
Dynamics of Controlled 
Mechanical Systems 



International Union of Theoretical 
and Applied Mechanics 

International Federation of Automatic Control 

G. Schweitzer, M. Mansour (Eds.) 

Dynamics of Controlled 
Mechanical Systems 

IUTAM/IFAC Symposium, Zurich, 
Switzerland, May 3D-June 3,1988 

Springer-Verlag 
Berlin Heidelberg New York 
London Paris Tokyo 



Prof. G. Schweitzer 

Institute of Mechanics 
ETH-Zentrum 
CH-8092 Zurich 
Switzerland 

Prof. M. Mansour 

Institute of Automatic Control 
ETH-Zentrum 
CH-8092 Zurich 
Switzerland 

ISBN-13: 978-3-642-83583-4 e-ISBN-13:978-3-642-83581-0 
DOl: 10.1007/978-3-642-83581-0 
Library of Congress Cataloging-in-Publication Data 
I UTAMII FAC Symposium (1988: Zurich, Switzerland) 
Dynamics of controlled mechanical systems IIUTAMIIFAC Symposium, 
Zurich, Switzerland, May 30 -June 3,1988; G. Schweitzer, M. Mansour, eds. 
(lUTAM symposia) 
At head of title: International Union of Theoretical and Applied Mechanics. 

ISBN-13:978-3-642-83583-4 (U.S.) 
1. Automatic control--Congresses. 
2. Machinery, Dynamics of--Congresses. 
I. Schweitzer, G, (Gerhard) 
II. Mansour, M. 
III. International Union of Theoretical and Applied Mechanics. 
IV. International Federation of Automatic Control. 
V.Title. 
VI. Series: IUTAM-Symposien. 
TJ212.2.187 1988 
629.8--dc 19 88-31205 

This work is subject to copyright. All rights are reserved, whether the whole or part ofthe 
material is concerned, specifically the rights of translation, reprinting, re-use of illustra­
tions, recitation, broadcasting, reproduction on microfilms or in other ways, and storage 
in data banks. Duplication ofthis publication orpartsthereofis only permitted under the 
provisions of the German Copyright Law of September 9,1965, in its version of June 24, 
1985, and a copyright fee must always be paid. Violations fall under the prosecution act 
of the German Copyright Law. 

© Springer-Verlag, Berlin Heidelberg 1989 
Softcover reprint of the hardcover 1st edttion 1989 

The use of registered names, trademarks, etc. in this publication does not implY,even in 
the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 

216113020 543 2 1 0 



Preface 

Many mechanical systems are actively controlled in order to improve their dynamic 

performance. Examples are elastic satellites, active vehicle suspension systems, robots, 

magnetic bearings, automatic machine tools. 

Problems that are typical for mechanical systems arise in the following areas: 

- Modeling the mechanical system in such a way that the model is suitable for control 

design 

- Designing multivariable controls to be robust with respect to parameter variations and 

uncertainties in system order of elastic structures 

- Fast real-time signal processing 

- Generating high dynamic control forces and providing the necessary control power 

- Reliability and safety concepts, taking into account the growing role of software within 

the system 

The objective of the Symposium has been to present methods that contribute to the solutions of 

such problems. Typical examples are demonstrating the state of the art It intends to evalua~ the 

limits of performance that can be achieved by controlling the dynamics, and it should point to 

gaps in present research and areas for future research. Mainly, it has brought together leading 

experts from quite different areas presenting their points of view. 

The International Union of Theoretical and Applied Mechanics (lUTAM) has initiated and 

sponsored, in cooperation with the International Federation of Automatic Control (IF AC), this 

Symposium on Dynamics of Controlled Mechanical Systems, held at the Swiss Federal Institute 

of Technology (ETH) in Zurich, Switzerland, May 3D-June 3, 1988. It is the first time that these 

two scientific institutions have been jointly sponsoring such an event. And there are reasons to 

assume that common 'interests will lead the IFAC and the IUTAM to cosponsor another 

symposium on this interdisciplinary topic within the next years. 

A Scientific Committee has been appointed consisting of 

J. Ackermann, Germany; P. Coiffet, France; T.R. Kane, USA; 

D.M. Klimov, USSR; M. Mansour (Co-Chairman), Switzerland; 

W. Schiehlen, Germany; G. Schweitzer (Co-Chairman), Switzerland; 

K. Yoshimoto, Japan 



VI 

The Committtee suggested the participants to be invited and the papers to be presented at the 

Symposium. As a result of this process, 65 active scientific participants from 11 countries 

followed the invitation and 29 papers were presented. The lectures were devoted to the 

following main topics: 

Modeling, Typical Examples for the Dynamics of Controlled Mechanical Systems. 

Design Tools, Graphical Tools, Sensors and Actuators, Aerospace, Vehicles, and 

Robotics. 

Some of the papers are related to more than one of these main topics. but in order to assist the 

reader we have structured this volume according to the main topics, thus maintaining the 

structure of the Symposium. 

The lectures, giving a survey on the state of the art and presenting recent research results. show 

the high level of performance and sophistication already obtained when dealing with the control 

of mechanical systems. The lectures were extensively discussed. and it is expected that the 

Symposium will have a stimulating effect on further research in this important and 

interdisciplinary field of mechanics and control. Discussions and statements of the members of 

the Scientific Committee indicate that there are necessary and promising directions where future 

efforts will have to go: 

- Improvements of the man-machine interface, including high level application oriented 

programming languages, graphics, and safety aspects. 

- Extension of the role of software both at the design stage and as part of the controlled 

system itself making it more intelligent, capable of learning, safer and adaptable to the 

needs of the human user. 

- Modeling of complex mechanical systems, especially for control purposes. 

The organizers' gratefully acknowledge the financial support and effective help of the following 

institutions and industrial companies in the preparation of the Symposium: 

International Union of Theoretical and Applied Mechanics (IUTAM) 

International Federation of Automatic Control (IFAC) 

Eidgedossische Technische Hochschule ZUrich (ETH ZUrich) 

European Research Office of the US Army 

Sulzer Brothers Ltd. 
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A main contribution to the success of the Symposium is due to the help and excellent work of 

the staff of the Institute of Mechanics of the ETH, and the Local Organizing Committee. We 

thank especially Mrs G. Junker. 

The editorial work of the Proceedings was supported by the Institute of Mechanics of the 

ETHZ. In essence the original manuscripts submitted by the authors are reproduced. Thanks to 

the Springer-Verlag are due for an agreeable and efficient cooperation. 

Zurich, July 1988 G. Schweitzer M. Mansour 
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Model Verification by Experiments with Finite 
Effect Sequences (FES) 
J. ACKERMANN, P. WIRTH 

DPVLR-Institut fUr Dynamik der Plugsysteme 
Oberpfaffenhofen, D 8031 Wessling 

Summary 

A finite effect sequence (FES) is a good input signal to verify 
agreement between a linear plant and its model. The PES theory 
is reviewed, the influence of nonlinearities in the plant is 
studied and their influence on the test is reduced by a modifi­
cation of the FES. Practical problems arising in the application 
to a robot arm are discussed and recommendations for further 
investigations are given. 

Introduction 

Assume a linear model of a system is known, e.g. a local lin­

earization of a nonlinear simulation model. Also assume that the 

system is available for undisturbed input-output measurements. 

What is a good input signal to verify agreement between model 

and system? The answer is: A finite effect sequence (PES). The 

FES theory [1] is reviewed with emphasis on the alternatives 

that the system is only the plant or a control system containing 

the plant. Modifications of FESs are discussed, which reduce the 

effect of nonlinear distortions in the simulation model and the 

plant. 

A robot arm is studied as an example. Some practical problems 

are discussed and recommendations for further investigations 

are given. 

G. Schweitzer, M. Mansour 
Dynamics of Controlled Mechanical Systems 
IUTAMIIFAC Symposium Zurich/Switzerland 1988 
© Springer-Verlag Berlin Heidelberg 1989 
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Finite Effect Sequences 

Consider an n-th order linear discrete-time siso system 

x(k+l) Ax(k) + bulk) 
(1) 

y(k) c'x(k) 

with the characteristic polynomial 

A(z) = det(zI-A) + ••• + 

Apply the following input sequence to the system 

u(O) 1 

u(1) an-l 

(3 ) 

u(n) aO 
u(k) 0 for k > n 

the response is 

y(O) c'x(O) 

y(1 ) c'Ax(O) + c'b 

y(2) c'A2x(O) + c'Ab + an_lc'b (4) 

Y(n+l) • c'An +1 x(O) + c'Anb + a c'An - 1b + ••• + aOc'b n-1 

By the Cayley-Hamilton theorem we have 

An + a n_1An- 1 + ••• + aOAO = 0 and thus 

y(n+l) = c'An +1 x(O) (5 ) 

For k > n the input is zero and the system follows its homogene­

ous solution 

k > n (6) 
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This is the same homogeneous solution as we obtain it with a 

zero input. The sequence (3) has an effect on ylk) only over a 

finite time, therefore (3) is called a "Finite Effect Sequence" 

IFES). Some useful properties of FESs [1] are summarized here. 

1) For a controllable and observable system, (3) is the FES of 

minimal duration (in short "minimal FES"), otherwise the 

coefficients of the observable and controllable sUbsystem 

constitute a minimal FES. For simplicity we assume here (1) 

to be controllable and observable. 

2) other FESs can be generated by the three operations 

i) multiplication by a scalar factor, ii) time shift, 

iii) superposition of FESs. By these operations FESs of 

arbitrary length > n+l can be generated. 

3) The z-transform of (3) yields 

uz(z) = 1 + an_lz-1 + ••• + aOz-n 

The three operations under 2) correspond to a multiplication 

of A(z-l) by an arbitrary polynomial R(z-I). If Alz-1 ) is a 

FES then also A(z-I)R(z-l) is a FES. 

4) The z-transfer function of (1) is 

h (z) = c'(zI-A)-lb = B(z)/A(z) z 

A(Z) 

B(z) 

+ a zn-l + zn 
n-l 

+ bn_1zn- 1 

(8) 

Polynomials in z-1 like in (7) are obtained by multiplication 

of numerator'and denominator of hz(z) by z-l. Let 

A(z-l) z-nA(z) 1 + a n _1z-1 + + aOz-n 

B(z-l) z-nB(z) b n _1z-1 + + bOz-n (9) 
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Now hz(z) = B(z-l)/A(z-l), yz(z) 

minimal FES input uz(z) = A(z-l) 

yz(z) = B(z-l) (10) 

The FES response consists of the numerator coefficients of 

the z-transfer function. By comparison with (4) 

(11) 

(This relation may also be obtained by applying Leverrier's 

algorithm to (8).) 

5. If the system is a closed loop with compensator D(z-l)/C(z-l) 

and plant B(z-l)/A(z-l), then the sequences indicated in 

fig. I occur. 

AC-I-BD AC D AD B BD -- --
C A -

Fig_ I FES responses in a closed loop 

Input is the closed-loop characteristic polynomial. AC + BD, 

the re~ponse at the feedback error is the open-loop charac­

teristic polynomial and the response at the output is the 

open-loop numerator polynomial. 

6. In the'multivariable case the FES input matrix p(z-~) and 

response matrix Q(z-l) form a prime factorization 

C(ZI-A)-IB (12) 

Thus the FES and its response constitute a complete minimal 

system description. The structure of p(z-l) is feedback in­

variant, but its coefficients can be arbitrarily changed by 

state feedback. The closed-loop properties may be specified 

by the closed-loop FESs. 
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Model verification by a FES 

We now come back to the initial question of model verification. 

In principle we can use step responses, frequency responses (for 

stable systems only) or other input-output measurements for the 

comparison of model and system. There are, however, some advan­

tages of FESs for this purpose. 

1) We only have to know the eigenvalues or poles of the transfer 

function. If they are correct, then the response is finite 

and the correct numerator can be read off from the experi­

ment. If the response is not finite, then only the model 

poles must be adjusted, not the zeros. This separates numera­

tor and denominator determination. 

2) The signal energy at input and output is concentrated to a 

short time interval. In a plant with changing operating 

conditions and changing local linearizations many such short­

time experiments may be performed along a trajectory. 

3. The short-time test is feasible for unstable plants, if we 

can make the initial state x(O) very small. For k > n the 

response is very sensitive to a mismatch of unstable eigen­

values. An alternative is the closed-loop test at a stabi­

lized plant. For known C(z-l) and O(z-l) in fig. 1 the rela­

tionship between the responses and A(z-l) and B(z-l) is al­

most as simple as in the open loop. 

If the compensator shifts the eigenvalues close to the origin 

of the z-plane, then the output signal for k > n becomes 

small and insensitive to a mismatch of A(z-I). A tradeoff is 

a compensator that barely stabilizes the plant. The signal 

y(k), k > n is then still sensitive to a mismatch of the most 

critical eigenvalues near the unit circle and the experiment 

can be performed with a stable system. 
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Influence of nonlinearities 

Frequently the linear model describes a local linearization of a 

nonlinear system and all previous results are only approximations. 

In this section some modifications of the FES experiment are 

derived with the aim to reduce the influence of nonlinearities. 

In the simplest case u is generated by an actuator with a non­

linear characteristic. If this characteristic is monotonically 

increasing, then it has a unique inverse and the FES at the 

actuator input can be modified such that the desired FES occurs 

at the actuator output. However real actuator nonlinearities 

like backlash and saturation do not have an inverse. 

Small signals are distorted by backlash and friction. In order 

to avoid this effect, the FES should be multiplied by a large 

scalar factor. This factor is, however, limited by saturation 

effects; also the state variables should not leave the region, 

where a local linearization is valid. There are two ways to 

reduce the maximum input amplitude: Longer sampling intervals 

and nonminimal FESs. 

To some extent the input energy can be injected into the system 

by smaller amplitude and longer duration of the impulses. This 

shifts the excitation energy towards lower frequencies. Practi­

cally the amplitude is kept constant over N sampling intervals 

and the continuous plant is discretized with a sampling interval 

NT. N is limited by the fact that the controllability and ob­

servability of high frequency complex eigenvalues is reduced. 

An alternative approach is the use of nonminimal FESs which are 

determined such that the maximum amplitude is reduced. This is 

illustrated by the following example. 

A loading bridge [1] has the following parameters. Crab mass = 
1 t (= 1000 kg), load mass = 3 t, rope length = 10 m, sampling 

interval T = n/8 seconds. The z-transfer function from u 

"force accelerating the crab" to y = "crab position" is 



0.0742z3-O.0629z 2-O.0629z+0.0742 

z4-3.414z3+4.828z2_3.414z+1 
(13) 

The maximum absolute value of the denominator coefficients can 

be reduced by multiplication of numerator and denominator by 

z + 1 or even more by z2 + 1.757z + 1. The resulting expanded 

z-transfer function in the latter case is 

0.0742z5+O.0675z4-O.0992z3-O.0992z2+O.0675z+0.0742 

z6-1.657z5_0.172z4+1.657z3_0.172z2_1.657z+1 

(14) 
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Normalizing both FESs corresponding to (13) and (14) to lui S 1 

the resulting input sequences are 

k u(k), eq. (13) u(k), eq. (14) 

0 0.207 0.603 

1 -0.707 -1 

2 1 -0.104 

3 -0.707 1 

4 0.207 -0.104 

5 0 -1 

6 0 0.603 

7 0 0 

I u 2 (k) 2.085 3.749 

I y2(k) 0.0189 0.0398 

The input energy has been increased by a factor 1.8 without 

violating the amplitude constraint; the output energy was 

increased by a factor 2.1. The resulting output yCk) accord­

ing to the numerator of (14) must be divided by Cz 2-1.757z+1) 

in order to obtain the numerator of (13). 
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Conclusions from a study on a robot application 

A preliminary study on the application of a FES test to a 

robot arm was made [2]. It does not give a neat illustration, 

but it shows where the practical problems are. A detailed 

nonlinear simulation model for a Manutec r3 robot was derived 

in [3]. Fig. 2 visualizes a simplified model assuming that 

the arms 3, 4, 5 and 6 are one rigid unit called arm h that 

rotates around axis 3. For this study also the joints 1 and 2 

were fixed. 

Fig. 2 Robot Manutec r3 



The model has two states for arm position and velocity and 

two states for rotor position and velocity. The arm and the 

rotor are connected by a force law describing elasticity, 

damping and backlash in the gear. A second nonlinear force 

law describes the friction acting on the rotor. A saturation 

arises from the maximum motor torque of 9 Nm. 

At the time of this writing the robot was not yet fully in­

strumented. Therefore only linearized model and nonlinear 

simulation model could be compared. This is recommended also 

as a first part of a continuing study, because then the in­

fluence of each nonlinearity can be studied separately. 

The construction of the robot does not allow a stable equi­

librium position of arm h. Therefore the reference position, 

for which the model is linearized, must be held by a robot 

controller. The standard controller has the transfer function 

V(1+TOs) ~ l+TaS } 
[rCs) - rotorpositionCs) lky + ~sr(s) - -- rotorvelocity(s) 

s(1+T1s) l+Tbs 

<1S) 

Thus the controller is of third order and the total system is 

of order seven. The eigenvalues of the linearized closed loop 

are: 

Al,2 -11.S ± 7.23j 

A3,4 -30.2 ± 83.Sj 

AS,6 -114 ± 291j 

A7 -1110 

The response of the rotor position to a step reference input 

rCs) = lis is shown in fig. 3. 

11 
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Here we see one of the difficulties with the original FES test 

or with other tests like step responses. The absolute values of 

the eigenvalues differ by a factor of about 100. The dominant 

behavior with a mild overshoot is due to eigenvalues A1,2. The 

faster modes A3,4 appear as small wiggles during the rise time 

of the response and the remaining eigenvalues A5,6 and A7 have 

an effect only for very small t, they are invisible in the re­

solution of fig. 3. It is difficult to excite and measure all 

modes with a single FES input. For the slow modes a sufficient 

excitation requires a sampling interval in the order of magni­

tude of 50 ••• 100 ms. The FES for T = 50 ms is shown in fig. 4. 
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Fig. 4 Finite effect sequence with a sampling interval T = 50 ms 

The form of the FES suggests, that a reduced model of third or 

fifth order could be used as well. 

For the test two FESs for T = 50 ms were superimposed such that a 

constant input was applied during the first 100 ms, see fig. 5. 
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Fig. 5 Two superimposed FESs for T 50 ms 

Fig. 6a shows the FES response of the linear model and 

fig. 6b the FES response of the nonlinear simulation model. 
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Fig. 6 Response of the rotor position to the FES of fig. 5 

13 



14 

The higher frequency modes are sufficiently damped, such that 

their response after 50 ms is negligible. In fact this ex­

periment was used for a gripper mass calculation from the 

response of the nonlinear simulation model [2]. The gripper 

mass primarily enters into the slowest mode. It was possible 

to determine an uncertain mass m in the interval [0, 15kg] 

with an accuracy of 200 g. The remaining uncertainty is due 

to uncertainty of friction parameters. 

For a verification of the high frequency modes a much higher 

frequency of excitation is required, e.g. a sampling interval 

of 1 ms. Obviously their effect is obscured by the fact that 

we use a good controller that provides sufficient damping. A 

sensitive model verification or parameter estimation would 

require a bad controller, that results in an undamped oscil­

lation or even gives a mild instability. 

A sufficient response amplitude is required because otherwise 

the signal is distorted by the small signal nonlinearities 

backlash and friction. A tradeoff must be made between this 

lower signal level constraint and the upper constraint by 

saturation of the motor current. 

The resulting recommendation for a continuation of this study 

is: Use a 50 ms FES for the verification of low frequency 

behavior. For each high frequency mode find a controller that 

makes it mildly unstable (e.g. by changing the original con­

troller attached to the nonlinear simulation model). Do FES 

tests with' sufficiently small sampling intervals. 
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Summary 

By a geometrical approach, the complex equations of motion of a passenger car which 
represents a complex spatial multiloop multibody system can be stated analytically in 
minimum coordinates. In particular, the nonlinear constraint equations arising from the 
closed loops can be stated explicitly in recursive form. In addition, significant elasticities 
of the vehicle are considered. 

The corresponding simulation program requires a minimum number of operations. 
The program is applied for extended simulation runs. It has to serve as a basis for 
the control design of anti-block-systems (ABS), drive-slide control systems (ASR) and 
active suspension systems. 

1 Introduction 

In the design procel1S of modern passenger cars simulation models for the representation 
of the complete vehicle are a desirable instrument which will be applied to shorten 
the developmental period and to reduce the costs. This is also valid for the design of 
particular car components like anti-block-systems (ABS = Antiblockiersystem), drive­
slide-control syste~s (ASR = Antriebs-Schlupfregelung) and active suspension systems. 
Simulation techniques enable the variation of parameters in a manifold which can never 
be provided by experiments with the real vehicle; and this to a substantial reduced 
expenditure once the simulation programs are available. The validity of the simulation 
results depends mainly on the quality of the mechanical model and on the reliability of 
the vehicle data. 

The driving performance of a modern passenger car is influenced by different para­
meters. Of main importance is the guided displacement of the wheel carriers due to 
the suspension system. Thus the stability of the vehicle when changing lanes or driving 
through curves as well as the passenger comfort can be influenced in a desired man­
ner. The wheel suspension systems of modern cars are realized as spatial multibody 
systems with closed multibody loops. Furthermore, the kinematical behaviour of the 
wheel suspensions can be influenced by desired elasticities in the hinges. These provide 

G. Schweitzer, M. Mansour 
Dynamics of Controlled Mechanical Systems 
IUTAMIlFAC Symposium Zurich/Switzerland 1988 
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a certain flexibility of the wheel carrier in the longitudinal direction which increases the 
passenger comfort and decreases the material stress. 

Difficulties arise in the modeling of mechanical subsystems like the nonlinear kine­
matics of the wheel suspension systems or the consideration of the elasticities mentioned 
above, as for example the elasticities in certain hinges of the wheel suspensions or the 
elasticities of the tires. In the presented paper it will be shown that an effective analyti­
cal model in minimum coordinates with a recursive structure of the constraint equations 
can be derived using the following three concepts: 

• "The characteristic pair of joints" to state constraint equations of the individual 
multi body loop in the always most recursive form [7J; 

• "the kinematical transformer" to represent the kinematical transmission behaviour 
of the individual loops which are connected linearly to a kinematical net and 
represented by a block-diagram [6J; 

• "kinematical differentials" to provide the padial derivates of the joint coordinates 
with respect to the independent coordinates by purely kinematical expressions 
without using analytical differentiations [5J. 

2 Mechanical setup of the vehicle 

The vehicle under consideration consists of a car body with McPherson strut front sus­
pension and a so-called trailing arm torsion-beam rear suspension (Verbundlenkerachse 
[2]). This mechanical setup is realized in many modern middle-class passenger cars 
(Fig. 1). 

The corresponding mechanical system is built up of rigid bodies interconnected 
by ideal hinges and arbitrary lines of forces. The topological structure of the arising 
multibody system is characterized by closed multi body loops which appear in the wheel 
suspension systems. In addition, desired elasticities in the front and rear suspension 
can be represented by particular rigid-body subsystems. 

The contact between tire and road is described by means of a particular kinematical 
model. Thus a general calculation of position and velocity at the contact domain is 
possible which is independent of the particular tire forces. The characteristics of the 
complex multI body system under consideration can be summarized as follows: 

• The car body is a rigid body represented by a general tensor of inertia; 

• the McPherson strut front suspension consists of wheel carriers which are guided 
by a strut (spring-damper unit), a lateral control arm, and a steering rod. Of great 
influence is the lateral elasticity of the rear hinge of the lateral control arm, which 
can be modeled by a local - kinematically compatible - rigid-body subsystem 
(Fig. 1); 

• the steering mechanism is realized by a tooth rack which is interconnected to the 
steering rods on each side by spherical joints; 
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Figure 1: Mechanical setup of a passenger car with McPherson strut suspensions and 
trailing arm torsion beam rear suspension 

• the wheel carriers of the rear axis are connected to an elastic torsion beam which is 
mounted to the car body by rubber elements. This so-called trailing arm torsion­
beam rear suspension can be described by the rigid-body subsystem shown in 
Fig. 1, which guarantees the symmetric as well as the anti symmetric vertical 
suspension modes of the rear wheel carriers. 

3 Kinematical Analysis 

The topological structure of the complete vehicle is shown in Fig. 2. All rigid bodies of 
the multi body system are drawn in black; the connecting joints by little circles. Here, 
joints with more than one degree of freedom are replaced by a corresponding number 
of joints with one degree of freedom. The six degrees of freedom of the car-body with 
respect to the inertial frame can be represented by a fictitious mechanism consisting 
of three prismatic joints (translation) and three revolute joints (rotation). The overall 
system consists of nB = 25 rigid bodies with k = 133 constraints. It is a mixed structure 
containing independent multibody loops (Ll to Ls) and tree-type parts. The number 
of degrees of freedom of the system is f = 17. 
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Figure 2: Topological structure of the multi body system 
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One problem arises now from the question how to choose the independent coordinates 
to get the equations of constraints in a suitable form for the later on statement of the 
equations of motion. Here, the main difficulties arise from the analysis of the kinematical 
loops due to the strongly nonlinear interdependency of the joint coordinates. Every 
individual kinematical loop shows a particular input-output behaviour which depends 
on the number of joints and joint coordinates, the geometry of the loop, but not the 
location of the loop. This input-output behaviour can be described by a so-called 
"kinematical transformer" which represents the nonlinear dependency of the six output 
coordinates with respect to the locally independent input coordinates, i.e. degrees of 
freedom of the loop [6]. The interconnection of the individual loops to a kinematical net 
can now be illustrated by a block-diagram where the degrees of freedom of the complete 
system depends on the way the loops are arranged. As the connecting nodal equations 
are linear, the constraint equations of the overall system can be split up into two groups: 

• The nonlinear equations of the locally independent loop, i.e. the "kinematical 
transformer" , 

• the linear equations at the connecting nodes. 

The number of degrees of freedom as well as the choice of the independent coordinates 
in the kinematical net can be determined by means of methods of graph theory. By 
this, an optimal solution flow in the sense that the kinematical loops can be solved 
recursively or as recursively as possible is guaranteed [1]. Furthermore, the individual 
kinematical loop can be analyzed using the concept of the "characteristic pair of joints" 
which enables the most recursive structure of the constraint equations of the individual 
loop. Depending on the type and the degrees of freedom of the joints in the loop the 
constraint equations in many technical examples are completely recursive [7]. 

By the two concepts "characteristic pair of joints" and "kinematical transformer" 
which are discussed in detail in the references it is possible to state the equations of 
constraints of even very complex multiloop multibody systems in - to a great extent -
recursive form. This holds also for the vehicle model regarded in this paper where the 
multi body loops occur mainly in the wheel suspension systems. 

The modeling of the McPherson strut suspension which includes the lateral elasticity 
in the rear hinge of the lateral control arm is more detailed than the investigations 
given in Ref. [10] and [3]. The mechanical setup is illustrated by Fig. 3a. Due to the 
hinge elasticity mentioned above, the corresponding multi body system consists of three 
independent loops on the left and right hand side (Ll to L3 and L4 to Ls) respectively. 
In Fig. 3b only the left hand side is represented. The loops Ll to L3 have the following 
properties: 

• Loop L 1: f3L, = 7 joint coordinates; fL, = 1 d.oJ., 

• loop L 2 : f3L. = 9 joint coordinates; fL. = 3 d.oJ., 

• loop L3: f3L3 = 10 joint coordinates; fL3 = 4 d.oJ .. 

Due to the particular coupling of the loops Ll to L3 a local kinematical net is 
built up with three degrees of freedom. By the quantities S11, S12 and S13 (see Fig. 3 
and also Fig. 2) as independent coordinates the constraint equations of this subsystem 
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strut (spring-damper unit) 

tooth rack of the 

Figure 3: Mechanical model of the McPherson strut suspension with lateral elasticity 
in the rear hinge of the lateral control arm 

can be stated in recursive form. The same holds for the symmetric McPherson strut 
suspension on the right hand side, described by the loops L4 to L6 • The connection of 
the subsystems is given by the tooth rack of the steering mechanism which is actuated 
by the common input coordinate S13. The kinematical structure of the complete front 
suspension system with altogether five degrees of freedom can now be represented by 
six kinematical transformers Ll to L6 arranged to the block-diagram shown in Fig. 4. 

In a simpler way, the trailing arm torsion-beam rear suspension can be modeled. 
The symmetric and the antisymmetric vertical suspension mode is enabled by the the 
detailed arrangement of Fig. 5. The corresponding multi body system consists of the 
single loop L j with h7 = 1 d.oJ .. In addition, a I!lassless multi body loop L8 is realized 

Ls 

Figure 4: Block-diagram of the McPherson suspension system 
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Figure 5: Mechanical model of the trailing arm torsion-beam rear suspension 
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Figure 6: Block-diagram of the trailing arm torsion-beam rear suspension 
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to provide the symmetric lateral deflection of the connecting rear axis (see also Fig. 1 and 
2). The rear axis represents a subsystem with one degree of freedom and the generalized 
coordinate .,p3; the block diagram is given by Fig. 6. The subsystem is connected to the 
car body by a revolute joint with the independent coordinate .,p31. 

The topological structure of the complete multi body system is already given by 
Fig. 2, where the independent coordinates corresponding to the f = 17 degrees of 
freedom of the system are marked by circles. 

4 Kinematical differentials 

The kinematic analysis of the previous section provides the relationship of all relative 
joint coordinates j3 and its time derivatives with respect to the independent coordinates 
q and its time derivatives. For the equations of motion the absolute first and second 
time derivatiTles of the coordinates of all bodies of the multi body system are required, 
i.e. the relative coordinates j3 and its time derivatives have to be transmitted into 
the absolute body coordinates wand its derivatives. The absolute kinematics can be 
calculated explicitly in recursive form. Thus the kinematics of the llluitibody system can 
be separated into two parts: the "relative kinematics" and the "absolute kinematics" 
put together in the "global kinematics" (Fig. 7). 

For the relationship between generalized coordinates q and the absolute coordinates 
of body i we have: 

Wi = Wi(q) . (1) 

One obtains for the first and second time derivatives: 

(2) 
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(3) 

The (6 x J) Jacobians and the (6 x 1) vectors of generalized gyroscopic forces might be 
calculated by analytical differentiations: 

8wi 

J"" = 8q' 

"" 82Wi •• a.u, = L..J L..J q q i Ie 8qi8qle i Ie • 

(4) 

(5) 

Due to the highly implicit character of the functions Wi(q) the analytical formulation of 
the partial derivatives for a complex system like the vehicle model is a tiresome or even 
impossible undertaking. 

To overcome this problem, the kinematical analysis proposed above can be used 
and the analytical expression required in Eqs. (2) to (5) can be replaced by purely 
kinematical expressions: The time derivatives Wi can be stated from global kinematics 
for any set of generalized velocities q. In particular, one can evaluate pseudo-velocities 

,];i (j) defined by particular velocity inputs 

-:(i) ( .) ( .) U 
q = e' , e' = [0, ... ,0, 1,0, ... , OJ . (6) 

Here, the eli) are (f X 1) unit-vectors having vanishing components except in the i­
th row, which is 1. As the actual time-derivatives Wi are linear combinations of the 
independent generalized velocities qj, it holds: 

• " :-(j). Wi = L..J Wi q; . (7) 
i 

By comparison of Eq. (7) with Eq. (2) one obtains the simple rule: 

. th I {J} :- (i) J- co umn "" = Wi . (8) 

For given position-. and velocity-state of the system, one can state the acceleration 
Wi for any set of generalized accelerations ij again by purely kinematical expressions. 
Particularly, one can evaluate a pseudo-acceleration 1Zi which is given for vanishing 
generalized accelerations, i.e. for q = O. By Eq. (3) one then immediately obtains: 

a.u, = Wi (9) 

Eqs. (8) and (9) now state the complete partial derivatives by virtue of the already 
defined global kinematics. As they are based on elementary kinematical expressions -
i.e. basically the laws of relative kinematics already applied in the previous section -
they shall be designated here as "kinematical differentials" [5]. 

The time derivatives of the absolute coordinates W can now be separated into the 
translational parts ,i;, .§.i and the rotational parts !!li, !:!ti which are physical vectors. The 
corresponding equations are: 

. ,,:-(;). 
.!i = L..J .!i q; 

i 

!!li = E ~P)4, 
i 

... - " =-.(;)". + .:-. .!. - L..J'!. q, .!., 
; 

W•· = "w-'(;)q··· + w' _1 L..J-l , =-i. 
; 

(10) 

(11) 
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From Eqs. (10) and (11) a further advantage of this representation becomcs obvious: 
Due to the kinematical representation the arising expressions are of purely physical 
character and thus not dependent on partic~ular coordinate systems. These cU'C only 
needed in the very last step of t.he ca.kulatiou. 

5 Dynamics 

The equations of motion m'e hased ou d' Alpmhert '8 priudple. For UH rigid hodi('H holds: 

"B 

L:(miil - E;). 5~ + (~.!ilj + !Ili x ~.!Ilj - L)' b~J = 0, (12) 
;=1 

body "i": 
m;, ~i - mass and tensor of inertia, 
§'j acceleration of mass center, 
!Ilj, !ili angular velocity mul aC('deration, 
E;, L - re.sulting applied forces and torques, 
b{!;, 5~i - virtual displacements. 

In Eq. (12) the dependent virtual dillplacenwllt8 Otij, Ofj as well as Ul<' a("("plerations 
ii, !ilj have to be related to thc iudepemlpllt virtual displa.(·pnwllts (uHl cU'('('lprat,iolls of 
the generalized coordinates. Noticing that. the virt,ual diRplaceml'nts transform in the 
same way as the velocities, it follows for the corresponding translational and rotational 
parts from the previous seetion: 

(13) 

(14) 
i 

Iuserting Eqs. (13) mlll (14) into Eq. (12) IUld consid(,l'illg Hll' illdl'p<'1ldmc(' of the 
virtual displacenwllts /lq, oue ohtaills Ul(' P<lua.t.ious of motiou iu t.lH' l'<'duced form: 

Alij + b = Q. (15) 

The coclfidellts for the (f x f) gelll'mlixl'd mll.';Il-lllatrix AI, the U x 1) vedor of gc­
lleralized gyroseopi(' forc('8 b aUll t.he U x 1) vedor of getl<'ralix('cl appli('d fOl'('(,1l q 
lU'e: 

AI] .••. = ~{ .. ~Ii) .. ~.Ik) + -.Ii). (8 -.Ik»} 
~ L.J 11t,2., ti, !Il. =oi!ll. , 

i 

L:{ .-li)., - Ii) (8 - 8)} m·s· . s· + w· . .w· + w· x .w· ,~ ~ ::::..., =8,-' -. =S1-' 
(16) 

i 

As all terms in Eqs. (16) are known from previous sections, the equations of motion are 
uow stated iu dosed from. Here, a fnrtlwr advantage of using "kinematical diffprPllt.ials" 
heeomes obvious: All (~oefficieuts can he caleulated from Realm' prodll<~t.s of "phYRieal" 
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vectors, making the formulation independent of the reference frames in which they 
are evaluated. Thus the described approach is a simple tool for the derivation of the 
equations of motion. It can be applied for the automatic generation and solution of the 
dynamics of complex multiloop mechanisms. 

6 Kinematical model of the tire-road contact 

The modeling of the contact between the rolling wheel and the road is one of the most 
complex problems in vehicle dynamics. Mainly the model of a tire in connection with a 
stationary or non-stationary driving performance is still an unsolved problem. Today, 
two major possibilities are taken into account: 

• Tire models based on an approximation which represents the physical properties 
as closely as possible [8]; 

• Tire models based on experimental characteristics which are approximated by 
mathematical curves [9]. 

In both cases the geometry of the tire and its contact surface are required. Therefore, a 
kinematical model of the tire-road contact can be stated which can be easily integrated 
into the modeling techniques of the vehicle mentioned above. The model contains the 
following ideas [11]: 

• The contact geometry "tire-road" is described by a simple rigid-body subsystem, 
i.e. a mechanism with elementary joints which reproduces the displacements of 
the contact surface with respect to the road; 

• tire models of different complexity - based on the velocity of the contact surface 
- determine the longitudinal and the lateral forces with respect to slip and slip 
angle; 

• for more complex tire models with non-stationary driving performance the contact 
surface can be discretized with the kinematics available for every point. 

In Fig. 8 the kinematical model of the tire-road contact is shown. By this model the 
kinematical quantities slip and slip angle can be calculated. Together with characteristic 
curves obtained from experiments the required forces can be determined. 

7 Program system and simulation results 

The analytical model of the complete vehicle stated in the previous sections represents 
a highly nonlinear system of coupled second-order differential equations, but due to 
its compact formulation it requires a number of operations. The numerical integration 
routine - based on the method of Shampine and Gordon [12]- is the core of a simulation 
program written in FORTRAN-77 and implemented on the mainframe computer IBM 
3081, the mini-computer VAX 11/785, the workstation APOLLO DN 3000, and parts of 
it on a personal computer ATARI ST 1024 [4]. The program has a modular structure, 
it consists of about 20000 statements and requires a number of about 12000 operations. 
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Figure 8: Kinematical model of the tire-road contact 
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A typical example for the driving performance of the vehicle is a straight run over a 
sinusoidal bump (length: 2 m, height: 10 em) with a velocity of 36km/ h. Fig. 9 shows 
the time resp<?nse of the lateral elastic deflection of the rear hinge of the lateral control 
arm and of the pitch angle of the vehicle respectively. The simulation time is 2 sec. 
Remarkable is the frequency of about 20 Hz due to the lateral elasticity in the lateral 
control arm hinge. A second example is given by Fig. 10, which shows the behaviour 
of the vehicle in a swerving manoeuvre to the left. A typical ratio of CPU-time (IBM 
3081) to simulation time is 150 : 1. 

8 Conclusion 

By the three concepts "characteristic pair of joints", "kinematical transformer" and 
"kinematical differentials" the equations of motion of a complete passenger car which 
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Figure 10: Vehicle in a swerving manoeuvre to the left 

represents a complex spatial multi loop multi body system can be stated analytically in a 
very compact way. The system with f = 17 degrees of freedom is described in minimum 
coordinates and the constraint equations of the inherent nL = 8 multibody loops can 
be solved recursively in explicit form. The efficiency of the method is illustrated by 
numerical results of a simulation program based on the proposed method. 

The program is applied for extended simulations of a real passenger car in indu­
stry. The results are used for comparison with experimental data. The model has to 
serve as an exact reference for comparison with subsequent simplified models. By model 
reduction simplified models will be derived using techniques like partial linearization, 
neglecting mass properties of small masses or omitting coordinates with small displa­
cements. The integration process has to be accelerated by particular techniques. The 
simplified model will be applied for on-line simulations and they are the basis for the de­
sign of control devices like anti-block systems (ABS), drive-slide control systems (ASR) 
or active suspension systems. 
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Computer Aided Formulation of Equations 
of Motion 

T. R. KANE 

Stanford University 
Stanford, California 

Summary 

As part of the process of designing a control system for a mechanical device, one frequently 
must formulate the equations of motion of the device, which is a task that can be very 
laborious, especially if the device under consideration has a relatively large number of 
moving parts. This paper deals with a computer program intended to enable an analyst to 
formuh;l.te equations of motion with minimal labor. The name of the program is AUTOLEV. 

The principal concept underlying the program is that one can create symbol manipulation 
functions that carry out many of the operations one normally performs by hand when 
formulating equations of motion. In practice, the dynamicist makes use of such functions 
by typing instructions on a computer terminal; the computer responds with lines of text 
representing equations needed to continue the analysis. Ultimately, the equations of motion 
appear on the screen, and one additional command then leads to a FORTRAN simulation 
program. 

Illustrative Example 

The most direct way to illustrate the use of the program is to discuss a specific example in 
some detail. Hence, consider the system depicted in Fig. 1, where N designates a Newtonian 
reference frame, B is a rigid body, and P is a particle fastened to C. Body B represents 
a man-made Earth satellite equipped with a pendulum-like device formed by C and P. A 
motor at 0, connecting B to C, can cause e, the angle between C and a line fixed in B, to 
vary, and the attitude of B in N is affected by such variations, which means that it may 
be possible to vary' e in such a way as to control the attitude of B in N to some extent. 
Specifically, suppose that B is axisymmetric and that point 0 lies on one of the central 
principal axes of inertia of B. Then, if, throughout some time interval, P, 0, and B*, the 
mass center of B, form a straight line, the system formed by Band C is an axisymmetric 
rigid body throughout this time interval, and must, therefore, move in N in such a way 
that </>, the angle between line 0 - B* and H, the inertial, central angular momentum of 
the system, remainS' constant; and, by varying e suitably, one may be able to reduce </> to 
zero, that is, to impart to B a motion of simple spin. To explore this idea, simulations of 
the motion of B in N are to be performed, with e specified as a function of t. 

The numbered lines on the next page represent text typed by the user of the program. The 
first two lines are simply the name of the file that is being created and a brief description 
of its purpose. Line (3) informs the program that the system under consideration has six 
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Dynamics of Controlled Mechanical Systems 
lUTAMIIFAC Symposium Zurich/Switzerland 1988 
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Fig. 1 Satellite with Control Boom 

degrees of freedom. The names of the two rigid bodies that form the system are entered in 
line (4), and lines (5) - (7) let the program know that C is massless, that B has a mass to 
be called M B, and that the central principal moments of inertia of Bare Il, 12, and 13. 
Next, in lines (8) - (10), the program is told that 0 and P are points of interest, but that 0 
is massless, whereas P has a mass M P. The description of the system is continued in lines 
(11) and (12), which assign the letters C and L to the distance from B* to 0 and the length 
of the pendulum, respectively, and record the fact that theta is to be a specified function 
of time, rather than a dependent variable. Line (13) tells the program what this function 
is to be; and the fact that A and PERIOD in this line stand for constants is communicated 
to the program via line (14). 

(1) IUTAM 

'(2) ILLUSTRATIVE EXAMPLE: A RIGID BODY + A PARTICLE 
PENDULUM 

(3) DOF(6) 

(4) FRAMES(B.C) 

(5) NOMASS(C) 

(6) MASS(B.MB) 

(7) INERTIA(B.I1.12.13.0.0.0) 
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(8) POIHTS(O,P) 

(9) HOMASS(O) 

(10) MASS(P,MP) 

(11) CONST(C,L) 

(12) SPECIFIED(THETA) 

(13) THETA=A*(1-COS(2*PI*T/PERIDD»A3 

(14) COHST(A,PERIOD) 

(16) SIMPROT(B,C,3,THETA) 

-> (16) DIRCOS(B,C,COS(THETA) ,-SIN(THETA) ,0 ,SIH (THETA) ,CDS(THETA 
),0,0,0,1) 

(17) WBH=Ul*Bl+U2*B2+U3*B3 

(18) VBSTARH=U4*Bl+U6*B2+U6*B3 

(19) ALFBN=Ul'*Bl+U2'*B2+U3'*B3 

(20) ABSTARH=DERIV(VBSTARH,T,N) 

-> (22) Z2z -Ul*U6+U3*U4 

-> (23) Z3=Ul*U6-U2*U4 

-> (24) ABSTARN-(U4'+Zl)*Bl+(U6'+Z2)*B2+(U6'+Z3)*B3 

(26) WCB-THETADOT*B3 

(26) WCH=ADD(WBH,WCB) 

-> (27) WCH=Ul*Bl+U2*B2 
+THETADOT+U3)*B3 

(28) PBSTARO=C*Bl 

(29) V2PTS(H,B,BSTAR,O) 
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In Fig. 2, B1, B2, B3 and G1, G2, G3 designate sets of mutually perpendicular unit vectors 
fixed in Band G, respectively. Line (15) notifies the program that, after aligning B1 with 
G1, B2 with G2, and B3 with G3, one can perform a simple rotation of amount () of G 
relative to B about an axis parallel to B3 to bring G into a general orientation relative to 
B. Once this line has been entered by the user of the program, line (16) appears on the 
screen. Note the symbol to the left of this line. This indicates that the line is supplied by 
the computer rather than by the user. Thus, line (16) is a result; specifically, it reports the 
elements of the direction cosine matrix relating the sets of unit vectors fixed in Band G. 

Fig. 2 Unit vectors fixed in Band G 

Kinematical considerations playa major role in the formulation of equations of motion. For 
the system at hand, the kinematical analysis begins with line (17), in which the angular 
velocity of B in N, called liVBN, is expressed in terms of the unit vectors B1, B2, B3 
and generalized speeds Ul, U2, U3. Similarly, in line (18), the velocity of point B* in N is 
expressed in terms of generalized speeds U 4, U5, U6; and the angular acceleration of B in 
N is recorded in line (19), where U1' stands for the first time-derivative of U1, etc. The first 
two of these lines really define the symbols U1, ... U6, and the third line then represents 
a well known consequence of the definition of angular acceleration. Line (20), on the other 
hand, begins to show the power of the program. This line deals with the acceleration of B* 
in N; but, instead of simply entering an expression for this acceleration, the user tells the 
program to find the acceleration by forming the derivative of the velocity of B* in N with 
respect to time T in N. The program responds with lines (21) - (24) [note the symbol to 
the left of each of lines (21) - (24)], the first three of which constitute definitions of symbols 
Zl - Z3, in terms of which the program then reports the desired acceleration in line (24). 

The capability to perform vector additions is demonstrated by lines (25) - (27). In the first 
of these, the user inputs the angular velocity of G in B; in the second, he instructs the 
computer to add this angular velocity to the angular velocity of fl in N, available in line 
(17); and in the third, line (27), he finds the result produced by the computer. 

Lines (28) - (30) show how the program can help one to find the velocity of a point of a 
rigid body when Dne already knows the velocity of another point of this body. Specifically, 
the velocity of B* in N is given in line (18). To find the velocity of 0 in N, one begins 
by introducing the position vector from fl* to 0 as in line (28), where this vector is called 
PBSTARO. Next, one issues the command set forth in line (29), whereupon one obtains 
the velocity of 0 in N in line (30). 

Proceeding in this manner, one can construct an expression for the velocity of Pin N, then 
use the DERIV function [see line (20)] to obtain the acceleration of P in N. Once this 
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has been done, everything required for the formation of expressions for the six generalized 
inertia forces for the system is in hand, so one issues the command shown in line (52), which 
causes the program to construct Z17 - Z22, the inertia torque for Bin N, and lines (60) -
(65), which contain the desired expressions. 

-> (60) F1STAR=(-I1-MP*Z6*Z6)*U1'+MP*Z6*Z6*U2'-MP*Z5*U6'-MP*Z16* 
Z5-Z20 

-> (61) F2STAR=M~*Z5*Z6*Ul'+(-I2-MP*Z6*Z6)*U2'+MP*Z6*U6'+MP*Z16* 
Z6-Z21 

-> (62) F3STAR=«-Z6*Z6-Z6*Z6)*MP-I3)*U3'+MP*Z5*U4'-MP*Z6*U5'-(­
Z13*Z5+Z15*Z6)*MP-Z22 

-> (64) F5STAR--MP*Z6*U3'+(-MB-MP)*U5'-MB*Z2-MP*Z15 

-> (65) F6STAR=-MP*Z5*Ul'+MP*Z6*U2'+(-MB-MP)*U6'-MB*Z3-MP*Z16 
Since the generalized active forces for the present system vanish identically, all that remains 
to be done to write the equations of motion is to set the generalized inertia forces equal 
to zero. Before doing this, however, it is helpful to add a few steps that will prove useful 
in the sequel. For instance, one can issue the command shown in line (66), which causes 
the program to find the center of mass of the system and to construct the position vector 
from B* to the center of mass, expressing it in the Bl, B2, B3 basis, as indicated in lines 
(67) - (70); and the central angular momentum of the system, also expressed in terms of 
the unit vectors Bl, B2, B3, is found by typing line (71), which leads to lines (72) - (74). 
Finally, the simple instruction of line (75) causes the program to find the kinetic energy of 
the system, reported in lines (76) - (78). 

(66) CM(BSTAR,B) 

-> (67) TOTALMASS=MB+MP 

-> (68) PBSTARCM1=(C+COS(THETA)*L)*MP/TOTALMASS 

-> (69) PBSTARCM2=L*MP*SIN(THETA)/TOTALMASS 

-> (70) PBSTARCM=PBSTARCM1*Bl+PBSTARCM2*B2 

(71) ANGMOM(B) 

-> (72) ZH1-C+COS(THETA)*L-PBSTARCMl 

-> (73) ZH2=L*SIN(THETA)-PBSTARCM2 
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-> (74) ANGMOM=(-MB*PBSTARCM2*U6+MP*Zll*ZH2+Z17)*Bl+(MB*PBSTARCM 
1*U6-MP*Zll*ZH1+Z18)*B2+«-PBSTARCM1*U5+PBSTARCM2*U4)* MB+(ZHl 
*Z10-ZH2*Z9)*MP+Z19)*B3 

(75) KE 

-> (76) ZKE1=(U4*U4+U5*U5+U6*U6)*MB+Ul*Z17+U2*Z18+U3*Z19 

-> (77) ZKE2=(Z10*Z10+Z11*Zll+Z9*Z9)*MP 

-> (78) KE=.5*(ZKE1+ZKE2) 

Given all of the expressions that have been generated so far, one can write a computer 
program for the evaluation of these expressions, and thus for the numerical solution of 
the differential equations of motion. However, it is unnecessary to do this: by issuing 
just one more command, the one shown in line (86), one causes the computer to create 
a FORTRAN program called IUTAM.FOR, a program that can be used to integrate the 
equations of motion and evaluate both the system's central angular momentum and kinetic 
energy for any instant of time. And results generated by this program then can be used 
directly to generate graphs such as the one shown in Fig. 3, where <p is plotted as a function 
of time. 
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Discussion 

As has been shown, one takes the following steps when using AUTOLEV to produce simu­
lations of motions of a mechanical system: 

(1) Draw a sketch of the system to be analyzed [see Fig. 2], showing on it the names 
assigned to rigid bodies (e.g., Band C in Fig. 2) and points or particles (e.g., 0 and P), 
as well as geometric quantities, such as lengths (e.g., C and L) and angles (e.g., 8). The 
names used for this purpose can be chosen at will; that is, they need not be single letters. 
For example, Band P could be called SATELLITE and PARTICLE, respectively. Line (4) 
of the AUTOLEV program then would read (4) FRAMES(SATELLITE,C), and line (6) 
could become, say, (6) MASS(SATELLITE,MS). In other words, AUTO LEV gives the user 
considerable latitude in the choice of names. 

(2) Use AUTOLEV commands to create an AUTOLEV program, such as the one that 
follows, which shows the user inputs for the problem considered in the illustrative example. 

! IUTAN 
! ILLUSTRATIVE EXAMPLE: A RIGID BODY + A PARTICLE PEHDULUM 
DOF(6) 
FRANES(B.C) 
HOMASS(C) 
MASS(B.MB) 
IHERTIA(B.I1.12.I3.0.0.0) 
POIHTS(O.P) 
HOMASS(O) 
MASS(P.MP) 
COHST(C.L) 
SPECIFIED (THETA) 
THETA-A*(1-COS(2*PI*T/PERIOD»-3 
CONST(A.PERIOD) 
SIMPROT(B.C.3.THETA) 
WBH-U1*B1+U2*B2+U3*B3 
VBSTARH-U4*B1+U6*B2+U6*B3 
ALFBN-U1'*B1+U2'*B2+U3'*B3 
ABSTARH-DERIV(VBSTARN.T.N) 
WCB-THETADOT*B3 
WCN-ADD(WBH.WCB) 
PBSTARO-C*B1 
V2PTS(H.B,BSTAR.0) 
POP-L*C1 
EXPRESS(POP.B) 
V2PTS(H.C.0.P) 
APH-DERIV(VPH.T.H) 
FRSTAR 
CM(BSTAR.B) 
AHGMOM(B) 
KE 
KANE 
CODE(IUTAM.ANGMOM.ENERGY) 
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This me can be prepared with the use of a text editor, rather than in order to produce the 
FORTRAN program. While one is creating an AUTOLEV program interactively, one can 
see what commands are available by typing the word WHAT and then pressing the ENTER 
key, which causes the following to appear on the screen: 

The commands that AUTOLEV recognizes are: 

A1PT A2PTS ADD ANGMOM AUTOZ 
AXI • CLEAR CM CODE CONST 
CONSTRAIN CONTROLS CROSS DERIV DIRCOS 
DOF DOT EULERP EXEC EXIT 
EXPRESS FIND FR FRAMES FRSTAR 
HELP I-NERTIA KANE kE LINE 
LIST LOAD MASS NOMASS PAJ"GVEL 
POINTS PRINCIPAL PRINT PVEL RECORD 
SAVE SIMPROT SPECIFIED SUSPEND VAR 
V2PTS WHAT 

An explanation of a particular command is obtained on the screen by typing the word HELP 
followed by the name of the command. Thus, it is unnecessary to memorize AUTOLEV 
commands. 

(3) Prepare an input me for the FORTRAN program created by AUTO LEV in response to 
the CODE command, and execute the program. 

Conclusion 

By freeing him from the burden of performing tedious algebraic operations, AUTOLEV 
enables a dynamicist to fonnulate equations of motion and to produce numelical simulations 
of motions of mechanical systems in a highly effective way. 

Note 

The originator of AUTOLEV, as well as the author of the underlying computer code, ist 
David B. Schaechter. Many of the algorithms implemented in the program were furnished 
by David A. Levinson. The theoretical basis for this work is set forth in the book DYNAM­
ICS: Theory and Applications by T. R. Kane and David A. Levinson, McGraw-Hill Book 
Company, 1985. -
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Summary 
This paper is concerned with the general motion of a flexible 
body in space. Using the extended Hamilton's principle for dis­
tributed systems, standard Lagrange's equations for hybrid sys­
tems are first derived. Then, the equations for the rigid-body 
motions are transformed into a symbolic vector form of Lagrange's 
equations in terms of general quasi-coordinates. The hybrid 
Lagrange's equations of motion in terms of general quasi-coordi­
nates are subsequently expressed in terms of quasi-coordinates 
representing rigid-body motions. Finally, the second-order 
Lagrange's equations for hybrid systems are transformed into a 
set of state equations suitable for control. An illustrative 
example is presented. 

Introduction 

The derivation of the equations of motion has preoccupied dynam­
icists for many years, as can be concluded from the texts by 
Whittaker [1], Pars [2] and Meirovitch [3]. References 1-3 con­
sider the motion of systems of particles and rigid bodies, and 
the equations of motion are presented in a large variety of 

forms. In this,paper, we concentrate on a certain formulation, 
namely, Lagrange's equations. For an n-degree-of-freedom system, 
Lagrange's equations consist of n second-order ordinary differen­
tial equations for the system displacements. 

In the control Gf dynamical systems, it is often convenient to 

work with first-order rather than second-order differential equa-
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tions. Introducing the velocities as auxiliary variables, it is 

possible to transform the n second-order equations into 2n first­

order state equations. The state equations are widely used in 

modern control theory [4J. 

With the advent of man-made satellites, there has been a renewed 

interest in the derivation of the equations of motion. The 

motion of rigid spacecraft can be defined in terms of transla­

tions and rotations of a reference set of axes embedded in the 

body and known as body axes. The equations of motion for such 

systems can be obtained with ease by means of Lagrange's equa­

tions. It is common practice to define the orientation of the 

body relative to an inertial space in terms of a set of rotations 

about nonorthogonal axes [3J. However, the kinetic energy has a 

simpler form when expressed in terms of angular velocity compo­

nents about the orthogonal body axes than in terms of angular 

velocities about nonorthogonal axes. Moreover, for feedback 

control, it is more convenient to work with angular velocity 

components about the body axes, as sensors measure angular 

motions and actuators apply torques in terms of components about 
the body axes. In such cases, it is often advantageous to work 

not with standard Lagrange's equations but with Lagrange's equa­

tions in terms of quasi-coordinates [l,3J. If the body contains 

discrete parts, such as lumped masses connected to a main rigid 

body by massless springs, it is convenient to work with a set of 

axes embedded in the undeformed body. The equations of motion 

consist entirely of ordinary differential equations and can be 

obtained by a variety of approaches, including the standard 

Lagrange's equations and Lagrange's equations in terms of quasi­

coordinates [5J*. 

In the more general case, the body can be regarded as being 

either entirely flexible with distributed mass and stiffness 

properties or as consisting of a main rigid body with distributed 

elastic appendages. Unlike the previous case, the equations of 

motion are hybrid, in the sense that the equations for the rigid-

* Note that Ref. 5 refers to Lagrange's equations in terms of 
quasi-coordinates as Boltzmann-Ha.mel equations. 
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body motions are ordinary differential equations and those for 

the elastic motions are partial differential equations. Hybrid 

equations were obtained for the first time in Ref. 6. Moreover, 

the formulation of Ref. 6 was obtained by using Lagrange's equa­
tions in terms of quasi-coordinates, but some generality was lost 

in that the body considered was assumed to be symmetric and to 
undergo antisymmetric elastic motion. As a result, the rigid­

body translations were zero. 

This paper is concerned with the general motion of a flexible 

body in space. Using the extended Hamilton's principle for dis­

tributed systems [7], standard Lagrange's equations for hybrid 

systems are first derived. Then, using the approach of Ref. 3, 

the equations for the rigid-body motions are transformed into a 
symbolic vector form of Lagrange's equations in terms of general 

quasi-coordinates. The hybrid Lagrange's equations of motion in 

terms of general quasi-coordinates are subsequently expressed in 

terms of quasi-coordinates representing rigid-body motions. This. 

is a very important step, as the latter form permits the derivat­

ion of the hybrid equations of motion with relative ease, thus 

eliminating a great deal of tedious work. These hybrid equations 

represent an extension to flexible bodies of Lagrange's differen­

tial equations in terms of quasi-coordinates derived in Ref. 3 

for rigid bodies. The second-order equations are then used to 
derive the hybrid state equations. 

As an illustration, the hybrid equations of motion of a space­

craft consisting of a rigid hub with a flexible appendage simu­

lating an antenna are derived. 

Standard Lagrange's Equations for Hybrid Systems 

Let us consider a flexible body and assume that the Lagrangian L 

= T - V, in which T is the kinetic energy and V is the potential 

energy, can be written in the general form L = L(qi.qi,Uj.UrUj,uj, .. 

• ,U~P)), where qi = qi(t) (; = 1,2, ... ,m) are generalized coordinates 

describing rigid-body motions of the body and U j{P, t) (j = 
1,2, ...• n) are generalized coordinates describing elastic motions 

relative to the rigid-body motions of a typical point in the body 
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identified by the spatial position P. Dots designate derivatives 

with respect to time and primes derivatives with respect to the 

spatial position. For convenience, we express the Lagrangian in 

terms of the Lagrangian density L in the form L = So L dO, where 0 
is the domain of extension of the body. 

We propose to derive Lagrange's equations by means of the 

extended Hamilton's principle [7], which can be stated as 

where oW is the nonconservative virtual work density, which is 

related to the virtual work by oW = So oW dO. The virtual work can 

be written in the form 

m n 
oW L Q.oq. + L So UJ.ouJ. dO 

i = 1 1 1 j= 1 
( 2 ) 

where Qi are nonconservativ: generalized forces associated with 
the rigid body motions and Uj are nonconservative generalized 

force densities associated with the elastic motions; oqi and 6U j 
are associated virtual displacements. Following the usual steps 

[7], we obtain Lagrange's equations of motion, which can be 

expressed in the symbolic vector form 

~ ~ 

.L (2!:) _ aT + Lu 
at . au -au -

~ 

U (3a,b) 

where 9 and 9 are m-vectors, ~ and Q are n-vectors and L is an 

n x n operator matrix. Because of the mixed nature of the differ­

ential equations, we refer to the set (3) as hybrid. The elastic 

displacements are subject to given boundary conditions. 

Equations in Terms of Quasi-Coordinates for the Rigid-Body 
Motions 

Quite often it is convenient to express the Lagrangian not in 

terms of the velocities qi but in terms of linear combinations 

wI!. (1!.=1,2, ••• ,m) of qi' The difference between qi and wI!. is that the 
former represent time derivatives dqi/dt, which can be integrated 

with respect to time to obtain the displacements qi' whereas 
wI!. cannot be integrated to obtain displacements. It is customary 
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to refer to wi as derivatives of quasi-coordinates [3]. The 

relation between wi and q; can be expressed in the compact matrix 
form,!! = ATg, where the notation is obvious. Similarly, we 

express the velocities q; in terms of the variables wi. as 9 = B~, 

from which it follows that the m x m matrices A and B are related 
by ATB = BTA = I, where I is the identity matrix of order m. 

Our object ~s to derive Lagrange's equations in terms of wi. 

instead of q;. Using the relations indicated above, it can be 
shown [3] that Eqs. (3a) can be replaced by 

(4) 

where 
aa 

E = [~TBT a~iJ - [~TBT :~ J, N = BTg 
- k 

(5a,b) 

and We note that the first matrix in E is obtained by first 
carrying out a triple matrix product for everyone of the m2 

entries in A and then arranging the resulting scalars in a square 

matrix. On the other hand, the second matrix in E is obtained by 
first generating a row matrix for every generalized coordinate qk 

(k = 1,2, ••• fm) and then arranging the row matrices in a square 
matrix. Equation (4) represents a symbolic vector form of the 

Langrange equations for quasi-coordinates. The complete formula­
tion is obtained by adjoining to Eq. (4), the equations for the 
elastic motion, Eq. (3b), as well as the associated boundary 
conditions. 

General Equatians in Terms of Quasi-Coordinates for a 
Translating and Rotating Flexible Body. 

Let us consider the body depicted in Fig. 1. The motion of the 
body can be described by attaching a set of body axes xyz to the 

body in undeformed state. The origin of the body axes coincides 
with an arbitrary point O. Then, the motion can be defined in 
terms of the translation of point 0, and the rotation of the body 
axes xyz relative to the inertial axes XYZ. The position of 0 

relative to XYZ is given by the radius vector ~ = ~(RX' Ry , RZ)' 

The rotation can be defined in terms of a set of angles 91, 92 
and 93 (Fig. 2). Hence, the generalized coordinates are 

q1 = RX' q2 = Ry , q3 = RZ' q4 = 91' qs = 92, q6 = 83, In addition, there 
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are the elastic displacement components ux(P,t), uy(P,t), uz(P,t). 

The displacements RX' Ry. RZ are measured relative to the inertial 

axes XYZ. On the other hand, the displacements ux' uy• Uz are mea­

sured relative to the body axes xyz. Moreover, the components . . . . 
RX' Ry, RZ of the velocity vector R are also measured relative to 

XYZ. On the other hand, the angular velocity vector ~ has compo­

nents wx' wy ' wz' measured relative to the body axes xyz. It will 

prove convenient to express all motions in terms of components 

along the body axes. To this end, if we denote the velocity of 

point 0 in terms of co~ponents along the body axes by~, then it 
can be shown that y = C8. where C = C(8 1,82,82) is a rotation matrix. 

Moreover, the angular velocity vector ~ can be expressed in terms 

of the angular velocities 81, 82 and 83 in the form ~ = O~. where 

o = 0(81'93) is a transformation matr ix. We note that the angular 

velocity components wx ' wyand Wz cannot be integrated with respect 

to time to yield angular displacements <Ix' <Iy and <I z about axes x, y 

and z, respectively. Hence, wx ' wy ' Wz can be regarded as time 

derivatives of quasi-coordinates and treated by the procedure 

presented in the preceding section. Although it is not very 

common to regard the velocity components Vx' Vy and Vz as time 
derivatives of quasi-coordinates, they can still be treated as 

such. In view of this, if we introduce the generalized velocity 

vector ~ = [1\ Ry RZ81 82 831Tf as well as the "quasi-velocity" 

vector ~ = [Vx Vy Vz Wx Wy wzl , we conclude that the coeff icient 
matrices are defined by 

AT - [~-HI' BT • A-I • [~+;;~;:il (6a,b) 

where we recognized that C-1 = CT, because rotation matrices 

are orthonormal. It can be shown, after lengthy algebraic manip­

ulations, that 

r - I 0 ] 

L~t;-
I -

(7 ) 

where wand V are skew-symmetric matrices corresponding to 

~ and V [3], respectively. 

