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Preface

Many mechanical systems are actively controlled in order to improve their dynamic
performance. Examples are elastic satellites, active vehicle suspension systems, robots,
magnetic bearings, automatic machine tools.

Problems that are typical for mechanical systems arise in the following areas:

- Modeling the mechanical system in such a way that the model is suitable for control
design

- Designing multivariable controls to be robust with respect to parameter variations and
uncertainties in system order of elastic structures

- Fast real-time signal processing

- Generating high dynamic control forces and providing the necessary control power

- Reliability and safety concepts, taking into account the growing role of software within
the system

The objective of the Symposium has been to present methods that contribute to the solutions of
such problems. Typical examples are demonstrating the state of the art. It intends to evaluate the
limits of performance that can be achieved by controlling the dynamics, and it should point to
gaps in present research and areas for future research. Mainly, it has brought together leading
experts from quite different areas presenting their points of view.

The International Union of Theoretical and Applied Mechanics (IUTAM) has initiated and
sponsored, in cooperation with the International Federation of Automatic Control (IFAC), this
Symposium on Dynamics of Controlled Mechanical Systems, held at the Swiss Federal Institute
of Technology (ETH) in Zurich, Switzerland, May 30-June 3, 1988. It is the first time that these
two scientific institutions have been jointly sponsoring such an event. And there are reasons to
assume that common ‘interests will lead the IFAC and the IUTAM to cosponsor another
symposium on this interdisciplinary topic within the next years.

A Scientific Committee has been appointed consisting of

J. Ackermann, Germany; P. Coiffet, France; T.R. Kane, USA;
D.M. Klimov, USSR; M. Mansour (Co-Chairman), Switzerland;

W. Schiehlen, Germany; G. Schweitzer (Co-Chairman), Switzerland;
K. Yoshimoto, Japan
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The Committtee suggested the participants to be invited and the papers to be presented at the
Symposium. As a result of this process, 65 active scientific participants from 11 countries
followed the invitation and 29 papers were presented. The lectures were devoted to the
following main topics:

Modeling, Typical Examples for the Dynamics of Controlled Mechanical Systems,
Design Tools, Graphical Tools, Sensors and Actuators, Aerospace, Vehicles, and
Robotics.

Some of the papers are related to more than one of these main topics, but in order to assist the
reader we have structured this volume according to the main topics, thus maintaining the
structure of the Symposium.

The lectures, giving a survey on the state of the art and presenting recent research results, show
the high level of performance and sophistication already obtained when dealing with the control
of mechanical systems. The lectures were extensively discussed, and it is expected that the
Symposium will have a stimulating effect on further research in this important and
interdisciplinary field of mechanics and control. Discussions and statements of the members of
the Scientific Committee indicate that there are necessary and promising directions where future
efforts will have to go:

- Improvements of the man-machine interface, including high level application oriented
programming languages, graphics, and safety aspects.

- Extension of the role of software both at the design stage and as part of the controlled
system itself making it more intelligent, capable of learning, safer and adaptable to the
needs of the human user.

- Modeling of complex mechanical systems, especially for control purposes.

The organizers gratefully acknowledge the financial support and effective help of the following
institutions and industrial companies in the preparation of the Symposium:

International Union of Theoretical and Applied Mechanics TUTAM)
International Federation of Automatic Control (IFAC)
Eidgenossische Technische Hochschule Ziirich (ETH Ziirich)
European Research Office of the US Army

Sulzer Brothers Ltd.
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A main contribution to the success of the Symposium is due to the help and excellent work of
the staff of the Institute of Mechanics of the ETH, and the Local Organizing Committee. We
thank especially Mrs G. Junker.

The editorial work of the Proceedings was supported by the Institute of Mechanics of the
ETHZ. In essence the original manuscripts submitted by the authors are reproduced. Thanks to

the Springer-Verlag are due for an agreeable and efficient cooperation.

Zurich, July 1988 G. Schweitzer M. Mansour
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Model Verification by Experiments with Finite
Effect Sequences (FES)

J. ACKERMANN, P. WIRTH

DFVLR-Institut fiir Dynamik der Flugsysteme
Oberpfaffenhofen, D 8031 Wessling

Summary

A finite effect sequence (FES) is a good input signal to verify
agreement between a linear plant and its model. The FES theory
is reviewed, the influence of nonlinearities in the plant is
studied and their influence on the test is reduced by a modifi-
cation of the FES. Practical problems arising in the application
to a robot arm are discussed and recommendations for further
investigations are given.

Introduction

Assume a linear model of a system is known, e.g. a local lin-
earization of a nonlinear simulation model. Also assume that the
system is available for undisturbed input-output measurements.
What is a good input signal to verify agreement between model
and system? The answer is: A finite effect sequence (FES). The
FES theory [1] is reviewed with emphasis on the alternatives
that the system is only the plant or a control system containing
the plant. Modifications of FESs are discussed, which reduce the
effect of nonlinear distortions in the simulation model and the

plant.

A robot arm is studied as an example. Some practical problems
are discussed and recommendations for further investigations

are diven.

G. Schweitzer, M. Mansour

Dynamics of Controlled Mechanical Systems
[UTAM/IFAC Symposium Zurich/Switzerland 1988
© Springer-Verlag Berlin Heidelberg 1989
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Finite Effect Sequences

Consider an n-th order linear discrete-time siso system

x({k+1l) = Ax(k) + bu(k)
(1)
y{k) = c¢'x(k)

with the characteristic polynomial

A{z) = det(zI-A) = ag + ajz + ... + a

Apply the following input sequence to the system

u(0) =
u(l) = an_l
. (3)
uin) = ag
ulk) = 0 for k > n
the response is
y(0) = ¢'x(0)
y(l) = ¢'Ax(0) + ¢'b
y(2) = c'A2x(0) + c¢'Ab + an_lc'b (4)
y(n+1) = ¢'a"*1x(0) + c'A™ + a,_;c'A"7Ib + ... + age'b

By the Cayley-Hamilton theorem we have

AP + an_lAn'l +oee. # aOAO = 0 and thus
y(n+1) = c'aM*1lx(0) (5)

For k > n the input is zero and the system follows its homogene-

ous solution

y(k) = e'akx(0) k >n (6)



This is the same homogeneous solution as we obtain it with a
zero input. The sequence (3) has an effect on y(k) only over a
finite time, therefore (3) is called a "Finite Effect Sequence”

(FES). Some useful properties of FESs [1] are summarized here.

1) For a controllable and observable system, (3) is the FES of
minimal duration (in short "minimal FES"), otherwise the
coefficients of the observable and controllable subsystem
constitute a minimal FES. For simplicity we assume here (1)

to be controllable and observable.

2) other FESs can be generated by the three operations
i) multiplication by a scalar factor, ii) time shift,
1ii) superposition of FESs. By these operations FESs of

arbitrary length > n+l can be generated.

3) The z-transform of (3) yields

z o+ L.+ aoz-n = a(z'h = z7ME(2)

(7)

uz(z) =1 + a,q

The three operations under 2) correspond to a multiplication
of a(z"1) by an arbitrary polynomial rRiz" . 1f a(z™l) is a
FES then also a(z 1)r(z™1) is a FEs.

4) The z-transfer function of (1) is

h,(z) = c'(zI-a)"1b = B(z)/A(z) (8)

zn-l n

alz) = a0\+ agz + ...+t ap g + z

B(z) = by + byz + ... + bn_lz“'1

Polynomials in z71 like in (7) are obtained by multiplication

of numerator  and denominator of h,(z) by z7Ll, Let

az'l)y = 2™ME(z) =1+ ay_ 271 n

n—lz-l ¥ ee. + boz_n

+ ... + agz

B(z1) 2z "B(z) (3)

(
o



Now h,(z) = B(z—l)/A(z_l), ¥Y,(z) = h,(z)u,(z) and for a
minimal FES input u,(z) = acz"1)
y,(z) = B(z™1) (10)

The FES response consgists of the numerator coefficients of
the z-transfer function. By comparison with (4)

b, = c'at i1y an_lc'An_i—zb + ... + aj,c'b (11)
(This relation may also be obtained by applying Leverrier's
algorithm to (8).)

If the system is a closed loop with compensator piz y/czhH

and plant B(z 1)/a(z"1), then the gsequences indicated in

fig. 1 occur.

AC+BD AC

D B
C A

Fig. 1 FES responses in a closed loop

Input is the closed-loop characteristic polynomial. AC + BD,
the response at the feedback error is the open-loop charac-
teristic polynomial and the response at the output is the

open—loop‘numerator polynomial.

In the multivariable case the FES input matrix P(z‘%) and

response matrix Q(z—l) form a prime factorization
cizi-a) 1 = g(z"hp (71 (12)

Thus the FES and its response constitute a complete minimal
system description. The structure of P(z_l) is feedback in-
variant, but its coefficients can be arbitrarily changed by
state feedback. The closed-loop properties may be specified
by the closed-loop FESs.



Model verification by a FES

We now come back to the initial gquestion of model verification.

In principle we can use step responses, frequency responses (for

stable systems only) or other input-output measurements for the

comparison of model and system. There are, however, some advan-

tages of FESs for this purpose.

1)

2)

We only have to know the eigenvalues or poles of the transfer
function. If they are correct, then the response is finite
and the correct numerator can be read off from the experi-
ment. If the response is not finite, then only the model
poles must be adjusted, not the zeros. This separates numera-

tor and denominator determination.

The signal energy at input and output is concentrated to a
short time interval. In a plant with changing operating
conditions and changing local linearizations many such short-

time experiments may be performed along a trajectory.

The short-time test is feasible for unstable plants, if we
can make the initial state x(0) very small. For k > n the
response is very sensitive to a mismatch of unstable eigen-
values. An alternative is the closed-loop test at a stabi-
lized plant. For known c(z™l) and p(z71) in fig. 1 the rela-
1

tionship between the responses and atz"1) and B(z" is al-

most as simpie as in the open loop.

If the compensator shifts the eigenvalues close to the origin
of the z-plane, then the output signal for k > n becomes
“1). A tradeoff is

a compensator that barely stabilizes the plant. The signal

small and insensitive to a mismatch of A(z

y(k), k > n is then still sensitive to a mismatch of the most
critical eigenvalues near the unit circle and the experiment

can be performed with a stable system.
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Influence of nonlinearities

Frequently the linear model describes a local linearization of a
nonlinear system and all previous results are only approximations.
In this section some modifications of the FES experiment are

derived with the aim to reduce the influence of nonlinearities.

