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Preface

The progress of civilization stimulates the development of interdisciplinary science.
On this basis, a modern branch of science, mechatronics, including perfectly mas-
tered mechanics, electronics, and later developed parallel knowledge of numerical
simulation, control and optimization is rapidly developing. The latter has assigned
the mechanics of dynamical systems and electronics a completely new role. They
have become the basis of mechatronic projects having a strong cognitive and prac-
tical meaning for engineering science. For this reason, a mechatronics, automation
or electronics engineer should gain useful knowledge and acquire design skills that
will enable him to meet technical challenges of the XXI century.

The monograph is directed primarily towards practicing engineers willing to
support their academic knowledge with hard competences related to the ability of
solving various problems of mechatronic systems extended on the essential physical
and numerical modeling as well as control and optimization of dynamical systems.

We have sectioned the monograph into thirteen chapters introducing the reader
to the physical modeling of magnetic, electromagnetic and piezoelectric phenomena,
Maxwell’s equations and atom modeling, mechanical fluid systems, electrohydraulic
servomechanisms, shock response and its control, among others. Important sections
are devoted to selected methods of optimization, numerical algorithms of fuzzy logic,
tracking and conventional control of mechatronic systems.

An introduction to mechatronics is given in Chap. 1.
Importance of systems modeling is presented in Chap. 2. The usefulness of the

theoretical, real, physical, mathematical or simulation models has been considered
in this chapter on the basis of modeling in dimensional analysis and criteria of
similarity. In scope of engineering, sometimes the sought analogy considered in the
chapter is very important, since it denotes a similarity between different objects,
phenomena or processes occurring under some conditions.

Magnetic fields affect human bodies and nature overall. They influence, even
unintentionally, any technical object, and therefore, a mechatronics engineer should
acquire knowledge about properties of such fields to predict the effects of their pres-
ence or a direct application. Chapter 3 pays particular attention to magnetic and
electromagnetic phenomena. A wide introduction describes electric charge, induced

v
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electric fields, magnetic and electromagnetic phenomena, capacitance, resistance
and laws of electrics.

Piezoelectric materials play a key role in mechatronics. Chapter 4 provides the
reader with modeling of piezoelectric phenomena describing properties and laws
governing piezoelectric materials. One-dimensional rod polarized along its axis has
served as an exemplary actuator of which dynamics, stress-strain linear dependen-
cies, Maxwell’s equations and Hamilton’s principle for mechanical continua have
been analyzed.

Chapter 5 undertakes the investigation of the modeling of a mechanical-fluid
system. Among others, the following aspects have been considered and numerically
validated: (i) the balance of fluid flow in the case of a particular pneumomechanical
system and rotary hydraulic motors; (ii) modeling of open hydromechanical system
of linear displacement; (iii) modeling of a hydraulic electromechanical servomech-
anism of rotational motion; (iv) a proportional valve in the drive and control of a
hydromechanical system; (v) physical and mathematical model of a pneumatic hy-
dromechanical system. Each of the enumerated problems has been parametrically
defined and solved by the simulation diagrams performed in Scilab.

Preceded by a simplified model of a servomechanism with proportional valve, a
torque motor, a piezoelectric transducer, and a control system of load positioning
are shown in Chap. 6. The positioning was realized by means of a hydraulic servo
in a simulation diagram performed in LabVIEW. The numerical simulations of
dynamics of an electrohydraulic servo subjected to the dynamic loading have proved
that improvement of linear positioning of heavy loads carried by system’s actuator
can be achieved by using linearly increasing characteristics of reference current. The
advantages and drawbacks of modeling of these kinds of mechatronic systems have
been presented, as well as some basic types of servos were virtualized to point out
areas of their applications.

A simple Newtonian and wave model of electron in quantum mechanics is shown
in Chap. 7. This part of the monograph continues with an interesting modeling of
an atom in a magnetic field versus a free atom, electron orbital perturbation by a
moving proton, and the planar dynamics of a particle in a magnetic field, finishing
at the three-dimensional dynamics of a charge.

Complete analysis of the electromagnetic phenomena, including the static and
induced electric fields as well as the magnetic effects, can be carried out by the
compact set of Maxwell’s equations. The equations presented in Chap. 8 contribute
to other important sets of equations regarding Newton’s laws of classical mechanics
and the three laws of thermodynamics.

Chapter 9 contains selected optimization problems being solved with the use
of interesting experimental and mathematical methods. Some algorithms and sim-
ulation diagrams solving a few optimization problems are presented, i.e.: (i) a
Scilab routine of polynomial fitting to a series of experimental data; (ii) linear and
nonlinear programming aimed at estimation of permissible domains and optima
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of the maximized functions; (iii) dynamic programming while finding an optimal
time characteristics of the displacement and the value of a corrective force which,
independently of the placement of some concentrated force, eliminates any deforma-
tion of the analyzed cantilever beam; (iv) geometric programming while estimating
dimensions of unfolded surface of a box having the maximal volume at a given
boundary surface; (v) optimization of stiffness of a spindle system.

Chapter 10 delivers a comparative analysis of two qualitatively different ap-
proaches used for angular velocity control of a DC motor subjected to chaotic dis-
turbances coming from a gear with a transmission belt carrying a vibrating load.
The purpose was to achieve an accurate control of the speed of the DC motor for
partially unknown parameters and conditions of external loading. First, the classi-
cal approach based on the PID control is considered, and then, a fuzzy logic-based
alternative is proposed. Two different controllers are presented for the purpose of
completion of the classical PID controller and a Takagi-Sugeno type fuzzy logic
PI controller. Both control algorithms were implemented on an 8-bit AVR AT-
mega644PA microcontroller. On the basis of step responses of the object, an anal-
ysis as well as an interesting comparison of the controllers’ performance have been
presented.

Chapter 11 extends our study from Chap. 10. We present here numerical model-
ing of a DC motor treated as a dynamical system with stick-slip effects that appear
in the transient motion, even while the direction of rotation of its rotor crosses zero
velocity speed. These investigations are aimed at some future applications of the
control technique serving as explanation of bifurcation phenomena existing in such
kind of discontinuous systems. Putting emphasis on nonlinear effects, we apply the
well-known, but a bit extended sliding-surface method allowing for compensation of
nonlinear frictional effects. A limit cycle on a phase plane as well as time histories
of control inputs and system outputs were obtained using numerical simulations
performed in LabVIEW.

A lumped mass mechanical model shock response of a thorax subjected to a blast
pressure wave is taken into consideration in Chap. 12. A thorax spring-dashpot
model developed by Lobdell is implemented in numerical modeling of dynamics
of the multibody system. The five-degree-of-freedom mechanical model of a chest
adjacent to the elastic backrest is subjected to an impulse loading generated by
the blast pressure wave released by an explosion. The so-called coupling of the
pressure wave to the thorax is reconsidered. With respect to the evident existence
of inherent time delays in displacements, the system of coupled bodies is described
by time delay differential equations that are derived from the large-scale systems
approach. Numerical solutions present interesting dynamical behavior of the bio-
inspired system resulting from inherent time delays and a time of arrival of the blast
pressure wave. It is even pointed out that the state time delays significantly change
a dynamical response of the multibody system. Proper time of deployment of the
foam-based armor plate reduces relative compression of the thorax, which is to be

 

www.ebook3000.com

http://www.ebook3000.org


July 14, 2016 14:53 ws-book961x669 DYNAMICS OF MECHATRONIC SYSTEMS 10193-main page viii

viii DYNAMICS OF MECHATRONIC SYSTEMS

protected by a bullet-proof waistcoat.
Chapter 13 extends our study from Chap. 12. We focus here on application of

one controlling force to minimize a relative compression of human chest cave that
has been caused by some impacting action of an elastic external force. A virtual
actuator controlling deformation in the analyzed rheological dynamical system of
three degrees-of-freedom acts between the back of the human thorax and the back
rest. Reduction of internal displacements in the thorax has been estimated solving
the linear quadratic regulator (LQR) optimization problem.

Intentionally, this monograph aims at strengthening the studies in Mechatron-
ics at the Faculty of Mechanical Engineering of Lodz University of Technology. It
takes into consideration many dynamical aspects of mechatronic systems as well as
provides the reader with the necessary theory that is helpful in understanding the
elaborated experiments. Moreover, it is rich in numerical simulations presenting dy-
namical responses of the considered models, and examines a number of optimization
problems seeking to improve their properties. Numerically reinforced mathematical
models presented in this monograph undoubtedly gain in importance and should be
for each engineer an interesting source of information on dynamical systems, numer-
ical experiments, experimental measurements and optimization problems present in
mechatronics.

We hope that for the physicists and mechanical engineers, this edition will be
a popular source of knowledge in classical mechanics as well as a source of fre-
quently practiced experiments connected with the simulation models of mechatronic
systems.

Jan Awrejcewicz, Donat Lewandowski, Paweł Olejnik
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3.4.4 The Law of Ampére and its Generalization . . . . . . . . . 79
3.4.5 Magnetic Dipole Moment of a Closed Planar

Current-Carrying Loop . . . . . . . . . . . . . . . . . . . . 83
3.4.6 Electromagnetic Induction . . . . . . . . . . . . . . . . . . 86
3.4.7 Electric and Magnetic Susceptibility and Permeability . . . 98
3.4.8 Permeability and Susceptibility as Tensors and Dyadics . . 104
3.4.9 Diamagnetic Materials . . . . . . . . . . . . . . . . . . . . 108
3.4.10 Paramagnetic Materials . . . . . . . . . . . . . . . . . . . . 109
3.4.11 Ferromagnetic Materials . . . . . . . . . . . . . . . . . . . 111

3.5 An Introduction to Electromagnetic Fields . . . . . . . . . . . . . . 112

4. Modeling of Piezoelectric Phenomena 123

4.1 Piezoelectric Materials, Materials Laws and Constitutive Equations 123
4.2 One-dimensional Rod Polarized Along its Axis – an Example of an

Actuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5. Modeling of Mechanical Fluid Systems 143

5.1 The Balance of Fluid Flow . . . . . . . . . . . . . . . . . . . . . . . 146
5.2 Description of the Dynamics of a Mechanical System . . . . . . . . 152
5.3 Modeling of an Open Hydromechanical System of Linear

Displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.4 Modeling of a Hydraulic Electromechanical Servomechanism of

Rotational Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.5 A Proportional Valve in the Drive and Control of a

Hydromechanical System . . . . . . . . . . . . . . . . . . . . . . . . 159
5.6 Physical and Mathematical Model of the Pneumatic

Hydromechanical System . . . . . . . . . . . . . . . . . . . . . . . . 163

6. Modeling of Electrohydraulic Servomechanisms 169

6.1 Simplified Model of a Servo With a Proportional Valve . . . . . . . 173
6.2 Torque Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.3 Piezoelectric Plate Transducer . . . . . . . . . . . . . . . . . . . . . 177
6.4 Control System of Load Positioning Using a Hydraulic Servo Valve 179
6.5 Numerical Simulations of the Dynamics of an Electrohydraulic

Servo Subjected to Dynamic Loading . . . . . . . . . . . . . . . . . 185

7. Atom Modeling 195

7.1 Newtonian Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
7.2 Wave Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

 



July 14, 2016 14:53 ws-book961x669 DYNAMICS OF MECHATRONIC SYSTEMS 10193-main page xiii

Contents xiii

7.3 Magnetic Field vs. Free Atom . . . . . . . . . . . . . . . . . . . . . 207
7.4 Electron Orbital Perturbation by a Proton Moving in a Magnetic

Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
7.5 Planar Dynamics of a Particle in a Magnetic Field . . . . . . . . . 213
7.6 3D Dynamics of a Charge . . . . . . . . . . . . . . . . . . . . . . . 214

8. Maxwell’s Equations 217

9. Optimization 223

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
9.2 Methods of Optimization . . . . . . . . . . . . . . . . . . . . . . . . 224

9.2.1 Experimental Methods . . . . . . . . . . . . . . . . . . . . 224
9.2.2 Mathematical Methods . . . . . . . . . . . . . . . . . . . . 225

9.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
9.3.1 Linear and Nonlinear Programming . . . . . . . . . . . . . 226
9.3.2 Dynamic Programming . . . . . . . . . . . . . . . . . . . . 234
9.3.3 Geometric Programming Methods . . . . . . . . . . . . . . 236
9.3.4 Stiffness Optimization of a Spindle System . . . . . . . . . 242
9.3.5 Minimization of Total Power Loss in a Hydrostatic Bearing 245

10. Fuzzy Logic in Numerical Algorithms 249

10.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
10.1.1 Membership Functions of Fuzzy Sets . . . . . . . . . . . . . 253
10.1.2 Operations on Fuzzy Sets . . . . . . . . . . . . . . . . . . . 255
10.1.3 Construction of a Fuzzy Controller . . . . . . . . . . . . . . 256
10.1.4 Mamdani Model . . . . . . . . . . . . . . . . . . . . . . . . 257
10.1.5 Takagi-Sugeno Model . . . . . . . . . . . . . . . . . . . . . 259

10.2 Experimental Stand . . . . . . . . . . . . . . . . . . . . . . . . . . 260
10.3 Control Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

10.3.1 PID Controller . . . . . . . . . . . . . . . . . . . . . . . . . 264
10.3.2 Fuzzy Logic PI Controller . . . . . . . . . . . . . . . . . . . 265
10.3.3 Modification of the Rule Base . . . . . . . . . . . . . . . . 268
10.3.4 Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . 269

11. Tracking Control of an Electromechanical System 275

11.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
11.2 Control Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

11.2.1 Estimation of Linear and Nonlinear Parameters . . . . . . 279
11.2.2 Voltage Input for Control of Rotational Velocity . . . . . . 280

11.3 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 282

12. Numerical Modeling of a Shock Response 287

 



July 14, 2016 14:53 ws-book961x669 DYNAMICS OF MECHATRONIC SYSTEMS 10193-main page xiv

xiv DYNAMICS OF MECHATRONIC SYSTEMS

12.1 Variation of an Air-Blast Overpressure Wave . . . . . . . . . . . . 288
12.2 The Foam-Based Armor With a Buffer Plate . . . . . . . . . . . . 290
12.3 Physical Model of the System . . . . . . . . . . . . . . . . . . . . . 292

12.3.1 Formulation of the Large-Scale Problem . . . . . . . . . . . 294
12.3.2 Uncertainties and the Switching Matrices . . . . . . . . . . 296

12.4 Semi-Analytical Estimation of the Optimal Parameter . . . . . . . 298
12.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . 301

13. Control of a Multibody System Response to a Suddenly Applied Force 305

13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
13.2 Dynamical Modeling of the Analyzed Problem . . . . . . . . . . . . 306
13.3 Control Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 308
13.4 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 312

Bibliography 315

Index 325

 



July 14, 2016 14:53 ws-book961x669 DYNAMICS OF MECHATRONIC SYSTEMS 10193-main page 1

Chapter 1

Introduction

1.1 Mechatronics

The creators of curricula at technical universities have known for a long time that
a good designer, apart from the skills of coding, should possess interdisciplinary
knowledge. In addition to teaching mechanics, strength of materials, basics of con-
struction and mechanical technology, many mechanical engineering faculties con-
ducted classes in electrical engineering, electronics, automation, hydraulics and
pneumatics, information technology, measuring instruments, machinery architec-
ture, and other. The engineer educated according to this curriculum is expected to
have broad knowledge and can choose the appropriate solution directly using known
techniques or the knowledge of experts he had known.

In 1969, a concept name mechatronics was invented in Japan (and later dis-
tributed in the 70s) to determine the synergistic use of knowledge of the basic
fields of technology. The word results from a combination of words mechanics and
electronics. Authors [Xie (2003)] and [Lerner and Trigg (2005)] give definitions
and descriptions of significance supplemented with graphs presenting the concept
of mechatronics. Figure 1.1 exhibits one of the patterns showing the relationship
between modern fields of technology which is presently observed in mechatronics.

MECHATRONICS
mechanics

electrotechnics electronics
computer
engineering

fluid
engineering

controlautomatics

informatics

Fig. 1.1 Relationship fields in mechatronics.

One of the greatest challenges in the development of mechatronic devices and
systems are, next to their variety, also progressive complexity and versatility [Scherz
and Monk (2013); Budynas and Nisbett (2015); Cetinkunt (2007)]. The progress of

1

 b
.
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civilization enforces researchers and engineers to search for non-coexisting solutions
in various fields of science and technology [Karnopp et al. (2012); Di Paola and
Cicirelli (2010)].

Noticeable lack of sufficiently well developed methods of dynamics analysis sup-
porting interdisciplinary aspects of processes of the development of mechatronic
devices and systems enhances the willingness to use an optimization theory and
different techniques of numerical modeling. The numerical simulation and some
related processing with measurement signals are highly correlated with advanced
optimization methods. In this context, the device and system models presented in
this monograph gain in importance and for many engineers should be an interesting
source of information about mathematical modeling of dynamical systems, numeri-
cal experiments, experimental measurement, and various optimization problems of
mechatronics.

1.2 Systems

System (gr. systema – complex object) – a physical or abstract object in which
reciprocal links can be distinguished. According to one of the criteria [Schmid
(2002)], systems can be divided into: abstract and physical, static and dynamic,
open and closed, autonomous and nonautonomous, etc.

System – an assembly of reciprocally incorporated elements fulfilling a specific
function and being treated as separated from the environment for a specific purpose,
i.e., descriptive, exploratory and other. For example, a technological process defines
a system. The concept of a system is used practically in all areas of human life and
refers to either phenomena, objects or processes in nature as well as those created
by people.

x1(t)

x2(t)

xn(t)

. . .

. . .

y1(t)

y2(t)

yn(t)

. . .

. . .

SYSTEM

input

signals

output

signals

z(t) - disturbances

p - program

Fig. 1.2 Block diagram of system functioning.

We distinguish miscellaneous systems such as: social, political, nervous, nu-
merical, metric, solar, radio navigation, computer, and much more. In cybernetics
and exploratory systems, it is assumed that the environment influences the system
through input signals, which may be targeted at interactions (control, decisions) or

 b
.
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disturbances interferencing with the objective of the system. An important feature
of real systems are their dynamical properties. The properties are the cause of the
presence of the system in an equilibrium rest, in the steady state or in a transient
state which tends to an equilibrium or not. If dynamical properties are not essen-
tial, the system is treated as static [Zierep (1978)]. Block diagram of a system built
on the basis of that definition is shown in Fig. 1.2.

a)

air
1

2
P

NS

3
4

1.15
1

0

b1

b21

b22

0 1

1.29

1.210

1.36

12

b3

b4

b5

1.47
14

15

13

15

1.5816

1

0

1

0

1

0

a1 a2 a3

15

5 3
1

4 2

b)

1.5
1

0
1

0
1

0
1

0
1

0

0
0 1 2 3 4 5

S

1.4

1.3

1.2

1.5

1.5

c)

a1
a2
a3
x

a1

b1
b21
b22
b23
b4
b5

p

17

wstop

Fig. 1.3 A pneumohydraulic system of actuating control of a planer of corners of PCV windows:
(a) pneumohydraulic scheme, (b) diagram of operation, (c) the controller [Lewandowski (2005)].

The pneumohydraulic system depicted in Fig. 1.3 is composed of the follow-

 b
.
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ing parts: 1 – strainer, 2 – reducing valve, 3 – manometer, 4 – lubricator, 5-8 –
monostable divide valves 2/2, 9 – bistable divide valve 5/2, 10 – pneumohydraulic
actuator with mutual damping, 11 – position reed switches, 12 – air lines, 13, 14
– chock valves, 15 – oil lines, 16 – pneumohydraulic relay of pressure, 17 – PLC
controller, ai – input signals, bij – output signals, x – a signal starting the cycle, w
– power “on” or “off”, stop – emergency turn off.

1.3 Units of Measurement

A physical quantity A is defined by a value {A} and a unit of measurement [A]:

A = {A}[A], e.g. v = 30 [m · s−1], ρ = 1.29 [kg ·m−3] . (1.1)

The unit of measurement is a specific measure of the physical quantity which
serves as a template for the quantitative determination of other measures by com-
parison of these measures by numbers. By convention, the numerical value of the
reference measurement is equal to 1, thus:

[A] =
A
{A} , e.g. [A] =

45[m]

45
= 1 [m]. (1.2)

In the metric system of measurement (SI), there are 7 well-defined basic units
and 2 supplementary units.

Basic units include:
1) meter [m] – length, 2) ampere [A] – electric current,
3) kilogram [kg] – mass, 4) mole [mol] – amount of a substance,
5) second [s] – time, 6) candela [cd] – luminous intensity,
7) kelvin [K] – thermodynamic temperature.

Supplementary units include:
8) radian [rad] – plane angle, 9) steradian [sr] – solid angle.

φ = 1[rad]
r

“r

β = 1[sr]β = 1[sr]

rA = r2

Fig. 1.4 Graphical representation of radian φ and steradian β.

The currently used international system of units SI was adopted in 1960 at the
Ninth General Conference of Weights and Measures in Geneva. In mechanics, we use
3 basic units forming the MKS system, which are: meter [m], kilogram [kg], second
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[s]. The MKS measurement system is referred to as an absolute practical system of
units. The abovementioned set of units is also a LMT system whose name comes
from the first letters of the words: length, mass, time. The earlier absolute unit CGS
system (a part of the LMT system) used in physics consists of centimeter [cm], gram
[g] and second [s] (see in Table 3.1). In the basic units one finds systems of various
configurations. For example, 4-component LMTI or 6-component LMTIΘJ which
distinguishes length, mass, time, electric current, thermodynamic temperature and
brightness [Lerner and Trigg (2005)].

Table 1.1 Abbreviations of secondary units.

Name Abbr. Multiplicity Name Abbr. Multiplicity

peta P 1015 deci d 10−1

tera T 1012 centi c 10−2

giga G 10 9 milli m 10−3

mega M 10 6 micro µ 10−6

kilo k 10 3 nano n 10−9

hecto h 102 pico p 10−12

deka da 101 femto f 10−15

Apart from the basic units, their derivatives are also used, which are associated
with basic units by some respective dependencies.

Derived units, for instance: [N] = [kg ·m · s−2], [J] = [kg ·m2 · s−2], [Pa] =
[kg ·m−1 · s−2], [W] = [kg ·m2 · s−3], and others.

The basic units as well as their derivatives can act as main or secondary units.
Main unit in its value is equal to 1, and its denotation does not have any prefix,

e.g. [N], [kg], [J], [s], [Pa], [m], [W].
Secondary unit is greater or less than the main unit and is distinguished by a

prefix specifying an increased or decreased multiple. For example, [kW] = [103W],
[cm] = [10−2m], [ms] = [10−3s], [µm] = [10−6m], [MPa] = [106Pa].

Non-SI unit is derived from the tradition of its application in a specific area. In
automotive engineering, the unit of power often is horsepower [hp] = [0.736 kW], in
thermal engineering we speak about calorie [cal] = [4.19 J], in meteorology – about
tor, which is equal to the pressure exerted.
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Chapter 2

Model and Modeling

Before a human had appeared on the Earth, the universe, stellar and planetary sys-
tems have already existed. Water and tectonic systems were developed, and flora
and fauna were functioning on the Earth. A human developed his creative skills
to eventually turn them into the ability to produce material goods. Preparation of
material goods associated with abstract thinking were engaging mind and model,
which was a virtual prototype of materialization. The diversity of the resulting so-
lutions was a reason to their research and improvement for the utilitarian purposes.
Therefore, the modeling of real-world objects appearing in the nature or created by
other people was born. At the same time as learning about the environment was in
progress, some possibility of its use for practical purposes (current and prospective)
was observed. A man has created models of common cognitive systems existing in
nature to satisfy human curiosity.

Model (lat. modulus) – measure, pattern, perfection, ideal item to follow.
Model (physical, mathematical, simulation) – a system focused on imitation

of the purposes of cognitive distinguished features of another system known as the
original.

Theoretical model – hypothetical and simplified mental picture of a part of re-
ality, in which to facilitate the solution of a problem, any irrelevant elements were
eliminated to achieve the specific aim. Theoretical models are introduced due to
their usefulness in the creation of theory.

Real model – an object or a system of objects that meet the assumptions of the
theory, sufficiently similar to the system under test, but simpler and more accessible
for research.

The physical, mathematical or simulation model. To examine the object or
phenomenon, one needs first to develop a physical model, which consistently with
its definition, would embrace idealized phenomena, elements and parameters.

The physical model is a starting point for creating the mathematical model which
is the formal description of an idealized object. Solving state space equations of
the dynamics or even algebraic equations, which are the mathematical model for
the introduced physical parameters of the object, the simulated response to the
internal and external forcing (excitation) of the model is obtained. Introduction of

7
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forcing (including nonzero initial conditions) and obtaining responses of the object
is called the simulation model. Depending on the degree of advancement of infor-
mation technology, the responses resulting from the exploration of the simulation
model as well as forcing can be presented in the graphical form or in a spatial or
spatiotemporal monitoring.

For the purpose of elaboration of the model, we apply:

1. Theoretical methods based on measurement analysis, either principles of
analogy or physical laws and mathematical analysis.

2. Theoretical and experimental methods allowing for: a) the use of a real ob-
ject to provide a mathematical description to determine its selected features
based on the findings of the reconstituted scale model (in accordance with
the principles of similarity); b) linking equations chosen for the test – a real
object of experimentally obtained parameters, giving the best approxima-
tion within the specified range of values. If there exists a graph or experi-
mental results stored in a table, where for carrying out some mathematical
operations any elementary function is needed, then an approximating func-
tion is selected in the general form as follows

ϕ(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n (2.1)

or another nonlinear function

ϕ(x) = Aerx sin (ωt+ α) + · · ·+Besx + · · ·+K, (2.2)

searching for the best parameters approximating that function in the as-
sumed range of variability x ∈ [c, d].

3. Experimental methods using storage of the values of model points of objects
as a function of independent variables, e.g. time, distance, velocity, and
others, to control the state of the object and the response to any adverse
conditions.

4. Modal analysis built on the methods of investigation of dynamic properties
of complex mechanical objects. One of the assembly methods belonging to
this field is a holistic energy model of some structural system object.

Holism (gr. holos – totality) is the opposite view of reductionism, according to
which all phenomena create a holistic systems subject to specific regularities. Infor-
mation about these systems cannot be inferred from knowledge of the regularities
that govern their constituents. The totality can not be reduced to the sum of its
components.

The model developed as a result of modal analysis allows us to predict the
dynamic behavior of the object subjected to excitations disturbing its equilibrium.

The use of modal analysis requires a number of conditions, among which we
distinguish [Ewins (2000)]:

– linearity of the system,
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– maintenance of constant coefficients of equations during modeling,
– observability and measurability of the system,
– fulfillment of Maxwell’s principle of reciprocity,
– small or proportional damping.

Types of modal analysis:

∗ theoretical : aims at introduction of the theoretical description of investi-
gated object;

∗ experimental : aims at application of the planned and controlled experiment;
∗ operative: conducted during operation at invariably located points of mea-

surement in response of the test object to any excitation appearing in nor-
mal exploitation.

Engineers model physical phenomena and material objects, and the aim of mod-
eling is, among others, reduction of manufacturing and exploitation costs of real
objects (products).

In engineering, modeling is performed in order to:

– conduct scientific research,
– verify new concepts,
– query information that could be useful in development of control systems,
– identify existing material (tangible) objects.

Identification is about finding the relationship between a real system and its
virtual model. Dynamic states of the real system are compared with the solutions
generated by the model [Ewins (2000)].

Relations between the real system and its corresponding model are determined
by a type of validity:

∗ replicative – if the data generated by the model match the data obtained
from the real object;

∗ predictive – if compliance of the relationship between the real system and
the model is known prior to obtaining data from the real system;

∗ structural – if the model not only can generate the same data as the real
object, but also functions in a similar manner.

2.1 Modeling in Dimensional Analysis and Criteria of Similarity

Dimensional analysis is involved in operations on measurable values on which mul-
tiplication and exponentiation by a real exponent is applied. The analysis of di-
mensional equations enables for determination of mutual dependence of physical
quantities being observed in the considered phenomenon. It is a tool used in physics
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and chemistry, but good results come from the use of dimensional analysis in me-
chanics, where substantial benefits result from the application of the principles of
similarity. An important step in drawing up the rules of dimensional analysis was
the π theorem formulated in 1914 by Buckingham on the basis of linear algebra
[Zierep (1978)].

If we look for a relationship

f(Q1, Q2, . . . Qn) = 0, (2.3)

between dimensional physical variables Q1, . . . , Qn, our expectations will be met
when the formula

πi = Qk11 ·Qk22 · · ·Qknn (2.4)

will be found, where πi are the nondimensional parameters – the so-called Pi groups,
the particular one of which can be equal to 1 in the special case.

Variables Q1, . . . , Qn can be expressed by basic measurement quantities
A1, . . . , Am composed of m ≤ n terms called basis. Here, basis is a set of units
such that none of its elements can be expressed as a result of exponentiation of
the others. Consequently, in mechanics we have: meter [m], kilogram [kg], second
[s] (LMT measurement system of units). A dimensional variable Qn can be then
expressed as the result of exponentiation of dimensional quantities of the basis Am,
i.e.:

[Q1] = Aa111 ·Aa212 · · ·Aam1
m ,

[Q2] = Aa121 ·Aa222 · · ·Aam2
m ,

...
...

[Qn] = Aa1n1 ·Aa2n2 · · ·Aamnm .

(2.5)

From Eqs. (2.4) and (2.5), the following system of algebraic equations is obtained:

Qk11 = (Aa111 ·Aa212 · · ·Aam1
m )

k1 ,

Qk22 = (Aa121 ·Aa222 · · ·Aam2
m )

k2 ,

...
...

Qknn = (Aa1n1 ·Aa2n2 · · ·Aamnm )
kn .

(2.6)

Making an assumption that there exists a nondimensional parameter π, which is
necessary to calculate the unknown exponents k1, . . . , kn, the expression (2.4) can
be given in the form (2.6), as it holds:

π = A0
1 ·A0

2 · · ·A0
m =

{Aa111 · · ·Aam1
m }k1 ·{Aa121 · · ·Aam2

m }k2 · · · {Aa1n1 · · ·Aamnm }kn .
(2.7)
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Using basic dimensional quantities A1, . . . , Am, one writes:

A0
1 =Aa11k11 ·Aa12k21 · · ·Aa1nk21 ,

A0
2 =Aa21k12 ·Aa22k21 · · ·Aa2nk21 ,

...
...

A0
m =Aam1k1

m ·Aam2k2
m · · ·Aamnk2m .

(2.8)

Logarithm of relations (2.8) leads to the system of equations:

A1 → 0 = a11k1 + a12k2 + · · ·+ a1nkn,

A2 → 0 = a21k1 + a22k2 + · · ·+ a2nkn,

...
...

Am → 0 = am1k1 + am2k2 + · · ·+ amnkn.

(2.9)

This linear system, composed of m equations and n unknowns k1, . . . , kn, is
described by the matrix M(m×n) given in Tab. 2.1, allowing for determination of
functions

f(π1, π2, . . . , πn−r) = 0. (2.10)

Table 2.1 Matrix M(m×n) of a lin-
ear system.

Q1 Q2 . . . Qn

k1 k2 . . . kn

A1 a11 a12 . . . a1n

A2 a21 a22 . . . a2n

...
...

...
...

Am am1 am2 . . . amn

In accordance to Buckingham’s π theorem, function of n dimensional variables
Q1, . . . , Qn and m basic quantities A1, . . . , Am creating the dimensional matrix M
of order r ≤ m has n − r nondimensional solutions defining functions (2.10) of
parameters π, thus

π1 = f(π2, π3, . . . , πn−r). (2.11)

The necessary and sufficient condition of similarity of two processes is fulfilled if
they are qualitatively identical and all similarity parameters defining that processes
are equal in pairs, i.e.: π′1 = π′′1 , π′2 = π′′2 , ..., π′n−r = π′′n−r.

Qualitatively identical processes have the same mathematical descriptions, but
differ in values of dimensional quantities.

A method of modeling is about recreation of real processes and investigation of
their numerical models which are identical with those processes in terms of quality.
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Results of the analysis and simulation of the numerical model can be extended to
real objects if they meet the above formulated conditions.

The presented methodology implies the development of a mathematical model,
according to which the following have to be determined:

a) dimensional physical quantities Qn and their number n;
b) the number of elements of basis Am (e.g. in mechanics m = 3, because

there are 3 units in LMT measurement system);
c) order r = m of a matrix, number of nondimensional parameters πi for

i = n− r and matrix M(m×n);
d) canonical form with exponents kn of the dimensional variables Qn.

A method for seeking of the exponents kn is provided in the following exercise.

Find the dependence of the centripetal force Fd as a function of mass
M of a body which moves in uniform motion with velocity V along the
circle of radius R. The functional dependence Fd = f(M,V,R) is sought.

Having 4-dimensional variables n and 3 elements of basis m, the number i of
the nondimensional parameters πi is 1. Thus, according to (2.9), one writes:

a11k1 + a12k2 + a13k3 + a14k4 = 0,

a21k1 + a22k2 + a23k3 + a24k4 = 0,

a31k1 + a32k2 + a33k3 + a34k4 = 0.

(2.12)

Table 2.2 Expanded matrix M(3×4) of the linear system of 3 equations and 4 unknowns,
k1, . . . , k4.

Dimensional
variable

Qk1
1

ma11kga21sa31

Fk1
d

Qk2
2

ma12kga22sa32

Mk2

Qk3
3

ma13kga23sa33

V k3

Qk4
4

ma14kga24sa34

Rk4

Symbol
Basic
unit

[Fd]
m · kg · s−2

[M ]
kg

[V ]
m · s−1

[R]
m

M [m] a11[M]=1 a12[M]=0 a13[M]=1 a14[M]=1
K [kg] a21[K]=1 a22[K]=1 a23[K]=0 a24[K]=0
S [s] a31[S]=−2 a32[S]=0 a33[S]=−1 a34[S]=0

Using Tab. 2.1 and the system of algebraic equations (2.12), we build a ma-
trix M , expanded in Table 2.2, that facilitates finding the coefficients amn of the
equations in which the unknowns are expressed by exponents ki (i = 1, . . . , 4).

After preparing the table and entering the units next to their corresponding
quantities (green font in Table 2.2), we analyze the dimension of independent quan-
tities with respect to the dimension of the system of basic units and define the
coefficients of matrix M(3×4) (red font in Table 2.2). Knowing the exponent k1 = 1

as the exponent of the first unknown quantity, all coefficients in the first column of

 b
.



July 14, 2016 14:53 ws-book961x669 DYNAMICS OF MECHATRONIC SYSTEMS 10193-main page 13

Model and Modeling 13

the equation (2.9) are given. To calculate exponents k2, k3, k4, Eq. (2.12) is to be
transformed into the canonical form:

a12k2 + a13k3 + a14k4 = −a11k1,

a22k2 + a23k3 + a24k4 = −a21k1,

a32k2 + a33k3 + a34k4 = −a31k1.

(2.13)

Putting known coefficients amn and k1 = 1 from Table 2.2 into the equations
(2.13), one gets the particular system of equations:

0 + 1 · k3 + 1 · k4 = −1,

1 · k2 + 0 + 0 = −1,

0 − 1 · k3 + 0 = 2.

(2.14)

The system (2.14) is solved by means of the determinants method as follows:

W =

∣∣∣∣∣∣
0 1 1

1 0 0

0 −1 0

∣∣∣∣∣∣ , Wk2 =

∣∣∣∣∣∣
−1 1 1

−1 0 0

2 −1 0

∣∣∣∣∣∣ , Wk3 =

∣∣∣∣∣∣
0 −1 1

1 −1 0

0 2 0

∣∣∣∣∣∣ , Wk4 =

∣∣∣∣∣∣
0 1 −1

1 0 −1

0 −1 2

∣∣∣∣∣∣ ,
where exponents of the dimensional quantities follow:

det(W ) = −1, det(Wk2) = 1, det(Wk3) = 2, det(Wk4) = −1,

k2 =
Wk2

W
= −1, k3 =

Wk3

W
= −2, k4 =

Wk4

W
= 1.

We then use formula (2.4) calculating the nondimensional similarity parameter
π

π = F k1d ·Mk2 · V k3 ·Rk4 , (2.15)

and after a rearrangement, the centripetal force

F k1d = π ·M−k2 · V −k3 ·R−k4 . (2.16)

After substitution of calculated values of the exponents k1, . . . , k4 of dimensional
quantities, and assuming π = 1, the sought formula for the centripetal force is found

Fd = M · V 2 ·R−1. (2.17)

We have obtained a mathematical model of the assumed idealized physical model
of the analyzed process. For instance, if the existence of the gravitational field
of the Earth is assumed, an aerodynamic force dependent on both the geometry
and an environment in which the rotating body moves, then the model would be
more complex, and the process could be defined by more than one parameter of
similarity. Estimation of values of particular parameters of similarity π1, . . . , πn
requires conducting some investigations on the model. It could turn out that this
difficult problem is not solvable with the use of methods of dimensional analysis.

 b
.



July 14, 2016 14:53 ws-book961x669 DYNAMICS OF MECHATRONIC SYSTEMS 10193-main page 14

14 DYNAMICS OF MECHATRONIC SYSTEMS

2.2 Modeling by Analogy

In engineering, analogy (adequacy) denotes some similarity between different ob-
jects, phenomena or processes occurring under some conditions.

The term analogy is used in many fields of science. Analogies are observed in
law [Weinreb (2005)], philosophy [Nersessian (2002)], medicine [Pena and Andrade-
Filho Jde (2010)], engineering [Sterrett (2006)]. A lot of mechanical engineering
problems is solvable by means of physical analogies.

The method of analogy is about investigation of processes, being qualitatively
different but having similar mathematical description, in which some differential
equations and conditions of uniqueness have the same form.

Based on physical analogies, an analogue machine was developed, which during
many years before implementation of digital computing machines – computers, was
used for solving scientific and utilitarian problems. In the frame of analogy between
electric, thermal, hydraulic and mechanical processes, experimental methods of re-
search on various phenomena are used. The method of analogy has drawbacks which
result from the influence of external conditions on propertiesof system components.

Analogies between basic hydraulic, mechanical and electrical elements existing
in mechatronics are shown in Tables 2.3 and 2.4 [Guillon (1966)].

Diagrams and mathematical descriptions of the phenomena observed in the hy-
draulic and electrical elements indicate the possibility of using analogies to solve
many practical problems as well as applying this method for the utilitarian purposes.
Practical analogous models of complex systems with many system components are
very worth considering.

Table 2.3 Electromechanical analogy.

Hydraulic element Analogy Electric element

Oscillator

F m

x

j

f

mẍ+ fẋ+ jx = F
mv̇ + fv + j

∫
vdt = F

m↔ L

f ↔ R

j ↔ 1

C
F ↔ u

uL

i
L C

uC

R

uR

i

u

u = uL + uR + uC

L
di

dt
+Ri+

1

C

∫
idt = u

An example of an electrohydromechanical analogy of the actuating part of a
hydraulic drive with assumption of mass, elasticity, leak and oil compressibility is
shown in Fig. 2.1 [Guillon (1966)].

The discovery of analogy was the first step in the development of electronic
analogue machines. The modeled quantities (actual) are mapped in real-time in
the analogue machines by electrical voltages.
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Machine time can serve only to map the independent variable, while other vari-
ables – the so-called machine variables, have to be mapped by voltage.

Table 2.4 Electrohydraulic analogies [Guillon (1966)].

Hydraulic element Analogy Electric element

Pressure source

Q

∆p

∆p↔ ∆u

∆p = const

Voltage source

∆u

− +
∆u = const

Flow source

∆p

Q

Q↔ i
Q = const

Source of current

∆u

i

− + i = const

Throttle valve with laminar flow

∆p

Q

S

KS ↔ 1

R
Q = KS∆p

∆p =
1

KS
Q

Resistance

∆u

i

R

i =
1

R
∆u

∆u = RiPiston with viscous friction

∆p

Q

S
f

S2

f
↔ 1

R

Q =
S2

f
∆p

∆p =
f

S2
Q

Piston with a release spring
∆p

Q

S
j

S2

j
↔ C

Q =
S2

j

d(∆p)
dt

∆p =
j

S2

∫
Qdt

Capacitance

∆u

i

C

i = C
d∆u

dt

∆u =
1

C

∫
idt

Piston forced by an inertia
∆p

Q
mS

S2

m
↔ 1

L

Q =
S2

m

∫
∆pdt

∆p =
m

S2

dQ

dt

Inductance

∆u

i

L

i =
1

L

∫
∆udt

∆u = L
di

dt

Liquid or housing compressibility

pQ V0, E pQ
ko

Q =
V0

E

dp

dt
Q = ko

dp

dt

V0

E
↔ C

k ↔ C

Capacitance

i

C

u
i = C

du

dt

u =
1

C

∫
idt
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Q

S

j

Q1

Q

Q2Q′

KS′

f

V1
E

V2
E

Q′′1 Q′′2

p1 p2

m

(a)

i

i1

i

i2

C1 C2

i′′1 i′′2

u1 u2

L

i′

RC

R′

(b)

Fig. 2.1 Model of a hydromechanical system (a) and its electric counterpart elaborated using
analogies (b): m – reduced mass of the driven system, j – elasticity of spring, f – viscous friction
coefficient in contact between the piston and cylinder, S – piston surface, K – leakage coefficient
of oil, S – cross section of the throttle (leakage), V1, V2 – volumes of the left and right branches of
the hydraulic system, E – oil bulk modulus of elasticity, p – pressure, Q – oil flow rates, i – electric
current, u – voltage, C – capacitance, R – resistance, L – inductance of coil. Analogy between
variables is shown in Table 2.4.

2.3 Theory of Similarity

2.3.1 Introduction

In the majority of theoretical and applied sciences, we use models and apply model-
ing of real objects and processes [Awrejcewicz (2014); Olejnik (2013)]. It is crucial
to be sure about similarity validation and the correspondence of a real object (pro-
cess) to the introduced model. Once we establish a way of similarity, then similar
objects (real and model) exhibit the similarity relations. In particular, there exist
the so-called similarity criteria between the studied objects and their models.

The key role in mathematical modeling is played by scaling. It is known that we
cannot observe (at least on a computer screen) dynamics of charges, atoms and their
members, waves, etc., where we deal with distances of 10−10 m. On the other hand,
to measure distances between planets in our universe we need years, and also we
cannot directly follow phenomena with a speed being close to the light speed, etc.
Therefore, we do need to introduce scaling between objects, models and secondary
models associated with monitoring of solutions. In this chapter, we restrict the
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considerations to mathematical models described by differential equations only.
There exist three following theorems of similarity:

Theorem 2.1. (Newton’s Theorem) Similar phenomena have the same equal rela-
tions between the respective parameters.

Theorem 2.2. (π Theorem) Any adequate equation governing a physical process
and described in a given system of units can be presented by the functional relations
defined through the quantities occurred in a studied process.

This theorem can be also formulated in its equivalent form. Any equation de-
scribing dependencies between physical quantities in a given process can be trans-
formed to the equivalent equation with n − k nondimensional quantities, where n
stands for a number of all equations, and k denotes only a number of independent
dimensional quantities.

Theorem 2.3. The necessary and sufficient conditions of a similarity include pro-
portionality of the quantities occurring in the similarity unique conditions and equal-
ity of the similarity criteria.

2.3.2 Scaling of Equations by Similarity

Let an object be described by the parameters ln, tn, vn and its counterpart model be
described by lm, tm, vm, where: l, t, v corresponds to a distance, time and velocity,
respectively. Scales are taken as ratios between the model (lm, tm) and the object
(ln, tn) parameters as follows:

kl =
lm
ln
, kt =

tm
tn
. (2.18)

However, we cannot take an arbitrary velocity scale, since the following relation
holds:

vm =
dlm
dtm

=
kldln
ktdtn

=
kl
kt
vn,

kv =
vm
vn

=
kl
kt
,

(2.19)

and hence
kvkt
kl

= 1.

The obtained relation between scales is known as the similarity indicator (con-
stant).

Let us take now a certain length l0, time instant t0, and velocity v0 (maximal or
average one). Although l0, t0 and v0 are not directly coupled (they are independent),
the ratio (v0t0)/l0 should be the same in a real object and in its model, which is
manifested by the formula

v0t0
l0

= π0. (2.20)
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Nondimensional sets (ratios) described in similar systems by the same numbers
are called the similarity criteria (similarity invariants). Any function of one or a
few similarity criteria also stands for a similarity criterion. The similarity criteria
are derived from the mathematical models by omitting the differential and integral
operators. For example, instead of dl/dt we take l/t, or instead of

∫
vdt we take vt.

Example 1. We consider 1-DoF nonautonomous and linear oscillator, the oscil-
lations of which are governed by the equation

m
d2x

dt2
+ c

dx

dt
+ kx = F (t), (2.21)

where m denotes the mass, c is the viscous damping coefficient, k is the stiffness, and
F (t) is the time-dependent excitation force. This equation may model either very
small scales (atoms, electrons, neutrons, protons) or very large scales (for instance,
the Earth rotation around the Sun).

In mechanics, this equation describes vibrations of a 1-DoF system of the mass
m supported by the spring-damper massless system and externally excited. The
parameter m and variables x and t have independent dimensions, and the variable
x(t) is dependent on time. Owing to the Theorem 2.2, we may construct the
nondimensional similarity sets.

The integral analog of Eq. (2.21) follows

m
x

t2
+ c

x

t
+ kx = F (t), (2.22)

or equivalently

1 + c
t

m
+ k

t2

m
=
Ft2

mx
. (2.23)

Formula (2.23) implies three criteria of similarity

π1 =
ct

m
, π2 =

kt2

m
, π3 =

Ft2

mx
. (2.24)

We have

cntn
mn

=
cmtm
mm

=
cnklkttn
kmmn

. (2.25)

Comparison of the first and third fraction in Eq. (2.25) yields

1 =
klkt
km

. (2.26)

On the other hand, we have

γmtm
mm

=
γntn
mn

, (2.27)

and finally

kγ =
γm
γn

=
tnmm

mntm
=
km
kt
. (2.28)
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Next, taking into account π2 and π3 and proceeding in a similar way, we obtain:

kk =
km
k2
t

, kF =
kmkl
k2
t

. (2.29)

We have scaled all parameters and variables of the model equation (2.21). In
order to numerically solve equation (2.21), we use the equivalent equation

mm
d2xm
dt2m

+ cm
dxm
dtm

+ kmxm = Fm(tm). (2.30)

To return to the natural quantities mn, xn, tn, cn, kn, Fn, the following relations
are applied:

tn =
tm
kt
, xn =

xm
kl
, mn =

mm

km
, kn =

km
kk
, cn =

cm
kc
, Fn =

Fm
kF

. (2.31)

Example 2. We consider the movement of a cosmic object (a satellite or a comet)
in a gravitational field of a planet with large mass in comparison to a movable object.
The ODEs describing velocity ~v of the object moving in the plane OXY have the
following form:

dv1

dt
= −GM x

(x2 + y2)
3/2

,

dv2

dt
= −GM y

(x2 + y2)
3/2

,

v1 =
dx

dt
, v2 =

dy

dt
,

(2.32)

where gravitational constant G = 6.67 · 10−11Nm2

kg2 and ~r = ~r(x, y) denotes the
distance between two bodies.

Let us take the Sun as a planet. The distance between the Earth and the Sun
is introduced as the astronomical unit 1 [AU]= 1.5 · 1011 m. If we take year as the
time unit, then the velocity unit is [v] = 1 AU

1 year = 1.5·1011 m
365·24·3600 s = 4750ms , and the

mass of the Sun is M = 2 · 1030 kg. Integral analog of the differential equations is

x

t2
= GM

1

x2
, (2.33)

and the nondimensional relation follows

1 = GM
t2

x3
. (2.34)

Let us introduce the model variables and parameters in the following way:

tn = tm · 107 s, xn = xm · 108 km, Mn = Mm · 10−30 kg, Gn = Gm · 10−20 m3

s2kg
.

Then, putting a subscript “m” in Eq. (2.32), we may use it for the computer
simulations, and we have: Mm = 2km, Gn = 6.67kG, xm = (1 − 10)kx, tm =

(1− 10)kt, i.e., the order of all parameters and dependent/independent variables is
within the interval (1; 10).
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2.3.3 Characteristic Scale Units

In this method, the characteristic scale units regarding dependent and independent
variables are introduced. This approach includes the following steps: (i) scale units
are chosen; (ii) all parameters being variables are transformed to their nondimen-
sional counterparts; (iii) a mathematical model is transformed to its corresponding
nondimensional form.

This approach is widely applied in mechanics and dynamics (see [Awrejcewicz
(1991); Awrejcewicz and Krysko (2008); Awrejcewicz (2012a, 2014)]). It has the
following advantages: (i) obtained nondimensional equations have universal mean-
ing, i.e., they can be directly applied to different branches of science like mechanics,
mechatronics, electricity, biomechanics, etc.; (ii) usually, a number of nondimen-
sional quantities is essentially reduced, which simplifies either numerical or ana-
lytical investigation; (iii) it allows to construct the original system in a few ways.
Since there exist numerous examples of a way on nondimensionalization procedure
applied to various mathematical models, including systems of linear and nonlinear
algebraic equations and inequalities, linear and nonlinear ODEs and PDEs, inte-
gral and integral-differential equations as well as the combinations of the so far
mentioned equations, we restrict ourselves here to only one example.

Example 3. Motion of a charge in a magnetic field is governed by the following
vector equation

m
d~v

dt
= q

[
~v × ~B

]
, (2.35)

where B is the magnetic induction, m denotes the mass of the charge q, and ~v is the
charge velocity. If we consider the charge moving perpendicularly to the magnetic
field ~B, then the charge movement takes place in the OXY plane. Equation (2.35)
is cast to the following form:

d~v⊥
dt

=
qB0

mB0

[
~v⊥ × ~B (~r)

]
,

d~r

dt
= ~v⊥,

(2.36)

where B0 is a certain value of induction. The following initial conditions are intro-
duced

x(0) = r0, y(0) = 0, v1(0) = 0, v2(0) = v0. (2.37)

The action of B0 in the initial instant implies the circular motion of the charge
~v0⊥ ~B0 with velocity v0, and Larmor’s radius is

r0 =
mv0

qB0
. (2.38)

One may easily find the associated angular frequency of the periodic charge
movement

ω0 =
2π

T
=
v⊥
r0

=
qB0

m
. (2.39)
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Projection of Eq. (2.36) onto the axis OX and OY yields:

m
d

dt
(~v1 + ~v2) = q

[(
~iv1 +~jv2

)
× ~kB3

]
=

= q
(
~i+ ~k

)
v1B3 + qv2B3

(
~j + ~k

)
= −~jv1B3 +~iv2B3

(2.40)

which means:
dx

dt
= v1,

dv1

dt
=
ω0v2B3

B0
,

dy

dt
= v2,

dv2

dt
= −ω0v1B3

B0
, ~B · ~k = B3.

(2.41)

The characteristic time scale is here s = 1/ω0, whereas the characteristic dimen-
sion of the charge movement is r0. Both characteristic scales are coupled by the
formula r0 = v0s.

We introduce the following nondimensional quantities:

t′ = tω0, x′ = x/r0, y′ = y/r0, v′1 = v1/v0, v′2 = v2/v0. (2.42)

Therefore, dimensional equation (2.36) as well as initial conditions are trans-
formed to the following nondimensional counterparts:

dx

dτ
= v1,

dy

dτ
= v2,

dv1

dτ
= v2B

′
3,

dv2

dτ
= −v1B

′
3,

x(0) = 1, y(0) = 0,

v1(0) = 0, v2(0) = 1,

(2.43)

where primes have been already omitted. Note that although in the beginning we
had three parameters m, q and ~B, in the nondimensional form (2.43) we have only
one B′3.
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Chapter 3

Magnetic and Electromagnetic
Phenomena

3.1 Electric Charge and its Quantization

All material objects have a mass, but some of them possess also the so-called electric
charge. Although one may distinguish positive and negative charges, the most of
natural bodies of our universe are neutral, i.e., two different charges cancel each
other and hence the interconnections between them are not directly observed. A
notation of a positive and negative charge was introduced by B. Franklin (1706-
1790). The charge unit is coulomb (C). One coulomb is the charge amount flowing
through a conductor cross section in 1 second, which generates the current intensity
amount of 1 A (ampere).

We deal with two types of electric charges: positive and negative. Charges of
opposite (the same) type attract (repel) each other.

On the atomic level, we deal with electrons and protons of negative and positive
charges of the same amount, respectively. Since in classical electromagnetics, the
charge is distributed continuously at a point of the line (1D), surface (2D) and
volume (3D), we introduce the charge density ρ. When we rub together a piece
of cloth and amber, the amber accumulates electrons. The electron carries the
smallest electric charge −1.6 ·10−19C, its radius is 3.8 ·10−15m, and its resting mass
me = 9.1 · 10−31kg.

Although a classical approach to charge modeling relies on the theory of contin-
uous fluid (Maxwell), the quantum theory tells us that our matter is quantized, i.e.,
any fluid charge is a multiple of a unit charge, which corresponds to the electron
charge e = 1.6 · 10−19 C, and has been found experimentally. Therefore, any object
charge Q = ne, n = 0,±1,±2,±... . In other words, the unit of charge is indivisible.

There exist exceptions to the so far introduced terminology of the elementary
charge. In 1960, the quantized charge called quark was detected and said to be
equal to 1/3e. However, quarks cannot exist independently and rather appear in
stable groups. There exist also the so-called quasiparticles, which are fractionally
charged (1982), but they are not treated as elementary particles.

In general, any material object can be considered as either a conductor or an
insulator. Examples of conductors include metals, tap water or a human body,

23
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whereas typical insulators are represented by plastic, glass or pure water.
In conductors, there are 1023 electrons per cm3, whereas in insulators, there is

only one electron per cm3. Therefore, in a conductor, outer electrons of atoms may
freely wander within the conductor structural lattice, and they are called conduction
electrons. On the contrary, in general, electrons do not move in an insulator.

In nature, there exists a conservation law of a charge. The total charge of an
isolated material object remains constant.

If one considers gravitational forces between two particles of masses m1 and m2,
then the gravitational force F = Gm1m2

r2 , where r stands for a distance between two
particles. The electric force between two charged particles can be introduced in a
similar way

F = k
q1q2

r2
, k =

1

4πε
, ε = ε0εr. (3.1)

In the case of point charges of the same (opposite) signs, the generated force is
of repulsive (attractive) type.

Equation (3.1) presents Coulomb’s law [Coulomb, 1785], and owing to the SI
units, the force F is in newtons (N), the distance r is in meters (m), and the charge
is in coulomb units (C). In the denominator, we have a normalization factor 4π used
in order to avoid its occurrence in Maxwell’s equations.

Although in the classical mechanics (dynamics) the SI units (fr. Systéme Inter-
national d’unités) are widely used, there is a simple correspondence between the SI
(meter-kilogram-second) and CGS (centimeter-gram-second) systems, since New-
ton’s second law is invariant with respect to the chosen system units of the studied
physical system. On the contrary, in electrodynamics, three different unit systems
are commonly accepted, i.e., the SI system, the Gaussian system (CGS) and the
Heaviside-Lorentz system (HL). Coulomb’s law has different form depending on the
chosen system of units. In the case of electrostatics, Coulomb’s law (3.1) for a vac-
uum takes the form F = q1q2

r2 (CGS) and 1
4π

q1q2
r2 (HL), respectively. HL system is

mainly used in physics, whereas a transition between SI and CGS systems is real-
ized via substitution of ε0 by 1

4π . For dielectrics, the situation is more complicated,
owing to different definitions of the electric induction, magnetic susceptibility, etc.

For instance, the Lorentz force is governed by the equation

~F = q ~E + (~v × ~B) (3.2)

in the SI system, and by the equation

~F = q ~E +

(
~V

c
× ~B

)
(3.3)

in Gaussian CGS units, where c is the light speed. The latter one exhibits a corre-
spondence between the theories of magnetism and electricity, putting emphasis on
the unified approach called electromagnetism. In the beginning, both theories have
been treated independently.
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In 1820, Oersted observed that the electric current may change the position of a
compass needle. In 1831, Faraday discovered that the moving magnet may induce
electric current. The mentioned empirical observations were applied by Maxwell
and Lorentz to construct the theory of electromagnetism.

The constant ε occurred in (3.1) is called the permittivity constant, whereas εr
is a dimensionless constant called the relative permittivity of the material medium
between the charged particles. In the case of free space (vacuum) ε0 = 8.85 ·
10−12

[
C2

Nm2

]
, hence k = 8.99 · 109

[
Nm2

C2

]
, and therefore

F = 8.99 · 109 q1q2

r2
[N ]. (3.4)

In all further examples, the problems are assumed to consider the free space.
Comparison of electrostatic Coulomb’s and Newton’s gravitational forces for two
electrons using the mentioned two formulas implies that the Coulomb forces can be
omitted while considering electrostatic problems.

Table 3.1 Units in the SI and Gaussian system.

Coulomb/Meter2

QUANTITY SYMBOL SI UNIT GAUSSIAN SYTEM

Length L, l Meter (m) Centimeter (cm)

Ba
sic

A
dd
iti
on
al

Mass M, m Kilogram (kg) Gram (g)
Time T, t Second (s) Second (s)

Electric Current I, i Ampere (A) (10 1 c) Fr/s

Electric Charge Q, q Coulomb (C) (10 1 c) Fr

Electric Potential V, v Volt (V) (108 c 1) statV

Electric Field E, e Volt/Meter (V/m) (106 c 1) statV/cm

Magnetic Induction B Tesla (T) (104) Gs

Magnetic Field
Intensity

H Ampere/Meter (4  10 3) Oe

Magnetic Flux Weber (Wb) (108) Gs·cm2

Resistance Ohm (   )R (109 c 2) s/cm

Capacitance Farad (F)C (10 9 c2) cm

Inductance Henry (H)L (109 c 2) s2/cm
Electric
Displacement Field (        )D (10 5 c) Fr/cm²

C/m2

Force Newton (N)F Dyne (g·cm/s2)

Energy, Work Joule (J)W, w Erg (g·cm2/s2)

Power Watt (W)P, p Erg per Second
(g·cm2/s3)

(A/m)
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In classical electrostatics/electrodynamics, only the SI and Gauss systems are
used. In Table 3.1, the correspondence between the used units is presented.

If two charges have the same (opposite) sign, then a force is repulsive (attractive).
The force ~F12(~F21) acting on the charge q1(q2) generated by the charge q2(q1) is
governed by formulas

~F12 = k
q1q2

r3
12

~r12, ~F21 = k
q1q2

r3
21

~r21, (3.5)

what is shown in Fig. 3.1

+ +
F12 F21

q1 q2

r12

+ -
q1 q2

r12

F12 F21

a)

b)

Fig. 3.1 Mutual electric forces between two charged particles of the same (a) and different (b)
signs.

Figure 3.2 shows how one may find the resultant electric forces acting on each
of point charges located in a plane.

q1

q4

q2

F14

F41

F12

F21

F13

F31

F23

F32

F24

F42
F34

F43

F2

- q3

F3

+

F1

-

+ F4

Fig. 3.2 Resultant electric forces ~Fn acting on each of the multiple charges.

However, it should be emphasized that this geometric simple vector superposi-
tion is valid only if a considered pair of charges is not influenced by other remaining
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charges. In addition, it is assumed that charges dimensions are small in comparison
to their distances, and hence the charges can be treated as point charges. Fur-
thermore, if the charges move with a speed comparable with the light speed, other
modeling (by Maxwell’s equations) should be taken into account.

In what follows, we introduce a concept of the electrical dipole, which is used
in modeling of electromagnetic properties of material objects. The electrical dipole
archetype model is mainly used in physics and chemistry, where molecules are built
with negative and positive charges separated by a certain distance. Furthermore,
if a molecule or an atom is embedded in either electric or magnetic field, then the
mentioned objects are polarized exhibiting a dipole-like behavior.

A dipole is a physical object consisting of two charges with equal mag-
nitude and different sign, separated from each other by a distance d.

Since both charges are embedded in a material medium, one element charge
will interact with another one through this surrounding medium, i.e., with the field
produced by these two mentioned charges. Although in the dipole the charges are
fixed at the distance d, they will simultaneously produce an electric field which
interacts with any other charge being located in the field generated/produced by
the dipole.

In general, it is assumed that there is no time delay in producing both fields,
and hence also in action and reaction between two charges. However, this concept
fails to model objects in our universe when the light speed is taken into account. As
it has been already mentioned, the electric field intensity ~E is a vector the direction
and magnitude of which are defined through the relationship

~F = ~Eq0, (3.6)
where q0 is a positive test charge placed in the electric field, and ~F is the force
exerted by this field on the charge q0.

In the case of an electron orbital within the hydrogen atom E = 1011 [N/C],
while in the case of electric breakdown in the air E = 106 [N/C], and inside the
wire of household circuits we have E = 10−2 [N/C].

Owing to Coulomb’s law, in order to find the electric field intensity ~E produced
by a point charge q, we put the test charge q0 (positive), and in the field we find

~E =
~F

q0
= k

q

r3
~r. (3.7)

Observe that ~E depends on ~r, and therefore vector ~E changes its direction and
magnitude when location of the field point is changed.

If we have an electric multiple field produced by a few electric charges, one
may use a superposition rule illustrated in Fig. 3.2. The electric dipole is shown in
Fig. 3.3.

First, let us define the vector dipole moment ~p = q~d having its magnitude equal
to the distance between point charges, and direction from −q toward +q. We have:

E1 = k
q

r2
1

, E2 = k
q

r2
2

, (3.8)
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+
Y

X

r1

r2

E1

E2

E

A(x,y)

d/2

d/2

0
i

j

1

2

-

p

q

q

Fig. 3.3 Electric dipole and the electric field intensity ~E at a point A.

Ex = ~E ·~i = ~E1 ·~i+ ~E2 ·~i = E1 sin θ1 − E2 sin θ2,

Ey = ~E ·~j = ~E1 ·~j + ~E2 ·~j = −E1 cos θ1 − E2 cos θ2,
(3.9)

where:

sin θ1 =
x

r1
, cos θ1 =

d
2 − y
r1

,

sin θ2 =
x

r2
, cos θ2 =

d
2 + y

r2
.

(3.10)

Therefore, one finds:

Ex = k
q

r2
1

x

r1
− k q

r2
2

x

r2
= kqx

(
1

r3
1

− 1

r3
2

)
,

Ey = −k q
r2
1

d
2 − y
r1

− k q
r2
2

d
2 + y

r2

= −kq
(
d
2 − y
r3
1

+
d
2 + y

r3
2

)
,

~E = Ex~i+ Ey~j,

(3.11)

where r1, r2 follow from Eq. (3.7).
In the case of the point lying on the axis OX (y = 0), we have:

θ1 = θ2 = θ, r1 = r2 = r =

√
x2 +

(
d
2

)2
,

E1 = E2 = E = k
q

r2
,

(3.12)

and from Eq. (3.9) and (3.11) we obtain:

Ex = 0, Ey = −2E cos θ = −k p(
x2 + d2

4

) 3
2

. (3.13)

In what follows, we consider an electric dipole embedded in the electric uniform
field of intensity ~E, as shown in Fig. 3.4.
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X

Y E

O
d/2

d/2
+

F

--F

r1

r2
M

q

q

Fig. 3.4 Electric dipole lying in plane OXY embedded in the electric field ~E.

Since magnitudes of both dipole’s charges are equal and have opposite signs, we
deal with a pair of force ~F . Although the dipole does not exhibit any translation,
it rotates around its center O, since it is affected by the following torque

~M = ~r1 × ~F + ~r2 × (−~F ) = (~r1 − ~r2)× q ~E = ~p× ~E, (3.14)

and therefore

M =
d

2
F sin θ − d

2
F sin (π + θ) = dF sin θ. (3.15)

The dipole rotates unless θ = 0, when it takes the horizontal position, i.e., ~E ‖ ~p.
However, when we remove the applied field ~E, the distance d → 0, and the

charges of the dipole return to their initial superimposed position. This phenomenon
is analogous to that of elastic properties of mechanical objects. Namely, the spring
accumulates the potential energy generated by action of a force, and recovers it
when the force is removed.

Taking into account examples presented in Fig. 3.1, 3.2, we may consider a set of
charges q1, . . . , qN defined by their vector-positions ~r1, . . . , ~rN , using the Cartesian
coordinates OXY Z, as it is depicted in Fig. 3.5.

Z

X
Y

0

q1
q2

qn

qN
r r1 2-

r2r1

Fig. 3.5 A set of charges qn.
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It follows from Fig. 3.5 and from Coulomb’s law that

~F12 = ~F21 =
q1q2

|~r1 − ~r2|2
(3.16)

and

Fn =
∑
k 6=n

Fnk =
∑
k 6=n

qnqk
|~rn − ~rk|2

. (3.17)

Since no point charges exist in nature, we introduce a charge density ρ(x, y, z) =
dq
dϑ

[
C
m3
]
.

The electric field intensity ~E can be derived from (3.17), substituting the sum-
mation sign by the corresponding integral.

Z

X

Y
0

Q

r

k

i
j

A
E

z1

z2

y1

y2

x1 x2

Fig. 3.6 Electric field intensity ~E at point A.

The electric field intensity ~E generated by the charge Q is the force per unit test
charge q, i.e., E =

Fq
q . In an arbitrarily introduced Cartesian system (see Fig. 3.6),

the electric field intensity at point A is

~E =
Q

4πε0r2
~̂r =

Q

4πε0r2

~r√
(x1 − x2)

2
+ (y1 − y2)

2
+ (z1 − z2)

2
, (3.18)

and it is expressed in the units N/C = V/m, ~̂r = ~r
|~r| . In the case of a volume charge,

we introduce a charge density

ρ =
dQ

dϑ
, (3.19)

and [ρ] = C
m3 (see Fig. 3.7).

Volume ϑ having only one charge Q generates total electric field ~E at point A
obtained via integration over each differential charge dQ:

~E =

∫
Q

dQ

4πε0r2
~̂r =

∫
ϑ

ρ(x, y, z)~̂r

4πε0r2
dϑ. (3.20)
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rA

dQ= d

dE

Fig. 3.7 Volume charge distribution.

In the case of a sheet charge, we have

~E =

∫
Q

dQ~̂r

4πε0r2
=

∫
S

ρ~̂r

4πε0r2
dS, (3.21)

where ρ stands for the surface S charge density [ρ] = C
m2 now.

Finally, having a total charge Q distributed over a curve, the total electric field
at A is governed by the formula

~E =

∫
L

ρ~̂r

4πε0r2
dL, (3.22)

where L is the curve length, ρ is the line charge density [ρ] = C
m . Observe that the

unit vector ~̂r cannot be removed from the integrand, because it changes its direction
accordingly to the change of the charge coordinates. In the following cases, the use
of integrand can be omitted.

(i) In spherical coordinates, the electric field of a point charge Q is

~E =
Q

4πε0r2
~̂r, (3.23)

and it is spherically symmetric.
(ii) In cylindrical coordinates, for a charge uniformly distributed along an infi-

nite straight line, we have

~E =
q

2πε0r
~̂r, (3.24)

where [ρ] = C/m.
(iii) For a charge uniformly distributed over an infinite plane

~E =
q

2ε0

~̂r, (3.25)

where [ρ] = C/m2.
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3.2 Capacitance, Resistance and Electric Laws

3.2.1 Electric Flux

In what follows, we introduce electric flux φ (scalar) and its density ~D (vector) which
cannot be directly measured. It originates on a positive charge and terminates on
a negative one.

The electric flux density concept is illustrated in Fig. 3.8.

D

D

dS

Fig. 3.8 Electric flux ( ~D – electric flux density; d~S – differential area vector).

The electric flux φ presents a measure of the penetration (number of the field
lines) of the electric field vectors ~E passing through an imaginary surface represented
by the surface (area) vector ~S (its direction is outward normal to the surface), since
~D = ε ~E. It is defined as the following dot product

φ = ~E · ~S. (3.26)

Scalar product ~E · d~S is proportional to a number of field lines passing through
an infinitesimal surface element d~S. It represents a projection of d~S onto direction
of ~E, and hence the surface density of the field lines is only represented by a surface
perpendicular to ~E. Gauss’ law fits the total electric field flux φ passing through
the closed surface S to the net charge Q producing the field enclosed by the surface∮

~D · d~S =

∮
S

ε0
~E · d~S = Q. (3.27)

It is also viewed as the relation between a charge (source of the electric field)
and the resultant electric field ~E (in a vacuum ε = ε0).

We may also introduce the electric displacement flux ψ defined as

ψ = ε0φ, (3.28)

being directly related to the electric field density ~D. Electric charge of one coulomb
yields an increase in the electric flux to one coulomb, since ψ = Q [Q].

In general, for any electric field present in a medium, and exhibiting polarization
~P , the vector relation is more complex:

~D = ε0
~E + ~P , (3.29)

 b
.



July 14, 2016 14:53 ws-book961x669 DYNAMICS OF MECHATRONIC SYSTEMS 10193-main page 33

Magnetic and Electromagnetic Phenomena 33

as it is, for instance, exhibited by crystalline dielectrics. It means that a dipole
field ~P is induced, where ~D is the electric displacement and ε0 is vacuum’s electric
permittivity.

For ~P = 0, both ~D and ~E have the same form and direction.
However, for an isotropic material or any linear nonconducting dielectric mate-

rial, the following relation between ~E and ~P holds

~P = χeε0
~E, (3.30)

where the nondimensional constant χe is called the electric susceptibility.
Substitution (3.30) into (3.29) yields

~D = ε0(1 + χe) ~E = ε0εr ~E = ε ~E, (3.31)

where: εr = 1 + χe, ε = ε0εr, and εr is called the relative permittivity.
It should be noted, however, that the electric field intensity E = E(ε) is a

function of the permittivity ε, whereas the electric flux density ~D does not depend
on permittivity.

The choice of the closed integration surface plays a crucial role in applying Gauss’
law. In order to establish the electric field ~E produced by the charge in a certain
point, one introduces the imaginary closed (Gaussian) surface passing through this
point, and then applies the formula (3.27).

In the case of only one positive charge +Q, flux lines are equally spaced in radial
directions towards infinity (Fig. 3.9a). If we have two charges of equal magnitudes,
the flux lines start at +Q and terminate at −Q (Fig. 3.9b). In the case of two
positive charges +Q, direction of flux lines is as shown in Fig. 3.9c.

+Q - Q++
Q

a) b) c)

Q++ Q ++

Fig. 3.9 Flux lines generated by one charge +Q (a), two opposite charges +Q,−Q (b), and two
charges +Q (c).

Diagrams presented in Fig. 3.9 require a little deeper explanation. In fact, if
one charge +Q is considered, each point of the field surrounding the charge location
possesses its associated vector ~E(~r) ∼ ~̂r

r2 . It means that ~E decreases with an increase
in ~r. However, instead of drawing infinitely many vectors ~r associated with the
points lying on the radius r, we use arrows on the radial directions indicating the
movement of the test charge (we connect all arrows to get the field lines). We do
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not loose information regarding the field strength, because the density of the field
lines represents the field strength. The field lines begin on positive charges and
terminate on negative charges or at infinity (they cannot intersect).