Using Eqs. (3b) and (4) in conjunction with the above relations, 

we obtain the hybrid Lagrange's equations in terms of quasi-coor-



dinates 

d (ih) - aL C ih = F dt aV + W av - aR 

d (al) + V ih + w ih _ (OT)-l ih = M 
dt a; aV aw aa-

a (al) _ 1I + Lu at av au 
A 

U 

(8a) 

(8b) 

(8c) 

where ~ and ~ are external nonconservative force and torque, 

respectively, in terms of components about the body axes, 
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al/a~ = [al/aa 1 al/aa 2 al/aa31T and ~ =~. Note that ~ does not 
really represent a vector and must be interpreted as a mere sym­

bolic notation. We recall that the components of u are still 

subject to given boundary conditions. 

It should be pointed out that, in deriving Eqs. (8), no explicit 

use was made of the angles a1, 92 and a3, so that Eqs. (8) are 

valid for any set of angles describing the rotation of the body 

axes, such as Euler's angles, and they are not restricted to the 

angles used here. Moreover, point 0 is an arbitrary point, not 

necessarily the mass center of the undeformed body, and axes xyz 

are not necessarily principal axes of the undeformed body. Clear­

ly, if xyz are chosen as the principal axes with the origin at the 

mass center, then the equations of motion can be simplified. 

State Equations in Terms of Quasi-Coordinates 

Equations (8), and in particular Eqs. (8a) and (8b), can be 

expressed in more detailed form. To this end, we write the 

velocity vector of a typical point P in the body in terms of com­

ponents along the body axes as follows: 

~P = Y + ~ x (~ + ~) + ~ = y + (r + u)T~ + ~ (9) 

where ~ is the nominal position of P relative to O. Moreover, 
rand u represent skew-symmetric matrices associated with the 

vectors ~ and ~,respectively. Then, denoting by p the mass den­

sity, the kinetic energy can be shown to have the expression 

1 TIT rT T 
T = 2 fo P~P~P dO = 2 my Y + Y s ~ + Y fo P~ dO 
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(lO) 

where S = Io p(r + u)dO, J = Io p(r + u)(r + u)TdO, in which 5 is 

recognized as a skew-symmetric matrix of first moments and J as a 

symmetric matrix of mass moments of inertia, both corresponding 

to the deformed body. Moreover, we assume that the potential 

energy has the functional form V = V(~, 2, ~, ~" ... ,~(p». 

Inserting Eq. (lO) into Eqs. (8) and rearranging, we obtain the 
explicit Lagrange's equations in terms of hybrid coordinates 

. -T· I· ( - - --) aV 
m~ + S ~ + Op~ dO = 2Sv + mV + wS ~ - C aR + ~ 

S~ + J0 + Io p(r + u)~ dO = [2 Io p(r + u)v dO + SV - wJl~ 

_ (OT)-1 ii + M 
as -

. (- -)T. . 
p~ + P r + U ~ + P~ 

-T -2( ) -T r A pV ~ - pw ~ + ~ - 2pv ~ -~~ + U 

-

( lla) 

(llb) 

( llc) 

where S = f pv dO. The state equations are completed by 
v 0 

adjoining the kinematical relations 

~ = CT~, ~ = 0-1~, U v (lld,e,f) 

Illustrative Example 

As an illustration, we consider a spacecraft consisting of a 

rigid hub and a flexible appendage, as shown in Fig. 3. From 

the figure, we can write 

r = x!. U = u j - y-
+ U k, z- v = v j + v k y- z- (12) 

so that 

[ J,:,d' 
-IpUzdx J,Uy~' ] 

S =0 Ipuzdx -mx 

-Jpuix - 0 mx 

(13a) 

-where p is the mass density of the appendage, m is the total mass and x is the 
position of the mass center of the appendage. Moreover, 



-JpXUydX 

Jyy+JpU~dX 
-JpUyUZdX 
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(13b) 

where JXX ' Jyy and Jzz are the mass moments of inertia of the 
spacecraft regarded as rigid. 

Using Eqs. (12) and (13), the state equations, Eqs. (11), can be 
written in the explicit forms 

(14a) 

. 
Ry = ca1sa3vx + ca1ca3vy - salVz (14b) 

. 
RZ = -(sa2ca 3 - sa lca2sa3)vx + (sa2sa3 + sa lca2ca3}vy + ca l sa2Vz (14c) 

sa3 ca3 
a1 = ca3 Wx - sa3 wy ' a2 = cal Wx + cal Wy (14d,e) 

sa l sa3 sa l ca3 
a =---w +---w +w,U =v,U =v 3 cal x cal y z y y z z (14f,g,h) 

••• - 2 2 
mVx + wyJpUz dx - wzJpUy dx = mVywZ - mVZwy + m1x(wy + wz) - WXWyJPUy dx 

- wxwzfpuz dx + 2wzfpvy dx - 2wxfpvz dx - (ca2ca3 + sa1sa2sa3) :~x 

(14i) 

(14j) 

(14k) 
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- (fpu dx)V + (fpu dX)V + [J + fp(u 2 + u2)dxlw - (fpxu dx)w z y y z xx y z x y y 
. . . 

- (fpxu dX)w + fp(u v - u v )dx = - (V fpu dx + V fpu dx) z z yz zy y y z z 

+ V w fpu dx + V w fpu dx + w w fpxu dx - w w fpxu dx xy y xz z xy z xz y 

+ fp(uzvx - xVz)dx = m1xVywx - (vzfpuz dx + m1xVx)wy + vywzfpuz dx 

- wZwX(Jxx - Jzz + fpu~ dx) - (w~ - w~)fpxuz dx + wywzfpxuy dx 

- wxwyfpuyuz dx + 2wxfpxvy dx - 2wyf puzvz dx 

aV ce3 aV sa 1ce3 aV 
+ 2wzf puzvy dx + sa 3 as- - ce- as- - --ce-- as- + My 

1 1 2 1 3 
(14m) 

- (fpuy dX)Vx + mlxvy - (fpxuz dX):x - (fpuyuz dX):y + (Jzz + fpuy dx)wx 

. 

+ fp(x~y - Uy~x)dX = m1xvzwx + Vzwyfpuy dx - (vyfpuy dx - Vxm1x)wz 

+ wXwy(Jxx - Jyy + fpu~ dx) + (w~ - w~)fpxuy dx - wywzfpxuz dx 

+ wxwzfpuyuz dx + 2wxfpxvz dx + 2wyfpuyvz dx - 2wzfpuyvy dx - ;~3 + Mz 

(14n) 

pV -
Y 

(140) 

pVz + pU w - pxw + pV = - pV w + pV w - pXwxwz - PWyWZUy yx Y z yx xy 
+ (2 + 2) 2 ,. + U p Wx Wy Uz - PVyWx - ~zuz Z (14p) 

where m1 is the mass of the appendage, sa i sin 8i' C8 i cos 8 i (i 
1,2.3) and 



a2 a2 
Ly = -2 (Ely- 2) 

ax ax 
2 

i.z = _a - (Elz~) 
ai ax 
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(lSa) 

(lSb) 

in which E is the modulus of elasticity and Iy and Iz are area 

moments of inertia. The operators Ly and L z include the 
effects of bending and of the axial force on the appendage [7]. 

Summary and Conclusions 

In deriving the equations of motion for flexible bodies by the 
Lagrangian approach, it is common practice to express the rota­
tional motion in terms of angular velocities about nonorthogona1 
axes, which tends to complicate the equations. Moreover, this 

creates difficulties in feedback control, in which the torque 
actuators apply moments about body axes and the output of sensors 

measuring angular motion is also expressed in terms of components 
about the body axes. The same can be said about force actuators 

and translational motion sensors. It turns out that the equat­
ions of motion are appreciably simpler when the rigid-body trans­

lations and rotations are expressed in terms of components about 
the body axes. Such equations can be obtained by introducing the 

concept of quasi-coordinates. The concept of quasi-coordinates 
was used earlier by this author to derive equations of motion of 
rotating bodies with flexible appendages, but never in the 
general context considered here. Indeed, in this paper, 
Lagrange's equations in terms of quasi-coordinates are derived 
for a distributed flexible body undergoing arbitrary rigid-body 
translations ana rotations, in addition to elastic deforma­
tions. The second-order differential equations in time for the 
hybrid system are then transformed into a set of hybrid state 
equations suitable for control design. The approach is demon­

strated by deriving the hybrid state equations of motion for a 
spacecraft consisting of a rigid body with a flexible appendage 
in the form of a beam. 
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Simulation, Test and Diagnostics Integrated for a 
Safety Design of Magnetic Bearing Prototypes 

D. Diez and G. Schweitzer 
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Abstract 

The objective of this work is to provide already in the design phase the basic procedures 
for a systematic verification of reliability and safety of a complex mechatronic product, 
consisting of hardware and of software. These basic procedures form a selfcontained 
software package - the "safety development system" SDS - closely linked to the actual 
product. As an example we will apply this development system to the design of magnetic 
bearings. 

Introduction 

In this paper the magnetic bearing system stands for a typical mechatronic system, 

consisting of mechanical elements, electronics and built-in software, where safety 

requirements are essential. Magnetic bearings are used for the contact free suspension of 

rotors. They operate on the basis of a closed loop control system, and their typical 

features allow to tackle some of the problems of classical rotor dynamics in a new way. 

Quite a number of detailed and specific measures are known to enhance reliability and 

safety (redundancy of the electronic hardware, robustness of the control software, etc.), 

but the actual efficiency of each such measure cannot be assessed easily. There are no 

general rules for the overall safety design of a mechatronic product. Therefore a strategy 

for diagnostics and failure control is necessary for these hardware/software products with 

safety requirements. Simulation and test methods are required for validation of theoretical 

concepts. Monitoring of data is necessary, at least for the prototype to improve the 

modeling on-line and off-line. For the magnetic bearing system, which works as a 

feedback control system, it is necessary to detect and to distinguish where controller, 

sensor and actuator failures occur while preserving system stability. In order to do that at 

the design stage already, we present our concept of a safety development system (SDS) 

which creates a true working environment for the controller design and for flexible 

programming of diagnostic strategies for a mechatronic system. 

G. Schweitzer, M. Mansour 
Dynamics of Controlled Mechanical Systems 
lUTAMIIFAC Symposium Zurich/Switzerland 1988 
© Springer-Verlag Berlin Heidelberg 1989 
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An important feature of the safety development system is that it is closely linked to the 

actual product. From the design stage it carries over safety properties and even hardware 

elements into the actual product, in our case the magnetic bearing. It allows to 

systematically assess and check safety properties of that product, even during operation, 

and it will have specific features and interfaces that enable us to introduce diagnostics and 

modifications. The system consists of interacting blocks and is designed as a functional 

object oriented system with interactively defined procedure calls. The interface to the user 

is implemented on a personal computer and gives interactive access to the other 

procedures, for example the interactive configurator or the diagnosis block. As a high 

level programming language Modula 2 is used. 

The safety development system is being implemented now for a magnetic bearing at the 

ETH. 

Magnetic Bearings: Function and Application 

Let us first introduce the magnetic bearing which we want to refer to as an example and 

use it as background for the technical application. Fig. 1 shows the principle of the 

electromagnetic suspension: any deviation of the rotor from a reference position is 

measured by a suitable sensor, the sensor signal is processed in a controller; the control 

signal is amplified and fed to the coils of the electromagnet, thus generating 

electromagnetic forces which keep the rotor in a stable hovering position. 

Rotor 

Power­
Amplifier 

Micro­
Processor 

Fig. I: Principle of the magnetic suspension 
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Fig. 2: Schematic of the radial suspension of a rotor 

Of course for practical applications the set-up has to be more sophisticated, and it usually 

includes a multivariable digital control by a microprocessor system as indicated in Fig. 2. 

The axial bearing is not shown there. The control laws can be quite demanding as to 

robustness and realtime requirements. 

The application areas for magnetic bearings make use of their inherent features: 

- vacuum techniques, clean or sterile rooms, space applications (no 

lubriation, no mechanical wear) 

- turbomachinery, machine tool spindles, centrifuges (high speed, 

controllable dynamics, high loads, low energy consumption, low 

maintenance) 

A recent survey on theory and application is given in the Proceedings of the First 

International Symposium on Magnetic Bearings ISCH 88/. 

Obviously some of the applications require high reliability and safety standards. Magnetic 

bearings have qualified for space applications already, demonstrating their potential for 

excellent reliability. However, strategies for designing and operating an inherently safe 

bearing system in a systematic and econonmic way, are not yet available. As in most 

mechatronic systems the contents of built-in software is already high, and it appears to be 

a profitable way to make even better use of this already availabe "intelligence" by letting it 

contribute to improve safety properties of the product 
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Failure Examples and Counter Measures 

Before giving some examples of possible failure and measures against them it is useful to 

recall the definitions for reliability and safety IBIR 85/: 

Reliability is the quality of a unit to remain operational. It 
characterizes the probality to have no interruption of operation during 
a certain time. 

Safety is the quality of a unit to represent no danger to humans or 
environment when the unit fails (technical safety). It is investigated 
with reliability theory. 

The two terms are related to one another, but there are essential distinctions. A completly 

safe system may be the one that does not work at all and is totally unreliable, and a 

magnetic bearing that unreliably fails to operate may still coast down safely. Both areas, 

however, require extensive investigation of the potential failure sources, their 

consequences and the eventual counter-measures. 

Typical failure examples for the built-in software are a system breakdown through 

incorrect operation, run-time exceptions (division by zero, address error, bus timeout, .. ), 

incompatible program version, or as no complete program test is possible there may be 

cases like an endless loop or a wrong branch. Hardware failures within the sensors are 

most consequential as the sensors give the primary information. They may be due to 

external disturbances, to incorrect adjustment or a defect in the sensor electronics. Other 

hardware failures include the breakdown of mechanical parts, defects in the 

microcomputer or disturbances in the power supply. All these failures are especially 

important when we are dealing with controlled mechanical systems. They usually are built 

to transmit forces and motions, that is power, and therefore they are inherently 

hazardous. 

Measures for increasing the safety and reliabilty are emergency actions and stop 

strategies, failure detection, robust control, redundancy, fall back actions with recovery, 

major risk area and weak area evaluation, and diagnostics during operation as well as post 

mortem. 

All these measures certainly do contribute to reduce danger and risks and to support 

functioning and operation. But how much do they contribute, and are they really 

necessary or only desirable? Implementing all these measures could make the product too 

expensive. Therefore these measures have to be checked in a systematic way. We suggest 
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to do it in the socalled safety development system (SDS), a strongly software oriented 

tool, that assists in doing experiments, to try out ideas, at all levels of the design process, 

and that in the end can partially become part of the product itself. 

Concept of the Safety Design System 

Emphasizing the role of software in the design process and in the mechatronic product 

allows us to make the system more "intelligent", and to address the following most 

desirable objectives: detection of complicated failures, optimization of control strategies, 

diagnosis and recovery actions, design flexibility and economy. Certainly the increasing 

role of built-in software in any product raises new questions connected with the 

assessment of software quality. Compared to hardware failures new problems for 

example are: there will be no sign of imminent failure (because there is no wear either), 

minor repairs may change the whole system, no full tests are possible (because we do not 

foresee all possibilities offuture use). This means that that the software quality has to be 

very high, and this is achieved by using a high level language (in our case Modula-2 with 

cross software tools and high level debugger), by using specific libraries with qualified 

l 

( 

USER 

interactive user interface on a 
personal computer 

diagnosis ) 

standard ! user 
interactive library library I 
configura tor 

simulation I emulation 
I test & 

operation 

real time multiprocessing system with 
exceptions handling 

r PROCESS ) 

Fig. 3: Concept of the Safety Design System SDS 
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standard components, by using the same basic programs for simulation, emulation and 

testing, and by incorporating validation tests. 

The structure of the SDS is given in Fig. 3, demonstrating the block configuration of the 

SDS and its location between the user and the process. And Fig. 4 gives an overview on 

the corresponding experimental setup with a magnetically suspended highly elastic rotor 

in the front. The next section specifies some blocks of the SDS, and their tasks will be 

presented in some more detail. 

Fig. 4: Experimental setup for the magnetic suspension of a highly elastic rotor with the 

rotor-bearing system (a), the sensor unit (b), the process computer consisting of 

two MOTOROLA 68000 (c), the amplifiers (d), and an IBM compatible personal 

computer with cross-software /HOL 87/ as the user interface (e) 

Structure and Elements of the SDS 

The SDS connects the user and the process. The user has access to the system through a 

PC or a workstation, the process usually is addressable through the process computer, 

often being if multiprocessor system. The tasks are shared so that the PC is the design 

computer with the interactive user interface, the management and programming of 

libraries, the interfacing to some host with powerful design and simulation programs 

(Promatlab, ACSL), the cross software tools, the interactive configuration, the simulation 

of tasks, the off-line diagnosis, the mass memory and the target interface. The process 
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computer contains the real time operating system with exceptions handling and 

synchronization mechanism, the high speed data monitoring and the peripheral interface. 

As an example the block for the diagnosis system with its modules is shown in Fig. 5. It 

gets its information from the process or from simulation where the relevant data have to 

be retained in a predescribed manner in a ring buffer. In that way anyon-line or post­

mortem diagnosis can be performed. After the design phase some modules of the 

diagnosis can be permanently assigned to the process computer for further on-line 

diagnosis. 

( 

USER 

USER INTERFACE 

KNOWLEGDE BASE 

STOP 
ANALYSIS 

PREPROCESSING 
«'FT, system Inrormatlon, etc. 

TREND 
ANALYSIS 

Process or Simulation 

Fig. 5: Diagnosis system overview 

) 

Other examples for the blocks of the SDS are the library system and the interactive 

configurator. They have specific and very useful features, adopted from /MAl 88/, which 

facilitates their use by an still inexperienced user: 

- your work only with blocks, characterized graphically and by name 

- the "copy and paste" method is implemented 

- the variables are taken from buffers, which can be defined as needed 

- a block reads a variable and by doing so connects to another block, thus 

supporting a systematic and self -controlling configuration of the blocks 

- a block has parameters, and the program asks for them and you only have to 

enter the values 
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- the import from the libraries into the configurator is made through the reference 

files. Through this way the libraries are automatically taken over from the source 

code without intennediate steps. 

The application of these concepts and some details are shown by the following example 

connected to the design of a control element for a current-controlled magnetic suspension. 

Fig. 6 shows the block configuration for testing the controller, which could be used for 

the suspension of the mass in fig. 1. It demonstrates the simple procedures for switching 

between real time operation and simulation. In the upper part of Fig.6 the controller 

connects to the AD and the DC converter being part of the real time hardware, in the 

lower part the simulation blocks with their interconnections and the relevant notations are 

shown. These blocks are laid down in the library and can be looked up there . 

dlstancel 
,rl 

dlstancel 

. . . . . . 
Controller! 

PD.CONTROLLER 

MagnetMechanicall 

u 
curre~r· 

. . . 
.,.... curren 
~ 

~ 
dlstanc" .I Inom 

Jd Amplifierl 
'll Ampuner v 

currentl voltage l 
. "~I' u 

I MagnetElectricall 

x 
< Force '. f" '<'" . . ., F 

~fagn.tM.(hanl(al .~~: 
.. ,' flta&netElectrlcal 

Fig. 6: Block configuration for the switching between simulation and real time operation 
of the controller 

These blocks can be called by the interactive mouse-technique, for example the 

"Controller" and the "Magnetic Bearing" with their modules as shown in Fig. 7. A menue 

line indicates the kind of operations that can be perfonned on these blocks and modules. 

For building up the realtime test of the controller as suggested in fig. 6, only the modules 

"ADC", "PD-CONTROLLER" and "DAC" have to be called. They are displayed, 

automatically together with the variables they write and which they represent. You only 

have to assign suitable names to these modules and variables (for example "Controller!") 

just as you want to use it in your layout. Fig. 8 finally shows the "Controller!" with its 

input and output variables and its parameters where the values again have to be entered by 
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the user. For the output variable the number of samples to be written into the ring buffer, 

too, has to be specified. 

• \j : 
-JPO-CONT RO LLER 

DAC 
ADC 
Ampl I fIer 
MagnetMechanlcal 
MagnetElectrlclI1 

U : 

Fig. 7: Window for the blocks needed in the task of fig. 6 

nostle Modu la-2 

PO·CONTROLLER (Controller) 

I 01 stllncel 

Output Variables ,..:: _____ ..., 

I current 

Parameters 

• K : 

• TO: 

• TO : 

0 . 561 

0 . 1062 

20 . 13 

Controllerl 

Rea l 

Rea l 

Real 

Real 

Rea l 

100 

Fig. 8: Window with specifications of the PD-CONTROLLER 



60 

Design of Analytical Redundancy with Observer for a Magnetic 
Bearing 

As an example for the application of the SDS, a suggestion for improving sensor 

redundancy is investigated. The sensor in the magnetic suspension in fig.1 for measuring 

displacements of the rotor from the reference position should give redundant infom1ation. 

This can be achieved for example by one of the configurations of Fig. 9. 

a. 
triplex-sensor-configuration 
(hardware redundancy) 

b. 
duplex-sensor-configuration 
(hardware & analytical 
redundancy) 

c. 
pseudo-duplex-sensor­
configuration 
r = - (x + y) * cos 45° 

Fig. 9: Redundancy configurations for the dispacement sensor of the magnetically 

suspended rotor 

~ x xJ observerX x' -
Ma~netic r 1 
BeariD~ t-- r-

uy y y 
observerY I- y' 

I control X 

control Y L- railure I:... 
x" detection X 

i r-
y" failure 

detection Y ~ 

Fig. 10: Analytical redundancy for the displacement sensor with observer 

Considering hardware costs the solution c is more desirable, and it has to be investigated 

whether it will work. Following a suggestion of /STU 85/ its function can possibly be 

improved by adding an observer as shown in Fig. 10. Of course a major problem lies in 
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defining a suitable strategy for the failure detection, taking into account sensor 

inaccuracies and noise. But at least the simulation of ideas and variations and their 

consequences can be investigated easily using the SDS with its configuration support. 

The current results indicate that the failure detection is possible, and now the redundancy 

system will be implemented. However, a careful calibration of the sensors is necessary, 

which requires an additional effort in software. These results have been verified with an 

experimental magnetic suspension setup, available at the Institute of Mechanics at the 

ETH. 

Hardware for the SOS and Portability 

The programs for the SDS are written in MODULA-2. Only a few modules are hardware 

dependent: for the process computer, usually a multiprocessorsystem, a few hardware 

chips, for the PC on the user side the user interfaces. The MODULA-2 software tools are 

necessary for additional local programming and for cross programming. 

The SDS is being implemented now on the user side with Macintosh II and MacMETH, a 

MODULA-2 software package for Macintosh. The process computer consists of a VME­

System for the 32-bit Motorola Processor family. The additional cross-software with 

MacMETH adaption has some very useful time and effort saving features like incremental 

linker and cross-debugging tools. 

Conclusions 

The concept for a Safety Design System (SDS) has been presented which facilitates the 

systematic design of a safe mechatronic product. Its application has been shown for the 

example of an electromagnetic rotor-bearing system. 

The following steps characterize the systematic application of the SDS: 

- derive the mathematical models for the elements of the mechatronic 
product and chose control strategies as usual 

- implement it to the SDS with the Interactive Configurator 

- simulate 

- improve your system based on simulation results and on diagnostic 
results 

- build your hardware and connect it to the SDS 
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- test your hardware and use your on-line or your off-line diagnostics 
to check and to improve safety features 

These steps can be easily followed as the SDS creates a true working environment fot the 

controller optimization and diagnostic strategies. It allows to eliminate safety relevant 

failure sources already in the design phase and to carry over some safety relevant features 

like diagnostics into the actual mechatronic product istself. Thereby time and effort for 

developing a safe product will be reduced essentially. 
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Summary 

The modeling of mechanical parts in controlled systems is well 
developed. Numerical and symbolical formalisms are available for 
the generation of equations of motion like ADAMS or NEWEUL, 
respectively. However, the dynamical behavior of the actively 
controlled servomechanisms and the corresponding electronic 
control devices cannot be modeled with adequate accuracy. 
Therefore, a combined dynamical simulation using a software model 
of the mechanical parts and a hardware design of the active 
elements is an economic strategy. However, the problem of the 
interfaces between hardware and software has to be solved. 

Introduction 

In the dynamics of controlled mechanical systems the approach of 

multibody systems is most appropriate. The mechanical parts are 

modeled as rigid bodies interconnected by bearings, springs, 

dampers and actively controlled servomechanisms. Typical examples 

for such active mechanical systems are found in robotics, walking 

machines, adv~nced vehicles and magnetically supported high speed 

rotors. For the controller design often the state space approach 

is used and the devices are realized by electronic components. 

From this point of view active mechanical systems represent an 

interdisciplinary science also known as mechatronics. 

The method of multibody systems has been developed during the last 

two decades and the state-of-the-art is presented in the 

proceedings of IUTAM Symposia edited by Magnus [1] and Bianchi and 

Schiehlen [2]. The state space approach is widely used in control 

theory for a long time and, therefore, only the recent book of 

Mansour [3] will be mentioned. The fundamentals of mechatronics 

are presented in a survey by Schweitzer [4]. 

The paper presents the approach of module design of multibody 
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systems. The design offers especially the possibility to partition 

a total system in mechanical parts and controlled elements. Then, 

the complicated software of the mechanical parts and the actively 

controlled servomechanisms interact in a natural way. The 

essential variables for the interfaces are shown and the problem 

of realtime simulation of the motion of the mechanical parts is 

adressed. From another point of view, the approach can be also 

interpreted as a more intelligent test rig for hardware elements. 

Mechanical Part Modelling 

The mechanical parts of a multibody system are given by rigid 

bodies with inertia as well as bearings, springs and dampers 

without inertia, Fig. 1. According to the free body principle, 

each rigid body of the mechanical system is treated separately and 

all elements without inertia are replaced by forces. The system's 

position is given relative to an inertial frame by the 

3x1-translation vector ri(t) of the center of mass Ci and the 

3x3-rotation tensor Si(t) written down for each body of the 

system, i= 1(1)p . 

A free system of p bodies without any mechanical constraint 

holds 6p degrees of freedom. Thus, the position of the system 

can be uniquely described by 6pX1-position vector 

X(t) (1) 

Typical generalized coordinates of a free system are translational 

coordinates, Euler angles or relative distances. Then, the 

system's position can also be represented by 

i 1(1)p . (2) 

Further, the translational und rotational velocity and 

acceleration, respectively, of the system are found by 

differentation with respect to the inertial frame as 3x1-vectors: 
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vi HTi(x) x(t) ",. = 
l. 

• 
~i(x) x(t) (3) 

avo • a i HTi (x) X(t) +~ x(t) 
axT 

•• a"'i 
X(t) Qi HRi(x) x(t) + 

axT 
(4) 

The 3x6p-matrices are Jacobians introduced for abbreviation. For 

more details see Ref. (5). 

A holonomic system 

constraints due to 

elements results in 

of p bodies and q holonomic, rheonomic 

rigid bearings and/or active kinematical 

f = 6p-q positional degrees of freedom. The 

constraint equation and its derivative 

x x(y,t) • x I(y) Y + :~ (5) 

represent an explicit relation between the 6pxl-position vector 

x(t) and the reduced fxl-position vector 

yet) (6) 

summarizing the generalized coordinates of the holonomic system. 

From (2) and (5) it follows for the system's position 

ri(y,t) Si (y,t) , i l(l)p (7) 

and the accelerations read as 

.. avo • aVi 
a i JTi(y,t) yet) +~ yet) + at ayT 

•• a",. • a"'i 
Qi JRi(y,t) yet) +~ yet) + at ayT 

(8) 
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The 3xf-Jacobian matrices can be also obtained from 

(9) 

reducing the computational work in some cases. 

Additionally to the holonomic constraints, in nonholonomic systems 

there exist r nonholonomic constraints. The resulting number of 

motional degrees of freedom is g = f-r. The nonholonomic 

constraint equation and its derivative 

a 
y y(y,z,t) , •• 

y £La ri K(y,z) z + T Y + at 
ay 

(10) 

show the relation between the fxl-velocity vector yet) and the 

reduced gxl-velocity vector 

z (t) 

characterizing the 

system. From (3), 

velocity 

generalized velocities of 

(5) and (10) it follows 

vi(y,z,t) w. 
1 

and for the system's acceleration it remains 

a aVi • aVi 
a i L.ri(y,z,t) z (t) + 

ayT 
y + at 

• aWi • aWi 
(li ~i(y,z,t) z (t) + 

ayT 
y + at 

(11) 

the nonholonomic 

for the system's 

(12) 

(13 ) 

The nonholonomic constraints are rarely found in engineering 

mechanics. Nevertheless, the approach of the generalized 
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velocities can be applied to holonomic systems with great 

advantage. Generalized velocities are widely used in gyrodynamics. 

For the application of Newton's and Euler's equations to multibody 

systems, the free body principle has to be used again. For each 

body of the system these equations read as 

mi a. fc:m + f: + fC:c i 1(1)p (14) 
1 1 1 1 

1. Q. + Wi Ii w. lc:m + 1: + lC:c (15) 
1 1 1 1 1 1 

The inertia is represented by the scalar mass m. 
1 

and the 3x3-

inertia tensor I. 
1 

with respect of the center of mass C. 
1 

of 

each body. The forces and torques are 3x1-vectors, all torques 

have to be related to the center of mass C. of each body. The 
1 

applied mechanical forces f~m and torques l~m, respectively, 

depend on the motion by physical laws. Further, the applied 

control forces and torques are added. The reaction forces f: and 
1 

the reaction torques 1: respectively, are due to the 
1 

constraints given by (5) and/or (10). 

The proportional forces are characterized by the system's position 

and time functions: 

fC: 
1 

a 
fi(x,t) . (16) 

Conservative forces due to gravity and springs as well as purely 

time-varying forces are proportional forces. The proportional­

differential forces depend on position and velocity: 

fC: 
1 

a' • fi(x,x,t) (17) 

A parallel spring-damper configuration is a typical example for 

this class of forces. 
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The reaction forces and torques originate from bearings and 
supports. They can be reduced to the generalized constraint forces 
summarized in a (q+r)x1-vector as 

get) (18) 

Then, it yields 

(19) 

where Fi , Li are 3x(q+r)-distribution matrices. The 
generalized constraint forces are characteristic design parameters 
of bearings and supports. The distribution matrices can be found 
by geometrical considerations, too. 

Controlled Element Modeling 

The controlled elements in multibody systems may be kinematical or 
dynamical elements, respectively. A kinematical controlled element 
is nothing else than a rheonomic constraint as introduced by (5). 
The time history of such a rheonomic constraint is due to a time 
dependent control function. A possible delay between the control 
function and the kinematical position of the active element can be 
modeled by appropriate differential equations. 

A dynamical controlled element results in applied forces depending 
not only on position and velocity but also the control function. 
Usually dyn~mical elements 
function and the forces 

show some delay between the control 
generated. Therefore, additional 

differential equations are necessary. 

The controlled element Ek , k=1(1)p , is acting between body Ki 
and Kj " i,j=1(1)p , see Fig. 1. The nodes Pik and Pjk are 
characterized by the body-fixes quantities uik ' Vik and ujk ' 
Vjk representing translational vectors and rotational tensors, 
respectively. Then, the corresponding kinematical equations of the 
element read as 



69 

(20) 

relating node Pik to node Pjk• In addition, the forces and 

c c torques acting to node Pjk are introduced as fjk' ljk. Then, 

according to the reaction principle, the forces and torques at 

node Pik are given as 

(21) 

The forces and torques, respectively, generated by element Ek 

depend on the kinematics of the multibody system and the control 

function uk(t) as 

(22) 

For state feedback control, the control law reads as 

(23) 

where the control gains are summarized in the matrices Kp KI , 

Ko However, the dynamical behaviour of the element Ek as well 

as the phenomena due to digital electronic control devices are not 

properly modeled by (22) and (23). Therefore, a combined software­

hardware simulation is a realistic approach. It turns out that the 

relative motion of the controlled active element and the forces 

and torques generated represent the essential interface variables. 

The Newton-Euler equations of the global system are summarized in 

matrix notation as follows. The inertial properties are written in 

the 6px6p-diagonal matrix M ,the 6pxl-force vectors qC and 

qa represent gyroscopic forces and applied forces, respectively, 

in the following scheme 



70 

q (24) 

Similar schemes are used for the global 6pxf-matrix J and the 

global 6pxg-matrix L, respectively, as well as for the global 

6px(q+r)-distribution matrix Q. Then, for holonomic systems 

from it is obtained 

M J yet) + qC(y,y,t) = qam(y,y,t) + Q get) + qac (25) 

and for nonholonomic systems it follows 

M L ;(t) + qC(y,z,t) = qam(y,z,t) + Q get) + qac (26) 

The Newton-Euler equations represent for all systems 6p scalar 

algebraic and differential equations. The numerical solution of 

such equations is not straightforward, further mathematical 

treatment is recommended. 

The dynamical principles of D'Alembert and Jourdain result in 

vanishing virtual work of all constraint forces and vanishing 

virtual power, respectively. Thus, these principles can be used to 

separate the Newton-Euler equations into purely differential 

equations for the application of standard solution techniques. The 

equations of motion are obtained by premultiplication with the 

transposed global Jacobian matrix. Then, three advantages are 

achieved simultaneously: i) symmetrization of the inertia matrix, 

ii) reduct~on to minimal order of the differential equation 

system, iii) elimination of the constraint forces and torques. 

Holonomic systems with proportional - differential forces result 

in ordinary multibody systems. The equations of motion are 

obtained as 

~ • m· -~c M(y,t) yet) + k(y,y,t) = q (y,y,t) + J q (27) 

where the fxf-symmetric positive definite inertia matrix M and 
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the fxl-vectors k and q of generalized gyroscopic and applied 

forces appear. Multibody systems are called general iff they are 

not ordinary. Nonholonomic constraints produce general multibody 

systems. The complete set of equations read as 

• y(y,z,t), y 

M(y,z,t) ~(t) + k(y,z,t) (28) 

The number 

characterized 

matrix M 

of 

by 

and 

dynamical equations is 

the symmetric positive 

the gxl-vectors k and 

further reduced now 

definite gxg-inertia 

q of the generalized 

gyroscopic and applied forces. 

A main problem in the dynamics of multibody systems is the 

derivation of the equations of motion. Computer-aided formalisms 

represent the adequate solution of the problem. The formalism 

NEWEUL uses formula manipulation for the equations of motion 

realized by index coding on the basis of FORTRAN 77. This results 

in an excellent portability of the formalism. The resulting 

symbolical equations of motion offer easy access to all dependent 

variables like interface variables. 

Intelligent Test Rig 

The equations of motion (27) can not be solved by simulation since 

the generalized applied control forces qC are not specified 

accurately. 

For this 

assembled 

software 

However, 

purpose the 

in .a test 

simulation 

these forces can be measured in a test rig. 

hardware 

rig. The 

of the 

controlled element, Fig. 2, is 

global system is partitioned in 

mechanical parts and hardware 

measurements of the controlled element. The input variables of the 

test rig are the translational and rotational relative motion bk 
, Ck of element Ek of node Pjk according to (20). Further, the 

information of the state yet) , yet) of the system is required 

for the electronic control device. The node Pjk is fixed in the 

test rig and all the forces fj~(t) and torques 

measured at this boundary of the controlled element. 

are 
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The relative motion of node Pjk can be generated by six position 

actuators as shown in Fig. 3. If Bk means the nominal 3 xl-vector 

between Pik and Pjk and the 3xl-vectors r kAm , RkAm defining 

attachment points Am Om in the Pik-fixed frame, m=l(l)6, 

then the deviations xkm of the actuator length 1 read as 

(29) 

where (20) is again to be considered. 

It has to be mentioned that the computation has to be executed in 

real time. This means that only very simple and very fast 

integration codes can be used e.g. the Euler foreward method. 

Further, simplifications of the model of the mechanical parts may 

be helpful. For this purpose the influence of the generalized 

gyroscopic forces has to be checked since these forces are 

sometimes very small. With the increasing power and speed of 

computers, the real time computation will be less difficult in the 

future. The state-of-the-art in real time simulations of a moving 

platform has been demonstrated by the Daimler-Benz driving 

Simulator, see Drosdol et al. (6). 

Active Vehicle Suspension 

As a simple exampl.e an active automobile suspension will be 

treated. A· complete theoretical analysis has been published in 

Ref. (7) • Now some simulation results will be presented. The 

system is defined in Fig. 4, the active element is also simulated 

on the comp~ter. Therefore, only the partitioning of the multibody 

system is demonstrated. The excitation of the vehicle is due a 

quasiperiodic road profile. 

Figure 5 shows the excitation and the motion of the mechanical 

parts, Fig. ~ presents the forces of the active controlled element 

due to the relative motion (Yl-Y2) and the control feedback 

u=-k6Yl In real active elements usually both components of the 

force are found. In particular, elastic suspensions of a 

controlled element result always in forces due to the relative 

motion. 
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Conclusions 

The problem of hardware-software interfaces for dynamical 

simulations using the multibody system approach has been treated 

in detail. The interface variables are the relative motion at the 

one end of the actively controlled element and the forces 

generated at the other end of this element. In addition the total 

information of the system's state is necessary for feeding the 

controller device. An essential problem remains the real time 

simulation 

integration 

chance for 

of the motion of the mechanical parts. Very simple 

codes like Euler's foreward method offer today a 

real time computation. It is excepted that the 

increasing power of computers will improve this situation. 
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Fig.1. Multibody system 

Fig.3. Position actuators 
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Abstract 
A graphical programming language for real-time programming is presented ami discussed 
with an example. The language is based on well defined interfaces, no side-effects, step-wise 
refinement. Each program part is represented in a data flow view and a control flow view. A 
Macintosh-style tool supports direct manipulation of the graphical representations, maintains 
consistency between the two complementary views, and automatically generates code. An 
application engineer implementing a complex control system benefits by a reduced need for 
specific computer science skills (e.g. multi-tasking, synchronization) and by better software 
documentation, quality, and easier maintainability and reuse. Major computer science aspects 
are the step from textual to graphical program representation, the way to compose programs 
by connecting available modules, and the target system independence. A program inherently 
specifies the most parallel execution but may also be run sequentially. 

Introduction 

An implementor of a complex, dynamically controlled mechanical system (e.g. a robot) faces 

computer science problems such as multi-tasking (in order to support several controllers), 

synchronization (dependent controllers), exception handling (coping with faults in the process 

to be controlled), low level device control, programming languages, and software engineer­

ing. Often, this knowledge is not available and the resulting software is costly, unreliable, 

slow, of pure functionality, and difficult to maintain, i.e. there are enormous difficulties to 

achieve the desired performance, to incorporate new sensors, new actuators, or new algo­

rithms, and to reuse software. 

With the availability of low cost, high resolution graphical work stations new solutions to 

these problems become feasible. A control engineer is used to graphically represent his control 

systems in block diagrams for closed loop control and in state or event diagrams for sequenc­

ing control. In computer science similar techniques, e.g. data flow diagrams and flow charts, 

are used to represent programs. These similarities are a key to application-oriented program­

ming. Graphical tools with modern man machine interfaces supporting graphical program­

ming languages and automatic code generation are promising solutions towards allowing 
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engineers with limited knowledge and experience in computer science to produce high-quality, 

low cost, and efficient software within their application domain. Unfortunately most modern 

methods - for example SA/SO 11 J. Pro Mod, SADT etc. for specification and design or Petri 

Nets [2] - do not reduce the skills an application engineer needs. Their positive aspect is that 

ideas and designs are represented in diagrams as it is common practice in all established engi­

neering disciplines. But these diagrams still must be translated into code manually and extra 

work and the danger of inconsistencies arises when modifications have to be applied to both 

the diagrams and the code. 

A graphical tool 13,41 for functional programming of programmable logic controllers within 

large scale, continuously working control systems has already been designed and imple­

mented at the ABB Research Center and is in use (e.g. for power plants, transportation sys­

tems, and industrial automation). It has been very well accepted because programs are only 

represented graphically for programming, debugging, and documentation. It is used for 

continuous open- and closed-loop control problems with a small depth of connectivity. It 

mainly supports functional programming by graphical representation of the data flow. The 

lack of possibilities to handle events and control flow is the reason why it is not suited for 

complex, mixed continuous and event-driven control. 

This paper describes a new project at the ABB Research Center which aims to widen the 

application domain to general real-time programming. The key idea is to represent each 

program part in a data flow view and a separate control flow view. The project is further 

influenced by experience made in a general purpose automation controller project 15] at the 

IBM Watson Research Center. 

The next section discusses our requirements to a graphical programming language. Then the 

language definition is presented and illustrated by a programming example. A few details on 

the programming tool are given followed by conclusions. 

Requirem~nts for a Graphical Programming Language 

A graphical programming language needs a precise, complete semantic to allow code genera­

tion. In contrast to this, most diagram techniques only cover specific aspects and do not con­

tain enough semantic to fully represent a program. 

Language con~epts must be selected carefully to be appropriate for visualization. The attempt 

to directly visualize concepts used in textual languages would certainly not lead to optimum 

results. 

Data flow representations are suited to visualize data dependencies and functional program­

ming. In case of data triggering these dependencies also specify the order of execution. The 
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language must support the difference between ordinary data dependencies and data triggering 

to unburden the programmer as far as possible. 

Control flow representations are suited to visualize dependencies in the order of execution, 

events, pardllel paths, and synchronization (mutual exclusive blocks, waiting for stimuli). 

The language must attempt to hide the target system configuration. Especially the task struc­

ture, which gives the amount of parallelism at run-time on a specific target system, should not 

be shown. A progmm should inherently include the most possible parallelism which may be 

mapped differently to different target systems during code generdtion. (In fact an application 

engineer is not interested at all in the task structure. He is thinking in temlS of - possibly par­

allel- data dependencies or multiple controllers - which may possibly be executed in par.lllel.) 

Further, the language must be based on commonly accepted computer science concepts as 

well defined interfaces, no side-effects, step-wise refinement, and well defined behaviour in 

case of errors (exception-handling). 

Tool ReQuirements 

The language must be supported by an interactive, menu-driven tool with a user interface 

similar to the de-facto standard which has been established by the Macintosh computers. 

The basic requirements are on-line syntax check, maintaining consistency between data flow 

and control flow automatically (appropriate editing operations necessary), automatic code 

generation, and laser printer support to produce gmphical documentation. 

Definition of a Graphical Programming Language 

Datil Types 

A data type defines a scalar or structured range of values including a default value. Data types 

are defined similar to types in Modula-2. If nothing is specified properties of Modula-2 types 

may be assumed. 

A structured data type is either a RECORD type (fixed size, ordered collection of named 

fields of possibly different types) or an ARRAY type (fixed size, ordered collection of num­

bered elements of equal type). A RECORD type definition includes a default value for each 

field, an ARRAY type inherits the default value from its base type. 

Predefined data types are BOOLEAN, INTEGER, REAL, CHAR, and STRING which is a 

variable length, ordered collection of chardcters temlinated by DC. 

Additional data types may be defined by the user. If a type definition does not include a 

default value, it is copied from the base type or is automatically determined as stated below. 
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- The range of values of an enumeration type is defined by a set of named constants. 

The first constant is taken as default value if none is specified. 

- The range of values of a subrange type is defined by a low and high bound within the 

range of a scalar type. The low bound is taken as default value if none is specified 

and if the range does not include the default value of the scalar type. 

- A data type re-definition may have the purpose to define a new default value only. 

Variables 

A variable is a possibly named instance of a data type. A variable is part of a program, a 

function implementation, or a device type implementation. 

Attributes 

An attribute is a named instance of a data type. An attribute is part of a program, a function 

implementation, or a device type implementation. Its value does not change during program 

execution (as a Modula-2 constant). Attributes are visible from everywhere. They are not 

hidden by interfaces. The attribute mode determines whether its value may be set only locally 

(mode local) or from everywhere (mode global). 

Attributes allow to parametrize functions, devices, and programs conveniently without any 

cost at run-time (e.g. coefficients of a controller). If attributes were part of function interfaces, 

the definitions of functions would become rather clumsy. Nevertheless, the consistent use of 

attributes is checked automatically. 

Functions 

A function is a named side-effect-free, reentrant operation. Its interface consists of its inputs 

and outputs (data flow) and its termination events (control flow). A function instance is part of 

a program, a function implementation, or a device type implementation. 

The interface bf a function must be provided before the function can be instantiated and before 

its implementation, which is separate from the definition, can be defined. 

Inputs and outputs are named instances of data types. They are called scalar or structured 

according to their data type. An input or output is called discrete if one data object is con­

sumed or produced per execution of the function instance. It is called continuous if multiple 

data objects are consumed or produced per execution of the function instance. 

Similar to an IN-OUT parameter of a conventional procedure, a function output may be bi­

directional, i.e. be read when execution of a function instance starts. 

Figure 2 shows examples of function interfaces. 
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A device type is a self-acting RECORD type. An instance of a device type is called a device 

an is part of a progmm, a function implementation, or a device type implementation. 

Similar to an I/O peripheral, a device is an abstmction of a task to be performed independently 

which is controlled through a data interface. In contmst to a variable, a device is active, i.e. it 

may further process or modify its interface data autonomously. 

The interface of a device type must be provided before it can be instantiated and before its 

implementation, which is separate from the definition, can be defined. 

Figure 2 shows the interface of a device type. 

Data Flow View 

A data flow view shows data flow aspects of either the implementation of a function or a 

device type, or a program. It consists of function instances, devices, variables, constants, and 

data flow connections. Examples are found in figures la, 3,4, and 5. 

The functions instances must be uniquely named. The function name is used as default name 

of the instance as long as only one instance of the function appears within the same data flow 

view. 

Data flow connections define the flow of data objects between constants, variables, function 

instances, and devices. A data flow connection points from a data source to one or several 

data sinks. A data flow connection is attached to at least one function instance or an input or 

output of the implementation. Constants, variables, and devices must not be connected with 

each others directly. 

Data triggering is expressed by one or several direct data flow connections between two func­

tion instances. The order of execution within a set of data triggered function instances is fully 

specified by the flow of data. The effective flow of control is determined during code genem­

tion automatically. The control flow may be specified explicitly by avoiding data triggering, 

i.e. by inserting variables between function instances. 

A discrete data flow connection models the flow of one data object per execution of the 

attached function instance. Discrete data flow connections may only be attached to discrete 

function inputs and outputs. A continuous data flow connection models the flow of multiple 

data objects per execution of the attached function instance. Continuous data flow connections 

may only be attached to continuous function inputs and outputs. 

Data flow connections must obey data type compatibility. If necessary, a data flow connection 

of a structured type may be expanded to several connections of the corresponding component 
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types or several data flow connections may be compressed to one connection of the corre­

sponding structured type. 

Structured data flow connections are graphically represented by thick lines, continllolls data 

flow connections by double arrows. 

Control Flow View 

A control flow view shows the control flow aspects of either the implementation of a function 

or a device type, or a program. It consists of actions, control flow connections, event sources, 

and blocks with parallel paths. Examples are found in figures 1 b, 3,4, and 5. 

An action is either a function instance or a set of data triggered function instances. Its name 

identifies the corresponding function instance(s) in the data flow view. The termination of the 

execution of an action is marked by an event. An internal event is visible in the control flow 

interface of the corresponding function, i.e. an internal event comes from the action itself. An 

external event is a termination condition which cannot be influenced by the action. 

Control flow connections define the execution order of actions. A control flow connection 

typically points from an event to an action to be executed when the event occurs. 

An event source creates multiple events (e.g. an interrupt or a periodic timer, see figure 5). 

Devices used within a control flow view appear in the "uses"-list. Devices are initialized first. 

In figure Ib the effective flow of control is obtained by nesting the xAxis control flow (see 

figure 5) into the "use Servo"-block of the Gripper control flow, the yAxis control flow into 

the "use Servo"-block of xAxjs, and so on up to the control flow of PickAndPlace. 

Standard Functions 

A standard expression evaluator function may be used as generic function to perfoml simple 

calculations (see function instances MI and M2 in figure 4). 

The standard ~ction CASE may be used in control flow views to branch on disjunctive condi­

tions each formulated as a boolean expression (see figure 4). 

The standard action WAIT may be used to wait on any external events each formulated as 

boolean expression (see figure 4). 

Programs and'Libraries 

A program is the entity which may be executed in a run-time environment. A program consists 

of declarations (library imports, data types, functions, and device types), of a data flow view, 

and of a control flow view. 
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A library is a collection of declarations (data types, functions, and device types). A library 

may be imported by several programs. 

Programming Example 

The use of the language is illustrated with a example of robotics. A program to pick and place 

an object is developed starting from servo control and commands as Move to move one or 

more axis of a robot and centering Grasp to grasp an object. Many real-world problems (e.g. 

a reasonable number of axis and kinematics) have been omitted to allow the example to fit into 

this paper. 

System ConfiSlIration and Control Concepts 

The system consists of an X-Y -table with a two-finger gripper moving in X-direction. Each of 

the three axis is equipped with an actuator and a absolute position sensor. The two fingers of 

the gripper are each furnished with a binary touch sensor. 

Each axis is to be controlled by a PI-controller which repeatedly compares the actual position 

from the sensor with the desired position and computes new values to be passed to the 

actuator. 

As long as this desired position is only updated by small increments, it may be assumed that 

the actual axis position follows continuously and smoothly. Therefore, the desired position 

may also be used as current position of the axis by high level commands, and the interface 

from a high level command to an axis consists only of the desired position. 

On top of servo control a command Move is used for coordinated straight-line motion of one 

or several axis of a robot from their current positions to given goal positions. A Move 

consists of two steps. First a tmjectory of the motion is planned and pammetrized in time, .md 

then a set point generator repeatedly adjusts the desired positions of the involved servos to 

produce a smooth, coordinated movement of all axis. 

The purpose of the centering Grasp command is to pick up an object with a gripper furnished 

with touch sensors. These sensors are used to avoid that the object is dropped when one 

finger of the gripper hits it before the other. A wrist movement to compensate the closing of 

the fingers is initiated in case that one finger touches the object first. Moving the fingers and 

moving the wrist is done using the Move command. 
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Fig. 1 a: Data flow view of main program 

xAxis 

Servo 

pos 
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Servo 

pos 

Implementalion 

The main program shown in figure la (data flow view) and Ib (control flow view) opens the 

gripper, moves it to a first point in order to pick up an object, moves to a second point, and 

opens the gripper to release the object again. 

The three axis and the gripper sensors are shown as devices. A device type Servo is postu­

lated as an abstraction of the servo controller. Its interface consists of the data field pos 

modelling the desired position of the axis. The device type LRSensor models two binary 

inputs. Two instances of the function Move and an instance of Grasp access the devices to 

perform the desired operations. 
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PickAndPlace 

uses Gripper, xAxis, yAxis, LRSensor 

done tooSmall 

Fig. I b: Control flow view of main program 

Figure 2 shows the interfaces of the functions Move, DMove, and Grasp and of the device 

type Servo. DMove i.s similar to Move but the final position is given by an increment delta 

relative to the current position instcad of an absolutc goal position. The implementations of 

Move, Grasp, and Servo follow in figures 3-5. 

Depending on the target computer configuration the example would be mapped 10 different 

task structures. In case of a single processor, one task to be invoked every 20 ms would 

execute all three instances of Servo. On a multi-processor, the servos could be assigned to 

three tasks running on different processors. 
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Fig. 2: Interfaces of functions Move, DMove, Grasp and of device type Servo 
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Fig. 3: Implementation of function Move 
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A tool to suppoit the language is currently being implemented in Modula-2 on Macintosh II 

using object-oriented programming techniques. Portability to other systems (e.g. V AXstation) 

will be obtained by applying the Modula-2 Operating System Standard Interface OSSI 

including its optional part which covers windowing, graphics, and menus [6J. 

The Macintosh-$tyle user interface shows the data flow and control flow view of individual 

functions, device types, and programs in multiple windows. The editing operations provided 

in menus manipulate a program logically and typically affect both its data flow and its control 

flow view. Consistency between the two views is maintained automatically. 
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The prototype tool will automatically generate Modula-2 code. A rule how to map Modula-2 

procedure heads to function interfaces will allow graphical programs to base on existing, 

conventional code. 

Conclusion 

A new approach for real-time programming has been presented based on graphical 

representation of both data flow and control flow in two complementary views. 

An implementor of complex control systems may expect the foJIowing benefits from such a 

programming environment: An application engineer will need less computer science knowl­

edge in programming language syntax, multi-tasking, synchronization etc. Problems specific 

to the target system like the design of a task structure, of synchronized access of shared data, 

and message exchange to realize data flow between functions will no more appear as part of 

the program code. Further improvements are expected in software documentation, quality, 

reuse, and productivity. 

From the computer science point of view there are three major aspects which might have 

drastic long term consequences on programming: 

- The use of graphics to represent and manipulate programs instead of text. 

- The possibility to compose programs by configuring existing modules which do not 

know about each other and therefore are fully reusable (programming-in-the-Iarge). 

- Independence of target system: Programs defining their most parallel execution are 

portable from single processors to multi-processors. 

Although a simple example has been given in some detail many questions (e.g. exception 

handling, code generation) concerning the language are not yet answered and it is not yet clear 

which application areas would benefit most from this rather new way of programming. 
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Summary 

Space applications include problems where particularly complex 
multibody motion needs to be designed, analyzed, and verified: 
actively controlled satellites with flexible appendages, docking 
spacecraft, space robots on orbiting platforms. Computer simula­
tion is one of the chief means to support these goals. Two 
'traditional' classes of tools are characterized by their 
capabilities and limitations: nonlinear dynamic simulation soft­
ware and 3D solid model-based CAD systems with kinematic analys­
is features. An environment is proposed where the two classes 
can be integrated in a synergistic fashion to support the com­
plete design and analysis cycle. The benefits of this concept 
are discussed and realizations at Dornier are introduced to­
gether with examples from recent applications and an outlook on 
further developments. 

1. GRAPHICAL SIMULATION IN SPACECRAFT DESIGN 

The high complexity and extreme demands on current European 

space projects result in extraordinarily high importance of 

pre-mission testing on ground. Yet, some of the most dominant 

space conditions cannot be satisfactorily reproduced in a 

laboratory, such as the absence of gravity and the various 

orbital dynamics effects. As a consequence, the emphasis has to 

be on kinematic and dynamic simulation for the analysis of per­

formance, operational and functional characteristics. 

Besides the obvious importance of computer simulation of con­

trolled electromechanical systems motion such as docking space-

G. Schweitzer, M. Mansour 
Dynamics of Controlled Mechanical Systems 
IUTAMIIFAC Symposium Zurich/Switzerland 1988 
© Springer-Verlag Berlin Heidelberg 1989 
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craft or robots on orbiting platforms, the issue of detailed 

visualization gains increasingly strong impact on their design 

and evaluation. This has strongly promoted the use of 3D solid 

model-based interactive computer graphics CAD systems as invalu­

able tools in all phases of product design and development [1]. 

Hence there have traditionally been two classes of CAE tools 

relevant for the verification of complex multibody motion: non­

linear dynamic multibody systems simulation software packages 

and 3D solid model-based CAD systems with ultra-realistic 

graphics display features, but essentially restricted to kine­

matic motion simulation. This paper will expound typical capa­

bilities and representatives of both families and their distinct 

domains of applicability, show up their potential interfaces, 

and suggest environments that integrate these capabilities in a 

highly beneficial synergy. This will be backed by examples from 

our recent experience and supplemented by an outlook on promis­

ing further proceeding. 

2. TOOLS FOR DYNAMIC MULTI BODY SYSTEMS SIMULATION 

2.1 Typical Capabilities 

The required features of state-of-the-art multibody dynamic 

simulation tools can be classified as follows: 

Model Formulation 

Definition of the kinematic model; dynamic model including 

elastic properties, nonlinear sensors, actuators, passive de­

vices; driving inputs; control law and application specific 

models. 

Desired Results 

Automatic generation of the overall nonlinear equations of mo­

tion; evolution of the overall system state; nonlinear time 

response simulation; frequency domain analysis and modal analys­

is of linearized systems; time domain control law synthesis; and 
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graphical output on paper and on terminal screens (20 time 

response plots, 3D stick figures). 

2.2 Typical Representatives 

Here, a few systems will be presented that are being used at 

Dornier for spacecraft and robotics simulation. 

2.2.1 General-Purpose Multibody Systems Simulation 

DCAP (Dynamics and Control Analysis Package) [2] which will in 

the future be called MIDAS (Multibody Interactive Dynamic 

Analysis System) is a major effort of the European Space Agency 

ESA to provide an automated design and checking tool for the 

dynamics and control of rigid and flexible mechanical struc­

tures. It has traditionally been applied to actively controlled 

satellites, but is equally useful for terrestrial systems and 

robotics. A good evaluation with respect to elastic robots is 

contained in [3]. The chief advantages of DCAP are its wide 

scope of applicability (including elastic structures with inter­

faces to FEM data), high flexibility (user defined models), and 

widespread use in European space industry. Drawbacks are an 

inherently low efficiency (Lagrange formalism) and low user 

friendliness that is only recently being improved. 

2.2.2 Robot Dy'namics Simulation 

For the specific needs of robot dynamics simulation we use 

ROBSCAD [4] developed at the TH Darmstadt. A multitude of com­

monly used robotics modules (rigid links, joints, actuators, 

sensors, control schemes, path planning methods, universal kine­

matic coordinate transformation) are selected and parameterized 

in an interactive dialog. Other modules can be added by the 

user. The robot motion can be commanded by a high level 'robot 

program'. This makes ROBSCAO very convenient for quick analyses 
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of different concepts. Major drawbacks are the restriction to 

one rigid robot with no more than 12 joints and the low speed 

for high model complexity (gearbox elasticities, friction, back-

1 ash). DCAP and ADAMS can be used for robot i cs prob 1 ems beyond 

that scope (e.g. mobile/multi-arm/multiple robots). 

2.2.3 Specialized Orbital Spacecraft Dynamics Simulation 

For the specific problem of AOCS (attitude and orbit control 

system) design of spacecraft, a dedicated tool AOCSIM [5] was 

established at Dornier. It mainly offers convenience for model­

ing the orbital kinematics and dynamics. 

2.3 Inherent Limitations 

For the purpose of verification of complex system motion, the 

above mentioned tools have a few limitations in common: 

• They all provide responses far from "real-time". This is 

not surprising given their detailed and involved analysis, 

yet extremely bothersome for the assessment of "man-in-the­

loop" systems such as teleoperated robots. 

• They all lack detailed geometric model information and 3D 

display qualities. This, however, is essential for assess­

ing complex spatial relationships in moving systems that 

often cannot be anticipated (collision, functional or oper­

ational inadequacies) and demand the intuitive information 

compactness of pictures. 
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3. 3D SOLID MODEL-BASED KINEMATIC SIMULATION CAD TOOLS 

3.1 Typical Capabilities 

3D Solid Modeling CAD systems that have traditionally only been 

viewed in the mechanical design context are becoming increasing­

ly attractive for complex multibody motion verification by 

virtue of their kinematic and geometrical analysis capabilities. 

For a good survey of 3D solid geometry modeling, see [6]. Basic­

ally, the following features are expected: 

Model Formulation 

Definition of the 30 solid geometry; 

the relative location of the entities 

the 3D system hie ra rchy; 

wi th in the system, the 

sequences; and definition of the grouping of such poses into 

kinematic model. 

Viewing and Display Features 

Definition of a parallel/central viewing projection, 3D viewport 

clipping, a layout of multiple views, a display mode (wire 

frame, removal of hidden lines, shaded image displays), lighting 

and shading conditions, and labeling and blanking options. 

Graphics Output 

Static or animated 3D displays in the selected viewing and dis­

play mode, with often extremely high realism, at 'real-time' 

speeds, and augmented by auxiliary displays (cross sections, 

exploded views, transparent parts). 

Design Analysis 

Distance and angle measurements; automatic computation of pro­

perties such as volume, mass, surface area, center of mass, 

moments of inertia of individual entities or the whole system; 

automatic interference analysis between 

groups; kinematic analysis (trajectories 

any 

of 

two entities or 

system variables 

during prescribed stationary motion, equilibrium forces/torques, 

traces of points, animation of 3D system motion). 
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Robotics Speclfic Features 

Some CAD packages have dedicated robotics tools. They should 

offer standard robot 1 i bra r i es; spec i f i c robots k i nemat i cs de­

finition; robot programming commands; displays of robot status; 

animated 3D robot kinematic motion simulation; and conversion 

into standard robot programming languages. 

3.3 Typical Representatives 

At Dornier, we mostly use CATIA, CAEDS and CADAM. CADAM still 

has less importance in 3D systems analysis and will not be de­

scribed any further. 

CATIA: 

CATIA (Computer-graphics Aided Three-dimensional Interactive 

Application) [7] is a major commercial CAD/CAM system consisting 

of several independent modules for applications such as 20 

drafting, advanced 3D curve and surface design, 3D solid geome­

try design, kinematic analysis, NC machining programming, and 

robotics. It meets most of the above listed requirements to a 

high degree, with the notable absence of a FEM pre- and postpro­

cessor (which should become available soon). Especially the 

Kinematics and Robotics modules offer excellent interactive 

support. Compared with CAEDS, CATIA is faster, has much better 

20 drafting and dimensioning and distinctly superior kinematics 

and robotics features, but a somehow less systematic internal 

structure-and disadvantages for storing system motions on file 

for quick re-play. Beyond the standard features, the user may 

define application specific macros with the IUA (Interactive 

User Access) capability or use a powerful FORTRAN library of 

CATIA functions for integration with other systems. 

CAEDS/I-DEAS: 

CAEDS (Computer-Aided Engineering Design System) [8] which is 

also marketed as I-DEAS is another major mechanical CAE system 
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and in most aspects a direct competitor with similar functional­

ity as CATIA. Its several modules (Object Modeler, System Mode­

ler, Graphics Finite Element Modeler, System Dynamics Analysis) 

have a stronger bias towards structural and dynamic analysis and 

fewer or no features in 20 drafting and NC machining. CAEDS 

includes a kinematics module ("Mechanism Design" within the 

System Modeler) and also robotic engineering problems can be 

solved, yet with less direct support than CATIA. A definite 

strong point of CAEDS is its Finite Element pre- and postproces­

sor (mesh generation, solution display on the solid model) which 

is important for the simulation of flexible structures. CAEDS 

offers good macro programming capabilities, standard data ex­

change, and a complete relational database management system for 

internal or external project data. 

Robotics Specific CAD Systems 

For robot kinematics design, workspace analysis, workcell lay­

out, off-line programming, motion control, and verification, the 

capabilities of solid modelers are extremely attractive, espe­

cially when coupled with realistic and highly interactive 

graphics for 'real-time" evaluation of task execution. Hence, a 

number of such dedicated robotics CAD tool s have emerged. Sur­

veys are given in [9,10] and some NASA approaches for space 

robots are described in [11, 12]. 

3.4 Inherent L(mitations 

For our purpose of complex systems motion verification, the 

discussed CAD-type systems have, for all their advantages, the 

drawback that no dynamic or control effects are modeled and only 

'nominal' motions are displayed. In a more general context, 

their capabilities are not integrated with the dynamic/control 

simulation capabilities from Chapter 2. Such an integration is 

the subject of the rest of this paper. 



98 

4. AN INTEGRATED ANALYSIS AND SIMULATION ENVIRONMENT 

4.1 The Design/Analysis Cycle 

----------------------------~------~ 
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Fig. 1: An Integrated Design/Analysis Environment 

After having analyzed the capabilities, benefits, and limita­

tions of both nonlinear dynamic simulation and solid model-based 

CAD systems, we have enough motivation to investigate a potent­

ial integration of the two for a synergistic compound design/ 

analysis environment such as depicted very generically in Fig. 

1. A typical design/analysis cycle would then proceed as fol­

lows: 

1. Design of the mechanical system on the CAD Tool. 

2. Kinematic analysis on the CAD Tool i.e. assessing kinema-

tic and operational functionality (for robots: workspace 

and dexterity analysis, task programs preparation). 
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3. If necessary, modification of the kinematic and geometric 

model on the CAD system (e.g. workcell layout optimization, 

avoidance of interferences or obstructions). 

4. (Automatic) extraction of relevant input data for the dy­

namic simulation, most notably on kinematic structure and 

topology, geometric, and mass properties of the single 

bodies. The more this process can be automated (involving a 

conversion between the probably different internal repre­

sentations), the easier it is to guarantee consistency 

between the CAD and dynamic models an important issue 

when modifications tend to arise frequently 

5. Augmentation of the 

by further kinematic 

inputs 

model 

to the 

data, 

law descriptions and system loads. 

dynamic simulation tool 

all dynamic and control 

6. Detailed dynamic simulation, assessing performance, stabil­

ity, robustness of the controlled system. The outputs are 

mostly time response trajectory data of dynamic system 

variables that can immediately be displayed as conventional 

20 plots. 

