirling frame defined in Chapter

3. It has been obtained by rotating the inertial frame O about the
-axis by an angle and then about the -axis by an angle . The

rotation matrices, defined in Chapter 3, are here reported

R1 =
1 0 0
0 cos( ) sin( )
0 sin( ) cos( )

(15.2)

R2 =
cos( ) 0 sin( )

0 1 0
sin( ) 0 cos( )

(15.3)
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To take into account also a torsional rotation by an angle of the end
of the beam where the disc is attached, the following rotation matrix is
also introduced:

R3 =
cos( ) sin( ) 0
sin( ) cos( ) 0

0 0 1
(15.4)

Note that frame follows the rotor during its whirling motion but
does not rotate. As the disc rotates with respect to the whirling frame, the
angle line PC makes with -axis is + , where angle theta defines the
angular position of P on the disc at time = 0. A fourth rotation matrix,
defining the position of P in the C -frame can then be defined

R4 =
cos( + ) sin( + ) 0
sin( + ) cos( + ) 0

0 0 1
. (15.5)

The position of point P can thus be expressed as

(P O) = +R
1
R
2
R
3
R
4

+
(15.6)

where , , and are the displacements in radial, circumferential, and
axial direction of point P, with respect to the position of the same point,
as belonging to a rigid disc.
The small-displacement assumption allows us to simplify the trigonomet-

ric functions of angles , , and by neglecting all terms beyond the

second one in their series expansion [sin ( ) , cos ( )
¡
1 2 2

¢
].

Equation (15.6) then reduces to

(P O) =

+
h³
1

2

2

´
+

i
cos( + + )+

sin( + + ) +

+
h³
1

2

2

´
+

i
sin( + ) + cos( + + )+

+ cos( + + )
+
£
( + ) +

¤
sin( + + )+£

( + )
¤
cos( + + ) +

(15.7)
The six generalized coordinates , , , , , and describe the

rigid-body motion of the disc and are the same for all the disc elements
that share the same central node, whereas ( , , , ), ( , , , ), and
( , , , ) describe the deformation of the given disc element. Note that
the same description can be used also for row of blades elements [8].
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15.2.2 Shape functions

As the disc element is based on the plate theory, i.e., the disc is assumed
to be a two-dimensional object, displacements , , and of the midplane
of the disc are just functions of , , and .
A nondimensional radial coordinate

=
1
, (15.8)

where = 2 1 is the radial width of the element, is introduced. The
values of span from 0 at the inner edge of the element ( = 1) to 1 at
the outer edge ( = 2).
As already stated, the displacements , , and are expressed by trigono-

metric polynomials in angle

( ) = 0 ( ) 1

2

2

0
( )+

+
P

=1
[ ( ) cos( ) + ( ) sin( )] ,

( ) = 0 ( ) +
P

=1
[ ( ) cos( ) ( ) sin( )] ,

( ) = 0 ( ) +
P

=1
[ ( ) cos( ) + ( ) sin( )] .

(15.9)
The zero-order harmonic includes a radial extensional displacement 0, a

torsional rotation
0
, and an axial (out-of-plane bending) displacement 0,

all functions of the radius and time. As the radial displacement is linked
only with very high frequency modes, uncoupled with the modes of the
shaft, the first term is usually neglected. This assumption is similar to that
seen for the case of the dynamics of rings.
Note that the displacements , , and are displacements of point P

from the position the same point would take if the disc was a rigid body.
The rotation

0
is then an angular displacement at point P, caused by the

torsional deformation of the disc, but has nothing to do with the torsional
rotation of the shaft. The displacements caused by the latter are included
in the terms in in Equation (15.7).
The first order harmonics ( = 1) in Equation (15.7) corresponds to a

rigid displacement of a circumference made by all points with a given value
of in -plane (a combination of displacements and ) and a rigid rota-
tion of the circumference about - and -axes (displacement ) as shown
in Figure 15.4. The components and have the same e ect: A dis-
placement of the circle in -direction, whereas and are displacements
of the circle in -direction. By convention, the displacement is ascribed half
to the radial and half to the circumferential displacement, by assum-
ing = and = . The axial displacement corresponds to a
rotation about -axis, whereas to a rotation about -axis.
Figure 15.5 shows the displacements corresponding to the second-order

harmonics [ = 2 in Equation (15.7)]. The components and are
two-lobed flexural deformations, and and are purely circumferential
extensional displacements. The axial displacements and are flexural
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FIGURE 15.4. First harmonic component of the displacement of a circle.

out-of-plane displacements. Note that all second-order harmonics terms
yield a displacement pattern that does not displace the center of mass or
change the direction of the rotation axis.
The same holds for all harmonics of higher order. As the various harmon-

ics are uncoupled with each other, only the zero- and first-order harmonics
need to be considered in the study of the dynamic behavior of the rotor as
a whole.
Coe cients 0, , , etc. are functions of the radial coordinate , or

better . As usual with the FEM, they are approximated by using shape
functions.
The expressions for the coe cients of the zero-order harmonics (as seen

above, 0 is here neglected) are

0
( ) = N1q

0
( ) 0 ( ) = N3q 0

( ) (15.10)

where the shape functions are

N1 =
£
1

¤
,

N3 =
£
2 3 3 2 + 1 2 (2 3) 3 + 2 2

¡
1 2

¢ ¤
.

(15.11)
The use of cubic shape functions (instead of linear ones) for out-of-plane

displacement compels us to resort to four generalized coordinates per ele-
ment in vector q

0

q
0
=
£

1 2

¤
q

0
=
£

01 01 02 02

¤
. (15.12)
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FIGURE 15.5. Second harmonic component of the displacement of a circle.

where
0
= 0 and

0
= ( 0 )

=
for = 1, 2.

The expressions for the coe cients of the generic th order harmonic are

( ) = N1q ( ) , ( ) = N1q ( ) ,
( ) = N1q ( ) , ( ) = N1q ( ) ,
( ) = N3q ( ) , ( ) = N3q ( ) ,

(15.13)

where the shape functions are the same as above and the generalized coor-
dinates are

q =
£

1 1

¤
, q =

£
1 1

¤
,

q =
£

1 1

¤
, q =

£
1 1 2 2

¤
,

q =
£

1 1

¤
, q =

£
1 1 2 2

¤
,

(15.14)
and

= , = ,
= ( )

=
,

0
= ( )

=
,

for = 1, 2. If the Fourier series is limited to two harmonics, the zeroth-
and the first-order ones, each element has 28 degrees of freedom: the 6
degrees of freedom of node 0, plus the 11 degrees of freedom of nodes 1 and
2. Of the latter, 3 are related to the zeroth-order harmonic and 8 to the
first-order one.
The two elements of q

0
, together with the torsional degree of freedom of

node 0, constitute the generalized coordinates for torsional behavior. The
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four elements of q
0
, together with the axial degree of freedom of node 0,

constitute the generalized coordinates for axial behavior. The remaining 20
degrees of freedom related to flexural behavior can be grouped obtaining
10 complex degrees of freedom: q + q and q + q , together with
the complex coordinate + of node 0, are the five complex coordinates
expressing the in-plane deformation of the element and q ( )+ q , to-
gether with the complex coordinate of node 0, are the five complex
coordinates expressing the out-of-plane deformation of the element.
As a general approach, this holds also for defining the kinematics of the

array of blades, with an important di erence: although in the case of the
disc element it is justified to use di erent types of shape functions for the
in-plane displacement and the out-of-plane displacement , in the case
of the blades, they are both caused by blade bending and it is advisable to
use cubic, beam-like, shape functions for both. In this way, one additional
degree of freedom must be used at each one of nodes 1 and 2 for the zeroth-
order harmonics and two for the first-order one. This leads to a total of 34
degrees of freedom per element, 5 for torsional and axial behavior and 24
(or 12 complex) for flexural behavior.

15.2.3 Kinetic and potential energy

The kinetic energy of the annular disc element with axial thickness ( ) is

T =
1

2

Z
2

1

Z
2

0

·

(P O)
·

(P O) . (15.15)

In the same way, the kinetic energy of the part of a row of blades, with
cross-section area , extending from radius 1 to radius 2 is

T =
1

2

X
=1

Z
2

1

·

(P O)
·

(P O) . (15.16)

The potential energy of the disc annular element is the sum of two terms.
The first one is directly caused by the deformation of the plate

U =
1

2

Z
2

1

Z
2

0

² D² , (15.17)
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where the strain vector ² is

² =

+
1

1
+
2

2

1
µ

+
1 2

2

¶

2

µ
1
2

1 2
¶

(15.18)

and matrix D is

D = 1 2
D1 0

0
3

12 (1 2)
D1

, (15.19)

where

D1 =
1 0

1 0
0 0 1

2
(1 )

. (15.20)

The second term, usually referred to as geometric e ect, is caused by the
stress field present in the undeflected element ( , ) caused by centrifugal
stressing but also by other causes. Note that only and are considered
owing to the plane stress and axial symmetry assumptions; they can be
computed using any closed-form (if possible) or numerical model currently
used in static stress analysis. The expression of the geometric e ect is

U =
1

2

Z
2

1

Z
2

0

" µ ¶2
+

µ
1

¶2
+

+

µ ¶2
+

µ
1

¶2#
.

(15.21)

In case of centrifugal stressing, both and are proportional to 2,
whereas they are independent of if other load conditions are considered.
The corresponding expressions for the element used to model a row of
blades can be obtained using expressions similar to those used for beam
elements, with the important di erence that in general, the cross section
of the blade is set at an angle with respect to the axial direction and the
displacement components and do not occur along the principal axes of
elasticity of the blades.
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Remark 15.1 When the blade is set at an angle with respect to the axial or

circumferential direction, the torsional and the axial behavior of the rotor

are coupled with each other. However, the flexural behavior remains uncou-

pled because its uncoupling is due to the fact that the various harmonics

of the Fourier decomposition of the displacements act independently from

each other. This feature does not depend on the orientation of the blades.

15.2.4 Element matrices

The equation of motion of the element can be obtained as usual through
Lagrange equations. The equation describing the torsional-axial behavior
is

M q̈ +
¡
K + 2K

¢
q =0 , (15.22)

where the vector of the torsional-axial generalized coordinates q has eight
elements in the case of disc elements and ten for blade arrays elements and
matrix K contains both the elastic terms and the geometric terms inde-
pendent from (e.g., those caused by thermal stressing). In the case of
disc elements, or for blades in which the cross section is either perpendic-
ular or parallel to the axial direction, the torsional-axial equation further
uncouples into two separate equations for torsional and axial dynamics.
The equation describing the flexural behavior can be written in terms of

complex coordinates

M q̈ G q̇ +
¡
K + 2K

¢
q =0 . (15.23)

Complex vector q has eight elements in the case of disc elements and
ten for blade elements.
The expressions of the various matrices in Equations (15.22) and (15.23),

or better of the functions that, once integrated numerically along the ra-
dius, yield the matrices, are too complicated to be reported here. Complete
derivations for the disc and the blade elements are reported in [7] and [8],
respectively.
Hysteretic damping matrices can be obtained in the usual way, remem-

bering that only the elastic sti ness matrix must be multiplied by the
loss factor, whereas geometric matrices do not enter the computation of
damping matrices. Obviously, if the element rotates, its damping must be
considered as rotating damping and assembled accordingly.

Example 15.2 Thin disc on a compliant spindle. Consider a very thin disc

(e.g., the blade of a circular saw) mounted on a compliant spindle. Let the data

of the system be as follows:

• Disc: outer radius 0 = 300 mm, thickness = 1 5 mm.

• Spindle: shaft diameter = 30 mm, length = 600 mm, disc position at

200 mm from the end.
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• Material: = 2 1× 1011 N/m2, = 7810 kg/m3, = 0 3.

• Bearings: sti bearings at the ends of the shaft.

The system is modeled using the 1 1
2
dimensional approach through 6 Timo-

shenko beam elements and 13 thin disc elements of the type described above.

As a first thing, consider the system as made of a rigid disc on a compliant

spindle. The inertial properties of the disc assumed as a rigid body are = 3 312

kg, = 0 1491 kg m2, and = 0 0745 kg m2. The Campbell diagram for the

compliant spindle with a rigid disc is shown in Figure 15.6(a), full lines. The

critical speed is = 694 3 rad/s = 6629 rpm.

The dynamics of the thin disc, modeled as a membrane is easily studied through

Equations (14.7)

=

where coe cients are reported in Table 14.3. The results are reported in Figure

15.6(a), dashed lines. No critical speed is caused by the flexibility of the mem-

brane.

The coupled dynamics is studied in Figure 15.6(b). The critical speed is now

sightly lower, as expected: = 664 4 rad/s = 6434 rpm. Note that the first

forward modes, of both the disc and the spindle, are fairly uncoupled, whereas the

other modes are more strongly a ected by coupling. At any rate, the flexibility of

the disc does not give way to critical speeds, which are dominated by the spindle

behavior.

15.3 General finite element discretization

The solutions seen in the previous section can be only used to model a
thin bladed disc. If the disc is thick and cannot be assimilated to a plate
or if the rotor is an actual three-dimensional structure, it must be modeled
following the practice of general solid modeling, adding Coriolis and gyro-
scopic e ects, centrifugal sti ening, and a distinction between rotating and
nonrotating damping that are essential in rotordynamics but are usually
not accounted for in general-purpose FEM codes.
The kinematic description of the deformation of a rotating body is dif-

ficult, in particular for what the definition of rotation is concerned. When
the rotor is modeled using beam-like elements, the cross sections were con-
sidered as rigid bodies and there was no problem in defining their rotation
and their angular velocity. If the body is a general flexible body, the de-
formation parameter and then the angular velocity change from point to
point: There is no way of defining exactly what the spin speed of the rotor
is. Nevertheless, an approximate approach is possible: The displacements
caused by deformations are assumed to be infinitesimal and a spin axis
is defined, at least for each point of the rotor. As a consequence of this
assumption, the Lagrangian and the Eulerian approaches di er from each
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FIGURE 15.6. Campbell diagram for a flexible disc on a compliant spindle. (a)
Uncoupled dynamics. Full lines: rigid dics on compliant spindle; dashed lines:
flexible membrane on a rigid spindle. (b) Coupled dynamics.

other by small quantities and are considered as coincident [70]. Many dif-
ficulties, however, originate in the definitions of the exact kinematics, and
di erent choices in the details of the model lead to di erent results, some
of which are unacceptable, because they neglect gyroscopic e ects or other
points that are known to be important in rotordynamics.
The approach here reported has the advantage of being not too com-

plicated while leading to results that are in good accordance with the few
closed-form solutions (when available) and with the experimental results.

15.3.1 Kinematics of the deformation of a rotating body

Consider a flexible body rotating about an axis whose direction is fixed
in space, except for small displacements and rotations, and assume that
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FIGURE 15.7. Reference frames; definition of rotations. (a) Inertial and rotating
frames; (b) rotating and dynamic frames.

its angular velocity is constant. Let O be an inertial frame, with
-axis coinciding with the spin axis of the rotor in its undeflected position.

Define a rotating reference frame O with its -axis coinciding with
the -axis of the inertial frame and with axes and rotating in the

plane at speed [Figure 15.7(a)].
The rotation matrix allowing us to express a vector in the rotating frame

from the components of the same vector in the inertial frame is

R1 =
cos ( ) sin ( ) 0
sin ( ) cos ( ) 0
0 0 1

(15.24)

Define then a further reference frame, O , by rotating the O -
frame about its - and -axes by angles and [Figure 15.7(b)]. The
latter frame, which is often referred to as the dynamic frame [70], has the
same origin as the other frames and has its axes oriented in such a way
that it follows the deformation of the body. Apart from the position of its
origin, it is similar to the rotor-fixed frame defined in Chapter 3, with the
di erence that in that case, there was only one rotor-fixed frame, because
the rotor was assumed to be rigid, whereas here there is a dynamic frame
for each point of the flexible body.
The rotation matrices allowing us to express a vector in the dynamic

frame from the components of the same vector in the rotating frame are

R2 =
cos
¡ ¢

0 sin
¡ ¢

0 1 0
sin
¡ ¢

0 cos
¡ ¢ , (15.25)
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R3 =
1 0 0
0 cos ( ) sin ( )
0 sin ( ) cos ( )

A vector r in the dynamic frame is thus obtained from the its expression
in the inertial frame r as

r = R3R2R1r = Rr (15.26)

Note that this way of defining the reference frames follows closely what
was seen in Chapter 3 for a rigid rotor, with the di erence that here there
is an infinity of dynamic frames, and in that case there was only one.
Furthermore, here the frames are all centered in O, and there the rotating
frame was centered in point C, fixed to the rotor. The order of the rotations
is also di erent, because in the present case, the first rotation occurs about
-axis, and then rotations about - and -axes (obviously in their rotated

positions) are performed, whereas in Chapter 3, the order was exactly the
opposite.
The position of a generic point P of the rotor can be considered as the

sum of a vector x defining its position in the undeformed body and a vector
u defining its displacement caused by deformation. If the system was rigid
and the only motion was rotation about the spin axis, the position of any
point of the rotor would be a constant in the rotating frame. If deformation
is considered, the coordinates of point P are, in the dynamic frame,

(P O) = x + u =
+ ( )
+ ( )
+ ( )

(15.27)

In the dynamic frame, the components , . and of x are constant,
and the components of the displacement , , and , are functions of time.
The position of point P in the inertial frame is then

(P’ O) = R (x + u ) = R
+ ( )
+ ( )
+ ( )

(15.28)

By di erentiating the expressions of the coordinates with respect to time,
the velocity of point P in the inertial frame is obtained

P = R (ẋ + u̇ ) + Ṙ (x + u ) (15.29)

Provided that it is correctly computed, i.e., the di erentiation is per-
formed in an inertial frame, the velocity of point P can be expressed by
its components in any frame (for the computation of the kinetic energy is
the modulus of the velocity that matters, not how it is decomposed) and
the vectors included in its expression may be expressed in any reference
frame. The choice of these frames is arbitrary, and it may be guided by
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how simply the results are obtained. It is expedient to express the velocity
vector in the rotating frame and to use the same frame to express vectors
x and u.
As

(x + u ) = R3R2 (x + u ) (15.30)

Equation (15.29) can be written as

P = R [R3R2 (x + u )] + Ṙ R3R2 (x + u ) (15.31)

The velocity of point P can then be expressed in the rotating frame

P = R1 P = R1R [R3R2 (x + u )] +R1Ṙ R3R2 (x + u ) ;

(15.32)
i.e.,

P = R
2
R
3

[R3R2 (x + u )] +R1Ṙ R3R2 (x + u ) =

= u̇ +R1Ṙ1
(x + u ) .

(15.33)

By remembering that
R1Ṙ1

= B (15.34)

where

B =
0 1 0
1 0 0
0 0 0

the expression of the velocity of point P is

P = u̇ + B (x + u ) ; (15.35)

i.e.,

P =
˙ ( + )
˙ + ( + )

˙
(15.36)

Note that the axial position of point P does not appear in the expression
of the velocity.

