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About the Series:
»Scientific Fundamentals of Robotics«

The age of robotics is the present age. The study of robotics reguires
different kinds of knowledge multidisciplinary in nature, which go to-
gether to make robotics a specific scientific discipline. In particu-
lar, manipulator and robot systems possess several specific qualities
in both a mechanical and a control sense. In the mechanical sense, a
feature specific to manipulation robots is that all the degrees of
freedom are "active", i.e., powered by their own actuators, in con-
trast to conventional mechanisms in which motion is produced primarily
by the so-called kinematic degrees of freedom. Another specific quali-
ty of such mechanisms is their variable structure, ranging from open
to closed configurations, from one to some other kind of boundary con-
ditions. A further feature specific of spatial mechanisms is redundan-
cy reflected in an excess of the degrees of freedom for producing cer-

tain functional movements of robots and manipulators.

From a control viewpoint, robot and manipulator systems represent re-
dundant, multivariable, essentially nonlinear automatic control sys-—
tems. A manipulation robot is also an example of a dynamically coupled
system, and the control task itself is a dynamic task.

The basic motivation for establishing the conception of this series
has consisted in an intention to clearly define the role of dynamics and
dynamic control of this class of system. The associates who have been
engaged in the work on this series have primarily based their contri-
butions on the development of mathematical models of dynamics of these
mechanisms. They have thus created a solid background for systematic
studies of rcobot and manipulator dynamics as well as for the synthesis
of optimal characteristics of these mechanisms from the point of

view of their dynamic performances. Having in mind the characteristics
of robotic systems, the results concerning the problems of control of
manipulation robots represent one of the central contributions of this
series. In trying to bridge, or at least reduce, the gap existing bet-

ween theoretical robotics and its practical application, considerable
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efforts have been made towards synthesizing such algorithms as would
be suitable for implementation and, at the same time, base them on

sufficiently accurate models of system dynamics.

The main idea underlying the conception of the series will be realized:
to begin with books which should provide a broad education for engine-
ers and "create" specialists in robotics and reach texts which open up
various possibilities for the practical design of manipulation mecha-

nisms and the synthesis of control algorithms based on dynamic models,

by applying today's microelectronics and computer technologies.
Those who have initiated the publication of this series believe they

will thus create a sound background for systematic work in the research

and application of robotics in a wider sense.

Belgrade, Yugoslavia, February 1982 M.Vukobratovidé



Preface

This monograph represents the first book of the series entitled "SCI-
ENTIFIC FUNDAMENTALS OF ROBOTICS". The aim of this monograph is to ap-
proach the dynamics of active mechanisms from the standpoint of its
application to the synthesis of complex motion and computer-aided de-
sign of manipulation mechanisms with some optimal performances. The
rapid development of a new class of mechanisms, which may be referred
to as active mechanisms, contributed to their application in various
environments (from underwater to cosmic). Because of some specific fea-
tures, these mechanisms require very careful description, both in a
mechanical sense (kinematic and dynamic) and in the synthesis of algo-
rithms for precise tracking of the above motion under insufficiently
defined operating conditions. Havingalso inmind the need for a very fast
(even real-time) calculation of system dynamics and for eliminating,
in principle, the errors made when forming mathematical models "by
hand" this monograph will primarily present methods for automatic for-
mulation of dynamic equations of motion of active spatial mechanisms.
Apart from these computer-oriented methods, mention will be made of
all those methods which have preceded the computer-oriented procedures,

predominantly developed for different problems of rigid body dynamics.

If we wish to systematically establish the origins of the scientific
discipline, which could be called robot dynamics, we must recall some
groups and individuals, who, by solving actual problems in the synthe-
sis and control of artificial motion, have contributed to a gradual
formation of this discipline. Thus, Vukobratovié and Juridié started
(in 1968) research into the synthesis of artificial biped gaits and
the dynamics of anthropomorphic mechanisms. Practically at the same
time R.Mc Ghee and A.A.Frank (USA) studied (in 1970) the dynamics of
the four-legged machine ("The Californian horse"). Slightly later,
D.E.Okhotsimski (USSR, in 1971) and associates started an extensive
and original investigation of the dynamics and synthesis of control
algorithms with artificial intelligence elements of multi-legged loco-

motion systems. A few years later (in 1974) V.V.Beletskii (USSR) and
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his associates, as well as V.B.Larin (USSR), systematically continued
the activity in the biped locomotion field. While Beletskii practically
adopted the semi-inverse method by Vukobratovié and later enlarged it
to the completely inverse procedure of anthropomorphic gait synthesis,
Larin, by adopting only the global control strategy of the Belgrade
school, tried to apply the method of gait synthesis optimization to

relatively simple anthropomorphic models.

In parallel with these investigations, the study of the dynamics and
control of active spatial mechanisms was developed for application
with manipulation robots. The first person to be mentioned here is the
founder of modern mechanism theory I.I.Artobolevskii (USSR). Later,
Yu.A.Stepanenko (USSR) was among the first to start working on algo-
rithms for computer formulation of dynamic equations of open kinematic
chains. The vital contribution by E.P.Popov (USSR) and his associates
N.A.Lakota, A.F.Vereschagin, V.S.Kuleshov, A.S.Yuschenko and V.S .Med~
vedov should also be mentioned, as well as V.S.Yastrebov, and F.M.Ku-

lakov in the field of the dynamics and control of manipulation robots.

R. Paul (USA) and his associates J.Luh, M.Walker and others should also
be specially mentioned here for his work on the basis of the interactive
procedure of forming mathematical models of manipulation systems.

Based on mostly analytical forms of the equations some contributions to
the manipulator dynamics analysis has been made by M.Renaud (France) .

J. Hollerbach and W.Silver (USA) have studied the manipulator dynamics
by accepting recurrence relations suitable for computer forming of the

mathematical models of manipulation systems.

Almost simultaneously with the discovery in the USSR of new results
in the field of computer methods for constructing the mathematical mo-
dels of spatial mechanisms, a systematic activity was initiated at the
"Mihailo Pupin" Institute in Beograd (Yugoslavia) in the field of au-
tomatic (computer) forming of dynamic models of anthropomorphic sys-
tems. These algorithms developed later into general procedures for
computer formulation of mathematical models of arbitrarily complex
spatial mechanisms. Thus, apart from the previously elaborated method
of forming mathematical models on the basis of general theorems of
mechanics, the authors of this monograph elaborated general procedures
for describing the dynamics of kinematic chains using Lagrange’s sec-
ond-order equations and the Gibbs-Appel equations. Such development of
the procedures for forming mathematical models of active mechanism mo-

tion while solving actual tasks of the synthesis and control of vari-
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ous movements applied in robotics has resulted in a specific unconven-
tional system dynamics related to the forming of functional motion.
Hence, such a dynamics, connected with the synthesis of functional mo-
tion in robotics, can be called functional dynamics. As the functional
dynamics also assumes the calculation of driving forces, it may be
concluded that in such problems the notion of "pure" dynamics overlaps
with dynamic control, notably if one has the two-stage concept of sub-
optimal control synthesis in mind where the first stage is represented
by the functional (nominal) dynamics synthesized under unperturbed
conditions. The monograph contains five chapters. In Chapter 1 the
various cases of active spatial mechanism are introduced and explained,
their classification is presented, and we introduce the general postu-
lates in the study of the dynamics of functional motion with manipula-
tion and robots in general. The analytical methods of forming the dy-
namic equations of active, spatial, Jjoint-connected rigid bodies are
briefly stated.

Chapter 2 presents the computer methods for forming mathematical mo-
dels of the dynamics of active spatial mechanisms on the basis of the
general theorems method (the first chronologically), then those based
on Lagrange’s second-order equations and those based on Appel’s equa-
tions and Gibb“s function of acceleration. This Chapter represents the
central part of the monograph and for the first time gives a complete
insight into the existing methods for automatically forming mathemati-
cal models of the dynamics of open kinematic chains of arbitrary spa-
tial configuration. Chapter 3 presents applications of the methods in
Chapter 2 to the synthesis of functional movements in the case of ty-
pical manipulation tasks. Various functional blocks are elaborated
which solve the problems of the various ways of setting the manipula-
tion tasks when applying manipulation mechanisms with different num-
bers of degrees of freedom. In the same chapter illustrative examples
of the synthesis of functional movements of various conifiguration
manipulation robots are given. Chapters 4 and 5 present the applica-
tion of the dynamic models in the tasks of manipulation mechanism syn-
thesis. While in Chapter 4 the results from the field of elastic mani-
pulator dynamics are given, Chapter 5 presents a computer-oriented me-
thod for the design of manipulation robots based on their desired dy-
namic performances and optimal characteristics, taking into account

various criteria and imposed constraints.

In this monograph the material from the field of forming the complete

mathematical models of spatial active mechanisms, used mainly with
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manipulation robots, is presented for the first time. It should be
emphasized that the same models can also be applied, along with set-
ting specific conditions, in the case of locomotion systems synthesis.
This monograph should provide in the first place a basis for serious
study of robot dynamics by researchers engaged in applied robotics, as

well as postgraduate students.

Finally, the authors have the pleasent duty of acknowledging, on this
occasion, the activities of prof. D.Jurilié, who, with the first auth-
or of this monograph, published thirteen years ago practically the
first paper in applied robot dynamics, when the idea for the two-stage

)

*
control synthesis of robots was also presented for the first time.
The authors also express their gratitude to Dr D.Hristié, who contri-
buted essentially to the work and development of the ideas in the syn-

thesis of locomotion and manipulation mechanisms.

Apart from the results presented in the book, the results of Dr D.Sto-
kié in the dynamics of the assembly process should be mentioned. These
have contributed to the formation of an efficient algorithm for the
dynamic control of the last phase of the above manipulation task. We
also wish to take this opportunity of mentioning Miss Dr V.Cvetkovié,
who obtained useful results in the field of calculating the manipula-
tor dynamics in real time and forming the approximative models of ma-
nipulation systems. Mention should also be made of N.Kircdanski, M.Sc.,
Mrs M.Kirdanski, M.Sc., I.Nikolié, M.Sc. and B.Borovac, M.Sc. who, by
their initial results in the field of approximative and exact dynamics,
and the procedures of computer linearization of the models and analy-
sis of the dynamic influence of manipulation robots actuators, contri-
buted to extensive research in the field of robot dynamics and active
spatial mechanisms. We should also mention Dr D.Surla who obtained new
results in the dynamics of biped gait. The results mentioned will find

also their place in the following books of this series.

The authors are grateful to Dr D.Hristié and Miss G.Aleksié for their
help in preparing English version of this book. Our thanks also go to
Dr T.Flannagan for improving the translation. Finally, our special ap-
preciation goes to Miss V.Cosié for her careful and excellent typing
of the whole text.

Belgrade, Yugoslavia, February 1982 The Authors

*
) Vukobratovié M., Juric¢ié D., "Contribution to the Synthesis of Bi-
ped Gait" IEEE Trans. on Biomed. Engn., BME, Vol. 16, Jan. 1969.
g
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Chapter1
General Remarks about Robot and Manipulator Dynamics

1.1. Introduction

During the last few years a new technical discipline has arisen in ap-
plied mechanics and the control of technical systems. The field in
question may be called ROBOTICS. There are numerous indications of it
being well-established. We mention only a few. On the one hand, for
example, we have witnessed the rapid development of manipulation sys-
tems of different generations intended for a wide range of industrial
applications. On the other hand, robot and manipulator theory has de-
veloped in many research centers without exercising any significant
influence on the designers and manufacturers of actual manipulation
devices or robots in general. Thus there has existed a certain discrep-
ency between the existingpractice and the often too academically ori-

ented theory.

Recently, due to the needs for the best possible industrial manipu-
lators and the best possible control algorithms, research has been
more directed towards profitable application of theoretical results
in the greatest possible measure to the development of better manipu-

lators.

The development of industrial manipulators and robots in general, which
in the course of time, has found wider and wider applications has de-

manded the development of new theoretical methods. When the expression
"active mechanisms"*) is used in robotics, what is meant is robot mech-
anisms. Wider application of such mechanisms has uncovered a vacuum in

theoretical methods.

The first work in the dynamics of spatial mechanisms was published by
* %

N.G. Bruyevich ) as far back as 1937. His paper applied the kineto-

*
) Mechanisms, possessing in principle separate drive for each degree
of freedom.
* %
) Reports VVA Zhukovskiy, vol. 36, 37, 1937.



static method to the dynamic analysis of spatial lever mechanisms.
Since electronic computers were not then available and since the ana-
lytical calculations are extremely involved for the greater number of
mechanism members, the paper was of theoretical significance. For, many
years afterwards the dynamics of smatial mechanisms was not investiga-
ted since, amongst other things, efficient methods of kinematic analy-

sis had not been develowned.

Later much more attention was paid to the study of spatial mechanisms,
in particular of their dynamics. Several methods arose, in which at-

tempts were made to find analytical procedures for deriving the mecha-
nism dynamic equations. The methods were directed towards deriving the
models "by hand", although some of themcan be programmed for computer
work. A common characteristic of several of these.methods is that they
were originally developed for various mechanisms in fields other than
robotics. Later their authors strived to apply the same methods to the

analysis of robot mechanisms.

A great advance in the field of the dynamics of active mechanisms was
the appearance of the so-called automatic methods for the formation
and solution of mathematical models of active mechanisms (the methods
are described in detail in Ch. 2 of this monograph). The main feature
of these methods is that the major part of forming and solving the mat-
hematical model (of the dynamic equations) is done by computer. Of
course, that was possible only when modern computers came to be used
in scientific applications. Several things were responsible for the
appearance of these automatic methods. First, formulating the dynamic
equations "by hand" is very difficult even for a mechanism with a few
degrees of freedom (d.o.f.). The great likelihood of making errors in
the course of such a lengthy task should not be left unmentioned. Even
the model obtained is so clumsy, that it is rather useless for practi-
cal applications. The solution of such a model "by hand" is impossible.
Tts programming for computer solution is in any case very complex. Fi-
nally, it should be stressed that it is frequently necessary to analy-
ze a greater number of various configurations of robots, which, in the
manner described is impossible. Hence the idea naturally emerged of
transferring to the computer the whole procedure from the formulation
of the model itself to its solution. Thus, the task of the researcher
would only be to prepare the input data about the mechanism configura-
tion, because the automatic methods work for arbitrary configurations.

As computer output, solutions are obtained for the direct or inverse
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problem of dynamics* , depending on the task set. In order that these
methods could demonstrate their full efficiency, the way of viewing
mechanism kinematics and dynamics had to be changed somewhat, i.e. one
should be primarily concerned with deriving the recursive kinematic
and dynamic relations. Such recursions, written by hand, do not have a
compact model form but they are indispensable to an efficient numeri-

cal computer calculation.

Let us now consider in more detail the guestion of functional dynamics.
It will be seen that the term completely suits the dynamics of robots
and manipulators. As a rule, the methods for the dynamic analysis of
active mechanisms use generalized coordinates. From a purely theoreti-
cal standpoint, the dynamics problem is solved if, for known driving
forces and torques, the corresponding motion, expressed in generalized
coordinates, is obtained or vice versa. However, in practice such a
solution is insufficient, because one needs to consider the so-called
functional robot motion. This is a motion, satisfying cartain practi-
cal demands. Let us consider the case of the industrial manipulator.
The manipulation task, i.e. its functional motion, can be prescribed
in several ways. For instance, the law governing the manipulator tip
motion can be given as can that of the gripper orientation in the space.
Thus, we are only interested in such functional motions (from the

set of all possible mechanism motions). It is therefore necessary to
obtain the drives producing these functional motions. Hence we often

speak about functional dynamics.

Let us now analyze the connection between the active mechanism dynamics
and the control of such mechanisms. When regarding a functional move-
ment (for instance a manipulation task) it can be seen that the essen-
tial problem lies in determining theé driving torques and forces of the
actuators which will produce the desired mechanism (or manipulator) mo-
tion. Now it is clear that the considerations of functional dynamics
are closely connected with control and conversely; so the term dynamic
control can be meaningfully introduced. Anyhow, the connection between
dynamics and control can be regarded in several ways. First, dynamic
analysis of the functional movement, notably the simulation algorithms,

makes possible the calculation of nominal dynamics.Cn that basis, con-

*
) Direct problem is in obtaining the driving forces and torques which
will realize the prescribed mechanism (robot) motion, and the in-

verse problem is in obtaining the moiton when the drives are known.
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trol synthesis is carried out for unperturbed working states*). This
applies mainly to industrial robotics where there are firmly defined
tasks which are performed in known, usually invariant working condi-
tions. The question of control is different if a certain degree of

uncertainty exists; e.g. manipulation in underwater explorations and
the like. In this case the approach is different. However, about the
connection between dynamics and control, more will be said later in

this introduction.

Here we pose a basic question: what are the purposes and aims of stud-
ying active mechanism dynamics? One is connected with control, which
has already been mentioned (and will be discussed more full later),
and a second is the development of procedures for optimal design and a
certain automation of the process of designing industrial manipulators.
This second aim only emerged recently and more and more attention is
being paid to it. Let us say a few words about this problem which fea-

tures prominently in this monograph.

In practice up to now, in the design of the mechanical part of the ro-
bot the choice of the kinematic scheme, the choice of different para-
meters (dimensions, masses etc.), as well the choice of the actuator

units, was a subject of free speculation, frequently based on experi-
ence but lacking any system or method. Hence, with the existing manip-
ulators, many parameters, and often the motors, were overpowered. Such
a device is not at all optimal from the point of view of energy con-

sumption or operating speed. The need therefore arose to develop cer-
tain criteria and procedures for a systematic choice of manipulator

configuration. The main aim of this monograph is to develope such cri-

teria and procedures.

We now discuss one more aspect of the automatic formulation of the ro-
bot mathematical model. This is the question of real time. Contempora-
ry computers are at the frontiers of formulating the mathematical mo-
del, i.e. computing the dynamics of the manipulator in real time. But
the question of purposefulness of attaining real-time computation is

posed.

*
) If the two-stage control concept of robots and manipulators is
adopted [1, 2, 3, 4], then of the first, so-called stage of un-
perturbed regimes the very calculations of the dynamic nominal

regimes (the programmed trajectories) is performed.



If to this question we wanted to give a sufficiently simple and, at
the same time, sufficiently exact answer, it could be said that auto-
matic (computer) formation of mechanism differential motion equations
would be a sufficient result, and the attainment of real-time computa-
tion is more of academic significance. This is surely the case when the
application of the dynamics to optimal design is in question because in
this case computing time is not of prime importance. Let us see how
things are when the dynamics is used in connection with control. As
already stated the questions of dynamics and control cannot be altoge-
ther separated. It was shown that it is more correct to speak about
functional dynamics, or dynamic control, i.e., a control based on de-
tailed knowledge of the system dynamic characteristics. Above all, this
is a control which, by knowing the system completely and its energy
requirements with the scope of the task defined, is based on the driv-
ing and control components having no unnecessary power reserve. Only
now can the second question be posed, not about the justification of
dynamic calculation, but about the justification of the synthesis of
control algorithms in real time. Surely in most real applications of
active mechanisms this feature is not necessary. For all manipulation
systems predetermined to work permanently or during certain time peri-
ods, under the same working conditions, the same environments, or on
the same programmed tasks, the control algorithms do not change during

the process. This refers mainly to industrial robotics.