7. (Automatic) feedback of the dynamic time response simula­

tion data to the CAD tool where they give rise to relative 

motion or deflections of the system's bodies. Again this 

may involve conversions between internal representations. 

8. Analysis of the (dynamic) system motion in all its physical 

detail on the CAD system via animated displays and exploit­

ing all the viewing and display capabilities. This way, 

unanticipated behavior and problems due to geometric detail 

can become immediately obvious (collisions, clearances). 

The analytical interference checking feature of the sol id 

modeler will not rely on inspection alone to detect mal­

functions, which is very important for complex and in­

tricately ~ompact mechanisms or environments. 

9. If needed, modifications may be made on the control law and 

steps 6 - 8 iterated to optimize the dynamic design. 
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It may even be desired to modify the geometry or the kinematic 

structure. In any case, this CAE environment offers features to 

analyze the design in a multitude of facets and the automated 

coupling relieves the user from tedious housekeeping and permits 

to concentrate on the actual engineering problems. A side bene­

fit will always be excellent documentation by stunningly realis­

tic images or animations which convey understanding and verifi­

cation of even very complex spatial system motion in an appeal­

ingly compact and intuitive fashion. 

4.2 Realization of Integrated Design/Analysis CAE Tools 

At Dornier, work along the outlined approach has started in 1985 

with a coupling of CAEDS and DCAP for rigid multibody systems 

[13]. Applications to space robotics have been reported in 

[14, 15]. A coupling of CAEDS and ROBSCAD for robotics analysis 

was done in [16]. The reason why CAEDS was used in these pro­

jects was that CAEDS offered excellent interface possibilities 

that only recently are becoming available for CATIA. 

As an example, Fig. 2 shows a detail of a dynamic robot motion 

animation on CAEDS. A small experiment manipulator transports a 

materials sample from its containment and inserts it into a 

melting furnace. The dynamic simulation of the controlled system 

was done on DCAP with inputs from the mechanical design on 

CAEDS. The critical motion analysis concerns the avoidance of 

collisions that may result from dynamic overshoot effects. 

Fig. 3 illustrates a few steps during a complex motion whereby a 

robot winds filaments on a V-shaped workpiece in an automated 

carbon fiber composite structures manufacturing process. The 

coordinated motion of robot and workpiece for generation of 

prescribed windings was computed by an application specific 

program and the results displayed with CAEDS to study feasibil­

ity (avoidance of collisions) and to derive clues for process 

optimization. 
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Fig. 3: CAEDS Animation of a Robot Filament Winding Motion 
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A loose coupling between independently developed and by their 

nature rather distinct software tools is of course not optimal 

in view of response time and overall performance, but a reason­

able approach when these tools are already available. Recently, 

new tools have begun to emerge offering such integrated capabil­

ities for robotics in one homogeneous package: a German ROSI 

[17] and a British ROSI [18] (which does not include solid mode­

ling, though). 

On a somewhat wider scope, both NASA [11, 19, 20] and ESA [21] 

have defined large concepts for space te1erobotics simulation 

facilities incorporating real-time computer graphics and varying 

degrees of dynamic effects for robot system development, mission 

and task planning, operator training, and on-line mission sup­

port. A NASA system IDEAS' integrating the IDEAS Solid Modeling 

CAE system with spacecraft analysis software for development of 

the US Space Station is described in [22]. 

4.3 Plans for the Future 

Motivated by the good experience achieved with rather modest 

means, we plan to proceed with a somehow more unifying approach 

which is outlined in [23] for robotic engineering. It shall 

involve an integrated CAE database, the Daimler-Benz 'CAE Data 

Bus' [24] as a generic exchange mechanism, more of CATIA for the 

solid modeling, kinematic, and robotic features, and an improved 

release of DCAP for mu1tibody dynamic analysis. 

5. CONCLUSIONS 

After laying out the particular impact of graph-ical simulation 

for verifying the complex mu1tibody motions of spacecraft and 

space robotics, two classes of tools for this purpose have been 

characterized: nonlinear dynamic simulation software and solid 

model-based CAD systems. The message of this paper is that the 

benefits of these classes can be greatly augmented by a syner-
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gistic integration to support the complete design and analysis 

cycle of controlled mechanical systems. Examples were given for 

more or less complete realizations of this concept and results 

from recent applications at Dornier were shown. 
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The theoretical analysis is presented for the active vibration control of 
a cantilever beam using a piezoelectric ceramic actuator. Control forces 
(moments) are induced by a pair of piezoelectric ceramic actuators par­
tially bonded on the upper and lower side of the beam. The problem is first 
reduced to a finite degree of freedom system with the Galerkin method, and 
the control is determined by means of the optimal regulator theory. Numer­
ical calculations are carried out for six degree of freedom system, and the 
effects of the location and length of the actuator are examined. 

1 INTRODUCTION 

As structures grow larger and lighter, unexpected vibrations which are 

caused due to the lack of the structural stiffness, are easily occurred. 

In these cases, usually, the passive vibration control method, in which 

the energy of the induced vibrations is absorbed, have been used to 

suppress the induced vibrations. Though this type of method with passive 

damper has simple configuration and is very effective for vibration sup­

pressions of the structures indeed, when the vibration characteristics of 

the system vary with time, the efficiency for vibration suppression decrea­

ses considerably. On the other hand, the active vibration control method, 

in which the energy for vibration suppression is applied by the control­

ler, has been recently studied and applied to various kinds of industrial 

fields[l, 2]. 

In this study, an active vibration control for a cantilever beam, which 

is one of the fundamental element of the structures, is presented by 

using the optimal regulator theory. A pair of piezoelectric ceramic, par­

tially bonded on the upper and lower side of the beam, is used to induce a 

control moment as the actuator. In the numerical calculations, the effect 

of the location and length of the piezoelectric ceramic on the efficiency 

as a vibration damper are examined. 
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2 THEORETICAL ANALYSIS 

2.1 Dynamic model 

Figure l(a) shows a uniform cantilever beam with length L, cross-sec­

tion area A, flexural rigidity EI and mass density p. At the upper and 

lower side of the beam with distance xl from the clamped edge, a pair of 

piezoelectric ceramic actuators with length x2 -xl is bonded on. 

When the electric current flows through the upper and lower piezo­

electric ceramics in the opposite direction and with the same magnitude, 

respectively, the relation between the induced moment M and the added 

voltage V is given by 

M(t) = k d31 V(t) 
hp 

(1) 

where d31 , hp and k are a piezoelectric constant, the thickness of piezo­

electric ceramics and the constant determined from Young's modulus and the 

cross-section geometry of piezoelectric ceramics and beam, respectively 

(Figure 2), while t is time. Then, the distributions of induced moment 

along the beam become as shown in Figure 1(b). 

o 

~ Piezoelectric Ceramic Actuator 

w (a) Coordinate system 

X, X2 
(b) Bending moment diagram 

Figure 1. Modeling 

Figure 2. Bending of a combined beam with width b 
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On the assumption that the mass and the rigidity of the piezoelectric 

ceramics can be neglected, the equation of motions and the boundary condi-

tions of the cantilever beam are given by 

a4w(~,T) + ala5w(~,T) + a2w(~,T) = [aO(~'~l) _ 

a~4 aTa~4 aT 2 a~ 
aO(~, ~2) JU(T) 

a~ 

W(O,T) = aw(O,T) = 0, a2W(J,T) = a3w(l,T) = 0 
a~ a~2 a~3 

(2) 

(3) 

where 6(~, ~i) is a Dirac delta function and a1 is a material damping co­

efficient, and further, in the foregoing the following non-dimensional para­

meters are used. 

() LM(T) 
UT =~ (4) 

To solve the equation (2), we will apply the Galerkin method to eqn(2) 

by using the eigen-function of cantilever beam ~n(~) which satisfy the 

boundary conditions (3) 

(5) 

and which yields the following equations 

n.. 4 • ( 4 '( '(} E{o..a .(T) + alo •• Il. a. T) + O •• Il. a .(T)} = {<jl. ~2} - <jl. ~l) U(T) (6) 
j=l 1-J J 1-J J J 1-J J J 1- 1-

(i = 1, 2,···, n) 

where a.(T) is unknown time function and the dot stands for differentiation 
J 

with respect to non-dimensional time T, while a. is the non-dimensional 
J 

eigen frequency of the beam with order j, and 6ij is the kronecker delta. 

2.2 Control design 

In order to apply the optimal control theory, equation (6) should be 

better rewritten in a state equation form as 

(7) 

(8) 

(9) 

], B = [ 

Then, to conduct the vibration control of the beam, it is necessary 

to minimize the deflection of the beam as well as the control variable. 

Thus, this control problem can be formulated as the optimal regulator prob-
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lern minimizing the performance index as follows: 

J = J~(XTQX + ru2) dT 
o 

(11) 

where ~ and r are weighting matrix and weighting factor, respectively. The 

optimal control variable U(T) which minimize the index J is given by 

(12) 

in whichP is a constant matrix which is obtained as the positive definite 

solution of the following Ricatti matrix equation 

'1' -1 T 
fP#J. +A l) - r RI3U:J fP + (J = IJ (13) 

3 NUMERICAL CALCULATIONS 

Based on the preceding analysis, numerical calculations were carried 

out taking the number n=6 in equation (5), and the parameters c 1 ' (J and r 

as 0.03, 9.0[I] and 0.5, respectively. The initial conditions of the beam 

were assumed as Wo(l, 0)=0.1, Wo(1, 0)=0. 

At first, as an example of the results for vibration control, a com­

parison between the controlled and uncontrolled responses of the deflection 

at the top of the beam, and the change of the control variable with time 

are shown in Figure 3, when the ceramic actuator is located at ;1=0.26, 

;2=0.46. In this case, the length of the piezoelectric ceramic was taken 

0.2£ :;2-;1=0.2. Concerning the deflection W at the top of the beam, it 

is normalized by the initial deflection of wo=0.1, and in the figure, 

thinner line corresponds for the result which is not controlled, while 

thicker line corresponds for that of controlled. From the figure, it can 
{, 

be seen that owing to the control variable U suggested in the lower dia-

gram of the Figure 3, the deflection at the top of the beam can be rapidly 

damped. 

In the example as shown in Figure 3, there was no limitation on the 

control variable u*. But in actual problems, when we use piezoelectric 

ceramic as an actuator, the magnitude of induced moments produced by the 

actuator may be limited, from various physical reasons. Then, the results 

are shown in Figure 4, when the control variable u* has limitted value with 

UL=0.2 or 0.05. The initial conditions are the same as in Figure 3. In the 

figure, thinner lines correspond for the results when UL=0.2, while thicker 

lines correspond for those when uL=0.05, respectively. From the figure, 

inspite of the existence of the limitation on u*, excellent vibration damp-
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Figure 3. Comparison between controlled and uncontrolled responses of 
beam at free end, and control variable u* 

ing can be seen on the deflection w, except for a little lowering of dam­

ping efficiency for lower value with uL=O.05. 
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In order to get a higher damping efficiency, it is necessary to carry 

out optimal design of the piezoelectric ceramic as an actuator, concerning 

on it's location and length. So, at first, we will examine about the loca­

tion of the piezoelectric ceramic actuator. In Figure 5, the variation of 

performance index J with the location of the piezoelectric ceramic ~l are 
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Figure 4. Response of beam at free end and control variable with 
limitation on u* 
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Figure 5. Variation of J with location of actuator ~1 ~2- ~1=O.2 
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Figure 6. Response of beam at free end and control variable 

~(a) ~1=O.6, ~2=O.8; (b) ~l=O.O, ~2=O.2 
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shown. In this case, the left-hand side of the edge of the ceramic, which 

has length of ~2-~1=O.2, is located at ~1(O~~1~O.8) on the beam. From the 

figure, it can be seen that when the actuator is located at the clamped 

end of the beam, J"" takes minimum, whereas J increases as the actuator moves 

to the free end. 

Here, to make clear the influence of the location of the actuator, on 

both the time response of the beam and the control variable, the time res­

ponse of the free end of the beam and the control variable, when the ac-
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tuator is located at ~1=0.6 where J takes relatively large value, and at 

~1=0.0 where J takes minimum value, are shown in Figure 6(a) and 6(b). 

From Figure 6(b), when the actuator is located at the clamped end of the 

beam, it seems clear that the deflection at the top of the beam, suggested 

by thicker line, is rapidly damped, and the corresponding control varia­

ble, suggested by thinner line, is a little in comparison with the result 

of Figure 6(a), when the actuator is located at the nei9hborhood of the 

free end. 

Now, in practically, not all the state variables can be measured. In 

such a case, we can use state vector y(eqn(8», and instead of eqn(11), fol­

lowing performance index can be defined 

J'= r(y2 + ru 2) dT 

a 
(14 ) 

And here, by using the above index, similar diagram can be obtained on 

0.02 r------------,0.02 

0.01 

0.00 '--__ ~ __ '__ __ ~_-,J 0.00 
0.00 0.40 0.80 

00 2 2 
Variation of J'=lo(Y + ru )d-c with location of actuator ~1 

: ~1-~2=0.2 
Figure 7. 

the variation of J'with the location of the actuator, as Figure 5. The 

results are shown in Figure 7, when ~L in eqn(10) was taken as 1.0. As 

seems in the figure, J'takes minimum when the actuator is located at ~1=0.0, 

and maximum when located at ~1=0.8 as similar as in Figure 5. The time 

response of the free end of the beam and of the control variable, at this 

case, when the actuator is located at ~1=0.6 and ~1=0.0 the same location 

in Figure 6, are shown in Figure 8. Comparing Figure 6 with Figure 8, damp­

ing efficiency reduces when we take JI as the performance index. It should 

be noted that when the actuator is located at the neighborhood of the free 

end of the beam, Fig. 8(a), there seems few suppression of vibration. 

Next, we will examine the effect of the length of the piezoelectric 

ceramic actuator on the performance of the vibration control. It is a very 

important factor for economical aspect as well as the efficiency for dam-
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Figure 9. Variation of J with length of piezoelectric ceramic ~1=0.0 
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pers. As an example, the variation of performance index J with the length 

of the ceramic ~2-~1' when the ceramic is bonded on from clamped end of 

the beam, are shown in Figure 9. As shown in the figure, ,J decreases and 

tends to a saturated value as the increase of the length. This means that 

the length of the actuator is suitably selected, we can make an optimal 

vibration control of the beam economically. 

The time response of the free end of the beam, and of the control va­

riable, when the length of the actuator ~2-~1 is 0.1 and 0.5 with ~1=0'0' 

are shown in Figure 10. Comparing this figure with Figure 6, the length 

seems enough with 0.2J;, in practically. 

W/l,ob u* 
1.00 0.50 

';2=0.10 (0 ) 
0.50 ';1=0.00 0.25 

0.00 0.00 

-0.50 W -0.25 
~'; 

U 
-1.00 -0.50 

0 2 4 6 8 10 
T 

W/l,ob u* 
1.00 0.50 

.; 2=0·50 ( b) 
0.50 .; 1=0·00 0.25 

0.00 0.00 

-0.50 W -0.25 
U f, 

-1.00 -0.50 
0 2 4 6 8 10 

T 
Figure 10. Response of beam at free end and control variable, with diffe­

rent length of piezoelectric ceramic: ~1=0'0; (a) ~2=0.1 ; (b) ~2=0.5 
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4 CONCLUSIONS 

Theoretical analysis is presented for the active vibration control 

for a cantilever beam using a piezoelectric ceramic actuator. The problem 

is solved by using the Galerkin method, and the control is determined by 

means of the optimal regulator theory. The main results obtained in the 

range of the present analysis are summarized as follows: 

(1) The possibility of the use of a piezoelectric ceramic, as an actuator 

for active vibration control of the light weight structures, had been 

confirmed. 

(2) The numerical simulations on the active vibration control showed good 

results, even when there exists the limitation on the performance of 

the actuator, which seems to happen in practical problem. 

(3) The optimal location of piezoelectric ceramic actuator was found at 

the clamped end of the beam. When the length of the actuator is sui­

tably selected, we can make optimal vibration control of the beam, eco­

nomically. 

(4) When not all the state variables can be measured, vibration control can 

be also conducted by using a feed back of out-put y, but the efficiency 

as a damper decreases in this case. To avoid this situation, it is 

necessary to use the observer to presume the state variables. 
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ABSTRACT 

"Tug of War" is one of the oldest and most popular sports 

among the world. The game is simple and known that two teams 

pull a rope each other, and one pulls the tug fixed on the 

center of rope to its side is the winner. The problem of this 

game is that all teams should be gathered at a same place. 

Therefore the game between Zurich and Munich was not possible. 

The objective of this research is to develop the system to make 

the game possible for teams in different places. The system 

consists of two machines and fiber connecting them, and a 

machine placed at different places is playing a role of the 

opponent for each team. The positions of ropes at different 

places are controlled to track output of a model driven by the 

difference of the measured forces and the sum of the lengths of 

two ropes is controlled not to be varied. 

This paper presents a control system for the above 

mentioned tug of war. It is implemented in a miniature system, 

and checked the validity before the realization of a practical 

system. The miniature system worked as expected. The practical 

system is to be demonstrated at Aomori-Hakodate Exposition. 

1. Introduction 

The tug of war was once an official game in Olympiad and is 

one of the mos( popular games in the world. The game is known 

that two teams pull a single rope each other, and the team 

bringing tug put on the center of the rope to its side wins, 

where a team consists of eight players. Thus the game could be 

held only when all teams gathered at one place, and the game 

between Zurich and Munich could not be held. 

G. Schweitzer, M. Mansour 
Dynamics of Controlled Mechanical Systems 
IUTAMIIFAC Symposium Zurich/Switzerland 1988 
© Springer-Verlag Berlin Heidelberg 1989 
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This paper is concerned with the development of the system 

which makes the tug of war between distant places possible. The 

hardware of system is consisting of two machines located at each 

place and a fiber connecting them. The machine pulls the rope 

according to the reference given by the control system. The 

control system has two layers, and the upper layer generates the 

reference position based on a model according to the difference 

of the forces measured at each rope. The secondary layer is for 

the tracking control of the rope position to the output of the 

model. The control system is devised based on the idea of the 

vir·tual internal model following control (K.Kosuge, K.Furuta, T. 

Yokoyama,1987). The control system of the second layer is 

designed based on the model following servo controller (K. 

Furuta, K.Komiya,1982), which has been developed from Davison's 

servo contro·l and Kreindler's model following control, and the 

design algorithm is derived taking use of the idea of K.Furuta 

(1987). Moreover, an adaptive controller with siding mode 

proposed by J.E.Slotine and W.Li (1987) for a manipulator 

control is used as a servo controller in the second layer and 

the performance is compared to that of the model following servo 

controller. 

The control system is designed and implemented by a personal 

computer (NEC PC) for the miniature tUg of war system. It is 

constructed for experimental analYSis and evaluation. For the 

actual implementation saturation of input devices and winding up 

of integiators are considered and a reset method (K.Furuta,K. 

Kosuge,M.Yamakita,1985) is employed for the control systems to 

prevent such problems. Since this experimental system works 

satisfactgrily, the practical system has been developed based on 

the results as in Photo 1. 

2. Problem Formulation 

First of all, we will consider desired properties for the 

tug of w&r machine explained in the previous section. They 

should be as follows: 
1) The exerted tension at each side of the rope is the same 

2) Movement of the rope is completely complement, which means 

that an absolute value of the movement from the initial 

position of one side is the same as that of opponent side and 

the signs of the movements are opposite. 
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Photo 1 Practical tug of war system: Tug Man 

It is, however, impossible to make the system satisfy both 

properties. Therefore, our machine is designed to control the 

tug position with satisfying the property 1) because victory or 

defeat is judged by the movement and players will play the game 

or exert the force to a rope by watching it. Since the muvement 

is not achieved by direct connection of a rope as the real tug 

game, it must be controlled by an actuator according to the 

difference of forces given to each rope. 

In order to realize such a machine, Model Following Servo 

(MFS) mechanism will be employed for each side of machine and it 

is divided to two layers concerning to their designed function. 

The upper layer generates the reference position based on a 

model using the difference of the forces. Usually the model is 

designed to simulate the dynamics of the rope. If, however, the 

game should be 'done with allowing a certain handicap to a team, 

it will be easily realized by modifying the model. The lower 

layer achieves the position control to track the reference 

position given from the upper layer. Therefore the problem can 

be divided to two subproblems as follows: 

I) How to design the model driven by the difference of the 

forces. 

il) How to design the tracking system. 

In our system, the model is assumed to be a linear time 

invariant system like a mechanical one whose parameters are 
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characterized by a mass, a viscosity and a spring constant. 

After determing such parameters, the remained problem is how to 

design a tracking system which will be explained in the next 

section. 

3. Design of Control SYstem I 

In the following discussion, we will refer an actuator (i. 

e. a motor) and a rope to a plant and assign a number 1 or 2 to 

each plant for convention. The dynamic equation for each plant 

can be represented by 

(1. a) 

0=1, 2) O. b) 

where u .eR is input, x ° eR2 is state, y oeR is output, do 1 eR2 
Pl Pl PI I 

is state disturbance and d i2 eR is observation noise. A linear 

time invariant model for an upper layer can be represented by 

r= fl - f2 (2. a) 

...!Lx =Ax +Br dt m m m m (2.b) 

Yml= cmxm (2.c) 

Ym2= -Cmxm' (2.d) 

where fi eR is a measured force, Am' Bm' Cm are matrices having 

proper dimensions and Ymi is desired movement for each rope. In 

order to achieve quick response for the tracking system, the 

difference of the forces is assumed to be output of a system as 

follow: 

..!Lx = A x 
d t r r r 

(3.a) 

(3.b) 

Combining (2.b) and (3.a), the following augmented state model 

is obtained. 
d A A A 

dtxm = AmX, 

where 

x •. - [: :J ' A m 



123 

The purpose of the servo controller is to keep the error 

defined by the following equation as small as possible under 

several disturbances. 

e i = Ypi - Ymi . (i=I,2) (4) 

In order to design the robust servo controller to disturbance or 

noise, the following operator is introduced, 

~d(S)dij=O (i,j = 1,2) (5) 

and it is called a disturbance rejection operator, which is the 

same operator defined in (K.Furuta,1987). Using the operator, 

above equations can be rewritten as follows: 

~dXPi = Api~dXpi + Bpi~duPi 

~dei = CPi~dXPi - Cm~dXm 

(6.a) 

(6.b) 

(6.c) 

Combining (6.a), (6.b) and (6.c), we have a next augment system. 

(7 ) 

For this augment system the following criterion is minimized. 

(8 ) 

where Q is a semi positive definite matrix and R is a positive 

definite one. The optimal control to the above criterion can be 

obtained by state feedback under come condition as fol low: 

(Kreindler,1969) 

~dUPi = Fli~dXPi + F2 i e i + F3i~dXm (9 ) 

Therefore actual input is given by 

u pi = F1iXpi + 
-1 A 

F2i~d e i + F3i xm, (9' ) 

4. Design of Control system n 
In this section an adaptive controller with sliding mode 

(J.E.Slotine and W.Li,1987) for a simple mechanical system is 

illustrated, A mechanical system given by 
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Ya := mx + cx + kx = u (10) 

where Y:= [x x xJ, a:= [m c kJT, 

is considered, where the parameters are not known but m is not 

zero. The aim of the control system is to make the output of 

the plant track the output of a model given by 

m x + c x + k x = u . m m m m m m 

For the above systems a sliding mode is defined as follows 

where x:= x-x m 

(11) 

(12.a) 

(12.b) 

In the original paper, the sliding mode S has been introduced to 

prevent from using x in the control loop. Here, however, the 

sliding mode S has rather meaning of specifying a mode in which 

error converges. 

The control input of the adaptive controller with a sliding 

mode is given by 

l"'l 
m 

u- .. .. A - [x - s x x] ~ 

:= Yca -kdS, (13 ) 

where Yc :=[x-s x xJ' ~ :=[m C kJ T , 

and the adaptation law is give by 

A -1 
a = -r Y S, (14) c 

where a contains the estimalf'd parametel's and f' is a positive 

definitf> matrix. The st[tbility of the closed loop systl'm can be 

proved by taking the folJo'-'ling fnncliIJnai as a I.yapunov 

funclion. 

1 -T -V(l):= Z{SmS + a ra}, ( 15 ) 

where a:= a-a. 

Taking a derivative uf eqn. (15), 
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V(t) = SmS + ~Tr~ 

= S{mS + [x-S x 

= s{u-Yca} = -SKdS ~ O. <16 ) 

This inequality shows the global stability of the system. 

5. Experimental Apparatus 

In our experiments the plant is composed of a servo molor, 

a pulley and a rope as in Photo 2. Its input and output 

relationship can be represented by a following transfer function 

KPi 
H . (s) = s(T .s+I)' 

PI PI 
<17 ) 

where input is consumed voltage and output is rotational angle. 

In (17) the dynamics due to electric servo between input voltage 

and electric current have been ignored because its response is 

very fast comparing to that of other parts. Eqn. (17) can be 

also represented by a state space equation as follows: 

Photo 2 Miniature tug of war system 
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=[Ol]X'+ ° -T1 p 1 

(18.a) 

Ypi = [1 oJ xpi <l8.b) 

This equation is corresponding to (l.a) of the previous section. 

The parameters of the plant 1 are as follows: 

K = 1.56 [rad/sec/V], T = 1.8 [sec]. 

Parameters of the plant 2 were assumed to be similar to those of 

the plant I, where they have been determined by an individual 

identification procedure. Using such parameters a state space 

model of plant 1 is presented by 

[ 0.0 1.0 J [o'OJ 
0.0 -0.16 xp1 + 0.98 up1 

( 19 . a) 

ypl = [1.0 O.OJ x p1 <l9.b) 

The model driven by difference of forces is a mechanical 

system given by the following equation. 

mYm + cYm + kYm Gr, 

where m is a mass, c is a viscosity, k is a spring constant and 

G is a constant gain. Eqn. (13) can be also represented by 

state space equation as follows 

(20.a) 

(20.b) 

In our experiment the spring constant have been set to zero to 

simulate the dynamics of a rope. This equation is corresponding 

to (2.b) or (11). Since in our experiment we tried to simulate a 

real rope as exactly as possible, the model generating reference 

position to the tracking system have been chosen as follows: 

d 
[ 0. ° 1. ° J xm + [o.oJ r (21.a) dTxm = 

0.0 -4.0 4.0 

Ym1 = [40.0 0.0] xm (21.b) 

The pole of the model was chosen by experiments so that the 

movement to a force Is natural and excessive input was no t 
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required to achieve the movement. And the output gain 40 has 

been determined so that the movement of the rope to the exerted 
force was long enough. 

5. Experimental Result 

Since in our design of the control system state disturbance 

and observation noise are assumed to be constant, the 

disturbance rejection operator can be chosen as follow: 

~d(s) = s. (22) 

Corresponding to the selection of the operator, the control is 

determined by 

(23) 

The input r to the model was assumed to be output of an 

integrator and its state space model was represented by 

d 
dtxr = 0, 

r = x . r 

(24.a) 

(24.b) 

Using state space models described above, feed forward or 

feedback gain can be determined if Q and R are specified. For 

experiments of the miniature model Q and R were determined as 

follows 

Q = 1.0e+6, R = 1. 0 (25) 

Feedforward and feedback gains for these weighting parameters 

could be calculated using a CAD system DPACS, which was 

developed by Furuta Lab., and they were obtained as 

T 
F = [-97. OJ ' 

pI -14.0 
[

3.8ge3]T 
Fp3= 4. 27e3 

I.70e2 

(26) 

Note that the third gain in Fp3 is a feedforward gain from input 

of the model to the plant, which will be shown later to be 

significant for the stability of the servo system. Fig. I shows 

the block diagram of the control system I for each machine. 

Fig. 2 shows the experimental result of the miniature model 

exerted some forces to a rope. The actual controller has been 

realized by a digital computer and its sampling interval was 4 

[msec]. In order to avoid the problems of saturation of input 

devices and winding up of Integrators the reset algorithm of 

integrators (K.Furuta etc.I985) has been employed In the actual 
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x. 

f1 

+ 

f2 ••••• ~:::::':.::::::::::::::::::::: •• ::::::::::::: y 
: • p2 

: PLANT2 ~ . . . . 
:-----------------------------------------------------.--

Fig. 1 Block diagram of control system 

't1 17.0 CG 
~ 

>-
!L5 r'~f~r'en~f' . 

s 
>- output 

0.0 
TIM/<: [sec] 

-8.5 

-17.0 L-________________________________________ -J 

0.0 0.5 1.0 1 .5 Z.O 

Fig. 2 Experimental result : reference and output 

controller. Fig. 2 shows that the model following servo 

controller gives good tracking performance to the reference 

output from the model. It also shows that the servo controller 

is insensitive for parameter variation of the plant since plant 

2 has a good response to the reference even if parameters of the 

system are not identified and are assumed to be similar to those 
of plant 1. 
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6. Experimental Result n 
The adaptive controller with a sliding mode explained in 

the section 4 was also applied to the same plant (18). The 

parameters of the control system were as follows: 

kd= 10000, Co = 100 and r = 0.1. (27) 

Fig. 3 shows the block diagram of the adaptive controller and 

Fig. 4 shows the experimental result controlled with those 

parameters, where the estimated parameters were set to zero in 

advance. The controller was realized by the same digital 

computer and the sampling interval was 1 [msec]. In the actual 

implementation of the controller the adaptation law was modified 

so that the adaptation of the parameters is stopped if control 

input exceeds over allowed values, otherwise they were to 

diverge. Fig. 4 shows that the controller gives a good response 

except small deviation even even if parameters of plants are 

completely unknown. Therefore, the controller will be a very 

powerful controller if it is difficult to identify parameters of 

plant in advance. 

7. Analysis of Stability 

Sometimes a servo controller controlling a position which 

affects the input force to the controlled system leads to 

instability of the system. In this section the stability of the 

system controlled by the model following servo controller 

Fig. 3 

PLANT2 . . . ~---------------------------------------------------- --

Block diagram of control system II 
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Fig. 4 

0.0 0.5 1.0 

reference 

output 

TIME [sec) 

1.5 2.0 

Experimental result II : reference and output 
proposed in the paper is investigated and it will show that the 

stability of the system is maintained for vast characteristics 

of the environment which is a model of a player. For 

simplicity it is assumed that force exerted to a rope in a 

plant 2 is kept constant, and the stability of the plant 1 is 

considered. The controlled system which consists of a model and 

an actuator is considered as a system whose input is force and 

whose output is movement of a rope, and players of a team can be 

Controlled SysteB 
f 

M (t) 

Fig. 5 Block diagram of equivalent closed loop system 
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15.0 

considered as an environment which gives a negative force 

feedback to the system if an actuator pulls the rope against 

players. (See Fig. 5) It will be valid that the environment can 

be modeled as a mechanical system whose parameters depend on 

time and position for small change of movement. First we will 

assume that the environment is a pure mass whose dynamics is 

given by 

Met)y =-f pI (28.a) 

o = -f > 0, (28.b) 

where ypi is measured from an equilibrium and it has negative 

sign if the actuator pulls. The relationship between force and 

acceleration can be represented as linear time invariant and the 

corresponding transfer function H(s) for the experimental system 

is given by 

H(s) = S(14883+20788 2+13500s+44000) 
s4+16.783+135s2+612s+II00 

and its Nyquist plot is given in Fig. 6. 

(29) 

As shown that the 

linear part satisfie8 the condition of positive realness, we can 

apply hyper stability theorem to the closed loop system. As 
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denoted in (28), the feedback loop is non-negative, which 

ensures the stability of the system. It should be noted that it 

is crucial for H(s) to be positive real that the model has a 
direct part. 

Though the environment has been assumed to be a pure mass 

in the preceding discussion, the analysis gives a good inference 

of the stability for general cases. Concerned about the shape 

of the Nyquist plot in Fig. 6 the stability will be kept if the 

environment has damping factors. If the environment contains a 

spring constant, high gain control may lead instability, but the 

control system has large stability margin since high frequency 

signals are reduced by unmodeled damping factors. 

7. Conclusion 

One of realization techniques of a fiber connected tug of 

war machine has been proposed and the validity of the control 

system was checked by a miniature model. Since the control 

system was designed using the idea of virtual internal model 

following control, it can be realized that the game is done 

under several conditions, i.e. allowing handicaps to a team or 

without an opponent team for a training. It has been also 

studied that the servo system in the control system has good 

stability under variations of an environment. 

The model following servo controller has been implemented 

as a controller in a practical tug of war machine based on the 

experiments of the miniature machine. Implementation of the 

adaptive controller to a practical system however, is under 

consideration, but it will be implemented in near future because 

i t has b e,e nco n v inc edt hat i t has s i mil a r per for man c e as the 

model following servo controller from the experiments and it is 

expected that the adaptive controller is to be more robust for a 

change of load. 

Finally, we would like to stress that it is very 

interesting that one of the oldest sports has been reconstructed 

as a 'High Tech.' sports, a fiber connected tug of war, using 

modern control theory. There should be other such applications 

for which modern technologies can be applied. 

Authors acknowledze that the idea of the fiber connected 

tug ofwar is given by NTT, and appreciate their support. 
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Structure of Magnetic Bearing Control System 
for Compensating Unbalance Force 
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summary 
A magnetic bearing control system is constructed in which 

an unbalanced rotor can be suspended without whirling even if 
certain system parameters vary from their nominal values. The 
concept of designing the control system is that unbalance 
forces are estimated by an observer and cancelled by the 
electromagnetic forces of the bearing. It is shown 
theoretically that the original controller can suspend the 
rotor without whirling for the parameter variations of the 
controlled object but loses the property for a change of the 
rotational speed. The structure of a new controller is 
presented which holds the property even if the rotational 
speed is perturbed. The controller is obtained by modifying the 
original controller based upon a formula of Laplace transform. 

Introduction 

The magnetic bearing can suspend a rotor without any 

mechanical contact and lubrication. For these inherent advan­

tages it has been applied in a various fields: vacuum tech­

niques, space technology, machine tools and so on. An active­

type magnetic bearing has another advantage that the bearing 

force acting on the rotor can be controlled actively according 

to the states Df the rotor. For this property it can have 

additional functions which have not been achieved by conven­

tional bearings. Making the most use of this feature, the 

authors have developed a control system in which an unbalanced 

rotor can be suspended without whirling1 ). The control system 

was designed b~sed upon the theory of output regulation with 

internal stability2). The concept of design is that the effects 

of unbalance are estimated by an observer and are cancelled by 

the electromagnetic forces of the bearing according to the 

estimation. 

In practical application, sensitivity considerations of 

G. Schweitzer, M. Mansour 
Dynamics of Controlled Mechanical Systems 
IUTAMIIFAC SympoSium Zurich/Switzerland 1988 
© Springer-Verlag Berlin Heidelberg 1989 
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the designed control system are important because there is 

usually a discrepancy between the physical reality and mathe­

matical model. If the designed control system were proved to be 

very sensitive to parameter changes, the control method would 

be useless in practice. This paper shows that the controller, 

which was constructed according to the theory, holds the 

property of the output regulation under perturbations of the 

nominal models of the controlled object but loses the property 

when the rotational speed varies from the nominal value. In 

order to overcome this problem the controller is modified to 

generate compensation signals by using exogenous signals 

synchronized with actual rotation. 

2 Equations of Motion for Magnetic Bearing System 

A model, which is used for investigation of a typical 

totally active magnetic bearing system dynamics, is shown in 

Fig.1. Since the rotor is treated as a rigid body in this 

paper, it has six degrees of freedom of motion. In order to 

keep the rotor rotating about an fixed axis, the magnetic 

bearing has to control five degrees of freedom of motion. 

Eight electromagnets, which are numbered as G) , ... , CD in Fig.1, 

are used to control two translational motions and two 

rotational motions in the radial directions. Two electromagnets 

Fig.1 Basic Model of a totally 
active magnetic bearing ( CD - @ : electromagnets) 

Fig.2 Coordinate axes and 
forces acting on the 
rotor 
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which are numbered as 0, @ are used to control one transla­

tional motion in the axial direction. 

To derive the equations of motion a coordinate frame O-xyz 

fixed in space is defined as shown in Fig.2i the origin 0 

corresponds to the center of the rotor S in the desired 

position and z-axis corresponds to its rotating axis. 

The attractive force of the magnet numbered as G is 

represented as Fn' The directions of F, , .•• ,F S are also shown 

in Fig.2. For small motions about the stationary, Fn can be 

approximated by a linear relation: 

where 

n=' , ••• ,S 

FO:stationary force 

G,H:coefficients of the linearised model of the magnet 

in:incremental current flowing through the winding 

dn:incremental gap between the rotor and the magnet 

(' ) 

Each d n is determined by the translational and rotational 

displacements of the rotor. 

When the rotor is driven to rotate at a constant speed w , 

the equations of motion in the radial directions are given by') 

where 

mXs-4GxS=H(i,-i3+i5-i7)+m£w2cos(wt+a) 

mYs-4GYs=H(i2-i4+i6-iS)+m£w2sin(wt+a) 
•• • 2 

I r 6x +law6y-4GI 6x 
;H(-i2+i4+i6-iS)I+(Ir-Ia)TW2COS(wt+S) 

" • 2 
Ir6y-IaW6x-4GI 6y 

=H(i,-i3-i5+i7)1+(Ir-Ia) Tw 2 sin(wt+S) 

m:mass of the rotor 

(2) 

(3) 

(4) 

(5) 

Ia,Ir:polar and transverse mass moments of inertia of the 

rotor 

l:distance between the center of the rotor and the 

magnets 

a,S:parameters on angular location of static and dynamic 

unbalance 

£:eccentricity of the rotor(amount of static unbalance) 

T:angle between the rotational axis and the principal 

axis (amount of dynamic unbalance) 
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xs'Ys:displacements of the rotor center S in x and y 

directions 

8x ,8 y :angular displacements of rotor axis about x and y axes 

From eqs.(2), ••• ,(5) the dynamics of the magnetic bearing 

system is expressed by a set of equations of the type: 

where 

x(t)=Ax(t)+Bu(t)+Dw(t) 

w(t) =Ew(t) 

(6 ) 

(7) 

The variable and coefficients are defined as shown in Table 1. 

It is remarked that the effects of unbalance are considered to 

be exogenous disturbance to the system 

x(t)=Ax(t)+Bu(t) (S) 

and the dynamics of the disturbance can be described by a 

linear constant-coefficient equation (7). 

3 Control System Design 

This chapter shows the procedure of designing the control 

system based upon the theory of output regulation with internal 

Table 1 
Variables and 
coefficients in 
each subsystem 

symbol 

x 1 
x 2 

u 1 

u2 

w1 

w2 
a 

b 

c 

meaning 

in subsystem in subsystem 
related to related to 
translation rotation 

Xs 8 x 

Ys 8y 

i 1-i 3+i 5-i 7 -i 2 +i 4+i 6-i S 

i 2-i 4+i 6-i S i 1 -i 3-i 5+i 7 

EW 2 COS(wtHY.) (1-C)TW 2 COS(wt+S) 

Ew 2 sin( wt+ 0.) (1-C)Tw 2 sin(wt+S) 

4G/m 4G1 2/Ir 

Him H1/Ir 

0 Ia/Ir 



stability. The ways of designing are described as follows. 

where 

First, define a combined system as 

Xc (t) =ACxc(t) +Bcu(t) 

YC(t)=CcxC(t) (=x(t» 

Cc =[I4 0) 

1 4:identity matrix 
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(9) 

( 1 0 ) 

Output regulation with internal stability is achieved by a 

control 

u(t)=Pxc(t) 

=P 1 x(t)+P 2w (t) 

such that 

(i) a closed-loop system 

x(t)=(A+BP 1 )x(t) 

is stable (internal stability) 

(ii) 

(output regulation) 

and 

( 11 ) 

(12 ) 

(13) 

(14) 

Second, construct a feedback matrix P which satisfies 

conditions (i) and (ii). Considering the internal symmetry of 

the controlled object, P 1 is given in the form3 ) 

P1 =_ [ Pd Pv -Pc 0] 

Pc 0 Pd Pv 
( 1 5) 

The elements are selected to satisfy the stability conditions: 

(s1) (bpd-a)bpv+bPccw>O 

(s2) (bpd-a)(bpv)2-(bPc)2+b2pvpccw>O 

The matrix P 2 is given in the form 

(16) 

(17) 

(18 ) 

so that the unbalance forces are cancelled by the magnetic 

forces. 

Third, an observer which estimates wIt) will be con­

structed since it is difficul t to detect the instant value of 

wIt) directly during rotor running. According to the observer 

theory a second-order observer can be constructed as 

z(t)=(E-VD)z(t)+(-VA+EV-VDV)x(t)-VBu(t) (19) 
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w(t)=z(t)+Vx(t) 

h .... .... .... ]t) d t' t f () d were w(t)(=[w1,w2 enotes an es 1ma or 0 w t an 

[
0 0 

V-
o -v 

o 

o 

For convergence the parameter 0 must satisfy 

o > 0 

Consequently the control input u(t) is determined as 

(20) 

(21 ) 

u(t)=P1x(t)-w(t)/b (22) 

Substituting eqs.(20) and (22) into eq.(19), the state equation 

of the observer is transformed as 

where 

z (t) =Ez (t )+Rx(t) 

r12 -r21 -r22 ] 

r22 r11 r12 

r11=-o(a-bpd)-vbPc' 

r21=v(a-bpd)-obPc' 

r12= obpv+v(1-c)w 

r22=- vbPv+ o(1-c)w 

(23) 

The block diagram of the magnetic bearing system with the 

compensator for unbalance is shown in Fig.3. The obtained 

dynamic compensator has an internal model of the disturbance, 

that is to say, a generator of two-phase alternating signals 

whose frequency is equal to the rotational frequency. 

4 Sensitivity Analysis 

It has been confirmed theoretically and experimentally 

that the Gonstructed compensator can remove whirling motion due 

to unbalance completely for the nominal mode1 1 ). In this 

chapter the influences of deviations of the system parameters 

on the property of output regulation are analysed. 

In the sequel a parameter p (p=a, b, c or 00) will be re­

presented' as a sum of a nominal value po and a perturbation ilp. 

Define complex variables 

x=x,+ jx2' u=u,+ ju2' w=w,+ jw2' z=z,+ jz2' w=w,+ jw2 
(24) 

and denote each Laplace-transformed variable by the 

corresponding capital. By using these variables the transfer 
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function representation of the system is written as 

1 
X(s)= t(s) 

b ,. 
(W(S)-J;'O W(s» 

( 0 0) '( 0 0) r11 +r12 s +] r21 +r22 s 
Z(s)= Xes) 

s_jw O 

W(s)=Z(s)+(O-jV)SX(s) 

w(O) 
W(s)=--, -S-]w 

(25) 

(26) 

(27) 

(28) 

where the initial values of the variables but wet) are set to 

be zero for simplicity; t(s) is defined as 

(29) 

and rijo denotes the value of rij for nominal values of the 

Fig.3 

effects of unbalance 
W2 

r----- -
o u, I 
-"--~D_~_""1 b 

r--------------------------------, 

I 
I L _____________________________ _ 

compensator for unbalance 

x, 

Block diagram of the control system with a compensator 
for unbalance which has an internal model 
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parameters. From egs.(25), ••• ,(27) the estimation by the 

observer is obtained as follows. 

A o-jv 
W(s)= b to(s)W(s) 

(s-jWo)t(s)+(O-jV)tO(s)bD 

where to(s) is defined as 

The estimation error of the observer is given by 

where 

o ° ( ° )to(s)(b 1) s-Jw + O-]V ----- --0-
A tIs) b 

W(s)-W(s)- W(s) 
° ° ( 0) b to(s) 

s-Jw + o-Jv bOt(s) 

cl 
=--w(O)+(other terms) 
s-jw 

° A ( 0) t ° ( jw) (b 1) ]uw+ O-]V t(jw) bO-
cl=--------------------------

0A ( ° )b to(jw) 
Juw+ o-Jv bOt(jw) 

substituting eg.(30) into (25) we have 

where 

c2 
=--w(O)+(other terms) 
s-jw 

j/::,w 
c2?- 0---

0A ( ° )b to(jw) t(jw) 
JuW+ O-]V bOt(jw) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

Assuming that the stability of the closed-loop system 

incorporated with the compensator for unbalance is preserved, 

the stat~onary state can be determined by the first term in 

eg.(33) or eg.(36). By estimating these terms the following 

conclusions on stationary states are obtained. 

(1) When only the parameters contained in matrix A vary from 

their nominal values, the output of observer converges to the 

exact state asymptotically. 
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(2) When b varies and the rotational speed is kept a nominal 

value, the error of the observer does not converge to zero but 

the property of output regulation is hold. 

(3) For a change of w, which means that the rotor speed varies 

from the nominal value, output regulation fails; for a small 

change, the amplitude of whirling motion of the rotor is 

proportional to the amplitude of ~w. 

5 Modification of the Compensator 

Equation (36) implies that if the value of parameter W in 

the internal model is set to the actual value, the whirling 

motion will disappear. One of the methods by which this 

property is obtained is that the parameter w in the controller 

is changed adaptively according to the output of a sensor which 

detects the angular frequency of the rotor. In tqis chapter 

another method will be presented. 

The concept of designing is to construct a model of dis­

turbance dynamics by using exogenous signals synchronized with 

actual rotation. As is mentioned in Chapter 3, the compensator 

has an internal model which generates two-phase alternating 

signals whose frequency is set to that of rotation. Instead of 

generating the signals, exogenous signals whose frequency is 

truly equal to the rotational frequency will be used. 

The dynamics of the compensator, which is shown in Chapter 

3, can be described as 

Z(s)=F(s)R(s)X(s) 

where 

F(s)=_l_. _ 
s-Jw 

R(s)=(r11+ r 12 s )+j(r21+ r 22 s ) 

The inverse transformed functions of F(s) and R(s)X(s) are 

f(t)=exp(jwt) 

( r * x) (t ) = ( (r 1 1 +r 1 2 £t ) + j ( r 2 1 +r 2 2 d~ -) ) x ( t ) 

(38) 

( 39) 

(40) 

(41 ) 

(42) 

where x(O) is assumed to be zero. A formula of the Laplace 

transform says that when the response function for a system is 

given by the product of two function of s, the corresponding 

time function of the system can be found by convolving the 
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corresponding two time functions. Applying this formula to 

eq.(38), zIt) can be represented as 

t 
z ( t ) =Jo g ( t - t ) ( r * x) (t ) d t 

t 
=exp (jwt1'o «r11 +r 12 : t )+j (r21 +r22ddt ))x(t)exp(-jwt)dt 

(43) 

In eq.(43) the terms to be integrated are composed by a 

measurable variable x(t) and sinusoidal signals whose angular 

frequency is equal to the rotational frequency. When sinusoidal 

signals synchronized with actual rotation are used to calculate 

the integration, the critical parameter w contained in the 

compensator is automatically set to the exact value. As a 

result the property of output regulation is preserved even if 

the rotational speed varies from the nominal value. The block 

diagram of the modified controller is shown in Fig.4. 

6 Simulation 

To confirm the effectiveness of the modified controller, 

numerical simulations are performed. The values of parameters 

used in the simulations are listed in Table 2. In the following 

coswt sinwt coswt -sinwt 
( synchronous signals ) 

r---~-------------l I xcos6-ysin6 x I 
I T I 
I xsin6+ycos6 I 
I I 
I I 
I I 
I cos6 sin6 I 

~~':~~~~f_~.:_c~~~n.:~_:J 

Fig.4 
Block diagram of a compensator 
for unbalance using exogenous 
synchronized signals 
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Table 2 Parameters and initial conditions used for simulations 

nominal values values in perturbed systems 
aO 1.00 CO 0.549 case(a) case(b) 
bO 1.00 WO 3.46 a,b,c nominal nominal 

values in the desiged controller W 3.11 3.80 

Pd 3.26 r11 2.89 x1 (0) -0.0487 -0.0723 

Pv 2.55 r12 3.26 *1 (0) 0.399 0.471 

Pc 2.42 r21 -3.10 x2(0) -0.128 -0.124 
0 1.28 r22 1.99 *2(0) -0.152 -0.275 
v 0.00 z1 (0) 0.00 w1 (0) 0.810 1.21 

z2(0) 0.00 w2(0) 0.00 0.00 

simulations, w is assumed to decrease (case (a)) or increase 

(case(b)) by 1 0 per cent from its nominal value; all the other 

parameters are assumed to be nominal. 

Figure 5 and 6 show the responses when the original and 

modified compensator for unbalance are used; in the figures 

broken lines show the stationary motion of the rotor before the 

the compensation for unbalance starts at t=O. When the 

compensator with an internal model is used, residual whirling 

motion of the rotor is observed. As contrasted with the 

original compensator, the modified compensator can completely 

eliminate the effects of unbalance on the rotor motion even if 

the rotating speed is perturbed. These results show the 

modification is effective. 

7 Conclusion 

This paper presents the design, sensitivity analysis and 

modification of a magnetic bearing control system with 

compensation for unbalance. The modified control system, which 

uses external signals synchronized with actual rotation, can 

remove completely the whirling motion due to rotor unbalance 

even if the rotational speed varies from the its nominal value. 
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ABSTRACT 

This paper selects sensors and actuators (location, type and number) from an 
admissible set. We seek an approximate solution to this integer programming problem. 
Given the optimal use of the entire admissible set of sensors and actuators, it is possible to 
decompose the quadratic cost function into contributions from each stochastic input and 
each weighted output. In the past, these suboptimal cost decomposition methods of sensor 
and actuator selection have been used to locate perfect (infinite bandwidth) sensors and 
actuators on large scale systems. This paper extends these ideas to the more practical case 
of imperfect actuators and sensors with dynamics of their own. Secondly, the old cost 
decomposition methods are discarded for improved formulas for sensor and actuator 
deletion (from the admissible set). These results show that there exists an optimal number 
of actuators (it is possible to use too few and too many). Preliminary attempts to solve this 
new research question are described. It is also shown that there exists optimal dynamics of 
the actuators. NASA's SCOLE example demonstrates the concepts. 

1.0 INTRODUCTION 

The objective of this paper is to develop and evaluate a method for the selection of 

sensors and actuators in the control of finite-dimensional linear systems using imperfect 

sensors and actuators -- devices which do not provide instantaneous responses, but have 

dynamics of their own. In addition, the actuator and sensor noise may be correlated. This 

important case allows the use of accelerometer sensors (this always yields correlated plant 

and measurement noise). Correlation of the noise and the presence of dynamics in the 

actuator and senso\: devices can significantly affect the optimal selection of both the 

number and location of sensors and actuators. Also, the dynamics of these devices can be 

tuned for better system performance. (Actuators can be too slow or too fast). Hence, the 

algorithms herein produce design requirements (time constants and noise levels permitted) 

for actuator devices. 

Consider the series connection of three dynamical elements, the actuators described 

by the dynamics Ya = Ca(sI-Aar1Sa(u+Win), the plant described by the dynamics 

yp= Cp(sI-~-lSp(Ya+wouJ, the sensors described by the dynamics 

z = Cs(sI-As)-lSs(Yp+Vin), where 

G. Schweitzer, M. Mansour 
Dynamics of Controlled Mechanical Systems 
IUTAMIIFAC Symposium Zurich/Switzerland 1988 
© Springer-Verlag Berlin Heidelberg 1989 
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(1.1) 

are correlated white noise processes 

[ W(t)] [w ul 
E v(t) [WT('t), VT('t)] = U VJ <>(t-'t) (1.2) 

and the dimensions of the vectors are 

JRa JRP JRIlz JRnz YaE ,ypE ,ZE ,VE • 

In tlie control of large space structures, the locations of sensors and actuators 

becomes a critically significant "degree of freedom" in control design [14-19]. Among 

over 60 recent contributions to the sensor and actuator selection (SAS) problem, only [4], 

[7], [10], [11], and [12] consider noisy actuators (W, V nonzero). In all cases, the 

disturbances are modelled as Gaussian, white, and uncorrelated (W, V diagonal, U = 0). 

Most of the SAS literature takes no account of actuator or sensor dynamics. Two 

exceptions are McClamrock [19], and Howell and Baxter, [6]. In [1] the authors extend the 

cost decomposition approach [2] to accommodate noise correlation between sensor and 

actuator noise sources (W, V not diagonal, U * 0). A key conclusion in [1] is that the 

proper sensor/actuator selection and placement can be drastically affected by noise 

correlation. For example, the deletion of a noise source (by making an actuator or sensor 

noise free) may degrade performance contrary to the usual expectations when noise sources 

are uncorrelated. However, [1] does not handle sensor and actuator dynamics. That is the 

contribution of this paper. 

A discussion of the effect of actuator dynamics is given by Goh and Caughey [8]. 

The analysis of [8] and [9] demonstrates that plant frequencies occurring above the actuator 

bandwidth can lead to closed loop instability, even for co-located sensors and actuators. 

Goh and Caughey do not address the problem of selection of dynamic actuators nor 

sensors. That is the goal of this paper. The tools of cost decomposition [2-4] have to be 

modified substantially to handle this case. 

This paper is organized as follows. First the augmented system model including 

sensor and actuator dynamics is examined for controllability, observability. These 

dynamics are used to define expressions which reflect the effectiveness of each dynamic 

actuator or sensor in minimizing the cost function. Finally, the method is illustrated by 

application both to small scale numerical examples and to NASA's SCOLE flexible space 

structure model. 



2.0 System Dynamics 

The system described by (1.1) has the structure 

where 

.:i =Ax +Bu+Dw 

y =Cx 

z=Mx +v 

l
Ba] lBa 0 0] 

B = ~ ,D = ~ ~ ~s 

[xaj [ Win] 
, x= "P ' w= W~ut 

Xs vITI 

2.1 Controllability, Observability Properties 
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(2.la) 

(2.1 b) 

(2.lc) 

Suppose the plant (Ap' B~ is controllable. It is of interest to know whether the 

addition of dynamic sensors and actuators will render the system uncontrollable. This 

question is resolved by the following result. 

Theorem 1: 

Suppose Aa, ~p' As have no common eigenvalues, and Oa(s) ~ Ca(sI-Aa)-IBa, 

Opes) ~ ~(sI-Ap)-IBp, 0s(s) ~ Cs(sI-AsrIBs' Then (A, B) in (2.1b) is a controllable pair 

if and only if 
i) (Aa' Ba) is a controllable pair. 

ii) rank [AI-Ap, BpOa(A)] = np for all A = Aj[Ap], 

iii rank [AI-As, BsOp(A)OaCA)] = ns for all A = Aj[As). 

The proof is an extension of the results in [20] where it is proved that the tandem 

connection of two dynamic system (AI' BI, CI) and (A2' B2, C2) with transfer functions 

0 1 (s) and 02(s) respyctively, is controllable if and only if (AI' BI) is controllable and rank 

[AI-A2, B20 1 (A)] = dim(A2), where A = Aj[Ad, assuming Aj[Ad ;t AJA2] for any i, j. To 

prove theorem 1, we need only to apply these results to the tandem connection of three 

dynamic systems 0a(s), Opes), 0s(s). The reader will recognize i) and ii) as the necessary 

and sufficient conditions for controllability of the tandem connection of the actuators and 
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plant Ga(s) and Gp(s). Condition (iii) readily follows by grouping the plant and the sensors 

as the "second" system G2(s) = Gp(s)Ga(s) and applying the theorem [20] using 

GI(s) = Ga(s). # 

Corollary to Theorem 1: 

(A, B) is controllable if(Aa, Ba), (Ap' Bp), (As, Bs) are all controllable pairs and 

a) rank [Ga(A)] = afor all A = "-i[Ap). 

b) rank [Gp(A)Ga(A.)] = pfor all A = Aj[As]. 

Proof: 

Conditions a) and b) will not decrease the column rank of BpGa(A) or BsGp(A)Ga(A) 

below that of Bp' Bs respectively. Theorem 1, and full row rank of IAI-Ap,Bpl, [AI-As, Bsl 

is equivalent to controllability of (Ap' Bpl and (As, Bs). # 

Quite often complete controllability is not required. The following conditions allow 

the plant xp to be controllable even if the entire system is not controllable. 

Theorem 2 

The plant vector xp is completely controllable if and only if (Ap' Bpa) is a 

controllable pair where Bpa ~ BpCa. 

Proof: 

By definition the plant state Xp is controllable if xp' taken as an output of (2.1), is 

"output controllable." This requires 

(2.2) 

where 

(2.3) 

ex = [0 I 0]. 

Now (2.2) becomes, upon substitutions, 

rank[BpCa, ApBpCa, A;BpCa, ... , A;-IBpCJ . 

This concludes the proof. # 
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Remark: Note that the plant "P is controllable if (~, Bp) is controllable and Ca has 

full row rank. 

2.2 Observability 

The sensor and actuator dynamics can also hinder our ability to observe the entire 

system from the outputs of the sensors. The following result sorts out these circumstances. 

Theorem 3: 

Suppose Aa, Ap' As have no common eigenvalues. Then (A, M) in (2.1) is an 

observable pair if and only if 
i) (As Cs) is an observable pair 

ii) rank [Gs(~I~;~)CJ = na for all A = Aj[Apl, Aj[Aal, 

iii) rank [~:~~l = np' for all A = AJAJ. 

The proof is based upon this result from [ 1: If Al and A2 have no common 

eigenvalues then the tandem connection of (AI' BI, CI) and (A2' B2, C2) is observable if and 

only if 1) (A2, C2) is observable and, 2) rank [G~:~~~J = dim Al for all A = Aj[A21. Now 

let (Aa, Ba, Ca) represent (AI' BI, CI) and the randem connection of (Ap' Bp'~) and 

(As, Bs' Cs) represent system (A2' B2, ~). Hence, G2(s) = Gs(s)Gp(s), and G\(s) = Ga(s). It 

follows that the observability ofGI(s) and G2(s) requires 1) observability ofG2(s) [written 

as (Aps' ~s)] and the observability of G2(s) requires i) and iii). # 

Remark: (A, M) is observable if (A a' Ca), (Ap' Cp) and (As, Cs) are observable pairs and 

Gs(A) has linearly independent columns for A = Aj[Asl, i = 1,2, ... , ns' and G.(~)Gp(~) has 

linearly independent columns for ~ = AJApl, i = 1,2, ... , np and ~ = AJA.l, i = 1,2, ... n •. 

2.3 Defining the Cost Function 

With the properties of the augmented system established, optimal control design for 

the augmented system is now considered. In the augmented system (2.1), the actuator 

command is given by u(t), the actuator response Ya(t) (contained in the augmented output 

vector y) is distinct from u(t) due to actuator dynamics. We wish to weight both the input 

and the output of the actuators. For this reason, and in view of the relation of Ya(t) to the 

design goals as discussed above, minimization of cost functions of the form 

v = E ~ [lly (t)lI~ + lIu(t)II;] (2.4a) 

and 
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Q = diag[Q. ,Qp] , Q > 0 (2Ab) 

provides a stable optimal closed-loop solution, provided (A, C) (A, M) are detectable, 

(A , D ) and (A , B ) are stabilizable. 

3.0 SELECTION OF DYNAMIC SENSORS AND ACTUATORS 

3.1 Closed-Loop Input/Output Cost Analysis 

In order to write the expressions for the closed-loop input and output costs, it is first 

necessary to put the fully augmented system, under closed loop steady-state optimal state­

estimate feedback control, in the following state space form: 

x(t) = Ax(t) + Dw(t) (3.1a) 

yet) = Cx(t) (3.1 b) 

V = E ~ V o(t), V oCt) = y *<t)Qy(t) , (3.1c) 

where 

(3.1d) 

[ A BG] [D 0] [c 0] [Q 0] [w UJ 
A= FM A+BG-FM ,D= 0 F ,C= 0 G ,Q= 0 R ,W= u· V (3.1e) 

G =_R-1BTK, O=KA +ATK -KBR-1BTK +CTQC 

F = [PMT+DU]V-1, 0= [A-DUV-1M1P +P[A-DUV-1M1T 

-PMTV-1MP + DWDT _DUV-1UTDT 

(3.1f) 

(3.1g) 

Equation (3.1a) describes a linear system driven by zero mean white noise. The 

contribution of the ith input Wj(t) in the total cost function (3.1c) is called the "input cost". 

The contribution of the ith output Yj(t) in (3.Ib) in the total cost function (3.Ic) is called the 

"output cost.", Formulas for the input and output costs were first derived in [2] and we shall 

cite the essential results that will be needed here. 

For the system (3.1) the "output costs" V (, defined by 

(3.2a) 

are calculated 'as follows [2] 

(3.2b) 

where X is the steady state covariance satisfying 
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(3.2c) 

and where the output costs satisfy the cost decomposition property 

D, 
:EV;=V. (3.2d) 
i=l 

The "input costs" are defined by 

vt ~ (l12)(E .. (oV,;oWj)wd (3.3a) 

and are found from [21 

(3.3b) 

where S satisfies 

(3.3c) 

and where the input costs also satisfy the cost decomposition property 

I1w 

:Evt=V. (3.3d) 

The input and output costs represent the in situ contributions that the noise inputs and 

the system outputs make in the cost function. We may also wish to know the amount by 

which the cost function will be reduced if a noise input is eliminated. This amount, tNt, 

is defined as 

(3.4) 

where V Ri is the value of the cost function after the ith noise input is eliminated, (but the 

controller is not redesigned) and !:J. vt is the cost reduction due to eliminating Wi' A 

positive value for !:J. vt indicates that elimination of the ith input will reduce the cost, while 

negative !:J. vt indicates that a cost increase will follow noise elimination. It was shown in 

[11 that the !:J.vt may be positive or negative in the presence of noise correlation. (Hence, 

the concept of "beneficial noise" in linear systems). 

Partitioning the matrices Wand D facilitates direct solution for the cost reduction, 

yielding 

The closed-loop covariance X may be written 

_ [P+N Nl 
X- N NJ 

where P satisfies eqn (3.1g) and where N satisfies: 

(3.5) 

(3.6) 
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O=N(A+BGl + (A+BG)N +PVpT (3.7) 

Also, S has the following fonn 

_ [K+L -LJ 
S- -L L (3.8) 

where K satisfies eqn (3. If) and where L satisfies 

(3.9) 

For notational convenience the steady state covariance X is partitioned as follows: 

(3.10) 

Using the notation of (3.10) and the special structure of the closed-loop system matrices in 

eqn (3.13) the following expressions may be derived [2] for the output costs 

and for the input costs 

i=l, ... nz 

and the input cost reductions 

~vt = [DT(K+L)DW -DTLFUT]ii i= 1, ... nw 

~Vi"= [DT(K+L)DW -DTLPUT]nw+i,nw+i i= I, ... nz 

~ vt'" = [PTLFV - pTLFV - pTLBU]ii . i = 1, ... nz 

(3. 11 a) 

(3.11b) 

(3. 11 c) 

(3.12a) 

(3.12b) 

(3.12c) 

(3.13a) 

(3.13b) 

(3. 13c) 

A straightforward approach to the selection of sensors and actuators leads to integer 

programming [23]. Due to the numerical intensity of this approach, we seek a suboptimal 

alternative. Equations (3.1)-(3.13) provide the ingredients to a "cost decomposition" 

approach which motivates our approach. However we shall not use the cost decomposition 

of [2], since it does not lead itself to the inclusion of sensor and actuator dynamics. We 
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shall also modify the basic formulas of [2], since [2] does not utilize the II V information 

available in (3.13). 

3.2 Dynamic Actuator Effectiveness Values 

Now that the closed-loop input and output costs have been determined for systems 

with dynamic sensors and actuators, it remains to use the cost decomposition results (3.11-

3.13) to define expressions which reflect the effectiveness of each sensor and actuator in the 

cost function. This section defines the effectiveness values for dynamic actuators. The 

approach we recommend for non-dynamic actuators is to subtract the contribution the ith 

actuator's noise in the cost function from the contribution of its control signal, and to label 

this difference the "effectiveness" of the ith actuator, vtct. That is, 

VjllCt=VjU-llvt (3.14) 

This subtracts the "bad" from the "good" contributions of the actuator to measure its 

effectiveness. This approach is different from [2] due to the llvt term. In [2] only the 

vt ternl from (3.3a) was used in (3.14). The results of applying (3.14) to sensor and 

actuator selection for a range of small and large scale examples have demonstrated the 

improvement of this approach. 