In order to illustrate the Gauss’ law application, we consider an isolated point
charge +Q, and establish the electric field E in a point located at r distance from
the charge. We choose a sphere of radius r centered in the charge. Since ~E ‖ ~S (is
normal to the sphere), therefore ~E · d~S = EdS (see Fig. 3.10).

E

A1

A2

A3A+Q

dS
E

4

Fig. 3.10 Gaussian surface (sphere) with its center at +Q.

Furthermore, all points lying on the sphere have the same magnitude of E, and
hence (3.27) implies

ε0

∮
S

~E · d~S = 4πε0r
2E = Q (3.32)

which allows to find the electric field magnitude E at any point located on the
sphere

E =
Q

4πε0r2
. (3.33)

Since this result can be obtained directly from Coulomb’s law, Gauss’ and
Coulomb’s laws are totally equivalent, although the first one is more general.

If we apply spherical coordinates (r, θ, φ), the infinitesimal displacement of point
A is (see Fig. 3.11)

d~l = dlr~̂r + dlθ
~̂
θ + dlφ

~̂
φ = dr~̂r + rdθ

~̂
θ + r sin θdφ~̂φ, (3.34)

and ~̂r, ~̂θ, ~̂φ are the unit vectors showing increase in the corresponding coordinate.
Let us conduct a direct computation of the flux generated by the field ~E (see
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b) c)

Fig. 3.11 Spherical coordinates (a), infinitesimal displacements in directions of ~̂r, ~̂θ, ~̂φ (b), and
the resultant displacement d~l of point A (c).

(3.26)):∮
S

~E · d~S =

∫
ϑ

1

4πε0

(
Q

r2
~̂r

)
dlθdlφ~̂r =

∫
ϑ

1

4πε0

(
Q

r2

)
r2 sin θdθdφ =

=
Q

4πε0

π∫
0

sin θdθ

2π∫
0

dφ =
Q

ε0
.

(3.35)

In what follows, we consider the work done in an electric field. Let us introduce
another point charge q moving along the closed path from position A1 to A4, as the
arrows indicate and as it is shown in Fig. 3.10. The work along the paths A1A2,
A2A3 and A3A4, and A4A1 is as follows:

WA1A2 =

A2∫
A1

~F · d~l = −q
A2∫
A1

~E · d~l = −q Q

4πε0

r2∫
r1

dr

r2
=

qQ

4πε0

[
1

r

]r2
r1

=
qQ

4πε0

(
1

r2
− 1

r1

)
,

WA2A3 = q

A3∫
A2

~E · d~l = − qQ

4πε0

[
1

r

]r3
r2

=
qQ

4πε0

(
1

r2
− 1

r3

)
= 0,

WA3A4 = q

A4∫
A3

~E · d~l = − qQ

4πε0

[
1

r

]r4
r3

=
qQ

4πε0

(
1

r4
− 1

r3

)
=

qQ

4πε0

(
1

r1
− 1

r2

)
,

WA4A1
= −q

A1∫
A4

~E · d~l =
qQ

4πε0

[
1

r

]r1
r4

=
qQ

4πε0

(
1

r1
− 1

r4

)
= 0.

(3.36)
Total work done is

W = WA1A2 +WA2A3 +WA3A4 +WA4A1 = 0, (3.37)

because r2 = r3, r1 = r4.

The obtained result implies an important electric field property. The work done
in an electric field does not depend on the path taken in the field, or equivalently, we

 b
.



July 14, 2016 14:53 ws-book961x669 DYNAMICS OF MECHATRONIC SYSTEMS 10193-main page 36

36 DYNAMICS OF MECHATRONIC SYSTEMS

may say that the electrostatic force is conservative. The work done by the electric
field ~E, used for moving a charge +q from point A1 to A2, changes its potential
energy ∆E = E2 − E1, and the following relation holds

∆E = −WA1A2
, (3.38)

or equivalently

∆E = −q
A2∫
A1

~E · d~l. (3.39)

Since the electric force is conservative, the integral is independent of the path;
it depends only on the initial (A1) and final (A2) states. It means that in a static
electric field, the work done to move a point charge from location A1 to location
A2 does not depend on the taken path.

Equations (3.36) define the following four potentials:

VA1A2 =
WA1A2

q
= −

A2∫
A1

~E · d~l, VA2A3
=
WA2A3

q
=

A3∫
A2

~E · d~l,

VA3A4 =
WA3A4

q
=

A4∫
A3

~E · d~l, VA4A1 =
WA4A1

q
= −

A1∫
A4

~E · d~l,

(3.40)

and the potential is expressed in J/C or V.
The potential of the point A1 with respect to the point A2 is defined by the work

needed to move a unit positive charge from A2 to A1. The force ~F = q ~E acts on
the charge q in each point of the moving path. In order to balance this electrostatic
force, we need to apply the force −q ~E on the charge, which explains the occurrence
of the minus sign. The potential difference between points A and B is equal to the
work amount per unit charge needed to shift the charge from the point A to the
point B. In this regard, it can be understood as the potential energy measured per
charge unit. This definition is similar to that of the electric field intensity ~E =

~F
q .

Let us consider now two point charges q1 and q2 located at distance r and assume
that the vector ~E points from q1 to q2. In the case of opposite charges +q1 and
−q2, i.e., when the mutual electric force is attractive and q2 moves along ~E, we get

∆E = −(−q2)

rf∫
r

~E · d~l =
1

4πε0
q1q2

[
−1

r

]rf
r

=
1

4πε0
q1q2

(
1

r
− 1

rf

)
, (3.41)

which means that the system energy increases
(
rf > r, 1

rf
< 1

r , q2 < 0
)

. Here,
rf is the final state of the q2 movement.

In this case, the external force acts against the attractive field force. On the
contrary, when we release the charge from its position rf , the field performs the
work and the potential energy decreases.
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Charges +q1 and +q2 repel each other due to the same sign. It means that
moving q2 to q1 increases the potential energy (external force performs the work).
On the contrary, releasing the charges yields the increase in the separation between
them, and hence the system potential is decreased.

According to the tradition, let us take a reference point at which the potential
energy is zero. Note that for r → ∞, we have 1/r2 → 0, which means that the
associated force is zero. Thus, infinite separation of the charges implies that the
potential energy is zero. Once we have a zero potential energy value reference point,
it is easy to calculate the potential energy at any arbitrary point A:

EA = E(∞)− E(A) = −q
A∫
∞

~E · d~l = q

∞∫
A

~E · d~l. (3.42)

If an electric field is generated by the point charge Q, the potential energy of
the point A is

EA = q

∞∫
r

~E · d~S =
1

4πε0

qQ

r
. (3.43)

Formula (3.43) shows that, depending on a sign of the charges q and Q, we have
EA < 0 or EA > 0.

When we consider the electric field generated by a system of charges, the total
potential energy is computed as a sum of potential energies of each pair of charges.
For three charges, we have

E =
1

4πε0

(
Q1Q2

r12
+
Q1Q3

r13
+
Q2Q3

r23

)
, (3.44)

where ~rij points from i to j. The potential energy is associated with the work
necessary to move the charges within an electric field. Therefore, a system of
charges possesses the total potential energy equal to an algebraic sum of works
performed by an external agent to move all charges from infinity to their current
system positions. We observe that the potential energy definition requires a system
of charges rather than an individual charge.

Moving a unit test charge q0 from infinity to an arbitrary point A, we define the
electric potential at this point

VA =
EA
q0

=

∞∫
r

~E · d~l. (3.45)

The potential, being scalar, is independent of any test charge, but depends on
the electric field sources, and hence it may have negative, positive or zero values.
The SI unit of potential is volt, 1 [V] = 1 [J/C].

A system of N charges generates the following resultant potential

V =

N∑
n=1

Vn. (3.46)
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We show now that a potential and potential energy are associated with each
other. The potential difference between two points A,B is

∆VAB = VB − VA =
EB − EA

q0
=

∆EAB
q0

. (3.47)

It means that when an external agent moves the test charge q0 between two
points with the potential difference ∆V , it implies the change ∆E = ∆V q0 of the
potential energy of the system.

Owing to our earlier remarks, the potential difference does not depend only on
their location. When we take an electron as the test charge, one may introduce
another energy unit called electronvolt [eV]. It corresponds to potential energy
change between two points of potential difference 1 V caused by electron movement.
We note that 1[eV] = [e] · [V] = 1.602 · 10−19[J].

As we have already mentioned, the electric potential V characterizes the poten-
tial energy changes (scalar), whereas the electric field ~E deals with electric forces
(vectors). Taking any two points A,B of the electric field, one may calculate the
potential difference between them

∆VAB = VB − VA =

∞∫
B

~E · d~l −
∞∫
A

~E · d~l = −
B∫
A

~E · d~l, (3.48)

assuming that ~E and d~l are known. If ~E is generated by the positive single point
charge Q, then the potential of a point located at the distance R from Q is

VR =
Q

4πε0

∞∫
R

dr

r2
=

Q

4πε0

1

R
. (3.49)

Formula (3.49) implies that VR → 0 for R→∞, and VR →∞ for R→ 0.

We can treat an electrical potential in a more general way. Intensity of the
electric field ~E has rotation ∇× ~E = ~0. Owing to the Stokes theorem, a curvilinear
integral along an arbitrary closed curve

∮
~E · d~l = 0. We take two points A and

B, and integrate from A to B using different paths of integration. The sum of
integration from A to B, and then from B to A, should be zero, since both paths
are arbitrarily taken. It means that the curvilinear integral does not depend on the
chosen parts, but only on a distance between points.

Let us take a reference point O, and define the electric potential

V (~r) = −
r∫

0

~E · d~l. (3.50)

The difference of potentials in points A and B is

V (B)−V (A) = −
B∫

0

~E · d~l+
A∫

0

~E · d~l = −
B∫

0

~E · d~l−
A∫

0

~E · d~l = −
B∫
A

~E · d~l. (3.51)
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From the fundamental theorem for gradients, it follows that
B∫
A

(∇V ) · d~l = V (B)− V (A), (3.52)

which yields
B∫
A

(∇V ) · d~l = −
B∫
A

~E · d~l, (3.53)

and hence

~E = −∇V. (3.54)

It means that the electric field intensity is a gradient of a scalar potential. A
potential is not uniquely defined, since a reference point O is arbitrarily taken. If
we take other point O1, then

V1(~r) = −
r∫

O1

~E · d~l = −
O∫

O1

~E · d~l −
r∫

O

~E · d~l = C + V (~r), (3.55)

where C is a constant. However, a difference between potentials of two points A
and B does not depend on C, since

V1(B)− V1(A) = V (B)− V (A). (3.56)

Equation (3.54) implies

∂Ex
∂y

=
∂Ey
∂x

,
∂Ez
∂y

=
∂Ey
∂z

,
∂Ex
∂z

=
∂Ez
∂x

, (3.57)

which means that Ex, Ey and Ez cannot be arbitrarily taken.
Recall the already derived equations

∇ · ~E =
ρ

ε0
, ∇× ~E = ~0, (3.58)

where we apply substitution E = −∇V. We have

∇ · ~E = ∇ · (−∇V ) = −∇2V = −∆V. (3.59)

It means that the divergence of ~E equals the Laplacian of V , and we have

∆V = − ρ

ε0
. (3.60)

We have got Poisson’s equation which for ρ = 0 (lack of charge) takes the form
of the Laplace’s equation

∆V = 0. (3.61)

The second equation implies

∇× ~E = ∇× (−∇V ) = 0, (3.62)
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which means that in order to satisfy this equation, we must take
~E = −∇V. (3.63)

Consequently, we only need Poisson’s equation to find V , and then to find ~E.

However, in order to find ~E without introduction of the potential V , we need two
equations (3.58).

We can easily define the potential energy of N point charges. Assume that in
the beginning, all of them are located at infinity, and we move q1 into the required
position at first. In this case, no work is done, since there is no external field. Then
we move q2 into position ~r2, but in this case, there is a potential V1(~r2), and the
work done is

W2 =
1

4πε0
q2

q1

|~r1 − ~r2|
=

1

4πε0
q2
q1

r12
. (3.64)

In the case of the point charge q3 located at ~r3, the potential V1,2 is generated
by two charges q1 and q2 and, owing to the superposition rule, we have

V1,2 =
1

4πε0

(
q1

r13
+

q2

r23

)
, (3.65)

which means that

W3 =
1

4πε0
q3

(
q1

r13
+

q2

r23

)
. (3.66)

The resultant work done in the space to locate N point charges is as follows

W =
1

4πε0

(
q1q2

r12
+
q1q3

r13
+ · · ·+ q1qN

r1N
+
q2q3

r23
+
q2qn
r2n

+ · · ·+ q2qN
r2N

+
qN−1qN
rN−1N

)
.

(3.67)
The last formula can be presented in the following way

W =
1

2

N∑
n=1

qn

 N∑
m=1
m 6=n

1

4πε0

qm
rnm

 =
1

2

N∑
n=1

qnV (~rn), (3.68)

and then can be generalized to the case of a volume charge distribution

W =
1

2

∫
ρV dV . (3.69)

We are going to eliminate ρ and V by means of introducing ~E. Gauss’ law yields
ρ = ε0∇ · ~E, and hence

W =
ε0

2

∫
(∇ · ~E) V dϑ. (3.70)

Now, we apply an integration by parts and the theorem on divergence. We have

W =
ε0

2

[
−
∫

~E(∇V ) dϑ+

∮
V ~E · d~S

]
=

=
ε0

2

∫
ϑ

E2dϑ+

∮
S

V ~E · d~S

 =
ε0

2

∫
ϑ∗

E2dϑ.

(3.71)

Above, we have used the formula ∇V = − ~E accompanied by the observation
that when we enlarge the integration space comprising the charge, a contribution
coming from surface (volume) integral decreases (increases). In the case of full space
ϑ∗, the contribution coming from the surface integral is zero.
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3.2.2 Capacitance and Capacitors

A capacitor is a set of two conductors (plates) of an arbitrary shape, which are
isolated from the surrounding environment. A capacitor is “charged” when its
plates have equal opposite charges +q,−q. Since +q − q = 0, the net charge of
the capacitor is zero. If one connects the capacitor plates to the opposite battery
terminals, then equal and opposite charges are transferred to the capacitor plates.
Relation between the potential difference ∆V of the plates and the carried charge
is

q

∆V
= C, (3.72)

where the constant C is called the electrical capacitance. It should be noted that V
is the difference between the potential of the positive conductor and the negative
conductor, and since Q is the charge on the positive conductor, then always C > 0.

The capacitance SI unit is Farad [F]=[C/V], and the following subunits are used
[µF] = 10−6[F], [nF]=10−9[F], [pF]=10−12[F].

Consider the parallel-plate capacitor shown in Fig. 3.12 with the distance be-
tween plates d (this should not be not confused with a dipole) and a surface area
S.

+ + + ++ + + + ++ + + + ++ + +

d

(2)

(1)

+q

-q

C

- - - - - - - - - - - - - -

-

+
E

S

X

O

dr

Fig. 3.12 Charged parallel-plate capacitor (cross section).

Assuming S >> d, the electric field curves inside the capacitor embedded in
vacuum are vertical lines, and hence the electric field is uniform.

We apply Gauss’ law (see (3.27)) to define the electric field ~E between the plates,
i.e., the electric field passing through S is

φ =

∮
S

~E · d~S =

∮
S

EdS = ES =
q

ε0
, (3.73)

and hence

E =
qS

ε0
, (3.74)

where ε0 is the constant without a dielectric (vacuum). One may also introduce
ε = ε0εr = C/C0, where C0 is the capacitance of a dielectric (isolator) put into the
capacitor plates. In vacuum ε = ε0 = 1, in air ε ∼= 1, in transformer oil ε = 4.5, in
water ε = 80.
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The potential difference between the plates is

∆V12 = V2 − V1 = −
2∫

1

~E · d~r = ~E

1∫
2

dr =Ed =
qSd

ε0
. (3.75)

Finally, it follows from (3.72) that the capacitance

C =
q

∆V12
= ε0

S

d
, (3.76)

and it depends only on the capacitor geometry, i.e., S and d.
Before charging an unloaded capacitor, its potential energy E is zero. A charged

capacitor stores the electric potential difference

∆V ≡ U =
dE

dq′
, (3.77)

hence

dE = Udq/ =
q/

C
dq/, (3.78)

and the total charge q is achieved, when

E =
1

C

q∫
0

q/dq/ =
q2

2C
, (3.79)

or equivalently

E =
qU

2
=
CU2

2
. (3.80)

In what follows, we consider the parallel and serial connections of capacitors.

(i) Parallel capacitors connection is shown in Fig. 3.13.

C1

CN

Cn1 2

a) b)

Ce
21

U12 U12

Fig. 3.13 N capacitors connected in parallel (a) and the equivalent capacitor (b).

Assuming perfect conductors, the total charge of the equivalent capacitor is

Q = CeU = Q1 +Q2 + · · ·+QN = (C1 + C2 + · · ·+ CN )U, (3.81)

and hence the equivalent capacitance

Ce =

N∑
n=1

Cn. (3.82)
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(ii) Series capacitors connection is shown in Fig. 3.14.

C1 CNCn1 2

a) b)
Ce

21

U12 U12

U1 Un UN

Fig. 3.14 N capacitors connected in series (a) and the equivalent capacitor (b).

The total potential difference U12 follows:

U12 =
Q

Ce
= U1 + . . . Un + · · ·+ UN = Q

(
1

C1
+ · · ·+ 1

Cn
+ · · ·+ 1

CN

)
,

Q = Q1 = . . . Qn = . . . QN ,

(3.83)

and the equivalent capacitance

1

Ce
=

N∑
n=1

1

Cn
. (3.84)

The energy stored in a static electric field is given by

WE =
1

2

∫
~D · ~Edϑ =

1

2

∫
ϑ

εE2dϑ =
1

2

∫
ϑ

D2

ε
dϑ, (3.85)

where ~D is the flux density defined by ~D = ε ~E, and its unit in the SI system is
C/m2.

In the case of a parallel-plate capacitor with constant voltage V applied across
the plates, the electric field E = V/d (see Fig. 3.15).

+
-

d

V

S

Fig. 3.15 Parallel-plate capacitor with applied constant voltage V .

Formula (3.85) implies that

WE =
1

2

∫
εE2dϑ =

ε

2

(
V

d

)2 ∫
dϑ =

ε

2

SV 2

d
=

1

2
CV 2, (3.86)
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or alternatively

WE =
1

2

∫
D2

ε
dϑ =

1

2

∫
1

ε

(
εSV

d

)2

dϑ =
1

2

εS2V 2

d
=

1

2
CV 2. (3.87)

3.2.3 Resistance

When positive and negative charges have different characteristics, or they are em-
bedded in a liquid or a gas, then the current density ~J should be rather taken into
account instead of current I. Suppose we have a particle +Q in an electric field ~E

in a vacuum. Then, the acting force ~F = +Q~E causes the charge to move with a
constant acceleration ~a, and velocity ~v = ~at. However, when the same charge moves
in a gas or liquid, it undergoes random impacts (collisions) with other particles of
the medium, and its movement is random. In the case of a homogeneous medium,
random components vanish, and as a microscopic output constant average velocity
called the drift velocity ~v of the electron-gas movement can be introduced. Recall
that a cubic meter of a conductor contains about 1028 atoms, and each atom has one
or two free electrons. Therefore, the charge movement in a gas (liquid) is analogous
to the movement of electrons which can be modeled with the help of the electron-gas
theory. It means that the drift velocity of the electrons can be estimated via the
following simple formula

~v = µ~E, (3.88)

where [µ] = m2/Vs is the mobility coefficient.
Two current densities are distinguished, although both of them are governed by

the same formula

~J = ρ~v. (3.89)

A set of charged particles maintaining their relative positions within the volume
ϑ and passing through a surface S generates a convection current density [J ] =

[A/m2] which can be either constant or nonconstant in time.
Assume that an electric field is applied to a conductor with the same cross

section S. Then, it follows from Eqs. (3.88) and (3.89) that

~J = σ ~E, σ = µρ. (3.90)

Since σ ([σ] = [S/m] – Siemens per meter) is the material conductivity, ~J is
known as the conduction current density. If we consider electrons as the carriers,
then ρ < 0 and µ < 0, which means that always σ > 0. However, we conventionally
take ρ > 0, µ > 0, since the current direction is defined by the direction of movement
of positive carriers. For perfect conduction σ =∞.

If we take an infinitely small surface d~S and the current density ~J crossing this
surface, then the current dI = ~J · d~S, and hence

I =

∫
S

~J · d~S. (3.91)
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It is well known that the same electric potential difference acting in different
conductors (made of different materials and having different geometric properties)
yields different values of the current.

In general, the following proportionality condition holds

R =
U

I
, (3.92)

where a constant R is called resistance and its SI unit is Ohm, i.e., [Ω]=[V/A] (we
also deal with 1 [kΩ] = 103 [Ω], 1 [MΩ] = 106 [Ω]). Another constant characterizing
electric properties of the material, i.e. resistivity ρ, is defined in the following way

~E = ρ ~J, (3.93)

where ~J is the current density [J]=[A/m2], [ρ]=[Ωm] (for instance, for copper ρ =

1.68 · 10−8 Ωm, for iron ρ = 9.61 · 10−8 Ωm, for silver ρ = 1.59 · 10−8 Ωm, for
silicon ρ = 2.5 · 103 Ωm (semiconductor) and for glass ρ = 1 · 1010−14 Ωm (isolator),
and the ρ values are given for pressure 1 atm and temperature 20°C. One may also
introduce the so-called conductivity σ = 1/ρ. In the case of a cylindrical conductor
of length l and cross section area S, the potential difference ∆V12 = U applied to
the conductor ends generates the uniform electric field

E =
U

l
, J =

I

S
, (3.94)

and hence it follows from Eqs. (3.93) and (3.94) that

R =
ρl

S
. (3.95)

Charge carriers moving in a conductor suffer from many collisions with the
conductor structural lattice, and thus their kinetic energy is transformed into heat.
Resistivity, in general, depends on the temperature T in an almost linear manner:

ρT = ρT0
[1 + α(T − T0)] , (3.96)

where

α =
∆ρ

ρ∆T
, ∆ρ = ρT − ρT0 , ∆T = T − T0. (3.97)

The coefficient α is called the temperature coefficient of resistivity, and [α] =
[1/K].

A decrease in the temperature causes a decrease in the resistivity of materials. In
1911, Onnes discovered that resistivity of mercury achieves zero for the temperature
around 4°K. This has opened the research directed towards superconductivity, since
the established current should persist forever in such a material.

Finally, let us address the current continuity equation, which follows a concept
from fluid mechanics. If one takes a closed surface S, a net current will go out if a
decrease in a positive charge occurs, as described by the formula

I =

∮
~J · d~S = −dQ

dt
= − ∂

∂t

∫
ρdϑ. (3.98)
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From (3.98) we get

lim
∆ϑ→0

∮
~J · d~S
∆ϑ

= − ∂

∂t
lim

∆ϑ→0

∫
ρdϑ

∆ϑ
, (3.99)

and thus

~∇ · ~J = −∂ρ
∂t
. (3.100)

We show that

lim
∆ϑ→0

∮
~J · d~S
∆ϑ

= ∇ · ~J. (3.101)

Let us take a cube and the vector field ~J in Cartesian coordinates. All six cube
surfaces must be covered to obtain

∮
~J · d~S. The x component of ~J is ~J1, and we

take small input face and output face of the cube:

I1 =

∮
~J · d~S ∼= −J1(x)∆y∆z, (3.102)

I2 =

∮
~J · d~S ∼= −J1(x+ ∆x)∆y∆z = −

[
J1(x) +

∂J1

∂x
∆x

]
∆y∆z, (3.103)

and hence

I1 − I2 =
∂J1

∂x
∆x∆y∆z =

∂J1

∂x
dϑ. (3.104)

Proceeding in the similar way, the remaining two pairs of faces yield the final
result ∮

~J · d~S ∼=
∮ (

~J1 + ~J2 + ~J3

)
d~S ∼=

(
∂J1

∂x
+
∂J2

∂y
+
∂J3

∂z

)
∆ϑ, (3.105)

and consequently we get Eq. (3.101).
It should be noted that ρ in (3.101) represents a net charge density. Since ρ̇ 6= 0

only during a transition state, the continuity equation ∇ · ~J = 0 is equivalent to
Kirchhoff’s current law.

Another important remark concerns a notation of a net charge. In spite of that
the valence electrons move due to electric field action, each conduction electron is
balanced by a proton in the nucleus, and hence every ∆ϑ exhibits zero net charge.

3.2.4 Electric Laws

In general, the function i(U) is different for different materials and it is nonlinear (we
denote constant current by I, and time-varying current by i). Once it is linear, then
the so-called Ohm’s law holds. It states that the resistance between two arbitrary
points of a conductor does not depend on the applied potential difference, i.e., on
its magnitude and polarity. It is expressed by the relationship

U = IR, (3.106)
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R

1

2

U=Ri

emf

i

i

+-
B

Fig. 3.16 Electric circuit with the battery B and resistor R.

and the materials obeying Ohm’s law are called Ohmic elements. Note that relation
(3.106) is called the point form of Ohm’s law.

When the charge dq moves within an uniform electric field established between
the points 1 and 2 exhibiting the potential difference ∆V12 = U , it causes a change
in the potential energy ∆E (see (3.79)). Let us consider the energy transfer in an
electric circuit shown in Fig. 3.16.

In the connected circuit, positive charges move in the direction shown by arrows
at i, which correspond to the used convention to indicate the current movement.
When we take a positive charge inside the battery, it will move from high potential
(+) to low potential (−), and the direction of the current inside the battery is
opposite to the marked direction i in the external circuit. However, in the figure,
the direction of the arrow of E indicates the direction of motion of positive charges
from the negative terminal to the positive one. Our closed circuit loop should
conserve energy of a charge carrier traveling around it. The potential difference
takes place across the EMF source and the resistor.

The mentioned potential difference forces the charges to move from point 1 to
2, and hence the potential energy between these points is decreased. Since the
total energy amount is conserved, the electric potential energy is transformed into
another energy form. In the case shown in Fig. 3.16, the charges movement causes
energy loss associated with atoms and the conductor structural lattice collisions,
and thus the electric energy is transformed into heat. The energy transferred inside
the resistor R follows

dE = dqU = IUdt. (3.107)

The associated electric power, i.e., the time rate of the transferred energy is

P =
dE

dt
= UI = I2R =

U2

R
, (3.108)

and formula (3.108) is known as Joule’s law for electric current. The energy trans-
ferred through the resistor in time t is governed by the Joule heating equation

E = Pt = UIt = I2Rt =
U2

R
t, (3.109)
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where the unit of electric power in SI is [P] = [volt·ampere] = [W], and [W] stands
for watt.

Considering current circuits being sets of electrical devices and wires, one may
distinguish direct-current circuits (DC) and alternating-current circuits (AC). The
DC (AC) circuits are associated with constant (varying in time) currents and volt-
ages.

The Ohm’s law is already described by Eq. (3.89) which comes from

~J = σ( ~E + ~v × ~B), (3.110)

assuming that velocity ~v ∼= 0.

Remark 1. Movement of charged particles can be generated not only by ~E and
~B, but also by chemical and gravitational interactions.

Remark 2. For a perfect conductor, we have ~E = ~J/∞ = 0.

Consider a simple circuit loop consisting of a battery, two conductors and a
light bulb. The first surprising observation is that the current intensity is the same
in the whole circuit, and that the light appears suddenly. In the stationary state,
there are only two forces: battery (source) force and the electrostatic force which
transmits action of the battery force into the whole circuit. A source (battery)
force can be generated by chemical reactions, piezoelectric effects, thermal effects
(thermoelements), or light actions (photoelectric cells). The resultant force is

q ~F
′

r = ~F
′

sq + ~Eq, (3.111)

and when we divide it by the charge q, we see that ~F
′

r , ~F
′

s (source force) have the
same unit as ~E. Now we introduce the so-called electromotive force (EMF )

E =

∮
~F
′

r · d~l =

∮
~F
′

s · d~l +

∮
~E · d~l =

∮
~F
′

s · d~l, (3.112)

since in the case of electrostatics,
∮
~E · d~l =0.

A real battery possesses its own internal resistance Ri, and a difference of po-
tentials between its positive B and negative A poles V = E −RiI. However, for an
ideal battery

V = −
B∫
A

~E · d~l =

B∫
A

~F
′

s · d~l =

∮
~F
′

s · d~l = E , (3.113)

and the integration path has been extended to the whole circuit, since inside the
battery ~F

′

s = 0.

The battery generates and maintains potential difference V = E which cor-
responds to potential energy of the battery qV , being equal to the work of the
electromotive force Eq supporting flow of the current. On the other hand, the po-
tential energy qV supports the flow of electric charges in an opposite direction in
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comparison to the current movement in the circuit. Since ~F
′

s and ~E are responsible
for the mentioned currents movement, their direction must be opposite. It follows
from Eq. (3.111) and ~J = σ ~F

′

r , which for σ = ∞ (ideal conductor) yields ~F
′

r = 0,

and hence ~E = −~F ′s.
Let us again consider circuit loop shown in Fig. 3.16. Kirchhoff’s second law

(voltage law) states that the algebraic sum of changes in potential established in a
complete traversal of any closed circuit loop is zero, i.e.,

N∑
n=1

Un = 0. (3.114)

For the case shown in Fig. 3.16, changes of the potential energy are introduced
by the resistor (iR) and EMF (battery) sources. Two rules are used while applying
formula (3.114). If a resistor is traversed in the current direction (opposite), then
the potential difference is −iR (iR). If the battery is traversed in the EMF direc-
tion from its negative to positive terminal (opposite), the corresponding potential
difference is E (−E). For the studied case, we have

−IR+ E = 0. (3.115)

It means that Kirchhoff’s second law can be also formulated as follows

K∑
k=1

ikRk+

N∑
n=1

En = 0, (3.116)

which can be read in the following way: an algebraic sum of potential differences
across all resistors encountered in a complete traversal of any closed circuit loop
and the algebraic sum of electromotive forces occurred in the loop is equal to zero.

In the case of a multi-loop circuit consisting of junctions (points in the circuit
where the wire segments meet) and branches (circuit paths that begin in one junc-
tion and go along the circuit to the other branches), one needs to apply the loop law
to each of the distinguished branches. In addition, at any junction, the algebraic
sum of currents leaving the junction (

∑
iL) is equal to the algebraic sum of currents

entering the junction (
∑
iE), which is called Kirchhoff’s first law and is governed

by the following equation ∑
iL =

∑
iE . (3.117)

In other words, Kirchhoff’s current law states that the net current leaving a
junction of several conductors is zero.

Finally, let us discuss and illustrate Gauss’ law.
Gauss’ law states: the total flux ~D out of a closed surface ~S is equal to the net

charge within the surface. It means that the results strongly depend on a proper
choice of the integration surface, since the integral form of Gauss’ law follows∮

~D · d~S = Q. (3.118)
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Let us consider a point charge +Q and introduce Cartesian coordinates. Then,
~D is everywhere normal to spherical surfaces of radius r, and, Gauss’ law (3.118)
yields

Q = D

∮
dS = 4πr2D. (3.119)

In the vector form

~D =
Q

4πr3
~r, (3.120)

and, taking into account that the electric field intensity ~E generated by Q is

~E =
Q

4πε0r3
~r, (3.121)

then

~D = ε0
~E

(
~D = ε ~E

)
. (3.122)

In general, Gauss’ method can be directly applied for symmetric configurations
of charges. Although Gaussian surface must be closed, it can be divided into a series
of surface elements (special Gaussian surfaces) with either normal or tangential ~D.
A special Gaussian surface has the following properties: (i) It is closed; (ii) ~D is
either normal or tangential to the surface; (iii) D is constant for the surface part
where ~D is normal.

Gauss’ law points out the difference between electric and magnetic fields. The
total field flux generated by an electric field passing by a closed area is equal to the
net charge (it can be either zero or nonzero)

φE =

∫
S

~E · d~S =
1

ε0
Q. (3.123)

If we take a bar magnet, we are able to compute the total magnetic field flux
φB passing through a closed surface (Fig. 3.17).

Gauss’ law applied to the magnetic field implies

φB =

∫
S

~B · ~E = 0. (3.124)

It means that magnetic field curves are closed loops which indicate the absence of
isolated magnetic poles. In Fig. 3.17, three different surfaces S1, S2, S3 are marked.
In the case of the surface S1, the total inward and outward fluxes are equal, and
hence the total magnetic flux through S2 is zero. The surface S2 cuts the magnetic
dipole, and this cut yields a pair of new magnets S−N ′, and S′−N having its own
closed loops of field lines, thus we deal with zero magnetic field flux. The Gaussian
surface S3 possesses zero net magnetic charge, because the total inward flux equals
the total outward flux.

 b
.



July 14, 2016 14:53 ws-book961x669 DYNAMICS OF MECHATRONIC SYSTEMS 10193-main page 51

Magnetic and Electromagnetic Phenomena 51

S

N
S1

S2

S3

N

S/

/

Fig. 3.17 Bar magnet and its magnetic field flux.

3.2.5 Poisson’s and Laplace’s Equation

So far, it has been shown that the fields ~E and ~D are coupled via the simple
equation ε ~E = ~D, and the electric field intensity E = −∇V, where V is a potential.
Therefore, for a homogeneous medium we obtain

∇ · ~D = ε∇ · ~E = −ε∇2V = −ε∇2V = ρ, (3.125)

or equivalently

∆V ≡ ∇2V = −ρ
ε
. (3.126)

The obtained PDE (3.126) is called Poisson’s equation. It allows to define the
potential V on the basis of known distribution of charges, and next ~D and ~E can be
also defined. One may use Gauss’ law to get ~D, and next ~E. However, in practice,
this direct application of Gauss’ law is questionable, since charge distributions are
not a priori known. Poisson’s equation is of more practical use, and the charge-free
area (ρ = 0) is converted into the so-called Laplace’s equation

∇2V = 0. (3.127)

We may derive the Laplacian in Cartesian, cylindrical and spherical coordinates
by finding ∇V first, and then the product ∇ · ∇V . Laplace’s equation is directly
obtained ∇ · ∇V = ∇2V = 0.

It can be shown directly from Laplace’s equation that Cartesian components of
~E achieve their maximum values on the boundary.

In what follows, we derive a direct solution to Laplace’s equations in a few simple
cases:

(i) 1D problem and a Cartesian solution. Consider two finite parallel conduct-
ing plates with voltage V = 0 at z = 0, and V = 50 at z = d. We neglect
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the fringing effect, and hence the problem is reduced to one dimension, and
Laplace’s equation reduces to the following one

d2V

dz2
= 0. (3.128)

After integration we get

V (z) = A1z +A2. (3.129)

The introduced boundary conditions yield A2 = 0, A1 = 50/d, and hence

V (z) =

(
50

d

)
z, [V]. (3.130)

Knowing V , we may find ~E and ~D :

~E = −∇V = −50

d
= −50

d
~k, [V/m], (3.131)

and

~D = ε ~E = −50

d
ε~k, [C/m2]. (3.132)

At the plate z = 0 we have ρ = −50ε/d, whereas at the plate z = d, we
have ρ = +50ε/d.

(ii) 2D problem and a Cartesian product solution.
Let V = V (x, z), and let us assume the following solution form V =

X(x)Z(z).

From Laplace’s equation we get

∂2(XZ)

∂x2
+
∂2(XZ)

∂z2
= 0, (3.133)

or equivalently

Z
∂2X

∂x2
+X

∂2Z

∂z2
= 0. (3.134)

Separation of the variables yields

1

X

∂2X

∂x2
+

1

Z

∂2Z

∂z2
= 0. (3.135)

Observe that the first term of LHS is independent of Z(X). Therefore, we
may set them equal to a constant ∓α2. Equation (3.135) is split into two
second order ODEs of the forms:

d2X

∂x2
− α2X = 0, (3.136)

d2Z

∂z2
+ α2Z = 0. (3.137)

General solution to equation (3.136) is

X(x) = C
(1)
1 eαx + C

(1)
2 e−αx, (3.138)
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or equivalently

X(x) = C
(1)
3 cosh(αx) + C

(1)
4 sinh(αx). (3.139)

General solution to equation (3.137) is

Z(z) = C
(2)
1 eiαz + C

(2)
2 e−iαz, i2 = −1, (3.140)

or equivalently

Z(z) = C
(2)
3 cos (αz) + C

(2)
4 sin (αz). (3.141)

Finally, we obtain

V (x, z) =
(
C

(1)
1 eαx + C

(1)
2 e−αx

)(
C

(2)
1 eiαz + C

(2)
2 e−iαz

)
, (3.142)

or equivalently

V (x, z) =
(
C

(1)
3 cosh(αx) + C

(1)
4 sinh(αx)

)(
C

(2)
3 cos (αz) + C

(2)
4 sin (αz)

)
.

(3.143)
(iii) 3D problem and a cylindrical product solution.

We assume the following form of solution V (r,Θ, z) = R(r)Θ(θ)Z(z) and
we apply Laplace’s equation in the form

∇2V =
1

r

∂

∂r

(
r
∂V

∂r

)
+

1

r2

∂2V

∂θ2
+
∂2V

∂z2
= 0. (3.144)

Substituting the assumed solution into (3.144), we obtain

ΘZ

r

d

dr

(
r
dR

dr

)
+
RZ

r2

d2Θ

dθ2
+RΘ

d2Z

dz2
= 0. (3.145)

We divide both sides of equation (3.145) by RΘZ, and we get

1

R

d2R

dr2
+

1

Rr

dR

dr
+

1

r2Θ

d2Θ

dθ2
= − 1

Z

d2Z

dz2
= −β2, (3.146)

where β is constant. At first, we find Z(z) as a solution to the following
equation

d2Z

dz2
− β2z = 0, (3.147)

and hence

Z(z) = C1 coshβz + C2 sinhβz. (3.148)

Equation (3.146) implies also the next ODE of the form

r2

R

d2R

dr2
+
r

R

dR

dr
+ β2r2 =

1

Θ

d2Θ

dθ2
= α2. (3.149)

We first solve the second order ODE of the form

d2Θ

dθ2
+ α2Θ = 0, (3.150)
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and its solution follows

Θ(θ) = C3 cosαΘ + C4 sinαΘ. (3.151)

The final second order ODE is known as the Bessel differential equation,
and has the following form

d2R

dr2
+

1

r

dR

dr
+

(
β2 − α2

r2

)
R = 0. (3.152)

Solutions to Bessel equations are known and are described by the Bessel
functions. We have

R(r) = C5Jα(βr) + C6Nα(βr), (3.153)

where:

Jα(βr) =

∞∑
m=0

(−1)
m

(βr/2)
α+2m

m!Γ(α+m+ 1)
, (3.154)

Nα(βr) =
( cosαπ)Jα(βr)− J−α(βr)

sinαπ
. (3.155)

Jα(Br) stands for a Bessel function of the first kind of order α, whereas
Nα(Br) is a Bessel function of the second kind of order α. For α = n ∈ N
and large r, the Bessel functions are similar to the damped sine waves

Jn(r) ∼=
√

2

πr
cos

(
r − π

4
− nπ

2

)
, (3.156)

Nn(r) ∼=
√

2

πr
sin
(
r − π

4
− nπ

2

)
. (3.157)

(iv) 2D spherical product solution.
We assume that V = V (r, ψ) = Ψ(ψ)R(r), and hence the truncated
Laplace’s equation in spherical coordinates follows

1

r2

∂

∂r

(
r2 ∂V

∂r

)
+

1

r2 sinψ
∂

∂ψ

(
sinψ

∂V

∂ψ

)
= 0, (3.158)

or equivalently

1

r2

∂

∂r

(
r2 ∂V

∂r

)
+

1

r2 sinψ

(
cosψ

∂V

∂ψ
+ sinψ

∂2V

∂ψ2

)
= 0. (3.159)

Therefore, we get(
r2 d

2R

dr2
+ 2r

dR

dr

)
Ψ +R

(
d2Ψ

dψ2
+

1

tanψ

dΨ

dψ

)
= 0 (3.160)

or, dividing by RΨ, we obtain(
r2

R

d2R

dr2
+

2r

R

dR

dr

)
+

(
1

Ψ

d2Ψ

dψ2
+

1

Ψ tanψ

dΨ

dψ

)
= 0. (3.161)
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Let us introduce the following constant n(n+ 1):

r2

R

d2R

dr2
+

2r

R

dR

dr
= −

(
1

Ψ

d2Ψ

dψ2
+

1

Ψ tanψ

dΨ

dψ

)
= n(n+ 1), (3.162)

and n is an integer. The following two separated second order ODEs are
obtained:

r2 d
2R

dr2
+ 2r

dR

dr
− n(n+ 1)R = 0, (3.163)

d2Ψ

dψ2
+

1

tanψ

dΨ

dψ
+ n(n+ 1)Ψ = 0. (3.164)

Equation (3.163) has the following solution

R(r) = C1r
n + C2r

−(n+1), (3.165)

which can be verified by direct substitution to (3.163). In order to solve
(3.164) we introduce the following variable γ = cosψ.

3.3 Induced Electric Fields

3.3.1 Electromotive Force

Let us consider a straight vertical, isolated conductor, for instance a metal, where
free electrons can easily move within the metal structural lattice. In the majority
of (natural) cases, free electrons move in a random way, so that if one introduces an
imaginary plane cutting the inductor perpendicularly, then the number of electrons
passing through this plane in both directions is equal (see Fig. 3.18a). In this case,
no electric field is generated by the conductor.

Let us assume now that we have introduced a uniform magnetic field, as it
is shown in Fig. 3.18b. The previous random movement of free electrons is not
disturbed at all. However, when the conductor starts to move with a constant
velocity ~v⊥ ~B, the situation changes, i.e., the electrons start moving in an ordered
way, in the direction indicated by the Lorentz law (see Fig. 3.52b for the right-hand
rule for vectors ~B,~v, ~F ).

If one takes one electron −q from the electrons flow, then this electron is sub-
jected to action of the Lorentz force ~F = −q(~v × ~B) pushing the electron to move
vertically downward. After such a rapid transient state, one may consider the con-
ductor AA′ as a capacitor, the cross sections Π and Π′ of which may be understood
as the capacitor plates. As a result, we get two induced surface charges, with the
top positive (Π) charge and bottom negative charge (Π′). Now, if one puts a test
charge +q0 inside the conductor, then the charge will move vertically downward,
and hence the electric field direction ~E in the conductor AA′ is directed downwards
too, i.e., ~E = E~j.

We follow here a convention used for current direction labeling. Namely, the
conventional current direction is defined by the direction of flow of positive charges.
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Fig. 3.18 The conductor without (a) and with (b) the action of the magnetic field, and rectangular
circuit (c) with movable conductor AA′.

It means that in our case, electrons move opposite to the direction of the current.
Although the current is associated with arrows indicating the direction of the flow
of positive charges, it is a scalar quantity.

The potential difference between two points A,A′ belonging to two cross sections
can be defined by the following relationship

EMF ≡ E =
VA − VA′

q
=

1

q

A∫
A′

~F ·~jdy = ~E ·~j

l
2∫

− l2

dy = ~E ·~l, (3.166)

and is equivalent to the potential energy change. Recall that the potential is a scalar
quantity (it can be positive or negative), its SI unit is volt [V]=[J/C], whereas the
SI unit of the electric field [E]=[N/C].

The indicated electric field intensity vector ~E can be also derived by considering
actions of two fields (magnetic and electric) on the electron. Owing to Coulomb’s
law, we have

~Fm + ~Fe = ~0, (3.167)

or equivalently

q( ~E + ~v × ~B) = ~0, (3.168)
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and hence

~E = ~B × ~v. (3.169)

Formula (3.169) shows that the electric field ~E can be generated by the magnetic
field and the conductor velocity ~v. This observation has been motivated by Faraday’s
experiments, who observed that a charge put in the magnetic field induces an electric
field.

Since we have the potential energy harvested between two cylindrical conductor
places, it can be treated as a battery. If we take a resistor R which closes an
electrical circuit, then the potential difference between cross sections Π and Π′ will
generate an electromotive force, and the current i will be established. One may
introduce the equivalent diagram for the EMF shown Fig. 3.19.

Ri+

+

-

-

Fig. 3.19 Equivalent scheme for EMF E.

It consists of a battery and an intrinsic resistance Ri. The battery, being the
EMF source, produces the electrical energy from other form of energy like chemical,
mechanical or radial ones. EMF is defined as E = dW/dq, [V]=[J/C]. It should be
able to perform work on charge carriers, and it is defined as the amount of work
done on the unit positive charge to move it from a negative to positive terminal.
The arrow of E shows the direction of positive charges movement through the EMF

source from the negative (low potential) to positive terminal (high potential). We
have

E = iR. (3.170)

The electromotive force EMF (E) can be also induced by the change of a mag-
netic flux.

In general, if we consider an open surface S being bounded by a closed contour C
and assume that the magnetic flux φ crossing S changes in time, then the induced
voltage V = V (t, x1, x2, x3) depends on time and space, and is defined through
Faraday’s law V = −dφ/dt.

Observe that in the earlier considered nonconservative field, the electromotive
force EMF = V (t, x1, x2, x3), whereas in a conservative electric field, voltage V does
not depend on the position in space and is rather associated with the electrostatic
potential (the electromotive force EMF is not generated in this case). When the
magnetic flux φ changes in a circuit element, then V = V (t) and i = i(t), and
Faraday’s law states that V (t) = −dφdt didt = −L didt . Now, L is the self-inductance of
the circuit element and V is voltage of self-inductance.

 b
.



July 14, 2016 14:53 ws-book961x669 DYNAMICS OF MECHATRONIC SYSTEMS 10193-main page 58

58 DYNAMICS OF MECHATRONIC SYSTEMS

In what follows, we show how we may derive the corresponding electric field
~E knowing the electric potential V , and vice versa. The general mathematical
definition of a derivative of a scalar field V (physically, in spite of potential in an
electric field, it may represent the height of terrain points in geology) in the direction

of a unit vector ~̂l is as follows
∂V

∂l
(M0) = lim

s→0

f(M)− f(M0)

s
, (3.171)

where: M0M =
~̂
ls, s > 0, or equivalently

∂V

∂l
=
(
~̂
l · ∇

)
V (M0), (3.172)

and M0 is an arbitrary point of the field. The electric field vector ~E points in the
decreasing potential direction, as it is shown in Fig. 3.20. We can take various

directions of the unit vector ~̂l, and thus evaluate the derivatives with the use of

formula (3.171). However, there exists only one vector ~̂lA, where ~̂lA · ~E = −E. The
latter one points in the direction opposite to the vector ~E. Since the electric field
generates a potential, and vice versa, it can be understood as an action and reaction
rule which satisfies classical Newton’s third law.

V dV-

V dV+
V M( )0

M0E

V

l

Fig. 3.20 Electric field intensity ~E (vector) and potential V (scalar).

In a study of either scalar or vector fields, we need to know how a field is changed
due to changes of its segments. This is why the gradient (scalar field) as well as
divergence and curl (vector field) operators are widely applied. We show that the
change dV in the scalar function V , when traversed over a path d~r, is defined by
the following dot product

dV = ∇V · d~r, (3.173)

where ∇V ≡ gradV stands for the gradient of the scalar function V . Consider the
Cartesian coordinates and take two neighboring points separated by

d~r =~idx+~jdy + ~kdz, (3.174)
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It follows from (3.173) and (3.174) that

dV =

(
∂V

∂x
~i+

∂V

∂y
~j +

∂V

∂z
~k

)
·
(
~idx+~jdy + ~kdz

)
V =

=
∂V

∂x
dx+

∂V

∂y
dy +

∂V

∂z
dz,

(3.175)

which agrees with the direct definition of the differential dV . Observe that by
fixing |d~r|, we preserve the distance between two chosen points, and ∇V indicates
the direction of the maximum increase in V . Assume that two chosen points lie on
the same equipotential surface V (x, y, z) = C1.

We have dV = dC1 = 0, which means that d~r⊥∇V. Since d~r is tangent to the
equipotential surface, ∇V . The gradient ∇V of a potential function (here electric
potential) V (x, y, z) is a vector field being everywhere normal to the equipotential
surfaces.

Assume that we deal with an electric field ~E acting on a test charge +q. This
action generates simultaneous reaction coming from the associated potential, and
hence the resultant force acting on the test charge is

q

(
~E +

~̂
lA
∂V

∂l

)
= 0. (3.176)

For ~l =
~̂
lA, taking into account (3.172), we get

~E = −∇V (M0), (3.177)

where in the given Cartesian coordinates ∇ operates on the scalar function:

∇ =~i
∂

∂x
+~j

∂

∂y
+ ~k

∂

∂z
,

∇V (M0) =
∂f(M0)

∂x
~i+

∂f(M0)

∂y
~j +

∂f(M0)

∂z
~k = ∇f(M0).

(3.178)

Considering cylindrical coordinates (r, θ, z) of the point M(r, θ, z) supplemented
with corresponding unit vectors ~er, ~eθ, ~ez, being tangent to coordinate curves and
passing through point M , we have

∇V = ~er
∂V

∂r
+

1

r
~eθ
∂V

∂θ
+ ~ez

∂V

∂z
, (3.179)

whereas for the spherical coordinates of the point M(r, θ, ψ) and the corresponding
unit tangent vectors ~er, ~eθ, ~eψ being tangent to the coordinate curves and passing
through point M , we have

∇V = ~er
∂V

∂r
+

~eθ
r sinψ

∂V

∂θ
+
~eψ
r

∂V

∂ψ
. (3.180)

Knowing ~E, we can establish the associated potential function V . The electric

field ~E component taken in an arbitrary direction ~̂
l is equal to the negative rate

of the potential change regarding the position displacement in this direction. ~E
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points opposite to the potential gradient at the point M0, i.e., in the direction of
decreasing potential value.

On the contrary, knowing a spatial distribution of a potential in the Cartesian,
cylindrical and spherical coordinates, one may find the associated components of
the electric field ~E with the use of the following formulas (see Eqs. (3.178), (3.179)
and (3.180)), respectively:

E1 = −∂V
∂x

, E2 = −∂V
∂y

, E3 = −∂V
∂z

,

Er = −∂V
∂r

, Eθ = −1

r

∂V

∂θ
, Ez = −∂V

∂z
,

Er = −∂V
∂r

, Eθ = − 1

r sinψ
∂V

∂θ
, Eψ = −1

r

∂V

∂ψ
.

(3.181)

Let us now consider the case shown in Fig. 3.18c. Movement of the conductor
with velocity ~v induces the electromotive force EMF (E). This is due to changes of
the areas located on the left- and the right-hand side of the vertical conductor AA′

during its movement, and hence the magnetic field flux is defined as

φn(t) = ~B · ~Sn(t), n = 1, 2, (3.182)

assuming that the magnetic induction field is constant and uniform, and ~Sn(t)

denotes the surface orientation coinciding with the corresponding current.

3.3.2 Rectangular Loop with a Conductor Moving in a Magnetic
Field

Let us consider a wire segment shown in Fig. 3.18b, and let us take the horizontal
part of the wire loop of the length l (see Fig. 3.19) located on the right with respect
to the moving conductor’s cross section (Fig. 3.21).

Z

l

Y

i

v

F
e

-

a) b)

Y

v

B

X

Z

e

-
F
e

Fig. 3.21 Wire segment with the current i embedded in the magnetic field ~B (a) and the Lorentz
force action on its electron (b).
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The following Lorentz force acts on the electron moving with velocity ~v opposite
to the direction of the current i flow

~Fe = q(~v × ~B) = −e(~v × ~B) = e( ~B × ~v). (3.183)

Assuming that we have N electrons moving in the wire segment of the length l,
the total force

~F = N ~Fe = eN( ~B × ~v). (3.184)

The volume of the cylindrical shape conductor of the length l and area of cross
section S is connected by the relationship

N = nSl, (3.185)

where n is the electron volume density. In what follows, we introduce the micro-
scopic quantity associated with the current flow, i.e., the so-called current density
~J, where J=[A/m2]. This allows to transit from a scalar (current i) to the vector
~J defined as follows

d~S · ~J = di, (3.186)

where the cross section of different current is represented by the vector d~S. It means
that the magnitude J of the density represents a current element di passing through
the elementary conductor cross section area dS. The direction of the external elec-
tric field ~E is the same as the direction of the vector ~J (the electrons move opposite
to the direction of ~J). Therefore, the vectors ~E and ~v have opposite directions, and
the following relationship holds

~J = −ne~v, (3.187)

where n is a number of electrons per unit volume. From (3.186) one obtains

i =

∫
S

~J · d~S, (3.188)

which means that the current i can be viewed as the flux of the vector ~J over the
surface S, and the integral is taken over the whole conductor cross section.

It follows from (3.184) that in the given Cartesian coordinates, we have

~F = −enSl~v × ~B) = −enSl
(
~jv× ~B

)
= enSv

(
~jl × ~B

)
= enSv

(
~l × ~B

)
= i
(
~l × ~B

)
,

(3.189)

because, due to the formula (3.187), vectors ~v and ~J have opposite directions (the
direction of the current flow coincides with the direction of the vector ~J), and ~j
denotes the unit vector of the Cartesian axis OY.

Introducing the fixed closed conducting loop into the magnetic field ~B, and
moving the conductor AA′ to the right and left with constant velocity ~v, we produce
the current i = i1 + i2, where i1(i2) is associated with the left (right) part of the
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R1
R2U1

U2

i1 i2

i

A

A

+-

Fig. 3.22 The electric circuit with the battery AA′ corresponding to the circuit shown in Fig. 3.18c
at a given time instant.

loop. The potential differences U1 = i1R1, U2 = i2R2 will be registered by the
voltmeters, and the situation shown in Fig. 3.18c is equivalent to that presented in
Fig. 3.22.

Each of the conducting loops is affected by the magnetic flux changes φ1, φ2 in
time by means of the following relationships:

φ1 + φ2 = BlL,

φ1 = ~B · ~S1(t) = Blvt cos ( ~B, ~S) = Blvt,

φ2 = ~B · ~S2(t) = Bl(L− vt) cos ( ~B, ~S) = Bl(L− vt).
(3.190)

In the circuit, the introduced electromotive forces EMF (En) follow Faraday’s
law of induction, and hence:

U1 ≡ E1 = −dφ1

dt
= −Blv,

U2 ≡ E2 = −dφ2

dt
= Blv,

E1 + E2 = 0.

(3.191)

Owing to the formula (3.189), we can derive forces ~Fn acting on the six corre-
sponding parts of the length ln of the closed loop shown in Fig. 3.18c. Namely, we
have

~Fn = i~ln × ~B, n = 1, ..., 6, (3.192)

and the vectors ~Fn are shown in Fig. 3.18c. Observe that ~F1 + ~F3 = ~0, ~F4 + ~F6 = ~0,

and we have the following resultant forces:

F2 = i1lB, F5 = i2lB (3.193)

which means

F2 + F5 = (i1 + i2)lB = ilB. (3.194)

On the other hand:

i1 =
Blv

R1
, i2 =

Blv

R2
, (3.195)
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and hence

F2 + F5 = B2l2v

(
1

R1
+

1

R2

)
. (3.196)

Action of the force ~Fv causing the movement of the conductor with velocity ~v
causes an occurrence of the current and the forces ~F2 + ~F5, which are equal to the
relative force ~FR, as it is schematically shown in Fig. 3.23.

F2

A

A

F5Fv

FR

FR

1
2

1
2

Fig. 3.23 Actions and reactions of the closed loop circuit.

Mechanical power introduced by the conductor moving with velocity ~v is equal
to

P = (F2 + F5) v = B2l2v2

(
1

R1
+

1

R2

)
, (3.197)

and is converted into heat generated in the resistors R1 and R2. The studied mecha-
tronic system includes a transition of the mechanical energy (conductor moving with
the constant speed ~v) into both electrical and heat energies.

So far, we have introduced two frames, the absolute OXY Z and movable
OX ′Y ′Z ′ Cartesian coordinates in Fig. 3.18c.

+

O O X X ,  

Y Y 

i1 i2

q

v1

+
v2

* *

F1 v F2

Fig. 3.24 Rectangular conducting loop in the magnetic field with movable vertical conductor
(observer is fixed at the point O).
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In the case of the absolute frame (OXY Z), the observer is fixed in the point O,
i.e., he/she is fixed with the unmovable conductor loop. In this frame of reference,
the magnetic field does not move, but the positive charge moves in the direction
coinciding with the corresponding current direction. The actions of the Lorentz
forces are depicted in Fig. 3.24. The electromotive forces E 1 and E 2 are induced
by the changes of the magnetic fluxes φ1(t), φ2(t) in time, and they are associated
with the electric field ~En in the following way:

E1 =

∮
~E1 ·~l, E2 =

∮
~E2 ·~l. (3.198)

The horizontal segments of the rectangular loop produce the values ~En ·d~l which
cancel each other, and hence we have:

E1 = ~E1 ·~l, E2 = ~E2 ·~l. (3.199)

This situation is similar to that including vertical forces induced by currents i1
and i2 which cancel each other. Therefore, only horizontal forces ~F1 and ~F2 exist in
the OXY Z coordinates. It means that the induced EMF is produced in the vertical
segment of the rectangular conducting loop only.

Note that for the observer fixed in the magnetic field, forces causing the move-
ment of charges are of purely electric origin, and hence the induced electric fields
~E1, ~E2 are observed, and the electrically induced forces follow

~Fn = q ~En. (3.200)

Now, we consider the case when the observer is fixed in the point O′, and he/she
moves together with the conductor AA′. The charge qn moves around the loop
parts in directions indicated by the currents directions with velocities ~vn, n = 1, 2.
It experiences the action of the velocity ~v, because the magnetic field moves with
the velocity −~v. Therefore, the resultant (net) velocity vectors of the charges are
defined as follows

~v∗n = ~vn + ~v. (3.201)

In the O′X ′Y ′Z ′ coordinates, the magnetic forces

~F ∗n = q(~vn + ~v)× ~B = ~FnL + ~FD, (3.202)

where:

~FnL = q(~vn × ~B), ~FD = q(~v × ~B). (3.203)

In the O′X ′Y ′Z ′ coordinates system, the observer moves with the horizontal
velocity and he/she observes magnetic field forces only (see Eqs. (3.202), (3.203)).
Relative motion of the loop and the magnetic field, expressed by velocity ~v, is
identical in both discussed frames, and thus the EMF is also the same in both
cases

El = Blv, (3.204)
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Fig. 3.25 Rectangular conducting loop in the magnetic field with movable vertical conductor
(observer is fixed at the point O′).

which means that in the general case,

~E = ~v × ~B. (3.205)

The following relationship is established between the coordinates

x(t) = vt+ x′(t). (3.206)

Summarizing the two analyzed cases, it has been shown that, depending on the
choice of the reference frame, different ~E and ~v vectors appear. At the same time,
the same magnitudes of forces ~F and electromotive forces are obtained.

Generally, the magnetic and electric fields depend on each other and cannot
exist separately. The relationship between them follows

~F = q( ~E + ~v × ~B). (3.207)

Assuming that the magnetic field studied thus far will move horizontally with
constant speed, for an arbitrary observer fixed with the absolute (unmovable) co-
ordinates being fixed to the Earth, the force responsible for the occurred current
cannot be either purely magnetic or purely electric.

3.3.3 Alternating Current

We consider a rectangular current loop of the area S, embedded in a uniform mag-
netic field ~B which rotates with a constant angular velocity ω about its horizontal
axis OX ( ~B⊥~i). The magnetic flux

φB = ~B · ~S = BS cosϕ = BS cos (ωt+ ϕ0), (3.208)

where ϕ0 is the angle between vectors ~B, ~S at the time instant t = 0 (see Fig. 3.26).
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Fig. 3.26 Rectangular conductor loop rotation with the angular velocity ω.

Faraday’s induction law yields the induced harmonic electromotive force

E = −dφB
dt

= E 0 sin (ωt+ ϕ0), (3.209)

where E 0 = BSω. If we connect this conductor loop to the unmovable resistor R,
then, owing to Ohm’s law, the following current is generated

i = i0 sin (ωt+ ϕ0), (3.210)

where its amplitude i0 = E 0

R = BSω
R . The alternating current power is

P = E i = E 0i0 sin 2ωt, (3.211)

and its averaged value follows

Pav =
1

T

T∫
0

Pdt =
1

2
ε0i0, (3.212)

where: T = 2π
ω , ϕ0 = 0.

One may also introduce the root-mean-square value of both the electromotive
force and current

E ′ =
E 0√

2
∼= 0.707ε0,

i′ =
i0√

2
∼= 0.707i0,

(3.213)

and formula (3.212) takes the form

Pav = E ′i′. (3.214)
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3.4 Magnetic and Electromagnetic Phenomena

3.4.1 Magnets and Magnetic Fields

The word magnet comes from Greek. Namely, the Magnetes were an ancient Greek
tribe that lived in Thessalian Magnesia. They developed two cities in Anatolia,
both named Magnesia (on the Moeander and ad Spylum). The regions colonized
by the Magnetes were famous for mysterious stones which could either attract or
repel each other, yielding then the terms for magnets and magnetism [Chaber and
Chaber (1891)]. Lodestones (loadstones) are natural magnets which can attract
pieces of iron. They were used as magnetic compasses (leading stones) employed
in early navigation (for instance, in medieval China they were used until the 12th

century). Lodestone’s magnetic properties were firstly described in the 6th century
BC in Greece [Brand et al. (2015)] and in the 4th century BC in China [Shu-hua
(1954)] and India (see also [Carlston (189)]). A magnet is an object or a material
producing a magnetic field. The magnetic field is a vector field, since in its any
given point, magnetic properties are defined by a direction, magnitude and sense.
Any point of the magnetic field attracts or repels other magnets, i.e., produces a
magnetic force (vector). A permanent magnet is a material object producing its
own magnetic field.

The direction of the magnetic vector is defined by a compass needle, and its
magnitude (strength) is measured by the strength of the compass needle deflection
and is given in teslas (T) in SI units. It follows that tesla can be defined as

[T]=
V · s
m2

=
N

A ·m=
Wb
m2

=
kg

C · s=
kg

A · s2=
N · s
C ·m,

where: A – ampere, C – coulomb, kg – kilogram, m – meter, N – newton, s – second,
V – volt, Wb – weber.

There exist two different models for magnetic fields: (i) magnetic poles and (ii)
atomic currents.

(i) First of all, it should be emphasized that a magnetic monopole is an iso-
lated magnet having only one magnetic pole, i.e., a south pole without a
north pole or a north pole without a south pole. However, magnetism gen-
erated by bar magnets or electromagnets cannot be produced by magnetic
monopoles. Therefore, it seems that magnetic monopole is a hypothetical
particle coming from particle physics, and it is difficult to prove that it
exists in our universe. Magnetic monopole is rather a mathematical term
used for convenience, because in fact, there are no monopoles inside the
magnet. Breaking a bar magnet into two pieces yields two bar magnets,
each of them having its own north and south pole. In other words, this mag-
netic monopole concept allows to define the magnetic vector field intensity
(strength) ~H. The magnetic flux density ~B (induction) is proportional to
~H outside the magnet, whereas inside the magnet, the magnetization ~M
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must be added to ~H (this will be discussed later). The magnetization ~M ,
which will be described later, is the local value of magnetic moment per
unit volume M [A/m] of a magnetized material. It can be treated as a vec-
tor field rather than a vector itself, because different parts of the magnet
can be magnetized with different directions and strength.

(ii) Ampére’s model stands for magnetization generated by microscopic atomic
circular bound currents. In the case of uniformly magnetized cylinder bar
magnet, the microscopic bound currents force the magnet to behave as a
macroscopic sheet of electric current flowing around the cylinder surface
(see Fig. 3.27).

i

Fig. 3.27 Electric bound currents and electric current flowing around the cylinder’s surface (the
Ampére’s hypothesis).

The magnetic moment of a material object embedded in a magnetic field is
generated by the interaction between the magnetic field and the object consisting
of atoms or particles. It means that each of the atoms (particles) possesses its own,
either natural or inducted, dipole-type magnetic moment, denoted further by ~M.

This phenomenon can be explained using half-classical Bohr’s theory assuming that
electrons of the material objects move on the closed orbits around the atomic nuclei
(this question will be discussed further).

In order to identify the pole of a magnet, one may look for the position of
the magnet in Earth’s magnetic field. Namely, a freely suspended magnet points
towards the North Magnetic Pole of the Earth (located in northern Canada). How-
ever, one may also use the right-hand rule in the case of the magnetic field produced
by the electric current flow (electromagnet), as it is shown in Fig. 3.28.
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B

I

+

-

Fig. 3.28 Magnetic field induction ~B produced by a current I, where ~B direction follows the
right-hand rule.

3.4.2 Magnetic Charge and a Dipole

Since there is an analogy between electric and magnetic fields, and one field is
associated with another one following positive and negative electric charges, and it
is tempting to introduce the positive and negative magnetic poles ±Q (by analogy to
electric charges ±q). This equivalence is illustrated in Fig. 3.29, where the current
flowing around a circle loop produces the magnetic field ~B (a), what is modeled by
a system of two magnetic monopoles (b).

B

S

i

i

a)
B

M

+-Q Q
d

b)

M

Fig. 3.29 Circular current loop versus magnetic poles ±Q.

The magnetic dipole moment vector ~M is associated with the magnetic charge
through the following relationship

~M =
Q

µ0

~d, (3.215)

where ~d is the vector of magnitude equal to the distance between two charges.
It points from the negative charge to the positive charge; µ0 is the permeability
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constant µ0 = 4π · 10−7 [Tm/A] (the SI unit for Q is weber [Wb] = [V·s]). This
constant (magnetic field) is associated with the permittivity constant ε0 (electric
field)

µ0ε0 = c−2, (3.216)

where c denotes the light speed. This means that, knowing one of the constants, for
instance µ0, one may find the associated constant ε0, and vice versa. This example
puts again emphasis on the correspondence between magnetic and electric fields.

The right-hand rule (or the screw rule) allows to find the direction of the mag-
netic moment ~µ, knowing the current direction.

The so-called inverse-square law, which is analogous to the gravitation forces
for the planets interaction and to the electric charges interaction (Coulomb’s law),
holds also for the magnetic monopoles (“charges”). Namely, the magnetic field
strength ~H can be associated with the magnetic charge Q in the following form

~H = K
Q

d3
~d, (3.217)

where: K = 1/(4πµ0), and H [N/Wb] is understood as the force per unit magnetic
charge.

Consider the magnetic force interaction between two magnetic dipoles (four
magnetic charges), as shown in Fig. 3.30.

Q
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yC
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+

F
+

F
-

+

-
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+

-
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1
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y
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-

 
C

   
 s
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2
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Fig. 3.30 Static configuration of two magnetic dipoles.

Actions of the magnetic forces on each of the four magnetic monopoles can be
found using, for example, a geometrical approach shown in Fig. 3.2. We introduce
the Cartesian coordinates by putting the dipole Q1µ1 on the OY axis, and then
define the magnetic position of the dipole Qµ with respect to the position of the
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first dipole. Therefore, in Fig. 3.30, only resultant forces acting on the magnetic
charges +Q and −Q are presented (forces acting on +Q1,−Q1 are omitted).

We project two forces ~F− and ~F+ onto the coordinates axes, and we define a
torque generated by these forces with respect to the pole O. This approach yields
the following equations:

− F− cosϕ− + F+ cosϕ+ = 0, −F− sinϕ− + F+ sinϕ+ = 0,

F− cosϕ−
(
yC +

µ

2
sin θ

)
− F− sinϕ−

(
xC −

µ

2
cos θ

)
+

+F+ sinϕ+
(
xC +

µ

2
cos θ

)
− F+ cosϕ+

(
yC −

µ

2
sin θ

)
= 0.

(3.218)

Three algebraic equations allow to find xC , yC and θ, since F−,F+ and µ are
known.

3.4.3 Magnetic Effect of Current

So far, we have considered the key problem of electrostatics. We have shown how,
having a space set of charges (sources) Q1, . . . , QN and using the superposition
principle and the electrostatic laws, we can find a force acting on a test charge +q0.
If two wires located close and in parallel to each other are considered, then they
may either attract (the currents flow in the same directions) or repel (the currents
flow in opposite directions) each other (see Fig. 3.31).

B B
F F

i i

v

+ -

+
-

i i

v
B

Fv

+
-

F
B
v

i i

a) b)

Fig. 3.31 Two parallel wires attracting each other.

The occurred forces are not electrostatic ones, because a test charge located in
their vicinity is not influenced by them. As it has been already discussed, static
charges create an electrostatic field of intensity the ~E, whereas moving charges
create, in addition, a magnetic field characterized by vector of magnetic induction
~B.

The occurred either attracting or repelling forces can be easily detected with the
use of a magnetic needle. It is interesting that the magnetic lines located around
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a wire, accompanied by the right-hand rule, allow to identify the direction of the
current in a wire and the vector ~B (a thumb shows the current direction, whereas the
remaining fingers show the direction of the magnetic field ~B, as shown in Fig. 3.28).

In section 3.3.1, we have already introduced the Lorentz force which allows us
to derive a force ~F acting on a charge q moving with velocity ~v, where both electric
~E and magnetic ~B fields exist as follows

~F = q( ~E + (~v × ~B)). (3.219)

The Lorentz force has been found experimentally, and it cannot be derived in
any theoretical way.

Since magnetic forces never do any work, we take ~E = 0 in (3.219). Let the
charge q move on d~l = ~vdt, and the work done is

dWm = ~Fm · d~l = q(~v × ~B) · ~vdt = 0, (3.220)

since ~v× ~B⊥~v. The magnetic forces may change the direction of the moving charge,
but never its velocity.

As it has been already mentioned, an electric current is the rate of transport of
electrical charge past a specified point or across a specified surface. Movement of
charges is relative, i.e., negative charges (electrons) moving to the right contribute in
the same manner to the current as the positive charges (protons) moving to the left.
The charges movement is characterized by a charge magnitude q, and charge velocity
~v (nothing will be changed when we change signs of q and ~v simultaneously). In
practice, electrons move in the direction opposite to the current flow, which means
that protons move in the current direction.

In the simple case of a linear charge of density ρ moving with velocity ~v, a
conductor part of the length v∆t changes the charge dq = ρv∆t, and this charge
moves through a point in time interval ∆t. Hence, we may define the current vector

~i = ρ~v. (3.221)

If the conductor is embedded in the magnetic field, then the considered conduc-
tor part is subjected to action of the following magnetic force

~Fm =

∫
(~v × ~B)dq =

∫
(~v × ~B)ρd~l =

∫
(~i× ~B)d~l. (3.222)

Since ~i and d~l have the same direction and sense, formula (3.222) takes the
following form

~Fm =~i

∫
(d~l × ~B), (3.223)

assuming that i = const.

In 1820, Oersted observed that a current-carrying conductor generates the mag-
netic field. Let us illustrate this situation by a wire shown in Fig. 3.32, which carries
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idl

A

dB

r

i

Fig. 3.32 Contribution of d ~B at point A by the current element id~l.

the current i. We are looking for the magnetic induction d ~B produced by the current
element id~l at any given point A (its position is defined by the radius vector ~r). The
Biot-Savart and Gauss’ laws play a key role in magnetostatics, whereas Coulomb’s
and Ampére’s laws play a key role in electrostatics.