However, things are somewhat different for systems working under unsuf-
ficiently defined working conditions, i.e., in environments with a de-
gree of uncertainty. We mention only one class of task, referring to
manipulators for underwater applications. Calculation of the dynamic
and control parameters in this case should be understood as being nec-
essary for calculating the programmed kinematics (depending on the ob-
ject in question) within the limits of the kinematic and geometrical
capabilities of the manipulator, i.e., of its mechanism. And depending
on other variable conditions such as weight (and within the capability
limits of the actuators), it is also necessary to calculate the requ-
ired driving forces and, in that connection, to select the correspond-
ing gains in order to ensure and satisfy good tracking quality of the
trajectories. Reasons for partial calculation of the dynamics of mani-
pulation systems in real time become more convincing if for instance
we consider the case of the assembly tasks of mechanical elements in

various working environments, including underwater and cosmic space.



Redundancy is another freguent specification of active mechanisms in
robotics. In this case the mechanism has more d.o.f. than is needed
for performing the task in gquestion. On the one hand, this permits a
greater mechanism flexibility in task performance, while on the other
hand, it complicates the control system by introducing optimizing pro-
cedures for solving the problem of the system redundancy. This surplus

of d.o.f. can also be used to satisfy special additional requests.

1.2. Classification of Active Mechanisms in Robotics and Some of Their
Specifications

From the point of view of mechanism theory, active mechanism in ro-
botics are complex kinematic chains of variable structure, having a
great number of members, some of which can be of variable length, with

controlled degrees of freedom.

From the point of view of control theory they are complex, nonlinear,
multivariable dynamic systems. Active mechanism can be divided accor-
ding to the number of kinematic chains into:

- simple (consisting of a single kinematic chain)

- complex (comprising a number of simple shains)

According to their form, simple kinematic chains may be open or closed.
Complex chains may be classified as:
- branched (comprising only simple open chains)

- combined (comprising both open and closed chains).

Depending on the kinematic constraints imposed on their end members,

active mechanisms may be divided into:

- free or open

- connected or closed (connected by kinematic pairs to the fixed

base)

Members of active mechanisms are interconnected by means of kinematic
pairs. There is no difference between kinematic pairs of active and
"classical" spatial mechanisms. Execution of kinematic vairs of both

mechanisms classes are practically identical, except for the differ-
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Fig. 1. Table of kinematic pairs




ences created by actuators mounted in the mechanism joints.

Kinematic pairs of various classes are presented in the table, Fig. 1,
r 1
5]

The class of a kinematic pair is determined by the number of constrain-
ing conditions on the connections concerning free relative motion of
members. In the table kinematic pairs are arranged into five classes
according to the number of the member relative motion, d.o.f. Kinema-
tic pairs in the fifth class have one d.o.f. and the pairs in the first
class have five d.o.f. of relative motion. Besides being partitioned
into classes, kinematic pairs are divided into types, depending on the
number of relative rotations within the scope of the total number of
d.o.f. in the joint. Pairs of the first type allow the maximal number
(3) of relative rotations, pairs of the second type two rotations, and
pairs of the third type only one relative rotational motion. Besides
the pairs, in which relative motions of members are mutually independ-
ent, there are pairs with interconnected motion. The simplest example
is the screw-nut kinematic pair, in which the linear and rotational

motions are linearly dependent; so this is a fifth class pair.

In the theory of machines and mechanisms, kinematic chains are cals-
sified as simple or complex, complex chains being formed by several
simple ones. Simple kinematic chains can be open or closed. In a closed
chain, each member enters into two kinematic pairs, while in an open
chain, the last member enters into one kinematic pair only. With com-
plex kinematic chains, the individual members enter into three or more
kinematic pairs. Here the notion and properties of open and closed ki-
nematic chains should be examined more closely. In the literature on
active mechanisms, neither the notion nor the conditions of the closed
(open) state of the open and closed chain is discussed. The kinematic
chain is closed when its terminal members are connected by means of
kinematic pairs to one (or more) member (s), which can be: fixed (sup-~
port), a member of another kinematic chain or a member of the initial
chain. It should also be emphasized that in the course of working the
active mechanism chains (either of manipulators or locomotion machines)
change their configuration once or several times from open to closed
or vice versa. The kinematic chain of the manipulator during its mo-~
tion through the working space is open but during execution of the
operation itself (e.g. insertion or screwing in) it becomes closed.
The mechanism of the locomotion biped is open during the swing phase

of the step (when one foot is not on the ground) but in the double sup-



port phase becomes closed (Fig. 2a and 2b) . However, during the single
support phase the anthropomorphic mechanism can also possess two con-
figurations. The "foot" can rotate around its edges (Fig. 3a, b). The
corresponding kinematic schemes are given in Fig. 3c, d. As can be
seen, when the foot is supported alternately on one and then the other

foot edge, the position of hinge "O" changes abruptly.

Fig. 2. Anthropomorphic locomotion mechanism

c)gd)

Fig. 3. Schematic of the uncontrollable d.o.f. of foot

In addition, joint O, because of constant changes in its position,
cannot be equipped by a corresponding drive (actuator). On the other
hand, the change of the coordinate d, is exceptionally important be-
cause with greater values of 95 the system becomes statically unstable

(it overturns). This feature of the anthropomorphic mechanism creates
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a special control problem because the uncontrollable d.o.f. must be
controlled by means of the other d.o.f. Such an anthropomorphic mecha-
nism also has the corresponding kinematic constraints at each joint,
for the sake of imitating the human state. In addition, the mechanism
of the locomotion biped (differing from the manipulator) is connected
to the support surface by means of the frictional force only. Thus,
the mechanism of an exoskeleton demonstrates a variable structure, the
presence of an uncontrollable d.o.f., kinematic constraints and an es-
sential influence of the frictional force. The manipulator kinematic
scheme is somewhat different. Above all, problems of global system
stability do not exist, unlike problems arising from the frictional
force (except in some special working operations). Kinematic chains of
manipulators are mainly simple. The kinematic chains of some industri-
al manipulator designs (telescopic manipulators) possess linear kine-
matic pairs. Such a connection between members permits an increase in
the working space (the reach) of the manipulator because one member is
inside the other. By means of corresponding drives one has been able
to create linear motion of these members. It follows that some manipu-
lators have, besides a variable structure, members of variable length
(Fig. 4).

n— rotational joint
(1 d.o.£f

[] - linear joint
(1L d.o.f)

N

Fig. 4. One mechanism of "telescopis" manipulator

The variable structure of active mechanism chains presents an essen-
tial difference from the classical spatial mechanisms, the structure
of which does not change during work. A second difference is in the
number of d.o.f. With spatial mechanisms with driving member, number
of d.o.f. is rarely greater than two and by synchronizing motion of
the working members, the execution of the working operation is achie-
ved in advance. The number of d.o.f. of active mechanisms is notice-
ably greater (up to ten and even more), so drives in the Jjoints are
indispensable. Only by the action of the torques and forces of these

motors (during working operation) is the desired motion achieved. On
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the one hand this allows for an exceptional adaptibility of these me-
chanisms to the working environment and various tasks (which in the

case of automation type mechanisms is impossible). On the other hand,
it imposes exceptional difficulties in realizing control because some

of the mechanism d.o.f. appear as redundant.

As already stated, robots represent active mechanisms of variable
structure. For instance, one manipulator can, during its work, change
the group which it would belong according to the given classification.
We illustrate this change of structure by considering an example of an
industrial manipulator in the course of inserting a cylindrical work-
ing object into a hole (Figs. 5 to 7). At first (Fig. 5a) the manipu-
lator has an open kinematic scheme as in Fig. 5b (simple open chain).
In the phase of transferring the working object (Fig. 6a) the kinema-
tic chain does not change (Fig. 6b) but the last member (now the grip-
per and object together) changes its dimensions and mass, which cause
the dynamics to change too. Finally, in the phase of object insertion
(Fig. 7a), the kinematic scheme of the manipulator changes too and it

becomes a simple closed kinematic chain (Fig. 7b).

Mechanisms of legged locomotion machines are, as a rule, complex kine-
matic chains. Fig. 8 shows an arbitrary, complex kinematic chain com-
prising four simple chains, the first three (formed by the members 1 -
6) being closed and the fourth (formed by the members 7 and 8) being
open. The kinematic chains connected to the support are basic chains,
while the chains connected to them, but not by means of the support,
are satellite chains (satellites). With this said, the procedure of
separating one complex chain into a number of simple ones is practical-
ly defined. The notion of an independent kinematic chain, introduced
in Ref. [5] may be defined at this point. A kinematic chain is said to
be independent if its motion with respect to the support is indepen-
dent of the satellite chains, namely, if its last members are connec-
ted to the support. This means that a basic chain is independent. This
definition is slightly different from that given in [6], but, as a re-
sult, only one autonomous chain is obtained in any complex connected
mechanism, all the remaining chains being satellites with respect to
the autonomous one. Taking the model of a human presented in Fig. 2.
as an example, it is possible to isolate the chains of "legs", "body"
and "arms"; here, the chain consisting of "legs" is independent since
the chains of "body" and "arms" impose no kinematic constraints on it.

For the mechanism presented in Fig. 8, if the motion of member 1 is



B8 - 1 rotational
d.o.£.

,43’— spherical joint,
3 revolute d.o.f.

= (a) (b)

Fig. 5. Manipulator before grasping the object

~—

(a) (b)

Fig. 6. Phase of working object transfer

T~

(a) K (b)

Fig. 7. Phase of object insertion into the hole
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known, the chain I is independent, all the remaining ones being satel-
lites. The sequence to be followed in performing kinematic and dynamic

analyses has thus been determined; namely, the basic independent chains

Fig. 8. Complex kinematic chain

should be analyzed first, and the satellite (guided) chains second.
Figures 9 and 10 illustrate the kinematic chains of multilegged walking
machines without presenting the foot-to-ground connection realized by
kinematic pairs. If the global kinematic constraints imposed on the
mechanism and the relative motions of some members are known, it is
possible to define the autonomous chain and the satellites. Without
considering the requirements concerning the gait type and foot-to-
ground contact, it may be said that, for the mechanism presented in
Fig. 9, it is necessary to know the motion of at least one of "the
legs" so as to determine the guiding and the quided mechanism part;
while for the mechanism of Fig. 10, such a division requires the kine-

matics of any two legs to be known.

Fig. 9. Mechanism of a six~legged Fig. 10. Mechanism of a four-legged
locomotion machine locomotion machine

The notion of the structure of a topological branch may be encountered
in the literature [8, 9, 12]. What is understood by this notion is a
branch-like (tree-like) system of rigid bodies connected by different

kinematic pairs (Fig. 11).



Fig. 11. Mechanism of free topological branch structure

Since it is our intention to present in this monograph only those met-
hods for formulating mathematical models of active spatial mechanism
dynamics which are computer-oriented, we will not discuss in this
chapter the results of the dynamics of rigid connected bodies. These
results were mainly based on a study of satellite dynamics and were
available to the dynamics of spatial mechanisms, as applied in robo-
tics. Hence the results are mentioned more with the intention of indi-
cating the bibliographical sources than for the sake of a more de-
tailed insight into the dynamics of spatial mechanisms; and also to
draw attention to those researchers, who have precided the more modern

approach in the range of new abilities of modern comptuer system.

1.3. Previous Results

The mathematical models developed in the preceding period of analyti-

cal methods can be devided into two main groups:
- Methods based on general theorems of dynamics,

- Methods based on second-order Lagrange equations.

Methods based on Newton-Euler equations. The motion equations of ac-




tive mechanism can be written for every body taking into account the
equations of the connections between the bodies and of the kinematical

connections.

In 1963., H.J.Fletcher, L.Rongved and E.Y.Yu [7] studied the motion of
a satellite composed of two rigid bodies, connected by a universal
joint, under the load due to gravitation. The model can be simply ex-
panded when driving torques act at the joints. Elimination of the con-

nection force in this case is trivial.

In 1965., W.W.Hooker and G.Margulies [8], inspired by the preceding
work, studied the general case, where n+l bodies are connected by means
of joints with 1 or 2 rotational d.o.f. Although by this method was a
significant advance, it still possesses some unsuitable features such
as that although the method uses matrix formalism, it is not able to

obtain the matrices as functions of the system state.

R.E.Roberson and J.Wittenburg [9], in their approach, have defined the
system of bodies as a graph, whereby the elaborated and known graph
properties are used. The system is restricted to the form of a topolo-
gical tree, twc bodies being connected by a joint, so that the system
consists of n bodies and n-1 joints. Isomorphism between the system of
rigid bodies and the graph is estabilished in such way, that the mass
centers form a set of graph knots X = {xl, x2,...,xn}, and the set U =
{ul, u2,...,un} of the graph branches is defined as a set of joints
connecting the bodies. The mapping T (x)>X is defined by directing the
graph in Fig. 12.

O

Fig. 12. Example of a system of bodies
and the corresponding graph

This method remains interesting especially for its topological repre-

sentation of the system.

The method of W.W.Hooker [10] provides a new possibility of eliminating
constraints but presents a serious problem in deriving the motion equa-

tions.
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The method of P.W.Likins [11], proposed in 1971, is a more direct ap-
plication of the preceding method. Moreover, without reducing the prob-
lem”s generality, it simplifies the numerical designation of the bod-
ies in the kinematical chain, and of the joints and unit vectors of

the rotation axis. This method is based on the following two remarks:

Remark 1l: The studies [9, 10] have demonstrated the significance of
determining one reference body and some particular sequence of bodies
in such way that their numbers grow during the description of a to-

pological branch.

Remark 2: In practice, joints with several d.o.f. require in general
the introduction of interconnected segments. This is particularly nec-
essary when control of each individual d.o.f. is desired. Hence, in
the majority of cases it is natural to separate a joint with several
d.o.f. into several joints with one d.o.f. This is always possible by

adding segments of zero mass.

P.W.Likins supposes that this separation has already been done. This

approach results in a simplification of the equations proposed by W.W.
Hooker [10] and enables Likins to express rotational system motion by
matrix equations. This approach is suitable for computer simulation of
joint-connected bodies in the form of a topological branch having rel-

ative rotations only.

Until now we have only discussed methods for constructing equations of
systems in the form of topological branches and with relative rota-
tions. If relative linear motions do not appear with anthropomorphic

robots, such motions can be very interesting for industrial robots.

In the same way, the case, e.g., of studying gait in the double-sup-
port phase, demands the development of methods catering for closed

chains in the mechanism. For this reason several people have recently
been studying mechanisms of a more general structure. We will shortly

illustrate a few of these methods.

J.Wittenburg has generalized the method [9] to systems having the
structure of a topological branch, whose joints j permit rotational
motion with r, d.o.f. and linear motion with £y d.o.f. [12], (rj and
tj =1, 2 or 3). The method is very general. It does not, however,

include fully closed chains, so it remains too theoretical and does
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not offer an explicit matrix procedure for obtaining the equations.

F.W.Ossenberg-Franzes gave in 1973 a more general method for formulat-
ing equations (relative rotation and translation with closed chains),
based on Newton’s and Euler’s equations [13]. First one obtains motion
equations for n+l bodies with 6 (n+l) coordinates. This number is then
reduced by introducing constraints. The method does not offer an ex-

plicit matrix procedure for obtaining equations.

All these methods, except the method of J.Wittenburg, were directed to
the analysis of flying object dynamics. The control of orbital craft
and satellites is very similar to the dynamics of active spatial mec-
hanisms because it is necessary to determine the driving forces and
torques in the joints between the bodies, these being based on previ-
ously determined inertial forces and moments and external forces and

moments, for which a kinematic analysis of the system is necessary.

The requirements of and the dynamic analysis of active mechanisms hence

do not differ from the global requirements of those methods.

From the point of view of the generality of the structural models con-
sidered, although most of the methods considered models of complex o-
pen kinematic chains with rotational joints, some methods considered
translatory kinematic pairs and closed chains, so in that aspect they
are completely acceptable. In all methods the dimensions of all bodies
were finite, which is important for active mechanisms in which some

members cannot be considered as canes or cylinders.

The basic deficiency of the above methods (except the method of P.W.
Likins) lies in the fact, that they do not permit the formulation of
recursive kinematic and dynamic equations, but they are analytic ("by
hand"). However, with active mechanisms iterative calculations of dri-
ving forces and torques is necessary at each time instant and each
mechanism joint. This requires the use of a digital computer for any
more complex configuration. This in turn requires the dynamic equa-
tions to be recursive, which requires a consecutive and mutually con-
nected enumeration of bodies. The preceding procedures are based on

direct enumeration (except the method of P.W.Likins).

From that point of view, the procedure of P.W.Likins is completely

adaptable to programming and the application of digital computers to
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the analysis of complex open chains with rotational kinematic pairs of
all classes. It is a different question how "fast" this procedure
would be in terms of computing time, i.e., how suitable it would be
for control in real computer time compared with other algorithmic pro-
cedures. (Judging by the number of the kinematic and dynamic opera-
tions needed, it would not be too inferior). The sole deficiency of
this procedure lies in the fact that it uses the wvalues of the aug-
mented body tensors of inertia, which is superfluous to computer cal-

culations.

It should be emphasized that by changing the enumeration or formula-
ting the recursive relations it is also possible to adjust the other
methods for programming, but this changes the whole kinematic and dy-

namic calculations in these methods.

Using the notions of an augmented body and its mass center (the body
barycenter) allows one to introduce the value of the tensor of inertia
for the body barycenter. The dynamic equations can then be written in

a somewhat condensed form, but their derivation remains analytical.

Finally, it should be noted that these methods have made a useful con-
tribution to active mechanisms dynamics because the elimination of
some of their deficiences has given rise to some new procedures in dy-

namics of robots and manipulators.

Methods based on Lagrange’s equations. Methods using Newton’s and

Euler”s equations are in principle complex, because of the complexity
of eliminating the constraints by forces and moments. Moreover, they do
not directly show the algebraic values of forces and moments due to
the action of actuators (motors), springs and dampers. On the other
hand, Lagrange’s equations provide the possibility of directly regard-
ing the equations as functions of the system control inputs. However,
the inherent unsuitability of applying of Lagrange’s equation lies in
the need to calculate the partial derivatives of Lagrange’s function,

and hence of the kinetic energy.

The Lagrangean L of a system as is known, is the difference between
the kinematic and potential energy: L = E, - E_. Defining the system
in terms of their generalized forces Qé, Qé,..,HQg, which are not de-
rivatives of some potential function (friction forces, external forces

and moments), the Lagrange eguations of the system are written in the
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faniliar form:
—_‘_"_———=le i=1121---1n

In 1968., J.J.Uicker proposed a method based on Lagrange’s equations,
for the study of the dynamical behaviour of joint-connected systems of
arbitrary structure (with an arbitrary number of closed chains) [14].
The author supposed that the joints permit either rotation or transla-
tion, so this method can be regarded as general. The equations are ob-
tained for the case when the system is under the action of a force
field, the forces being time-dependent and when, in addition to the
generalized spring and friction forces act in each joint. The poten-
tial is the result of forces due to gravity and the elasticity of

springs.