Extending the definition (3.14) for applicability to systems with dynamic actuators, 

we proceed as follows. In (3.1) there are two noise sources associated with each actuator: 

command noise, wu' which is filtered by the actuator dynamics; and output noise, wf, which 

is additive with the actuator output. Thus, the noise contribution associated with the ith 

actuator is given by the sum of llVtu and llVtr• 

The beneficial control cost for each actuator is not immediately evident. First, recall 

that it is the actuator output Ya(t), not its input u(t), which drives the system. Next, note that 

the contribution of the ith actuator's output in the cost function, vt, includes the effects of 

noise Wuj. That is, even in the open loop (u == 0), V t '# 0 for [W u]jj > 0 with dynamics. 

Hence, to define the beneficial (control) portion of vt it is necessary to subtract the portion 

of vt which is due to noise. This can not be accomplished exactly, since the actuator 

command u(t) and the command noise wu('t) are correlated for t > 'to An approximation is 

obtained, however, by solving for vt when u == 0 (that is, in the open loop). We define the 

contribution of Wuj to vt and the contribution of Uj to vt as follows, using the open loop 

covariance of the actuator states ~: 

(3.15a) 

and 

(3.15b) 
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where & solves 

(3.1Sc) 

Finally, the input costs and the decomposition of the output cost Vr are combined in 

an effectiveness formula for dynamic actuators 

(3.16) 

Note that in the absence of command input noise, [V[']W and vtm are both zero. Also, in 

the absence of actuator dynamics, ya;(t) is equivalent to Ui(t). Thus the expression (3.16) 

reduces to the original effectiveness formula of [2] in the absence of actuator dynamics. 

Note also that (3.16) is applicable whether or not the actuator noise signals are correlated 

with other noise sources, and it is applicable to systems with actuator dynamics of arbitrary 

order. 

3.3 Dynamic Sensor Effectiveness Values 

Unlike the actuator noise, (which has a direct path to the output, independently of the 

controllers influence) the noise associated with sensors reaches the system only through the 

controller. Since the gains in the Kalman filter of the LQG controller represent an optimal 

trade-off of each sensor's (beneficial) measurement infomlation versus the (performance 

degrading) impact of its noise, then a 11 V{ of large magnitude is indicative of a highly 

effective sensor. That is, the fact that a sensor's noise is being allowed to heavily affect the 

cost means that its measurement infonnation is even more critical to performance. For this 

reason, the following effectiveness formula for non-dynamic sensors generalized to 

accommodate the possibility of noise correlation, was presented in [1]: 

viseng II1V{1 . (3.17) 

For dynamic sensors there are two possible noise inputs associated with each sensor. 

As in the non-dynamic case, both noise inputs reach the system dynamics through the 

controller dynamics. Thus a straightforward extension of (3.17) to dynamic sensors is 

(3.18) 

Note that this formula is applicable in the presence of sensor dynamics of arbitrary order, 

and applies whether or not any of the noise sources are correlated with one another. 

These are new formulas and are quite different from the sensor and actuator 

effectiveness criteria suggested in [2]. Ref. [2] did not use I1V information nor could [2] 

handle dynamic devices. 

This section concludes with the suggestion that (3.16) and (3.18) provide effective 

measures of the contribution of each actuator and sensor in a closed loop optimal LQG 
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control (with sensor and actuator dynamics properly included). 

CONCLUSIONS 

A new method of sensor and actuator selection (SAS) has been derived for 

application to systems with dynamic sensors and actuators -- that is, systems in which the 

response of the sensors and actuators to their inputs is not instantaneous but governed by 

dynamics. The extended SAS method is applicable to systems in which the sensor and 

actuator dynamics are of arbitrary order. Application to simple numerical examples in [18] 

demonstrates that there usually exists optimal dynamics (an actuator can be too fast and too 

slow). This raises new research questions on the optimum component design in large scale 

systems. 

Application of the actuator selection method in detail to NASA's SCOLE space 

structure demonstrated that even uniform actuator dynamics can affect the optimal 

selection of actuators. 
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Summary 
A coupled rotor/fuselage helicopter analysis with the important effects of blade 

torsional flexibility, unsteady aerodynamics, and forward flight is presented. This 
model is used to illustrate the effect of unsteady aerodynamics, forward flight, and 
torsional Ilexibility on air resonance. Next a nominal configuration, which experi­
ences air resomince in forward flight, is selected. A simple multivariable compensator 
using conventional swash plate inputs and a single body roll rate measurement is then' 
designed. The controller design is based on a linear estimator in conjunction with 
optimal feedback gains, and the design is done in the frequency domain using the 
Loop Transfer Recovery method. The controller is shown to suppress the air reso­
nance instability throughout wide range helicopter loading conditions and forward 
flight speeds. 

Nomenclature 
Variables with an overbar are dimensional. Unless otherwise stated, variables 

without an overba~are non-dimensionalized by the blade mass M R, rotor radius R, 
and the rotor rate Q. 

a 
aT 
AR 
A,B,C 
b 
CdO 

CdOT 

e 
f 
FFT, GGT 
G(s), K(s) 
Ib 
Icxx' Icyy 
lx 
!y' l z 
K.c, Kf 
Kx, Ky, Kz 
I 
1m 
L(s) 
MF 
Nb 
Pc, Pr 
qc 
Q,R 
Rc 
RMx, R~IY' RMz 

Rotor blade lift curve slope 
Horizontal tail lift curve slope 
Horizontal tail aspect ratio 
First order system, control, and output matrices 
Blade semi chord 
Blade drag coefficient 
Horizontal tail drag coefficient 
Hinge offset 
Fuselage drag area = f/2bR 
State and observation noise covariances 
System and compensator matrices 
Blade flap inertia about hinge offset 
Fuselage roll and pitch inertias 
Blade pitch inertia 
Integral of the blade flap and lead-lag bending inertias 
Feedback and filter gains 
Flap, lag, and torsion spring constants 
Blade length 
Model error function 
Unstructured multiplicative error matrix 
Fuselage mass 
Number of blades 
Positive semi-definite solutions to the Riccati equation 
Recovery factor 
State weight and control weight matrices 
Elastic coupling coefficient 
Translational degrees of freedom of the fuselage 
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S(s), T(s) 
ST 
V 
W"Wo 
XA 

Xb, Yb' Zb 

XMc> Z:\IC 

X~tll' Z:\1I1 

X~lT' Z~IT 
X,U,y 
x,y 
()(R 

[Jp 
Y 
OO,O I"Olc 
Opk 
(J 

J1. 
l/Ik 
l/I 
Wc 

WL 

W,FI' W U ' W TI 
(Jl.. e ], ir[ e ] 
(e) 

MIMO 
SISO 
LTR 

Introduction 

Sensitivity and command response transfer matrices 
Horizontal tail area 
Forward flight speed 
State and observation noise processes 
Blade aerodynamic center offset from the blade clastic axis 
Position of the blade center of mass from the hinge offset 
X and Z position of the fuselage center of mass 
X and Z position of the rotor hub center from point M 
X and Z position of the horizontal tail a.c. from point M 
System state, control, and input vectors 
Estimator state and output vectors 
Rotor trim pitch angle 
Blade precone angle 
Lock number 
Collective, sine, and cosine inputs 
Pitch of k-th blade 
Solidity ratio = 2Nbb/n 
Advance ratio = V cos«()(R)/RQ 
K-th blade angle = l/I + (k - I )2n/Nb 
Azimuth angle of blade measure from straight aft position 
Cross over frequency 
Inplane lead-lag frequency 
Rotating first flap, lag, and torsional blade frequencies 
Mimimum and Maximum singular values 
Derivative wrt to the azimuth angle 

Multiple Input/Multiple Output 
Single input/Single output 
Loop Transfer Recovery 

The need to reduce the mechanical complexity and weight of the rotor hub on 
helicopters has generated considerable interest in hingeless and bearingless rotors. 
Though these new rotor configurations are simple and lightweight they can experience 
other undesirable dynamic problems. One important problem that can arise in soft­
in-plane rotor systems is termed "air resonance", and is a condition where the blade 
lead-lag motions strongly interact with the fuselage pitch or roll motion in flight 
[1,2J. This aeromechanical phenomenon produces large fuselage oscillations and 
is clearly undesirable when unstable or weakly stable. The approach to suppressing 
ground resonance in articulated rotor systems has been through lead-lag dampers for 
each rotor blade. This approach can also be applied to air resonance of hingeless 
rotors systems, but this solution tends to destroy the mechanical simplicity and aero­
dynamic cleanliness inherent in hingeless and bearingless rotors. Another possible 
means of stabilizing or augmenting stability of air resonance is through an active 
controller operating with a conventional swash plate. This approach is feasible from 
a practical point of view only if it is simple to implement since it must compete 
against the straightforward mechanical solution to this problem based on lag 
dampers. Such an active controller would need sensing and actuating devices leading 
to an expensive system. However, with the inevitable introduction of other active 
control devices such as higher harmonic control (HHC) for vibration suppression 
[3,4, 5J this argument is considerably weakened. Vibration control requires sensors 
and actuators with bandwidths well above the I/rev frequency. Since the air reso­
nance instability results in an unstable lead-lag regressing mode (i.e. the mode asso­
.ciated with the II - wd frequency) these devices would also be sufficient for air 
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resonance control. Thus, sensing and actuator hardware, which may be already 
available, could be used for additional purposes below the frequency range intended 
for the vibration control objective. 

Research in the active control of air and ground resonance has been limited to 
a few studies [6, 7, S], where various theoretical active control studies were pre­
sented. The helicopter models used in these studies were quite limited since important 
effects such as torsional flexibility of the rotor blades, forward !light, and unsteady 
aerodynamic were all neglected. Furthermore, the studies dealing with the active 
control of air resonance did not adequately demonstrate the ability of the control 
schemes to operate through the wide range of operating conditions which can 
normally be encountered. The primary objectives of this paper are: 

(I) To illustrate the importance of unsteady aerodynamics, blade torsional flexibility 
and the role of periodic coefficients (or forward flight) on this problem. 

(2) To remove the limitations inherent in previous studies by using a coupled, 
rotor/fuselage model, in which the important effects of forward !light, unsteady 
aerodynanics, and blade torsional flexibility are included. 

(3) To demonstrate the feasibility of designing a simple active controller capable of 
suppressing air resonance throughout the flight envelope representive of the wide 
range of operating conditions which may be encountered by a helicopter. 

Mathematical Model 
The mathematical model of the rotor/fuselage system is that of Ref. 9 and 10 , 

and its salient features are described next. The fuselage is represented as a rigid body 
with five degrees of freedom, where three of these are linear translations and two are 
angular positions of pitch and roll (Fig. I). Yaw is ignored since its effect in the air 
resonance problem is known to be small. A simple offset hinged spring restrained 
rigid blade model is used to represent a hingeless rotor blade (Fig. 2). This assump­
tion simplifies the equations of motion, while retaining the essential features of the 
air resonance problem. In this model, the blade elasticity is concentrated at a single 
point called the hinge offset point, and torsional springs are used to represent this 
flexibility. The dynamic behavior of the rotor blade is represented by three degrees 
of freedom for each blade, which arc flap, lag, and torsion motions. The aerodynamic 
loads of the rotor blades are based on quasi-steady Greenberg's theory, which is a two 
dimensional potential flow strip theory [II, 12]. Compressibility and dynamic stall 
effects are neglected, though they could be important at high advance ratios. 
Greenberg's theory is an extension of Theodorsen theory, which accounts for a time 
dependent lead-lag motion and constant collective pitch of the blade. Unsteady 
aerodynamic effects, which are created by the time dependent wake shed by the 
airfoil as it undergoes arbitrary time dependent motion, are accounted for by using a 
dynamic inflow model. This simple model uses a third order set of linear differential 
equations driven by pertubations in the aerodynamic thrust, roll moment, and pitch 
moment at the rotor hub. The three states of these equations describe the behavior 
of perturbations in the induced inflow through the rotor plane. The model coeffi­
cients used in this paper are those of Ref. 13 . 

The equations of motion of the coupled rotor/fuselage system are very large and 
contain geometrically nonlinear terms due to moderate blade deflections in the aero­
dynamic, inertial, and structural forces. Furthermore, the coupled rotor/fuselage 
equations have additional complexity due to the presence of the fuselage degrees of 
freedom. To reduce the equations to a manageable size, an ordering scheme is used 
in the derivation of the equations of motion to systematically remove the higher order 
nonlinear terms [14]. The ordering scheme is based on the assumption that 
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(I) 

which states that terms of order e2 are negligible relative to terms of order unity. The 
term e is a non-dimensional parameter, which quantifies the meaning of a "sma1l" 
term. For our purposes, it represents the slopes of the deflections of the blades, which 
usually are of an order of magnitude which is less than .15. The blade degrees of 
freedom are assigned an order of e, while the fuselage degrees of freedom are of order 
e3/2. A symbolic manipulation program is then used to generate the nonlinear set of 
equations of the rotor/fuselage system using the ordering scheme. Five fuselage 
equations result of which three enforce the fuselage translational equilibrium and two 
enforce the roll and pitch equilibrium. The three resulting rotor blade equations are 
associated with the flap, lag, and torsional motions of each blade. Also, the aero­
dynamic thrust and roll moments at the hub center are determined for the perturba­
tion aerodynamics in the dynamic inflow equation. All of these equations can be 
found in detail in Ref. 9 . 

The active control to suppress the air resonance instability is implemented 
through a conventional swash plate. The pitch of the k-th rotor blade is given by the 
expression 

(2) 

The d terms are small and these represent the active control inputs, while those 
without d are the inputs necessary to trim the vehicle. 

The stability of the system is determined through the linearization of the 
equations of motion about a blade equilibrium solution and the helicopter trim sol­
ution. The helicopter trim and equilibrium solution are extracted simultaneously us­
ing harmonic balance for a straight and level tlight condition [10]. After 
linearization, a multi-blade coordinate transformation is applied, which transforms 
the set of rotating blade degrees of freedom to a set of hub fixed non-rotating coor­
dinates [15]. This transformation is introduced to take advantage of the favorable 
properties of the non-rotating coordinate representation. The original representation 
has periodic coefficients with a fundamental frequency of unity, however, the trans­
formed system has coefficients with a higher fundamental frequency. These higher 
frequency periodic terms have a reduced influence on the behavior of the system and 
can be ignored in some analyses at low advance ratios [14]. In hover, the original 
system has periodic coefficients with a frequency of unity, but the transformed system 
has constant coefficients. 

Once the transformation is carried out, the system is rewritten in first order 
form. 

x = A(t/I)x + B(t/I)u (3) 

The fundamental frequency of the coefficient matrices depends on the number of 
rotor blades. For an odd bladed system the fundamental frequency is Nb per revo­
lution, while for an even bladed system the fundamental frequency is NJ2 per revo­
lution [15]'. Stability can now be determined using either an eigenvalue analysis or 
Floquet theory for the periodic problem in forward flight. An approximate stability 
analysis in forward tlight is also possible by performing an eigen analysis on the 
constant coefficient portion of the system matrices in Eq. (3) . 

The mathematical model was carefully tested by comparing results to other in­
vestigators' analytical and experimental results. The correlation with these results 
was good and verified that the effects of torsion, unsteady aerodynamics, and forward 
tlight were accurately represented in the model [9, 10] . 



167 

Inl1uence of New Modeling Effects on the Helicopter Configuration 
The configuration used in this paper is the same as the "Nominal Configuration" 

in Ref. 10 , and the data for the configuration is shown in Table I . The parameters 
are selected so as to yield a nominal configuration somewhat similar to the MBB 105 
helicopter in size and weight. The nominal configuration differs from the MBB 105 
in that it has an unstable air resonance mode, which was induced by adjustments in 
some rotor and body parameters. The system has 37 states. The five body degrees 
of freedom and the twelve rotor degrees of freedom (three degrees of freedom for each 
blade) produce 30t position and rate states. The dynamic inflow model augments the 
system with three more states giving a total system order of 37. Figure 3 shows the 
pole locations in the s-plane of the dominant modes of the nominal configuration at 
fJ. = 0.3. The lead-lag regressing mode is associated with the air resonance instability 
and is mildly unstable in this flight condition. It is with the body roll mode that the 
lcad-lag regressing mode interacts. Thus, for this particular configuration, the domi­
nant body motion of the instability is the rolling motion of the fus'CIage. 

TABLE I 

Data of the nominal configuration. 

Characteristic Dimensions 
Blade mass = 52 kg 
Rotor radius = 4.9 m 
Rotor rate = 425 RPM 

Rotor Data 
1=.85 
Xb = .36 
Ib = .18 
Jx = .00015 
Jy = o. 
Jz = .00015 
Pp = o. 

Fuselage Data 
Mp == 32. 
lexx = 1.0 
Ie = 4.0 

Horizontal Tail Bata 
XMT = 1.0 
ST = ~.04 
AR = 5.5 

e = .15 
Y = 5.0 
CdO = .01 
a = 5.90 
xA = O. 
Yb = O. 
b = 0.02749 

f = .60 
ZMII = .2667 
ZMe = .0333 

aT = 5.0 
CdOT = .007 

W"I = 1.15 at zero pitch 
Wu = .620 
WTI = 3.00 
.5 percent damping 
(1 = .07 
Rc = 1.0 
Nb = 4.0 

Figure 4 illustrates the influence of unsteady aerodynamics as well as the the 
effect of periodic coefficients (or forward flight) on the lead-lag regressing mode 
damping of the open loop configuration. The two sets of curves represent air reso­
nance damping of the configuration with quasi-steady aerodynamics and with dy­
namic inflow at various advance ratios. Dynamic inflow captures primarily the low 
frequency unsteady aerodynamic effect which is known to be important for coupled 
rotorjfuselage aeromechanical problems such as air resonance. The stabilizing effect 
of forward flight, which is evident in the figure, is consistent with behavior observed 
in previous studies [14]. For hover, the system has constant coefficients and thus 
the constant coefficient approximation and the periodic system produce the same re-
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suits, as is clearly evident in the figure. It is also evident from the figure that the ef­
fect of periodic coefficients is relatively minor. The quasisteady aerodynamic model 
produces a more stable system than the model which includes the unsteady aero­
dynamic effects as represented by the dynamic inflow model. It is also worthwhile 
mentioning that considerable differences between the two modcls exist particularity 
at low advance ratios. 

Figure 5 shows that neglecting the torsional degree of freedom on the nominal 
configuration increases the instability of the lead-lag regressing mode. The trend of 
the two curves also tends to diverge at high advance ratios. The addition of torsion 
also tends to amplify the effect of the periodic terms. At high values of advance ratio, 
the flap-lag-torsion model shows a much greater difference between the constant and 
periodic stability analysis than does the flap-lag analysis. Additional results of other 
effects can be found in Refs. 9 and 10. Furthermore, in Ref. 10, preliminary control 
studies were conducted on the configuration at the nominal weight to assess the im­
portance of various modeling effects. In these studies, simple full state feedback from 
the linear deterministic optimal regulator problem was used [16]. The relevant re­
sults that will be used throughout this paper are: 

(I) The torsional degree of freedom and unsteady aerodynamics are an important ef­
fect in an air resonance controller design model. Significant errors can arise in the 
closed loop damping if these effects are ignored. 

(2) The collective pitch input is not important in controlling the air resonance insta­
bility in forward flight up to fl = .4. 

(3) The periodic coefficients of the linearized model have a small effect on the open 
and closed loop damping of the air resonance mode for advance ratios up to 0.4. 
Thus, the constant coefficient approximation of the model should be sufficient for the 
initial control design. 

The feasibility of using a simple controller to suppress the air resonance insta­
bility throughout a wide range of operating conditions is one of the primary objectives 
of this paper. To accomplish this, parameters must be varied and the stability of the 
closed loop system must be evaluated. The parameter variations considered in this 
paper are liinited to those that change during the normal operation of the helicopter. 
Thus, the significant parameters are the advance ratio fl, fuselage mass MI" fuselage 
inertias Icxx' Icyy, and the fuselage center of gravity position X MC and ZMC. Checking 
the stability for every combination of these parameters would require an excessive 
amount of labor. A more convenient approach consists of introducing approximate 
relations which govern the variations of Icxx , Icyy, ZMC , and XMC' resulting from 
practical combinations of fuel, cargo and passenger mass which may be encountered 
during the normal operation of the aircraft. These relations can be found in Ref. 9. 

Since the preliminary studies revealed that the periodic terms are negligible, the 
stability analyses presented are based on the constant coefficient model (Le. the con­
stant portion of A and B of Eq. (3», unless otherwise indicated. The open loop 
lead-lag regressing damping of the helicopter configuration throughout its the flight 
regime is shown in Fig. 6. The horizontal axis is the advance ratio, while the vertical 
axis is the fuselage mass non-dimensionalized by the blade mass of 52 kg. A non­
dimensional fuselage mass of 32 plus four blades corresponds to the nominal total 
mass of 1872 kg. The figure indicates the system experiences an air resonance insta­
bility throughout most of the flight regime. Marginal stability exists at an advance 
ratio greater than .35 and the point of the deepest instability is at MF = 30 and in 
the vicinity of hover. 
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Compensator Design Method 
The controller aimed at suppressing air resonance in the flight envelope of the 

helicopter is based on an optimal state estimator in conjunction with optimal feed­
back gains [16]. A constant coefficient model is assumed since the results of the 
preliminary control studies [10] indicated a periodic model was unnecesary. Sum­
marizing, we assume a linear system of the form 

(4) 

(5) 

where Ws and Wo are the state and observation noise processes. A few measurements 
yare used to drive the estimator 

/\ ./\ /\ 
X = Ax + Bu + K~y - y) (6) 

/\ /\ 
y=Cx (7) 

Kf = p.cT(GGT)-1 (8) 

The optimal filter gains Kr come from the steady state Riccati equation 

(9) 

where the state and observation noise processes are uncorrelated zero mean white 
noise processes with state and observation noise covariances FFr and GGT. The es­
timator states are then used to form the control law 

/\ -I T /\ 
u = - KeX = - R B P eX (10) 

The feedback gains are determined from the linear quadratic Guassian (LQG) opti­
mal control problem which minimizes 

(II) 

The matrix Q is the positive semi-definite state weight matrix and R is the positive 
definite input weight matrix. The gains result from selecting these weight matrices 
and solving for the positive semi-definite solution of 

(12) 

which is the dual of the filter Riccati equation. In the s-plane, the estimator and 
optimal feedback gains form a compensator 
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(13) 

The approach outlined above is a powerful approach to feedback design, how­
ever, if the design model differs from the actual plant to be controlled, as is the case 
of any real system, poor performance and even instability can occur. The possibility 
of a controller lacking "robustness" is not surprising since no provision is made to 
account for uncertainty in the design process. In all applications, the design model 
and the actual plant to be controlled will have unavoidable differences due to the 
limitations associated with formulating models of physical systems. Our objective in 
this paper is to design a controller at an operating condition and require it to function 
adequately at the off design conditions. Thus, the differences between the design 
model and the actual plant to be controlled will be exacerbated. An additional 
drawback of the design method described above is that there are many possible 
choices of design variables in the covariance, state weight, and input weight matrices. 
This selection process is difficult without the use of important concepts (e.g. band­
width) that have proved so useful in SISO time invariant linear control design [17]. 
To overcome these difliculties, the multivariable frequency domain design methods 
of Refs. 18, 19 , and 20 are used. This will allow interpretation of the design process 
using frequency domain concepts and account for the possibility high frequency 
modeling error. Furthermore, this can be done While retaining the structure of the 
state space approach previously described. 

With these points in mind, it is now necessary to discuss the design process for 
MlMO systems in the frequency domain. The general problem is one of designing a 
compensator K(s) to control the MIMO system (G(s) + fiG(s» as shown in Fig. 7. 
How the compensator is selected is not important for this brief discussion, but for this 
paper it will be accomplished through the state estimator and optimal regulator by 
selecting the filter covariance and regulator weight matrices. In addition to meeting 
a given performance specification is the requirement that the controller do so in the 
presence of modeling errors represented by fiG(s) in the figure. The specific repre­
sentation of this error is in the form of an unstructured multiplicative uncertainty at 
the model output. 

G(s) + fiG(s) = [1 + L(s)]G(s) (14) 

Other unstructured uncertainty models are available depending on the type of mod­
eling errors one encounters, but for the objectives of this paper (14) is quite suflicient. 
What is of particular interest is the singular values of the uncertainty matrix L. In 
particular, the maximum singular values, which define the error function. 

(15) 

The error function lm(w) characterizes the magnitude of the modeling error at all 
frequencies. The maximum (minimum) singular value of any matrix A is the square 
root of the maximum (minimum) eigenvalue of the matrix product AAH. The singu­
lar values arc quantities used to characterize matrices as either "large" or "small". A 
small matrix,is one with a small maximum singular value, while a large matrix is one 
with a large minimum singular value. For a system, a typical curve of lm(w) might 
look like Fig. Sa. A high modeling fidelity is shown at the low frequencies, but this 
fidelity gives way to large errors when the frequency becomes sufliciently large. Fig­
ure 8b indicates where the singular values of this system might be restricted for the 
error bound shown. 

With this specific characterization of the error bound in the model, one can ex­
amine two fundamental aspects of control design, performance and stability. For the 
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closed loop system in Fig. 7, a general statement of performance can be found by 
using the output sensitivity matrix given by 

S(jw) = (I + G(jw)K(jw»-1 (I 6) 

Adjustment of the size of this function through K(s) affects th"e closed loop perform­
ance of the system. High gain results in small S, which gives a closed loop system that 
is less sensitive to the disturbance inputs and command inputs shown in Fig. 7. The 
closed-loop stability of the system is determined from the MIMO Nyquist stability 
criteria, which requires 

if[T(jw)] = if[G(s)K(sXI + G(s)K(s»-I] < _(1_) 
Im w 

(17) 

Eq uation (17) guarantees sta bility, of course, if the error in the model is precisely as 
in Eq. (14). This stability requirement demands a low gain at frequencies where the 
model uncertainty is high. This is so, since a large error function necessitates small 
T(s), which in turn requires a small loop gain. Thus, meeting both performance and 
stability requirements is a task of adjusting the singular values of T to small values 
when modeling uncertainty is high and adjusting the singular values of S to small 
values to give good closed loop performance. These two criteria cannot be met si­
multaneously since both T and S cannot be both made arbitrarily small. This is easily 
seen when one considers that S + T = I and a decrease in one always requires a in­
crease in the other. 

The design process can be carried out using plots of the singular values of T and 
S to adjust the size of each in the appropriate frequency range [19]. Alternately, 
this process can be visualized by using the singular values of the open loop 
feedforward cascade GK [18]. Figure 9 shows an example of the singular values of 
GK that have been placed between the bounds representing performance and stabil­
ity requirements. The low frequency requirements are to make the lower singular 
values clear the performance requirements (high gain to produce small S). The fre­
quency where the error function nears unity is where the loop cross over (i.e. where 
aJT}:::d) needs to be placed in order to avoid an instability due to modeling error, 
which can be seen from Eq. (17). When if[T(jw)] < < I, then 
if[T(jw)]~if[G(jw)K(jw)] and the maximum singular value of the open loop transfer 
function GK must be less than the inverse of 1m for stability to be maintained (low 
gain for small T). 

A convenient means of achieving this loop shape selection is through Loop 
Transfer Recovery (L TR), which is outlined in Refs. 18 and 20. This method can 
be considered an optimal balancing of the contradictory requirements of good per­
formance (high gain, small S(s» and maintaining stability in the face of uncertainty 
(low gain, small T(s». To discuss the method, the input weight matrix is chosen as 
R = p~I and the state weight matrix is Q = q~HHT + Qo in the optimal regulator. In 
the filter, the observation noise covariance is E[ wown = ptI and the state noise 
covariance is· E[ wswIJ = qWFT. The first step in the method is the filter design, 
where Pr, qr, and F are selected to give an optimal filter gain Kr. These values are 
selected to give a desired loop shape defined by the maximum and minimum singular 
values of the matrix C(ls - Atl Kr. The guidelines for selecting this loop shape are 
those which were previously described for selecting the loop shape G(s)K(s). Once the 
desired loop shape is determined, the second step is to recover it through the regulator 
by setting H = C and letting qc approach a large enough value. This second step is 
based on the result 
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(I8) 

for minimal phase G(s) (Le. all transmission zeroes in the left half of the s-plane) 
[18, 21]. With this result in mind, the statement" qc large enough" simply means 
large enough to recover the desired loop shape that was selected in the filter design. 
The requirement that G(s) be minimal phase is necessary since the recovery process 
of Eq. (I8) inverts the plant dynamics making the zeroes of G(s) the poles of the 
compensator K(s). If the zeroes are in the right half of the s-plane, then with a large 
enough gain the compensator poles eventually become unstable. The procedure pre­
viously discussed is sometimes referred to as "Sensitivity Recovery" [16]. 

An important result of interpreting the loop recovery method as an optimal bal­
ancing of T and S is that the frequency regions where C(sl- Ar-1Kr is large are re­
gions of high penalty on the size of S. Choosing a loop shape that is large in a given 
frequency range results in small S, which is a region where good performance is ex­
pected. Thus, choosing a loop shape shape entails placing the peaks of the loop in the 
frequency region where "tight" control is desired. Two other properties of the L TR 
method are that the loop shape is guaranteed to have a high frequency runoff pro­
portional to I/w and it has guaranteed robustness properties at the loop cross over. 
Regarding the last item, if the error is precisely as in Eq. (14) , then a 50 percent 
modeling error at the loop cross over is possible without destabilizing the closed loop 
system. These two properties are also useful in selecting the loop shapes of the control 
design. Since the model is expected to have higher errors in the high frequency re­
gions, the loop runoff can be used to attenuate the effects of these errors by proper 
placement of the loop cross over frequency. 

Controller Design 
The design approach of this paper is to select an operating point to design a 

constant gain controller, and use this controller throughout the operating range of the 
helicopter. The design point is chosen to be in hover (p. = 0) with the nominal weight 
(Mr = 32), which is a point near the region of worst instability for the configuration. 

A single roll rate measurement of the fuselage and the sine and cosine swash plate 
inputs are chosen to control the instability. The selection of the inputs is based on the 
previous control studies, which demonstrated the ineffectiveness of the collective 
swashplate input in controlling the air resonance instability in forward flight [10]. 
The roll rate is selected as the measurement since it is this motion that the lead-lag 
motion of the blades interacts with during the air resonance instability. Examination 
of the eigenvectors of the unstable mode confirm this statement showing that the roll 
motion is dominant when compared to the pitch motion. The lead-lag degrees of 
freedom of the blades also could serve as measurement. However, it is preferrable to 
use measun;ments taken from a non-rotating reference frame (Le. the frame of the 
fuselage). This avoids the problem of transmiting signals across the rotor head. 

The full model with the given set of inputs and output is not minimal phase, 
which is a requirement of the loop recovery method for selecting design loop shapes. 
However, a reasonable minimal phase reduced model can be formulated that closely 
ressembles the full model input/output characteristics in the frequency range of in­
terest. This is a perfectly acceptable practice provided that the the design model er­
rors are considered during the loop shaping process [20]. The reduced model is 
formed by removing modes from the full model. This is accomplished by transform­
ing the full system to block diagonal form and then striking out the states from the 
model that are associated with the undesirable modes. The design model that meets 
the minimal phase requirement is one consisting of the body roll, body pitch, lead-lag 
regressing, and the lead-lag progressing mode. The open loop poles of the design 
model are given in Table 2 and their order is the order of the modes in the model. 
The collective and differential lead-lag modes are near the frequency range of the air 
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resonance instability (Fig. 3), but are not retained since they are uncontrollable and 
unobservable in the hover condition. The low frequency body modes are also not 
retained in the model since control over these modes is not the objective of this paper. 
These modes are in the frequency range of order .Ol/rev, which is a full decade below 
the frequency range of interest. Thus, it is assumed a high pass /ilter can be used if 
necessary to leave these modes unaffected by the air resonance controller. This would 
also prevent any interaction of the controller with pilot inputs or any Stability Aug­
mentation System (SAS) on the yehicle for controlling the low frequency body modes 
[22J. 

TABLE 2 

Open loop poles of the design model. 

-.05231 ± j .16818 
.00439 ± j .37095 

-.09223 ± j .40111 
-.00634 ± j 1.8335 

Body Pitch 
Lead-Lag Regressing 
Body Roll 
Lead- Lag Progressing 

The design model is eighth order and closely ressembles the full model, as can 
be seen in the singular value plot of Fig. 10 .. The model has only one output, so the 
maximum and minimum singular values of the system are the same. The reduced 
model is very close to the full model in the frequency range of interest capturing the 
peak due to the lead-lag regressing mode, which is the unstable mode that is to be 
controlled. The model also captures the sharp peak of the other dominant mode of 
the system, which is the lead-lag progressing mode. Naturally, removal of the higher 
and lower frequency modes produces the errors in these regions. The gain and phase 
plots for each input/output combination were also compared for the full and reduced 
models and they too showed good agreement up to a frequency near Ijrev. A reduced 
model is being used in the design and care must be exercised in the placement of the 
bandwidth of the controller. The reduced model is valid in the frequency range below 
Ijrev, so the crossover of the loop shape should not greatly exceed this value. 

With the design model chosen, the next step might be to generate the error 
function by generating models at various operating points. However, this approach 
is of dubious value. In theory, once 1m is defined the closed loop stability can be 
checked through Eq. (17) without regenerating the models at the full range of oper­
ating conditions. Unfortunately, as stated before, Eq. (17) is only true if the errors 
in the system are precisely as indicated in Eq. (14) (Le. a multiplicative unstructured 
uncertainty at the model output), which is not necessarily the case. Because of this, 
a check of the closed loop stability using the controller on the full model throughout 
the operating range is still necessary. In addition to the stability problem is the 
problem of evaluating the performance of the controller. The performance as indi­
cated by the size of S (Eq. (16» or by the singular value boundary (Fig. 9) are both 
useful for discussion purposes, but they are not a practical means of evaluating the 
performance of the problem of this paper. What is of real interest is the amount of 
damping in the the lead-lag regressing mode, which also requires that the design be 
checked at all of the operating points. Thus, instead of calculating the error function 
directly, an assumed error fuction is used to guide the design process through the 
ideas of loop cross over and loop run off. Stability and performance of the controller 
is then checked directly at all of the operating points. The assumed error function is 
to be of the form as in Fig. 8 with good model fidelity at low frequency and poor fi-
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delity at the higher frequencies. The eventual cross over frequency of the loop GK 
is determined by the location at which the error function of the system becomes too 
large (Le. 1m;;::: I ). Obviously, it is assumed that the air resonance mode is adequately 
modeled, so a lower bound on the cross over frequency is at the instability frequency 
of .37. The upper limit on the crossover is limited to l/rev due to the existence of the 
unavoidable Ijrev noise and the limitations in the reduced design model. 

TABLE 3 

Closed loop poles of controller A. 

-.44445 ± j 2.0286 
-.07980 ± j 1.8333 Lead-1.ag Progressing 
-.30337 ± j .37971 
-.03659 ± j .37472 
-.00780 ± j .37441 Lead-Lag Regressing 
-.10205 ± j .17774 
-.06748 ± j .17178 
-1.0290 
-152.52 

The first controller is desi~nated controller A, and is chosen with the filter noise 
covariances given by E[wsw"{J = (.001)21 and E[wown = (.001)2. Since the state 
noise covariance is diagonal, all of the states have equal state noise disturbances en­
tering into them. The regulator is chosen with weight matrices R = I and 
Q = .32 I + q~ CTC. A recovery factor of qc = 10,000 is sufficient to recover the loop 
shape show in Fig. II. Examination of this loop shape shows two peaks near the 
lead-lag regressing frequency and the lead-lag progressing frequency. The cross over 
frequency of the first peak is near .73, which is well below the one per revolution re­
quirement. The closed loop poles of the controller applied to the design model are 
given in Table 3. The lead-lag regressing mode is stabilized from an open loop 
damping of .00439 to a closed loop damping of -.00780, and the lead-lag progressing 
mode is shifted from -.0063 to -.080, which is beneficial though not necessary, since 
this mode was stable before the application of the controller. This shift in the lead-lag 
progressing mode is the result of the large gain seen in the peak near 1.8 in Fig. II. 
Applying this controller to the full model yields a stable lead-lag regressing and 
progressing (jam ping. Unfortunately, the flap progressing damping is strongly de­
stabilized thoughout most of the operating range of the vehicle. Figure 12 shows this 
mode is only marginally stable at a very high loading condition, and below MF = 37 
the mode is unstable for all advance ratios. The reason for this higher mode desta­
bilization is the peak in the loop gain at 1.8, which is not necessary since the lead-lag 
progressing mode is not what needs to be stabilized. This particular loop shape places 
a high gain near the lead-lag progressing mode frequency, which is ncar a region 
where the design model begins to significantly deviate from the full model. From the 
discussion in the previous section on modeling uncertainty, it is dear that this choice 
of loop shape is a poor one. 

The next controller, designated controller B, uses the same weight functions as 
before except with a different state noise covariance given by 
E[wswiJ=(.001)2diag[I,I,I,I,I,I,0,0]. This choice gives input noises into all 
modes except the lead-lag progressing mode and effectively filters this mode out of the 
loop shape. The loop shape of this controller is also shown in Fig II and it only has 
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one cross over frequency near .73. The peak near 1.8 is eliminated from this loop 
shape, and the only region of high gain is near the instability. The closed loop poles 
of this controller are the same as those of Table 3 except for the lead-lag progressing 
mode, which is not moved from its open loop position of -.00634 ± j 1.83. The ap­
plication of this controller on the full model gives stable lead-lag regressing damping 
as shown in Fig. 13. The damping is stable throughout the flight regime being the 
weakest in the vicinity of MF = 23 and JI. = .1 I. 

Controller B was checked to verify that the periodic terms in the full model do 
not significantly alter the stability results. The controller was also checked to show 
that excessively large control inputs are not necessary to suppress the air resonance 
instability. A time domain simulation showed that the closed loop system could 
suppress an angular roll rates as large as 6.5 deg/sec with less than two degrees of 
swash plate input. Addtional results on the other controller designs can be found in 
Refs. 9 and 23 . 

Concluding Remarks 
A coupled rotor/fuselage helicopter model which accounts for the effects of blade 

torsional flexibility, unsteady aerodynamics, and forward flight was developed. Re­
sults obtained from using this model indicated that the role of torsional flexibility and 
unsteady aerodynamics is important, while the effects of forward flight (or periodic 
coefficients) is fairly small. Subsequently, the model was used to demonstrate the 
effectiveness of using an active control system to stabilize air resonance. The heli­
copter configuration considered was selected to be unstable in the whole flight envel­
ope, thus this paper also demostrates the practical feasibility of using an active 
controller to augment the stability of the lead-lag regressing mode, which is known to 
playa key role in helicopter air resonance. The controller was designed using multi­
variable frequency domain techniques with the optimal estimator and optimal regu­
lator structure. The technique, which is based on transfer function singular values, 
proved to be particular effective resolving problems that would not be obvious if only 
the covariance and weight matrices were used in the design process. To select the 
design loop shapes, Loop Transfer Recovery was used, which can be interpreted as 
an optimization balancing system performance requirements and the requirement of 
stability in the presence of modeling errors. 

The controller used a single roll rate measurement and both the sine and cosine 
swash plate inputs. 'This configuration is particularily simple since the measurement 
is taken from a non-rotating (frame of the fuselage) reference avoiding the need to 
send signals across the rotor head. Using sine and cosine inputs is also simple and 
can be accomplished through a conventional swash plate mechanism. A constant four 
mode design model consisting of the body roll and pitch modes and the lead-lag re­
gressing and progressing modes was found to be quite practical for control design. 
The controller was shown to stabilize the system throughout a wide range of loading 
conditions and forward flight speeds and it required small inputs of the order of three 
degrees or less. 
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Summary 

A new dynamic control system for flexible space environment use manipulators has 
been developed from the practical viewpoint. The key concept in the proposed method 
is that the local position and torque PD feedback loop at each joint should be used 
for position and structural vibration control. First, the authors derived manipulator 
dynamics, and then feedback control was developed, using an appropriate potential 
function. Secondly, an experimental setup using an air suspended SCARA flexible 
manipulator is described. The effectiveness of this method has been verified by ex­
perimental results, adapting it to automatic payload handling. 

1. Introduction 

In the near future, many robots will be used in space for extravehicular tasks, such 

as construction of a space station, or periodic repair, cleaning, and maintenance of 
satellites. Most of these robots must be structurally flexible, reflecting the necessity 

for their light weight based upon minimum energy consumption and shipping cost, 

as well as handling of large mass payloads in a no gravity envirollment. Therefore, it 
is necessary to control the structural vibration in this flexible arm for quick, precise 
tracking of the trajectories and accomplishment of tasks. 

Recently, there have been a number of studies reported concerning this subject. 

Sakawa [1] used the optimal control theory selecting the mode amplitude as a control 

parameter. Cannon [2] used the feedback from the link's end-point position. These 
methods are effective for a one-link arm. However, it seems difficult to apply these 

methods to multi-link manipulators from the viewpoint of dynamic model derivation. 

The authors developed a new dynamic control method from the application viewpoint. 
In this method, flexible manipulators are simply controlled by the local position and 
torque feedback at each joint. An experimental 1.5 m long flexible arm was con­

structed to investigate the effectiveness of this method. Experimental results obtained 

through automatic payload handling showed the effectiveness of this method. 
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Dynamics of Controlled Mechanical Systems 
I UTAMIIFAC Symposium Zurich/Switzerland 1988 
© Springer·Verlag Berlin Heidelberg 1989 



182 

2. Mathematical Model Derivation 

Let us consider a planar flexible manipulator with n degrees of freedom (d.o.f.). The 

following assumptions were made for this arm: 

(1) Deflection w is small, and any extension is neglected. 

(2) Friction and backlash are neglected in the system. 

(3) The Euler-Bernoulli model is used for the beam, for which the rotary inertia 
and shear deformation effects are neglected. 

The motion of the arm with a bending vibration is described by the coordinate system 
shown in the Fig. 1. Yi is defined as follows [2]: 

i = 1,··· ,n. ( 1) 

Also, the local vector d i is denoted as follows: 

i = 1,··· ,n. (2) 

Note that superscript t denotes a transpose while the other t denotes time. The 

position vector for any point at ri on link i, with respect to the base, is given as: 

i = 1,··· ,n. (3) 

where It; denotes a transpose matrix. The system kinetic energy can be written as 

n t 
J{ = Lin' kidri 

i=l 0 

(4) 

where ki denotes the kinetic energy per unit length. It can be expressed in a quadratic 
form as follows: 

(5) 

where Pi is the mass per unit length and the dot denotes the time derivative. The 
potential energy V can be written in the form: 

where 

n t 
V = Lin' Vidri 

;=1 0 

1 (EPWi) 2 1 (82yi )2 
Vi = '2Ei Ii 8rl = '2E;Ii 8rl 

(6) 

Ii is the area moment of inertia for the link i about the neutral axis. Ei is Young's 
modulus for the link. The Lagrangian is defined as: 



where 

n ( 
L = L Jo . L;dr; 

i=l 0 

Li = ki - Vi· 

Using Hamilton's principle[3]' the following is obtained: 

8 (8 Li ) 82 (8 Li ) 8 L; _ ° 
8t 8Yi - 8rl 8y';' - 8y; -

The boundary conditions are (Fig. 2): 

-:~: I = Mi(O) 
Yi ri=O 

88. (~L~:) I = Qi(O) 
r, y. r,=O 

0< ri < Ii. 

Yi(O, t) = yHO, t) = 0 

-:~~ I = Mi(li) 
y. r.=l. 

l88. (88L,~) I = Qi(li) 
r, Y. r.=l. 

where the prime denotes the derivative with rio Let us define Pi as 

8Li 
Pi=-8· . 

Yi 

Using this, Eq.(8) is rewritten with boundary conditions as 

Fig.l. Coordinates for n link 
flexible manipulator 

Fig.2. Flexible manipulator 
in a horizontal plane 
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(7) 

(8) 

(D) 
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(10) 
0< r' < I· - '- , 

where 

F(H;) = Q;(O)6(ri) + Qi(/)6(r; - Ii) - -a . {M;(/)6(ri - I;)} + -a 2 (a II) 
r, r; y; {

a a2 all; 

n t L: io . Hi = J( + V 
;=1 0 

and 6 denotes Dirac's delta function. 

3. Flexible Manipulator Control 

Let us consider the control law from the standpoint of energy control in the system 
where the energy is both kinetic and potential. If the potential energy accumulates 
in the link, vibration naturally occurs. Such vibration is caused by the exchange 
of potential energy to kinetic energy. Accordingly, the authors considered that the 
vibration restraint would be accomplished by modifying this energy flow, so as to 
minimize both kinetic and potential energy at the target point. 

When controlling the global motion for general rigid manipulators, such as those 
for most industrial robots, each joint is independently controlled by simple linear 
feedback. With this algorithm, Takegaki [4] showed that the system potential energy 
had a very large effect on both dynamic and static mechanical properties and that 
it was natural to attempt to improve the system characteristics by modifying the 
potential energy. In the case of flexible manipulators, a careful, accurate control of 
each joint angle is necessary for implementing the global motion and is accomplished 
in the same way. 

Let us consider the potential function as follows: 

(11) 

This is a desired potential function, which is chosen in accordance with the control 
goal. Vii is the position control function: 

_ 1 Ciai «(J (J*)2 
Vii -"iT ; - ; ai > O,C; > 0 (12) 

where (J; is a target point. V2; is the vibration control function: 



An additional damping Di is considered as follows: 

. d 
riDi = -cibiOi8(ri) - di dt {r;F(Hi)} 

Let us denote Hi as follows: 

From Eq. (10), we obtain 

setting 

{
. off; 
y; =-­

°Pi 
. off; -

Pi = -- - F(H;) + Di oy; 

b; > 0, di ;:: O. 

a oH; off; ( - ) 
-{M;(0)8(r;)} = - + F(H;) - - - F H; + D;. 
ori oy; oy; 
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(13) 

(14) 

(15) 

(16) 

(17) 

Eq. (16) denotes the system dynamics after Vii and V2i are added. Now, denoting Ui 

as the actuator torque, 

Mi(O) = U; - J;B; (18) 

is satisfied at r; = 0 (Ji : inertia of output axis). Then, the integral of Eq. (17) with 
r; gives 

- . d 
U· = J·O· + c·[{a·(O~ - 0·) - b·O·} - T.-]- d·-T,. 

• •• • '. • • • • • dl • 
(19) 

where 

11 = EiliW~/(O,t). 
Eq. (19) shows that the controller consists of the local position and torque feedback 
loop, as indicated iiI Fig. 3. The authors named this law the LTIP method (Local 
Torque feedback In the Position loop). Let us consider ff as a Lyapunov function for 
the system. 

Position 
PD Feedback 

Torque 
PD Feedback 

Fig.3. Control blockdiagram 



186 

fI = t 1/; fI;dr; 
;=1 0 

(20) 

Differentiating fI along the solution trajectory in Eq. (16), we obtain 

n / - - -
H "'1 '{(alI;). (alIi). alI;'/I = L...J ~ Yi + -8 . p; + (a /I )y; }dr; 

;=1 0 Y. p, Yi 

n / 

= L(-b;c;O;- d;E;liO;w~/(O,t) - d; r' E;I;w~/2dri) (21) 
;=1 Jo 

~ t[-(b;c; - ~d;)O;- ~Eild2d; t; w~/2dri - Eiliw?2(0,t)}]. 
;=1 Jo 

Therefore, if d; = 0 or 

1 2 
b·c· > -d· ., 2' 

is satisfied, asymptotic stability is proved by Lyapunov's Second Method [5]. 

4. Experimental Setup 

(22) 

An experimental equipment was built to investigate the validity of this method. The 
authors named this equipment TESRA-1 (Teleoperated Elastic Space Robot Arm). 
This equipment consisted of a two dimensional air suspended flexible manipulator, 
payload, and controller. Fig. 4 shows this equipment. 

The flexible manipulator was about 1.5 m long. It had two flexible links and three 
d.oJ. (shoulder, elbow, wrist). An actuator was installed at each joint. It consisted of 
a DC motor and a planetary gear reducer (1:100 reduction ratio). The sensor system 

consisted of a potentiometer for sensing the joint angle, a tachogcnerator for sensing 

the motor velocity, and the strain gages at the base of each link for sensing the joint 
torque. Flexible links for this manipulator were made from stainless steel. The link 
diameter was 6 mm. The total weight for each joint and hand were 4 kg and 1 kg. 

This arm floated on an acrylic plate base, using four air bearings so as to simulate a 
no gravity environment in the horizontal plane. A small CCD camera, 35 mm (W) x 

43 mm (II) x 70 mm (L), was installed on the manipulator's hand (Fig. 5). 

The payload consisted of lead sheets. By piling up these sheets, the weight could be 

changed up to 300 kg. A handle for grasping was installed at one side of this payload 
and a target marker was attached on it. This marker consisted of a rectangle formed 
by 4 LED points, 40 mm (W) x 30 mm (II). 



187 

This manipulator was controlled by a MOTOROLA digital computer VME-I0 system 
as the main computer. Its MPU was the 16-bit 68010, and the VERSAdos multi­

tasking system was used as the operating system. Sensor outputs were sampled at 15 

msec intervals through a 32 ch AID board. Commands were fed to the servo drivers 
through the 4 ch D I A board. Fig. 6 shows this system composition. 

5. Experimental Result 

The LTIP method was applied to a typical space environment robot task; autoll1atic 

handling of a very large mass payload. Fig. 7 shows this task sequence. First, the 

manipulator was located about 40 cm from the payload. When the start command was 

actuated, the manipulator searched for the target marker with the CCD camera. After 
detecting this marker, the manipulator started to approach the payload, using position 
and attitude data obtained from the relative positions of the 4 LED points. When 
there were no vibration control for the manipulator, the image of the marker from 
CCD camera vibrated due to link vibration, therefore it was very difficult to detect 
the correct position and attitude. For example, Fig. 8 shows the manipulator motion 

without the LTIP. Although each joint moved along the planned path, vibration 
occurred. Fig. 9 shows the motion with the LTIP, effective vibration restraint is 

obvious. The high frequency vibration in the angle record results from the resolution 

of the data sensing system. 

The manipulator grasps the handle of the payload within 2 mm positioning accuracy. 

Finally, the manipulator transports the 40 kg payload about 80 cm and positions it us­
ing the LTIP method. If this experiment were carried out without vibration restraint 
control, the link would begin to vibrate at about 0.1 lIz. This vibration continues for 
a minute and a half. However, using the LTIP method, no structural vibration occurs 
such that smooth and quick positioning can be realized. Fig. 10 shows the results of 
the LTIP measured from the time when the manipulator approached until grasping 
the handle. The manipulator arrived at the transient target point after 16 seconds 
with minimum vibration. This vibration results from the wrist actuator movement 
which pivots the CCD camera so that it is always pointing toward the target. Here, 
control gains were chosen by trial and error. 

6. Conclusions 

In this study, the authors proposed the LTIP method for dynamic control of flexible 
manipulators from the energy flow view-point. In the LTIP, desired torque is calcu­

lated from a comparison between desired angle and actual output. TheIl the actuator 
is controlled so that joint torque becomes equal to the desired torque. In the exper-
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iment demonstrated here, the authors used a SCARA manipulator to disregard the 
torsional vibration. However, this method is also adaptable for general manipulators, 
and the experiment on 3D arm was implemented at Miura lahoratory, The Univ. of 

Tokyo [6]. 
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Fig.4. TESRA-I configuration 

Fig.5 . cco camera and target marker 
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(COHPUTOI 

Fig.G. TESRA-I composition 

- - --
TRANSPORTATION 
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- < ............ 
~~ APPROACH 

Fig.7. Task sequence 
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Abstract 
The single-axis gravitational orientation mode is considered 
for the Salyut 6 and 7 orbital stations. An integral statis­
tical technique is described for determining the real rota­
tional motion of the stations in this mode by the solar and 
magnetic sensor indications. The technique is illustrated by 
computations of residual microaccelerations aboard the sta­
tion; their knowledge is important for an analysis of some 
technological experiments. 

Introduction 
The Soviet orbital stations Salyut 6 and 7 represent elonga­
ted structures with large lateral moments of inertia. This 
fact allowed an extensive use of the single-axis gravitatio­
nal orientation mode of the station [1, 2]. In this mode the 
station performs the oscillatory or rotational motion around 
the longitudinal axis directed approximately along the local 
vertical. To carry out some scientific experiments it is ne­
cessary to know the station orientation more exactly. Below, 
an integral statistical technique is described for determi­
ning the attitude motion of the Salyut 6 and 7 stations in 
the gravitational. orientation mode by using the solar and mag­
netic sensor indications [3]. At given times the sensors allow 
the onboard measurements of the Earth's magnetic field strength 
hi and the unit vector ~ indicating the direction to the 

Sun (measurements of ~ are possible only on the illuminated 
part of orbit). A set of measurements performed on some time 
interval is processed by using the least square method and 
integrating the motion equations of the station with respect 
to the center of mass. The developed technique allowed solving 
a number of scientific problems that required knowledge of 

G. Schweitzer, M. Mansour 
Dynamics of Controlled Mechanical Systems 
IUTAMIIFAC Symposium Zurich/Switzerland 1988 
© Springer-Verlag Berlin Heidelberg 1989 
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the station's attitude motion. To illustrate this technique 
we estimate microaccelerations aboard the station, which is 

necessary to analyze some technological experiments [~J. 

Equations of attitude motion of the station 

The time interval, on which the processing is performed, is 
approximately equal to a period of the station revolution 
along the orbit. Also it is known that during this interval 

the station is in the state of gravitational orientation. These 
circumstances allow using rather simple motion equations for 
statistical processing. The equations are derived under the 
following assumptions. The station is assumed to be a rigid 
body whose configuration is a cylinder with three attached 
inertia-free plates - the solar batteries. Each battery has 
a single degree of freedom - it can rotate about its axis that 
crosses the center of battery and an axis of the cylinder. On 
the part of orbit illuminated by the Sun the batteries are 
turned so that angles of incidence of solar rays on their sur­
faces are minimal. In the Earth's shadow the batteries are 
fixed with respect to the cylinder and take the positions they 
occupied at the time when the station entered into the shadow. 

The orbit of the station's center of mass is circular and in­
variable in the absolute space. The gravitational and resto­
ring aerodynamic torque effects are taken into account. It is 
assumed that atmosphere is fixed in the absolute space, its 
density along orbit is constant and the air molecules suffer 

an absolutely nonelastic collision at the interaction with 
the station. Moreover, it is assumed that the longitudinal 
axis of the station slightly deviates from the local vertical. 

In order to write the motion equations we introduce two right­
hand Cartesian systems of coordinates: the OX1XZX,3 system 
formed by the principal central axes of inertia of the sta-

tion, and the orbital system OX1X Z X 3 • The axis .:c1 
coincides with the longitudinal axis of the station and is 
directed to the service module, the axis J(3 is parallel 

to the geocentric radius vector of point 0 ,the axis Xi 
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the station is directed along tangent to the orbit towards 

motion. Orientation of the system OX1xZ x,3 
to OX1X2 XJ is given by angles 't , S' 

with respect 

and ~ [ 1-31. 
The angles are determined in the following way. In order to 

transform the system OX1XZXS into OX1XZX3 it should 

be turned first by angle S- + xlz around the second axis, 
then by angle ~ around the third axis and finally by angle 

'if around the first axis. Angles 0' and.fi give the di­
rection of the X1 axis in the orbital system of coordinates, 

while angle 'if gives the station turning around this axis. 

When S- = j3 =0 ,the X 1 axis is directed to the Earth's 

centor. 

-Let a be an arbitrary vector; a.1 ' aZ and a.J are its 
components in one of the introduced coordinate systems. If 

these components are related to the OX1 XZ X3 system we 

may write a:; (0,1, ct2 • a.3)X ; if they are re-

lated to the OX"XZX 3 system, we write a=(a1, aZ ,aJ)X' 
For the arbitrary vector a = (a1, a Z • a.3 )X = (A 1 , AZ ' As ) X 
the relations 

3 

AL=L:aa,alc (i=1,Z,J) 
k=1 

J 
are valid, where !ICtikllt.k=1 is the matrix of transfor-
mation of the system OX1XZXJ into OX1XZXJ • 

Elements of this matrix are expressed through angles ~ , 0 
and J . The first and third rows of the matrix have the 
form 

a11 = - sinS' co,s~ , a 31 -= - C()s S' COS} , 

a 17. = cos S' sin i + sinS' sin j3 c"os 71, a 32 :; - sino sin(/ +- cos S'slnJ3 cos~, 

a.1.~ = 00.50 cosi - sinS'sin; sini, a33 = - sln~ cost -CJ)s'if sinfl sin'i. 

We introduce the designations: t is the time; t1 is an 
initial point of the interval on which the measurements are 

processed; COo is the angular velocity of orbital motion; 

7::=WO (t-t1 ) is the dimensionless time; W=Wo (S11,.Q.,2.,..Q.a\.c 
is the absolute angular velocity of the station; uIZ = S1lCOS~­
- .Q. 3 sin.. i, "tOJ :; & Z sin 2f + .Q. 3 cos ~ ; A, B and C are the 
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moments of inertia of the station with respect to the axes OC1 , 

X z and X3 ; )"=A/C, f= (B-C)/A • The motion equations 

have the form [3]: 

~ = Q 1 - ur~ t~ ~ , 8- -= :Sj -i, j = UJ3 ' 

&" = jL (S1Z&S - 3 a3Z a 33) - a 13 PZ • 

Urz = WZ zV3 t~ J - 3SLnbCIJst COS} +).Q$', 

tu3 = - UfZ2. tff} - 3 cosZ5 Slilj3 (X)SJ3 + ).. Q P , 

0 0 = QC050-Q'sino, Qj =Qsin~+Q'cos~, 

Q = - [(1+fl)(S2.1J1J - 3a.31 a33 ) - a13 f1] /(I+).f-), 

0'= (i-f'.J(.f1. 1.QR, - 3a31 aJz ) + a 11 pz -a1Z P1 , 

f1 = fz +flJ [ILo mcux(la'lz/,l ct 13I)+U1I Ct 13I+ 

+ (U o + 2 U z) I a 12 I ] ' 

fz =jl1Ia131-1[uorruw:(a~3-a~Z ,0)+/,(,1 a;3] , 

u, 0 =. min ( 11'1 ? VZ) , u 1 -= Yncu.x (1ft - Vl. ' 0 ) > 

u, 2 = fncvx (VZ - 'If'1 , 0) , 

:l- Z - ~ _ Z Z )-~ v:,=/S3/(S1+ S3) "?"U'Z-/S:z./(S1+ SZ • 

.3 

S·=2:$i Q C 
J l=f J (j=1,Z,3) . 

(1) 

Here the point denotes differentiation in 'r; ; S2. Z and SlJ 
should be expressed through tUz and 1.U3 ; fL1 ' fi-z and /A-3-
are the dimensionless aerodynamic parameters; (51,,5;,>$3 )X=S 
is the unit vector directed from point 0 to the Sun. If 

the station is illuminated by the Sun we calculate !r1 and 

1..rZ by the above formulae. If the station is in the Earth's 

shadow, the V1 and 1>2 preserve the values they had when 
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the station entered into the shadow. In order the values of 
tr1 and trz were determined at the beginning of motion, 

the time t1 should be always chosen on the illuminated part 
of the orbit. The parameters Pi have the form: fL i = 
='J,"i.di/Aw~ (i.=1,2.,3) ,where cri and di are characte-
ristic areas and coordinates in the OX1XZX3 system 
of some elements of the station surface, ~=const is an 
absolut value of the aerodynamic drag force acting on the unit 
area of the station surface perpendicular to the free air 
stream. To determine equations (1) finally it is necessary to 
give the functions Si =$i(7:) (i.=-1.,Z,3) , and the criterion 
for the station stay in the Earth's shadow. According to [3], 
we shall assume that the Sun is fixed with respect to the or­
bit. Then 

S,,=S10COs(r-7:0)-S30Sln(T-To), S2 =5207 

53 =5"0 sin. ('C-7:o) + 530 C05(1:-7:0) , 
(2) 

where f'(;o and Sio (i.=1.,Z,3) are constants, 5!+5z~+S3~ =L 
The station will be in the Earth's shadow if S 3 ~ 
~ -1/1- ~fwf3PE-2/.3 ' ,where 'to = 6378 km is the 
Earth's radius, fE = 398603 km3s-2 is its gravitational pa­
rameter. Equations (1) contain five parameters: >.. 'ft and 

fL i. (l = 1., Z,3 ) • The values of A and fA.. are known 
rather accurate~y, while the values of ILL just approximately. 
Therefore, at the statistical processing of sensor indications 
the parameters A. and f are supposed to be known, and the 
parameters f-i (L = 1) 2,3) are considered as unknown and 
determined by the processing together with the unknown initial 
conditions of the motion. 

The single-axis gravitational orientation mode. 
The single-axis gravitational orientation mode of the station 
is called its motion when If> I + I stn3' I «i , Le. the 
an~le between the ~1 and)(3 axes is near zero or 180°. 
The orbital stations Salyut 6 and 7 together with the docked 
Soyuz and Progress spacecraft have the form of an elongated 
structure which is characterized by a small parameter A 
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As a rule, A.$ 0.05, O<f;$0.1, O<f-1~1, Ifzl~1, IjL3/.$1. 
At A =0 ,i.e. for the station in the form of a rod with 
longitudinal axis ~1 ,the system (1) admits two families 
of particular solutions of a special form. In these families 

sin3 = 0, J = 0, ur'Z = i > W'3 = 0 (3) 

and the variables ~ and S1 1 are defined by the equations 

(j =Q1' .9..1 = - jJ-sinicosJ -fl1 COSO [U,1 COS ~ I COS tf I + 

+ IL 0 h1A/X (COS 2 'i, 0) sijn (COS 'i ) ] . 
One family of solutions is obtained from 0), (4) at 8'=0 
the other at S = :n:: • In the both families the axis X 1 
coincides with X3 . In the family where ?i = Y[ these axes 
have the same direction; in the family with ~=O the oppo-

site directions. 
At A i 0 the system (1) do not have solutions of the form 

of (3), (4); however, if A« i its solutions with initial 
conditions satisfying the relation SLn Z 8'(0) + j Z(o) + 
+ [W'j1,(O)-i111. + tU3 Z(O)«i will differ slightly from 

the ones of (3), (4) on a fixed time interval. This circum­
stance is due to the fact that the solutions of the system 
(1) continuously depend on the parameters and initial condi­

tions. The station motion in the single-axis graVitational 
orientation mode is described by just the above solutions.Con­
tinuous dependence of the solutions of system (1) on the para­

meters and initial conditions ensures the existence of this 

orientation mode on the finite, generally short, time intervals. 
Special theoretical and experimental studies are needed to as­

certain ~hether the gravitational orientation can exist on long 
time intervals [1, 2, 5]. Below the solutions of system (1) are 
used for approximation of the station motion on time intervals 
not more than 2 hours. 

Determin~ng the motion parametres. 
The station is provided with the sensors that allow at given 

times measuring the Earth's magnetic field strength H= ( *-1 - , 
1t. z ,fL3 )x and the Sun position vector S=(S1,SZ.S3)X. 

The time interval on which the processing is made approximate­
ly equals to the orbital period and contains several tens of 
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points for which the measurements are available. The processing 
consists of a few stages. 

At the first stage, for the actual orbit of the station and - -the times, at which the vectors Sand H were measured, 
the components of these vectors are calculated in the orbital 

syotem of coordinates: S=(S1,Sl.,S3)X and jJ=(H1 ,HZ,H3 )X· 
As a result, we obtain a set of numbers: 

en.) j (n.) S (n.) (n.) • 
tn" Si , 'jI,i , i ,Hi (n=!, ... , N; l =i,Z,3). 