In the simplest case u is generated by an actuator with a non-
linear characteristic. If this characteristic is monotonically
increasing, then it has a unique inverse and the FES at the
actuator input can be modified such that the desired FES occurs
at the actuator output. However real actuator nonlinearities

like backlash and saturation do not have an inverse.

Small signals are distorted by backlash and friction. In order
to avoid this effect, the FES should be multiplied by a large
scalar factor. This factor is, however, limited by saturation
effects; also the state variables should not leave the region,
where a local linearization is valid. There are two ways to
reduce the maximum input amplitude: Longer sampling intervals

and nonminimal FESs.

To some extent the input energy can be injected into the system
by smaller amplitude and longer duration of the impulses. This
shifts the excitation energy towards lower frequencies. Practi-
cally the amplitude is kept constant over N sampling intervals
and the continuous plant is discretized with a sampling interval
NT. N is limited by the fact that the controllability and ob-

servability of high frequency complex eigenvalues is reduced.

An alternative approach is the use of nonminimal FESs which are
determined such that the maximum amplitude is reduced. This is

illustrated by the following example.

A loading bridge [1] has the following parameters. Crab mass =
1t (= 1000 kg), load mass = 3 t, rope length = 10 m, sampling
interval T = n/8 seconds. The z-transfer function from u =

"force accelerating the crab"” to y = "crab position" is



v,(z) 0.074223-0.062922-0.06292+0.0742
h,(z) = g 5 5 (13)
u,(z) 2%-3.41423+4.82822-3.4142+1

The maximum absolute value of the denominator coefficients can
be reduced by multiplication of numerator and denominator by

2

z + 1 or even more by z“ + 1.757z + 1. The resulting expanded

z-transfer function in the latter case is

0.07422°+0.06752%-0.099223-0.099222+0.06752+0.0742
20-1.6572°-0.1722%+1.65723-0.1722%-1.657z+1

h,(z) =

(14)

Normalizing both FESs corresponding to (13) and (14) to |u] < 1

the resulting input sequences are

k utk), eq. (13) ulk), eqg. (14)
0 0.207 0.603
1 -0.707 -1
2 1 -0.104
3 -0.707 1
4 0.207 -0.104
5 0 -1
6 0 0.603
7 0 0
5 u?(k) 2.085 3.749
3 y2(k) 0.0189 0.0398

The input energy has been increased by a factor 1.8 without
violating the amplitude constraint; the output energy was
increased by a factor 2.1. The resulting output y(k) accord-
ing to the numerator of (14) must be divided by (22—1.757z+1)

in order to obtain the numerator of (13).



10

Conclusions from a study on a robot application

A preliminary study on the application of a FES test to a
robot arm was made [2]., It does not give a neat illustration,
but it shows where the practical problems are. A detailed
nonlinear simulation model for a Manutec r3 robot was derived
in [3]. Fig. 2 visualizes a simplified model assuming that
the arms 3, 4, 5 and 6 are one rigid unit called arm h that
rotates around axis 3. For this study also the joints 1 and 2

were fixed.

|
base :\uxis 1

—de
|

Fig. 2 Robot Manutec r3
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The model has two states for arm position and velocity and
two states for rotor position and velocity. The arm and the
rotor are connected by a force law describing elasticity,
damping and backlash in the gear. A second nonlinear force
law describes the friction acting on the rotor. A saturation

arises from the maximum motor torgque of 9 Nm.

At the time of this writing the robot was not yet fully in-
strumented. Therefore only linearized model and nonlinear
sinulation model could be compared. This is recommended also
as a first part of a continuing study, because then the in-

fluence of each nonlinearity can be studied separately.

The construction of the robot does not allow a stable equi-
librium position of arm h. Therefore the reference position,
for which the model is linearized, must be held by a robot

controller. The standard controller has the transfer function

v{1+Tys) 1+T, 8
—————<¢[r(s) - rotorposition(s) ]k, + kgsr(s) - rotorvelocity(s)
8(1+Ts) 14Ty s

(15)

Thus the controller is of third order and the total system is

of order seven. The eigenvalues of the linearized closed loop

are:

>\1'2 = -11.5 * 7.23j
23,4 ¢ -30.2 £ 83.5j)
X5 g = -114 = 2913
Ay = -1110

The response of the rotor position to a step reference input

r(s) = 1/8 is shown in fig. 3.
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Fig. 3 Step response of the controlled robot arm

Here we see one of the difficulties with the original FES test
or with other tests like step responses. The absolute values of
the eigenvalues differ by a factor of about 100. The dominant
behavior with a mild overshoot is due to eigenvalues k1'2. The
faster modes k3’4 appear as small wiggles during the rise time
of the response and the remaining eigenvalues 15,6 and 25 have
an effect only for very small t, they are invisible in the re-
sgolution of fig. 3. It is difficult to excite and measure all
modes with a single FES input. For the slow modes a sufficient
excitation requires a sampling interval in the order of magni-
tude of 50 ... 100 ms. The FES for T = 50 ms is shown in fig. 4.

4 e
3 s »
>
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o
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-3 =
=
-.45
-6 I 2 .3 A4 s 5 K 8 .9 1.8 E®
L (s2c) =>

Fig. 4 Finite effect sequence with a sampling interval T = 50 ms

The form of the FES suggests, that a reduced model of third or
fifth order could be used as well.
For the test two FESs for T = 50 ms were superimposed such that a

constant input was applied during the first 100 ms, see fig. 5.
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Fig. 5 Two superimposed FESs for T = 50 ms

Fig. 6a shows the FES response of the linear model and

fig. 6b the FES response of the nonlinear simulation model.
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Fig. 6 Response of the rotor position to the FES of fig. 5
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The higher frequency modes are sufficiently damped, such that
their response after 50 ms is negligible. In fact this ex-
periment was used for a gripper mass calculation from the
response of the nonlinear simulation model [2]. The gripper
mass primarily enters into the slowest mode. It was possible
to determine an uncertain mass m in the interval [0 , 15kg]
with an accuracy of 200 g. The remaining uncertainty is due

to uncertainty of friction parameters.

For a verification of the high frequency modes a much higher
frequency of excitation is required, e.g. a sampling interval
of 1 ms. Obviously their effect is obscured by the fact that
we use a good controller that provides sufficient damping. A
sensitive model verification or parameter estimation would

require a bad controller, that results in an undamped oscil-

lation or even gives a mild instability.

A sufficient response amplitude is required because otherwise
the signal is distorted by the small signal nonlinearities
backlash and friction. A tradeoff must be made between this
lower signal level constraint and the upper constraint by

saturation of the motor current.

The resulting recommendation for a continuation of this study
is: Use a 50 ms FES for the verification of low frequency
behavior. For each high frequency mode find a controller that
makes it mildly unstable (e.g. by changing the original con-
troller attached to the nonlinear simulation model). Do FES

tests with sufficiently small sampling intervals.
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Modeling the Dynamics of a Complete Vehicle
with Nonlinear Wheel Suspension Kinematics
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Summary

By a geometrical approach, the complex equations of motion of a passenger car which
represents a complex spatial multiloop multibody system can be stated analytically in
minimum coordinates. In particular, the nonlinear constraint equations arising from the
closed loops can be stated explicitly in recursive form. In addition, significant elasticities
of the vehicle are considered.

The corresponding simulation program requires a minimum number of operations.
The program is applied for extended simulation runs. It has to serve as a basis for
the control design of anti-block-systems (ABS), drive-slide control systems (ASR) and
active suspension systems.

1 Introduction

In the design process of modern passenger cars simulation models for the representation
of the complete vehicle are a desirable instrument which will be applied to shorten
the developmental period and to reduce the costs. This is also valid for the design of
particular car components like anti-block-systems (ABS = Antiblockiersystem), drive-
slide-control systems (ASR = Antriebs-Schlupfregelung) and active suspension systems.
Simulation techniques enable the variation of parameters in a manifold which can never
be provided by experiments with the real vehicle; and this to a substantial reduced
expenditure once the simulation programs are available. The validity of the simulation
results depends mainly on the quality of the mechanical model and on the reliability of
the vehicle data.

The driving performance of a modern passenger car is influenced by different para-
meters. Of main importance is the guided displacement of the wheel carriers due to
the suspension system. Thus the stability of the vehicle when changing lanes or driving
through curves as well as the passenger comfort can be influenced in a desired man-
ner. The wheel suspension systems of modern cars are realized as spatial multibody
systems with closed multibody loops. Furthermore, the kinematical behaviour of the
wheel suspensions can be influenced by desired elasticities in the hinges. These provide
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a certain flexibility of the wheel carrier in the longitudinal direction which increases the
passenger comfort and decreases the material stress.

Difficulties arise in the modeling of mechanical subsystems like the nonlinear kine-
matics of the wheel suspension systems or the consideration of the elasticities mentioned
above, as for example the elasticities in certain hinges of the wheel suspensions or the
elasticities of the tires. In the presented paper it will be shown that an effective analyti-
cal model in minimum coordinates with a recursive structure of the constraint equations
can be derived using the following three concepts:

o “The characteristic pair of joints” to state constraint equations of the individual
multibody loop in the always most recursive form |7};

¢ “the kinematical transformer” to represent the kinematical transmission behaviour
of the individual loops which are connected linearly to a kinematical net and
represented by a block-diagram [6];

o “kinematical differentials” to provide the partial derivates of the joint coordinates
with respect to the independent coordinates by purely kinematical expressions
without using analytical differentiations [5].

2 Mechanical setup of the vehicle

The vehicle under consideration consists of a car body with McPherson strut front sus-
pension and a so-called trailing arm torsion-beam rear suspension (Verbundlenkerachse
[2]). This mechanical setup is realized in many modern middle-class passenger cars
(Fig. 1).

The corresponding mechanical system is built up of rigid bodies interconnected
by ideal hinges and arbitrary lines of forces. The topological structure of the arising
multibody system is characterized by closed multibody loops which appear in the wheel
suspension systems. In addition, desired elasticities in the front and rear suspension
can be represented by particular rigid-body subsystems.