The method is sufficiently general to enable motion equations to be
simulated on a computer. The method has been used by several authors

to treat particular cases.

M.E.Kahn applied the method by J.J.Uicker to analytically obtain the
motion equations of a three-segmented body, connected by means of ro-
tation axes [15, 16]. Although two or three rotations are made around
parallel axes, the equations obtained are too complex and only by a
final arrangement of certain members is a simplification of the equa-

tions obtainable.

A.K.Bejczy and R.A.Lewis attempted to apply Uicker’s method to analyt-
ically obtain the motion equations of a telescopic manipulator with

three revolute d.o.f.

A.K.Bejczy [17] obtained, in analytical form, the expressions for the

manipulator kinetic and potential energy.

The expressions obtained are complex and the author proposes to sim-
plify them by decoupling the motions of the manipulator and the grip-
per. R.A.Lewis [18] proposes a simplified calculation of some Lagrange

equations coefficients.

Independently from these efforts, G.V.Koronev [19] proposed a method
for formulating the equations of mechanically joint-connected system,

having a topological branching, structure the Jjoints of which belong
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to certain classes defined by the author. This method treats the con-
nections only in a later stage of calculation when the equations of
the free system have been obtained in Lagrange s form. The author
starts by writing the quadratic form of the kinetic energy of the body
system as a function of the derivatives of 6 coordinates, defining
body position and orientation. Thus, these equations represent the
mathematical model of the complete free system as a function of én co-
ordinates. These 6 coordinates are wvalid for the real system provided
that the generalized forces due to external forces and moments are
augmented by generalized forces due to connections. In addition, coup-
ling of the various kinds is taken into account by the equations in a
set of 6n preceding equations. As the number of generalized coordi-
nates is 6n - h, it is possible to express these coordinates as func-
tions of the generalized 6n - h coordinates. Introducing the 6n coor-
dinates values and their first and second derivatives as functions of
the corresponding values of generalized coordinates in the 6n preced-
ing equations leads, after eliminating the generalized connection for-
ces, to 6n - h Lagrange equations for the real system. This method is
of theoretical interest only and does not provide any possibility of

obtaining a matrix form of the system of equations.

M.Renaud [20, 21] derives the motion equations for the system of n+l
bodies, forming the structure of a tree in relation to the referent
body O with the coordinate system Oo' The permissible relative motions
of the adjacent bodies are rotation and translation (Fig. 13) ITi is

the sign of translation.

O

Oo"\‘ ’ ~

Oai)

Fig. 13. Definition of relative body motion

With each body i (ies) is associated the coordinate system Qi(xi, Yir
z4), chosen in such a way that Zy TGy where 95 is the unit vector

defining relative rotation or translation of the body relative to the
preceding body. Each coordinate system Oi(ies) is defined in relation

to oa(i) and is given by the set Oy Bi, Y;r the turning angles of one
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system relative to the other (Fig. 14).

ali)
Oq(i) X

Fig. 14. Connected coordinate system
Values are defined according to the graph of the chain structure:

[e]

i, jes

|
—
)]
-
.
—

1 if body j is directly connected to body i,
and is not between bodies 0 and 1,

e. .
1j
0 otherwise

In addition, one defines the matrix:

[e] = [e

ij]; i, jes

1 if body i is on the chain, connecting
bodies 0 and j
ij
0 otherwise

Index a(i) refers to the body connected directly to body i and is be-

tween bodies 0 and i. The coefficient oy is defined by:

0 if body i rotates around the axis on body af(i),

i
1 if body i slides along a straight line fixed to
body a (i)
The generalized coordinates are defined as q; = aiYi + OyTy where

Q. = O.T., Osg, = O.Ys .
0595 OiTir 9494 O4Y4
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Renaud uses one of the usual forms of Lagrange’s equations:

3E 3E
e S SO
Jt '5g 5 '

where Ey is the kinetic system energy, while the potential system
energy is given by U = Up + Uart'
to the earth’s gravity and Uart is potential energy given to the sys-

tem.

where Up is the potential energy due

By means of this method, all stages of formulating the differential
motion equations of a kinematical chain have been systematically trea-
ted sufficiently well. As the for suitability of the method for prac-

tical applications, nothing more can reliably be said.

The method by J.J. Uicker [14] is geared to analytical calculation or
to recursive calculation of the motion eguations of some arbitrary
mechanical joint-connected system. However, this method has led to an
important but unnecessary complication of the equations [15, 16]. To
overcome this inconveniance M.Renaud has proposed a method for the
study of mechanical, joint-connected bodies in the form of a topolo-
gical branch performing rotations around axes only. This method is
based on the tensor calculus [20] and is explained in much more detail
with the aid of the matrix calculus in [21, 22]. An example of the
calculation of kinetical energy of a chain-form mechanism of 4 bodies

is given in ref. [21, 22].

As a last procedure we mention one closed form solution by Lagrange’s

method, suitable for kinematic chains with rotational joints [24].

As stated already, a direct application of Lagrange’s equations to the
formulation of dynamic models is unsuitable for automatic model con-
struction mainly because of undesirable numerical differentiation. In
this procedure this can be avoided and the coefficients of Lagrange’s

equations are expressed explicitly.

The methods using Lagrange s equations are an advance over those using
Newton-Euler equations because they do not require elimination of the
forces and moments of constraints. This advantage is partly due to the
form of Lagrange’s second order equations, on the right hand side of
which are the generalized forces (forces or moments) in terms of the

respective generalized coordinates. By the choice of the relative dis-
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placements in the joints in terms of the generalized coordinates, the
generalized forces are represented by the reaction forces and moments
between the bodies. The basic deficiency in these methods is the need
to calculate the partial derivatives of the kinetic and potential en-

ergy with respect to the generalized coordinates and velocities.

In a structural sense these methods are sufficiently general. They as-
sume rotational and translatory joints between members. By means of
these all other kinematic pairs can be described. Uicker s method con-
cerns complex closed chains and the method of M.Renaud, apart from the
topological branch structure, provides the possibility of describing
closed kinematic chains. The method by G.Korenev is based on other
suppositions and although it is completely general from the structural
point of view, it does not lead to a practical derivation of the equa-
tions. The enumeration in Uicker s method is consecutive although it
is given in a somewhat different form: (The author has found a consec-
utive enumeration of the joints, starting independently from the base
in each closed chain; but then the i-th body is always between the
i-th and (i+1)-th joint). Accordingly, there is a direct connection
between the body enumeration and the enumeration of joints. A short-
coming of this method is that all kinematic relations are based on the
matrix equation of the vector closure of the kinematic closed chain
contour. In order to apply this method to open kinematic chains it is
necessary to make certain modifications to the kinematic analysis. Fi-
nally, it should be noted that this method, like that of P.Likins, can,
with modification, be fully adapted to computer calculation since it

can be reduced to an algorithmic level.

The enumeration of members and joints in the method by M.Renaud is di-
rect. This is why the procedure for formulating equations is analyti-

cal.

For further practical calculations, according to [21, 22], it is pos-
sible to mechanize the equations obtained using a computer, because
the members, the derivatives of which must be found, are trigonometric
functions of the internal angles. In 1977. J.Zabala [23] proposed an
algorithm based on M.Renaud’s method for automatically formulating the

motion equations.
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Chapter 2

Computer-Aided Methods for Setting and Solving Mathematical
Models of Active Mechanisms in Robotics

2.1. Introduction

In this chapter the computer-aided methods*) for setting and solving
mathematical models of active mechanisms will be explained. By the
term mathematical model, we mean a set of dynamic equations i.e. dif-
ferential equations of motion. This concept will be expanded later and
a more precise definition will be given.

To write down the differential equations of motion by hand is a very
complicated task. Although, in principle, it is always possible, it
hardly makes sense to do so when more complex mechanisms are involved.
In addition, a problem to be kept in mind is the always present risk
of making numerous errors when handling such complex task. This has
given rise to the idea of using a digital computer for both forming
and solving mathematical models. As a result, computer-aided methods

of forming and solving mathematical models have been developed.

It appears necessary to develop computer methods of mathematical model-
ling for at least two reasons. One of them is that it is impossible to
immediately choose the most convenient configuration when designing
robots. The term configuration should be interpreted as the structure
(i.e. kinematical scheme) and parameters (i.e. dimensions, masses etc.).
Thus, it is necessary to analyze a number of different robot configu-
rations and choose the one most appropriate to the future purpose of
the device. Knowing how complex a task it is to write a mathematical
model by hand, the need for an algorithm that would enable a computer
to perform the task seems quite logical.

The other reason is the need in some applications for real-time (on-
-line) control of robots. The development of such computer methods
which perform real-time calculations of robot dynamics is a direct

contribution to the synthesis of control algorithms for practical pur-
poses.

*
) Computer oriented methods, computer methods or automatic methods.
P i
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Bearing in mind the reasons underlying the development of computer-—
—aided methods, we may now formulate the requirements which have to be
satisfied by a certain method, if the method is to be regarded as "com-
puter-aided":

1. The input data for the algorithm are: robot configuration (kinema-
tical scheme and parameters), information on the problem being sol-
ved, and the initial state.

Using such input data, the computer itself forms and solves the mathe-
matical model i.e. robot dynamics. The algorithm therefore operates
for an arbitrarily given configuration and dynamical problem. It sho-
uld be said that, in principle, two problems of dynamics may be solved,
a direct and an inverse one. A combination may also occur. The direct
problem consists in calculating the mechanism joints driving torqu-

es and forces needed to realize the prescribed motion. In this case,
motion is the input information. The inverse problem consists in cal-
culating the motion for the given driving forces and torques. The for-

ces and torques now represent the input information.
2. The algorithm includes no numerical differentiation.

Tl is requirement follows directly from the fact that numerical diffe-
rentiation of an expression is an undesired task, even for modern com-

puters. That is why such tasks are to be avoided in the algorithm.

The algorithms meeting these requirements allow simple dynamical ana-
lysis of different robot configurations (by changing the input data
only). If used in high speed computers, these algorithms are also sui-

table for the synthesis of control algorithms for real-time operation.

The first methods satisfying the requirements imposed appeared indepen-
dently of each other [l, 2]. The first approach was developed in con-
nection with the dynamical analysis of manipulators [1], while the se-
cond resulted from the efforts toward the synthesis of artificial gait
[2] . Other computer-aided methods of forming and solving the mathema-
tical model of active mechanisms have also been developed and they will
all be treated in this chapter.



2.2. The Basic Ideas of Computer-Aided Formation and Solution of a Mathematical
Model

In this paragraph the basic ideas of computer-aided formation and so-
lution of mathematical model of active mechanisms will be explained.
These ideas are common to all computer-aided methods (c.-a. methods

in the subsequent text).

Let us consider a general case: a mechanism consists of m arbitrary
rigid bodies (mechanism members or segments) which are connected by
arbitrary joints (arbitrary kinematical pairs). Let the mechanism have

n degrees of freedom (d.o.f. in the subsequent text).

There are several approaches to the description of mechanical system
dynamics. There are different forms of dynamical equation system and
on the other hand the dynamics may be described via the formulation of
certain principles (variational principles of mechanics). Many of
these approaches where used as the basis for developing c.-a. methods;
so different methods have recently appeared. This is why a general
formulation of mathematical models will be given here. This general
formulation encompasses all different approaches and is especially

suitable when the c.-a. methods are in question.
The aim of each c.-a. method is to derive functions f and g, such that:

£(u, 4, P, mechanism configuration) (2.2.1)

o
I

and

P

g(u, ﬁ, 1, mechanism configuration) (2.2.2)

In the expressions (2.2.1), (2.2.2) the vector u represents the set of
variables determining the position of the mechanism. If the mechanism
is described via generalized coordinates Ayresrdyr then

u=gq=[q - qn]T (2.2.3)

and the elements of the vector u are independent. The vector u may al-
so be of dimension 6m if the position of each mechanism segment is de-
termined by 6 variables (for instance 3 Cartesian coordinates of the

center of gravity and 3 Euler’s angles). In this case
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T
wo= [x77218,070) t 0 XVpZpf U] (2.2.4)

and the elements of vector u are not independent. This is due to kine-
matic pairs constraints (joints). The dependance has to be built into

the functions f and g.

P represents the vector of driving forces and torgues (called the dri-

ves in the sequel) acting in mechanism joints.

The functions f and g are not some explicitly prescribed or explicitly
derived functions. They represent large computation algorithms. f re-
presents the algorithm for computing U for the known u, ﬁ, P and the
configuration, and g represents the algorithm for computing P for the

known u, u, 4 and the configuration.

The realization of the algorithms f and g is specific to and characte-
ristic of each method and it depends on the mechanical approach. It
should be said that the algorithms f and g, although mutually inverse,

are sometimes realized in rather different ways.

So, we form the mathematical model for one time-instant by carrying
out the algorithms £ or g; f for the inverse problem and g if a direct

problem is involved.

We now consider solving the mathematical model for a finite time inter-
val T. The c.-a. methods operate with discrete time. Let us divide the
interval T into small subintervals Atk by introducing the sequence of

time-instants to, tl,...,t . The subintervals At may be, but need

end
not be, the same length.

First consider the inverse dynamic problem. It involves solving the
motion u(t) for given drives P(t). In this book the notation u(t),

P(t) and the like represent no explicit time functions but discrete
time dependences, given by seguences of time points. As we said earli-
er, the initial state of the mechanism i.e. u(to), ﬁ(to) is given. The
mathematical model (2.2.1) should be formed for this initial time-instant
t,. The algorithm f£ is performed and u(t ) = flult), ﬁ(to), P(to) ;
configuration) computed. The value obtained for acceleration ﬁ(to) is
now considered constant over a small subinterval Aty. So, by simple

integration

_ 1. 2 .
u(tO+Atl) = Tz-u(to)Atl + u(to)Atl + u(to)
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. - A .
u(to+Atl) u(to) tl + u(to) (2.2.5)

we obtain the mechanism state for the next time-instant tl = to + Atl

i.e. u(tl), ﬁ(tl). The whole procedure is now repeated for time-in-

stant t,. Hence, a time-recursive procedure is obtained. The output is
the mechanism motion u(t), ﬁ(t).

If the use of some standard integration methods is desirable, then eq.

(2.2.1) is written in the canonical form

u =v

(2.2.6)

<
I

f(u, v, P)

Now consider a direct dynamical problem. This is a much easier task.
By given motion we mean the known u, ﬁ, U in a sequence of time-in-
stants. But the input is only u(t) because u, U for each time-instant
can be computed by simple integration (2.2.5) from the previous one.
The procedure is performed in this way: for each time-instant the mo-
del (2.2.2) is formed i.e. the algorithm g is carried out and the dri-
ves P computed. The output is P(t).

There is another property common to most c¢.-a. methods, namely, the
method of treating kinematic pairs (i.e. joints). Most methods consi-
der the 5-th class kinematic pairs i.e. the joints permitting one re-
lative rotation or one relative translation of two connected segments.
If a compound joint is in question, then it is dissembled into a sequ-
ence of 5-th class joints with small parameter segments between them.
An explanation is needed. With manipulation mechanisms, joints with
one rotational or linear d.o.f. are most frequent. Hence most methods
have been derived in such way that they consider joints of that type.
More complex joints with two or more d.o.f., which sometimes appear in
robot mechanisms, are, as a rule, so designed that to each d.o.f. in
the joint there corresponds an exactly determined rotation or transla-
tion axis (hardware axes). Such joints can be simply separated into a
series of simple joints with one d.o.f. each, according to the real
joint axes. It is necessary to say this because such separation is not
possible for all types of complex joints. For instance, a spherical
joint with three rotational d.o.f. cannot be equivalently separated
into a series like this. The presentation will be mainly restricted

to joints which can be separated, and for the other the separation

holds only aproximatively. In spite of the possibility of separati-
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on, some methods are derived in such may that they can directly consi-
der the complex joints most frequently encountered. These are joints
with 2 d.o.f., permitting one rotation and one translation. This has
been done with computer time economy in mind. Some methods have also
been derived which directly consider complex joints with three rotati-

onal d.o.f., including the spherical joints.

A survey of the known c.-a. methods will be given later in the book.
As we said earlier the realization of the algorithms f and g is a cha-
racteristic of each method. The main difference between methods is in

the mechanical approach. Hence, all c.-a. methods may be divided into

three groups:

- methods based on general theorems of dynamics and Newton-Euler

equations,
- methods based on second-order Lagrange equations

- methods based on Appel”s equations and the Gauss principle.

Within the individual groups, the methods differ significantly in the
manner of mathematical interpretation and derivation, in the generali-
ty of the kinematical scheme in question and in the types of joint
they are operating with. In the sequel, methods will be presented ac-
cording to their group. In the course of presenting each method, the
original notation will not be respected. In all methods, it will usu-
ally be unified.

Methods Based on General Theorems of Dynamics and Newton-
Euler Equations

2.3. The Method of General Theorems

This is the first method for c.-a. formation a mathematical model of
active mechanisms. It has been derived independently by Yu. Stepanenko
[1] and M.Vukobratovié [2]. The method is based on kinetostatics i.e.
D Alambert”s principle and is often called the kinetostatical method
[3 - 6]. Modification of the method has been found [7 - 10] and the

method presented here will be in that modified form. Some particulars
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of the original version will be pointed out at the end of this para-
graph.

Basic ideas. Let us dicuss the basic ideas in this method for deriving

the algorithms f and g.

A mechanism with n d.o.f. is considered so we introduce the n-dimensi-
onal generalized coordinates vector:
T
q = [ql oo g ]

n (2.3.1)

The dynamics of such a mechanical system can be described by a dif-

ferential equation system in matrix form:
Wg =P + U (2.3.2)

where P is the n-dimensional vector of driving forces and torgues in
the mechanism joints. The nxn matrix W depends on generalized coordi-
nates q and the nx1l matrix U depends on the mechanism state g, é. The
algorithm for computing W and U is derived from general theorems of

dynamics: the theorem about moment of momentum and the theorem about

the center of gravity (c.o.g. in the sequel) motion.

Now u = g and the function f represents solving the system (2.3.2) for
the unknown vector §. This can be done by using suitable numerical pro-

cedures or directly by matrix inversion:
§ = £(q, 4, P, konfiguration) = W T (P+U) (2.3.3)
The function g is obtained directly from (2.3.2):

P = gl(qg, é, g, configuration) = W{-U (2.3.4)

Mechanism configuration. This method considers the mechanism of open

chain type consisting of n arbitrary rigid bodies (Fig. 2.1). Also,
there is no branching in the mechanism.

The joints connecting the mechanism segments have one d.o.f. each. That
d.o.f. may be rotational or linear. A rotational joint Si (Fig. 2.2)
allows a relative rotation around an axis determined by a unit vector
gi‘ A linear joint Sj allozs a relative translation along an axis de-
termined by a unit vector ej.
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Fig. 2.2. Rotational joint

Ci' Cj and quadrats are used to mark the centers of gravity (c.o.g) of

each segment in the figures in the text. Siv sj are indicators deter-

ming the type of joints:

0, if Sk is a rotational joint

1, if Sk is a linear joint.
The prescription of the configuration will be descussed later.