They indicate the results of measuring the values of Si , hi. 
and the calculated values of Si ,Hi at the time ttL. In (5) 
t 1 <t;.< ... <tN , and for the times tn, when the station is in 

the Earth's shadow S/n.)=S~n.)=O (i=i.,2,3) • At the se­
cond stage, we determine CU o and the constants 1:0 , Sio in 
(2) by using the values t n, and 5/n.) • For this we consi­
der the function 

lJr (n ,i) = t {[SJ'1.)- ,5Jk>COS J2, (tn-tk,) + Sj/c)sin J2. (tn-t/c~Z+ 
fl,=1 

+ [5il7.)- S~/c)]~+[ 5~1t)_ 51(1;) sin Q(tn-tlc)- Sjk)UJS.Q (tn -t,J]Z} f 
where .Q. > 0 ,-k = 1,?, ...• N, r 5~k.)1 + I 5 ~k) I > 0 . 

determine (.Q.*, m) =M9rni.n 1J!(.Q, {) and accept 

7.: 0 = Wo (t WI; - t 1)' S i 0 = S i (m) (i = i, l J 3 ) . 

Then we 
Ct) =$2.* CJ , 

As soon as CUo is found, the values t It in (5) are repla­
ced by Tn = Wo (tit - t 1 ) , and the measured and calculated -values of Hare normed to unity. Such a transformation pro-
vides the reduction of processed data to the dimensionless form 
and introduces the same scale for components of Sand H 
The final stage of the data processing consists of obtaining 
the solution of system (1) that would bring into agreement the 
measured and calculated values of s: and hi/lfil . At 
the given A 'and p- the solution of this system is deter­
mined by the vector r:J. ERg , whose first six components are 
initial conditions at point T1 =0 and the last three 
components are,1 ,).f1-z ,and AfL3 (the parameters 

/':2. 'f3 enter into the system (1) as the products 
>tp Z Af'3 ). On the solutions of (1) we define 
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the 

where tJS and w-'H are positive 
are normed measured and calculated 
coordinate systems OX1 X z X3 

pectively. According to the least square method we take 
~ = r1IC.9mi.n 4J(d...) as an estimate of the vector eX. 

Minimization of ~(ol) is carried out by using first a random 
search and then the Marquardt method. The standard errors of 
the motion parameter estimates obtained by the least square 
method with measurements on the time interval ~ 90 min are 
'" 0.5° in angles and'" 0.0015 0 /s in angular velocities [6]. 

By processing the star photometer indications we could obtain 
an independent estimate of accuracy in determining the motion 
parameters [7J. If a star gets into the photometer field of 
vision, we may estimate an error in the knowledge of the sta­
tion orientation by comparing the calculated and actual posi­
tions of the star on the celestial sphere. The maximal error 
thus obtained is 3.3°. In most cases it did not exeed 2°. 

As an example we present the results of processing of infor­
mation (5) obtained on board of the Salyut 7 station and re­
ferring to revolution 1595 (29.07.1982). The station motion 
determined as a result of processing is shown in Fig. 

re the pl'ots of the functions ~ (t) 5 (t) '.fi (t) 
Wi = Wo .Qi (t) (i = 1,2,,3) are presented. 

1, whe-
and 

In this case t1 = 8h26m26s in the decret Moscow 
time, N = 43 ,the number of measurement s $" is 26, WS = 1, 
'tUH = 0.4, <p(J.) = 0.0867. As it is seen from the figure 
the station, in fact, regularly rotates about its axis JC1 (in 
angle i ) performing small oscillations with respect to the 
axis](3 • The period of rotation is about 23 min; the oscil­
lation periods of axis X" in angles 6 (in the orbital 
plan) and ~ (in the direction perpendicular to the orbital 
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plane) are equal, respectively, to 55 and 48 min. 

Calculation of microaccelerations on board of the orbital 
station. 
By knowing the station motion we may determine the microacce­
leration at any point of the station as a function of time. 
Let the point P be fixed in the coordinate system OX1X~X3 
and given in it by the radius vector j) . The microaccelera­
tion at the point P is called a difference between the 
Earth's gravitational field strength at this point and the 
absolute acceleration of it. The microacceleration is calcula­
ted by the formulae [4] 

- -0 -a.. -Q. d-n = n, + n , n = £1' (6) 

ji"::.y>«dw/dt)+(GJ xJ) X (lj+ woZ[3E; (~J)-"f] 
where E, = (ai.1, aiZ' o.i3)X is the unit vector along the axis 
Xi, (i=1.,2,3), d is an absolute value of the station accele­
ration due to the aerodynamic drag. The component ~a in 
the expression for n is equal to this acceleration taken 

-0 with opposite sign, while the component ft is due to the 
gravitational and inertial forces. For convenience, from ;,to 
we extract the component 

n'7.=:f >c(dw/ dt)+ (i3xJ)xw -w: (~xy)xE; (7) 

which appears as a result of the station motion with respect 
to the orpital coordinate system. If the station is fixed in 
this system, "'it't = 0 • 

By basing on formulae (6) and (7) a computing code was const­
ructed to determine microaccelerations at any given point of 

-'Z -0 -Q. the station. The values of vector components n , n ,n 
and "ii=(n1 ,f/.l"n3)X as well as the values of lti'tl, I~ol 
and fYiI ( ItrCl-l= cL is the input parameter) were printed in 
the tabulated form and output on the plotter. 

In Fig. 2'the microaccelerations are given for revolution 
1595 of the Salyut 7 station. The computations were performed 
for g :;:: (2.5m, 1.45m, -0.8m)x ' which corresponds to the 

I cL -6 -2 technologica device "Splav", and :;:: 7.257·10 ms • 
As it is seen from Fig. 2 the microaccelerations undergo ra-
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ther regular oscillations. A component of period 23 min is 
distinct on all plots, and, in addition, a component of pe­
riod 12 min ~ 0.5' 23 min can be also observed in the curve 
Ivt~l. Analysing formulae (6) and (7) we may conclude that 
such oscillations appear due to the station rotation about 
axis Xi • This conclusion is confirmed by a comparison bet­

ween the functions tti, (t) (l:: i, 2,3) in Fig. 2 and the func­

tions W 2. (t) , W3 (t) in Fig. 1. While analysing the two last 
functions we should take into account that in the gravitational 

orientation mode WZ(t)-:::Wocos'6(t), cv3 (f)-;::;-wosino(t) (com­
pare relations (3». 

The microacceleration computed by formulae (6) and (7) is an 
averaged value - the background. In fact, oscillations caused 
by various vibrations of the station body are unposed on this 
background. If we assume that the station is a rigid body 
these oscillations cannot be taken into account. However, du­
ring technological experiments special measures are taken to 
eliminate them. 
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Summary 

Stability of an attitude motion of a large dual spin spacecraft is studied; the 
effects of various kinds of asymmetries of the spacecraft and energy 
dissipations in the spacecraft are examined. Attitude instabilities due to 
interactions between the asymmetries and the interactions between the 
asymmetries and the energy dissipations are examined in detail. The analysis 
is based on the method of multiple time scales. The results are verified by 
numerical solutions based on the Floquet's theorem. 

Introduction 

A dual spin spacecraft consists of two bodies, a rotor and a stator. The 
stator is despun to keep its mission equipments fixed in an inertia space. The 
rotor is spun at high spin rate to exert a gyroscopic stiffness to the system. 
The spacecraft, on which an angular momentum is exerted, has a lot of 
energy as a kinetic energy of rotation. When this kinetic energy of rotation 
is transferred through various processes into other degrees of freedom, the 
attitude motion becomes unstable. One means of energy transfer is a 
parametric resonance due to asymmetries in the spacecraft, i.e., unequal 
moments of iner.tia of the rotor and the stator about the axes perpendicular 
to the spin axis and unequal bending stiffness of the shaft, which connects 
the rotor and the stator, in the transverse directions etc.[1],[2]. Besides these 
asymmetries, there is another asymmetry to be considered; an unequal 
reaction torque of a moving part in the spacecraft to the main bodies also 
causes an attituae motion unstable. The other means of energy transfer is a 
frictional force between a moving part and the main bodies of the 
spacecraft [3]. 

The attitude motion may also become unstable through the interactions 
between the asymmetries and the interactions between the asymmetries and 
the energy dissipations. This paper deals with various kinds of unstable 
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Dynamics of Controlled Mechanical Systems 
IUTAMIIFAC Symposium Zurich/Switzerland 1988 
© Springer-Verlag Berlin Heidelberg 1989 



208 

attitude motion due to the asymmetries of the spacecraft and the energy 
dissipations in the spacecraft. The analysis is based on the method of 
multiple time scales. The results are verified by numerical solutions based 
on the Floquet's theorem. 

Equations of Motion 

A spacecraft model is shown in Fig.I. The spacecraft consists of a stator and 
a rotor which are connected by a shaft. The shaft which is fixed on the rotor 
has a joint with two degrees of freedom of rotation. The rotor is spun at a 
constant speed wr' while the stator is flXed in an inertia space. The moments 

of inertia of the rotor and the stator about the axes perpendicular to the 
spin axis are supposed to be unequal. Unequal bending stiffness of the shaft 

at the joint is also supposed. 
Reference axes 0-XYZ are set in such a way that the origin 0 coincides 
with the mass center of the spacecraft, the axis Z coincides with the nominal 
spin axis of the spacecraft and the axes X Y Z rotate about the Z axis with 
the angular velocity wr• An attitude of the rotor is denoted by a rotation tPx 

z 

STATOR 

*"-----y 

x 
Fig. 2 Pendulum model 

z 
t-X 

Fig. 1 Spacecraft model Fig. 3 Mass-Spring model 
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about the X axis and a rotation 'IjJ y about the Y axis. An attitude of the 

stator is also denoted by a rotation <p X about the X· axis and a rotation <p y 

about the Y axis. A moving part in the rotor, e.g., fuel in a tank and a 

flexible appendage is modeled as a pendulum; n pendulums are set in the 

rotor which rotate along an axis perpendicular to the spin axis (Fig.2). An 

angle of rotation of pendulum i is denoted by () i' On the other hand, a 

moving part in the stator is modeled as a mass and a spring (Fig.3). The 

mass moves along a line perpendicular to the spin axis. A displacement of 

the mass is denoted by x. The moving parts exert frictional forces on the 

main bodies. Usually, a dual spin spacecraft is composed of a heavy rotor 

and a light stator, and so, the asymmetry of the stator is assumed to be 

small. The frictional forces which act between the moving parts and main 

bodies are assumed to be small. 

Equations of motion of the system are derived by adopting the variables 'IjJ x' 

'IjJ y, <p x' <p y, () i and x as generalized coordinates. By neglecting higher order 

terms, the equations of motion are given as follows: 

(M<0) + e:M<I») U + (dO) + e:G(1») if + (}«O) + e:}«I») U = e:F(x, U) 
x + 2(,w,z + w;x = W( U) 

where 

uT = (W<+), p(+), 61+), yJ.-), pH, e(-») 

yJ.+) = 'ljJx + i'IjJy, yJ.-) = 'ljJx - i'IjJy, p(+) = <Px + i<py, 

pH = <Px - i<py, e(+) = Ei ()/a" e(-) = - Ei ()i e -ia, 

(1) 

Parameter e: is a small parameter expressing a magnitude of the asymmetry 
of the stator and frictional forces; matrices M<1), d 1) and }«1) are mass, 

gyro and stiffness matrices relating to the asymmetry of the stator and vec­

tor F expresses a reaction torque of the moving part in the stator and fric­
tional forces of moving parts in the rotor. 

Analysis 

Stability of a solution of Eq.(1) is examined by using the method of multiple 
time scales[4]. Consider the following eigenvalue problem 

(2) 
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where H{A') = .M<°)A~ + a<°)A. + x<0) A' is an eigenvalue a , • 'I , 
and 11 '! = (iff .(+) ,p .(+) e .(+) iff.(-) ,p .(-) e .(-) ) is a corresponding eigenvec-

, I' I , I , I ' I , I 

tor. 

Introduce the following transformation based on the solutions (2). 

to = et 

ti = \t 

U = E Een ~n){to)exp{ti) 
(3) 

n=Oi=l 

x = Eenx(n){to,ti) 
n=O 

Substituting Eq.(3) into Eq.{l) and equating the coefficients of like powers 

of e in each coefficient of exp( ti ) to zero, we obtain the following equations 

to order eO. 

H{Ai)U~O){tO) = 0 

x(O) + 2(.w.x(0) + w;x(O) = W( U}O) (to)exp(tj » 

A zeroth order approximation solution to U is given by 

U = E Uig~O)(to)exp(ti) 
i=l 

(4) 

(5) 

where gfO)( to) is a scalar function of to' which is determined to the next 

approximation. 
Solution (5) is expressed by superposition of the modes of attitude motion. 
The modes of the attitude motion have the following characteristics. When 

the asymmetries in the rotor do not exist, the eigenvalues of the modes are 
pure imaginaries and the modes are classified into two groups, (+) mode and 
(-) mode, where the modes whose components corresponding to .p..->, pH 
and e(-) ape zero are called (+) mode and the modes whose components 
corresponding to .p..+), p(+) and e<+) are zero are called (-) mode. When the 

asymmetries in the rotor exist, the separation of the components of the 

modes become incomplete. In the case where the natural frequencies of two 
modes are close, these two modes may become unstable due to the asym­

metries in the rotor, i.e., the asymmetry of the rotor, the asymmetry of the 
shaft and the asymmetry of the reaction torques of the moving parts in the 

rotor. This instability can be examined by the zeroth order solution (5). 
On the other hand, instabilities of attitude motion due to the asymmetry of 
the stator and energy dissipations in the rotor and stator are examined to 
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the first order approximation. From Eqs.(l) and (3), equations for y(1) and 

x(1) are given as follows: 

(6) 

where 

From the condition that y(1) must be bounded, the following equation is 

derived. 

'T ' dg(O)( to) 'T (0) y.lO) 
U· L(A')U, + U· F(z u') = 0 

I I I dt I , 

o 
(7) 

When any two modes of attitude motion are not in resonance, 

Ai - Aj -:fo 2iwr , a change in the attitude motion is determined by the energy 

dissipations in the rotor and the stator. In this case, Eq.(7) is reduced to 

dg(O) 
a.-' - + b.g(O) = 0 (8) 

I dt I I 

where 

'T' <+) H a· = U· L(A')U, b· = b· + b· I I J.' J I J 

b.<+) = -c A.e.<+)2 _ i mJ6 [(a ,p.<+) + b !P.<+»2X .<+)} 
I r I I 2 r I r I I 

b.H = -c A.e.<-)2 _ i mJ6 [(a ,p.<-) + b !P.<-»2X .<-)} 
I r I I 2 r I r I I 

xf±) - (,\;±iw,)' [('\;±iw,), + 2(,w,('\;±;w,) + w~ r 1 

The eigenvalue Aii of Eq.(8) is given by 

A·· = A j+) + A .. H = -b.<+)/a. - b.<-)/a. (9) 
u U U I I I I 

From Eqs.(5),(9), the damping factor hi of the i-th mode is given by 

h· = -Re(A"<+) + A .. H ) (10) 
I II II 

Stability of the i-th mode is determined by the sign of the damping factor hi' 
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When any two modes of attitude motion are in resonance, Ai - Aj ~ i2wr' a 

change in attitude motion is determined by the asymmetry of the stator as 
well as energy dissipations in the rotor and the stator. In this case, Eq.(7) is 

reduced to 

where 

A(O) 
dg , . A{O) (+) A(O) 

a·-- + (b. - ,a·Ll··)g' + c·· 9 = 0 
I dt I I I) I I)) 

"(0) 
dg) . A(O) H A(O) 

a·-- + (b. + ta.Ll .. )g + c·· a· = 0 ) dt ) ) I)) )1 - I 

Ai - Aj = 2i(wr + Llij ) 

gIO) = g~O)exp( -iLlijt) 

c .. (+) = -i (A.-iw)2$.(+)$.(-) 
I) m6) r I ) 

.. (-) = _. (' .+' )2-i.H-i.(+) 
C)I ~m6 /I) tWr "£') "£', 

(11) 

The eigenvalue determined by Eq. (11) is denoted by Aij' and then, the 

damping factor ~i of the i-th mode is given by 

~. = -Re(A .. ) 
I I) 

Stability of the i-th mode is determined by the sign of ~i' 

Numerical Examples and Discussions 

The results obtained are applied to a spacecraft model. The spacecraft has 
two pendulums in the rotor which rotate about an axis parallel to the Y 
axis. Parameters of the spacecraft are listed in Table 1. Figure 4 shows the 

Table 1 Parameters of the spacecraft 

ipr 397 [kg m2] kp 2x1Q4 [Nm / rad] 

iP6 235 [kg m2] kr 15W~ [Nm / rad] 

,ir 4.2 [kg m2] md6 2 [kg] 

m 73.4 [kg m2] br 0.34 [m] 

mdr 15 [kg m2] ar 1.53 [m] 

izr 300 [kg m2] 
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natural frequencies of the modes of attitude motion in the case where all the 
asymmetries in the spacecraft are reduced to zero, where (+) (or (-» sign 
indicates that the mode belongs to (+) (or (-» mode. The precession mode, 
which corresponds to the drift of the angular momentum vector and is an 
integral of motion, is omitted. 
From Fig.4, it is possible that the 2nd and the 7th modes become unstable 
due to the asymmetries in the rotor in the vicinity of wr = 22 rad/s. Figure 5 
shows the damping factor 62 of the 2nd mode obtained by the zeroth order 

solution (5). In the case I, where the asymmetries of the rotor and the shaft 

50 
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It: 25 
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z 
w 
::;) 0 C1 
W 
It: 
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-I « ·25 It: 
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Fig. 4 Natural frequencies of the modes of attitude motion 
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Fig. 5 Damping factor 62 of the 2nd mode 
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are reduced to zero, the asymmetry of the reaction torque of the moving 
parts in the rotor, which exerts about only the Y axis, causes the 2nd mode 
unstable. In the case II, where the asymmetry of the rotor is set up, i.e., the 
moment of inertia of the rotor about the Y axis increases imr = -15 kgm2, 

the asymmetries of the rotor and the reaction torque balance out and the 
instability disappears. In the case m, where the moment of inertia of the 
rotor about the Y axis decreases i mr = 15 kgm2, the asymmetries of the 

rotor and the reaction torque are superimposed and the instability region 
extends. The numerical results of the damping factor calculated by the 

Floquet's theorem are shown with solid circles. They are in good agreement 
with analytical results. 
Figure 6 shows the damping factor 62 of the 2nd mode as a function of the 

asymmetry of the rotor, where the energy dissipation is assumed to occur 
only on the stator. In this case, the stability rule derived by the energy sink 
method says that the attitude motion of the spacecraft is stable. When the 
asymmetry of the rotor is small, the damping factor 62 is positive. However, 

when the asymmetry of the rotor becomes large, the damping factor 62 

becomes negative. The reason is as follows: from Eqs.(9),(10), damping fac­
tor 6i is given by 

h· = h.(+) + h.(-) 
I I I 

5 

4 

~ 3 .., 
I 
<:> 

2 ~ 

x 
'-' 
.J' 
0:: 
0 
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Fig. 6 Damping factor 62 of the 2nd mode 
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where 

6·(+) = Re(b.(+)/a.) 6·(-) = Re(b.(-)/a.) 
I I I' I I I 

Factors 6/+) and 6/-) are the contributions of (+) and (-) mode components 

of the i-th mode to the damping factor 6i , respectively. From Eq.(lO), it is 

found that, if the i-th mode belongs to (+) ( or (-) ) mode and the natural 
frequency of the mode is greater than the spin rate of the body on which a 
frictional force exerts, 6/+) ( or 6/-) ) is positive and 6/-) ( or 6/+) ) is nega­

tive. Figure 6 shows factors 62(+) and 62<-> as a function of the asymmetry of 

the rotor. For the value of the asymmetry imr greater than 130 kg m2, 62<-> 
becomes dominant and the 2nd mode turns out to be unstable. The stability 
rule derived by the energy sink method no longer holds for a dual spin space­
craft with a large asymmetry. 
From FigA, it is possible that the 3rd and the 7th modes become resonant 
and unstable due to the asymmetries of the stator near Wr = 13.7 rad/s. 

Figure 7 shows the damping factor 63 of the 3rd mode based on the first 

order approximation solution (12). In the case I, where a large amount of 
asymmetry of the rotor is set up, an unstable region appears near Wr = 13.7 

rad/s. On the contrary, in the case II, where the asymmetries of the rotor 

and the reaction torque balance out, the unstable region disappears. The 
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reason is as follows: it is found, from Eq.(ll), that this type of instability 
depends on mainly parameter Ci/+) and Cj/-). Since parameters Ci/+) and 

CjiH are the functions of $ /+), $/-), if the modes i and j belong to the same 

mode «+) mode or (-) mode), parameters cit) and Cj/-) become very small 

when the asymmetries in the rotor are reduced. If any two modes belong to 

the same mode « +) mode or (-) mode), the instability due to asymmetry 
needs the interactions between the asymmetries in the rotor and the stator. 

Conclusion 

Stability of an attitude motion of a large dual spin spacecraft is studied. 

Main conclusions are as follows: 
(1) An attitude motion of the spacecraft may become unstable due to an 

unequal reaction torque of moving parts in the spacecraft perpendicular 

to the spin axis. 
(2) The effect of the energy dissipation in the spacecraft on the attitude sta­

bility depends on the asymmetries in the spacecraft; stability rule 
obtained by the energy sink method, in some cases, may no longer give a 
correct result. 

(3) An interaction between asymmetries in the rotor and the stator may 
cause the attitude motion unstable. 

The analysis is based on the method of multiple time scales. The results are 

verified by numerical solutions based on the Floquet's theorem. 
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Appendix -- The elements of Eq.(1) 

0) m(++) m(_+) 0) ., M- = ,,,(~ ,,,(0) , M(++) = ffi I". 0 , [ 
u(O) ',,(0)"] [ i pr m mdrj 
m( +) m(++) n • . 

2"ffidr 0 'r 

dO) = (++) 0 dO) = -2' . [dO)] [-i(2ipr-i zr)wr 

o dO)", (++) IfflW r 

R,(O) 
(++) = 

K[O) --+) -

(++) 0 

.!!.m. w 2 
2 ar-r 

km + (i mr - i icr)w~ 
-km 

1 • E -2iaj 
-2"ffidr . e 

J 

o 

-km 0 
0 0 

0 0 

( • .Ii) ) _ ( • .11»" _. 2iw,1 
M' 0,2 - M' 2,5 - I .... e 

( ...,{l» _ ( G(l»" _ 2" 2iw,1 
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M* means that all the element of M are replaced by its complex conjugate. 
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Abstract 
A motion control scheme is presented that allows for controller design directly in 

terms of task specific cartesian variables, rather than in joint variables. The overall 
control structure is separated into a discrete-time position controller plus an underlying 
dynamics compensator which assures the extended cartesian plant - the manipulator and 
the dynamics compensator - to behave like a set of decoupled unit masses in cartesian 
space. The cartesian compensator matrices are computed based on a model reference 
adaptive control scheme rather than using the explicit dynamical equations. The control 
structure was tested successfully in simulations and experiments for a three degrees of 
freedom high speed robot. 

1. Introduction 
Mechanical manipulators belong to a class of multibody systems which exhibit a 

dynamic behaviour that must be described by strongly nonlinear differential equations. 
These nonlinearities are associated both with positional variables and with velocity vari­
ables. Nevertheless, the control strategies for practically all industrial manipulators cur­
rently in use are based on classical linear control theory. Although a few more advanced 
industrial robot controllers compensate for some of the position-dependent nonlinear 
terms, such as gravity terms, they all neglect the velocity dependent nonlinear terms in 
the controller design, which restricts the manipulators to slow motions. 

In several publications more advanced control schemes have been suggested which 
actively compensate for all nonlinear dynamic forces [1,8). These schemes require the 
online evaluation of complex expressions in the dynamical equations, a task that gives rise 
to a considerable amount of computational effort. Furthermore, the control is generally 
done in joint space,-rather than in a task-specific coordinate-space, such as a cartesian 
space. This requires the transformation of the task description (the desired motion) and 
of the controller specifications (maximum allowable deviations etc.) from task-specific 
space into joint space. 

Recently, a scheme was proposed by Khatib [6), where the dynamical equations are 
first cast in terms of joint variables, but are then transformed into task-specific cartesian 
variables, wherupon they are used for the design of an underlying nonlinear dynamics 
compensator, the result being a linear closed loop system. This procedure offers three 
significant advantages over those used conventionally: 

1) It allows for a simple controller design, since for the motion controller the total 
system to be controlled (manipulator plus compensator) should behave like a set of 
decoupled unit masses. 

2) It allows for a controller design directly in terms of task-specific variables, rather 
than in joint variables. Among other things, this leads to a control structure 

G. Schweitzer, M. Mansour 
Dynamics of Controlled Mechanical Systems 
IUTAMIIFAC Symposium Zurich/Switzerland 1988 
© Springer-Verlag Berlin Heidelberg 1989 
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that permits a natural partition into complementary position-controlled and force­
controlled subspaces. 

3) It eliminates the need for any inverse kinematic transformation, i.e. a transforma­
tion from the task-specific cartesian variables into joint variables. 

However, there are at least two obstacles which, so far, have limited the practical appli­
cation of the above approach: 

1) The unit-mass behaviour is guaranteed only so long as there is a perfect match 
between the real system (the manipulator) and the dynamic model on which the 
compensator is based. This implies that all geometric and inertia parameters, e.g., 
the load mass, must be known at all times. 

2) Since the compensator design is based on a continuous time, zero delay model, 
the expressions underlying the dynamic model must be evaluated so quickly that 
discretization effects do not degrade performance. However, even with a computa­
tionally efficient formulation of the dynamical equations, the number of operations 
for a complete 6 d.o.f. manipulator model is still very large. 
In this paper, a solution is suggested for these two problems. Instead of designing 

a cartesian dynamics compensator on the basis of the explicit dynamical equations, the 
compensation is formulated as a nonlinear model reference adaptive controller (MRAC) 
in cartesian space. The reference model consists of a set of n unit masses in cartesian 
space, where n is the number of degrees of freedom of the manipulator. The adaptive 
algorithm forces the dynamic response of the total system - the manipulator plus its 
adaptive compensator - to converge to that of the reference model. The algorithm 
can be applied to any multibody system; it is not confined to manipulators, and no 
restrictions are placed on the choice of generalized coordinates or generalized speeds. 
Also, it does not require any knowledge about the inertia properties of the system. 

The approach taken in this paper was inspired by [4]. Their scheme, however, 
applies to joint space control only and is both more involved and less general than the 
one presented here. For other approaches to manipulator control based on adaptive 
control theory the reader may refer to [2,5]. 

The remainder of the paper is organized as follows: First, the dynamical equations 
in cartesian variables and the nonlinear dynamics compensator for a manipulator are 
presented in a general form. The discrete time controller for motion control in carte­
sian variables js described next. The controller is designed to take into account time 
delays for computations, AD/DA-conversions, etc. Thereafter, the MRAC scheme for 
cartesian dynamics compensation is outlined. A proof for the asymptotic stability of 
the adaptive compensator is given in the Appendix. In sections 6 and 7, both the adap­
tive compensation and the deterministic compensation based on the complete dynamical 
equations are applied to a three-degree-of-freedom high speed robot. The performance 
of both compensator types are demonstrated and discussed on the basis of simulations 
and experimental results. Finally, the extension of the presented control concept to si­
multaneous control of position and contact forces, often called hybrid control [1], will be 
discussed. 

2. Dynamical equations in cartesian space 
To obtain the dynamical equations of a general manipulator in cartesian variables, 

one may start with the dynamical equations in terms of n independent joint coordinates 
qi and n independent joint speeds 4i, where n is the number of degrees of freedom of the 
manipulator. The dynamical equations in joint variables can be written in the general 
form 

M(q)q + V(q,q) =F (1) 
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where M( q) denotes the n x n inertia matrix of the manipulator, V( q, q) contains all 
velocity dependent terms arising from inertia forces and inertia torques, as well as gravity 
force terms, and the n joint forces and joint torques are included in F. In joint space 
control, the controller determines directly the driving joint forces and joint torques in 
F, doing so on the basis of error signals generated by differences between actual and 
desired values for joint coordinates qi and joint speeds 4i (i = 1, ... , n). In cartesian 
space control, the controller outputs Fc are imaginary cartesian force- and torque­
components acting directly on the end effector, and the controller inputs are differences 
between actual and desired values for end effector (TCP) position ex and velocity ex in 
a cartesian reference frame C fixed in space (Fig. 1). To derive the dynamical equations 
of the manipulator in cartesian space, i.e., of the cartesian plant shown in Fig. 1, one 
uses the following well known relationships [IJ: 

ex = cJ(q)q 

Fc(q) =cJ-T(q)F 

(2) 

(3) 

where C J denotes the Jacobian of the end effector TCP for the cartesian frame C. By 
taking the derivative with respect to time of Eq. (2) to obtain q( q, q, ex), and using 
Eqs. (1. .. 3), the dynamical equations in cartesian space can be written as 

where * 
(1. . . 4) 

(1. . . 5) 

Mc(q) =cJ-T(q)M(q)cJ-\q) 

Vc(q,q) = - Mc(q)Cj(q)q + CJ-T(q)V(q) 

(4) 

(5) 

(6) 

Figure 1: Cartesian control system 

3. Compensation 'of nonlinear dynamics 
Equation (4), describing the cartesian plant shown in Fig. 1, is inherently nonlinear, 

both in position and in velocity variables. This makes it impossible to design a cartesian 
controller based on linear control theory. However, since Eq. (4) should represent the 
nonlinear plant dynamics correctly, we use this model to actively compensate for all 
nonlinearities. To this end, we imagine that the cartesian controller output, which shall 
now be called e u , i~ input to an extended cartesian plant (Fig. 2) incorporating the 
previous cartesian plant plus a nonlinear dynamics compensator. The compensator is 
chosen such that the input F C to the cartesian plant is determined by 

(7) 

* Numbers in parentheses to the left of an equal sign refer to previous equations used 
to form the equation under consideration. 
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Assuming that Mc( q) and V c( q, q) model the dynamics of the cartesian plant per­
fectly, the extended cartesian plant dynamics is given by 

(4,7) (8) 

As a result, the cartesian controller can be designed to control a set of n completely 
decoupled unit masses. 

Figure 2: Extended cartesian plant 

4. Discrete time cartesian controller 
The design of the cartesian controller is based on the continuous-time extended 

cartesian plant model given in Eq. (8). However, in a practical implementation on a 
microprocessor system the controller output Cu(t) will not be updated continuously, 
but only at discrete times. The rate at which C u is updated is determined by the time 
delays introduced through finite computation times for the control algorithm, for AD­
conversions if analog sensor signals (e.g., tachometer signals) are to be converted, etc. 
Therefore, the plant model of Eq. (8) is extended to include a zero order hold element 
acting on the controller output. Additionally, an integral feedback on position errors 
is used to ensure convergence to the desired position even in the presence of constant 
disturbing forces, such as unmodeled friction forces. For each of the n unit masses to 
be controlled-in cartesian space the following discrete-time state space representation 
then can be derived as 

T2 
(Xl)k+l = (Xl)k + T(X2h + T(X3)k 

(X2)k+1 = (X2)k + T(X3)k 

(X3)k+1 = cUk 

(X')k+1 = (X,)k - (Xdk (9) 

The four state variables Xl, X2, X3, x, correspond to cartesian position, cartesian veloc­
ity, delayed controller output, and position error integral, respectively. Since all four 
states are directly accessible, a complete state controller can be used: 

CXd and cXd represent the desired position and velocity, respectively. The choice of 
numerical values for the feedback gains k1 , •.• , k, can be based on optimal control 
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theory or on a pole placement scheme for discrete-time linear systems. For the results 
presented in this paper, pole placement was used. 

The discrete-time state controller of Eq. (10) is designed to control a system that 
can be represented by Eq. (9). Equation (9) is an exact discrete-time representation 
of a continuous-time unit mass as described by Eq. (8), with a zero order hold on 
the driving force. However, Eq. (8) is an idealized representation of the extended 
cartesian plant, i.e., the manipulator plus the cartesian dynamics compensation. The 
main assumptions underlying Eq. (8) are: 

1) Equation (4) is an exact model of the manipulator dynamics. 
2) The matrices Me(q) and Ve(q,q) can be updated continuously. 

Of course, neither assumption can be totally valid in a practical implementation. As 
regards the model, the main difficulties are posed by friction forces and by the determi­
nation of inertia parameters, such as masses and moments of inertia, especially when 
an unknown load mass is carried by the manipulator. On the other hand, geometrical 
parameters such as constant angles and lengths of links can be obtained relatively ea­
syly and very accurately. The second assumption means that the performance of the 
overall control system will be strongly dependent on how quickly the two matrices can 
be updated. Considering the constantly increasing efficiency of computer hardware, 
one may anticipate that this will become less of a problem in the future. At present, 
the online evaluation for a six degree of freedom manipulator cannot be carried out 
sufficiently quickly by reasonably priced hardware. 

5. Adaptive cartesian dynamics compensation 
The use of a model reference adaptive controller (MRAC) for the cartesian dy­

namics compensation could solve most of the above mentioned problems. The MRAC 
described in this paper is an extension of an MRAC scheme presented in [4]. The 
extension includes the application to cartesian space compensation as opposed to joint 
space compensation. Also, no assumptions regarding the structure of Ve are made, 
which at the same time simplifies the adaptive scheme and makes it applicable to a 
bigger class of multibody systems. This simplification largely reduces the number of 
operations and the number of adjustable parameters. 

The reference model in the MRAC should incorporate the desired behaviour of the 
extended cartesian plant as described by Eq. (8). Therefore, 

(8) (11) 

is used as a reference model, where Ci( t) measures the position of the n decoupled 
reference model unit masses in cartesian space. The design goal of the MRAC scheme 
is to adjust adaptively the elements of matrices Me and Ve shown in Fig. 3 so that 
the errors Ce(t) and Ce(t) defined as 

and (12) 

converge to zero. This again means that the dynamic behaviour of the extended carte­
sian plant converges to that of the reference model. To this end, the cartesian driving 
forces are determined by the following control algorithm (Fig. 3): 

(13) 
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For the adaptation of Me( t) and V e( t) an additional error feeback, 

(14) 

is required. Then, with mij, CYi , cUi denoting the elements of Me, C y , cll, respectively, 
the adaptation algorithm for Me is given by 

mii( t) = mii(O) + kmi it Cyi ( T YUi( T )dTj i = 1,2,3 

mij( t) = mij(O) + kmij it [CYi ( T)CUj ( T) + C yj ( T )CUi ( T)]dTj i, j = 1,2,3, i "# j (15) 

and with Vi denoting the elements of Ve 

Vie t) = Vi(O) + kvi it CYi ( T )dTj i = 1,2,3 (16) 

Under the assumption that Me and Ve remain constant during the adaptation, the 
adaptive dynamics compensation can be proven to be asymptotically stable if the fol­
lowing conditions on the choice of the error feedback coefficients are satisfied: 

CP ' Cv, hp, hv ~ 0 , Cv > cP ' 

cvhvI - cpMe > 0 , (cvhp + cphv)I - cpMe > 0 

An outline of the stability proof is given in the Appendix. 

cx+ 
d 

(17) 

Figure 9: Cartesian Control System with MRAC dynamics compensation 
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6. Three degrees of freedom high speed robot 
Position controller and dynamics compensation were tested on the cylindrical three 

degrees of freedom high speed robot [3] depicted in Fig. 4. A schematic representation 
of the robot model is shown in Fig. 5, where B} denotes a fixed point on the vertical axis 
of rotation of body 1, B; denotes the center of mass of body i (i=2,3), and D stands for 
the TCP ofthe end effector. Three dextral sets of unit vectors are introduced: ~, 14J, ~ 
are inertially fixed with ~ parallel to the vertical axis of rotation of body 1, ;[}, [}'~} 
are fixed on body 3 with ~} parallel to ~ and ;[} parallel to the horizontal axis of 
relative translation from body 3 to body 2, !fe, 1!.c, k are fixed on the task-dependent 
cartesian compliance frame C in which the robot control should be formulated. To 
characterize the orientation of compliance frame C relative to the inertially fixed frame 
0, three orientation angles Q}, Q2, Q3 are introduced. A general orientation of frame C 
relative to frame 0 is obtained by starting with originally coincident orientations and 
first rotating C about a line parallel to !fe by an amount Q}, then rotating C about a 
line parallel to the newly oriented unit vector 1!.c by an amount Q2, and finally about 
a line parallel to k by an amount Q3. The corresponding direction cosine matrix is 
given by 

( 

CQ2CQ3 -CQ2SQ3 

~T = SQ}SQ2CQ3 + SQ3CQ} -SQ}SQ2SQ3 + CQ3CQ} 

-CQ}SQ2CQa + SQaSQ} CQ}SQ2SQ3 + CQaSQ} 

Figure 4 
Three degree of freedom high speed robot 

Figure 5 
Robot model 

SQ2 ) 
-SQ}CQ2 

CQ}CQ2 

(18) 
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The following position vectors describe the relative position of the points in Fig. 5: 

~-Bl B2 - Ll~l + q2£.1 
~ 

BIB; = qa~l + L21Ll + (q2 + La)£.l 

~ 
Ba D = dl~l + d21/..l + da£.l (19) 

The inertia properties of the three bodies are modelled such that all central prin­
cipal axes are parallel to one of the unit vectors ~l' 1/..1' £.1' and the center of mass of 
body 1 lies on the vertical axis of rotation. 

Only a few intermediate results of the derivation of the dynamical equations will 
be given in the sequel. First, by writing the absolute velocity of tool center point D 
in components of frame 1, the Jacobian IJD of point D in frame 1 components can be 
obtained as 

(20) 

The Jacobian of point D in frame C components can be calculated from Eqs. (18,20) 
according to 

(21) 

where ~T denotes the direction cosine matrix of frame 1 relative to frame o. The 
matrices M( q), V( q, it), and F then can be found as 

(
IHot + 12 + L12m2 + Ia + (qa2 + L22)ma 

M(q) = 0 
-maL2 

(23) 

where mi is the mass and Ii the central principal moment of inertia about a vertical 
line of body i (i = 2,3), mieq is a translationally accelerated mass equivalent to the 
rotational inertias of the rotor of the driving motor, gears and other rotating force 
transmission elements, I Hot is the central principal moment of inertia about a vertical 
line of body 1 plus equivalent inertias for driving motor, gear box etc., Fl£.l is the 
driving torque vector acting on body 1 and F2£.1' F3~1 are the driving force vectors 
acting on bodies 2 and 3, respectively. 

From Eqs. (21, 22, 23) the dynamical equations (4) in cartesian space C can be 
obtained with the help of Eqs. (5, 6). 
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7. Simulations and experimental results 
The performance of the control schemes under consideration was first investigated 

by means of a very detailed simulation model for the manipulator of Fig. 4. It included 
not only a realistic model of the mechanical structure, including friction forces etc., 
but also a model of the electric drive units and of the time delays caused by finite 
computation times for the different parFs of the controller. The controller was pro­
grammed in MODULA-2 and implemented on two Motorola 68000 microprocessors, 
with the discrete-time position control of Eqs. (9,10) running on the first, and the 
dynamics compensation on the sec~nd. For more details on the actual implementation, 
the reader may refer to [2]. 

First, a few simulation results will be shown, where the deterministic cartesian 
dynamics compensation of section 3 is used. Figure 6 shows three repositioning ma­
neouvres, each over a distance of 30 cm in 0.3 seconds. In Figure 6a a vertical motion is 
simulated, in Figure 6b a horizontal motion, and in Figure 6c a motion parallel to ore for 
ltl = 45 Deg., lt2 = 0 Deg., lt3 = 45 Deg. The dashed line represents the commanded 
trajectory and the solid line the actual trajectory. The three resulting trajectories are 
basically identical, which shows that the cartesian dynamics compensation works well. 
Here, it should again be pointed out, that the position controllers for every direction in 
the cartesian frame C are identical. However, the dynamics of the cartesian plant (the 
manipulator) depends very much on the direction in which the motion is performed. 
For a vertical motion the driving forces must overcome gravity and accelerate a total 
mass rn2 + rn2eq + rn3 of 12 kg, for a horizontal motion only a mass rn3 + rn3eq of 5 kg is 
accelerated, and in Figure 6c all three axes are moving simultaneously with a nonlinear 
dynamic coupling between axes one and three. The largest errors occur during accel­
eration and deceleration phases. The main reason for this is that the command of the 
actual driving forces F acting on the manipulator is delayed by approximately 10 ms, 
which is the time needed for the computation of the matrices Mo, V 0 and 0 JT and the 
requisite matrix multiplications and additions shown in Figures 1 and 2. Significantly 
smaller errors are obtained for reduced delay times and/or for slower movements. 
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Simulation results with deterministic dynamics compensation: 
position vs. time 
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Figure 7 shows measurements on the actual robot corresponding to the simulations 
in Fig. 6a and 6b. The reason for the steps in the actual position measurements is that 
new positions are stored only at the rate at which the position controller is running, 
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i.e., every 13 IDS. Since the rotational degree of freedom was not yet in operation at the 
time the measurements were taken, no measurement corresponding to Fig. 6c is shown. 
Instead, a measurement of a repositioning maneouver over 0.3 m in vertical direction 
with a repositioning time of 0.6 seconds is displayed in Fig. 7c. The close coincidence 
between commanded and actual trajectory indicates that for more reasonable but still 
quite short positioning times the controller quality is very acceptable. 
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Measured results with deterministic dynamics compensation: Commanded and actual 
position vs. time 

Figure 8 shows simulation results of the same repositioning maneouvers as in Fig. 
G. For these simulations, however, the adaptive dynamics compensation of section 5 
was used. The matrices Me and Ve were initialized with zeroes, which represents a 
worst case assumption: The adaptive compensation ran at a rate of 1 KHz, whereas the 
sampling time of the position controller was kept at 13 IDS. Again, the results for the 
three movements in different directions are almost identical, which indicates the proper 
functioning of the adaptive compensator. The undesireable overshoot can be reduced or 
even completely eliminated by taking one or several of the following measures: A more 
realistic initialization of Me and Vej an increase in repositioning timej a different 
choice of the commanded trajectory in the end phase of the motionj probably a better 
choice of the feedback coefficients cp, cv , hp and hv, and an increase in sampling rate 
for the adaptive compensator. 
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Simulation results with adaptive dynamics compensation: Commanded and actual po­
sition vs. time 
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Because the stability proof for the adaptive compensation is based on the assump­
tion that Me and Ve remain constant during the adaptation, a few cases were simu­
lated where the load mass was instantaneously changed, but no unacceptable responses 
were obtained. 

Here, it should be made clear again that, although the cartesian adaptive compen­
sation does not require a model of the manipulator dynamics, it does require a correct 
model for the manipulator geometry underlying the transformations e J( q) and C x( q) 
between joint space and cartesian space. The overall behavior of the cartesian plant 
is made to converge towards the desired unit mass behavior, but errors in the trans­
formations within the cartesian plant (Fig. 1) will lead to errors in the end effector 
position. 

8. Extension to simultaneous control of position and contact forces 

The concept of cartesian control can be applied very naturally to the problem of 
simultaneous control of position and contact forces [1,6). In [2), the control concepts 
presented in this paper were extended to simultaneously control position along the un­
constrained directions of the cartesian frame C, e.g., the ones in a cartesian subspace 
spanned by !!i.e and 'f!.c, and contact forces along the constrained directions of a com­
plementary cartesian subspace, e.g., the one spanned by~. As for the type of contact, 
it is modelled to be stiff, which means that kinematical constraints are introduced. 
Consequently, the matrices in the cartesian dynamical equations (4) must be reformu­
lated to describe motion in the position controlled subspace only. However, motion 
in the position controlled subspace may lead to dynamic forces in the force controlled 
subspace. Therefore, a model equivalent to Eq. (4) for the force controlled subspace 
must be derived, which is then used to design a dynamics compensator analogous to 
Eq.(7). The resulting extended cartesian plant for the force controlled subspace can be 
represented by a simple zero order hold element for each force controlled direction in 
frame C. A discrete time force controller is then derived to control a zero order hold 
plant. Finally, the cartesian dynamics compensator for the force controlled subspace 
was also formulated as an MRAC, and the whole control scheme was successfully tested 
on the three degrees of freedom high speed robot described in section 6 [2). 

9. Conclusions 

A control scheme was presented that allows for controller design directly in terms 
of task specific cartesian variables, rather than in joint variables. The overall control 
structure was separated into a discrete-time position controller and an underlying dy­
namics compensator which assures the extended cartesian plant - the manipulator plus 
the dynamics compensator - to behave like a set of decoupled unit masses in cartesian 
space. To overcome the problems of unknown inertia parameters as well as to shorten 
the cycle time of the dynamics compensator, a model reference adaptive control scheme 
was presented for updating the cartesian compensator matrices rather than computing 
these matrices based on the explicit dynamical equations. The control structure was 
applied to and tested on a three degrees of freedom high speed robot. Simulations 
and experimental results showed that 'even for very fast positioning maneouvres the 
resulting responses are well behaved. 
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Appendix 

Stability proof for adaptive nonlinear dynamics compensation 

First, the definitions and basic results of hyperstability theory that will be used in 
the stability proof are summarized [7,9]: 

The standard multi variable feedback system depicted in Fig. 9 is formed by a 
linear time-invariant feedforward block and a nonlinear time-varying feedback block. 
A nonlinear time-varying feedback block w(Cy , t) is denoted as belonging to the class 
{P} if it satisfies the Popov integral inequality 

for all t~O (A. 1) 

with 'Yo being a positive constant depending only on initial conditions. 

m(t) I 
I G(s) 

I C y(t} 

I 

w(C y,t) 11-----' 
Figure 9: Standard multivariable feedback system 

A standard nonlinear feedback system is said to be asymptotically hyperstable 
if it is globally asymptotically stable for all feedback blocks w(Cy , t) E {Pl. Once 
the feedback block satisfies inequality (A.l), the hyperstability properties of the total 
feedback system will depend only on the characteristics of the feedforward block. The 
necessary and sufficient condition for a standard nonlinear feedback system with class 
{P} nonlinearity to be asymptotically hyperstable is that the transfer matrix of the 
linear feedforward block be strictly positive real. 

The first step in the stability proof is to show that the MRAC dynamics compen­
sator as shown in Fig. 3 can be represented in the form of a standard nonlinear feedback 
system. To this end, the equations describing the robot dynamics, the reference model 
dynamics, and the adaptive compensator structure are combined to 

(4,11) 

(13) 

(A.2,12) 

Mo(Wi:(t) + Ve(t) = Fo(t) + MoCWi(t) - Me(t)"u(t) 

= Mo(t)Cu(t) + V oCt) + hp Ce(t) + hv Ce(t) 

+ Mo(t)Ci(t) - Mo(Wu(t) 

Mo( t)Ce(t) + hv Ce( t) + hp Ce( t) = [Me( t) - Mo(tWu( t) 

(A.2) 

+ V o(t) - V o(t) (A.3) 
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After met) has been defined as 

met) == [Me(t) - Me(tWu(t) + Ve(t) - Ve(t) (AA) 

the transfer matrix G(s) from input m to output c y as defined in Eq. (14) is given by 

G(s) == Cy(s)m-l(s) 

(14, A.3, AA) = [cpI + cvIs][Mes2 + hvIs + hpIt1 (A.5) 

with I being the unit matrix. Equation (A.5) represents the linear block in the standard 
nonlinear feedback system. Since the linear block must be time invariant, the robot 
inertia matrix Me must be assumed to remain constant during the adaptation process. 
The nonlinear block is then defined as 

wet) == - met) 

(AA) = [Me(t) - Me(t)]Cu(t) - Ve(t) + Ve(t) (A.6) 

Next, wet) must be shown to satisfy inequality (A. 1). Writing the inner product 
of input and output as a summation from 1 to the number of degrees of freedom n, one 
obtains 

(A.6) 

(A.7) 

The validity of inequality (A.l) can be shown separately for each value of the summation 
indices i and j. First, the second term in the right-hand side of Eq. (A. 7) is integrated 
using Eq. (16): 

(16) I t [Vi(T) - Vi(TWYi(T)dT = I t [Vi(O) - Vi + kvi lT Cyi(u)duhi(T)dT 

~ - [Vi(O) - Vi]2/2kv i (A.8) 

For the right-hand side of inequality (A.8) to be constant, V c must be regarded as 
constant during the adaptation process. Inequality (A.8) can be proven as follows: 
Define auxiliary quantities 

a == Vi(O) - Vi , k == kvi > 0 , get) == Cyi(t) , h(t) == get) - g(O) (A.9) 

and rewrite inequality (A.8) in terms of these quantities: 

1t [a + k 1T g(u)dU]g(T)dT = a[g(t) - g(O)]- kg(O)[g(t) - g(O)] + ~[l(t) - g2(0)] 

k 
(A.9) = ah(t) + "2h2(t) 

a /k a2 

= [& + V "2h(tW - 2k 

a2 
> -­- 2k (A.lO) 
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The same reasoning can be used to prove analogous inequalities obtained for every 
value of i, j in the double summation in Eq. (A.7). 

The last step in the stability proof is to show that the transfer matrix G(s) as 
defined in Eq. (A.5) is strictly positive real. The conditions on the gains cp, cv , hp, 
and hv as stated in Eq. (17) are chosen such that this requirement is fulfilled for all 
symmetric positive definite matrices Me. For more details, the reader may refer to [2]. 
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Modeling and Control of Elastic Robot Arm 
with Prismatic Joint 
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Sununary 

A reasonable modeling and a suitable design of a control system 
for the translational motion of an elastic robot arm with a 
prismatic joint is a still open problem. In this paper the dy­
namic behaviour of such an elastic beam is described with re­
spect to control requirements. A complex control system is ob­
tained represented approximately by a set of ordinary linear 
time-variant differential equations of variable order. Certain 
approaches of designing a feedback control are discussed. 

Introduction 

The application of industrial robots to advanced manufacturing 

tasks requires highly accurate position and/or force control. 

Actual limitations to these requirements are mainly caused by 

elasticity, Coulomb friction and backlash in the system. A ba­

sic problem is to develop a control feedback for damping out 

the elastic vibrations such that the end-effector can perform 

its tasks without delay. In almost all the investigations so 

far, elastic robots with revolute joints have been considered 

only, i. e. the, flexible members of the robot has been assumed 

to have fixed lengths. Surveys and recent results on the fast 

control of elastic robots with rotational degrees of freedom 

are given by Henrichfreise [1] and Ackermann [2] . 

Just recently first results on translational moving flexible 

robot arms with prismatic jOints were published. Lilov and 

Wittenburg [3] presented a general formalism to model the dyna­

mics of chains of rigid bodies and elastic rods with revolute 
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and prismatic jOints. By Riemer and Wauer [4] the equations of 

motions were derived for a planar two-body system with beam­

shaped substructures and with a revolute-prismatic joint. Wang 

and Wei considered the vibrations of a moving flexible robot 

arm with prismatic joint [5] and its feedback control [6]. Here, 

the vibrations of the robot arm were composed of two bending 

motions. The torsional motion as well as gravitational effects 

were neglected. The driving motion of the prismatic joint was 

assumed to consist only of a translation along and a rotation 

about the vertical axis. 

In this paper a more general problem is discussed. A robot with 

a flexible arm is considered as shown in Fig. 1. The prismatic 

Euler-Bernoulli beam 

arbitrarily driven 
prismatic joint 

Fig. 1. Sketch of elastic robot arm 

joint connecting the elastic beam and - in general - the pre­

ceeding robot link is built such that the beam axis and the 

link axis are made to coincide at two or more pOints by bear­

ings which allow only relative translational motion YS(t). The 

orientation and the motion of the preceeding link and with that 

the orientation and the motion of the joint may be arbitarily 

given; it characterizes orientation and motion of a reference 

coordinate system, cf. {xB ' YB, zB} and vB(t), wB(t) in Fig. 2. 
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The elastic vibrations of the beam are composed of bending mo­

tions in the x- and z-directions perpendicular to the y-axis 

of the beam and of a torsional motion about the y-direction. 

Based on the rigid body model of the non-elastic robot arm in 

the following two approaches of modeling the motion of the 

elastic robot arm will be considered: continuum model and multi­

body model. Subsequently certain remarks on the problem of re­

duction of model order will be presented to obtain a suitable 

model for control design. Finally the design of a control feed­

back for an active damping of the elastic vibrations will be 

discussed. 

Rigid Body Model 

Firstly we consider the problem of a rigid robot arm with pris­

matic joint. Here, only the equation of translational motion 

of the arm relatively to the prismatic joint has to be derived. 

This results in 

- m g(sin u cosy + casu sinS siny) 

+ Qy + F(t) ( 1 ) 

where m is the mass of robot arm; vBX' v By , v Bz and wBx ' wBy ' 

wBz are the components of velocity vB and angular velocity wB 
of the joint represented in the joint-fixed coordinate system; 

the angles ;:;, S, Y character.i.ze the actual orientation of the 

joint and are needed to represent gravitational effects; the 

normal force Qy~ri3es duato a dynamic end load, and finally 

F(t) is the axial control force. 

Usually the task of the robot will define certain time func­

tions ;:;(t), S(t), y(t) for the orientation and vB(t), wB(t) 

for the motion of the jOint as well as ys(t) for the relative 

position of the robot arm. Then equation (1) defines the re-
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quired control force F(t). 

Continuum Model 

The vibrations of the elastic robot arm are composed of bending 

motions wx ' Wz and torsional motion B, cf. Fig. 2. To derive 

joint 

w ". 
x y 

Q(t) 

Fig. 2. Elastic robot arm 

the equations of motion the generalized Hamilton's principle is 

applied: 

t2 
f [a(T-V)+a'A]dt o. (2) 
t1 . 

The kinetic energy T is due to translation and rotation of each 

element of the beam. The potential energy V has to be regarded 

with respect to bending and torsion as well as to gravitational 

effects aQd axial forces. The virtual work a'A has to be cal­

culated due to the axial control force F(t) at the joint and 

the end load consisting of force Q(t) and torque M(t). 

According (2) a coupled set of one ordinary differential equa­

tion for the driven translational motion and three partial 
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differential equations for the two bending and the torsional 

vibrations is derived. Additionally, boundary conditions and 

time-variant intermittency conditions depending on YS(t) will 

appear. For example, the bending wx(y, t) is gouverned by the 

partial differential equation 

+ E I Willi 

Z X 

• I 

+ p [b11w~+b21w~+b31S'+b41w~+b61S 

( 3) 

Here, y, are accelerations according to the body velocity vB' 
1 

Sg2 has regard to gravitational effects, s22 contains squares 

of components of wB and charcterizes centrifugal effects, and 

b" are abbreviations of transformed moments of inertia of 
1J 1 ' 'd't cross-sectional areas. As usual, E I z means flexura r1g1 1 y, 

p is mass density, and A denotes cross-sectional area. 

The intermittency conditions related to Wx are 

o. (4 ) 

The partial differential equation of the bending wz(Y' t) looks 

similarly to (3). The equation of torsional vibration is simpler 

than (3) and is not represented. The ordinary differential 

equation of the translational motion of the robot arm is a mo­

dification of (1): 
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+ pAL [Qy + F(t») • (5) 

This set of coupled differential equations describes a uncon­

ventional and troublesome control problem. Considerung the com­

ponents of vB and wB as kinematical control inputs and F(t) as 

force control input then we have a nonlinear control problem 

also including time derivatives of the control inputs. In the 

section after next some remarks on reduction of model order and 

of an approximate simplification will be presented. 

!-1ul tibody Model 

Another approach modeling the dynamic behaviour of an elastic 

robot arm is based on the theory of multibody systems. For this, 

the beam will be physically discretized and it will be consi­

dered as a chain of small beam-like rigid subbodies coupled by 

fictitious Cardan jOints and ficitious springs and dampers re­

presenting elasticity and material damping of the beam, cf. 

Fig. 3. 

2t.L 

z. 
l. 

····en 
i+l 

prismatic joint 
'u(t) 

N 

Fig. 3. Multibody model of elastic robot arm 
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The coefficients of the elastic springs are determined according 

to the correspondence of static deformation under static end 

load. This results in equal coefficients 

3 E I N i-1 2 
k x 

L (6) 
L -:3 m , 

a m=1 1 

k[5 (i-1 ) G IT' (7) 

3 E I N i-1 2 (8) 
k z 

L m 
y L -:3 m=1 1 

of the bending springs (k , k ) and the torsional spring (k a > 
a y " 

between the subbodies j+1 and j for j = i-1, ...... ,1 if sub-

body no. i contacts the prismatic joint. 

Assuming small relative angels a., [5., y. between the subbodies 
] ] ] 

the theory of multibody systems can be applied, cf. e. g. 

Schiehlen [7]. For example, the kinematic of each subbody has 

to be determined. With regard to small angles a typical result 

is 

w. 
] 

(9 ) 

where wi = wB is the angular velocity of subbody no. i, Wj is 

the angular velocity of subbody no. j, and 

i-1 
L 

m=j 

i-1 
L 

m=j 
( 10) 

More complicated is the expression of acceleration a j of the 

center of mass of subbody no. j, which is not written down here. 

Applying Newton's and Euler's equations of motion to each sub­

body, the following equations are obtained including the con­

straint forces R.: 
] 

I]. w. + (jj. I. 
] ]] 

W·= - K(z· - z. 1) + 
] ]]-

AL ( R. + s. 1 . R. 1) 
] ]-,]]-

( 11 ) 

( 1 2) 
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where S. 1 . is linearized direction cosine matrix relating the 
]- ,] 

two body-fixed bases of subbodies no. j-1 and j, Gj charachte-

rizes gravitational effects, and K denotes a diagonal matrix 

of the spring coefficients (6 - 8). Eliminating the constraint 

forces, and introducing state space notation by a state vector 

(13) 

finally a set of differential equations of first order is ob­

tained: 

(14) 

This mathematical model applies as long as subbody no. i con­

tacts the prismatic jOint. The system matrix Ai depends on the 

kinematic control inputs vB and wB and its time derivaties as 

well as on the axial control force F. Again a untypical control 

problem has been encountered. A change of the description no. 

i to that of no. i-1 or no. i+1 will appear if Ys cross the 

values 

2i-2-N or Ys = 2i-N. (15) 

It has to be noted that the dimension of the state vector xi 

depends on i: 

dim x. 
~ 

Model Reduction 

6(i-1) + 2. (16 ) 

Neither the continuum model (3 - 5) nor the multibody model 

(14) are suitable for a feedback control design. Therefore, 

adequate simplifications are needed. Firstly looking on the 

continuum model, a Ritz-Galerkin approach may be applied. As­

suming certain known shape functions wxi(y), wzi(y), wSi(y), 

the approximations 
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n z 
wz{y,t) L azm{t) wzm{y), 

m=l 
(17) 

nf:l 
f:l{y,t) L af:lm{t) wBm{y) 

m=l 
lead to 

(18 ) 

with a state vector 

(19 ) 

Comparing (18) with (14) an additional dependence of A on Ys 

and Ys can be noted. But this is nothing else than the substi­

tution of the index i of Ai' 

The suitable choice of shape functions is very difficult be­

cause of the intermittency condition (4). Therefore, these func­

tions usually depend on ys{t). A possible selection are the in­

stanteneous natural modes for the motionless jOint, i. e. for 

vB = 0, wB = O. 

To get a model (14) or (18) of low order, the number of subbo­

dies or the number of shape functions has to be low. This is 

essentially the question for a very good choice of shape func­

tions which is still unsolved for our problem. 

An additional simplification may be a piecewise approximation 

of the system matrices in (14) or (18) considering typical time 

historries of the kinematical control inputs. Very often the 

point-to-point control is realized by trapezoidal time func­

tions. During a start interval 0 < t< tl the system matrix A 

and analogously Ai of (14) may be replaced by 

(20) 

where vBo ' wBo' Fo represent maximum constant values of tra­

prezoidal functions and E ~ 0.1 .1. 0.2. Afterwards, during 

t1 ~ t < t2 the approximation is 
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( 21) 

where 2Ysm = Yyo + Ys1 ' In the last period t2 ~ t ~ t3 of bra­

king the robot motion, the system matrix is approximated by 

Here Yso and Ys1 denote the start and the end position of the 

translational motion of the robot arm. Summarizing, the state 

equations (14) or (18) can be represented by a family of con­

ventional time-invariant systems 

x(j) (t) = Aj x(j) (t) + b(j) F(t), t j _ 1 < t < tj' (23) 

where F(t) is the usual control input. 

Control Concept 

Looking for a suitable method for the control design it has to 

be noticed again that the gouverning equations of mo~ion are 

very unconvenient for usual design methods. For example, the 

robust decentralized control algorithms [1, 2] successfully 

developed and implemented for elastic robots with rotational 

degrees of freedom cannot be applied. There is a different 

structure of control inputs and additionally there is a certain 

loss of controllability of the elastic vibrations in the 

neighbourhood of rest positions. 

Therefore ,the authors shall apply two different control design 

methods. On the one hand the design of a robust control with 

respect to the multi-model-problem (23) will be considered ac­

cording to Ackermann [8]. On the other side a suitable deter­

mination of the input functions will be considered regarding 

the method of Meckel and Seering [9] to avoid the excitation of 

the elastic motions. The authors are hopefully looking forward 

to reducing the elastic vibrations of a robot arm with prisma­

tic joint by one of these design methods. 
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A Decentralized and Robust Controller for Robots 
Dr. L. Guzzella, Dr. A.H. Glattfelder 

Corporate R&D, Sulzer bros., CH-8401 Winterthur, Switzerland 

I. INTRODUCTION 

There seems to be a rather broad agreement in the robotics researcher community that a good 

solution of the robot motion-control problem would be given by some sort of compensation of all 

nonlinear effects [1]. After that the well known and powerful linear systems theory could be used 

to control robots. Unfortunately this appealing solution has some still unresolved problems the 

main two of which are the parameter sensitivity of the compensators and the large amount of on­

line computations. This paper presents a new controller structure which is able to cope with both 

problems. 

The first idea is to separate the robot in two subsystems, viz. the arm-system (large workspace and 

inertia) and the hand-system. The arm-system is modeled assuming a fixed hand, i.e. the hand is 

modeled as a passive payload. The hand-system is modeled assuming a constant arm-position. For 

both systems a decentralized nonlinear compensator is proposed. This decentralization produces 

simpler compensators of smaller order and is well suited to a parallel controller-structure (thUS the 

real-time implementation becomes feasible). 

The second idea is to eliminate the parameter sensitivity of the compensators by using a reference 

model and a variable structure controller (VSC) which guarantees a zero error between plant and 

model states, i.e. the VSC eliminates all unwanted couplings between the arm and the hand system. 

In the literature some algorithms for robots using VSC's have already been presented [2], [3]. All 

of them require a rather cumbersome stability analysis. This paper will show that with some 

reasonable assumptions'the stability analysis can be performed in a simpler way. 

The following section will give the formal problem statement and will introduce some definitions. 

Section 3 will introduce the design procedure giving the structure of the controller. In Section 4 the 

ideas introduced in Sec~ion 3 will be used studying the system in the "sliding mode". In Section 5 

the stability analysis is done. The last Section 6 gives an example of the complete design and 

analysis procedure and shows some digital simulations of a 3 degree of freedom robot. 

G. Schweitzer, M. Mansour 
Dynamics of Controlled Mechanical Systems 
IUTAMIIFAC Symposium Zurich/Switzerland 1988 
© Springer-Verlag Berlin Heidelberg 1989 
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2. PROBLEM DESCRIPTION AND DEFINITIONS 

A dynamic system is here defined to be a robot if it can be described by the following differential 

equation: 

M(y) y(t) = f(y(t),y(t» + u(t) ; y(t), u(t) E RP (1) 

The vectors y(t) and u(t) represent generalized coordinates respectively forces of the robot (1). 

The matrix M(y) is the mass-matrix and therefore symmetric and positive definite for all possible 

y(t). The vectorfunction f(y(t),y(t» represents nonlinear couplings due to centrifugal and Coriolis 

forces and also the gravitational effects. The actuators are assumed to be very fast (neglected 

actuator dynamics). 