The so-called Biot-Savart law defines the relationship between d ~B and id~l in the
form

d ~B =
µ0

4π

id~l × ~r
r3

, (3.224)

the magnitude of which is

dB =
µ0

4π

idl

r2
sinϕ, (3.225)

and where µ0 = 4π · 10−7N/A2 is the magnetic permeability of vacuum.
It should be emphasized that, although the wire with the current produces

its magnetic field, only an external magnetic field may act on the wire, i.e., the
wire cannot produce magnetic field which acts on the wire itself. Consider now
two current-carrying wires and mutual actions of the wires through the produced
magnetic forces, as it is shown in Fig. 3.33.

i1

i2

a)

i dl2 2 i dl1 1

r
dF12

dF21

b)

i1

i2

B2

B1

r

dF21

dF12

i dl2 2
i dl1 1

B2

B1

A

Fig. 3.33 Two current-carrying wires of arbitrary shape with the same (a) and opposite (b)
current directions.
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At the point A, the current element i1d~l1 produces the magnetic field

d ~B1 =
µ0

4π

i1d~l1 × ~r
r3

. (3.226)

The total ~B1 can be obtained via integral evaluation over the entire length of
the wire

~B1 =
µ0i1
4πr3

∮
L1

d~l1 × ~r. (3.227)

Knowing ~B1 at the point A, one may find the magnetic force action

d~F21 = i2d~l2 × ~B1 (3.228)

of the second wire on the point A, coming from the entire wire length L1.
Analogously, one may find an action of d~F12 exerted by the magnetic field ~B2

on the wire element i1d~l1, which takes the form

~B2 =
µ0

4π

∮
L2

i2d~l2 × (−~r)
r3

, (3.229)

d~F12 = i1d~l1 × ~B2. (3.230)

In the case of Fig. 3.33b, the forces d~F21 and d~F12 are attractive (repulsive). In
what follows, we consider the case shown in Fig. 3.32, but we take a line wire and
we need to find a total magnetic field ~B generated by this wire (see Fig. 3.34).

i
i

r h

A

X

1 2

dx
O

Fig. 3.34 Straight line current loop.

According to the Biot-Savart formula (3.224), we have

d ~B =
µ0

4π

i · dx ·~i× ~r
r3

, (3.231)

and therefore

B =
µ0i

4π

∫
L

sinϕ
r2

dx. (3.232)
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On the other hand, we have:

x2 + h2 = r2, −x = h
cosϕ
sinϕ

, dx =
hdϕ

sin 2ϕ
, (3.233)

and the relation

r =
h

sinϕ
(3.234)

follows either from Eq. (3.234) or directly from Fig. 3.34.
From Eq. (3.233) one gets

B =
µ0i

4πh

φ2∫
φ1

sinϕdϕ =
µ0i

4πh
[− cosϕ]

φ2

φ1
=

µ0i

4πh
( cosφ1 − cosφ2) . (3.235)

In the so far considered case, the wire length L has been defined by the angles φ1

and φ2. However, if L→∞, then φ1 → 0, φ2 → −π, and from (3.235) one obtains

B =
µ0i

2πh
, (3.236)

where h denotes the distance between the linear wire and an arbitrary point A.
In what follows, we consider a magnetic field generated by a circular current

loop shown in Fig. 3.35.

idl

idl
*

O

R
A x( )

r

r
*

X

dB

dB
*

*

dB|| dB||
*

Fig. 3.35 Circular current loop and magnetic field on the axis OX.

Analogously to the previous cases, we treat the loop as a set of elements id~l,
and hence an elementary magnetic field d ~B produced by the current i is given by
the Biot-Savart law (3.224).

The circle surface is perpendicular to the sheet plane, and the horizontal axis
OX passes through the circle center O. If two loop elementary components id~l and
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id~l∗ are located in the opposite parts of the circle, then their produced resultant
contribution of d ~B and d ~B∗ is

d ~B + d ~B∗=d ~B||+d ~B⊥+d ~B∗||+d ~B
∗
⊥=d ~B||+d ~B

∗
||, (3.237)

since

d ~B⊥+d ~B∗⊥=~0, (3.238)

where ‖ and ⊥ denote vector d ~B of components parallel and perpendicular to the
axis OX, respectively.

Therefore, the vector integral of Eq. (3.224) takes the following form

B =

∫
L

dB cos θ =
µ0

4π

∫
L

i

r2
cos θdl. (3.239)

Geometric relations yield:

R2 + x2 = r2, cos θ =
R

r
=

R√
R2 + x2

, (3.240)

and hence from Eq. (3.239), one gets

B =
µ0

4π

iR

(R2 + x2)
3/2

2πR∫
0

dl =
µ0

2

iR2

(R2 + x2)
3/2

. (3.241)

i1

B2

i2 B1

F12

F21

ha)

i1 B2

i2

B1

F12

F21

hb)

Fig. 3.36 Magnetic forces interacting between two parallel wires for the same (a) and opposite
(b) current directions.

Observe that ~B achieves its maximum in the loop plane (x = 0), and its magni-
tude is

B =
µ0i

2R
, (3.242)

whereas for x� R, formula (3.241) gives

B =
µ0iR

2

2x3
=
µ0

2π

iπR2

x3
=
µ0

2π

iS

x3
, (3.243)
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and S denotes the circle area. When we define the magnitude dipole moment M
through the loop surface S, then (3.243) yields

B =
µ0

2π

M

x3
. (3.244)

The magnetic dipole moment M = iS is analogous to the electrical dipole mo-
ment p = qd.

Next, we consider the current-current interactions between two parallel wires
and between two circular current loops. We apply the derived formula (3.236) to
determine the mutual forces acting on the parallel wires separated by a distance h
in the case of the same and opposite current directions, as it is shown in Fig. 3.36a
and Fig. 3.36b, respectively.

Current i1(i2) generates the magnetic field B1(B2) governed by formula (3.236)
of the form

Bn =
inµ0

2πh
, n = 1, 2. (3.245)

Current i1(i2) is embedded in the magnetic field B1(B2), and hence the following
mutual forces are generated:

~F21 = i2~l × ~B1,

~F12 = i1~l × ~B2,
(3.246)

where l denotes the wire length, and ~F21 (~F12) is the force exerted by the wire 2
(1) and acting on the wire 1 (2).

When the currents have the same direction, they attract each other (Fig. 3.36a).
On the contrary, when the currents have opposite directions, they repel each other
(Fig. 3.36b). This means that, unless the constraints are introduced, the wires will
either approach (Fig. 3.36a) or separate from each other (Fig. 3.36b).

It should be emphasized that the current unit in SI system is defined through
the current-current interaction of two parallel straight line wires. One ampere [A]
is the current in each of long parallel wires embedded in vacuum, with the distance
of 1 meter between the wires, that generate a mutual force of 2 · 10−7[N] per one
meter.

In Figure 3.37, actions of magnetic fields established by current loops having
the same (a) and opposite attractive (c) and repelling (b) directions are presented.
The magnitude of the vector ~B at a given point A follows:

B
′

1 +B
′

2 =
µ0

2

(
i
′

1R
2
1

r1
+
i
′

2R
2
2

r2

)
,

B
′′

1 −B
′′

2 =
µ0

2

(
i
′′

1R
2
1

r1
− i

′′

2R
2
2

r2

)
,

B
′′′

2 −B
′′′

1 =
µ0

2

(
i
′′′

2 R
2
1

r1
− i

′′′

1 R
2
2

r2

)
,

(3.247)
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where r1 =
(
R2

1 + x2
)3/2

and r2 =
(
R2

2 + (x−H)
2
)3/2

.
In the cases illustrated in Fig. 3.37b and c, mutual actions of the magnetic fields

may cancel each other if the following relation holds

i
′′

1

i
′′
2

=
R2

2

(
R2

1 + x2
)3/2

R2
1

(
R2

2 + (x−H)
2
)3/2

. (3.248)
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Fig. 3.37 Circular current loops having the same (a) and opposite repelling (b) and attracting
(c) directions, and the contribution of ~B1 and ~B2 at point A.
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3.4.4 The Law of Ampére and its Generalization

Ampére’s law generalizes the Biot-Savart law, and it addresses the relation between
the currents within the surface bounded by a closed loop and the resultant magnetic
field induction along this loop (Amperian loop). The magnetic field ~B produced by
its segment d~l is measured with the dot product ~B · d~l. The line integral of ~B · d~l
computed along the Amperian loop is equal to the algebraic sum of the currents
(net currents) that pierces the bounded surface∮

~B · d~l =

∮
Bdl cosϕ = µ0

∑
ik, (3.249)

where µ0 is the permeability coefficient. Ampére’s law exhibits the magnetic field
vorticity (Fig. 3.38), and using the right-hand rule (see Fig. 3.28), the current i1 is
positive, whereas i2 and i3 are negative.

i2

i3

i1

B

Fig. 3.38 Scheme of the Amperian loop.

In general,
∮
~B · d~l 6= 0 in any vortex field, whereas in an invortex field (for in-

stance in the electrostatic field), we have
∮
~B · d~l = 0. However, a direct application

of the Amperian loop concept is not easy.
Formula (3.245) can be presented in the equivalent form∮

~H · d~l =
∑

ik, (3.250)

where ~H = ~B/µ0 is the magnetic field intensity ([H]=[A/m]),
∑
ik stands for the

magnetomotive force MMF , and in vacuum (µ0), directions of ~B and ~H are the
same. However, in general, directions of the vectors ~B and ~H can be different,
and hence the full permeability tensor [µ] is introduced instead of the diagonal
permeability tensor.

If the introduced Amperian loop does not comprise any piercing current, then∮
~H · d~l = 0, (3.251)

which means that the electrostatic field (bar magnet, magnetic poles) is conserved,
because the work done on the closed loop equals zero. A magnetic potential Vm at
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a given point can be defined by the radius (position) vector ~r in the following form

Vm(r) =

∞∫
r

~H · d~r, (3.252)

and [V]=[A] (ampere). In the case of the electrostatic field, the potential difference
is

∆VAB = VB − VA =

B∫
A

~H · d~r. (3.253)

In what follows, we consider divergence and rotation of the magnetic induction
~B for a general case of a volume current. We take two points in the Cartesian
coordinates, i.e., one point ~r1(x1, y1, z1), belonging to the volume current space V1,
and another point ~r(x, y, z), and we are going to find the generated induction ~B.

The Biot-Savart law yields

~B(~r) =
µ0

4π

∫ ~J(~r1)× (~r − ~r1)

|~r − ~r1|
dV1 =

µ0

4π

∫ ~J(~r1)× (~r0)

|~r0|3
dV1. (3.254)

We multiply both sides of the formula (3.254) in the following way

∇ · ~B =
µ0

4π

∫
∇ ·

~J × ~r0

r3
0

dV1. (3.255)

Since we have

∇ ·
(
~J × ~r0

r3
0

)
=
~r0

r3
0

·
(
∇× ~J

)
− ~J ·

(
∇× ~r0

r3
0

)
= 0, (3.256)

then

∇ · ~B = 0. (3.257)

It means that divergence of the magnetic induction is equal to zero.
Now we apply a cross product in the following way

∇× ~B =
µ0

4π

∫
∇×

(
~J × ~r0

r3
0

)
dV1. (3.258)

However, we have

∇×
(
~J × ~r0

r3
0

)
= ~J

(
∇ · ~r0

r3
0

)
−
(
~J · ∇

) ~r0

r3
0

= 4πδ3

(
~r0

r3
0

)
, (3.259)

and from Eq. (3.258) and (3.259) we obtain

∇× ~B =
µ0

4π

∫
~J (~r1) 4πδ3 (~r − ~r1) dV / = µ0

~J (~r) . (3.260)

The second term of Eq. (3.259) is equal zero, since ~J does not depend on x, y, z,
whereas the first term is

~J

(
∇ · ~r0

r3
0

)
= 4πδ3 (~r − ~r1) , (3.261)
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where we have applied a generalization of the Dirac delta to the 3D space

δ3 (~r) = δ (x) δ (y) δ (z) ,

δ3 (~r) dV =

∞∫
−∞

∞∫
−∞

∞∫
−∞

δ (x) δ (y) δ (z) dxdydz = 1.
(3.262)

The so far obtained formula (3.260) defines the Ampére’s law in a differential
form.

Its counterpart integral form is obtained using the Stokes theorem∫ (
∇× ~B

)
· d~S =

∮
~B · d~l = µ0

∫
~J · d~S = µ0

∑
ik, (3.263)

where
∑
ik denotes the algebraic sum of all currents included in the Ampére’s

contour, and it coincides with (3.249).
The so far obtained formulas (3.257) and (3.263) have simple interpretations in

the case of straight conductors (see Fig. 3.39).

r

B

Fig. 3.39 Circles of magnetic field ~B.

We have ∮
~B · d~l =

∮
µ0i

2πr
dl = µ0i, (3.264)

and the obtained result does not depend on r. Ampére’s law allows to find a
magnetic field for highly symmetric cases. For example, assuming that we know the
constant current i in the case shown in Fig. 3.39, Ampére’s law yields directly∮

~B · d~l = B

∮
dl = B2πr = µ0i, (3.265)

and hence, the magnetic induction B at a distance r, measured from the conductor
is

B =
µ0i

2πr
. (3.266)
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Electrostatics deals with electric fields generated by stationary charges. Mag-
netics deals with magnetic fields generated by constant currents. Both introduced
notions, i.e., stationary charges and constant currents are approximations to the
real phenomena.

If a constant current i moves along a conductor, then it should have a constant
density, and the continuity equation

∇ · ~J =
∂ρ

∂t
= 0. (3.267)

Divergence and rotation of the electrostatic field intensity are governed by the
following truncated form of Maxwell’s equations for electrostatics:

∇ · ~E =
ρ

ε0
, ∇× ~E = 0. (3.268)

Divergence and rotation of the induction of a magnetostatic field are governed
by the following truncated form of Maxwell’s equations for magnetostatics:

∇ · ~B = 0, ∇× ~B = µ0
~J. (3.269)

In general, electric forces are larger than magnetic forces. Only if charges move
with velocities comparable to the light velocity, the magnetic and electric forces are
of the same order.

We consider a vertical straight line conductor with the current of intensity i. Let
a torus made of a paramagnetic material lie on a horizontal plane, i.e., be situated
perpendicularly to the conductor the axis of which passes through the center of the
torus. Assuming that the torus axis is the circle C, we consider the circulation of the
magnetic vector ~M and magnetic induction ~B along this circle. The magnetization
has the same value in each point of the circle C, and hence∮

C

~M · d~l = 2πrM. (3.270)

Circulation of the magnetization vector ~M is computed over the circle C with
the integral, what is shown by the left-hand side of Eq. (3.270).

The entire particle bound current intensity

im = 2πrI=2πrM, (3.271)

and one finds that the following formula describes a relation between ~M circulation
and the current intensity im ∮

C

~M · d~l = im. (3.272)

Generally, Ampére’s law takes into account the microscopic molecular bound
current im and free current i. It can be written in the following form∮

C

~B · d~l = µ0(i+ im), (3.273)
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and taking into account Eq. (3.272), one gets∮
C

~H · d~l = i, (3.274)

where:
~B=µ0( ~H + ~M) = [µ] ~H, (3.275)

and [H] = [A/m]. Formula (3.273) shows how, in the case of magnetic field gener-
ated by current circuits in material objects, their magnetic induction depends on
both molecular current im and circuits free currents. The obtained Ampére’s law
(3.274) is valid for an arbitrary material medium including vacuum. In the case of
paramagnetics and diamagnetics, vectors ~M and ~B are linearly dependent.

3.4.5 Magnetic Dipole Moment of a Closed Planar
Current-Carrying Loop

Consider a planar current-carrying loop in the the magnetic field ~B, as it is shown
in Fig. 3.40.

x1x2O

Z Y

X
k

i

j

r

dF

dF

idl

B||i

dT

dS

B

T

M

a)

x1x2

O

Y

X

i

r

b)

x - x2 x - x1

1

2

Fig. 3.40 Plane current-carrying loop in 3D space (a) and its OXY plane location with dashed

parallelogram
∣∣∣−d~S∣∣∣ = |−~r × dl| ∼= (x1 − x2) dl sinϕ (b).

The forces acting on the symmetric incremental current loop elements are

d~Fn = id~ln × ~B, n = 1, 2. (3.276)
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These incremental forces create a couple of forces d~F1 + d~F2 = 0 (dl1 = dl2) ,

and the torque acting on the element dl1 = dl is

d~T = ~r × d~F = ~r × (id~l × ~B). (3.277)

If ∆x → dx, then vector ~r tends to establish the horizontal position, which
forces the vector of d~T to be parallel to the axis OY . It means that in the limit,
we obtain

d~T = i(~r × d~l)× ~B = id~S × ~B, (3.278)

where now d~S is a vector normal to the plane created by the vectors ~r × d~l, and

dS =
∣∣∣~r × d~l∣∣∣ = rdl sin (~r, d~l) = rdl sin (π − ϕ) =

= rdl sinϕ = rdy ∼= (x1 − x2)dy.
(3.279)

In the limit, the dashed parallelogram tends to the rectangle of the sides x1−x2

and dy, and its area represents the length of vector d~S.
In general, the relation

~r × i(d~l × ~B) =
(
~r × id~l

)
× ~B (3.280)

used in (3.278) is not true for arbitrary d~l = ~id~lx + ~jd~ly, ~r = rx~i + ~jry, ~B = B~i.
However, for ~r = −r~i, d~l = dl~j, ~B = B~i, we have

id~l × ~B = i

∣∣∣∣∣∣
~i ~j ~k

0 dl 0

B 0 0

∣∣∣∣∣∣ = −Bidl~k, (3.281)

and the left-hand side of Eq. (3.280) is

~r ×
(
id~l × ~B

)
=

∣∣∣∣∣∣
~i ~j ~k

−r 0 0

0 0 −Bidl

∣∣∣∣∣∣ = −irBdl~j. (3.282)

On the other hand, we have

~r × id~l =

∣∣∣∣∣∣
~i ~j ~k

−r 0 0

0 idl 0

∣∣∣∣∣∣ = −ridl~k, (3.283)

and the right-hand side of Eq. (3.280) follows

(
~r × id~l

)
× ~B =

∣∣∣∣∣∣
~i ~j ~k

0 0 −ridl
B 0 0

∣∣∣∣∣∣ = −riBdl~j, (3.284)

which proves formula (3.280) for our case.
In order to get the total torque, integration over all rectangular strips within

the bounded area of the current loop should be carried out, which yields

~T =

∫
S

d~T =

∫
S

id~S × ~B =

∫
S

d ~M

× ~B = ~M × ~B, (3.285)
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where d ~M = id~S is the incremental magnetic dipole moment, and ~M = i~S is the
magnetic dipole moment of the coil.

Therefore, it has been shown that the action of the magnetic field vector ~B = B~i

parallel to the closed current-carrying loop surface produces the torque ~T = T~j,
which is the vector cross product in Eq. (3.285). Under an action of the torque ~T ,
the loop rotates, and the incremental potential energy required to do the work is

dU = Tdθ = MB sin θdθ, (3.286)

which yields the total potential energy required to rotate the coil by the angle θ

U = −MB cos θ = − ~M · ~B (3.287)

staying for the magnetic potential energy [U] = [J]. The potential energy of the coil
coming from the current i is found from Eq. (3.287):

U = −
∫
d ~M · ~B = −i

∫
d~S · ~B. (3.288)

One may also introduce the vector magnetic potential A in the following way.
Since we deal with the constant magnetic field ~B, then

~∇ · ~B = ~∇ · (~∇× ~A) = 0. (3.289)

It follows from Eqs. (3.288) and (3.289) that

U = −i
∫
S

d~S ·
(
~∇× ~A

)
. (3.290)

We are going to transit from the surface integral to a line integral using the
following Stokes theorem ∫

S

d~S ·
(
~∇× ~A

)
=

∫
L

~A · d~l. (3.291)

Therefore, with the help of Eq. (3.291), the formula (3.290) yields

U = −i
∫
L

~A · d~l. (3.292)

Furthermore, let us introduce the current volume density ~J :

id~l = ~JdV. (3.293)

Formula (3.292) allows to find potential with respect to ~J with the use of the
relationship

U = −
∫
V

(
~A · ~J

)
dV . (3.294)

Let us derive the magnetic potential vector ~A (see Fig. 3.40a):

~A =
1

2

(
~B × ~r

)
, (3.295)
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then, using Eq. (3.294), the potential is

U = −1

2

∫
V

[(
~B × ~r

)
· ~J
]
dV = −1

2

∫
V

[
~B ·
(
~r × ~J

)]
dV =

= − ~B ·
∫
V

1

2

(
~r × ~J

)
dV = − ~B ·

∫
V

d ~M,

(3.296)

and hence

d ~M =
1

2

(
~r × ~J

)
dV. (3.297)

3.4.6 Electromagnetic Induction

The so far introduced two different models of magnetization (see Sec. 3.4.1) have
also a strong impact on the interpretation and modeling of the electromagnetic
induction phenomenon. We cannot (within the classical electromagnetic theory)
use the same model for the case of a unmovable (fixed) closed circuit embedded in
a varying magnetic field and the case of a movable closed circuit within a constant
magnetic field.

However, in the particular relativity theory, a phenomenon of the so-called elec-
tromagnetic field appears which, depending on the choice of a reference system, can
be interpreted either as the magnetic field or electric field.

Let us consider the second model, i.e., the one in which an electrical planar
circuit with a linear part of length l moving with velocity ~v is located in a homo-
geneous magnetic field with induction ~B. Vector ~B is perpendicular to the circuit
plane and velocity ~v, as it is shown in the Fig. 3.41.

l R

BS

XO

l +q

B

v

E

Fe

x

(a) (b)

Fig. 3.41 Electrical circuit embedded in a homogeneous magnetic field with induction ~B (a) and
the movable vertical conductor (b).

If the elementary conductor charge +q is taken, then it is subjected to an action
of the Lorentz force of the form

~F = q(~v × ~B). (3.298)
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The Lorentz force causes a movement of charge carriers, and an electrostatic
field of intensity ~E is generated inside the circuit. The field is governed by the
formula

~Fe = q ~E. (3.299)

The charge carriers stop if ~Fe = ~F , and thus the following relationship is ob-
tained

~E = ~v × ~B. (3.300)

After the movement of the charge carried at the conductor ends, we will have
different electrical potential, the difference E of which is defined by a scalar product
of the electric field intensity ~E and the conductor length

E = ~E ·~l. (3.301)

Since the inductor is connected to the remaining electric circuit, the generated
electrical potential include an electromotive force, and a current passage occurs.
Formulas (3.300) and (3.301) yield

E = (~v × ~B) ·~l = ~l ·
(
d~x

dt
× ~B

)
= ~B ·

(
~l × d~x

dt

)
=

d

dt

[
~B · (~x×~l)

]
=

d

dt

(
~B · ~S

)
= −dφB

dt
.

(3.302)

Formula (3.302) represents Faraday’s induction law. Faraday experimentally
proved that the so-called electromotive force (in fact, this is not a force, since it is
not a vector) generated in an electric circuit is proportional to the rate of changes
of the induction flux of a magnetic field enclosed by this electric circuit.

We have shown that the induction flux of a magnetic field

φB = ~B · ~S, (3.303)

where the vector ~S of the length S = xl is perpendicular to the dashed rectangle
in Fig. 3.41, i.e., in our case, to the electric circuit plane. Since we deal with scalar
vector product (3.303), we may get either positive or negative E value, depending
on the angle between vectors ~B and ~S.

Recall that Oersted was the first who experimentally showed that the current
flowing through a conductor produces a magnetic field. On the other hand, in 1831,
Faraday experimentally observed that a varying magnetic field generates a current
in a conductor (see Fig. 3.42). The observed phenomenon is referred to as the
electromagnetic induction.

In what follows, we will determine a direction of the induced current in the
circuit shown in Fig. 3.42. If the magnet SN is placed inside the circuit, then the
current direction generates the magnetic field which repels the approaching magnet,
and vice versa.
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S N
i

SN

NS

Fig. 3.42 Current induced by a variable magnetic field (magnet).

The work done during attraction or repelling of two magnetic fields is trans-
formed into a heat energy distribution over the circuit. This phenomenon has been
observed for the first time by Lenz (1834), and the direction of the current gener-
ated in a general circuit can be defined through Lenz’s law. It says that a current
induced in a circuit moves in the direction produced by the magnetic field passing
through a surface enclosed by the circuit.

Let us consider the described situation taking into account a simpler example.
Consider a closed conducting loop (one coil) and a magnet.

If the loop is opened, then a potential difference V2 − V1 = E appears between
the loop ends, but a current is not induced. An electric field intensity ~E = −grad E ,
which means that the potential difference produces an electromotive force (EMF ).
If the loop is closed (as it is shown in Fig. 3.43), then the induced current appears.
Its direction follows the earlier described Lenz’s rule. One may also consider two
loops located in two parallel planes.

Assume that one of the loops is fixed (Π), and its current produces magnetic
effects. One may define the direction of the current induced in the second loop using
the earlier described Lenz’s rule. The so far mentioned examples (Figs. 3.41–3.44)
indicate a dependence between purely magnetic and electric effects associated with
a movement.

Knowing how to define an induced current direction, we discuss a connection
between a sign of E direction of vectors ~S, ~E and ~Bi. Namely, we will consider the
situation reported in Fig. 3.43 from a point of view of formula (3.302).

We deal with one closed loop conductor, and hence we introduce a frame of
reference being at rest with respect to the loop (fixed with the loop). On the other
hand, we take a general reference frame OXY Z such that ~k · ~B > 0 and ~k ‖ ~B.

Similarly, we take also a positively directed surface vector ~S, i.e., ~k · ~S > 0 and
~S ‖ ~k.

The current movement direction presented in Fig. 3.42 illustrates validity of
Faraday’s induction law (3.302), where the minus sign appears.

The induced currents may occur either in conductors with small cross sections
or massive conductors like rigid plates (Fig. 3.46).
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Fig. 3.43 Positive (a) and negative (b) induced ( ~B > ~Bi) current direction, when the magnet NS
moves towards (outwards) the conducting loop surface.

i

P
EM
F

i

P
EM
F

v

/

/

v

B
/

B
/

B

Fig. 3.44 Induced current direction in the fixed loop and in the moving loop.

Since the induced currents are within a circular vortex, they are called eddy
currents or Foucault currents. They are dangerous, because they generate heat,
and hence, large energy loss takes place in the electric machine elements. If a
variable current flows along a conductor, the so-called skin effect may occur due to
induced eddy currents. They counteract changes of the current intensity responsible
for their occurrence in a neighborhood of a conductor axis, and they simultaneously
cooperate with the current changes di/dt in a thin conductor layer located on its
surface.
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Fig. 3.45 Circled circuit surface represented by the vector ~S, induction of the external homoge-
neous movable magnetic field ~B, induction of the induced magnetic fields ~Bi, current i directions,
and electric field intensity ~E corresponding to the cases (a) and (b) shown in Fig. 3.43.

B

Fig. 3.46 Eddy currents induced in a rigid plate.

In other words, resistance in the inner part of the conductor is much higher
in comparison to resistance close to the conductor surface. Therefore, the current
density is large (small) on the conductor surface (inner part).

Owing to Ohm’s law, for a closed circuit, a sum of all potentials drops along the
whole circuit must be equal to the electromotive force E , which can be quantified as a
circulation of the electric field intensity ~E within a conductor over the entire circuit
(see (3.301)). On the other hand, the entire magnetic flux φB passing through the
surface S is governed by formula (3.303). Therefore, formula (3.302) can be written
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in the following equivalent form∮
C

~E · d~l =− d

dt

∫
S

~B · d~S. (3.304)

The induction law governed by (3.304) is valid for the case of an electric vor-
tex field generated by the time-dependent magnetic field either in vacuum or non-
conducting material medium. If ~B and ~E do not depend on time, then formula
(3.304) yields ∮

C

~E · d~l =0, (3.305)

which means that the constant (time-independent) electric field is a potential (non-
vertex) field.

Let us now recall a few terms from mathematics needed for our further consid-
erations. Assume that in a certain coordinate system, a differentiable vector field
~A(M) is introduced, where M = M(x, y, z) is its arbitrarily taken point. Then

~A(M) =~iA1(x, y, z) +~jA2(x, y, z) + ~kA3(x, y, z).

Divergence of a vector field ~a is the scalar function

div~a = (~∇,~a) =
∂a1

∂x
+
∂a2

∂y
+
∂a3

∂z
.

It can be shown that div~a does not depend on the choice of a coordinate system.
In the majority of cases regarding a vector field analysis, it is useful to apply

the so-called Hamilton’s operator ~∇ (known as del operator, and in many cases, the
overhead arrow is omitted) which is understood as a symbolic vector. It should be
emphasized that it acts for either functions or vectors standing on its right-hand
side as a differential operator, whereas for the functions or vectors standing on its
left-hand side, it acts as a vector which follows the rules of vector products.

We say that a scalar field f is differentiable in the point M0 if there exists a
vector ~c such that

f(M)− f(M0) =
(−−−→
M0M,~c

)
+ o

(∣∣∣−−−→M0M
∣∣∣) for M →M0.

Vector ~c is called a derivative of the scalar field f in the point M0, and it will
be denoted by ∇f(M0).

In the Cartesian coordinate system, we have
−−−→
M0M = (x− x0)~i+ (y − y0)~j + (z − z0)~k,∣∣∣−−−→M0M

∣∣∣ =

√
(x− x0)

2
+ (y − y0)

2
+ (z − z0)

2
,

and hence

f(M)− f(M0) = c1(x− x0) + c2(y − y0) + c3(z − z0)+

+ o

(√
(x− x0)

2
+ (y − y0)

2
+ (z − z0)

2

)
for (x, y, z)→ (x0, y0, z0).
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Therefore, one may write

f(M)− f(M0) =
(−−−→
M0M,∇f(M0)

)
+ o

(∣∣∣−−−→M0M
∣∣∣) for M →M0,

where:

c1 =
∂f

∂x
(x0, y0, z0), c2 =

∂f

∂y
(x0, y0, z0), c3 =

∂f

∂z
(x0, y0, z0),

∇ =~i
∂

∂x
+~j

∂

∂y
+ ~k

∂

∂z
,

∇f(M0) = ~c =
∂f(M0)

∂x
~i+

∂f(M0)

∂y
~j +

∂f(M0)

∂z
~k.

For an arbitrary ~b = ~b[b1, b2, b3], we have

~b · ~∇ = (~b, ~∇) =
(
~ib1 +~jb2 + ~kb3

)
·
(
~i
∂

∂x
+~j

∂

∂y
+ ~k

∂

∂z

)
= b1

∂

∂x
+ b2

∂

∂y
+ b3

∂

∂z
.

Using the introduced scalar product of ~b and ~∇, we have

f(M)− f(M0) =
(−−−→
M0M, ~∇

)
f(M0) + o

(∣∣∣−−−→M0M
∣∣∣) for M →M0.

Finally, let us take a unit vector ~l and consider a radius consisting of all points
M satisfying the relationship

−−−→
M0M = ~lS for S > 0.

A derivative of a scalar field f in the direction ~l in the point M0 is defined by
the following formula

∂f

∂l
(M0) = lim

S→0

f(M)− f(M0)

S
,

or equivalently

∂f

∂l
= (~l · ~∇)f(M0).

There are two mathematical tools for quantifying how the vector field ~a will
change from point to point: divergence (scalar) and curl (vector). Divergence of
the vector field ~a at the point M0 is defined as

div~a = lim
∆ϑ→0

∮
~a · d~S
∆ϑ

, (3.306)

where ∆ϑ is an infinitesimal volume surrounding M0, and integration is carried
out over the area S of this volume. Formula (3.306) can be explicitly derived in
Cartesian, cylindrical and spherical coordinates.

We derive an expression for divergence in the Cartesian coordinates (Fig. 3.47)
now.

The vector field defined at M0 is

~a(x, y, z) = a1
~i+ a2

~j + a3
~k,
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Z

X

Y

k

i j

a(x,y,z)

M0
a (x)1 a (x+ x)1

dS dS

I O

OI

(a) (b)

Fig. 3.47 Cube with the edges ∆x,∆y,∆z and the vector field ~A(x, y, z) at M0(x, y, z) (a) and
two faces I (input) and O (output) of the cube (b).

and M0 is the cube corner with the lowest values of x, y, z. We cover all three pairs
of the cube faces while expressing

∮
~a · d~S, where d~S direction is outward. We have∫

I

~a · d~S ∼= −a1∆ydz,

∫
O

~a · d~S ∼= a1(x+ ∆x)∆ydz ∼=
(
a1 +

∂a1

∂x
∆x

)
∆ydz,

(3.307)

and hence ∫
I

~a · d~S +

∫
O

~a · d~S =
∂a1

∂x
∆x∆ydz. (3.308)

Taking into account pairs of faces, we get∮
~a · d~S ∼=

(
∂a1

∂x
+
∂a2

∂y
+
∂a3

∂z

)
∆ϑ, (3.309)

where ∆ϑ = ∆x∆y∆z, and from Eqs. (3.306) and (3.309) we obtain

div~a = ∇ · ~a =
∂a1

∂x
+
∂a2

∂y
+
∂a3

∂z
, (3.310)

where the del operator ∇ is defined explicitly only in Cartesian coordinates, ∇ =
∂
∂x
~i+ ∂

∂y
~j + ∂

∂z
~k.

In cylindrical and spherical coordinates, we have:

div~a =
1

r

∂

∂r
(rar) +

1

r

∂aθ
∂θ

+
∂az
∂z

, (3.311)

div~a =
1

r2

∂

∂r
(r2ar) +

1

r sinψ
∂

∂ψ
(aψ sinψ) +

1

r sinψ
∂aθ
∂θ

, (3.312)

respectively.
Maxwell’s equations for static ~E and ~D fields are as below:

div ~D = ρ,

div ~E =
ρ

ε
,

(3.313)
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where the electric field ~E is a function of the permittivity ε, whereas the electric
flux density ~D does not depend on ε.

It follows directly from Gauss’ law that∮
~D · d~S = Q, (3.314)

where Q denotes the enclosed charge. Taking the neighborhood ∆ϑ and going to
the limit, from Eq. (3.314) we obtain:

lim
∆ϑ→0

∮
~D · d~S
∆ϑ

= div ~D = ρ, (3.315)

where

ρ = lim
∆ϑ→0

Q

∆ϑ
. (3.316)

Since for any electric field, for a medium characterized by a variable ε =

ε(x, y, z), we have ~D = ε ~E, hence

div ~Eε = ρ, (3.317)

and for a medium, for which ε = const (isotropic medium), we get Eq. (3.313).
A key role in physics, mechanics, hydrodynamics, magneto-electrodynamics and

mechatronics is played by Gauss’ formula which allows to transform various conser-
vation rules to the equivalent modeling through the differential equations.

Let ϑ ⊂ R3 be a bounded space the boundary S of which is a piecewise smooth
surface. Assume that we have a continuous differential vector field ~a = (a1, a2, a3)

in ϑ = ϑ∪S. Then, a flow of the vector field ~a passing through the space boundary
S, defined as

∫∫
S

(~a, ~n)dS, is equal to the triple integral of div~a with respect to the

space S, i.e., the following relationship holds∫∫
S

(~a, ~n)dS =

∫∫∫
ϑ

div~adϑ, (3.318)

or equivalently∫∫
S

a1dydza2dxdza3dxdy

∫∫∫
ϑ

(
∂a1

∂x
+
∂a2

∂y
+
∂a3

∂z

)
dxdydz. (3.319)

Let us assume that in an oriented Euclidean space, a simple surface Σ is defined
in the following way:

~r = ~r(u, v), (u, v) ∈ Ω ⊂ R2. (3.320)

A closed surface has a positively oriented smooth (or piecewise smooth) contour,
i.e., if one walked around the boundary ∂Ω, the surface Ω would be located on the
left side. Let the boundary ∂Ω be described by equations:

u = u(S), v = v(S), α < S ≤ β. (3.321)
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Therefore, ∂Σ is understood as a positively oriented boundary of the surface Σ.
The orientation of the surface Σ is defined by the field of normal vector ~N = [~ru, ~rv],

and it coincides with the positive orientation of the surface boundary, what is in
agreement with the right-handed screw rule.

It follows from Eq. (3.319) that for any sufficiently regular vector field A, we
have ∮

S

∆ · d~S =

∫
ϑ

(∇ · ~a)dϑ, (3.322)

and the obtained formula is called the divergence (Gauss’) theorem.
Consider a field with known charge, and assume the charge density ρ is known

within the volume ϑ enclosed by the surface S.
It follows directly from Gauss’ law that∮

~D · d~S =

∫
ρdϑ =

∫
∇ · ~D. (3.323)

The divergence theorem is applied while converting the volume integral into a
closed surface integral and vice versa. It is applied either to time-varying (dynamics)
or static fields.

Curl (rotation) of a vector field ~a is defined by the formula

curl~a = [~∇,~a] =

∣∣∣∣∣∣∣
~i ~j ~k
∂
∂x

∂
∂y

∂
∂z

a1 a2 a3

∣∣∣∣∣∣∣ = ~∇× ~a =

=~i

(
∂a3

∂y
− ∂a2

∂z

)
+~j

(
∂a1

∂x
− ∂a3

∂z

)
+ ~k

(
∂a2

∂x
− ∂a1

∂y

)
.

(3.324)

One can show that, in an arbitrary counterclockwise coordinate system, the curl
of a vector field remains unchanged, whereas it changes its sign during a transition
from the counterclockwise coordinate (right) to a clockwise (left) coordinate system.
This is why a curl is called a pseudo-vector.

It follows from (3.324) that the curl of a vector field ~a produces another vector
field. Geometric interpretation of the curl is presented in Fig. 3.48.

Projection of the curl of ~a onto vector ∆~S normal to the surface ∆S is defined
by the formula

(curl ~a)

(
∆~S

∆S

)
= lim

∆S→0

∮
~a · d~l
∆S

, (3.325)

where d~l stands for infinitesimal part of the contour C traversed so that the area
∆S is on the left, and hence ∆~S is determined by the right-hand rule. We use the
geometric approach to validate formula (3.324) in Cartesian coordinates by using
Eq. (3.325).

Since by definition ~a = a1
~i+ a2

~j + a3
~k, we consider the rectangular area ∆y∆z

for x = const, as it is shown in Fig. 3.49.
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a

a

a

M0

C

a

Fig. 3.48 Area aS enclosed by the closed contour C surrounding the point M0.

Z

X

Y

i
1 2

34

M0

Fig. 3.49 Rectangular area ∆y∆z with the middle point M0 fixed at x = const.

Formula (3.325) takes the form

(curl ~a) ·~i = lim
∆x∆z→0

∮
~a · d~l

∆x∆z
, (3.326)

and ∮
=

2∫
1

+

3∫
2

+

4∫
3

+

1∫
4

=a2∆y +

(
a3 +

∂a3

∂y
∆y

)
∆z+

+

(
a2 +

∂a2

∂z
∆z

)
(−∆y) + a3(−∆z) =

(
∂a3

∂y
− ∂a2

∂z

)
∆y∆z.

(3.327)

Combining the y and z components of the curl ~a, we obtain (3.324). In cylin-
drical and spherical coordinates, we obtain

curl ~a =

(
1

r

∂a3

∂θ
− ∂aθ

∂z

)
~er +

(
∂ar
∂z
− ∂az

∂r

)
~eΘ +

1

r

(
∂(raθ)

∂r
− ∂ar

∂θ

)
~ez, (3.328)
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curl ~a =
1

r sinψ

(
∂(aθ sinψ)

∂ψ
− ∂aψ

∂θ

)
~er +

1

r

(
1

sinψ
∂ar
∂θ
− ∂(raθ)

∂r

)
~eψ+

+
1

r

(
∂(raψ)

∂r
− ∂ar
∂ψ

)
~eθ.

(3.329)

In many cases, the following field properties are used:

(i) The divergence of a curl is a zero scalar

∇ · (curl ~a) = ∇ ·
(
~∇× ~A

)
= 0. (3.330)

In the Cartesian coordinates, we have(
∂

∂x
~i+

∂

∂y
~j +

∂

∂z
~k

)
·
[(

∂a3

∂y
− ∂A2

∂z

)
~i

+

(
∂a1

∂x
− ∂a3

∂z

)
~j +

(
∂a2

∂x
− ∂a1

∂y

)
~k

]
=

∂

∂x

(
∂a3

∂y
− ∂a2

∂z

)
+
∂

∂y

(
∂a1

∂x
− ∂a3

∂z

)
+

∂

∂z

(
∂a2

∂x
− ∂a1

∂y

)
= 0.

(3.331)

(ii) The curl of a gradient is a zero vector

∇× (∇f(M0)) = 0. (3.332)

In the Cartesian coordinates, we obtain∣∣∣∣∣∣∣
~i ~j ~k
∂
∂x

∂
∂y

∂
∂z

∂f
∂x

∂f
∂y

∂f
∂z

∣∣∣∣∣∣∣ =~i

(
∂2f

∂y∂z
− ∂2f

∂y∂z

)

+~j

(
∂2f

∂x∂z
− ∂2f

∂x∂z

)
+ ~k

(
∂2f

∂x∂y
− ∂2f

∂x∂y

)
= 0.

(3.333)

Finally, let us define the Laplacian of a scalar V (it should not be confused with
the potential) and a vector ~a. In the Cartesian coordinates, we have

∇2V = ∇ · (∇V ) =

(
∂

∂x
~i+

∂

∂y
~j +

∂

∂z
~k

)
·
(
∂V

∂x
~i+

∂V

∂y
~j +

∂V

∂z
~k

)
=

(
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2

)
.

(3.334)

Laplacian in the cylindrical coordinates

∇2V =
1

r

∂

∂r

(
r
∂V

∂r

)
+

1

r2

∂2V

∂θ2
+
∂2V

∂z2
, (3.335)

whereas in the spherical coordinates

∇2V =
1

r2

∂

∂r

(
r2 ∂V

∂r

)
+

1

r2 sinψ
∂

∂ψ

(
sinψ

∂V

∂ψ

)
+

1

r2 sinψ
∂2V

∂θ2
. (3.336)

In the Cartesian coordinate system, we have

∇2~a = ∇2
(
a1
~i+ a2

~j + a3
~k
)

= ∇2a1
~i+∇2a2

~j +∇2a3
~k. (3.337)

It is easy to verify that the following identity holds

∇2~a = ~∇
(
~∇ · ~a

)
− ~∇×

(
~∇× ~a

)
. (3.338)
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3.4.7 Electric and Magnetic Susceptibility and Permeability

Taking magnetization into consideration, there are three types of materials in na-
ture. Dielectrics usually exhibit polarization in the direction of a field ~E. Param-
agnetics (diamagnetics) are polarized in the direction of the magnetic induction ~B,
with the same (opposite) sense regarding ~B. There exist also ferromagnetics (iron)
which keep magnetization when the external field is removed.

In the case of paramagnetic materials, the dipoles associated with spins of elec-
trons are subjected to the action of a moment of forces which tries to move the
dipoles parallel to the field lines. In diamagnetic materials, orbital velocity of elec-
trons changes in a way that the orbital dipole moment moves in the direction op-
posite to the field direction. In general, paramagnetic and diamagnetic phenomena
are very weak. A very strong field repels diamagnetic material and attracts para-
magnetic one.

In what follows, we illustrate and discuss natural reasons for occurrence of po-
larization ~P . Many materials (mainly dielectrics), if subjected to the action of an
electric field, change positions of atoms and dipoles within the material and exhibit
the so-called polarization governed by the equation

~P = ε0χe ~E, (3.339)

where χe is the electric susceptibility, ε0 is a term introduced to keep a linear de-
pendence between ~P and ~E. The electric susceptibility may depend on temperature
and internal material lattice structure. If we apply an electric induction field ~D,

then for a linear medium

~D = ε0
~E + ~P = ε ~E. (3.340)

where

ε = ε0(1 + χe). (3.341)

The proportional coefficient ε is called an electrical permeability of a medium. In
vacuum, the electric susceptibility χe = 0 (there is no matter), and from Eq. (3.341)
we obtain that the electrical permeability in vacuum is ε = ε0.

Using Eq. (3.341), we may also define a relative electric permeability

εr =
ε

ε0
= 1 + χe. (3.342)

Here, we give exemplary values of the relative electric permeability for a few
materials, i.e., εr ∼= 1 for helium, argon, hydrogen, air, nitrogen; εr = 80.1 for
water, εr = 99 for ice, and εr = 5.7 for diamond.

In crystals, electric susceptibility χce depends on the polarization direction, and
we use a tensor of electric susceptibility to define the following linear dependence

~P = ε0χce ~E, (3.343)

which means that nine coefficients χei,j (i, j = 1, 2, 3) must be used (in general) to
define the susceptibility tensor.
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A nondimensional quantity χm is negative for diamagnetics (gold: −3.4 · 10−5,

silver −2.4 · 10−5, copper −9.7 · 10−6, water: −9.0 · 10−6) and positive for param-
agnetics (oxygen 1.9 · 10−6; wolfram 7.8 · 10−5; platinum 2.8 · 10−4).

Magnetization of a medium is equivalent to a magnetic field coming from inter-
nal volume currents and surface currents of the magnetized medium. The current
density ~J is a sum of two vectors

~J = ~Jϑ + ~Jf , (3.344)

where ~Jϑ represent the volume currents yielded by the medium magnetization as a
result of a polarization of atoms and dipoles, whereas ~Jf (called a free current) is
yielded by an external source (like a battery) to transport the charges.

It can be shown that

~Jϑ = ∇× ~M, (3.345)

where ~M is the magnetic dipole moment per unit volume. It is also known as the
magnetization or the magnetic polarization and plays a similar role in magnetostat-
ics as the electric polarization ~P plays in electrostatics.

In order to distinguish magnetic materials (paramagnetic and diamagnetic ones),
we need to introduce a dimensionless constant χ (the term comes from Latin and
denotes receptiveness) characterizing the proportion between a magnetic moment
~M per unit volume and magnetic field strength ~H. The magnetic moment points

from the south to the north pole of a magnet, and it is a vector of an electric current
or the torque of magnetic field acting on the magnet.

The volume magnetic susceptibility χm is defined by the following formula

~M = χm ~H, (3.346)

where M [A/m] is the material magnetization (net magnetic dipole moment per
unit volume); ~H is the magnetic field strength.

In a homogeneous and linear medium, the volume current density ~Jϑ and the
volume free current density are coupled by the following formula

~Jϑ = ∇× ~M = ∇× (χm ~H) = χm ~Jf . (3.347)

Ampére’s law yields

1

µ0
(∇× ~B) = ~Jf + (∇× ~M), (3.348)

or equivalently

∇× ~H = ~Jf , (3.349)

where the magnetic field intensity

~H =
1

µ0

~B − ~M. (3.350)
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The magnetic field intensity ~H is important in magnetostatics (in electrostatics„
a similar role is played by the electric field induction ~D). We have distinguished the
free currents ~Jf , since we can control them. In contrast, we cannot change the action
of the volume current ~Jϑ, since it depends only on the magnetization process. Owing
to the applied Gauss’ law, the application of ~H allows to use only the controllable
currents ~Jf , which is preferable by electrical engineers and designers. This also
yields a motivation to use ~H in Eq. (3.347) instead of the induction ~B.

Equation (3.350), taking into account (3.347), can be recast to the following
form

~B = µ ~H = µ0(1 + χm) ~H = µ0µr ~H, (3.351)

where µ is the magnetic permeability of a medium, µr is the relative magnetic
permeability, and µ0 is the vacuum magnetic permeability.

In what follows, we combine the so far described two different models for mag-
netic fields. Let us assume that we have a 3D space of homogeneous external
magnetic field with the induction ~Be. If we introduce a cylinder made either of a
paramagnetic or diamagnetic material (magnetic materials will be described later),
this cylinder experiences its own internal magnetic induction ~Bi owing to ordering
of its atom magnetic moments, and ~Be ‖ ~Bi. As a result, the following resultant
magnetic field induction is obtained

~B = ~Be + ~Bi, (3.352)

what is shown in Fig. 3.50.

O X

S

l

i

B
i

B
e

B

p

N

Fig. 3.50 Resultant magnetic field induction ~B.

As it has been mentioned above (see Fig. 3.50), in any given long cylinder with
a cross section perpendicular to the OX axis, all bound currents cancel each other.
Only the current flows on the cylindrical surface are active and an internal magnetic
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field

Bi = µ0I (3.353)

is induced in the cylinder body, where I = iN/l and [I]=[A/m]. Formula (3.353)
comes from the standard computation of the magnetic field of a long solenoid, and
iN denotes the entire bound currents intensity, whereas I stands for the density of
the entire current intensity per cylinder length unit, and µ0 is the proportionality
coefficient. One may generate a magnetic field in a different surrounding medium
like gas, fluid or vacuum. It is useful to introduce the so-called relative magnetic
permeability coefficient µ.

If one takes a conductor with the current (or a magnet) and puts it into a medium
different from the vacuum, one observes a different magnetic induction vector at a
given point of the magnetic field (see (3.351):

~B = µr ~B0 = (χm + 1) ~B0, (3.354)

where ~B0 refers to vacuum. Hence, a linear dependence between induction in a
material object and a vacuum is assumed.

In general, the induction of the external magnetic field may change both mag-
netic permeability µ and magnetic susceptibility χ in a nonlinear way. However, in
many cases, χ and µ will not depend on the magnetic field induction. Equivalently,
if one experimentally finds that for a given material object we have ~J˜~B, then χ

and µ can be treated as constants (I stands for the current density).
Let us assume that we have N particles of a studied material object located in

the unit volume part ∆V. Each particle has its own dielectric polarization vector ~pn,
n= 1, . . . , N , and then, the magnetization vector of the object unit volume follows

~M =

N∑
n=1

~pn = ~P . (3.355)

In the case when ~p1 = · · · = ~pN = ~p, we have

~M = N~p. (3.356)

Observe that [M ]=[I]=[A/m], and actually, M = I. The entire magnetic mo-
ment of the solenoid of the infinite length (see Fig. 3.50) is equal to the sum of its
N magnetic moments iS, where S is the cylinder cross section area, i.e., we have

P = iSN. (3.357)

Therefore, the magnetic moment of the solenoid per its unit volume should be
equal to the magnetization M , which means that

M =
P

V
=
iSN

lS
= I. (3.358)

In other words, the magnetization is equal to the density of the entire current
intensity. Therefore, from Eqs. (3.347) and (3.351), we obtain

~M =
χm
µµ0

~B, (3.359)
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assuming that χm and µ do not depend on B.
Magnetic permeability is either a scalar (isotropic medium) or a second rank

tensor (anisotropic medium) – see the next subsection.
One may extend this definition to the so-called incremental permeability defined

as the ratio ∆B/∆H used in a local linearization procedure. In SI units, [µ] =

H/m = N/(A)2, [B] = Wb = V/(m)2 = T.
We define an electric charge as a physical property of matter which generates a

force when it appears near other electrically charged matter. There exist positive
and negative electric charges. One positively charged substance repels other posi-
tively charged substance but attracts other negatively charged substance, and vice
versa (see Fig. 3.51).

+ -

Fig. 3.51 Electric field generated by a positive (+) and negative (−) point charge.

The electric charge is often defined by a symbol q [C = A·s]. A particle of charge
q, being in an electric field intensity ~E and a magnetic field of induction ~B, moves
with instantaneous velocity ~v due to action of the Lorentz force

~F = q[ ~E + (~v × ~B)], (3.360)

where q(~v × ~B) is called the electric (magnetic) force. The magnetic Lorentz force
component is the force acting on a current-carrying wire in a magnetic field.

If the Cartesian coordinates and ~r denoting the charged particle vector position
(see Fig. 3.52) are introduced, then the Lorentz force (3.360) can be written as
follows

~F (~r, ~̇r) = q[ ~E(~r, t) + ~̇r × ~B(~r, t)], (3.361)

where the dot denotes a time derivative.
One may extend the so far introduced concept to a continuous charge distribu-

tion. In the latter case, we have

d~F = dq( ~E + ~v × ~B), (3.362)

where d~F is the force acting on a small piece of the charge distribution with the
charge quantity dq. Assuming that a volume of the small piece of the charge dis-
tribution is dV, one may introduce ~f = d~F/dV (force density), ρ = dq/dV (charge
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Fig. 3.52 Charged particle moving along a path under the Lorentz force ~F for a given time instant
t (a) and the right-hand rule for vectors ~B,~v, ~F (b).

density), and Eq. (3.361) takes the form

~f = ρ ~E + ~J × ~B, (3.363)

where ~J = ρ~v is the current density corresponding to the motion of the charge
continuum. Now, the total force ~F is the volume integral of formula (3.363):

~F =

∫∫∫
V

(ρ ~E + ~J × ~B)d~v. (3.364)

In the case of a straight wire carrying an electrical current and being placed in
a magnetic field, one may think of the charges moving along the wire creating a
microscopic force on the wire, and the Lorentz force (in the described situation it
is sometimes referred to as Laplace’s force) is governed by the relationship

~F = I~l × ~B, (3.365)

where ~l is the unit wire length vector, having the wire direction and the sense of
the current flow. In the case of a curved wire, one may apply the formula (3.365)
to the infinitesimal wire segment, which yields

~F = I

∫
d~l × ~B. (3.366)

In order to apply the Lagrange equations and extend a classical mechanics ap-
proach to study the Lorentz forces, both the electric ~E and magnetic ~B fields are
replaced by the magnetic potential ~A (vector) and electrostatic potential φ (scalar)
in the following way:

~B = ∇× ~A, (3.367)

~E = −∇φ− ∂ ~A

∂t
, (3.368)
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where ∇φ stands for a gradient, and ∇× is a curl. Equation (3.360), taking into
account (3.363) and (3.364), yields

~F = q

[
−
(
∇φ+

∂ ~A

∂t

)
+ ~v × (∇× ~A)

]
, (3.369)

or equivalently

~F = q

[
−
(
∇φ+

∂ ~A

∂t

)
+∇(~v · ~A)− (~v · ∇) ~A

]
. (3.370)

One may introduce now the Lagrangian L for a charged particle of the mass m,
and the charge q, located in an electromagnetic field of the following form

L =
m

2
ṙ2 + q ~A · ~̇r − qφ. (3.371)

3.4.8 Permeability and Susceptibility as Tensors and Dyadics

In the MKS (meter, kilogram, second) units, Maxwell’s equations require the fol-
lowing constructive equations (see Eqs. (3.340) and (3.350), i.e.,

~B = µ ~H = µ0

(
~H + ~M

)
,

~D = ε ~E = ε0
~E + ~P ,

(3.372)

where ~B is the magnetic flux density [Wb/m2], ~H is the magnetic field intensity
[A/m], ~D is the electric displacement [C/m2], ~M is the magnetization [A/m], ~P is
the electric polarization [C/m2]. In addition, ε is the permittivity constant [F/m], µ
is the permeability constant [H/m], whereas ε0 is the dielectric constant of free space
(vacuum) (1/36π) ·10−9 [F/m], and µ0 is the permeability of vacuum which is equal
4π · 10−7 [H/m]. If we introduce the magnetic χm and electric χe susceptibilities,
then:

µ = µ0(1 + χm),

ε = ε0(1 + χe).
(3.373)

Equations (3.372) can be written in their equivalent tensor forms:B1

B2

B3

 =

µ11 µ12 µ13

µ21 µ22 µ23

µ31 µ32 µ33

H1

H2

H3

 ,
D1

D2

D3

 =

ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

E1

E2

E3

 ,
(3.374)
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where all vectors ~B, ~H, ~D and ~E are expressed with the unit vectors~i,~j,~k. Treating
Eq. (3.373) in tensor notation (3.374), we obtain:B1

B2

B3

 = µ0


1 0 0

0 1 0

0 0 1

+

χm11 χm12 χm13

χm21 χm22 χm23

χm31 χm32 χm33


H1

H2

H3

 ,
D1

D2

D3

 = ε0


1 0 0

0 1 0

0 0 1

+

χe11 χe12 χe13

χe21 χe22 χe23

χe31 χe32 χe33


E1

E2

E3

 .
(3.375)

Introducing a column vector as below

~u =

~i~j
~k

 , (3.376)

one may use a dyadic vector
↔
µ = ~uT [µ]~u =

=
[
~i ~j ~k

]
µ11 µ12 µ13

µ21 µ22 µ23

µ31 µ32 µ33


~i~j
~k


 =

[
~i ~j ~k

]µ11
~i µ12

~j µ13
~k

µ21
~i µ22

~j µ23
~k

µ31
~i µ32

~j µ33
~k

 =

= µ11
~i~i+ µ12

~j~i+ µ13
~k~i+ µ21

~i~j + µ22
~j~j + µ23

~k~j + µ31
~i~k + µ32

~j~k + µ33
~k~k.
(3.377)

Therefore, equations (3.374) can be presented also in the corresponding dyadic
forms:

~B =
↔
µ · ~H,

~D =
↔
ε · ~E.

(3.378)

The previously introduced dyadic permeability µ and dyadic permittivity ε al-
low also to introduce the corresponding dyadic susceptibilities. We introduce the
following cross product action in the first equation of (3.372):

∇×
(
↔
µ · ~H

)
= ∇× µ0

(
~H + ~M

)
, (3.379)

and hence we get

∇×
[
↔
µ · ~H − µ0

(
~H + ~M

)]
= 0. (3.380)

The following dyadic susceptibility is defined

~M =
↔
χm ~H, (3.381)

and then from Eq. (3.380), one gets

∇×
[
↔
µ − µ0

(↔
I +

↔
χ
)]
· ~H = 0, (3.382)
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which is satisfied if
↔
µ = µ0

(↔
I +

↔
χ
)
, (3.383)

where the unit dyadic tensor
↔

I =~i~i+~j~j + ~k~k. (3.384)

Note that the following relations hold

↔

I · ~H =
[
~i~i+~j~j + ~k~k

]
·

H1
~i

H2
~j

H3
~k

 = H1
~i+H2

~j +H3
~k = ~H. (3.385)

Equation (3.383) exhibits the relationship between dyadic permeability and sus-
ceptibility.

In the case when Hi is collinear with Bi (semi-infinite isotropic magnetic
medium), the tensor [µ] takes a simple diagonal form

[µ] = diag [µ]. (3.386)

Scalar permeability can be represented by a diagonal matrix with three different
terms

[µ] =

µ11 0 0

0 µ22 0

0 0 µ33

 , (3.387)

where

µii =
Bi
Hi
. (3.388)

In general, when we have finite samples, Hi is not collinear with Bi. However,
we may compute the diagonal terms of the permeability tensor.

From the equation

[µ] ~H = µ0

(
~H + ~M

)
(3.389)

we get µ11 µ12 µ13

µ21 µ22 µ23

µ31 µ32 µ33


H1

~i

H2
~j

H3
~k

 = µ0

(H1 +M1)~i

(H2 +M2)~j

(H3 +M3)~k

 , (3.390)

and consequently

H1µ11
~i+H2µ12

~j +H3µ13
~k = µ0(H1 +M1)~i,

H1µ21
~i+H2µ22

~j +H3µ23
~k = µ0(H2 +M2)~j,

H1µ31
~i+H2µ32

~j +H3µ33
~k = µ0(H3 +M3)~k.

(3.391)

Compression of the terms with subscripts „ii” at unit vectors~i,~j,~k in Eq. (3.391)
yields

µii = µ0

(
Hi +Mi

Hi

)
. (3.392)
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The left-hand side of the equation (3.389) is

[µ] ~H =

µ11 µ12 µ13

µ21 µ22 µ23

µ31 µ32 µ33


H1

~i

H2
~j

H3
~k

 =

µ11H1 + µ12H2 + µ13H3

µ21H1 + µ22H2 + µ23H3

µ31H1 + µ32H2 + µ33H3


~i~j
~k

 . (3.393)

Taking into account Eqs. (3.393) and (3.390), we obtain

µ11H1 + µ12H2 + µ13H3 = µ0(H1 +M1),

µ21H1 + µ22H2 + µ23H3 = µ0(H2 +M2),

µ31H1 + µ32H2 + µ33H3 = µ0(H3 +M3).

(3.394)

Relationships (3.394) and (3.392) yield the following set of algebraic equations

µ12H2 + µ13H3 = 0,

µ21H1 + µ23H3 = 0,

µ31H1 + µ32H2 = 0.

(3.395)

Equations (3.395) are obtained from the equation (3.389):

([µ]− µ0[I]) ~H = µ0
~M, (3.396)

which gives the following matrix notationµ11 − µ0 µ12 µ13

µ21 µ22 − µ0 µ23

µ31 µ32 µ33 − µ0

H1

H2

H3

 = µ0

M1

M2

M3

 , (3.397)

where µii = µ0(1 +Mi/Hi).

The sought nondiagonal terms of the permeability tensor can be found from the
formula

µji = µ0

(
Mi

Hj

)
, i 6= j, (3.398)

assuming that the following relationships hold:

M2

M3
= −H3

H2
,

M1

M3
= −H3

H1
,

M1

M2
= −H2

H1
. (3.399)

The following final remarks are important:

(i) when Hi is collinear with Bi (semi-infinite isotropic magnetic medium), we
have µ = µ11 = µ22 = µ33;

(ii) when Hi is not collinear with Bi (finite-size magnetic media of various
shapes, then Eqs. (3.392) and (3.398) hold for Mi = M cosβi, and βi is the
angle between M and Hi;

(iii) Bi are different for each direction of ~H for µ11 6= µ22 6= µ33.
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3.4.9 Diamagnetic Materials

Diamagnetic materials are those materials whose permanent magnetic dipole mo-
ments equal zero. This configuration state of the particles is implied by zero vector
sum of orbital and spin magnetic moments. The following characteristic features
are typical for this materials group

(i) lack of permanent atom magnetic dipole;
(ii) magnetic susceptibility χ is small and negative (−10−6;−10−5);

(iii) induced magnetic moments generate the magnetization opposite to the ap-
plied external field;

(iv) diamagnetic object is repelled by the magnetic field.

Typical examples of the diamagnetic materials are: inactive gases, the majority
of organic compounds, water, glass and metals such as Ag, Au, Bi, Cu, Hg, Zn.

Introduction of a diamagnetic sample into the magnetic external field ~B0 results
in an induction effect. Namely, the magnetic field flux passing through the loops
(orbits) with the current induced by the electron movements changes the previ-
ous orbital electrons movement, i.e., the electrons are accelerated or slowed down
(Faraday’s theory) and, owing to Lenz’s rule, the induced magnetic field opposes
the increase in the magnetic flux.

The action of an external magnetic field ~B0 implies the so-called Larmor preces-
sion of the electron, i.e., the previous loop vector of the orbit being normal to the
loop surface is rotated with additional angular velocity about ~B0. This precession
of electrons induces dipole moments of atoms against the field. Since the induced
magnetization opposes the external field, diamagnetic objects are repelled by the
magnetic field.

Although one may reasonably suspect that the so far described diamagnetic
phenomena are typical for all materials, because the induction process affects all
atoms, in practice, such phenomena are rarely observed. The reason is that they are
much weaker than paramagnetic and ferromagnetic phenomena. In other words, the
diamagnetic phenomena occur also in paramagnetic and ferromagnetic materials,
but their influence on magnetic properties of the two mentioned groups of the
magnetic material is negligible.

The distribution of magnetic dipole moments in a diamagnetic material is
schematically shown in Fig. 3.53.

It is known that a change in the resultant magnetic moment ∆~p of an atom
having Z electrons and being subjected to the action of external magnetic field ~B0

is estimated by the following equation

∆~p = −e
2r2Z ~B

4m
, (3.400)

where m is the electron mass, Z is the electrons number and r2 denotes the average
value of projections of radii of orbits of Z electrons onto the direction perpendicular
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(a) (b)
B0B0=0

Fig. 3.53 Magnetic dipole moments in the absence (a) and existence (b) of the external field B0

exhibited by a diamagnetic material sample.

to ~B. The magnetization

~M = n0∆~p = −e
2r2Zn0

4m
~B, (3.401)

where n0 denotes the number of particles in the volume unit. Since we have

M =
χB

µµ0
≈ χB

µ0
, (3.402)

then, from Eqs. (3.401) and (3.402), we get

χ = −µ0n0e
2r2Z

4m
. (3.403)

This formula yields small values of magnetic susceptibility of diamagnetics esti-
mated in item (ii).

3.4.10 Paramagnetic Materials

Materials consisting of atoms or particles possessing permanent nonzero magnetic
dipole moments µ are called paramagnetic. The resultant vector sum of orbital and
spin magnetic moments is zero, since dipole moments are randomly distributed.
However, when we apply an external uniform magnetic field ~B0, the dipoles rotate
to follow the magnetic field alignment (see Fig. 3.54).

(a) (b)
B0B0=0

Fig. 3.54 Magnetic dipole moments in the absence (a) and presence (b) of the external field ~B0

exhibited by a paramagnetic material sample.

Paramagnetics have the following typical properties:
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(i) permanent atom magnetic dipole moment exists;
(ii) magnetic susceptibility is small (10−7-10−2) and positive;

(iii) external field generates the magnetization being slightly higher than that
of an external field;

(iv) paramagnetic material is attracted by a magnetic field.

The group of paramagnetic materials includes, for instance, oxygen, nitric oxide,
platinum, aluminum, alkaline earth (metal) family and alkali metals.

After the action of ~B0 on a sample of paramagnetic material, its total magnetic
field exhibits two components: external field ~B0 and induced field µ0

~M. Since ~B ‖
~M, then the resultant induced field ~B = ℵ ~B0. The permeability factor ℵ slightly

exceeds 1 and depends on the temperature T . The magnetization decreases with an
increase in temperature, since the electron motions are disturbed by thermal actions,
and hence also the previous alignment of dipoles is disturbed. This phenomenon is
governed by Curie’s law for paramagnetics (P. Curié in 1895) through the following
formula

M = C
B0

T
, (3.404)

where C stands for the Curie constant and depends on the material properties. The
linear part of formula (3.404) is valid only for small values of B0/T , as it is shown
in Fig. 3.55.

M

B T0/

M
*

Fig. 3.55 Magnetization versus B0/T for a paramagnetic material sample.

For large values of B0/T , the so-called saturation effect is observed, where
plateau M∗ is achieved. This phenomenon is associated with parallel alignment
of the dipoles when magnetization achieves its maximal value due to thermally
excited motion of electrons. The removal of B0 causes random distribution of direc-
tions of dipoles again, and the magnetic forces of atoms are too small to conserve
the previous alignment.

The theory of paramagnetism was developed by D. Langevin in 1905. The av-
erage value of the atom magnetic moment projected onto the magnetic field B de-
pends on the ratio γ of the atom energy devoted to its interaction with the external
magnetic field B and thermal energy of the form

γ =
pmB

kT
, (3.405)
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where pm is the magnetic moment.
Magnetization process of a paramagnetic sample depends essentially on γ, i.e.,

M =
n0p

2
mB

3kT
= χm

B

µ
, γ � 1, (3.406)

M∗ = n0pm, γ � 1, (3.407)

where n0 denotes a number of atoms per unit volume.
This means that for γ � 1, the dependence of M(B) is linear, whereas for

γ � 1, we have a saturation phenomenon. According to Eq. (3.406):

χm =
µ0n0p

2
m

3kT
, (3.408)

which yields the earlier discussed Curie’s law stating that χm ∼ 1
T .

3.4.11 Ferromagnetic Materials

Materials having permanent dipole moments and exhibiting strong interactions be-
tween neighboring atomic dipole moments are called ferromagnetic. They possess
the following properties:

(i) magnetic susceptibility χm is very high (105) and is nonlinear regarding the
field parameters;

(ii) permanent atom magnetic dipole moments exist;
(iii) external field generates huge magnetization;
(iv) remanent magnetization and coercive field occur;
(v) ferromagnetism vanishes at temperatures higher than those of Curie points.

Ferromagnetic materials include iron, nickel, cobalt, and some lanthanide series.
A temperature increase implies a decrease in the ferromagnetic material properties,
and when the temperature exceeds the so-called threshold values defined by the
Curie points, the paramagnetic properties occur instead of the ferromagnetic ones.
The Curie point TC may vary from 300 K (gadolinium) to 970 K (iron). When tem-
perature T > TC , the magnetization formula follows the Curie-Weiss law governed
by the relationship

M =
CB

T − TC
. (3.409)

Large values of the susceptibility χm affect nonlinear behavior of the magneti-
zation M and the resultant field B versus the applied field B0. The permeability µ
becomes also field-dependent.

Applying magnetization and demagnetization to a ferromagnetic material sam-
ple, the so-called magnetic hysteresis curve is obtained in Fig. 3.56.

An increase in the magnetic field B0 yields an increase in the ferromagnetic
sample magnetization up to the saturation level M∗ (point B). A decrease in B0

results in the transition via another path, and for B0 = 0, the so-called remanent
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M

M
* B

C

G

F

E

D

B0

-M
*

A

Fig. 3.56 Magnetization a ferromagnetic sample in external field B0.

magnetization occurs (point C). In order to remove magnetization, we must change
the direction of B0 to achieve M = 0 in point D. Continuing the process, we observe
the reversed magnetization of the sample which is again saturated at point E. Be-
fore closing a circle of external field magnetization, we pass through the permanent
magnetization at point F , and the coercive field (G) finally achieves the original
magnetization (B). The earlier illustrated closed orbit of magnetization/demagne-
tization is a characteristic feature of the ferromagnetic samples. Furthermore, we
say that a ferromagnetic is hard (soft), when the coercive field is high (low).

3.5 An Introduction to Electromagnetic Fields

As it is well known, there exist four fundamental forces in our universe, i.e., gravity,
weak, strong and electromagnetic ones. In mechatronics, we deal with magnetic,
electric and mechanical forces. Mechanical forces are well known and described in
various mechanical books [Awrejcewicz and Koruba (2012); Awrejcewicz (2012a,b)],
and they obey three Newton’s laws.

The electric charge is quantified as a multiple of the electron (−) or proton (+)

charges (±e = ±1.60210−19C), where C (coulomb) is the unit of the electric charge.
The charge of 1 C is the charge which flows through a 120 W light bulb in 1 second.
Theoretically, two charges of 1 C each, being separated by 1 meter, should repel
each other with a force around 109 N. However, this will never happen, since the
nature will never collect the charge of 1 C in one point. Coulomb’s law allows to
compute charges q1 and q2 (recall that charges of the same (different) sign repel
(attract) each other) as follows

~F = k
q1q2

r3
~r, (3.410)
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where r denotes the distance between them, k = 1
4πε0

and ε0 is the value of free
space (vacuum) permittivity (ε0 = 8.85 · 1012 [F/m]), where Farad [F] is the unit
of electrical capacitance; magnitude of charge Q and voltage V applied to parallel
plates of the capacitor is the capacitance (C = Q/V ).