The contact between tire and road is described by means of a particular kinematical
model. Thus a general calculation of position and velocity at the contact domain is
possible which is independent of the particular tire forces. The characteristics of the
complex multibody system under consideration can be summarized as follows:

¢ The car body is a rigid body represented by a general tensor of inertia;

o the McPherson strut front suspension consists of wheel carriers which are guided
by a strut (spring-damper unit), a lateral control arm, and a steering rod. Of great
influence is the lateral elasticity of the rear hinge of the lateral control arm, which
can be modeled by a local ~ kinematically compatible — rigid-body subsystem

(Fig. 1);

o the steering mechanism is realized by a tooth rack which is interconnected to the
steering rods on each side by spherical joints;
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Mc Pherson strut suspension

rigid body subsystem for the
symmetric lateral displacement
of the wheel carrier

S j rigid body subsystem
for the elasticity of
the rear hinge of the
lateral control arm

Figure 1: Mechanical setup of a passenger car with McPherson strut suspensions and
trailing arm torsion beam rear suspension

o the wheel carriers of the rear axis are connected to an elastic torsion beam which is
mounted to the car body by rubber elements. This so-called trailing arm torsion-
beam rear suspension can be described by the rigid-body subsystem shown in
Fig. 1, which guarantees the symmetric as well as the antisymmetric vertical
suspension modes of the rear wheel carriers.

3 Kinematical Analysis

The topological structure of the complete vehicle is shown in Fig. 2. All rigid bodies of
the multibody system are drawn in black; the connecting joints by little circles. Here,
joints with more than one degree of freedom are replaced by a corresponding number
of joints with one degree of freedom. The six degrees of freedom of the car-body with
respect to the inertial frame can be represented by a fictitious mechanism consisting
of three prismatic joints (translation) and three revolute joints (rotation). The overall
system consists of ng = 25 rigid bodies with k£ = 133 constraints. It is a mixed structure
containing independent multibody loops (L; to Ls) and tree-type parts. The number
of degrees of freedom of the system is f = 17.
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Figure 2: Topological structure of the multibody system
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One problem arises now from the question how to choose the independent coordinates
to get the equations of constraints in a suitable form for the later on statement of the
equations of motion. Here, the main difficulties arise from the analysis of the kinematical
loops due to the strongly nonlinear interdependency of the joint coordinates. Every
individual kinematical loop shows a particular input-output behaviour which depends
on the number of joints and joint coordinates, the geometry of the loop, but not the
location of the loop. This input-output behaviour can be described by a so-called
“kinematical transformer” which represents the nonlinear dependency of the six output
coordinates with respect to the locally independent input coordinates, i.e. degrees of
freedom of the loop [6]. The interconnection of the individual loops to a kinematical net
can now be illustrated by a block-diagram where the degrees of freedom of the complete
system depends on the way the loops are arranged. As the connecting nodal equations
are linear, the constraint equations of the overall system can be split up into two groups:

o The nonlinear equations of the locally independent loop, i.e. the “kinematical
transformer”,

¢ the linear equations at the connecting nodes.

The number of degrees of freedom as well as the choice of the independent coordinates
in the kinematical net can be determined by means of methods of graph theory. By
this, an optimal solution flow in the sense that the kinematical loops can be solved
recursively or as recursively as possible is guaranteed [1]. Furthermore, the individual
kinematical loop can be analyzed using the concept of the “characteristic pair of joints”
which enables the most recursive structure of the constraint equations of the individual
loop. Depending on the type and the degrees of freedom of the joints in the loop the
constraint equations in many technical examples are completely recursive [7].

By the two concepts “characteristic pair of joints” and “kinematical transformer”
which are discussed in detail in the references it is possible to state the equations of
constraints of even very complex multiloop multibody systems in - to a great extent -
recursive form. This holds also for the vehicle model regarded in this paper where the
multibody loops occur mainly in the wheel suspension systems.

The modeling of the McPherson strut suspension which includes the lateral elasticity
in the rear hinge of the lateral control arm is more detailed than the investigations
given in Ref. [10] and [3]. The mechanical setup is illustrated by Fig. 3a. Due to the
hinge elasticity mentioned above, the corresponding multibody system consists of three
independent loops on the left and right hand side (L; to Ls and L4 to Lg) respectively.
In Fig. 3b only the left hand side is represented. The loops L, to L3 have the following
properties:

e Loop L;: Br, = 7 joint coordinates; fr, =1 d.o.f,,
e loop Ly: Br, = 9 joint coordinates; fr, = 3 d.o.f.,
e loop L3: Br, = 10 joint coordinates; fr, = 4 d.o.f..

Due to the particular coupling of the loops L; to Ls a local kinematical net is
built up with three degrees of freedom. By the quantities s11, 512 and s;13 (see Fig. 3
and also Fig. 2) as independent coordinates the constraint equations of this subsystem
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strut (spring-damper unit)

tooth rack of the
steering gear

rear hinge of the -~

lateral control arm \/

Figure 3: Mechanical model of the McPherson strut suspension with lateral elasticity
in the rear hinge of the lateral control arm

can be stated in recursive form. The same holds for the symmetric McPherson strut
suspension on the right hand side, described by the loops L, to Lg. The connection of
the subsystems is given by the tooth rack of the steering mechanism which is actuated
by the common input coordinate s;3. The kinematical structure of the complete front
suspension system with altogether five degrees of freedom can now be represented by
six kinematical transformers L; to Lg arranged to the block-diagram shown in Fig. 4.
In a simpler way, the trailing arm torsion-beam rear suspension can be modeled.
The symmetric and the antisymmetric vertical suspension mode is enabled by the the
detailed arrangement of Fig. 5. The corresponding multibody system consists of the
single loop Ly with fr, =1 d.o.f.. In addition, a massless multibody loop Ls is realized
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Figure 4: Block-diagram of the McPherson suspension system
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Figure 5: Mechanical model of the trailing arm torsion-beam rear suspension
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Figure 6: Block-diagram of the trailing arm torsion-beam rear suspension
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Figure 7: Global kinematics

to provide the symmetric lateral deflection of the connecting rear axis (see also Fig. 1 and
2). The rear axis represents a subsystem with one degree of freedom and the generalized
coordinate 3; the block diagram is given by Fig. 6. The subsystem is connected to the
car body by a revolute joint with the independent coordinate 3.

The topological structure of the complete multibody system is already given by
Fig. 2, where the independent coordinates corresponding to the f = 17 degrees of
freedom of the system are marked by circles.

4 Kinematical differentials

The kinematic analysis of the previous section provides the relationship of all relative
joint coordinates § and its time derivatives with respect to the independent coordinates
¢ and its time derivatives. For the equations of motion the absolute first and second
time derivatives of the coordinates of all bodies of the multibody system are required,
1.e. the relative coordinates 8 and its time derivatives have to be transmitted into
the absolute body coordinates w and its derivatives. The absolute kinematics can be
calculated explicitly in recursive form. Thus the kinematics of the multibody system can
be separated into two parts: the “relative kinematics” and the “absolute kinematics”
put together in the “global kinematics” (Fig. 7).

For the relationship between generalized coordinates ¢ and the absolute coordinates
of body 7 we have:

w; = wi(g) - (1)
One obtains for the first and second time derivatives:

w; = Juw, " g ) (2)
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w; = Jw,'l.]"*'aw, . (3)

The (6 x f) Jacobians and the (6 X 1) vectors of generalized gyroscopic forces might be
calculated by analytical differentiations:

a’w,'
Ju, = R (4)
32wi ..
— = . 5
a ZJ:; 34, 5, 9% (5)

Due to the highly implicit character of the functions w;(g) the analytical formulation of
the partial derivatives for a complex system like the vehicle model is a tiresome or even
impossible undertaking.

To overcome this problem, the kinematical analysis proposed above can be used
and the analytical expression required in Egs. (2) to (5) can be replaced by purely
kinematical expressions: The time derivatives w; can be stated from global kinematics
for any set of generalized velocities ¢. In particular, one can evaluate pseudo-velocities
1;i(]) defined by particular velocity inputs

i =) | @ = ,...,0,1,0,...,0]. (6)

Here, the el) are (f x 1) unit-vectors having vanishing components except in the i-
th row, which is 1. As the actual time-derivatives u; are linear combinations of the
independent generalized velocities g;, it holds:

W= Vi (7)
i
By comparison of Eq. (7) with Eq. (2) one obtains the simple rule:
(7)

j-th column {J,} = u; (8)

For given position- and velocity-state of the system, one can state the acceleration
w; for any set of generalized accelerations ¢ again by purely kinematical expressions.
Particularly, one can evaluate a pseudo-acceleration ; which is given for vanishing
generalized accelerations, i.e. for § = 0. By Eq. (3) one then immediately obtains:

Gy, = W; . (9)

Eqgs. (8) and (9) now state the complete partial derivatives by virtue of the already
defined global kinematics. As they are based on elementary kinematical expressions —
i.e. basically the laws of relative kinematics already applied in the previous section —~
they shall be designated here as “kinematical differentials” [5].

The time derivatives of the absolute coordinates w can now be separated into the
translational parts 3;, 3; and the rotational parts w;, w; which are physical vectors. The
corresponding equations are:

b=YE% 5 =28% + 4, (10)
J 4

7
w = ZQ;U)% e = e + e (11)
3 J
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From Egs. (10) and (11) a further advantage of this representation becomes obvious:
Due to the kinematical representation the arising expressions are of purely physical
character and thus not dependent on particular coordinate systems. These are only
needed in the very last step of the caleulation.

5 Dynamics

The equations of motion are hased on d’Alembert’s principle. For ng rigid bodies holds:

np

DlMmis; — F)-bsi + (8,01 + wix 8, w; — T2)- 64 = 0, (12)
body “i™:
m;, Qﬁ_ - mass and tensor of inertia,
8 - acceleration of mass center,
Wiy W; - angular velocity and acceleration,
F, T; - resulting applied forces and torques,
6s;, 09, - virtual displacements.