Driving forces and torques. There is a driving motor in each mechanism

joint. So, there is a driving torque ﬁi acting in the revolute joint

S.:
i

B, = pre, (2.3.5a)
1 1 1
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and a driving force §j acting in the linear joint Sj:

B, = pLé. (2.3.5b)
Now, the vector of the drives is

p=[p, ---p]" (2.3.5¢)
In the expression (2.3.5c) the upper indexes M, F are omitted because

the indicators s, are used to determinine the type of each joint and

each drive.

Sj=1

T L Ae S
rij=rij*qj€;S;j

™

Fig. 2.3. Linear joint

Generalized coordinates. A set of n generalized coordinates dyre--r9,
is used to determine the mechanism position. Each coordinate corres-

ponds to one d.o.f., i.e., to one joint.

For a rotational joint Si the corresponding generalized coordinate is
defined as an angle of rotation in the joint around the exis gi' That
angle may be regarded as the angle between the projection of the vec-
tors _;i—l,i and ;ii onto the plane perpendicular to the jeint axis gi
(Fig. 2.2).

A particular case occurs when ;iiligi or ;i—l i]|gi' Then, the angle
’
of rotation may not be considered in the previous way. If ;i—l illgi
’
we call it the "specificity" of (i-1)-th segment on the upper end.
* *
Then we introduce a unit vector r, . perpendicular to e, (¥, .ig.)
%;1,1 i i-1,it7i
(Fig. 2.4a). Further, the vector r; ; ; is used instead of r;_; ; for
4 ’
determining the generalized coordinate g, . If ;iingi we call it the

"specifity" of i-th segment on the down end. Then we introduce a unit
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Sk i > - .
vector ry, perpendicular to ey (r.. | e,) (Fig. 2.4b) and use it inste-

N
ad of r, ..
° ii

——

Fi-1,i

€ I G
- » >
ci_ —~— < J
LU A
Fig. 2.4. (a) "specificity" of (i-1)-th (b) "specificity" of i-th
segment on the upper end segment on the down end

Fig. 2.5. Definition of the generalized coordinate
in the case of "specificity"

The definition of generalized coordinates in the case of "specificity"

is shown in Fig. 2.5.

The existence of "specificity" have to be given to the algorithm via

special indicators.

If Sj is a linear joint, then the corresponding generalized cordinate
q. is defined as a relative linear displacement along the joint axis
7 s —|gvgh
e. i.e. .= |s.sl| (Fig. 2.3).

5 a5 = 183831 (Fig )

Computation of transition matrices. Let us introduce the coordinate

systems. First, there is an external non-moving Cartesian coordinate
system Oxyz. A vertical z-axis is suitable but is not obligatory. Fur-
ther, for each segment "i", a body-fixed (b.-f. in the sequel) Carte-
sian coordinate system Oixiyizi is defined. The origin Oi of such a
system coincides with the c.o.g. Ci of the segment and the axes are

oriented along the inertial principal axes.

We introduce the notation gi to designate a vector corresponding to
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the i-th segment or i-th joint and which is expressed via three pro-
jections onto the axes of the external coordinate system. gidesignates
the same vector but expressed by projections onto axes of i-th body-
~fixed system. %idenotes the same vector but expressed with respect to
the (i-1)-th b.-f. system.

Now, the transition matrix from the i-th b.-f. system to the external

system (matrix Ai) is defined as follows:
a, = A&, (2.3.6a)

There is also a transition matrix A g4 from the i-th to the (i-1)-th
I
b.-f. system:

> <

a; = Ai—l,iai (2.3.6b)
or inversely:

z =1 > >

a3 T Bi01,i% T By,i1% (2.3.60)

A few things should be pointed out. The vectors ;ii and ;i 141 (Figs.
I

2.2, 2.3) which determine the position of joints relative to the seg-

ment c.o.g. are proper to each segment. So they are constant vectors

if expressed by projections ontothe axes of i-th b.-f. system. That is,

f and T
ii i,i+l

constant position with respect to the i-th and (i-1)-th system. So the

are constants. Further, the axis gi of the joint Si has

axis vector is constant if expressed via projections onto the i-th or

%
(i-=1)-th b.-f. system. That is, e, and gi are constants. Such vectors
> - > ~

r

P4 + . . .
i1 ri,i+l' STRART which determine the geometry of the i-th segment

and the i-th joint have to be prescribed for each segment and joint.

The computation of transition matrices is recursive. In each iteration
the next segment is added to the chain and the corresponding transiti-
on matrix computed recursively. So A; is computed, when adding the
i-th segment, assuming that A4 is already computed.
. -
When A. is known, r.
i-1 i

1.4 = —lgi can be easily
, =

computed.

Let us now suppose that Si is a rotational joint. The following vec-

tors should be computed:
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x(—} X—») e X(? Xg)
% Ti-1,i © %4 . z . i Tii i (2.3.7)
2« 3 x| T A Y o
i i-1,1i i i ii i
(a) (b)

> -

The vectors gi and 51 are perpendicular to gi and éi respectively. gi
is the unit vector of the axis "a" and (2.3.7b) holds for q; = 0 (Fig.
2.6).

€, 4T
X € -
0 Fa
CIi:O
& U axisa g &) & axis a
I
Fig. 2.6. Determination of the transition matrix
> - > >
Introducing bi =e; X a;, the three linearly independent vectors {ei,
- =
gi’ gi} are obtained. Introducing gi = éi X 51, we also obtain the
three linearly independent vectors {gi’ gi’ %i}' .
Let A? be the transition matrix corresponding to q; = 0. Then (2.3.7b)
holds and so
N .
e, = a%,, a, = a%;,, b, = a%B, (2.3.8)
i i~i i i1 i iti

Now matrix notation will be introduced. Let e, be the 3x1 matrix cor-
responding to the vector gi' Analogous matrix notation will be used
for all other vectors in the text. Now, expressions (2.3.8) can be

written together in matrix form

Or~ ~
le; a; byl = AJ[&; &, B,] (2.3.9)
It follows that
o ~ = -1
A] = le; a5 bi][ei a; B,] (2.3.10)

By computing the matrix Ai, the process of "assembling" the joint is
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completed. The columns of the matrix Ai represent the unit vectors of
b.-f. system axes for q; = 0. So turning should be performed. The so-
-called finite turnings formula (i.e. Rodrigues” formula) is used for
turning each unit vector around the axis gi for the angle gq;.

. o . .
Let Vigr Vigr Vi3 denote the columns of the matrix Ai i.e. the unit

vectors of b.-f. system:
1= Vi1 Vi2 Vi3l (2.3.11)

Now, by turning:

> > > > > > > . o
Vij = vijcosqi + (l—cosqi)(ei-vij)-ei +e, x VijSlnqi i=1,2,3

(2.3.12)

where Vij is the j-th column (i.e. the unit vector) after turning. So,
the transition matrix

A, = [v,, V

i1 Vio Vi3] (2.3.13)

is obtained.

In the case of "specificity" of the (i-1)-th segment on the upper end,
> % >
the vector ¥, . 1s used instead of T, .. If there is a "specifici-
i-1,1i i-1,i Sk
ty" of the i-th segment on the down end, the vector fii is used inste-
>

ad of Tige

If Si is a linear joint, the transition matrix is computed in a dif-
ferent way. For simplicity, a unit vector Gi is defined. The vector is
constant with respect to the i-th and (i-1)-th segment and is not pa-
rallel to gi' It allows us to define the three linearly independent

vectors:

N -1
A, = [e; a; by][&; & B,]
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Input data for the algorithm. Let us return to the definition and pre-

scription of the mechanism configuration. The term "configuration" we
mean the structure and the parameters. By the structure we mean the
number of segments and the number and type of joints. By the parame-
ters we mean all the information about the segments (dimensions, iner-
tial properties etc.). So here is a list of the input data defining

the configuration:

n = number of d.o.f.(=number of segments = number of joints),
Sy i=1l,...,n, determine the types of joints,

N

éi, gi’ i=1,...,n, determine the orientation of joint axes

relative to the connected segments,

~
-
[}

Sj is a linear joint,

.

Ry o
¥ =Rt

R .

. > . . . . ]
ii7 Y5541 i=1l,...,n and Toqpr determine the position of joints

relative to segment c.o.g.,
* >%

ii ri,i+l’ in the case of "specificity" of i-th segment on
the down or upper end,

m,; Ji, i=1l,...,n, m, is the mass of i-th segment and Ji is the
inertia tensor of the same segment with res-

pect to the corresponding b.-f. system.

The initial state of the mechanism must also be prescribed. So the
initial generalized coordinates and the initial generalized velocities

are also input data:
. , _ T
q; (t), i=1,...,n (G.e. q(t) = [g(t)) «+0 q (£))])
qi(to), i=1l,...,n (i.e. q(to))

Depending on the type of dynamical problem there are also the input
data:

gty ), ko= 0,1,...,k 3

if a direct problem of dynamics is to be solved, or

P(tk), k = O,l,...,kend,

in the case of the inverse problem of dynamics. If a mixed problem is

considered, some accelerations and some drives are prescribed.

Kinematical relations. Let us consider the kinematical chain contai-
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>
ning the rotational and linear Jjoints. Let 3i be the velocity and Wy
>
the acceleration of i-th segment c.o.g. Further, let wi be the angular
-
velocity and €y the angular acceleration of the same segment. Then for

the velocities,

w, = + q.e. (1 2.3.14
w, = 0, ¢+ gge;(l-sy) (2.3.14)
> > - % > + - « > N . > (2.3.15
Vi T Viol T %o T Tien,i Y17 Tin 93848 -3.15)
2 2 2z
r’. =r + g,e.s,
11 11 1 1 1
and for the accelerations,
> 2 (523 + a0 x &) (1 2.3.16
€1 T f3o1 F (@48 P a0y ¢ oey) (1msy) (2.3.16)
> _ > ES > ES < (» o > )+
Wi T W31 T fie1 Y Ti-1, i-1 ®i-1 % Fi-1,i
n > % >, " y - X+' + w > 5 % > .
€y ¢ Ty Towy X (wpxriy) 4 o(ggey 20, 4 X e;q;)sy
(2.3.17)
with the boundary conditions
v =0, 0 =0, ¢.=0, w_=0 (2.3.18)

o o e]

Forming the equation system. Forming the equation system i.e. computa-

tion of the matrices W and U (for the system (2.3.2)) is performed on
the basis of the general theorems of mechanics: the theorem about mo-

ment of momentum and the theorem about c.o.g. motion.
Let the mechanism have % rotational and m linear joints (& + m = n).

First, let us consider a rotational joint Sk(sk=0), and further, let
us fictitiously interrupt the chain in the joint S, - Now consider the
part of the mechanism from Sk up to the free end. The rest of the mec-
hanism is replaced by a reaction force §Rk and a reaction moment ﬁRk’
> . . ) N . . > . = > .
MRk is perpendicular to the joint rotation axis e i.e. MRk i e (Fig.
2.7).

Now let us apply the theorem about moment of momentum to the part of
the mechanism considered. All moments are consider relative to the
point Sk' It follows that

X m,g (2.3.19)
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i.e.
n n
) G wom, - 25 G o+ Y M, =B, +M (2.3.20)
L& i iTi i i Lo k Rk
i=k i=k
. . L2 > (k) _
where the gravity acceleration vector is g = {0, 0, -9.81}, and ry =
—_—

Skci (Fig. 2.7). ﬁi represents the change in momentum moment of the

> . s -
i-th segment relative to its c.o.g. So, Mi is determined by Euler’s

equations

M, = A,M, (2.3.21)
1

Ry
"
[}
1
e
£y
X
£y

i i7i ivi i (2.3.22)

~
~—
~—
— 0
r
—— k
MRy, Sk

Fig. 2.7. Fictitious interruption of the chain and

reactions in the rotational joint Sk

From scalar multiplication of (2.3.20) by gk it follows that

n n

PE® s mwag - @R oy + 7 #E = el (2.3.23)
Fp=n i i"i’ 7k i i k e 1 k k

N _
Bik
where
i-1

(k) _ === _ >, _ >,
r;7 = §0C = pzk(rp rp,p+l) +orl (2.3.24)

If there are % rotational joints, then in the way described, we obtain
% scalar equations of the form (2.3.23).

Now consider a linear joint Sk' Let us interrupt the chain fictitious-
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ly in the joint Sy and substitute the rest of the mechanism (from Sk

> >
to the base) with a reaction force FRk and a reaction moment MRk (Fig.

2.8 hen F s
.8). Then Fp. 1 e -

If we apply the theorem about c.o.g. motion to the part of the mecha-

nism considered (from S, up to the free end), it follows that

m.w, =
e &1 k

I~

M
I~

g+ F 2.3.25
- LMy 9 F Fpy (2.3.25)
i i=k
After transformation and scalar multiplication by gk the following

form is obtained:

n
> > > _ F
.zk(miwiek - myge,) = Py (2.3.26)
=X g )
Cix

If there are m linear joints we obtain m scalar ejuations of the form
(2.3.26).

So, by using both the theorem about moment of momentum and the theorem

about c.o.g. motion, & + m = n scalar equations are obtained.

It should be mentioned that only one external force, gravity, was con-
sidered. If there are other external forces they should be added to
the gravity force. If necessary, the external forces acting upon a
segment are reduced with respect to the c.o.g. of the segment, and

then they appear in the equations (2.3.22), (2.3.23) and (2.3.26).

7
d

Ske2

S, = Pk

Fig. 2.8. Fictitious interruption and reactions
in the linear joint Sk
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Now matrix notation is introduced. We show how the n scalar equations
(2+m=n egs.) may be written in matrix form, (2.3.2) which is necessary

for the computational algorithm.

Formation of the system (2.3.2) i.e. computation of the matrices W, U
is performed recursively. In each iteration the next segment is added

to the mechanism chain.

Let  be the 3xn matrix the columns of which represent the coeficients
of the generalized accelerations in the expression for segment c.o.g.
acceleration, and let 0 be the 3x1 matrix containing the free member
of the same expression. In the i-th iteration the i-th segment is con-
sidered and the matrices Q an © refer to its acceleration Gi' So

w, =08+ 0 (2.3.27)

The columns of matrices are designated

= i LI i LA
Q= [8] By 0 0] (2.3.28)
o = [6%]

Further, let T be the 3xn matrix, containing the coefficients of the
generalized accelerations in the expression for segment angular acce-
leration, and let ¢ be the 3x1 matrix containing the free member of

the expression. In the i-th iteration the matrices refer to Zi i.e.

€y = rg + @ (2.3.29)
The columns of the matrices are designated

i e ai [ o]

o= ']

T = [a
(2.3.30)

In each iteration the next segment is added to the chain. The modifi-
cations and supplementations of the matrices @, 0, T and & are perfor-
med in order to make them correspond to the new segment. These are
performed on the basis of recursive expressions for velocities and ac-
celerations (2.3.14) - (2.3.17). From these expressions follow the
formulae for modifications and supplementations of the matrices in the

i-th iteration:
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s kR S L |
J J (2.3.31)
> -
o, = (l-s,)e,
1 1 1
¥t o= ?i—l + %
(2.3.32)
f=q, (b, _{x&,) (1-s,)
43 Wi-17% i
=i 21-1 >i-1 > >3 >, .
= - al X + x r. =1,...,i-1
J BJ J l—l,l J ii’ ] ! + (2_3.33)
BT = 8.5, + ar x r;
i i1 i ii
Fooogi-i_ogi-l + 3 7 4 B
! T il (2.3.34)
E _ > < X—) )+—> x(_) x_>’ +2~> x—» .
= teyop X ey g Xy g, g el Ry ) R20; g xeys gy
Let us consider the expression Bij which appears in (2.3.23)
> ~>(]) - _ - ~>(j) -
Bij = ej(ri X miwi) ej(ri X mig) (2.3.35)
If we substitute (2.3.27) into (2.3.35) it follows that
- T (3) oo T (3) _ T (3)
Bij ej r; miQ g + ej Ey mie ej ry- m.g (2.3.36)
[ — ~— /
T
b Vi
where ££j) designates the matrix
) ()
0 ti3 Fi2
(3) _ (3} _..(3)
r; = ri3 0 ry3 (2.3.37)
-3 (3)
ri2t o Til 0

(3) {r(j), ri%), ri%)} and is used

i i1
to form the vector product by matrix calculus.

which corresponds to the vector ¥

Further, let us consider the expression gjﬁi which also appears in
(2.3.23). By using (2.3.21) and (2.3.22) the expression may be written
in the form
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> > -> =z - ~ Z ~ >
e.M., = e. (A, M) = e.[A, (J.E., - (J.8,) x &,)] =
371 jULTL FLYLYiTd ii i (2.3.38)
~ - ~ > >
- 3. [a T a1, - A (5.8, x B.]
JERY% T iYiti i

Substituting (2.3.29) into (2.3.38) it follows that

2. = ea.F.alreg + eta. 5.7 e -k (2.3.39)
371 A S
—
CT
V2

K = [Ai(J.g.) x 5.}-Zj

Further, let us perform a transformation of the expression

C..=¢é.mw, - é.m.g (2.3.40)
ij jivi 371
which appears in (2.3.26), by introducing (2.3.27) into (2.3.40). It
follows that

_ T .. T _.T
Cij = ejmiQ g + ejmie ejmig (2.3.41)
e — — J
dT v

Now, the algorithm for transforming the equation system from the .form
(2.3.23), (2.3.26), k=1,...,n into the matrix form (2.3.2), i.e., the
algorithm for computation of the system matrices W and U, can be re-

presented by a flow-chart given in Fig. 2.9.

Now, when the matrices W and U are computed, i.e., the system (2.3.2)
formed, the inverse and the direct problem of dynamics are solved by
using (2.3.3) and (2.3.4) according to the basic ideas of c.-a. met-

hods of forming and solving a mathematical model.

If should be mentioned also that the method described permits simple
computation of reaction forces and moments in the mechanism joints.

Namely, after computing the generalized accelerations g, and then ac-
celerations Zi' %i, i=1l,...,n by means of (2.3.27) and (2.3.29), the
reactions F M in the k-th joint may be obtained from (2.3.20) and

(2.3.25).

Rk’ "Rk

Some characteristics of the original version of the method (the kine-

tostatical approach). As it has already been said that the method of

general theorems differs a little from the original version of the
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Mechanism configuration,
mechanism state (q, g)

Compute the transition
matrix Ai

9, o,

(2.3.31)

Change and supplement the matrices
' and ¢ according to
(2.3.34)

(linear) = 1

(rotational)

Compute the vector d and the
scalar v according to (2.3.41)

i

Add the vector at to the j~th

row of matrix W i.e. W, =W. +
+d_, p=1l,...,n Jp P

P
!

Substract v from the j-th

element of U i.e. Uj==Uj -v

Compute the vectors b, c¢ and
the scalars vy, vy according

to (2.3.36), (2.3.39)
k7

Add the vectors bT and cT to

the j-th row of matrix W i.e.