In order to show that Coulomb’s law satisfies Newton’s third law, equation
(3.410) has been presented in the vector notation. Coulomb’s law is similar to that
of the gravitational law governed by the equation

~F = G
m1m2

r3
~r, (3.411)

where G = 6.67 ·10−11Nm2/kg2 is the gravitational constant, and the gravity is the
weakest of the previously mentioned gravitational forces.

The Lorentz force law unifies both electric and magnetic fields. As it is known,
the magnetic field may be induced by electric currents, which may be understood as
currents produced by electrons in atomic orbits or in terms of macroscopic currents
in wires. The interaction of a magnetic field (sometimes called also magnetic flux
densities) ~B with a charge q and an electric field intensity ~E is governed by the
Lorentz equation

~F = q ~E + q~v × ~B, (3.412)

where ~v is the charge of q velocity. In SI notation [B] = [T] (tesla). The Gauss (G)
magnetic field units is 1 [T] = 104 [G], and 1 [T] = 1 [Wb/m2], where weber (Wb)
is the unit of the magnetic flux.

Simple schemes of both electric q · E and magnetic q~v × ~B forces acting on a
moving positive charge are shown in Fig. 3.57.

S N

a) b)

Fig. 3.57 Electric and magnetic constituents of the electromagnetic forces (1) (S/N) denote the
south north pole of a magnet.

In the case of applications to current-carrying wires, a force acting on a straight
wire of the length l is given by the following formula

~F = ~Il × ~B, (3.413)

where ~I is the vector of the electric current and l denotes the length of the wire.
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In the world of atomic scales, the electromagnetic forces are dominant over
the other mentioned fundamental forces, and they are responsible for building the
material atomic and molecular structure. However, the magnetic part of the elec-
tromagnetic force can be also neglected since it appears only at high resolutions.
On the other hand, the so far discussed gravity and electromagnetic forces obey
the so-called inverse-square law (coming from geometrical considerations and being
applied to diverse physical phenomena). They are infinite in range and they have
similar mathematical forms. This observation motivated Einstein to look for one
unified force being responsible for all possible interactions in our universe matter.
However, it appears that the common form of the electromagnetic and gravity forces
is due to existence of an exchange particle of zero mass rather than because of an
inherent symmetry.

The electric force (in Newtons) ~Fe per charge q (in Coulombs) defines the electric
field ~E in the following way

~E =
~Fe
q
, (3.414)

and [E] = [N/C] or [E] = [N/m]. It points radially outwards from a positive charge
towards a negative point charge, as it is schematically depicted in Fig. 3.58.

a) b)

c)c) d)

e)

Fig. 3.58 Electric field produced by a positive (a) and negative (b) point charge, a charged
cylinder (c), a charged sphere (d) and charged parallel plates (e).

In the case of the point charge, the electric field is

E =
F

q
=

1

q

kQq

r2
=
kQ

r2
, (3.415)

and radius r determines the electric potential of a point charge as follows

V =
kQ

r
=

Q

4πε0r
. (3.416)

Therefore, the equipotential surfaces are spheres of radii r, and the equipotential
lines are circles. In the case of parallel conducting plates (see Fig. 3.58e), the
equipotential lines are parallel to the plates and are perpendicular to the electric
field lines.
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In a general physics, three constants are used to describe magnetic and electric
fields propagation, i.e., the speed of light c = 299, 792, 458 [m/s], the electric permit-
tivity of free space ε0 and the magnetic permeability of (free) space µ0 = 4π · 10−7

N/A2, where A denotes ampere. Note that the permeability of the majority of ma-
terials is close to µ0, since they are either paramagnetic or diamagnetic. However,
sometimes the permeability of ferromagnetic materials is very large, and therefore a
relative permeability µr is introduced. For example, in the case of the magnetic iron
µr = 200, whereas in the case of permalloy (78.5% nickel, 21.5% iron) µr = 8000. A
value of the free space permittivity ε0 can be computed from the following formula

c =
1√
µ0ε0

, (3.417)

which gives ε0 = 8.85 · 10−12 F/m. In any dielectric material, the orientation of
molecules is random. However, when an electric field is applied, the material starts
to exhibit orientation of the dipole moments of polar molecules. Observe that
even though the total molecule charge is zero, its positive and negative charges do
not overlap due to the nature of chemical bonds, i.e., they have permanent dipole
moments. If we consider an ideal pair of opposite charges of magnitudes +q and −q
located within a distance r, it produces the electric dipole moment being defined as
follows

~p = q~r, (3.418)

where q is the magnitude of the charge and r is the distance between charges towards
the positive charge. An electric field ~Ed produced by a dipole is

~Ed = − 1

4πε0

~p

d4
~d, (3.419)

where d � r and ~d⊥~r. The potential (voltage or electric potential energy) of the
point charge can be estimated in the following way. We take zero potential in
infinity and we compute the work needed to bring a test charge q from its infinite
location to that at the distance r. The work done by the Coulomb force acting
along a straight radial line r from ra to rb follows (see Fig. 3.59)

W = VA − VB =

rB∫
rA

kq

r2
dr = kq

(
1

rA
− 1

rB

)
, (3.420)

where k = 1
4πε0

is the Coulomb constant. Hence, we obtain Eq. (3.416), assuming
that rB →∞.

On the other hand, the potential of the electric dipole is estimated through
formula (3.420) in the following way

V = kq
r− − r+

r−r+
, (3.421)

where rA = r+, rB = r−. In Fig. 3.59, equipotential lines are also shown. They
form circles, and scaling of voltage at equal increments shows how these circles get
further apart with increasing r.
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q

A
B

Fig. 3.59 Test charge q moving radially and the equipotential lines (dashed).

r-

+q -q

r+

r r
- -r+

 

d

0

Fig. 3.60 Scheme for electric dipole potential estimation.

Owing to the scheme shown in Fig. 3.60, the following observations hold

r− − r+
∼= d cosα, r+r− ∼= r2, ~p = q~d. (3.422)

Hence, taking into account Eq. (3.422) in (3.421):

V =
kp cosα
r2

. (3.423)

The electric potential of the dipole is reported in Fig. 3.61 and it shows the mirror
symmetry about the center point of the dipole. Equipotential lines are everywhere
perpendicular to the electric field lines.

Electric and magnetic fields store the energy. It is usually computed per volume
unit U , and hence it may be presented as the energy densities of electric/magnetic
field of the forms:

HE

U =
1

2
εE2, (3.424)
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symmetry
axis

Fig. 3.61 Equipotential lines of a dipole.

HB

U =
1

2

B2

µ
. (3.425)

Enthalpy in Greek means “to put heat into”. Nowadays, enthalpy represents
rather a measure of the total energy of a system, not necessarily related to a heat
transfer. This general word is applied to a variety of mechatronic, chemical and
biological systems in which the energy can be transferred. Formal definition of the
enthalpy follows

H = U + pV, (3.426)

where H [J] denotes the system enthalpy, U [J] is the system internal energy, p [Pa] is
the pressure on the boundary between the system and the surrounding environment
and U is the system volume. Dividing both sides of Eq. (3.426) by U , one obtains
the enthalpy density functions being also denoted by H.

Let us consider a parallel-plate capacitor of the plate area A, the distance be-
tween the plates r, where Q = CV and V = Er. Its electric energy can be directly
computed from (3.424), i.e.,

HE =
1

2
εE2Ar =

1

2
ε
A

r
V 2 =

1

2
CV 2. (3.427)

Let us recall that a long straight coil of a wire produces a nearly uniform mag-
netic field ~B, assuming that the current ~I flows through that wire, i.e., a solenoid.
It is well known that the magnetic field induced by the electric current ~I in a
solenoid coil is similar to that produced by a bar magnet, which has been presented
in Fig. 3.62.
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Fig. 3.62 Magnetic field produced by a bar magnet (a) and a solenoid (b) with the north (N)
and south (S) poles and the compass needle marked.

The magnetic field produced in the solenoid (see Fig. 3.62b) is negligible far
from the coil. Now, taking a rectangular path such that its length side l is parallel
to ~B, for the idealized case, Ampére’s law yields

~Bl = µn~I, (3.428)

and hence

~B = µN~I, (3.429)

where n/l = N .
Formula (3.429) describes the long solenoid field approximation in its center,

where µ = µ0µr, µ0 = 4π · 10−7 T/Am, and µr is called the relative permeability.
So far, we have considered the static cases. If one moves a rectangular wire

(conductor) into a stationary magnetic field with velocity v, then voltage, called
also a motional EMF , governed by Faraday’s law will be induced (see Fig. 3.63).

Since the EMF can be presented as the work done per unit charge q, then

EMF =
W

q
=
Fl

q
=
qvBI

q
= vBl = Bl

dx

dt
=
d (BA)

dt
=
dφ

dt
, (3.430)

where φ = BA is the magnetic flux, B denotes the external magnetic field, and
A = xl is the rectangular coil area. Observe the similarity to Newton’s third law,
i.e., the induced current I creates a magnetic field BI which opposes the magnetic
field B created in the rectangular coil. If one takes a coil with the number of N
turns, then formula (3.430) can be cast to the following form

EMF = −N dφ

dt
, (3.431)

and the minus sign comes from Lenz’s law. Equation (3.431) represent Faraday’s
law. Lenz’s law says that if an EMF is generated by a change in the magnetic flux
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Fig. 3.63 Scheme of a motional EMF (electromotive force).

associated with B due to Faraday’s law, then the induced EMF polarity produces a
current I whose magnetic field BI opposes the change of B. Lenz’s law is illustrated
in Fig. 3.64, where the action of a bar magnet with south and north poles is shown
(taken from R. Nave/hyperphysics.phy-astr.gsu.edu).

S

S N

NI

I

I

I

Fig. 3.64 Illustration of Lenz’s law.

The so far discussed electric and magnetic laws can be presented in a more
compact, generalized form. Ampére’s law can be described by the line integral
around a closed loop by the following equation∮

~B · d~s = µ0I +
1

c2
∂

∂t

∫
~E · d ~A, (3.432)

or by the following differential equation

∇× ~B =
4πk

c2
~J +

1

c2
∂ ~E

∂t
, (3.433)
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where k = 1
4πε0

, c = 1√
µ0ε0

, and ~J is the current density. The line and the surface
are shown in Fig. 3.65a,b, respectively.

b)a)

Fig. 3.65 Scheme of the line integral
B∫
A

~B · d~s =
B∫
A

B cosαds (a) and of the surface integral corre-

sponding to the electric flux φ =
∫
~E · d ~A =

∫
B cos (α)dA (b) computations.

The total electric flux φ through a closed surface A is equal to the enclosed
charge divided by permittivity ε0, i.e.,

φ =
q

ε0
=

∮
~E · d ~A, ~E =

∆φ

∆ ~A
, (3.434)

and ~E⊥∆ ~A. For a point charge q, the electric flux is (see Fig. 3.66a)

φ = EA = 4πr2E =
q

ε0
, (3.435)

whereas for a conducting sphere with charge Q, the electric flux is (see Fig. 3.66b)

φ = 4πr2E =
Q

ε0
for r > R,

φ = 0 for r < R.

(3.436)

Recall that if there are two point charges q1 and q2 located at a distance r, then
the force acting on each point is governed by formula (3.410). There are two Gauss’
laws. The integral and differential forms of Gauss’ law for magnetism follow:∮

~B · d ~A = 0, (3.437)

∇ · ~B = 0. (3.438)

The surface integral (3.437) is equal to zero, which means that the net magnetic
flux through any closed surface is zero (it is nonzero if there is a magnetic monopole
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b)a)

Fig. 3.66 Electric field of a point charge (a) and of a conducting sphere (b).

source). If there is no monopole source, the divergence of a vector field is propor-
tional to the point source density. Gauss’ law for electricity also has either integral
form ∮

~E · d ~A =
q

ε0
= 4πkq, (3.439)

or differential form

∇ · ~E =
ρ

ε0
= 4πkρ. (3.440)

It represents the following observation: the electric flux through any closed
surface is proportional to the total charge of the surface. The electric field divergence
(see Eq. (3.440)) allows to measure the density of sources, whereas the surface
integral (see Eq. (3.439)) yields a measure of the enclosed net charge.

Faraday’s law for induction has the following form of the line integral∮
~E · d~s = −dφ

dt
, (3.441)

i.e., the line integral of the electric field E around a closed loop is equal to the
negative of the rate of change of the magnetic flux φ through the surface bounded
by the loop.

Its corresponding differential representation is

∇× ~E = −∂
~B

∂t
. (3.442)

Maxwell’s equations represent a set of mathematical formulas of the so far illus-
trated and discussed Gauss’ electric and magnetic laws as well as of Faraday’s and
Ampére’s laws.

They will be repeated below in their more general differential representation
valid for polarizable magnetic isotropic linear materials.

(i) Gauss’ laws for electricity:

∇ · ~D = ρ, (3.443)
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~D = ε ~E + ~P , (3.444)

where ~D denotes the electric displacement, ρ is the charge density, ε is the
permittivity, ~P is the polarization vector (in the case if free space ~D = ε0

~E).
(ii) Gauss’ law for magnetism

∇ · ~B = 0, (3.445)

where B is the magnetic field vector.
(iii) Faraday’s law of induction

∇× ~E = −∂
~B

∂t
. (3.446)

(iv) Ampére’s law

∇× ~H = ~J × ∂ ~D

∂t
, (3.447)

where

~B = µ0

(
~H + ~M

)
, (3.448)

and ~H denotes the magnetic field strength vector, whereas ~M is the mag-
netization vector (for a free space ~B = µ0

~H). Formula (3.448) requires
explanation. Owing to Ampére’s law, when magnetic fields generated by
currents pass through magnetic materials, it is difficult to distinguish which
part of the field comes from the material and which from the external cur-
rents. Therefore, the magnetic field strength ~H has been introduced. Note
that ~H and ~M have the same unit [A/m]. Sometimes, instead of Eq. (3.448)
we take ~B = ~B0 +µ0

~M , where µ0 is the magnetic permeability of free space
and ~B0 is the externally applied magnetic field.
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Chapter 4

Modeling of Piezoelectric Phenomena

4.1 Piezoelectric Materials, Materials Laws and Constitutive
Equations

Piezoelectric materials (piezoceramics) play a key role in mechatronic systems. As
it has been pointed out in [Kamlah (2001); von Wagner (2003)], the piezoelectric
ceramic lead (Pb)-zirconate (Zr)-titanate (Ti), denoted by PZT, is often used in
manufacturing of sensors and actuators. PZT is a mixture of PBTiO3 and PbZrO3.
Since both PbTiO3 and PbZrO3 are ferroelectric, their lattice structure depends on
temperature, where the key role is played by the Curie temperature Tc. In Fig. 4.1,
cubic (a) and tetragonal (b) unit cells of PbTiO3 piezoelectric ceramic are shown.

1
2

3

P

T > Tc

 T < Tc

O2- 

Ti4+

Ba2+

 a)  b)

Fig. 4.1 Regular hexahedron for T > Tc (a) and deformed rectangular prism T < Tc (b) of cells
of BaTiO3 piezoelectric ceramic (Ba2+ O2 Ti4+) with polarization vector P marked.

Piezoceramics are manufactured of isotropic ferroelectric ceramics using
a strong, homogeneous, external electric field. In general, Zr and Ti, as well as
their compounds, exist in a form of randomly oriented grains belonging to different

123
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crystal classes, i.e., tetragonal pyramids or rhombohedra prisms. The introduced
electric field allows for a rearrangement of domain walls in the grains, yielding a
macroscopic polarizations. After the strong electric field is removed, a transversely
isotropic piezoelectric material is built and a net remnant polarization axis is per-
pendicular to the isotropy plane. In what follows, the obtained bulk material pos-
sesses properties equivalent to that of a single hexagonal crystal of 6 mm (however,
be aware that crystals of the given piezoceramic material are not of the same size).
The Curie temperature (150-350◦C) is responsible for piezoelectric unit behavior.
Namely, below this threshold, the previous symmetric structure (see Fig. 4.1a) is
forced due to the displacement of Ti (or Zr). In what follows, a tetragonal (of possi-
bly rhombohedral) dipole emerges giving a rise for coupling of previously uncoupled
mechatronic, i.e., mechanical and electrical, properties.

For T > Tc, the cuboid preserves all symmetry properties and the dipoles are
not produced. The dipole effects induced by strong electric fields in each elementary
cell are polarized in a chaotic manner, i.e., their directions are randomly distributed.
However, once the temperature T < Tc and the electric field is applied in a proper
(polarization) direction, the elementary dipoles structure is organized in a synchro-
nized (oriented) manner, exhibiting the piezoelectric microscopic effect.

The so far described polarization phenomena are associated with the dielectric
and butterfly hysteresis effects, i.e., they can be presented on the P -E and S-E
planes (see Figs. 4.2, 4.3). In the initial I (origins), the dipoles are randomly orga-
nized. Introduction of E and its quasi static increase yields an ordering process of
dipoles orientation and, finally, in the state II, all dipole domains of the piezoelec-
tric test sample are ordered in a way coinciding with the applied E direction.

A decrease in E does not influence the ordered piezoelectric state which is con-
served for E = 0. This corresponds to Ps and Ss states, and point III corresponds
to the system configuration state, in which the working regime of the piezoelectric
devices used in various industrial application plays a key role. The linear approxi-
mation is applied in this point, presented in Figs. 4.2b and 4.3b, respectively. The
same holds for point VI, although in this case, the vector of electric field is E. In
point III, the direction of the vector E is changed, and between point III and IV ,
dipoles are disordered. Further decrease in E (after crossing of point IV ) results in
the ordering occurrence, which is achieved in point V . An increase in E preserves
the order dipoles state up to the point V I (0,−Ps), and then the movement from
point V I to V II is accompanied by disorder occurrence, which is finally kept in
point V II. Then, the so far described hysteresis cycle repeats, and the mentioned
behavior has been experimentally verified.

The so-called piezoelectric effect couples normal (S1, S2, S3) and shear
(S4, S5, S6) strains (in fact, in commonly manufactured units, S6 is uncoupled)
with the electric fields E1, E2, E3. Three different piezoelectric effects d33, d31 and
d15 are displayed in Fig. 4.4, using an example of electrically excited piezoceramic
rod with a square cross section.
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VI

II

III

IV

V

VII

 II,III

 I, IV,VII

 V, VI

 a)  b)

Fig. 4.2 The dielectric hysteresis (a) and its piecewise approximation in the P -E plane (b).

I

VI
II

III

IV

V

VII
  a) b)

Fig. 4.3 The dielectric hysteresis (a) and its piecewise approximation in the S-E plane (b).

The piezoelectric rod deformations (configurations) reported in Fig. 4.4 depend
on the used electrode geometry, boundary condition and excitations.

The strongest piezoelectric effect d33 couples S3 and E3 in the polarization di-
rection P . On the other hand, the d31-effect couples S1 and E3, and the material
is elongated in the direction of the polarization vector P3 and simultaneously con-
tracted in the plane perpendicular to P3. Finally, the d15-effect, i.e., the shear effect,
occurs in the plane perpendicular to P .

The d33-effect is widely applied in quasi-statically driven positioners and in
modern combustion motors. The d31-effect is used in pneumatic valves in excitation
of bending vibrations in bimorph structures or to guide threats in textile machines.
The d15-effect may even achieve the magnitude of d33-effect coupling and is widely
applied in multiaxial positioners and acceleration sensors.

The fundamental piezoelectric relations can be derived from the following two
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P

P

P

S1

S4

S5S2

S3
S6

E1

E2E3

  a)   b)   c)

Fig. 4.4 Piezoelectric effects d33 (a), d31 (b) and d15 (c) (solid line denotes the unit configuration
after deformation and for simplicity a direction normal to the electrode surface is parallel to Ei).

coupled vector equations:

f1(S,E, T ) = 0,

f2(S,E, T ) = 0,
(4.1)

where mechanical variables S(T ) refer to strain (stress), whereas the electrical vari-
ables represent the electric flux density D and the electric field E (sometimes,
polarization P is used instead of D).

Assuming that the point (S0, E0, T0) satisfies both vector equations (4.1), the
expansion into the Taylor series gives the following linear constitutive equations
(see [Ikeda (1990)] for more details):

T = kES + cET Ṡ − e1E,

D = eS + cDṠ + εSE.
(4.2)

In fact, mechanical elasticity (stiffness) k = kE and damping coefficients of cou-
pling tensors cET , as well as dielectric coefficients ε = εs and damping coefficients
cD, denote the constants measured either at constant electric field E or at constant
strain, respectively.

Remark 1. It should be emphasized that equations (4.2) are strongly simplified
in comparison to equations (4.1), and their engineering motivation, identification
and validation is required in practice.

Remark 2. In general, equations (4.2) hold for linear homogeneous elastic and
piezoelectric materials.
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Remark 3. Equations (4.2) are given in the so-called mixed form, since the
mixed tensors of strain and electric field are taken as independent variables. This
form is mainly used in applications, since the equations correspond to direct es-
timation of the boundary conditions expressed mainly through displacements and
voltage.

Remark 4. Neglecting the damping coefficient, equations (4.22) have the fol-
lowing index form notation:

Tij = kEijklskl − ekijEk,
Di = eiklskl + εSikEk.

(4.3)

Taking D and T as independent values, we get:

sij = sDijklTkl + gkijDk,

Ei = −giklTkl + βTikDk.
(4.4)

However, one may use also the independent extensive variables Dk and Skl, and
the following index form constitutive equations are obtained:

Tij = kDijklskl − hkijDk,

Ei = −hiklskl − βSikDk.
(4.5)

Finally, if one takes the intensive variables Ek and Tkl as independent ones, the
following constitutive equations are obtained:

sij = sEijklTkl + dkijEk,

Di = diklTkl + εTikEk.
(4.6)

Above, kijkl are stiffness coefficients, sijkl are compliance coefficients, εik are
dielectric permeability constants, and βik are susceptibility constants. Remaining
constant coefficients hijkl, dijkl, eikl and gikl govern coupling between electric and
mechanical fields.

For convenience, material constant for PIC-181 ceramics and their corresponding
units are taken from reference [Ceramics (2008)] and are reported in Table 4.1.

For instance, considering equations (4.5) and taking into account a linear planar
piezoelectric ceramic, we have different material constants, including k1 . . . k5 (ma-
terial stiffness), h1, h2, h3 (electromechanical coupling) and the dielectric material
properties β1, β2. Fortunately, the known materials exhibit symmetry properties
allowing, in general, for application of a matrix notation due to introduction of
new stiffness coefficients kijkl = kpq and new coupling terms eijkl = eip. In other
words, we have applied the following replacements: ij → p, kl→ q, and the indices
replacement follows: 11 → 1, 22 → 2, 33 → 3, 23 or 31 → 4, 13 or 31 → 5, 12 or
21→ 6 (see also [Meitzler et al. (1988)]).

 b
.



July 14, 2016 14:53 ws-book961x669 DYNAMICS OF MECHATRONIC SYSTEMS 10193-main page 128

128 DYNAMICS OF MECHATRONIC SYSTEMS

Table 4.1 PIC-181 ceramics constants corresponding to coeffi-
cients in equations (4.3)-(4.6) (see [von Wagner and Hagedorn
(2002)]).

Constant Unit Value

Density ρ kg·m−3 7850
Compliance sE11 m2N−1 1.175 · 10−11

sE12 ” −4.07 · 10−12

sE13 ” −4.996 · 10−12

sE33 ” 1.411 · 10−11

sE44 ” 3.533 · 10−11

sE66 ” 2(sE11 − sE12)

Compliance sD11 m2N−1 1.058 · 10−11

sD12 ” −5.235 · 10−12

sD13 ” −2.268 · 10−12

sD33 ” 1.137 · 10−11

sD44 ” 2.134 · 10−11

sD66 ” 2(sD11 − sD12)

Stiffness cE11 N·m−2 152.3 · 109

cE12 ” 89.1 · 109

cE13 ” 85.5 · 109

cE33 ” 134 · 109

cE44 ” 28.3 · 109

cE66 ” 1/2(cE11 − cE12)

Stiffness cD11 N·m−2 155 · 109

cD12 ” 91.8 · 109

cD13 ” 70.6 · 109

cD33 ” 166.4 · 109

cD44 ” 46.9 · 109

cD66 ” 1/2(cD11 − cD12)

Piezoelectric coupl. d31 m·V−1 −1.08 · 10−10

d33 ” 2.53 · 10−10

d15 ” 3.89 · 10−10

Piezoelectric coupl. e31 N·V−1m−1 −4.5
e33 ” 14.7

e15 ” 11

Permittivity εT11 8.854 · 10−12F·m−1 12241
εT33 ” 1135
εS11 ” 740
εS33 ” 634

We have
T = [T11 T22 T33 T23 T13 T12]T = [T1 T2 T3 T4 T5 T6]T ,

S = [s11 s22 s33 2s23 2s13 2s12]T = [S1 S2 S3 S4 S5 S6]T ,

D = [D1 D2 D3]T , E = [E1 E2 E3]T .

For instance, in the case of a transverse isotropy piezoceramic material (rotation
about axis 3 does not change material properties), equations (4.3) take the following
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form 

T1

T2

T3

T4

T5

T6


=



kE11 k
E
12 k

E
13 0 0 0

kE12 k
E
11 k

E
13 0 0 0

kE13 k
E
13 k

E
33 0 0 0

0 0 0 kE44 0 0

0 0 0 0 kE44 0

0 0 0 0 0 kE66





S1

S2

S3

S4

S5

S6


+



0 0 −e31

0 0 −e31

0 0 −e33

0 −e15 0

−e15 0 0

0 0 0


E1

E2

E3

 ,

D1

D2

D3

 =

 0 0 0 0 e15 0

0 0 0 e15 0 0

e31 e31 e33 0 0 0




S1

S2

S3

S4

S5

S6


+

εS11 0 0

0 εS11 0

0 0 εS33

E1

E2

E3

 ,
(4.7)

where: kE66 = 0.5(kE11 − kE12) and a transverse isotropy piezoceramic material has
been analyzed.

Sometimes, in addition to the used notation, coefficients ai = δri are introduced,
which indicate the direction r of polarization Pr. A similar-like notation reduction
can be applied to the elastic compliance coefficients Sijkl, and piezoelectric coupling
coefficients dikl, gkij .

The main advantage of piezoelectric materials used in various application is their
ability to change electrical energy to mechanical energy, and vice versa. In other
words, both energies are coupled, and then a naturally motivated idea of estimation
of a coupling coefficient occurs. If one takes a transformer with primary L1 and
secondary L2 inductance and mutual inductance M12, then L1L2 = k2M2

12. Now,
if one applies the geometric approach to the elastic

uk =
1

2
Tis

E
ijTj , (4.8)

and to dielectric

ud =
1

2
Emε

T
mnEn, (4.9)

as well as to mutual

ud =
1

2
Emd

T
niEn (4.10)

energy densities, then one finds the so-called Berlincourt, Currand and Joffe cou-
pling coefficient kBCJ of the form [Mason (1950, 1964)]:

kBJC =
um√
ueud

. (4.11)

Other widely used definitions based on a concept of the so-called quasi-static
conversion cycle owing to the IEEE standard on piezoelectricity and the Ulitko
definitions [Ulitko (1977)] are briefly sketched in Fig. 4.5a, b and Fig. 4.5c, d,
respectively.
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a) b)

c) d)

Fig. 4.5 Quasi-static piezoelectric conversion cycles according to the IEEE standards (a, b) and
the Ulitko definition (c, d).

Owing to the definition introduced by the IEEE, a particular stress field T is
applied to an unstressed piezotransducer having short-circuited electrodes (state
1). The transducer state is represented now by mechanical (T2, S2) and electrical
(0, D2) fields, and the energy introduced to the transducer W corresponds to the
1 → 2 cycle part. In the state point 2, the electrodes are disconnected and the
2 → 3 cycle part corresponds to stress releasing and to the W2 energy part. The
remaining energy part W1 is removed (for instance, is transferred into heat) by
electrical loading applied to the electrodes (3→ 1 part of the conversion cycle).

The coupling coefficient kIEEE defines a ratio of the converted total stored
energy in the following way

k2
IEEE =

W1

W
=

W1

W1 +W 2
. (4.12)

If one takes W1 = 0, then a cycle is degenerated to a line segment, and the
piezoelectric coupling disappears (kIEEE = 0) (see Fig. 4.6a, b).

On the other hand, if W2 = 0 (see Fig. 4.6c, d), then the points 2 and 3 overlap
(kIEEE = 1).

The Ulitko definition concept, reported in Fig. 4.5c, d, allows to introduce the
following coupling coefficient

k2
u =

u0 − us
u0

, (4.13)

where u0(us) correspond to the internal energy with open/short-circuited electrodes.
It should be emphasized that the part 2 → 3 of the quasi-static conversion cycle
corresponds to the energy converted by a quasi-static discharge of the electric fields
keeping the strain fields constant.

 b
.



July 14, 2016 14:53 ws-book961x669 DYNAMICS OF MECHATRONIC SYSTEMS 10193-main page 131

Modeling of Piezoelectric Phenomena 131

a) b)

c) d)

Fig. 4.6 Degenerated cases of the IEEE standard piezoelectric conversion cycles for kIEEE = 0

(a, b) and kIEEE = 1 (c, d).

In order to give more physical insight to kIEEE , the following simple example is
considered. Namely, we apply only stress T4 to piezoelectric element and, assuming
its homogeneous fields in the piezoelement, equations (4.6) have the following fully
developed form:

S1 = sE11T1 + sE12T2 + sE13T3 − d31E3,

S2 = sE21T1 + sE22T2 + sE23T3 − d31E3,

S3 = sE31T1 + sE32T2 + sE33T3 − d33E3,

S4 = sE44T4 − d15E2,

S5 = sE44T5 − d15E1, S6 = sE66T6,

D1 = d15T5 + εT11E1, D2 = d15T4 + εT11E2,

D3 = d31T4 + d31T2 + d33T3 + εT11E3,

(4.14)

and one finds from Eq. (4.14) that

S4 = sE44T4, D2 = d15T4. (4.15)

The total stored specific energy is

W1 +W2 =
1

2
sE44T

2
4 . (4.16)

After unloading the piezoelement (the electrodes are disconnected), full energy
related to stress approaches zero (T4 = 0), and electric and strain fields appear
instead. Equation (4.6) yields:

E2 =
D2

εT11

=
d15T4

εT11

,

S4 = d15E2 =
d2

15

εT11

T4.

(4.17)
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The strain S4 pumps the following specific energy

W1 =
1

2

d2
15

εT11

T 2
4 . (4.18)

Let us verify the units of [W ]. We have

[W] =
(m

V

) m
F

(
N
m2

)2

=
N2

V ·m · C =
J

m3
, (4.19)

which is in agreement with Table 4.1. Therefore, the coupling coefficient is defined
as follows

k2
IEEE =

(
W1

W1 +W2

)
=

d2
15

εT11s
E
44

. (4.20)

Now, coming back to the kBCJ definition (see Eq. (4.11)), we take nonzero stress
T4 and electric field E1 quantities. The corresponding energies follow

um =
1

2
d15E2T4, ue =

1

2
sE44T

2
4 , ud =

1

2
εT11E

2
1 , (4.21)

and one finds that kBJC = kIEEE , although (in general), the kBJC definition
includes only a material property. The similar observation holds also for the Ulitko
definition. Namely, using Eqs. (4.13) and (4.17) one finds

T4 =
εT11

εT11s
E
44 + d2

15

S4, (4.22)

and hence

u0 =
1

2
T4S4 =

1

2

εT11

εT11s
E
44 − d2

15

S2
4 . (4.23)

One the other hand, for E2 = 0 (a short-circuit case) one gets

us =
1

2

1

sE44

S2
4 , (4.24)

and

ku = kBCJ .

The so far considered examples have shown that various definitions of the cou-
pling coefficients overlap, assuming that both uniform stress-strain and electric fields
have been applied. However, the situation dramatically changes when a material
with nonhomogenous fields is studied. It has been reported by [Chang et al. (1995)]
that the most suitable deformation, remaining valid also for piezoelectric trans-
ducers with nonuniform fields structure, is that proposed by Ulitko, whereas the
Berlincourt et al. is valid rather only for homogeneous transducer fields distribu-
tions. Furthermore, the input quantities refer rather to strain fields T and electric
displacement D, whereas the stress and electric fields S and E are computed. On the
other hand, the variables S and E are directly associated with the given electrode
voltage. Furthermore, the inertial energy density function follows

zu = ST kES + ET εSE. (4.25)
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Here, we encounter a problem similar to the one that has been discussed in
reference [Meitzler et al. (1988)] while estimating the inertial tensor coefficients.
Positive definiteness of the quadratic forms ST kES > 0 and ET εE > 0 allows to
yield the following restrictions of the coefficient kE and eS reported in [Schonecker
(2009)]:

kEij > 0, εjj > 0,

|kE11| > |kE12|,
(4.26)

2
(
kE13

)
<
(
kE11 + kE12

)
kE33, (4.27)

d2
31 < sE11ε

T
33, d

2
33 < sE33ε

T
33, d15 < sE44ε

T
11, (4.28)

sEjj > 0, εTjj > 0, (4.29)

|sE11| > |sE12|,
2
(
sE13

)
<
(
sE11 + sE12

)
sE33,

(4.30)

d2
31 < sE11ε

T
33, d

2
33 < sE33ε

T
33, d15 < sE44ε

T
11. (4.31)

Inequalities (4.29), (4.30) refer to an elastic factor, whereas inequalities (4.31)
give bounds for the coupling parameters.

4.2 One-dimensional Rod Polarized Along its Axis – an Example
of an Actuator

We consider a one-dimensional (1D) rod of the length L and axial displacement
w(x3) (see Fig. 4.7).

Fig. 4.7 One-dimensional piezoelectric rod with a square cross section.

We take strain S and electric field E as independent variables and we use Hamil-
ton’s variational approach (see monographs [Ikeda (1990); Craig and Kurdila (2006)]
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for more details). We apply the Lagrangian function L (Lagrangian density Ld
[J/m3]). Owing to Hamilton’s principle, one gets:

t1∫
t0

δLdt = 0, Ldt = 0, (4.32)

where t denotes time and

L =

∫
V

LddV =

∫
V

(T − κd) dV. (4.33)

The kinetic energy

T =
1

2
ρ

(
dW

dt

)2

. (4.34)

In order to derive the electric enthalpy density Ld, we use the rod in the uniaxial
stress state (only T3 is generated). Since S and E are used as input vector functions,
Eq. (4.7) allows to find from conditions T1 = T2 = 0 that S1 = S2, and then

S1 = S2 = − kE13

kE11 + k12
S3 +

e31

kE11 + kE12

E3. (4.35)

The remaining specific potential and kinetic energies of rod are given by the
following formulas:

Ld − T = −
(

1

2
kE11S

2
1 +

1

2
kE12S

2
2 +

1

2
kE33S

2
3 − e33E3S3 −

1

2
εs33E

2
3

)
=

−
[

1

2

(
kE11 + kE12

)(
− kE13

kE11 + kE12

S3 +
e31

kE11 + kE12

E3

)2

+
1

2
kE13S

2
3 −

1

2
εs33E

2
3

]
=

−
[

1

2

(
(kE13)

2

kE11 + kE12

+ kS33

)
S2

3 −
(
e33 +

kE13e31

(kE11 + kE12)
2

)
S3E3+

+
1

2

(
e2

31

(kE11 + kE12)
2 − εS33

)
E2

3

]
= −

(
1

2
k̃E13S

2
3 − ẽ33S3E3 −

1

2
εS33E

2
3

)
.

(4.36)
In the piezoelectric materials, one deals with both electric and mechanical fields,

which are coupled. The electric field is defined by the vectors D (electric field flux
density) and E (electric field intensity), whereas the second order tensor (matri-
ces) T and S refer to strain and stress fields, respectively. Any point x from a
piezoelectric continuum is characterized by its displacement u = u(x1, x2, x3) and
corresponding potential Φ = Φ(x1, x2, x3). The piezoelectric 3D cell state is gov-
erned by the dynamic state of the cells mass derived from the impulse-type equations
(i), then through stress-strain relations (ii), and finally, the electric phenomena are
governed by Maxwell’s equations (iii).
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(i) Dynamics
Impulse-type equations follow:

∂T11

∂x1
+
∂T12

∂x2
+
∂T13

∂x3
+ F1 = ρ

d

dt
(u̇1) ,

∂T21

∂x1
+
∂T22

∂x2
+
∂T23

∂x3
+ F2 = ρ

d

dt
(u̇2) ,

∂T31

∂x1
+
∂T32

∂x2
+
∂T33

∂x3
+ F3 = ρ

d

dt
(u̇3) ,

(4.37)

where u = (u1, u2, u3), Fi are the volume forces and ρ denotes the piezoelectric
material density.

In the Einstein summation convention, equations take the following simple form

Tij,j + Fi = ρ
d

dt
(u̇i) , i, j = 1, 2, 3, (4.38)

and Tij,j denotes differentiation of Tij regarding the coordinate j, where j = 1, 2, 3

or j = x1, x2, x3.
(ii) Stress-strain linear relations:

s11 =
∂u1

∂x1
,

s21 = s12 =
1

2

(
∂u1

∂x2
+
∂u2

∂x1

)
,

s31 = s13 =
1

2

(
∂u1

∂x3
+
∂u3

∂x1

)
,

s22 =
∂u2

∂x2
,

s32 = s23 =
1

2

(
∂u2

∂x3
+
∂u3

∂x2

)
,

s33 =
∂u3

∂x3
.

(4.39)

Equation (4.39) can be cast in the following compact form

sij =
1

2
(ui,j + uj,i) . (4.40)

(iii) Maxwell’s equations.
The influence of the possibly occurred magnetic field is neglected and we further

consider only the electrostatic behavior. Maxwell’s equations have the following
form:

∂D1

∂x1
+
∂D2

∂x2
+
∂D3

∂x3
= Fρ,

E1 = − ∂ϕ

∂x1
,

E2 = − ∂ϕ

∂x2
,

E3 = − ∂ϕ

∂x3
,

(4.41)
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where Fρ denotes the density of a free electric load (for an electrically isolated
dielectric we have Fρ = 0). Equation (4.39) can be presented in the following
abbreviated form

Di,i = Fρ, Ei = −ϕi, i = 1, 2, 3. (4.42)

(iv) Hamilton’s principle for mechatronical continua.
In order to derive relations between electric and mechanical fields, one may apply

the classical energy approach, using the principle of mechanical and electric energy
conservation as well as Hamilton’s principle for piezoelectric continua.

Let us take a piezoelectric 3D object with the volume U and the surface Ω. On
the surface Ω, both mechanical and electrical boundary conditions can be formulated
(we follow here considerations presented by [von Wagner (2003)]).

In the case of mechanical boundary conditions, the surface Ω = Ωf + Ωu, where
Ωu corresponds to the boundary conditions associated with displacement

ui = ūi on Ωu, (4.43)

and Ωf corresponds to the surface part loaded by mechanical forces f̄i of the form

Tijnj = f̄i on Ωf . (4.44)

Similarly, in the case of electric boundary conditions, Ω = Ωσ + ΩΦ, where Ωσ
corresponds to the boundary conditions associated with the surface change σ̄ of the
form

−Dini = σ̄ on Ωσ, (4.45)

and ΩΦ corresponds to the surface potential

ϕ = ϕ̄ on Ωϕ, (4.46)

where ni(nj) denotes the normal vector.
In what follows, we use Eqs. (4.37), (4.42) and Eqs. (4.44), (4.45), but in the

following adapted form:

Tij,j + Fi − ρ
d

dt
(u̇i) = 0, (4.47)

Tijnj − f̄i = 0, (4.48)

Dini + σ̄ = 0. (4.49)

Equations (4.47) and (4.48) are multiplied by δui, whereas Eqs. (4.42) (of the
form Di,i = 0) and (4.49) are multiplied by δϕ, and hence the weak integral form
of the mechatronic problem is formulated in the following way

−
∫
V

Tij,j + Fi − ρ
d

dt
(u̇i) δuidV −

∫
Ωf

(
Tijnj − f̄i

)
δuidΩ−

−
∫
V

Dk,kδϕdV +

∫
Ωσ

(Dini + σ̄) δϕdΩ = 0.

(4.50)
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By using Eq. (4.40) in (4.50) and carrying the integration of Eq. (4.50) by parts,
the following form of equations is yielded∫

V

(Tijδsij −DkδEk)dV −
∫
V

[
Fi − ρ

d

dt
(u̇i)

]
δuidV+

+

∫
Ωσ

σ̄dϕdΩ−
∫

Ωf

f̄iδuidΩ = 0.

(4.51)

The total differential

dH = Tijdsij −DkdEk, (4.52)

and sij and Ek are treated as independent input variables (they can be also rep-
resented by ui and ϕ). Now, taking the total variation δH represented also by
Eq. (4.52), where instead of d we use δ and, since the integral form of Fi action is
zero, Eq. (4.51) is cast to the following form∫

V

δHdV +

∫
V

ρ
d

dt
(u̇i) δuidV +

∫
Ω

(
σ̄δϕ− f̄iδui

)
dΩ = 0. (4.53)

In addition, we integrate Eq. (4.53) once more to obtain
t∫

t0

∫
V

(
δH− 1

2
ρδ
(
u̇2
i

))
dV dt+

t∫
t0

∫
Ω

(
σ̄δϕ− f̄iδui

)
dΩdt = 0, (4.54)

and δui(t0) = δui(t) = 0 and δϕ(t0) = δϕ(t) = 0.
Hamilton’s principle applied to the piezoelectric continuum has the form

δ

t∫
t0

L(ui, ϕ)dt+

t∫
t0

δW (ui, ϕ)dt = 0, (4.55)

where virtual work

δW =

∫
Ω

(
f̄iδui − σ̄δϕ

)
dΩ, (4.56)

and the Lagrangian

L =

∫
V

(
1

2
ρu̇2

i −H
)
dV. (4.57)

It should be emphasized that the formulas (4.56) and (4.57) are derived using
the earlier introduced assumptions regarding independence of S and E.

Now, we apply the following Legendre’s transformation

U = H+ EkDk. (4.58)

Then,

dU = Tijdsij + EkdDk, (4.59)
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and hence the following formulas hold:

G = H− sijTij , (4.60)

dG = −sijdTij −DkdEk, (4.61)

for Tij and Ek treated as independent variables and:

G = H− sijTij + EkDk, (4.62)

dG = −sijdTij + EkdDk, (4.63)

where now sij and Dk are independent of each other.
If the mechanical skl and electric Ek fields are considered as independent input

values, then the output in the form of mechanical Tij and electrical Di quantities
is expressed through the following linear constitutive equations:

dTij =
∂Tij
∂skl

dskl +
∂Tij
∂Ek

dEk, (4.64)

dDi =
∂Di

∂sjk
dsjk +

∂Di

∂Ej
dEj . (4.65)

Equations (4.64), (4.65) can be inversed, i.e., Tij and Di can be treated as the
input values, whereas skl and Di are output quantities. However, this is valid only
for purely elastic material, where piezoelectric and dielectric phenomena, as well as
internal and electric field damping effect, are omitted.

Since H = H(s, E), hence

dH =
∂H
∂sij

dsij +
∂H
∂Ei

dEi, (4.66)

and taking into account Eq. (4.52), one gets

Tij =
∂H
∂sij

,

Di = − ∂H
∂Ei

.

(4.67)

The linear constitutive equations (4.64), (4.65) are associated with the following
mechatronic enthalpy

H =
1

2
cEijklsijskl − eijkEisjk −

1

2
εSijEiEj , (4.68)

where cEijkl, eijk, ε
S
ij are mechanical (elastic) piezoelectric and dielectric constants,

respectively, being measured for either constant E or s (superscripts) values. Equa-
tions (4.67) and (4.68) yield:

Tij = cEijklskl − ekijEk, (4.69)

Di = ekijskl − εSikEk. (4.70)
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If we now take S and E as inputs, then the internal energy of the piezoelectric
continuum takes the following form

U = H+ EkDk =
1

2
sEijklTijTkl + dijkTjkEi +

1

2
εTijEiEj , (4.71)

where sEijkl, dijk, ε
T
ij are mechanical, piezoelectric and dielectric constants, and su-

perscripts E and T indicate constant fields E and T , respectively.
This allows to derive the following linear constitutive equations corresponding

to the enthalpy U :

Sij =
∂U
∂Tij

= sEijklTkl + dkijEk, (4.72)

Di =
∂U
∂Ei

= diklTkl + εTikEk. (4.73)

In general, a piezoelectric element (PE) exhibits a variety of nonlinear effects,
as shown in Fig. 4.8.

Low E

High E

Medium/weak E

Linear S-T

P-E hysteresis, jump phenomena
S-E butterfly hysteresis, chaos

Jump phenomena, sub- and superharmonic
Nonlinear softening

PE

Fig. 4.8 Inputs and outputs of a PE (piezoelectric element).

Low electric field E input results in getting a linear stress-strain PE state. An
increase in E results in the well-known jump phenomena, bifurcations yielding sub-
harmonic and/or super-harmonic vibrations, dependence of the amplitude vibration
on the applied frequency. Further increase in E yields P-E hysteresis and S-E but-
terfly hysteresis phenomena. Therefore, owing to numerous experimental results,
it is clear that a derivation of constitutive equations of the piezoelectric continuum
requires introduction of a nonlinear enthalpy density function. Therefore, in what
follows, we derive the constitutive nonlinear equations of a piezoelectric continuum
following the works [Maugin (1988); von Wagner and Hagedorn (2002)]. Since the
stress and strain tensors are symmetric, the following form of the electric enthalpy
density function has been proposed in reference [Samal et al. (2006)]

H =
1

2
STCS − ET dCS − 1

2
ETυ0E + ε

[
1

3
STC1S

2 +
1

4

(
S2
)T
C21S

2 +
1

4
STC22S

3

− 1

2
ET γ11S

2 − 1

2

(
E2
)T
γ12S −

1

3
ETυ1E

2 − 1

3
ET γ21S

3 − 1

2

(
E2
)T
γ22S

2

−1

3

(
E3
)T
γ23S −

1

4
ETυ21E

3 − 1

2

(
E2
)T
υ22E

2

]
.

(4.74)
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Note that for ε = 1, we have a nonlinear enthalpy form, whereas for ε = 0,
we have the widely used linear enthalpy density function. For 1 � ε, we have a
weak nonlinear enthalpy density function representation, and hence in many cases,
analytical approximate methods can be used to solve the governing equations.

In the above formula, superscripts E (constant electric field) and s (constant
strain) are omitted for clarity, C is the linear elasticity matrix, d is the linear piezo-
electricity matrix, ε is the dielectric coefficient matrix, C1 is quadratic, whereas
C21 and C22 are cubic elasticity matrices, respectively; γ11, γ12 are quadratic
piezoelectric matrices, whereas γ21, γ22 and γ23 are cubic piezoelectric matrices;
v0 = ε − dcdT , v1, v21 and v22 are linear, quadratic and cubic dielectric matrices
(constant s), respectively. Superscripts 2, 3 indicate the nonlinearity type, for in-
stance s3 =

(
s3

1, s
3
2, s

3
3, s

3
4, s

3
5, s

3
6

)
. Observe that T = ∂H

∂S , D = −∂H∂E , and taking into
account the linear part of Eq. (4.43) (ε = 0), one may see that T (stress matrix) and
D (elastic displacement vector) are coupled with S (strain matrix) and E (electric
field vector), where sij = (ui,j + uj,i) /2, Ei = −ϕ,i.

In Figure 4.9, both mechanical and electric forces applied to a piezoelectric 3D
continuum object are presented.

Fig. 4.9 Mechanical forces F and electric charges Q associated with the displacement δu, the
electrical potential δϕ and the corresponding boundary condition δu = 0 (δϕ = 0) on the surface
A3(Au). FV – body force vector, FA – surface force vector, Fp – point load vector, QA – surface
charge.

For a 3D piezoelectric material of the mass density ρ under the action of the
generalized displacement u and vector velocity u̇ fields, the Lagrangian L = 1

2ρu̇
T u̇−

H, where H is defined by Eq. (4.74) and the virtual work W is used to define
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Hamilton’s principle of the following form

δ

t∫
t0

∫
V

LdV

 dt+

t∫
t0

δWdt = 0, (4.75)

where t0 and t1 are time instants (t1 > t0). Taking into account the notation used
in Fig. 4.9, the variation of the virtual work is cast to the form

δW =

∫
V

uTFV dV +

∫
A1

δuTFAdA+ δuTFp −
∫
A2

δϕQdA2 − δϕQ+ δWD, (4.76)

where δWD is the virtual work done by damping forces. Substituting Eq. (4.73)
into (4.74) and then into Eq. (4.79), and using (4.76), the following formula (see
[Samal et al. (2006)]) is yielded

−
t∫

t0

∫
V

ρδuT üdV dt−
t∫

t0

∫
V

δST
[
CS − CT dE − SdγT11E

2 − 1

2
γT12E

2

+ SdC21SdS +
1

4
C22S

3 +
3

4
SdC

T
22S +

1

3
C1S

2 +
2

3
SdC

T
1 S − S2

dγ
T
21E

− Sdγ
T
22E

2 − 1

3
γT23E

3

]
dV dt−

t∫
t0

∫
V

δET
[
dCS + u0E +

1

2
γ11S

2

(4.77)

+ Edγ12S +
1

3
γ13S

2 +
2

3
Edγ

T
13E +

1

3
γ21S

3 + Edγ22S
2

+ E2
dγ23S +

1

4
ν1E

3 +
3

4
E2
dν

T
1 E + Edν2EdE

]
dV dt+

t∫
t0

∫
V

δuTFV dV dt

+

t∫
t0

∫
A1

δuTFAdAdt+

t∫
t0

δuTFpdt+

t∫
t0

∫
A2

δϕQxdAdt−
t∫

t0

δϕQdt−
t∫

t0

δWDdt = 0,

where the matrix with the subscript “d” refers to a diagonal matrix with the main
diagonal terms being the terms of the vector belonging to it. In the linear case,
the virtual work δWD includes dissipation regarding a viscous-type damping ṡ as
well as both linear piezoelectric γod and dielectric vod damping of the form [Ikeda
(1990); von Wagner (2004)]:

δWD = δ

∫
V

(
ST c

(o)
d Ṡ − ST γodĖ − ṠT γodE − ET νodĖ

)
dV . (4.78)

Assuming that variations occurred in the integral Hamilton’s equations from
Eq. (4.77) are independent, the corresponding nonlinear form of the constitutive
equations for a 3D piezoelectric continuum can be derived.

In what follows, we derive the nonlinear enthalpy density function for a 1D
piezoelectric beam in the case of the d31-effect (see [von Wagner et al. (2001); von

 b
.



July 14, 2016 14:53 ws-book961x669 DYNAMICS OF MECHATRONIC SYSTEMS 10193-main page 142

142 DYNAMICS OF MECHATRONIC SYSTEMS

Wagner and Hagedorn (2002)]). The linear constitutive equations take the following
form:

Tx1x1
= Ecsx1x1

− d31EcE3,

D3 = d31Ecsx1x1
+
(
εT33 − d2

31Ec
)
E3,

(4.79)

where x1 is the direction of the beam length, E3 is the polarization direction, Ec is
the elastic piezoceramic beam modulus orthogonal to F3, d31 and εT33 correspond to
the d31 piezoelectric effect and dielectric constant for constant stress T , respectively.
The following nonlinear relations are applied:

Ec = E(0)
c + E(1)

c sx1x1
+ E(2)

c s2
x1x1

,

d31 = d
(0)
31 + d

(1)
31 sx1x1

+ d
(2)
31 s

2
x1x1

,
(4.80)

and we take:

Tx1x1
= E(0)

c sx1x1
+ E(1)

c s2
x1x1

+ E(2)
c s3

x1x1
− γ0E3 − γ1sx1x1

E3 − γ2s
2
x1x1

E3,

D3 = γ0sx1x1
+

1

2
γ2s

2
x1x1

+
1

3
γ2s

3
x1x1

+ ν0E3,

(4.81)
where:

ν0 = εT33 −
(
d

(0)
33

)2

E0
c , γ0 = E(0)

c d
(0)
31 , γ1 = E(0)

c d
(1)
31 + E(1)

c d
(0)
31 ,

γ2 = E(0)
c d

(2)
31 + E(2)

c d
(0)
31 + E(1)

c d
(1)
31 .

(4.82)

Taking into account the compatibility equation:

Tx1x1 =
∂H

∂sx1x1

,

D3 = − ∂H
∂E3

,

(4.83)

and Eqs. (4.79)–(4.81), the following nonlinear enthalpy function is derived

H =
1

2
E(0)
c s2

x1x1
+

1

3
E(1)
c s3

x1x1
+

1

4
E(2)
c s4

x1x1

+ γ00sx1x1
E3 −

1

2
γ1s

2
x1x1

E3 −
1

3
γ2s

3
x1x1

E3 −
1

2
ν0E

2
3 .

(4.84)

One may check that H satisfies necessary and sufficient condition of its existence
of the following form

∂2H
∂sx1x1

∂E3
=
∂Tx1x1

∂E3
= − ∂D3

∂sx1x1

=
∂2H

∂E3∂sx1x1

. (4.85)
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Chapter 5

Modeling of Mechanical Fluid Systems

In Tables 5.1 and 5.2, the most common cross sections of hydraulic and pneumatic
flow elements, formulas for flow rates, and critical Reynolds number Re defining
applicability range of these elements are presented.

Table 5.1 Losses coefficients for the flow of oil and air through throttle elements.

[Guillon (1966)] [Pert (2013)]

Model α
S1

a = S1/S2

S2

α = 90◦ 150◦ a = 0.1 0.5 0.9

ζ 1.7−1.9 1.6 1− 1.6 1.1 0.2 0.29 0.18 0.01

The loss coefficient ζ for various fluid mechanical mechatronic devices is given
in Tab. 5.1. Coefficients λ, expressed by formulas a-d in the sixth row of Tab. 5.2,
can be estimated also from the Nikuradse diagram [Nakayama and Boucher (2000)]
presented in Fig. 5.2.

The model of fluid friction (laminar), i.e., the Newton formula for the fluid
friction FT , shown in Fig. 5.1, is a function of dynamic viscosity η, surface of
friction ST and velocity gradient v/h.

h

ST

FT v

Fig. 5.1 Newton’s fluid friction force FT as a function of dynamic viscosity η, the surface of
friction ST and velocity gradient v/h, where FT = ηST

v
h

.

Mathematical description elaborated during analysis of a technological

143
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Table 5.2 Volumetric flow rates of oil and air through throttle elements in normal conditions.

Element Q – oil QN – air Re

h

p2
p1

b

l

bh3

12ηl
(p1 − p2)

bh3

24ηl

(p2
1 − p2

2)

pN
≤ 1100

p2

p1
D

l

d
πDh3

12ηl
(p1 − p2)

h = (D − d)/2

πDh3

24ηl

(p2
1 − p2

2)

pN
h = (D − d)/2

≤ 1100

p2
D

h

d

p1p1

πh3

6η ln D
d

(p1 − p2)
πh3

12η ln D
d

(p2
1 − p2

2)

pN
≤ 1100

p1 p2d

l

l/d > 20

πd4

128ηl
(p1 − p2)

πd4

256ηl

(p2
1 − p2

2)

pN
≤ 2300

p1 p2 d

l l/d < 1

S

√
2

ζρ

√
p1 − p2 S

√
1

ζρNpN

√
p2

1 − p2
2 Tab. 5.1

p1 p2

d

l

η = λl/d

a) Darcy friction factor λ = 64/Re for laminar flow ≤ 2300

b) λ = 0.316/ 4
√
Re according to Blasius correlation

≥ 2300
≤ 50000

c) λ = 0.0096 + 4
√

s
r

+ 1.2
√

2
Re

according to Mises correlation

≥ 2300

≤ 106

d) λ from Nikuradse diagram Fig. 5.2

Reynolds number Re = vd/ν or Re = vh/ν, ν = η/ρ, η – dynamic viscosity,
ξ – losses coefficient, hydraulic diameter dH = 4S/lo

solution and some dynamic responses of the investigated object comes from ide-
alization of a physically existing dynamical system.

In order to develop a mathematical model of a dynamical system, one needs to
describe system’s physical counterpart by mathematical equations that are valid in
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the fields that the system is devoted to.

0.08

λ

0.06

0.04

0.02

0.01
102 103 104 105 106Re

laminar flow laminar or turbulent flow turbulent flow

Recr1 Recr2

oil hydraulics

transient
range

Blasius
s = 0

r/s = 15

30.6

60

507

252

126

1330

Mises

λ = 64/Res r

Fig. 5.2 Nikuradse diagram [Nakayama and Boucher (2000)].

A simulation model of the investigated physical object introduces an analyt-
ical description being a part of the mathematical model of the object.

The simulation models considered in the book are created in two programming
environments, i.e., LabVIEW with an additional toolbox Control Design and Sim-
ulation and Scilab with Xcos supporting preparation and running of numerical
simulations. Construction of a simulation model is divided into several basic steps:

1. Setting numerical values of model variables and numerical simulation.
2. Choosing from libraries and inserting the necessary basic blocks.
3. Connecting the selected blocks with the use of lines ended with arrows

indicating the direction of signal flow.

Basic blocks in Xcos model many available structures and mathematical func-
tions applied in elaboration of mathematical models.

Exploration of a simulation model is based on the numerical solution of
equations describing the analyzed object. Before running the simulation, we initiate
parameters, the method of numerical integration, insert the desired function of
external forcing, set numerical values, and define parameters of elementary blocks.
Results of the simulation are produced in the form of responses of the modeled
object to the external forcing and are monitored on virtual oscilloscopes. Analysis
of the results of exploration allows us to detect and correct errors committed in both
the design of the modeled object as well as in the selection of model parameters.
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Table 5.3 Assessment of the relative influence of terms in Bernoulli equation in the context
of regulation and driving fluid systems.

Ec = p Ep = ρgh Ek = ρv2/2
Es =

Ec + Ep + Ek

p ρgh ρv2/2 Elements
Ec/p = 1 Ep/p = ρgh/p Ek/p = ρv2/(2p) Es/p

Hydraulic systems

p = 2.5 · 106 p = 2.5 · 106, ρ = 900

h = 3

p = 2.5 · 106, ρ = 900

v = 8

Data for
hydr. syst.

1 1.1 · 10−2 1.2 · 10−2 Es = 1.023

Pneumatic systems

p = 0.7 · 106 p = 0.7 · 106

ρp = 8.61, h = 3

p = 0.7 · 106

ρp = 8.61, vp = 20

Data for
pneum. syst.

1 0.036 · 10−2 0.25 · 10−2 Es = 1.00286

p – pressure, ρ – density of oil, ρp – density of air at pressure p,
h – difference in flow levels, v – mean velocity of oil in the line,

vp – mean velocity of air at pressure p

5.1 The Balance of Fluid Flow

Due to low density of air (in pneumatics) and relatively high pressure of the fluid
used (in hydraulic systems), inertial forces are omitted in the description of phenom-
ena occurring in oil and air. Therefore, to describe these phenomena, the principle
of mass conservation can be used. Confirmation of the validity of this assumption is
found after analysis of terms of the Bernoulli equation. The results of this analysis
are summarized in Tab. 5.3. In conclusion, these phenomena can be described by
the principle of mass conservation [Guillon (1966); Lewandowski (1996, 1971)].

In Figure 5.3a, volume V surrounded by a total control surface S is described
analytically by the principle of mass conservation

dmp

dt
=

∫∫
s

ρ vN dS , (5.1)

where: mp is a mass of fluid in the volume V , ρ – density, vN – vector of velocity
normal to the element of the control surface dS (see Fig. 5.4).

It results from the analysis of fluid mechanical systems, both presented earlier
and those analyzed in the next chapters of this monographs, that the design of such
systems is modular. Various methods of design developed through years have caused
that almost all elements of these systems following the technical characteristics
are offered by specialized manufacturing and trading companies. There is also
far-reaching unification and standardization in this field. Sold in the trade are,
for instance, pumps, motors, filters, mufflers, manifolds, flow controllers, relays,
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a)

V,m, ρ

S

∆S

vN

b)

S

V,m, ρ

S

1

2

i3
4

5

6

7

8

n
vN1

vNn

vN5

vN3

vNi

∆S4

∆S1∆Sn

∆S2

∆Si

∆S3

Fig. 5.3 Volumetric models of a fluid in the continuous (a) and discrete system (b).

and many other special components. Hence, the conclusion is that a successful
discretization in fluid mechanical systems is possible. Discretization can embrace a
lot of phenomena, such as flow, leakages, elasticity of housing and control systems.
Therefore, it is possible to pass from the continuous model described in the fluid
dynamics (see Fig. 5.3) to a more convenient analytical description of the discrete
model.

Passing from the continuous model shown in Fig. 5.3a to Fig. 5.3b via discretiza-
tion, the formula (5.1) takes the form

dmp

dt
=

n∑
i=1

ρ vNi ∆Si . (5.2)

By introducing the elementary mass flow rate Qmi given in the form

Qmi = ρvNi∆Si , (5.3)

we get
dmp

dt
=

n∑
i=1

Qmi . (5.4)

Fig. 5.4 Illustration of divergence of the control surface S (S1 and S2 appear subsequently) and
the vector of normal velocity vN (v1 and v2 appear subsequently too).
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Assuming the density field mp of a homogeneous mass, one writes

Qmi = ρQi and mp = ρV, (5.5)

where:

Qi – elementary volumetric flow rate,
V – volume of a fluid surrounded by a control surface S.

Substituting Eq. (5.5) to (5.4), one finds

n∑
i=1

Qi =
1

ρ

d(ρV )

dt
. (5.6)

Differentiating the product ρV in Eq. (5.6) with respect to time, we get the
equation of flow balance and divergence of volume of the fluid surrounded by the
control surface S (see Fig. 5.4) as follows

n∑
i=1

Qi =
dV

dt
+
V

ρ

dρ

dt
. (5.7)

Equation (5.7) describes relations for fluids. Thus, it is valid either for liquids
or gases. Particular considerations devoted to liquids and gases require a separate
analysis with respect to their principally different properties. The procedure in the
case of hydromechanical systems is explained below.

Oil is the most commonly used fluid in hydromechanical systems. According to
the study in [Guillon (1966)], a relative increase in the density of oil is given by the
formula

dρ

ρ
=
dp

E
, (5.8)

in which: p is a pressure, E – oil bulk modulus of elasticity.
After substituting Eq. (5.8) in (5.7), and using a dot above the symbols denoting

a derivative with respect to time, the following equation is derived
n∑
i=1

Qi = V̇ +
V

E
ṗ , (5.9a)

V = V0 ± Sx+ k0p . (5.9b)

In Eq. (5.9b), the symbol “±” is to be replaced by “+” if with the displacement
in the direction +x the volume V of a fluid increases or by “−” if with the displace-
ment in the same direction the volume V decreases. Moreover, one introduces also
notations: S – area of the hydraulic piston, x – displacement of the rod, V0 – total
initial volume of fluid in the cylinder and lines, k0 – coefficient of housing elasticity.

Expansion and physical interpretation of Eq. (5.9a) will be stated on the physical
model of the hydromechanical system shown in Fig. 5.5.
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Fig. 5.5 Physical model of a hydromechanical system (H – region of hydraulics, M – region of
mechanics).

The first derivative of volume on the right-hand side of Eq. (5.9a) is found by
differentiation of Eq. (5.9b) with respect to time

V̇ = ±Sẋ+ k0ṗ . (5.10)

The first term of the sum on the right-hand side of Eq. (5.10) expresses a time
variation of volume that resulted from a displacement of the piston of the surface
of the area S with velocity ẋ. Similarly, the second term expresses time variation
of a volume filled with oil that results from the deformation of the control sur-
face of housing including some surfaces of other elements such as lines, measuring
instruments, cylinders, accumulators. Expression k0ṗ is an approximation arising
after idealization by taking the assumption that volume of the enumerated elements
changes proportionally to the changes of oil volume.

Combining Eqs. (5.9b) and (5.10) with (5.9a), we get
n∑
i=1

Qi = ±Sẋ+

(
k0 + k0

p

E
+
V0

E
± S

E
x

)
ṗ . (5.11)

Pressure in hydraulic systems usually ranges from 1 to 25 MPa and oil bulk
modulus of elasticity E is greater than 1000 MPa, therefore p/E � 1. Due to these
values, in practical applications, one assumes that k0(1 + p/E) ≈ k0, so Eq. (5.11)
is transformed to the form

n∑
i=1

Qi = ±Sẋ+

(
k0 +

V0

E
± S

E
x

)
ṗ . (5.12)

In the case of rotary hydraulic motors (see Fig. 5.6), one assumes that
volumes of chambers are constant. Then, Eq. (5.12) takes the form

n∑
i=1

Qi = ±qn+

(
k0 +

V0

E

)
ṗ , (5.13)
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where: q is a volumetric efficiency of the vane motor q ∼= π(D+ d)be, n – rotational
velocity, e – eccentricity of rotor, b – width of rotor’s vanes.

Fig. 5.6 Hydraulic vane motor (V0A, V0B – volume of liquid in both chambers; k0A, k0B –
elasticity of housing of both chambers of the motor; QA, QB – flow rates of fluid through inlets
and outlets).

Pneumomechanical systems with air as the fluid work practically in constant
temperature. Therefore, transformations occurring there are isothermal. In this
case, the Clapeyron equation holds

pV = pN VN . (5.14)

For the time-dependent functions V and VN , differentiating Eq. (5.14) with
respect to time and introducing these definitions: V̇ = Q, V̇N = QN , one gets

Qp = QN pN . (5.15)

Dividing both sides of Eq. (5.15) by m, and taking into assumption that V/m =

1/ρ and VN/m = 1/ρN , the proportionality occurs
p

ρ
=
pN
ρN

, (5.16)

where pN , ρN denote normal values of pressure and density, respectively.
Putting Q, p/ρ, ṗ/ρ̇ calculated from Eqs. (5.15), (5.16) and the time derivative

of both sides of Eq. (5.15) into the Eq. (5.7), we find
n∑
i=1

QNi =
p

pN
V̇ +

V

pN
ṗ . (5.17)

In view of high compressibility of air, the elasticity of housing in pneumome-
chanical systems (e.g. in Fig. 5.7) is neglected (k0 = 0). On the basis of that
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assumption and Eqs. (5.9b), (5.10) and (5.16), the flow equation (an equation of
flow balance) is obtained

n∑
i=1

QNi = ± S

pN
ẋ p+

(
V0

pN
± S

pN
x

)
ṗ . (5.18)

Fig. 5.7 Physical model of a pneumomechanical system (P – region of pneumatics, M – region
of mechanics, z – stop, j – spring).

a) b)

Fig. 5.8 Flow model (a) and the mechanical model of a flow impeller (b) of the pneumatic motor
of rotational motion.

In the case of rotary pneumatic motor shown in Fig. 5.8a, proceeding as while
deriving the Eq. (5.5), as well as introducing some parameters of the motor, the
flow equation is transformed to the form

n∑
i=1

QNi =
q

pN
np+

V0

pN
ṗ . (5.19)
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5.2 Description of the Dynamics of a Mechanical System

When describing the dynamics of motion of a mechanical system [Awrejcewicz
(2012a); Schmid (2002); Zierep (1978)], it is required to use Newton’s second law.
According to the law, the general equation of the dynamics of motion takes the
form

mẍ =
∑

F (x, ẋ, . . . ) +
∑

F (p) +
∑

[F + F (t)] , (5.20)

where m is the mass of the moving part of the mechanical system, and:

F (x, ẋ, . . . ) – forces dependent on the displacements and their derivatives;
F (p) – pressure forces on active surfaces of the hydraulic actuator;

F + F (t) – external forces among others dependent on time.

Description of the dynamics of rotation is obtained using the angular momentum
equation

dK̄

dt
=
∑

M̄ . (5.21)

In the case of idealization of the rotor model shown in Fig. 5.8a, the angular
momentum K̄ ∼= I0ω̄ at relatively small angular displacements αz, αy and the
condition ωz, ωy � ωx. Using the mentioned assumption, the equation of rotational
motion with regard to gyroscopic forces is found [Awrejcewicz (2012a)]:

Iω̇y + I0ωxωz =
∑

My ,

Iω̇z − I0ωxωy =
∑

Mz ,

I0ω̇x =
∑

Mx ,

(5.22)

where: I, I0 are the moments of inertia, ωx, ωy, ωz – angular velocities, Mx, My,
Mz – torques with respect to axes x, y, z.

For instance, a full system of equations (5.22) is applied in a description of high-
speed (90-180·103 rev/min) aerostatic ball-bearing spindles [Lewandowski (1996)].
Typically, in hydraulic and pneumatic motors working at relatively small rotational
velocities, the third equation of the system (5.22) is used.

The physical model in Fig. 5.8a is described by a general equation:

I0ω̇ =
∑

Mx

=
∑

M(α, ω, ω̇, . . . ) +
∑

M(p) +
∑

[M +M(t)] .
(5.23)

Notations of components of Eq. (5.23) are analogous to the notations used in
Eq. (5.20).

A sum of torques Mn and Mp coming from any pressure forces acting in the hy-
draulic (see Fig. 5.6) and pneumatic motor (see Fig. 5.8), respectively, is calculated
from the formulas:

Mn =
q

2π
(pA − pB), Mp =

q

2π
(p− pN ) . (5.24)
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5.3 Modeling of an Open Hydromechanical System of Linear
Displacement

Mathematical model
The physical model depicted in Fig. 5.9 and the equation of the flow balance

(5.12), which is valid in the places denoted by digits 1 and 2, can be used to derive
the following equations:

Q−QA − k1pA = 0 , (5.25a)

QA − k2(pA − pB) = Sẋ+

(
V0

E′
+

S

E′
x

)
ṗA . (5.25b)

In equation (5.25) and Fig. 5.9, the following notations were used: Q – pump
inflow without leaking, QA – the inflow sourcing the cylinder, k1 – flow leakage on
the input, k2 – flow leakage on the piston, pA – pressure on input lines and in the
cylinder, pB – pressure on the output, V0 – initial volume, E′ – oil bulk modulus of
elasticity with regard to free air in the hydraulic system and elasticity of housing
[Schmid (2002)].

The definitions under Fig. 5.9 supplement the above notations.
By transforming Eq. (5.25) and putting relations for Q and pB , we get the

equation of the oil flow balance in the considered system(
V0

E′
+

S

E′
x

)
ṗA = Q01(t)− Sẋ− (k1 + k2)pA + k2p01(t) . (5.26)

Parameters in SI units:
D = .063, d = .025, I0 = .4,
F0 = 5e3, m = 5e3, Q0 = 2e-4,
    = .1, pB0 = .1e6 or 1.2e6 but
it was checked, that pB0 = .1e6 
is not acceptable,
C = 250, E' = 400e6 or 1430e6.