15.3.2 Kinetic energy

The kinetic energy can thus be expressed as

T =
1

2

Z
| P |

2 = (15.37)

=
1

2

Z h
u̇ u̇ + 2 u̇ B (x + u ) + 2 (x + u ) B B (x + u )

i
,
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where is the density of the material and is the volume of the body. Note
that the volume over which the integration must be performed does not
change in time, because the integration is performed with reference to the
rotating frame, in which the body has just small vibrations but not large
displacements and rotations.
The kinetic energy can thus be considered as the sum of three terms: A

translational term,

T0 =
1

2

Z
u̇ u̇ , (15.38)

which does not depend on the spin speed and yields the usual mass matrix;
a gyroscopic term,

T1 =

Z
u̇ B (x + u ) , (15.39)

linear in , linked with the Coriolis and gyroscopic e ects, yielding the
gyroscopic matrix; and a centrifugal term

T2 =
1

2
2

Z
(x + u ) A (x + u ) , (15.40)

where

A = B B =
1 0 0
0 1 0
0 0 0

, (15.41)

caused by the noninertial terms from rotation, other than the one consid-
ered above and depending on the square of the spin speed.
The expressions of the three terms of the kinetic energy can be written

explicitly as

T0 =
1

2

Z ¡
˙2 + ˙2 + ˙ 2

¢
,

T1 =

Z
[ ˙ ( + ) ˙ ( + )] ,

T2 =
1

2
2

Z h
( + )

2
+ ( + )

2

i
.

(15.42)

If the displacement is expressed in cylindrical coordinates and , , and
are the displacements in radial, circumferential, and axial directions, the
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three contributions to the kinetic energy are

T0 =
1

2

Z ¡
˙2 + ˙2 + ˙ 2

¢
,

T1 =

Z
[ ˙ ( + ) ˙ ] ,

T2 =
1

2
2

Z h
( + )

2
+ 2

i
,

(15.43)

where is the radius of point P.
The finite element discretization allows us to write the displacements of

the points belonging to any element as

u =Nq , (15.44)

where N is the matrix of the shape functions and q is the vector of the
generalized coordinates of the element.
The first term of the kinetic energy T0 can thus be written in the form

T0 =
1

2

Z
q̇ N Nq̇ =

1

2
q̇ Mq̇ , (15.45)

where the mass matrix is.

M =

Z
N N . (15.46)

The second term of the kinetic energy T1 is

T1 =

Z
q̇ N B (x +Nq) = q̇ Gq+ q̇ f1 (15.47)

and contains the gyroscopic matrix

G =

Z
N BN (15.48)

plus a vector

f1=

Z
N Bxr . (15.49)

The term in f1, once di erentiated with respect to q̇, yields constant
terms and vanishes in the following di erentiation with respect to time
included in the Lagrange equations, yielding no terms in the equations of
motion.
The third term

T2 =
1

2
2

Z
(x +Nq) A (x +Nq) =

1

2
2 +

1

2
2q f2+

1

2
2q M q ,

(15.50)
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where

=

Z
xT
r
Axr f2 = 2

Z
NTAxr M =

Z
NTAN ,

(15.51)
is made by three parts. The first one is a constant, the kinetic energy
caused by rotation of the rigid body, and yields no terms in the equation
of motion. The second one once di erentiated with respect to q yields
terms not containing the generalized coordinates. The last term yields a
noninertial term that enters the equations of motion.
The final expression of the kinetic energy is thus

T =
1

2
q̇ Mq̇+

1

2
q̇ Gq+

1

2
q̇ f1 +

1

2
2 +

1

2
2q f2+

1

2
2q M q .

(15.52)

15.3.3 Potential energy

As the displacements , , and were defined with reference to a rotat-
ing frame, the potential energy coincides with that of a nonrotating body.
To take into account that the body can be loaded by static stresses while
vibrating, the potential energy of the elementary volume can be written
in the form

U =

Z
² =

Z £
0
+
¡
² ²

0

¢
E
¤
² , (15.53)

where 0 and ²0 are the pre-stress and per-strain fields, respectively. As
they are constant during deformation, while ² grows linearly, by performing
the integration, it follows that

U =
0
²+

1

2
² E² ²

0
E² . (15.54)

Although the term in ² E² is quadratic, the other two are linear in the
strains ². In their computation, the second-order (nonlinear) terms of the
strains ² must be accounted for together with the usual terms ²

² = =
+

+
+

+

1

2

h¡ ¢2
+
¡ ¢2

+
¡ ¢2i

1

2

·³ ´2
+
³ ´2

+
³ ´2¸

1

2

h¡ ¢2
+
¡ ¢2

+
¡ ¢2i

+ +

+ +
+ +

.

(15.55)
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The final expression of the potential energy is then

U =
1

2

Z
² E² +

Z ¡
0
² +

0
² ²

0
E² ²

0
E²

¢
. (15.56)

The first contribution is the elastic energy: It contains the strain tensor
² in which the strains caused by the dynamic displacement are listed, and
the elasticity tensor E, expressing the stress-strain relationship. The second
term, the so-called geometrical potential energy, is caused by the nonlinear
components of the strain field ² and the pre-stresses 0 or pre-strain
²0 Note that in the case of rotors, 0 has usually a component linked
with centrifugal stressing, which is proportional to the square of the spin
speed (centrifugal sti ening) and a component that has no direct link with
the spin speed and is caused by other causes, like, for example, thermal
stressing. In most cases, no pre-strain ²0 is present.
The strains of the points belonging to any element can be expressed as

² = Bq , (15.57)

where B is a matrix containing suitable space derivatives of the shape
functions and ² coincides with ² , the vector containing the strains as in
the usual linear approximation.
The potential energy is then

U =
1

2
q Kq+

1

2
f
3

q+
1

2
q K q , (15.58)

where the first term is the usual one caused by ² , and the following ones
are linked with prestress. The one containing f3 is caused by pre-stresses

0 or pre-strain ²0 and by ² , whereas the last one, which is quadratic in
q is caused by pre-stresses 0 or pre-strain ²0 and by ² .

15.3.4 Equations of motion of the element

The derivatives that are included into the Lagrange equations are

(T U)

q̇
=Mq̇+

1

2
Gq+

1

2
f1 , (15.59)

µ
(T U)

q̇

¶
=Mq̈+

1

2
Gq̇ , (15.60)

(T U)

q
=
1

2
G q̇+

1

2
2f2

2 + 2M q Kq
1

2
f
3

K q . (15.61)

By remembering that G is skew-symmetric (G = G), the equations
of motion are then

Mq̈+ Gq̇+
¡
K+K 2M

¢
q =

1

2
2f2

1

2
f
3
+f( ) , (15.62)
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where f( ) is a generic vector of time-dependent nodal forces applied to the
element.
As the problem is linear, the constant terms can be neglected in the

dynamic study, and the equation of motion reduces to

Mq̈+ Gq̇+
¡
K+K 2M

¢
q = f( ) . (15.63)

The geometric matrix can be usually subdivided in two parts, a first one
linked with centrifugal sti ening, which is proportional to the square of the
spin speed, and can be written as 2K , and a second one that is caused by
non-speed-dependent e ects, like thermoelastic stresses, which is constant.
If only the latter is referred to as K , the equation of motion becomes

Mq̈+ Gq̇+
£
K+K + 2 (K M )

¤
q = f( ) . (15.64)

15.4 Equation of motion in the inertial frame

15.4.1 Velocity

When the rotor has axial symmetry, the equation of motion is best ex-
pressed with reference to the inertial frame.
To write the equations of motion in the inertial frame, it is expedient

to perform the rotations in a di erent order, the same as seen in Chapter
3: First, the inertial frame is rotated about -axis (matrix R3), then it is
rotated about -axis (matrix R2), and finally about -axis (matrix R1).
Let the frame resulting after the first two rotations be referred to as the
whirling frame and addressed to using subscript . By remembering that
angles and are small, the position of the point P in the whirling
frame is then

(P-O) = R2R3

+
+
+

+
+

+ +
(15.65)

The position of the same point in the dynamic frame is then

(P-O) R1

+
+

+ +
(15.66)

By premultiplying the expression for (P-O) by the transpose of matrix
R = R3R2R1, the displacement expressed in the inertial frame is obtained.
Its derivative with respect to time is the absolute velocity of point P ex-
pressed in the inertial frame

P

³
R Ṙ1 + Ṙ R1

´ +
+

+ +
+ (15.67)
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+R R1

˙
˙

˙ + ˙ ˙

As for the computation of the kinetic energy the velocity of point P can
be expressed in any reference frame, Equation (15.67) can be premultiplied
by matrix R

1
R, obtaining

P R
1

³
Ṙ1 +RṘ R1

´ +
+

+ +
+ (15.68)

+

˙
˙

˙ + ˙ ˙
;

i.e., after performing all of the required simplifications linked with the small
displacements and small rotations assumptions,

P

˙ +
³
˙

´
+ ˙

¡
+ +

¢

˙
³
˙

´
˙
¡

+ +
¢

˙ + ˙ ˙

(15.69)

15.4.2 Kinetic energy

Also, in this case the kinetic energy can thus be considered as the sum of
three terms

T =
1

2

Z
| P |

2 = T0 + T1 + T2 .

By introducing the expression for the velocity of point P into the expres-
sion of the kinetic energy, the first and the last terms are easily computed

T0 =
1

2

R ¡
˙2 + ˙2 + ˙ 2

¢
,

T2 =
1

2

2
R ¡

2 + 2
¢

.
(15.70)

The second term, linked with Coriolis and gyroscopic e ects, is much
more complicated

T1 =

Z h ³
˙ + ˙

´
+ 2

³
˙ ˙

´
+ (15.71)

+
³
˙ ˙

´i
.
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Angles and are di erent from point to point, and they can be
computed from the displacement field

=
1

2

µ ¶
,

=
1

2

µ ¶
.

(15.72)

As this approach is useful in the case of rotors displaying axial symmetry,
the integration included in the expression of the kinetic energy can be
performed in the inertial frame instead of resorting to the rotating frame
(which is here not expressly defined) as it was the case for the previous
approach.
By introducing the shape functions to discretize the system following the

finite element approach, the expression of the kinetic energy reduces to

T =
1

2
q̇ Mq̇+

1

2
q̇ Gq+

1

2
2 (15.73)

Note that in the present case, there is no term in 2 containing the gen-
eralized coordinates. This could be expected, because an inertial reference
frame was used. Note also that while performing the relevant integrals,
most terms in the expression for T1 [Equation (15.71)] vanish.

15.4.3 Equations of motion of the element

The expression for the potential energy is the same as that seen in the
previous section, and hence the equation of motion for the dynamic analysis
reduces to

Mq̈+ Gq̇+ (K+K )q = f( ) . (15.74)

Also, in this case, the geometric matrix can be subdivided into two parts,
a first one proportional to the square of the spin speed and a second one
that is constant:

Mq̈+ Gq̇+
¡
K+K + 2K

¢
q = f( ) . (15.75)

15.5 Axi-symmetrical annular elements

15.5.1 Shape functions

If the geometrical configuration of the rotor is axially symmetrical, it can be
modeled using annular axi-symmetric elements in which the displacements
are expressed as functions of the polar angle, as well as of the axial and
radial coordinates. This approach has been defined above as a two and one
half dimensional approach.
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FIGURE 15.8. Four-nodes isoparametric axi-symmetrical element. (a) Sketch of
the element; (b) cross section in -plane; (c) element in the auxiliary frame
in which the cross section is square.

In the present section, only the case of a simple four-nodes isoparametric
element [Figure 15.8(a)] will be described, but simpler (three nodes) or
more complex elements having 8, 9, 12, ... nodes can be defined. The cross
section of the element [Figure 15.8(b)] is a general quadrilateral in any
plane through the axis of rotation; the four nodes have been referred to as
node 1, 2, 3, and 4. To make it easier to define the position of a point in
the cross section of the element, an auxiliary reference frame has been
defined [Figure 15.8(c)], in which the element is transformed into a square,
with sides with lengths equal to 2 units.
As the body is axially symmetrical, it is expedient to use cylindrical

coordinates for both the definition of the geometry of the element and
the displacement field. In the present section, the displacements , , and
will then be defined in radial, circumferential, and axial directions.
The relationship allowing us to obtain the coordinates of a point in the

physical plane from that in the auxiliary frame is

= (1 )(1 )

4 1 +
(1+ )(1 )

4 2 +
(1+ )(1+ )

4 3 +
(1 )(1+ )

4 4 ,

= (1 )(1 )

4 1 +
(1+ )(1 )

4 2 +
(1+ )(1+ )

4 3 +
(1 )(1+ )

4 4 ;
(15.76)

i.e., in matrix notation,

=N
£

1 2 3 4

¤
=N

£
1 2 3 4

¤
,

(15.77)
where the shape functions matrix is

N ( )=
1

4

£
(1 ) (1 ) (1 + ) (1 ) (1 + ) (1 + ) (1 ) (1 + )

¤
.

(15.78)
As already stated, even if the shape of the rotor is axially symmetrical,

the displacement field is not such, and as a consequence, the problem does
not reduce to a two-dimensional problem having as generalized coordinates
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just the radial and axial coordinate: The displacement field depends on ,
, and coordinates and on time. A very convenient way to approximate

the displacement field is to use a polynomial expansion along the radial
and axial coordinates and a trigonometric expansion along angle

( ) = 0( ) +
P

=1
[ ( ) cos ( ) + ( ) sin ( )] ,

( ) = 0( ) +
P

=1
[ ( ) cos ( ) + ( ) sin ( )] ,

( ) = 0( ) +
P

=1
[ ( ) cos ( ) + ( ) sin ( )] ,

(15.79)
where functions , , etc. are polynomial expansions in and (or,
better, of and ), whose coe cients are the generalized coordinates of
the problem and hence are functions of time:

=N( )q ( ) =N( )q ( )
= N( )q ( ) =N( )q ( )
=N( )q ( ) =N( )q ( )

(15.80)

As the same shape functions are used for expressing both the distorsion
of the element (i.e., the relationship between - and -coordinates) and
the displacement field, the element is an isoparametric one.
The minus sign in the second equation (circumferential displacements)

has been introduced to have equal formulations for the matrices for sine
and cosine components of the displacements.
Each one of the vectors q ( ) has four terms, related to the four nodes

of the element: The element has then 24 degrees of freedom for each one of
the harmonics of the trigonometric polynomial, except for the zero-order
harmonics, which has only the cosine component and hence just 12 degrees
of freedom. If a number of harmonics up to the th is considered, the
element has a total of 12 + 24 degrees of freedom.
The situation is similar to that seen in Section 15.3 for the simplified

elements for the study of bladed discs. The zero-order harmonics models
a radial displacement 0( ), a circumferential displacement 0( ),
and an axial displacement 0( ) that are constant along angle . The
corresponding generalized coordinates q

0
( ), q

0
( ) and q

0
( ) (those

with subscript do not exist) are radial, circumferential, and axial dis-
placements at the four nodes that are independent from . The first-order
harmonics [ = 1 in Equation (15.79)] corresponds to rigid displacements
of a circumference made by all points with a given value of and in the

-plane (a combination of displacements and ) and in a rigid rotation
of the circumference about - and -axes (displacement ), as shown in
Figure 15.4. The components and have the same e ect: a displace-
ment of the circle in -direction, whereas and are displacements of
the circle in -direction. By convention, the displacement is ascribed half
to the radial and half to the circumferential displacement, by assum-
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ing = and = . The axial displacement corresponds to a
rotation about -axis, and to a rotation about -axis.
The higher order harmonics correspond to modes in which the cross

section is deformed; they are likely to be little excited by unbalance and
not to have strong e ects on the overall behavior of the rotor. Even if
these higher order modes are accounted for, the number of harmonics needs
generally not to be high and the number of degrees of freedom is much
smaller than what is common in full tridimensional modeling.

15.5.2 Kinetic and potential energy

The kinetic energy of the element can be expressed with reference to the
fixed frame. The expressions are Equations (15.70) and (15.71) transformed
into polar coordinates, with the di erence that the integration must be
performed in the auxiliary frame and the elementary volume is

= det (J) , where J = (15.81)

is the Jacobian matrix of the shape functions.
By introducing Equation (15.79) into (15.70) and (15.71) and integrating,

the final expression for the kinetic energy is obtained. The integration along
angle can be performed in closed form, because only integrals of sin ( ),
of cos ( ), and of their products and powers are present. Moreover, because

R
2

0
sin ( ) sin ( ) =

½
0 for 6= or = = 0 ,

for = 6= 0 ,

R
2

0
cos ( ) cos ( ) =

0 for 6= ,
for = 6= 0 ,

2 for = = 0 ,R
2

0
sin ( ) cos ( ) = 0 ,

(15.82)

each harmonics of the Fourier series for the displacement yields an in-
dependent expression of the kinetic energy. The integration along - and
-coordinates, on the contrary, needs to be performed numerically, but this
is a general rule with isoparametric elements, and it adds very little to the
complexity of the analysis.
The kinetic energy caused by the th harmonic of the displacement is

thus

T =
1

2
q̇ M q̇ + q̇ G q , (15.83)

where M , G , and M are the mass and the gyroscopic matrices. No
matrixM is present, because the equation is written in an inertial frame.
They are all referred to the th harmonics and are all symmetric, except
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for the gyroscopic matrix, which is skew-symmetric. Their size is 12 × 12
for the zeroth-order harmonics and 24× 24 for the other ones.
The expression of the elastic potential energy is the usual one

U =
1

2

Z
2

0

Z
1

1

Z
1

1

q B EBq ·Nrdet (J) ,

where B and E are, respectively, the matrix expressing the relationship
between the strains and the displacements, containing the derivatives of the
shape functions, and the matrix expressing the stress-strain relationship of
the material. Their derivation is not shown here, because they are dealt
with in many texts on the finite element method, when dealing with axi-
symmetrical elements with harmonic displacements (see, for example, [36]).
Also in this case, the various harmonics uncouple, and it is possible to state
the elastic potential energy harmonics by harmonics in the form

U =
1

2
q K q . (15.84)

Matrix K0 is a 12 × 12 symmetrical matrix, whereas all other matrices
K are 24× 24 matrices, all di erent from each other.
The expression of the geometric potential energy caused by pre-stress 0

for the element in cylindrical coordinates is

U =
1

2

Z
2

0

Z
1

1

Z
1

1

2² 0 ·Nrdet (J) ,

where the vector of the static stresses can be expressed as

0 =
2

0 + 01 .

It is the sum of a term caused by centrifugal forces ( 0 is the vector
of the centrifugal stresses at unit speed) and a term that is independent
from speed (typically, is caused by thermal stresses). The static stress dis-
tribution must be computed, e.g., by using the FEM, in advance, and the
results are then introduced into the dynamic analysis.
The various harmonics uncouple also in this case, so that the geometric

potential energy can be expressed for each harmonics as

U =
1

2
q

¡
2K +K

1

¢
q . (15.85)

The matrices K0 and K0

1
, related to the zero-order harmonics, are

12× 12 symmetrical matrices, and all other matrices are 24× 24 matrices,
all di erent from each other [71]. The same uncoupling between the sine
and cosine components of the deformation seen for the elastic potential
energy holds also for the geometric potential energy.
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15.5.3 Equations of motion

As the various harmonic components are uncoupled in all matrices, the
equations of motion of the element can be obtained separately for each
harmonics through Lagrange equations. The equation for the th harmonic
( = 0 ) is

M q̈ + G q̇ +
¡
K +K

1
+ 2K

¢
q =0 . (15.86)

Note that the equation of motion of the element is of the same type of the
equations seen for a general multi-degrees-of-freedom undamped rotor in
Chapter 4. Moreover, also in the present cases, all matrices are symmetrical,
except for G ,which is skew-symmetrical.
Also in this case, it is possible to resort to complex coordinates. By

stating

q =
q + q

q + q

q + q

, (15.87)

Equation (15.86) becomes

M q̈ G q̇ +
¡
K +K

1
+ 2K

¢
q =0 , (15.88)

where all matrices have 12 rows and columns and are symmetrical. As usual,
the skew-symmetrical terms in the equation written in real coordinates
yield imaginary terms when complex coordinates are used. The number of
degrees of freedom of the element is now 12 for each harmonics.
The assembling procedure and the introduction of the constraints pro-

ceeds in the same way as for the standard FEM formulation, with the only
di erence that each harmonics is assembled separately. When using real
coordinates, the total number of degrees of freedom of the model is thus
(3 + 6 ) , where is the number of harmonics and is the number of
nodes of the model. This is a large number of equations, but the uncoupling
between the various harmonics allows us to study separately a problem with
3 degrees of freedom (zero-order harmonics) plus problems with 6
degrees of freedom (all other harmonics). When using complex coordinates,
the size of all problems is 3 .