W. =W. +c_+d_, p=1,...,n
Jp Jp P P

!

Substract vy and v, from the
j-th element of U i.e. Uj=Uj—

ViTVa
]

w,

YES

U

Fig. 2.9. Flow-chart of the general theorems method
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method [3, 4, 6].

In the original version of the method, the kinetostatic approach i.e.
the use of D’Alambert’s principle was used. The procedure of fictiti-
ous interruption in successive joints has also been applied. When the
interruption in a joint is made then D Alambert’s principle is applied

to the mechanism part from the interruption up to the free end.

In order to use the kinetostatical approach, the inertial forces of

each segment have to be reduced with respect to the segment c.o.g. So,
the resultant force and the resultant couple (resultant moment) rela-
tive to the segment c.o.g. are introduced. The resultant inertial for-

ce of the i-th segment is expressed as

>

N
FIi = -mw, (2.3.42)

The resultant couple of the inertial forces,M of the i-th segment is

Ii
obtained from Euler”s equations, i.e., the relations (2.3.21) and
(2.3.22), by putting a minus sign before the right hand side of equa-

tion (2.3.22).

One characteristic of the original version of the method is the treat-
ment of the cane segments. The cane segment is that segment the length

of which is five or more times its diameter.

As cane segments are very often used in robot mechanisms, the method
in such cases is programed to compute the resultant vector of inertial

forces in simpler and faster ways.

A cane segment is characterized by its length 2%, mass m, and two iner-
tial moments IN and IL. IN is the inertial moment with respect to the
c.o0.g. axis perpendicular to the cane. I is the moment with respect

to the longitucinal cane axis.

Let us introduce the concept of equivalent angular acceleration ?i' It
is defined by the condition that the moment of inertial forces due to
its action is equal to the moment of inertial forces due to angular
velocity Ei. For a cane segment,

- - > >
T, = (w,*L,) (L,

i PSR RGN Ii), (2.3.43)

where fi is the unit vector of the longitudinal cane axis.
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Now, the moment of inertial forces relative to the segment c.o.g. may

be written in the form

= -3, (B, +1.), (2.3.44)
where Ji is the tensor of inertia.

Let ﬁIi and Zi be separated into two components, one perpendicular to

the longitudinal cane axis (index N) and the other parallel to it (in-
dex L):

- > > > - > > >
My = (B X M) < Ly, My, = (M3 +L;) Ly
(2.3.45)
- - - > > > > >
€in T By * E) X Ly, €5, = (E5°Ly) Ly

Since ?i is perpendicular to the longitudinal cane axis the expression
(2.3.44) reduces to

>

Mrs

e > ->
= -Iglein t T,) - T.1841 (2.3.46)
The equation obtained determines the resultant couple of inertial for-
ces which is expressed in the external coordinate system. By using
such a simplification, the calculation speed may be increased two -

three times in the case of cane segments.

Let us consider the fictitious interuption in a rotation joint Sk and
apply the D Alambert”’s principle to the mechanism part from Sk up to
the free end. So, the sum of moments of external and inertial forces
relative to Sk as well as the driving torque and the reaction moment
in the joint, equals zero. The vector equation is thus obtained. After

scalar multiplication by gk one obtains the scalar equation (2.3.23).

Now, let Sk be a linear joint. From D Alambert”s ovrinciple it follows
that the sum of external and inertial forces as well as the driving
and the reaction forces, equals zero. After scalar multiplication by

gk’ one obtains the scalar equation (2.3.26).

If the described procedure is carried out for all joints and then
(2.3.27) and (2.3.29) used, one obtains the matrix system (2.3.2). If

the original notation is used, the matrix system is

Hi + b= D (2.3.47)
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The case of a moving base has been also considered by using this met-
hod. If the acceleration of the base is %O and the angular accelerati-
on go’ the system (2.3.47) transforms into

HE = HyP + Hyw  + Hye  + £ (2.3.48)

However, no details will be considered here.

2.4. Method of Block Matrices

This method is less computer oriented than the previous one. It is
described in detail in [23]. The method represents the analytically
derived mathematical model. But, by using the suitable block-matrices
formalism, the model reduces to the compact matrix form suitable for
solving on a computer. The derivation of the mathod is very long. So,
only the basic dynamical and kinematical relations will be explained

here, as well as the methodology of derivation.

Basic ideas. We consider a mechanism with n degrees of freedom (d.o.f.)
and introduce the n-dimensional generalized coordinates vector. g =
[ql s qn]T. The dynamics of such a mechanical system can be descri-

bed by differential equation system in matrix form:

W(g)+§ =P + Ulg, q) (2.4.1)

The dimensions of the matrices W, U, P are nxn, nxl and nxl respecti-
vely. P represents the column vector of driving forces and torques in
the mechanism joints. The matrix W depends on the generalized coordi-
nates g, and U depends on g, é. Of course, these matrices also depend

on the mechanism configuration.

Now, the functions f and g defined by (2.2.1) and (2.2.2) may be deri-

ved in the form

£(q, &, P, configuration) = W T (U+P) (2.4.2)

5
and

P

g(q, 4, §, configuration) = W§ - U (2.4.3)

I

We derive the expressions for W(g) and Ul(q, é).
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The mechanical approach in this method is the same as in the original
version of the previous method (kinetostatical approach). However, we

give a short explanation of the approach.

Kinematical scheme of the mechanism considered: This is an open kine-

matical chain without branching (Fig. 2.10). The joints connecting the
mechanism segments have one d.o.f. each. That d.o.f. may be rotational
or linear (5-th class kinematic pairs). Hence, there are n joints, n
d.o.f. and n segments. Let gi be the unit vector of the rotation axis
if Si is a rotational joint and let it be a unit vector of the trans-
lation axis if Si is a linear joint. The indicator Sy will be used to

notate the type of the joint.

0, 1if the kinematical pair (i-1,i), i.e., the joint
Si—l’ is rotational

1, if the kinematical pair (i-1,i), i.e., the joint
Siaqt is linear

(2.4.4)

Generalized coordinates. A set of n generalized coordinates is used to

determine the mechanism position. Each coordinate corresponds to one
d.o.f. If a rotational joint Si—l connects the i-th and the (i-1)-th
segments, then the angle 61 of relative rotation of the i-th segment
with respect to the (i-1)-th segment around the axis gi—l’ is chosen
for the corresponding generalized coordinate. If Si—l is a linear jo-
int, then the corresponding generalized coordinate is defined as the

relative linear displacement u, along the joint axis gi-l'

base

Fig. 2.10. Open kinematic chain without branching
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Hence:
q. = (l—si)ei tos ULy, (2.4.5)

1

where s; is defined via (2.4.4).

Dynamic equations. The dynamic equations of the mechanism are derived

on the basis of D”Alambert’s principle. We introduce the following no-

tation.

K’ the gravity force vector of the k-th segment;

T O

Bk’ the resultant of other external forces acting on the k-th

segment ;

=Y

Ek the resultant external moment acting on the k-th segment

(resultant couple relative to the segment c.o.g.);

glk’ the resultant of the inertial forces of the k-th segment;
ﬁIk’ the resultant moment of inertial forces of the k-th segment
(resultant couple relative to the segment c.o.g.);
ﬁi, the vector of the drive in the joint Si_l;
) = Mx « i i i 101 .
P, = Pie, _qi if S;-1 1s a rotation joint;
B, = pfd._; if s i 14 joint;
; = Pyejqi t j-1 is a linear joint;
Pz is a driving force and P? is a driving torque;
> - .
pi,j = SiCj; Cj' the c.o.g. of the j-th segment.

Let the mechanism have { rotational and m linear joints.

Let us interrupt the chain fictitiously in the joint Si—l and consider
the part of the mechanism from S;.7 up to the free end (Fig. 2.11).

The rest of the mechanism is replaced by a reaction force F and a

> Ri
reaction moment MRi'

Let 8, ; be a linear joint. Then F If D°Alambert”s principle

>
1 Ri L ®i-1°
of the real and the inertial forces is applied, it follows that

n
V(G +F_+F_ ) + F_. + B, =0 (2.4.6)

o~

> > > -
k=i(Gk+FEk+FIk)ei-—l + P, =0 (2.4.7)
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m scalar equations of the form (2.4.7) are obtained by performing the

interuption for all m linear joints.

Fig. 2.11. Fictitious interruption of the chain in the joint Si

-1

Now let Si 1 be a rotational joint. Then M l el 1+ I£D “Alambert”’s

principle is applied to the real and 1nert1al moment relative to Si

_l’
then
A (&, + O]+ Fp, + B =0 (2.4.8)
k)= [y iy #0510 CtFpy tF )] Ri i° "t
Scalar multiplication of (2.4.8) by gi-l gives
7 M +M x (& +F_ +F S +p =0 (2.4.9)
kzi[ 1k Pi-1 kGt FptFpd) ] c ey i 0 -4

2 scalar equations of the form (2.4.9) are obtained by repeating the

procedure for all ¢ rotational Jjoints.
In all, 2 + m = n scalar equations of the form (2.4.7) and (2.4.9) are
obtained. Such a system can be transformed into the matrix form (2.4.1)

by using block matrix formalism.

The coordinate system and transition matrices. Let us introduce the

coordinate systems. First, there is an external non-moving Cartesian
system Oxyz. A vertical z-axis is suitable, but is not obligatory.

naw

Further, for each segment "i", a body-fixed (b.-f.) Cartesian coordina-
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te system Oixiyizi is defined. The origin Oi of such a system coihcides

with Si' It should be pointed out that although the system origin Oiis

in the joint Siv the system is fixed with respect to the segment "i".
>

The z,-axis of the b.-f. system should be along the joint axis e, . The

xi—axis if perpendicular to Zi1 and z2,. Y is perpendicular to Xy and

i

z; so the system is orthogonal (Fig. 2.12)

Fig. 2.12. Coordinate systems

We introduce the following notation: gir) denotes a vector which is
characteristic of the i-th segment and is expressed via three projec-

tions onto the axes of the r-th b.-f. system, i.e., Zér)={a. , a. ’

i i
Xr yr

a; }. For instance gil)={0, 0, 1}. Further, let gi notate the same

veéfor but expressed in the external coordinate system Oxyz.

X . T - =
The following vectors should be introduced: Qi = oi_loi, p; = pi,i
OiCi (Fig. 2.13). These vectors are constants if expressed in the cor-
responding b.-f. system i.e. iil) and Bil’ are constants and characte-

ristics of the i-th segment. y
i

Siq

il
Oi-1

Xi

Fig. 2.13. Configuration of a segment and the
corresponding b.-f. system



54

Let us introduce matrix notation and write ay for the 3x1 matrix cor-

>
responding to a vector ay .

The transformation of the system 05 _1%3_1Y{-1%4-1 into O;x,y,2, will

now be considered. This transformation has four phases (Fig. 2.14):

Fig. 2.14. Phase of transforming the (i-1)-~th system into i-th one

(a) rotation around the zi_l—axis until %51 becomes parallel

with X . Rotation angle is B+

(b) translation along z; ;-axis until x, ; coincides with x;.

Translation displacement is u; i

(c) translation along xi—axis until oi—l coincides with Oi'

Displacement is aj i

(d) rotation around xi—axis until all axes of the two coordinate

systems coincide. Rotation angle is oy -

The transition matrix Ai -1 corresponds to phase (a), and the transi-
I
tion matrix AY . to the phase (d):
i,i-1
cos 8, sin9, 0
i i
' = [EPECI.Y

Al 51 sinf cos9, 0 (2.4.10)

0 0 1
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1 0 0
" = .
Ai,i—l 0 cosa, sino; (2.4.11)
0 -sino, cosa,
i i

So, the whole transition matrix is

cos 6. sing, 0
i i
A, . =AY . _A' . = -sind, cosa, cosf, cosa, sino,
i,i-1 7i,i-1"1i,i-1 i i i i i
sinf.sina; —-cos @, sina; cosa,
i i i i i

(2.4.12)

The phases (b) and (c) together represent the translaticn of the co-
ordinate system origin for the vector Ei which can be expressed as

Qgi—l)

]T

= [a.cose. a.sinb, u.
i i i i

i (2.4.13)

The inverse transformation i.e. the transformation of the i-th b.-f.

system into (i-1)-th, has the transition matrix

-1 T

Bi1,i T R4i-1 T AL 54 (2.4.14)

due to the orthogonality of the systems.

>
Now, for some vector aj s

24D ) (2.4.15)
i i-1,i7i
The transformation of coordinates of some point M from one system

(i-th) into another (i-1)-th is defined by

% "X, L
i-1 i i1
. e (2.4.16
Yig i-1,i ¥ 1¥i-1 @
Z. Z. 2
i-1 * 1251
i.e.
r(i_l) a .r(i) + lfi—l) (2.4.16b)
i-1,i i

where r(k) is the position vector of the point M with respect to the
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origin Oy (i.e. ;(k) = OkM), expressed by projections onto the axes

kakykzk. For the external coordinate system,fz= oM.

We repeat that for rotational joint Si-1’ 61 = qy i.e. ei represents
the corresponding generalized coordinate and uy is a constant charac-
teristic of the segment "i". If Si—l is a linear joint then U = q;

and Gi is a constant.

The transition matrix from the i-th b.-f. system into the external one

is
i
A, = I A._, . (2.4.17)
1 =0 j=1,)
and so it holds
a, = a,all (2.4.18)
i i1
and
x
S (3) (1)
r= ]yl =7 a.ed +ar (2.4.19)

I should be pointed out that in the case of immobile, or inertial-mo-

ving base the external system is usually adopted to be connected to

5 = 'l = (O) —_
the base i.e. Oxyz = Ooxoyozo' Then it holds a; = ay for each vec
tor.

Kinematical relations. The relative angular velocity &il) of the i-th

segment with respect to the (i-1)-th one may be expessed in the form

~ (1)

Wy = (l-s.l)\)iqi (2.4.20)
and the relative linear velocity %él) in the form:
#4) — g 0.4 (2.4.21)
i 17i=if U
where
v, = [0 sina cosa ]T (2.4.22)
i i i

These vectors are expressed in the corresponding b.-f. system.

After a long derivation [23], the expression for the absolute velocity
of the i-th segment c.o.g. C; (i.e. vié)) is obtained as is the expes-
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sion for the segment absolute angular velocity wéi):

(1) _ % .
w, = Z Aimvm(l—sm)qm (2.4.23)
m=1
(1) _ & (3), 1 .
Vie _[.E AijA(Qj ) i Ajm\)m(l_sm)qm +
3=1 m=1 \ (2.4.24)
(i) e .
* ey 21 A’ (T7%n) +j£1 Bi3Y5 qu}

The vectors are expressed by projections onto the axis of the corres-
ponding b.-f. system.

For some vector aj s the notation A(ai) designates the matrix

. a.
iz iy
Maj) = a2 0 "3k
-a. a, 0
iy ix

which is used to perform the vector product in matrix calculus.

The same velocities (2.4.23) and (2.4.24) may be expressed in the ex-

ternal coordinate system:

1 i

wi . Z Am\)m(l—sm)qm = z em_l(l—sm) qm (2.4.25)
n=1 m=1

i -

Vig = mzl[(l-sm)k<em_l)pm_l,i +spe 114, (2.4.26)
where
1
Pre1,i = L %5 T Oy (2.4.27)
J=m

One can derive the expressions for accelerations. If wéé) is the ac-
celeration of the i-th segment c.o.g. Ci, and eil) the segment angular
acceleration, then

(1) _ § c(m) . i}
€5 = mzl AimLX(wm )vm(l—sm)qm + vm(l—sm)qm] (2.4.28)

(i) _ r_ i (3), 3 ) 1. i )
wic = [ jil SELALS )mzl AV (1msp) @ =2 oy )mzl A, v (l-s )&
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v T () (m)
+ I A Vs d] o+ [-.2 Aijx(zjj ) L A ™)
Jj= m=1
1
. o (3) (3) e
vm(l s )qm jz Aljk(w )A(Kj )milAj vm(l s 4,

i
(m) .
+2m§lAimA(wm )Vmsmqm] (2.4.29)

and if expressed in the external system,

m=

i m-1

i
zl(l—sm)em_lqm + ¥ 21(1-sk)(1—sm)x(ek_l)em_lékém (2.4.30)
m= =

m=2 k

i
Zl[x(em_l)(l—s )p +s

m'Mm-1,1 mem—qum *

1 m
LU T Ao pIhley dop g, (1=sp) (1-sy)qy +

nm=1 k=1

Lo Aleq ) (e q)oy_q g (1msp) (I=s) gy +

Mep_plep s (I=sp)qy +

k=m+1

m-1
*b e e (s syt (2.4.31)

The derivation and the expressions obtained are so complex because of

the kinematical approach via analytical expressions. In the previous

method the complexity is avoided by using recursive expressions for

velocities and accelerations. Such an approach is much more suitable

for numerical computation.

Introducing block matrices. It is useful to use the block matrix for-

malism to obtain more compact forms of the equations.