Q = Q01(t)
F(t) = F01(t)
pB = pB01(t)
pamb = 0
E = E'
at x = 0, V1 = V2 = V0

F(t)

m

d

xD

S
C

S

l0

v1 v2

k2

k1

QA

QA

pA

pB

pA

pA

pamb

0 1

OV

SV Q

2 3

a

a

Fig. 5.9 Physical model of a hydromechanical system of linear displacement (OV – overflow vale,
SV – safety valve).
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Function 1(t) in Eq. (5.26) is a unit step, which is characterized by an initial
time, initial value (0 or 1) and final value (1 or 0, respectively). Equation (5.26)
is the first component of the considered system’s mathematical model. The second
component of the model is found from the successively transformed Eq. (5.23) de-
scribing dynamics of the hydromechanical system in Fig. 5.9. The original form of
this equation follows

mẍ = SpA − αS|pA − pB | sgn ẋ− Cẋ− SpB − F (t), (5.27)

where: α is the coefficient of resistances of the contact friction of seals, C – coefficient
of total resistance of fluid friction.

The final form of mathematical model’s second component can be estimated
by substitution of definitions for pB and F (t) (see the caption to Fig. 5.9). After
arranging Eq. (5.27), we get

mẍ = S [pA − 1(t)p0]− αS |pA − p01(t)| sgn ẋ− F01(t)− Cẋ . (5.28)

The full mathematical model of the analyzed hydromechanical system is consti-
tuted of Eqs. (5.26) and (5.28).

Simulation model of a hydromechanical system.
The basis of the simulation model presented in Fig. 5.10 is the physical model

(Fig. 5.9) expressed by the mathematical model (5.12) and (5.15).
In the introduced model, some lines of displacement, its derivative and input

pressure, being subsequently monitored on oscilloscopes x(t), ẋ(t), pA(t), can be
distinguished. In addition, selected excitations such as ideal outflow Q(t) of the
pump, loading F (t) of the hydraulic cylinder and the output pressure pB(t) are
monitored. It is possible to make more connections with oscilloscopes at arbitrary
nodes of the diagram, what is especially useful in testing and observation of time
histories of transient signals.

Figure 5.11 presents the results of numerical simulation of a model of the hy-
dromechanical system depicted in Fig. 5.8, obtained in Scilab.

Time histories 5.11a and b represent changes in the excitation signals Q(t) and
F (t). Analyzing the time history of p(2)

A (red line) in Fig. 5.11c, it is seen that its
value decreases to an unreal negative value −0.8e6 after a step of pressure pA. In
this case, the result of simulation is encumbered with errors. It is not recommended
for any hydraulic systems to work at pressures pA < 0, because of emission of gases
dissolved in oil as well as of air intake caused by vacuum leakages. It is therefore
necessary to use other design or change the parameters of the analyzed system.
In the considered example, the positive effect is obtained by increasing pB0 of the
pressure pB in the outflow from 0.1e6 to 1.2e6 (see Fig. 5.11b).
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Fig. 5.10 Simulation model of the hydromechanical system described by the physical model shown
in Fig. 5.9.

5.4 Modeling of a Hydraulic Electromechanical Servomechanism
of Rotational Motion

By using a physical model of the servomechanism (given in Fig. 5.12), the mathe-
matical model described by equations (5.29)–(5.31) is yielded, where: I – balance
of flows, II – balance of torques, III – automatic regulation.

Flow equations in lines A, B and points 1-4:

I A1 −QA + kx
√
pz − pA = 0 ,

I A2 qn+
V0

E
ṗA = QA −QA(1− ηv) ,

I A1, 2
V0

E
ṗA = ηvkx

√
pz − pA − qn ,

I B3 −QB = −qn+
V0

E
ṗB ,

I B4 QB − kx√pB = 0 ,

I B3, 4
V0

E
ṗB = −kx√pB + qn .

(5.29)
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Fig. 5.11 Time histories of hydromechanical system’s responses (Fig. 5.9) after the numerical
solution of the simulation model 5.10: (a) changes in pump’s outflow Q(t) and loading F (t); (b)
changes in pressure pB(t) on the output in the case: 1) pB0 = 0.1e6, 2) pB0 = 1.2e6; (c) changes
in input pressure pA(t); (d) changes of piston rod’s velocity ẋ(t). Superscripts (1-3) on the right
of the symbols of variables shown in sub-figures c and d denote: (1) E′ = 1.43e9, εN = 5e–4,
pB0 = 1.2e6, (2) E′ = 1.43e9, εN = 5e–4, pB0 = 0.1e6, (3) E′ = 0.4e9, εN = 5e–3, pB0 = 1.2e
6.

Torque equation

II 2πIxṅ =
q

2π
(pA − pB)− Cn−M . (5.30)
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a)

b)

Fig. 5.12 Physical model of a servomechanism of rotational motion: (a) cross sectional view of
the hydraulic motor, (b) longitudinal cross section of the hydraulic divider.

Equation of automatic regulation

III ẋ = (nE − n)s . (5.31)

In equations (5.29)–(5.30), the following notations are applied: ηm – coefficient of
local losses, Q – flow rate, ηv – volumetric efficiency of the motor, V0 – volume of oil
in lines A and B, E – oil bulk modulus of elasticity, C – coefficient of circumferential
viscous friction, q – motor capacity, k = πdr

√
2/(ρξm) – capacity constant of the

throttle valve.
In Figure 5.12, the following notations are introduced: SE – electric motor’s set-

point of input rotational velocity nE , SH – controllable hydraulic motor reaching
the output velocity n (a coordinate of rotational velocity), RH – hydraulic divider,
dR – diameter of the piston, h – thread pitch of the lead screw, x – coordinate of
the throttling edge displacement of the piston (width of the throttle gaps in the
hydraulic divider), D – diameter of a stator (stationary part of the electric motor),
d – diameter of the rotor, b – width of rotor’s vanes, e – eccentricity of the rotor,
Ix – reduced moment of inertia with respect to the axis of rotation, M – torque
loading the hydraulic motor; pz – input pressure; pA, pB pressures in lines A and
B; pT – ambient pressure; 1-4 – points of mathematical description.

A simulation model obtained by means of equations I A1, I B3, I B4, I B3 given
in Eq. (5.29) is proposed in Fig. 5.14.
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The time histories depicted in Fig. 5.13 present trajectories of the discrete series:
x(t), ẋ(t) – displacement and velocity of the piston of the hydraulic divider; pZ(t)

– pressure of inflow, pA(t), pB(t) – pressures in lines A and B; n(t) – velocity of
the rotor in the hydraulic motor; nE(t) – electric motor’s set-point velocity; M(t)

– torque loading the motor; P (t) – power of the hydraulic motor.
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Fig. 5.13 Time histories resulting from numerical solution of the simulation model of the analyzed
servomechanism of rotational motion.
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Fig. 5.14 Simulation model of the servomechanism of rotational motion for the parameters: n =

50, Qmax = 1e–3, pz = 12e6, qm = 2e–5, D = 39.54e–3, d = 35e–3, b = 40e–3, e = 2.27e–3,
dT = 16e–3, m = 0.31, Ix = 47.5e–6, V0 = V0A = V0B = 61.3e–6, E = 1400e6, k = 1.67e–3,
µ = 7e–3, C = 0.1, M = 10, 1/(2πIx) = 3351, q/(2π) = 3.18e–6, E/V0 = 2.3e13.

In Figure 5.13, just after a step change (0.1 second of the simulation) in the
supply pressure pz, an irregular behavior of all components of the servomechanism
system takes place in the time interval [0.1,0.2]. The temporal high amplitude varia-
tions of velocity ẋ of movement of the throttling edge of the piston (see Fig. 5.12) are
the most significant. After supplying the hydraulic system, the load M(t), turned
at 1.1 second of the simulation, makes inertially smooth increase in pressures pA
and pB in lines A and B, respectively to 10.63 MPa and 1.26 MPa. To conclude,
the system characterized by the set of parameters written in Fig. 5.14 caption is
well designed and can be a starting point to realize the real prototype.

5.5 A Proportional Valve in the Drive and Control of a
Hydromechanical System

A physical model of the drive and control of the hydromechanical system of a
hydraulic cylinder with a proportional valve is shown in Fig. 5.15 [Lewandowski
and Awrejcewicz (2012)].
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Fig. 5.15 Proportional valve in the drive and control of the hydromechanical system.

Below we present a derivation of the mathematical model of a hydromechanical
system controlled with the use of a proportional valve.

Equations of flows in lines A, B and points (1-4) have the form:

I A1 −QA + kby
√
pz − pA = 0, and QA = kby

√
pz − pA ,

I A2 QA − k1(pA − pB) = Sẋ+

(
V0A

E
+
S

E
x

)
ṗA ,

I A
(
V0A

E
+
S

E
x

)
ṗA = −Sẋ+ kby

√
pz − pA − k1(pA − pB) ,

I B3 −QB + k1(pA − pB) = −Sẋ+

(
V0A

E
− S

E
x

)
ṗB ,

(5.32)

I B4 QB − kby√pB = 0, and QB = kby
√
pB ,

I B
(
V0B

E
− S

E
x

)
ṗB = +Sẋ− kby√pB + k1(pA − pB) .

The equation of load in the hydraulic cylinder:

II mẍ = S(pA − pB)− αS|pA − pB | sgn ẋ− cẋ− F (t) . (5.33)

The equation of load in the proportional valve acting on the piston:

III mz ÿ = −Cz ẏ − jy + FE . (5.34)

The equation of automatic regulation:

IV FE = F +RW (v0 − ẋ) . (5.35)
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Fig. 5.16 Simulation model of the analyzed hydromechanical system.

Equations (5.32)–(5.35) and Fig. 5.15 uncovers the following variables and pa-
rameters: Q – flow rate, m – reduced mass of the piston, mz – mass of valve’s piston,
b – total width of throttling slot in the valve, y – coordinate of spool displacement
of the valve, j – elasticity of springs of the valve, FE – force exerted by the elec-
tromagnet, FE0 – electromagnet force at a manual setting of piston’s velocity, v0

– reference velocity, Cz – a coefficient of viscous friction in the proportional valve,
k1 – capacity of leakages of the hydraulic cylinder, S – active surface of piston, α –
coefficient of motion resistance of the piston, R – automatic speed control switch (0
or 1), W – gain coefficient, k =

√
2/(ρξm) – constant of throttle valve’s capacity.
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Fig. 5.17 Results of numerical solution of the analyzed simulation model of the hydromechanical
system with proportional valve. The time characteristics in sub-figures (a-c) represent: y(t) –
displacement of the spool of the proportional valve, pZ(t) – inflow pressure, pA(t) and pB(t) –
pressures in lines A and B on both sides of hydraulic cylinder’s piston, ẋ(t) and x(t) – velocity and
displacement of loading, F (t) – loading force, FEẋ(t) – force acting on the solenoid (electromagnet),
which is a function of the difference v0 − ẋ(t) between the reference and measured velocity.

A simulation model of the hydromechanical driving system controlled by a pro-
portional valve is shown in Fig. 5.16.

In Figure 5.17, some time histories of state variables of the investigated sys-
tem are presented. The results of numerical simulation confirm that the designed
hydraulic system carries the load (see function F (t) turned on at t = 1 s) almost
without oscillations.
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5.6 Physical and Mathematical Model of the Pneumatic
Hydromechanical System

The necessary condition for the creation of a simulation model is the knowledge
of a theoretical description of the investigated system. In the case of a feeding
mechanism of a lathe, the basic laws described ealier can be applied. On the basis
of the laws of fluid and classical mechanics [Awrejcewicz (2014)], a physical model
of the system is proposed.

The physical model of a system is derived from an idealization of a real object
that is based on object’s data sheet, its scheme of functioning and some conditions
of operation. The mentioned idealization must provide analogy (adequacy) between
the derived physical model and the modeled real object.

While attempting to model lathe’s feeding mechanism, some theoretical back-
ground described in [Lerner and Trigg (2005)] was taken into consideration in our
study as well as the following assumptions have been made:

– the mass of the driven carriage is concentrated in one point;
– leakages in the hydraulic system are neglected;
– pressure losses in lines are neglected;
– flows in throttle valves are sub-critical and turbulent;
– dry and viscous friction exist simultaneously in piston’s contact and in the

throttle valves.

A scheme of the physical model of the cutter feeding mechanism, including ge-
ometrical and exploitation parameters, is shown in Fig. 5.18. The mathematical
description of the proposed physical model is elaborated in accordance to the fol-
lowing scheme.

In the analyzed system, the balance of air flows related to normal conditions is
described by Eq. (5.18).

The balance of flows in line A is described by the equation

kdA

√
p2
s − p2

A =
S − Sd
pN

ẋpA +

(
V0

pN
+
S − Sd
pN

x

)
ṗA , (5.36)

the balance of flows in line B follows

−kdB
√
p2
B − p2

N = −S − Sd
pN

ẋpB +

[
L0(S − Sd)

pN
− S − Sd

pN
x

]
ṗB , (5.37)

while the balance of oil flow in the hydraulic cylinder of the damper, according to
Eq. (5.11), is expressed by the formula

−kt
√
pt − ps = −Stẋ . (5.38)

With respect to high elasticity of housing, which is a cylinder in this case, it is
assumed that k0 = 0. In equations (5.36)–(5.38):
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kdA, kdB – capacities of throttling valves of the pneumatic drive are given
by the formulas:

kdA = kA · 1(t)∞0 , kdB = kB · 1(t)∞0 ; (5.39)

kt – capacity of the throttling valve of the damping system;
pS – input pressure of the pneumatic system.

Fig. 5.18 A physical model of the pneumatic hydromechanical system. Parameters: D = 50e–3,
d = 25e–3, h = g = 1.5e–6, m = 20, L0 = 0.5, pN = 0.1e6, ps = 0.7e6, V0 = 9.8e–6, kA = 0.2
e–9, kB = 0.05e–12, ID = I4 = 5e–3, bD = b4 = 10e–3, P0 = 5, η = 16e–3, S = 1.96e–3,
Sd = 0.49e–3, C = 50, St = 1730e–7, k1 = 2889e–12, Ct = 620e3, xt = 0.12, xp = 0.122, period
of step function T = 53e–4, ν = 187 Hz, duty cycle W = 30 % of periodic step function.

Balance equations of flows in lines A and B of the pneumatic drive are found
using Eqs. (5.36) and (5.37). Substituting capacity functions kdA and kdB , we get:(

V0

pN
+
S − Sd
pN

x

)
ṗA = −S − Sd

pN
ẋpA + kA1(t)

√
p2
s − p2

A , (5.40)

[
L0(S − Sd)

pN
− S − Sd

pN
x

]
ṗB = +

S − Sd
pN

ẋpB − kB1(t)
√
p2
B − p2

N . (5.41)

In the case of the damper, the description of which states the equation of flows
(5.12), and the equation of forces acting on it, i.e.,

FT − ST (pt − pS) = 0 , (5.42)
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we obtain a formula for the damping force

FT = CT ẋ
2 + pSST , (5.43)

where CT = S3
T /k

2
T .

Equations (5.42) and (5.43) come from the principle of mass conservation and
they describe the first component of the analyzed system’s mathematical model.
In the description of the dynamics of the pneumatic hydromechanical system, one
applies Eq. (5.20), which after a rearrangement takes the form:

mẍ =− Cẋ+ (S − Sd)(pA − pB)+

− sgn ẋ [S|pA − pB |+ Sd(pA + pB − 2pN )]α− F (t) ,
(5.44)

in which:

F (t) = FS + FT = 0.5[ sgn (x− xp) + 1]F0I(T,W )︸ ︷︷ ︸
FS

+

+ 0.5[ sgn (x− xt) + 1]
(
Ctẋ

2 + StpS
)︸ ︷︷ ︸

FT

.
(5.45)

The second component of the mathematical model is found by putting relations
(5.39) and (5.45) into the Eq. (5.44), getting the second order differential equation
as follows:

mẍ =− Cẋ+ (S − Sd)(pA − pB)+

− sgn ẋ [S|pA − pB |+ Sd(pA + pB − 2pN )]α+

− 0.5[ sgn (x− xp) + 1]F0I(T,W )+

− 0.5[ sgn (x− xt) + 1]
(
Ctẋ

2 + StpS
)
,

(5.46)

where: xt – switching threshold of the damper, xp – a starting point threshold of
machining.

Construction and exploration of the simulation model.
After taking into account external forcing, the transformed theoretical model

states a kind of mathematical model, which is created by some nonlinear equations
having no strict analytical solution.

A simulation model of the pneumatic hydromechanical system shown in Fig. 5.18
is presented in Fig. 5.19.

The simulation model was obtained by means of Eqs. (5.40), (5.41), (5.43)
and (5.46) stating the mathematical description of the investigated system. Ini-
tially, equations (5.40) and (5.41) were used to determine the lines of air pressures
pA, pB and their derivatives ṗA, ṗB originating from summing junctions. Pressures
pA, pB , pS and state variables x, ẋ are monitored on three oscilloscopes.

Function FS(t) with the amplitude FS0 = 20 N, period TS = 53 · 10−4 s and
duty cycle dS = 30 % simulates some periodic forcing exerted by the cutting forces
propagated by the cutter. The two stops switching the damper during machining
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Fig. 5.19 A simulation model of the pneumatic hydromechanical system shown in Fig. 5.18.

are simulated by function 0.5[ sgn (xt − x) + 1] and 0.5[ sgn (xp − x) +1]. Results of
exploration of the simulation model shown in Fig. 5.19 are pictured in Fig. 5.20.

The time histories presented in Fig. 5.20a and c illustrate trajectories of pres-
sures pS , pA and pB , displacement x and velocity ẋ of the system with (solid line)
and without the hydraulic damper (dashed line). The time history presented in
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Fig. 5.20 Results of numerical simulation of the pneumatic hydromechanical system.

Fig. 5.20b illustrates changes in the damping force FT (t) caused by sudden turn off
of the hydraulic damper. Denotations on and off in superscripts of symbols relate
to the responses obtained for the damper being turned on and off, respectively.
Information about the simulation parameters is given in the caption to Fig. 5.18
(a physical model) and of the simulation model in Fig. 5.19. In Fig. 5.19b, only
a trajectory of FT (t) at the working damper is shown, because the function takes
zero value when the damper is turned off.
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Comparison of results of numerical simulation in scope of modification of crucial
parameters of the machining process, like the distance and velocity of motion of the
tool with and without the damper, indicates a definite improvement of working
conditions of the feeding mechanism. A selection of sufficiently small and stable
feed providing the high quality of the machining process became possible.

Analysis of results allows to detect and correct any mistakes that could be made
at the initial stage of modeling. The structure and parameters of the virtual model
are usually subjected to many corrections until the best analogy between the model
and its real counterpart is achieved.

The cognitive nature is connected with some important and positive features
of the presented method of modeling. An observation of selected nodes of the
simulation diagram is possible during ongoing simulation as well as investigation of
system’s reaction on changes of model parameters and construction of the physical
model.

Experimentally verified models of real objects can be used for utilitarian pur-
poses and in the design processes. The main advantage of conducting numerical
simulations in the industry is the ability to reduce the number of tests on real ob-
jects and the number of specially constructed models designated for various testing
experiments.
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Chapter 6

Modeling of Electrohydraulic
Servomechanisms

Electrohydraulic servomechanisms are a perfect example of mechatronic devices
which, by their design and processing of signals, create a link between various fields
of science and engineering such as solid mechanics, fluid mechanics, electronics,
electrical engineering and computer science (numerical programming, CAD). The
issues related to control and optimization of dynamic processes and optimization of
shapes are not less important. To ensure smooth operation of these devices, a good
understanding of the relationships between theoretical and experimental aspects
that merge these fields of science is highly required.

The aforementioned systems have many advantages, but require an extensive
knowledge in the design and prototyping. Any improperly designed mechatronic
system may be subject to frequent breakdowns, and even its functioning may be be
hazardous to its operators. Therefore, there is a need of numerical virtualization of
the designed system using software dedicated to numerical simulation and analysis
of discrete dynamical models. Another benefit is the opportunity to examine the
validity of the designed control system. This stage of designing a real device allows
to detect weaknesses in the proposed engineering solution and to reduce costs of the
prototype production. One of such tools is the LabVIEW programming environment
made by National Instruments (NI), which allows for a quick and easy creation of
simulation blocks (virtual instruments) modeling equations of dynamics describing
the investigated mechatronic system, and much more.

A servomechanism, also referred to as a servo, is a fundamental and the most
important part (a closed subsystem) of today’s industrial automation.

According to the first definition, a servomechanism is a closed loop control
system with an error-sensing negative feedback in which the output signal is a
physical quantity subject to adjustment (regulation).

According to the second definition, a servomechanism is a control system which
measures its own output and forces the system generating that output to quickly and
accurately follow the reference signal. The control system guarantees its resistance
to external forcing (excitation) with a large stability margin.

The servo can control various physical quantities, e.g., force, torque, linear or
angular position, temperature, electric voltage, amperage or pressure.

169
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There are three basic types of a servomechanical system:

– electromechanical,
– electropneumatic,
– electrohydraulic.

The main criteria taken into account when choosing the appropriate system
include performance, costs of purchase and maintenance, dimensions, weight, con-
ditions of work in the target environment (e.g., resistance to vibrations, shock oc-
currence or temperature variations).

Electromechanical servos are mechatronic systems in which electronics cooper-
ates with mechanical actuators [Rydberg (2008)]. These systems can include many
kinds of controlled machines or mechanisms with the negative feedback line. They
fulfill the tasks of control of electric motors, mechanical gears, and others. Elec-
tromechanical systems provide a very efficient control in complex technical applica-
tions of mechatronic devices and systems. Those of them that operate at low loads
are cheap, but this aspect becomes less beneficial when they operate under heavy
loads and with a requirement of fast dynamic responses.

Electropneumatic servos work mainly in low loads regimes, where a fast and
repeatable motion of actuators between subsequent positions is required. Systems
of such type are often noisy. Mostly, they are required to achieve precision in
extreme positions. The advantages include mainly low cost and high positioning
speed required to perform a fast movement of light elements.

Electrohydraulic servos combine the advantages of hydraulic and electronic sys-
tems. They have a high power to weight ratio (moment of inertia) [Rabie (2009)].
Their positive properties are extended on a very good thermal conductivity and
self-lubrication [Sadeghieh et al. (2012)], which is the desired result of the presence
of oil – the working liquid. Application of these systems is particularly advanta-
geous in applications requiring high precision of motion mapped in accordance to a
reference function.

The disadvantage of electrohydraulic servos is the variability of oil parameters
affecting the repeatability of the duty cycle. These parameters are: density, viscosity
or oil bulk modulus of elasticity, depending on its composition, and the operating
temperature [Sadeghieh et al. (2012)]. Bulk modulus of elasticity depends on many
factors, e.g., on pressure, temperature and undissolved air volume. An amount
of undissolved air has the greatest influence on the hydraulic oil bulk modulus
of elasticity due to high air volume compressibility compared to the oil volume
compressibility.

A number of nonlinearities resulting from friction of movable surfaces, leakages
and hysteresis of dynamic states, which lead to many uncertainties of unknown
parameters and some unknown errors of modeling, state a significant difficulty in
the accurate and robust control of these devices. In addition, often used electric
power supply is more accessible in industrial plants and prototype testing stands
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than any hydraulic source of power. Costs of hydraulic systems are high due to the
need of manufacturing various components with high accuracy associated with the
expensive and advanced manufacturing processes. Proper oil filtration should be
assured, since oil must be clear [Rabie (2009)].

Electrohydraulic servos are widely used in industries, such as oil production,
control of satellite antennas, fatigue tests, manufacturing techniques, positioning
of rocket launchers, generation of vibrations, control of aircraft’s components, in-
dustrial robotics, agricultural accessories and devices, conveyors, cranes, control of
machining processes (e.g., in automatic drives of drilling heads), and other [Younkin
(2002)].

Hydraulic servo valves are used to control the flow of fuel in internal combustion
engines. For example, the hydromechanical unit can be actuated to deliver a fuel
mixture at suitable pressure to a specific location of the combustion system.

Other uses of electrohydraulic servos relate to control parameters of the cable,
support landing of helicopters on ships operating in difficult weather conditions [Zhu
(2009)]. Many hydraulic control systems are often used in aircraft. The assistance
systems that facilitate piloting and control of flying machine’s parameters in the air
[Fowler and O’Connor (1976); Viswanath and Nagarajan (2002)] can be given as an
example.

Guidance of missiles uses servos to control the position of the hydraulic cylinders.
The electric signals from the control unit control the operation of valves in a way to
automatically adapt the guidance and stabilize the track of the projectile [Holtrop
(1983)].

High-pressure hydraulic servo cylinders (called also hydraulic servo actuators)
are applied to stabilize the starting platform and arm the rocket launcher passing
into a state of combat readiness [Sreekumar and Ramchandani (2005)]. Similar
systems are installed on a turret armed combat vehicles [Brandstadter and Taylor
(1974)].

Hydraulic servos are present in the systems of active reduction of vibrations of
vehicles’ chassis. Each column of the chassis is controlled independently to achieve
the best driving comfort or the best tracking ability of the vehicle.

Three basic types of the electrohydraulic servomechanisms can be distinguished:

– position servos (linear and angular),
– velocity servos (linear and angular),
– force (momentum) servo.

Position servo. Figure 6.1a introduces an idealized schematic diagram of a
linear position servo belonging to a group of basic closed loop control systems of
automatic regulation.

Position of the piston of the hydraulic cylinder (Fig. 6.1a), or even of the load
being attached to it is measured by a position encoder (a transducer of the physical
quantity – linear displacement). The encoder produces an electric voltage signal on
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the basis of which the output signal uz – information about actual position (state)
of the body of mass M is obtained. The amplifier of the servo, acting also as a
comparator, compares the reference signal us with the signal uz in the negative
feedback line. The resulting error signal is directed to the amplifier acting as the
basic element of the proportional gain K. The signal of electric current present at
the amplifier output subsequently controls a state of the servo valve.

K
us

uz i
ps

M x

xp

(a) a linear position servo

Kus

uz i
ps

transducer of velocity or momentum

J D
w

(b) an angular velocity servo

K
us

uz i
ps

MF

transducer of force

x

(c) a force servo

Fig. 6.1 Idealized models of servos of various physical quantities.

Velocity servo. Another example of the servomechanism is a velocity servo.
In their design, velocity servos are very similar to position servos, with the differ-
ence that the transducer provides information about the movement velocity, but the
controller may have different characteristics. The velocity servo is used with an am-
plifier gaining the integral action realized in the electronic circuit. The integration
is essential to minimize static errors and to ensure the stability of system’s dynamic
response. The design of the velocity servo of rotational motion is schematically
shown in Fig. 6.1b.

Force (momentum) servo. A force servo is similar to the position servo,
but its transducer measures force or a moment of force. The voltage signal of a
measured quantity is directed backwards to the amplifier. There is also a servo
implementation, wherein the sensor of the voltage signal coming from pressure of
external load closes the feedback loop. Implementation of this type is then close
to the true servomechanism of force, where, in addition, the friction force in the
actuator is taken into account. An exemplary force servo is presented in Fig. 6.1c.
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6.1 Simplified Model of a Servo With a Proportional Valve

An experimental setup with an electrohydraulic servo modeled in [Milič et al. (2010)]
is schematically presented in Fig. 6.2. The simplification is made by the derivation
of Eq. (6.7) of the dynamics, described by a vector state x̄ according to definition
(6.6), and by neglecting friction between the piston and the cylinder.

Q1

ps

xp

mo

Q2

p1 p2A1

A2

pa

co

ko
V01 V02

proportional valve

1' 2'

hydraulic cylinderloading

to the left

to the right

Fig. 6.2 Simplified model of a servo with a proportional valve.

The system depicted in Fig. 6.2 is composed of a gear pump, a proportional
valve and a hydraulic cylinder with a load (another body of a mass greater than the
piston mass). Analyzing the schematic diagram, the second order linear ordinary
differential equations, describing dynamics of proportional valve’s spool, can be
derived:

ÿ + 2ζωẏ + ω2y = kpω
2U, (6.1)

where kp is the proportional gain of the valve, ω – natural frequency of vibrations
of the spool, ζ – damping ratio of the proportional valve, y – position of spool, U
– control input voltage.

Based on the equations of continuity of flow through valve’s orifices in ports 1’
and 2’ (see Fig. 6.2), one writes:

Q1 =

{
Cdσy

√
2(ps − p1)/ρ, y ≥ 0,

Cdσy
√

2(p1 − pa)/ρ, y < 0,
(6.2)

Q2 =

{
Cdσy

√
2(p2 − pa)/ρ, y ≥ 0,

Cdσy
√

2(ps − p2)/ρ, y < 0,
(6.3)

where Q1, Q2 are the volumetric flows through the orifices, p1, p2 – pressures in the
left and right cylinder chambers, ps – supply pressure, pa – pressure of liquid in the
tank, Cd – valve coefficient of discharge, σ – valve orifice area gradient.
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Neglecting the internal and external leakages, the dynamics of the hydraulic
pressure behavior in the compressible fluid volumes is given by the equations:

ṗ1 =
β

V01 +A1xp
(Q1 −A1ẋp) , (6.4a)

ṗ2 =
β

V02 −A2xp
(−Q1 +A2ẋp) , (6.4b)

where β is the fluid bulk modulus of elasticity, A1, A2 – annulus areas of the piston
and the rod side of the cylinder, V0i = Ail/2 (i = 1, 2) – the cylinder half-volumes
on both sides of the piston.

The equation of dynamics of the mechanical part of the system is given by

mẍp = p1A1 − p2A2 − coẋp − koxp − FL, (6.5)

where m is the total mass of the piston and the load – a body attached to the hy-
draulic cylinder, co and ko are the viscous damping coefficient of the servo actuator
and the load stiffness, respectively, FL – unknown external disturbance of the force
coming from the load attached to the hydraulic cylinder. In a further simplification,
any friction proportional to the hydraulic pressure has been omitted.

Taking into account Eqs. (6.1)–(6.5), the vector of state variables is defined by

x̄ = [x1, x2, x3, x4, x5, x6]T = [y, ẏ, p1, p2, xp, ẋp]
T . (6.6)

The above assumptions allow to write a nonlinear model of dynamics of the
servo from Fig. 6.2, expressed by the system of differential equations [Milič et al.
(2010)]:

ẋ1 = x2, (6.7a)

ẋ2 = −ω2x1 − 2ζωx2 + kpω
2U, (6.7b)

ẋ3 =
β

V01 +A1x5

(
Cdσx1

√
2∆pP /ρ−A1x6

)
, (6.7c)

ẋ4 =
β

V02 −A2x5

(
−Cdσx1

√
2∆pR/ρ+A2x6

)
, (6.7d)

ẋ5 = x6, (6.7e)

ẋ6 =
1

m
(A1x3 −A2x4 − kox5 − cox6 − FL) . (6.7f)

In Eq. (6.7)c-d, ∆pP and ∆pR are given by:

∆pP =

{
|ps − x3|, x1 ≥ 0,

|x3 − pa|, x1 < 0,
(6.8a)

∆pR =

{
|x4 − pa|, x1 ≥ 0,

|ps − x4|, x1 < 0.
(6.8b)
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6.2 Torque Motor

Electromechanical transducers (e.g., torque motors) belong to the group of basic el-
ements of electrohydraulic servomechanisms. They are used to transform an electric
signal into a usable displacement of mechanical elements [Rabie (2009)].

N N

SS
SN

1 2 3

3

2

4

ii

Fig. 6.3 Schematic diagram of a torque motor.

The typical torque motor, schematically shown in Fig. 6.3, is composed of an
armature 1 with coils 2 and permanent magnets 3 placed at a distance to both
poles of the armature being fixed to a flapper with feedback spring 4. Appearance
of electric current in the coils gains the magnetic flow generated by the magnets.
Depending on the control signal, one of the ends of the armature is attracted to
the neighboring permanent magnet stronger. Angular motion of the armature is
transferred onto the feedback spring that moves a spool valve.

Four air gaps create the dominant reluctance in the magnetic circuit of the
torque motor. It results from the negligible reluctance of poles that can be omitted.
With respect to subsystems’ symmetry, the air gaps placed on the opposite sides
of the diagonal have the same width. Reluctance R1 and R2 on both sides of the
armature can be described by these formulas:

R1 =
x0 − xa
µ0A

, R2 =
x0 + xa
µ0A

, xa = ϑ
L

2
. (6.9)

In Eq. (6.9), the following parameters are assumed: x0 – width of air gap in the
neutral position of the armature [m], xa – displacement of the armature end [m],
µ0 – magnetic permeability of the air gaps [V s/(A m)], A – surface of the air gap
in the direction perpendicular to the magnetic field between poles [m2], ϑ – angle
of rotation of the armature [rad].
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Fig. 6.4 Analogy between the electric circuit (a) and an approximate distribution of the magnetic
field (b). Coils are neglected.

The magnetic circuit of the torque motor from Fig. 6.4b is symmetric, therefore
the magnetic fluxes on both sides of the diagonals are identical. The observation
of correspondence between the electric (a) and magnetic field (b) allows to refer an
electrical resistance to the magnetic reluctance. As a result of the existing analogy,
a distribution of forces of the magnetic field propagated in the torque motor is
approximated by the electric circuit in Fig. 6.4a.

Equating the magnetomotive forces in electric circuit’s loops yields:

−λ+R1ϕ1 −R2ϕ2 = 0, −λp +R1ϕ1 +R2ϕ2 = 0, (6.10)

where magnetic fluxes are expressed with:

ϕ1 =
λp + λ

2R1
, ϕ2 =

λp − λ
2R2

, (6.11)

and λ = iN is the magnetomotive force produced by the coil current i [A], λp –
magnetomotive force of the permanent magnet [A], N – a number of coil windings
of the permanent magnet.

Substituting Eq. (6.9) to (6.11), the equations for magnetic fluxes in the air gaps
are found:

ϕ1 =
(λp + iN)µ0A

2(x0 − xa)
, ϕ2 =

(λp − iN)µ0A

2(x0 + xa)
. (6.12)

Forces F1 and F2 acting on ends of the armature produce a moment of forces T
against the point O, which is calculated as follows:

F1 =
ϕ2

1

2µ0A
, (6.13a)

F2 =
ϕ2

2

2µ0A
, (6.13b)

F = F1 − F2 =
ϕ2

1 − ϕ2
2

2µ0A
, (6.13c)

T = FL =
L

2µ0A

[ (λp + iN)2µ2
0A

2

4(x0 − xa)2
− (λp − iN)2µ2

0A
2

4(x0 + xa)2

]
, (6.13d)
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then

T =
µ0AL

8(x2
0 − x2

a)2

[
(λp + iN)2(x0 + xa)2 − (λp − iN)2(x0 − xa)2

]
. (6.14)

The magnetomotive force λ generated by the current in windings of coils is
relatively small in comparison to the magnetomotive force λp generated by the
permanent magnet. Analogously, the displacement xa of the armature’s ends is
significantly smaller than x0 – width of the air gap. According to the relations, the
influence of terms λ2 and x2

a on the moment T with regard to the more significant
influence of terms λ2

p and x2
0 is negligible.

Continuation of derivation of the formula for the moment of forces acting on the
armature takes the form

T =
µ0AL

8x4
0

[
4x0xaλ

2
p + 4iNλpx

2
0

]
=
λ2
pµ0AL

2x3
0

xa +
Nλpµ0AL

2x2
0

i. (6.15)

Equation (6.15) is now transformed to the sum of linear terms

T = Kxxa +Kii or T = Keϑ+Kii, (6.16)

where:

ϑ =
2xa
L
, Kx =

λ2
pµ0AL

2x3
0

, Ki =
Nλpµ0AL

2x2
0

, Ke =
λ2
pµ0AL

2

4x3
0

.

In fact, the term Keϑ (servo valve parameter) is very small in relation to Kii,
thus the Eq. (6.16) can be simplified to the form

T = Kii. (6.17)

The above mathematical description of the torque motor will be used in next
Sec. 6.4.

6.3 Piezoelectric Plate Transducer

The servo analyzed in [Piefort (2001)] is schematically shown in Fig. 6.5. The
principle of operation of such a servo bases on a continuous deformation of an elastic
plate transducer subjected to the bending force applied in the point of attachment
of the linear displacement vector xm. The piezoelectric plate 1 functions as a flapper
placed between nozzles 2. Restricted motion of the plate enforces the position of the
spool 3. Its displacement is measured by the position transducer 4. The throttle
valves 5 are also marked.

The following bending force acts on the free end of transducer’s plate

F (t) = −kmxm(t) + d · kmU(t), (6.18)

which is the effect of the difference of pressures of fluids flowing through the nozzles
2.
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Fig. 6.5 A servo with the piezoelectric plate transducer.

The equation of motion of the piezoelectric element between the nozzles is writ-
ten with the use of the second order differential equation

meẍm(t) + ctẋm(t) = F (t) + Fs(t),

where, after taking Eq. (6.18),

meẍm(t) + ctẋm(t) + kmxm(t) = Fs(t) + d · kmU(t). (6.19)

State variables and parameters of the piezoelectric plate transducer used in
Eqs. (6.18) and (6.19) are as follows: xm – linear displacement of the end of the
piezoelectric element [m], me – effective mass of the piezoelectric element [kg], Fs
– force of external loading (e.g., from the spool in Fig. 6.6) [N], km – coefficient of
stiffness [N/m], ct – coefficient of motion resistance [N·s/m], d – parameter of shear
deformation of the piezoelectric crystal [m/V], U – electric voltage on the plates of
the piezoelectric element [V].

While introducing a simplified electric model of the transducer, one assumes
that it is built as a resistor-capacitor serial connection. At this assumption, the
differential equation describing the dynamics of the electric voltage on plates of the
piezoelectric element is given in the form

RCU̇(t) + U(t) = Uz(t), (6.20)

where Uz is supply voltage, U – voltage on the piezoelectric plates, R – resistance
to the currents flowing in the electric circuit and plates of the piezoelectric element,
C – electrical capacitance of plates of the piezoelectric element.

With respect to the sum of terms of the right-hand side of Eq. (6.19)b, a two-
dimensional vector of forcing can be extracted. Therefore, one writes two transfer
functions between input Fs and output xm and between input U and the same
output. If one assumes that Fs does not exist, then, using Eqs. (6.19) and (6.20),
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the linear dynamical system of the analyzed piezoelectric plate transducer is given
in the operator form

G(s) =
xm(s)

Uz(s)
=

Kz · ω2
0

(RCs+ 1)(s2 + 2ζω0s+ ω2
0)
, (6.21)

in which: ω0 =
√
km/me – natural frequency, ζ =

ct

2
√
mekm

– damping ratio,

Kz = d · km – proportional gain.
If some influence of friction and any hydrodynamic forces is neglected as well,

then the equation of the spool motion is given as follows

msẍs + csẋs = ξAsxm, (6.22)

where xs is a displacement of the spool, ms – mass of the spool and the moved
working fluid, cs – damping parameter of the spool motion, As – area of the spool
face from the side of ports 1’ and 2’, ξ – scaling coefficient [N/m3].

The differential equation (6.22) is linear and has an equivalent operator form

xs(s) =
ξAs

s(mss+ cs)
xm(s) =

ξs
s(Tss+ 1)

xm(s), (6.23)

where Ts = ms/cs and ξs = ξAs/cs.

6.4 Control System of Load Positioning Using a Hydraulic Servo
Valve

An exemplary physical model of servo valve’s control system has been introduced
in [Rabie (2009)]. A scheme of a similar system is shown in Fig. 6.6. It has served
for realization of a LabVIEW simulation model [Bialkowski (2014)].

Dynamics of motion of the armature is described by the moment balance equa-
tion

Jϑ̈+ fϑϑ̇+KTϑ+ TP + TF + TL = T, (6.24)

in which T is given by Eq. (6.17), and also

Tp =
π

4
d2
f (P2 − P1)Lf , (6.25a)

TF = FsLs = Ks(Lsϑ+ x)Ls, (6.25b)

TL =

{
0 |xf | < xi,

Rsϑ̇− (|xf | − xi)KLfLf sgn (ϑ) |xf | > xi,
(6.25c)

xf = Lfϑ. (6.25d)

Equation (6.25)b defines the backward moment, and Eq. (6.25)c, which is valid
in the interval of variability of xf , defines extreme positions of the flapper. The
simulation model of the torque motor (at the top of Fig. 6.6) is shown on a scheme
in Fig. 6.7.
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Fig. 6.6 An exemplary physical model of a servomechanism. Numerical solution of dynamics of
the system behavior is given in Sec. 6.5.

Definitions of state variables and system parameters appeared in Eq. (6.24) and
(6.25): Tp – torque caused by the difference of pressures on both sides of the flapper
[N·m], TF – torque of force Fs caused by the spool motion [N·m], TL – torque
generated by the flapper [N·m], ϑ – angle of rotation of the armature [rad], xi –
limit position of the flapper [m], xf – displacement of end of the flapper [m], x –
displacement of the spool [m], Pi – pressure on both sides of the spool (i = 1, 2)
[Pa], KT – stiffness coefficient of feedback spring of the torque motor [N·m/rad],
KLf – stiffness coefficient of the flapper seat [N/m], Ks – stiffness coefficient of
the feedback spring [N/m], J – moment of inertia of the system armature-flapper
[kg·m2], Fs – spool force exerted on the end of the piezoelectric element [N], Lf
– length of the flapper measured from the armature’s axis to the axis of nozzles
[m], Ls – total length of torque motor’s feedback spring and the flapper [m], fϑ –
damping ratio of motion of the armature [N·s·m/rad], Rs – damping ratio of the
flapper seat [N·s·m/rad], df – hydraulic diameters of nozzles [m].
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Fig. 6.7 Simulation model created in LabVIEW, solving torque motor’s dynamics.

A mathematical description of remaining components of the modeled system of
the servomechanism from Fig. 6.6 is presented below in points a-h:

a) flow rates through the spool valve (see Fig. 6.9):

Qa = CdAa(x)
√

2(PA − PT )/ρ, (6.26a)

Qb = CdAb(x)
√

2(Ps − PA)/ρ, (6.26b)

Qc = CdAc(x)
√

2(Ps − PB)/ρ, (6.26c)

Qd = CdAd(x)
√

2(PB − PT )/ρ; (6.26d)

b) flow rates in lines connected to the valve (see Fig. 6.8):

Q1 = C12

√
Ps − P1, (6.27a)

Q2 = C12

√
Ps − P2, (6.27b)

Q3 = C34(xi + xf )
√
P1 − P3, (6.27c)

Q4 = C34(xi − xf )
√
P2 − P3, (6.27d)

Q5 = C5

√
P3 − PT , (6.27e)

where: C12 = CdA0

√
2/ρ, C34 = Cdπdf

√
2/ρ, C5 = CdA5

√
2/ρ;

c) equations of flow continuity in the chambers around the flapper (see Fig. 6.10):
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Q1 −Q3 +Asẋ =
V0 −Asx

B
Ṗ1, (6.28a)

Q2 −Q4 −Asẋ =
V0 +Asx

B
Ṗ2, (6.28b)

Q3 +Q4 −Q5 =
V3

B
Ṗ3; (6.28c)

Fig. 6.8 Simulation model created in LabVIEW, computing the flow rates Q1,...,5.

d) the equation of the dynamics of the spool motion (see Fig. 6.10)

As(P2 − P1) = msẍ+ fsẋ+ Fs; (6.29)

e) the equation of the dynamics of the piston motion (see Fig. 6.11)

Ap(PA − PB) = mpÿ + fpẏ +Kby; (6.30)

f) equations of flow continuity in chambers of the cylinder (see Fig. 6.12):

Qb −Qa −Apẏ − (PA − PB)/Ri = (Vc +Apy)/B · ṖA, (6.31a)

Qc −Qd −Apẏ + (PA − PB)/Ri = (Vc −Apy)/B · ṖB ; (6.31b)
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Fig. 6.9 Simulation model created in LabVIEW, computing flow rates through the spool valve.

Fig. 6.10 Simulation model created in LabVIEW, solving the equations of flow continuity and the
dynamics of the spool motion.

g) limitations for the valve:

Aa = Ac = βrs

Ab = Ad = β
√

(x2 + r2
s)

}
if x ≥ 0, (6.32)
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Aa = Ac = β
√

(x2 + r2
s)

Ab = Ad = βrs

}
if x < 0; (6.33)

Fig. 6.11 Simulation model created in LabVIEW, solving dynamics of loaded piston.

h) electric feedback (see Fig. 6.13)

ie = ic − ib, ib = KFby. (6.34)

As it is seen, a body that loads the hydraulic cylinder has been introduced.
Viscous damping coefficient co of the servo load and its stiffness ko is properly
selected to imitate elasticity of real mounting.

Differential equations of the dynamics of the elastically connected load and hy-
draulic cylinder’s rod clevis (for instance, like in Fig. 6.2) describe changes in dis-
placements yo and y, respectively:

moÿo = c0(ẏ − ẏo) + ko(y − yo), (6.35a)

mpÿ = co(ẏo − ẏ) + ko(yo − y) +Ap(PA − PB). (6.35b)

Small elasticity of the load and the hydraulic cylinder is guaranteed by large
values of parameters ko and co. Equations (6.35), realized in the simulation model,
are shown in Fig. 6.11.

State variables and system parameters used in Eqs. (6.24)–(6.35) are as follows:
ic – input current (reference value) [A], ib – current on output of the position trans-
ducer [A], ie – error current [A], y – piston displacement [m], Ki – torque constant
dependent on the current in the armature coils [N ·m/A], Ke – gain constant of the
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Fig. 6.12 Simulation model created in LabVIEW, solving equations of flow continuity in chambers
of the cylinder.

relation angle-moment of the armature [N ·m/rad], KFb – proportional gain of the
controller [A/m], d5 – diameter of the return line [m], ds – diameter of the spool [m],
ρ – oil density [kg/m3], B – oil bulk modulus of elasticity [Pa], V3 – initial volume
of oil in the return chamber [m3], ms – spool mass [kg], mp – mass of the piston
and the rod with clevis [kg], β – width of spool’s port [m], rs – radial clearance of
the spool [m], fs – kinetic friction coefficient on the contact surface of the spool and
the housing of the proportional valve [N · s/m], fp – kinetic friction coefficient on
the contact surfaces of the piston and the cylinder [N · s/m], Ps – supply pressure
[Pa], PT – ambient pressure [Pa], Ap – area of the piston [m2], Vc – initial volume
of oil in cylinder’s chamber [m3], Ri – resistance to external leakages [Pa · s/m3],
ko – stiffness of connection of piston’s clevis and load [N/m], co – viscous damping
coefficient of the servo load [N · s/m].

6.5 Numerical Simulations of the Dynamics of an Electrohydraulic
Servo Subjected to Dynamic Loading

The numerical simulations of the dynamics of the electrohydraulic servo presented
in Fig. 6.6 were performed in LabVIEW.

The abovementioned programming environment gives access to many libraries
called virtual instruments. It supports hardware based on GPIO input/output
that is applied in many industrial measurement, control and monitoring systems.
The G programming language, introduced by NI, uses a graphical user interface
(GUI) having a form of a block diagram. Routes for data transfer between the
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functional blocks representing the LabVIEW procedures are marked with lines, the
color, thickness and pattern of which define the type of transferred data (scalar,
vector, matrix). A simulation diagram of the dynamics of the analyzed servo,
created in LabVIEW, is shown in Fig. 6.13.

By using LabVIEW, a numerical solution to algebraic and differential equations
can be found. The environment is equipped with many components for fast and
clear presentation of structural and numerical data on various displays and scalable
time graphs placed in control panel. The control panel presented in Fig. 6.14 allows
to observe the solution and modify parameters of the numerical simulation also
during running simulation program.

A reference value of the control current ic can be adjusted in the control panel
using a slider. Proper setting of this input causes backward or forward displacement
of the piston with regard to its zero initial position. With respect to the application
of the automatic control system with a feedback loop, the piston position follows
the reference value ic by means of the proportional regulation of the displacement
of torque motor’s end.

By investigating the step and linear input responses of the analyzed dynamical
system, the efficiency of positioning of a body of the mass mo attached to hydraulic
cylinder’s rod can be evaluated. Results of exploration of system’s simulation model
(see diagram 6.13) at external loading mo = {50, 150, 300} kg of the piston in a
response to the step (from zero) and timely linear change in the control current
ic = {40, 70, 100}mA are illustrated in Fig. 6.15-6.19. The ranges of the axis of
ordinates of the presented time histories of θ, x, y, PA and PB have been fixed in
the same range for better visualization of common relations between the variables,
differences in the shape of oscillations as well as visualization of discrepancy between
some steady-state values reached at the end of each numerical experiment.

During elaboration of the servo’s model described in Sec. 6.4, dynamical and
design parameters were defined, which take the following values in the simulation:

Ki = 0.556 N ·m/A fϑ = 0.002 N ·m · s/rad KT = 1000 N ·m/rad

J = 5e7 kg ·m2 Ke = 9.45e–4 N ·m/rad KFb = 3 A/m
Lf = 9e–3 m Ls = 30e–3 m xi = 30e–6 m
df = 0.5e–3 m Rs = 5e3 N · s ·m/rad KLf = 5e6 N/m
d5 = 0.6e–3 m fp = 0.11 N · s/m ρ = 867 kg/m3

B = 1.5e9 Pa ds = 4.6e–3 m V3 = 5e–9 m3

ms = 0.02 kg β = 2e–3 m rs = 2e–6 m
fs = 2 N · s/m Ks = 900 N/m Ps = 25e6 Pa
PT = 0 Pa Ap = 12.5e–4 m2 Vc = 500e–6 m3

Ri = 1e14 Pa · s/m3 mp = 10 kg co = 10e3 N · s/m
ko = 100e3 N/m.
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Fig. 6.13 General simulation model solving dynamics of the investigated servomechanism. b
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The conducted experimental tests, relying on placing the piston with load not
greater than 150 kg in the position y, exhibit satisfactorily stable responses of the
piston reflected in fairly small oscillations of selected state variables of the analyzed
system, i.e., a) the angle θ of the feedback spring of the torque motor, b) the
displacement x of the spool of the proportional valve, c) pressures PA and PB in
the cylinder’s chambers on both sides of the piston.

Fig. 6.14 Front panel created in LabVIEW, used for monitornig of the servo valve.

Attachment of the mass mo = 300 kg makes some very unstable response of
the servo, manifested by oscillations of all observable state variables, visible. In
particular, an attempt of forcing the body to the position y ≈ 34 mm (ic = 100

mA) causes appearance of slowly damped oscillations of y(t) around a steady-state
value (see red line in Fig. 6.17c).

The time histories presented in Figs. 6.15d–6.19d illustrate variations of pres-
sures in the cylinder on both sides of the piston. It is clearly seen that at a
step-shaped function of excitation and at some loading of the plant realized by
an attached body of the mass mo = 300 kg, the control system having some prede-
termined parameters does not allow for a quick and stable positioning of the system
to the reference input values.
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Fig. 6.15 Results of exploration of the simulation model, given in Fig. 6.13, as an effect of the
system response to a step change in the reference current at loading mass mo = 50 kg. In figure
d, variations of pressure PA are marked with solid lines while variations of pressure PB by dashed
lines.
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Fig. 6.16 Results of exploration of the simulation model, given in Fig. 6.13, as an effect of the
system response to a step change in the reference current at loading mass mo = 150 kg.
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Fig. 6.17 Results of exploration of the simulation model, given in Fig. 6.13, as an effect of the
system response to a step change in the reference current at loading mass mo = 300 kg.
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Fig. 6.18 Linear input responses of the servo due to a linearly rising reference value of control
current at loading mass mo = 300 kg. The reference current characteristics, marked with a dashed
line in figure b, is determined by a piecewise continuous function

ic(t) =

{
ic0t if t ∈ [0, 1),

ic0 if t ∈ [1, 4].
(6.36)
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Fig. 6.19 Linear input responses of the servo due to a linearly rising reference value of the control
current at loading mass mo = 300 kg. The reference current characteristics, marked with a dashed
line in figure b, is also determined by a piecewise continuous function

ic(t) =

{
ic0t if t ∈ [0, 2),

ic0 if t ∈ [2, 4].
(6.37)
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Improvement of control quality is achieved after using a linearly increasing char-
acteristic of the reference current ic(t) (see Eqs. (6.36) and (6.37)) on the system
input, which is drawn using dashed lines in Figs. 6.18b and 6.19b, respectively.
Up to time tg, determined by a threshold value ic0 reached by the current ic, the
hydraulic cylinder response very stably follows the reference input. The higher the
value of tg (1 or 2 s during the numerical experiment), the more stable plant output
is reported. Therefore, we meet a next optimization problem related to establishing
a compromise between the duration of a transient response of the control system
and stability of the resulting system response.

According to the above results, some wider scope of applications of the in-
vestigated system would require broader research. It could be oriented on more
advanced optimization of the first-attempt control algorithm. One would expect to
apply more effective algorithm of control for the purpose of shortening of the system
transient response while maintaining its high robustness to uncertain disturbances.

To sum up, numerical simulation and control of some typical electrohydraulic
servos has been carried out. Advantages and drawbacks of modeling of these kinds
of mechatronic systems have been discussed as well as common types of servos have
been virtualized to point out some areas of their applications. A few exemplary
attempts of discretization of the selected physical models described by systems of
ordinary differential equations have been provided. It has been also proved that the
LabVIEW environment can successively serve as a basic tool to perform even highly
complicated numerical simulations of discrete mechatronic systems.

A dependency between the reference current and a displacement time character-
istics of the hydraulic cylinder has been particularly investigated. Depending on the
value of the force loading cylinder’s rod, a very possible step and linear input dis-
placement responses of the investigated servos have been obtained. The closed loop
of the considered control system has proved its usefulness, because loaded cylinder’s
rod has maintained the reference input values at good accuracy.

The designed control system works properly for a fast response positioning con-
trol of the hydraulic cylinder loaded by an attached solid body of a mass not greater
than 150 kg. Increasing the loading mass above the estimated value results in some
rapid decrease in the system stability reflected in undesirable rod oscillations of high
amplitudes over the steady-state value. Therefore, the time of positioning of cylin-
der’s rod is longer, causing its unstable convergence to the desired value. Positioning
stabilization of loading of the mass equal to 300 kg and grater requires making the
transient response of the control system longer by means of application of linearly
growing characteristics of the reference input current. The introduced control pro-
cedure can be improved by a modification of structure of the control system or even
the controller by replacing it with a more effective one based on the Proportional-
Derivative (PD) action (see Chap. 12) or a Proportional-Integral-Derivative (PID)
action that has been developed in Chap. 10.
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Chapter 7

Atom Modeling

7.1 Newtonian Model

We assume a very simple electron model, in which the electron e of the mass me

moves with velocity ~v around the nucleus along a circular orbit of the radius ~r, as
it is shown in Fig. 7.1.

B

r

Fc

Fm
Fe

L=m r  ve
x

S

e,me

v

Fig. 7.1 Circular movement of an electron.

A magnetic moment generated by this electron movement is called the orbital
magnetic moment ~M of the electron. It can be presented as the following vector

~M = I ~S = IS~n, (7.1)

where I stands for the molecular current intensity, S denotes the electron orbit
surface (dashed in Fig. 7.1), ~n is the unit vector normal to the surface and

I =
e

T
=
eω0

2π
=

ev

2πr
. (7.2)

Above, T is the period of the electron circular movement ([e] = As). Since
S = πr2, we get

M =
erv

2
=
meerv

2me
. (7.3)

195
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Equation (7.3) can be presented in its equivalent vector form

~M = −γ~L, (7.4)

where γ = e
2me

, is the gyromagnetic ratio, and

~L = ~r ×me~v = ~r × (me~ω0 × ~r) (7.5)

denotes the electron angular momentum. The sign minus in Eq. (7.4) appears due
to opposite direction of the current and electron movements.

When the vector ~M (or the circular current loop, equivalently) is put into the
uniform magnetic field ~B, then ~M experiences action of the following torque

~T = ~M× ~B, (7.6)

being perpendicular to both ~M and ~B, what is schematically illustrated in Fig. 7.2.

B

T

Fig. 7.2 Scheme of position vectors ~M, ~B, ~T .

The incremental potential energy required for the incremental rotation dθ follows

dU = −Tdθ, (7.7)

and taking into account Eq. (7.6) we obtain

dU = −MB sin θdθ. (7.8)

Integrating Eq. (7.8) one gets

U = −MB cos θ = − ~M · ~B. (7.9)

The electric force Fe can be determined by Coulomb’s law

Fee =
1

4πε

e2

r2
. (7.10)

The electric force Fe is balanced by the centrifugal force Fc, and hence

Fe = Fc = mω2
0r. (7.11)

It means that the electron dynamical configuration is defined by ~Fe − ~Fc = 0.
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Assume that we consider an electron embedded in the uniform magnetic field ~B.
The electron dynamics configuration is changed due to action of the Lorentz force

~Fm = −e
(
~v × ~B

)
, (7.12)

and the vectors ~Fe, ~Fm, ~Fc are shown in Fig. 7.1. Now, the electron movement is
defined by the vector equation

~Fe = ~Fc + ~Fm. (7.13)

It is known that ~Fm << ~Fe, and hence ~B does not influence the electron angular
velocity significantly, which means that

ω = ω0 + ∆ω. (7.14)

We assume that, in spite of the action of ~B, the electron centrifugal force is
defined by Eq. (7.5) and, additionally, we assume that the vector ~B action does not
change the electron orbit radius r (see (7.10)). Therefore, vector equation (7.13)
has its following scalar counter-part

ω2 +
eB

m
ω − ω2

0 = 0. (7.15)

Substituting Eq. (7.14) into (7.15), we get

ω2
0 + 2ω0∆ω + (∆ω)

2
+
eB

m
ω0 +

eB

m
∆ω − ω2

0 = 0, (7.16)

which yields

∆ω = − eB
2m

, (7.17)

because (∆ω)
2 and eB∆ω

m are higher order terms and they can be omitted. If we
change the direction of ~B, then, using Eq. (7.12), ~Fm changes its direction and
instead of Eq. (7.17) we get ∆ω = eB/(2m). The latter means that ω > ω0, and
hence the electron angular velocity is increased due to action of ~B. We may estimate
the influence of ~B on the magnetic moment (7.3). We have

M0 =
er2

2
ω0, M =

er2

2
ω, (7.18)

and hence

∆M =M−M0 =
er2

2
(ω − ω0) =

er2∆ω

2
. (7.19)

Substituting Eq. (7.17) into (7.19), we get

∆ ~M = −e
2r2

4m
~B. (7.20)

So far, we have considered the situation when ~B ‖ ~S. However, if the external
magnetic field ~B is not normal to the electron orbital plane, then

~ω = ~ω0 + ∆~ω,

~M = ~M0 + ∆ ~M.
(7.21)
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The following forces act on the electron q = −e. The central electric force

~Fe(r) =
1

4πε

e2

r3
~r. (7.22)

This force, with the lack of B, is balanced by the centrifugal force

~Fc = m~ω0 × (~ω0 × ~r) . (7.23)

If we apply the field ~B, the electron is subjected to the action of the Lorentz
force (7.12). The vector equation (7.13) governs the dynamical state of the electron,
which has the following explicit form

~ω0 × (~ω0 × ~r) = ~ω × (~ω × ~r)− e

m

[
(~ω × ~r)× ~B

]
. (7.24)

The following formula sequence of steps holds:

1 : ~ω0 × (~ω0 × ~r) = (~ω0 + ∆~ω)× [(~ω0 + ∆~ω)× ~r]− e

m

{
[(~ω0 + ∆~ω)× ~r]× ~B

}
;

2 : ~ω0 × (~ω0 × ~r) = ~ω0 × [(~ω0 + ∆~ω)× ~r] + ∆~ω × [(~ω0 + ∆~ω)× ~r] +

− e

m

{
[(~ω0 × ~r) + (∆~ω × ~r)]× ~B

}
;

3 : ~ω0 × (~ω0 × ~r) = ~ω0 × (~ω0 × ~r) + ~ω0 × (∆~ω × ~r) + ∆~ω × (~ω0 × ~r) +

+ ∆~ω × (∆~ω × ~r)︸ ︷︷ ︸
≈0

− e

m
(~ω0 × ~r)× ~B − e

m
(∆~ω × ~r)× ~B︸ ︷︷ ︸

≈0

;

~ω0 × (∆~ω × ~r) + ∆~ω × (~ω0 × ~r) =
e

m
(~ω0 × ~r)× ~B. (7.25)

We apply the following property ~a ×
(
~b× ~c

)
= ~b (~a · ~c) − ~c

(
~a ·~b

)
, and from

Eq. (7.25) we get

∆~ω (~ω0 · ~r)︸ ︷︷ ︸
=0

−~r (~ω0 ·∆~ω) + ~ω0 (∆~ω · ~r)︸ ︷︷ ︸
=0

−~r (∆~ω · ~ω0) =
e

m
(~ω0 × ~r)× ~B;

− 2~r (~ω0 ·∆~ω) =
e

m
(~ω0 × ~r)× ~B.

(7.26)

We again apply here the earlier used property of a double vector product:

−2 [(~ω0 × ~r)×∆~ω] = 2

~r (~ω0 ·∆~ω)−∆~ω (~ω0 · ~r)︸ ︷︷ ︸
=0

 ≈ 2~r (~ω0 ·∆~ω) . (7.27)

Taking into account Eqs. (7.26) and (7.27), we get

−2 [(~ω0 × ~r)×∆~ω] =
e

m
(~ω0 × ~r)× ~B. (7.28)

Finally, we obtain

(~ω0 × ~r)×∆~ω = (~ω0 × ~r)×
(
− e

2m
· ~B
)
, (7.29)
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which means that

∆~ω = − e

2m
· ~B, (7.30)

what coincides with formula (7.17), and hence we get electron magnetic moments

~M0 = − e

2m
~L0,

~M = − e

2m
~L,

(7.31)

where the corresponding angular moments are

~L0 = ~r ×m (~ω0 × ~r) ,
~L = ~r ×m (~ω × ~r) ,

(7.32)

and hence

∆~L = ~L− ~L0 = m [~r × (~ω × ~r)− ~r (~ω0 × ~r)] = m [~r × (∆~ω × ~r)] . (7.33)

L

L

L *

/

B

Fig. 7.3 Precession of the vector ~L about ~B with the angular velocity ~ωp.

It follows from Fig. 7.3 that

∆L = 2 · L sin θ sin
∆φ

2
∼= L∆φ sin θ = L (ωp∆t) sin θ, (7.34)

and hence

∆L = L∗ ×∆φ, (7.35)
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where L∗ = L sin θ. Therefore, in the limits we get
dl

dt
= lim

∆t→0

∆L

∆t
= L∗ × lim

∆t→0

∆φ

∆t
= L∗ × ωp, (7.36)

where ωp stands for the angular velocity of precession. If we look at Fig. 7.2 and
formula (7.6), we can write∣∣∣~T ∣∣∣ =

∣∣∣∣∣d ~Jd~t
∣∣∣∣∣ =

∣∣∣ ~M × ~B
∣∣∣ = µB sin θ. (7.37)

Comparison of Eqs. (7.34) and (7.37) yields

J sin θωp = MB sin θ, (7.38)

which allows to find (see Eq. (7.31)):

ωp =
MB

J = − e

2m
B. (7.39)

Thus, owing to formula (7.17), we have shown that ωp = ∆ω.
The previously illustrated phenomenon is valid only for the orbital movement

of electrons, which is associated with a central force field. It takes place for
M/J = −e/(2m). This is implied by the so-called Larmor’s theorem which states:
motion of a particle within the uniform magnetic field ~B is a superposition of its
motion without ~B action and the additional rotational motion about vector ~B with
the angular velocity ~ωL = e ~B/(2m).

7.2 Wave Model

In the quantum mechanics, the electron angular momentum L1 (one electron) as
well as the electron spin S1 are multiplies of ~ = h/2π, where h is Planck’s constant.
In general, an atom possesses a few electrons having different angular moments, and
hence (see Eq. (7.4)) we get

~ML = −~γ~L, (7.40)

where γ = e
2me

, ~ML is the total orbital magnetic dipole moment (total magnetic

moment) and Z~L =
Z∑
z=1

z~L is total orbital angular momentum of Z electrons (Ze

would be the nucleus charge). If ~L stands for the quantum mechanical operator for
the electron angular momentum, then the angular moment associated with ~L is

~ML = γ~Z~L, (7.41)

where Z is the atomic number of electrons, and m is the electron mass, γ = − |γ| .
Here, we have taken the motion reference point in which an observer is fixed to the
electron. It means that the nucleus is moving around the electron with the orbital
angular momentum Z~~L. The produced ~B at the electron site by the nucleus is as
follows

~B =
µ0

~ML

2πr3
, (7.42)
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or equivalently

~B =
~Z |γ|µ0

2πr3
~L, (7.43)

where [µ0] =
[
4π · 10−7H

m

]
is the permeability coefficient.

Even in the case of two electrons, assuming that one electron may have five
possible orbits to be chosen to move around the nucleus (the so-called 3D electron),
it can be shown [Vittoria (2011)] that there are 45 independent permutations of two
electrons associated with 10 possible orbital and spin motions.

Taking into account one of the permutations, the equivalent representation of
the multiple electron states with respect to the electron angular momentum ~L and
its spin S relies on L, ML and S, MS , where

ML =
∑

mL, MS =
∑

mS . (7.44)

It occurs that a symmetry in the number of representations for ±ML and ±MS

yields reduction of the representations number. For example, if we assign one elec-
tron with mS = ±1/2 to the mL = 2 orbit, and the second electron with mS = ±1/2

to mL = 1, then the Pauli exclusion principle yields the following new quantum
numbers [Vittoria (2011)]: ML = 3,MS = 1.

The magnetic field generated by the nucleus acts on the electron spinal motion,
and one may compute the potential energy (see Eq. (7.9))

U = − ~MS · ~B, (7.45)

where

~MS = 2γ~~S, (7.46)

and ~S is the spin angular momentum. The total spin ~S (total intrinsic angular
momentum) was introduced in 1924 by W. Pauli.

From Eqs. (7.45) and (7.43) we get

U =
γ2~2µ0Z

πr3
~S · ~L = λ~S · ~L, (7.47)

where the spin-orbit interaction parameter λ, improved by Thomas by the factor
1/2, follows

λ =
µ0

2πr3
gSβ

2Z

(
1

2

)
, (7.48)

and gS = 2, β = γ~, γ = e
2mc .

Here we have introduced Landé g constant, whereas Landé g-formula will be
derived later. Dirac pointed out that the following ratio holds gSMS/LS =M/L,
whereMS , LS (M, L) correspond to the electron spin (electron orbital movement).
Since the resultant electron angular momentum includes components coming from
the electrons orbital and spin motions, then 1 < g < 2. Namely, for a purely orbital
momentum we have g = 1, whereas for the purely spin motion in the latter case
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we have g = 2. In fact, if we take into account the relativistic improvement, then
g = 2.0023.

It should be emphasized that protons and neutrons possess their own spin and
may move along their orbits. Since the mass mp of a proton is much larger than
that of an electron me (mp/me = 1836.15), then for an atom nucleus, we have

~M = g

(
e

2mp

)
~L, (7.49)

where for the proton g = 2 · 2.79, and for the neutron g = 2 · (−1.93). The neutron
does not exhibit any charge but its magnetic momentum is negative.

The magnetic potential energy produced by ~B is given by the angular momentum
~L and the spin momentum ~S scalar product, and hence it is associated with the
spin-orbit interaction.

There exist tables with ground state multiple for various electrons/ions, where
the associated S and L are given [Vittoria (2011)].

In what follows, we take the coupling Hamiltonian H = U . It can be also written
in the following two equivalent forms

H = − ~MS · ~BL = − ~ML · ~BS , (7.50)

where

~MS = γS~~S, ~BL = − λ~L

γS~
, ~ML = γL~~L, ~BS = − λ~S

γS~
. (7.51)

The magnetic moment vector is governed by the following equation

d ~MS

dt
= γS

(
~MS × ~BL

)
,

d ~ML

dt
= γL

(
~ML × ~BS

)
,

(7.52)

while taking into account Eqs. (7.51) and (7.52), we get

d~S

dt
= −λ

~

(
~S × ~L

)
,

d~L

dt
= −λ

~

(
~L× ~S

)
. (7.53)

Since the electron is subjected to action of the resultant angular momentum

~J = ~L+ ~S, (7.54)

then Eq. (7.53) yields

d~L

dt
= −λ

~

[
~L×

(
~J − ~L

)]
= −λ

~

(
~L× ~J

)
,

d~S

dt
= −λ

~

(
~S × ~J

)
.

(7.55)
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The obtained vector equations imply that vectors ~L and ~S rotate about ~J with
angular precession speed λ/~. Therefore, the quantization of ~L, ~S, ~ML, ~MS can
be introduced by the ~J reference direction. The previously described situation is
schematically depicted in Fig. 7.4.

L

L

+

e

S

Fig. 7.4 Vectors of an electron angular orbital momentum, magnetic moment and their resultant
vectors.

The relations between magnitudes of the vectors ~ML, ~MS , ~MJ , L, S, J follow:∣∣∣ ~ML

∣∣∣ = gLλ~
√
L(L+ 1),

∣∣∣ ~MS

∣∣∣ = gSλ~
√
S(S + 1),∣∣∣ ~MJ

∣∣∣ = gJλ~
√
J (J + 1).

(7.56)

Projecting of ~ML and ~MS on their resultant ~MJ direction yields∣∣∣ ~MJ

∣∣∣ =
∣∣∣ ~ML

∣∣∣ cosϕ1 +
∣∣∣ ~MS

∣∣∣ cosϕ2. (7.57)

The Carnot theorem gives

cosϕ1 =
L(L+ 1) + J (J + 1)− S(S + 1)

2
√
L(L+ 1)J(J + 1)

,

cosϕ2 =
S(S + 1) + J (J + 1)− L(L+ 1)

2
√
S(S + 1)J (J + 1)

,

(7.58)

and hence

gJ
√
J (J + 1) =

gL [L(L+ 1) + J (J + 1)− S(S + 1)]

2
√
J (J + 1)

+

+
gS [S(S + 1) + J (J + 1)− L(L+ 1)]

2
√
J (J + 1)

.