Using the following definitions: 

xj(t} = Yi(t), 

xit) = :r;(t), 
j = 1,3, '"~ n-l, i = 1,2, '"~ p, n =2p 

j = 2, 4, ". n, i = 1, 2, ". P 

and introducing the structural matrices Q E Rnxn and B E Rnxp: 

the second degree equation (1) can be transformed in a first order one: 

x(t) = Q x(t) + B M(xr1 [f(x) + u(t)] (2) 

In the sequel it is assumed that the robot has m degrees of freedom (dof) in the arm system and q 

dof in the hand system (m+q=p). The vectors x(t) and u(t) can now be partitioned into the 

following f;Wo parts: 

This separation introduces four sub-matrices in the matrix M(x) and two coupling functions: 

f(x) = ( 
t'(x) ) 

r"(x) 

With this partitions equation (2) can be rewritten as follows: 

xA(t) = QAxA(t) + BA[Mll(x) + ~MA(x)rl [t'(x) + ~t'(x,uH) + uA(t)] (3a) 

xH(t) = QHxH(t) + BH[M22(X) + ~MH(x)rl [r"(x) + ~r"(x,uA) + uH(t}] (3b) 



with: ~MA(X) = - Ml2(X) M22(Xrl~l(X) 
~r"(X,UH) = -Ml2(x) M22(xrl (t"(X)+UH(t») 

~MH(X) = -M21(x) MU(xrlMl2(X) 

~t"(X,UA) = -M2l (x)Mll (xrl (r"(X)+UA(t») 

SMA(x) e lRmlUn 

~r"(X) e Rm 

~MH(X) e lRqxq 

St"(x) e Rq 
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The matrices QAe ]R2inx2m, QHe R2qx2q, BAe R2mxm and BHe lR2qxq have the same structure as 

the matrices Q and B defined above. Due to the symmetry and positive definiteness of M the 

matrices Mll and ~2 are symmetric and positive definite, too (i.e. their inverses exist). Also the 

matrices Mll+~MA and M22+~MH have to be symmetric. In addition it can be shown that this 

matrices are positive definite such that the existence of the corresponding inverses is guaranteed. 

The aim of this work is to find controllers uA(t) and uH(t) which force the states xA(t) and xH(t) to 

follow some desired independent motions x/(t) and xd H(t). Moreover the designer should be able 

to prescribe in a natural way the dynamics of this motion, i. e. the overall system should be linear 

with arbitrarily placeable poles. 

3. CONTROLLER DESIGN 

The first step in the design procedure is the formulation of a decoupled reference model of the 

system (3). Of course this reference model should be as close to the real system as possible since 

this will reduce the controller effort for matching both systems. The reference models are given by 

the following nonlinear equations (4a1b): 

ZA(t) = QA zA(t) + BA NA(zArl [ I(zA) + wA(t)]; zAe R2m (4a) 

zH(t) = QH zH(t) + BH NH(zHrl [ gH(zH) + wH(t)]; zHe 1R2q (4b) 

The models (4) are required to have the same dimensions as the robot (1), no other assumptions are 

necessary. If the inputs wAeRm and wHeRm, which will be defined later, are fed to both the 

robot (3) and the reference models (4) the system depicted in the next figure is formed (onlyone 

half of the system is shown the other half being analogous). Due to the neglected couplings and to 

the imperfect reference models the state-error will not vanish. 

input 

arm reference model reference state 

+ 
t---~ ann state 

Figure 1, plant and reference model for the arm sub-system 



250 

At this point the "variable structure controller" (YSC) [4] can be introduced. Its purpose is to 

suppress the state-errors between robot and reference models thus producing a perfectly known 

and decoupled input-output behaviour of the subsystem shown in Figure 2 (the hand sub-system is 

not shown since it is completely analogous). 

arm reference model 

+ 

Figure 2, flrst controller-shell producing a perfect plant-model matching 

The VSC have the following form: 

SA(t) = cA (xA(t) - zA(t» 

sH(t) = cH (xH(t) _ zH(t» H H HA HH. H 
uvs(t) = - (dx + dWA Iw (t)1 + dWH Iw (t)l) slgn(s (t» (5b) 

The vectors sA(t)eRm and sH(t)eRq. which will play an important role in the next section, are the 

so called switching variables. The matrices CA and CH can always be chosen to be orthogonal to 

the matrices BA and BH respectively [5J. Since this fact simplifles the derivations without hiding 

the main ideas, it is assumed in the sequel that this special choice has been adopted. 

The vectors u~s(t)e Rm and u~s(t)e Rq are nonlinear functions of the state-error between the plant 

and the reference-model. In Section 5 conditions will be given for the gains d of the VSC which 

will make sure that the state-error between the reference model and the plant vanishes. Assuming 

this zero state-error the compensator can be defined using only the reference model characteristics 

(4) which of COUfse are perfectly known (again only the arm system is shown). 

Figure 3, second controller-shell producing a linear input-output-behaviour 
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From the outside this second shell has a linear transfer function, i.e. it consists of m decoupled 

integrator pairs. The last step represents a classical linear system design, e.g. a pole placement by 

state feedback. Since no integral part is assumed in the linear controller an additional gain-matrix 

RA can be introduced to produce a zero steady-state error xA(oo) - x~(oo). 

KA 

Figure 3 
A 

__ ----~ x (t) 

Figure 4, third controller-shell producing an overall behaviour with arbitrary poles 

In order to use consistent representations the original system equations (3) are reformulated using 

the matrices NA and NH respectively the vectors gA and gH introduced in equation (4a1b): 

xA(t) = QAxA(t) + BA[NA(xA) + 5NA(x)r1 [ gA(xA) + 5gA(x,uH) + uA(t)] (6a) 

xH(t) = QHxH(t) + BH[NH(xH) + 5NH(x)r1 [gH(xH) + 5gH(x.uA) + uH(t)] (6b) 

with: 5NA(x) = Mll(x) - NA(xA) + 5MA(x); 5gA(x,uH) = r(x) - gA(xA) + 5r(x,uH) (7a) 

5NH(x) = M22(x) - NH(xH) + 5MH(x) ; 5gH(x,uA) = t"(x) - gH(xH) + 5t"(x,uA) (7b) 

The structure of the controller is now completely defined and can be summarized in the Figure 5. 

ann reference-model 
A 

rw~(t"")_~ zA = ......... . 

annVSC 
A 

uvs(t) = ......... equation (5a) 

= ............. equation (6a) t---~-+-~ 

couplings 

Figure 5, complete controller-structure for the ann sub-system (hand sub-system analogous) 
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4. SYSTEM BEHAVIOUR IN THE SUQING MOPE 

The derivations in this chapter are shown for the ann-subsystem only. The equations of the hand­

subsystem are almost identical, in fact the only difference consists in the super- or subscripts which 

have to be changed. Therefore only the final result is given for both parts. 

The sliding mode is characterized by the identity SA(t) .. O. Using this relation the "equivalent 

control method" [4] can be applied. This method uses the obvious fact that the switching variable 

sA(t) can only vanish identically if its first time derivative vanishes, too. From this fact a control 

u~(t) can be calculated which is equivalent to u~(t) (c!' is chosen to be orthogonal to BA): 

u~(t) = - [NA + 5NA]c!' ( QAxA _ QAzA _ BANA-l[gA + wA]} _ [gA + 5gA + wA] (8) 

If this equivalent control vector (8) is applied on the ann system (4a) and (6a) the following very 

simple ann error-dynamics are obtained (eA(t) = xA(t) - zA(t»: 

(9a) 

Therefore the error-dynamics of the arm is governed by a simple linear differential equation. 

Moreover the poles of the matrix nAQA are determined by the entries of the matrix c!' only [5] 

(note that those poles of (9a) lying in the origin do not affect the behaviour of the sliding system 

[6]). 

Thus, for the moment supposing that the sliding mode is stable, the error between both hand and 

arm reference model vanishes with an exponential decay rate which is arbitrarily chosen by the 

designer. For some sufficiently large times t>t** the error eA(t) can be assumed to be virtually zero. 

An other approach would be to introduce a start-up procedure which guarantees zero errors. In this 

case, assuming a persistent sliding mode, the error remains zero for all times. 

For times t>t·· the nonlinear compensators will have the desired effect on the real robot. The 

compensated and controlled robot-dynamics in the sliding mode are given by: 

(lOa) 

Using the same argumentation the compensated and controlled dynamics of the hand system can be 

found: 

(lOb) 

Since the pairs (QA, BA) and (QH, BH) are structurally completely controllable the designer can 

specify an arbitrary pole-placement by choosing appropriate matrices KA respectively KH [8] (of 

course any other synthesis method can be used now, e.g. LQG or frequency-domain approaches). 
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5. STABILITY ANALYSIS 

Before starting the stability analysis a lemma used below is introduced. 

Lemma; If M=MT >0 => Mu +8MA>0 and Mn+8MH>0 

frQQf.;. M > 0 => xATMuxA + xATMI2 xH + xHTM21 xA + xHTM22 xH > 0 

since xA and xH are arbitrary one can choose xH = -~ M21 xA 

=> xAT {Mu - MI2 Mii M21 - MI2 Mii M21 + MI2 Mii Mn Mii M21 } xA 

= xAT {Mu - MI2 Mii M21 } xA = xAT {Mu + 8MA} xA > 0 a 

The second assertion is proved by choosing xA = - Mill MI2 xH a 

The general stability analysis is rather cumbersome and the resulting stability conditions are quite 

conservative. Here a reasonable assumption is adopted in order to simplify things. In fact zero 

initial errors eA(to)=xA(to)_zA(to) and eH(to)=xH(to)_zH(to) are assumed. This is not a restrictive 

assumption, since at start-up most robots perform some kind of reference-mark localization which 

can be used to initialize the reference model. 

In the sequel only the stability analysis of the arm-system is shown. The hand-system can be 

analyzed in the same way such that only the results will be given here. Since the error eA(t) is 

assumed to be zero the dynamics of the switching variable sA(t) are described by the following 

equation (the vector zA(t) is substituted by xA(t»; 

(11) 

In this equation the input uH(t) is still involved (8gA is a function of x(t) and uH(t». In order to be 

able to calculate the derivative of the switching function the vector uH(t) is replaced by its 

equivalent value u~(t). This corresponds to the "hierarchical control"-principle introduced in [4]. 

After some algebraical manipulations the following u~(t) is found (S = I-M2IM~~MI2M;~); 

(12) 

The stability proof uses the following Lyapunov-function; 

vA(t) = SA(t)TrMll(x)+8MA(x)]sA(t) = sA(tl[NA(xA)+8NA(x)]sA(t) = sA(tlp(x)sA(t) (13) 

Due to the lemma the matrix P(x) is symmetric and positive definite, therefore vA(t) is a valid 

Lyapunov-function candidate. The time derivative of vA(t) is given by the equation (14); 

(14) 
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The second tenn in (14) can be neglected since it is of second order small (remember the error eA(t) 

is virtually zero therefore sA(t) is small, too). Using equations (7a), (11) and (12) the derivative of 

the Lyapunov function (13) can be calculated: 

yA(t) = 2sA(t)T {p~(x)+p~(x)wA(t)+p~(x)wH(t) - (C¢ +~-;. IwA(t)l+d~ IwH(t)l)sign(sA(t)) } (15) 

The functions p~(X)ElRm, p~(X)ElRmxm and p~(X)ElRmxq used in (15) are defined by: 

A ,.A A-I A H-I H 
PI (x) = r· - MllN g - M12N g (16a) 

p~(x) = 1- MllNA·I+ Md M22+BMHrIM2IMi~ (16b) 

(16c) 

A sufficient stability condition for the VSC-gains is given by the following bounds: 

d~> max(lp~(x)l} dw~ > max (lIp~(x)lI) dwt > max (II p~(x)1I ) (17) 
x x x 

The nonn operators used here are the Euclidean length of p~ and the greatest singular value of p~ 
and p~. Using exactly the same argumentation sufficient condition for gains of the hand VSC can 

be found. Definition of P~(X)E lRq, P~(X)E lRqxq and P~(X)E lRqxm: 

H ..H H-I H A-I A 
PI(x)=r-M22N g -M21N g (18a) 

P~(x) = 1- M22NH-1+ M21 [ Mll+BMArlM12Mi~ (18b) 

H A-I A-I 
P3 (x) = M21 [ M11+BM] - M21N (18c) 

Stability conditions for the gains of the hand VSC: 

d~> max{lp~(x)l} H H dWH > max{lIp2 (x)lI) dw~ > max{llp~(x)lI} (19) 
x x x 

The maximum values of the VSC-gains have to be found over the entire set of planned trajectories. 

This can be done by simulating the compensated and controlled reference system and inserting z(t), 

which is equal to x(t), into the stability conditions (17) respectively (19). 

The main result of this work is summarized in the following Theorem: 

TheQrem: If the gains of both VSC (Sa) and (5b) fulfill the stability conditions (17) respectively 

(19) and if the system depicted in Figure 5 starts with zero plant-model state-errors then 

this errors will remain zero for all times t>t". 
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For the ann-system: If the VSC-gains are chosen greater as imposed by condition (17) 
and if the robot starts at to with zero ann-error (and thus in sliding mode) the derivative 

of the Lyapunov-function (13) will be smaller than zero for all times t>to' Since the 

Lyapunov-function (13) has a minimum for sA(t)=O the sliding mode will be stable for 

all t>to' too. But if this is true the error is governed by the equation (9a) and therfeore 

the error has to remain zero for all times t>to (of course the designer is supposed to 

choose such a matrix rf which produces a stable error system). 

Of course the same argumentation is valid for the hand-system, too. n 

6. EXAMPLE 

The presented example has 2 dof in the ann system and 1 dof in the hand system. This robot is able 

to reach a certain point in its workplane and to produce a desired orientation of the tool. The 

geometry is defined-in the following sketch: 
R(t) y 

x 
<P(t) 

Figure 6, sketch of the analyzed robot with 3 dof 

The differential equation (1) for this robot is given by the following expressions (in order to avoid 

overloaded equations in the sequel the time dependencies of variables are often ommiued): 

o 
M+~ 

~osin(cl>-<p) 

[ 

-2(MR+~[R+RoJ) Rei> - ~1[R+Rolro~2sin(cl>-<p) 
~O~2coS(<lHp) + (MR+~[R+Ro])<i>2 

1\ • 1\ •• 
mv[R+Rolrocl>2sin(cl>-<p) - 2mroRcl>cos(cl>-<p) 

1 (U4>(t)] 
+ uR(t) 

ucp(t) 
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For the sake of simplicity no inertia at R(t) = 0 is introduced; therefore R(t) has always to be greater 

than a certain minimal value Rmin' 

The reference models (4ajb) are defined by the following two equations. 

Arm system: 

(
MR2+ m[R+Ro+roF 0 )(<t>(t) )= (-2 (MR(t)+ m[R+Ro+rol }~(t)<b(t) )+ (U<l>(t) ) 

o M+ m Ret) (MR+ m[R+Ro+rol}<D2 uR(t) 

Hand system: 

The nominal values of the parameters are : 

M = 10 (kg) m = 1 (kg) Ro = 1 (metre) ro = 0.2 (metre) 

The pay-load ~-m is assumed to be the main time-varying parameter (e.g. pick-and-place tasks) 

and its variation range is assumed to be 0 ~ ~-m ~ O.Sm. 

The desired motion is represented by a step-function starting at <D(t)=<p(t,,)=O and R(t,,)=O.S (at 

stand-still) with the set-points <D(oo)=7tl4, R(oo)=1.0 and <p(oo)=1t/2. The dynamics of the closed­

loop system are determined by the matrices KA and KH. This matrices are choosen in the following 

way: 

A (2200) .. K = 0 0 8 4 arm-poles -1±j, -2±2J KH = (32 8) hand-poles -4±4j 

The following fig\lre shows the behaviour of the system with no VSC and maximum pay-load. 

0.8 1.6 

I 
R(t) 

0.0 '----+--+_+--+---' 0.5 -8.9 
0.0 3.0 0.0 3.0 0.0 3.0 

Figure 7, closed-loop behaviour without VSC 
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As expected the neglected nonlinear couplings and the parameter errors cause the robot to diverge 

from the reference model. 

The VSC is determined by the choice of the matrices c!' and c" and by the calculation of the VSC­

gains. Matrices c!' and C" determine the error-dynamics which are choosen to produce stable error 

poles in the sliding mode: 

c"=(51) 

For the calculation of the VSC-gains the following parts of equation (3) are needed. 

Arm subsystem: 

_(MR2+6t[R+Ro12 0 ) 
Mu - 1\ o M+m 

A _ ( -6t[R+Rol2cos2(ct»-cp) -6t[R+RolSin(ct»-CP)COS(ct»-cp») 
8M - 1\ 1\ 

-m[R+Rolsin(ct»-cp)cos(ct»-cp) -m sin2(ct»-cp) 

Hand subsystem: 

M22 =(6t~) 

8M" = (-(6t2[R+Rol¥o cos2(ct»-cp))/(MR2+6t[R+Ro12} - (6t2~ sin2(ct»-cp»)I(M+6t}) 

With that the stability conditions (16) and (18) can be applied to this example. The qualitative 

behaviour of the resulting VSC-gains for the planned tmjectory are shown in the next figure: 

IA 
I I r\ I I I 

d A d A H d H d H - dx I- r-I- w I- r-I- w - I-
\dX 

- -- w - -I- w l-

I 

f-I- VI--t-- I\. V it - \r-\1-' ,..- "--

Figure 8, qualitative behaviour of the VSC-gains 

The explicit numerical values are: 

d~~5.974.. dw~~1.260 .. A 
dw"~IO.95 .. " " " dx ~O.04995.. dwA~.850.. dw"~O.09651 .. 
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With that the VSC is completely specified and its effect on the system is shown in the last figure. 

As expected the VSC produces a perfect model-plant matching. 

0.8 

-I--+:f-l---+- <l> (t) 

0.0 
0.0 

-+-++-+--4- R(t) 

0.5 
3.0 0.0 

1.6 

0.0 
3.0 0.0 

Figure 9, closed-loop behaviour with VSC 
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Abstract 

The paper investigates the dynamic characterization of redundant manipulators and 
formalizes the problem of dynamic optimization in manipulator design. The dynamic 
performance of a manipulator is described by both inertial and acceleration charac­
teristics as perceived at the cnd-effector opcrational point. Thc inertial characteristics 
at this point are given by the operational space kinetic energy matrix (pseudo-kinetic 
energy matrix for a redundant manipulator) which is dependent on the kinematic and 
inertial parameters of the manipulator and varies with its configuration. The accel­
eration characteristics of the end-effector are described by a joint torque/acceleration 
transmission matrix. In addition to their dependency on the kinematic and inertial pa­
rameters, the acceleration characteristics depend on the velocities and actuator torque 
bounds. The dynamic optimization is formalized in terms of finding the design pa­
rameters under the various constraints to achieve the smallest most isotropic and most 
uniform end-effector inertial properties, while providing the largest, most isotropic, and 
most uniform bounds on the magnitude of end-effector acceleration. This approach is 
used in the design of ARTISAN, a ten-degree-of-freedom manipulator currently under 
development at Stanford Univcrsity. 

Introc\ Ilction 

Over the past two ,decades, an important research effort has been devoted to the 

development of robot systems. This effort has produced significant improvements in 

dexterity, workspace, and kincmatic characteristics of robot mechanisms. Research in 

kinematics has developed means for the analysis of workspace characteristics [8,9] , 

and the evaluation of kinelllatic performance [2,6,11]. 

Manipulators are highly nonlinear and coupled systems. During motion a manipulator 

is subject to inertial, centrifugal, and Coriolis forces. The magnitude of these dynamic 

forces cannot be ignored when large accelerations and fast motions are considered. 

The dynamic characterization is, therefore, an essential consideration in the analysis, 

design, and control of these mechanisms. One of the most significant characteris­

tics in evaluating manipulator performance is associated with the dynamic behavior 
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of its end-effector. The end-effector is indeed the part most closely linked to the 

task. These characteristics cannot be found in the manipulator joint space dynamic 

model, as it provides a description of joint motion dynamics. The description, analy­

sis and control of manipulator systems with respect to the dynamic characteristics of 

their end-effectors has been the basic motivation in the development of the operational 

space formulation [3,5]. The end-effector dynamic model is a fundamental tool for the 

analysis and dynamic characterization of manipulator systems. 

The inertial characteristics at some point on the end-effector or the manipulated object 

are given by the operational space kinetic energy matrix. The kinetic energy matrix, 

or the generalized inertia ellipsoid [1], establishes the relationship between end-effector 

forces and accelerations. However, this relationship does not relate the actual actuator 

torque input to the end-effector accelerations. The description of the acceleration char­

acteristics is an essential requirement for the evaluation of the dynamic performance of 

manipulators. The operational space dynamic model has been used to establish [4], for 

different regimes, the input/output relationships between joint forces and end-effector 

acceleration. A similar relationship has been used to establish a measure of dynamic 

manipulability [12]. 

The joint torque/acceleration transmission matrix has been used in the design of ma­

nipulators with improved dynamic characteristics. An optimal selection of the design 

parameters has been shown [4] to significantly improve the end-effector dynamic char­

acteristics by providing large, isotropic, and uniform end-effector accelerations. 

In this paper, the dynamic characterization integrates both inertial and accelera­

tion properties. The dynamic optimization is aimed at obtaining the smallest, most 

isotropic and most uniform end-effector inertial characteristics, while providing the 

largest, most isotropic, and most uniform bounds on the magnitude of end-effector 

acceleration. The approach is extended to redundant manipulator systems and used 

in the design of ARTISAN, a ten-degree-of-freedom redundant manipulator. 

End-Effector Equations of Motion 

The end-effector position and orientation, with respect to an inertial reference frame 

Ro is descriDed by the relationship between Ro and a coordinate frame Re of origin 

8 attached to this effector. 8 is called the operational point. It is with respect to 

this point that motions and active forces of the effector are specified. An operational 

coordinate system associated with an m-degree-of-freedom effector and a point 8, is 

a set x of m independent parameters describing the effector position and orientation 
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in 'Ro. For a non-redundant n-degree-of-freedom manipulator, i.e. n = m, these 

parameters form a set of of generalized operational coordinates. The effector equations 

of motion in operational space [3,5] are given by 

A(x)x + Jl(x, i) + p(x) = Fj (1) 

where A(x) designates the kinetic energy matrix, and p(x) and F are respectively the 

gravity and the generalized operational force vectors. Jl(x, i) represents the vector of 

centrifugal and Coriolis forces. The dynamic decoupling and motion control of the 

manipulator in operational space is achieved by selecting the control structure 

F = A(x)F* + Jl(x, i) + p(x)j (2) 

and the end-effector becomes equivalent to a single unit mass, 1m , moving in the 

m-dimensional space, 

(3) 

F* is the input of the dccoupled end-effector. This provides a general framework for 

the implementation of various control structures at the level of decoupled end-effector. 

The generalized joint forces r needed to produce the operational forces F of (eq. 2) 

are given, using the Jacobian matrix J(q), by 

r=P(q)Fj (4) 

where q represents the vector of generalized joint coordinates. 

Redundant Manipulators 

A set of operational coordinates, which describes the end-effector position and orien­

tation, is not sufficient to completely specify the configuration of a redundant manip­

ulator. Therefore, tlIe dynamic behavior of the entire system cannot be described by 

a dynamic model in operational coordinates. With respect to a system of generalized 

joint coordinates, the equations of motion of a manipulator can be written in the form 

A(q)q + b(q, it) + g(q) = rj (5) 

where b( q, it), g( q); and r, represent the Coriolis and centrifugal, gravity, and gener­

alized forces in joint spacej and A( q) is the n X n joint space kinetic energy matrix. 

While the dynamics of the entire system cannot be described in operational coordi­

nates, the dynamic behavior of the end-effector itself, can still be described, and its 

equations of motion in operational space can still be established. In fact, the structure 
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of the effector dynamic model is identical to that obtained in the case of non-redundant 

manipulators (eq. 1). In the redundant case, however, the matrix A should be inter­

preted as a "pseudo kinetic eneIgY matrix". This matrix is related to the joint space 

kinetic energy matrix by A = [J A -I JTI-1 • 

Another important characteristic of redundant manipulator is concerned with the rela­

tionship between operational forces and joint forces. In the case of non-redundancy, an 

operational force vector F is produced by the joint force vector JT F. The additional 

freedom of redundant mechanism results in infinities of possible joint force vectors r. 
However, for a given F, all possible joint forces r satisfy the relat.ion 

where 

-T F=J rj (6) 

(7) 

J( q) is actually a generalized inverse of the Jacobian matrix. A joint force vector r can 

then be decomposed into two terms: one contributes to the operational force vector, 

and the other only acts internally (in the null space associated with the Jacobian 

matrix) 

(8) 

where In is the n x n identity matrix and r 0 is an arbitrary joint force vector. It has 

been shown that a generalized inverse that is consistent with the system's dynamics is 

unique [51 and given by (eq. 7). This generalized inverse corresponds to the solution 

that minimizes the manipulator's instantaneous kinetic energy. 

The relationships between the components of the operational space and joint space 

dynamic models are 

A(q) = [J(q)A-l(q)JT(q)rlj 

p.( q, q) = JT (q)b( q, q) - A( q)h( q, q)j 

p( q) = JT (q)g( q)j 

(9) 

(10) 

(11) 

where h(q,q) = j(q)q. The previous relationships are general. In particular, they 

still apply to non-redundant mechanisms. In this case of zero degree of redundancy, 

the matrix J reduces to J-l. 

Similar to the case of non-redundant manipulators, the dynamic decoupling and con­

trol of the end-effector can be achieved by selecting an operational command vector of 

the form (eq. 2). The manipulator joint motions produced by this command vector are 

those that minimize the instantaneous kinetic energy of the mechanism. Asymptotic 
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stabilization is achieved by the addition of dissipative joint forces. In order to pre­

clude any effect of the additional forces on the end-effector and maintain its dynamic 

decoupling, these forces are selected to act in the dynamically consistent nullspace 

associated with J( q). In the actual implementation, the control vector is developed 

in a form [5] that avoids the explicit evaluation of the expression of the generalized 

inverse of the Jacobian matrix. 

End-Effector Dynamic Performance 

The dynamic response of a mechanical system is determined by its inertial character­

istics. Reducing the magnitude of inertias improves the system's dynamic response. 

The end-effector inertial characteristics at a configuration q are described by the ki­

netic energy matrix A(q). It's effective inertia at a configuration q, when moving in 

a direction u is given by uT A( q)u. The effective inertia varies with the configuration 

and direction. Isotropic and uniform inertial characteristics are therefore essential to 

provide isotropic and uniform end-effector's dynamic response. 

The second characteristic is concerned with the acceleration characteristics at the end­

effector. This is the minimum achievable acceleration given the bounds on actuator 

torques. Equivalently, this characteristic can be stated in terms of the bounds on the 

operational force vector F*, the input of the decoupled end-effector in (eq. 3). Let us 

examine the operational command vector F in (eq. 2), which achieves the dynamic 

decoupling and control of end-effector motion. Only a fraction of these opera.tional 

forces, namely F* the input of the decoupled end-effector, contributes to the end­

effector acceleration. The end-effector dynamic performance is, therefore, dependent 

on the extent of the boundaries of F*, which determine the limitations on the magni­

tude of available end-effector acceleration. 

The vector F of (eq. 2) is produced from the actuator joint force vector r by JT(q)r, 

J(q) is equal to j-l(q) for a non-redundant manipulator. Substituting in (eq. 2) 

yields, 
-T 
J (q)r = A( q)F* + J.t( q, it) + p( q); 

which, using (eq. 9- 11), can be written as 

F* = E( q)[r - b( q, it) - g( q)]; (12) 

where 

E(q) = J(q)A-1(q). (13) 



264 

and 

o(q,q) = [JT(q)JT(q)] b(q,q) - JT(q)A(q)h(q,q)j 

g(q) = [JT(q)JT(q)] g(q). 

(14) 

(15) 

b( q, q) and g( q) are the joint force vectors corresponding to the end-effector Cori­

olis and centrifugal forces, and Gravity forces. For a non-redundant manipulator, 

[JT (q)JT (q)] reduces to the identity matrix and g( q) becomes identical to g( q). For 

a redundant manipulator, g( q) reperesents the part of g( q) that has a contribution at 

the end-effector, b(q,q) is similarly interpreted. Given (eq. 3), the matrix E(q) also 

establishes the relationship between joint torques and accelerations. 

x = E(q)T; (16) 

where 

T = r - o(q,q) - g(q). (17) 

r represents the vector of joint forces that contributes to the end-effector accelera­

tions. These contributing forces are limited by the boundaries of actuator torques. At 

zero velocity the matrix E( q) describes the bounds on the end-effector accelerations 

corresponding to the bounds on joint actuator torques corrected for the gravity. The 

bounds on T has been used [4] to construct a joint force normalization matrix No( q). 

This matrix has been used to define 

Eo( q) = W E( q)No( q)j (18) 

where W is a weighting matrix for the normalization of angular and linear accelera­

tions. The matrix Eo(q) can be interpreted as a joint force/acceleration transmission 

matrix at zero-velocity. Bounds on actuator torques are modified at non-zero veloc­

ities. Coriolis and centrifugal forces that arise at non-zero velocities also affect the 

bounds on r. Similarly to Eo( q), a matrix Ev( q) 

(19) 

has been constructed to describe the joint force/acceleration transmission at maxi­

mum operating velocities. At a given configuration q, the end-effector's acceleration 

characteristics will be described by the matrices Eo( q) and Ev( q). 

Dynamic Optimization 

The dynamic optimization is aimed at finding the design parameters under the various 

constraints to achieve the smallest, most isotropic, and most uniform end-effector in­

ertial properties, while providing the largest, most isotropic, and most uniform bounds 
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on the magnitude of end-effector acceleration, or equivalently, on the command vector 

F* both at low and high velocities. The performance at high velocity is important for 

fast and gross motion, while performance at low velocity is particularly important for 

fast response in tasks with small range of motion, such as part-mating operations. 

At a given configuration q, the matrices A( q), Eo( q), and Ev( q) are functions of 

the manipulator's geometric and motion parameters; e.g. link length, mass, moment 

of inertia, centers of mass, actuator mass, and bounds on actuator torques. Let 7] 
designate the set of these parameters. 

The design process would typically start with an initial design based on workspace and 

geometric considerations. The various design parameters would be estimated within 

some range. These specifications and the dynamic and structural requirements form 

the set of design parameters 7]. Let {ui(7]);i = 1, ... ,nu } and {vi(7]);i = 1, ... ,nv} 
designate the sets of equality and inequality constraints on the manipulator design 

parameters 7]. 

Expressed as a function of the manipulator configuration q and the design parameters 

7], the matrices A(q), Eo(q,7]) and Ev(q,7]) constitute the basic components in this 

optimization problem. At a given configuration, the problem is to find the optimal de­

sign parameters 7], under the constraints {Ui(7])} and {Vi(7])}, that minimize some cost 

function based on the end-effector inertial and acceleration characteristics. This cost 

function is made up of three weighted components associated with the characterisitics 

of the matrices A( q), Eo( q), and Ev( q), 

3 

C(q,7]) = E WiCi(q, '1); 
i=1 

subject to the equality and inequality constraints 

Ui(7])=O i=I, ... ,nu; 

Vi( 7]) :5 0 i = 1, ... , nv ; 

where Wi are the weight coefficients. The cost function associated with the kinetic 

energy matrix is aimed at providing small and isotropic inertial properties at q. The 

magni tude characteristics is described by the norm" A( q)", and the isotropic properties 

are represented by the matrix condition number, i.e. II:(A(q,7]». The first component 

becomes 

The cost functions associated with the end-effector accelerations at zero and maximum 

oper, Ling velocity are aimed at providing the largest and most isotropic properties at 
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q. This is 
1 

C2(q,'I]) = [IIEo(q,7])1I +a211:(Eo(q,77))J; 

1 
C3(q,77) = [IIEv (q,7])1I + a311:(Ev (q,7]))J. 

where all a2, a3' Finally, the problem of dynamic optimization over the manipulator 

work space Vq can be expressed as 

minimize f C(q,7])w(q)dq; 
lVq 

subject 

'Ui(7])=O i=l, ... ,nuj 

Vi(1/):$O i=l, ... ,nvi 

where the function w( q) is used to relax the weighting of the cost function C( q, '1]) in 

the vicinity of the work space boundaries and singularities. 

Application to ARTISAN 

Optimal dynamic characteristics at the end-effector has been one of the basic goals in 

the ARTISAN project [7J. These include high performance joint torque control ability, 

motion redundancy, micro-manipulation ability [lOJ, light structure, and integrated 

sensing. The kinematic structure of the ARTISAN is divided into three subsystems: 

wrist positioning structure, wrist and micro-manipulator. The wrist positioning struc­

ture is the part of the manipulator composed of the first four joints. Joint 1 and joint 

2 are intersecting, orthogonal revolutes. Joints 3 and 4 are revolutes with axes parallel 

to the axis of joint 2. This part of the system forms a redundant structure if we regard 

This part of the system forms a redundant structure with respect to the positioning 

of the wrist point. The dynamic optimization has been applied to the design of the 

redundant structure formed by the first four degrees of freedom of ARTISAN. 

The design parameters consisted of the links' dimensions, masses, inertias, and motor 

parameters. The dynanlic optimization was conducted in three main steps. Based on 

the preliminary design, the inertial characteristics were first optimized. This resulted 

in an initial selection of dimensions and mass distribution. This first set of design 

parameters is used to initialize, the second step which is aimed at providing optimal 

acceleration characteristics. Actuators are chosen in this second step. The overall 

optimization is achieved in the third step. 

This procedure, illustrated in Fig. 1., has led to a significant reduction of the search 

space in steps 1 and 2 and provided a good initial estimate for the overall optimization 
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in step 3. It is important to mention the impact of the various weights on the final 

solution. 
Workspace, Kinematic 

and I»rclililinary Dynamic 
Considerations 

Initial Design 
Constraints 

Inertial Cbaracteristic 
Optimization 

Fig. 1. The Three Step Optimization Procedure 

The optimization was carried out using a sequential quadratic progranlllling (SQP) 

algorithm. The results of this optimization for ARTISAN has heen compared to a 

PUMA 560 arm. Fig. 2. shows the inertial characteristics of the PUMA arm (Fig. 2.a.) 

and ARTISAN (Fig. 2.b). At a given position of the end-effector, these figures show 

the projections of the ellipsoids associated with the three eigenvalues of A. Because 

of the redundancy, different ellipsoids would result at given end-effector poistion. The 

ellipsoids shown in Fig. 2.h. correspond to those that have the largest eigenvalues. 

Also, the scale used in Fig. 2.h. is twice that of Fig. 2.a. The average effective inertia 

of the PUMA is roughly three times that of ARTISAN. 

o 0 

o 0 000 

(a) (b) 

Fig. 2. The inertial Characteristics 

Fig. 3. illustrates the minimum available end effector acceleration for the PUMA 

(Fig. 3.a.) and ARTISAN (Fig. 3.h) at zero joint velocity. The circles depict the min-
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imum available accelerations at points in the workspace. On an average, the minimum 

available accelerations for ARTISAN is twice that of the PUMA arm for same joint 

torques. 

I 0 

() 0 

. 0 0 0 

. 0 0 0 . o 0 

G .. .. ........... 9 

(a) (b) 

Fig. 3. Minimum Available End-Effector Accelerations 

Fig. 4. shows the condition numbers of the acceleration characteristics at zero joint 

velocity for ARTISAN to be uniform over the workspace. These characteristics has 

been estimated to be roughly half of those computed for PUMA arm. 

Fig. 4. Acceleration Characteristics 

Conclusion . 

The dynamic characterisitics of manipulator systems have been described by the in­

ertial and acceleration properties as perceived at their end-effectors. These charac­

terisitics have been used in the developement of a methodology for the dynamic opti­

mization in manipulator design. The optimization problem has been expressed as the 

minimization, with respect to the design parameters and constraints, of a cost function 

based on these characteristics. The small isotropic and uniform inertial characteris­

tics will provide higher dynamic response at the end-effector. The large isotropic and 

uniform bounds on the end-effector accelerations will be translated into a large and 
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well conditioned operational space command vector. The application to ARTISAN has 

demonstrated the effectiveness of this methodology to provide higher dynamic char­

acteristics. With an optimal redistribution of masses, dimensions, and actuators, the 

resulting design has been shown to be significantly superior to conventional designs. 

Acknowledgments 

The financial support of the Systems Development Foundation and SIMA is gratefully 

acknowledged. We are thankful to professors Bernard Roth, Kenneth Waldron and 

Joel Burdick, who have made valuable contributions to the development of this work. 

References 

1. Asada, H.; A Geometrical Representation of Manipulator Dynamics and Its Appli­
cation to Arm Design. Trans. of ASME, Journal of Dynamic Systems, Measure­
ment, and Control, Vol. 105, No. 3,pp. 131-135. 1983. 

2. Fournier, A.; Generation de Mouvements en Robotique. Application des Inverses 
Generalisees et des Pseudo Inverses. These d'Etat, Mention Science, Universite 
des Sciences et Techniques des Languedoc, Montpellier, France, 1980. 

3. Khatib, 0.; Commande Dynamique dans I'Espaee Operat- ionnel des Robots Ma­
nipulateurs en Presence d'Obstacles. These de Docteur-In~enieur. Ecole Na­
tionale Superieure de l' Aero- nautique et de I'Espace (ENSAE). Toulouse, France, 
1980. 

4. Khatib, O. and Burdick, J.; Optimization of Dynamics in Manipulator Design: 
The Operational Spaee Formulation, Proceedings of the ASME Winter Annual 
Meeting, Miami, November 1985; also published in the International Journal of 
Robotics and Automation, vol. 2, no. 2, pp. 90-98, 1987. 

5. Khatib, 0.; A Unified Approach to Motion and Foree Control of Robot Manip­
ulators: The Operational Space Formulation," IEEE Journal on Robotics and 
Automation, vol. 3, no. 1, pp. 43-53, February 1987. 

6. Paul, R.P and Stevenson, C.N.; Kinematics of Robot Wrists. International Journal 
of Robotics Research, vol. 2, No.1, pp. 31-38, 1983. 

7. Roth, B. et al.; The Design of the ARTISAN Research Manipulator System, sub­
mitted to the International Journal of Robotics Research. 

8. Roth, B.; Perfornlance Evaluation of Manipulators from a Kinematic Viewpoint. 
National Bureau of Standards Workshop on Performance Evaluation on Pro­
grammable Robots and Manipulators, National Bureau of Standards, NBS SP-
459, pp. 39-,61, 1976. 

9. Shimano, B.; The Kinematic Design and Force Control of Computer Controlled 
Manipulators. Stanford A.1. Lab. Memo 313, 1978. 

10. Waldron, K. J., Raghavan, M. and Roth, B.,; Kinematics of a Hybrid Series­
Parallel Manipulation System (Part I and II). ASME Winter Annual Meeting. 
Boston, 1987. 



270 

11. Yoshikawa, T.; Analysis and Control of Robot Manipulators with Redundancy. 
Proc. of the 1st International Symposium of Robotics Research, MIT Press, 
Cambridge, MA, pp. 735-747, 1983. 

12. Yoshikawa, T.; Dynamic Manipulability of Robot Manipulators. Proc. 1985 IEEE 
International Conference on Robotics and Automation, St. Louis, pp. 1033-1038, 
1985. 



Effect of Sampling Rates on the Performance 
of Model-Based Control Schemes 

Pradeep K. Khosla 

Department of Electrical and Computer Engineering 
The Robotics Institute 

Carnegie-Mellon University 
Pittsburgh, PA 15213 

Abstract 

In our previous research, we experimentally implemented and evaluated the effect of 
dynamics compensation in model-based control algorithms. In this paper, we evaluate the 
effect of changing the control sampling period on the performance of the computed-torque 
and independent joint control schemes. While the former utilizes the complete dynamics 
model of the manipulator, the latter assumes a decoupled and linear model of the 
manipulator dynamics. We discuss the design of controller gains for both the computed­
torque and the independent joint control schemes and establish a framework for comparing 
their trajp.ctory tracking performance. Our experiments show that within each scheme the 
trajectory tracking accuracy varies slightly with the change of the sampling rate. 
However, at low sampling rates the computed-torque scheme outperforms the independent 
joint control scheme. 

1. Introduction 
Although many simulation results have been presented1, 2, 3, the real-time 

implementation and performance of model-based control schemes with high control 
sampling rates had not been demonstrated on actual manipulators, until recently4, 5, 6. 
The main reasons for this have been the lack of a suitable manipulator system and the fact 
that it is difficult to evaluate the dynamics parameters for implementing model-based 
algorithms. One of the goals of the eMU Direct-Drive Arm 117 project has been to 
overcome these difficulties and evaluate the effect of dynamics compensation on the real­
time trajectory tracking of manipulators. For the real-time computation of the inverse 
dynamics, we have developed a high-speed and powerful computational environment. The 
computation of inverse dynamics has been customized for the eMU DD Arm II and a 
computation time of 1 rns has been achieved8. To obtain an accurate model we have 
computed and measured the various parameters from the engineering drawings of the 
eMU DD Arm II by modeling each link as a composite of hollow and solid cylinders, 
prisms, and rectangular parallelopipeds. We have also proposed an algorithm to identify 
the dynamics parameters9 which has been implemented on the eMU DD Arm II. The 
results of the experimental implementation of our identification algorithm are presented 
in lO. Finally, the negligible friction in our direct-drive arm makes it suitable to test the 
efficacy of the computed-torque scheme. 

Based on the above contributions, in our previous research, we investigated the effect of 
high sampling rate dynamics compensation in model-based manipulator control methods. 

G. Schweitzer, M. Mansour 
Dynamics of Controlled Mechanical Systems 
IUTAMIlFAC Symposium Zurich/Switzerland 1988 
© Springer-Verlag Berlin Heidelberg 1989 
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Specifically, we compared the computed-torque scheme which utilizes the complete 
dynamics model of the manipulator with the independent joint control scheme4 and the 
feedforward compensation methodll. The control schemes were implemented on the CMU 
DD Arm IT with a sampling period of 2 ms. 

In this paper, we investigate the effect of reducing the sampling rate on the trajectory 
tracking performance of model-based manipulator control methods. We first compare the 
performance of each scheme as the sampling rate is changed. Next, we also compare the 
relative performance of both the computed-torque and the independent joint control 
schemes at different sampling rates. Our work represents the first experimental evaluation 
of the effect of the sampling rate on the performance of both the computed-torque and the 
independent joint control schemes. We discuss the design of the controller gains for both 
the independent joint control and the computed-torque schemes and establish a framework 
for the comparison of their trajectory tracking performance. Our experiments 
demonstrate that the computed-torque scheme exhibits a better performance than the 
independent joint control scheme. Our experiments also show that high sampling rates are 
important because they result in a stiffer system that is capable of effectively rejecting 
unknown external disturbances. 

This paper is organized as follows: In Section 2, we describe previous research in 
manipulator control and provide a motivation for our work. Then in Section 3, we present 
an overview of the manipulator control schemes that have been implemented and 
evaluated on the CMU DD Arm IT. The design of controllers is discussed in Section 4 and 
the real-time experimental results are presented and interpreted in Section 5. Finally, in 
Section 6 we summarize this paper. In the Appendix, we describe our experimental 
hardware set-up. 
2. Past Work and Motivation 

The robot control problem revolves around the computation of the actuating joint 
torques/forces to follow the desired trajectory. The dynamics of a manipulator are 
described by a set of highly nonlinear and coupled differential equations. The complete 
dynamic model of an N degrees-of-freedom manipulator is described by: 

T = D(0)9 + h(O,O) + g(O) (1) 

where T is the N-vector of the actuating torques; D(O) is the NXN position dependent 
manipulator inertia matrix; h(O,O) is the N-vecto~. of 90riolis and centrifugal torques; g(O) 
is the N-vector of gravitational torques; and 0, 0 and 0 are N-vectors of the joint 
accelerations, velocities and positions, respectively. 

This complex description of the system makes the design of controllers a difficult task. 
To circumvent the difficulties the control engineer often assumes a simplified model to 
proceed with the controller design. Industrial manipulators are usually controlled by 
conventional PID-type independent joint control structures designed under the assumption 
that the dynamics of the links are uncoupled and linear. The controllers based on such an 
overly simplified, dynamics model result in low speeds of operation and overshoot of the 
end-effector. 

To improve the performance of the PID controllers, researchers have investigated model­
based control schemes which attempt to compensate for the nonlinearities and the 
mismatch in the dynamical description of the robot. One of the model-based techniques is 
the feedforward dynamics compensation method which computes the desired torques 
from the given trajectory and injects these torques as feedforward control signals. 
Independent joint feedback controllers are then added with the intention of compensating 
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for the small coupling torques arising out of the mismatch in the dynamics of the model 
and the real arm1. More thorough compensation is achieved by the computed-torque 
technique in which the dynamics model is included in the feedback loop to decouple and 
linearize the manipulator dynamics. This technique has also been extended to operate in 
the Cartesian space and is called resolved-acceleration scheme2• 

One of the fundamental problems with real-time dynamics compensation has been the 
high computational requirements of the inverse dynamics formulations. This drawback led 
researchers to evaluate the significance of the terms in the dynamical model and 
compensate only for the significant terms. Another avenue that was explored involved the 
use of table look-up and interpolation techniquesl2. Recently there has been much work in 
reducing the computational requirements based on the structure of the dynamical 
equations13, 14. Further, high speed controller architectures have also been proposed and 
demonstrated8. These developments have made it possible to experimentally implement 
and evaluate the nonlinear model-based control schemes4, 5. 

Several researchers have followed an entirely different avenue of research that involves 
looking at alternate controllers that are computationally less expensive than the model­
based schemes and at the same time robust. This has led to the development of alternate 
methods such as linear multivariable control15, self-tuning and model-reference adaptive 
control16, 17, sliding control18, and prediction control19• 

Real-Time digital implementation of either model-based schemes or alternate control 
schemes requires the designer to make a choice of the sampling rate. Thus it is important 
to develop both theoretical and experimental methods to evaluate the effect of sampling 
rates on the performance of manipulator control methods. A theoretical investigation in 
this area is still an uncharted territory probably due to the nonlinear and coupled nature of 
the manipulator dynamics. In this paper, however, we present experimental results on 
evaluating the effect of changing the sampling rates on the performance of independent 
joint control and computed-torque schemes. A similar evaluation for alternate control 
schemes (as presented above) is beyond the scope of this paper and is a topic of current 
investigation. In the next section, we describe the control schemes that have been 
implemented on the CMU DD Arm II. 
3. Sehemes Implemented 

We have implemented computed-torque and the independent joint control schemes and 
compared their real-time performance as a function of the control sampling rate. These 
schemes are described in the sequel. 

Independent Joint Control (IJC) 

In this scheme linear PD control laws were designed for each joint based on the 
assumption that the joints are decoupled and linear. The control torque T applied to the 
joints at each sampling instant is: 

T = JUi (2) 
where J is the constant NXN diagonal matrix of link inertias at a typical positioD, and u j 

is the vector of commanded acceleratioDs. 
This scheme utilizes nonlinear feedback to decouple the manipulator. The control torque 

T is computed by the inverse dynamics !:quation in (1), using the commanded acceleration 
u j instead of the measured acceleration 0: 

T = n(O)u j + n(O,8) + g(O) (3) 
where the • - • indicates that the estimated values of the dynamics parameters are used in 
the computation. 
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Before proceeding with a meaningful comparision of the performance of the computed­
torque and the independent joint control schemes it is necessary to establish a common 
framework. In order to achieve this, we consider the control law in two steps; computation 
of the commanded acceleration and computation of the control torque. The commanded 
joint accelerations u i can be computed in one of the following three ways: 

(4) 

(5) 

(6) 

where Kp and Kv are NXN diagonal position and velocity gain matrices, respectively. 
The N-vectors 8 d and 8 are the desired and measured joint positions, respectively, and the 
H • " indicates the time derivative of the variables. Whereas only the position error and the 
velocity damping is used in (4), the commanded acceleration signal in (5) uses a velocity 
feedforward term, and the commanded acceleration signal in (6) uses both the velocity and 
acceleration feedforward terms. The idea is to increase the speed of response by 
incorporating a feedforward term. 

The fundamental difference between the independent joint control schemes and the 
model-based schemes lies in the second step in the control law, i.e., the method of 
computing the applied control torque signals from the commanded acceleration signals. If 
the vector of actuating joint torques l' is computed from the commanded acceleration 
signal under the assumption that the joint inertias are constant, then we obtain an 
independent joint control scheme. On the other hand, if the actuating torques l' are 
computed from the inverse dynamics model in (1) then we obtain the computed-torque 
scheme. 

We have performed real-time experiments and evaluated the effect of changing the 
sampling rates .on the performance of the independent joint control and the computed­
torque schemes. The experiments were performed on the CMU DD Arm n. In our 
experiments, we have used Equation 6 to compute the accelerations for both the computed­
torque and the independent joint control schemes. In the next section, we explain our 
procedure to determine the gain matrices for both the computed-torque and the 
indepepdent joint control schemes. 
4. Controller Design 

The performance of the nonlinear CT scheme and the linear IJC scheme can be compared 
only if the same criteria are used for design of the controller gain matrices. Fortunately, 
this is possible because the gain matrices K and K appear only in the commanded 
accelerations (Equations (4)-(6» which are thePsame forVboth CT and IJC schemes. Thus, 
whether we implement the simplistic independent joint control scheme or the sophisticated 
computed-torque scheme, we are faced with the problem of designing the gain matrices K 
and K . These matrices are chosen to satisfy the specified output response criterion. P 

v 
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4.1. Design of Gain Matrices for Independent Joint Control 
The closed loop transfer function relating the input 8"d to the measured output 8. for 

.. .. J J 
Jomt J IS: 

(7) 
8 2+k .s+k . 

VJ PJ 

where 1=1 if velocity feedforward is included and zero otherwise, and 0=1 if acceleration 
feedforward is included and zero otherwise. The closed-loop characteristic equation in all 
the three cases is, 

8 2 + k .s + k . = 0 
VJ PJ 

(8) 

and its roots are specified to obtain a stable response. The complete closed-loop response 
of the system is governed by both the zeros and the poles of the system. In the absence of 
any feedforward terms, the response is governed by the poles of the transfer function. 

Since it is desired that none of the joints overshoot the commanded position or the 
response be critically damped, our choice of the matrices K and Kv must be such that 
their elements satisfy the condition: P 

for j = 1, ..... ,6 (9) 

:Besides, in order to achieve a high disturbance rejection ratio or high stiffness it is also 
necessary to choose the position gain matrix K as large as possible which results in a large 
K P 

v' 

4.2. Design of Gain Matrices for Computed-Torque Scheme 
The basic idea behind the computed-torque scheme is to achieve dynamic decoupIing of 

all the joints using nonlinear feedback. IT the dynamic model of the manipulator is 
described by (1) and the applied control torque is computed according to (3), then the 
following closed-loop system is obtained: 

6 = u i - [nrl{[D - n]8 + [h - h] + [g - in 
where the functional dependencies on 8 and 8 have been omitted for the sake of clarity. IT 
the dynamics are modeled exactly, that is, n=D, h=h and i g, then the decoupled 
closed loop system is described by 

8= u:. 
I 

Upon substituting the right hand side of either (4), (5) or (6) in the above equation, we 
obtain the closed-loop input-output transfer function of the system. The closed-loop 
characteristic equation in all the three cases is: 

8 2 + k .s + k . = 0 
VJ PJ 

(10) 

where k . and k . are the velocity and position gains for the j-th joint. Upon comparing (8) 
and (lO)~Jwe obe~in the relationships 

k JGll=k JlJG] and k JGll=k JIJG] 
n n ~ ~ 

which suggest that the gains of the IJC scheme are also the gains of the CT scheme. This 
equality must be expected because the closed-loop characteristic equation for both the 
independent joint control and the computed-torque scheme is the same. 
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4.3. Gain Selection 
The gain matrices K and K are a function of the sampling rate of the control system20. 

The higher the samplilg rate the larger the values of K and Kv that can be chosen. Since 
the stiffness (or disturbance rejection property) of the ~stem is governed by the position 
gain matrix (K,,) a higher sampling rate implies higher stiffness also. In practice the choice 
of the velocity gain Kv is limited by the noise present in the velocity measurement. We 
determined the upper limit of the velocity gain experimentally: we set the position gain to 
zero and increased the velocity gain of each joint until the unmodeled high-frequency 
dynamics of the system were excited by the noise introduced in the velocity measurement. 
This value of K represents the maximum allowable velocity gain. We chose 80% of the v 
maximum velocity gain in order to obtain as high value of the position gain as possible and 
still be well within the stability limits with respect to the unmodeled high frequency 
dynamics. The elements of the position gain matrix K were computed to satisfy the 
critical damping condition in (9) and also achieved the ~aximum disturbance rejection 
ratio. The elements of the.velocity and position gain matrices (chosen for a sampling rate 
of 500 Hz) that were used in the implementation of the control schemes are listed in Table 
1. The above procedure was repeated to select the gain matrices for sampling rates ranging 
from 500 Hz to 200 Hz. 

5. Experiments and Results 
In our experiments we implemented both the independent joint control scheme and the 

computed-torque scheme. We evaluated their individual and relative performances by 
changing the sampling rate but keeping both the position and the velocity gain matrices 
fIXed. The maximum permissible velocity and position gains were chosen at a control 
sampling period of 5 ms (according to the method outlined in Section 4.3 ) and remained 
fIXed even when the sampling period was changed. This allows us to determine the effect 
of the sampling rate on the trajectory tracking control performance. We have also 
evaluated the best performance of the CT method for a sampling period of 2 ms with its 
best performance for a sampling period of 5 ms. We conducted the evaluation experiments 
on a multitude of trajectories but due to space limitations we present our results for a 
simple but illustrative trajectory. 

The first trajectory is chosen to be simple and relatively slow but capable of providing 
insight into the effect of dynamics compensation. in this trajectory only joint 2 moves 
while all the other joints are commanded to hold their zero positions and can be envisioned 
from the schematic diagram in Figure 1. Joint 2 is commanded to start from its zero 
position and to reach the position of 1.5 rad in 0.75 seconds; it remains at this position for 
an interval of 0.75 seconds after which it is required to return to its home position in 0.75 
seconds. The points of discontinuity, in the trajectory, were joined by a fifth-order 
polyno~ial to maintain the continuity of position, velocity and acceleration along the three 
segments. The desired position, velocity and acceleration trajectories for joint 2 are 
depicted in Figure 2. The maximum velocity and acceleration to be attained by joint 2 are 
2 rad/sec and 6 rad/sec2, respectively. 

The position tracking performance of joint 2 for both the CT and IJC schemes, for a 
control sampling rate of 200 Hz (corresponding to a control sampling period of 5 ms), is 
depicted in Figure 3. The corresponding position and velocity tracking errors are presented 
in Figures 4 and 5, respectively. We also depict the position tracking error of joint 1 in 
Figure 6 for both the CT and IJC schemes. We note that the CT scheme outperforms the 
IJC scheme. For example, in the case of joint 2 the maximum position tracking error for 
CT scheme is 0.03 rads while for the IJC scheme it is 0.45 rads, approximately. In an 
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earlier paper", we had compared both the CT and IJC schemes with a control sampling 
period of 2 ms. It must be noted that in the earlier reported experiments" the gains were 
selected for a control sampling period of 2 ms whereas in the present experiments the gains 
have been selected for a control sampling period of 5 ms. To put the results in perspective, 
we recall that in the earlier experiment the maximum position tracking error for the CT 
method was 0.022 rads while for the IJC method it was 0.036 rads. From the above 
observations it may be deduced that increasing the control sampling period from 2 to 5 ms 
results in a noteworthy degradation of the performance of the IJC scheme. A similar 
increase in the sampling rate also improves the performance of the CT scheme. 

In Figure 7, we depict the performance of the CT scheme as the sampling rate is 
increased from 200 Hz to 500 Hz. In this case the position and velocity gain matrices were 
determined for a sampling rate of 200 Hz and they remained fixed even when the sampling 
rate was increased to 500 Hz. Thus, Figure 7 presents the relative performance of the CT 
method as a function of the sampling rate only. We note that the trajectory tracking 
performance for both 200 Hz and 500 Hz sampling rates is comparable and has not changed 
in any appreciable manner with an increase in the sampling rate. Figure 8 depicts the 
results· for the IJC method when a similar experiment was performed. In this case also we 
do not observe any appreciable change in performance when only the sampling rate is 
changed. 

Thus, from the above set of experiments the following conclusions may be drawn: 

1. IT the gains are selected for a lower sampling rate and then if the sampling rate 
is increased, while keeping the gains fixed, there is no appreciable improvement 
in the performance of both the CT and the IJC schmes. 

2. At lower sampling rates the CT scheme outperforms the IJC method. Even 
though the disturbance rejection ratio of both the schemes is diminished, it 
does not appreciably affect the CT method because of the compensation for the 
nonlinear and coupling terms. Whereas it affects the IJC method because the 
disturbance that is constituted by the nonlinear and the coupling terms is not 
rejected appreciably. 

3. If the maximum possible gains are selected for the chosen sampling rates then 
the performance of CT at a higher sampling rate is better than its performance 
at a lower sampling rate. A similar conclusion is drawn for the IJC scheme 
also. 

Our last conslusion is especially significant because it suggests that a higher sampling rate 
does not only imply improved performance but it also allows us to achieve high stiffness. It 
is desirable for a manipulator to have high stiffness so that the effect of unpredictable 
external disturbances on the trajectory tracking performance is significantly reduced. 

6. Summary 
In this paper, we have presented the first experimental evaluation of the effect of the 

sampling rate on the performance of both the computed-torque and the independent joint 
control schemes. We have discussed the design of the controller gains for both the 
independent joint control and the computed-torque schemes and established a framework 
for the comparison of their trajectory tracking performance. Based on our ,~xperiments we 
have demonstrated that the computed-torque scheme exhibits a better performance than 
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the independent joint control scheme. Our experiments also show that high sampling rates 
are important because they result in a stiffer system that is capable of effectively rejecting 
unknown external disturbances. 
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I. The eMU DD Arm n 

We have developed, at CMU, the concept of direct-drive robots in which the links are 
directly coupled to the motor shaft. This construction eliminates undesirable properties 
like friction and gear backlash. The CMU DD Arm 117 is the second version of the CMU 
direct-drive manipulator and is designed to be faster, lighter and more accurate than its 
predecessor CMU DD Arm 121. We have used brushless rare-earth malUlet DC torque 
motors driven by current controlled amplifiers to achieve a torque controlled joint drive 
system. The SCARA-type configur .. tion of the arm reduces the the torque requirements of 
the first two joints and also simplifies the dynamic model of the arm. To achieve the 
desired accuracy, we use very hj"gh precision (16 bits/rotation) rotary absolute encoders. 
The arm weighs approximately '10 pounds and is designed to achieve maximum joint 
accelerations of 10 rad/sec2. 

The hardware of the DD Arm II control system consists of three integral components: the 
Motorola M68000 microcomputer, the Marinco processor and the TMS-320 
microprocessor-based individual joint controllers. We have also developed the customized 
Newton-Euler equations for the CMU DD Arm II and achieved a computation time of 1 rns 
by implementing these on the Marinco processor. The details of the customized algorithm, 
hardware configuration and the numerical values of the dynamics parameters are 
presented inS. 

Joint (j) Transfer Function ( ~ ) 
ljs 

kpj k'J 

1 1 
2.75 3.33 

12.3s2 

2 1 15.0 7.5 
2S2 

3 1 256.0 32.0 
0.25s2 

4 1 1285.0 71.5 
0.007s2 

5 1 625.0 50.0 
0.006s2 

6 1 1110.0 50.0 
0.0003s2 

Table 1: Transfer Functions and Gains of Individual Links 



Figure i: Schematic Diagram of 3 DOF DD Arm II 
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SUMMMARY 
When a flexible link is rotated around an axis, vibrations occur 
in the link. This paper describes a controller that is able to 
control the end-position of the link. The flexible link is model­
led in state space. It is shown that the model is of infinite 
order. A method is given for reducing this model to a finite­
order model, for which a controller can be designed. A number of 
experiments is carried out to demonstrate the performance of the 
controller. 

1. INTRODUCTION 

A flexible arm is studied, which can rotate around a vertical 
axis and is driven by a DC-motor via a gear transmission. In 
section 2 a model for the vibrations is derived. It is shown that 
the flexible arm is described in state space by a model with an 
infinite number of states. In section 3 a model reduction tech­
nique will be presented which yields a sufficient low-order mo­
del, to be used for the controller design. In section 4 the con­
troller is discussed. state feedback is used to control the flex­
ible arm. Because not all the states can be measured, an observer 
is used to estimate these states. After a series of simUlations 
the designed controller has been tested on a flexible arm which 
was especially designed to demonstrate the problems and possible 
solutions in practice (sectipn 5). 

2. MODELLING 

The experimental setup cons1sts of a flexible arm, that can ro­
tate in the horizontal plane. One end of the arm is clamped on a 

vertical gear shaft, which is driven by a DC-motor. The other 
end of the beam is free. only the transversal vibrations in the 
horizontal plane are considered. This means that torsional and 
longitudinal vibrations are disregarded. Gravity effects may also 

G. Schweitzer. M. Mansour 
Dynamics of Controlled Mechanical Systems 
I UTAMfIFAC Symposium Zurich/Switzerland 1988 
© Springer-Verlag Berlin Heidelberg 1989 
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be disregarded because the arm rotates in a horizontal plane. 

2.1 MOTOR MODEL 

Because the motor is fast with respect to the other components of 

the system, it is assumed that the DC-motor may be described by 

the following model: 

where 

e 
1 

(1) 

u applied voltage to the amplifier (-5V~ u ~ 5V) 

KH motor constant (radjsjV) 

e l : angular position of the axis (radjs) 

The motor constant KH depends on the motor parameters and on the 

gain of the power amplifier. The torque that the exerts on the 

axis is assumed to be negligibly small. KH was measured to be 

0.50 radjsjV. 

2.2 FLEXIBLE ARM MODEL 

Only small motions of the link about the equilibrium state are 

considered. This implies that only linear terms are taken into 

account. Following the approach described by Sakawa et a1. [1], 

the motion of the link can be described by the following partial 

differential equation (see figure 1 for definitions of the sym­

bols) 

+ 2.o.~.~ + a2 w_ 
p. a ar4at at2 

where E elasticity or Young modulus 
I area moment of inertia 
p specific weight 
a cross section area 
r position along the beam 

-r.e 
1 

W(r,t): displacement at postion r, at time t 
o damping constant 
L length of the link 
e angular position of the axis 
81 angular position of the tip 

u 

(2 ) 



The boundary conditions for the beam are 

W (0, t) a w(r,t)1 = a 2W(r;t)I = 
ar a r 

r=O r=L 

a a 
I U 

a3w (r , t) I = 0 
a r3 

r=L 

Figure 1. A flexible link 
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(3) (3 ) 

Fukunda and Kuribayashi [2] have shown that the solution of equa­

tion (2) can be written as: 

W(r,t) =E Yn(r).Tn(t) (4) 
n=l 

where T (t), the modal motion, is a function that only depends on 
n 

time, and Yn(r) is a mode shape function that only depends on the 

position r on the beam. A combination Yn(r) .Tn(t) is called a 

mode. The shape functions can be found by solving the eigenvalue 

problem (see ref. [1]) 

E.I (5) 
p.a 

where w is the resonance frequency of the nth mode. These shape 
n 

functions have the following important property 

L 

JY(r).Y(r)dr 
I J 

o i ;t j (6) 

o 

The shape functions are scaled in such a way that 
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Y (L) = (_1)n+l • 
n 

(7) 

The modal motion T.(t) can be found by substituting eq. (4) into 

eq. (2). Using eq. (5) this yields 

CD CD CD 

I:w2 .Y.T +2.c5I:w2 .Y.T +I:Y.T =-r.91 non nnn nn 
n=l n=l n=l 

(8) 

The next step is to multiply all the terms by Ym and integrate 

the resulting terms over r. Using eq. (6) this yields 

w2 .T + 2.z .w.T + T -A.9 
mID mmm 1ft mI 

(9) 

L 

Jr.Ym(r) dr 

with = c5.w and A 0 
z m m m L 

J Y: (r) dr 

0 

The result of these calculations is that a partial differential 

equation (eq. 2) is split up into an infinite number of second 

order systems. The two states describing each second order system 

are chosen as: Tm integrated once (for brevity fTm) and Tm inte­

grated twice (ffTm). 