In Eq (12) the dependent virtual displacements 8s;, 6¢, as well as the accelerations
$;, w; have to be related to the independent virtual (hspl(l(omouts and accelerations of
the generalized coordinates. Noticing that the virtual displacements transform in the
same way as the velocities, it follows for the corresponding translational and rotational
parts from the previous section:

Z Doq; 3 5 =iV + & (13)
J

= Zv_i.-‘“bq, powo= 2oV + o (14)
J J

Inscrting Egs. (13) and (14) into Eq. (12) and considering the independence of the
virtual displacenients dg, one obtaing the equations of motion in the reduced form:

Mi+b=20Q. (15)

The cocfficients for the (f x f) generalized mass-matrix M, the (f x 1) vector of ge-
neralized gyroscopic forces b and the (f x 1) vector of generalized applied forees @
are:

S (k) ~ < (k
My = Z{‘”liﬁi V(8,8
; v

b = Z{m;ﬁim
;

Q = Z{é{m E + GV T)

i

+ @8, + wi x 8, w)} (16)

As all terms in Eqs. (16) are known from previous sections, the equations of motion are
now stated in closed from. Here, a further advantage of using “kinematical differentials”
becomes obvious: All coefficients can he caleulated from scalar products of “physical”
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vectors, making the formulation independent of the reference frames in which they
are evaluated. Thus the described approach is a simple tool for the derivation of the
equations of motion. It can be applied for the automatic generation and solution of the
dynamics of complex multiloop mechanisms.

6 Kinematical model of the tire-road contact

The modeling of the contact between the rolling wheel and the road is one of the most
complex problems in vehicle dynamics. Mainly the model of a tire in connection with a
stationary or non-stationary driving performance is still an unsolved problem. Today,
two major possibilities are taken into account:

e Tire models based on an approximation which represents the physical properties
as closely as possible [8];

e Tire models based on experimental characteristics which are approximated by
mathematical curves [9].

In both cases the geometry of the tire and its contact surface are required. Therefore, a
kinematical model of the tire-road contact can be stated which can be easily integrated
into the modeling techniques of the vehicle mentioned above. The model contains the
following ideas [11]:

o The contact geometry “tire-road” is described by a simple rigid-body subsystem,
i.e. a mechanism with elementary joints which reproduces the displacements of
the contact surface with respect to the road;

e tire models of different complexity — based on the velocity of the contact surface
- determine the longitudinal and the lateral forces with respect to slip and slip
angle;

e for more complex tire models with non-stationary driving performance the contact
surface can be discretized with the kinematics available for every point.

In Fig. 8 the kinematical model of the tire-road contact is shown. By this model the
kinematical quantities slip and slip angle can be calculated. Together with characteristic
curves obtained from experiments the required forces can be determined.

7 Program system and simulation results

The analytical model of the complete vehicle stated in the previous sections represents
a highly nonlinear system of coupled second-order differential equations, but due to
its compact formulation it requires a number of operaiions. The numerical integration
routine -~ based on the method of Shampine and Gordon [12] - is the core of a simulation
program written in FORTRAN-77 and implemented on the mainframe computer IBM
3081, the mini-computer VAX 11/785, the workstation APOLLO DN 3000, and parts of
it on a personal computer ATARI ST 1024 [4]. The program has a modular structure,
it consists of about 20000 statements and requires a number of about 12000 operations.
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Figure 8: Kinematical model of the tire-road contact
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Figure 9: Time response on a run over a sinusoidal bump

A typical example for the driving performance of the vehicle is a straight run over a
sinusoidal bump (length: 2 m, height: 10 cm) with a velocity of 36km/h. Fig. 9 shows
the time response of the lateral elastic deflection of the rear hinge of the lateral control
arm and of the pitch angle of the vehicle respectively. The simulation time is 2 sec.
Remarkable is the frequency of about 20 Hz due to the lateral elasticity in the lateral
control arm hinge. A second example is given by Fig. 10, which shows the behaviour
of the vehicle in a swerving manoeuvre to the left. A typical ratio of CPU-time (IBM
3081) to simulation time is 150 : 1.

8 Conclusion

?

By the three concepts “characteristic pair of joints”, “kinematical transformer” and

“kinematical differentials” the equations of motion of a complete passenger car which



27

Figure 10: Vehicle in a swerving manoeuvre to the left

represents a complex spatial multiloop multibody system can be stated analytically in a
very compact way. The system with f = 17 degrees of freedom is described in minimum
coordinates and the constraint equations of the inherent ny = 8 multibody loops can
be solved recursively in explicit form. The efficiency of the method is illustrated by
numerical results of a simulation program based on the proposed method.

The program is applied for extended simulations of a real passenger car in indu-
stry. The results are used for comparison with experimental data. The model has to
serve as an exact reference for comparison with subsequent simplified models. By model
reduction simplified models will be derived using techniques like partial linearization,
neglecting mass properties of small masses or omitting coordinates with small displa-
cements. The integration process has to be accelerated by particular techniques. The
simplified model will be applied for on-line simulations and they are the basis for the de-
sign of control devices like anti-block systems (ABS), drive-slide control systems (ASR)
or active suspension systems.
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Computer Aided Formulation of Equations
of Motion

T. R. KANE

Stanford University
Stanford, California

Summarv

As part of the process of designing a control system for a mechanical device, one frequently
must formulate the equations of motion of the device, which is a task that can be very
laborious, especially if the device under consideration has a relatively large number of
moving parts. This paper deals with a computer program intended to enable an analyst to
formulate equations of motion with minimal labor. The name of the program is AUTOLEV.

The principal concept underlying the program is that one can create symbol manipulation
functions that carry out many of the operations one normally performs by hand when
formulating equations of motion. In practice, the dynamicist makes use of such functions
by typing instructions on a computer terminal; the computer responds with lines of text
representing equations needed to continue the analysis. Ultimately, the equations of motion
appear on the screen, and one additional command then leads to a FORTRAN simulation
program.

Hlustrative Example

The most direct way to illustrate the use of the program is to discuss a specific example in
some detail. Hence, consider the system depicted in Fig. 1, where N designates a Newtonian
reference frame, B is a rigid body, and P is a particle fastened to C. Body B represents
a man-made Earth satellite equipped with a pendulum-like device formed by C and P. A
motor at O, connecting B to C, can cause 8, the angle between C and a line fixed in B, to
vary, and the attitude of B in N is affected by such variations, which means that it may
be possible to vary 8 in such a way as to control the attitude of B in N to some extent.
Specifically, suppose that B is axisymmetric and that point O lies on one of the central
principal axes of inertia of B. Then, if, throughout some time interval, P, O, and B*, the
mass center of B, form a straight line, the system formed by B and C is an axisymmetric
rigid body throughout this time interval, and must, therefore, move in N in such a way
that ¢, the angle between line O — B* and H, the inertial, central angular momentum of
the system, remains constant; and, by varying 6§ suitably, one may be able to reduce ¢ to
zero, that is, to impart to B a motion of simple spin. To explore this idea, simulations of
the motion of B in N are to be performed, with 8 specified as a function of ¢.

The numbered lines on the next page represent text typed by the user of the program. The
first two lines are simply the name of the file that is being created and a brief description
of its purpose. Line (3) informs the program that the system under consideration has six
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Fig. 1 Satellite with Control Boom

degrees of freedom. The names of the two rigid bodies that form the system are entered in
line (4), and lines (5) - (7) let the program know that C is massless, that B has a mass to
be called M B, and that the central principal moments of inertia of B are I1, I2, and I3.
Next, in lines (8) - (10), the program is told that O and P are points of interest, but that O
is massless, whereas P has a mass M P. The description of the system is continued in lines
(11) and (12), which assign the letters C and L to the distance from B* to O and the length
of the pendulum, respectively, and record the fact that theta is to be a specified function
of time, rather than a dependent variable. Line (13) tells the program what this function
is to be; and the fact that A and PERIOD in this line stand for constants is communicated
to the program via line (14).

(1) ' IUTAM

(2) ! ILLUSTRATIVE EXAMPLE: A RIGID BODY + A PARTICLE
PENDULUM

(3) DOF(6)

(4) FRAMES(B,C)
(5) NOMASS(C)
(68) MASS(B,MB)

(7) INERTIA(B,I{,12,13,0,0,0)



->

v

v

->

->

v

->
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(8) POINTS(O,P)

(9) NOMASS(0)

(10) MAss(P,MP)

(11) CONST(C,L)

(12) SPECIFIED(THETA)

(13) THETA=A*(1-COS(2*PI*T/PERIOD))"3
(14) CONST(A,PERIOD)

(16) SIMPROT(B,C,3.THETA)

(16) DIRCOS(B,C,COS(THETA) ,-SIN(THETA),O,SIN(THETA),COS(THETA
).0,0,0,1)

(17) WBN=U1*B1+U2#B2+U3%B3

(18) VBSTARN=U4*B1+U5+B2+U6%B3
(19) ALFBN=U1'*B1+U2'*B2+U3"*B3
(20) ABSTARN=DERIV(VBSTARN,T,N)
(21) Z1=U2+U6-U3*Ub

(22) Z2=-U1*U6+U3*U4
(23) Z3=U1*U5-U2xU4

(24) ABSTARN=(U4°'+Z1)+B1+(U5°+22)*B2+(U6"+23) *B3
(26) WCB=THETADOT*B3
(26) WCN=ADD(WBN,WCB)
(27) WCN=U1%B1+U2%B2
+THETADOT+U3) *B3
(28) PBSTARO=C#*B1

(29) V2PTS(N,B.BSTAR,0)

(30) VON=U4xB1+(C*U3+U5)*B2+(-C+U2+U6) +B3
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In Fig. 2, B1, B2, B3 and C1, C2, C3 designate sets of mutually perpendicular unit vectors
fixed in B and C, respectively. Line (15) notifies the program that, after aligning B1 with
C1, B2 with C2, and B3 with C3, one can perform a simple rotation of amount 8 of C
relative to B about an axis parallel to B3 to bring C into a general orientation relative to
B. Once this line has been entered by the user of the program, line (16) appears on the
screen. Note the symbol to the left of this line. This indicates that the line is supplied by
the computer rather than by the user. Thus, line (16) is a result; specifically, it reports the
elements of the direction cosine matrix relating the sets of unit vectors fixed in B and C.