(7.59)

For gL = 1 and gS = 2, the relationship (7.59) takes the following form

gJ =
[L(L+ 1) + J (J + 1)− S(S + 1)]

2J (J + 1)
+

+
2 [S(S + 1) + J (J + 1)− L(L+ 1)]

2J (J + 1)
,

(7.60)
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which finally allows to get the Landé formula

gJ =
3

2
+
S(S + 1)− L(L+ 1)

2J (J + 1)
. (7.61)

De Broglie pointed out that a particle motion is related to the wave-like motion
due to the relation λ = h/p, where λ stands for the electromagnetic length of the
wave associated with particle motion, p is the particle linear momentum and h is
Planck’s constant [h] = [6.65 · 10−32J · s]. One electron moving around a wire loop
generates maximum energy through the resonance phenomenon determined by the
relationship nλ = 2πr, n = 1, 2, 3, , where λ is here the particle wavelength and r is
the loop radius. Electron kinetic energy is

E =
mr2ω2

2
=

p2

2m
. (7.62)

The particle position is described by the Schrödinger equation

i~
∂ψ

∂t
= Eψ, (7.63)

where ψ is the wave function defining the particle position in the probabilistic sense.
A transition from Cartesian to cylindrical coordinates requires

p→ ~
i

r

∂

∂ϕ
(7.64)

to be satisfied, and from Eqs. (7.62) and (7.64) one gets:

Eψ =
p2

2m
ψ =

(
~ ir

∂
∂ϕ

)2

2m
ψ = −

~2 ∂
2ψ
∂ϕ2

2mr2
. (7.65)

We are looking for a solution to Eq. (7.65) in the following form

ψ(ϕ) = C1e
iαϕ + C2e

−iαϕ. (7.66)

Therefore
∂ψ

∂ϕ
= C1iαe

iαϕ − C2iαe
−iαϕ,

∂2ψ

∂ϕ2
= −C1α

2eiαϕ + C2α
2e−iαϕ

(7.67)

and

~2

2mr2

(
−C1α

2eiαϕ + C2α
2e−iαϕ

)
+ E

(
C1e

iαϕ + C2e
−iαϕ) = 0. (7.68)

Comparison of terms standing at eiαϕ and e−iαϕ yields

−C1~2

2mr2
α2 + EC1 = 0,

C2~2

2mr2
α2 + EC2 = 0, (7.69)

and hence

α2 =
2mr2E

~2
=
r2p2

~2
. (7.70)
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The electrons repeat their movement with the period of 2π, and therefore

ψ(ϕ) = ψ(ϕ+ 2π), (7.71)

which means that

eiαϕ = eiα(ϕ+2π), (7.72)

and consequently,

1 = e2πiα. (7.73)

Therefore, we get

2πα = 2πn, n = 0, 1, 2, (7.74)

which means that α is quantized, and Eq. (7.70) with (7.74) imply

L ≡ pr = ~n. (7.75)

It means that L is discrete and defined through the ~ units. The kinetic energy
associated with the electron movement is

E =
p2

2m
=

~2n2

2mr2
=

L2

2mr2
. (7.76)

Since L is quantized, then also E is discrete. This points out that within the
classical mechanical modeling, we go beyond the classical description being valid
for small scales. Furthermore, due to the linear relation between the magnetic
dipole moment and the angular momentum, the latter one is also quantized (see
Eq. (7.51)).

It should be emphasized that this nonclassical modeling allows to transit to the
classical models when long wave exciatations tend to a limit. In what follows, we
consider energy levels of atoms. For this purpose, we take the following Hamiltonian
associated with the atom kinetic and potential energy in the Cartesian coordinates

H = − ~2

2m
∇2 − Ze2

r
, (7.77)

where r denotes the electron position (see Fig. 7.5), and Z denotes the number of
electrons.

We extend here our previous approach by nonclassical modeling with the wave
function ψ, using the following Schrödinger equation

Hψ = Eψ, (7.78)

which in the spherical coordinates (r, θ, ϕ) takes the following form[
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ
∂

∂θ

(
sin θ

∂

∂r

)
+

1

r2 sin 2θ

∂2

∂ϕ2

]
ψ+

+
2m

~2

[
E +

Ze2

r

]
ψ = 0.

(7.79)
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X

Y

Z

i
j

r

e

k

Fig. 7.5 Electron position in the Cartesian and spherical coordinates.

We look for a solution with the following property

ψ(r, θ, ϕ) = A(r)B(θ, ϕ). (7.80)

From Eq. (7.79) we get

λ ≡ 1

A

∂

∂r

(
r2 ∂A

∂r

)
+

2mr2

~2

(
E +

Ze2

r

)
=

− 1

B sin θ
∂

∂θ

(
sin θ

∂B

∂θ

)
− 1

B sin 2θ

∂2B

∂ϕ2
,

(7.81)

where λ is a certain constant. Although there are many solutions to Eq. (7.81), one
of them is

λ = k(k + 1), k = 0, 1, 2, 3, . . . , (7.82)

i.e., we go from a continuous system governed by PDE equation (7.81) to its discrete
solution form (7.82). From Eqs. (7.81) and (7.82), we find that

1

r2

d

dr

(
r2 dA

dr

)
+

2m

~2

(
E +

Ze2

r

)
A =

k(k + 1)

r2θ
A,

1

sin θ
∂

∂θ

(
sin θ

∂B

∂θ

)
+

1

sin 2θ

∂2B

∂ϕ2
= −k(k + 1)B,

(7.83)

which means that we have separated functions A = A(r) and B = B(θ, ϕ).
The obtained second order differential equation allows to find the eigenvalues of

the problem, and hence to define the quantized energy

En = − Z2e2

2n2a0
, n = 1, 2, 3, . . . , (7.84)

where now n stands for the principal quantum number, and a0 is the so-called Bohr
radius. For Z = 1, we have

a0 =
~2

me2
, (7.85)
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which can be validated by the following simple consideration given by Bohr. In the
case of dynamical electrons equilibrium state, we have

e2

r2
=
mv2

r
, (7.86)

where e2/r2 stands for the Coulomb force in the central nuclear field (centrifugal
force).

Owing to the quantized energy form (7.84), we have

En = −1

2
m
c2β2

n2
=

1

2
mv2 − e2

r
, (7.87)

where

β2 =

(
e2

~c

)2

=
1

137
, (7.88)

a0 =
e2

mc2β2
=

~2

me2
. (7.89)

Comparison of Eqs. (7.84) and (7.87) yields (7.85). Formula (7.87) implies that
the total electron energy En is negative.

The so far introduced quantum numbers k and n are responsible for a variety of
periodic electron planar motions. The total number of electrons can be calculated
with the use of the relationship

N =

n−1∑
l=0

(2l + 1), (7.90)

where each of the electron occupies its associated periodic orbits, i.e., the total
number of electrons equals the number of independent circular electron motions (in
the above equation l = 0, 1, 2, . . . , n − 1). For instance, for n = 3 we have N = 9.
In other words, there exist 9 different periodic orbits with the same total energy
E3. On the other hand, the values of Ml are defined by l, and they are equal to
l, l − 1, l − 2, . . . ,−l (see also [Vittoria (2011)]).

The chosen set {n, l} and Ml correspond to each electron 3D space dynamical
state governed by r, θ, ϕ. On the other hand, each periodic orbit corresponds to
its quantized associates of a discrete angular momentum and a discrete magnetic
momentum.

This gives rights to introduce the discrete angular momentum and magnetic
(dipole) momentum associated with each periodic orbit by the relationship (7.55).

7.3 Magnetic Field vs. Free Atom

The total energy of an atom includes kinetic energy p2
0/2m and potential energy

V (~r), where ~r is the atom center position vector, and ~p0 = m~v.
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Action of ~B yields larger Hamiltonian energy H > H0, the old (without ~B) and
the new Hamiltonians have the following form

H0 =
p2

0

2m
+ V (~r),

H =
p2

2m
+ V (~r),

(7.91)

and p 6= p0, the V (r) does not change.
We have

~∇× ~E = −∂
~B

∂t
= − ∂

∂t
~∇× ~P = −~∇× ∂ ~P

∂t
, (7.92)

and hence

~E = −∂
~P

∂t
+ C, (7.93)

where ~P is the vector magnetic potential and C is a constant. We take C = −~∇U,
where U is externally applied voltage. In our case, however, U = 0, and hence we
have C = 0. Therefore, from Eq. (7.93) we obtain that

~E = −∂
~P

∂t
. (7.94)

On the other hand, we have

∂~p

∂t
= q ~E = −∂

~P

∂t
q, (7.95)

which means that

~p = −q ~P + ~p0. (7.96)

Since

~p(0) = ~p0, (7.97)

and for q = −e, we have

~p = e ~P + ~p0, (7.98)

and taking into account Eq. (7.98) in (7.91), we obtain

H =

(
~p0 + e ~P

)2

2m
+ V (~r). (7.99)

Formula (7.99) implies that

H =
~p2

0

2m
+ V (~r) +

e

m
~P · ~p0 +

e2

2m
P 2 = H0 +

e

m
~P · ~p0 +

e2

2m
P 2, (7.100)

and the underlined term corresponds to the kinetic energy change due to action of

the magnetic field ~B. In the case of a steady magnetic field
(
~̇B = 0

)
, we have

~P =
1

2
~B × ~r = −1

2
~r × ~B,

∣∣∣~P ∣∣∣ = −1

2

√
(r2 ·B2)−

(
~r · ~B

)2

. (7.101)
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On the other hand, we get

~P · ~p0 = −1

2

(
~r × ~B

)
· ~p0 = −1

2
~B · (~r × ~p0) = −1

2
~B · ~J0. (7.102)

Consider now the case when ~J0 = ~L or ~J0 = ~S. The angular momentum vector
dynamics is governed by the following equation

~̇J = ~M × ~B = γ ~J × ~B. (7.103)

We apply the following Cartesian coordinates

~J = J1
~i+ J2

~j + J3
~k,

~B = B~k.
(7.104)

Putting Eq. (7.104) into (7.103) gives

J̇1 = γBJ2, J̇2 = −γBJ1, J̇3 = 0. (7.105)

The first two equations (7.105) yield

J̈1 + γ2B2J1 = 0. (7.106)

Since the formula (7.106) governs the dynamics of a linear conservative oscillator,
its solution follows

J1 = a sin (γBt+ ψ0), (7.107)

where a, ψ0 are constants to be defined by the initial conditions. Then, we have

J2 =
1

γB
J̇1 = a cos (γBt+ ψ0). (7.108)

It means that the end of the vector ~J moves in a plane Π parallel to the OXY
plane and there is a distance C = J3 between two planes. The end of the vector ~J
moves uniformly along the circle with a radius “a” and is characterized by a period
2π/γB (see Fig. 7.6).

The situation illustrated in Fig. 7.6 shows that the angle (~k, ~J ) has continuous
values. However, in quantum mechanics, ~J takes discrete values and, for instance,
if n = 2 (n is the principal quantum number being equal 1, 2, 3, . . . ) and L = 1, we
have ∣∣∣~L∣∣∣ = ~

√
l (l + 1) =

√
2~. (7.109)

It is known that ~L · ~k may take three different values ~, 0,−~ associated with
mL = 1, 0,−1, respectively. One may easily find the corresponding discrete θ angle
values from the formula ~L cos θ = ~L · ~k, which are as follows: θ = 45◦, 90◦, 135◦.
Similar situation takes place in the case of the spin dynamics. We have

∣∣∣~S∣∣∣ = ~/
√

2

and ~S · ~k = ±~/2. The electron may occupy three orbitals associated with ~L and
two orbitals associated with ~S. If all of them are occupied, then the net vector
~J = ~S + ~L is zero. Two mentioned orbital moments imply two magnetic moments
~ML = γL~L, ~MS = γS ~S.
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Fig. 7.6 Movement of the vector ~J end along a circle.

The increase in the Hamiltonian, caused by the magnetic field B, follows from
Eq. (7.100), so

H/ =
(
r2
1 + r2

2

)
B2, (7.110)

because

~r · ~B =
(
r1
~i+ r2

~j + r3
~k
)
·B~k = r3B,

and

~r = r1
~i+ r2

~j + r3
~k.

Introducing the following averaging quantities〈
r2
1

〉
=

1

3

〈
r2
〉
,

〈
r2
2

〉
=

1

3

〈
r2
〉
, (7.111)

it can be written that 〈
r2
1 + r2

2

〉
=

2

3

〈
r2
〉
, (7.112)

and the formula (7.110) can be cast to the following form

H/ = −
(
~MS + ~ML

)
· ~B +

e2

12m

〈
r2
〉
. (7.113)

The net magnetic moment in ~k direction is

M3 = ~MS · ~k + ~ML · ~k + ~MD, (7.114)

where

MD = −e
2B

6m

〈
r2
〉

= IDπ
〈
r2
〉
. (7.115)
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Here, MD is referred to as the diamagnetic contribution to the total magnetic
moment. The current ID induced by the field ~B can be estimated from Eq. (7.115)

ID = − e
2B

6πm
. (7.116)

Introducing the diamagnetic energy

ED =
e2φ2

B

12m

〈
r2
〉

=
e2(BS)

2

12m

〈
r2
〉
, (7.117)

the induced current ID can be found from

ID = −dED
dφB

〈
r2
〉

= −e
2φB
6m

〈
r2
〉

= −e
2BS

6m

〈
r2
〉
. (7.118)

Comparison of formulas (7.116) and (7.118) allows to get

S = π
〈
r2
〉
. (7.119)

If all the electric orbitals are occupied by a free atom, then its net angular
momentum and the magnetic moment is zero. There exist (2l + 1) ways of the
electron movements around the free atom nucleus, but the atom total energy does
not change. The electron spends equal time on each of its orbits, which are defined
by Ml = l, l − 1, . . . ,−l. In other words, the electron motion is degenerated for
assigned l. However, action of an external magnetic field removes the degeneracy,
since the electron motion achieves the lowest energy level corresponding to the orbit
associated with Ml. Presence of the magnetic field may polarize free atoms.

Finally, it should be noted that simple considerations shown in this section
include neither electron-electron interactions nor internal field generated by spin-
orbit interaction and electrostatic interactions.

7.4 Electron Orbital Perturbation by a Proton Moving in a
Magnetic Field

We consider an electron movement in a homogeneous and uniform magnetic field
~B
(
~B = ~kB

)
being caused by the moving proton. In the initial moment, both

particles (electron and proton) lie in a horizontal plane OXY , and the distance
between them is equal to R – Larmor’s radius of the electron moving with velocity
~v. We assume that for t = 0, ~ve(0)⊥~R, ~vp(0)⊥~R, ve(0) = vp(0), where R = |~rp − ~re|
and ~vp(~ve) denotes the proton (electron) position in the given Cartesian coordinates.

The equation governing the coupled dynamics of the electron and proton has
the following form

me~̈re = e2
~R

R3
− e

(
~ve × ~B

)
,

mp~̈rp = −e2
~R

R3
+ e

(
~vp × ~B

)
.

(7.120)
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Let us introduce the following characteristic quantities

me
v2

0

r0
=
e2

r2
0

, ω0r0 = v0, (7.121)

and hence the following nondimensional variables:

τ = ω0t, r/e = re/r0, v/e = ve/v0, r/p = rp/r0, v/p = vp/r0. (7.122)

The introduced initial conditions force both particles to move in the plane OXY ,
and in order to get scalar equations, we multiply the vector equation (7.120) by the
unit vectors ~i,~j, so we get

me~̈re ·~i = e2
~R

R3
·~i− e

(
~ve × ~B

)
·~i,

me~̈re ·~j = e2
~R

R3
·~j − e

(
~ve × ~B

)
·~j,

mp~̈rp ·~i = −e2
~R

R3
·~i+ e

(
~vp × ~B

)
·~i,

mp~̈rp ·~j = −e2
~R

R3
·~j + e

(
~vp × ~B

)
·~j.

(7.123)

We have ∣∣∣~v × ~B
∣∣∣ =

∣∣∣∣∣∣
~i ~j ~k

vx vy 0

0 0 B

∣∣∣∣∣∣ =~ivyB −~jvxB, (7.124)

and hence Eq. (7.123) can be cast to the following set of nondimensional scalar
equations:

v̇ex =
e2

me

(xp − xe)
R3

− e

me
veyB,

v̇ey =
e2

me

(yp − ye)
R3

+
e

me
vexB,

v̇px = − e2

mp

(xp − xe)
R3

+
e

mp
vpyB,

v̇py = − e2

mp

(yp − ye)
R3

− e

mp
vpxB,

vex = ẋe, vey = ẏe, vpx = ẋp, vpy = ẏp.

(7.125)

dxe
dτ

= vex,
dye
dτ

= vey,

dvex
dτ

= −vey +
xp − xe
R3

,
dvey
dτ

= vex +
yp − ye
R3

,

dxp
dτ

= vpx,
∂ye
∂τ

= vpy,

dvpx
dτ

=
1

1836

(
vpy −

xp − xe
R3

)
,

dvpy
dτ

= − 1

1836

(
vpx +

yp − ye
R3

)
,

(7.126)

where primes have been omitted.
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7.5 Planar Dynamics of a Particle in a Magnetic Field

We consider a particle of the massm and charge q governed by the following equation

m
d~v

dt
= q

(
~v × ~B

)
, (7.127)

where ~B (const) is the magnetic field induction.
We take two components of the vector ~v = ~v||+~v⊥, as well as the Lorentz vector

e
(
~v × ~B

)
= e
(
~v × ~B

)
||

+ e
(
~v × ~B

)
⊥
, where ~v|| || ~B. We obtain

m

(
d~v||

dt
+
d~v⊥
dt

)
= q

[(
~v|| + ~v⊥

)
× ~B

]
, (7.128)

and hence

m
d~v||

dt
= q

(
~v|| × ~B

)
= 0, m

d~v⊥
dt

= q
(
~v⊥ × ~B

)
= 0. (7.129)

The first equation in Eq. (7.129) implies

~v|| = const, (7.130)

which means that the point charge is moving in the ~B direction with the constant
vector ~v||, i.e., having constant magnitude and direction. The second equation of
(7.129) yields

m
dv⊥
dt

=
mv2
⊥

R
qv⊥B, (7.131)

and therefore, Larmor’s radius is defined

R =
mv⊥
qB

. (7.132)

The associated Larmor’s period follows

T =
2π

ω
=

2πR

v⊥
=

2πm

qB
. (7.133)

It means that the point charge moves with a constant velocity v‖, simultaneously
rotating with the angular velocity ω = qB

m . The resultant charge motion is a screw
motion. The situation is schematically illustrated in Fig. 7.7.

So far, we have considered the uniform and homogeneous field. In what follows,
we assume that B = B(z), i.e., we have a nonhomogeneous magnetic field. In this
case, the charge q will rotate also in plane OXZ, but this time its instantaneous
center of rotation will move with a certain drift velocity vd.

Let us consider now a magnetic field generated by an infinite length straight
wire with the current i (see Fig. 7.8).

Initial charge velocity ~v0 ‖ ~j, and the charge dynamics equation follow

m
d~v

dt
= q

(
~v × ~B

)
≡ ~FL, (7.134)

 b
.



July 14, 2016 14:53 ws-book961x669 DYNAMICS OF MECHATRONIC SYSTEMS 10193-main page 214

214 DYNAMICS OF MECHATRONIC SYSTEMS

B

X

Z

Y
O

| |=
qB
m

v||v||

v

Fig. 7.7 Screw motion of the point charge.
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Fig. 7.8 The point charge q in the magnetic field produced by the current i.

or equivalently (~FL stands for the Lorentz force),

m
d
(
vx~i+ vy~j + vz~k

)
dt

= q
(
vx~i+ vy~j + vz~k

)
×B(x)~k. (7.135)

The vector equation (7.135) implies the following scalar equations:

m
dvx
dt

= qvyB(x), vx =
dx

dt
,

m
dvy
dt

= −qvxB(x), vy =
dy

dt
, B(x) =

µ0

2πx
.

(7.136)

7.6 3D Dynamics of a Charge

We consider a charge q of the mass m in a homogeneous magnetic field of the density
H, where ~H ‖ ~k. We assume that the particle Lagrangian is

L =
m

2

(
ẋ2 + ẏ2 + ż2

)
+
m

2

(
ω2

1x
2 + ω2

2y
2 + ω2

3z
2
)

+
m

2
ωH (yẋ− xẏ) , (7.137)
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where ωH = eH
mc , c is the light speed.

The Lagrange’s equations have the form

d

dt

(
∂L

∂q̇n

)
− ∂L

∂qn
= 0, (7.138)

and hence
∂L

∂ẋ
= mẋ+

m

2
ωHy,

∂L

∂x
= mω2

1x−
m

2
ωH ẏ,

∂L

∂ẏ
= mẏ − m

2
ωHx,

∂L

∂y
= mω2

2y +
m

2
ωH ẋ,

∂L

∂ż
= mż,

∂L

∂z
= mω2

3z.

(7.139)

Finally, the following second order ODEs are obtained:

ẍ = −ω2
1x+ ωH ẏ, ÿ = −ω2

2y − ωH ẋ, z̈ = −ω2
3z. (7.140)
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Chapter 8

Maxwell’s Equations

Complete analysis of the electromagnetic phenomena, including static and induced
electric fields as well as magnetic effects, and others, can be carried out using a com-
pact set of equations called Maxwell’s equations. Maxwell’s equations contribute
to other important sets of equations regarding Newton’s laws of classical mechan-
ics and three laws of thermodynamics (see [Edminister and Hahvi (2011); Fleisch
(2008); Schwartz (1972)]).

Maxwell’s equations not only allow to explain and validate numerous experi-
mental observations found in Maxwell’s time (Maxwell’s theory was published in
1873), but also allow to predict novel physical phenomena including the existence
of electromagnetic waves and electromagnetic theory of light which was discovered
by H. Hertz in 1888.

It should be emphasized that Maxwell’s equations are universal, since they do
not require any improvements due to the theory of relativity, as Newton’s equation
do.

In what follows, we present Maxwell’s equations in the integral form.

(i) Gauss’ law for the electric field∮
~E · d~S =

Q

ε0
. (8.1)

It governs the total electric field flux passing through a closed surface and repre-
sents the correspondence between the electric charge distribution and the resulting
static electric field.

(ii) Gauss’ law for the magnetic field∮
~B · d~S = 0. (8.2)

It governs the total magnetic field flux passing through a closed surface, and the
resulting zero net flux represents the experimentally deduced absence of magnetic
monopoles.

217
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(iii) Faraday’s induction law ∮
~E · d~l = −dφB

dt
. (8.3)

It governs the circulation along a closed loop of the electric field induced by the
changes introduced by the magnetic field flux φ̇B . Since the circulation is nonzero
(φ̇B 6= 0), the field is vortex. The induced electric field ~E is different than that
produced by static charges Q (see item (i)).

(iv) Extended Ampére’s law ∮
~B · d~l = µ0i+ µ0ε0

dφE
dt

(8.4)

or in the case of a magnetic sample,∮
~B · d~l = µ0(i+ iD + iM ). (8.5)

If the term underlined in Eq. (8.4) equals zero, we obtain the already discussed
Ampére’s law. Since µ0 6= 0, then Ampére’s law exhibits the vorticity of the mag-
netic field generated by the current. The underlined term has been introduced by
Maxwell, and it implies induction of the magnetic field by changing the electric
field flux. In other words, changes in the magnetic field induce the electric field nor-
mal to the magnetic field. Extended Ampére’s law allows us to avoid the previous
right-hand side symmetry of the four equations (8.1)–(8.4).

In what follows, we briefly discuss transition from Eq. (8.4) to (8.5). One may
introduce a purely conventional name of the “displacement current” iD = ε0

dφE
dt ,

since
[
ε0
dφE
dt

]
= [A]. However, although the dimension of iD coincides with a

current, iD does not produce any movement of charges. Therefore, omitting the
underlined term in Eq. (8.5), one may deduce that the magnetic field may be ei-
ther induced by the conduction current i or by the displacement current iD. The
underlined term presents the third way of magnetic field production. The so-called
magnetization current iM implies the additional conduction current producing the
magnetic effect, being equivalent to that generated by the magnetic material.

The so far reported integral set of Maxwell’s equations is complete. Both its
left and right hand sides are symmetrical in parts. Recall that the magnetic flux
equals zero in Eq. (8.2) (no magnetic monopoles exist in our matter), whereas in
Eq. (8.1), the flux passing through a closed surface equals the electric charge. The
term underlined in Eq. (8.4) is analogous to the term φ̇B occurring in Eq. (8.3).

The following auxiliary formulas must be added to complete the fundamental
set of Maxwell’s equations:

(v) The electric field ~E induces the current ~J in a conductor with conductivity
σ:

~J = σ ~E. (8.6)
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(vi) The electric induction ~D is associated with the electric field ~E by the for-
mula

~D = εε0
~E. (8.7)

(vii) The above formula implies the relationship between a magnetic induction
~B in a magnetic material and ~H:

~B = µ ~H. (8.8)

(viii) The following relativity formula presents the relationship between the light
speed in vacuum and the electric and magnetic constants

c2 = µ0ε0. (8.9)

In addition, we present Maxwell’s equations in the operator form (constitutive
equations) and in the SI units. They follow:

~∇× ~E = −∂
~B

∂t
, (8.10)

~∇× ~H = ~J +
∂ ~D

∂t
, (8.11)

~∇ · ~D = ρ, (8.12)

~∇ · ~B = 0, (8.13)

where ~J = σ ~E is the current density.
Two auxiliary constitutive equations are as follows

~B = µ0

(
~H + ~M

)
= µ ~H, (8.14)

~D = ε0
~E + ~P = ε ~E, (8.15)

where ε is the permittivity constant, and µ is the permeability constant. The
quantities occurred in Eqs. (8.10)–(8.15) and their SI units are as follows: current
density [J ] = [A/m2], electric field density [E] = [V/m], magnetic flux density
[B] = [Wb/m2], electric displacement [D] = [C/m2], magnetization [M ] = [A/m],
electric polarization [P ] = [C/m2], charge density [ρ] = [C/m3], conductivity [σ] =

[S/m], free space permeability [µ0] = [4π · 10−7H/m], free space dielectric constant
[ε0] = [(1/36π) · 10−9F/m].

In addition, the following relations hold for ε(µ) and the corresponding magnetic
and electric susceptibilities χm(χe):

µ = µ0(1 + χm),

ε = ε0(1 + χe),
(8.16)

where: [µ] = [H/m], [ε] = [F/m].
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For the free space set (for ρ = 0 and no conduction currents ~Jc = 0), Maxwell’s
equations take the following point (or differential) form:

∇× ~H =
∂ ~D

∂t
,

∇× ~E = −∂
~B

∂t
,

∇ · ~D = 0,

∇ · ~B = 0,

(8.17)

and the following integral form:∮
~H · d~l =

∫
S

(
∂ ~D

∂t

)
· d~S,

∮
~E · d~l =

∫
S

(
−∂

~B

∂t

)
· d~S,

∮
S

~D · d~S = 0,

∮
S

~B · d~S = 0.

(8.18)

One may deduce that time-varying ~E and ~H cannot exist independently. If
~E = ~E(t), then ~D(t) = ε0

~E(t), and ∂ ~D
∂t 6= 0 (see first two point form equations).

It means that ∇× ~H 6= 0, which means that ~H(t) 6= 0 is generated beginning with
~H = ~H(t) and showing that ~E should be present.

Maxwell’s equations exhibit a set of Faraday’s law, Ampére’s law, and Gauss’
law which govern electrostatic and magnetostatic as well the dynamic time-varying
electromagnetic fields.

In the case of static electric and magnetic fields, the equations corresponding to
a field vector are not coupled. They follow:

(i) electric field:

∇× ~E = 0 (Faraday’ law), ∇ · ~D = ρ (Gauss’ law); (8.19)

(ii) magnetic law:

∇× ~H = ~J (Ampére’s law), ∇ · ~B = 0 (Gauss’ law). (8.20)

Integral form of Faraday’s law is as follows∮
C

~E · d~l = − d

dt

∫
S

~B · d~S, (8.21)

where the right-hand rule holds to properly define the positive sense around C and
the normal direction d~S. When ~B(t) increases, the right-hand side of Eq. (8.21)
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becomes negative. It means that the direction of ~E must be opposite to that of the
contour to get the negative value of the left-hand side of Eq. (8.21).

This observation has allowed Lenz to formulate his law:
The induced voltage and the change in magnetic flux have opposite signs. It is a

qualitative law that refers to the direction of the induced current in relation to the
effect which produces it, without quantitatively relating their magnitudes.

A motional electric field intensity in time-independent fields ~Em can be defined
as the force per unit charge

~Em =
~F

q
= ~V × ~B. (8.22)

Now, when a lot of free charges move in a conductor through a field ~B, ~Em
induces a voltage difference between two ends A and B of the conductor. Voltage
of A with respect to B follows:

VAB =

A∫
B

~Em · d~l =

B∫
A

(
~V × ~B

)
· d~l. (8.23)

Assuming that the conductor is normal to ~V and ~B, and ~V⊥ ~B, we get

V = BLv.

In the case of a closed loop conductor equation (8.23),

V =

∮ (
~v × ~B

)
d~l.

The situation is more complicated in the case of time-dependent fields. Since
Faraday’s law takes the following form

V = − d

dt

∫
S

~B · d~S = −
∫
S

∂ ~B

∂t
· d~S +

∮ (
~v × ~B

)
d~l. (8.24)

The right-hand side of Eq. (8.24) has two terms. The first term contributes to
the voltage amount regarding the change of ~B, whereas the second term presents
voltage generated by the motion of the loop for fixed ~B.
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Chapter 9

Optimization

9.1 Introduction

Optimization aims at obtaining the best result (solution) at given conditions and a
criterion of assessment. The obtained result is called the optimal solution.

Optimization is applied to the inanimate matter, flora and fauna. A man con-
sciously conducting optimization is counting on both the positive personal and social
effects.

The main objective of considerations of engineers and manufacturers is to seek
the optimal solutions. The search for optimal solutions by means of some empirical
methods is labor-intensive and consumes large amount of resources, and thus it is
also very costly.

It has become a very important ability to develop mathematical models of the
designed or already existing objects. The analytical description of such objects
facilitates finding the optimal solution and significantly reduces costs and time of
optimization. The modern level of information technology makes the process of
optimization less abstract – more transparent – observable, and less time consuming.
Special computer programs help in leading the optimization process for engineering
purposes.

According to many fields of application, the optimization can be static, dynamic,
single- or multi-objective.

Static optimization is a process of searching for the optimum values of decision
variables (control signals) of the investigated stationary object that meet the given
criterion – the objective function or quality index.

Dynamic optimization is a process of searching for the optimum time histories of
decision variables that would guarantee obtaining the assumed objective function.

Single-objective (scalar) optimization is based on looking for an optimal (mini-
mum or maximum) value of only one scalar-valued objective function.

Multi-objective (vector) optimization focuses on searching for the best solution
by analyzing a few vector-valued objective functions. Choosing the best solution
from a set of optimal solutions requires to make a decision being a compromise
resulting from the assumed system of values. To a certain multi-objective optimiza-

223
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tion problem one can attach a scalar one, the optimal solution of which leads to
solutions to the original problem [Lorenz and Wanka (2012)].

The selection has to be done by the designer, who can can perform the following
actions:

– choose the best solution (in their opinion);
– choose a subset from the set of optimal values;
– create a ranking list for re-analysis of the obtained solutions.

9.2 Methods of Optimization

Optimization can be conducted with the use of experimental or mathematical meth-
ods [Borzi and Schulz (2012); Butenko and Pardalos (2014); Delfour (2012); Kanno
(2011); Kelley (1999)].

9.2.1 Experimental Methods

Experimental methods belong to the oldest, and are used in current industrial
applications along with the modern ones. In the vast majority, forest roads and
lanes delineated years before, hiking and water trails or routes to mountain peaks
do not require any correction. Achievements of old technology are still admired
nowadays.

The experimental methods can be used for:

(i) direct searching for the optimal solutions,
(ii) carrying out experiments focused on finding parameters necessary to an

empirical derivation of the mathematical model of the optimized physical
object.

Usually, the empirical model is based on functions introduced in Chap. 2 (p. 7),
given by formulas (2.1) and (2.2).

In particular, Scilab provides a function polyfit which computes values of
an approximating function with the use of the least squares method. A Scilab
numerical procedure given by Algorithm 9.1 computes values of square function
approximating a series f1 of test data.

Algorithm 9.1. A procedure created in Scilab, computing the approximate func-
tion f2(x) of the experimentally obtained function f1(x).

x = linspace(0, 1, 11)’
f1 = [-0.447, 1.978, 3.28, 6.16, 7.8, 7.34, 7.66, 9.56, 9.02, 8.3, 7.2]
//polyfit() and polyval() require packages ‘Linear Algebra’ and ‘Stixbox’
p = polyfit(x, f1, 2)
f2 = polyval(p, x)
plot(x, f1’, “g-”, x, f2, “b-”)
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Fig. 9.1 Graphical representation of the function f1(x) (blue line) acquired from experimental
measurements and its polynomial approximation f2(x) (red line) of the second degree.

9.2.2 Mathematical Methods

In general, some analytical, numerical and geometric programming methods of op-
timization are distinguished. For each of them, a mathematical model is necessary
to elaborate an optimization procedure.

Conducting many optimization processes using the mathematical methods
[Leondes (1981)], the following steps are usually made:

1. Choosing the criterion by determining the objective function

f = f(x1, x2, . . . , xj), (9.1)

where xj are the decision variables. A particular objective function can be
written in the form f = c1x1 + c2x2 + · · ·+ cjxj .

2. Indication of the type of the sought optimum (minimum or maximum) of
the objective function.

3. Formulation of problem constraints in the form of inequality or equality
functions: ∣∣∣∣∣∣∣∣∣∣

f1(x1, x2, . . . , xj)

f2(x1, x2, . . . , xj)

. . . . . . . . . . . . . .

f2(x1, x2, . . . , xj)

∣∣∣∣∣∣∣∣∣∣
≤
=

≥

∣∣∣∣∣∣∣∣∣∣
b1

b2

. .

bn

∣∣∣∣∣∣∣∣∣∣
, (9.2)

where b1,...,n are the constraints.
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The following short formulation is also used:

n∑
j

anjxj

≤
=

≥
bn , (9.3)

where: n – row number, j – column number, anj – components.
4. Writing the constraints for the decision variables xj ≥ 0.

Table 9.1 Analytical description of elements of constraint functions.

COMPONENTS PRODUCTS CONNECTIONS RESTRICTIONS

S x1 x2 . . . xj ≤=≥ b
S1 a11x1 a12x2 . . . a1jxj ≤

=

≥

b1
S2 a21x1 a22x2 . . . a2jxj b2
. . . . . . . . . . . . . . . . . .
Sn an1x1 an2x2 . . . anjxj bn

f – objective
function

c1x1 c2x2 . . . cjxj min or max fopt

If symbol ≥ appears in Table 9.1, then coefficients a and b take opposite values.
If relations (9.1) and (9.2) are linear, then the optimization reduces itself to a linear
problem. This kind of optimization is called linear programming. Otherwise, if there
appear products, quotients or powers of one or many decision variables in relations
(9.1) and (9.2), then the optimization states a nonlinear problem, which in this
case is called nonlinear programming. Table 9.1 contains analytical description of
elements of the constraint functions.

Among the numerical methods of optimization, the following can be enumerated
[Ostanin (2009)]:

a) searching for optimum values of functions,
b) linear programming,
c) square programming,
d) nonlinear programming with or without constraints,
e) least square optimization,
f) multi-objective optimization (also known as vector optimization, multi-

criteria optimization or Pareto optimization),
g) evolutionary optimization.

9.3 Examples

9.3.1 Linear and Nonlinear Programming

Problem 9.1. A company produces two kinds of paving, i.e., in red and grey color
[Neogy et al. (2009)]. Calculate a proportion between the number of tons of red
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and grey paving that will guarantee the lowest production costs at the following
constraints:

1. Production of 1 ton of red paving requires 2 working hours of machines, 3
working hours of humans and 2 liters of pigment.

2. Production of 1 ton of grey paving requires 1 working hour of machines and
3 working hours of humans. Both kinds of paving require the same amount
of cement and gravel.

3. The company is at disposal of 10 working hours of machines, 24 working
hours of humans and 8 liters of pigment.

4. Production of 1 ton of red paving makes 300 PLN of profit, but production
of 1 ton of grey paving makes 200 PLN of profit.

Derivation of a mathematical description to the Problem 9.1 will be easier after
creating the Table 9.2.

Table 9.2 Description of the optimization Problem 9.1.

COMPONENTS PRODUCTS

(paving)

CONSTRAINTS

b1,...,3

Means S

consumption of ti1me and resources

x1 [tons] red

x2 [tons] grey

Machines [h/ton] 2 1 10 [h]

Employees [h/ton] 3 3 24 [h]

Pigment [l/ton] 2 0 8 [h]

Profit Z [PLN/ton] 300 200 none [PLN]

On the basis of the objective function of profit defined in the last row of Table 9.2,
the following equation can be written

Z = 300x1 + 200x2 . (9.4)

Using the data given in Table 9.2, the equations defining some permissible area
are found:

2x1 + x2 ≤ 10,

3x1 + 3x2 ≤ 24,

2x1 ≤ 8,

(9.5)

with constraints for the decision variables:

x1 ≥ 0, x2 ≥ 0. (9.6)

Replacing inequality symbols in (9.5) and (9.6) by equality symbols, the linear
paired equations are obtained. Graphs of linear functions present points of inter-
section of functions, which define the unknown solutions as well as give information
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about parallelism or mutual coverage of these functions. This, however, is not suit-
able to determine the permissible area, which is necessary to find an optimum of
the objective function (9.4). Looking for the optimum relies on choosing the point
having the greatest value from all values determined by intersections. Additionally,
the point must lie in the permissible area. In Table 9.3, the sought optimal value
is marked in red.

Table 9.3 Looking for the optimal value of the objective function of profit Z.

INTERSECTION
POINTS

PERMISSIBLE AREA
OBJECTIVE
FUNCTION

Equations:
a) 2x1 + x2 = 10 [M]
b) 3x1 + 3x2 = 24 [L]
c) 2x1 = 8 [F]
d) x1 = 0 [axis]
e) x2 = 0 [axis]

1) 2x1 + x2 ≤ 10 [M]
2) 3x1 + 3x2 ≤ 24 [L]
3) 2x1 ≤ 8 [F]

Are the conditions
of permissible area met?

Y – yes, N – no

Eq. (9.4)

No.
Pair

of Eqs.
Point Inequality

Z – profit
x1 x2 (1) (2) (3)

1 a b 2 6 Y Y Y 1800
2 a c 4 2 Y Y Y 1600
3 a d 0 1 0 Y N Y 2000
4 a e 5 0 Y Y N 1500
5 b c 4 4 N Y Y 2000
6 b d 0 8 Y Y Y 1600
7 b e 8 0 N Y N 2400
8 c d ‖ – – – – –
9 c e 4 0 Y Y Y 1200
10 d e 0 0 Y Y Y 0

In the case of two independent variables, the permissible area and the optimal
value of the objective function are found geometrically by drawing all functions
expressed by particular constraints. The optimal value is to be estimated by com-
paring values of the constraint functions in all characteristic points. The geometrical
method can be used for linear and nonlinear problems.

Now, a solution to the Problem 9.1 can be proposed.
The company will generate the lowest costs by producing 2 tons of red paving

per 6 tons of grey paving. The ratio of tons does not take the account of economic
factors, e.g., a demand for products of this company.

A numerical and graphical solution to the linear programming problem, de-
scribed by relations (9.4)-(9.6) and realized in the simulation model depicted in
Fig. 9.2, is presented in Fig. 9.3.

Let us extend our task. Focusing ourselves only on the algebraic equations defin-
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Fig. 9.2 Simulation model of a linear optimization problem.

ing the objective function and constraints for 2 decision variables of the nonlinear
problem (compare with relations (9.4)-(9.6)), i.e.,

Z = 2x1 + 1.5x2, 2x1 + x2 = 10, 0.5x2
1 + x2 = 8, x1 = x2 = 0, (9.7)

a simulation model shown in Fig. 9.4 has been created for obtaining a solution to
the nonlinear programming problem in the geometrical form shown in Fig. 9.5.

a)
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Fig. 9.3 A graphical solution to the linear programming problem: (a) the permissible area; (b)
the objective function Z(x

(1,2)
2 ), created in Scilab.
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Fig. 9.4 Simulation model of a nonlinear optimization.
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Fig. 9.5 Solutions Z(x1) and x2(x1) to the nonlinear optimization problem solved in Scilab by
means of a geometrical method.

Among others, geometrical methods are used to solve linear programming prob-
lems with the number n > 2 of independent variables. A geometrical evaluation of
the constraints determined by 4 planes is shown in Fig. 9.6.

Simplex, gradient and programming methods are useful in searching for optimal
solutions to the linear problems given by the general system of algebraic equations:

S1 a11x1 + a12x2 + a13x3 + · · ·+ a1jxj = b1,

S2 a21x1 + a22x2 + a23x3 + · · ·+ a2jxj = b2,

...
...

...

Sn an1x1 + an2x2 + an3x3 + · · ·+ anjxj = bn,

(9.8)
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X1
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S1
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Fig. 9.6 Example of the geometrical method of linear programming with the constraints deter-
mined by planes S1 . . . S4.

In literature, the simplex method is a common technique for solving many linear
problems [Pardalos et al. (2003); Shi (2001); Ostanin (2009)]. The proposed algo-
rithm is complex, but for multi-dimensional purposes one can use some programs
that could be helpful in searching for its solution. The representative examples fol-
low: LPSolve, LIPSOL, Matlab Optimization Toolbox, Java ILP, Linear Program
Solver, GLPK.

Problem 9.2. A gardening company is at disposal of 3 types of fertilizers x1, x2, x3,
which can be used to fertilize the soil. The fertilizers contain up to 5 components
S1 . . . S5. It has been calculated that the minimum number of units of individual
components assigned to fertilize the field under cultivation is: S1 = 90, S2 = 40,
S3 = 80, S4 = 150, S5 = 100. Unit prices of the fertilizers are given: x1 = 20,
x2 = 16, x3 = 10.

The method of solution should be based on such an assignment of particular
fertilizers that while complying with the prescribed requirement, the fertilization costs
would be minimal.

Let us initiate a mathematical description of that problem by putting all knows
into the Table 9.4. In addition to the data in the problem task, some values of
components S1, . . . , S5 written on fertilizers’ packaging have been assumed.

One searches for a minimum of the objective function f which, according to the
data in Table 9.4, has the form

f(x̄) = 20x1 + 16x2 + 10x3. (9.9)
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Table 9.4 Description of the optimization problem 9.2.

COMPONENTS
Si – means of prod.

PRODUCTS CONSTRAINTS
bn

x1 x2 x3

S1 4 5 1 90
S2 2 1 6 40
S3 6 4 0 80
S4 7 3 4 150
S5 0 5 3 100

Unit cost 20 16 10 min. of obj. fun.

Constraints determined from the amount of components Si included in the fer-
tilizers are expressed by the relations:

4x1 + 5x2 + x3 ≥ 90,

2x1 + x2 + 6x3 ≥ 40,

6x1 + 4x2 + 0 ≥ 80,

7x1 + 3x2 + 4x3 ≥ 150,

0 + 5x2 + 3x3 ≥ 100,

(9.10)

which should be supplemented with the constraints that the decision variables have
to satisfy:

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0. (9.11)

Solution to the described problem will be found using a simplex method in the
Devex strategy implemented in program LPSolve (see Algorithm 9.2).

Algorithm 9.2. Input data for the procedure optimizing the objective function
given by Eq. 9.9.

// Objective function f

min: 20x1 + 16x2 + 10x3

// Constraints for the decision variables
C1: 4x1 + 5x2 + 1x3 >= 90

C2: 2x1 + 1x2 + 6x3 >= 40

C3: 6x1 + 4x2 + 0x3 >= 80

C4: 7x1 + 3x2 + 4x3 >= 150

C5: 0x1 + 5x2 + 3x3 >= 100

x1 >= 0

x2 >= 0

x3 >= 0
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After execution of the numerical procedure taking 0.01 s, we find the solution
x̄∗ = [7.2, 9.2, 18] at which the minimum of the objective function min{f(x̄)} =

f(x̄∗) = 543.2.

Problem 9.3. Compare the numerical and geometrical method of solution of a 3-
dimensional optimization problem. Find a minimum of the objective function

f(x̄) = 2x1 + 1.5x2 + 3x3, (9.12)

subject to the constraints:
5x1 + 10x2 + 25x3 ≥ 250,

2x1 + 2x2 + 3x3 ≥ 60,

5x1 + 4x2 + 2x3 ≥ 100.

(9.13)

General equations of planes are obtained by replacing in Eq. (9.13) the inequal-
ity with equality symbols. The current numerical procedure is provided in Algo-
rithm 9.3 by applying the same method of numerical solution used for the previous
problem.

Algorithm 9.3. Input data for the LPSolve procedure optimizing the objective
function expressed by Eq. (9.12).

// Objective function f

min: 2x1 + 1.5x2 + 3x3

// Constraints for the decision variables
C1: 5x1 + 10x2 + 25x3 >= 250

C2: 2x1 + 2x2 + 3x3 >= 60

C3: 5x1 + 4x2 + 2x3 >= 100

x1 >= 0

x2 >= 0

x3 >= 0

After execution of the Algorithm 9.3 taking 0.007 s, we find the solution x̄∗ =

[0, 30, 0] at which the minimum of the objective function min{f(x̄)} = f(x̄∗) = 45.
In the first step of the graphical method, the system of equations (9.13) is

transformed to 3 basic equations of planes S1,...,3 as follows:

S1 :
1

50
x1 +

1

25
x2 +

1

10
x3 = 1,

S2 :
1

30
x1 +

1

30
x2 +

1

20
x3 = 1,

S3 :
1

20
x1 +

1

25
x2 +

1

5
x3 = 1.

(9.14)

In the second step, planes S1,...,3 have to be drawn in the Cartesian system of
coordinates. Vertices of the planes have to be placed on the axes, at values being
the reciprocals of coefficients at subsequent variables x1,...,3. For example, plane
S1 is defined by lines beginning at values 50, 25 and 10 on the axis x1, x2 and x3,
respectively. As a result, we get a graph of planes shown in Fig. 9.7.
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x̄∗ = [0, 30, 0]
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min f(x̄) = 45

Fig. 9.7 A graphical method of solution to an optimization problem minimizing the objective
function defined in Problem 9.3.

9.3.2 Dynamic Programming

A walled cantilever beam carries an uniformly distributed load q as presented in
Fig. 9.8. The load q acts transversely on the beam, and a next load P is concentrated
in a point and moves in x-axis along the beam.

Problem 9.4. Find the solution (a corrective force Pk) in which, independently
of the placement of the concentrated load P , any deformation of the beam in the
direction of y-axis does not exist. To meet the requirement, we have to assume that
the objective function y = 0.

q

x

l

y

P

Pk

yq
yp

yk

0

Fig. 9.8 Distribution of loading of the analyzed cantilever beam.
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A proposition for solving the stated problem follows:

Compute a function of corrective force Pk(x) reacting in opposite direc-
tion to the action of load P and moving in x-axis, respectively to the
load displacement.

It results from the proposition that

y = yq + yp + yk = 0, (9.15)

where:

yq =
q

24EJ

(
x4 − 4l3x+ 3l4

)
,

yp =
P

6EJ

(
x3 − 3lx2 + 2l3

)
,

yk = − Pk
6EJ

(
x3 − 3lx2 + 2l3

)
.

(9.16)

Combining Eqs. (9.15) and (9.16), a relation for the corrective force is determined
as follows

Pk(x) = P + q
x4 − 4l3x+ 3l4

4 (x3 − 3lx2 + 2l3)
. (9.17)

A mechanical engineer should now ask a question:

What kind of actuating system would be needed to produce such a me-
chanical forcing that will react perpendicularly to the analyzed beam’s
bottom surface, in a response to the concentrated load P moving in
x-axis of the beam?

Partial solution to the task, relying on generation of the perpendicular corrective
force given by Eq. 9.17, can be realized in a hydraulic system schematically presented
in Fig. 9.9. During the corrective forcing, a tip end of hydraulic cylinder’s rod should
be in sliding contact with the bottom surface of the beam and move in the x-axis
along its length accordingly to the displacement of load P .

pa

x
Pk

Pk p

Fig. 9.9 A hydraulic system generating the corrective force Pk.
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Scilab command line:
X=[Y.time(:),Y.values(:,:)]
X=[Y.time(:),P.values(:,:)]

Fig. 9.10 A simulation model solving the optimization Problem 9.4.

In the problem of interest, formulas (9.15)-(9.16) state the mathematical model.
A simulation model created on this basis, as well as some results of its execution,
are presented in Fig. 9.11 on x-dependent plots.

To conclude, we computed the corrective force Pk(x) reacting in the direction
opposite to the action of load P and moving in x-axis respectively to the load
displacement. The simulation has confirmed highly optimized response of the actu-
ating system, because function y(x) of displacement is equal to zero on the whole
length of the beam.

9.3.3 Geometric Programming Methods

Geometric programming is devoted to a type of a mathematical optimization prob-
lem characterized by objective and constraint functions that have a special form
[Boyd et al. (2007)]. The importance of geometric programming comes from two
recent developments.

1. New solution methods can solve even large-scale geometric programming
problems extremely efficiently and reliably.

2. A number of practical problems in electric circuit design have recently been
found to be well approximated by geometric programs.

An example devoted to generalized geometric programming touches a problem
of floor planning [Rosenberg (1989)]. In the problem, there exist some rectangles
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Fig. 9.11 Results of exploration of the simulation model in Fig. 9.10. Plots of the deformation
y(x) (a) of the cantilever beam shown in Fig. 9.8 and the corrective force Pk(x) (b) of the beam
deformation versus x displacement. Model parameters: E = 2.1 · 1011, J = 478 · 10−6, P = 104,
q = 103, l = 10.

to be configured and placed in such a way that they do not mutually overlap.
The objective is usually to minimize the area of the bounding box, which is the
smallest rectangle that contains the rectangles to be configured and placed. Each
rectangle can be reconfigured within some limits. An extension to the research on
floor planning can be found in [Sherwani (1999)].

Fig. 9.12 Dimensions of the unfolded surface of the box.

Looking for the dimensions of a box having a maximal volume at given bounding
surface of the box is a next good example of usage of the geometric programming
method of optimization [Neogy et al. (2009)].
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Problem 9.5. Calculate dimensions a, b and h of a box having the maximal volume
at given bounding (total) surface of the box. The unfolded surface of the box is shown
in Fig. 9.12.

In the case of the provided unfolded surface, the objective function is expressed
by the formula for volume of the box and some relations between unknown dimen-
sions a, b and h in function of the decision variable x:

V (x) = (a− 2x)2h, b(x) = a− 2x, h(x) = x,

subject to a constraint for the decision variable, i.e., 0 < x < a/2.
The maximal volume of the box is determined by a maximum of the objective

function of variable x, i.e., max{(a − 2x)2x}. This extreme value falls in one of
the points of the zero of first derivative if V ′(x) = 12x2 − 8x + 1 = 0, where we
get two solutions x1 = 1/6 and x2 = 1/2. The function V (x) has the maximum
Vmax = V (x1) = 2/27 in the point x1. If one calculates b(x1) at a = 1 (the total
surface is given) and h(x1), then one gets some optimal dimensions of the box:
bopt = 2/3, hopt = 1/6.

It is possible to read from Fig. 9.13a the maximum Vmax of the objective function
in point xopt at the assumption that a = 1. On the other hand, in Fig. 9.13b
points of intersection of graphs and the dashed green line match values of requested
dimensions bopt and hopt of the box having the largest volume.
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Fig. 9.13 Results of solution to the optimization Problem 9.5: (a) function of volume V (x); (b)
linear functions of dimensions h(x) and b(x).
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Problem 9.6. Calculate lateral dimensions of an unilaterally mounted cantilever
beam of a rectangular cross section (see Fig. 9.14), loaded at the end [Neogy et al.
(2009)]. The material used to make the beam has a shape of a solid circular shaft
of the length l and diameter D. The lateral dimensions should guarantee:

a) the smallest bending stress σg,
b) the largest stiffness j,
c) and the smallest compression stresses σs.

The following definitions initiate the optimization:

σg =
Fl

W
, j =

F

l
=

3E

l3
I, σs =

F

S
, (9.18)

where: F is a fixed bending or compression force, l – known length of the beam, W
– section modulus, E – Young’s modulus, S – cross-sectional area of the beam.

Fig. 9.14 Physical model and dimensions of the cantilever beam subjected to pure bending (a)
and compression (b).

Fulfillment of the problem requirements (a-c) leads to the following:

– section modulus should reach a maximum value:

W = max
{
bh2/6

}
,

– moment of inertia about the bending axis should reach a maximum value:

I = max
{
bh3/12

}
,

– area of cross section has to be the largest:

S = max {bh} .

At the assumed diameter D = 1 of the shaft of which the beam is to be made,
one takes into account that the first lateral dimension b = x will be the decision
variable subject to constraints 0 < x < 1. Then, using the geometrical relation
between the diameter of the shaft and dimensions b and h of the rectangular cross
section inscribed in a circle of the diameter D, one finds:

D2 = h2 + x2 ⇒ h =
√
D2 − x2.

Continuing with the introduced requirements (a-c), the optimization problem
of searching for some lateral dimensions of the beam will be solved if the following
functions have maximum values defined as below:
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∗ section modulus:

W (x) = x
(
1− x2

)
/6 , (9.19)

∗ moment of inertia:

I(x) = x
(
1− x2

)3/2
/12 , (9.20)

∗ area of cross section:

S(x) = x
√

1− x2. (9.21)

Fig. 9.15 A simulation model solving the optimization Problem 9.6.
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Fig. 9.16 Results of solution to the optimization Problem 9.6.

Functions (9.19)-(9.21) will be maximized if their first derivatives with respect
to the decision variable x are equal to zero, i.e.,

W ′(x) = −
(
3x2 − 1

)
/6 = 0 ,
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I ′(x) =
(
4x2 − 1

)√
1− x2/12 = 0 ,

S′(x) = − 2x2 − 1√
1− x2

= 0 .
(9.22)

Solving equations (9.22), a set of optimal decision variables is found:

xoptW = 1/
√

3, xoptI = 1/2, xoptS = 1/
√

2 . (9.23)

With the requirements (a-c), the obtained optima (9.23) of the decision variable
x guarantee:

– the smallest bending stress σg if

b = xoptW and h =
√

2/3 ,

– the largest stiffness j if

b = xoptI and h =
√

3/2 ,

– and the smallest compression stresses σs if

b = xoptS and h = 1/
√

2 .

Correctness of the above calculations is confirmed by the results presented in
Fig. 9.16, that were obtained after numerical solution to the optimization problem
9.6 with the use of the simulation model in Fig. 9.15.

9.3.4 Stiffness Optimization of a Spindle System

A spindle shaft is the weakest point in machine tools structure. Increasing its
stiffness will further increase the machine tools accuracy and the product quality
as well. Moreover, high productivity requires some machine tools with high speed
machining capability, which leads into unavoidable dynamic effects that occur in
the machine tool spindle during the production process, such as regenerative chatter
[Prakosa et al. (2013)].

The effects of spindle overhang and bearing span on the frequency responses of
a spindle system are studied in [Gao and Meng (2011)]. Not less important is the
stiffness of the system based on a hydrostatic bearing investigated in this section,
having the direct connection with mentioned effects.

Here, we take into investigation an optimization of stiffness of grinder’s spindle.
Spindle shaft’s stiffness has to be optimized in the place of mounting of the grinding
wheel by choosing proper spanning of headstock bearings. Balance of forces acting
on the spindle shaft and the bearings is illustrated in Fig. 9.17, and its physical
model in Fig. 9.18.

From the definition of linear stiffness, we have

j =
P

y
, (9.24)

where: j – stiffness of the spindle, y – transverse displacement of spindle’s head
part (free end), P – force exerted on spindle’s head part.
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Fig. 9.17 Balance of forces acting in the spindle system.

Fig. 9.18 Physical model of a spindle system.

Relations for the strength, determined from the block diagram 9.21 by means
of the superposition method at the assumed stiffness of the front and rear bearing,
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yield

y = ya + yl + yjp + yjt =

[
Aa3

(
1

D4
a

+
1

D4
l α

)
+

1 + 2α+ α2

jp
+
α2

jt

]
P, (9.25)

where: ya = A∗a3
D4
a
P , yl = A∗a3

D4
l α
P , yjp = 1+2α+α2

jp
P , yjt = al2

jt
P , constant A = 64

3πE ,

a = 0.2 – length of the spindle shaft head (spindle overhang), l – spacing of bearings
(bearing span), Da – diameter of the spindle shaft head, Dl – diameter of the spindle
between bearings, α = a

l ∈ (0, 1) – a coefficient, jp, jt – front and rear bearing
stiffness, respectively.

Stiffness j(α) will be the maximized objective function calculated from
Eq. (9.24), and for y being expressed by Eq. (9.25), i.e.,

j(α) =
1

Aa3
(

1
D4
a

+ 1
D4
l α

)
+ 1+2α+α2

jp
+ α2

jt

. (9.26)

Let the factor α of the spindle overhang with a constructional constraint given by
the inequality α(lb.) ≤ α ≤ 1 be a decision variable. The displacement of the spindle
head will be investigated during searching for a minimum value of the relation (9.26)
for the same decision variable, identical constraints resulting from a technological
conditions as well as at the transverse displacement constraint y ≤ y(ub.) of the
spindle head at the place of mounting of the grinding wheel.

Summing up, some constraints resulting from constructional capabilities of the
bearing arrangement in the case of the system visible in Fig. 9.18 were subject to
an optimization. Figure 9.19c illustrates some configuration plots of displacements
yp and yt of the front and rear bearing journals, respectively, versus the factor α
of the spindle overhang on a background of the permissible area bounded by the
allowable displacement y(ub.) of the spindle shaft mounted in a hydrostatic bearing.
On the basis of Fig. 9.17, functions of displacements yp(α) and yt(α) are calculated
as below:

yp(α) =
(1 + α)P

jp
, yt(α) =

αP

jt
. (9.27)

In Algorithm 9.4 and in Fig. 9.19, a computational scheme regarded to the
physical model shown in Fig. 9.17 as well as some results of its numerical exploration
are presented. From the three propositions of the diameter Dl of the spindle shaft
between bearings, the most optimal with respect to the objective function j(α) has
been selected.

Algorithm 9.4. A Scilab numerical procedure for computation of solutions y(α)

and j(α).

A = 3.23e− 11, a = 0.2, Da = 0.09

Dl = [0.08, 0.09, 0.1]

jp = 1e9, jt = 2e8

P = 1000, n = 50
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ya = ones(1, n)*(Aa3/D4
a)

yl = ones(3, n), yp = ones(3, n), j = ones(3, n)
α = linspace(1/n, 1, n)
yjp = (1 + 2α+ α2)/jp, yjt = α2/jt
for i = 1 : 3

yl(i, :) = A ∗ (a3)/(D4
l (i)) ∗ α−1

yp(i, :) = ya + yl(i, :) + yjp + yjt
j(i, :) = yp(i, :)−1

end
//Displacements of front and rear bearing journals
yp = (1 + α) ∗ P/jp
yt = α ∗ P/jt
figure(1)
plot(α(1 : n)′, [yp(:, 1 : n) ∗ P ]’ ,”–”)
figure(2)
plot(α(1 : n)′, [j(:, 1 : n)]’, ”–”)

9.3.5 Minimization of Total Power Loss in a Hydrostatic Bearing

Figure 9.21 presents minimization of total power loss Ns due to friction Nt and
power supply Np in the hydrostatic bearing shown in Fig. 9.13 as a function of the
decision variables, like the oil film width h0 and the oil dynamic viscosity η. There
is no need to create any simulation or computational models, because the solutions
are possible to obtain just by plotting functions of the particular power losses Nt
and Np with respect to η and h0:

Nt =
π3ηβD3Ln2

h0
, Np =

παDp2h3
0

6ηl
, Ns = Nt +Np.

Model parameters:

β – ratio of sizes of the friction and bearing surfaces in the analyzed hydrostatic
bearing,

D – diameter of bearing [m],
L – length of bearing [m],
l – parameter of the bearing surface (see races in the hydrostatic pad shown

in Fig. 9.20) [m],
h0 – width of the clearance for oil outflow from the bearing [m],
n – rotational velocity of the spindle shaft [rev/min],
η – dynamic viscosity of oil.
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Fig. 9.19 Results of numerical exploration of the computational scheme presented in Table 9.4:
(a) stiffness of the spindle system j(α); (b) transverse displacement y(α) of the free end of the
spindle; (c) displacements yp(α) and yt(α) of front and rear bearing journals. The free end of the
spindle overhang has been loaded by the concentrated force P = 1000 N. Constraints: α(lb.) = 0.25

– left boundary of factor α, y(ub.) = 50 µm – upper boundary of the transverse displacement y of
the end of the spindle shaft, y(ub.)

t = 10 µm – upper boundary of the displacement yt in the rear
bearing.
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Fig. 9.20 Dimensions of the hydrostatic bearing.
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Fig. 9.21 Minimization of total power loss Ns due to friction Nt and power supply Np in the
hydrostatic bearing: (a) as a function of h0 at η = 15e–3; (b) as a function of oil viscosity η (the
decision variable) at h0 = 40e–6. Parameters: β = 0.2, D = 0.1, L = 0.1, l = 4e–3, q = 1e3,
n = 25.

 b
.



July 14, 2016 14:53 ws-book961x669 DYNAMICS OF MECHATRONIC SYSTEMS 10193-main page 249

Chapter 10

Fuzzy Logic in Numerical Algorithms

Fuzzy logic control algorithms are regarded as a relatively new concept in modern
control theory. This chapter delivers a comparative analysis of two qualitatively
different approaches used for angular velocity control of a DC (direct current) mo-
tor subject to chaotic disturbances coming from a gear with a transmission belt
carrying a vibrating load. The purpose is to achieve an accurate control of the
speed of the DC motor (a plant), especially when the motor parameters and some
external loading conditions are partially unknown. Firstly, the classical approach
based on the PID control is considered and then, a fuzzy logic based alternative
is proposed. Two different controllers are presented for the purpose of completion
of the classical PID controller and a Takagi-Sugeno type fuzzy logic PI controller.
Both control algorithms were implemented on an 8-bit AVR ATmega644PA micro-
controller. On the basis of step responses of the plant, an analysis as well as an
interesting comparison of controllers performance has been presented.

Fuzzy logic is characterized by a fresh and innovative approach to the prob-
lem of control. In the assumption, it has to approximate the human process of
reasoning and perception of physical phenomena. Adopting a linguistic variables
makes it possible to verbally write laws of automatic regulation without the need
of derivation of any complex mathematical formulas. Therefore, it can settle the
construction of the control system on an incomplete information about the con-
trolled object (the plant). The use of fuzzy logic can be found in some situations in
which the described phenomena are ambiguous and difficult in modeling by means
of the classical two-state logic. Fuzzy controllers are applied to unknown math-
ematical models of miscellaneous systems or even when their restoration is very
time-consuming and complicated.

Fuzzy systems can be found in the areas of technology such as image and shape
recognition, speech recognition, searching of databases, optimization of banking
systems, automotive braking systems, medical systems, and many other. Some
literature overview devoted to the topic studied in this chapter is done below.

Fuzzy logic is a mathematical concept striving to imitate human perception. In-
stead of numerical values, some linguistic descriptions are used to characterize input
and output variables. The control strategy is derived from expert knowledge and

249
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stored in a base of fuzzy rules. This enables the design engineer to describe the be-
havior of the object under control with the use of words (linguistic variables) rather
than with the use of complex mathematical expressions. Another advantage of the
intelligent approach in control of uncertain dynamical systems is the ability of fuzzy
logic controllers to handle control by means of an incomplete portion of informa-
tion. Fuzzy logic has found many applications in a wide variety of applications like
process control, electrical engineering, information technology, image recognition,
telecommunications, banking [Zadeh (1989); Bai and Wang (2006); Jager (1995)].

In paper [Neto et al. (2010)], a PI fuzzy force controller was applied to control
movement of industrial robot’s end-effector. After generating the robot program,
a “foreign” object was introduced to the environment. Without any obstruction
during its operation, the robot moves along its programmed path. However, when
a contact with the foreign object appears along the way of motion, the force control
system controls the robot by adjusting the end-effector position. The force control
ensures that the contact forces and moments converge to a desired value. Comparing
to the classical PI algorithm, a smaller overshoot and average constant force were
achieved.

In the work [Velagić and Galijasević (2009)], a robust fuzzy controller applica-
tion has been described for a permanent magnet DC motor. The system parame-
ters concerning the load and DC motor’s constants were unknown. The algorithm
was implemented on dSPACE rapid prototyping controller board and connected
to Simulink programming environment. The fuzzy logic controller (FLC) has two
inputs, a voltage error and its derivative. The control action generated by the con-
troller is the actual voltage supplying the DC motor. It was concluded from the
experimental data that the elaborated FLC has achieved shorter response times on
pulse input signals and smaller oscillations about the setpoint than the adequate
PID controller.

Paper [Chan and Chu (2009)] describes an application of a fuzzy controller
in Internet traffic management. Web servers suffer from extremely varying load
parameters. They are sometimes very lightly loaded, but occasionally suffer from
enormous connection requests. Designing web servers for peak load is not profitable,
because even the most efficient web servers may still be overloaded by the ever
growing population of Internet users. During an overload period, not all users
can receive services in a timely manner without latency, but on the other hand, it
is possible to provide a faster connection for premium users. Due to the nonlinear
properties of web servers and difficulties in constructing their accurate mathematical
model, a fuzzy PI controller was proposed. Incoming connections were divided into
two classes: premium and basic. The task of the fuzzy controller is to maintain
a delay ratio between these two classes by assigning suitable number of processes
to handle incoming requests. Experimental data shows that significantly lower
oscillation and shorter settling time of the delay ratio was achieved comparing to
the classical PI controller. The fuzzy controller has improved the control quality by
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approximately 35%.
A hybrid solution of a fuzzy logic and a PI controller was presented in work

[Teeter et al. (1996)]. The object under control consists of a DC motor with a metal
disc mounted on its shaft. The load is generated by applying a magnetic field to the
disc. The fuzzy logic component is responsible for calculating a gain coefficient for
the PI controller. The fuzzy part has three inputs: the reference speed, measured
speed and the control action of the whole controller from the previous time period.
The base of fuzzy rules consists only of one rule, and its aim is to reduce output
of the PI controller in low setpoint speeds. This is due to the nonlinear behavior
caused by frictional effects in the mentioned region. This friction compensation
method yields faster response of the system and smaller settling time.

An application of a FLC in electrical engineering was presented in the article
[Bašić et al. (2013)]. The controlled object is a self-excited induction generator.
The control system was given a task to maintain the steady level of output voltage.
Mamdani and Takagi-Sugeno type fuzzy logic PI controllers were developed in the
discussed work. Both controllers have two inputs (a voltage error and its deriva-
tive) and one output. Performance of the proposed solutions was tested against the
classical PI controller. Both controllers were programmed in Simulink and used
to control a model of the self-excited induction generator. Due to high process-
ing power required by the Mamdani controller, the Takagi-Sugeno type FLC was
solely implemented on a dSPACE real-time system. It has been concluded from the
simulation and experimental data that the fuzzy logic controllers offer significantly
better performance compared to the optimally tuned PI type controller in terms of
the response time, settling time and robustness. The downside of the described ap-
plication is reflected in an increase in the computational performance requirements,
especially for the Mamdani type FLC.

In work [Jang (1991)], a self-learning Takagi-Sugeno controller was used for
identification purposes. The mentioned controller has two input variables with three
bell shaped membership functions each. Output of every rule is a linear function of
input variables. To implement a gradient-descent learning algorithm, the controller
was designed in a form of a generalized neural network. The task of the algorithm
was to modify the weighting coefficients of the neural network to ensure convergence
of the output from the fuzzy-neural network to three sets of training data. One of
them was obtained from a real object and the other from different mathematical
functions. After 200 iterations of the algorithm execution for each set of data, an
average percentage error obtained for the first set of training data was reduced
to 1.57%. For the remaining sets, the error was reduced to 0.47% and 0.014%,
respectively. Although the number of fuzzy rules and input membership functions
was preliminarily specified, the algorithm achieved satisfactory results regarding the
error and tuning time.

Another example of a self-tuning FLC was presented in [Jee and Korem (2004)].
A Takagi-Sugeno fuzzy logic PD controller was applied to a 3-axis milling machine
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for contour milling. Basing on the position error, the change in the error, the
velocity feedback and the fuzzy control action from the previous time period, output
is calculated and sent to the amplifier which drives the motor. The performance
of the controller affects the adaptive algorithm that expands or contracts the input
fuzzy sets or even shifts the position of the output sets in the numeric domain. The
described FLC was then compared to a well-tuned PID controller. The comparison
showed that for cutting straight lines, the adaptive FLC achieves twice lower root
mean square contour error and three times lower maximum contour error than the
PID controller.

An interesting fuzzy logic controller implemented in an industrial controller was
presented in [Arrofiq and Saad (2008)]. The object of control (a plant in the the-
ory of control) consists of a DC motor subject to varying load parameters. The
Takagi-Sugeno fuzzy logic PI controller was implemented on a PLC. A self-tuning
fuzzy algorithm, which calculates a gain coefficient for the main controller, was also
implemented. The investigated system performance was tested for three types of
variance conditions: load parameters, setpoint velocity and setpoint velocity with
changing load parameters. In all of these cases the FLC has provided satisfactory
good results.

In this chapter, a fuzzy logic PI controller and its classical PID equivalent is
analyzed. We take into investigation efficiency of both solutions in controlling a
multi degree-of-freedom discontinuous dynamical system with friction subject to
an irregular external excitation. Experimental stand’s components are discussed
in the second part of this chapter. In relation to the experiment carried out in
[Kunikowski et al. (2013)] and being continued here, a comparative study of test
results of efficiency of the presented fuzzy logic approach is experimentally verified
in Sec. 10.3.4.

10.1 Basic Concepts

One of the main concepts of fuzzy logic is a linguistic variable. It is such an in-
put/output or state variable, the values of which are words or even sentences in a
natural or artificial language. In examples one finds: height, speed, temperature.
The use of linguistic variables in many applications reduces the overall computation
complexity of the application.

The linguistic value is an assessment in the form of verbal description applied
to a linguistic variable. The values of the linguistic variables from the previous
example can be respectively: very small, small, not very large, large (in terms of
growth), very low, low, not very high, high (in terms of speed), cold, warm, very
warm (with respect to temperature).

Another important concept of fuzzy logic is a fuzzy set defined in the selected
area. The considered elements may be in the region in whole, in part, or may not
belong to the region at all. A membership function of the output values from the
interval [0, 1] defines the degree of membership of these elements to the relevant

 b
.



July 14, 2016 14:53 ws-book961x669 DYNAMICS OF MECHATRONIC SYSTEMS 10193-main page 253

Fuzzy Logic in Numerical Algorithms 253

fuzzy set as well as defines the shape of this set.
A fuzzy set can be described by the relation:

A = {(x, µA(x)) : x ∈ X, µA(x) ∈ [0, 1]}, (10.1)

where: x – variable, X – numerical space of the variable x, µA – membership
function of the variable x to the fuzzy set A.

The use of fuzzy sets allows for a formal writing of uncertainty. For instance, in
a two-state logic (low/high), the definition of high speed equal to or greater than 10

km/h raises the question of whether the speed 9.9 km/h is certainly low or already
high. In fuzzy logic, we can express such value as 99 percent high and in 1 percent
low. This allows for a smoother transition between the intervals of values compared
to the classic two-state logic.

10.1.1 Membership Functions of Fuzzy Sets

A fuzzy membership function characterizes a fuzzy set. It transforms a specific
numerical value of a physical quantity to its degree (level) of membership to the
considered fuzzy set. It can be an arbitrary function having some output values in
the interval [0, 1] equal to 1 – if fully belonging to the given fuzzy set, and 0 – if
not belonging.