Let Ayyeeeray be a set of vectors, and let us define the block vectors
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a and ao of dimensions 3nxl. The block vector a is defined as
_ (1) (n)qT .
a= [al a '] (2.4.32a)

and it represents the vectors expressed in the corresponding b.-f.

systems. The block vector a® represents the vectors expressed in the
external coordinate system

(2.4.32b)
If the external system coincides with the base coordinate system, then
aC = [a{O) cen glo)T

n (2.4.33)

Further, let us introduce the 3nxX3n block matrix

[ E, 0 « « « 0 7
E3 E3 0
v = . . (2.4.34)
\_E3 E3 . e e E3'

where E3 is the 3x3 unit matrix. Let us also introduce the block mat-—
rix

*E3 0 0 » « - 0 W
A21 E3 0 0
A = A31 A32 E3 0 (2.4.35)
*Anl An2 An3 e E3‘

Now, the kinematic expressions (2.4.20) and (2.4.21) can be written in

the form
& = v(E-s)q (2.4.36)
T = vsq (2.4.37)

where v = diag [vlvz see vn] is the 3nxn block matrix, s = diag

[sys, *++ s,] is the nxn matrix, and E is the nxn unit matrix.
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The other kinematical expressions can be written in more compact form
if block matrix formalism is used. The expressions (2.4.23) and
(2.4.24) then become

w = Av(E-s)g (2.4.38)

v = —(BA(L) + A(p))Av(E-s)q + Avsq (2.4.39)
For a set of vectors RV the notation X (a) designates

Aa) = diag[r(ap)ala,) =+ Ala)] (2.4.40)
If the 6nx1 block vector x = [v m}T is introduced, then the expres-

sions (2.4.38) and (2.4.39) can be written together:

X = Bg (2.4.41)

where the 6nxn matrix B is:

os]
w
I

1 1 -(AA(L) + A(p))Av(E-s) + Avs
B = y (2.4.42)
Av (E-s)

W
Jos]
Il

The velocities expressed in the external system, i.e., the expressions
(2.4.25) and (2.4.26), may be written in the form:

© = ve®(B-s)q = BYq (2.4.43)

[N}

* . . .
vo = -1 (p)e®(B-s)q + vse®q = BIq, (2.4.44)

where e° = diagle -+ e ] is a 3nxn matrix, and
o n-1

( A(pol) 0 ¢ o 0 B
. Mogy)  Alpgy) 0
A (p) = . . (2.4.45)
X(Don) A(pln) e A(pn-l,n)~

The expressions (2.4.43) and (2.4.44) may be united into the form
x° = B°G, (2.4.46)

where
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50 _ (2.4.47)

The accelerations are given via (2.4.28) and (2.4.29) if expressed in
b.-f. systems. Introducing the block matrices, a more compact form is
obtained:

e = AAM{(w)v(E-s)q + Av(E-s)§ (2.4.48)
w = [-(AA(R) + A(p))AV(E-s) + Avs]g +
+ [=(@ar(e) + A(P))RAA(w) V(E=s) - (AA(w)A(L) + (2.4.49)
+ Aw)A(p))AV(E-s) + 2AA(w)vs]q

Introducing X = [w E]T it follows that
% = B§ + Dq, (2.4.50

where B is determined by (2.4.42), and

Dy D; = (AA (L) +A(P) YAA(w) V(E=s) = (AA(w) A () +
D = ; + AMw)A(p))AV(E-s) + 2AA(w)vs (2.4.51)
D2 D2 = AA(w) v (E-s)

In the external coordinate system, i.e., (2.4.30) and (2.4.31), it

follows (for the angular accelerations), that

e® = 8% + p%g, (2.4.52)
2 2
o . . o _ 2 2.7 |
where B, is determined by (2.4.43). D, = [Dl cen Dn] is the 3nxn
block matrix, where
2 . 2 . .
Di = Q X Hi (dimension 3xn) (2.4.53)

0 = [41By qyBy +++ 4 E;]
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0 0 . e . 0 e e« 0
olozx(eo)el 0 ) 0 e ¢« 0
0103>\(eo)e2 0203>\(el)e2 LI 0 « + « 0
02 -
0103 0(egey 1 90 A edey g s e s 0y g0 hley pleg g s 0 0
0 0 ] 0 0
0 0 P 0 .« + + 0
where o; = (l—si) ,
It also follows (for c.o.g. accelerations) that
O _ _Ou o
w - qu + qul (2.4.54)
o . . o _ 1 1T .
where B, is determined by (2.4.44). D] = [Dl +<+ D ]" is the 3nxn
block matrix, where
1 _ =,.1 1 . .
Di = Q(Dil + Di2) (dimension 3xn)
-1 1 _
dip © Ay 0 »-- 0
1 _ 1 1
PDir = di-1,1 4y, O e 0
0 . 0 0 « o e 0
| 0 . 0 0 . e . 0 |
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. 2 2 i}
0 at, - - al, 0 -+ 0
2 2
a2, 0 . . a2, 0 -+ - 0

l — 2 2 . - - - - o

Din = 451 9y 0 0 0
0 0 . 0 0 « - 0

L 0 0 . . . 0 0 =« « « 0 |

d2 = A(e e (l1-s,)s

k3 k-1 84-1 (178 ) S

2 2

4k = %y

The expressions (2.4.52) and (2.4.54) may be united into the form

i
Il
w
(¢]
fleH
+
o
]
Qe

(2.4.55)

where

Finally, let us introduce the notation

Aw) = @ A®) = o°
A(R) = L A%y = 1°
Alp) =R £ (p®) = Rr®

Forming the equation system. The resultant inertial force of the i-th

segment, in vector notation, is:

Fri = "Myw.a (2.4.56)

By introducing the block matrices and taking care about (2.4.54),
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o o 0.. o-
FI = -mw = —m(qu + qu), (2.4.57)

where m = diag[mlE3 ) mnE3] (dimension 3nx3n).

Let us now determine the resultant moment (resultant couple) of iner-

tial forces (M for each segment, relative to its c.o.g. Ci. Let us

)
Ii
introduce the so-called center of gravity - fixed system (c.o.g.-f.
system) OCiXCinizCi' The origin Oci coincides with the c.o.g. Ci and
the system axes are parallel to the axes of the b.-f. system Oixiyizi.
Let Jilc) be the tensor of inertia with respect to the c.o.g.-f. sys-

tem, i.e.,

-1 -1
Xci¥*ei Xci¥cy Xci%ei
JilC) -1, I S (2.4.58)
ci¥ei Yei¥ei Yei%ei
_IX Z -1 zZ IZ Z
ci®ci YeiZei ci®ci
ic)

The moment of momentum ai in the c.o.g.-f. system is

(ic) _ [(iC) (i)
&; = 3,7 Twy (2.4.59)
Expressed in the external system (in this case, the base system):
o _ (ic)
T~ Aoi Ei . (2.4.60)
The resultant moment of inertial forces is now
- -4 a0 _ _ 4 (ic)
Mp; = - g8y 7 - gl &1 ] (2.4.61)
Then
- - (1), L (ic) (1) _ (ic) (1)
MIi = Aoik(wi )Ji wy AoiJi N (2.4.62)

By introducing the block matrices, relation (2.4.62) is written in the

form

M = -afoge - alge, (2.4.63)
o (o]
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Using the expressions previously derived for w and €, equation (2.4.63)

becomes

o_ .T__ . T .
MY = -AZJB,g - A_(QJB, + JD,)q (2.4.64)

and expressed in the b.-f. coordinate systems

My = =JB,g - (2B, + JD,)q (2.4.65)
The block vector M? can be expressed as a function of wo, eo, so that
O _ _-0,0. _ 0.,0,0 0,0, *
M; = -J°B,g (R737B, + J°D,)q (2.4.66)
with
o _ 4. (ic) Ty _ T
J° = diag [AiJi A;] = A_JA_

BS = ve®(E-s), a° = A(BQ)

The expressions for the block vectors of the resultant inertial forces
and the resultant inertial moments, i.e., expressions (2.4.57) and

(2.4.66), can be written together:

(o] o] (o]
FI m Bl m Dl . . ..
= - g - g = -4 8%-c°4, (2.4.67)
o Oo,0 0.0.0 O0-~0
M2 3°8B9 2°3°85+5°D9
where
m 0 . m Di
d= , c© = (2.4.68)
o J° QOJOB3+JOD2

Let us further introduce the vector of the drives P of dimension nxl:

(2.4.69)

Let us now return to the dynamic equations (2.4.7) and (2.4.9). Using

the block matrices, the equations can be written together in the form

o [e) o, T * o o,T,_0 T _
[(6° + Fp + FJ)™ 1 (Mg + M7)T]B” + P = 0 (2.4.70)
or
BOT[c® + FQ + KO I mMd + YT 4R =0 (2.4.71)
E - I e

o

Substituting the expressions for the block vectors M? and FI’

i.e. the
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expressions (2.4.57) and (2.4.66), into the equations (2.4.71), we get

OT[GO +F OT"L

4

O.. oT .o

B Bg-B  Cqg+P=0. (2.4.72)

:MO]T“B

o]
E " E

The eqguation obtained can be written in the form

W(@§ = B' (q, @G + C' (Mg + D' (q) (G7+Fp) + P, (2.4.73)
where

w =87} 8°, B = -3°Tc°,

[ oT v oT

c' =B, p' = B}

and the parentheses demonstrate that the nxn matrix W, the nx3n matrix
C' and the nx3n matrix D' depend on the generalized coordinates g, and
that the matrix B' depends on the coordinates g and velocities é. By

introducing

Ulg, @) = B'q + C'MO

' o, -0
B + D' (G +FE), (2.4.74)

equation (2.4.73) acquires the form (2.4.1), i.e.,

W(g)g = Ulg, q) + P.

2.5. The Method of the Newton-Euler Equations

This method for c.-a. solution of the direct problem of dynamics is
based on the Newton-Euler equations already used. It was proposed

in [12] after longer experience with deriving the mathematical model
analytically [11].

We are concerned with an algorithm for computer realization of the

function g defined in (2.2.2), i.e.:
P = glq, 9, g, mechanism configuration) (2.5.1)

where P is the vector of the driving forces and torques in the joints.

The inverse problem, i.e. the function £, cannot be treated by this
method.

In presenting this method, the original designations will be signifi-
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cantly modified for the sake of brevity.

The kinematical scheme of the considered mechanism is in the form of a

kinematical chain without branching (Fig. 2.15) with rotational and
linear joints with one degree of freedom each. There are in all n de-

grees of freedom.

Fig. 2.15. Open kinematical chain

Generalized coordinates are chosen for each joint. If S;_.1 is a rota-

tional joint, the corresponding generalized coordinate qy is defined
as the angle of rotation Gi around the rotation axis. If Si—l is a
linear joint, the corresponding generalized coordinate q; is defined

as the displacement u, along the translation axis.

Coordinate systems and transition matrices. For each segment a body-

~fixed (b.-f.) system is defined, as described in [11]. The same co-
ordinate systems were used in the previous method (2.4), and the defi-
nition of such systems and the derivation of the corresponding transi-

tion matrices were explained in detail. Thus, if Ai designates the

,i-1
transition matrix from the (i-1l)-th to the i-th coordinate system,

then

coso, sind, 0
i i
. . -1
A. . = -sind,cosa, cosf,cosa, sina, = A, 2.5.2
i,i-1 i i i i Rt i-1,i ( )
sinb.sina. -cosf.sino. c \
jSinoy Gl inay osay

The transition matrix from the i-th system to the base system is obta-

ined as

i TP, T B, Tt Bioo,io1 By (2.5.3)
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The body-fixed coordinate systems were introduced because it is ap-

propriate to express the required dynamical equations in such systems.

Kinematical relations. In order to avoid complex expressions and deri-

vations, this method uses the recursive expressions for segment velo-
cities and accelerations already mentioned. These expressions are writ-

ten here in b.-f. coordinate systems.

GCi’ the vector of the i-th segment center of gravity (c.o.g.)
velocity

%Ci’ the vector of the i-th segment center of gravity accele-
ration

31, the vector of the i-th coordinate system origin (Oi)
velocity

%i, the vector of the i-th coordinate system origin (Oi)
acceleration

Ei’ the vector of the i-th segment angular velocity

Zi’ the vector of the i-th segment angular acceleration

gi’ the unit vector of the Oizi—axis of the i-th coordinate
system, i.e. unit vector of the axis of rotation or trans-
lation in joint Si

i, =0,_,0; (Fig. 2.16a)

i T Pi-1Yp WA9. 2-70d
> D —— . . .
r, = Oi—lci; Ci’ the i-th segment center of gravity (Fig. 2.16a).

Mtis

~

>
N

Fig. 2.l6a. Forces and moments acting on the i-th segment

We introduce the following notation: gi denotes some vector of the
i-th segment, expressed in the base system or in the external system;
N

51 denotes the same vector, but expressed in the i-th b.-f. system.

Now the following recurrent expressions can be written:
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N 5 N N N N N

WCi = &i x (&i X Ei) + €i x fi + ﬁi (2.5.4a)
and for the (i+1l)-th segment:

> > > > > > >

&ci+1 = Opp 0 gy X Tyyg) KBy X Tyt Wy (2.5.4b)
If S, is a rotational joint

> > 7T .

Byp1 = Pygp, i (@57e39549) (2.5.5)

> z 2 T 7T .

Fitl T Py, s (F37e85 41705235 ,) (2.5.6)

2 z x > > Ed b

Wiel T fia1 X Rgan O X i) A vy (2.5.7)
If Si is a linear joint,

- >

Bi41 = Bian,15s (2.5.8)

> >

€i+l = Ai+l,igi (2.5.9)

> > e > > =

Wipr T fien X Rgpn T 054 ¢ (05000 0)

> > > >
205 g 0 By 58595 41) F Byyg,; (W3He4E5 ) (2.5.10)
- >

It should be mentioned that the vectors Ij, fj are constant and repre-~
sent the characteristic of the segment itself (Fig. 2.l6a). Vector

e; = {0, 0, 1} is also constant.

Mechanism dynamics. Let us consider one mechanism segment, the i-th
one (Fig. 2.l6a). Let M

£i be the total moment, acting in the joint

S;_; on the i-th segment, and F

same segment in that joint.

£ be the total force, acting on the

Further, let f;es be the total resultant force acting on the i-th seg-

ment, and ﬁies the resultant moment relative to the segment c.o.g. Now
the theorem about the center of gravity motion and the Euler equations,
applied to the i-th segment and written in the b.-f. system, facilita-

te the calculation of fies, ﬁies.

2res _ =z

Fi = m W, (2.5.11)
Jres o~ 32 > 2 =z

Mi = J 8 - (Ti0) % By, (2.5.12)
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where m, is the i-th segment mass, and Ji the i-th segment tensor of

inertia with respect to the c.o.g.-fixed system.

Finally, the relation between the resultant forces and moments and the

forces and moments in the joints is given by

4 Zres 4 2
Feg S F =m9y ¥ 8y 5 qFei41 (2.5.13)
> - > > > > > >
= < E1 ‘res 2 “res %
Meg=Pi, aetMea 1Py g Fean ™y T X (F ) (2.5.14)
2z -1 > . . .

where g; = A9, and g = {0, 0, -9,81l} is the gravitational accele-

ration vector (this numerical value holds if the z-axis of the base

system is vertical).

Let us also find the relation between the forces and moments in the

joints, ﬁti' ﬁti’ and the drives in the same joints. Let us suppose

that Si—l is a linear joint. Then, a driving force ﬁi = Pigi-l is
acting in the joint and the total force in the joint, gti’ is
> > >
= +
Fti = Fris (2.5.15)

> . . . . . => >
where Fo. is the reaction force in the joint Si-17 whereby Fri 1 ST

By acalar multiplication of (2.5.15) by gi—l'

F_—>+
P, =F.,e 1. (2.5.16)

If Si-1 is a rotational joint, then

> > >

>
Mo, =Py + Mpyo Mps 1 €5 1 (2.5.17)
= M= . c s . oo o .
where Pi = Piei—l is the driving torque in the joint and MRi is the
reaction moment. By scalar multiplication by gi-l'
M_ > =
P, = M..e. ; (2.5.18)
Now the algorithm for calculating the drives Pi' i=1l,...,n for known
d; éi' éi' i=l,...,n can be explained in princiole. By knowing the
motion (qi, éi’ qi, i=l,...,n) and applying the recursive expressions
. . > - - > -
(2.5.4) - (2.5.10), all kinematical values Vir Wie Wis €4y wCi'
i=1l,...,n, can be calculated. The initial conditions for this kinema-

tical "forward" recursion are determined by the prescribed motion of
the mechanism base. We apply the "backward" recursion, using expres-

sions (2.5.11), (2.5.12), to determine ﬁies, ﬁies and the "backward"
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R
tir Feir 2nd

finally, the expressions (2.5.16), (2.5.18) to determine the drives in

recursion expressions (2.5.13), (2.5.14) to determine ﬁ

the joints. The initial conditions for this dynamical "backward" re-
i > = > - A > >
cursion are Mtn+l = Mend' Ftn+l = Fend (Fig. 2.16b). Fend’ Mend

zero if the last segment (the n-th) is free. In fact, they represent

equal

the force and the couple of connection between the last segment (the

manipulator gripper) and the object.

F(no']

Fig. 2.16b. Boundary conditions on the last segment

2.6. The Method of Euler’s Angles

This is another method utilizing kinetostatics as a mechanical appro-
ach [2]. Like the method of "block" matrices 2.4., this method is also
less computer oriented. However, the analytically derived model is
written in compact matrix form convenient for the usage of digital

computers. This method is also presented in [6, 13].

Starting essentials. The method considers a mechanism with 3n degrees

of freedom and describes it by a 3n-dimensional vector of generalized
coordinates g. The kinetostatic method is applied to give a system of

equations in the form
Wy =P+ U, (2.6.1)

where P is the vector of driving torques in the joints; the functions

f and g defined in 2.2. are thus realized as

w L (p+m) (2.6.2)

f(q, &, P, configuration)

g

P g (g, é, g, configuration) Wg - U (2.6.3)



72

Mechanism configuration. The method considers an open-chain type mec-

hanism with possible branching (Fig. 2.17a).

For ease

in defining the configuration, let us introduce the following

definitions and notation (Fig. 2.17a):

p:O

Fig. 2.17a. Open branching chain

~ There are n rigid bodies subscripted by i=1,...,n.

- The rigid bodies (segments) are interconnected by joints with three

rotational degrees of freedom (spheric joints are included).

- The segments are only simply interconnected.

- Each segment "i" has its mass m, and its inertia tensor Ji with res-

pect to the corresponding body-fixed system. A distance gi from the
first joint to the center of gravity Ci is also defined. The first
joint of a segment is defined as the joint closest to the fixed sup-

port point.

- Since the segments are simply interconnected, there are as many

joints
ded as

joints

- Let us

as there are segments. Here, the fixed point p = 0 is inclu-
the joint between the first segment and the fixed basis. The
are denoted by SP' p=0,1,...,m; (m=n-1).

define a length T between the first and the other joints on

the same segment. Each segment has none, one or more lengths 7. so
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there are m lengths ¥ in the whole mechanism; let us denote them by
Ej, j=1,...,m. Their indices are not related to the index of the

segment on which they are but apply to the mechanism as a whole.

Let us now introduce structural matrices to be used in the algorithm

for describing and prescribing the structure of the mechanism:

if the segment "i" contributes to the moment about the joint
m "

p"; otherwise they are equal to zero. Hence the matrix describes

the role of the segments with respect to the joint moments.

*
2. The matrix D (three-dimensional) is defined as having the elements

6ijp equal to unity if the length Ej lies on the positive path from
the joint "p" to the first joint of the segment "i"; otherwise they
are equal to zero. The matrix describes the role of Ej in deriving

the moment about the joint "p" due to the segment "i".

the length ij lies on the segment "i"; otherwise they are equal to

zero. Hence the matrix connects a segment and its lengths E.

Coordinate systems. Let us define a body-fixed (b.-f.) cartesian co-

ordinate system for each segment. The origin of the coordinate system
will be in the center of gravity (c.o.g.) of the segment, and the axes
will be set arbitrarily. Let us also define a fixed external cartesian
coordinate system as haivng its origin in the point of mechanism-to-

—-ground contact (the joint p = 0) and with vertical z-axis.

Let us introduce the following notation: gi represents a vector cha-
racteristic of the i-th segment, expressed in the fixed external sys-
>

tem; éi represents the same vector expressed in the i-th b.-f. system.

Let us also introduce matrix notation: a represents a 3x1l matrix cor-

responding to the vector Z, for each vector in the text.

In addition to these, the so-called coordinate systems of joints will
also be used. Each joint "p" will have the index of the first and se-
cond segments it connects, defined by the numbers (p, 1) and (p, 2).
The origin of the coordinate system of a joint is put in the joint.

The first axis is attached to the first segment and the directional
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cosines of that axis relative to the segment will be determined by (&,

m, n) . The second axis is attached to the second segment, and the

direcgiinal cosines of the axis relative to the segment will be deter-
mined by (&, m, n)p,2' If the hardware exes are in the joint then the
joint system axes are set along the hardware axes. If there are no

hardware axes (for instance a spheric joint), then, the first two axes
of the joint system are connected to the corresponding segments arbi-
trarly. The third axis is defined as being perpendicular to the first

two. Of course, such a system is not orthogonal.