Bl ‘4C3

Fig. 2 Unit vectors fixed in B and C

Kinematical considerations play a major role in the formulation of equations of motion. For
the system at hand, the kinematical analysis begins with line (17), in which the angular
velocity of B in N, called WBN, is expressed in terms of the unit vectors Bl, B2, B3
and generalized speeds U1, U2, U3. Similarly, in line (18), the velocity of point B* in N is
expressed in terms of generalized speeds U4, U5, UB; and the angular acceleration of B in
N is recorded in line (19), where U1’ stands for the first time-derivative of U1, etc. The first
two of these lines really define the symbols U1, ... U6, and the third line then represents
a well known consequence of the definition of angular acceleration. Line (20), on the other
hand, begins to show the power of the program. This line deals with the acceleration of B*
in N; but, instead of simply entering an expression for this acceleration, the user tells the
program to find the acceleration by forming the derivative of the velocity of B* in N with
respect to time T in N. The program responds with lines (21) - (24) [note the symbol to
the left of each of lines (21) - (24)], the first three of which constitute definitions of symbols
Z1 - Z3, in terms of which the program then reports the desired acceleration in line (24).

The capability to perform vector additions is demonstrated by lines (25) - (27). In the first
of these, the user inputs the angular velocity of C' in Bj; in the second, he instructs the
computer to add this angular velocity to the angular velocity of B in N, available in line
(17); and in the third, line (27), he finds the result produced by the computer.

Lines (28) - (30) show how the program can help one to find the velocity of a point of a
rigid body when one already knows the velocity of another point of this body. Specifically,
the velocity of B* in N is given in line (18). To find the velocity of O in N, one begins
by introducing the position vector from B* to O as in line (28), where this vector is called
PBSTARO. Next, one issues the command set forth in line (29), whereupon one obtains
the velocity of O in N in line (30).

Proceeding in this manner, one can construct an expression for the velocity of P in N, then
use the DERIV function [see line (20)] to obtain the acceleration of P in N. Once this
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has been done, everything required for the formation of expressions for the six generalized
inertia forces for the system is in hand, so one issues the command shown in line (52), which
causes the program to construct Z17 - Z22, the inertia torque for B in N, and lines (60) -
(65), which contain the desired expressions.

-> (60) F1STAR=(-I1-MP*Z5*Z5)+U1"'+MP*ZE+Z6+U2" -MP*Z5+U6 "' -MP*Z16+
256-720

-> (61) F2STAR=MP+Z5*Z6%U1"+(-I2-MP*Z6+%26) *U2’ +MP*Z6%U6 ' +MP*Z16+
26-221

-> (62) F3STAR=((-Zb*Z5-Z6+*Z6)*MP-I3)*U3 ' +MP*Z5+U4 "’ -MP+Z6%U5" - (-
Z13%Zb6+715%Z6) *MP-Z22

~> (63) FASTAR=MP*Z5*U3’+(-MB-MP)*U4’'-MB*Z1-MP*Z13
-> (64) F5STAR=-MP*26%U3"+(~MB-MP)*Ub*-MB*Z2-MP*Z15

-> (66) F6STAR=-MP*Z5+U1’'+MP*Z6%U2°+(-MB-MP)+U6* -MB*Z3-MP*Z16

Since the generalized active forces for the present system vanish identically, all that remains
to be done to write the equations of motion is to set the generalized inertia forces equal
to zero. Before doing this, however, it is helpful to add a few steps that will prove useful
in the sequel. For instance, one can issue the command shown in line (66), which causes
the program to find the center of mass of the system and to counstruct the position vector
from B* to the center of mass, expressing it in the Bl, B2, B3 basis, as indicated in lines
(67) - (70); and the central angular momentum of the system, also expressed in terms of
the unit vectors B1, B2, B3, is found by typing line (71), which leads to lines (72) - (74).
Finally, the simple instruction of line (75) causes the program to find the kinetic energy of
the system, reported in lines (76) - (78).

(68) CM(BSTAR,B)
-> (67) TOTALMASS=MB+MP
-> (68) PBSTARCM1i=(C+COS(THETA)*L)*MP/TOTALMASS
-> (69) PBSTARCM2=L*MP*SIN(THETA)/TOTALMASS
~> (70) PBSTARCM=PBSTARCM1+*B1+PBSTARCM2#B2
(71) ANGMOM(B)
-> (72) ZH1=C+COS(THETA)*L-PBSTARCM1

=> (73) ZH2=L*SIN(THETA)-PBSTARCM2
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-> (74) ANGMOM=(-MB*PBSTARCM2+U6+MP*Z11+ZH2+Z17)*B1+(MB*PBSTARCM
1%¥U6-MP*Z11*ZH1+Z18) *B2+ ((~-PBSTARCM1*U5+PBSTARCM2*U4) *MB+ (ZH1
*210-ZH2*Z9) *MP+219) *B3

(76) KE
-> (76) ZKE1=(U4*U4+U5*US+U6+U6) +MB+U1%Z17+U2+Z18+U3%Z19
=> (77) ZKE2=(Z10%Z10+Z11*Z11+Z9+Z9)+MP

-> (78) KE=.5%(ZKE1+ZKE2)

Given all of the expressions that have been generated so far, one can write a computer
program for the evaluation of these expressions, and thus for the numerical solution of
the differential equations of motion. However, it is unnecessary to do this: by issuing
just one more command, the one shown in line (86), one causes the computer to create
a FORTRAN program called IUTAM.FOR, a program that can be used to integrate the
equations of motion and evaluate both the system’s central angular momentum and kinetic
energy for any instant of time. And results generated by this program then can be used
directly to generate graphs such as the one shown in Fig. 3, where ¢ is plotted as a function
of time.
(86) CODE(IUTAM, ANGMOM,ENERGY)
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Discussion

As has been shown, one takes the following steps when using AUTOLEV to produce simu-
lations of motions of a mechanical system:

(1) Draw a sketch of the system to be analyzed [see Fig. 2], showing on it the names
assigned to rigid bodies (e.g., B and C in Fig. 2) and points or particles (e.g., O and P),
as well as geometric quantities, such as lengths (e.g., C' and L) and angles (e.g., §). The
names used for this purpose can be chosen at will; that is, they need not be single letters.
For example, B and P could be called SATELLITE and PARTICLE, respectively. Line (4)
of the AUTOLEV program then would read (4) FRAMES(SATELLITE,C), and line (6)
could become, say, (6) MASS(SATELLITE,MS). In other words, AUTOLEV gives the user

considerable latitude in the choice of names.

(2) Use AUTOLEV commands to create an AUTOLEV program, such as the one that

follows, which sho\\;\s the user inputs for the problem considered in the illustrative example.
! TUTAM

! ILLUSTRATIVE EXAMPLE: A RIGID BODY + A PARTICLE PENDULUM
DOF (6)

FRAMES(B, C)

NOMASS(C)

MASS(B,MB)
INERTIA(B,I1,12,13,0,0,0)
POINTS(O0.P)

NOMASS(0)

MASS(P,MP)

CONST(C,L)

SPECIFIED (THETA)

THETA=A* (1-C0S(2+PI+T/PERIOD)) "3
CONST(A,PERIOD)
SIMPROT(B,C,3,THETA)
WBN=U1+B1+U2+B2+U3+B3
VBSTARN=U4+B1+U6+B2+U6+B3
ALFBN=U1"+B1+U2" +B2+U3 "’ +B3
ABSTARN=DERIV(VBSTARN,T,N)
WCB=THETADOT*B3
WCN=ADD (WBN ,WCB)
PBSTARO=C*B1
V2PTS(N,B,BSTAR,0)
POP=L*C1

EXPRESS (POP, B)
V2PTS(N,C,0,P)
APN=DERIV(VPN,T,N)

FRSTAR

CM(BSTAR, B)

ANGMOM(B)

KE

KANE

CODE(IUTAM, ANGMOM, ENERGY)
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This file can be prepared with the use of a text editor, rather than in order to produce the
FORTRAN program. While one is creating an AUTOLEV program interactively, one can
see what commands are available by typing the word WHAT and then pressing the ENTER
key, which causes the following to appear on the screen:

The commands that AUTOLEV recognizes are:

AlPT A2PTS ADD ANGMOM AUTOZ
AXI , CLEAR CM CODE CONST
CONSTRAIN CONTROLS CROSS DERIV DIRCOS
DOF DOT EULERP EXEC EXIT
EXPRESS FIND FR FRAMES FRSTAR
HELP INERTIA KANE KE LINE
LIST LOAD MASS NOMASS PANGVEL
POINTS PRINCIPAL PRINT PVEL RECORD
SAVE SIMPROT SPECIFIED SUSPEND VAR
V2PTS WHAT

An explanation of a particular command is obtained on the screen by typing the word HELP

followed by the name of the command. Thus, it is unnecessary to memorize AUTOLEV
commands.

(3) Prepare an input file for the FORTRAN program created by AUTOLEYV in response to
the CODE command, and execute the program.

Conclusion

By freeing him from the burden of performing tedious algebraic operations, AUTOLEV
enables a dynamicist to formulate equations of motion and to produce numerical simulations
of motions of mechanical systems in a highly effective way.

Note

The originator of AUTOLEV, as well as the author of the underlying computer code, ist
David B. Schaechter. Many of the algorithms implemented in the program were furnished
by David A. Levinson. The theoretical basis for this work is set forth in the book DYNAM-

ICS: Theory and Applications by T. R. Kane and David A. Levinson, McGraw-Hill Book
Company, 1985. .
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Summary

This paper is concerned with the general motion of a flexible
body in space. Using the extended Hamilton's principle for dis-
tributed systems, standard Lagrange's equations for hybrid sys-
tems are first derived. Then, the equations for the rigid-body
motions are transformed into a symbolic vector form of Lagrange's
equations in terms of general quasi-coordinates. The hybrid
Lagrange's equations of motion in terms of general quasi-coordi-
nates are subsequently expressed in terms of quasi-coordinates
representing rigid-body motions. Finally, the second-order
Lagrange's equations for hybrid systems are transformed into a
set of state equations suitable for control. An illustrative
example is presented.

Introduction

The derivation of the equations of motion has preoccupied dynam-
icists for many years, as can be concluded from the texts by
Whittaker [1], Pars [2] and Meirovitch [3]. References 1-3 con-
sider the motion of systems of particles and rigid bodies, and
the equations of motion are presented in a large variety of
forms. 1In this paper, we concentrate on a certain formulation,
namely, Lagrange's equations. For an n-degree-of-freedom system,
Lagrange's equations consist of n second-order ordinary differen-
tial equations for the system displacements.