15.6 Axi-symmetrical shell element

If the rotor is made of a thin-walled tube, the use of the axi-symmetrical
elements seen in the previous section is questionable. To approximate sat-
isfactorily all deformations in which the wall is inflected, a number of el-
ements should be used in the thickness. As the wall is thin, the elements
must be very thin, leading to much distorted elements unless a very fine
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FIGURE 15.9. Schematic cross section of the shell element.

mesh is used. In these cases, it is advisable to use a shell element, so that
a single element can be used in the thickness.
A sketch of a two-nodes axi-symmetrical shell element is shown in Figure

15.9. The geometrical parameters (radius , thickness ) are assumed to be
linear functions of the axial coordinate , or better of the nondimensional
axial coordinate =

= N1r = N1h , (15.89)

where the shape functions N1, r, and h are

N1 =
£
1

¤
r =

£
1 2

¤
h =

£
1 2

¤
. (15.90)

The displacement field can still be expressed by Equation (15.79), but in
this case, the coe cients of the various harmonic components are functions
of and only

( ) = 0( ) +
P

=1
[ ( ) cos ( ) + ( ) sin ( )] ,

( ) = 0( ) +
P

=1
[ ( ) cos ( ) + ( ) sin ( )] ,

( ) = 0( ) +
P

=1
[ ( ) cos ( ) + ( ) sin ( )] .

(15.91)
Functions , , etc. can be expressed by polynomial expansions in

(or, better, in ). The radial displacement is assumed to be a cubic function
of , whereas the axial and circumferential displacements are assumed to
be linear

=N3( )q ( ) =N3( )q ( )
= N1( )q ( ) =N1( )q ( )
=N1( )q ( ) =N1( )q ( )

(15.92)



576 15. Three-dimensional modeling of rotors

where the shape functions N1 are those defined above and

N3 =
£
1 3 2 + 2 3

¡
1 2 + 2

¢ ¡
3 2 2

¢ ¡
+ 2

¢ ¤
.

(15.93)
Operating in this way, vectors q ( ), q ( ), q ( ), and q ( ) con-

tain the cosine and sine displacements in - and -directions at the two
nodes (they have two elements), whereas q ( ) and q ( ) contain both
the displacements and the rotations at the two nodes, and then have four
components. The total number of degrees of the element is then 8 + 16 ,
where is the number of harmonics considered (the zero-order harmon-
ics has only the cosine components, and hence only 8 degrees of freedom,
whereas all other harmonics have 16). Clearly this element allows a far
smaller model to be built than the previous element, because each element
has a smaller number of degrees of freedom, but, above all, because there
are less elements in the model.
The derivation of the matrices of the element follows the same lines seen

for the solid element seen in the previous section and are not repeated here
(see [71]). Also the final equations of motion are the same, i.e., Equation
(15.86) if real coordinates are used, or Equation (15.88) if the complex-
coordinates approach is followed.

15.6.1 Brick elements

A di erent approach, which does not require that the rotor is axially sym-
metrical, is that of subdividing the rotor in elements in the usual way as
in standard solid modeling. A variety of brick elements can be used, with a
di erent number of sides (tetrahedron, hexahedron, hexagonal prism, etc.)
and with a di erent number of nodes (rectangular brick with 8, 20, 27,
...nodes). The mesh can be generated using the standard FEM procedures,
but general-purpose commercial codes are usually not able to deal with the
specific problems encountered in rotordynamics.
As this type of solid modeling is best suited to deal with rotors that do

not show axial symmetry, the problem needs to be studied with reference
to the rotating frame.
The expression of the kinetic energy is Equation (15.43) and contains the

term in 2q M q, as usual when the rotating frame approach is used.
The advantage of the present approach is that of allowing us to model

all details of the rotor, particularly in the case of bladed rotor in which the
blades can be modeled with the required accuracy. This, however, has a very
heavy cost in terms of size of the model and hence in computer time. Al-
though in the harmonic annular element the number of degrees of freedom
required depends largely on the number of harmonics that are considered,
when brick elements are used the number of degrees of freedom depends
on the number of element that are present along the angular coordinate
. Although a small number of harmonics is usually su cient, the number
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of elements required can be quite large, and it is very large if an attempt
is made to model fine details or if the presence of the blades is accounted
for. Moreover, the latter approach yields a single problem with a very large
number of degrees of freedom, whereas the harmonic axi-symmetrical ap-
proach allows the problem to be split in a number of independent smaller
problems, one for each harmonic considered.
An advantage of the true three-dimensional modeling is the possibility

of dealing with irregularities like blade mistuning: Some parameters (e.g.,
the thickness of the blades) may vary slightly, perhaps in a random way,
from sector to sector.
An alternative is that of using the cyclic nature of the geometry of most

rotors. Only a sector of the geometry is modeled, and the relevant ma-
trices are computed. However, although in static analysis it is possible to
model just one sector of the structure, at least if the loads are symmetric
or antisymmetric, in dynamics, the whole structure must be studied. The
presence of a cyclic symmetry allows anyway a substantial reduction of the
complexity of the problem. Condensation of the model, using either Guyan
reduction or the component mode synthesis approach, may allow a further
reduction of the size of the problem.
As already stated, a rotor with cyclic symmetry behaves like an axi-

symmetrical rotor (in the sense that the structure of its eigenvalues and
eigenvectors is the same as those of an isotropic rotor), so that it is possible
to study the dynamics of a rotor of this kind supported by an asymmetric
stator obtaining closed-form solutions in the inertial frame. This is clearly
not possible in the case of a general non-axi-symmetrical rotor, as stated
in Chapter 9.
When the dynamics of a rotor is studied in the rotating frame, the solu-

tion obtained can be interpreted in terms of traveling waves. As to plot the
Campbell diagram the whirl frequencies in an inertial reference frame must
be obtained, a transformation of the type of Equation (14.14), yielding the
forward and backward whirling frequencies, must be used. The interpreta-
tion in terms of traveling waves of the solution in the rotating frame allows
us to simplify the problem when the structure is subdivided into equal
sectors because the sectors deform in the same way, with only a phase lag
from one to another [72].

Example 15.3 Rotating beam.

Compute the Campbell diagram of a simple rotating cantilever beam on sti

bearings using a number of brick elements, and compare the results with the upper

and lower bound closed-form solutions shown in Section 13.4.2.

The beam, whose dimensions are 10× 5× 200 mm and rotates about an axis

passing for the center of one of the end cross-sections (Figure 15.10), is made of

aluminium ( = 7 31 × 1010N/m2; = 2770kg/m3; = 0 33). A single row of

20 brick elements with 20 nodes built following the theory shown in this chapter

were used [9]. This very simple mesh proved to be su cient for obtaining accurate



578 15. Three-dimensional modeling of rotors

FIGURE 15.10. Mesh for the rotating beam.

results for the flexural natural frequencies, both in-plane and out-of-plane, whereas

it is too rough for the torsional modes. As the bearings are sti , the end of the

beam corresponding to the axis of rotation is considered as clamped in the rotating

frame.

The flexural natural frequencies are plotted in Figure 15.11. Their increase with

increasing spin speed is clearly visible. The torsional and axial natural frequencies

are not plotted because they lie outside the range considered, and they are not

a ected by the speed. The results obtained through the present FEM formulation

are enclosed within the narrow band defined by the theoretical upper and lower

bounds. Note that the maximum speed reported on the plot is much greater than the

maximum allowable speed for a beam of this kind (at 5,000 rad/s, the stress at the

root of the beam would be 3116 N/mm2). This has been done to test the numerical

solution against the closed- form ones even at very high (although unrealistic)

speeds.

Example 15.4 Rotating ring

Consider a rotating ring of 0.5 m mean diameter with rectangular cross section

(20× 50 mm), and compare the results obtained using a three-dimensional FEM
model with the closed-form solution shown in Section 14.5. The mesh shown in

Figure 15.12 is made by a single row of 40 elements with 20 nodes of the same

type used in the previous example. No attempt to exploit the axial symmetry of the

structure was made. The Campbell diagram showing the forward and backward

whirl frequencies in the speed range from 0 to 1000 rad/s is reported in Figure

15.13. eight flexural frequencies plus the only nonzero rigid-body frequency, all

computed in the rotating frame, are shown. The agreement between the FEM and

the closed-form solutions is very good, except for the eighth in-plane mode, where

the discretization errors start to be felt and a finer mesh would be required.
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FIGURE 15.11. Campbell diagram for the first five flexural natural frequen-
cies of a rotating beam (dots: FEM results; full lines: theoretical in-plane upper
bound; dotted lines: theoretical in-plane lower bound; dashed lines: theoretical
out-of-plane upper bound; dash and dots lines: theoretical out-of-plane lower
bound).

FIGURE 15.12. Mesh for the rotating ring.
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FIGURE 15.13. Cambell diagram for a rotating ring (circles: FEM results; full
lines: theoretical out-of-plane; dashed lines: theoretical forward in-plane; dash
and dot lines: theoretical backward in-plane; dotted lines: nonzero rigid-body
frequency).



16
Dynamics of controlled rotors

Rotors can be provided with sensors and actuators that, through a suitable
control system, can perform di erent tasks, from relieving the loads from
the bearings to performing an active control of the dynamic behavior of
the system. The control system, with its sensors and actuators, can act on
only a few of the degrees of freedom of the rotor, for example to supply an
additional damping, or it can fully control its position in space, as it occurs
in a fully active magnetic suspension.
Magnetic bearings are perhaps the most common example of active con-

trol applied to the dynamics of rotors, but there are also many other appli-
cations, like controlled hydrodynamic supports, electrostatic bearings used
in micromachines, or controlled pneumostatic bearings. In the following sec-
tions, only a brief introduction to the dynamics of controlled rotors will be
presented, with particular reference to magnetic bearings, but the relevant
equations can be applied to other devices.
A simplified linearized study of the behavior of rotors on magnetic bear-

ings was presented in Section 8.5. There each magnetic bearing was con-
sidered as a linear spring-damper system, neglecting the dynamics of the
sensors, actuators, amplifiers, and controller and neglecting the fact that in
most applications, the sensors and the actuators are not colocated; i.e., the
force exerted by the latter is applied in a point that does not coincide with
the point where the sensor reads the displacement. These assumptions will
be dropped in the present section.
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16.1 Open-loop equations of motion

16.1.1 Real coordinates

The general equations of motion of a rotating system that includes a num-
ber of actuators can be written in the form

Mẍ+ (C +C + G)ẋ+ (K+K 2 + C )x = f + f , (16.1)

where f and f are forcing vector functions of time due, respectively, to the
actuators and to other causes. The latter includes also unbalance forces,
which are harmonic in time with an amplitude proportional to 2 and a
frequency equal to . Such an equation may contain the lateral behavior as
well as the axial behavior in the case of a beam-like model, or may be much
more complex in the case of 21

2
D or 3D modeling. At any rate, at least

the rotor must possess axial (or cyclic) symmetry because the equation has
been written with reference to the fixed frame and has constant coe cients.
If the rotor is supported only by the actuators, like in the case of a ro-

tor on active magnetic bearings, the sti ness matrix K is singular with
four (six, if also the axial and the torsional behavior is included) vanish-
ing eigenvalues because the four (six) rigid-body motions of the rotor are
unconstrained. Also the rotating damping matrix C is singular. If it was
not for the control forces, the rotor would behave like a free rotor. If, on
the contrary, the rotor is supported in another way and the actuators are
used to control its dynamic behavior, such matrices are not singular.
Equation (16.1) can be written with reference to the state space as

ż = Az+B u ( ) +B u ( ) (16.2)

where

• Vector z contains the complex state variables ẋ and x.

• Vector u ( ) contains the control input functions. Vector u contains
all external inputs, related to nonrotating and rotating forces, which
are usually (at least the rotating ones) functions of time.

• A is the dynamic matrix of the system,

A =

·
M 1(C +C + G) M 1(K+ C )

I 0

¸
(16.3)

• Matrices B and B are the input gain matrices, respectively, for the
control and external inputs.
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If the rotating system is provided with sensors, an output equation

y = Cz+Du (16.4)

must be added to the state equation. In the output equation

• Vector z contains the complex state variables ẋ and x.

• Vector y( ) contains the outputs of the system.

• C is the output gain matrix, linking the outputs to the state vector.

• D is the matrix linking directly the inputs and the outputs of the
system. It has been introduced for completeness, but it is usually nil
and, as a consequence, is seldom considered.

16.1.2 Complex coordinates

The lateral equation of motion of an axi-symmetrical rotor-stator system
can be written also in terms of complex coordinates even if it includes a
number of actuators. By separating the forcing function caused by unbal-
ance f from the other forcing functions f , it can be written in the form

Mq̈+ (C +C G)q̇+ (K C )q = (16.5)

= f + f + 2f ,

where the forces exerted by the actuators on the rotor and the stator are
listed in vector f . The real part of vector f refers to the forces caused by
the actuators in the -plane, whereas its imaginary part is linked with the
forces exerted in the -plane.
Equation (16.5) can be written with reference to the state space as

ż = Az+B u ( ) +B u ( ) +B u ( ) (16.6)

where

• Vector z contains the complex state variables q̇ and q.

• Vector u ( ) contains the control input functions. It can be written
in complex form, and the real and imaginary parts of its components
are related to the forces in the two coordinate planes and .
Vectors u ( ) and u ( ) are input vectors related to nonrotating and
rotating forces, which, in the most general case, can be functions of
time. They can be real vectors, in some cases simply scalar quantities,
but it is possible to formulate the equations in such a way that they
are complex.
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• A is the complex dynamic matrix of the system,

A =

·
M 1(C +C G) M 1(K C )

I 0

¸
(16.7)

• Matrices B are the input gain matrices, respectively, for the control,
nonrotating, and rotating inputs.

Also in this case, if the rotating system is provided with sensors, the
output equation

y = Cz+Du (16.8)

can be associated with the state equation. In this case, y is the complex
output vector, and its real and imaginary parts are the sensor outputs
related to the two coordinate planes and .

16.2 Closed-loop equations of motion

16.2.1 Ideal proportional control

An ideal proportional feedback control system supplies control inputs that
are proportional to the di erence between the actual outputs of the system
y and the reference values r, which can be also functions of time:

u = K y( ) +K r( ) . (16.9)

By introducing the feedback and the output equations into the state
Equation (it is immaterial whether reference is made to the real or complex
coordinates approach, apart from the fact that in the second case, the
system matrices can be complex), the following closed-loop equation is
obtained:

ż =
¡
A BcK C

¢
z+B K r( ) +B u ( ) . (16.10)

Assigning given laws r(t), it is possible to introduce a feedforward con-
trol, for instance, to compensate for known disturbances, like unbalance.
In case of an MIMO (multiple input-multiple output control system)

matrices K and K have as many rows as the number of control inputs
and as many columns as the number of references and outputs, respectively.
There are cases in which the control system is decentralized (i.e., each
control input is determined by a single output independently), and the
reference signals are supplied for each output of the system separately. In
this case, matrices K and K are square and diagonal.
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Remark 16.1 The proportional ideal controller defined above may have

also a derivative action; i.e., it may introduce also a damping into the

system. As also the generalized velocities are included among the states of

the system, they can be made to a ect the outputs and the proportional

control operates actually as a PD (proportional-derivative) control.

16.2.2 Ideal PID control

The proportional action (in the sense that the control inputs of the system
are proportional to the displacements x, or q) supplies a sti ness to the
system. The derivative action, which can be caused by a true derivative
control in which the control inputs are proportional to the derivatives of
the outputs or simply by using a proportional control in which the structure
of matricesC andK are proportional to the velocities included in the state
vector, supplies a damping action. If the rotor is completely suspended by
the control forces, both actions are needed.
However, a PD control allows the position of the rotor to be displaced

from the required position by static forces. To achieve a centered position
in presence of static forces, a control action proportional to the integral of
the position error

e = y( ) r( ) (16.11)

is required. A PID (proportional-integrative-derivative) control is so ob-
tained, where the control inputs depend on the position error through
the relationship (written for a SISO system)

=

µ
+ +

1
Z

0

( )

¶
(16.12)

where is the overall gain, is the prediction or derivative time, and
is the reset time.
By resorting to the Laplace transforms of the control input and of the

error, the transfer function of an ideal PID control is

( )

( )
=

µ
1 + +

1
¶

(16.13)

In terms of state space approach, integral control can be introduced
by augmenting the state vector through a number of additional states z
defined as

ż = Se = S (y r ) (16.14)

where the selection matrix S has been introduced to allow us to use the
integrals of a reduced number of outputs (if needed) for the control and
the references r may be di erent from the corresponding references r. The



586 16. Dynamics of controlled rotors

additional states z defined in Equation (16.14) are the integrals of the
errors.
The control inputs are thus

= K y+K r K z (16.15)

where the derivative action is accounted for through the velocities included
into the states and the various gain matrices include all of the constants of
the control system.
The state equation of the closed loop system is thus

½
ż = Az+B ( K Cz+K r K z ) +B u

ż = SCz Sr ;
(16.16)

i.e.,
½
ż

ż

¾
=

·
Az B K C B K

SC 0

¸½
z

z

¾
+ (16.17)

+

·
B K 0

0 S

¸½
r

r

¾
+

·
B

0

¸
u

Example 16.1 Je cott rotor made of a rigid body suspended on a magnetic

bearing with ideal PID controller.

Assume the following data: mass = 3 kg; actuator constant = 1 5246 ×

10
6 Nm2/A2; nominal air gap = 0 75 mm; bias current 0 = 3 A; overall

gain of the controller = 1 25 V/m; reset time = 6 14 s; derivative time

= 0 9035× 10 3 s; gain of the sensor 7500 V/m; gain of the power amplifier

1.027 A/V.

Using real coordinates, the equation of motion of the rotor is

·
m 0

0 m

¸½
¨

¨

¾
=

½
f

f

¾
+

2

½
cos ( )

sin ( )

¾
+

½
f

f

¾
.

The static forces f and f are equal to the weight of the rotor in vertical

direction and 0 in horizontal direction.

The open-loop state equation is

˙

˙

˙

˙

=

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

+

1
0

0
1

0 0

0 0

½
f

f

¾
+

+
2

1 0

0 1

0 0

0 0

½
cos ( )

sin ( )

¾
+

1
0

0
1

0 0

0 0

½
f

f

¾
.