2.3 COMPLETE MODEL 

The compl~te model, consisting of motor and flexible link, with 

input the applied voltage and output 9u (see figure 1) defined as 

9 U(t) = 9 1 (t) + W(L,t)/L, 

can be transformed into the following state space model: 

(10) 

y c.x 
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y=a, 

0 0 0 ............ 
[-:IJ [-2.Z:.W1 -::1 0 

A= 

[-;n] [-2.Z .w -::] 0 
n n 
1 

b T = [KK' 0, 0, 0, ••• ] , 

3. MODEL REDUCTION 

The description of the transverse vibrations in a flexible arm by 

a model of infinite order has no practical use. The order of the 

model has to be reduced. This can be achieved by assuming that 

the bandwidth of the motor is limited at wK. This implies that 

excitation of frequencies higher than wK may be disregarded. As­

sume further that the bandwidth of the controlled system we (and 

thus also the related performance indices, such as settling time) 

is less than W • This allows that indeed the motor may be con-
K 

sidered as an integrator. Modes with a resonance frequency higher 

than we may be disregarded. The number of modes n in the reduced 

model can thus be determined by 

W > W • 
n+l e 

(11) 

By selecting a higher value of we more modes must be taken into 

account. The reduced model can be used to find a control law. 

4. CONTROL STRATEGY 
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State feedback is used to control the flexible arm. The method 
that is used to find the feedback gains is pole placement. The 

controller was first tested in simulations. 

TABLE 1. poles and zeros of the reduced order 
model, for different values of the 
number of modes n. 

number of poles modes zeros 

1 0.0 -13.4 
-0.055 ± 5.21.i 14.2 

2 0.0 -15.7 
-0.055 ± 5.21.i 17.3 
-0.30 ± 32.4.i -49.4 

46.7 

3 0.0 -15.5 
-0.055 ± 5.21.i 17.0 
-0.30 ± 32.4.i -73.3 ± 34.7.i 
-0.5 ± 91. 7. i 73.7 ± 31. o. i 

4.1 SIMULATIONS 

The parameters used in the simulations, for example the resonance 

frequencies, have been determined from experiments with the real 

system. The open loop poles and zeros for the reduced-order model 

are presented in table 1. From table 1 it can be seen that only 

the zeros- shift when the number of modes in the reduced-order 

model increases. 

In figure 2 three simUlations are shown. In each simUlation three 

modes are simulated. In the first two simulations only the first 
mode is controlled; in the last one also the second mode is con­

trolled (see figure 2). The poles are chosen such that the res­

ponses have no overshoot. In figure 2a the bandwidth we is that 

small tha~ the dynamics of the second mode may be neglected. In 

figure 2b this bandwidth is increased. This results in a response 

where the second mode can be recognized clearly. In figure 2c the 

second mode is controlled also. This results in a response with 

no overshoot and a properly damped second mode. The third mode 

gives almost no contribution. From this it may be concluded that 
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the fourth and higher modes will also be negligibly small. From 

the last two simulations it may be concluded that making the 

o t(s) ~ 4 o tCs) ~ 

UIVl! ~~=~ __ _ UIVl! 11\ ~ 
V o t(s) ~ 

(a) 

4 o t(s) 

(b) 

.J! I~--
OO~ ______________ ___ 

o tCs) ~ 4 

UIVl! U " __ ,~ 
o IV __ ~S) ~ 4 

(e) 

Figure 2. Simulated responses for 

a) poles placed at -3, -4, -5 
b) " " " -3, -5 ± 7i 
c) " " " -3, -5 ± 7i, -3 

4 

4 

± 22i 

bandwidth larger will have hardly any effect, because in these 

responses the input voltage is already maximal for a relatively 

long period. 

4.2 STATE ESTIMATOR 

State feedback requires knowledge of all the states. The states 

are: the angle SI' and for every mode two states. The angle 91 is 

measured by a resolver. with the aid of a Resolver-to-Digital 
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Converter (ROC) the angle is converted into a 14 bits digital 

number. The states which describe the vibration modes cannot be 

measured directly. strain gauges are used to measure the vibra­

tions as suggested by van Vugt [3] and Hastings and Book [4]. The 
signal measured with a strain gauge is: 

CD d2 y n (r) 
u (r ,t) Kc L Tn (t) , (12) 

S9 0 dr2 

n=1 r=r 
0 

where ro is the position of the strain gauge and Kc is a constant 
that depends on the specific resistance of the strain gauge and 

the thickness of the beam. From eq. (12) it can be seen that the 

signal measured with a strain gauge depends on its position on 
the beam. From the simulations in the previous section it follows 

that the number of controlled modes is less than four. It is 
assumed at first that there are three modes and that there are 
three pairs of strain gauges at different positions r = r 1, r 2 , 

r 3 • In matrix form this gives 

U 
-S9 

u (r, t) 
S9 1 

with u u (r, t) T= 
-S9 s9 2 

U (r, t) 
s9 3 

and ~ a 3*3 matrix with elements 

r=r 
j 

(13) 

T1 (t) 

T2 (t) 

T3 (t) 

By calculating the inverse matrix S-1 of S, the modal motions T 
n 

can be calculated by 

T = S-1.U 
- - -&9 
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Each of the modal motions can thus be calculated from the three 
measurements, as long as there is no influence of the higher mo­

des. The first ~ode that disturbes this decoupling of the strain 

gauge signals is the fourth mode. To reduce tpis effect, the 

strain gauges are placed at positions where 

o . 

This equation has roots at r t = 0.0944L, r 2 = 0.356L and r3 = 
0.642L. From the simulations in the previous section it is clear 

that the effect of the fifth and higher modes are negligibly 

small. To check the decoupling, impulse responses were measured. 

From these reponses a number of parameters was obtained. In table 

2 the theoretical and experimental values for the resonance fre­

quencies are compared. The theoretical values differ from the 

experimental values. This is due to the fact that the Young mo­

dulus E depends on how the profile of the flexible link is made. 
Therefore the resonance frequencies are scaled such that for the 

first mode the scaled value equals the experimental value. From 
table 2 it can be seen that the values for the other modes agree 
well. 

TABEL 2. experimental, theoretical and scaled 
resonance frequencies 

w experimental w theoretical w scaled 

5.21 (rad/s) 5.72 5.21 
32.4 35.9 32.7 
91.7 100.5 91.5 

The modal motions Tn are linear combinations of ITn' IITn and 91 

(see eq. (9». This implies that the unknown states ITn and IITn 
cannot be measu~ed but have to be estimated. Without the decoup­

ling of the strain gauge signals an observer for a SIMO system 

(three pairs of strain gauges) has to be designed. This means 

that 18 elements of an observer matrix have to be calculated. 

with the decoupling three independent observers for SISO systems 

have to be designed, one for each mode. This implies that only 6 

elements of an observer matrix have to be calculated. The obser-
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ver gains are calculated using pole placement. 

STRA I N GAUGES 

D.C. KlTOR 

COMPUTER 

IIITH 4 TRANSPUTERS 

u 

Figure 3. Experimental setup 

5 EXPERIMENTAL SETUP 

After a number of simulations the designed controller and obser­

ver were tested on the real system. A sketch of the setup is 

given in figure 3. The arm parameters are 

material: aluminum 

width d: 4.0 mm 

height h:60.0 mm 

lenght L:1.90 m 

with the computer setup used for the control of the flexible arm, 

a sampling frequency of about 1.5 kHz could be reached. This high 

frequency could be obtained by the use of transputers. These 

transputers make it possible to do a large part of the calcula­

tions in parallel. A detailed description of the implementation 
of the control algorithm is given by ter Reehorst [5), a student 

who worked at our group. The experimental results are presented 

in figure 4. In the experiments the same pole locations are used 

as in the simulations presented in section 4.1. This means that 

figures 2a-c can be compared with the figures 4a-c. In figure 4a 

there remains a small vibration. This is due to the fact that the 
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motor has smallsignal non-linearities, for example backlash and 

static friction. In figure 4b the contribution of the second mode 

is smaller than in the related simulation (see figure 2b). In fi­

gure 4c the second mode is controlled also. It can be seen that 

the second mode is damped properly. The response has a small 

overshoot. This is probably due to the fact that a number of 

assumptions are not completely valid, for example that the torque 

that the beam exerts on the motor axis is negligible small. Fi-

o 

o 

t(s) ~ 

t(s) ~ 

(al 

4 

4 

o l(s) ~ 4 

U(V)! lJL-= ____ _ 
o t(s) ~ 

(bl 

4 

45'1 ( 
'u 1.1 _ 

o v 

0.02 

t(s) ~ -0.02 

o t (s) 

o l (s 1 

4 

:.O~. 0~-1Lll~-'-" fI. ... -__ __ 
21 0 lV" 4 

-0.02 t(s) ~ 
4 

(el (d) 

Figure 4. Measured responses for 
a) poles placed at -3, -4, -5, 
b)>> »» -3, -5 ± 7i, 
e)>> »» -3, -5 ± 7i, -3 ± 22i, 
d) measured second modes for figures 4b and 4c. 

nally in figure 4d the measured second mode in figure 4b is com­

pared with the second mode in figure 4c. This figure shows that 

the effect controlling the second mode gives a significant reduc­

tion of the ouput error. 
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6. CONCLUSIONS 

A model with an infinite number of modes can be reduced to a mo­

del with a number of modes that depends on the desired bandwidth 

we' The maximal bandwidth is determined by the bandwidth of the 

motor. The use of strain gauges for the estimation of the states, 

describing the transversal vibrations works well. The design of 

observers was simplified by the decoupling of the strain gauge 

signals. The results can probably be improved by using a more 

extensive motor model and by taking into account that the torque 

that the link exerts on the mot?r axis is not negligible small. 

with the aid of transputers it was easy to obtain a high-sample 

frequency. All the implementations were done in high-level pro­

gramming languages. These were C and OCCAM (a computer language 

especially written for parallel programming). 
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Summary 

A new method is proposed in this paper for the parameter iden­
tification of robot dynamics. Different from existing methods, 
the identification of IOn dynamic parameters for a robot with 
n joints is firstly decomposed into n subproblems, each of which 
deals with the task of identifying 10 parameters. Based on the 
decomposed mOdels, both sequential off-line and recursive on­
line identification algorithms are then developed. These new 
algorithms reduce the computational burden greatly and make the 
parallel computation posaible. The determination and processing 
of unidentifiable and combined identifiable parameters are par­
ticularly convenient by using the decomposed models. Algorithm 
for this purpose is also given in this paper. Finally, simula­
tion results of identifying the dynamic parameters for the first 
three links of PULVlA-560 by using the proposed method are pre­
sented to show the effectiveness of this new method. 

Introduction 

It is well known that dynamic parameter uncertainties of a robot, 
such as inaccuracies on inertias, location of mass center for 
each link, mass of the load and its exact position in the end­
effector, will result in the degeneration of control performance. 

To solve this problem, two strategies can be used. The one is 
parameter identification by Which the estimation of dynamic pa­
rameters being accurate enough for control purpose is obtained. 
The other is robust control by Which the effect of parameter 
uncertainties on the control performance will be reduced to an 
acceptable extent. Both of these two methods have attracted much 
research attention. In this paper, only the parameter identifi­
cation will be considered. 

It has been pointed out in many 11 teratures (2) - (5) that the 
generalized force 1:' is a linear function of the dynamic para-
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meters which are expressed with reference to the local D - H 
coordinate systems, i.e., 

L: = K 8 (1) 

l· t t tJ t ( ) t where 8= 81 ,82 , •.. ,8n ,T= Ll' T2"'" Tn 

9 i = l mi ,mi cxi' mi cyi' mi czi' Ixxi ' I xyi ,Ixzi ' I yyi ' Iyzi ' I zz i J t 
The mi the mass of the ith link, and Ci = (CXi,CYi,CZi]t is the 
position vector of the msss center of the ith link. The last 6 
elements of 9 i are the elements of the inertia tensor Ii of the 
ith link. 

IXZiJ 
Iyzi ,K= 

Izzi o 

K12 ••• Kln 

K22 ... K2n 

Each kij is an 1 x 10 row vector. The matrix K can be computed 
according to the measurement of q,q,q and ~ (2)-(5). 

The equation (1) can be used as an identification model. It can 

be seen, however, in equation (1) there are IOn parameters to 
be identified. Hence, the efficiency of existing schemes which 
solve the identification problem by treating these 10n parame­
ters as a whole is limited due to the computational burden cau-

sed by the high dimension of the problem. Nevertheless, the 
equation (1) has an obvious characteristic that K is an upper 
triangular matrix. This observation motivated us to think about 
the possibility of decomposing the original problem of 10n para­
meters into n subproblems of 10 parameters. As a result, we con­

trive the decomposed identification approach of robot dynamics. 

In this paper, the decomposed identification mOdels for robot 
dynamic parameter estimation are firstly set up. Based on these 
models, the off-line sequential identification algorithms and 
on-line decentralized recursive algorithm are then developed. 
Compared with the existing algorithms, the proposed ones require 
far less computation and allOW to be implemented in parallel 
fashion, which improves the efficiency of robot dynamic parame­
ter identification greatly. Moreover, with the decomposed models 
it is easy to determine and process the unidentifiable or com­
bined identifiable parameters. The algorithm for this purpose 

is also presented. 
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Decomposed Identification Models 

After N times or sampling, the equation (1) can be augmented 

into 
'T:N = KN e (3) 

where CN = [L::(l)t, T(2)t, ... , T(N)tjt, 
KN=LK(1)t,K(2)~ •.• ,Kl1'ntJ~ 't'(i)=(Tl(i),T2(i), .•. ,LN(i)P, 

K12 (i) .•. Kln (i )] 
K22(1) ... K2n(i) 

. . 
. Kn~(i) 

i=1,2, ... ,n 

The 'L.1(i}, i=1,2, ... ,Nj .1=1,2, ••. ,n, is the ith measured in­
put torque to the Jth JOint. Bt means the transpose of B. 

Suppose that all the parameters of 9 are individually identifi­
able, or equivalently, KN is of full column rank, then the leaat 
aquares estimation of e is 

(4 ) 

Since KNtKN is a IOn x 10n matrix, the computat1on of its 1n­
verse 1s very complex. In order to reduce the computational com­
plexity, the decompoRed ident1ficat1on mOdels which are equiva­
lent to the or1ginal one in the sense of least squares estimation 
are derived in th1s section. 

It can be seen that every K(i) 1n KN is an upper trianFular sub­
matr1x. Therefore, by collecting together the N sampling values 
of the generalized force T.1(1), i=1,2, ... ,bl, applied to the 
same Jo1nt J to form a new subvector ~J* , the equation (3) can 
be rewritten into the follow1ng form: 

(5 ) 

where 

M. [*t *t *tJ ' 't' = Tl ' T 2 ,"', 1:n 

and KtJ = [ K1l (1) ,K1) (2), ••• ,Kb (N)]t 

't~ = ( T J (1) , 1:.1 (2) , .•• , TJ (N) J t 
The equation (5) can be further rewritten into a set of decom-
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posed sequential identification models: 

* ~ * * 1:"i - L--... K1J 9J=KU 9i, i=n,n-l, •••• l 
J=1+1 

(6 ) 

and we have the follow1ng theorem: 
Theorem 1: The least squares estimation of 9 obtained from the 
decomposed mOdels (6) is the same as that obtained from the 
model (3). 

The proof of this theorem is very easy snd hence is omitted. 

Estimation Algorithms Based on Decomposed Models 

Based on the decomposed models (6), the effective off-line and 
on-line estimat10n algorithms will be developed in this section. 

I. Off-line Algorithms 

In the case of off-line estimation, 't:'N and KN in the equation 
(3) are obta1ned in advance. It is very easy to arrange these 
data in the form of equation (5) and derive the following off­
line sequential algorithm. 

Algorithm 1 

step l- set i=n: 
~ * step 2. 91 = ( Kif K!i )-1 K!t ('t'r - J:1+1 Kij 9 j (7) 

step 3· if i = 1 then stop otherwise goto step 4; 
step 4. i= i - 1, goto step 2. 

Another estimation approach with better data stability is the 
following sequential recursive least squares estimation based 
also on the decomposed mOdels (6). 

Algorithm '2 

step l-
step 2. 

step 3· 

set 1= n; 
set m= 0, 

0 9i = 0, p~ =A1iI, where ~ i is 
tly large positive number: 
c,ompute the (m+ 1)th estimation of 9 

9~t~9~ + L~t-l ( '1:'i (m+ 1) - KU (m t 1) 9~ 
- ~ K1J (m+l)9 j ) 

j=i1-1 

L~+l= p~Kir (m+! )/(0<' + KU (mtl)pmKir (m+l» 

a sufficien-

(8 ) 

(9) 
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(10 ) 

step 4. if m=N - 1 then goto step 6; 
step 5. m= m + 1, goto step 3; 
step 6. if i= 1 then stop otherwise goto step 7; 
step 7. i= 1 - 1, goto step 2. 

It has already been shown (8) that the solution determined by 
algorithm 2 is uniformly convergent to the least squares solu­
tion of equation (5). Thus, according to theorem 1, it conver­
gences also uniformly to the least squares solution of the ori­

ginal problem (3). 

Since the existing methods treat the IOn parameters as a whole, 
we call them the centralized estimation methods. The comparison 
of computational complexity between the above two algorithms and 
the existing ones is shown in the following tables. 

-------
multiplicat10n add1t1on 

oentra - (1000t200N)n~-22t 
6 

(1000T200N)n'-11 
6 

l1zad 

* 
(7550tlON)n2+114'5n t5400n2t616~n 

algori- 5Nn2 t(205Nt6636)n 5Nn2+(195Nt6374)n 
thm 1 

--
centra- (,00n3+30n2tn)N (,00n3+10n2 )N .. l1zed .. 
algori-

thm 2 
5Nn2.~ 326nN 5tlD2+305Nn 

*------nonrecuraive; #------recura1v8 

Tabla 1. Compar1son or computat1onal oomplax1ty 

mult1pl1-
ootion - ---_._ .. _ .. __ ._-

---.-~-.. --
oentra - 40-70646 l1zed .. 
algor1- 194028 thm 1 

o8Dtra- 6566600 .. l1zed .. 
a1gor1- 213600 thm 2 

*-----DODrecurs1va 
#-----reours1 ve 

add1t1on 
-----. 
4555299 

173244 

6516000 

201000 

Table 2. Compar1son of compu­
tat10nal oomplexity ae N=lOO, 
n=6. 

From these two tables, it can be seen that the new algorithms 
require far le~s computstion than the centralized methods. 

II. On-line slgorithm 

In the situation of on-line estimation, the data 8amplin~ and 

the parameter estimation are carried out simultaneously, it is 
impossible to arrange the data in the form of equation (5). 
Therefore, the algorithms proposed above can not be used in real­
time. In this case, one can use the existing on-line estimation 
methods which are derived from the centralized model (3). The 
computation burden, however, will result in difficulty in real­
time implementation. The algorithm 2 is a sequential off-line 

recursive algorithm. In order to estimate 91, the estimated 
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values of 9 j 'S (j> i) must be used. In the situation of on-line 
estimation, 9i and 9 j 's (j> i) are estimated simultaneously. This 
sequential recursive algorithm seems to be useless in this case. 
However, since all the dynamic parameters of a robot manipulator 
are time-invariant, when m is large enough the mth estimation 

9J of 9 j will be accurate enough and can be viewed as its real 
value. From this point of view, the algorithm 2 can be modified 
into the following on-line decentralized recursive one. 

Algorithm 3 
A 

step 1. set m=O, 9~=O, P~=j,{iI, whereJJ. i is a sufficiently 
large positive number. 

step 2. compute 

-eftl _ '9~+Lf+l (1:'i (m+l) - t= Kij (mH)eJ] 
J=i 

LrH=pi Ki { (m+l)/(o( + Kit (m-H)pTK i { (mt-l» 

p~+l= (p~ _ L~+l Kit (m+l) P~ J lei. 

(11 ) 

(13) 

Similar to the algorithm 2, the forgetting factor~ is 
also used here. 

step 3. m=m+l, goto step 2. 

The advantage of this algorithm is that the computation is com­
pletely decentralized. The following figure shows that this algo­
rithm can be implemented in a parallel fashion. 

[ Data commun1cat1on] 

eW TL-I-''''' Om OUI em / aw_~ "" ~~2' 3 .... 11 ~ ____ aw- ~~_ ~._.a~ .~~ 
nth 11nk (n-1Ith 11nk f1rst 11nk 
compute compute compute 

emt1 ruH Gmn 
n Gn-1 1 

Lmtl ml-1 Lit1 
n Ln-l 

pmH 
n p~:l p~11 

... ----- ....... -----~-

F1g.1. Parallel 1mplementat1on of ths 
on-l1ne recurs1ve algorithm 
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As to the convergency of algorithm 3, we have the ~ollowing: 

Theorem 2; The estimation ~i of ai obtained by using algorithm 
3 is uniformly convergent to its real value ai (i=l, 2, .•. ,n), 
if the forgetting factor 0{ < 1. 

Proof: It can be easily seen from equations (9) and (12) that 
'" the estimation a~ obtained by using algorithm 3 is the same as 

the estimation aw obtained by using algorithm 2. It is well­
known that the solution of algorithm 2 is uniformly convergent 
to its real value (10). Hence, ~~ slso converges uniformly 
to its real value an' i.e., there exists a sufficiently large 
positive number s, when m?s, we have -e~=en. 

For m?s, equation (12) can be written as 

'6~+l=~+L~+l('ti (m+l) - Kin(m+l) an 

n-l ~m - L Kij (m+l) aj)' i= n-l,n-2, •.. ,1 
j=1 

For the (n-l)th link of a robot manipulator, its dynamic para­
meters can be estimated by algorithm 3: 

·"mtl /" m m+l ("... en-l= en-l+ Ln-l I.n-l(m+1) - Kn-l,n(m+1)en 

- ~-l,n-l(m+l)~n~l) 
When m=s +r, we have 

where 

"'s+rtl s+r·t"l (_.r+l s S r () ( ) 
an-1 =Pn- 1 Oi.. Kn-l,n-1Yn-lto( Kn- 1 ,n-l s+l Yn-1 Btl 

... + oe.°Kn_l, n-l (s+r+l)Y n-l (st-r+l) ) 

s +r+ 1 r+ 1 s r t ( ) 
Pn - 1 ={o( Pn- 1to{ Kn- 1 ,n-l(stl)Kn- l ,n-1 s+1 + ... 

t »-1 + Kn-l, n-l (s+r+l )Kn-l, n-l (s-t-r+l 

s-1 s-2 
Kn-l~n-l~(~~Kn-17n-l(1),~Kn-17n-1(2), ..• , 

o t 
cI.. Kn - l , n-l (s» 
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Since cJ.< l,o(r+l will tends to zero,if' r is sufficiently large. 
Then, we have pstrtl tends to prtl. Similarly n-l n-l 

"6g!rrl-p~~t (CXrKn_l, n-l (s+l )Yn-l (stl) + ...... + 

Kn_l,n_l(strtl)Yn_l(s+rtl»== e~~i 

That is, the estimation ~~:i obtained by algorithm 3 will tend 
to the estimation e~~i obtained by using algorithm 2, and in 
turn, will converge to its real value 9n- l • 

Similar method can be used to prove the convergence of ~j+l to 
its real value 9J for J~n-2, n-3, •.. , 1. This completes the 

proof. 

Identifiability of Robot Dynamic Parameters 

In the previous sections, it was assumed that all the dynamic 
parameters of a robot manipulator are identifiable. That is, 
the matrix K in equation (3), or equivalently, the matrices Kii 
for i~1,2, ... ,n in equation (6) are all of' full column rank. 
However, because of the restriction of robot motion and limita­
tions on measurement, some parameters are unidentifiable snd 
Bome are identifiable only in linear combination. Hence, we have 
to determine and process these unidentifiable parametera before 
the decomposed algorithm is used. However, the high dimension 
of the overall identification mOdel (3) makes it very complex 
to determine and process the unidentifiable parameters. Fortu­
nately, with the help of decomposed models, this work can be 
simplified a lot. This is because we can analyse the lower di­
mensional Kri rather than K. The following algorithm based on 
the principle of singular value decomposition is given for this 
purpose. 

Algorithm 4 

step 1. 
step 2. 

set i= 1 

:~:::~::~~:: 1 d:::m~~:1:~O~ O:n:r~1 = la-; a;'. 1 
Vi =lVil Vi 2 •.. Vi 10) ·crtJ 

(1) If the Jth singular value equalssto zero, then 

9 iJ is an unidenfifiable parameter. Then, set 9iJ~0 
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and delete 9ij in 9i and the jth column in the submatrix 

(Kit K~r •.• Kn)t· 

(2) If the jth singular value is nonzero. Vi t 9i== 
al9ikl+ a291k2 ••• + akj9ikj is identifiable only in 
linear combination. Then set 9ik2'9ik,='" =9ik.,= O. 

and delete theee elements in 9 and the k2th. k3th ••.•• 

kJth columns in (Ktl K;l Krl)t. 

step 3. it i=l. stop; otherwise 
step 4. i= i - 1. goto step 2. 

After applying this algorithm to the decomposed identification 
* mOdels. all the Kij in equation (6) are changed into column re-

duced ~j' The equation (6) can be rewritten into the following 

one: .~ ~ ,-..J 

·Ti - ~ K;.j 9 J = Kii 91 
J=iH 

i=n.n-l ••.. ,1 

and then all the proposed algorithms can be used to solve the 
problem (Ill). 

Simulation Results 

To verify the effectiveness of the proposed methods. digital 
simulation experiments have been made on DPs-8 by Fortran pro­
gramming language. In the simulations, the dynamic parameters 
of the first three links of PUMA-560 were estimated by using 
all the algorithms proposed in this paper. The robot dynamic 
equation that we used can be seen from (llJ. The simulation was 
designed as follows: the first three joints of PUMA-560 move 
from (0°.90°,-60°) to (100°,-800 .1700 ) in one second. the num­
ber of sampling pOints is 200, sampling period is 5 miliseconds. 

By using algorithm 4. we obtained the following 11 parameters 
or combinations of parameters Which are identifialle: 

9(1,1)=Iyyl+lxX2+Ixx3+m3d~ 9(2.1)=m2a2+m2cx2+m3a2 

9 (2.2)=a2m2cx2+Izz2 9(2. 3 )=m2cy2 

9 (2.4);m2cZ2+m3d3 

9 (3, 1>=m3a3+m3cx3 

9 (3, 3 b m3cY3 

9(3.5)=a3m3cx3-I xx3+I ZZ3 

e(2,5)=m2cx2a2-IXX2~IYY2 

9(3,2)=m3cx3a 3t1yy3 

9(3,4)=m3cz3 

The estimation results obtained by using the first three algo­
rithms in this paper are listed in tsble 3. The convergent pro-
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cedure ot the algorithm 3 is shown in figure 2. From these re­
sults, one can see that the estimation accuracy of all these 
three algorithms is rather high, and that the convergent rate 

of the algorithm 3 is very fast. 

5 I I 
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~ .3 
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parameter real value a1@orithm 1 a1@orithm 2 a1@orlthm , 

e(l,l) (lI:g-m2 ) 1.7171 1.7170 1.7171 
9(2,1) (lI:@-m ) 4.4619 4.4664 4.4619 
e(2,2) (lI:g-m2 ) 0.2088 0.2074 0.2088 

9(2,') (ltg-m ) 0.1117 0.1117 0.1117 

9(2,4) (k@-m ) 5·,077 5.,077 5·.,077 
9(2,5) (lI:g-m2 ) -1.4754 -1.4711 -1.4754 
9(,,1) (Is:@-m ) -0.0065 -0.0065 -0.0065 
e(',2) (1s:@-m2 ) 0.0758 0.0758 0.0758 
e(,.,) (Is:g-m ) -0.0686 -0.0686 -0.0686 
a(,,4) (Is:@-m ) 0.0185 0.0185 0.0185 

9(',5) (k@-m2 ) -0.0675 -0.0675 -0.0675 

Table'. Estimation results ot the dynam1c parametera 
for the f1rst three links of PUMA-560 

Conclusions 

.-
1.7171 
4.4619 
0.2088 

0.1117 

5.3011 
-1.4'754 

-0.0065 
0.0758 

-0.0686 

0.0185 

-0.0675 
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Becsuse of the characteristic of the robot dynamics, the iden­
tification of its dynamic parametera can be decomposed into n 
subproblems corresponding to individual links. The efficiency 
of parameter estimation is then improved greatly. Furthermore, 
the determination and processing of unidentifiable or combined 
identifiable parameters are simplified. In this paper, based on 
the decomposed identification mOdels, several effective estima­
tion algorithms are proposed, which require far less computation 
than the existing ones. 
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The problem of modelling a revolute-joint robotic manipulator with either open or 
closed chain and jlexibility in both the links and the joints is discussed. A kinematic 
formulation utilizing the Denavit-Hartenbergformalism, modal representation of the 
linkjlexible motion and infinitesimal elastically restrained joint rigid motion is 
developed and used to obtain the dynamic model by the Lagrangian approach. 
Details of the formulation are shown for a one-link structure. A direct scheme for the 
control of the motion of the end effector in Canesian space based on nonlinear 
inversion of the system is developed. As this scheme requires simulation of the left 
inverse system, it has to be implemented off-line and to be supplemented by 
regulator terms to ensure convergence to the desired trajectory in the presence of 
disturbances and uncenainties. 

1. Introduction 

The present work is the first step in the development of a tool for simulation of the 
dynamic behavior of robotic arms, taking into account the flexibility of the links and 
the joints. The final goal is to use this for the control of the motion of the end 
effector of the arm in Cartesian space. There are many other factors that must be 
accounted for in studying the dynamic behavior of general robotic arms, such as 
friction in the joints, and backlash and flexibility of the mechanical transmissions. 
This work is not concerned with these factors; the reason is that the object of 
attention is a special class of robotic arms, namely direct-drive arms with either 
open- or closed-chain mechanisms. For such arms the aforementioned factors are 
negligible. It is, however, expected that for some of these anns possessing relatively 
stiff, lightweight links [1] the flexibility of the joints will be a significant contributor 
to the ovel1!ll compliance of the ann. For this reason it is an essential part of this 
development. 

The modelling and control of flexible-link robotic arms (with a view to space 
applications) has developed very rapidly over the past ten years. For simulation, 
notable is the work of Sunada [2]. He used finite element analysis to obtain the 
modal characteristics of the flexible links, and a time-varying component-mode 
synthesis approach to reduce the size of the problem. His model is semi-nonlinear in 
the sense that a nominal rigid motion is prescribed. Yoo and Haug [3] presented a 
full nonlinear formulation, with each link considered separately as a free body; 
constraints due to contact between the links were formulated for different types of 
joints. Flexibility was represented using a combination of normal modes and 
attachment modes. Kim and Haug [4] addressed the problem of mode selection for 
this model. Very interesting is Book's approach [5]. He derived a comprehensive 
nonlinear model for simulation of the dynamic behavior of open-chain arms with 
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flexible links, using a modal representation for the flexibility. Particular attention 
was payed to the computational efficiency of the formulation, employing recursive 
computation. The equations as presented are valid for links with zero twist and 
offset, and therefore for the planar or special antropomorphic case only. 

Dynamic modelling of closed-chain arms has been attempted mainly for rigid links. 
The most important special feature of the problem is the formulation of the loop 
constraint. Luh and Zheng [6], and in parallel Kleinfinger and Khalil [7] used a tree 
structure, a Newton-Euler formulation for the branches and a Lagrange multiplier 
approach for the loop constraints to derive the active joint generalized forces. One 
aspect of the problem of a closed-chain flexible arm was partially addressed by 
Kiedrzynski and Becquet [8]. They formulated simplified beam-link and rod-link 
models of the flexible links in the closed loop. 

Modelling the flexibility of the joints has received less attention and then mostly in 
connection with the flexibility of the transmission, rather then the compliance of the 
bearings and/or the contact surfaces. Ahmad and Widman [9] and Dado and Soni 
[10] considered dynamic models of two-link (rigid) planar arms with flexible shafts 
and gear trains in the joints. Rivin [11] studied the relative importance of the 
compliance of the links and the joints/transmissions and concluded that the latter is 
dominant. Shih and Frank [12] developed spatial dynamic compliant joint models 
considering the stiffness of the shaft as well as that of the bearings and the 
supporting structure. These models included frictional effects but the links of the 
mechanism were considered rigid. 

There are many contributions for the control of one-link arms; as such systems are 
represented by a linear model these contributions will not be mentioned here. Singh 
and Schy [13] presented a technique for joint-space control of multi-link flexible 
arms which introduces an elastic mode stabilizer requiring feedback of the elastic 
states. Gebler [14J developed a feedforward control strategy for a two-link robot 
with flexible links and joint shafts. Finally Bayo [15] proposed an open-loop 
technique based on the linearization of the system about the desired Cartesian 
trajectory for a two-link planar manipulator. 

2. Flexible Arm Kinematic Model and Lagrangian Dynamics 

A kinematic model is developed for the motion of robotic arms with flexibility in 
both the links' and the (revolute) joints. Links consist of two rigid hubs connected 
with a flexible midsection (figure 1). To link (i) we assign two frames Ril and Ri2 
bound to the hubs, with their z-axes coinciding with the joints' axes. The geometry 
of the undeformed link is described with three of the Denavit-Hartenberg parameters 

(length ai' twist ai' offset di + 1); the fourth is the joint angle e i + l' Th us the 

transformation Rjl to Ri2 (undeformed) is: 

1 0 0 aj 

0 Ca. -Sa. -dj+1Saj I I 

'f = .................. (1) 
u 

0 Sa. Caj dj+1Caj I 

0 0 0 1 
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Link i 

, twist (Xi . 
\~/. 

Zil' / 
Xi2' 

,. ------~ , 
-~""'----

Figure 1 
When the midsection of link i is deformed Ri2 moves to a new position Ri2'; we 
write the transformation from Ri2 to Ri2' using a modal summation: 

Tf = 1. 4 + ~ q .. (t) Af ·· = I + Af ............... (2) 
'+x £..i 1J ,IJ 

j 

where qij(t), j=1,2, ... are modal coordinates for link i (all considered infinitesimal 

quantities of order e), and Af,ij is the the time-invariant mode-shape transformation 
matrix for mode j of link i, having the form: 

0 -() .. Yij u .. 
1J 1J 

() .. 0 -Pij v .. 

A c"= 
1J 1J 

...................... (3) 
,IJ 

-Yij Pij 0 w .. 
1J 

0 0 0 0 

The transformation from Ri2' to Ri+ I I (the frame bound to the proximal hub of the , 
next link), in the absence of joint deformation, is a rotation about the z-axis of Ri2' 
and the relevant matrix is given by: 

cei+1 -sei+1 o 0 

T= 
sei+1 cei+1 

r 
................ (4) 

o 0 

0 0 o 
0 0 o 1 

Due to the flexibility of the contact surfaces and other elements of the joint the joint 
rotation brings us to an intermediate frame Ri+ 1 1" and an infinitesimal elastically , 
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restrained rigid motion representing the joint deflection takes us to Ri+ 1 1 (figure 2). , 
Joint i+ 1 

Zi2' = Zi+1,1' Zi+ 1 ~J 

, , 

~-' 

'\ .' 
~t"'. 

Yi+ 1,1' 

_~~Yi2' 

Xi+ 1 l' :::-f'::~ 

Xi2'~' l/-7 
e. 1 : 1+ 

Figure 2 
The transformation for the latter is written as: 

0 -Oli+l 'l'i+l bi+1 

Oli+! () -Cjli+! ei+! 
T a = 14x4 + 

-'I'i+! Cjli+l 0 hi+! 

0 () 0 0 

Yi+1,1 

Xi+ 1,1 

............ (5) 

T a can be written in a summation form similar to that used for T fin (2) as follows: 

6 

T = 14 4 + ~ p. 1 .(t) A . !' = I +A ............. (6) a x .L.. 1+ ,J a,l+ .J a 
j:! 

where Pi+1,j(t), j=1,2, ... ,6 are the six deformation variables for joint i+l (all 

infinitesimal quantities of order e), and Aa,i+ l,j are appropriate constant matrices. 
Following these considerations the transformation from Ri 1 at the base of link i to 

Ri+l,l at the base oflink i+1 is written as: 

~~\.lTd = Tu Tr(qi) Tr(8i+!) Ta(Pi+!.k) ............... (7) 

with Tu' Tf, Tr and Ta given by (2), (3), (4) and (6). An approximation for Td 

correct to order e and linear in the variables q and pis: 

Td '" Tu Tr + Tu Af Tr + Tu Tr Aa ............... (8) 

The first term is the rigid transformation, the second is due to the link flexibility, and 
the third is due to the joint flexibility. If RO is a frame fixed in the ground, the 
transformation from RO to Ril is given by the recursive relationship: 
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o 0 i-I 
iTd= i_lTd i Td .................. (9) 

The instantaneous position of a material point on link i relative to RO is given by: 

0p = ~T d ip ................. (10) 

Here ip is the instantaneous position of the point relative to Ri 1 (figure 3), and is 

Link i 

Figure 3 
expressed using the same modal summation as in (2): 

i i L i P = Po(undeformed) + q .. (t) X .. ( Po) 
IJ IJ 

................... (11) 
j 

This kinematic model forms the basis for obtaining the equations of motion of the 
system by the Lagrangian approach. The recursive nature of the position equations 
(9) and (10) makes the calculation of velocities and therefore the formulation of the 
kinetic energy easier. Velocities must be calculated for the three constituent elements 
of each link, namely the proximal and distal hubs (rigid bodies) and the flexible 
midsection (deformable solid). Considering link i we have that for the proximal hub 
the velocity, written as a twist or screw, is: 

............... (12) 

For the distal hub of link i the velocity is: 

d 0 0 -1 
~i2=dt(iTd Tu Tf)(iTd Tu Tf ) ................ (13) 

Finally for a point on the flexible mjdsection, the velocity is: 

0p = ~t d ip + ~Td ip ................ (14) 

The following two recursive velocity equations, derived from (8) and (9) are 
necessary for velocity calculations using (12)-(14): 

o . o· i-I 0 i-I· 
iTd=i_lTd i Td+i_lTdi Td ............... (15) 
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i-t . .. " . 
i T d=Tu T r+Tu A f Tr+TuAf T r+Tu T rAa +Tu TrA a ....... (16) 

The Lagrangian is formulated as a function of the joint angles 9. the link modal 
coordinates q and the joint deformation variables p. using (8)-(16): 

6 

1(9. q. p. 9. q. p) = KE(9. q. p. 9. q. p) -PEeS. q. p) + ~)'n Cn ...... (17) 
n=1 

6 scalar constraints have been included with Lagrange multipliers An for the case of 

a manipulator with one closed mechanical loop of links and joints in its structure. 
The equations of motion take the form: 

Ti (torque. if joint is active) 

o (if joint is passive) 
i=1.2 ..... 1 

~( oL )_ ()L =0 
dt :>' oq'k 

aq jk J 

j=1.2 ..... 1 k=1.2 ..... Kj 

~~)_ oL =0 
dt o· oPlm 

Plm 

1=1.2 •...• 1+1 m=I.2 ..... 6 

Cn = 0 n = 1.2 •...• 6 (constraints from a possible closed loop) (18) 

1 is the number of links of the manipulator. This is equal to the number of joints for 
an open-chain structure; for a structure with a closed chain (one closed loop of links 
and joints) there is one additional joint. but the joint angle for it is not included in the 
formulation. This joint is chosen to be a passive one. The deformation variables for 
it are included in the formulation as they contribute to the system's potential energy. 

chain b-m links 

YO. 

ground XO 
~--' Figure 4 

Zn2 

Ym2 
J-~~ 

Xm2 
, , 

We now discuss the problem of formulating the constraints for a closed-chain 
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structure. The structure is viewed as two open chains with their terminal links in 
contact via a revolute joint. The joint variables, link modal coordinates and joint 
deformation variables for the two chains are not independent, but have to satisfy 
constraint equations arising from the loop closure. Let the closed-chain manipulator 
consist of chain A with N links and chain B with M links. The condition for chain 
closure is the matching of the frames RN2 and RM2 bound to the distal hubs of the 
terminal links of the two chains modulo a rotation in the passive revolute joint 
connecting the hubs (figure 4). Depending on the geometry of the structure an offset 
may have to be included. If the connecting joint is flexible, we must take into 
account its deformation. The constraint equation is: 

o NI N2 0 MI 
NITA N2TA (M2TAB)=MITB M2TB ................. (19) 

The transformation in parentheses must include depending on the case rotation, 
deformation and/or offset. Equation (19) yields 12 scalar constraints obtained by 
equating the elements of the matrices on its right and left hand side (the last row is 
trivial). From these 12 nonindependent conditions we must select 6 to include in 
(18); these must be such that the angle of the connecting joint does not appear. 

3. One-Link Model: Inertial Coefficients and Computational 
Considerations 

The details of the formulation are now considered for a one-link structure. In reality 
we have to consider two bodies: the ground and the link. Thus the transformation 
leading to the proximal hub of the link is: 

~Td = Tu,o Tr,o Tr,l Ta,l ................ (20) 

We may select a frame in the ground so that Tu,O=!. Further the flexibility of the 

ground is negligible, therefore Tf,O=I as well. Thus: 

6 

°ITd = TIT I = T(O)( I + ~ PI . A I') ............... (21) r, a. ~ ,1 a, ,I 
i=1 

The instantaneous position of a point of the flexible midsection of the link (which we 
model as a thin 3D flexible rod) relative to Ro is given by: 

........... (22) 

q j are the modal coordinates used to represent the elastic deflection of the 

midsection'. The constants Xj are obtained from the mode shapes, which can 

correspond to normal modes or static correction modes. Carrying out the 
multiplication in (22) and deleting second-order terms we fmd: 

OIL L I P ... T(O) P + q. T(O) x. + p. T(O) A. P 
J J 1 al 

•.......•.. (23) 

By differentiation we find the velocity of the point: 

................ (24) 
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Here T 9 ~s the derivative of T(9) with respect to 9=9 1, the joint angle. The kinetic 

energy of the link (neglecting the two hubs) is: 

L 

I I o· O·T 
KE = "2 Jl ds Trace ( P P ) ............. (25) 

o 
Equation (25) can be manipulated to obtain the expression of the kinetic energy as a 
quadratic form of the generalized coordinates and extract the expressions for the 
elements of the inertia tensor of the system. These expressions are shown here for 
the case without joint flexibility: 

L 

A' I lIT ~ I T l(u,9) = Trace (Ta Jl ds ( P P + ~qj P Xj + 

o 

............... (26a) 

.......... (26b) 

L 

I(ei j'ei k) = Trace (T(9) I Jl ds (Xj X~) TT (9) ) .............. (26c) 

o 
Once the elements of the elements of the inertia tensor have been determined the 
calculation of the centrifugal and Coriolis forces can be automated by exploiting 
known identities connecting these to the derivatives of the elements of the inertia 

tensor. Let cp denote the vector of generalized coordinates. The nonlinear inertial 
forces can be written in the form: 

FC(cp,q,)= C(cp,q,) q, .................. (27) 

The elements of the C matrix are given by: 

. ~ ·T T 1 ·T 
C(cp,cp) = ~ ( [en cp In(cp)] -"2 [en cp In(cp)]} ............ (28) 

n 

where en is tke nth unit vector and In is the derivative of the inertia tensor with 
respect to the nth generalized coordinate. The calculation of the gravitational forces is 
not shown here. It is based on equation (20) which gives the instantaneous position 
of a point of the flexible link; from this we can easily formulate the expression for 
the gravitational potential energy. The elastic potential energy is a positive 
semidefinite quadratic foml of the generalized coordinates. Thus the elastic forces 
can be found easily if we know the stiffness matrix utilizing the equation: 

F. = [ : K; K:] [ : 1 .............. (29) 
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The submatrix Kqq is directly obtained from the finite element program that is 

usually employed to obtain the mode shapes for the link. It is diagonal if exclusively 
normal modes (which are orthogonal) are used. Kpp is diagonal and is obtained 
from modelling the joint flexibility with linear and rotational springs. Equations 
(26)-(29) are written for a very simple case and yet are sufficient to demonstmte the 
computational complexity of the problem and the difficulties existing in 
implementing model-based control schemes for flexible manipulators. It must be 
mentioned that in the absence of gravitational forces, we are able to write linear 
equations of motion for the one-link structure; this linear model is the one employed 
in control studies for such arms. 

4. Solution of the Control Problem by Direct Nonlinear Inversion 

The model for multi-link arms is always nonlinear; thus the methods developed for 
control of the motion of one-link arms cannot be directly used for their control, as 
they are based on linear models. Here we discuss the solution of the inverse 
dynamic problem for manipulators with several flexible links (and possibly 
flexibility in the joints). We limit the discussion to open-chain structures for which 
there are no constraint equations and all joints are active. Further we consider a 
nonredundant arm, so that the number of degrees of freedom of the end effector, n, 
is equal to the number of joints. Thus the equations of motion (18) take the general 
form: 

I(q» q,+ C(q>,q» q) + O(q» = Bl T ........ (30) 

where q> is the vector of generalized coordinates, whose first n components are the 
joint angles; the other are the modal coordinates of the links and possibly the joint 
deformation variables. T is the vector of torques applied at the joints. The 
right-hand-side of (30) was written using the assignment matrix: 

B, =[ : ] .......... (~) 
to emphasize the fact that there are no applied forces for the flexible coordinates. 
For the solution of the control problem we write the equation in state-space form, 

with state'vector x = [ q> T dq>/dtT ]T: 

x = a(x) + B(x) T ............. (3Ia) 

where: 

a(x) =[ q> ] 
_1"1(q» [ C(q>,q» q) + O(q» ] 

.............. (3Ib) 

B(x) = [ rIc:) B, ] ••••••.•••••••• (31c) 

The vector of joint torques T (nxl) is viewed as the control vector of the system. 
Important for the solution developed here is the output equation; as we are interested 
in the position of the end effector in Cartesian space the output vector is the vector 
(nxl) of Cartesian coordinates of the end effector, y, and the output equation is 
nothing but the forward kinematic map of the arm with flexibility: 
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y = f(<p) ............. (3Id) 

We can now state the inverse dynamic problem as follows: "given the Cartesian 
trajectory of the end effector y(t), find the torques that were applied at the joints 
T(t)." Rephrasing this using control tenninology we have: "given a desired Cartesian 
trajectory of the end effector Yd(t), find the open-loop torques that must be applied at 
the joints to achieve it." A solution to this problem is obtained by applying a direct 
nonlinear inversion procedure, as suggested by Hirschorn [l6] for general nonlinear 
systems. The procedure is based on differentiation of the output equation and 
construction of a series of systems having as output the derivatives of the output of 
the original system, until one obtains a system which is invertible. Applying the 
procedure we obtain: 

where: 

system 0 output: Zo = y = f(<p) ........ (32a) 

system I output: 

system 2 output: 

OCI 
c2(x) = dx a(x) 

ZI = Y = f" q, = c1 (x) ........ (32b) 

.. oc1 · 
Zz = Y = dx x = c2(x) + D2(x) T ........ (32c) 

........ (33a) 

oCI -I 
D2(x) = dx B(x) = f" I (<p) BI ........ (33b) 

(32c) can be solved for Tin tenns of the Cartesian acceleration of the end effector, 
provided the nxn matrix D2(x) is nonsingular: 

........ (34) 

In such a case we say that the second system is invertible, or, the relative order of 
the original system is 2. Elsewhere [17] it is shown that D2(x) is nonsingular 
everywhere except at the singularities of the forward kinematic map of the flexible 
ann. (34) involves the state vector of the system as well; thus knowledge of the 
desired Cartesian acceleration of the end effector is not sufficient; we need the 
trajectory of the system in the state space. To obtain this we construct the following 
left-inverse system: 

i = a(x) + B(x) T ........ (35a) 

y=c(x) + D(x) T ........ (35b) 

Here: 
. ~ 

a(x) = a(x) - B(x) D2 (x) c2(x) 

• -1 
B(x) = B(x) D2 (x) 
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• -1 
D(X) =D2 (X) 

T=y y=T ........ (36) 

The input or control for the left-inverse system is the desired Cartesian acceleration, 
and the output is the vector of open-loop joint torques. Of course the design of the 
control is not complete, and these torques will produce the desired trajectory only 
with the right initial conditions and in the absence of disturbances. Regulator terms 
must be added to produce a stable control. Work is in progress in this direction. The 
stiffness and the material damping of the links are used to advantage. As (35a) 
cannot be solved in closed form, the determination of the open-loop joint torques 
requires numerical simulation of the inverse system. This is not feasible with the 
computing means of today. The only way to overcome this problem is to construct a 
library of torque time histories by off-line simulation of the inverse system, 
corresponding to a number of frequently executed trajectories, and store them in 
memory for use by the control system. Other techniques suggested for the control of 
multi-link flexible robots are based on ad hoc perturbation of the nonlinear model. 
To be able to construct stable controllers the perturbation approach must be 
formalized. 

Conclusion 

The problems of dynamic modelling and control of robotic arms with flexibility in 
both the links and the joints were discussed. Details of the dynamic model obtained 
by Lagrangian method were shown for a one-link structure. For the control 
nonlinear inversion was used to solve the open-loop problem; it was found that the 
utilization of the full nonlinear model is not at present feasible, because we cannot 
obtain closed-form solutions for the left-inverse system. 
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Abstract 
An active suspension system with an actuator in parallel with a 
spring and a shock absorber is designed for a wheeled vehicle. 
The passive elements in the mechanism reduce high frequency vi­
bration. A possible implementation with a DC torque motor and a 
pseudo-straight line mechanism is illustrated. A simple analysis 
of the kinematics of a wheeled vehicle with an active suspension 
is also discussed. A control method based on sliding mode con­
trol is developed for a two-wheeled two degree of freedom model 
of the vehicle. Simulation results show that, in the sense of 
root-mean-square vibration reduction, active suspension is supe­
rior to passive suspension and that proposed approaches are ef­
fective when applied to a nonlinear system. 

Introduction 

Recently, the use of wheeled vehicles in inaccessible and danger­

ous environments is increasing. The transport of wood or plant­

ing work in forests, rescue activities in the area hit by a di­

saster, and maintenance and inspection work in nuclear plants are 

examples of possible practical applications of wheeled vehicles. 

A wheeled vehicle which aims at traveling over irregular terrains 

needs a specific suspension system in place of conventional pas­

sive devices, a spring or a shock absorber, employed as suspen­

sions for ordinary vehicles. The suspension system required for 

such a vehicle must be provided with actuators to have the accom­

modation to terrains and realize the suspension properties suited 

for the vehicle function. 

Energy consumption by active suspension systems is an important 

problem because practicable wheeled vehicles should be self-con­

tained. Semi-active suspensions [1 ),[2) are alternatives for 

this problem. They use an active damper in parallel with a pas­

sive spring. In this paper, a concept of an active suspension 

system (AS) composed of passive elements and an actuator as well 

as a suspension controller design is presented. So far, several 

G. Schweitzer, M. Mansour 
Dynamics of Controlled Mechanical Systems 
IUTAMIIFAC Symposium Zurich/Switzerland 1988 
© Springer-Verlag Berlin Heidelberg 1989 
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optimum control strategies based on linear models have been stud­

ied: optimum output feedback control [3] and preview control [4] 

(a control scheme in which an input is sensed before it reaches 

the controlled plant). This paper employs a control strategy 

based on sliding mode control [5] for AS. 

2 Active suspension system 

2.1 Concept of an active suspension system (AS) 

The concept of AS is shown in Fig. 1. This system has an actu­

ator generating a force f(t) in the vertical direction, a spring 

with stiffness K, and a shock absorber with damping ratio C in 

parallel between the vehicle body with mass M and the wheel axle. 

An unknown terrain elevation ret) at the wheel is transmitted to 

the body through the suspension mechanism and causes the body 

displacement x(t) in the vertical direction. Both x(t) and ret) 

refer to some absolute frame. Only the vibration in the vertical 

direction is considered in the rest of this paper. 

2.2 Effect of passive elements 

The actuator in AS only has to control the low frequency body vi­

bration because the spring sustains the static load and the 

choice of spring stiffness and damping ratio to the given body 

mass determines the upper bound of the frequency of the vibration 

to be actively controlled. These passive elements highly reduce 

the high frequency vibration. To make the effect of them clear, 

the dynamics of the system shown in Fig.1 is investigated. 

Mitt) + C{i(t) - ~(t)} + K{x(t) - ret)} = f(t) ..... (1) 

From (1) with f(t) = 0, a transfer function G(s) with input ret) 

and output x(t) is obtained. 

Cs + K 
G(s) = -----------­

Ms2 + Cs + K 
•••••••••••••••••••••••••••••• ( 2 ) 

The gain diagram of G(s) is shown in Fig. 2. The values of C and 

K are shown in Table 1, and M = 25 kg. A peak observed at about 

2 Hz indicates that the upper bound of the frequency of the vi­

bration to be actively controlled is 2 Hz or so. 

2.3 An implementation of the active suspension system 

An implementation of AS utilizing the Chebyshev's four-bar link 

to transform the actuator rotational motion into the pseudo­

straight line motion at the wheel axle is shown in Fig. 3. 

Figure 5 shows the pseudo-straight line motion generated by this 
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mechanism. The actuator torque is also transformed into the 

force applying at the wheel axle by way of this structure al­

though the force-torque relationship is dependent on the actuator 

angle. The force at the axle generated by 1 Nm actuator torque 

is shown in Fig. 6. A DC torque motor is employed as the actu­

ator of AS since precise open loop torque control is possible be­

cause of its small friction, although active suspensions often 

use hydraulic or pneumatic actuators [6],[7]. 

3 A two-wheeled two degree of freedom model 

3.1 Formulation 

A two-wheeled two degree of freedom model of the wheeled vehicle 

is derived on assumptions that (a) the tires are rigid and (b) 

the wheels keep contact with the ground. Since the upper bound 

frequency of the vibration to be actively controlled decreases 

with decreasing K if C and M are fixed, spring stiffness is de­

sired to be small in spite of the drawback of the large body sink 

by the gravity. The tires are much more rigid than the spring in 

AS. The locomotion speed of the vehicle in the scope of this pa­

per is rather slow, so that the vehicle presumedly will not 

spring free from the ground. 

The model shown in Fig. 4 has two degrees of freedom: the body 

height and the body tilt. If the wheels correspond to the front 

and rear wheels, Q(t) is the pitch angle; and if they represent 

the right and left wheels, Q(t) is the roll angle. The height of 

the center of mass of the body, xG(t), refers to some absolute 

frame. Subscripts, F and R, indicate that the variable is re­

lated to either the F-wheel or the R-wheel. And M, I, and 2L 

mean the body mass, the moment of inertia of the body, and the 

body length (wheelbase or tread), respectively. The body length 

is presumed to be independent of the body tilt and unchanged. 

Yilt) = xi(t) - ri(t) ; i = F, R •••••••••••••••••• (3) 

where Yilt) is the distance between the body and the ground. 

Formulation sho~ld be done in terms of Yilt) since precise mea­

surement of x(t) and r(t) is difficult. Dynamic equations based 

on x(t) and r(t) are rewritten by measurable variables. Suppose 

that the distances between the body and the ground at the suspen­

sion positions are available, YG(t) defined in (4) is introduced 

as a ~ariable which represents the body height. 

YG(t) = (YF(t) + YR(t)}/2 ..••••..•.••.•••.•••••.•• (4) 
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Let the equilibrium position of the vehicle body the origin, and 

the dynamic equations concerning the body height and the body 

tilt based on measurable variables are obtained as follows. 

M~G(t) = fy(t) - 2C~G(t) - 2KYG(t) + dy(t) ......... (5) 

IQ(t) = Lcosg(t){fg(t) - 2CLG(t)cosg(t) ............ (6) 

- 2KLsing(t)} + dg(t) 

where 

fy(t) = fF(t) + fRet), fg(t) = fF(t) - fRet) 

dy(t) and dg(t) are disturbance forces caused by unknown terrain 

elevations to the body height and to the body tilt, respectively. 

It is assumed that only maximum absolute values of dy(t) and 

dg(t) can be estimated. Note that these equations are decoupled 

between YG(t) and get) by letting KF = KR and CF = CR and that 

(6) is nonlinear. 

3.2 Kinematics of the wheeled vehicle 

The use of YG(t) in stead of xG(t) avoids difficult problems in 

the locomotion over unknown terrains. If xG(t) is kept unchanged 

while traveling over a long slope, for example, the limits of the 

suspension stroke will make it impossible to continue the locomo­

tion. It is necessary to analyze the kinematics of the wheeled 

vehicle with AS under the condition that YG(t) and get) are kept 

constant. 

When YG(t) and get) are fixed, the body of the vehicle traveling 

over a long flat slope follows the slope profile. Consider ter­

rain elevations defined by a sinusoidal function. 

rF(t) = sin2nwt, rR(t) = sin2nw(t - B/V) 

where V is a constant locomotion speed, B is the wheelbase, and w 

is the frequency of terrain elevations. If YG(t) is controlled 

to be a constant Hand get) ih kept zero, then, 

xG(t) {xF(t) + xR(t)}/2 

H + {sin2nwt + sin2nw(t - B/V)}/2 ..•...... (7) 

Consider two cases: (a) Bw/V n, (b) Bw/V = n + 1/2. In case 

(a), (7) is reduced to xG(t) H + sin2nwt. This means that the 

vehicle body tracks the same trajectory as rF(t). While in case 

(b), (7) becomes xG(t) = H which shows that the height of the 

vehicle is held fixed with respect to some absolute frame. Con­

sidering general cases, the path of xG(t) becomes a trajectory 
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with an intermediate amplitude between ~hose two trajectories be­

cause the apparent frequency of terrain elevation depends on the 

locomotion speed and actual terrain profiles cannot be modeled by 

a simple sinusoidal curve. 

4 Sliding mode control 

4.1 Purposes of sliding mode control 

The nonlinearity in the dynamics of the vehicle with AS should be 

paid attention to. The fact that, in physical suspension sys­

tems, spring stiffness and damping ratio are prone to involve 

nonlinear and time-varying properties which bring about parameter 

errors and parameter variations should also be considered. Slid­

ing mode control is one solution to these problems because it is 

capable of dealing directly with nonlinear systems and needs only 

estimation values about nonlinearity of the system. 

In addition, the vehicle discussed here is planned to be equipped 

with a vision sensor system which detects obstacle surfaces. 

Sliding mode control is a simple model following control; the 

state variables of the system in sliding mode are constrained on 

defined switching lines. Thus, the correction of sensor data 

based on the vibration model is possible. 

4.2 Design of a sliding mode controller 

The design procedure of a controller which regulates YG(t) and 

9(t) is as follows. First, on the basis of the premise that 

state variables are available, switching lines for YG(t) and 9(t) 

with negative inclinations are defined in phase plain. 

Sy YG(t) + aYYG(t) 0 (a y > 0) ••••••••••••••••• ( 8 ) 

s9 Q(t) + a 99(t) 0 (a 9 > 0) ••••••••••••••••• ( 9 ) 

Second, the control structure is defined. In this approach, a 

control strategy which switches between 

the sign of Sy and s9 is introduced. 

two values according to 

f i + (si > 0) 
; i = y, 9 •••••••••••••• (10) 

f 1 - (si < 0) 

Third, control signals must be determined so that sliding mode 

exists in the neighborhood of the switching line. The occurrence 

of sliding mode is assured by global asymptotic stability of an 

F,juilibrium point, si = 0 ; i = y, 9, which is proven by the sec­

~nd method of Lyapunov. After the certification of V(t) = si 2 ; i 

= y, 9 being Lyapunov functions, which is omitted here, next con-
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ditions are derived. 

sisi<Oii=Y,Q ........•.•.............•..... (11) 

These are sufficient conditions for the occurrence of sliding 

mode. As for the pitch angle, Q(t), 

sQ = G + CY.QG 

= LcosQ{f Q - 2CLGcosQ - 2KLsinQ}/I + dQ/I + CY.QG (12) 

In the case that 5Q > 0, frOil, the condition (11), 5Q < O. From 

(12), the condition to be satisfied bt fQ+ is obtained. 

f g + < {2CLcosQ - ICY.Q/(LcosQ)}G + 2KLsinQ - dQ/(LcosQ) 

••••••••••••••••••••••••••••••••••••••••••••••••••• ( 1 3 ) 

Each term on the right hand of (13) is minimized with respect to 

Q(t). For the simplicity, the parameters, M, I, C, and K, are 

assumed to be time-invariant and perfectly identified in advance. 

If they should involve parameter errors or parameter variations, 

the minimization would have to take their influence into consid­

eration. In this formulation, only the information about maximum 

and minimum values of parameter errors or parameter variations 

would be required. 

From the premise that maximum absolute values of dy(t) and dQ(t) 

are known, minimum values of the second and the third term on the 

right hand of (13) is obtained with - n/4 ~ Q ~ n/4. 

The second term ~ - 12KL 

If 1/12 ~ x ~ 1 for a function, fIx) 

(a - 2b)/12 ~ fIx) ~ a - b 

Therefore, 

ax - b/x (a, b > 0), then 

If(x) I ~ B = max{ 12CL - ICY.Q/LI, I2lcL - ICY.Q/LI} 

The first term ~ -If(cosQ) IIGI ~ - BIGI 

The desired control law is obtained by combining these terms. 

fQ+ = - BIQI - 12KL - I2ldQlmax/I ................ (14) 

When sQ < 0, control law fQ- is derived in the same way. 



329 

As for YG(t), next control laws are introduced after the similar 

discussion as above. 

fy+ = - 12C - MClyllyd - 2KlyGI - Idylmax ••••.••• (16) 

(Sy > 0) 

12C - MClyl lyGI + 2KlyGI + Idylmax 

(Sy < 0) 

••••••• (17) 

5 Hybrid control 

One demerit of sliding mode control is chattering caused by the 

delay in physical systems. Suction control [8] which employs 

continuous control laws to approximate switched control is an ap­

proach for rejecting the chattering. A hybrid method which com­

bines sliding mode control with state feedback control, is intro­

duced to overcome this problem. 

Consider a system whose dynamics is expressed in the form that 

Mx ( t ) = u ( t ) - Ax ( t) - Bx ( t ) ••••••.••••.•••••.••• ( 1 8 ) 

where A, B, and M are positive constants and u(t) is a control 

signal. For a hybrid controller design, a new parameter, zIt), 

is introduced. 

zIt) = x(t)/x(t) ••••••••••••.••••••••••.•••.••••• (19) 

This parameter indicates the direction in which the point corre­

sponding to the state variables in phase plain converges on the 

origin of phase plain. When this system is controlled by a state 

feedback controller, 

u(t) = - k1x(t) - k 2x(t) ••••••••••••••••••••.••.• (20) 

with zIt), (18) is reduced to 

i(t) = - z2(t) - Pz(t) - Q ....••.•.....•....•.••. (21) 

where 

P = (k2 + A)/M > 0, Q = (k1 + B)/M > 0 

Let z1 and z2 (0 > z1 > z2) be solutions of the equation 

z 2 + Pz. + Q = 0 •••••••••••••••••••••••••••.•.•••• (22 ) 

If the next condition (23) is satisfied, z1 and z2 are negative. 

p2 _ 4Q > 0 ••••••••••••••••••••.••••••••••••••••• ( 23) 

Both z1 and z2 can be interpreted as equilibrium points in the 

space of z of the system described by (21). After a simple anal­

ysis, it is proven that the equilibrium point z1 is locally as­

ymptotically stable for z > z2. 
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The basic idea on which hybrid control is based is that (a) when 

the system is subject to disturbances, sliding mode controller 

draws the state of the system into the neighborhood of zl which 

satisfies z > z2' and (b) once the state enters the domain, the 

control is switched to state feedback controller which assures 

that the state remains within the domain until it converges on 

the origin of phase plain. A division of phase plain is illus­

trated in Fig. 7. Both -al and -a2 are inclinations of bound­

aries of the domain sf, where state feedback controller is on. 

Both S+ and S- represent domains in which sliding mode controller 

is on. The magnitudes of hybrid control parameters, a, al' u2' 

zl' and z2 must follow the next inequality. 

o > - al > - a = zl > - a2 > z2 ..•.•........•.... (24) 

These parameters provide more intuitive guidelines for controller 

design than the index performance utilized in optimum control. 

Let zl - a, and feedback gains, kl and k 2 , are determined from 

(25) under the condition (23). 

a 2 - Pa + Q = 0 ....•...........•................. ( 25 ) 

Obtained hybrid control laws are 

if (YG' YG) & Sy + then fy fy + 

if (YG' YG) ~ Sy - then fy fy - ................. (26) 

if (YG' YG) E Sy f then fy - k Y1 YG - k Y2 YG 

if (G, Q) Eo SG 
+ then fG fG 

+ 

if (G, Q) e SG 
- then fG fG 

- ................. (27) 

if (G, Q) E. SG 
f then fG - k G1 G - k G2 Q 

As for G(t), a linearization of (6 ) is used. In the vicinity 

the origin, control signals by the sliding mode controller and 

the hybrid controller are set zero values. 