In the control of dynamical systems, it is often convenient to

work with first-order rather than second-order differential equa-
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tions. Introducing the velocities as auxiliary variables, it is
possible to transform the n second-order equations into 2n first-
order state equations. The state equations are widely used in
modern control theory [4].

With the advent of man-made satellites, there has been a renewed
interest in the derivation of the equations of motion. The
motion of rigid spacecraft can be defined in terms of transla-
tions and rotations of a reference set of axes embedded in the
body and known as body axes. The equations of motion for such
systems can be obtained with ease by means of Lagrange's equa-
tions. It is common practice to define the orientation of the
body relative to an inertial space in terms of a set of rotations
about nonorthogonal axes [3]. However, the kinetic energy has a
simpler form when expressed in terms of angular velocity compo-
nents about the orthogonal body axes than in terms of angular
velocities about nonorthogonal axes. Moreover, for feedback
control, it is more convenient to work with angular velocity
components about the body axes, as sensors measure angular
motions and actuators apply torques in terms of components about
the body axes. In such cases, it is often advantageous to work
not with standard Lagrange's equations but with Lagrange's equa-
tions in terms of quasi-coordinates [1,3]. If the body contains
discrete parts, such as lumped masses connected to a main rigid
body by massless springs, it is convenient to work with a set of
axes embedded in the undeformed body. The equations of motion
consist entirely of ordinary differential equations and can be
obtained by a variety of approaches, including the standard
Lagrange's equations and Lagrange's equations in terms of quasi-
coordinates [5]*.

In the more general case, the body can be regarded as being
either entirely flexible with distributed mass and stiffness
propertieé or as consisting of a main rigid body with distributed
elastic appendages. Unlike the previous case, the equations of

motion are hybrid, in the sense that the equations for the rigid-

* Note that Ref. 5 refers to Lagrange's equations in terms of
quasi-coordinates as Boltzmann-Hamel equations.
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body motions are ordinary differential equations and those for
the elastic motions are partial differential equations. Hybrid
equations were obtained for the first time in Ref. 6. Moreover,
the formulation of Ref. 6 was obtained by using Lagrange's equa-
tions in terms of quasi-coordinates, but some generality was lost
in that the body considered was assumed to be symmetric and to
undergo antisymmetric elastic motion. As a result, the rigid-
body translations were zero.

This paper is concerned with the general motion of a flexible
body in space. Using the extended Hamilton's principle for dis-
tributed systems [7]}, standard Lagrange's equations for hybrid
systems are first derived. Then, using the approach of Ref. 3,
the equations for the rigid-body motions are transformed into a
symbolic vector form of Lagrange's equations in terms of general
quasi-coordinates. The hybrid Lagrange's equations of motion in
terms of general quasi-coordinates are subsequently expressed in
terms of quasi-coordinates representing rigid-body motions. This.
is a very important step, as the latter form permits the derivat-
ion of the hybrid equations of motion with relative ease, thus
eliminating a great deal of tedious work. These hybrid equations
represent an extension to flexible bodies of Lagrange's differen-
tial equations in terms of quasi-coordinates derived in Ref. 3
for rigid bodies. The second-order equations are then used to
derive the hybrid state equations.

As an illustration, the hybrid equations of motion of a space-
craft consisting of a rigid hub with a flexible appendage simu-

lating an antenna are derived.

Standard Lagrange's Equations for Hybrid Systems

Let us consider a flexible body and assume that the Lagrangian L
=T -V, in which T is the kinetic energy and V is the potential
energy, can be written in the general form L =qui,dPuj,ﬁj¢G,u3“.
.,ugp)), where g; = q;(t) (i = 1,2,...,m) are generalized coordinates
describing rigid-body motions of the body and uj(P,t)(j =

1,2,...,n) are generalized coordinates describing elastic motions
relative to the rigid-body motions of a typical point in the becdy
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identified by the spatial position P. Dots designate derivatives
with respect to time and primes derivatives with respect to the
spatial position. For convenience, we express the Lagrangian in
terms of the Lagrangian density L in the form L =0 L db, where D
is the domain of extension of the body.

We propose to derive Lagrange's equations by means of the
extended Hamilton's principle [7], which can be stated as

t
2 ) Y - - - -
ftl [p (sL + sW)dDdt = 0, 8; = 6u; =0 at t=t), t, (1)
where 6W is the nonconservative virtual work density, which is
related to the virtual work by &W =Jb sW dD. The wvirtual work can

be written in the form

oW =

II’ME

n N
Q;8q; + y [ Ussus dD (2)
g1 0z tD I

where Q; are nonconservative generalized forces associated with
the rigid body motions and Gj are nonconservative generalized
force densities associated with the elastic motions; sqiandsuj
are associated virtual displacements. Following the usual steps
{71, we obtain Lagrange's equations of motion, which can be
expressed in the symbolic vector form

-

@) -0 Y- Lusd (3a,b)
au ~

where q and g are m-vectors, U and Q are n-vectors and L is an

n x n operator matrix. Because of the mixed nature of the differ-
ential equations, we refer to the set (3) as hybrid. The elastic
displacements are subject to given boundary conditions.

Equations in Terms of Quasi-Coordinates for the Rigid-Body
Motions

Quite often it is convenient to express the Lagrangian not in
terms of the velocities di but in terms of linear combinations

W, (2=1,2,...,m) of di' The difference between di and W, is that the
former represent time derivatives dq;/dt, which can be integrated
with respect to time to obtain the displacements g;, whereas

W, cannot be integrated to obtain displacements. It is customary
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to refer to w, as derivatives of quasi-coordinates [3]. The

relation between w, and &1 can be expressed in the compact matrix
form w = ATg, where the notation is obvious. Similarly, we

express the velocities di in terms of the variables w, as q = Bw,
from which it follows that the m xm matrices A and B are related

by ATB==BTA =1, where I is the identity matrix of order m.

Our object is to derive Lagrange's equations in terms of w,

instead of q;- Using the relations indicated above, it can be
shown [3] that Egs. (3a) can be replaced by

d (sl To ol T aL
where
o TT 2% T,T 2A T
E={wd ] - [wB ﬁ;l,N-BQ (5a,b)

and we note that the first matrix in E is obtained by first
carrying out a triple matrix product for every one of the m?
entries in A and then arranging the resulting scalars in a square
matrix. On the other hand, the second matrix in b is obtained by
first generating a row matrix for every generalized coordinate q
(k = 1,2,...,m) and then arranging the row matrices in a square
matrix. Equation (4) represents a symbolic vector form of the
Langrange equations for quasi-coordinates. The complete formula-
tion is obtained by adjoining to Eq. (4), the equations for the
elastic motion, Eq. (3b), as well as the associated boundary
conditions.

General Equations in Terms of Quasi-Coordinates for a
Translating and Rotating Flexible Body.

Let us consider the body depicted in Fig. 1. The motion of the
body can be described by attaching a set of body axes xyz to the
body in undeformed state. The origin of the body axes coincides
with an arbitrary point 0. Then, the motion can be defined in
terms of the translation of point 0, and the rotation of the body
axes xyz relative to the inertial axes XYZ. The position of 0
relative to XYZ is given by the radius vector R = B(RX,RY, RZ).

The rotation can be defined in terms of a set of angles 91,82

and 83 (Fig. 2). Hence, the generalized coordinates are

qq = RX’ q, = RY’ 43 = RZ’ dq = 89y» qg = 62, qg = 93. In addition, there
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are the elastic displacement components ux(P,t),uy(P,t),uZ(P,t).
The displacements RX'RY’RZ are measured relative to the inertial

axes XYZ. On the other hand, the displacements Uy, U are mea-

]
Sured relatlve to the body axes xyz. Moreover, the Zom;;nents

RX, RY’RZ of the velocity vector R are also measured relative to
XYZ. On the other hand, the angular velocity vector w has compo-
nents wx,wy,ub, measured relative to the body axes xyz. It will
prove convenient to express all motions in terms of components
along the body axes. To this end, if we denote the velocity of
point 0 in terms of components along the body axes by V, then it
can be shown that V = CR where C-C(elﬁz,e) is a rotation matrix.
Moreover, the angular velocity vector w can be expressed in terms
of the angular velocities 61,62 and é3 in the form w = D4, where

D =D(6Pe3) is a transformation matrix. We note that the anqular
velocity components wys Wy and w, cannot be integrated with respect
to time to yield angular displacements ays @ amiaz about axes X, ¥

y

and z, respectively. Hence, w,, w , w, 2 can be regarded as time

x* Ty Uz
derivatives of quasi-coordinates and treated by the procedure
presented in the preceding section. Although it is not very
common to regard the velocity components Vx’Vy and V, as time
derivatives of quasi-coordinates, they can still be treated as
such. In v1ew of thls, 1f we introduce the generalized velocity
vector q —[RX RYRZel 2 93], as well as the "qua51 velocity"”

vector y = [V, w, w, w, ], we conclude that the coefficient

y VZ Xy
matrices are defined by

C |

Al - [9-5-9] L N s S (6a,b)
010 o i @H*

where we recognized that ¢l = CT, because rotation matrices

are orthonormal. It can be shown, after lengthy algebraic manip-
ulations, that

BTE=[+] (7)

where & and V are skew-symmetric matrices corresponding to
wand V [3], respectively.

IO

<< IE?

Using Egs. (3b) and (4) in conjunction with the above relations,

we obtain the hybrid Lagrange's equations in terms of quasi-coor-
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dinates
EOPrasy-c-t (82)
%g(%)+\7§—§+a%-(oT)‘1%=@ (8b)
%f(-i—%)-i—zwwﬁ (8¢c)

where F and M are external nonconservative force and torque,
respectively, in terms of components about the body axes,

aL/ag = [aL/ae1 aL/362 aL/ae3]T and v = g. Note that ¢ does not
really represent a vector and must be interpreted as a mere sym-
bolic notation. We recall that the components of u are still

subject to given boundary conditions.

It should be pointed out that, in deriving Egs. (8), no explicit
use was made of the angles 91,82 and 93, so that Egs. (8) are
valid for any set of angles describing the rotation of the body
axes, such as Euler's angles, and they are not restricted to the
angles used here. Moreover, point 0 is an arbitrary point, not
necessarily the mass center of the undeformed body, and axes xyz
are not necessarily principal axes of the undeformed body. Clear-
ly, if xyz are chosen as the principal axes with the origin at the
mass center, then the equations of motion can be simplified.