The output is directly the state of the system, consisting of its positions and

velocities, and hence the output gain matrix C is the identity matrix and the direct
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link matrix is equal to zero. The forces caused by the actuators of the bearing can

be expressed by the linearized Equation (8.42)

½
f

f

¾
=

½
0 + +

0 + +

¾
,

where the linearized characteristics of the bearings are linked to the bias and

compensation currents through the relationships (8.44)

0 = 4
0
0

0

2
= 4

0

2
= 4

2

0 +
0

0

2

3

The static force correspond to the weight in vertical direction ( -axis) and 0 in

horizontal direction ( -axis). The corresponding compensation currents are

0

0 = 0

2

4 0

= 0 9048 A
0

0 = 0

The current and displacement bearing sti ness are (see Example 8.5, where,

however, the bearing has been assumed to be isotropic)

= = 32 525 N/A = 1 419×105 N/m y = 1 301×10
5
N/m

The bearing is almost isotropic.

Assume that the sensors are ideal and read the actual positions and velocities

, , ˙ , and ˙ through a gain . Moreover, the reference position is with the

rotor at the center of the bearing, i.e., = 0
Assume that the controller is isotropic. The channel supplies a current

=

µ
+ +

1
Z

0

( )

¶

where is the gain of the power amplifier. The equation describing the behavior

of the channel is identical, with the obvious change of the symbols.

By augmenting the state vector introducing the additional states and

½
˙

˙

¾
=

·
0 0 1 0

0 0 0 1

¸

the closed-loop state equation becomes

˙

˙

˙

˙

˙

˙

=

0 0 0

0 0
y

0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

×
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× +
2

1 0

0 1

0 0

0 0

0 0

0 0

½
cos ( )

sin ( )

¾
,

where the total gain of the control loop is, for the - and -directions

= = .

Note that the static force does not appear in the equation of motion.

The total gain of the control loop is

= = 3 1315× 105 .

The closed-loop dynamic matrix of the system is

94 0 57 073 0 17 001 0

0 94 0 61 018 0 17 001

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

.

The eigenvalues of the dynamic matrix are 47 01±234 17 ; 47 02±242 45

(poles of the PD section); 0 30; and 0 28 (poles of the integrative section). The

two complex pairs correspond to the two damped eigenfrequencies in the vertical

and horizontal plane, whereas the two real ones are nonoscillatory modes. The

rotor behaves as a Je cott rotor on slightly nonisotropic supports.

The unbalance response is easily computed: As the excitation is harmonic with

frequency , also the response is harmonic with the same frequency. The aug-

mented state can thus be expressed as the following function of time:

z = z cos ( ) + z sin ( )

As

ż = z sin ( ) + z cos ( )

by introducing the solution into the state equation, it follows that

z sin ( ) + z cos ( ) = Az cos ( )+

+Az sin ( ) +
2f cos ( ) +

2f sin ( )

where

f =
£
1 0 0 0 0 0

¤
f =

£
0 1 0 0 0 0

¤

By balancing the components in sine and cosine of the equation, it follows that

½
z Az =

2f ,

z Az =
2f ;
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FIGURE 16.1. Nondimensional unbalance response of the Je cott rotor on mag-
netic bearings. Larger axis and smaller axis of the elliptical response, divided
by the eccentricity as functions of the speed.

i.e., ·
A I

I A

¸½
z

z

¾
=

2

½
f

f

¾
.

The unbalance response so obtained is reported in nondimensional form in Fig-

ure 16.1. The orbits are slightly elliptical, but the small anisotropy and the high

damping make backward whirling impossible.

16.2.3 Dynamics of the control system

Usually the control system is not an ideal one and the various components
of the control loop (sensors, controller, power amplifiers, actuators) have
their own dynamics. Moreover, a compensator may be present. To take
this into account, the di erential equations governing the dynamics of all
elements must be associated with the rotordynamics Equation (16.1).
The dynamics of the control system can be expressed in terms of its

transfer function transforming the input into the control system (which
coincides with the output y of the controlled system or plant), into the
output of the control system, which coincides with the control input u of
the plant. Assuming that the transfer function is expressed as a ratio of
two polynomials in

( )

( )
=

1 + 2
1 + + +1

+ 1
1 + +

(16.18)

where , it is possible to write a state-space representation of the
controller using what is usually called the control canonical form
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ż = A z +B y ,
u = C z +D y ,

(16.19)

where z is the vector containing the states of the controller, and if =
+ 1

A =

1 2

1 0 0
0 1 0

, (16.20)

B =

1
0
0

, C =

1

2

+1

(16.21)

A , B , and C are the dynamic, input gain, and output gain matrices
of the control system.
The closed-loop state equation of the system is then

½
ż

ż

¾
=

·
A B C

B C A

¸½
z

z

¾
+

·
B

0

¸
u (16.22)

For instance, the transfer function of an actual PID controller is not
Equation (16.13), but it can be expressed as

( )

( )
=

Ã
1 +

1 +
+

1
!

(16.23)

in which also the ratio between zero and pole of the PD section has been
introduced.
Assuming that the reference is 0, the error coincides with the displace-

ment measured by the sensor. The filter on the sensor output can be as-
sumed to have the following transfer function:

( )

( )
=

1

1 +
(16.24)

where is the time constant of the sensor.
The total transfer function from the displacement to the force is the

product of the two transfer functions written above, i.e., written in terms
of the ratio between two polynomials,

( )

( )
=

2
1 +

+
1
µ

+
1
¶
+

3 + 2

µ
+
1
¶
+

, (16.25)
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and the state-space realization of the control system can then be expressed
by the quadruple

A =

³
+ 1

´
0

1 0 0
0 1 0

B =
1
0
0

(16.26)

C =
h

1+ 1

³
+ 1

´ i
D = 0

The equations of motion listed above implicitly rely on the linearity of
the whole system (plant and controller). If the control loop contains ele-
ments that are intrinsically nonlinear or that cannot be modeled accurately
enough using linearized models, the only possible approach is to simulate
the behavior of the closed-loop system in the time domain. The most com-
mon causes of nonlinearity in controlled rotors are the nonlinear behavior
of the actuators, which becomes more pronounced if a low bias current is
used, and the saturation of the power amplifiers.

Example 16.2 Je cott rotor supported by a magnetic bearing with real PID

controllers.

Assume the same data seen in Example 16.1, with the following characteristics

added: ratio between zero and pole of the PD section = 18 07, time constant of

the sensor electronics = 10
6s

The forces exerted by the actuators are made of three components

½
f

f

¾
=

½
0 + +

0 + +

¾
.

The static component of the force is assumed to balance the static loads, equal

to the weight in vertical direction and to zero in horizontal direction, and hence

it cancels with external nonrotating forces and . The third component is

proportional to the displacements and then can enter directly the dynamic matrix.

By keeping the two control systems acting in - and -directions separate, the

open-loop state-space equation of the system is then

˙

˙

˙

˙

=

0 0 0

0 0 0

1 0 0 0

0 1 0 0

+
0

0

0

+

0

0

0

+
2

1 0

0 1

0 0

0 0

½
cos ( )

sin ( )

¾
.

This equation defines matrices A, B , B , and B , and vectors z, u , u

(containing the control currents), and u . As the sensors in the actual application
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read only the displacements of the rotor and not its velocities, the output equation

is
=
£
0 0 1 0

¤
z ,

=
£
0 0 0 1

¤
z .

This equation defines matrices C and C and vector y.

The control system is made by two distinct PID controllers operating in - and

-direction. Their dynamics can be summarized as

½
ż

ż

¾
=

·
A 0

0 A

¸½
z

z

¾
+

·
B 0

0 B

¸½ ¾
,

where matrices A and B are given by Equation (16.26). Note that the two

controllers are assumed to be identical.

The outputs of the controllers are the control currents, so that the output equa-

tion is ½ ¾
+

·
C 0

0 C

¸½
z

z

¾
,

where matrix C is again given by Equation (16.26), with gain substituted by

the total gain of the control loop (controller, amplifier, sensor)

= .

The closed-loop state-space equation is then

ż

ż

ż

=

A B C B C

B C A 0

B C 0 A

z

z

z

+
2

B

0

0

½
cos ( )

sin ( )

¾
.

The order of the system is thus 10.

The eigenvalues of the dynamic matrix are 47 17±234 73 , 47 19±243 03 ,

0 30, 0 28, 1 99 × 104.(double value), and 106 (double value). The first six

eigenvalues are almost exactly the same obtained in Example 16.1 for the ideal

PID controller, whereas the following four are high and do not influence the dy-

namics of the system at the frequencies of interest.

Also the results for the unbalance response are practically identical and are not

reported here.

16.3 Rigid rotor on magnetic linearized bearings

A rigid rotor on a four-active-axis magnetic suspension is shown in Figure
8.21; the fifth degree of freedom, axial translation, may be constrained by
either a further active suspension or a passive magnetic bearing but is at
any rate considered decoupled from the four lateral degrees of freedom. In
Section 8.5, the bearings were modeled as linear springs and dampers, which
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FIGURE 16.2. Rotor with four degrees of freedom on magnetic bearings. Sketch
of the position of the th sensor-actuator pair.

implies that each actuator has a colocated sensor and that each control loop
is an ideal SISO (Single Input, Single Output) PD (Proportional Derivative)
control. Now the control loop is still modeled as an ideal SISO PD system,
but no colocation assumption is made.

16.3.1 Equations of motion

The system is modeled as a rotor with four real (two complex) degrees of
freedom (see Chapter 3), and the displacements and of the center of
mass and the rotations and are taken as generalized coordinates. Its
lateral behavior can be modeled using Equation (16.5) written in terms of
complex coordinates, in which no sti ness and damping matrix is present
owing to the rigid-body assumption

Mq̈ Gq̇ = f + f + 2f (16.27)

where

M =

·
0

0

¸
G =

·
0 0
0

¸
q =

½
+

¾

and F , F , and F are the control, nonrotating, and the rotating (unbal-
ance) forces.
For sake of generality, assume that the rotor is supported by (usually 2)

active magnetic bearings (AMB). The geometry of the generic th bearing
is sketched in Figure 16.2. The axial coordinates of the centre of the sensor
and actuator are, respectively, and 0.
With reference to Equations (8.41) and (8.42), assuming that the con-

troller is an ideal decentralized PD controller, the law expressing the force



594 16. Dynamics of controlled rotors

F (in complex notation) exerted by the th actuator as a function of the
displacements + and 0 + 0 at the th sensor and actuator locations
and the velocity at the th sensor is

F = ( + ) ( ˙ + ˙ ) + ( 0 + 0) , (16.28)

where and = is the proportional gain of the th control loop,
= is the ratio between the derivative and the proportional gains,

and = is the open-loop destabilizing sti ness of the th bearing.
The control force vector f caused by a number of actuators is then

f =

X
=1

X
=1

0

X
=1

X
=1

0

q̇+

X
=1

( )
X
=1

( 0 0)

X
=1

( 0)
X
=1

³
0 02

´ q

(16.29)

Owing to noncolocation ( 6= 0), the matrices in Equation (16.29) are
non symmetrical and can be nonpositive defined. The presence of the neg-
ative terms caused by is usually not causing problems in colocated
systems, owing to their smallness, but in the present case, they can con-
tribute to make the sti ness matrix nonpositive defined.
The equation of motion (16.27) can be rewritten in real coordinates,

obtaining

Mẍ+ (C+ G)ẋ+Kx = f + 2f (16.30)

where

M =

·
M 0
0 M

¸
G =

·
0 G

G 0

¸

C =

·
C 0
0 C

¸
K =

·
K 0
0 K

¸

x =
£ ¤

andM and G are the two matrices in Equation (16.27) whereas C and
K are those in Equation (16.29).
MatrixM is symmetric and positive defined, G is skew symmetric, and

C and K are generally nonsymmetric and can be nonpositive defined. Note
that if the sensors and actuators were colocated, the last two matrices would
have been symmetric and positive defined and the rotordynamic behavior
of the system would have been described by the usual “rotor with four
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degrees of freedom” model described in Chapter 3 with the sti ness and
damping of the supports expressed by Equation (8.41).
Matrices (C+ G) andK can be easily decomposed into their symmetric

and skew-symmetric parts by introducing the average distance of the th
sensor-actuator pair = 1

2
( + 0) and the noncolocation = 1

2
( 0)

of the same pair.
The sti ness matrix K can thus be split into a symmetrical sti ness

matrix plus a circulatory matrix

K =

1 2 0 0

2 3 0 0

0 0 1 2

0 0 2 3

+

0 4 0 0

4 0 0 0

0 0 0 4

0 0 4 0

(16.31)

where

1 =
X
=1

( ) 2 =
X
=1

( 0)

3 =
X
=1

h ¡
2 2

¢
02
i

4 =
X
=1

In the same way, matrix C+ G can be split into a symmetrical damping
matrix plus a gyroscopic matrix

C+ G =

1 2 0 0

2 3 0 0

0 0 1 2

0 0 2 3

+

0 4 0 0

4 0 0 +

0 0 0 4

0 4 0

(16.32)

where

1 =
X
=1

2 =
X
=1

3 =
X
=1

( 2 2 ) 4 =
X
=1

The circulatory matrix contains only distances , whereas the gyro-
scopic matrix depends on the noncolocation as well as on the product
expressing the gyroscopic e ect.
To study the stability of the system, consider the homogeneous equation

associated with Equation (16.35). Assuming a solution of the type q =
q0 , where vector q contains the complex coordinates + and
, and solving the related eigenproblem, the following nondimensional

characteristic equation allowing us to compute the whirling frequencies is
obtained:

4 [ + 2 ( + )] 3 +
£
1 + + 2 2 ( 2 2)+
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2 ] 2 `
£

+ 2 ( + ) 2 ( 2 2)( + )
¤

+ (16.33)

+ 2 + 2 = 0 ,

where the nondimensional complex whirl frequency = 1 and the
nondimensional spin speed = 1 have been defined with reference to
the natural frequency

1 =

r
11

of a Je cott rotor with the same mass and a sti ness equal to
11
.

Equation (16.33) depends only on eight nondimensional parameters, namely,

• Elastic parameters:
= 0 + 00 ,

0 =

P
=1
( 2 02)P
=1
( )

, 00 =

P
=1

2

P
=1
( )

,

=

P
=1
( 0)P
=1
( )

r
, =

P
=1P

=1
( )

r
.

• Inertial parameter:

= .

• Damping parameters:

= 11

2
11

1 = 22

2
22

1

= 12

2
12

1 = 21

2
21

1

Note that:

- is made of two parts, namely, 0 and 00. The first one does not
depend on noncolocation but only on the average positions and
is always positive; 00 vanishes for colocated systems and is always
negative.

- does not depend on noncolocation like 0, can be either positive
or negative and vanishes for symmetrical systems (see below), but
its sign has no e ect on the behavior of the system, because only its
square is included in the equations.

- can be positive or negative and vanishes for either colocated or
symmetrical systems. Its sign too has no e ect on the behavior of the
system.
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- is the usual parameter for gyroscopic e ects; its value can span from
0 (long rotors) to 2 (disc rotors); however, a smaller variability range
is expected in actual applications.

- coincides with the damping ratio of the above-mentioned Je cott
rotor. If all bearings have the same derivative gain and the con-
tributions caused by the terms are small enough to be neglected,
= = = and the number of relevant nondimensional parame-

ters reduces to five.

As the equation has complex coe cients, the solutions are complex but
not conjugate. Although little can be said in general on the stability of the
system, Equation (16.33) allows us to assess numerically the stability in
any given case.
In the case of the undamped system, Equation (16.33) reduces to

4 3 + (1 + ) 2 + 2 + 2 = 0 (16.34)

which depends on just four nondimensional parameters. Solutions with pos-
itive real part (unstable solutions) may exist.

16.3.2 Symmetrical system

Consider a rotor on two equal bearings and the center of mass at midspan.
Assume that also the sensors are symmetrically located. The equations of
motion for the translational and rotational degrees of freedom uncouple
(only four nondimensional parameters are di erent from zero, namely, ,
, , and ) and the characteristic Equation (16.33) splits into two inde-
pendent equations:

½
2 + 2 + 1 = 0 ,
2 + (2 ` ) + = 0 .

(16.35)

Cylindrical whirling is governed by the same equation of the well-known
equation of motion of the Je cott rotor. The equation describing the conical
whirling di ers from the usual equation dealing with colocated systems
because the product 1

0

1
can be negative in the case in which the actuator

on one side is connected with the sensor on the other one. In this case,
is negative.
If is positive, the behavior of the system is equal to that of a colocated

system with the actuator in the position
1
=
p

1
0

1
. The case with neg-

ative has very little practical interest, because the system is unstable at
standstill, behaving like a spring, mass, damper system with negative sti -
ness and damping coe cient. However, the gyroscopic moment can stabilize
the undamped system.
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The solution of the second Equation (16.35) is

=
2 + ±

p
( 2 )2 4

2
, (16.36)

which holds for both positive or negative.
If is negative, it follows that:

= Im( ) =
2
±

s
2 + 2

2
(16.37)

= Re ( ) = | |

s
2 + 2 +

2
(16.38)

where

= 4 2 2 2 2 + 4| | , = 4 | |

In the case of the undamped system, stability occurs if

2
p
| |

(16.39)

However, the presence of damping makes the system unstable at all
speeds because the real part of one of two values of 0 is always positive for
any value of the spin speed .

16.3.3 Nonsymmetrical system

If the center of mass of the rotor is not at midspan or if the symmetry
assumed in the previous section is violated, the two equations of motion
do not uncouple and the modes do not reduce to conical and cylindrical
ones. Nevertheless they are often still referred to as conical or cylindrical,
but only in a general way, because the first one does not have its vertex in
the center of mass and in the latter, the rotor axis does not remain exactly
parallel to itself.
The condition for stability of the undamped system at standstill is

(1 )2 + 4 2 4 2 0 (16.40)

which is obviously verified for , although being less restrictive than
that.
The equations become complicated enough to prevent from performing

a closed-form general study of the stability, even in the undamped case.
Some typical plots and conclusions drawn from numerical experimen-

tation on undamped systems will be reported here. The nondimensional
Campbell diagram and the decay rate plot of a system with 0 = 0 5,
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FIGURE 16.3. Nondimensional campbell diagram and decay rate plot of a system
with 0

= 0 5, 00
= 0 05, = 0 1, = 0 15, and = 0 6.

00 = 0 05, = 0 1, = 0 15, and = 0 6 are reported in Figure 16.3. The
system is stable for = 0, because

(1 )2 + 4 2 4 2 = 0 2525 0

The curves related to cylindrical and conical whirling cross in the first
quadrant, and where they meet, a field of instability starts. The unstable
conditions persist up to a certain speed, which is beyond the crossing of
the Campbell diagram with the line = .
The plot is repeated in Figure 16.4, with the same values of the param-

eters, but with = 1 5 instead of = 0 6, i.e., with a disc rotor instead of
a long rotor.
The results are similar to the ones previously seen, with the di erence

that the curve related to the conical mode in forward whirling (whose
asymptote is the straight line with equation = ) has a greater
slope. As a result, the instability range moves toward lower speeds and lies
all in the subcritical range (on the left of the line = ).
The plot of Figure 16.5 deals with the same values of the parameters as

in Figure 2 (long rotor), but for the value of 0, which is now greater than
1 (2 instead of 0.5). The curves related to cylindrical and conical whirling
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FIGURE 16.4. Nondimensional campbell diagram and decay rate plot of a system
with 0

= 0 5, 00
= 0 05, = 0 1, = 0 15, and = 1 5.

now cross in the fourth quadrant, and consequently, the field of instability
occurs in backward whirling conditions.
The plot of Figure 16.6 refers to the same case of Figure 16.5, but for

a disc rotor ( = 1 5 instead of = 0 6). As 0 1, the instability range
lies in the backward whirl zone of the plot, but it is displaced toward lower
values of the speed.
The roots loci of the four cases studied in figures from 2 to 5 are reported

in Figure 16.7 from (a) to (d).