In Fig. 10.1, common shapes of membership functions [Rutkowski et al. (2015)]
are depicted.
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Fig. 10.1 Shapes of membership functions defining a fuzzy set.
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The membership functions (MF) shown in Fig. 10.1a-h are expressed by the
following equations:

a) triangular

µΛ(x, a, b, c) =



0, x ≤ a,
x− a
b− a , a < x ≤ b,
c− x
c− b , b < x ≤ c,
0, x > c;

(10.2)

b) trapezoidal

µΠ(x, a, b, c, d) =



0, x ≤ a,
x− a
b− a , a < x ≤ b,
1, b ≤ x ≤ c,
d− x
d− c , c < x ≤ d,
0, x > d;

(10.3)

c) L-shaped

µL(x, a, b) =


1, x ≤ a,
b− x
b− a , a < x ≤ b,
0, x > b;

(10.4)

d) γ-shaped

µγ(x, a, b) =


0, x ≤ a,
x− a
b− a , a < x ≤ b,
1, x > b;

(10.5)

e) S-shaped

µS(x, a, b, c) =



0, x ≤ a,

2

(
x− a
c− a

)2

, a < x ≤ b,

1− 2

(
x− c
c− a

)2

, b < x ≤ c,

1, x > c;

(10.6)

f) Z-shaped

µZ(x, a, b, c) =



1, x ≤ a,

1− 2

(
x− a
c− a

)2

, a < x ≤ b,

2

(
x− c
c− a

)2

, b < x ≤ c,

0, x > c;

(10.7)
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g) Gaussian

µG(x, b, c) = exp

[
−
(
x− c
b

)2
]

; (10.8)

h) generalized bell-shaped (denoted by D below Fig. 10.1h)

µD(x, a, b, c) =
1

1 +

∣∣∣∣x− ca
∣∣∣∣2b

.
(10.9)

10.1.2 Operations on Fuzzy Sets

Similarly to the two-state logic, the basic operations on fuzzy sets are as follows:

• sum (OR),
• product (AND),
• negation (NOT).

Graphical representation of the product of fuzzy sets is a common part of the
joint fuzzy sets. A sum of fuzzy sets is the sum of the areas described by membership
functions of these sets.

One could enumerate a lot of mathematical dependencies allowing to perform
basic operations on fuzzy sets. They are called s-norm operator for the sum of
fuzzy sets and t-norm operator for the product of fuzzy sets. The most common
and simplest s-norm operator is a function max(µA(x), µB(x)), and for t-norm, a
function min(µA(x), µB(x)), where µA and µB are some membership functions of
fuzzy sets A and B. In Tables 10.1 and 10.2, the examples of other kinds of fuzzy
logic operators are presented [Ruano (1999)].

Table 10.1 The operators of s-norm µA∪B(x) in the fuzzy logic.

Operator name Mathematical notation

Maximum max(µA(x), µB(x))

Algebraic sum µA(x) + µB(x)− µA(x) · µB(x)

Hamacher sum
µA(x) + µB(x)− 2µA(x) · µB(x)

1− µA(x) · µB(x)

Einstein sum
µA(x) + µB(x)

1 + µA(x) · µB(x)

Drastic sum

{
max(µA(x), µB(x)), min(µA(x), µB(x)) = 0

1, otherwise

Bounded sum min(1, µA(x) + µB(x))
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Table 10.2 The operators of t-norm µA∩B(x) in the fuzzy logic.

Operator name Mathematical notation

Minimum min(µA(x), µB(x))

Product µA(x) · µB(x))

Hamacher product
µA(x) · µB(x)

µA(x) + µB(x)− µA(x) · µB(x)

Einstein product
µA(x) · µB(x)

2− (µA(x) + µB(x)− µA(x) · µB(x))

Drastic product

{
min(µA(x), µB(x)), max(µA(x), µB(x)) = 1

0, otherwise

Bounded product max(0, µA(x) + µB(x)− 1)

Operation of negation of a membership function is expressed by the mathemat-
ical relation

Ā = 1− µA(x). (10.10)

10.1.3 Construction of a Fuzzy Controller

In technical systems, measurement devices provide some discrete measurements
(like 10 km/h). These crisp values must be transformed into fuzzy sets (linguistic
terms). The transformation process is called fuzzification.

The following components included in fuzzy controllers are found:

(i) fuzzification,
(ii) decision-making (inference),

(iii) Rule Base,
(iv) defuzzification.

In Fig. 10.2, a schematic model of a fuzzy controller is presented.

Inference
engine

Rule
Base

Defuzzificationx y

crisp
input

crisp
output

fuzzy
input

fuzzy
output

Fuzzification

Fig. 10.2 Basic scheme of a fuzzification-defuzzification system.

The fuzzification block is responsible for translation of a crisp input value, rep-
resented by a numeric value, into the format acceptable by the fuzzy regulator.
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Fuzzification involves assigning a value to one or many fuzzy sets (depending on
their definition) and calculating the value of membership function. The most often
used membership functions are the triangular and Gaussian functions.

Rule Base contains cause and effect dependencies existing between input and
output variables of the fuzzy controller. It states a representation of knowledge
about the considered control system. An exemplary rule yields

Rn : IF (x1 = A1) AND (x2 = B1) THEN (y1 = C1),

where x1 and x2 are input variables, y1 – output variable, A1, B1, C1 – fuzzy sets.
The above rule is read as follows:

If the first input value belongs to the set A1 and the second input value
belongs to the set B1, then an output y1 of n-th rule belongs to the set
C1.

The components in parentheses after the IF operator are called premise (an-
tecedence). The components after the word THEN are called conclusion (conse-
quence).

Reasoning is applied by an inference engine to compute fuzzy output. It aims
at checking each rule the premises of which are satisfied. Based on the conclusions,
a resulting fuzzy set is created.

If several rules have the same variable in conclusion, they have to be fired in
parallel and all their conclusion fuzzy sets have to be aggregated in one fuzzy set
to be used as entry for others rules. Conclusion fuzzy sets are aggregated with the
min operator to take into account uncertainty in the final fuzzy set.

Defuzzification is a process aiming at transformation of the conclusion fuzzy
set to a numeric value, treated as the control signal.

10.1.4 Mamdani Model

The most commonly used and the most natural from the point of view of fuzzy logic
is an inference with a Mamdani minimum operation rule. Rule Base (RB) of this
reasoning is based on expert knowledge devoted to the investigated system. Fuzzy
models of the Mamdani type [Mamdani (1974)] have most often a few inputs and
one output. A scheme of a fuzzy logic controller created according to the described
reasoning is shown in Fig. 10.3.

In Fig. 10.3, an inference scheme of deducing output y∗ of a controller having
2 inputs x1 and x2 has been presented. In the first step, a fuzzifier acts on crisp
input values and assigns them to some individual fuzzy sets. Then, a membership
function τ∆ is computed. In the last step, the scheme makes reasoning by checking
some rules described by the formulas

Ri : IF (x1 = Bi1) AND (x2 = Bi2) THEN (y = Di), i = 1, 2.
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Conclusions determine the shapes of fuzzy sets generated on outputs of indi-
vidual rules. Operation AND (t-norm) is responsible for the membership functions
of output sets. From a geometric point of view, conclusion of a rule determines
placement of a fuzzy set on the y-axis, and operation AND (product) cuts the set
to a proper height. A value of membership function of the fuzzy set is called firing
strength of the rule. If this value is equal to 0, then one says that the rule has not
been fired.

The next important step is focused on aggregation of conclusions of all rules.
This operation does the s-norm (sum) of all fuzzy sets resulting from the fired rules
leading to creation of one fuzzy set.

To obtain a specific numerical value on the output, one requires to use some of
many known methods of defuzzification. The most common are listed below.

1. Discrete center-of-gravity method (COG). The output value of the regulator
is related to the placement of the center of gravity of a figure described by
the resultant fuzzy set. It is the most often used method of defuzzification.
It is the most “democratic” in generation of output value. Its drawback is
related to a relatively high computational complexity.

2. Mean of maximums method (MeOM). The output value of the regulator

1

0

B11 B21 1

0

B22 B12 1

0

D1

1

0

B11 B21 1

0

B22 B12 1

0

D2

1

0

Fig. 10.3 Inference scheme with the Mamdani minimum operation rule.

 b
.



July 14, 2016 14:53 ws-book961x669 DYNAMICS OF MECHATRONIC SYSTEMS 10193-main page 259

Fuzzy Logic in Numerical Algorithms 259

is defined by the center of a maximum of a membership function of the
resultant fuzzy set. This method guarantees a relatively low computational
complexity at the cost of omission of smaller parts of the output fuzzy set.

3. First of maximum method (FOM). The output value of the regulator de-
pends on the placement of the first maximum of a membership function.
This method is characterized by low computational complexity.

4. Last of maximum method (LOM). The output value of the regulator is
defined by the placement of the last maximum of a membership function.
This method is also characterized by low computational complexity.

In Fig. 10.4, a graphical form of mentioned defuzzification methods is depicted.

1

0

Fig. 10.4 A graphical representation of results of the defuzzification methods 1-4: y1 – COG, y2

– MeOM, y3 – FOM, y4 – LOM, c – center of gravity of the figure describing the output fuzzy set.

As can be noticed, there exists a big difference between the output crisp values
yi of the analyzed defuzzifiers.

Selection of the defuzzifier depends on current knowledge about the control
system and on the experience of the engineer designing the controller. It is often
observed that selection of the defuzzifier is guided by the trial-and-error method.

10.1.5 Takagi-Sugeno Model

The Takagi-Sugeno model [Sugeno and Kang (1988)] differs from the Mamdani
model in the method of creating the conclusions from premises in the definitions of
rules. In contrast to the Mamdani model [Mamdani (1974)], in which a fuzzy set
is obtained from rule’s conclusion, in the Takagi-Sugeno model the conclusion of
a rule is determined by a linear function of crisp input values or a constant value.
Constant values in conclusions are called singletons – one-element fuzzy sets. Below,
an exemplary rule is shown:

R1 : IF (x1 = B11) AND (x2 = B12) THEN (y1 = b10 + b11x1 + b12x2),

where x1 and x2 are input variables, y1 – output variable, Bij – fuzzy sets, b10, b11,
b12 – coefficients of output function.

A crisp value y∗ of the controller is computed from the weighted average of
output values yi of each rule, but the weight is determined by a firing level of the

 b
.



July 14, 2016 14:53 ws-book961x669 DYNAMICS OF MECHATRONIC SYSTEMS 10193-main page 260

260 DYNAMICS OF MECHATRONIC SYSTEMS

specific rule τi, i.e.,

y∗ =

∑n
i=1 τi · yi∑n
i=1 τi

. (10.11)

Fuzzy systems based on the Takagi-Sugeno models are used as a simplification
of more complex Mamdani models, as they have a lower computational effort. They
can be also used for linearization of nonlinear models. In the classical approach,
after the local approximation of a trajectory by a linear function, a nonsmooth
switching between simplifications appears. Application of Takagi-Sugeno models
allows for smoothing of approximation result in the points of switching.

10.2 Experimental Stand

An experimental stand [Olejnik (2002); Awrejcewicz and Olejnik (2005b, 2002);
Kunikowski (2014)] depicted in Fig. 10.5 served in tests of two types of a discrete
controller: a) standard PID, b) fuzzy PI.

Fig. 10.5 Experimental stand: 1 – a DC motor with a 15:1 worm gear, 2 – RN12 DC motor
driver 50 V, 3 – the physical object under control, 4 – IVO GI333 incremental encoder, 5 – Atmel
Testing Board 1.03 with ATmega644PA microcontroller.

Regulation of the angular velocity of the PZTK 62-42J DC motor (1) is made by
a control system composed of the Atnel Testing Board (ATB) with ATmega644PA
microcontroller (5) and the RN12 driver (2). The real system under control (3)
influences the speed of the transmission belt measured by the incremental encoder
GI333 (4). The L293D IC is supplied by 15 V power source. The DC motor is
powered by the MATRIX 60V – a regulated direct current source for the RN12
power circuit and 30V for the RN12 logical circuit.

Figure 10.6 presents a wiring diagram of the described control system. For
the purpose of noise cancellation in the measuring circuit, a Schmitt inverter
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M74HCT14N was used. It damps voltage peaks that could cause incorrect counting
of impulses sent to the microprocessor – the physical control unit.

PC

USBFTS232R

RS232
Power

amplifier
15V

15VPWM
Enable A

5V L293D5V

5V

Driver
RN12

DC motor

Encoder
A
B1Y

2Y
1A
2A

5V

M74HCT14N

PORTD 5
PORTC 1

PORTD
2,3

PORTA
0,1,4,5,6,7

PORTC
2,3,4,6,7 Buttons

LCD HD447800

ATmega644PA

Fig. 10.6 Wiring diagram of the closed-loop control system.

To enable compatibility between the microcontroller and the RN12 motor driver,
a L293D integrated circuit (IC) was implemented. The RN12 driver accepts a PWM
signal with amplitude ranging from 12 V to 15 V, but the microprocessor is equipped
only with 5 V TTL outputs. The L293D served as an amplifier for the PWM
signal. The known parameters of the DC motor are as follows: electrical constant
ke = 0.104 V/rad/s, mechanical constant km = 0.39 Nm/A, armature resistance
Rw = 1.1 Ω, armature inductance Lw = 0.001 H.

A model of the dynamical system being a source of instability of the belt driven
by the controlled DC motor with a gear (compare with element 1 in Fig. 10.5)
has been shown in Fig. 10.7. The friction-induced vibration of the mass m on the
moving belt is responsible for the dynamically changing loading of DC motor’s shaft
that drives the transmission belt.

The controlled object consists of a conveyor belt with a block of the mass m
oscillating on it in x-direction, a bracket of the mass M and of the mass moment
of inertia J , rotating around point S about ϕ angle. The bracket is attached to
the block by means of two linear springs (see Fig. 10.7). Depending on the linear
displacement of the block m and the angular displacement ϕ of the bracket J

(a pendulum), friction force on a contact surface between the block and the belt
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block
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DC motor

worm gear
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Vp

c2
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transmission belt 
y1

y1
M, J S

m

x1

a friction force intensification
mechanism

T

Fig. 10.7 A schematic view of the mechanical system (ω – process variable).

changes rapidly.
Moreover, the friction force characteristics switches itself between its kinetic and

static form. The experimentally observed irregular changes in frictional force in the
block-on-belt model are responsible for the significantly varying load transferred on
the DC motor’s shaft driving the mechanical system shown in Fig. 10.7. Constant
changing of the amplitude of the load affects the speed of gear’s conveyor belt. A
more detailed description of the model can be found in previous works of the authors
[Awrejcewicz and Olejnik (2005c, 2007); Olejnik (2013, 2002)].

Many physical phenomena, such as wear of the worm gear, viscous friction in all
of the bearings of the mechanical system, stiffness of the transmission belt, radial
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Fig. 10.8 Speed variations of an uncontrolled system.

 b
.



July 14, 2016 14:53 ws-book961x669 DYNAMICS OF MECHATRONIC SYSTEMS 10193-main page 263

Fuzzy Logic in Numerical Algorithms 263

run-out of belt pulleys shafts and an unevenly distributed dry friction coefficient on
the surface of transmission belt, have the direct impact on stabilization of the belt
linear velocity of movement.

To inspect the behavior of the conveyor belt shown in Fig. 10.7, the belt pulley’s
angular velocity was measured by an incremental encoder.

Uncontrolled velocity of the belt pulley is very irregular, as depicted in Fig. 10.8.
Figure 10.9 shows exemplary Fourier transform of the system’s step response. In
that trial, the system was controlled by a P controller with the proportional gain
KP = 2.25. The presented spectrum of many amplitudes visible in Fig. 10.9 ends
at the Nyquist frequency: fc = 1/(2h) ≈ 16.666 Hz.

0

40

80

120

|Ω
|

0 2 4 6 8 10 12 14 16

f

Fig. 10.9 Fourier transform of the system step response.

To measure the speed of the transmission belt on which the oscillating mass
vibrates, an incremental encoder of 5000 imp/rev was used. The 4x encoding was
applied for the angular velocity measurement. This means that in a constant time
period, both rising and falling edges of two shifted measurement lines A and B of the
encoder are counted. This method allows to virtually increase the base resolution
of the sensor [Petrella et al. (2007)]. Using the 4x encoding and setting the acqui-
sition time to 30 ms yields a measurement error of 0.1 rpm. This means that each
subsequent pulse counted with the mentioned sampling time increases output of the
velocity recognition algorithm by 0.1 rpm. The encoder is not an ideal sensor here,
so the length of the high state tends to vary due to the manufacturing tolerances.
The used method of encoding could magnify that phenomenon, hence the speed
measurement error may be bigger than the assumed 0.1 rpm. The contribution of
that error to the shape depicted in Fig. 10.8 is unknown. No filtering technique
was applied to the measurement to capture the dynamics of the analyzed system as
accurately as possible.
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10.3 Control Algorithms

Due to complexity of the control task, a black-box approach to the control prob-
lem was used while any mathematical model of the controlled object was omitted.
Tuning of the controller was done manually by observing the real time plot of the
encoded angular velocity measurement. The goal here was to achieve the lowest
possible oscillations of velocity of the belt pulley after reaching the desired set-
point. Both presented algorithms were implemented in C programming language
on the ATmega644PA microcontroller [Kunikowski et al. (2015)].

Driver
RN12

Encoder
GI333

Microcontroller
ATmega644PA

DC motor
uPWM uV

ne

Fig. 10.10 The closed-loop control system (ωsp – reference input, ω – process variable).

In Fig. 10.10, the assumed closed-loop control system has been presented. Bas-
ing on the setpoint speed (reference angular velocity ωsp) and counted number of
impulses y from the encoder, the proposed control algorithm calculates the adequate
duty cycle uPWM of the PWM signal. This information is sent to the RN12 driver
which generates appropriate voltage uV for the DC motor. A 10-bit resolution
PWM signal with 9.7 kHz frequency was used. Therefore, the variable describing
its duty cycle can be changed from 0 to 1023. The control algorithm corrects the
PWM duty cycle every 30 ms (the feedback loop time is restricted by resolution).

10.3.1 PID Controller

Classical discrete PID controller’s formula in n-th iteration follows

uPWM(n) = Kpe(n) +Ki

n∑
k=0

e(k)−Kd(yn − yn−1), (10.12)

where: uPWM – output of the regulator, e – error of regulation, gains: Kp – pro-
portional, Ki = KpTs/Ti – integral, Kd = KpTd/Ts – derivative; y – measured
angular velocity, Ts – sampling time, Ti – integral time coefficient, Td – derivative
time coefficient, n – iteration.

To eliminate rapid responses of the derivative part when the setpoint speed
changes with regard to the so-called “derivative kick”, regulator’s variable was
changed from the error of regulation to the difference between two successive mea-
surements of speed. PID controller’s output was limited to the range [0, 1023] and
treated as a new value of the PWM duty cycle.
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10.3.2 Fuzzy Logic PI Controller

The second considered regulator is the Takagi-Sugeno-type fuzzy logic PI controller.
It takes two inputs, i.e., the error of regulation e and the difference δe between the
current value of error and the value of error from the last cycle. The output value
is ∆uPWM(n) – the increase in the PWM duty cycle. A classical alternative that
would match the earlier described regulator is given

∆uPWM(n) = Kie(n) +Kp(e(n)− e(n− 1)), (10.13)

where: e – error, Kp – proportional gain, Ki – integral gain.
Numerical range of each input variable was divided into 5 triangular T and

a 2 piece-wise linear L and g fuzzy sets. The output variable was divided into 7
singletons. Graphical interpretation of this classification is presented in Figs. 10.11–
10.12. Formulas for calculation of the value of membership function of each type of
fuzzy set are given in Eqs. (10.14)–(10.16). The Takagi-Sugeno controller was chosen
due to its defuzzification simplicity and lower requirements regarding processing
power than the Mamdani type controller.

-0.9

1

0

NB NM NS Z PS PM PB

-0.6 -0.3 0 0.3 0.6 0.9

Fig. 10.11 Fuzzy sets of the first input variable e – error of regulation.

-0.6

1

0

NB NM NS Z PS PM PB

-0.4 -0.2 0 0.2 0.4 0.6

Fig. 10.12 Fuzzy sets of the second input variable δe – increase in the error.
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i

uPWM

Fig. 10.13 Fuzzy sets of the output variable ∆uPWM.

In Figs. 10.11–10.13, the thresholds of fuzzy sets are shown. Linguistic variables
assigned to the sets are as follows: NB – negative big, NM – negative medium, NS –
negative small, Z – zero, PS – positive small, PM – positive medium, PB – positive
big.

µL(x, a, b) =


1 if x ≤ a
b− x
b− a if a < x ≤ b
0 if x > b

(10.14)

µg(x, a, b) =


0 if x ≤ a
x− a
b− a if a < x ≤ b
1 if x > b

(10.15)

µT (x, a, b) =



0 if x ≤ a
x− a
b− a if a < x ≤ b
c− x
c− b if b < x ≤ c
1 if x > c

(10.16)

a b

x

1

0
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Fig. 10.14 Fuzzy sets of the membership function.
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Our RB consists of 49 rules (“if-else” conditional expressions) numbered from
i = 1 . . . 49, and j, k, l = 1 . . . 7, respectively to the assumed set of linguistic variables
(e.g., NB, NM). An exemplary rule can be expressed as below

Ri : IF (e(n) = Aj) AND (δe(n) = Bk) THEN (∆ui = Cl), i = 1, 2,

where: Aj , Bk – input fuzzy sets, Cl – output fuzzy set, ∆ui – output of the i-th
fuzzy rule.

Rules Ri bind both input and output variables together in a cause-effect re-
lations. Table 10.3 contains all possible control rules. This arrangement is the
so-called MacVicar-Whelan RB and is very common in fuzzy logic PI regulators
[Cheong and Lai (2007); MacVicar-Whelan (1977)]. It has been preliminarily as-
sumed in this chapter that such an arrangement is optimal. Both the MacVicar-
Whelan RB and its modification done by the authors were tested and compared in
the subsequent sections.

Table 10.3 Fuzzy logic PI controller’s RB.

e NB NM NS Z PS PM PB

NB NB(0) NB(1) NB(2) NB(3) NM(4) NS(5) Z(6)

NM NB(7) NM(8) NM(9) NM(10) NS(11) Z(12) PS(13)

NS NB(14) NM(15) NS(16) NS(17) Z(18) PS(19) PM(20)

Z NB(21) NM(22) NS(23) Z(24) PS(25) PM(26) PB(27)

PS NM(28) NS(29) Z(30) PS(31) PS(32) PM(33) PB(34)

PM NS(35) Z(36) PS(37) PM(38) PM(39) PM(40) PB(41)

PB Z(42) PS(43) PM(44) PB(45) PB(46) PB(47) PB(48)

e

Figure 10.15 presents the inference scheme of the used controller for two ex-
emplary rules. In the first step, inputs of an error and increase in the error are
fuzzified. The algorithm determines to which fuzzy sets they belong to and calcu-
lates the value of membership function for each set as well. Next, the firing levels
τi for each i-th rule are calculated using the t-norm (min() function). To receive
the crisp output ∆uPWM(n) in Eq. (10.17) from the regulator, the weighted average
defuzzification method is used:

∆uPWM(n) =

∑i
1 τi∆ui∑i

1 τi
, (10.17)

where: τi – firing level of i-th fuzzy rule, ∆ui – outputs of the fuzzy rules, i –
number of the particular fuzzy rule.
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Fig. 10.15 The inference scheme.

10.3.3 Modification of the Rule Base

To increase the performance of the fuzzy logic PI algorithm, a modification to the
RB was made (see Table 10.4).

Table 10.4 Modified RB for the fuzzy logic PI controller.

e NB NM NS Z PS PM PB

NB NB(0) NB(1) NB(2) NB(3) NB(4) NM(5) NM(6)

NM NB(7) NB(8) NB(9) NM(10) NM(11) NM(12) NS(13)

NS NB(14) NB(15) NM(16) NM(17) NS(18) Z(19) Z(20)

Z NM(21) NM(22) Z(23) Z(24) Z(25) PS(26) PM(27)

PS Z(28) Z(29) PS(30) PS(31) PM(32) PM(33) PB(34)

PM PM(35) PM(36) PB(37) PB(38) PB(39) PB(40) PB(41)

PB PB(42) PB(43) PB(44) PB(45) PB(46) PB(47) PB(48)

e
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The modified RB is not symmetric and the main diagonal consisting of “Z”
outputs does not exist. This modification has allowed to separate the region of high
absolute values of error from the region in which some oscillations occur. Such a
change enables one to use higher gain (more aggressive output from the regulator)
when the DC motor gains its rotational velocity.

10.3.4 Test Results

The tests were carried out for the setpoint speed of the belt pulley at the values
of 5, 10 and 15 rpm. Figures 10.16–10.18 show the best achieved step responses
for both types of regulators, including the version of the fuzzy logic PI regulator
with modified RB (see Tables 10.5 and 10.6). In Table 10.7, a summary of their
performance regarding the settling time and a sum of absolute values of error over
time is provided. Features like execution time of the algorithm and the number of
tuned variables were compared.
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Fig. 10.16 Time history of angular velocity controlled by the tuned PID algorithm (KP = 1.2,
KI = 2.9, KD = 1.35, and the setpoint ωsp = 5 rpm).

0

1

2

3

4

5

6

7

ω
[r
p
m
]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

t

setpoint
fuzzy logic PI

Fig. 10.17 Time history of angular velocity controlled by the tuned fuzzy logic PI algorithm
(setpoint ωsp = 5 rpm).
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Fig. 10.18 Time history of angular velocity controlled by the tuned fuzzy logic PI algorithm with
modified RB (setpoint ωsp = 5 rpm).
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Fig. 10.19 Time history of angular velocity controlled by the tuned PID algorithm (KP = 1.2,
KI = 2.9, KD = 1.35, and the setpoint ωsp = 10 rpm).
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Fig. 10.20 Time history of angular velocity controlled by the tuned fuzzy logic PI algorithm
(setpoint ωsp = 10 rpm).
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Fig. 10.21 Time history of angular velocity controlled by the tuned fuzzy logic PI algorithm with
modified Rule Base (setpoint ωsp = 10 rpm).
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Fig. 10.22 Time history of angular velocity controlled by the tuned PID algorithm (KP = 1.2,
KI = 2.9, KD = 1.35, and the setpoint ωsp = 15 rpm).
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Fig. 10.23 Time history of angular velocity controlled by the tuned fuzzy logic PI algorithm
(setpoint ωsp = 15 rpm).
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Fig. 10.24 Time history of angular velocity controlled by the tuned fuzzy logic PI algorithm with
modified Rule Base (setpoint ωsp = 15 rpm).
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Fig. 10.25 Trajectory tracking by the PID algorithm.
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Fig. 10.26 Trajectory tracking by the fuzzy logic PI algorithm with modified RB.
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Table 10.5 Fuzzy logic PI controller parameters.

Fig. 10.14 NB NM NS Z PS PM PB

e
a −0.9 −0.9 −0.6 −0.3 0.0 0.3 0.6
b −0.6 −0.6 −0.3 0.0 0.3 0.6 0.9

c −0.3 0.0 0.3 0.6 0.9

δe

a −0.6 −0.6 −0.4 −0.2 0.0 0.2 0.4

b −0.4 −0.4 −0.2 0.0 0.2 0.4 0.6
c −0.2 0.0 0.2 0.4 0.6

ui −10 −6 −3 0 3 6 10

Table 10.6 Fuzzy logic PI controller parameters with modified RB.

Fig. 10.14 NB NM NS Z PS PM PB

e
a 1.2 −0.8 −0.4 −0.2 0.0 0.5 1.4
b 0.6 −0.5 −0.2 0.0 0.4 1.0 2

c −0.2 0.0 0.2 0.8 1.5

δe

a 0.6 −0.6 −0.4 −0.2 0.0 0.2 0.4

b 0.4 −0.4 −0.2 0.0 0.2 0.4 0.6
c −0.2 0.0 0.2 0.4 0.6

ui −12 −6 −3 0 3 8 35

Table 10.7 Performance comparison of the two considered algorithms.

Property rpm PID Fuzzy logic PI
Fuzzy logic PI

mod. RB

Settling time [s]
5 0.93 0.84 0.21

10 0.96 1.12 0.24
15 0.99 1.65 0.33

Sum of absolute error
values over time

5 101.9 143.0 100.8

10 153.3 277.1 157.6

15 197.2 516.2 194.1

Lines of code required 105 280 280
Number of tuned

variables
3 45

45 + 49

= 94
Execution time of

algorithms [µs]
73 112 112

As can be observed, only marginal gain in stability of the investigated control
system was achieved. Both regulators fail to properly respond to chaotic changes in
load parameters. A comparison made basing on the Table 10.7 shows that the basic
fuzzy logic PI algorithm does not provide as good control quality as the PID. On
the other hand, modification to the RB had a great impact on the settling time of
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the system. The FLC with tuned RB almost instantly generates adequate output to
reach the setpoint speed, while in the case of PID regulator, a decreasing build-up
closer to the setpoint can be observed.

In Figs. 10.25 and 10.26, a trajectory tracking trial was presented. An interesting
thing to notice is the observable phase displacement (a delay) in output of the PID
algorithm. The fuzzy logic controller does not demonstrate such phase shift and
achieves the desired trajectory in much shorter time.

It is seen that the modifications to the RB have significantly helped in reducing
the settling time, but a negative impact on the stability can be observed comparing
the step responses of both algorithms. Another idea to decrease the settling time
is to introduce an additional fuzzy rule. The fuzzy set would place itself before the
NB set of the error input variable while the rule covering this set would generate a
substantial output that would help with gaining the DC motor speed. Applying a
fuzzy PID regulator could also help with the sluggish response of the system, but the
exponentially growing number of variables to tune could be problematic. Another
idea is to develop a hybrid controller. For large values of error of regulation, it could
act as a classical PID controller, and for lower values (near the setpoint), the FLC
would take control over the system stabilization.

From an engineering point of view, the FLC PI regulator states a bigger challenge
than any classical PID controller. While nowadays, the computation time and the
volume of code is in most cases less significant, the amount of the tuned variables
proves to be a great downside of the fuzzy logic control approach. In Table 10.7,
the amount of tuned variables is given by a sum of two values. Number 45 reflects
the amount of parameters describing input and output fuzzy sets, and the number
49 is the amount of fuzzy rules in the RB. Initially, the first set of variables was
tuned and the RB was assumed to be optimal. In the second approach, both the
parameters regarding the fuzzy sets and the RB were tuned. Since the variables of
the tuned system have a clear physical interpretations, the tuning process seems to
be very intuitive. Unfortunately, in reality, it is very time-consuming and demands
a broad knowledge about the controlled object. The study and experimental work
also confirm that all parameters should be carefully tuned. In this case, the widely
used MacVicar-Whelan RB did not provide satisfactory results.

The fuzzy logic controller described in this chapter provides similar quality of
control comparing to the classical solution. Mostly, the settling time has benefited
from the use of the fuzzy approach. Despite the interesting concept standing behind
it, no substantial improvement in smoothing DC motor’s angular velocity in the
setpoint region was achieved. Additionally, the very complex tuning process extends
the time in which promising results were obtained. To reduce the difficulty of tuning,
the fuzzy logic approach requires its own learning algorithm which would pick the
right parameters and adopt them actively to the experiment.
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Chapter 11

Tracking Control of an Electromechanical
System

Stick-slip vibrations appear during relative motion between contacting surfaces of
miscellaneous frictional pairs. They depend on the viscous force, Coulomb force
or other velocity-dependent forces. These effects appear in almost all mechanical
systems, for instance, in positioning systems like servomechanisms, impulse encoders
and stepper motors which operate at or about zero velocity of relative motion
between shafts and sliding bearings. This chapter extends our study on numerical
modeling of a DC (direct current) motor treated as a dynamical system with stick-
slip effects which appear in transient motion even while the direction of rotation
of its rotor crosses zero velocity speed. These investigations are aimed at some
future applications of the control technique serving for explanation of bifurcation
phenomena existing in such kind of discontinuous systems. Putting emphasis on
nonlinear effects, we apply the well-known but slightly extended sliding surface
method allowing for compensation of frictional effects. A limit cycle on a phase
plane, as well as time histories of control inputs and system outputs, were obtained
using numerical simulations performed in LabVIEW.

The natural resistance to the relative motion between nonlubricated surfaces of
two contacting bodies is called dry friction. In some dynamical systems modeling
nonlinearities caused by dry friction, a controller has to be designed to avoid any
steady state tracking errors or vibrations.

An adaptive friction compensation to improve performance of tracking errors
without the Stribeck effect has been proposed in [Huang et al. (2000)]. A new con-
trol strategy for compensation of frictional phenomena including the Stribeck effect,
hysteresis, stick-slip limit cycling, pre-sliding displacement and rising static friction
has been particularly described and examined. The proposed compensator could
be useful for handling significant nonlinearities in motor controls. Similarly, the
Lund-Grenoble model of dynamical friction has been used in [Hirschon and Miller
(1999)] to control nonlinear effects that the model captures: the Stribeck and Dahl
effects, viscous and Coulomb friction [Awrejcewicz and Olejnik (2005a)]. A new
Lyapunov-based continuous dynamic controller has been delivered for a more gen-
eral class of nonlinear systems. It produced better control of a high-speed precision
linear tracking table than some tuned PID controllers without direct nonlinear ef-
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fects compensation. As it has been shown also in [Song et al. (1998)], conventional
feedback control methods cannot ensure good results in the presence of dry friction
(stick-slip) even in the one-degree-of-freedom DC motor system. Because of steady
state errors, a traditional PD controller would not achieve satisfactory performance.
These errors could be reduced by increasing the P gain, but significant instabilities
would be reported while driving the motor with some angular velocities or along the
desired rapidly changing time history of its angular position. Very good position-
ing accuracy have been obtained with the use of a new sliding-mode-based smooth
adaptive robust controller designed for dry friction compensation.

A study of control of a mechanism under the influence of low velocity friction has
been conducted in [Adams and Payandeh (1996)]. The theoretical and experimental
comparative study of linear (PD, PID) and nonlinear (smooth continuous and piece-
wise linear discontinuous) compensation algorithms have been proposed. In the case
of modeling a two-degree-of-freedom controlled planar manipulator, the nonlinear
controllers have proved to have superior performance regarding some P and D gains,
compared to any PD controller. Moreover, their tracking performance was also
superior to the PID controller, but it provides an oscillatory time dependency of
torque. Stability of smooth controllers was much simpler to demonstrate.

Simple active control of the belt-driven oscillator with stick-slip friction in a
control system with a feedback loop created by a transducer, frequency filter, phase
shifter, amplifier and a shaker attached to the oscillating body has been studied
in [Heckl and Abrahams (1996)]. The feedback system allowed for suppression of
unstable vibrations at high effectiveness insensitive to errors in phase shift and am-
plification. Similarly, in [Li et al. (2009)], some type of friction-driven oscillator
controlled by Lyapunov redesign based on delayed state feedback has been numer-
ically investigated. The authors redesigned a continuous controller on the basis of
a delayed state feedback to ensure that the nonsmooth friction-driven system is ul-
timately bounded. Moreover, by constructing a Lyapunov-Krasovskii function, the
sufficient condition of stability for the investigated system was obtained.

Neural networks have the capability of approximating nonlinear functions, there-
fore they are also demanding when it comes to estimation of frictional behaviors.
Much work has been done in this subject [Kim and Lewis (2000); Otten et al. (1997)].
Work [Otten et al. (1997)], for instance, brings investigations on control of linear
motion of motors by means of the learning forward controller that is designed in the
discrete state-space. The authors [Driessen and Sadegh (2004)] have also solved the
problem of discrete-time iterative learning control for position trajectory tracking
of multiple-input, multiple-output systems, including Coulomb friction, bounds on
the inputs, static and sliding friction coefficients. On the background of a two-link
revolute-joint planar robot arm, some satisfactory learned angular position time
histories (at a decrease in position-tracking error) have been shown. In accordance
to linear servo motor control, a novel, very interesting approach for designing a
wavelet basis function network learning controller for a linear motor control system
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was considered in [Lin and Huang (2002)]. The proposed wavelet network-based
controller dealt with viscous friction and force ripples that occur in motion control
of linear synchronous motors.

The considerations presented in the exemplary articles were motivated by ex-
amination of control approaches, but the investigation of stability should be also
considered. An interesting reference [Chenafa et al. (2005)] presents analysis of
global stability of linearizing control of induction motors with a new robust nonlin-
ear observer-based approach. Authors used traditional Park’s induction model in a
stator fixed reference frame related to the stator given by [Mansouri et al. (2004)].
They designed a control algorithm based on feedback linearization [Marino et al.
(1993)]. After assumption of parameters of the induction motor, a detailed scheme
of the nonlinear control with an observer has been done in Simulink. The new
robust observer based on a nonlinear control scheme offered advantage of only one
tuning parameter. The global stability of the whole system consisting of the motor,
the controller and the observer was established by means of the precise Lyapunov
function that kept observer’s dynamics free. More on the initial strategy on input-
output linearization can be found in [Chiason (1997)], but on the global stability of
the process-observer-controller system in [Lubineau et al. (2000)].

Deeper survey through the cited literature provides many references to theo-
retical derivations and practical implementations confirming permanent interest in
control of nonsmooth systems. Basically, control strategies depend on the aim, the
friction law, the system at hand and its field of application.

11.1 Problem Statement

This study concerns on a numerical simulation of compensation of frictional effects
present in a real system designed for observations and experimental estimation of
friction force characteristics, see [Awrejcewicz and Olejnik (2003)]. The system con-
sists of a DC motor driving a wide transmission belt on which a rigid body, being
in frictional contact with the surface of the belt, vibrates. For instance, to find
bifurcations of sliding solutions [Awrejcewicz and Olejnik (2005d)], after a relative
motion observed between contacting surfaces of the investigated coupling, it is re-
quired to precisely implement some desired function of changes of angular velocity
of the DC motor that drives the belt. Therefore, rotational velocity of the driving
motor should vary in a periodic cycle, exactly tracking the desired time-dependent
characteristics (triangular, sinusoidal, etc.). However, such a situation does not oc-
cur with regard to the existing nonlinear friction characteristics. From the point of
view of the control theory, it states a problem of providing a robust tracking control
of rotational velocity of the DC motor. Therefore, some close to ideal generation of
regular input signal (excitation of the belt) would be possible after application of
some tracking control technique that has been already implemented, for instance, to
control robot manipulators [Lewis et al. (1993)]. The following control errors could
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be used as input to the method: e(t) = ϕ(t)−ϕd(t), ε(t) = ϕ̇d(t)− λe(t), where: ϕ
and ϕ̇ are, respectively, the angular position and velocity of motor’s rotor driving
the base by means of a nonstretchable transmission toothed belt; index d denotes
desired values of corresponding variables along with the desired phase trajectory.

Particular investigation will be focused on examination of influence of frictional
contacts existing during rotation of a rotor of a DC motor. One can distinguish a
phenomenon of stick-slip friction that mostly affects accuracy of positioning. Fric-
tion of such type was investigated by authors of the monograph in [Awrejcewicz and
Olejnik (2005a)], and may result from the following: Coulomb friction that repre-
sents maximum static friction Tsm sgn ϕ̇(t) at a slip phase and Tsm(1 − sgn |ϕ̇(t)|)
at a stick phase, when an input torque generated by a system driven by mo-
tor’s rotor could by applied, exponential friction described by the Stribeck curve
TStm(1− exp(−T0|ϕ̇(t)|) sgn ϕ̇(t)), viscous friction Tvmϕ̇(t), and position-dependent
friction T1m sin (T2ϕ(t)+T3) sgn |ϕ̇(t)|, as proposed in [Slotine and Li (1987)], where:
sgn ϕ̇ denotes the sign of the value of angular velocity, ϕ is an angular displacement,
Tsm is the maximum static friction torque, TStm and T0 > 0 are the parameters of
Stribeck curve, Tvm is the coefficient of viscous friction, T1m, T2 and T3 are constants.
The mechanical part of the reduced dynamical system of differential equations used
for modeling the dynamics of rotational motion of a DC motor holds:

Jmϕ̈(t) +

(
cbcm
Ra

+ Tvm

)
ϕ̇(t)− TStm

(
1− e−T0|ϕ̇(t)|

)
sgn ϕ̇(t) +

T1m sin (T2ϕ(t) + T3) sgn |ϕ̇(t)|+ Tsm (1− sgn |ϕ̇(t)| +

sgn ϕ̇(t)) = cmψm(t) , (11.1)

and the remaining unknown model parameters are as follows: Ra and ψm denote
the armature resistance and the armature current, respectively, Jm is the moment
of inertia of the rotor, cb is a constant of the back electromotive force, and cm is
the motor torque constant. One rewrites Eq. (11.1) in a form scaled with respect
to cm as follows

Jϕ̈(t) +Bϕ̇(t) + τ(t) = ψ(t) , (11.2)

where the function τ(t) = Tvϕ̇(t) − TSt (1− exp(−T0|ϕ̇(t)|)) sgn ϕ̇(t) +

T1 sin (T2ϕ(t)+T3) sgn |ϕ̇(t)|+Ts (1− sgn |ϕ̇(t)|+ sgn ϕ̇(t)) states for the scaled fric-
tion force, and J,B, Tv, Ts, T1, TSt equal Jm

cm
, cbRa ,

Tvm
cm

, Tsmcm , T1m

cm
, TStmcm , respectively.

It is not possible to exactly describe friction and to correctly assume all values
of parameters. A tracking control, which is a point of the study, should also correct
any inaccuracies caused by an imprecise system modeling.

11.2 Control Strategy

The objective of control is to design an adaptive controller that would allow to
change angular velocity of rotation of motor’s rotor according to some desired
function ϕd(t). Let us begin from the so-called sliding surface method [Slotine
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and Li (1987)]. On its background, the control error e(t) = ϕ(t) − ϕd(t), an
auxiliary variable ε(t) = ϕ̇d(t) − λe(t) and the definition of the sliding surface
r(t) = ϕ̇(t) − ε(t) = 0, where variables with index d denote corresponding desired
values, λ > 0 is for more general multidimensional case a positive definite main
diagonal matrix. Having all variables of the sliding surface method introduced, let
us propose a control law derived from Eq. (11.2) in the form:

ψ(t) = Ĵ ε̇(t) + D̂ε(t)− T̂St
(

1− e−T̂0|ϕ̇(t)|
)

sgn ϕ̇(t) +

T̂s sgn ϕ̇(t) + T̂s (1− sgn |ϕ̇(t)|)us(t)− ub(t) , (11.3)

where ub(t) is a condition of bounding function, us(t) = 1 − sgn |r(t)| at term
describing sticking phase is a function introduced with respect to the definition of
the sliding surface r(t) = 0, D̂ = B̂ + T̂v, and the circumflexˆabove symbols marks
estimates of corresponding parameters.

Equation (11.3) will be used for adaptation of unknown estimates in a scheme
in which ψ(t) is put to Eq. (11.1) to compensate for linear and nonlinear forces
included in it. Such an adaptive feed-forward control loop is good to compensate
linear friction forces like Coulomb and viscous ones [Song et al. (1998)]. Nonlinear
friction forces, like the Stribeck effect and the angular position-dependent friction
force, cannot be controlled in the loop, but some adaptation law based on a robust
compensator to learn an upper bounding function has to be used [Lewis et al.
(1993)]. The following bounding function is assumed

ub(t) = kDr(t) + ρ̂kT tanh(r(t)(a+ bt)) , (11.4)

where: a, b and kD are positive constants, and kT > 1. If parameter ρ̂ is an estimate
of the upper bound of the nonlinear residual terms, then ub(t)|r(t)=λe behaves as a
proportional gain robustly compensating nonlinear friction forces. It inputs to the
control law (11.3) a torque greater than the maximum static friction allowing for
compensation.

11.2.1 Estimation of Linear and Nonlinear Parameters

In the sliding surface method, the adaptive law validating all unknowns at each step
of integration is based on a simple first-order differential equation. Therefore, the
following adaptive law [Slotine and Li (1987)] validating estimates of the system
parameters at linear terms takes the form:

˙̂
J(t) =−δ1ε̇(t)r(t) , (11.5)
˙̂
D(t) =−δ2ε(t)r(t) , (11.6)

˙̂
Ts(t) =

{− δ3 sgn (ϕ̇(t))r(t), in a slip,
δ3 (1− sgn |ϕ̇(t)|) |r(t), in a stick,

(11.7)

where δ1,...,3 are positive constants, r(t) = ϕ̇(t)− ε(t).
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Putting ψ(t) from Eq. (11.3) to (11.2), including ε(t) = ϕ̇(t)−r(t), ε̇ = ϕ̈(t)−ṙ(t)
with T̃St = T̂St−TSt and T̃0 = T̂0−T0 measuring differences between estimates and
their corresponding real values, one gets

Jṙ(t) +Dr(t) = Ĵ ε̇(t) + D̂ε(t) + T̂s sgn ϕ̇(t) + ω(t)− ub(t) , (11.8)

where

ω(t) =
(
T̂Ste

−T̂0|ϕ̇(t)| − TSte−T̂0|ϕ̇(t)|e−T̃0|ϕ̇(t)| − T̃St − Tp
)

sgn ϕ̇(t) . (11.9)

Expanding exp (T̃0|ϕ̇(t)|) = 1+T̃0|ϕ̇(t)|+T̃0|ϕ̇(t)|2/2+R̃ in a Taylor series about
|ϕ̇(t)| = 0 and using only the first three terms of the expansion with a reminder
R̃ ≤ exp (T̃0|ϕ̇(t)|)T 3

0 |ϕ̇(t)|3/6:

ω(t) =

[
T̂Ste

−T̂0|ϕ̇(t)| − TSte−T̂0|ϕ̇(t)|
(

1 + T̃0|ϕ̇(t)|+ T̃0
|ϕ̇(t)|2

2
+

T̃ 3
0

|ϕ̇(t)|3
6

eT̃0|ϕ̇(t)|
)
− T̃St − Tp

]
sgn ϕ̇(t) = ρ sgn ϕ̇(t) , (11.10)

where variable ρ = −γ1 + γ2 exp (−T̂0|ϕ̇(t)|) − γ3|ϕ̇(t)| exp (−T̂0|ϕ̇(t)|) − γ4|ϕ̇(t)|2
exp (−T̂0|ϕ̇(t)|), γ1 = max|ϕ̇(t)|∈[0,∞]{|ϕ̇(t)|3 exp (−T0|ϕ̇(t)|)T̃ 3

0 TSt/6} + T̃St + Tp,

γ2 = T̃St, γ3 = T̃0TSt, γ4 = T̃ 2
0 TSt/2. Constants γ1,...,4 depend on estimates or on

their difference from real values.
At this point, let us come back to Eq. (11.4) containing an unknown estimate

ρ̂. In Eq. (11.9), to get cancellation of reminders not dependent on r(t), ṙ(t), ε(t)

and ε̇(t), ω(t)− ρ̂(t)ωr(t)→∞, where ωr(t) = kT tanh (r(t)(a+ bt)) as introduced
in [Cai and Song (1994)]. Therefore, ρ sgn ϕ̇(t) → ρ̂kT tanh (r(t) (a+ bt)), and if
ub(t) is the upper bounding function of ω(t), then

ρ̂(t) = −γ̂1 + γ̂2e
−T̂0|ϕ̇(t)| − γ̂3|ϕ̇(t)|e−T̂0|ϕ̇(t)| − γ̂4|ϕ̇(t)|2e−T̂0|ϕ̇(t)| (11.11)

states the estimate of ρ variable. Similarly to construction of Eq. (11.8), we can
calculate the remaining estimate ρ̂ by solving the following system of equations:

˙̂γ1(t) = δ4|r(t)| , ˙̂γ2(t) = −δ5|r(t)|e−T̂0|ϕ̇(t)| ,

˙̂γ3(t) = −δ6|r(t)||ϕ̇(t)|e−T̂0|ϕ̇(t)| , ˙̂γ4(t) = −δ7|r(t)||ϕ̇(t)|2e−T̂0|ϕ̇(t)| ,
(11.12)

where γ1,...,4 are positive constants.

11.2.2 Voltage Input for Control of Rotational Velocity

In a real application, one would need to source the motor not with the electric
current but with voltage of known function. In this situation, the following full
electromechanical system has to be introduced into the analysis:

Jϕ̈f (t) +Bϕ̇f (t) + τf (t) = ψf (t) , (11.13)

Laψ̇f (t) +Raψf (t) + cbϕ̇f (t) = vf (t) , (11.14)
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where index f is used to denote a full three-dimensional dynamical system, La is
the armature inductance, vf (t) is a time-dependent function of voltage required to
realize some desired task of control.

One assumes that Eqs. (11.1) and (11.2) mathematically describe the dynamics
of the motor of which electrical and mechanical parameters will be taken according
to the existing direct current commutation motor PZTK 60-46 J suitable for use in
cross-feed drives of numerically controlled machines.

In a full electromechanical system, voltage control requires to regard to
Eq. (11.13). If the current-input control of the DC motor works correctly, then the
best solution is to maximally reduce the influence of the second equation. In the
full system, it provides these unwanted disturbances influencing the optimal current
input. The most obvious would be to apply to Eq. (11.14) the voltage input vf (t)

calculated on the basis of ψ(t) which is estimated after solution of only the reduced
mechanical system (11.2) given by control law (11.3). Therefore, voltage input
necessary to cancel the dynamical disturbances of the complete three-dimensional
electromechanical system produced by (11.14) is expected in the form

vf (t) = Laψ̇(t) +Raψ(t) + cbϕ̇(t) + d(t) (11.15)

with a limitation that ψ(t) ensures proper tracking current-input control of the
reduced model in Eq. (11.2) and ϕ̇ states for angular velocity resulting from that
control. Function d(t) is a compensator of dynamical differences between state
variables of Eqs. (11.14) and (11.15).

After substitution of vf given by Eq. (11.15) to (11.14), all dynamical terms in
Eq. (11.13) have their counterparts canceling them, but some occurring differences
are expected to be compensated by d(t) which, if disregarded, makes the substi-
tution working incorrectly and some significant oscillations about zero value are
observed. To increase effectiveness of the control strategy, it is proposed to apply
a two-dimensional proportional control with a feedback from the object of control
described by a full dynamical system of the modeled motor. Therefore, applying

d(t) = k1(ϕd(t)− ϕf (t)) + k2(ϕ̇d(t)− ϕ̇f (t)) (11.16)

to Eq. (11.15) to be used in Eq. (11.13), the following equation of dynamical equi-
librium is found:

La

(
ψ̇f (t)− ψ̇(t)

)
+Ra (ψf (t)− ψ(t)) + cb (ϕ̇f (t)− ϕ̇(t)) =

k1 (ϕd(t)− ϕf (t)) + k2 (ϕ̇d(t)− ϕ̇f (t)) , (11.17)
where to get the demanding cancellation of Eq. (11.14), tuning factors k1 and k2

should ensure equality of both sides of Eq. (11.17), but at each time instant, solution
ψf (t) have to be updated in Eq. (11.13), ϕd and ϕ̇d are the desired coordinates of
the phase trajectory of the rotor motion. Having this condition met, solution ϕf (t)

to Eq. (11.13) should track the optimal solution ϕ(t) of Eq. (11.2). In tracking
control, the time history of vf (t) can be saved and used as input to drive the
complete electromechanical dynamical system of the DC motor along with either
the desired phase trajectory, angular velocity or angular position of its rotor.

 b
.



July 14, 2016 14:53 ws-book961x669 DYNAMICS OF MECHATRONIC SYSTEMS 10193-main page 282

282 DYNAMICS OF MECHATRONIC SYSTEMS

11.3 Numerical Simulation

Efficiency of the two-stage control method is checked with numerical simulations
performed for a model of the DC motor PZTK 60-46 J with stick-slip friction
occurring in contact zones located between rotor’s shaft and bearings. Rotational
velocity of the DC motor is required to follow the desired trajectory ϕd(t) drawn
with a dashed line in Fig. 11.2.

Time history of the desired velocity is formed in the scheme: it increases from
0 to 0.2 rad/s in 0.2 s, then it is held at this value for 0.6 s, it is decreased to 0 in
0.2 s, and without a delay, it changes its value (in the second half of the period) to
negative, achieving symmetrically the same thresholds and times of presence as for
positive values. After 2 s the cycle is repeated (see the dashed line in Fig. 11.2).

Table 11.1 System and tuning parameters for the numerical simulation.

Notation Value Unit

Motor torque constant cm 0.5 N·m/A
Constant of the back electromotive force cb 0.011 V/rpm
Armature resistance R 1.1 Ω
Moment of inertia of the rotor Jm 2 kg·m2

Armature inductance La 10−3 H
Coefficient of viscous friction Tv 8 N·m·s/rad
Max. static friction torque on the Stribeck curve TStm 0.5 N·m
Max. static friction torque Tsm 1.5 N·m
Position-dependent friction torque T1m 0.35 N·m
Constant of the Stribeck curve T0 10 –
Constants of position-dependent friction [T2, T3] [1, 0.5] –
Constants of adaptation laws δi=1...7 9 · i –
Tuning factors: P gain k1 0.21 · 103 –
Tuning factors: D gain k2 1.40 · 103 –

Initial values of parameter estimates at linear terms: Ĵ (0) = 1, D̂(0) = 1, T̂ (0)
s =

0.2, T̂ (0)
St = 1, T̂ (0)

0 = 1. The initial value of the parameter estimate at nonlinear
terms ρ̂(0) = 0, and initial values of state variables ϕ(0) = ϕ̇(0) = 0, ψ(0)

f = 0.
It is important to observe that at the beginning of simulation, exact values of

some parameters are not known, but are given by initial values of their counterpart
estimates (see convergence in Fig. 11.3). Besides the uncertainty of parameters,
there exists some influence of discontinuous terms of frictional torques described
earlier.
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Fig. 11.1 Block diagram of the control system created in LabVIEW. b
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Fig. 11.2 Desired time history of angular velocity ϕ̇d(t) (dashed line) and the corresponding
response ϕ̇(t) (solid line) of the analyzed voltage-controlled simulation model of the DC motor
defined by the assumed set of model parameters, PD tuning variables: k1 and k2, and initial
values of state variables.
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Looking at Fig. 11.2, it can be noticed that the system response is inaccurate at
first occurrence of the threshold of constant angular velocity (0.2 rad/s). Such tran-
sient behavior results from the model and tuning parameters that are not correctly
estimated at the corresponding time. The response changes over time to produce
an acceptable overlapping of both trajectories at the beginning of the second pe-
riod (at 2 s). At subsequent ±0.2 rad/s thresholds, the system step response is well
damped, smoothly fitting edges of the desired shape. Figures 11.2b, d and f bring
much clearer comparison of three solutions: oscillatory, over-dumped and the most
accurate, which could be also subjected to some small improvement to get faster
convergence to the steady state velocity.
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Fig. 11.3 Convergence of selected estimates.
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Fig. 11.4 Projection of phase trajectory of the controlled system on the plane ϕ̇(ϕ).
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The phase trajectory presented in Fig. 11.4 gives another view on the desired
trajectory. It should take a shape of a closed curve bounded between ϕ̇ = ±0.2. To
achieve the demanding effect of control, voltage input should be applied accordingly
to the time history shown in Fig. 11.5. Amplitude of the demanding voltage control
input changes impulsively after crossing ϕ̇ = 0, for t = 1, 2, . . . , n [s].

0 1 2 3 4 5 t [s]

−20

−10

0

10

20

v f
[V
]

Fig. 11.5 Voltage input vf (t) applied to the optimally controlled DC motor.

The proposed strategy of voltage tracking control ensures robust adaptation,
works correctly, and can be applied to solve of other control objectives related to
shaping of time histories of responses of some group belonging to discontinuous
dynamical systems. After many trial-and-error attempts of tuning, parameters
k1 and k2 of the second stage of conducted control have been estimated. They
significantly affect local step response (appearing while going on the thresholds of
constant angular velocity). Moreover, on the basis of sliding surface based smooth
adaptive robust controller for compensation of frictional effects, there was a useful
and easily applicable extension of this method for a numerical tracking control
of DC motors by means of voltage input proposed. A kind of drawback or an
inconvenience in application of the elaborated control strategy is the requirement
of estimation of the upper bounding function for the nonlinear stick-slip friction in
order to guarantee the closed-loop stability. b

.
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Chapter 12

Numerical Modeling of a Shock Response

In this chapter, a lumped mass mechanical model of a thorax subjected to a blast
pressure wave is taken into consideration. A thorax spring-dashpot model developed
by Lobdell is implemented in numerical modeling of the dynamics of the multibody
system. The five-degree-of-freedom mechanical model of a chest adjacent to an elas-
tic backrest is subjected to an impulse loading generated by the blast pressure wave
released by an explosion. The so-called coupling of the pressure wave to the thorax
is reconsidered. With respect to the evident existence of inherent time delays of
displacements, the system of coupled bodies is described by a time delay differential
equations that are derived from the large-scale systems approach. Numerical solu-
tions present interesting dynamical behavior of the bio-inspired system, resulting
from inherent time delays and a time of arrival of the blast pressure wave. It is
pointed out that the inherent state time delays change the dynamical response of
the multibody system. Proper time of deployment of the foam-based armor plate
reduces relative compression of the thorax, which is to be protected by a bullet-proof
waistcoat.

Intrinsic delays in states of physical quantities characterize many dynamical sys-
tems in physics, material engineering, ballistics, biology and chemistry [Shi et al.
(2013); Ananth and Kushari (2013); Martin et al. (2013); Hammetter and Zok
(2013); Courtemanche et al. (1993)]. Natural or artificial control systems have
delays occurred from the sensing of a variable and the initiation of appropriate
response. Mathematics of systems with time delays poses basic mathematical chal-
lenges. These challenges can be described mathematically by delay differential
equations, which belong to the class of functional differential equations [Azbelev
et al. (2007)]. A delay influences dynamical responses of investigated systems and
is strongly visible in behavior of multibody systems. The time delay terms of differ-
ential equations produce an infinite number of roots of the characteristic equation,
making the corresponding dynamical behavior difficult to analyze. One solves such
problems indirectly by applying some approximations, but a limitation in accuracy
can occur and lead to the instability of systems [Yi et al. (2010)]. More effective
methods based on an analytic approach aimed at obtaining the complete solution
of systems represented by the delay differential equations based on the concept of

287
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Lambert W function was developed in [Asl and Ulsoy (2003)].
From the other side, numerical methods can be used to aid any mathematical

modeling.
Nowadays, numerical methods are popular in biodynamics and, in particular,

in dynamical analysis of primary blast lung injuries caused by the pressure waves
released by explosions [Fitek et al. (2011)]. Rapid motion of the human chest wall
creates a pressure wave in the lung material [D’yachenko and Manyuhina (2006)].
A concept to protect the chest is to use a layer foam material behind a massive
armor plate worn over the chest. Coupling of the blast wave and the thorax causes
that soft tissues, placed insie the thorax (e.g. lungs) can sustain large stress and
strain rate [Grimal et al. (2002)]. To investigate the mechanical responses of in-
ternal organs, a complex modeling is required. Homogeneous and linear elasticity
material properties are assigned to each part of the model, whereas the human car-
tilages and bones may have different material properties. Such conditions are taken
into consideration by Lobdell’s model, which has been reconsidered in this work to
perform numerical solutions of a large-scale time delay system.

In this chapter, the problem of modeling of a multibody biomechanical system
of a thorax is considered. On the basis of the theory of large-scale continuous-time
systems, an uncertain model of the thorax has been rewritten in the representation
allowing us to define its parametric uncertainties and complex interactions between
its subsystems. The parametric uncertainties make the discontinuous system more
difficult to solve, what is compensated by more accurate numerical solution and
evident possibility of inclusion of time delays in the shock responses.

The fact is that if we consider an exponential decaying response taking about 0.2

ms, then the time delay superposed on each body of the system plays an important
role.

A large-scale dynamical system can be characterized by a large number of state
variables, system parametric uncertainties, and a complex interaction between sub-
systems [Park (2002); Siljak (1978)]. In view of reliability and practical imple-
mentation, time delays have to be incorporated into the numerical modeling of
the large-scale physical systems due to the real transport of mass, propagation of
vibrations and computation times.

12.1 Variation of an Air-Blast Overpressure Wave

Explosions in the air create intense shock waves capable of transferring large tran-
sient pressures and impulses to the objects they intercept [Wadley et al. (2010)].
The free-field pressure time response from an explosion in the air is described by
the known Friedlander’s waveform

p(x, t) = p0e
(x−v0t)/(v0ti), (12.1)
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where p(x, t) is the pressure at the point x and time t, p0 is the blast overpressure
(maximum amplitude), ti is the wave decaying time and v0 is the sound speed in
the air. A blast wave propagates outwards from an explosion. It consists of a shock
front, which precedes a phase of positive pressure and can be followed by a negative
pressure phase, which is not taken into the analysis.

In the numerical experiment carried out in this chapter, one assumes that the
wave arrived in time tarr after the explosion at the buffer mass m1 placed at x = 0 in
front of the investigated multibody system (see Fig. 12.1). Therefore, the simplified
time-dependent characteristics of the pressure wave [Fitek et al. (2011)] is given

p(t) = p0e
−t/ti . (12.2)

In numerical computations, it will be more useful to represent the pressure wave
as the effective impact force ub(t) per an effective area a of the chest subject to the
air shock. Temporal variation of the blast wave which reaches the armor plate is
estimated using the following conditions:

(C1) The most harmful positive phase of the blast wave profile is assumed [Goel
et al. (2012)].

(C2) Maximum amplitude p0 = 1 MPa due to a 10 kg TNT explosion at 2.2 m
standoff.

(C3) Wave decay time ti = 1.66 ms causes a decrease in p0 to zero within tr = 1.2

ms, so that the impulse I = 0.4 kPa ·s impinges onto the armor buffer plate.
(C4) The effective area a = 1.825 ·10−2 m2 of the PUR-foam plate and the chest.
(C5) Maximum amplitude of the effective impact force u0 = 18.25 kN (see

Fig. 12.2).
(C6) Impact force u(t) decreases after time ti to u0/e.
(C7) Arrival time of blast wave after detonation tarr = 1 ms.
(C8) Mass of the buffer plate m1 = 0.365 kg for the foam density ρf = 20 kg/m2.
(C9) Reaction force of the armor plate worn over the chest to the blast wave

during buffer deployment depends on the foam unloading properties (see
σu(ε) in Table 12.1).

(C10) For an active mitigation concept, the buffer deployment time depends on
σu(ε) as well.

(C11) Maximum incident overpressure cannot exceed 13 kN, which is determined
from the lung damage threshold on Bowen’s curve [Con (1991)] and for
duration of positive incident overpressure equal to 1 ms.

If a sensor capable of detecting the electromagnetic emission [Orson et al. (2003)]
created at the instant of detonation reaches a time delay ta between detonation and
the arrival of the blast wave, then a buffer is deployed by using a high-speed actuator
such as a propellant. The force exerted on the buffer as it deploys must assure that
the reaction pressure exerted on the protected chest does not exceed 0.3 MPa. For
detonations of high explosives, the peak overpressure can cause injury to the thorax.
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In our current study based on the work [Olejnik and Awrejcewicz (2015)], the
foam deploys with lower peak overpressure determined by σu(ε) (see Table 12.1),
and the time response impact dynamics is assessed for a model problem consisting
of 10 kg of a high explosion TNT at 2.2 m standoff. The relevant ConWep [Con
(1991)] computations of peak pressure p0 over the atmospheric pressure, impulse I
and arrival time tarr as a function of range are found in [Wadley et al. (2010)].

Finally, we can write a formula for the blast load with u0 peak pressure and ti
decay coefficient

ub(t) = u0e
−t/ti . (12.3)

The blast load characteristics will be used to model the impulse loading.

12.2 The Foam-Based Armor With a Buffer Plate

Foam materials have the ability to deform at low stress level while absorbing me-
chanical energy. Foam is used in impact protection to absorb the kinetic energy of
an impact and to reduce the maximum stress on the protected object [Fitek et al.
(2011)]. The foam material reduces peak acceleration while increasing the duration
of the impact.

Pressure waves released by explosions cause the so-called primary blast injuries.
They significantly affect the air-containing organs of human body [Horrocks and
Brett (2000)], and in particular, lungs. A lung injury caused by the pressure wave
occurs after a rapid motion of the chest wall, that creates a following pressure wave
in the lung structure. This is referred to as coupling of the blast wave to the thorax.
A concept to protect lungs against primary blast injury is to use a layer of foam
material behind a massive armor plate worn over the chest [Fitek et al. (2011)].

Capability of energy absorbtion is the basic feature of foams. They are deformed
and absorb the impact energy [Avalle et al. (2001)] while keeping the stress acting
on the armor plate loaded with the blast wave. One of the common features of
energy absorbing foam materials is that there is a discernible plateau in their com-
pression stress-strain curves. It means that the foam materials can absorb energy
by deformation, but keep the stress almost constant [Avalle et al. (2001); Han et al.
(1998)].

The typical shape of the stress-strain curve for solid foams has been presented in
[Goog (2011)] and, including hysteresis, in [Del Piero and Pampolini (2010)]. The
model proposed by Goog encompasses a few parameters dependent on relative den-
sity, because Young’s modulus and plateau stress usually increase and densification
strain decreases with increasing foam density.

The foam model assumed in this chapter is a little modification of Goog’s model
that is completed with a hysteresis. It consist of three systems settled in parallel to
each other (see in Fig. 12.1):

(G1) Maxwell’s arm, containing a spring (linear stiffness k16) and a dashpot
(viscosity c62) in series. The first component describes the first and second
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region of foam compression and deformation while the plateau stress is
constant.

(G2) Linear spring kp. The second stiffness represents the shape of the plateau.
It is integrated to describe the increasing or decreasing part of the plateau.

(G3) Nonlinear spring kD. The third stiffness is responsible for densification
part. It is given by the formula

kD(ε) = γ(1− eε)n, ε = (x1 − x2)/hf , (12.4)

where γ and n are the model parameters, ε is the strain and hf is a thickness
of the foam.

Each element of the spring-dashpot model will produce the following components
of reaction force:

Fp = aσp = akpε = akp(x1 − x2)/hf , (12.5a)

FD = aσD = akDε = aγ(1− eε)n(x1 − x2)/hf , (12.5b)

Fc = aσc = ac62ε̇c = ac62(ẋ2 − ẋ6)/hf , (12.5c)

Fk = aσk = ak16εk = ak16(x1 − x6)/hf , (12.5d)

where kp, γ, c62, k16 are stresses [MPa].

Table 12.1 Foam model parameters for estima-
tion of σ(ε) curve with hysteresis.

σ k16 c62 kp γ n

σl(ε) 16.46 0.465 0.085 0.176 6

σu(ε) 3.408 0.111 0.085 0.037 6

σd(ε) 0 0 0.085 0 0

Polymeric open-cell foams exhibit complex nonlinear behavior [Del Piero and
Pampolini (2010)]. As it has been already mentioned, the stress-strain curve for
uniaxial compression shows three well distinguishable regimes (G1-G3). The same
three regimes are present during unloading of the foam, but the response exhibits
a hysteresis loop. For the numerical experiment, loading σ(ε)|ε̇>0 and unloading
σ(ε)|ε̇≤0 curves are estimated, respectively, for the model parameters of foam den-
sities ρl = 50 kg/m3 and ρu = 40 kg/m3 (divided by two) listed in Table 12.1
(compare with [Goog (2011)]).

The reader should note that the study is not oriented on the precise modeling of
the foam behavior, but it tends to stress the importance of time delays in modeling
of impulse responses of multibody systems using only the simplified description. It
might be significant in the case of any physical object of some inertia that is subject
to rapid excitation or deformation.
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12.3 Physical Model of the System

The problem of time varying position- and velocity-dependent system parameters
is reflected in the modeling by many factors, i.e., Maxwell’s elements. Skeletal de-
flection of the thorax was determined by the difference between displacements of its
anterior and posterior walls. The parameter discontinuity, observed in connections
between the directly coupled lumped masses of the mechanical idealization, appears
in four cases (U1-U5).

(U1) If a relative displacement x21(t)−x31(t) < 0 measured between the front and
back walls of the thorax exceeds d = 3.8 cm, then a bilinear spring stiffness
k23 doubles its value that satisfies Kroell’s corridors at large deflection.
Stiffness of contents of the thorax changes due to the nonlinear material
behavior of the rib cage.

(U2) If a velocity of relative displacement of front and back wall of the thorax
becomes negative, i.e., x22(t) −x32(t) < 0, then a parameter c23 of viscous
damping doubles its value. A different damping coefficient, responsible for
elongation and compression, is assumed in order to satisfy the descending
part of Kroell’s corridors.

(U3) If a foam material is compressed (in loading state) or relaxed (in unload-
ing state), then two different phenomenological solid foam models, which
are nonlinear according to (G1-G3), are assumed (see σl(ε) and σu(ε) in
Table 12.1).

(U4) If the foam is fully deployed and there is no compressing force acting on it,
its modeling is changed from the full nonlinear viscoelastic foam model (G1-
G3) to a reduced one, which is modeled by a spring connection of elasticity
kp between the proof mass m1 and the front wall’s mass m2 of the thorax
(see σd(ε) in Table 12.1).

(U5) If the foam achieves a state of full deployment, then the proof mass m1

(the armor plate) starts to pull the posterior wall of the chest via the
waistcoat. In consequence, the spring-dashpot model is activated, so k13

and c13 become different from zero. It is because a deployable foam-based
armor plate is assumed in the experiment to be integrated on an outer side
of the bullet-proof waistcoat worn over the chest.

In general, discontinuity sources (U1-U5) in system’s stiffness and damping pro-
duce coexisting time varying uncertainties. Modeling of the investigated system
dynamics is quite complicated, but the large-scale system’s representation does
make it easier.

An idealized biomechanical model of a thorax being supported from behind has
been depicted in Fig. 12.1a. Extended models of a sitting human are analyzed
in [Piersol and Paez (2010)]. The concept of the thorax model originates from
Lobdell’s approach, which was developed by General Motors to study the response
of the human thorax in automobile crashes [Lobdell et al. (1973)]. An application
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D

(a) (b)

Fig. 12.1 A biomechanical model of a thorax (a) subjected to the frontal blast overpressure wave
(m1 – proof mass of the armor plate, m2, m3 – masses of posterior and anterior walls of the chest,
respectively, m4 – mass of the backrest). Detailed view (b) of the lumped mass mechanical model
of a thorax subjected to the frontal blast pressure wave (k13 and c13 – spring-dashpot model of a
bullet-proof waistcoat).

of the model has been presented in [Fitek et al. (2011)], where the model consisted
of a configuration of springs and dashpot elements. An injury, which results from
the pressure wave released by an explosion, is referred to as primary blast injury
[Wadley et al. (2010)]. Primary blast injuries most significantly affect the air-
containing organs of the body [Horrocks and Brett (2000)].

Detailed view of the biomechanical model of the thorax subjected to frontal
blast pressure wave has been shown in Fig. 12.1b. From the left side: the effective
foam armor’s mass m1 under the pressure impact, the front body of the mass m2

in the anterior surface of the chest wall, the rear body of mass m3 in the posterior
surface of the chest wall, m4 – mass of the support.