State Equations in Terms of Quasi-Coordinates

Equations (8), and in particular Egs. (8a) and (8b), can be
expressed in more detailed form. To this end, we write the
velocity vector of a typical point P in the body in terms of com-
ponents along the body axes as follows:

p=Vtux(rru)+y=Y+ Fri)ury (9)

where r is the nominal position of P relative to 0. Moreover,

t and i represent skew-symmetric matrices associated with the
vectors r and U, respectively. Then, denoting by o the mass den-
sity, the kinetic energy can be shown to have the expression

T
T =g Ig ovprp a0 = 'y + vsTy 4 VT oy a0
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T - = 17T 1 T
+w ID p(F+l)y dD + 5wl + 5 ID pv'v dD (10)
where § = ID p(F + U)dD, J = ID o(F + U)(F + G)TdD, in which S is
recognized as a skew-symmetric matrix of first moments and J as a
symmetric matrix of mass moments of inertia, both corresponding

to the deformed body. Moreover, we assume that the potential
energy has the functional form V = V(R, 8, u, g',..,g(p)).

Inserting Eq. (10) into Egs. (8) and rearranging, we obtain the
explicit Lagrange's equations in terms of hybrid coordinates

my+sT§+pog dD-(ZS +mV+mS)m-C——R+F (11a)

SV +du+ [ of + )V dD = [2 ) o(F + GV dD + SV - &]w
SRR (11b)
oV + p(F + a)T,;u + v = - oVlu - pi%(r +u) - 20w -Lu + U (1lc)

where Sv = [ oV dD. The state equations are completed by
D
adjoining the kinematical relations

= cTy, § = 0'19, u=v (11d,e,f£)

Illustrative Example

As an illustration, we consider a spacecraft consisting of a
rigid hub and a flexible appendage, as shown in Fig. 3. From
the figure, we can write

r= xi, u= uyg + uzg, v = vyg + V25 (12)
so that
i 0 -_[puzdx j'puydx
S = Ipuzdx fpuzdx -mx (13a)
-fouydx mx 0

where p is the mass density of the appendage, m is the total mass and X is the
position of the mass center of the appendage. Moreover,
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Jxx+fp(u§+u§)dx —fpxuydx -Ipxuzdx
= 2
J = -fpxuydx Jyy+fpuzdx -Ipuyuz:x (13b)
—Ipxuzdx -fpuyuzdx Jzz+fpuydx

where Jx s J amiJzz are the mass moments of inertia of the

T yy

spacecraft regarded as rigid.

Using Egs. (12) and (13), the state equations, Egs. (11), can be
written in the explicit forms

Ry

(cezce3 + 581562563)VX - (cezce3 - selsezce3)vy + celsezvZ (14a)

celse3vx + celce3vy - Selvz {14b)

-(sezca3 - Sel°°2$°3)vx + (592393 + selcazce3)vy + celsezvZ (l4c)

. 593 C93
C93 we = 593 my, 82 =T1wx+-—eImy (144d,e)
$6,86 s6,C8
1°73 1-°3 _ -
Cel X Cel ""y + mzs u = vy9 uZ = VZ (l4f,g,h)

. . _ 2 2
wyfpuz dx - wz]-pu.y dx = mV.ymZ - mVZw‘y + mlx(my + mz) - wxmy_]'puy dx
aVv
wxwz_rouz dx + Zmz_rpvy dx - wafpvz dx - (C92C63 + 591592563) sﬁ;
aVv aVv .
Co,504 Sﬁ; + (sezce3 - selcezse3) Sﬁz +Fy (141i)

N - - 2 2
w fouy dx + mxw, = mV o - MWV, - Xy + (wy + mz)fpuy dx

' aV aV
wymzfpuz dx + 2w fov, dx + (co,503 - S8;58,C03) 3§; - €B,C05 3§;

aV .
(sazse3 + selcezce3) 3§§ + Fy (143)

3 ) ~. — 2 2
mxfpuy dx - mpxo = W - Vo - MiXew, + (wy * my)fpuz dx

aVv 3V v
mymz_rpuy dx + wafpvy dx - €o4s0, 'ﬁ; + 58 -B'R‘; - €6;Co, aRZ + FZ

(14k)
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- (fpuz dx)V‘y + (fpuy dx)VZ + [Jxx + fp(U§ + ug)dx]d:x - (fpxuy dx)o

+

+

y

(Joxu, dx)u, + fp(uyv - uzvy)dx = - (Vyfpuy dx + V_fou, dx)

z
meyfpuy dx + mezfpuz dx + wyWy prUZ dx - wxmzfpxu-y dx

2 2
(my - mi)fpuyuz dx + w w_[J JZZ - fp(uy - Ui)dxl

yz'yy T
s8., aV $6.50
Vv 3 1°°3 av
2o Jolugvy + uyv,)dx - cog 6] " Toy 38, T T coy asy T Mx (141

. . . P .
(fpuzdx)Vx - mpxv, - (J'pxuZ dx)u, + (Jyy + jpuz dx)my - (fpuyuZ dx)u,

+

+

Ip(uzvx - XVZ)dX = mlivymx - (VZIpUZ dx + mI;Vx)wy + Vyszpuz dx
ww (d -3+ [ ul dx) - (w2 - z)f xu_ dx + w w_ [oxu  dx
2%x WWxx z2 Y2 x T WzliPRH, yWzd Py

uxmyfpuyuz dx + 2mxjvay dx - Zmyfpuzvz dx

v P3av 391903 5y
Zwapuzvy dx + 593 -3_9_1 - Eq 3_9; - —*W —3—9_3_ + M.y (14m)

- (_l'puy dx)V, + mlxvy - (j'pxuz dx)w, - (_[puyuZ dx)my + (I, + fpuy dx)u,

+

+

fp(xvy - uyvx)dx =mxVou, + Vzmyfpuy dx - (Vyfpuy dx - V. mx)w,

/ 2 2 2
mxmy(Jxx - J-Y-y + fpuy dx) + (wx - my)fpxuy dx - wywzfpxuz dx

av
mmeIpuyuZ dx + ZmXIpXVZ dx + Zmyfpuyvz dx - 2mzfouyvy dx - 263 + MZ
(14n)
oU ; + pxé + p; = oV_w, - pV w, - pXo w + p(w2 + mz)u
2¥x z y 2%x T PVx¥2 x“y X 2y
owymzuz + vazmx - Lyuy+ Uy (140)
puywX - pry + pVZ = - pVymx + pVXwy - pmemZ - pwywzuy
2 2 -
p(wx + my)uZ - vaywx - Lzuz + UZ (l4p)

where m; is the mass of the appendage, s8; = sin 8, COy = cosei(i
1,2,3) and
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2 L
Ly = 3—7 (Ely§—§) - %; [(f pwzc dC]E;] (15a)
X
2
47=3—2(5123—2 -aX[J‘pw;dc %? (15b)
ax ax

in which E is the modulus of elasticity and Iy and IZ are area
moments of inertia. The operators Ly and Lz include the
effects of bending and of the axial force on the appendage [7].

Summary and Conclusions

In deriving the equations of motion for flexible bodies by the
Lagrangian approach, it is common practice to express the rota-
tional motion in terms of angular velocities about nonorthogonal
axes, which tends to complicate the equations. Moreover, this
creates difficulties in feedback control, in which the torque
actuators apply moments about body axes and the output of sensors
measuring angular motion is also expressed in terms of components
about the body axes. The same can be said about force actuators
and translational motion sensors. It turns out that the equat-
ions of motion are appreciably simpler when the rigid-body trans-
lations and rotations are expressed in terms of components about
the body axes. Such equations can be obtained by introducing the
concept of quasi-coordinates. The concept of quasi-coordinates
was used earlier by this author to derive equations of motion of
rotating bodies with flexible appendages, but never in the
general context considered here. Indeed, in this paper,
Lagrange's equations in terms of quasi-coordinates are derived
for a distributed flexible body undergoing arbitrary rigid-body
translations and rotations, in addition to elastic deforma-
tions. The second-order differential equations in time for the
hybrid system are then transformed into a set of hybrid state
equations suitable for control design. The approach is demon-
strated by deriving the hybrid state equations of motion for a
spacecraft consisting of a rigid body with a flexible appendage
in the form of a beam.
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Simulation, Test and Diagnostics Integrated for a
Safety Design of Magnetic Bearing Prototypes

D. Diez and G. Schweitzer
Institute of Mechanics
ETH Zurich

Abstract

The objective of this work is to provide already in the design phase the basic procedures
for a systematic verification of reliability and safety of a complex mechatronic product,
consisting of hardware and of software. These basic procedures form a selfcontained
software package - the "safety development system" SDS - closely linked to the actual
product. As an example we will apply this development system to the design of magnetic
bearings.

Introduction

In this paper the magnetic bearing system stands for a typical mechatronic system,
consisting of mechanical elements, electronics and built-in software, where safety
requirements are essential. Magnetic bearings are used for the contact free suspension of
rotors. They operate on the basis of a closed loop control system, and their typical
features allow to tackle some of the problems of classical rotor dynamics in a new way.
Quite a number of detailed and specific measures are known to enhance reliability and
safety (redundancy of the electronic hardware, robustness of the control software, etc.),
but the actual efficiency of each such measure cannot be assessed easily. There are no
general rules for the overall safety design of a mechatronic product. Therefore a strategy
for diagnostics and failure control is necessary for these hardware/software products with
safety requirements. Simulation and test methods are required for validation of theoretical
concepts. Monitoring of data is necessary, at least for the prototype to improve the
modeling on-line and off-line. For the magnetic bearing system, which works as a
feedback control system, it is necessary to detect and to distinguish where controller,
sensor and actuator failures occur while preserving system stability. In order to do that at
the design stage already, we present our concept of a safety development system (SDS)
which creates a true working environment for the controller design and for flexible
programming of diagnostic strategies for a mechatronic system.