Generalized coordinates. Let us introduce 3 generalized coordinates

for each of n segments (a total of 3n coordinates). The generalized
coordinates for the i-th segment will be defined as three Euler angles
of the b.-f. coordinate system relative to the fixed external system
(Fig. 2.17b), i.e., 6., wi, 0 So, the vector of generalized coordi=-

i
nates will be

= . e T
q = [eld)l@l enwn‘pn] (2-6-4)
Let us also define the subvector for each segment:

ng = [o,v.0,17, (2.6.5)

which determines the position of a segment relative to the external

space.

Fig. 2.17b. Set of Euler angles of the i-th segment
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We now have
N

qg=1: (2.6.6)

The characteristic of the introduction of generalized coordinates in
this method is the fact that these coordinates are "external", i.e.,
they determine the angular position of the body relative to the exter-
nal fixed space. In the methods described so far, the generalized co-
ordinates were "internal", i.e., they determined the relative position
of two segments. The introduction of "external” coordinates is conve-

nient for certain classes of tasks, particularly for locomotion tasks.

Transition matrices. With the generalized coordinates defined in this

way, let us now form transition matrices from b.-f. systems to the
fixed external system. Let us define the transition matrix Ai for the

i-th segment

a., = A&, (2.6.7)

The transition matrix Ai is obtained in the form

= a9a¥pP SIUINe]
A, = R{ATAT A (ATATAT) (2.6.8)
where
1 0 o
o _ \
A = 0 cosf -sing,
i i i
| 0 sinei cosei‘
cosq)i 0 Sani
a¥ - 0 10 (2.6.9)
| —sintpi 0 coswi‘
[ 1 0 0 1
AP = 0 CcOsY ., -sinp,;
i i i
| 0 sinp cospi~

The inverse matrix is obtained as
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Ai (2.6.10)

A point to be noted is that the transition matrix A, depends only on
the Euler angles of the i-th segment.

Angular motion of segments. As already stated, we will use matrix

notation. Let us consider the i-th segment. The following is obtained

for the angular velocity

w, = Hini, (2.6.11)
where
cosgbi 0 1
Hi = 51nwi51nﬂi cosp; 0 (2.6.12)
51m()icospi —51npi 0

Let us now write the angular acceleration gi’ The following may be
obtained from (2.6.11)

~ D . 1 1
€, =W, = Iyng + T Tng, (2.6.13)
where
0 0 —s1nwi wi i
1 _ . . . [ CRE BT
Hi = 51npi 51nwicospi coswis1n@i ; n; = piei
-cosp, —s1nwisinpi coswicospi eiwi
(2.6.14)

The moment of momentum of a segment is expressed as follows

by = 98, (2.6.15)

where the inertia tensor is

I -I -I
X X.Y. X.2
1 11 1 1
J; = I, I -1, , (2.6.16)
Yi¥y Yi¥y Yi%;
_IZ _IZ IZ 2
| i iyi 171 |
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The external moment that causes the angular motion of the segment re-
lative to its center of gravity is obtained as the time derivative of

the moment of momentum

s o~
L G; + ;65 (2.6.17)
where
0 -w, ®
i Y
0, = w 0 -w (2.6.18)
=i Z., X,
i i
- 0 0
Y i
>
is used for performing vector multiplication by the vector &i = {wx ’
w._ , w_ } but in matrix calculus. *
Yi %
(2.6.17) yields
M, = Jye; F W J0 (2.6.19)
or
~ iz 2. 2% 1.
Ml = Jlel + Ji Wy + 0y (2.6.20)
0 —Iz I z wi
i¥i ¥i% i
l&. = I 0 -I ; 2&. = wz
i z, X i Y.
i i i
-I % I 0 wi
L Yi¥i *iY3 | L %1 |
s -I I -1 [(w w_ ]
2i%3 YiY; Y% 9%y Yy %
2~ 1
= -I I -1 I PR, =l w w
t e X%y 2173 2iY5 1 R
I -I I -1 w._ow
X124 Yi%y Yi¥y x Xlg X3 Yy
(2.6.21)
Starting with expression (2.6.11), the following relations may be de-
rived
2. _ 2 2« 3. 1.
Wi = Hi ng ot Hl ni
(2.6.22)
1. _ 4H.2ﬁ + 5H 1-
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in which
- 2
cos wi 0 1
2 _ . 2 .2 2 .
Hi = sin wi51n pi cos pi 01;
. 2 2 .2
|l sin wicos oy sin @i 0
0 2coswi G
3H = 0 0 2siny,sinp . cos
i {S1mP cosey
L O 0 —251nwis1npicospi
(2.6.23)
- .2 . .
sin wi51npicospi -s1nﬂicospi 0
4 _ .
Hi = 51nwicoswicos@i 0 0
L 51nwicoswi51npi 0 0
. 2 .2
0 0 51nwi(cos pi sin pi)
5H = | -gsin siny, cos —cosy,.sin
i 03 10V COSV, {504
cosv S1nwi51npi coswicospi
and
52
i
2« .2
i T wi (2.6.24)
.2
3
By substituting (2.6.22) in (2.6.20), we obtain
~ . 1~ 2 2> 4 2 > 1 1r 3 2> 5 1-
= ) +
M= TR+ (T T+ M) N + (3, T +7, T +73 4 M) ny (2.6.25)

The moment ﬁi expressed in the b.-f. coordinate system of the i-th

segment may also be expressed in the fixed external system
M, = A.M, (2.6.26)
i i1

By combining with (2.6.25), we obtain the form

M, = Diﬁ. + E.“n, + F. n. (2.6.27)
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where

i i"ivi

E. = A, (Y7.%1, + 25 %) (2.6.28)
1 1 1 1 1 1

F.o=a (5t o+ 3%+ 23.%m)
1 1 1 1 1 1 1 1

If the axes of the b.-f. coordinate system are in the directions of
the principal inertia axes of the segment, then lJi = 0, while Ji and

231 take the diagonal form.

Linear motion of segments. The linear motion of a segment, the i-th,

is described by considering the position of its center of gravity as
given by different vectors { and a vector Ei. ? on a segment is defi-
ned as the vector extending from the first joint to the second one

or some other joint on the same segment. Each segment has none, one or
more lengths f. Their subscripts are independent of the subscripts of

their segments and are denoted by Ej' i=1,...,m.

The vector 3i, i=1,...,n, is characteristic of the i-th segment and
represents the vector extending from the first joint to the center of
gravity Ci. Those vectors d and { which are defined on one segment are
time~invariant when expressed in the b.-f. system attached to that

segment and time-varying when expressed in the external system.

=

Let us consider the i-th segment and denote by £ one of the vectors f)
which is defined on the i-th segment and expressed in the b.-f. co-
ordinate system. The index of the vector has been omitted since it is

independent of the index "i".
z 2
Let us note that di, f are constant vectors given as input data.

We now have
T =na7% (2.6.29)
and

d. = a.d. (2.6.30)

namely, in matrix form
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L = .i; d., = A.a.
1 1 1 1
By differentiating (2.6.29), we obtain
.oa A
L = 5 2 (2.6.31)
dt
By utilizing (2.6.8) and (2.6.9), the above expression yields
i= (2a% AV a? 52 4 A% 2pY 32+ a% Al 20 $2 4
i i Ti i i i i i 71 i
+2a® LV 10 5o g 21al AV AP 5 9.+ 2%A AV a0 G gL+
1 1 1 1 1 1 1 1 1 1 . 1 1 1 1
+ 129 AV A% 5. o+ A% WAV a? g, + A Al a® 53 (2.6.32)
1 1 1 1 1 1
with
[ 0 0 0 ] [ 0 0 0 h
1o 9A] 2o a4 a]
Al = = 0 =-sinf., =-cosH. ; A, = =| 0 -cosfH, sino,
i dei i i i d62 i i
0 cos6, =-sin®. * 0 -sinf, -cosg,
_ 1 1 - 1 1 -
4 v -s:.nwi 0 coswi d2 " —coswi 0 -s:.nlpi
1y 9By 2. Ay
Ai :de = 0 0 0 H Ai = 5= 0 0 0
i dl,()i
‘—coswi 0 —s:.nwi_ s:_nybi 0 —coswi~
[ 0 0 0 ] 5 0 0 0 7
1l 9 dA?_ 2.0 d AE
Ai=dpi= 0 -sinp, -cosp,. | Ai— d\oz =10 -cosp, sinp,
. i .
| O cospi -sinp, | _O sinp, =-cosp, |
(2.6.33)
Expression (2.6.32) may be written in a more compact form
§ o= H A, + B.A h, + C.A M (2.6.34)
i i i i i i U
where
H, [A A a0 ¢ a% Al a? 1 ab a¥ g
1 1 - 1 1 1 1 1
B, = [° A Aw al 2% 22V a2 1 A% Al 2a0] (2.6.35)
1 . 1 1l - 1 1 1
c, = [ Ta¥ a1 1AD a¥ a0t a0 lAw a%]
i i i i i i i
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and
T 0 o0
A= o 2 o (2.6.36)
0o 0 3

Let us now differentiate expression (2.6.30)

. a%a,
d, = d, (2.6.37)
i dt2 i

Analogous to the vector %, we obtain

_— . 2. 1.
di = HiAini + BiAi ny + CiAi Ny (2.6.38)
with
d, o 0
i
Ai = 0 di 0 (2.6.39)
0 0 d,
i

Let us consider again the i-th segment and denote by ;ip the vector of
the distance from the joint Sp to the center of gravity Ci of the i-th
segment. Using structural matrices, we may write

m

=g, d. +

r, 8, A (2.6.40)
ip  Tipi C 42y7i3p73

The distance from the support point, i.e., from the joint p = 0 to the

Iy

center of gravity Ci’ is obtained as

m
r., =4d, + ] 8 % (2.6.41)

R A
io i = ijo™j

since Bio is always equal to unity.

The acceleration %i of the center of gravity Cy of the i-th segment is
obtained by differentiating the expression (2.6.41)

m
wy o= fi0F d; + jzlaijozj. (2.6.42)

By substituting (2.6.34) and (2.6.38) into (2.6.42), we obtain

m
_ 2. 1.
wi = HjAgng o+ BjAy g+ C Byny j£l6ljo (3) Jn(J) *
(2.6.43)
m 2. m 1.
+ §. . . § A .
]Zl ijo™ (3) 73 T (3) jél ijo= ("3 " (3)
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Let us explain some of the notation in expression (2.6.43). Aj stands
for the matrix of form (2.6.36) corresponding to the vector Qj' The
subscript (j) of matrices H, B, C, n does not denote the matrices cor-
responding to the j-th segment; it denotes such matrices which corres-

pond to that segment on which the vector zj is located.

The sums over the subscript j may be written in a more convenient form

*
if we introduce a structural matrix I . Then

n

My = L s 3Tk
n
2 2.
L ALAR L = B AL 2R, 2.6.44
B(j)Aj n(3) kilyijkAj M (2.6 )
n
1 1.
Sty kzlyijkAj Ny

The expression for acceleration (2.6.43) now takes the following form

§

+
(R B=]

. . HOALH, T+
ijo kzlYk] k jnk

%

n
2.
; lsijo kzlyijkAj Ny + (2.6.45)

n 1.
S50 L kit e

1

[kt

3

The moment relative to the joint Sp' necessary to produce the linear

acceleration of a segment "i", will be

>

M, = 1. x m.w, (2.6.46)
ip ip ivi

or, in matrix form,

M, =

r., m.w
ip =ip i

it (2.6.47)

where r.

N is a matrix analogous to (2.6.18), but corresponding to the
£
r

p

ip

vector

Starting from (2.6.40), we may write

+
J

Lip = Pipds 6

PN
1 13p=7

le~18

(2.6.48)
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By using (2.6.45) in the expression for the moment (2.6.47), we obtain

M, =mr, HA A, + mr. B.A.“n, + myr, C,A, .+
ip i=ip7i~i i i=ip iTi Ny =ip7iTi N3
1650 1
+ m.r, S, . Y, . H AT+
i=ip 521 ijo 2 k37k"j 'k
! )
+ m,r. 8. . Yie4 By A + (2.6.49)
i=ip j=1 ijo 21 kji"k k
D60 1
+ m. . Y oS, Y1+Ck A
i=ip 521 ijo 24 kj“k k

In this equation the matrix éip should be equal to zero for a segment not
contributing to the moment relative to the joint p. With this additio-
nal condition the moment expression (2.6.49) is valid for any segment
1"

"i It is the moment relative to the joint Sp’ necessary for the 1i-

near motion of a segment.

Joint moments. The total moment relative to a3 joint p will be equal to

the sum of all the moments necessary for angular and linear accelera-

tion of the segments.

The moment due to gravity force of the segment "i", relative to the
joint Sp’ will be
_£ipmig ’

where g = [O 0 +9.81]T.

Hence, the total moment relative to a joint Sp including the gravity

compensation will be

n n
J B, M, + )Y mr g

n
Mg = .lel 1 ip i i=ip (2.6.50)

P i

In this expression, Mi is to be taken according to expression (2.6.27),
and Mip according to (2.6.49). After substitution, the moment (2.6.50)

takes the following form

n m n
M, = ) mr, D Z Y + ) om.r. H.A i, +
Sp j=y iTip j=1 ijo kj k 3 k 21 Tipitid
§ 7 Z ) %
+ m. r, . y B, A. + )Y m,r. B.A. n, +
j2q t=ip j=1 ijo kj"k ] k j2q EipTiTio 4



84

+ m.r. S, . Y, .C.A.7 . + m.r, C.,A."n, +
;= Fip j=1 ijo .24 ki’k"j 'k 2 Hpiti i
n § ,. § . § (2.6.51)
Y B, D.f B. E. B, F. mn, + m.r. g
o ipid 2y ipi i g2 pi i 1581 15ip

The terms with triple sums may be transformed by rearranging the order

of summation and introducing the short notation

n

Vjp = -Z Gijomi£ip’ (2.6.52)
i=1

The remaining six terms may be transformed by changing the order of

indices and summation. The resultant form for the total moment relati-

ve to a joint Sp will then be as follows.

n m
Mg = Z (mk£kakAk + 2 T3 VipHihy kaDk)nk +
P =1 j=1
n m 2.
+ Z (my 2y Bydy + Z Tie3VipBrly kahk) N * (2.6.53)
k=1 j=1
n m n
+ ] (mzxr, CA + Y vy, .V, CA. + B8 F yn, + ] m.z. g
k=1 k=kpk"k j=1 ki jp k] kp k k 12, Fip

This holds for any joint "p"

The joint moments may be referred to some coordinate system that is
different from the fixed external coordinate system. So, for example,
joint coordinate systems, mentioned already, are used. The introduc-
tion of the joint coordinate system allows the moments to be expressed

in terms of actual axes of rotation in the joint (Fig. 2.18).

The first axis of such a coordinate system is fixed to the first seg-

ment of the joint and has directional cosines (&4, m, n) ,1 relative to
the b.-f. system of that segment. The second axis is fixed to the se-

cond segment of the joint and has directional cosines (%, m, 1'1)]9,2
relative to the b.-f. system of that segment. Let us denote by (p, 1)
the index corresponding to the first of the segments connected by the
joint, and by (p, 2) the index of the second segment of the joint. In

addition, let (all, Y al3)p' (u21, PV, a23)p and (a3l, Ggqr u33)p
be directional cosines of the first, second and third axes of the
joint system, respectively, relative to the external coordinate system.
Then



85

AT
[0 m n]p,l(A 27 AT 51

(2.6.54)

o LU .8 _ o o a ]
[0 m o nlp o (B AT AT (o o) = (50 25 %23 o’

while the cosines of the third axis are obtained from the orthogonali-
ty conditions

_ -1 : _ :
logy ag; a33], = alloy, ayy = 0py ay3) ey ay) = apg agy)!
- ) 2= - ) 2+
{01y 9pp = @y %3 ]p' a = 10433 Gp3 T %33 O3
2
(o

2
13 %21 T 93 @33) 7 * lagy agy = ag; ogy)

(2.6.55)

irst axis of the
oint system

U Fh

segment (p, 2)

—————
second axis of the
joint system

7/
) third axis of the
joint system

Fig. 2.18. Scheme of a joint with hardware axis, and
the corresponding joint coordinate system

Directional cosines aij; i=1, 2, 3; j=1, 2,

3 assembled into a matrix
[a]b, are used to transform the moments relative to a joint. The re-

sul%ant moment, expressed in the joint coordinate system will be

g (2.6.56)

- 1.2 3 .7
where the components of the vector MS =[ MM M]S are the moments

p o]
relative to joint axes.

To keep the expressions short, let us introduce the following notation
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-1 T
[a]p (mk£kakAk + jzlykjvijkAj + kaDk) ka'
-1 m
[u]p (mk£kkaAk + jzlykjvjkaAj + kaEk) = Npk’
-1 _
[a]p (mkgkkaAk + jzlijVchkAj + kaFk) = Roys
n
m.r, = G_.
izl iZ1p9 p
The moment expressions for all the Jjoints may now be
form. (2.6.53), (2.6.56), and (2.6.57a) yield:
AN P 2
M = W n, + N n, +
JSpo | ower| BER ke BEOK
n | ~—=——- _——
+ R o +| e
kzl pk Tk P

To avoid the sums, i.e., to allow even shorter expressions,

introduce the following notation

I 1 | ] | | [ | i
1 1 1 | 1 1
1 1 1 | 1 1
I A R R R N R & 1
Wt | T R Fpki | T
———t———t-—- | | -—= t-—=t-=1 | === r=——t—=-
| 1 | 1 1 1
| 1 | i 1 1
L 1 I | 1 1 | 1 1
T . 2 2 1. 1- T
Ny = d; Ny = dq, M = "q, Gp = G.

In addition, let us introduce joint torques and denote by ﬁp

matrix form P_)
p

to produce the particular motion. Then

P =N
s
P p

(2.6.57a)

written in matrix

(2.6.57b)

let us

(2.6.58)

(or, in

the vector of the torque moment in a joint, which is

(2.6.59)
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The system of equations (2.6.57b) may now be written in the form

P

WY + N 2&-+R 13+, (2.6.60)
where

vl
Il
vl

(2.6.61)

is the vector of joint torques, expressed by actual axes of rotation.

The system of equations (2.6.60) describing mechanism dynamics may be

written in the form (2.6.1), i.e.,

Wy =P + U, (2.6.62)
with
=N %§-r % - G. (2.6.63)

Methods Based on the Lagrange’s Equations

2.7. Method of Lagrange’s Equations

This method uses the second-order Lagrange’s equations as a mechanical

approach and is very computer-oriented [8, 14, 15, 16, 17].