Lobdell’s model was developed through measuring the thoracic response of a
human subjected to a shock loading. The use of the model has been extended
by researchers to the field of protection against air-blasts to predict the thoracic
response to an air-blast wave [Chan et al. (2010)].

The model and some associated concepts of limiting injuries caused by the afore-
mentioned air blasts are reconsidered here in one system, and also supplemented.
The following concepts are incorporated:

(a) a support attached to the thorax from behind,
(b) basic approximation of an air pressure wave given in Friedlander’s form

[Dewey (2010)],
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(c) a phenomenological model for solid foams introduced in [Goog (2011)],
(d) a deployable waistcoat with integrated (initially compressed) foam-based

armor plate.

An idealized air-blast pressure wave reaches an effective area of the foam-based
armor plate represented by the body of the mass m1 which is elastically attached
to the second body of the mass m2 in the assumed foam model (front wall of the
thorax, see Fig. 12.1b).

12.3.1 Formulation of the Large-Scale Problem

Let us take into consideration a class of uncertain continuous-time system composed
of N coupled subsystems as follows:

dx̄i(t)

dt
=
(
Ai + ∆Aii(t)

)
x̄i(t) +

∑
N
j 6=i
(
Aij + ∆Aij(t)

)
x̄j(t

′
j)

+
(
Bi + ∆Bi(t)

)
ū(t), (12.6a)

ȳi(t) =Cix̄i(t) +Diū(t), for i = 1, . . . , N, (12.6b)

where x̄i(t) ∈ Rni×2, ū(t) ∈ Rmi , and ȳi(t) ∈ Rli denote, respectively: vectors of
system states, control inputs, and system outputs, t′j = t− τj .

The dynamical system (12.6) of i coupled subsystems is described by the internal
behavior time independent state matrices Ani×nii , while the control inputs matrix
Bni×mii , the system output matrix Cli×nii and the control inputs transition matrix
Dli×mi represent connections between the external world and the system, τj is
the time delay of j-th coupled system. Control inputs do not directly influence
the system outputs in the investigations, therefore the matrix Dli×mi

i is zero. A
controlled case of the analyzed multi-body system has been taken into consideration
by the authors in Chap. 13 and [Olejnik and Awrejcewicz (2011, 2010)].

For the purpose of solution of the analyzed problem, in Eq. (12.6), time-
dependent matrices ∆Ani×niii ∆Ani×niji and ∆Bni×mii are introduced that define,
respectively: the system state and control input uncertainties. It allows for a more
or less precise inclusion of the system parameters disturbances (U1-U5) given in a
form of known time-dependent function or in a quite different form of a function
dynamically dependent on the internal system state (time- or state-varying proper-
ties are allowed to be modeled as well). Matrices ∆Ani×niji represent all possibilities
of connections between interconnected subsystems forming the entire system.
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Equations (12.6) can be expanded to the following forms:

˙̄x1(t) = (A11 + ∆A11)x̄1(t) + (A12 + ∆A12)x̄2(t′2) + ∆A13x̄3(t′3)

+ ∆A16x̄6(t′6) +B1ū(t), (12.7a)

˙̄x2(t) = (A22 + ∆A22)x̄2(t) + (A21 + ∆A21)x̄1(t′1) + (A23 + ∆A23)x̄3(t′3)

+A25x̄5(t′5) + ∆A26x̄6(t′6) (12.7b)

˙̄x3(t) = (A33 + ∆A33)x̄3(t) + (A32 + ∆A32)x̄2(t′2) + ∆A31x̄1(t′3)

+A34x̄4(t′4) +A35x̄5(t′5) +B3ū(t), (12.7c)

˙̄x4(t) =A44x̄4(t) +A43x̄3(t′3), (12.7d)

˙̄x5(t) =A55x̄5(t) +A52x̄2(t′2) +A53x̄3(t′3), (12.7e)

˙̄x6(t) = ∆A66x̄6(t) + ∆A61x̄1(t′1) +A62x̄2(t′2), (12.7f)

y(t) =

[
0 1 −1 0

0 0 0 0

]
x̄i, (12.7g)

where: x̄i =
[
xi1, xi2

]T
, ˙̄xi =

[
ẋi1, ẋi2

]T
, ū =

[
ub, us

]T
, an impact force of the

air-blast pressure wave ub(t) is given by Eq. (12.3), and a reaction force of the
support

us(t) = −ksx41(t)− csx42(t) . (12.8)

In Eq. (12.7g), a difference x21(t)−x31(t) in displacements of bodies denoted by
m2 and m3 will be the observed system output. In all subequations of Eq. (12.7),
zero matrices are neglected.

Note that displacements x5 and x6 (see in Fig. 12.1b) of massless points in
Maxwell’s elements are expressed in Eq. (12.7e) by x51 and in Eq. (12.7f) by x61,
while corresponding velocities are obtained directly from a two-point method for
approximating the derivative of displacements

ẋi2 =
xi1(t+ h)− xi1(t− h)

2h
, i = 5, 6.

Nonzero state-space matrices are as follows:

A11 =

[
0 1
−kp
m1

0

]
, A12 =

[
0 0
kp
m1

0

]
, A22 =

[
0 1

−k23−k′23−kp
m2

−c23
m2

]
, A21 =

[
0 0
kp
m2

0

]
,

A23 =

[
0 0
k23
m2

c23
m2

]
, A25 =

[
0 0
k′23
m2

0

]
, A33 =

[
0 1

−k23−k34
m3

−c23−c′23−c34
m3

]
, A32 =

[
0 0
k23
m3

c23
m3

]

A34 =

[
0 0
k34
m3

c34
m3

]
, A35 =

[
0 0

0
c′23
m3

]
, A44 =

[
0 1
−k34
m4

−c34
m4

]
, A43 =

[
0 0
k34
m4

c34
m4

]
,
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A55 =

[
−k
′
23

c′23
0

0 0

]
, A52 =

[
k′23
c′23

0

0 0

]
, A53 =

[
0 1

0 0

]
, A62 =

[
0 1

0 0

]
, B1 =

[
0 0
1
m1

0

]
,

B4 =

[
0 0

0 1
m4

]
,∆A11 =

[
0 0

−kD(t)−k16(t)−k13(t)
m1

− c13(t)
m1

]
,∆A12 =

[
0 0

kD(t)
m1

0

]
,

∆A16 =

[
0 0

k16(t)
m1

0

]
,∆A13 =

[
0 0

−k13(t)
m1

c13(t)
m1

]
,∆A21 =

[
0 0

kD(t)
m2

0

]
,

∆A22 =

[
0 0

−k23(t)−kD(t)
m2

−c23(t)−c62(t)
m2

]
,∆A23 =

[
0 0

k23(t)
m2

c23(t)
m2

]
,∆A26 =

[
0 0

0 c62(t)
m2

]
,

∆A33 =

[
0 0

−k23(t)−k13(t)
m3

−c23(t)−c13(t)
m3

]
,∆A31 =

[
0 0

k13(t)
m3

c13(t)
m3

]
,

∆A32 =

[
0 0

k23(t)
m3

c23(t)
m3

]
,∆A66 =

[
−k16(t)
c62(t) 0

0 0

]
,∆A61 =

[
k16(t)
c62(t) 0

0 0

]
.

12.3.2 Uncertainties and the Switching Matrices

The problem definition uncovers some new features of the investigated bio-inspired
system shown in Fig. 12.1b. The problem of time-varying parameters that intro-
duces some uncertainties to the model have been numerically solved by definition
of multivalued matrices switched in accordance to cases (U1-U5). Stiffness of the
chest interior with organs increases at condition (U1) about two times to appropri-
ately approximate the real chest compression. It obviously means that stiffness of
the rheological coupling increases discontinuously with regard to a greater than d

compression of the thorax xr, and that damping ability of the coupling varies in
time as the thorax undergoes suitable compression or relaxation. Such discontinuity
in subsystem’s stiffness and damping produces parameter uncertainties dependent
on state variable.

Uncertainties (U1-U2).
In equations (12.7b) and (12.7c), one can encounter four ∆Aij(t) parameter

uncertainties of the analyzed dynamical system:

∆Aij(t) =

[
0 0

σ(i,j)k23(t)
mi

σ(i,j)c23(t)
mi

]
= DiF (t)Eij , (12.9a)

σ(i, j) = −sgn
(
(−1)i+j

)
, (12.9b)

where i, j ∈ (2, 3).
Distribution of entries in ∆Aij(t) does not change over their all possibilities.

Therefore, the unknown time-varying real-valued matrix F (t) is assumed to be
defined in the same way, but FT (t)F (t) ≤ I must hold for t ∈ R+, where I is
the identity matrix. The introduced decomposition DFE includes some known
constant real-valued matrices Di and Eij of appropriate dimensions that need to
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be estimated to use them, for instance, in a solution to LMI problems [Park (2002);
Mukaidani et al. (2004)].

Dependently on xr(t) and vr(t), the following forms of the uncertainty matrix
∆A22(t) = ∆A

(k)
22 are possible in Eq. (12.7b):

∆A
(k)
22 =



[
0 0

0 0

]
if s1 then k = 1 ,[

0 0
−k23
m2

0

]
if s2 then k = 2 ,[

0 0

0 −c23m2

]
if s3 then k = 3 ,[

0 0
−k23
m2

−c23
m2

]
if s4 then k = 4 ,

(12.10)

where the remaining ∆Aij(t) (for i, j = 2, 3) are to be defined in a similar way,
sk = {xr(t), vr(t) : xr(t) < d ∧ vr(t) > 0; xr(t) ≥ d ∧ vr(t) > 0; xr(t) < d ∧
vr(t) ≤ 0; xr(t) ≥ d∧ vr(t) ≤ 0} defines rheological properties of the biomechanical
system. Switching conditions si will select only one of k possibilities ∆A

(k)
ij for

k = 1, . . . , 4, dependently on values of pairs (xr(t), vr(t)) creating the discontinuous
time history of uncertainties ∆Aij(t) of the state matrices of coupled two-degree-
of-freedom neighboring subsystems.

To find a better description of the existing switching nature, it is now required
to choose Di and Eij matrices of a decomposition. For instance, an exemplary de-
composition of ∆A

(k)
22 , for k = 3 could be made accordingly to the scheme presented

in [Olejnik and Awrejcewicz (2013)].
Perturbation matrix F (t) will depend on k cases that have been delivered in

the case statement (12.10). Therefore, with regard to FT (t)F (t) ≤ I and using
Eq. (12.9), the following formula reads

∆A
(k)
i,j = DiF

(k)Eij =

[
0 0

0 δ4i

]
F (k)

[
σ(i,j)β1

γ 0

0 σ(i,j)β4

γ

]
, (12.11)

where: i, j ∈ (2, 3), k = 1, . . . , 4, σ(i, j) is given in Eq. (12.9b), and F (t) will be
switched accordingly to:

F (k) =



[
0 0

0 0

]
if s1 then k = 1 ,[

0 ±γ
±γ 0

]
if s2 then k = 2 ,[±γ 0

0 ±γ

]
if s3 then k = 3 ,[

0 ±γ
±γ ±γ

]
if s4 then k = 4 .

(12.12)

The case statement (12.12) captures switching properties of ∆Aij(t) described
in comments to Eq. (12.10). As it was expected, F (t) is defined in the same way for

 b
.



July 14, 2016 14:53 ws-book961x669 DYNAMICS OF MECHATRONIC SYSTEMS 10193-main page 298

298 DYNAMICS OF MECHATRONIC SYSTEMS

four uncertainties of the model. Matrices Di and Eij are constant and their entries
depend on the subsystem that they are related to.

To check correctness of the previously made estimations, let the following pa-
rameters be assigned for the uncertainties: δ42 = 1/m2, δ43 = 1/m3, β1 = k23,
β4 = c23, γ 6= 0. For example, ∆A

(4)
2,2 = D2F̄

(4)E22 = [[0, 0], [0, 1/m2]] · [[0, γ], [γ, γ]] ·
[[−k23/γ, 0], [0,−c23/γ]] = [[0, 0], [−k23/m2,−c23/m2]] what is in agreement with
the fourth case of Eq. (12.10). Parameter γ = 0.618033 was estimated in a semi-
analytical way presented in Sec. 12.4.

Uncertainties (U3-U4).
While a foam material is compressed (in loading state) or relaxed (in unloading

state), two different phenomenological solid foam models are distinguished σl(ε) and
σu(ε), which are nonlinear according to (G1-G3) (see in Table 12.1). If the foam is
fully deployed and there is no compressing force acting on it, then its modeling is
changed from the full nonlinear viscoelastic foam model (G1-G3) to a reduced one
σd(ε) which states a spring connection of elasticity kp between the proof mass m1

and the front wall mass m2 of the chest (see in Table 12.1). The mentioned models
are cast by the case statement:

σ =


σl(ε) if ε > 0 and ε̇ > 0 ,

σu(ε), if ε > 0 and ε̇ ≤ 0 ,

σd(ε), if ε ≤ 0 .

(12.13)

Uncertainty (U5).
While the foam achieves a state of full deployment, the proof mass m1 (the

armor plate) starts to pull the posterior part of the thorax of the mass m3 via
the waistcoat. The spring-dashpot model is activated, k13 and c13 become different
from zero. It really holds because in the experiment, a deployable foam-based armor
plate is integrated on an outer side of the bullet-proof waistcoat which is worn over
the chest. From this point of view, a force between bodies 1 and 3 is activated:

F13(t) =

{
−k13(x11 − x31)− c13(x12 − x32), if ε ≤ 0 ,

0, if ε > 0 ,
(12.14)

Numerical integration of 12 first-order differential equations is a bit conditioned,
but it better approximates complex dynamics of the biomechanical model of the
chest subjected to an impulsive loading. It is equipped with additional bodies like
the armor plate and the backrest of a seat, which have an influence on behavior of
the investigated multibody system.

12.4 Semi-Analytical Estimation of the Optimal Parameter

Conducting our research according to [Olejnik and Awrejcewicz (2013)], a semi-
analytical estimation of γ parameter, which has been introduced in Eq. (12.11), is
given below.
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Matrix F (t) in Eq. (12.12) will depend on k cases that have been delivered in
the case statement (12.7b). Therefore, with regard to FT (t)F (t) ≤ I, let us assume
F (3)TF (3) = γI holds for k = 3 and γ ≤ 1, then:

F (3)TF (3) =

[
f1 f3

f2 f4

] [
f1 f2

f3 f4

]
=

[
γ 0

0 γ

]
,

f2
1 + f2

3 = γ,

f2
2 + f2

4 = γ,

f1f2 + f3f4 = 0 .

(12.15)

In the next step, expansion of Eq. (12.9) holds

∆A
(3)
22 =

[
d1 d2

d3 d4

] [
f1 f2

f3 f4

] [
e1 e2

e3 e4

]
=

[
p1e1 + p2e3 p1e2 + p2e4

p3e1 + p4e3 p3e2 + p4e4

]
, (12.16)

where: p1 = d1f1 + d2f3, p2 = d1f2 + d2f4, p3 = d3f1 + d4f3, p4 = d3f2 + d4f4.
Comparison of Eq. (12.16) with ∆A

(3)
22 in Eq. (12.10) yields:

p1e1 + p2e3 = 0 , (12.17a)

p1e2 + p2e4 = 0 , (12.17b)

p3e1 + p4e3 = 0 , (12.17c)

p3e2 + p4e4 = β4 , (12.17d)

where β4 represents a nonzero entry of the decomposed matrix ∆A
(3)
22 , while other

entries are equal to zero. Let us reduce the number of equations (12.17).
Putting e1 from (12.17a) to (12.17c) and e2 from (12.17b) to (12.17d), one finds

e3π = 0, which will be satisfied if e3 = 0 or π = 0, but with regard to e4π = β4,
(where β4 6= 0 and π = p4 − p3p2/p1) π and e4 cannot be zero, so e3 = 0 must be
set. After that assumption one gets e1 = 0 and, in a consequence, Eqs. (12.17a)
and (12.17c) vanish. Two equations remaining in (12.17) can be rewritten:

d1φ1 + d2φ2 = 0 , (12.18a)

d3φ1 + d4φ2 = β4 , (12.18b)

where:

φ1 = f1e2 + f2e4 , (12.19a)

φ2 = f3e2 + f4e4 . (12.19b)

The two cases can be distinguished: (i) if φ1 = 0, then from Eq. (12.18b) φ2 6= 0,
so d2 = 0 to satisfy Eq. (12.18a); (ii) if φ2 = 0, then from (12.18b) φ1 6= 0, so d1 = 0

to satisfy (12.18a). We choose the first case, then d4 = β4/φ2 for φ2 6= 0.
According to Eq. (12.18), φ2 = β4d1/(d1d4−d2d3). Selecting d3 = 0, φ2 = β4/d4

is confirmed while d4 6= 0, and φ1 = d2 = 0 in Eq. (12.18a), so let d1 = 0 be
arbitrarily set.
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Having the above derived, let f3 = 0 in Eq. (12.15). Then, f1 = f4 = ±γ and
f2 = 0. Now, one writes from Eq. (12.18b) that d4f4e4 = β4 at φ1 = 0. Putting
d4 = δ4 6= 0, one gets e4 = ±β4/γ. Finally, e2 = 0 to satisfy Eq. (12.19a), and the
decomposition (12.16) finds the following continuation

∆A
(3)
22 =

[
0 0

0 δ4

] [±γ 0

0 ±γ

]0 0

0 ±β4

γ

 . (12.20)

It is possible to obtain for k = 2 and k = 4 the remaining cases of the uncertainty
matrix ∆A

(k)
22 (see Eq. (12.10)) in a similar way, as shown below:

∆A
(2)
22 =

[
0 0

0 δ4

] [
0 ±γ
±γ 0

]±β1

γ
0

0 0

 , (12.21a)

∆A
(4)
22 =

[
0 0

0 δ4

] [
0 ±γ
±γ ±γ

]±
β1

γ
0

0 ±β4

γ

 . (12.21b)

Fig. 12.2 Optimal γ parameter-dependent ξ(4)(z1, z2) plot.

The last condition taken into consideration is as follows: F (k)TF (k) ≤ I ⇐⇒
ξ(k) = F (k)TF (k) − I ≤ 0 for k = 1, . . . , 4. The n × n real symmetric matrix ξ(k)

is negative semi-definite if zT ξ(k)z ≤ 0 for all nonzero vectors z ∈ Rn, where zT

denotes the transpose of z. One could check that ξ(k) is symmetric and in particular:
ξ(1) = 0, ξ(2) = ξ(3) = (γ2 − 1)(z2

1 + z2
2), ξ(4) = γ2(z2

1 + 2z1z2 + 2z2
2) − z2

1 − z2
2 ,

and then, for ξ(k) ≤ 0 the following bounds are determined {γ : −1 ≤ γ ≤ 1, |γ| ≤
(z2

1 + z2
2)1/2(z2

1 + 2z1z2 + 2z2
2)−1/2}. It is seen that only the fourth condition on ξ(4)

is sensitive on the selection of γ parameter. For the case of presence of two entries
in the bottom row of Eij , one would require to accomplish the task: maximize γ
subject to ξ(4)(z1, z2) ≤ 0, z1 6= 0, z2 6= 0. The maximum value of parameter
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γ∗ = 0.618033 was estimated numerically and the corresponding ξ(4)(z1, z2) surface
plot is shown in Fig. 12.2.

The γ estimate satisfies −γ∗ ≤ γ ≤ γ∗, but to achieve the similar decomposition,
the presented derivation could follow another way. To sum up, the results are
useful in numerical integration of a class of discontinuous-state large-scale dynamical
systems. The switching nature of the system parameters defined by a set of matrices
F (k) must be assumed if an exact numerical modeling of the investigated multibody
system has to be achieved.

12.5 Numerical Experiments

Two sources of variability are applied in the numerical simulation to investigate
responses of the analyzed multibody system:

1. Various arrival times of impact force ub(t) at foam-based armor plate.
2. Various inherent time delays τi of each subsystem of the thorax.

Parameters of the simulation: m1 = 0.365, m2 = 0.45, m3 = 27, m4 = 10 [kg];
k13 = 105, k23 = 0.263 · 105, k′23 = 0.132 · 105, k34 = 0.05 · 105, ks = 0.1 · 105 [N/m];
c13 = 0.02 · 103, c23 = 0.52 · 103, c′23 = 0.18 · 103, c34 = 0.1 · 103, cs = 0.1 · 103

[N/m]; foam thickness hf = 0.1 [m]; number of iterations N = 5 · 104; step time of
numerical integration h = 2·10−6; time delays: t′1i = t′2i = t′3i = ih (i = 1, . . . , 5); all
initial conditions of state variables are zero except for x11(0) = 0.7hf (compressed
foam thickness equals 3 cm); the remaining conditions are provided in (C1-C11),
(G1-G3), (U1-U5) and Table 12.1.

Stress Fch in the thorax model is calculated according to the formula

Fch = k23(x21 − x31) + c23(x22 − x32), (12.22)

where k23, x̄2, x̄3 are time-dependent variables.
Deployment of the foam initiates all the numerical experiments presented below.

Influence of air-blast wave time arrivals.
Figures 12.3 exhibit significant differences in the dynamical behavior of the sys-

tem. The time histories were computed for a few time delays of arrival (ranging
from 2.5 ms to 0) of the air-blast pressure wave that reaches the foam-based armor
plate. It is seen that for ta equal c.a. 0.5 ms, the relative deformation is c.a. 4 cm.
If the foam deployment delay is greater, then the strain in the thorax rises compar-
ing to the nondelayed counterpart. The results prove that even small time delay
affects the dynamics, but in this particular case, both the deformation (Fig. 12.5)
and maximum stress (Fig. 12.6) decrease.
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Fig. 12.3 Time histories of displacements x1, x2, x3 (a, b, c), time histories of a relative displace-
ment x21−x31 (d, e) and the corresponding stress-strain curve Fch (f) as a function of blast wave
time arrivals ta.
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Fig. 12.4 Time histories of displacements x1(t), x2(t) and x3(t) (a, b, c) as a function of inherent
time delay τi.

Influence of inherent time delays.
The time histories were computed at very small time delays (ranging from 5h

to h = 2 · 10−6) and compared with the nondelayed counterpart. The results prove
that even small time delay affects the dynamics as well as a side effect appears in a
form of small amplitude vibrations of higher frequency.

Figure 12.6 presents a comparison of stress-strain characteristics of the chest
model deformation estimated for nondelayed (for τ6) and delayed displacements of
bodies mi, i = 1, 2, 3. One can observe that even small time delays of about a few
time steps of numerical integration play significant role in the blast pressure wave
response. Inherent time delays are important in modeling of the chest. Condition
(C11) will be satisfied if the time delay τ = 5h (see Fig. 12.6).

Importance of time delays in numerical solution of the analyzed multibody sys-
tem is confirmed. Modeling of a response of the thorax energized by air-blast over-
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Fig. 12.5 Time history of the relative displacement x21(t)− x31(t) as a function of τi.
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Fig. 12.6 Stress-strain curve as a function of τi.

pressure has gained new quality. Some attempts related to the study were men-
tioned in the literature overview, but significance of time delays in such dynamical
systems have been sufficiently emphasized in this chapter of the monograph. The
investigated system has received a new useful representation by application of the
large-scale systems approach.

Interesting dynamical behavior of the bio-inspired system is solved numerically.
It is pointed out that the inherent state time delays change the dynamical response
of the multibody system. Proper time of deployment (initiated about 0.6 ms be-
fore an impact of the blast wave) of the foam-based armor plate reduces (at some
conditions of the experiment) relative compression of the thorax.
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Chapter 13

Control of a Multibody System Response
to a Suddenly Applied Force

Active control can be adopted in optimization of fast impulsive response systems
occurring in body interacting biomechanics. Such kinds of control of mechanical or
biological structures are not new, but can be still explored and successively used.
This chapter focuses on application of one controlling force to minimize a relative
compression of a human chest which has been caused by some impacting action of
an elastic external force. A virtual actuator controlling deformation in the analyzed
rheological dynamical system of three-degree-of-freedom acts between the back side
of the human thorax and the back rest. Reduction of internal displacements in the
thorax has been estimated solving the linear quadratic regulator (LQR) optimiza-
tion problem. Time histories of the controlled and uncontrolled system responses,
evaluation of response’s shape after changing coefficients of the control method as
well as dependency of the objective function estimation on the proportional gain
vector are presented and discussed.

13.1 Introduction

It is obvious that today’s modern high technology cannot exists without modeling
and computer simulations. These tools bring an important information about spe-
cific properties of the investigated model, which could be checked and validated in
the final design of many products. Usually, it is one of the earliest stages of prod-
ucts design, its meaning and observations are seriously taken into consideration.
The most of computer simulations in the field of biomechanics of a human, animals
or flora are shared between some finite elements methods [Plank et al. (1994)] and
classical rigid and multibody mechanics. Active control of building structures was
a motivation for the approach shown in the paper, therefore a few representative
examples of the second branch can be found in [Jalihal and Utku (1998)].

Investigations on tension or deformation of the parts of our surrounding nature,
the shape of which is fully described, lie in the scope of interest of the first field of
science. This chapter follows the second way to illustrate the possibility of global
action on the analyzed structure, where the dynamics of the bodies represented
by point masses is reconstructed. It gives some valuable advantages like, for ex-

305
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ample, less complexity of the mathematical description, low costs of testing of the
prototype before setting it to the construction, etc. There appear also, as usually,
some drawbacks resulting, for example, from omission of internal structure defor-
mations of the investigated bodies, and others. Disregarding of wear phenomena or
an influence of temperature fields may serve as instances of these both concepts.

Nowadays, numerical methods are popular in biodynamics and, in particular, in
dynamical analysis of communication accidents [Noureddine et al. (1996)]. Gener-
ally, frontal impacts are considered to be the most common vehicle collision causing
numerous injuries [Pietrabissa et al. (2002)]. When a human body is exposed to an
impact load, soft tissues of the internal organs can sustain large stress and strain
rate. To investigate the mechanical responses of the internal organs, sometimes com-
plex modeling of the organs is required. Homogeneous and linear elasticity material
properties are assigned to each part of the model, whereas the human cartilages
and bones may have different material properties. In order to have a more realistic
representation, more complex tissue material properties should be applied [Harrigan
and Hamilton (1994)].

Model development often converges to some advance and some complex ana-
lyzes, including passive or active control of some weak points. This work focuses
on the linear quadratic regulator (LQR) method that is known to have very good
robustness properties. These properties are independent of choosing the weighting
matrices in the objective function estimation (the cost functional), so if a control
system belongs to the class, these robustness properties are definitely assured. It
has been confirmed by some applications of the method in [Alavinsab et al. (2006);
Bernussou et al. (1989); Uchida et al. (1988)].

Observe that in the existing literature, the use of linear quadratic regulation
of impulsive load acting on an elastic and damped biomechanical model of human
organs is not reported, hence our considerations are the first attempt to check such
a possibility. Methodology concerns a dynamical modeling of a human chest as an
elastic connection of its main components, considered separately as a mechanical
rigid body having a point-focused mass. Such an assumption does some averaging
in the behavior of the thorax, but is very useful for the examination of its controlled
realization.

13.2 Dynamical Modeling of the Analyzed Problem

Equilibrium of forces in the gravitational field leads to a system of three second-
order differential equations and a one of the first-order (because of the massless
point of coupling at x4 (see Fig. 13.1 b), valid for the rheological properties of the
inner part of the thorax). One could said that we deal with a three and a half
degree-of-freedom mechanical model.

The system of equations has been written (for further numerical purpose) in the
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u

d

u
x5(0) = 0

(a) (b)

Fig. 13.1 A simplified scheme of a sitting human body (a) and the marked out investigated region
of the chest. Particular redraw of the third degree of freedom of the dynamical system (b) with
the mass m1 elastically impacting the chest in the posterior surface.

form of seven first order differential equations:

ẋi = xi+4, (i = 1, 2, 3), (13.1)

ẋ4 = x7 +
k̄23

c̄23
(x2 − x4), (13.2)

ẋ5 =
1

m1

(
k12(x2 − x1)

)
, (13.3)

ẋ6 =
1

m2

(
k12(x1 − x2)− k23(x2 − x3)− k̄23(x2 − x4)− c23(x6 − x7)

)
, (13.4)

ẋ7 =
1

m3

(
k23x2− (k23 +ks)x3 + c23x6 − (c23 + c̄23 + cs)x7 + c̄23x8 − u

)
(13.5)

where:

– m1, . . . ,m3 denote the separated point masses of the model;
– k̄ = [k12, k23, k

′
23, ks], c̄ = [c23, c

′
23, cs] are the vectors of system stiffness and

damping, respectively;
– x̄d = [x1, . . . , x4] is the vector of system displacements in each direction;
– x̄v = [x5, . . . , x8] is the vector of system velocities, but with regard to the

introduced rheological description of the model, the massless point reduces
the dimension of the system to 7. The object of control (the plant) is
described by an odd-dimension system state vector x̄ = [x̄d, x5, x6, x7].

Rheological properties of mechanical rigid bodies (here, masses focused in a
point) connection model are introduced twice: firstly, when a relative displacement
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xr = x2 − x3 (the controlled reference distance) between the front and back sides
of the thorax ranges over d = 3.8 cm, then k23 doubles its value, and secondly,
when relative velocity vr = x6 − x7 becomes negative, then c23 doubles its value as
well. It means that stiffness of the rheological coupling increases discontinuously
with regard to a bigger than d compression of chest xr and that damping ability of
the coupling varies in time as the thorax remains under compression or depression.
Such a discontinuity in system’s stiffness and damping vectors is very interesting
and will need a special attention during estimation of controlling force.

13.3 Control Methodology

In this section, a numerical investigation of possible modification of standard LQR
optimization of proportional system control is presented. A qualitative change in
the system dynamics comes from discontinuous changes of system parameters. Such
a behavior results from the assumed biomechanical system of a human thorax some
material properties of which (also in reality) introduce the discontinuities of stiffness
k23 and damping c23 to its dynamics. The way of their evaluation has been explained
above, in Sec. 13.2.

For this particular case, the analyzed problem has been mathematically de-
scribed in [Olejnik and Awrejcewicz (2010)]. The state-space representation of the
dynamical system takes the form:

dx̄

dt
= Ax̄+Bū =

=



0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 k̄23
c̄23

0 −k̄23
c̄23

0 0 1
−k12
m1

k12
m1

0 0 0 0 0
k12
m2

−a62
m2

k23
m2

k̄23
m2

0 −c23m2

c23
m2

0 −a72
m3

−a73
m3

−k̄23
m3

0 c23
m3

−a77
m3


x̄+



0

0

0

0

0

0
−1
m3


ū , (13.6)

ȳ = Cx̄+Dū =

=
[

0 1 −1 0 0 0 0
]
x̄ , (13.7)

x̄(t0) = [0, 0, 0, 0, x5(0) 6= 0, 0] , (13.8)

where: the state vector x̄ = [x1 . . . x7]T , control input vector ū = u, state-space
representation matrices: A – system matrix, B – input matrix, C – output matrix,
D – input transforming matrix and constants: a62 = k12 + a72, a72 = k23 + k̄23,
a73 = k23 + ks, a77 = c23 + cs. Nonzero initial velocity x5(0) of the impacting mass
(the impacting mass is a part of the whole system) states the external excitation.

Our task focuses on searching for the control force u(t) that, at some weighting

 b
.



July 14, 2016 14:53 ws-book961x669 DYNAMICS OF MECHATRONIC SYSTEMS 10193-main page 309

Control of a Multibody System Response to a Suddenly Applied Force 309

matrices, would satisfactorily minimize the objective function J in time t ∈ [t0; tf ]:

J(t0, tf ) =
1

2

∫ tf

t0

[
x̄(t)

ū(t)

]T [
Q 0

0 R

] [
x̄(t)

ū(t)

]
dt

=
1

2

∫ tf

t0


x1

...
x7

u


T 

q1

. . .
q7

r



x1

...
x7

u

 dt

=
1

2

∫ tf

t0

(
n=7∑
i=1

(
qix

2
i (t)

)
+ ru2(t)

)
dt , (13.9)

where weighting matrices of the LQR control method are as follows: quality matrix
Q has nonzero elements only on its main diagonal, reaction matrix R = r is reduced
to a single constant. Computation of integral J will be done by means of the
numerical trapezoidal integration. One needs to note that x̄(t) represents a state-
space vector of dynamical changes of the controlled system. If u(t) is present in
Eq. 13.5, then ks and cs are omitted.

The control law for the minimal realization of J in Eq. 13.9 follows

u(t) = −rBTKxx̄f (t). (13.10)

Equation 13.10 introduces a new matrix Kx of dimension (7×7), called Riccati’s
matrix. This matrix is symmetrical along the main diagonal, so we get 28 unknown
elements (ξ21 = ξ12, ξ31 = ξ13 and so on) that need to be estimated. Observe
that the sought control law u(t) is governed by a proportional relation to the state
vector solution x̄f (t) of the free system. It is confirmed here that the best method
of estimation of the Kx matrix, and thereby of estimation of u(t), is the utilization
of a proper convergent numerical procedure. This procedure solves the following
matrix equation(

K̇x +KxA+ATKx −KxB
1

r
BTKx +Q

)
x̄f (t) = 0 , (13.11)

Solving Eq. (13.11) with respect to all provided forms of matrices brings 28 first
order differential equations for each independent element of the symmetric matrix
Kx:

ξ̇11 = (2k12 (ξ15e7 − ξ16e6) + ξ2
17e1)/e5 − q1,

ξ̇12 =(c′23k12(ξ25e7 − ξ26e6) + ξ27ξ17e9 − e4(ξ14e10 + ξ15c
′
23e8))/(c′23e5)

− (ξ16e11e14 + ξ17e9e13)/(c′23e5),

ξ̇13 = (k12(ξ35e7 − ξ36e6) + ξ37ξ17e1 −m1m3r(ξ16k23(t)m3 − ξ17m2e15))/e5,

ξ̇14 =ξ45k12e7m1(ξ46k12e3 + ξ47ξ17m2)/e5

− (m1k
′
23e4(ξ14e2 + c′23(ξ16m3 − ξ17m2)))/(c′23e5),
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ξ̇15 = (ξ55k12e7 − ξ56k12e6 + ξ57ξ17e1)/e5 − ξ11,

ξ̇16 =(ξ56k12e7 −m1(ξ66k12e3 + ξ67ξ17m2))/e5 − ξ16c23(t)e4m1m3/e5

− ξ17c23(t)e4m1m2/e5 − ξ12,

ξ̇17 =(ξ57k12e7 −m1(ξ67k12e3 + ξ77ξ17m2))/e5

+m1e4(ξ14e2 + ξ16c23(t)m3 − ξ17m2e12))/e5 − ξ13,

ξ̇22 =− (2ξ25k12e7 −m1(2ξ26e3e14 +m2ξ
2
27 − 2ξ27e4e13))/e5

− 2m1ξ24k
′
23e3/(c

′
23e5)− q1,

ξ̇23 =ξ26k23(t)e6/e5 + (ξ27e9(ξ37 − e4e15) + e4(ξ34e10 + ξ35c
′
23e8))/(c′23e5)

− e4(ξ36e11e14 − ξ37e9e13)/(c′23e5),

ξ̇24 =− (ξ26c
′
23k
′
23e6 − ξ27e9(ξ47 + k′23e4) + e4(ξ44e10 + ξ45c

′
23e8))/(c′23e5)

−m1e4(ξ46m3e14 − ξ47m2e13)/e5 + ξ24k
′
23e2/(c

′
23e5),

ξ̇25 =− (ξ45e10 + ξ55c
′
23e8 − ξ56e11e14 + ξ57e9e13)/(c′23m1m2m3)

− ξ12 + ξ27ξ57/e3,

ξ̇26 =ξ26e6c23(t)/e5 + (ξ27e9(ξ67 − c23(t)e4)− e4ξ46e10)/(c′23e5)

− e4(ξ56e8 −m1(ξ66m3e14 − ξ67m2e13 − ξ22e2))/e5,

ξ̇27 =− ξ26e6c23(t)/e5 − (ξ27e9(ξ77 + e4e12) + e4ξ47e10)/(c′23e5)

+ e4(ξ57e8 −m1(ξ67m3e14 − ξ77m2e13 − e2(ξ23 + ξ24)))/e5,

ξ̇33 = −(2ξ36k23(t)e3 − ξ37m2(ξ37 + 2e4e15))/e7 − q2,

ξ̇34 =ξ34k
′
23/c

′
23 − (ξ36k

′
23e3 − ξ37m2(ξ47 + k′23e4) + e4ξ46k23(t)m3)/e7

− e4ξ47m2e15/e7,

ξ̇35 = ξ37ξ57/e3 − (ξ56k23(t)m3 − ξ57m2e15)/e2 − ξ13,

ξ̇36 =(ξ36c23(t)e3 + ξ37m2(ξ67 − c23(t)e4)/e7 − e4ξ66k23(t)m3/e7

− e4m2(ξ67e15 − ξ23m3)/e7,

ξ̇37 =− ξ33 − ξ34 − (ξ36c23(t)e3 − ξ37m2(ξ77 + e4e12))/e7

− e4(ξ67k23(t)m3 − ξ77m2e15)/e7,

ξ̇44 = (2ξ44k
′
23e7 − c′23(2ξ46k

′
23e3 − ξ47m2(ξ47 + 2k′23e4)))/(c′23e7)− q3,

 b
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ξ̇45 = ξ45k
′
23/c

′
23 + ξ47ξ57m2/e7 − e4(ξ56k

′
23m3 −m2(ξ57k

′
23 − ξ14m3))/e7,

ξ̇46 =ξ46e3c23(t)/e7 + k′23m2/(c
′
23e7) + ξ47m2(ξ67 − c23(t)e4)/e7

− e4(ξ66k
′
23m3 −m2(ξ67k

′
23 − ξ24m3))/e7,

ξ̇47 =− ξ34 − ξ44 − (ξ46c23(t)e3 + ξ47m2(ξ77 + e4e12))/e7

+ e4ξ47m2k
′
23m3/(c

′
23e7)− k′23e4(ξ67m3 − ξ77m2))/e7,

ξ̇55 = ξ2
57/e3 − 2ξ15 − q4,

ξ̇56 = −ξ25 − (ξ56c23(t)e3 +m2(ξ57(ξ67 − c23(t)e4)− ξ16e3))/e7,

ξ̇57 = −ξ35 − ξ45 − (ξ56c23(t)e3 −m2(ξ57(ξ77 + e4e12)− ξ17e3))/e7,

ξ̇66 = −2ξ26 + (2ξ66c23(t)e3 + ξ67m2(ξ67 − 2c23(t)e4))/e7 − q5,

ξ̇67 =− ξ27 − ξ36 − ξ46 − ξ66c23(t)e3/e7

+ (ξ67(ξ77m2 + e4(m2(c23(t) + cs) +m3))− ξ77c23(t)e2r)/e7,

ξ̇77 = −2(ξ37 + ξ47)− (2ξ67c23(t)e3 − ξ77m2(ξ77 + 2e4e12))/e7 − q6, (13.12)

where: e1 = m1m2, e2 = m2m3, e3 = m2
3r, e4 = m3r, e5 = e1m

2
3r, e6 = m1m

2
3r,

e7 = m2m
2
3r, e8 = k12e2, e9 = c′23e1, e10 = k′23e1m3, e11 = c′23m1m3, e12 =

c23(t) + cs, e13 = k23(t) + k′23, e14 = k12 + e13, e15 = k23(t) + ks. Solving equations
(13.12) for zero initial conditions, all the coefficients ξij for i, j ∈ (1, . . . , 7) of the
matrix Kx are estimated during evaluation of the numerical control algorithm.

Equation (13.10) can be used now for calculation of the control law:

u(t) = f̄x · x̄f (t) =

[
ξi,7
rm3

]
· x̄f (t) =

7∑
i=1

ξi,7xf,i
rm3

, (13.13)

where f̄x = −rBTKx is the proportional gain of the control feedback loop. Because
of the specification of the analyzed rheological dynamical system, f̄x will switch
between two states, as it has been described below.

Before the scalar product of a time-dependent vector of state and the vector
of constant gain x̄ · f̄x,i is calculated, one needs to consider the rheology of the
bio-inspired model and to select the proper vector of proportional gain. Because of
two 2-state switching blocks, there are four combinations like: [k23, c23], [k23, 2c23],
[2k23, c23] and [2k23, 2c23]. As the numerical solution to the free system dynamics
confirms, xr is always greater than d. Therefore, a Riccati matrix equation asso-
ciated with the controlled system have to be solved only twice (this time, the two
last combinations are unnecessary), and during numerical solution to the control
problem, as relative velocity vr varies in time, the first element of the damping
vector c̄ will switch between two values c23 and 2c23, generating some unexpected
disturbances of gain.

 b
.
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13.4 Numerical Simulation

The following set of system parameters is assumed in the numerical model: m1 =

1.6, m2 = 0.45, m3 = 27 kg, d = 3.8 cm, k12 = 281, k23 = 26.3, k̄23 = 13.2, ks = 10

·103 N/m, c23 = 1.23, c̄23 = 0.18, cs = 0.11 ·103 N·s/m and initial conditions:
x̄f (t0 = 0) = [0, 0, 0, 0, 13.9, 0, 0, 0].

The proportional control law is realized by a virtual actuating impulsive mech-
anism characterized by a rapid force response having a shape of u(t), the time
dependency visible in Fig. 13.2. Actual relative displacement xc of the controlled
system supported with the actuating mechanism shown in Fig. 13.1 can be simul-
taneously observed.

xc(t)u(t)

2.00

2.34

-1.00

0.00

1.00

0.0 15.0 30.0

-2.0

0.0

2.0

4.0

6.0

8.0

t [ms]

xc [cm]
u [kN]

u(t)

xc(t)

Fig. 13.2 Time history of the control force u(t) applied on the anterior surface of the thorax model
on the background of the controlled system relative displacement xc(t). For a better picture, time
range tf of the time history is shortened to 40 ms.

Before xc(t) reaches its peak value at 2.34 cm, the control force u(t) exposes very
rapid changes of amplitude from about 10 to −4 kN, what is the crucial stage of the
response taking about 10 ms. In practice, this time interval is probably longer, and
making it longer here could be possible after introduction of some time delays (see
Chap. 12) either in response of the mechanism or in a reaction of the shock-excited
body. Nevertheless, one confirms that the method of active control can be used for
finding a shape of force characteristics which has to be realized by the actuator.

The final result of control obtained with attention to Jmin = 1.39 · 107 is pre-
sented in Fig. 13.3. The set of parameters of the control procedure listed in its area
has been estimated on the basis of observation of minimal amplitude of xc(t).
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Fig. 13.3 Relative displacement characteristics xu(t) and xc(t) of masses m2 and m3 of the
thorax, respectively before (dashed line) and after (solid line) application of the control algorithm.

The linear quadratic regulator method can be applied with a success in control
of very fast, parameter-discontinuous dynamical systems. It requires some addi-
tional coding in numerical procedures and switching function’s block located in the
controlled system feedback loop.

In the presented example of interesting biomechanical application, reduction of
maximal amplitude of the output signal was obtained. Dependently on require-
ments, the output response of the controlled system can be optimized with respect
to a minimum value of the performance index of the LQR method or even with
respect to the minimal amplitude.

Thinking about practical implementation of the estimated shape of the control-
ling force to compensate a shock-induced compression, one would need to design a
very fast reaction forcing actuator that could be located between the back side of
the human thorax and the back rest.

 b
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Ampére’s

contour, 81
hypothesis, 68
law, 73, 79, 81, 83, 99, 118, 121

extended, 218
model, 68

ampere, 23, 67, 77, 80, 115
Amperian loop, 79
amplifier, 172, 261
analogue machine, 14
analogy, 8, 14, 16, 163, 176
analysis

dimensional, 9, 13
modal, 8

angular momentum, 152, 199
equation, 152
orbital, 203
vector, 209

anisotropic, 102
archetype model, 27
argon, 98
armature, 176, 261, 282
astronomical unit, 19
atm, 45
atom, 16, 24, 27, 44, 47, 98, 100, 108, 110,

200
total energy, 207

atomic
current, 67
nuclei, 68

attract, 67, 71, 77, 88, 102, 110, 112
axis
OX, 75, 100
OY , 61, 70, 84
horizontal, 65

ball-bearing spindle, 152
bar magnet, 67, 79, 117
basic

quantity, 11
unit, 4, 10

battery, 41, 47, 48, 57, 62, 99
beam, 234, 237
bending force, 177, 239
Berlincourt, Currand and Joffe coupling

coefficient, 129
Bernoulli equation, 146

325

 



July 14, 2016 14:53 ws-book961x669 DYNAMICS OF MECHATRONIC SYSTEMS 10193-main page 326

326 DYNAMICS OF MECHATRONIC SYSTEMS

Bessel equation, 54
biomechanical model, 288, 292, 293, 297,

298, 306, 308, 313
Biot-Savart law, 73, 74, 79, 80
black-box approach, 264
Blasius correlation, 144
blast wave, 289, 290, 293, 302
block-on-belt model, 262
Bohr’s theory, 68
boundary, 94

condition, 52, 125, 140
electric, 136
mechanical, 136

bounded sum, 255
Bowen’s curve, 289
Buckingham theorem, 10
bulb, 48, 112
bulk modulus of elasticity, 16, 148, 170

calorie, 5
candela, 4
canonical form, 12
cantilever beam, 234, 237, 239
capacitance, 16, 41, 42, 113, 178

unit, 113
capacitor, 41, 42, 55, 113, 117

geometry, 42
parallel-plate, 41, 43
unloaded, 42

Carnot theorem, 203
Cartesian coordinates, 204, 209
centrifugal force, 196, 207
centripetal force, 12, 13
CGS, 24
characteristic scale unit, 20
charge, 16, 42, 47, 48, 59, 69, 71

-free area, 51
density, 30, 122
distribution, 51, 102
electric, 102, 112
elementary, 23
movement, 20, 44, 64
net, 49
point, 114
radius, 23
sheet, 31
stationary, 82
total, 24
unit, 23, 24, 57, 118

positive, 36

velocity, 213
charged

capacitor, 41
cylinder, 114
particle, 48

vector, 102
sphere, 114

chock, 4
circuit, 47

alternating-current, 48
closed, 86
direct-current, 48
electric, 62
loop, 49
magnetic, 175
plane, 87
rectangular, 56
surface, 90

circular
loop, 77

current, 75
motion, 20, 195
orbit, 195
vortex, 89

circulation
electric field, 90, 218
magnetic vector, 82

circumferential viscous friction, 157
Clapeyron equation, 150
clearance, 185
closed

circuit, 86, 90
contour, 57
curve, 38
loop, 49, 79

conducting, 61, 88
conductor, 221
control, 171
current, 85

orbit, 68, 112
path, 35
surface, 45, 121
system, 2

closed-loop control system, 264
cobalt, 111
coefficient, 18

discharge, 173
friction, 16

viscous, 157, 161
housing elasticity, 148

 



July 14, 2016 14:53 ws-book961x669 DYNAMICS OF MECHATRONIC SYSTEMS 10193-main page 327

Index 327

inertial tensor, 133
losses, 143, 144, 157
mobility, 44
permeability, 201
resistance, 154, 161
resistivity, 45

cognitive systems, 7
coil, 16, 85, 88, 117, 175

current, 176
collinear, 106, 107
collision, 44, 45, 47
comet, 19
compass, 25, 67, 118
compliance, 128

coefficient, 127, 129
compressibility, 14
condition

boundary, 125, 127
initial, 8, 20
necessary, 142
similarity, 17
sufficient, 11, 142

conductivity, 44, 45, 219
conductor, 221

cylindrical, 45
ideal, 49

conservative force, 36
constant

Curie, 110
gravitational, 19, 113
Landé, 201
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Newton’s, 25
pressure, 152
repelling, 71
repulsive, 74
volume, 135

Foucault currents, 89
Fourier transform, 263
Franklin, 23
free

-field pressure, 288
current, 82, 99
electric load, 136
electron, 44
space, 25, 113, 122

dielectric constant, 219
friction

coefficient, 16
Coulomb, 278
dry, 163
exponential, 278
fluid, 143
force, 278
kinetic, 185
position-dependent, 278
static, 279
stick-slip, 282
viscous, 161, 278, 282

Friedlander’s waveform, 288, 293
fringing effect, 52
function

Bessel, 54
elementary, 8
maximization, 241
membership, 253, 257
permittivity, 33
wave, 205

fundamental
force, 114
theorem for gradients, 39

fuzzification, 256
fuzzifier, 257
fuzzy

logic, 249, 252
controller, 249, 265, 267

regulator, 256
rule, 267
set, 253, 255, 257, 265

 



July 14, 2016 14:53 ws-book961x669 DYNAMICS OF MECHATRONIC SYSTEMS 10193-main page 332

332 DYNAMICS OF MECHATRONIC SYSTEMS

gadolinium, 111
gas, 44
Gauss

magnetic field, 113
Gauss’ law, 32, 34, 40, 49, 51, 73, 94, 120,

217
Gaussian

surface, 33, 50
system, 24, 25

glass, 45
grad, 58
gradient, 39, 58, 60, 97
gram, 5
gravitational force, 70
gravity, 112
gyromagnetic ratio, 196
gyroscopic force, 152

Hamacher sum, 255
Hamilton’s

operator, 91
principle, 136, 137, 141
variational approach, 133

Hamiltonian, 205, 208
heat, 45, 47, 63, 88, 89, 130
Heaviside-Lorentz system, 24
helium, 98
hexahedron, 123
holistic energy model, 8
homogeneous

field, 86, 131
magnetic, 90, 214

mass, 148
material, 126
medium, 44, 51, 99

horsepower, 5
hydraulic

actuator, 152
cylinder, 154, 160
damper, 166
diameter, 144, 180
divider, 157
drive, 14
element, 14
motor, 149, 157, 158
piston, 148
pressure, 174
process, 14
system, 146, 235

hydrogen, 27, 98

hydromechanical system, 148, 153, 155,
159, 160, 162, 164

hydrostatic bearing, 245
hysteresis, 111, 124, 290, 291

ideal conductor, 49
idealization, 144, 149
identity, 97
IEEE standard, 129
imaginary

plane, 55
surface, 32

closed, 33
impact, 44, 289
impeller, 151
impulse-type equation, 134
incremental

encoder, 260
permeability, 102

independent
quantities, 12, 17
variables, 8, 19, 20

inductance, 16, 129, 261, 282
induction, 20, 62, 67, 101, 108

electric, 24
field, 100

electromagnetic, 86
Faraday’s law, 66, 218
field, 60
flux, 87
law, 121
magnetic, 73, 79, 98, 102

movable, 90
vector, 71

inductor, 55, 87
inertial energy density, 132
inference scheme, 258, 268
infinite separation of charges, 37
infinitesimal

displacement, 34
element

surface, 32
wire, 103

volume, 92
inflow pressure, 162
initial

condition, 8, 20
position, 29
state, 36

insulator, 23
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integral, 36, 61, 74, 81, 82
-differential equation, 20
analog, 19
curvilinear, 38
equation, 20
form, 217
gain, 265
Gauss’ law, 49, 120
line, 79, 119
operator, 18
surface, 40, 85, 121
triple, 94
vector, 76
volume, 103
weak, 136

integration, 52, 84, 92
by parts, 40
numerical, 298
path, 38, 48
surface, 33, 49

intensity
current, 48, 89, 101
field

electric, 33, 36, 39, 50, 56, 58, 88,
113, 221

electrostatic, 71, 82, 87
magnetic, 67, 79, 99, 104

internal
energy, 117, 139
magnetic induction, 100
resistance, 48

inverse-square law, 70, 114
invortex field, 79
iron, 45, 67, 98, 111, 115
isolated

conductor, 55
magnet, 67
magnetic pole, 50
plate, 41
point charge, 34

isolator, 41, 45
isothermal, 150
isotropic, 33, 94, 102, 106, 107, 121
isotropy plane, 124

Joule heating equation, 47

kinetic
energy, 45, 134

electron movement, 204, 205

friction coefficient, 185
Kirchhoff’s law, 46, 49

Lagrange equations, 103
Lagrangian, 104, 134, 137
laminar, 15, 143
Landé constant, 201
Langevin, 110
Laplace’s

equation, 39, 51, 52, 54
force, 103

Laplacian, 39, 51, 97
large-scale system, 288, 292, 301
Larmor precession, 108
Larmor’s

period, 213
radius, 20, 211, 213
theorem, 200

lathe, 163
lattice, 24, 45, 47, 55, 98
law

Ampére’s, 79, 81, 83, 99, 118
extended, 218

Biot-Savart, 73, 75, 80
Coulomb’s, 24, 27, 30, 34, 56, 70
Curie’s, 110
Curie-Weiss, 111
Faraday’s, 62, 66, 88, 218, 220
Gauss’, 32, 34, 40, 51, 94, 95, 120, 217
inverse-square, 70, 114
Joule’s, 47
Kirchhoff’s, 46
Lenz’s, 108
loop, 49
Lorentz, 55
Newton’s, 58
Ohm’s, 46, 66
voltage, 49

leakage, 14, 163
capacity, 161
coefficient, 16

least square optimization, 226
Legendre’s transformation, 137
Lenz, 88
Lenz’s law, 88, 108, 118
light

bulb, 48, 112
speed, 24, 70, 115

linear, 20
algebra, 10
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material, 121
dielectric, 33

medium, 99
oscillator, 18, 209
programming, 226, 228
quadratic regulator, 306, 313
system, 8, 11
wire, 75

linearization, 102
linguistic variable, 252, 266
liquid, 44
LMT, 10
Lobdell’s model, 288, 292
lodestones, 67
loop

Amperian, 79
circle, 69
closed, 119

circuit, 63
conducting, 88
conductor, 221

conducting, 61
current, 74, 83, 84
rectangular, 60, 65
rotation, 66
surface, 108

Lorentz
force, 24, 55, 60, 64, 72, 86, 102, 113,

197
law, 55

losses coefficient, 143, 144
LQR method, 308, 313
lubricator, 4
luminous intensity, 4

macroscopic, 113
MacVicar-Whelan rule base, 267
Magnesia, 67
magnet, 25, 50, 67, 68, 79, 88, 99, 101,

113, 117
magnetic

circuit, 175
compass, 67
dipole moment, 85
field, 20, 27, 50, 56, 57, 60, 61, 63, 65,

72, 74, 78, 81, 99, 111, 122, 210
density, 214
external, 73, 100, 109
movable, 90
nonhomogeneous, 213

uniform, 196
varying, 87

flow, 175
flux, 118, 176

net, 120
force, 110
induction, 80, 81, 83, 98
medium, 106, 107
moment, 101, 108, 209

dipole, 68, 69, 77
orbital, 195
vector, 202

monopole, 70
permeability, 100, 175
pole, 67

isolated, 50
potential energy, 202
reluctance, 176
susceptibility, 24, 99, 104, 219

magnetism, 67
magnetization, 67, 82, 86, 98, 99, 101,

104, 108, 110, 111, 122
current, 218
remanent, 111

magnetomotive force, 79, 176
magnetostatics, 99
Mamdani model, 257
manometer, 4
mass, 4, 12, 18–20

conservation principle, 146, 165
electron, 195, 202
homogeneous, 148
proton, 202
reduced, 161

massive conductor, 88
material

conductivity, 44
constant, 127
diamagnetic, 108
dielectric, 115
ferromagnetic, 111
isotropic, 33
linear, 121
magnetic, 68, 99
non-conducting, 91
paramagnetic, 82
piezoceramic, 128
purely elastic, 138

Maxwell, 25, 218
Maxwell’s
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arm, 290
equations, 24, 27, 93, 104, 135, 217, 220
principle of reciprocity, 9

measurability, 9
measurement, 2, 8

system, 12
unit, 4, 10

mechanical constant, 261
mechatronical continuum, 136
mechatronics, 1, 14, 20, 112
membership function, 253, 257, 266
meter, 4, 10
method

determinants, 13
dimensional analysis, 13
modeling, 11

microcontroller, 260, 264
microscopic, 61, 68, 82, 103
Mises correlation, 144
mixed form equations, 127
MKS, 4, 104
mobility coefficient, 44
modal analysis, 8
model, 2, 7, 8, 16, 19

Ampére’s, 68
archetype, 27
block-on-belt, 262
discrete, 147
flow, 151
fluid friction, 143
holistic, 8
Lobdell’s, 288, 292
Mamdani, 257
mathematical, 13
physical, 149, 151, 153–155, 159, 163,

167
spring-dashpot, 291
Takagi-Sugeno, 259

modeling, 2, 7, 9, 16, 23, 86, 94
mole, 4
molecular current, 195
moment

balance equation, 179
dipole, 77, 108

vector, 27
inertia, 152, 180

rotor, 282
magnetic, 68, 70, 85, 99–101, 111

monopole, 67, 69, 120
motion

charge, 47
circular, 20
relative, 64
spinal, 201
thermal, 110
uniform, 12

motor
capacity, 157
chambers, 150
driver, 261
efficiency, 157
electric, 157
pneumatic, 151, 152
torque, 177

constant, 282
vane, 150

multi-loop circuit, 49
multibody system, 289

natural frequency, 179
negative

charge, 44
conductor, 41

net
charge, 32, 41, 46
current, 45, 49, 79
magnetic

flux, 120
moment, 99, 210

neutral body, 23
neutron, 18, 202
newton, 24, 67
Newton formula, 143
Newton’s

fluid friction force, 143
force, 25
law, 24

second, 152
third, 58, 113, 118

theorem, 17
nickel, 111, 115
Nikuradse diagram, 143
nitric, 110
nitrogen, 98
non-vertex field, 91
nonautonomous

oscillator, 18
system, 2

nondimensional
relation, 19
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similarity
parameter, 13
set, 18

solution, 11
nondimensionalization, 20
nonhomogeneous magnetic field, 213
normal, 34, 50

strain, 124
vector, 136

nozzle, 177
nuclear field, 207
nucleus, 46, 195, 201
number

quantum, 201, 206, 209
Reynolds, 143

numerical
integration, 298
simulation, 162, 167, 185, 282, 312
solution, 19, 156, 180, 233, 296

Nyquist frequency, 263

objective function, 223, 225, 227
ODE, 19, 20, 52

second order, 53, 55, 178, 215
Oersted, 25, 72, 87
Ohm, 45
Ohm’s law, 46, 66, 90
Ohmic element, 47
oil, 4, 14, 144

bulk modulus of elasticity, 148, 153, 185
density, 185
volume, 149

Onnes, 45
open

surface, 57
system, 2

operator
s-norm, 255, 258
t-norm, 255, 258, 267
del, 91, 93
form, 179
Hamilton’s, 91
integral, 18
quantum mechanical, 200

optimization, 239
orbit, 112, 113
orbital

moment
magnetic, 195

momentum, 108

velocity, 98
orifice, 173
oscillator, 14, 18, 209
over-dumped oscillations, 285
overpressure, 289, 293, 303
oxide, 110
oxygen, 99, 110

P controller, 263
parallel

-plate capacitor, 41, 43, 113, 117
conducting plates, 51
connection, 42
plates, 114
wires, 71

parallelogram, 83
paramagnetic, 108, 110, 111

material, 82, 99
paramagnetism, 110
parameter-discontinuous system, 313
particle, 23, 44, 82, 101, 103, 108, 109

charged, 48, 104
wavelength, 204

Pauli exclusion principle, 201
PD controller, 276, 284
PDE, 20, 51, 206
pendulum, 261
performance index, 313
periodic

forcing, 165
motion, 20

permalloy, 115
permanent

magnet, 175
magnetic dipole, 109

permeability, 69, 73, 98, 100, 102, 104,
105, 111, 115, 122
coefficient, 79, 201
constant, 127
magnetic, 175
tensor, 107

phase trajectory, 286
photoelectric cell, 48
physical

analogy, 14
model, 7, 13, 149, 151, 153–155, 159,

163, 164, 167
servo valve, 179

PI controller, 260
Pi groups, 10
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PIC-181 ceramics, 127
PID controller, 260, 264, 269
piecewise

approximation, 125
surface, 94

piezoceramic beam, 142
piezoceramics, 123
piezoelectric, 177

3D cell, 134
ceramic, 123
continuum, 136, 139, 141
coupling, 128–130
effect, 48, 126
element, 139, 178
plate, 177

piezoelectricity matrix, 140
piezoelement, 131
piezotransducer, 130
piston, 16, 148, 157, 160, 162, 171, 173,

174, 184
Planck’s constant, 200, 204
plane
OXY , 19, 20
angle, 4
imaginary, 55
infinite, 31
isotropy, 124

planer, 3
planetary system, 7
plate, 41, 52

conducting, 51
rigid, 90

plateau, 110, 290
platinum, 99, 110
pneumatic

drive, 164
motor, 151, 152
system, 146, 164, 166, 167

pneumohydraulic
scheme, 3
system, 3

pneumomechanical system, 150
point

charge, 26, 35, 102, 114
Curie, 111
form

Maxwell’s equations, 220
Ohm’s law, 47

potential difference, 38
Poisson’s equation, 39, 51

polarity, 46, 119
polarization, 27, 32, 98, 99, 101, 104, 126,

142
vector, 122, 123, 125

pole, 48, 69, 71, 79, 113, 118
position encoder, 171
positioner, 125
positioning, 186
positive

charge, 32, 33, 44
unit, 36

conductor, 41
potential, 48, 51, 59, 88

difference, 41, 43, 45, 46, 56, 62
drop, 90
electric dipole, 115
electrical, 87, 140
electrostatic, 57
energy, 29, 36, 37, 85, 196
gradient, 39
magnetic, 79, 103, 202
point charge, 114
specific, 134
surface, 136

power, 4, 47
current, 66
hydraulic motor, 158
mechanical, 63
unit, 5

precession, 199, 203
predictive validity, 9
pressure

ambient, 157
force, 152
hydraulic, 174
losses, 163
pneumohydraulic relay, 4
source, 15
wave, 287, 289, 290, 293, 295, 301

principle
analogy, 8
Hamilton’s, 136
mass conservation, 146, 165
Pauli exclusion, 201
similarity, 10

process
qualitatively identical, 11
real, 16
technological, 2
variable, 264
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projection, 32
proportional

gain, 172, 173, 179, 185, 265
valve, 159–162, 173, 185

proton, 18, 23, 46, 72, 112, 202
pseudo-vector, 95
pump, 153, 173
purely

elastic material, 138
electric origin, 64
magnetic, 88
orbital momentum, 201

PWM signal, 261, 264

quadratic form, 133
quantization, 203
quantized

energy, 206
matter, 23

quantum
mechanical operator, 200
number, 201, 206, 209

quark, 23
quasi-static conversion cycle, 129, 130
quasiparticle, 23

radial direction, 33
radian, 4
receptiveness, 99
rectangular

area, 95, 239
circuit, 56
loop, 64

current, 65
path, 118
prism, 123
strip, 84

reduced mass, 16
reduction, 9
reductionism, 8
reed, 4
relative

deformation, 301
displacement, 302, 312
motion, 277
permittivity, 33
velocity, 308

relay, 4
reluctance, 175
repel, 67, 71, 102

replicative validity, 9
repulsive, 26
resistance, 16, 45, 46, 90, 261, 282

coefficient, 178
internal, 48, 57

resistivity, 45
resistor, 47, 49, 57, 63, 66

-capacitor connection, 178
Reynolds number, 143
rheological properties, 306, 307
Riccati’s matrix, 309
right-hand rule, 70, 95, 220
rod, 124, 133, 134, 148
root-mean-square, 66
rotating body, 13
rotation, 38, 80, 82, 95
rule

base, 256, 257, 268
dimensional analysis, 10
reaction, 58
right-hand, 69, 70, 72, 79, 95, 103
superposition, 40

satellite, 19
saturation, 111
scalar

current, 61
product, 87, 92

scaling, 16, 179
Schmitt inverter, 260
Schrödinger equation, 204, 205
second order ODE, 53, 165, 215
secondary unit, 5
section modulus, 239
self

-inductance, 57
-tuning FLC, 251

semi-infinite, 106, 107
semiconductor, 45
sensor, 263, 289
serial connection, 42, 178
servo, 169, 178, 188

electrohydraulic, 173
model, 174
momentum, 171
position, 171
valve, 171

parameter, 177
velocity, 172

servomechanism, 157, 158, 169, 181
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shear
deformation, 178
effect, 125
strain, 124

shock wave, 288
Siemens, 44
silicon, 45
silver, 45, 99
similarity

criterion, 17
indicator, 17
invariants, 18
parameter, 11, 13
principle, 10
sufficient condition, 11
theorem, 17

simulation, 2, 7, 19
model, 145, 154, 156–158, 161–163, 165,

166, 179, 187, 189–191, 236, 240
cylinder chamber, 185
piston, 184
torque motor, 181

skin effect, 89
sliding

bearing, 275
contact, 235
friction, 276
solution, 277
surface, 279

method, 275, 278, 279
soft ferromagnetic, 112
solenoid, 101, 117, 162
solid angle, 4
space

3D, 83, 100
bounded, 94
free, 104, 113

spatial distribution, 60
spatiotemporal, 8
specific

energy, 131
potential, 134

sphere, 34
charged, 114, 120

spherical
coordinates, 31, 34, 51, 54, 59, 92, 96,

97, 205
product solution, 54
surface, 50

spin, 98, 108, 109, 201

-orbit interaction, 202
momentum, 202

spindle, 152
spool, 162, 173

equation of motion, 179
valve, 175, 181

spring, 29, 261
-damper, 18
-dashpot model, 291, 293

state, 9
-space representation, 308
configuration, 108
initial, 36
linear stress-strain, 139
space, 7
stationary, 48
steady, 3
transient, 3, 55
variable, 178, 184

static
charge, 71
electric field, 36, 43, 93, 217
optimization, 223
system, 2

stationary
charge, 82
magnetic field, 118
state, 48

steady state, 3
velocity, 285

stellar system, 7
step function, 164, 188
steradian, 4
stick-slip, 275
stiffness, 126, 128, 290, 308

coefficient, 127, 178, 180
Stokes theorem, 38, 81, 85
straight

coil, 117
conductor, 81
wire, 103, 113

strain, 124, 290
field, 130, 132, 133
matrix, 140

strainer, 4
stress

-strain
field, 132
curve, 291, 302
relation, 135
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matrix, 140
Stribeck curve, 278, 282
structural validity, 9
sub-critical flow, 163
superposition rule, 40, 71
supply pressure, 185
surface

bounded, 79, 121
charge, 55, 140
circle, 75
closed, 32, 45
contact, 185
equipotential, 59, 114
force, 140
friction, 143
Gaussian, 50
integral, 33, 40
open, 57
piecewise, 94
potential, 136
sliding, 279

susceptibility, 24, 98, 101, 104, 105, 108,
109, 111, 219

symmetric
configuration of charges, 50
spherically, 31

system, 1
N charges, 37
armature-flapper, 180
Cartesian, 30
CGS, 24
cognitive, 7
components, 14
discrete, 147
drive, 160
energy, 36
Gauss, 24
Heaviside-Lorentz, 24
hydraulic, 146, 235
hydromechanical, 16, 148, 153, 155,

159, 162, 164
large-scale, 288, 292, 294, 301, 304
linear, 11
LMT, 5
measurement, 12
mechatronic, 63
metric, 2
MKS, 4
parameter-discontinuous, 313
planetary, 7

pneumatic, 146
pneumohydraulic, 3
pneumomechanical, 150
positioning, 188
reference, 86
SI, 43
solar, 2
structural, 8
time delay, 288
units, 10, 17

Takagi-Sugeno model, 259, 265
Taylor series, 126
technological process, 2
tectonic system, 7
temperature, 45, 98

coefficient of resistivity, 45
thermodynamic, 4

tensor, 104
electric susceptibility, 98
inertial, 133
permeability, 79, 107
second rank, 102
unit dyadic, 106

tesla, 67, 113
theorem
π, 17
Buckingham, 10, 11
Carnot, 203
divergence, 40, 95
Gauss’, 95
Larmor’s, 200
Newton’s, 17
similarity, 17
Stokes, 38, 81, 85

thermal effect, 48
thermodynamic temperature, 4
thermoelement, 48
throttle, 16

element, 143
gap, 157
valve, 157, 161, 163, 177

capacitance, 164
throttling edge, 157
time, 4

delay, 27, 287, 289, 291, 294, 301, 303
system, 288

history, 154, 158, 162, 166, 186, 269,
312

scale, 21
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tor, 5
torque, 29, 71, 84, 85

constant, 184
equation, 156
magnetic field, 99
motor, 175, 177

torus, 82
totality, 8
tracking control, 286
transducer, 177
transformer, 41, 129
transient state, 3, 55, 285
transverse isotropy, 129
TTL output, 261
turbulent flow, 163

Ulitko definition, 129
uncertain continuous-time system, 294
uniaxial stress state, 134
uniform

field
electric, 41, 45, 47
induction, 60
magnetic, 55, 65, 117, 196

motion, 12
uniformly

distributed
charge, 31
load, 234

magnetized cylinder, 68
unique conditions, 17
unit, 4, 34

astronomical, 19
capacitance, 41
CGS system, 24
charge, 30, 36, 37, 118
configuration, 126
coulomb, 112
derived, 5
dyadic tensor, 106
electric power, 48
LMT system, 12
main, 5
MKS system, 104
non-SI, 5
Ohm, 45
secondary, 5
SI, 219
SI system, 24, 43, 102
step, 154

tesla, 113
time, 19
vector, 31, 58, 59, 92, 105
volt, 56
volume, 61, 99, 109, 111, 116

vacuum, 24, 33, 79, 98, 104, 113
permeability, 73, 100

valence electron, 46
valve, 4, 15

orifice, 173
proportional, 159
spool, 181
throttle, 157, 164

vane motor, 150
vector

dipole moment, 27
equation, 20, 126, 214
field, 46, 121

differential, 94
form, 50, 196
magnetic, 82

induction, 71, 101
potential, 85

normal, 84, 136
precession, 199
product, 198
superposition, 26
unit, 58, 59, 92, 106
velocity, 19

velocity
charge, 20, 213
drift, 44
gradient, 143
reference, 161
servo, 172
vector, 19

vertical conductor, 63, 86
virtual work, 137, 140
viscoelastic foam model, 292
viscosity, 143, 290
viscous

damping coefficient, 185, 292
friction, 161, 163

coefficient, 282
volt, 37, 67
voltage, 15, 43, 48, 51, 57, 113, 115, 118,

178, 208
control, 173, 286
law, 49

 



July 14, 2016 14:53 ws-book961x669 DYNAMICS OF MECHATRONIC SYSTEMS 10193-main page 342

342 DYNAMICS OF MECHATRONIC SYSTEMS

self-inductance, 57
voltmeter, 62
volume

charge, 30, 40
density, 61
divergence, 148
force, 135
unit, 61

volumetric
flow rate, 144, 173
model, 147

vortex
circular, 89
field, 79

vorticity, 79

walled cantilever beam, 234
watt, 48
wave function, 205
weber, 67, 70, 113
wire, 27, 48, 49, 71, 72, 74, 76, 113, 117

current, 102
curved, 103
element, 60
loop, 204

wiring diagram, 260
wolfram, 99

Young’s modulus, 239, 290
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