Remark 16.2 In all of the cases studied above, an instability range was

present. Further numerical investigation showed that this is because .

If, on the contrary, , no instability range was encountered, at least

unless 00 0. The conclusions drawn from the numerical experiments

run on undamped systems are reported in the following table:

Crossing in
0 1 first quadrant no instability unstable forward modes
0 1 fourth quadrant no instability unstable backward modes
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FIGURE 16.5. Nondimensional campbell diagram and decay rate plot of a system
with 0

= 2, 00
= 0 05, = 0 1, = 0 15, and = 0 6.

A further case, with the same parameters of that studied in Figure 16.3,
but with 0 = 1 1, is shown in Figure 16.8. Note that now

(1 )2 + 4 2 4 2 = 0 0475 0 :

The system is unstable even at standstill, for both forward and backward
modes, to be stabilized at high speed by the gyroscopic e ect.
The e ect of damping is that of reducing the width of the instability

range, and if the system is damped enough, no instability is encountered.

16.3.4 Geometric re-colocation

Consider a rigid rotor running on two magnetic bearings. Owing to the
rigid-body assumption, the noncolocation e ect can be compensated for
by using a centralized control system; i.e., it is possible to design a cen-
tralized control system that causes the actuators to produce forces that
are proportional to the displacements (or the velocities, for the derivative
branch of the control loop), at the locations of the actuators instead of that
of the sensors.
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FIGURE 16.6. Nondimensional campbell diagram and decay rate plot of a system
with 0

= 2, 00
= 0 05, = 0 1, = 0 15, and = 1 5.

The complex displacements at the sensor and actuator locations can be
expressed as functions of the displacement and rotation at the center of
gravity as

½
1 + 1

2 + 2

¾
=

·
1 1

1 2

¸½
+

¾
¨ = (16.41)

= T

½
+

¾
,

½
0

1
+ 0

1
0

2
+ 0

2

¾
=

·
1 0

1

1 0

2

¸½
+

¾
= (16.42)

= T0
½

+
¾
.

The proportional part of the forces exerted by the actuators are propor-
tional to the displacements at the actuator location if

½
1
+

1

2
+

2

¾
=

·
1 0
0 2

¸½
0

1
+ 0

1
0

2
+ 0

2

¾
= (16.43)
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FIGURE 16.7. Roots loci for the cases in Figures 16.3 to 16.6.

=

·
1 0
0 2

¸
T0T 1

½
1 + 1

2 + 2

¾
.

The matrix of the gains of the control system required perform the re-
colocation is thus

K =

·
1 0
0 2

¸
T0T 1 = (16.44)

=
1

1 2

·
1(

0

1 2) 1( 1
0

1
)

2(
0

2 2) 2( 1
0

2
)

¸
.

The matrix of the derivative gains can be obtained in the same way by
substituting for .

Example 16.3 Turbomolecular pump on magnetic bearings.

Consider the rotor of a turbomolecular pump with the following inertial data:

= 9 270 kg; = 0 0800 kg m2; = 0 0337 kg m2. The center of mass

of the rotor is at 134.5 mm from one end of the shaft, whereas the actuators

and sensors are at 128.7 mm, 250.8 mm (actuators), 90.1 mm, and 219.5 mm

(sensors) respectively. The gains of the sensor-actuator loop of the bearings are

1 = 2 2 × 106 N/m and 2 = 0 6 × 106 N/m,
1
= 32 000 N/m, and

2
=

36 000 N/m.
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FIGURE 16.8. Nondimensional Campbell diagram and decay rate plot of a
system with 0

= 1 1, 00
= 0 05, = 0 1, = 0 15, and = 0 6. As

(1 )
2
+ 4

2
4

2
= 0 0475 0, the system is unstable for = 0.

The nondimensional parameters of the undamped system are: = 0 2620 ( 0
=

0 3030, 00
= 0 0410), = 0 0199, = 0 2043 and = 0 4212. The value of 1

is 1 = 542 8 rad/s.

The system is stable for = 0, because (1 )
2
+4

2
4

2
= 0 378 0. The

Campbell diagram of the undamped system is shown in Figure 16.9.

As expected, the branches of the Campbell diagram meet in the first quadrant

( 0
1), a field of instability exists ( ) and it is located mainly in the

supercritical field ( 1).

The computation of the Campbell diagram was repeated with di erent non-

colocation schemes and values of the damping to obtain stability maps with the

aim of assessing stability boundaries. The results are reported in Figure 16.10

where the spin speeds at which the rotor becomes unstable and then stable again

are plotted as functions of the distance between the sensors and the actuators.

The various curves have been obtained for di erent values of the damping ratio

. Note that the sensor-actuator distance has been assumed to be the same for the

two bearings (which is not the case in the actual system) and the controllers have

been assumed to supply the same derivative action (equal ). Strictly speaking,

the values of , , , and are not exactly equal.
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FIGURE 16.9. Campbell diagram of the system studied in the example (un-
damped system).

If the sensor-actuator distance is smaller than 20 mm, no instability occurs

even if the system is undamped, whereas larger sensor-actuator distances lead to

increasingly large instability ranges.

By adding damping, the maximum value of for which the system is stable

increases, and if the unstable range is at any rate found, the threshold of instability

increases with damping. The value of the upper limit of the instability range has

a more complex behavior: The presence of damping causes it to increase, but then

it decreases with further increases of damping.

As the average sensor-actuator distance is of 35 mm, a damping ratio in excess

of 0.175 is required to guarantee stability. A larger value of damping, i.e., 1 =

2 = 1 × 10 3 is assumed, to account for the fact that the larger bearing has a

larger non-colocation (due to a greater bulk of the actuator). It leads to = 0 278,

= 0 286, = 0 262, and = 0 279. The result of the analysis of the damped

system is reported in Figure 16.11: the Campbell diagram and the decay rate plot

are reported together with the roots locus.

The matrix of the gains of a centralized control system able to recolocate the

system is

·
2 896 0 696

0 154 0 446

¸
× 106 N/m .
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FIGURE 16.10. Lower and upper limits of the instability range as functions of
the sensor-actuator distance, for various values of the damping ratio .

The Campbell diagram of the undamped system is reported in Figure 16.12: Its

overall pattern is that of a conventional rotor on soft bearings, and no non-

colocation e ect is present.

16.4 Modal control of rotors

If the model of the rotor contains a large number of degrees of freedom, the
dynamic model of the closed-loop controlled system can be very complex.
In this case, as well as when a small model is required to allow real-time
simulation of the system, it is possible to resort to a reduced-order model
by means of any one of the reduction technique seen for rotor modeling.
Guyan reduction, for instance, allows us to obtain fairly small models

without losing too much precision, in particular when eliminating the ro-
tational degrees of freedom in beam-like models.
Modal reduction is particularly suitable for the control of nonrotating

structures, and it is interesting to assess whether modal control can be
applied also to rotors. The point is that rotors are non-natural, and often
circulatory, systems, with a sti ness variable with the speed if centrifugal
sti ening is present. The standard approach of using the eigenvectors of the
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FIGURE 16.11. Campbell diagram, decay rate plot and roots locus for the
damped system ( 1 = 2 = 1× 10

3, i.e., = 0 275).

undamped system for uncoupling the equations of motion is in this case
questionable and can lead to a very large spillover.
There are then two di erent possible approaches:

• To use the eigenvectors of the undamped system at standstill.

• To use any one of the approaches yielding speed-dependent modal
parameters.

The second way is clearly much more complex, and it is not suitable
for designing the control system of complex rotors, but it is much more
accurate. It will not be dealt with any deeper here.
The first approach is simple and straightforward but can be questionable

in the case of rotors in which gyroscopic or circulatory e ects or centrifugal
sti ening are large. In this case, a better precision can be obtained by using
a larger number of modes, but this reduces the advantages of the modal
approach.
Let be the reduced matrix of the eigenvectors, normalized in such

a way that the modal masses have a unit value. It is a × matrix,
where is the number of degrees of freedom and is the number of modes
considered.
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FIGURE 16.12. Campbell diagram of the same system of Figure 16.9, but with a
centralized controller that re-colocates sensors and actuators (undamped system).

The modal equations of motion of a rotating system that includes a
number of actuators can be written in the form

¨ + (C +C + G) ˙ + (K+K 2 + C ) = f + f , (16.45)

where are the modal coordinates and the modal matrices and vec-
tors are obtained in the usual way. The modal sti ness matrix is diagonal,
whereas the others are not.
The modal state space and output equations are then

ż = Az+B u +B u ,
y = Cz+Du ,

(16.46)

where

• Vector z contains the complex state variables ˙ and .

• Vectors u and u contains control and external inputs, in the stan-
dard form.
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• A is the modal dynamic matrix of the system

A =

·
C C G K C

I 0

¸
(16.47)

• Matrices B and B are the input gain matrices, respectively, for the
control and external inputs. They can be obtained from those related
to the nonmodal state space equation as

B =

·
T

0

¸
B =

·
T

0

¸
(16.48)

where matrices T and T are selection matrices, with rows and
as many columns as there are inputs, showing the degrees of freedom
on which the inputs act.

• Vector y( ) contains the outputs of the system.

• C is the modal output gain matrix,

C = C

· ¸
. (16.49)

The control and external inputs and the outputs are the same as for the
case of nonmodal control, and hence the dynamic equations of the control
system and the operations required for closing the loop are identical to
what has already been seen.

Example 16.4 Consider the spindle running on five active axes magnetic bear-

ings shown in Figure 16.13. The shaft is supported by two radial magnetic bearings

(rad. 1 and rad. 2 in the figure), constrained axially by an axial magnetic bearing

(ax.) and operated by an induction motor (mot.). An FEM model of the rotor

is shown in Figure 16.14(a). The shaft is modeled using 38 Timoshenko beam

elements, which connect 39 nodes to each other. In the figure, the laminations of

the bearings and of the motor are shown with dotted lines, because they contribute

to the mass but not to the sti ness.

The disc of the axial bearing has been modeled using three thin disc elements (or

better a beam-disc transition element and two disc elements) that are connected to

three further nodes. The total number of degrees of freedom involved in the lateral

behavior is 90, reduced then to 42 through Guyan reduction. A larger reduction

could have been used; the size of the model is, however, fairly small, and no further

reduction was contemplated. The inertial properties computed by the FEM model

are = 5 608 kg, = 0 138 kg m2, and = 0 0019 kg m2.

A free body analysis was first performed. The first two critical speeds, corre-

sponding to rigid-body modes, have a zero value, whereas the two following ones

are 3 = 2 109 rad/s (20 143 rpm) and 4 = 4 651 rad/s (44 412 rpm).
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FIGURE 16.13. Spindle on a five-active-axes magnetic suspension.

The corresponding mode shapes are reported in Figure 16.14(b). The Campbell

diagram is practically flat, and hence, it is not reported.

The radial magnetic bearings are identical. The data are: Actuator constant

= 1 5246 × 10 6 Nm2/A2, nominal air gap = 0 75 mm, and bias current

0 = 3 A. No allowance is taken for the e ect of the radial load, which causes the

bearings to behave in an anisotropic way.

The control loop is based on four independent identical PID controllers with the

following data: overall gain = 1 25 V/m, reset time = 6 14 s, derivative time

= 0 9035× 10 3 s, ratio between zero and pole of the PD section = 18 07,

time constant of the sensor electronics = 10
6s, gain of the sensor 7500 V/m,

time constant of the sensor 15 92 × 10 6 s, gain of the power amplifier 1.027

A/V, and time constant of the power amplifier 50× 10 6 s.

The first four critical speeds of the rotor on active magnetic bearings are

1 = 249 1 rad/s (2 380 rpm), 2 = 415 6 rad/s (3 966 rpm), 3 = 2 157

rad/s (20 601 rpm), and 4 = 4 679 rad/s (44 686 rpm). Note that the first

two critical speeds are very low and are determined by the characteristics of the

bearings, whereas the other two are essentially caused by the rotor. The suspension

behaves like a very soft mechanical suspension.

A Campbell diagram computation was then performed by using a modal ap-

proach. As the whole system is axially symmetrical, the complex coordinates ap-

proach was used. By using four modes, the order of the open-loop system is eight

and relevant matrices system are

A =

0 0116 0 00626 0 00229 0 00503 77080 24980 12240 9523

0 00344 0 00185 0 000677 0 00149 13310 56060 20460 20720

0 00522 0 00281 0 0441 0 00635 26230 90720 42200 32300

0 0103 0 00553 0 00568 0 0853 21540 84150 28880 1 977× 10
7

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

,

B =

·
19 645 4 188 5 359 18 840 0 0 0 0

13 505 13 987 23 114 16 748 0 0 0 0

¸
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FIGURE 16.14. Spindle on five-active-axes magnetic suspension. (a) FEM model
of the rotor; (b) first four mode shapes corresponding to the lowest critical speeds
(the rigid-body modes correspond to null critical speeds).

C =

·
0 0 0 0 0 8376 0 2217 0 5199 0 2388

0 0 0 0 0 5810 0 9853 0 5875 0 8803

¸
.

The Campbell diagram and the decay rate plot computed using four modes in

each plane are reported in Figure 16.15. Also in this case, the gyroscopic e ect is

not very strong and the Campbell diagram is almost flat. The suspension is stable

at all speeds.

To check the approximations linked with the modal computation, the results

obtained at standstill and at a speed of 1500 rad/s using four and ten modes are

reported in Table 16.1.

The results show that all frequencies and decay rates are not much a ected by

the speed and are computed with good approximation using just four modes. The

first four forward and backward modes are shown at the top of the table: They

include two rigid-body modes, mostly from the bearings, and two deformation

modes. The situation is much similar to that shown in Figure 16.14(b).

Then two real nonoscillatory modes linked mostly with the integrative action of

the controller follow. The other eight modes reported, mostly caused by the control
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FIGURE 16.15. Campbell diagram and decay rate plot of the rotor on active
magnetic bearings.

system are so much damped to be of little practical interest. At standstill, they

are nonoscillatory, whereas at 1500 rad/s, they have a nonvanishing frequency,

but the accuracy of such a small imaginary part (if compared with the real part)

is doubtful.
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= 0 = 1500 rad/s
4 modes 10 modes 4 modes 10 modes

-38.0 -4477.9 -38.2 -4477.8 -37.8 -4413.9 -38.3 -4413.9
-65.0 -2108.5 -65.7 -2108.3 -63.8 -2074.9 -64.6 -2074.7
-112.0 -412.6 -112.1 -412.6 -109.3 -402.4 -109.3 -402.5
-43.9 -248.8 -44.11 -249.1 -43.9 -248.8 -44.1 -249.1
-43.9 +248.8 -44.11 +249.1 -43.9 +248.9 -44.1 +249.2
-112.0 +412.6 -112.1 +412.6 -114.8 +423.0 -114.8 +423.1
-65.0 +2108.5 -65.7 +2108.3 -66.2 +2142.6 -66.9 +2142.3
-38.0 +4477.9 -38.2 +4477.8 -38.2 +4542.9 -38.0 +4542.1

-0.242 -0.242 -0.242 -0.242
-0.279 -0.279 -0.279 -0.279

-15913 -17602 -15913 -8.449 -17602 +10.212
-17706 -17878 -17705 +1.042 -17878 +3.760
-22230 -21779 -22230 -0.841 -21779 -17.936
-23920 -22033 -23920 +5.318 -22033 -3.325
-62548 -62940 -62548 -0.286 -62760 +0.273
-62730 -62761 -62730 +0.025 -62940 +2.062
-100015 -99969 -100015 -0.003 -99969 -0.302
-100048 -100009 -100048 +0.032 -100009 -0.041

TABLE 16.1. Eigenfrequencies of the spindle on magnetic bearings at standstill
and at 1500 rad/s. Results obtained through a modal computation with four and
ten modes.



Appendix A
Vectors, matrices, and equations of
motion

The study of the equations of motion for a general space discretized system
can be performed with reference to either the frequency domain or the time
domain, yielding the natural frequencies, the mode shapes, and time free
and forced responses. When the system is linear and the sets of equations
are written in terms of vectors and matrices, the tools of linear algebra can
be used to cope with the problems of motion (for example, see [19] or [18]
for a general introduction to lumped parameters system, and [73] or [74]
for the related theory of matrices, including numerical aspects).
In particular, for what the lateral dynamics of rotating systems is con-

cerned, a further analytical tool is introduced and used throughout the
present book, namely, the complex coordinates approach, in which com-
plex numbers are used to represent generalized displacement vectors. This
approach proved to be very expedient for modeling both single- and multi-
degrees-of-freedom rotors, particularly when the whole system is axially
symmetrical and the forcing functions acting in the rotation plane in the
direction of the coordinate axes are in quadrature, i.e., with a phase delay
of 2 with respect to each other, like unbalance forces.

A.1 Equation of motion

Lumped parameter systems may be related to mechanical, electrical, or
electromechanical systems (see, for example, [75] or [76]). Very often, when
the motion is confined to small variations, the general equation of motion
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for lumped parameters structures can be linearized and may be conve-
niently expressed in the following matrix form:

[ ]
×
{ (̈ )} +[ + ]

×
{ ˙( )} +[ + ]

×
{ ( )} = [ ]

×
{ ( )} ,
(A.1)

where is the number of the degrees of freedom listed in the generalized dis-
placement vector q( ),M is the real symmetric mass matrix, C is the real
symmetric damping matrix, G is the real skew-symmetric gyroscopic ma-
trix, K is the real symmetric sti ness matrix, H is the real skew-symmetric
circulatory matrix, and S is an influence matrix of external generalized
forces f( ) acting on the system. For its relevance, Equation (A.1) is often
simply referred to as the equation of motion.

Remark A.1 Actually it is possible to write the set of linear di erential

Equations (A.1) in a way in which no matrix is either symmetric or skew

symmetric (it is enough to multiply one of the equations by a constant

di erent from 1). A better definition would be to say that M, C, and K

can be reduced to symmetrical matrices by the same linear transformation

that reduces G and H into skew-symmetric matrices.

Remark A.2 The same form of Equation (A.1) may result from math-

ematical modeling of physical systems whose equations of motion are ob-

tained by means of space discretization techniques, such as the well-known

finite elements method.

Remark A.3 The role played by the signs of the coe cients in scalar poly-

nomial for the assessment of stability is here played by the definition or

semidefinition of coe cient matrices that, in turn, is strictly related to the

definition of energy-based Lyapunov functions (see [19], Chapter 4).