6. Simulation results and discussion 

6.1 Test terrain 

of 

The ability of the proposed controllers is verified by the com­

puter simulation of a two-wheeled vehicle with a front and a rear 

wheel traveling over test terrains. Parameters used in the simu­

lation are listed in Table 1. The test terrain profile, ri(t), a 

function of time, is given by an output of a second order system. 

F, R ...•..• (28) 

where w(t) denotes a signal to form the test terrain, and both al 
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and a2 are parameters to specify the smoothness and the amplitude 

of the test terrain. Test terrains generated by a trapezoid-form 

signal are shown in Fig. 8. 

6.2 Simulation results 

The suspension performance is verified among a passive suspension 

composed of a spring and a shock absorber only and AS with three 

different control strategies: (1) the optimum regulator, whose 

diagonal weights of the performance index, Q, are listed in Table 

1, (2) the sliding mode controller, and (3) the hybrid control­

ler. The control cycle is 20 msec and control signals are up­

dated when 10 msec is past after the acquisition of new state 

variables, which takes the computation time and the servo delay 

into consideration. 

Figure 9 shows YG(t)'s and Fig. 10 shows Q(t)'s. Root mean 

square values of YG(t)'s and Q(t)'s are presented in these 

figures. It is shown that the body vibration in YG(t) and Q(t) 

is highly reduced by AS and, especially in the case of the body 

tilt Q(t) which include nonlinear dynamics, both the sliding mode 

controller and the hybrid controller achieved better results than 

those by the optimum regulator. In Fig. 10, the chattering re­

jection by hybrid control appears in the curve of Q(t) approach­

ing zero. 

Figure 11 depicts the F-wheel actuator forces during the locomo­

tion. Although the sliding mode controller and the hybrid con­

troller generate greater signals than the optimum regulator, the 

hybrid controller succeeds in smoothing control signals to a cer­

tain extent, which leads to the chattering rejection. 

7. Conclusion 

The main purpose of this paper is the control system design of an 

active suspension system for a wheeled vehicle for applications 

in hazardous environments. In the sense of root-mean-square vi­

bration reduction, both sliding mode controller and hybrid con­

troller which generate nonlinear and discontinuous signals a­

chieved comparable suspension performance to optimum regulator 

based on linear model. In addition, proposed hybrid method which 

gives intuitive control specifications succeeded in reducing the 

chattering. Future work will treat the design of a new active 

suspension system for a four-wheeled vehicle with six degrees of 

freedom and the extension of the proposed control strategies to 



332 

the six-degree-of-freedom model. 
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Table 1 Simulation parameters 

M kg 50.0 Uy2,a02 .0 
I (lq;glh 10.0 kOl 100.0 
L (m) 0.75 k02 205.0 
K (N/m) 980 kyl 100.0 
C (Ns/m) 196 ky2 103.3 

Idyimax(N) 10.0 QOl 1.oxl05 

Idolmax(N) 5.0 Q02 5.0xlO lJ 

Uy, aO 2.5 QYl 2.0X105 

Uyl'aOl 1.0 QY2 1.OX105 
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Summary 

Interest in high speed ground transportalion systems results in correspondingly 
increased interest in modeling and simulation of the dynamic behavior of vehicle 
systems. MEDYNA is a program especially well suited for the analysis of rail­
guided vehicles: conventional railways, as well as magnetically levitated vehicles. 
This paper demonstrates the application of MEDYNA to the control law design and 
to the performance evaluation of such advanced vehicles. A brief description is 
made of the modeling requirements of magnetically levitated systems, along with 
a summary of some of the related capabilities of MEDYNA. As a case study, anal­
ysis of a vehicle based on the German TRANSRAPID system is presented. System 
matrices of a simplified vehicle model are established, and control design is per­
formed with the aid of MATLAB. Finally, performance evaluation is studied with a 
complex model of the TRANSRAPID vehicle and elastic guideways. 

1. Introduction 

High speed ground transportation systems are of current interest because 
of saturation of air traffic and the limited capacity of road traffic with automobiles. 
Magnetically levitated (MAGLEV) vehicles provide one alternative for improving 
conventional railways. With the most advanced concept, the German TRANSRAPID 
system, basic levitation and guidance are provided by the attractive forces of 
electromagnets (EMS). The use of such MAGLEV vehicles together with elevated 
guideways allows,for travel over greater topography variations, as well as optimal 
use of available land space. 

Considering the full complexity of such advanced HSGT systems results in 
very complicated and high order mathematical models. Thus, attention must be 
paid to the proper handling of these models during development analysis. 
Dynamic modeling, computational analysis, and design modifications are desira­
ble at an early stage of development because of the high costs, risks, and devel­
opment time involved in designing and testing new concepts. Existing software 
tools aid the modern dynamicist and make it possible to avoid the costly endeavor 
of developing personal computer codes. Especially useful in this context are gen­
eral purpose vehicle system dynamics software packages based on multi body 
formalisms, [1]. 

The analysis in this paper relies mainly on the general purpose program 
MEDYNA. This name stands for "Mehrkorper-Dynamik", the German expression 
for Multibody Dynamics. The operation of MEDYNA and its general functional 
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IUTAMIIFAC Symposium Zurich/Switzerland 1988 
© Springer·Verlag Berlin Heidelberg 1989 
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attributes have been presented in a number of previous papers, [2], [3], [4], and 
thus only a brief review is made of the relevant features of MEDYNA. Earlier 
results on simulating MAGLEV vehicles using MEDYNA have been reported in 
[5]. 

2. Dynamic Modeling of HSGT-Systems and MEDYNA 

MEDYNA contains a linear formalism in terms of the kinematic relations and 
thus treats "small" rigid and elastic body motions relative to "large" prescribed 
motions of the global reference frames. The motion of the global reference 
frame(s) (Le. one for a single vehicle, several for a train) are guideway oriented 
functions. 

A vehicle or a train is made up of a number of physical bodies consisting 
of car bodies, bogies or trucks, wheelsets etc. The number of bodies and degrees 
of freedom of the system depend on the vehicle type and the dynamic problem 
under consideration (e. g. stability, curving, or ride comfort). The individual bodies 
are interconnected by joints and linkages constraining their relative motion, as 
well as by coupling or compliant elements resulting in interaction forces between 
contiguous bodies. 

HSGT systems, restricted by appropriate guidance forces, are designed to 
move along a guideway, and thus encounter only small deviations relative to the 
guide rails. This allows the equations of motion for all parts of the vehicle to be 
linearized with respect to guideway oriented moving reference frames. In these 
equations all terms which are linear and time-invariant are incorporated into the 
system matrices, [6]. Thus only the terms resulting from nonlinear force laws of 
suspension elements and those resulting from time-varying Coriolis or centrifugal 
forces have to be evaluated during numerical integration. 

Structural flexibility must often be taken into account for modern ground 
transportation systems, because of the substantial dynamic loads and efforts being 
undertaken to arrive at light-weight vehicle and guideway constructions. 

For HSGT vehicles there are two areas where elastic deformations may be 
of importance: 

• Elasticity of vehicle bodies (car body, chassis etc.) for evaluating load and 
stress on certain parts including problems of material fatigue. Also certain 
vibrational and noise problems are caused by elastic vehicle deformations. 

• Elasticity of the guidway (bridges, elevated guideways) and the dynamic 
interaction of vehicle and guidway may have a significant influence on the 
dynamic stability of rail-guided vehicles as well as on the maximal deflection 
and dynamic loads on the guideway structures, fl]. 

In considering the flexibility of elevated guideways for MAGLEV vehicles the 
following situations are of interest: 

• The vehicle is hovering over a certain position on the guideway (i. e. it has 
zero speed). The hovering case may be the the most critical case for MAGLEV 
vehicles, since in this situation instabilities associated with vehicle and 
guideway interactions can build up. This stationary situation can be readily 
computed with MEDYNA because the vehicle together with the flexible guide­
way resembles one large elastic multibody system. If, in addition, the vehicle 
model is comprised of only linear coupling elements (e.g. linear suspensions, 
etc.), then it is possible to compute the system matrices for the elastic multi-
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body system. Thus, eigenvalues can be computed and stability conclusions 
drawn. 

• The vehicle Is traveling with a certain speed, V #- 0, along the guideway. No 
instabilities can build up because the vehicle is only instantaneously on any 
particular section of the guideway and with no sustained loads on this part, 
guideway deflections diminish In the form of (lightly) damped oscillations. 

Finally, suspension systems are of special importance for modeling multi­
body systems since they dominantly determine the basic dynamic and vibrational 
behavior of the vehi!;Je. One distinguishes between primary suspensions as those 
providing levitation and guidance along the guideway and secondary suspensions 
providing support and cushion between the vehicle bodies. Both types of suspen­
sions may result in interaction forces and/or can cause kinematic constraints. The 
force laws may be rather complex, described by nonlinear characteristics or 
additional differential equations. The inclusion of sensors, feedback control laws, 
and actuators as active components could be used to enhance the performance 
of suspensions in advanced vehicle concepts. With such active components it may 
be possible to achieve vehicle characteristics which are impossible to obtain using 
purely passive systems, [8]. 

For multi body systems a suspension can be modeled as coupling elements 
between bodies. These connections are made between specified interconnection 
points by selecting desired coupling elements from a library containing both pas­
sive and active elements. With a general user-specified element, the user can 
implement any force law for a coupling element not contained in the menu. 
Although the existing coupling elements in MEDYNA readily allow the implemen­
tation of non-contacting force laws for electromagnets, any special operating con­
ditions of the electromagnets require the use of a user-specified element (e.g. 
magnet failure). 

Various possibilities for primary suspensions are steel wheels on steel rails, 
air cushions, magnetic levitation based on attractive electromagnets (EMS), or 
based on superconducting repulsive magnets (EDS). In these investigations the 
magnet levitation Is based on the EMS concept, and active coupling elements are 
used for modeling the electromagnets. Feedback control, however, is necessary 
for the stabilization of EMS vehicles because the action of the uncontrolled attrac­
tive electromagnets is unstable. 

3. Case Study: Controller Design and Performance Evaluation for a Transrapld 
Vehicle 

In this section a presentation is made of the controller design studies and 
performance evaluation that have been carried out with MEDYNA. 

The vehicle "data chosen for the performance evaluation closely resembles 
that of the TRANSRAPID (TR06) vehicle, [9], which is presently tested at high 
speeds (so far up to 412 km/hr) at the Emsland test site near Lathen, FRG. With the 
proper modeling assumptions the TR06 vehicle has been reduced to a vehicle 
model for use with MEDYNA. The complexity of this modeled vehicle, however, 
remains primarily unsimplified in the performance analysis in order to achieve the 
most realistic simulation possible. The following design and analysis studies have 
been performed: 
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1. Controller design based on a simplified vertical model of the vehicle (hence­
forth referred to as design-model). The development of two different control 
strategies is presented: 
a. measurement vector feedback with pole-assignment, and 
b. measurement vector feedback with the Riccati design. 

2. Performance analysis of control strategies for a planar model of the complete 
vehicle (one section), Figure 1, hovering over an elastic guideway section, as 
well as traveling over a guideway modeled as a half-sine wave to account for 
elastic deformation of the guideway spans. This analysis includes both normal 
operation and a magnet break-down. 

3. Performance of the three-dimensional model of the vehicle while traveling into 
a curve. Again the deflections of the guideway are included, as well as the 
magnet break-down case. 

Travel 

Car Body, M= 1~000.0 kg 
Iyy= B.2Bx105kgm2 

Secondary Suspensions 
~ Air Spring #1 

Bogies, 3725.0 kg each 
Iyy= 11980kgm2 

Primary Suspensions 

Magnets, 375.0 kg each 
t: . Guideway Iyy=70.0kgm2 

Magnet #1 Magnet #2 

Figure 1. Planar Model of the Complete Vehicle (one section) 

3.1 Control Law Design Studies 

1. Design-model 

The simplified vehicle model shown in Figure 2 was used to provide a less 
complicated model for the design process. In the interest of formulating a low 
order control)er, it was necessary to use a low order design model. 

Car Body 
and 

Bogl" 
"2 = 1631.25 kg 

--1 

u..-.-r-, "Clgn .. t, 111 = 375.8 kg 

!( = 2 " ISS ~ 

'--------' 
d z 25588.8 ~ 

Figure 2. Simplified Model with Two Bodies 
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For this model, as in the most general cases, MEDYNA establishes the 
dynamic equations in the state-space form. The system matrices generated are 
very useful for further analysis and design since the majority of modern methods 
rest on the state-space description. Modern controller design strategies can be 
carried out with a number of software packages, including the program MATLAB. 
This program has access to the MEDYNA storage fil~ and hence direct access to 
the system matrices. 

To maintain proper characteristics of the vehicle, the linearized force law 

F = (1 ) 

for a single magnet unit is used, along with two system bodies. In this relation F 
and u are the force and corresponding voltage of the magnet. The terms sand s 
are the measure of gap and gap separation velocity between the magnet and the 
guideway. The coefficients R, L, c, and c2 represent electrical properties of the 
magnet (Le. resistance, inductance, etc.) and the sensitivity of sensors. 

The first body is the magnet itself, and the second body being a combination 
of one fourth of a bogie (four magnets per bogie) and the mass of olle sixteenth 
of the car body (there are sixteen magnets for a half section of the car body). This 
model is restricted to only vertical motion and possesses two degrees of freedom. 
The parameters for this design-model are all given in Figure 2. With the inclusion 
of the magnet force as an active coupling element with dynamics, the equations 
of motion for this design-model are fifth-order, and the eigenvalues of the open­
loop case are computed: 

9.664522 rad/ sec, 
-9.753468 rad/ sec, 

- 1 .942857 rad/ sec 
- 40.64405±65.4544i rad/ sec 

Clearly the positive eigenvalue indicates that the open-loop system is unstable. 
Thus, closed-loop (feedback) control is necessary for stabilization of the system. 

2. Pole Assignment 

The pole placement method involves selecting a set of desired pole 
locations and calculating the gains required to achieve such a pole configuration 
and hence desired system response. The desired closed-loop eigenvalues for this 
system have been selected to be: 

.:... 40.64405±65.4544; rad/ sec 

A4 = - 50.0 rad/ sec 
-30.0 rad/ sec 

The complex pair of eigenvalues was attributed to the rigid body motion of the 
bogie/car body combined mass and the spring/damper between the bogie and the 
magnet. Thus, no attempt was made to modify these eigenvalues. The selection of 
the other eigenvalues was made in an attempt to produce a vehicle with a high 
apparent suspension "stiffness" and thus less susceptible to system misalignments 
due to magnet failure. 

Although computation of the open-loop system matrix, and its correspond­
ing eigenvalues are readily computed with MEDYNA. the feedback control gains 
required for closed loop control are computed with Ar.kermann's formula using the 
MATLAB package. 
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The control law of interest is dependent on measurement vector feedback 
and is given: 

(2) 

where 5 12 are the measured gap displacements between the magnet and guide­
way, and bogie and guideway, and 51•2 are the measured gap velocities between 
magnet and guideway and bogie and guideway. For the control law in equation 2, 
the pole placement method results in the following gains: 

,T = [-23118.94 -200206.9 -2930.92 -13896.63 0.179155J 

3. Riccati Design 

The Riccati design involves minimizing the cost function given in the equation: 

00 

J = f (KT OK + u T Ru)dt (3) 

o 

based on a set of weighting values, Q and R, corresponding to allowable system 
tolerances. A first approximation of the values of Q and R is made by taking the 
inverse of the square of the maximum allowable deviation of the state variables, 
or, respectively, the Input variable. In this analysis only the diagonals of the Q and 
R matrices are filled, such that the maximum allowable deflection is ± 5.0 mm, the 
maximum vertical velocity is ± 1.0 m! sec, the maximum allowable magnet force 
is ± 1500 N and the maximum allowable voltage is J~ 100 volts. These represent 
only target values used in the solution of the Riccati relation. In actual perform­
ance it is possible that these values will be exceeded. 

The model used in this analysis is that shown in Figure 2. Again the feed­
back control gains for this "optimal" closed-loop control are computed with the 
MATLAB package. In MATLAB the Hamiltonian is formed and the method of 
reduced eigenspace is used to compute the following gains [10]: 

,T = [2466.367 -31299.87 -683.796 -3036.359 0.09532628] 

With the feedback control law given in equations (2), the following eigenva-
lues have been computed for the closed-loop system with Riccati gains: 

Al -53.32269 rad! sec 
A2.3 == -9.030262±9.750922i rad! sec 

A4,5 = -40.00444±66.30884i rad! sec 

Not only do the Riccati gains result in a stable system, but it is interesting to note 
that the design method has made no attempt to modify the pole placement of the 
two eigenvalues associated with the rigid body motion of the bogie attached to the 
magnet by a spring!damper interconnection. 

4. Time Simulation 

Numerical integration methods available in MEDYNA include a Runge-Kut­
ta-Bettis code with error control and variable step size, and two multistep codes. 
For the analysis in this paper the Runge-KuUa-Bettis method was used. 

The simplified vehicle model shown in Figure 2 has been extended to ana­
lyze the case where the bogie and the car body are two bodies separated by a 
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Figure 3. a) Simplified Model with Three Bodies, b) System Responses for Step Inputs 

Figure 3b shows the system response for a step input of 4mm. The figure 
shows a time history of the displacement of the magnet, as we" as the power 
required by the magnet. Although this pole placement "contro"er" wi" perform 
better than this Riccati controller during magnet failure. the power required by the 
latter controller is much smaller. 

5. Standard TR06 Controller 

The final control strategy of interest in this report is one based on the former 
TRANSRAPID TRQI) controller shown in Figure 4. Careful approximation and 
proper reduction of the controller shown in this figure leads to a scheme that can 
be implemented in MEDYNA as an actuator possessing dynamics. Although this 
TR06-C controller ("C" used to denote controller approximation) is very similar to 
the TRANSRAPID controller, it is linear and thus its implementation is possible 
without the need of any user-specified coupling elements. 

A direct comparison between the two previously mentioned controllers and 
this TR06-C controller is not intended due to fundamental differences. For both the 
Riccati and pole placement controllers, measurements are made of the gap 
between magnet and guideway. and between bogie and guideway, as we" as the 
corresponding velocities of these separations. These measurements combined 
with magnet force, F, form the measurement feedback vector. In the case of the 
TR06-C controller a measurement is made of the relative acceleration of the mag­
net and the gap. Velocity and position terms required for feedback are obtained in 
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Figure 4. TROG Controller Layout 

T~S2+ 2 o.T.s 

T:s"+ 2 o.T.s + 1 

Tl 

TIs + 1 

the controller itself with the help of internal integration. With the inclusion of an 
integral term acting on the feedback of measured gap, the TR06-C controller is 
understandably successful at set-point control (e.g. magnet failure case). 

3.2 Performance Analysis with a Planar Two-dimensional Model 

Performance analysis for the planar model includes a discussion of the 
eigenvalues for the three different control strategies, and a presentation of a time 
simulation of the vehicle traveling straight along smooth and deformed guideways. 
The time simulations include both normal operation and the magnet failure case. 

Eigenvalue/Stability Analysis 

Stability of the stationary hovering case over an elastic guideway section 
has been investigated by combining the planar vehicle model with an elastic body 
as the supporting track. This elastic body has been generated with three eigen­
modes (the modal shape functions are given in Appendix A); thus, the addition of 
this elastic guideway to the multi body system adds six eigenvalues to the overall 
system. The combination of vehicle, elastic guideway, and TR06-C controller 
yields 214 eigenvalues. The same system with the pole placement and Riccati 
controllers has 70 eigenvalues. The large number of eigenvalues for the TR06-C 
controller ar[ses from the complexity of that controller and its implementation in 
MEDYNA. 

Althougth stability conclusions for the overall system are drawn from the 
computed eigenvalues, a complete listing is not practical due to the large number 
of eigenvalues. Table 1, however, is a listing of the eigenvalues relevant to the 
stability of the system. The first column of positive eigenvalues are those eigen­
values associated with a guideway section that has been modeled with no inherent 
damping. Tiley are generally the "fastest" and least damped eigenvalues of the 
system and indicate an unstable condition. Although the actual inherent structural 
damping of steel construction is relatively low (typical modal damping ranges from 
( = 0.008 to 0.05), it is not zero. The second column in Table 1 represents further 
eigenvalue analysis with a damping factor of ( = 0.015 for the steel guideway 
section. 
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Control Strategy Eigenvalues ( = 0.000 Eigenvalues (=0.015 Damping f (Hz) 

TR06-C Controller 0.6886 ±171.194i -1.83894 ±171.213i 0.0107 27.25 
0.3307 ±382.105i -5.39604 ±382.058i 0.0141 60.81 

0.069555 ±42.6625i -0.57359 ±42.662i 0.0134 6.79 
Pole Placement 0.155358 ±169.596i -2.33024 ±169.575i 0.0141 26.99 

0.036515 ±381.919i -5.6937 ±381.875i 0.0149 60.78 

0.74469 ±42.48971 0.12328 ±42.498i --- -
Riccati Method 0.090388 ±169.5564i -2.45583 ±169.536i 0.0145 26.98 

0.020033 ±381.9134i -5.71033 ±381.87Oi 0.0150 60.78 

Table 1. Selected Eigenvalues for Two-dimensional Planar Model 

The unstable eigenvalues are all characterized by natural frequencies that 
are nearly identical to the first three eigenmodes of the elastic guideway. If these 
eigenvalues reflect directly the addition of the elastic elgenmodes to the multi body 
system, then the eigenvalues for the first eigenmode are missing in the case of the 
TR06-C controller. These eigenvalues are in fact present as a stable pole pair with 
a very low damping ratio of 0.0126: 

A181,182 = - .6239226±49.55016i radl sec 

The undamped elastic guideway section alone should result in three pole 
pairs along the imaginary axis (with increasing frequency according to to the 
modal shape functions). It is the interaction of the multillody system with its vari­
ous controllers that moves these poles off the imaginary axis, resulting in unstable 
systems. Inspite of the vast differences between controller structures (especially 
between the measurement feedback controllers and the TR06-C controller), the 
location of the critical eigenvalues is nearly unchanged. One might then conclude 
that these instabilities due to elastic guideway interactions are only marginally 
dependent on the controller structure. 

With addition of light damping to the elastic guideway, the system becomes 
stable in two of the· three cases. The damping ratio of the "fastest" set of eigenva­
lues reflects almost directly the damping that has been added to the elastic 
guideway. In the case of the TR06-C controller a further increase in the inherent 
damping is shown In Table 2. It is clear that the eigenvalues are increasingly more 
stable and that the damping ratios of these now stable eigenvalues are nearly the 
same as the added'inherent guideway damping. 

Control Strategy Eigenvalues (=0.015 Eigenval ue s ,=0.030 Damping f (Hz) 

TR06-C Controller -1.83894 ±171.213i -4.36511 1.171.197i 0.0255 27.25 
-5.39604 ±382.058i -11.1228 :381.925i 0.0291 60.81 

Table 2. Additional Eigenvalue Analysis for Two-dlmensloal Planar Model 
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Time Simulation 

For time simulations of both the two-dimensional and three-dimensional 
models the normal operation of the vehicle is of interest, as well as an emergency 
condition. The emergency state in these simulations consists of a magnet failure 
(magnet 2) after 0.50 seconds of simulation, then after 2.50 seconds, a complete 
blowout (lasting 0.50 seconds) of a secondary suspension air spring (air spring 
1). This emergency situation for the two-dimensional planar model is shown in two 
different simulations, namely, travel on a straight perfectly smooth guideway, see 
Figure 5, and straight travel on a guideway with a series of half-sine waves in the 
vertical plane used to approximate the elastic deformation of the track, see 
Figure 6. The speed of the vehicle is 80.0 m/sec (288 km/h) and the total simu­
lation time was 5.0 seconds. The analysis was first performed on a smooth guide­
way to gain insight into the system behavior without the added complexity of the 
vertical deformations. 
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Figure 5. Planar Model Traveling Over a Smooth Guideway a) Vertical Displacement 
of Lift Magnet 1, b) Lift Force of Magnet 1 

With the failure of magnet 2, Figure 5a shows that the greatest displacement 
of magnet 1 is seen in is seen in the case of the TR06-C controller. However, for 
the corresponding air spring blowout, the largest displacement occurs in the case 
of the pole placement controller. In both cases the maximum allowable gap 
deflection of ± 5 mm has not been exceeded and the system response is qualita­
tively the same, so that no operational differences exist between the controllers. 
With the pole placement controller, however, the initial displacement of the magnet 
in the negative direction indicates the possible presence of a transmission zero. 
Figure 5b strows a plot of the resulting lift forces for the two cases. The TR06-C 
controller shows greater oscillations, but behavior again qualitatively the same. 

The addition of vertical excitations (input as kinematic excitations), see Fig­
ure 6a, to model track elasticity is combined with both normal and emergency 
operating conditions. In both situations Figure 6 shows that both the TR06-C and 
the pole placement controllers result in displacements of magnet 1 that do not 
exceed specified displacement tolerances. Magnet 1 is of interest here because it 
shows the greatest deflections in the emergency case. Although the oscillations 
due to the deformed guideway are smaller for the pole placement controller than 
for the TR06-C controller, the emergency condition relative to normal operation is 
more noticeable in the pole placement case. 

Another difference between the two control strategies is most clearly seen 
in the plots of magnet force for magnet 1, Figure 7. Sharp peaks in the lower half 
of the oscillations for the pole placement case are not present in the correspond-
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Figure 6. Displacement of Magnet 1 for Planar Model Traveling Over Elastic Track: a) 
TR06-C Controller, b) Pole Placement Controller 

ing results for the TR06-C controller. These peaks result from abrupt transitions in 
the half-sine waves and the lack of filters in the pole placement controller. The 
force plots do show, however, that behavior of each control strategy, in terms of 
magnet force, is qualitatively nearly the same: the double peak at the top of each 
oscillation, and the return to the normal operating force after the air spring blow 
out. This was done to bring the magnet force back to the nominal operating force. 
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Figure 7. Lift Force of Magnet 1 for Planar Model Traveling Over Elastic Track: a) 
TR06-C Controller, b) Pole Placement Controller 

3.3 Curving Beha",ior Analysis with Three-Dimensional Model 

Curving behavior of the "complete" three-dimensional model is performed 
here as a final analysis of the MAGLEV vehicle. The model used in these simu­
lations is shown in Figure 8. Figure 8a shows of a side view of the MAGLEV 
vehicle and Figure 8b shows of a top view of the same vehicle. The speed of the 
vehicle is again 80.0 m/sec (288 km/h), but the total simulation time has been 
increased to 30 seconds. As in the case of the planar model simulation, the curv­
ing simulations include both normal and emergency operation. Again, failure of 
magnet 2 occurs after 0.5 seconds of simulation, and a complete blowout (lasting 
0.50 seconds) of air spring 1 occurs after 2.00 seconds of simUlation. 

The curve entry shown in Figure 9 is the same for both normal and emer­
gency operation. A straight section of guideway (from zero to 500 m) is connected 
to a constant radius of curvature guideway section (from 1000 to 2400 m; radius: 
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Figure 8. Multibody Model of MAGLEV Vehicle for Curving Behavior Analysis 

2000m) by a transition section. The constant radius of curvature guideway is 
superelevated 0.2 radians about the center line of the guideway. 
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Figure 9. Guideway Shape for Curving Behavior Investigations 

The simulation results from MEDYNA contain a large number of system 
variables. For the sake of brevity Figure 10 shows only plots of two different 
motions of the car body. Although the effect of magnet failure is hardly noticeable 
in these plots, the effect of the air spring blowout is very apparent. 

In normal operation the normal component of the centrifugal forces causes 
the car body to "sink" in towards the guideway, see Figure 10a, as the vehicle 
enters the curve. As expected, the greatest vertical deflection occurs when the 
vehicle is fully in the stationary curve. The loss of the air spring in the emergency 
case not only'increases the vertical deflection in the stationary curve, but causes 
transient underdamped vertical oscillations of the car body. These oscillations are, 
however, isolated from the lift magnets by the primary suspension and thus do not 
compromise forward travel of the vehicle. 

In terms of the car body roll angle, the performance of the system during 
stationary curving is actually improved by the blowout of the air spring. However, 
this is not always the case. If the failed air spring is located on the outer side, the 
performance will be correspondingly worse. Again both the normal and emergen­
cy operation are shown in Figure 10b. It is important to note that these plots are 
made with respect to the superelevated guideway. For the normal operation, the 
centrifugal acceleration during curving has not been completely compensated by 
the superelevation of the guideway. Thus there is a 0,06 radian outward roll of the 
car body in the stationary curve. In the, emergency operation it is the inner forward 
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Figure 10. Motion of the Car Body During Curving: a) Vertical Displacement, b) Roll 
Angle 

air spring that has been blown out. For this reason the car body rolls inward and 
reduces the overall roll angle (with respect to the guideway) in the stationary 
curve. The clear drawback of this failure is seen during the blowout itself. The air 
spring failure causes a roll oscillation that peaks at a value (0.16 rad) nearly as 
great as the superelevation of the guideway. This is certainly detrimental to the 
safety of the vehicle and might be avoided by a slower blowout of the air spring. 

Response curves are also shown in Figure 11 for two different magnets 
during normal and emergency operation. The first magnet, Figure lla, is a lift 
magnet (#10), and the second magnet, Figure llb, is a guide magnet (#18) for the 
bogie containing the failed magnet. From these curves it is clear that the failure 
of magnet 2 has very little effect on the displacement of these magnets. It is the 
entry into the curve, the transition track, that causes the most Significant dis­
placements of the magnets. Even so, these displacements are within the limits of 
acceptable tolerances. The performance of the guide magnet is especially good, 
with a maximum displacement of less than 1.0 mm . 
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Figure 11. Magnet Displacements During Curving: a) Vertical Displacement of Lift 
Magnet 10, b) lateral Displacement of Guide Magnet 18 

4. Conclusions 

In these investigations several different HSGT vehicles modeled as multi­
body systems have been studied and analyzed in the interest of controller design 
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and performance evaluation. This work was not aimed at directly improving the 
performance of such vehicles, but rather was intended to demonstrate an applica­
tion of the general purpose multi body program MEDYNA, and its use in the further 
development of HSGT systems. 

This paper in particular has focused on low-order controller design, with a 
subsequent stability analysis on higher order vehicles interacting with elastic 
guideways. The final analysis was concentrated on the curving behavior of a 
completely spatial vehicle model in normal and critical operation. 

From controller design studies it is seen that the application of low-order 
controllers to higher order vehicles is possible. Two different design approaches 
were studied: pole placement and quadratic synthesis (Riccati design). Design 
trade-offs were apparent with the analysis of each controller. The Riccati designed 
controller required less power for normal operation. but proved to be insufficient 
for magnet failure. This critical case was less problematic for the pole placement 
method, but normal operation energy demands were higher, 

The TR06-C controller demonstrated clearly the advantages of added 
dynamics and filtering in the controller: lower power demand for normal operation, 
and rapid response to accomodate magnet failure. Thus, controllers with dynamic 
feedback (e.g. model-based) may be desireable as future improvements to HSGT 
systems. With the aid of MEDYNA, the design procedure as proposed here helps 
the engineer to construct and implement such controllers in a meaningful way. 

The stability problem of a hovering vehicle was evaluated in terms of 
eigenvalues. It was shown that, inspite of the various controller structures evalu­
ated, an actively controlled vehicle has a destabilizing effect when combined with 
an elastic guideway possessing little or no inherent damping. For this· reason it 
may be advisable to consider either the introduction of alternative means of 
damping to lightly damped structures, or further analysis aimed at developing 
more robust control strategies. 

The analysis of the complete three-dimensional vehicle during curving 
shows that the modeling of a spatial vehicle is both possible and meaningful. 
Normal operation can be analyzed to provide a performance reference basis and 
to provide data for comparison with experimental tests. It has been shown that 
analysis of the emergency case can be used for identifying critical operating con­
ditions (e.g. excessive car body roll during air spring blowout). Thus, further 
straightforward analysis and clearly defined structural or controller design 
changes are possible. 

Further developments of MEDYNA, to enhance its performance as a 
dynamic sy~1em analysis tool, include: simulating of accelerating and braking 
vehicles, further completion of elastic guideway options (i.e. elastic for moving 
vehicles), and improving the handling for parameter optimization. This combina­
tion of new attributes will provide the engineer with a powerful software tool for 
further computer-aided design analysis of high speed ground transportation sys­
tems. Future work with such systems will certainly improve overall vehicle per­
formance, as well as passenger ride comfort and vehicle safety. 
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Appendix A: Eigenmodes 

I. Eigenmode 

cPf...x) = 8.5524 . 10- 3 sin ~ • x, t/J/...x) = ddCPX = -1.081. 1O- 3w ~ . X 
Lr Lr 

Natural Frequency W, = 42.447 S-I, Modal Masses mql = Jrpcpdm = 1.3265kg 

II. Eigenmode 

CPI/...x) = 1.06905 . 10- 3 sin ~~ . x, ,/ -4 2n vllf..x) = -2.7026 . 10 cos L; . x 

Natural Frequency W/I = 169.79 S-I, Modal Masses mq/l = 2.0726 1O- 2kg 

III. Eigenmode 

-4 3n ./, -4 3rr CPIlf-x) = 3.1676 . 10 sin L; . x, 'I'II/...x) = 1.20116 . 10 cos L; . x 

Natural Frequency Will = 322.03 S-I, Modal Masses mqlll = 1.8196 . 1O- 3kg 

For the rigid guideway, the deformation was modelen IlS a half-sine wave for dis­
placement excitation: w = 0.00417 . sin 24~54 . x 
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Abstract 

This paper addresses two aspects of the navigation problem for a two d.o.f mo­
bile robot (non holomic system): trajectory planning and motion control. Trajec­
tory planning concerns the existence and the generation of a feasible collision-free 
trajectory, and motion control the actual execution of this trajectory. 

The problem has to be solved in constrained and non-constrained environment. 
We summarize some results previously obtained in non constrained space and de­
velop a general approach for finding feasible trajectory in constrained space. This 
method is based on a result which characterizes the existence of a feasible trajec­
tory by means of the existence of a connected open component in the admissible 
configuration space. Its current implementation, based on a configuration space 
structured into hyper-parallelepipeds, is described. 

The trajectory is then analyzed in order to smooth it when possible, using 
clothoid curves. Its execution is controlled by means of comparing sensor readings 
with the local environment model along it. 

1 Introduction 

Over the last decade, robotics researchers have had to address the problems of planning 

and control of robot motions, including issues that range from geometric reasoning to 

the study of control. To accomplish this, they have developed their own tools 13J. 

Over the same period, an important research effort in the field of geometry has pri­

marily focused on the design and analysis of efficient algorithms relying on various 

approaches ranging from real algebraic geometry to computational geometry 126J. 

Recent developments tend to establish a fruitful synergy between the techniques in­

volved in these two fields. Notice that the desire to build actual physical systems gives 

rise to novel and challenging issues, as in the case of the problem dealt with in this 

paper. 

The work described has been conducted within the HILARE mobile robot project 

G. Schweitzer, M. Mansour 
Dynamics of Controlled Mechanical Systems 
IUTAM/IFAC Symposium Zurich/Switzerland 1988 
© Springer-Verlag Berlin Heidelberg 1989 
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developed at LAAS. It deals with the navigation of a mobile robot subject to major 

environmental and kinematic constraints. The problem is the following : 

"IIow to plan and control collision-free trajectories for mobile robots for which the 

dimension of the configuration space (three) is larger than the number of d.o.f (two) 7" 

After a brief review of existent methods for trajectory planning and motion control 

for mobile robots, we especially investigate the geometric aspects of the question. We 

mention in the last section the techniques which are in development in order to control 

robot motion from the sketch of trajectory provided by geometric reasoning. 

2 Mobile robot motion planning 

Trajectory planning is only one aspect of the global navigation problem that in­

cludes also environment perception and modeling, accounting for inaccuracies, real­

time decision-making, spatial structure learning... An overall synthesis of such issues 

is given in [71. 

Even if we restrict ourselves to the geometric and control aspects, collision-free motion 

planning for a mobile robot still remains an open problem, in spite of important partial 

results. There are four classes of methods to deal with this problem; according as the 

geometric constraints of the environment are more or less strong, the methods integrate 

more or less motion control aspects. 

The first kind of approaches is applied in highly structured environments. The better 

known syste~ concern the road-following problem. [291 [221 study the global architec­

ture needed by a trajectory planning and control system that uses vision for guidance. 

The most relevant issues in such systems are the real time processing of road feature 

extraction, and visual feature tracking in order to control vehicle. motion. 

The second class concerns the local methods. Their principle consists in using only 

local and poor but quickly acquired information on the environment, in order to plan a 

trajectory in real time. The potential fields based methods are the most commonly used 

[151: the robot is supposed to be moving in a fictive potential field wherein obstacles 

are associated-with a repulsive field and the goal with an attractive one. This method 

is efficient in numerous situations (convex obstacle avoidance for instance) but not in 

very constrained space, where the goal and the obstacles are very near. [10] palliates 

this last drawback by using an approach wherein collision-free constraints appear as 

linear constraints in a quadratic criterium minimization problem associated to the goal. 

Because of a local view of the environment these methods are not complete (i.e. they 
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do not guaranty to find a solution if it exists). 

Several methods can be gathered in a third class. They deal with unstructured envi­

ronments, and are based on a structuring of the euclidian free-space using particular 

approximation shemas. If the robot is' assumed to be circular [23] [17] propose as a 

structure, respectively the Voronoi diagram of the polygonal environment, and a gen­

eralized visibility graph in a more general environment; trajectories thus produced are 

smooth (they do not have angular points nor cusps). Other methods decompose the 

free-space in elementary places (convex polygons [6], generalized cones [4] ... ), which 

are structured into a graph whose adjacency relation indicates the possibility (and the 

associated way) of moving from a place to another. [28] associates a local method 

developed for corners with a decomposition of the free-space into lanes based on its 

Voronoi diagram. All these methods are only applicable when free-spaces is large with 

respect to robot geometric and kinematic constraints. 

Motion planning in a very constrained environment needs to consider the formalism of 

the configuration space (CS) [21]. This space is the space of independant parameters 

that characterize the position and the orientation of a mobile body (R. 2 * 51 in our case, 

where 51 is the unit circle). It is divided into the admissible space (ACS) in which 

the mobile body does not intersect the obstacles, the free space (FCS), defined as the 

closure of the ACS interior, the occupied space (OCS), defined as complementary to 

ACS (for an analysis of the connectivity and topology of such spaces, see [18]). 

There are two types of methods for configuration space exploration, viz: 

• The methods {25] [2] [I] that lead to an exact partitioning of either FCS or its 

boundary which is constituted by quadratic surface patches [24]. Notice that the 

most efficient (in O(n3 10gn» is [I] and has been implemented . 

• The. numeroUS' methods of "paving" CS into "space quanta": cells [5], hyperpar­

allelepipeds [12] 127], one-dimensional slices structured into regions [20], cubes 

structured into octrees [9]. All these methods have been implemented. 

These last class of methods solves (completely or partially) the classical piano-mover 

problem that assumes the piano to be holonomic. The aim of the next section is to 

take into account kinematic constraints in such formalisms. 
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3 Trajectory planning for non-holonomic robots us­
ing a configuration space approach 

3.1 Position of the problem 

The last approaches characterize the existence of a trajectory by means of the existence 

of a connected component of ACS including the initial and final configurations. Such 

characterization is a priori valid only for holonomic systems. Let us recall briefly some 

fundamental concepts of analytical mechanics 130]. 

The joints expressing the relations between the velocities of the configuration parame­

ters, which cannot be reduced to relations between these parameters (and which there­

fore cannot be integrated) are called non- holonomic joints. The number d, of degrees 

of freedom of a system is defined by n - r, n representing the number of configura­

tion parameters and r the number of independent non-holonomic joints. A holonomic 

system is a system without non-holonomic joint, i.e., d = n. For such systems, any 

infinitesimal motion (i.e., any infinitesimal variation of the configuration parameters) 

can be achieved. This property does not hold for non-holonomic systems. 

Let us consider a mobile robot whose locomotion system consists of two independent 

driving wheels located on a common axis (see Fig. 1). Let (x,y,O) be the three con­

figuration parameters. 

q ------() 
/1 

• 1 
B I 

x 

Figure 1: Configuration parameters 

The state equations characterizing the system motion are defined by: 

1 
dx = i(Vl+V2)COSO 

dy = i(Vl + V2) sinO 

1 
dO = i(Vl - V2) 

(1) 
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where VI and V2 stand for the velocities of both driving wheels. From these equations 

we deduce that there exists one (and only one) non-holonomic joint: 

dy - dxtanfJ = o. 

For such a system all trajectories in ACS are not necessarily feasible (see Fig 2). A 

feasible trajectory is a function of time, piecewise continuous and differentiable (the 

robot's linear speed vector determines its orientation), the points where the linear 

speed is zero corresponding to "pure" rotations. In order to distinguish forward and 

backward motions [13] uses the notion of tracing that retains only the topological and 

geometrical characteristics of the trajectory. With respect to this terminology our 

problem consists in defining an algorithm for planning polygonal tracings. 

~ -------------~l 1~---i---1~ 
L _______ J L ______ J 

Figure 2: Non feasible trajectory 

3.2 An algorithm schema 

[18] establishes that: 

----,I ~I L...-..­

t I 
Feasible trajectory 

Property: IT c and c' are two configurations contained in a single connected domain of 

the interior of ACS; then there exists a feasible collision-free and contact-free trajectory 

between c and c'. 

Remark: this result is established in the more general case where the gyration radius 

is lower bounded (as for a car). 

The proof of this p'roperty is based on the existence of a feasible trajectory between 

any two configurations of an elementary open set of R.2 * S 1. This existence proves that 

any configuration resulting from a motion consequent to an infinitesimal variation of 

the configuration parameters can be reached in an open set. Several procedures for 

searching feasible trajectories between two configurations of an open set can be defined 

according to the type of open set considered. A detailed proof is given in [18]. It is 
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constructive and leads to the following algorithm: 

Input data: 

• A contact-free trajectory T (Le., in an open connected domain D of ACS) between 

two configurations c and c'. 

• A procedure P(Cb C2) which produces a feasible trajectory between any two con­

figurations C1 and C2 in an open set of given type O. 

Output data: A feasible contact-free trajectory T' between c and c'. 

Algorithm: 

Cover T by a finite sequence of open sets 01 , ••• , Op of type 0 such that: 

0; C D, 0; nO;+! i- 0,c E ObC' E Op. 

it-I 

C1 t- C 

While (i < p) 

Let c" be a configuration of 0; n 0i+1 

T; t- P(c;,c") 
it-i+l 

c; t- c" 

T't- (U19<p T;) UP(c;, c') 

The implementation of this algorithm requires: 

• A procedure for computing ACS or FCS. 

• A procedure for searching a contact-free trajectory. 

• The definition of a type of open sets of R,2 * 51 and the associated procedure P 

for searching a feasible trajectory. 

Notice that the data structures used by the methods representing the configuration 

space by means of discretization offer the advantage of directly providing a path in the 

space quantum adjacency graph. 

To adapt this algorithm schema, it suffices to define a procedure for searching feasible 

trajectories within these quanta. (Remark: these space quanta are closed but it can 

easily be shown that the algorithm holds). 
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3.3 Planning of polygonal tracing 

In this section we present an implementation based on a general software described 

in [271 and resumed in section 3.3.1. that structures FCS into hyperparallelepipeds 

(parallelepideds in our case). The procedure for searching feasible trajectories in these 

parallelepipeds is described in 3.3.2. The results. the extensions currently under study 

and the elements used for analyzing its complexity are discussed respectively in 3.3.3. 

3.3.4 and 3.3.5. 

3.3.1 FCS Computation and Exploration 

The algorithm is based on some principles established in [121. It receives as input: 

• A mobile body An(qlo ...• qn) (or an articulated system A(ql) ... An(qlo ...• qn» 

and a set of obstacles Oil described by assemblies of elementary surfaces or 

volumes (polygons in this application). 

• A CS to be analyzed (interval product Ii = [qi ... ",qi ... J). 

• A discretization step on each dimension. 

From a hierarchical description of the mobile by means of different volumes 

Bi(qlo ...• qi) = U {A;(qlo •..• qi, ...• q;)/q; E [q;",.". q; .... ]} 
i<;~n 

one gets as output a tree structuring of CS of the form: 

• OCSi = subspace of CS occupied whatever qi+l.' ..• qn' 

• FC Si = subspace of CS free whatever qi+lo •••• qn' 

• MCSi = OCSi+1 U FCSi+1 U MCSi+lo subspace of CS for which a subspace of 

dimension j :> i had to be analyzed recursively to determine its belonging to 

either OCS or FCS. 

Each component is represented by a set of hyperparallelepipeds (HP) of dimension i. 

The principle used to analyze a discretized subspace of dimension i relies on : 
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• The computation of a function Distance(Q) (minimal translation allowing 

A; (Ql, ••. , Q;) to be either put in contact or removed from an obstacle), for discrete 

values of Q. 

• A function for propagating the results on a ball centered on Q and of radius 

1(Distance(Q),dQ). 

• The use of diverse heuristic techniques permitting reduction of the number of 

calls of the distance function. 

A tree representation of CS under the liP form permits easy superposition of a graph 

structure whose vertices are the elements of FeB; and whose arcs reflect a connectivity 

relationship between two nodes. 

For Q.tart and Q.nd given, the search carried out in this graph with an algorithm A' 

provides a trajectory hull. In the case of a mobile robot with kinematic constraints, 

the heuristic used involves a weighting between the distance to the goal and a criterion 

characterizing the robot's maneuverability to traverse the lIP. 

3.3.2 Procedure P 

The trajectories produced by this procedure are polygonal tracings i.e., consisting of 

rotations and of line segments going either forward or backward. 

The input data of P are a parallelepiped Pa = [X1>X2 ] * [Y1>Y2] * [01 ,02], an initial 

configuration c = (p,O) E R.2 * SI and a window W d on the boundary of Pa allowing 

passage to the adjacent parallelepiped. W d can be of three types according to whether 

the adjacency is for a constant x, y or 0;. 

The procedure P furnishes a feasible trajectory between c and a configuration of Wd. 

We denote by, Par and W dr the projections of Pa and W don R. 2 (see Fig. 3). SPar 

stands for the Par boundary rectangle. 

Given a point p of the plane and a sub-interval [0,0'] of[01> O2], we call Sec(p,[O,O']) the 

domain swept by the lines passing through p and of orientation 0" E [0,0']. Rot(p, [0,0']) 

refers to a rotation at point p, allowing to reach (p, 0') from (p, 0) by a segment included 

in {p} * [01> 021. Line(p, p') stands for a translation of vector pll. 



~Ix,.,y) 

Wdl.,y,G) 

~ .... : ... ~~/ 
q, 

Bmin '~" .. , x 
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Figure 3: Trajectory planning in a parallelepiped of CS 

Procedure P(Pa,c,Wd) 

T+-0 

Ci +- C /*Ci = (Pi, Oi))* / 

While (Sec(pi' [010 O2]) n W dr = 0) 

Compute Int = {PbP2,P3,P4} = SeC(Pi,[Ob02]) nhPar 

Choose Pj E Int such that Dist(Line(Pi,pj)'Wdr ) is minimal 

/* Let OJ the orientation of the line (Pi, pj) in to}, O2] * / 
T +- T U Rot(Pi, [Oi, OJ]) U Line(Pi, Pj) 

Ci +- (Pj,Oj) 

Choose a point y E SeC(Pi, [01 , O2]) n hW dr 

/* Let 0' the orientation of the line (p,p') in [010 O2] * / 
T +- T U Rot(Pi, [Oi' 0']) U Line(Pi, p') 

Figure 3 illustrates this algorithm on an example. 

3.3.3 An example 
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Figure 4 shows an environment with a corridor and a door, and the associated FCS. 

Figure 5 shows two results furnished by the algorithm starting with the same data, 

but with two distinct heuristics (in the path search step) : the first one minimizes the 

angular gap between two adjacent parallelepipeds in R2 * Sl, the second chooses the 

parallelepipeds whose dimension on S 1 is maximal. 
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OJ 

Figure 4: Environment Free Configuration Space (x, y, 0) 

3.3.4 Complexity 

The complexity of the global algorithm is governed by the representation and explo­

ration of CS. It is in O(n/f:3 ) where n represents the total number of obstacle vertices 

and f: the size of the elementary parallelepiped. 

The complexity of the procedure P is difficult to assess since it depends on the num­

ber of maneuvers (defined as the configurations in which the robot's speed is zero ). 

Evidently, there exists some cases where P is optimal (Le., where no "better" trajec­

tory exists in terms of number of maneuvers). However, in general, one would have to 

compare this number to the optimum number. Evaluating such optimum is a difficult 

task which, as yet, has not been performed. 

Initial results ,have been obtained: [191 proposes an algorithm sketch for searching 

maneuver-free trajectories for a non-holonomic circular robot with a lower bounded 

gyration radius. [111 shows that the problem for a point in a polygonal environment 

is decidable in 2°(polu(n)) where poly designates a polynomial function. 

3.3.5 Extensions 

The extensions under study concern with: 
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Figure 5: Trajectories produced by the algorithm 
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• Extending the scope of P to parallelepipeds adjacent to the hull provided by 

algorithm 3.3.1, in order to decrease the number of maneuvers when it is possible. 

• Replacing procedure P by a procedure allowing helix planning in the paral­

lelepipeds. This new procedure will provide more general trajectories than polyg­

onal tracings and will allow to deal with the lower bounded gyration radius con­

straint which appears in most mobile robots. 

The approach can be applied whenever a R2 * SI configuration space representation 

and exploration system is available. These systems are often complex and highly 

sophisticated. The choice made in our implementation is certainly not optimal since 

the tool described in section 3.3.1 is a general purpose tool ( valid for spaces of any 

dimension k, efficient for k= 2,3,4). It has been used for obtaining rapidly the initial 

feasible trajectories for the mobile robot. 

4 Trajectory Execution 

As we already mentioned before, while the road-following type of methods rely on 

physical features of the local structured environment (e.g., road boundaries) to guide 

robot motion, in our case such features are not always available. We will then replace 

this information by the precomputed trajectory. 

After producing the trajectory, the problem is to control robot motion so that it stays 

on this trajectory. Due to inaccuracies in the measurement of robot position (by 

odometrical dead-reckoning for example), the movement will not follow the computed 

trajectory in general. Furthermore, the precomputed trajectory is based on a model of 

the environment that is also inaccurate. 

On the other hand, some trajectories produced by a search in the configuration space, 

while guaranteeing collision-free motion, are not "easily" feasible, or require very slow 

movements because of their shape (e.g., saw-like trajectories). 

In order to take into account the mentioned two kinds of errors on the one hand, and 

to smoothen the considered constrained trajectory so that the movement is more con­

tinuous on the. other hand, we propose to consider the local model of the environment 

together with the precomputed trajectory as inputs to the control system. 

Let us recall that the trajectory planning method produces a polygonal tracing, i.e., 

a trajectory constituted by straight line segments on which the robot can move either 

forward (if the motion agrees with its orientation) or backward (if both are opposite), 

and turns. 
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If there are turns along the trajectory between two consecutive segments, they corre­

spond to corners or cusps according as the movements on the segments are identical 

(both forward or backward), or opposite. In each case the velocity vector (derivative 

vector of the position) must be zero. Cusps impose a mandatory stop. 

We show in this section that corners can be smoothed. More precisely we show how to 

link the two segments with a doubly differentiated curve (i.e., without a zero velocity 

vector) which is as close as necessary to the corner. 

In order to link two straight line segments with a curve C such that the union is a 

doubly differentiated curve, C (assumed to be parametrized by time) has to pass in 

finite time from an infinite curvature radius to a finite one. 

From equations (1) the curvature radius p of robot trajectory is given by : p = 2' v,+v. 
Vl-V2 

where 1 designates the distance between the two wheels and VI and V2 their respective 

linear velocities. A particular solution is given by clotho ids. 

Several papers investigate the use of clothoids in mobile robot motion planning [8] [14]. 

The major property of a clothoid is that its curvature is in inverse ratio to the curviline 

abscisse: p(k, t) = k * t/V where k is the proportionnality ratio, V the constant norm 

of the velocity vector along the clothoid, and t the time parameter. 

The advantage of this choice is an easy command of the two driving wheels [16]. Indeed 

the vehicle describes a clothoid when wheel accelerations are constant and opposite, 

which furthermore leads to an optimal command w.r.t energy consumption. 

A clothoid thus permits to pass from an infinite curvature radius to a finite one in 

finite time (and vice-versa). In order to link two segments we must use two tangent 

clothoids arcs. A property established in [16] shows that it is possible to compute 

a doubly differentiable curve consisting of a pair of clothoid arcs that connect two 

intersecting segments such that this curve remains inside any given region bounded 

by the two segments and an arc of circle tangent with them. From this property we 

deduce easily that the clothoid arcs can be as close to the corner as the environment 

constraints may impose it. 

Because the polygonal tracing we have planed is in an open component of the free­

space, we have the guaranty that the corners can be smoothable whitout vehicule stops. 

The only points where the velocity vector has to be zero are the cusps. 

The resulting final trajectory, smoothed when possible, will be executed using sensor 

data (e.g., ultrasonic sensors). If the trajectory is already smooth (e.g., straight lines, 

clothoids, etc.), then sensor data, matched to the local environment model, will help 



364 

to localize the robot along its trajectory, thus correcting the dead-reckoning system's 

error. In the case of small variations of the environment with respect to the model, 

the use of sensor data enables to control the motion in order to avoid collisions, thus 

departing from the computed trajectory. We rely on a basic assumption: the com­

puted trajectory is not unique but belongs to a family of very close trajectories such 

that we can actually replace it by the family's envelope. Indeed, we have produced 

a non-contact feasible trajectory by means of paving the free-space with open cylin­

ders. Within an open cylinder, there exists at least one trajectory between any two 

configurations, and in general more than one. Therefore, while staying inside the same 

open cylinder, the robot can actually move within this family of trajectories, using for 

this purpose sensor readings. Notice that characterizing the amplitude of the small 

authorized variations is a difficult open problem linked with the precise study of the 

topological structure of equivalent trajectories. 
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Researches of the Biped Robot in Japan 

H. MIURA 

Department of Mechanical Engineering 
The University of Tokyo 
8unkyo-ku,Tokyo tt3,Japan 

Summary 
In Japan many researches of the biped locomotive robot have been 
conducted. In this paper the fundamental characteristics of the 
robots which have been constructed in these researches are list­
ed up first and some interesting robots of these are discussed. 

Survey of the biped developed in Japan l 

In Table 1. almost all biped robots developed in Japan(reported 
in the scientific paper) are listed up. In Table 2. the develop­

er of each robot is shown. 
Until 1973,the mini-computers were used as the processors of the 
controller. In these years,only Waseda University(Prof.Kato) was 
very active in this field. 

After the micro-computer was widely spreaded in the control app­
lication,many researchers challenged this subject. The purposes 
of the research are various. The followings are some example of 
the purpose of the research of the biped. 

(i) the developement of an artificial leg 
(ii) showing the efficiency of the newly constructed control 

theory using the biped as one example of applied system 
(iii) the analysis of walking motion of the human from the 

standpoint of biomechanism 
(iv) the educational material for training of mechatronics 

It is interesting that the researchers are not so serious for an 
actual application of the biped. It seems to the author that 
many researchers consider that the quadruped is better for the 
actual application system of the legged machine than the biped. 
These two or tree years, some researchers listed up in Table 2. 

G. Schweitzer, M. Mansour 
Dynamics of Controlled Mechamcal Systems 
IUTAM/IFAC Symposium Zurich/Switzerland 1988 
© Springer-Verlag Berlin Heidelberg 1989 
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Table 1-1. The Bipeds Developed In Japan 

Name of Characteristics 
year robot CD <ID ® @ @ @ (J) 

OOF P kg cm cm speed D purpose , control ,etc. 

70 WAP-2 10 p 5 84 18 3 static walk 

71 WAP-3 10 p 5 83 18 3 static walk(Plane,step, 
slope),adaptive control 

72 WL-5 10 h 130 125 15 45 3 static walk,payload 30kg 

73 Asshy-3 12 h stable standing,a little 
swing(left and right) 

79 Asshy-l0 17 h 200 200 stands on one leg,bends 
both knees,pump is mount 
ed 

Hffi-1 1 e 3 synthesis of link mecha-
nism,control of balanc-
ing weight 

Biper-1 2 e dynamic walk,walks only 
Biper-2 sideward(pitch motion is 

2 constrained) 

80 Bipman-2 4 e 37' 150 2 piston-cylinder leg,dy-
namic walk 

Biper-3 3 e 1.8 33 0.5 3 stilts-type,dynamic walk 
,time-sharing control of 
pitch and roll motion 

81 WL-9DH 10 h 43 100 45 10 3 semi-dynamic walk 

to be continued 
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Table 1-2. The Bipeds Developed In Japan 

Name of Characteristics 
year robot 

OOF p kg em cm speed D purpose,control,etc. 

N-l 5 e 2 control of two leggs sup 
porting phase 

Idaten-l 5 e 1 2 dynamic steady walk 

Kenkyaku 4 e 30 110 30 0.45 2 dynamic steady walk(2 di 
-1 mensional walk without 

kick) 

Biper-4 9 e 2.5 33 1 3 dynamic steady walk 

CW-l 6 e 15 75 12 1 2 dynamic steady walk, 
30 Optimum regurator 

82 WL-9DR 10 h 43 100 45 6 3 semi dynamic walk, torque 
mkII control of ankle 

N-2 7 e aiming at autonomous 
walk 

Idaten-2 7 e 29 140 25 0.8 3 dynamic steady walk,head 
motion control by trans-
lation of balancing mass 

Biper-5 7 e 2.3 37 control(including three 
processors) was mounted 

83 WL-10R 12 h 70 120 45 6 3 computer is mounted,aim-
ing at turning 

Asshy-13 17 h computer is mounted,aim-
ing at static walk 

to be continued 
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Table 1-3. The Bipeds Developed In Japan 

Name of Characteristics 
year robot 

OOF p kg cm cm speed D purpose,control,etc. 

Mmr2 2 e 22 95 26 0.8- 3 dynamic steady walk with 
0.5 swinging body following 

the curve of "8" 

Kenkyaku 6 e 40 120 3t 0.7-1 2 kick motion 
-2 -45" 

CW-2 e zo ro 35 3 2 aiming at kick 

SMA-LEGS 6 e 2 37 2 shape memory alloy is 
used for actuator 

Strider 7 e 15 66 2 control by robust-servo 
-2 system 

84 WL-I0RD 12 h 85 144 40 1.3 3 dynamic walk in not-
plane flat environment, 

1.5 
0.5 controller{without power 

5(IOcm supply) is mounted 
step) 

CW-3D 11 e 40 100 3 aiming at 3-dimensional 
dynamic walk 

AYUMI 5 e 20 70 2 dynamic steady walk 

KRL-l 8 e 13 48 3 non-interference control 
---

to be continued 
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Table 1-4. The Bipeds Developed In Japan 

Name of Characteristics 
year robot 

OOIl p kg em em speed 

Asshy-15 24 h 250 250 

Kenkyaku 
-3 8 e 47 147 

ill :degree of freedom---the number of the joints 
® :power source---"p" is pneumatic 

"h" is hydraulic 
Be" is electric 

@ :weight of the robot 
@ :height of the robot 
@ :length of one step of walking 
@ :walking speed(seclone step) 

D 

3 

3 

(j) :dimension of the space of motion of the robot 

purpose,control.etc. 

static walk, installing 
the arm for anti-falling 
down,multi-mode attitude 
control 

aiming at 3-dimensional 
walk with kick motion 
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Table 2_ Institutes which developed the robots in table 1_ 

Institute Robot 

Waseda University WAP-Z-3,WL-5,WL-9DR,WL-mkII, 
(Kato) WL-I0R,WL-I0RD 

Shibaura Institute of Asshy-3-10-13-15 
Technology(Sato) 

Tokyo Institute of 
Technology(Mori» Bipman-2 
Toha University(Kato) 

Tokyo Institute of MEG-I-2 
Technology(Funahashi) 

Nagoya University N-I-Z,AYUMI 
(Ito) 

Osaka University Idaten-I-2 
(Arimoto) 

Gifu University Kenkyaku-I-2-3 
(Furushou) 

The University of Biper-I-2-3-4-5 
Tokyo(Miura,Shimoyama) 

Chiba University(Mita) CW-I-2-3D 

The University of M-l 
Tokyo(Morishita) 

Kobe University KRL-l 
(Kitamura) 

Electric and Information SMA-LEGS 
University(Sato) 

Kumamoto University Strider-2 
(Kawaji) 
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are conducting researches of the quadruped. The author succeeded 
in the costruction of the quadruped which can walk dynamically. 
In this research the experience obtained during the research of 

the biped was very helpful. 

Dynamic Walk of The Biped (Biper-3.4) 2 

Basical idea of control algorithm for Biper-3(Fig.I.) and Biper-
4(Fig.2.) is the same. Walking motion is planned(the left part 
of Fig.4. and Fig.5.) considering the actual walking motion of 
the human. Joint angles are designated in Fig.3. 
The neccesary torque at each actuator to realize this motion can 
be caliculated following the technology of the inverse dynamics. 
These torques are used for the feed forward control. The feedback 
control is also applied using the diffrence between the planned 
motion and the actual angles detedted by the potentiometers at 
the joints. 
At the reverse side of the foot,the touch sensor is installed to 
detect which leg is contacting the floor. 

The Biped with Hydraulic Actuators(WL-IORD) 3 

VL(Waseda Leg)-IORD(Refined Dynamic) is shown in Fig.6. 
One step of this biped is divided into two phases---the single 

leg support phase and the change over phase. In the single leg 
support phase,the programmed control is used following the pre­
desinged walking pattern. In the change over phase, the sequence 
control is used with the variable torque and the variable mecha­

nical impedance of the ankle joint. 

Synthesis of Ljnk Mechanism for The Biped(MEG-2) 4 

HEG-2 (shown in Fig.7.) is the very unique biped. Fig.7.(a) is 
the leg mechanism. It seems the open mechanism but actually all 
elements(links) are constructed by the closed four-bar linkages 

as shown in Fig.B.(a). The desired motion of the ankle (J A in 
Fig.7.(a» and-the desired angle (fA in Fig.7.(a» are decided 

from the walking pattern of the human. To realize this motion 
the link mechanism Fig.B.(a) is synthesized. In this mechamism 
there are two prime links(shown with arrow in Fig.B.(a». These 
two links are drived synchronously by one actuator. 
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Left leg 

Right leg 

Left foot 
vertical ~XI S 

roll ax is pll~h 
aXIS 

Right foot 

Fig.I. Biper-3 
The board at the bottom of the leg is for 
getting the angle between the floor and 
the leg and not for stability. 

Pitch Axis 

Fig.2. Biper-4 
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Fig.3. 
Joint angles( C i ) 

and torques ( Vi) 
of Biper-4 

3 4 5 
time 8 

Fig.4. Planned trajectory and experi­
mental results(about roll axis) 

time 8 

Fig.5. Planned trajectory and experi­
mental results(about pitch axis) 
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Fig.7.MEG-2 
(a) Skelton 
(b) Photograph 

(a) 

(a) 

Left Bole 

Fig.B. WL-IORD 
Photograph (left) 
Skelton(above) 

(b) 

Fig.B. 

Synthesized Mechanism 
(MEG- 2) 

(a) Fundamental Mechanism 
(b) Actually Synthesized 

Mechanism 



Fig.9. Idaten-2 

Ul(t) 
1st trial 

Uit) 

2rd trial 
+ 

( 
Fig.IO. Learning Control 

Learning Control of the Biped (Idaten-2) 5 6 
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1'2(1) 

Idaten-2(Fig.9.) walks by learning control. y d (t) in Fig.l0 is 
the desired walking pattern. u i(t) is the input to the servo­
syslem of the biped. u l(t) is corrected at every trial of the 
control. After several trial the suitable input u i(t) can be 
obtained. In Fig.IO. the control mechamism is simply shown. 
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