Starting postulates. The method considers an active mechanism with 2n

degrees of freedom and describes it by a 2n-dimensional vector of the
generalized coordinates g. Starting from Lagrange ‘s equations a system

of 2n second-order differential equations is formed:
Wg =P + U, (2.7.1)

where P is a 2n vector of the drives and matrices W and U (dimensions
2nx2n and 2nx1 respectively), depend upon g, é. Now the functions £
and g, defined by (2.2.1) and (2.2.2) are obtained as

§ = £(d, q, P, configuration) = W l(P+U), (2.7.2)
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P = g(q, 4, §, configuration) = W§ - U. (2.7.3)
Mechanism configuration. The method considers a mechanism of the open

chain type, formed by n rigid bodies of arbitrary form, without branc-

hing (Fig. 2.19). The rigid bodies, i.e., mechanism segments, are in-

terconnected by means of joints with two degrees of freedom (d.o.f.)

each, one translational and one rotational (Fig. 2.20a).

Fig. 2.20a. Joint with two d.o.f.

Rotation in the joint Si is performed around the axis determined by

>
the unit vector ey and translation along the axis connecting the joint
S; and the center of gravity (c.o.g.) ¢ (this axis is defined by the
unit vector ;gi). The point Si and the axis gi are immobile relative

to the (i-1)-th segment and the axis ;gi is immobile relative to the
i-th segment.

Consideration of the joints of such type narrows the generality to a
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certain extent, expecially because the translation axis is not placed
arbitrary but along the straight line §IE;. However, in the majority
of practical cases this condition is justified (Fig. 2.20b); so our

particular case may be considered sufficiently general for practical

purposes.

@ E)

\ =

Fig. 2.20b. One practical realization of a joint
with two degrees of freedom

Drives in the joint. In the mechanism joints driving forces and tor-

ques are acting; in the i-th joint the force and driving torque

- +0

Fi = FPi.rii (2.7.4a)
> -

Mi = MPi.ei (2.7.4b)

act respectively.

The vector of the drives is now of the form:

P = M, F 1T

[MplFPl “*" "pn'pn (2.7.5)

Generalized coordinates. In each mechanism joint two generalized co-

ordinates are chosen, so that they correspond to the degrees of fre-
edom in the joint. Let consider the i-th joint S; (Fig. 2.21) and

introduce the notations according to Fig. 2.21.

Let introduce the generalized corrdinates in joint Si as the angle of
rotation ei around the axis gi and the intensity u, of the vector SiEi'
Angle ei can be considered as the angle between the projections of

- >0 . > .
vectors Tio1,i and ry; onto the plane perpendicular to e, and u; is

 — . Y e
the length u; = 8,C;, i.e. u, = ]Sici|.
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Thus, there are 2n generalized coordinates and the vector of generali-

zed coordinates has the form

q = [elul oo enun]T. (2.7.6)

e s : >0 ||z > =z
In the case of "specificity", i.e. r..||e, or r, .]}e.;, one proceeds
ii i i-1,1i i

as in the method of general theorems of mechanics (2.3.).

Fig. 2.21. A joint with the corresponding
generalized coordinates

Coordinate systems and transition matrices. Let introduce the body-

~fixed (b.-f.) coordinate systems and the immobile external system,

as in the method of general theorems; i.e., let us connect to each
segment a system with its origin in the segment center of gravity
(c.0.g.). Let us also introduce the same notation: gi denotes a vector,
characteristic of the i-th segment or joint, expressed in the external
coordinate system; gi is the same vector expressed in the i-th segment
b.-f. system; %i is the same vector in the (i-1l)-th b.-f. system. Fur-
ther, let us likewise define the transition matrices form the i-th

b.-f. system to the external one (matrix Ai) as

4, = 1,3, (2.7.7)
i 171
and from the i-th system to the (i-1)-th (matrix A g i) as
- z
a; = BAj_q 385 (2.7.8)

and conversely (Ai,i—l

)y
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e > -1 ->
- - 2.7.9
a3 = By,1-121 T Bio1,i3 ( )

Z >
i & are constant and de-
; so they must be prescri-

>
Let us note that the vectors f?., r. .y
ii i-1,1i

termine the geometry of joints and segment

n Wy

bed for each segment and joint. Perhaps it should be explained, that
>

éi is constant, although axis gi is moving relative to the i-th seg-
ment and its corresponding b.-f. system;—éi is constant, because this

motion is linear.

The transition matrices are obtained recursively. In each iteration a
new segment is added to the chain and its transition matrix is calcu-
lated, by using the transition matrix of the preceding segment. Thus,

in the i-th iteration Ai is calculated, knowing Ai Here, this pro-

_l'
cedure will differ to some extent from the procedure applied in the
method of general theorems. Namely, the first thing to be calculated

is the relative transition matrix A1 and then:
r
By =By Ry g - (2.7.10)

Let consider a joint Si and let us define the vectors

- z 2 20 z
-e, x (r. . X oe.) N e, x (¥, x &,)
i i-1,i ~i 2 i ii i
. = a, = ’ (2.7.11)
~1i T (2 < 2 )] i Z (?o Z )
. . . . X C.ox 8,
€i Fi-1,1 Si 1€y Tii €i [

(a) (b)

>
which are perpendicular to gi and éi respectively. The vectors (2.7.11)

are unit vectors of the "a"-axis and (2.7.1l1lb) holds for the case ei=0
(Fig. 2.22).

——

Eix(Toxd)

Fig. 2.22. Determining the transition matrix
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By introducing the vector gi = gi X gi’ a trinle of linearly indepen-
dent vectors (on the (i-1)-th segment) is obtained: {gi, 3i’ Bi}, and
5 N <

a

= > b
by introducing bi = éi X a4, likewise a linearly independent triple
> > =z
(on the i-th segment): {ei, a; bi}.
Let us denote by Ai_l i the transition matrix, corresponding to 8, = 0.
r

Then (2.7.11b) holds and so:

> _ 0 % > _ .0 2. > _ .0 =z

i = Bi1,:1%4 a3 = Byoy,1957 by = BAj1,iPs- (2.7.12)

Let us introduce matrix notation and let ey denote a 3x1 matrix cor-
responding to the vector gi’ and likewise for all other vectors in the
text.

Now the relations (2.7.12) can be written together:

~ 20 ~ ~ P~
[e; a; B3] =25, ;[8 & B;], (2.7.13)
i.e.,
2_1,1 = [e; a; by] [&; &; Bi]_l, (2.7.14)

by the means of which the transformation matrix a? for b; = 0 has

i-1,1i
been calculated. Let us denote the columns of the matrix obtained by
Vipr Vipr Vigi 1.
a? = [vyq Vio Vyal (2.7.15)
i-1,1 il "i2 Ti34” e

Now, by "turning" around gi’ according to Rodrigue’s formula, we ob-

tain:

> > > > > > > . .
Vij = vijcosei + (l—cosei)(gi-vij)§i+§ixvij51nei j=1,2,3,
(2.7.16)

> N
where e, is known.

Now the transition matrix, corresponding to the angle ei will be:

A, .= [V

i-1,1 i1 Vi2 Vi3l (2.7.17)

In the case of "specificity", one proceeds as in the method of general

theorems (2.3).

Algorithm input data. The following input values are prescribed by the
method:




- mechanism configuration, i.e.,
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n = number of segments (and joints),
=z > .
ei, e i=1,...,n,
2o 4 >
Y. r. . ; i=1,...,n; r
ii’ “i,i+lf ’ rer Tol!
>k Tk
r.., i.e. r, . in case "gpecificity"
117 i,i+1 ( s of "specificity"),
m,, Ji’ i=1l,...,n (i.e. mass and tensor of inertia with respect

to b.-f. system),

- initial state,

q(t )

T
o [el(to)ul(to) e en(to)un(to)] ’

qe) = [Beay (k) +=o bo(ea ()17,

- in the case of solving the direct problem of dynamics

gt k=0,1,... Kk q

- in the case of solving the inverse problem,

P(tk), k=0'l""’kend'

Kinematical relations. If 31 is the center of gravity velocity of the

i-th segment, and $i the angular velocity of the same

the recursions follow:

-> -> + é >
w, = W, .e.
i i-1 i7i’
-> -> -> > > >0 « >0
v, = V, - W, X r, .t w, X r;.eu., + u,r,.
i i-1 i-1 i-1,1i i ii i iTii

From (2.7.18) one obtains:

> i > .
wy = Y e.f.,
5217373

and by introducing notations, it follows that

1

> > °
., = 0.
wl 'zlgj ]r

where

segment, then

(2.7.18)

(2.7.19)

(2.7.20)

(2.7.21)

(2.7.22)
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From (2.7.19) and (2.7.20) and by introducing notation, it follows
that

i, i
V.= JoYh. o+ ) Y.u., (2.7.23)
i 3
=1 ] j=1 J 3]
where
1 N 1 N
- R, . + H, . j<i
k=§+l k3 kzj SE
ot = (2.7.24)
j > . .
iil lel
> > > > > >
Ry = By % 85 ey = By % Tyouy (2.7.25)
> > > x _ bt > 0 _ Z0
By=ey=As 1847 OpTTyo) k™Pk-1Tk-1,k’ Tk Tkk PkTkk: (2.7.26)
Further, from (2.7.21),
. ) i
5, = 2o, = ] Eﬁej, (2.7.27)
j=1
where
. _ N
8] - Ailéj &= &), (2.7.28)

Forming Lagrange“s equations. For the sake of using Lagrange “s equa-

tions, it is necessary to first form the expression for the system’s
kinetic energy. Total kinetic energy T is equal to the sum of the seg-

ment kinetic energies:
n
™= ) T, (2.7.29)

and for the i-th segment, according to Kenig’s theorem, it is

>

19495 (2.7.30)

T, o=t vl
i 2 7ii

e
=1

1
32

The mechanism dynamics will be described by a system of 2n Lagrange

equations of the form

a 37 5T 6
48T, _ 2T _ of
atGe) 98, T %
;  i=1,...,n (2.7.31)
a7, _ 3T _ .u
e " ta T %
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where Qi and QE are generalized forces corresponding to the coordina-

tes Si and ui, respectively.

From (2.7.23) it follows that

i

i . . .
mve =m, 3 3 @rate s o+ 23ty B+ YT 4 A
it L 214810 P 9P g p'a ' p g 'p'ap g
p q
(2.7.32)
and from (2.7.27),
. > i 1 . L. .
5,38, = ] ) B J,BI 6_. (2.7.33)
1 1 p=1 g=1 p aprqd

Thus we have the expression for the kinetic energy (2.7.29), (2.7.30).

Let us now find the partial derivatives g%— ’ %%— , s=1,...,n. From
(2.7.29), (2.7.30) it follows that S s

n

3T _ 1 9 >2 3 2T - 2

and from (2.7.32) and (2.7.33),

n i . . . .
oT _ 1 >iv =i i~ =i >i>i, e >i> .
ais " 2 izs rzl[(BrJiﬁs + BBy + 2mya80)6, + 2miacy b ].
(2.7.35)
Differentiating (2.7.35) with respect to time qgives
q
n i ., . Y i s R
4, -1y vy @iz et o+ osly el o+ aly el o+ sl
dt abg 2 FE——— ri’s ri’s s ir s ir
Sisi S 3ix 2 zix i
+ 2ma el + 2mgaia )6+ (BLJL B + BL3 B+ (2.7.36)
>i>i, —'>j_—> —>j_—.> . > .
+2ma 0 )6+ (2mpacy  + 2miacy U + 2miasyr-ur]

Let us now find the time derivatives of the vector coefficients. From
(2.7.28),

- > -13
J = -ATAATTES 4+ A §j (2.7.37)

and from (2.7.22)

3 3 : >
=3, =1, .2.. 2.7.38
B j j-1%3 ( )

From (2.7.24),
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i - i
-y R.+ VR j<i
R, . .
34 k=j+1 k3 k=7 k3
o, = (2.7.39)
i) s .
Hiyr J=1

and from (2.7.25), (2.7.26),

S RIS R
. . (2.7.40)
—-> __—)X—> +—>X—> +—> > e
Heg = By %oy 7By 0 vty T OBy X et
3 5 . >
é] = ej = Aj—lgj’
S 5 . > p
3, = Fyol k= Pxo1Tko1,k’ (2.7.41)
; . ;o * 20O
Y T Txk T PxFkke
Now,
T .1 ? (2 movZ + 2 3.3,5.) (2.7.42)
aﬁs 2 i=1 BOS i‘i Bﬁs i“ivi’ s s
From (2.7.32) and (2.7.33) it follows that
n i s
3T _ l >io> * > > .
S T 3 _Z Z (mja Yy 6, + my v u) - (2.7.43)
s i=s r=1
By differentiating with respect to time,
n i ., .
d 9T _ 1 >i~ >is o
HE(BUS) - z[izs rzl(miur\{s Tomyopvg)e, *
. . (2.7.44)
i >3 5 T ( > > + > > ). + > >
My oYy WY, Yg M YeYg/ YUy m1YrYsur1’
where 3% and vj are determined by expressions (2.7.39), (2.7.40),
(2.7.41).

Thus, the problem has been reduced to that of obtaining the transition
matrices and their time derivatives, i.e. Ap’ Ap’ p=1l,...,n. This will
be dealt with later.

For the purpose of forming Lagrange’s equations it is also necessary

to determine the partial derivatives %%—, 22—, s=1,...,n. From

ou
(2.7.29), (2.7.30) it follows that s s



From (2.7.32)

n
9 >2 9 2T =
Logem vt ogem 8595
i=1 s s
and (2.7.33) one finds
0, s>i
= . >3
1 1 o) >i
L
p=1 g=1 S
>
o3
+(286 Yq
s
3—>
Yo »
+ (xoB
aes Yq
0, s>i
E2
Wi T =i
i i 9B a1
T2 (§§E 585

>
>3 da, P
+ a —4) 8 +
P 38, Pq
a—>
A
+2a =% 4 +
p 96, 'pq
a—>
> Yg. o o
—4d
Y 3E) Upigls
Li. OBL L,
+ Ble 5§§)epeq,

Let us determine the partial derivatives of the vector

From (2.7.28)
o8t
_J = -
36
s
and from (2.7
> -
3B . Je
—J =
865 36

From (2.7.24)

a&;
EC
s
L
and from (2.7

we find
5A Y]
att ot aTlg o+ a7t 3
i 96 i3 i 98
S S
.22),
. dA.
= —J71 2
36 =3
S S
it follows that
i 3R, . i 9H, .
_ —Xi, oy X
k=j+1 aes k=3 aes
>
9H, .,
11
36 _ '
S
.25), (2.7.26),

j<i
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(2.7.45)

(2.7.46)

[0}
1A

i,

i. (2.7.47)

0]
I A

coefficients.

(2.7.48)

(2.7.49)

(2.7.50)
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IR 3B X
————Rkj = j X :S) + _é X k;
56, 80, x j a8,
3. 9e.  9A.
3 - _3-_3d-1¢2
58 56 56 S3’
S S S
38 9T 9
k _ %Tk-1,k _ -12
36 56 = 739 k-1,k
S S
> >0
W _ ¥k _ 9% oo
56 39 56 Tkk°
S S

For the partial derivative of the

H Y 3y
kI -3 03w 4Bl x x|
30 36 x"k 3 " 38 Y%’
S S S
(2.7.51)
N
AN (2.7.52)
J

kinetic energy with respect to the

coordinate ug from (2.7.29), (2.7.30), (2.7.32) and (2.7.33) we find
3T _ 1 ¢ D +2 3z o= 2 s
oo =7 .l mun MVioYoman Y3930 (2.7.53)
S i=1 S s
9 2T = Z
s 89505 = 0, (2.7.544)
u i“ivi
s
and
0, s>i
9 .32 = (2.7.54b)
u i°i . . >i >i >i i
s i i da Sie e i o0, Jo_ L .
0 G agh b, + og g 8.8 + 2 52y b e0)
p=l g=1 %Yg A Pd P AUy Rq s 4P 4
3BT Y.
since Eﬁl = 0 for any s, i, j, and 551 = 0 for any s, j. From (2.7.24)
s s
it follows that
> -
i BRk. i BHk.
St Lloes o 3
J7i k=3+1 s k=3 %Ys
3=
au (2.7.55)
s >
oH., .
ii .
du ’ =1
s
and from (2.7.25), (2.7.26),
> > 0 k?‘-s
9 . oH, . ’
—§1= 0; —od = (2.7.56)
us uS _é « > =2 > « A:’O k=
3 ¢ Yk T By-18y kTkk’ 7S¢



99

Thus, the problem of determining the partial derivatives of the kine-
tic energy with respect to generalized coordinates has been reduced to

obtaining the partial derivatives of the transition matrices i.e.
oA
F@E' for every p, s.

s

On the whole, it can be concluded, that in order to formulate the left-

~hand sides of the Lagrange’s equations (2.7.31) it is sufficient to
oA

calculate A_, A_, 5@2’ for every p, s, i.e. to calculate the transiti-
P p s

on matrices and their partial and time derivatives. This will be dis-

cussed next.

The recursive procedure for calculating the transition matrices has
already been described in detail, i.e. A, is calculated starting from
the known Aj_q- Likewise, the calculation of the derivatives of the

transition matrices is also recursive, i.e. Ai will be calculated
JA, oA,

starting from the known Ai—l’ and 5§£ from the known ag_l.
s s
BAi
Let us first obtain the derivative EY The relation (2.7.10) is
S
Ai = Ai—lAi—l,i' (2.7.57)

In determining the partial derivative, from (2.7.57) we obtain

( OA

i-1 .
Bo_ Pi-1,i0 ST
J0A 0A. .
i _i-1,4 =i
W = Al—‘l 56 ’ s=1 , (2.7.58)
s i
0, s>i
(.
where the property that the relative transition matrix Ai—l i depends
94, ’
on Si only (for each i), has been used. As Ai—l' _3%*£ are known, and
s

the procedure for calculating Ay 4 has been described, only calcula-
~ 4

oA, \
tion of ——%%lii remains. From (2.7.17) it follows that
i

Aj1,1 _ | Vi1 %Vip Vi3 (2.7.59)
38, 56, 98, 38,

and from (2.7.16),
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> > >
.+ e, . . j=
)§l ey Xvi] cosé;, J 1,2,3,

> .6+.e(—>—»
36, | Vi4SinUy 7 SIND;NC,0V4 g

(2.7.60)

where Gij has been determined in (2.7.15) and gi is known and constant.

Thus, the problem of calculatiing the partial derivatives of the tran-

dA,
sitionmatrices Sgi has been solved. We now find the derivative A;. By
s

differentiating the relation (2.7.57) with respect to time we get

. . '3

Ay =By Ry s PRGBS (2.7.61)

As Ai—l' Ai—l are known, and the procedure for calculating Ai—l is

described, the calculation of Ai—l i still remains. Using the fact

that A, . depends on 6. only, we find that
i-1,1i i

B 1 i,
A, = —2=tn (2.7.62)
i-1,1i 98, i
i
ORio1,1
The calculation of ——56—4— has been described, starting from relation
i

(2.7.59).

Thus, the calculation of the time derivatives Ai of the transition

matrices has been accomplished.

The problem of formulating the left-hand sides of Lagrange’s egquations
(2.7.31) has been solved in principle. On the right-hand side of the
equations the generalized forces appear.

u

Calculation of the generalized forces. Let us designate by Qi, Qi the

generalized forces corresponding to the generalized coordinates ei, u

iI
respectively. The expressions for the generalized forces will be deri-

ved by means of the virtual displacements method.
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