A.1.1 Associated eigenproblem

As any nonsymmetric matrix A can be decomposed as the sum of a sym-
metric Asym = Asym

and a skew-symmetric Askew = A
skew

part

A = Asym +Askew , (A.2)

where

Asym =
(A+A )

2
, (A.3)

Askew =
(A A )

2
, (A.4)
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it follows that the matrices of the coe cients of the equation of motion (A.1)
may be written as

A2 = A2 sym =M , (A.5)

A1 = A1 sym +A1 skew = C+G , (A.6)

A0 = A0 sym +A0 skew =K+H , (A.7)

where symmetric and skew-symmetric matrices have a specific physical
meaning that is almost self-explanatory in the case of rotating systems.
The general time domain solution of the ordinary di erential Equa-

tion (A.1) is the sum of the general solution of the homogeneous equation

A2q̈( ) +A1q̇( ) +A0q( ) = 0 (A.8)

plus a particular integral of the complete Equation (A.1).
Assuming a solution of Equation (A.8) of the kind

q( ) = q0 , (A.9)

where {q0} and are a constant complex vector and complex
scalar, respectively, the following algebraic equation is obtained:

¡
A2

2 +A1 +A0

¢
q0 = D2( )q0 = 0 , (A.10)

where D2( ) is a special case of the algebraic problem known as lambda
matrix 1 of order two (see [73] for the general theory of lambda matrices
and in particular Chapter 7 of [73] for its application to vibrating systems).
As [D2( )] × is square and A2 = M is nonsingular, the lambda matrix
associated with the equation of motion is said to be regular.
In addition, if for each satisfying the generalized eigenproblem

¡
A2

2 +A1 +A0

¢
q = D2( )q = 0 , (A.11)

the rank of D2( ) is equal to , where is the multiplicity of the
latent eigenvalue , the lambda matrix is also said to be simple.
In the case of a regular and simple lambda matrix of order two, the latent

characteristic equation

|D2( )| = 0 (A.12)

yields 2 latent eigenvalues ( )
2

=1
and 2 latent (right) eigenvectors ({q } )

2

=1
.

1The term lambda matrix comes from the habit of using symbol for expressing the
solution q( ) = q0 . However, here symbol is used instead of following a more
modern tradition.
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Conservative nongyroscopic (natural) systems

If C =G =H = 0, i.e., in the case of the so-called MK systems, the related
eigenproblem ¡

M 2 +K
¢
q = 0 (A.13)

reduces to the standard form of the eigenproblem

Aq = q (A.14)

(so-called regular pencil in the lambda matrix denomination) when the
following positions are taken:

A = M 1K , (A.15)

= 2 . (A.16)

Remark A.4 The positive definiteness (semipositiveness) of matrices M

and K implies that the eigenvalues are real and positive (zero) scalars,

and hence, are 2 purely imaginary scalars that come in complex conju-

gate pairs

( ) = ± . (A.17)

It should be noted that also the eigenvectors of dimension ({q } )
=1

are real vectors.

Remark A.5 As matrix A =M 1K is nonsymmetric2 , the most e cient

numerical algorithms for the solution of the associated eigenproblem that

are based on real symmetric matrices cannot be used.

Anyhow, as both M and K are real and symmetric and furthermore
M is positive definite, it is possible to recast the eigenproblem of Equa-
tion (A.13) in terms of a single real symmetric matrix by means of the
so-called Cholesky decomposition:

M = LL , (A.18)

where L is a lower triangular nonsingular real matrix. Then, introducing
the linear transformation

q = L p , (A.19)

where L =
¡
L
¢ 1

= (L 1) , Equation (A.14) can be reduced to

A p = p , (A.20)

where
A = L 1KL = A (A.21)

is a real symmetric matrix.

2Often symbol D is used for the dynamic matrix M 1K written with reference to
the configuration space, whereas A is commonly used for the dynamic matrix in the
state space.
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A.1.2 Free response

The time solution of the homogeneous dynamic equation, based on a regular
and simple lambda matrix, may be expressed in terms of latent eigenvalues
and eigenvectors

q( ) =
2X
=1

q , (A.22)

where the 2 complex constants are to be found from the initial condi-
tions ( generalized displacements and generalized velocities).
As all of the matrix coe cients of the dynamic equation are real, the

solution is real and the 2 complex quantities are complex conjugate
pairs:

( = + )
=1

and ( = )
=1

, with ,

¡
= +

¢
=1

and
¡
=

¢
=1

, with ,

¡
q = q + q

¢
=1

and
¡
q = q q

¢
=1

,

with
©
q
ª

,
©
q
ª

It follows that the expression of the time solution (A.22) may be written
as a purely real expression

q( ) =
P

=1

¡
q + q

¢
=

= 2
P

=1

£¡
q q

¢
cos( ) +

¡
q + q

¢
sin( )

¤
,

(A.23)
where

¡
= +

¢
=1
and

¡
=

¢
=1
with , are

2 coe cients to be obtained from the 2 equations corresponding to the
2 initial conditions ({q (0)} )

=1
and ({q̇ (0)} )

=1
.

Underdamped systems

In general, any vector and thus the time solution vector {q( )} may be
represented as a linear combination of independent vectors {p }

q( ) =
X
=1

p ( ) , (A.24)

with ( ) the coe cients of the linear combination.
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Many structures are characterized by small and usually uncertain damp-
ing. If this is the case, Equation (A.24) may be written as

q( ) =
X
=1

q
¡

+
¢

(A.25)

=
X
=1

q [ cos( ) + sin( )] (A.26)

=
X
=1

q (cos( + ) , (A.27)

where q are the (real) eigenvectors of the MK eigenproblem (A.13), +
= are the complex (and conjugate) eigenvalues of the damped sys-

tem, and ( )
=1
and ( )

=1
are 2 coe cients to be obtained from the

2 equations corresponding to the 2 initial conditions ({q (0)} )
=1
and

({q̇ (0)} )
=1
.

Remark A.6 If all the eigenvalues are either complex or imaginary, the

system is said to be underdamped. When at least one of the eigenvalues is

real, the system is overdamped.

Remark A.7 The time Solution (A.24) may also be used in general when

a modal base made of eigenvectors is not readily available. It is su cient

to adopt any base made of linear-independent vectors, e.g., the principal

one of orthogonal unit vectors, of the same dimension of vector {q( )}
and then substitute and solve for the initial conditions ( positions and

velocities) to find the 2 coe cient of the time Solutions (A.25), (A.26),

or (A.27).

Overdamped systems

In the case of overdamped systems, a number 2 of the latent eigenvalues
may be real numbers and Equation (A.22) may be partitioned accordingly:

q( ) =
2X
=1

q +
2X

=2 +1

q , (A.28)

where = 1 for all the real-valued (the corresponding q are also
real valued).

A.1.3 Forced response

The steady-state time solution of the dynamic Equation (A.1) for a sinu-
soidal forcing function

f( ) = f0 cos( + ) (A.29)
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is a sinusoidal function q( ) with the same frequency of the forcing
function

q( ) = q cos( + ) , (A.30)

where the 2 elements of {q} and { } can be computed substituting So-
lution (A.30) for two di erent times 1 and 2 into Equation (A.1).

A.1.4 State-space representation

As it is well known from elementary calculus, a set of equations of order
can always be recast into a set of × of first-order equations. If the
derivative term is left in monic form on the left-hand side of each first
order equation, a normalized set of equation is obtained known as state-
space representation.
With regard to the equation of motion (A.1), the state vector x( ) is

a 2 -dimensional vector usually defined in terms of generalized displace-
ments q( ) and velocities q̇( )

z( ) =

½
{q̇( )}
{q( )}

¾

2

, (A.31)

and the input vector u( ) is a -dimensional vector collecting all of the
external forces acting on the system. With these positions, a new set of 2
equations of motion is obtained,

ż( ) =

½
q̈( )
q̇( )

¾
= Ax( ) +Bu( ) , (A.32)

where

A =

· £
M 1(C+G)

¤
×

£
M 1(K+H)

¤
×

[I]
×

[0]
×

¸

2 ×2

(A.33)

and

B =

·
[S ]

×

[0]
×

¸

2 ×

(A.34)

are the so-called dynamic or space matrix and input matrix, respectively.
The solution of the associated homogeneous state equation

ż( ) = Az( ) (A.35)

is obtained assuming a solution of the kind

z( ) = z0 , (A.36)

where {z0}2
2 and are a constant complex vector and a scalar,

whose substitution leads to a standard eigenproblem:

Az = z .
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Remark A.8 As compared with the so-called configuration space repre-
sentation of Equation (A.1), the state-space representation is particularly
useful when C+G 6= 0 and H 6= 0, i.e., when the dynamic equation cannot
be solved in 2 [biquadratic approach of Equation (A.13)]. An alternative

but seldom used approach is to tackle the numerical problem in terms of

lambda matrix (see [73], Chapter 5).

The state-space representation is usually completed by a so-called mea-
sure or output equation consisting of a collection of linear combinations
of states, referred to as outputs of the system:

y( ) = Cz( ) = [S ]
×
{q( )} + [S ˙] × {q̇( )} =

=
£
S ˙ S

¤
×2

½
q̇( )
q( )

¾

2

,
(A.37)

where C is the so-called output matrix (not to be confused with the damp-
ing matrix for which the same symbol is normally used, but whose number
of columns is half).

Conservative nongyroscopic systems (state-space approach)

In the case of C = G =H = 0, the state matrix reduces to

A =

·
[0]

×

£
M 1K

¤
×

[I]
×

[0]
×

¸

2 ×2

(A.38)

and the associated eigenproblem can be solved by substituting the solution
of Equation (A.9) used in the configuration space into the state-space vector
of Equation (A.31), obtaining

z( ) =

½
{q}
{q}

¾

2

. (A.39)

By introducing Equation (A.39) into Equation (A.35), with the state
matrix as in Equation (A.38), and neglecting the identity expressed by the
last equation, the eigenproblem reduces to

2q = M 1Kq , (A.40)

i.e., the same eigenproblem already stated in Equation (A.14).

A.1.5 Frequency response

The frequency domain approach is an alternative method of solving linear
di erential equations using the Laplace transform. As the equation of mo-
tion (A.1) is linear, it is possible to obtain the time response for a generic
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Laplace transformable forcing function, i.e., any function f( ) for which
a Laplace transform L{f( )} = f̂( ) can be computed. Once the Laplace
transform of the equation of motion (A.1) is obtained

L{Mq̈( ) + [C+G] q̇( ) + [K+H]q( )} =

=M
¡
2q̂( ) q̇(0) q(0)

¢
+ [C+G] ( q̂( ) q(0)) + [K+H] q̂( ) =

=
¡
M 2 + [C+G] + [K+H]

¢
q̂( ) M q̇(0) [M+C+G]q(0) = f̂( )

(A.41)
and with the following position:

D2( ) =M
2 + [C+G] + [K+H] , (A.42)

it is possible to write

D2( )q̂( ) =M q̇(0) + [M+ L+G]q(0) + f̂( ) . (A.43)

The di erential problem of the equation of motion (A.1) is therefore
transformed into an algebraic problem and hence

q̂( ) = D 1

2
( ) (M q̇(0) + [M+C+G]q(0)) +D 1

2
( )̂f( ) (A.44)

from which the general time solution is obtained by taking the appropriate
inverse Laplace transform q( ) = L 1 {q̂( )}.

Remark A.9 As already stated, the general time Solution (A.44) is the

superposition of the general free response and of the forced response, i.e.,

transient and steady-state response, respectively.

Remark A.10 Taking the Laplace transform of the so-called output Equa-

tion (A.37)

L{y( )} = ŷ( ) = S q̂( ) + S ˙ q̂( ) (A.45)

and zero initial conditions, the so-called transfer function H( ) between the
forcing inputs and measured outputs of the dynamic system is obtained

ŷ( ) = H( )̂f( ) = [S + S ˙ ]D
1

2
( )̂f( ) . (A.46)

A.2 Rotating systems

Consider an axi-symmetrical rotor modeled using the one-dimensional, i.e.,
beam-like, approach (possibly extended to the 11

2
D approach). When it

is at standstill, it may be modeled as a beam whose displacements in the
-plane, say along -axis and -axis, are uncoupled: Gyroscopic and circu-

latory terms are then responsible for their coupling at nonzero spin speed.
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The displacement at each node along the spin axis may be expressed in
vector form

( ) = ( ) + ( ) (A.47)

and its equivalent matrix form

r ( ) =

½
( )
( )

¾
. (A.48)

An alternative is to express the displacement in the section plane as a
complex number

( ) = ( ) + ( ) , (A.49)

where = 1. This kind of notation may be conveniently used in rotordy-
namics to obtain a rather compact notation in studying the basic behavior
when both the rotor and the stator are isotropic with respect to rotation

axis.

Remark A.11 As seen in Chapter 6, the complex-coordinates approach

can be used also for nonisotropic rotors, but some of its advantages are

lost.

A.2.1 Real coordinates

If the rotor generalized displacements are expressed in the Form (A.48), i.e.,
the displacements and rotations in - and -planes are directly taken as
generalized coordinates

{q( )}
2
=

½
{q ( )}
{q ( )}

¾

2

, (A.50)

the general equation of motion is

·
[M0]

×
0

0 [M0]
×

¸

2 ×2

{q̈( )}
2
+

"·
[C0]

×
0

0 [C0]
×

¸

2 ×2

+

+

·
0 [ G0]

×

[G0]
×

0

¸

2 ×2

#
{q̇( )}

2
+

"·
[K0]

×
0

0 [K0]
×

¸

2 ×2

+

+

·
0 [ H0]

×

[H0]
×

0

¸

2 ×2

#
{q( )}

2
= {f( )}

2
,

(A.51)
where is the number of generalized coordinates in each inflection plane
and the dependence of the gyroscopic and circulatory terms from the spin
speed is implicit. Equation (A.51) holds in the case of an axially symmetri-
cal rotor. In case the nonrotating parts of the system are nonsymmetrical,
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the structure of the equation is still the same, but the matrices related to
the two planes are not identical, and the coupling matrices are not zero.
If the rotating parts of the system are nonsymmetrical, things are more
complicated as shown in Chapters 6 and 9.

Remark A.12 If the system is axially symmetrical, all eigenvalues have

multiplicity 2, since the behaviour in the two planes is identical. This prop-

erty holds also for systems with cyclic symmetry of order 3 or greater.

A.2.2 Complex coordinates

The use of complex coordinates of the Form (A.49) yields an equation of
motion whose size is half that obtained using real coordinates. In the case
of an isotropic system, the equation in complex coordinates is

[M0]
×
{q̈( )} +

£
[C0]

×
[G0]

×

¤
{q̇( )}

2
+

+
£
[K0]

×
[H0]

×

¤
{q( )} = {f( )} .

(A.52)

Remark A.13 The matrices that are skew-symmetric in real coordinates

are symmetric but imaginary when complex coordinates are used.

Remark A.14 In complex coordinates, a rotation of 90 is equivalent to

multiplication by the imaginary unit . In general, rotation of angle is

obtained by multiplication by the exponential : e.g., q( ) = q0 is a

vector rotating in time at the angular velocity , with initial position q0.

The number of eigenvalues is halved with respect to the real coordinate
approach, because they do not come in pairs of conjugate values. Moreover,
the sign of their imaginary part yields the information on the whirling
direction.
If the system is not isotropic, also the conjugates of the complex co-

ordinates appear into the equation of motion (Chapters 6 and 9), and a
doubling of the equations of motion is needed. The simplifications with
respect to the real coordinates approach are thus lost.

A.3 Circulatory and noncirculatory coupling

The equations of motion of an isotropic undamped and nongyroscopic rotor
are two identical uncoupled equations related to the behavior in - and
-planes. If the characteristics in the two planes are not identical and

the sti ness matrix does not provide any coupling between the inflection
planes, the two sets of equations are not identical but still uncoupled. In
the case of the Je cott rotor, the relevant homogeneous equation of motion
are
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½
¨ + 1 = 0 ,
¨+ 2 = 0 ,

(A.53)

or, by dividing the equations by ,
½
¨ + 2

1
= 0 ,

¨+ 2

2
= 0 ,

(A.54)

By introducing the mean and deviatoric sti ness and using matrix nota-
tion, it follows that

½
¨
¨

¾
+ 2

0

·
1 0
0 1 +

¸½ ¾
= 0 , (A.55)

where the mean and deviatoric sti ness are

2

0
=

2

1
+ 2

2

2
2 =

2

2

2

1

2
, (A.56)

and parameter is defined as

=
2

2

0

. (A.57)

and is included in the interval [ 1 1]. When takes the values 1 or 1,
one of the two sti nesses vanish and the system becomes statically unde-
termined.
By introducing a solution of the type

= 0 , = 0 , (A.58)

it is possible to check that the natural frequencies of the system are 1 and

2, or in nondimensional terms,

1 2

0

= 1± . (A.59)

The values of the nondimensional natural frequencies are plotted as func-
tions of parameter in Figure A.1(a) or (b), curves labeled as = 0.
As seen in Section 6.1, Equation (A.54) can be used to describe the free

motion of a perfectly balanced Je cott rotor on anisotropic supports and
can be written using complex coordinates in the form

¨+ 2

0

2¯ = 0 , (A.60)

where = 1 + 2.
Now introduce a coupling term into the equation of motion (A.55)

½
¨
¨

¾
+ 2

0

·
1

1 +

¸½ ¾
= 0 . (A.61)
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FIGURE A.1. (a) Natural frequencies of a system with two degrees of freedom
with noncirculatory coupling as functions of parameter for di erent values of
( = 0, 0.2, 0.4, 0.6). (b) Same as (a), but for a circulatory system. (c) and (d)
Decay rate as a function of and roots locus for a circulatory system.

Such coupling will be defined as noncirculatory, or conservative [11], cou-
pling, because the terms added outside the main diagonal of the sti ness
matrix are equal. In the case of the Je cott rotor, such a coupling can be
caused by elastic (and hence conservative) terms like those introduced by
rotating the reference frame in such a way that - and -axes are no more
principal axes of elasticity. The natural frequencies are plotted in Figure
A.1(a) as functions of for di erent values of . The two curves of the plot
(that for 0 and that for 0) get less close to each other with
respect to the uncoupled system; hence, this type of coupling is also said
to be repulsive.
The value of obtained from the eigenproblem is imaginary for all values

of ; as a consequence, the behavior of the system is that of an undamped
system.
The stability is linked to the fact that the sti ness matrix is symmetrical,

and there is no circulatory matrix.
A second type of coupling, usually referred to as circulatory, or noncon-

servative, coupling is½
¨
¨

¾
+ 2

0

·
1

1 +

¸½ ¾
= 0 . (A.62)
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The out-of-diagonal terms are here equal in absolute value, but opposite
in sign, so that a circulatory matrix is present. This is, for instance, the case
of the e ect of rotating damping. The natural frequencies are plotted in
Figure A.1(b) as functions of for the same values of used in the previous
computations. The two curves now get closer to each other with respect
to the uncoupled system, and starting at = 1, for a certain value of
included in the interval ( 1 0), they meet. There is a range centered in
= 0 in which the solutions of the eigenproblem in are complex. Beyond

this value, the two distinct curves detach from each other. As the upper
curve gets closer and closer to the lower one until they meet, this type of
coupling is also said to be attractive.
In the range in which the values of are complex, one of the two solutions

has a positive real part: An unstable solution exists, as shown by the decay
rate plot of Figure A.1(c) and by the roots locus of Figure A.1(d).
Instability is linked to the fact that coupling gives way to a nonsymmet-

ric part of the sti ness matrix; hence, there is a nonvanishing circulatory
matrix. Note that if circulatory coupling is caused by rotating damping,
the same has also a stabilizing e ect because of its presence in the damping
matrix, here neglected.
Circulatory coupling is not infrequent in rotordynamics and may be from

causes di erent from rotating damping: Anytime it is present, the presence
of an instability range must be checked.
Another form of coupling is that caused by the gyroscopic terms, but

they are conservative and do not give way to instability.



Appendix B
An outline on rotor balancing

Rotor balancing is a highly specialized technology, which has been dealt
with in several books and handbooks, sometimes published by firms that
build balancing machines [77, 78]. This appendix will only summarize some
of the basic concepts, without any attempt in dealing with this subject in
any depth. The interested reader can find all of the required details in
specialized texts, in particular, those mentioned above.
All rotors, particularly those intended to operate at high rotational speed,

must be balanced before they start their service life. Sometimes balancing
procedures must be repeated during the life of a machine. The designer
must then take into account this requirement to provide the possibility of
removing or adding masses in proper locations from the early design stages.
Balancing must be regarded as one of the construction stages, to be per-
formed after assembling the whole rotor or before, on its component, if they
must be balanced separately (which usually does not avoid a further bal-
ancing process on the assembly), and balancing tolerances must be stated
in a way that is not conceptually di erent from what is done for other
types of tolerances, dimensional or geometrical. The balance conditions of
a rotor can change in time, and periodic rebalancing may be needed. In
some cases, this phenomenon can be severe and is usually referred to as
wandering unbalance. It can be caused by thermal deformations of the ro-
tor, material inhomogeneity, cracks, loose tolerances in built-up rotors, and
the like. Some rotors must be balanced several times during the first runs
at subsequent higher speeds, in order to reach good balancing conditions
at operating speed and running temperature. Poor balance conditions can
be encountered during startup, until steady-state conditions are reached.
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Rotor balancing has been the object of standardization, and designers
must refer to the standards in stating balancing tolerance at the design
stage. Standards are stated for the various types of machines, but it is the
duty of the designer to verify that the stresses and deformations caused
by the maximum residual unbalance prescribed are not beyond allowable
limits. He must also be sure that the prescribed balancing tolerances are
strict enough to prevent the rotor from being a source of unwanted vibration
and noise for the surrounding environment. As with all tolerances, it must
be remembered that it is impossible to reach a perfect balancing and that it
is not necessary and, generally, not advisable (at least from the economical
point of view) to impose too strict balancing requirements.
From the point of view of balancing, rotors are usually divided into two

categories: rigid and deformable rotors. This subdivision, which is accepted
by ISO standards, is in a certain sense arbitrary, because no rigid body
exists in the real word. A rotor can belong to either class, depending on
the speed at which it is supposed to operate and, in particular, a speed at
which any rigid rotor ceases to behave as such always exists. As already
stated, the balancing of rigid and deformable rotors will be only briefly
summarized in the following sections.

B.1 Rigid rotors

Following the ISO 1925 standard, a rotor can be considered rigid if it can
be balanced by adding or removing mass in two arbitrarily chosen planes
perpendicular to the rotation axis and if its balance conditions are practi-
cally independent from speed up to the maximum allowable speed. If this
condition is satisfied, the inertia of the stator is neglected and its elastic
properties, written with reference to the center of gravity of the rotor, are
summarized in the sti ness matrix K, the rotor can be assimilated to a
rigid body and modeled as a rotor with four (real) degrees of freedom. The
balance conditions of the machine can then be summarized by two param-
eters: the eccentricity (or the static unbalance ) and angle between
the principal axis of inertia of the rotor and the rotation axis [or the couple
unbalance ( ) ].
Standards use the peripheral velocity of the center of mass of the rotor

as a measure for the static unbalance

= (B.1)

and define a quality grade for balancing, usually referred to as , as the
maximum allowable peripheral velocity of the center of mass, expressed in
millimeters/second. A rotor that has to be balanced in the class = 2 5
at 10,000 rpm, for example, must have an eccentricity smaller than =
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FIGURE B.1. Maximum residual eccentricity as a function of the maximum op-
erating speed for quality grades between = 0 4 and = 630 mm/s.

= 2 38 m, which results in a peripheral velocity of the mass
center of 2.5 mm/s.
The maximum values of the residual eccentricity are plotted as functions

of the maximum operating speed for di erent values of the quality grade in
Figure B.1. The quality grades suggested by ISO standard 1940 for di erent
types of rotors are reported in Table B.1.
The mentioned standards consider only eccentricity and then static un-

balance. In the case of a rigid rotor running on two bearings, a couple
unbalance caused by two static unbalances, each equal to half the maxi-
mum allowable static unbalance placed at the bearing locations and phased
at 180 , is considered a limit. If is the distance between the bearings, it
follows that

| ( )| =
2

(B.2)

Rigid rotors are normally balanced using balancing machines. They can
be either of the high-sti ness or the low-sti ness type. Rigid (high-sti ness)
balancing machines are machines in which the rotor can be spun on two very
sti supports provided with force transducers. The unbalance condition of
the rotor is obtained from the measurement of the forces it exerts on its
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Grade Examples
G 4000 Crankshaft drives of rigidly mounted slow marine diesel engines with

an uneven number of cylinders.
G 1600 Crankshaft drives of rigidly mounted large two-cycle engines.

G 630 Crankshaft drives of rigidly mounted large four-cycle engines,
crankshaft drives of elastically mounted marine diesel engines.

G 250 Crankshaft drives of rigidly mounted fast four-cylinder diesel engines.

G 100 Crankshaft drives of fast diesel engines with six or more cylinders,
complete engines (gasoline or diesel) for cars, trucks, and locomotives.

G 40 Car wheels, wheel rims, wheel sets, drive shafts, crankshaft drives of
elastically mounted fast four-cycle engines (gasoline or diesel) with six
or more cylinders, crankshaft drives for engines of cars, trucks, and
locomotives.

G 16 Drive shafts (propeller shafts, cardan shafts) with special requirements,
parts of crushing machinery, parts of agricultural machinery, individual
components of engines (gasoline or diesel) for cars, trucks, and loco-
motives, crankshaft drives of engines with six or more cylinders under
special requirements.

G 6.3 Parts of process plant machinery, marine main turbine gears (merchant
service), centrifuge drums, fans, assembled aircraft gas turbine rotors,
flywheels, pump impellers, machine tools and general machinery parts,
normal electrical armatures, individual components of engines under
special requirements.

G 2.5 Gas and steam turbines, including marine main turbines (merchant ser-
vice), rigid turbogenerator rotors, rotors, turbocompressors, machine-
tool drives, medium and large electrical armatures with special require-
ments, small electrical armatures, turbine-driven pumps.

G 1 Tape recorder and phonograph (gramophone) drives, grinding machine
drives, small electrical armatures with special requirements.

G 0.4 Spindles, discs and armatures of precision grinders, gyroscopes.

TABLE B.1. Quality grades suggested for di erent types of rotors (ISO 1940).

supports. Low-sti ness machines are similar to the former, but the supports
are more or less free to move and the transducers measure a quantity linked
with their motion, usually the acceleration but sometimes the displacement
or velocity. The unbalance of the rotor is obtained from the displacement
measurements.
Two planes perpendicular to the rotation axis are chosen, as far from

each other as possible, on which masses can be either added or removed.
The maximum values of the residual unbalance on the two balancing planes
are computed from the allowable residual unbalance corresponding to the
required quality grade. The actual unbalance state of the rotor is then
determined, spinning the rotor on a balancing machine. Modern balanc-
ing machines are supplied with data-acquisition systems that perform all
needed computations and directly supply the values of the unbalance on
the two correction planes and all information on the masses to be added or
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removed in them (amount of mass, radius, and angular position). Once the
correction has been performed, a further measurement aimed at checking
whether the required tolerance has been achieved usually follows.
To satisfy the needs of high-volume mass production, automatic balanc-

ing machines that perform all operations without human intervention are
used. They are a part of the assembly line, and provide to measure the
unbalance, to make the required corrections usually removing material by
drilling and then to check the final balancing grade obtained.
The need to add or remove mass in the two planes at the same angular

position is a clear symptom of a static unbalance. If the corrections must be
phased 180 from each other, the unbalance is purely a couple unbalance.
Generally, the phasing is neither at 0 nor at 180 , corresponding to a
general state of dynamic unbalance, defined as the sum of static plus couple
unbalance.
In some cases, the various parts that constitute a rotor must be balanced

separately. In this case, the balancing tolerances of the various parts must
be stated, remembering that unbalance is a vector quantity and that in the
assembly process, they usually add to each other in a random way. The
absolute value of the unbalance is, in the most unfavorable case, equal to
the sum of the absolute values of the unbalances of the parts. Dimensional
tolerances and their e ects on the relative positions of the various parts
must also be considered. If possible, the rotor must be balanced after as-
sembly, possibly on its bearings in such a way that the tolerances of the
bearings and their seats are also accounted for. In some cases (rotors whose
size exceeds the possibilities of available balancing machines, high-precision
machinery), the rotor is balanced directly on-site. The machine is instru-
mented, and the synchronous component of the vibration of the machine is
monitored at di erent speeds. The amplitude and phase of the synchronous
component give all of the information needed to identify and correct the
unbalance.

Remark B.1 Disc rotors often need only to be balanced with respect to

static unbalance. The conical mode has no critical speed and tends to remain

self-centered in a wide speed range. "Vertical" balancing machines that deal

only with static unbalance are then often used for rigid rotors with

B.2 Flexible rotors

Balancing flexible rotors is much more di cult than balancing rigid rotors,
and strictly speaking, it cannot be performed on balancing machines. The
sti ness of the supports of the machine has, in fact, great influence on the
deflected shape of the rotor, and balancing should be performed directly on
the whole machine. This process is generally referred to as field balancing .
It is, however, often still possible to resort to a balancing machine, provided
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that its sti ness is not too di erent from that of the stator of the actual
machine and that proper allowance is taken for the unavoidable di erences.
Strictly speaking, a flexible rotor is balanced only if each of its cross

sections is statically and dynamically balanced. In practice, it is not neces-
sary that this condition is met to achieve the required aim, which is that of
maintaining the e ects of unbalance (vibrations, stresses, noise, etc.) within
tolerable limits in the whole working range of the machine.
The flexible nature of the rotor and the di culties that can be encoun-

tered in the balancing process are directly linked with the ratio between
the maximum operating speed and the first flexural critical speed caused
by a bending mode of the rotor. If the rotor has to operate at speeds far
lower than the first critical speed (below about half of it), it can be assumed
to be rigid. When the operating speed is close to the first critical speed,
the possibility that the rotor inflects, assuming a shape not far from the
first mode shape, must be taken into account. Correspondingly, near the
th critical speed, the inflected shape is not dissimilar from the th mode
shape. If the rotor has to operate above the th critical speed, it must be
balanced with reference to the first + 1 mode shapes to be balanced in
the whole working range .
From a practical point of view, ISO standards subdivide rotors into five

classes. Rigid rotors, as described in the preceding section, belong to the
first class. Rotors of the second class are defined as semirigid, i.e., rotors
that cannot be considered rigid but can be balanced in a low-speed balanc-
ing machine. This class is subdivided into eight subclasses, from 2a to 2h,
as shown in Figure B.2. The third class contains the true flexible rotors,
which cannot be balanced using a low-speed balancing machine, but require
balancing at high speed. From this class, the rotors belonging to classes 4
and 5 are excluded. Rotors of the fourth class are said to be special flexible
rotors, which are defined as rotors that would be rigid or semirigid but to
which one or more flexible components have been added. The fifth class
contains flexible rotors, which would belong to class 3 or 4, but for which
balancing at a single speed (generally at the operating speed) is required.
Two procedures are usually considered for field balancing of flexible ro-

tors: modal balancing and the influence coe cients method.

B.2.1 Modal balancing

As described in detail in Sections 3.6 and 4.9, the unbalance response of a
rotor can be computed through a modal approach, and in case the rotor
is undamped, the modes uncouple as in the case of vibrating systems.
In the case of a damped system, the modes can still be uncoupled in an
approximate way, provided that damping is small enough. The problems
caused by unbalance are mainly linked with the strong response of the
modes that "resonate" at the critical speeds lying within the working range,
and as a consequence, only the modes whose response shows a resonance
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FIGURE B.2. Rotors of class 2 (semirigid rotors).
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peak (i.e., the modes that give way to a real critical speed) need to be
considered.
Modal balancing is based on balancing the rotor at the various critical

speeds lying within the working range, starting from the lowest. The cor-
rection masses must be located in the planes in which the relevant mode
shape has large displacements. Generally speaking, the number of the cor-
rection planes must be equal to the order of the critical speed. It is possible
to demonstrate that it is possible to correct the unbalance at the general
th critical speed without disturbing the balance conditions of the previous
1 modes, which have already been balanced.
Consider a rotor modeled as a discretized, multi-degree-of-freedom sys-

tem. The unbalance response can be computed using Equation (4.90) or by
recombining the modal responses. To balance the system at the first criti-
cal speed means to add to the unbalance distribution f another unbalance
distribution f 1, which causes the modal force from unbalance related to
the first mode to vanish

1 = q1 (f + f 1) = 0 (B.3)

If balancing is performed by adding the unbalance 1 1 at the th gen-
eralized coordinate (vector f 1 has all elements equal to zero except the th,
whose value is 1 1

2), the modal unbalance that has been added is

q
1
f 1 = 1 1 1

2 (B.4)

From Equation (B.3) the value of the unbalance to be added to balance
the first mode shape is immediately obtained

1 1 = q
1
f

1

1
2

(B.5)

To balance the second mode, the two unbalances 2 2 and 2 2

are added corresponding to the th and th generalized coordinates. The
second mode is balanced if

( 2 2 2 + 2 2 2)
2 = q

2
(f + f 1) (B.6)

The second mode can be balanced without disturbing the balancing,
already achieved, of the first mode if the modal force corresponding to the
first mode remains equal to zero after the addition of the new balancing
masses at the generalized coordinates and

2 2 1 + 2 2 1 = 0 (B.7)

Equations (B.6) and (B.7) allow computation of the two correction un-
balances 2 2 and 2 2 .
The correction of the third mode can be performed in the same way:

The three correction unbalances can be computed using an equation of the
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type of Equation (B.6), stating that the modal force corresponding to the
third mode must vanish, and two equations of the type of Equation (B.7)
stating that the balancing of the third mode does not a ect the balancing
conditions at the previously balanced modes. In a similar way, all other
modes can be balanced. What has been shown is actually a demonstration
that modal balancing is possible, not the procedure to practically imple-
ment the balancing process. The knowledge of the unbalance distribution
f , which is generally unknown, and of the mode shapes is not required. It
is, however, clear that the computation of the mode shapes allows an easier
way to identify the planes in which the correcting action is most e ective,
because the balancing masses must be located at the loops of the mode
shapes, or not too near to the nodes, where they would be ine ective.
Before starting modal balancing, the rotor can be balanced as a rigid

body on a balancing machine. There is no agreement on the advisability of
this practice, but, generally speaking, rigid-body balancing can be omitted
if the starting unbalance is not severe enough to prevent operating near
the first critical speed, as needed to start the modal balancing procedure.
It can happen that a rotor, which has been balanced at the first critical

speeds, causes strong vibrations at the maximum operating speed, which is
between the th and ( +1)th critical speeds, without reaching the latter to
complete the balancing procedure. The strong vibrations are caused, in this
case, by the unbalanced higher modes and, in particular, the ( +1)th mode.
In this case, the last corrections are implemented, taking into account the
mode shape that is predicted at the ( +1)th critical speed, even if it is not
materially possible to reach it.

B.2.2 Influence coe cients method

The influence coe cients method is based on the observation that the vi-
brations detected in a number of measuring points can be considered the
e ect of concentrated unbalances in a number of arbitrarily located planes.
This statement is based on the assumption that the behavior of the system
is linear. Let the number of measuring points be , the number of speeds at
which the balancing process is performed be , and the number of planes
in which the correction masses are to be located be . Because of the lin-
earity of the system, the · responses obtained in the measuring
points at the test speeds are linked to the unknown unbalances
in the correction planes by the general linear relationship

{ }( · ) = [ ]( · )× { } (B.8)

Note that both responses , which can be displacements, as implicitly
assumed in Equation (B.8), but also accelerations or velocities, and the
unbalances are vector quantities and coincide with the complex quan-
tities and defined in Chapter 2. If the influence coe cients in matrix
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A, whose size is ( · ) × , were known, Equation (B.8) could be used
directly to compute the unknown unbalances from the vibration measure-
ments, provided that matrix A is square; i.e., the number of correction
planes is equal to the product · of the number of test speeds by
the number of measuring points , and it is nonsingular.
The coe cients of influence are easily determined. A known unbalance

is introduced in a generic correction plane (the th), in a known
angular position. The tests are repeated, and a set of new · responses
are measured. They are linked to vector { } through Equation (B.8):

r = A{ } , where vector { } has all elements coinciding with those
of the vector in Equation (B.8) except the th element, which has been
incremented by the known unbalance .
By subtracting Equation (B.8) written for unbalances { } and { } ,

it follows that

r r = A
£
0 0 0

¤
(B.9)

The th column of matrix A is then simply obtained by dividing the
di erence between vectors r and r by . The procedure can be re-
peated by removing the previously added unbalance from the th plane
and by adding a new known unbalance in another plane. The matrix of
the coe cients of influence is thus obtained, column after column, and the
unbalance distribution { } is obtained:

{ } = A 1r (B.10)

The rotor is then balanced by introducing suitable unbalances equal and
opposite to the ones computed in the correction planes. The balanced
conditions of the rotor are thus achieved, at least at the speeds at which
the tests have been performed.
The procedure described here is the extension to flexible rotors of the

usual procedure for the calibration of the balancing machine for rigid rotors.
In the latter case, only one test speed is chosen ( = 1), because the
balance conditions are independent of the speed. By using two measuring
points ( = 2), the number of the required correction planes reduces to 2
( = 2).
The quality of the balancing of a flexible rotor can only be stated from

the amplitude of the synchronous component of the vibrations measured on
the running machine. Table B.2, from an ISO recommendation, can supply
detailed indications.
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R an g e o f e e c t iv e p ed e s t a l s y n ch r o n o u s v ib r a t io n v e lo c i ty C o r r e c t io n
(m m / s ) , r .m .s . fa c t o r

.2 8 .4 5 .7 1 1 .1 2 1 .8 2 .8 4 .5 7 .1 1 1 .2 1 8 2 8 4 5 7 1 1 2 3

A B C D
I Sm a l l e le c t r ic m o to r s ( u p t o 1 5 kW ) .6 3

S u p e r ch a r g e r s .6 3 2
G y ro s c o p e s .6 3 2

A B C D
I I P a p e r m a k in g m a ch in e s .6 3

M ed . s iz e e le c . m o t o r s a n d g en e r . ( 1 7 -7 5 kW ) , n o rm . fo u n d a t io n s .6 3 4
E le c t r ic m o t o r s a n d g e n e r . u p t o 3 0 0 0 kW , s p e c ia l fo u n d a t io n s .6 3 4 2 0
P um p s a n d c om p r e s s o r s .6 3 8 1 5
Sm a l l t u rb in e s .6 3 4 8

A B C D
I I I L a r g e e le c t r ic m o t o r s .6 3 5

Tu rb in e s a n d g e n e r a t o r s , r i g id a n d h e av y fo u n d a t io n s .6 3 5 2 0

A B C D
IV L a rg e e le c t r ic m o t o r s , t u rb in e s a n d g e n e r a t o r s , l i g h t fo u n d a t io n s .6 3 3 1 0

Sm a l l j e t e n g in e s .6 3

A B C D
V J e t en g in e s la r g e r t h a n c a th e g o ry IV .6 3 2 1 0

B a la n c e q u a l i ty C o r r e c t io n f a c t o r s
A = P re c is io n q u a l i ty 1 = M ea su r em en t in h ig h sp e e d b a la n c in g
B = C om m e r c ia l l y a c c e p t a b le m a ch in e a t s e r v ic e s p e ed w h e r e
C = In n e e d o f a t t e n t io n a t n e x t b e a r in g c o n d it i o n s a r e d i e r e n t

ov e rh a u l f r om se rv i c e c o n d it i o n s
D = In n e e d o f im ed ia t e a t t e n t io n 2 = Sh a f t v ib r a t io n s m e a su r e d in o r

a d ja c e n t t o th e b e a r in g s

3 = Sh a f t v ib r a t io n s m e a su r e d a t lo c a t io n o f
m a x im um sh a f t l a t e r a l d e fl e c t io n .

TABLE B.2. Balance quality criteria for flexible rotors.

Example B.1 Turbomolecular pump.

Compute the unbalance response at operating speed (30,000 rpm) of the tur-

bomolecular pump whose schematic cross section is reported in Figure B.3(a),

together with the few basic dimensions that are required. The balancing quality

grade required is = 2.5.

The rotor of the pump can be modeled as a rigid body, with its center of mass

at the connection with the shaft, attached to a massless shaft. The inertial char-

acteristics of the rigid body are = 6 kg, = 0.035 kg m2 and = 0.055

kg m2. The material of the shaft has a Young’s modulus = 2 1 × 1011 N/m2,

and the shaft diameter is constant and equal to 24 mm (moment of inertia is

= 1 628× 10 8 m4).

The mass of the shaft has been neglected, and the model with two complex

degrees of freedom shown in Figure B.3(b) can be used.

The sti ness matrix can be computed using the FEM. However, because of

the simple geometry, it is possible to immediately obtain the compliance matrix,

which can then be inverted, yielding the sti ness matrix. By applying a unit force

and a unit moment in point P and computing the displacement and rotation in

the same point (for simple geometries like the current one, the relevant formulas

are reported in many handbooks), the elements of the compliance matrix are

obtained:

11
=

2

2( 1 + 2) 3 12
= 2(2 1 + 3 2) 6

22
= ( 1 + 3 2) 3

The sti ness matrix K is obtained by inverting the compliance matrix B

K =
6

3

2
(4 1 + 3 2)

·
2( 1 + 3 2) 2(2 1 + 3 2)

2(2 1 + 3 2) 2
2

2( 1 + 2)

¸
=
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FIGURE B.3. Turbomolecular pump; (a) schematic drawing; (b) model of the ro-
tor (Vacuum Technology; Its Foundation, Formulae and Tables, Leybold-Heraeus,
Köln, Germany). The drawing refers to a machine no longer in production.
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=

·
2 2297 0 0724

0 0724 0 00268

¸
× 108

The critical speeds are = 10 490 rpm, and = 67 080 rpm. The

second value is high, and it is likely that other critical speeds are located between

the computed values. A more realistic model, which also takes into account the

mass of the shaft and the compliance of the bearings, must, however, be used to

obtain them.

The peripheral velocity of the center of mass corresponding to a quality grade

= 2.5 is 2.5 mm/s. The maximum value of the eccentricity is then =

= 0 00714 mm. Because the distance between the two balancing planes

is 260 mm, the maximum value of the couple unbalance is | ( )| =

2 = 5 57× 10 6 kgm2.

The response to a static and a couple unbalance at 30,000 rpm can be computed

from the equations

·
5 715 5 591

5 591 129

¸
× 107q =

½
422 9

0

¾

·
5 715 5 591

5 591 129

¸
× 107q =

½
0

54 99

¾

which yield the following values of the displacements and rotations:

q =

½
4 0990

0 3088

¾
× 10 6

(static unbalance)

q =

½
4 001

4 089

¾
× 10 8

(couple unbalance)

From the results obtained, it is clear that at 30,000 rpm, the rotor is almost

completely self-centered, where static unbalance is concerned, and couple unbal-

ance causes very small deformations of the shaft.



Appendix C
Rotordynamics videos

In the CD included in this book, the reader can find two videos, Gyroscopic
E ect and Damping in Rotordynamics (14 min) and Dynamic Behaviour
of Rotors on Anisotropic Supports (20 min).
The first describes some experiments on simple demonstrators, and their

aim is showing the students some physical evidence of gyroscopic e ects
and of the di erent roles played by rotating and nonrotating damping in
rotordynamics. The demonstrators are based on rotors with very low sti -
ness in such a way that whirling motions can be seen without the need
of instruments. The amplitude of the whirling motion is large enough to
enable us to distinguish between forward and backward whirling with ease.
The author is indebted to the late Ing. Edoardo Rava, of Elettrorava, for

having suggested a simplified form of the demonstrator, which was later
developed with the help of some students.
The aim of the second video is to show the e ect of stator anisotropy in

causing backward whirling. The demonstrator is based on a five-active-axes
magnetic suspension, which has the advantage of allowing us to tailor the
sti ness and damping in the di erent direction, so that experiments with
di erent anisotropy and damping can be performed. The demonstrator is
now more similar to an actual machine than the previous ones, and the
low amplitude of the whirling motion compels us to use instrumentation to
observe the relevant phenomena.
The funding for producing the videos was supplied by the Politecnico di

Torino, in its e ort of promoting a higher quality of teaching, and they are
currently shown as a part of dynamic structural analysis courses. Most of
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the work was done by Cristiana Delprete and Eugenio Brusa, with assis-
tance from some students.



Appendix D
DYNROT LIGHT rotordynamics
code

The DYNROT Finite Element code was developed by the author beginning
in 1976. The present version is based on the MATLAB interactive software
package and consequently can be used on any hardware on which MatLab
has been installed. Version 4.0 or higher of MatLab is required.
The original code was written by the author together with Antonio

Gugliotta, both of the Department of Mechanics of Politecnico di Torino,
using HPL and then HP-BASIC language, for desktop HP 9800 computers.
Subsequent versions written in Fortran and C languages were developed in
the 1980s, and finally the present version using the MatLab package was
evolved. Its superiority lays mainly in the ability of MatLab to deal with
complex arithmetics, its graphic tools, and the possibility of easily obtain-
ing output ASCII files.
At present, the DYNROT project is coordinated by the author. Its aim

is to continue the development of the code to widen its capabilities and to
make it an even more powerful tool for the dynamic analysis of rotating
machinery. A number of persons have worked on it and are still work-
ing on it, mostly undergraduate and postgraduate students. Among them
Giacomo Brussino, Philip Miller, Domenico Bassani, Cristiana Delprete,
Stefano Carabelli, Andrea Tonoli, Nicola Amati, and Mario Silvagni must
be mentioned.
A simplified version DYNROT LIGHT is here reported; it contains only

the basic elements and is based on the axi-symmetrical, 1D approach seen
in Chapter 4 (whereas the full-blown DYNROT has capabilities also for
studying nonsymmetric rotors, bladed disks dynamics, with the possibility
of time domain study of nonlinear and nonstationary rotors). A basic ad-
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vantage of a MatLab code is its openness, so that the reader can understand
how it works and can modify all points.
Although DYNROT can deal with the lateral, torsional, and axial dy-

namics of the rotor, the "light" version is designed for the lateral dynamics
only. As a consequence, only a small number of the solution routines de-
scribed in the handbook of version DYNROT 8.3, included in the CD, are
available.
As described in detail in the handbook of the DYNROT LIGHT version,

also included in the CD, the elements available are as follows:
1) beam
2) tapered beam
3) spring
4) damper
5) mass
Several input files, dealing with some examples presented in the book,

are included: Readers can use them as guidelines to build their own input
files.



Appendix E
Books on rotordynamics

So many papers and books have been published on rotordynamics that any
attempt to supply a complete or even representative bibliography is bound
to fail. Loewi and Piarulli, for instance, in the bibliography of their book
published in 1961, list 554 titles. Every year, there are many conferences
on rotor dynamics, and tens of papers are presented at each.
The author has chosen to provide a list of books dealing strictly with

rotordynamics, plus some on bearings and two old books, of historical in-
terest, in which the foundations of rotordynamics were described in relation
with the early turbines. The author is sure that many books that should
have been included were left out. Proceedings of conferences or collections
of papers are also not included, or the list would have been too long. Where
translations in di erent languages exist and an English edition was found,
the latter was listed.
G. Belluzzo, Le turbine a vapore ed a gas, Hoepli, Milano, 1905.

A. Stodola, Steam and Gas Turbines, Mc Graw-Hill, New York, 1927.

A. Palmgren, Ball and Roller Bearing Engineering, SKF Industries, Philadelphia,

PA, 1959.

F.M. Dimentberg, Flexural Vibrations of Rotating Shafts, Butterworth, London,

1961.

O. Pinkus and B. Sternlicht, Theory of Hydrodynamic Lubrication, McGraw-Hill,

New York, 1961.

A. Tondl, Some Problems of Rotor Dynamics, Chapman & Hall, London, 1965.

R.G. Loewi and V.J. Piarulli, Dynamics of Rotating Shafts, The Shock and Vi-

bration Information Center, Naval Res. Lab., Washington, D.C., 1969.

L. Buzzi, Equilibratura, CEMB, Mandello del Lario, 1971.
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G. Schweitzer, Critical Speeds of Gyroscopes, Springer, Vienna, Austria, 1972.

H. Schneider, Balancing Technology, Schenck, Darmstadt, Germany, 1977.

A.D. Dimarogonas and S.A. Paipetis, Analytical Methods in Rotor Dynamics,

Applied Science Publishers, London, 1983.

O. Marenholtz, Dynamics of Rotors, Springer, Vienna, Austria, 1984.

J. Rao, Rotor Dynamics, Wiley Eastern, Delhi, India, 1985.

N.F. Rieger, Balancing of Rigid and Flexible Rotors, The Shock and Vibration

Information Center, U.S. DoD, Washington, D.C., 1986.

T. Someya (Editor), Journal Bearing Databook, Springer-Verlag, Tokyo, Japan,

1988.

J.M. Vance, Rotordynamics of Turbomachinery, Wiley, New York, 1988.

M.S. Darlow, Balancing of High Speed Machinery, Springer, New York, 1989.

M.J. Goodwin, Dynamics of Rotor-Bearing Systems, Unwin Hyman, London,

1989.

M. Lalanne and G. Ferraris, Rotordynamics Predictions in Engineering, Wiley,

New York, 1990.

R.V. Braembussche (Editor), Vibration and Rotordynamics, von Karman Insti-

tute for Fluid Dynamics, Lectures Series, 1992.

D. Childs, Turbomachinery Rotordynamics: Phenomena, Modeling and Analysis,

Wiley, New York, 1993.

E. Krämer, Dynamics of Rotors and Foundations, Springer, Berlin, Germany,

1993.

C.W. Lee, Vibration Analysis of Rotors, Kluver Academic Publishers, Dordrecht,

1993.

F.C. Moon, Superconducting Levitation, Wiley, New York, 1994.

G. Schweitzer, H. Bleuler, and A. Traxler, Active Magnetic Bearings: Basic, Prop-

erties and Applications of Active Magnetic Bearings V/D/F, Zürich, Switzer-

land, 1994.
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acceleration response, 392
alignment of bearings, 327
angular momentum conservation, 414
annular element, 568
array of rotating pendulums, 484
assembly procedure (FEM), 167
attitude angle, 299, 304
axial vibration, 280

backbone, 353
backward whirling, 12, 47, 230
balancing, 631
beam

rotating, 479
theory, 201
uncoupling, 203

bearings, 281
compliant, 80
lubricated
linearized dynamics, 306
pressure distribution, 302

magnetic, 316, 583
rolling elements, 291

bias current, 319
blade loss, 30, 406
bladed discs, 548
boundary degrees of freedom, 195

brick element, 574

Campbell diagram, 10, 108, 177
rotor with four d.o.f., 106

cascade plot, 28
centrifugal sti ening, 556
chaotic behaviour, 29, 368, 382
circulatory matrix, 6, 54
clearance (journal bearings), 300
complex

coordinates, 7, 46, 101, 142, 160,
231, 257, 440, 493

frequency, 9
state variables, 585

consistent mass matrix, 141, 159
constant acceleration, 391
constraint degrees of freedom, 195
constraints (FEM), 168
continuous models, 201
control current, 319
couple unbalance, 94, 632
coupling

axial-torsional, 484, 557
flexural-axial, 438
torsional-flexural, 396, 438

critical speeds, 2, 15, 41, 110, 146,
174, 230, 248, 348
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acceleration through, 392
crossing of, 17
flexural, 16, 41
free rotors, 439
imaginary, 122
of membranes, 521
secondary, 16, 252
torsional, 18, 279

cyclic symmetry, 544
cylinders (rotating), 538

damped free rotors, 418
damping

counter-rotating, 79
equivalent, 279
hysteretic, 32, 57, 70
matrix, 6, 155, 169
nonrotating, 51, 439
nonsynchronous, 77, 439
of the bearings, 82
rotating, 22, 51, 55, 69, 352, 439,

500
torsional vibration, 278
viscous, 51

decay rate, 9
plot, 10

deformation modes, 283
detuning of blades, 488
deviatoric sti ness, 231

matrix, 239, 339, 340
diagnostics, 27
direct whirling, 47
disc

-shaft interaction, 509, 525
element, 548
rotating, 517
rotor, 93

discretization, 139
discretized model, 5
drag torque, 90
Du ng equation, 286
dynamic

frame, 559
potential, 468
reduction, 191, 378
sti ness, 141
matrix, 219, 220

unbalance, 635

Earnshaw’s theorem, 428
eigenvector matrix, 123
ellipse of elasticity, 229
energy conservation, 415
equivalent

damping, 279
system, geared systems, 272

Euler
-Bernoulli beam, 201, 220, 284
equations, 5

field balancing, 635
fields, 140, 268
finite element method (FEM), 3, 140,

156, 548
fixed rotors, 1, 281
fluid (trapped in a rotor), 539
focus (stable), 360
force vector, 6
forward whirling, 12, 47
free rotors, 1, 413
frequency

domain approach, 31
response
Je cott rotor, 68
rotor with four d.o.f., 120

geometric matrix, 557, 565, 568
Timoshenko beam, 164

Guyan reduction, 188, 377
gyroscopic

matrix, 6, 101, 156, 562, 571
Timoshenko beam, 163

moments, 93
system
coupled, 107
uncoupled, 103

half-frequency whirl, 309
hardening, 286, 292, 350
harmonic balance, 371
Hill’s infinite determinant, 335
Holzer’s method, 3, 266

inertial reference frame, 94
influence coe cients method, 639
instability, 540

blades-rotor interaction, 495
free rotors, 439
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noncolocated systems, 597
of rotating discs, 528
range, 19, 60, 249

internal degrees of freedom, 195

Je cott rotor, 2, 35
accelerating, 387
anisotropic on anisotropic sup-

ports, 331
damped, 51
free whirling, 39, 58
frequency response, 68
nonisotropic, 247
nonlinear, 348
on anisotropic bearings, 228
response to a static force, 66
response to external forces, 44
unbalance response, 42, 48, 62
with hysteretic damping, 70

journal bearings, 299, 382
jump, 30, 352

Levitron, 423
Liapunov exponents, 355
limit

cycle, 367
envelope, 353

load factor, 304
locking, 160
long

bearing, 300
rotor, 93

loss factor, 77
lumped-parameters methods, 140, 155

mass
element, 165
matrix, 6, 155, 562
Timoshenko beam, 163

master degrees of freedom, 184
mean sti ness, 231

matrix, 239, 339, 340
mechanical signature, 4, 29
membranes (rotating), 517
MIMO systems, 586
modal

balancing, 636
bearing deformation index, 284
control, 608

coordinates, 191
reduction, 191
transformation, 123

moment of inertia
polar, 93
transversal, 93

multi-degrees-of-freedom rotor, 5, 140
multibody

codes, 31
free rotors, 456

Myklestadt-Prohl method, 3, 141

natural frequency
of bars, 207
of beams, 205, 208

Newton-Raphson method, 288, 378
nodal force vector, 159
nodes (FEM), 141, 157
nonlinear

bearings (linearization), 284
rotordynamics, 29, 347

nonrotating damping, 51, 102
nonstationary rotordynamics, 30
numerical integration, 347

Ocvirk number, 304
oil

whip, 22, 309
whirl, 309

orbital tube, 26

passive magnetic levitation, 423
PD control, 595
PID control, 587
plates (rotating), 522
polyharmonic motion, 27
principal function, 205

quality
factor, 66
grade, 632

Rayleigh dissipation function, 54
reduction techniques, 184
Reynolds equation, 299
rigid body modes, 282
ring (circular, rotating), 528
roots locus, 10
rotating
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and whirling reference frame, 96
damping, 51
frame, 52, 94, 172, 559
pendulum, 466
spring loaded, 472

rotating damping, 102
rotation matrix, 166

saddle point, 360
secondary critical speeds, 175, 252
self-centering, 44

free rotors, 439
shaft bow, 49, 66, 117
shape functions, 141, 156, 553, 563

Timoshenko beam element, 160
shear factor, 145, 215
shell element, 573
short bearing approximation, 303
SISO systems, 586, 595
slave degrees of freedom, 184
slenderness (beams), 217
softening, 286, 350
Sommerfeld number, 304
spinning spacecraft, 413, 440
spring element, 165
squeeze-film damper, 314
stability, 9, 19, 60, 89, 527

asymptotical, 20
gyroscopic e ect, 427
in the large, 357
in the small, 354
of free rotors, 415
of noncolocated systems, 597
technical, 20

state
-space equation, 124, 173
variables, 584, 585
vector, 142, 266

static
reduction, 184
solution, 174
unbalance, 36, 94, 632

stations, 140, 266
sti ness

geometric, 165, 468
matrix, 6, 155
Timoshenko beam, 162

Stodola-Green rotor, 111
strain vector, 158, 564

stress sti ening, 556
string, rotating, 473
subcritical range, 18
substructuring, 185, 197
supercritical range, 18
superelements, 197
synchronous excitation, 14

threshold of instability, 20, 60, 75,
367

blades-rotor interaction, 495
gyroscopic e ect, 427

time
domain approach, 31
histories of the stresses, 277

Timoshenko beam, 215
element, 160

torsional vibration, 265
accelerating rotor, 395
forced, 275

transfer
functions, 13, 591
matrices, 140, 142, 169, 267

transmission shafts, 201

unbalance, 5, 102, 348
distribution (Timoshenko beam),

163
response, 23, 64, 117, 176, 230,

351
Je cott rotor, 43
modal computation, 121

varying, 406
vector, 156

wandering unbalance, 631
waterfall plot, 28
whirling

cilindrical, 103
conical, 103
frequency, 9
reference rame, 95
speed, 47
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