G. Schweitzer, M. Mansour

Dynamics of Controlled Mechanical Systems
IUTAM/IFAC Symposium Zurich/Switzerland 1988
© Springer-Verlag Berlin Heidelberg 1989
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An important feature of the safety development system is that it is closely linked to the
actual product. From the design stage it carries over safety properties and even hardware
elements into the actual product, in our case the magnetic bearing. It allows to
systematically assess and check safety properties of that product, even during operation,
and it will have specific features and interfaces that enable us to introduce diagnostics and
modifications. The system consists of interacting blocks and is designed as a functional
object oriented system with interactively defined procedure calls. The interface to the user
is implemented on a personal computer and gives interactive access to the other
procedures, for example the interactive configurator or the diagnosis block. As a high
level programming language Modula 2 is used.

The safety development system is being implemented now for a magnetic bearing at the
ETH.

Magnetic Bearings: Function and Application

Let us first introduce the magnetic bearing which we want to refer to as an example and
use it as background for the technical application. Fig. 1 shows the principle of the
electromagnetic suspension: any deviation of the rotor from a reference position is
measured by a suitable sensor, the sensor signal is processed in a controller; the control
signal is amplified and fed to the coils of the electromagnet, thus generating
electromagnetic forces which keep the rotor in a stable hovering position.

Fig. 1: Principle of the magnetic suspension
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Fig. 2: Schematic of the radial suspension of a rotor

Of course for practical applications the set-up has to be more sophisticated, and it usually
includes a multivariable digital control by a microprocessor system as indicated in Fig. 2.
The axial bearing is not shown there. The control laws can be quite demanding as to
robustness and realtime requirements.

The application areas for magnetic bearings make use of their inherent features:

- vacuum techniques, clean or sterile rooms, space applications (no
lubriation, no mechanical wear)

- turbomachinery, machine tool spindles, centrifuges (high speed,
controllable dynamics, high loads, low energy consumption, low
maintenance)

A recent survey on theory and application is given in the Proceedings of the First
International Symposium on Magnetic Bearings /SCH 88/.

Obviously some of the applications require high reliability and safety standards. Magnetic
bearings have qualified for space applications already, demonstrating their potential for
excellent reliability. However, strategies for designing and operating an inherently safe
bearing system in a systematic and econonmic way, are not yet available. As in most
mechatronic systems the contents of built-in software is already high, and it appears to be
a profitable way to make even better use of this already availabe “intelligence” by letting it
contribute to improve safety properties of the product.



54

Failure Examples and Counter Measures

Before giving some examples of possible failure and measures against them it is useful to
recall the definitions for reliability and safety /BIR 85/

Reliability is the quality of a unit to remain operational. It
characterizes the probality to have no interruption of operation during
a certain time.

Safety is the quality of a unit to represent no danger to humans or
environment when the unit fails (technical safety). It is investigated
with reliability theory.

The two terms are related to one another, but there are essential distinctions. A completly
safe system may be the one that does not work at all and is totally unreliable, and a
magnetic bearing that unreliably fails to operate may still coast down safely. Both areas,
however, require extensive investigation of the potential failure sources, their
consequences and the eventual counter-measures,

Typical failure examples for the built-in software are a system breakdown through
incorrect operation, run-time exceptions (division by zero, address error, bus timeout,..),
incompatible program version, or as no complete program test is possible there may be
cases like an endless loop or a wrong branch. Hardware failures within the sensors are
most consequential as the sensors give the primary information. They may be due to
external disturbances, to incorrect adjustment or a defect in the sensor electronics. Other
hardware failures include the breakdown of mechanical parts, defects in the
microcomputer or disturbances in the power supply. All these failures are especially
important when we are dealing with controlled mechanical systems. They usually are built
to transmit forces and motions, that is power, and therefore they are inherently
hazardous.

Measures for increasing the safety and reliabilty are emergency actions and stop
strategies, failure detection, robust control, redundancy, fall back actions with recovery,
major risk area and weak area evaluation, and diagnostics during operation as well as post
mortem.

All these measures certainly do contribute to reduce danger and risks and to support
functioning and operation. But how much do they contribute, and are they really
necessary or only desirable? Implementing all these measures could make the product too
expensive. Therefore these measures have to be checked in a systematic way. We suggest
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to do it in the socalled safety development system (SDS), a strongly software oriented
tool, that assists in doing experiments, to try out ideas, at all levels of the design process,
and that in the end can partially become part of the product itself.

Concept of the Safety Design System

Emphasizing the role of software in the design process and in the mechatronic product
allows us to make the system more “intelligent”, and to address the following most
desirable objectives: detection of complicated failures, optimization of control strategies,
diagnosis and recovery actions, design flexibility and economy. Certainly the increasing
role of built-in software in any product raises new questions connected with the
assessment of software quality. Compared to hardware failures new problems for
example are: there will be no sign of imminent failure (because there is no wear either),
minor repairs may change the whole system, no full tests are possible (because we do not
foresee all possibilities of future use). This means that that the software quality has to be
very high, and this is achieved by using a high level language (in our case Modula-2 with
cross software tools and high level debugger), by using specific libraries with qualified

L USER
interactive user interface on a }
personal computer

( diagnosis j

- )

standartﬂ user
interactive library library

configurator

™ ] test & )
simulation emulation operation

real time multiprocessing system with W
exceptions handling

r PROCESS ]

Fig. 3: Concept of the Safety Design System SDS
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standard components, by using the same basic programs for simulation, emulation and
testing, and by incorporating validation tests.

The structure of the SDS is given in Fig. 3, demonstrating the block configuration of the
SDS and its location between the user and the process. And Fig. 4 gives an overview on
the corresponding experimental setup with a magnetically suspended highly elastic rotor
in the front. The next section specifies some blocks of the SDS, and their tasks will be
presented in some more detail.

Fig. 4: Experimental setup for the magnetic suspension of a highly elastic rotor with the
rotoi—bearing system (a), the sensor unit (b), the process computer consisting of
two MOTOROLA 68000 (c), the amplifiers (d), and an IBM compatible personal
computer with cross-software /HOL 87/ as the user interface ()

Structure and Elements of the SDS

The SDS connects the user and the process. The user has access to the system through a
PC or a workstation, the process usually is addressable through the process computer,
often being & multiprocessor system. The tasks are shared so that the PC is the design
computer with the interactive user interface, the management and programming of
libraries, the interfacing to some host with powerful design and simulation programs
(Promatlab, ACSL), the cross software tools, the interactive configuration, the simulation
of tasks, the off-line diagnosis, the mass memory and the target interface. The process
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computer contains the real time operating system with exceptions handling and
synchronization mechanism, the high speed data monitoring and the peripheral interface.

As an example the block for the diagnosis system with its modules is shown in Fig. 5. It
gets its information from the process or from simulation where the relevant data have to
be retained in a predescribed manner in a ring buffer. In that way any on-line or post-
mortem diagnosis can be performed. After the design phase some modules of the

diagnosis can be permanently assigned to the process computer for further on-line
diagnosis.

USER

(]

\ -
~
( USER INTERFACE

)\
F KNOWLEGDE BASE J
STOP TREND
ANALYSIS ANALYSIS

T

PREPROCESSING

FFT, system Information, etc.

)

L (]

| Process or Simulation \

Fig. 5: Diagnosis system overview

Other examples for the blocks of the SDS are the library system and the interactive
configurator. They have specific and very useful features, adopted from /MAI 88/, which
facilitates their use by an still inexperienced user:
- your work only with blocks, characterized graphically and by name
- the “copy and paste” method is implemented
- the variables are taken from buffers, which can be defined as needed
- a block reads a variable and by doing so connects to another block, thus
supporting a systematic and self-controlling configuration of the blocks
- a block has parameters, and the program asks for them and you only have to
enter the values
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- the import from the libraries into the configurator is made through the reference
files. Through this way the libraries are automatically taken over from the source
code without intermediate steps.

The application of these concepts and some details are shown by the following example
connected to the design of a control element for a current-controlled magnetic suspension.
Fig. 6 shows the block configuration for testing the controller, which could be used for
the suspension of the mass in fig. 1. It demonstrates the simple procedures for switching
between real time operation and simulation. In the upper part of Fig.6 the controller
connects to the AD and the DC converter being part of the real time hardware, in the
lower part the simulation blocks with their interconnections and the relevant notations are
shown. These blocks are laid down in the library and can be looked up there.

Fig. 6: Block configuration for the switching between simulation and real time operation
of the controller

These blocks can be called by the interactive mouse-technique, for example the
“Controller* and the “Magnetic Bearing” with their modules as shown in Fig. 7. A menue
line indicates the kind of operations that can be performed on these blocks and modules.
For building up the realtime test of the controller as suggested in fig. 6, only the modules
“ADC*, “PD-CONTROLLER” and “DAC” have to be called. They are displayed,
automatically together with the variables they write and which they represent. You only
have to assign suitable names to these modules and variables (for example “Controller1”)
just as you want to use it in your layout. Fig. 8 finally shows the “Controllerl” with its
input and output variables and its parameters where the values again have to be entered by
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the user. For the output variable the number of samples to be written into the ring buffer,
too, has to be specified.

Fig. 7: Window for the blocks needed in the task of fig. 6

Fig. 8: Window with specifications of the PD-CONTROLLER
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Design of Analytical Redundancy with Observer for a Magnetic
Bearing

As an example for the application of the SDS, a suggestion for improving sensor
redundancy is investigated. The sensor in the magnetic suspension in fig.1 for measuring
displacements of the rotor from the reference position should give redundant information.
This can be achieved for example by one of the configurations of Fig. 9.

a. b. c.

triplex-sensor-configuration duplex-sensor-configuration  pseudo-duplex-sensor-

(hardware redundancy) (hardware & analytical configuration
redundancy) r=-(x+y)*cos 45°

Fig. 9: Redundancy configurations for the dispacement sensor of the magnetically
suspended rotor

Fig. 10: Analytical redundancy for the displacement sensor with observer

Considering hardware costs the solution ¢ is more desirable, and it has to be investigated
whether it will work. Following a suggestion of /STU 85/ its function can possibly be
improved by adding an observer as shown in Fig. 10. Of course a major problem lies in
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defining a suitable strategy for the failure detection, taking into account sensor
inaccuracies and noise. But at least the simulation of ideas and variations and their
consequences can be investigated easily using the SDS with its configuration support.
The current results indicate that the failure detection is possible, and now the redundancy
system will be implemented. However, a careful calibration of the sensors is necessary,
which requires an additional effort in software. These results have been verified with an

experimental magnetic suspension setup, available at the Institute of Mechanics at the
ETH.

Hardware for the SDS and Portability

The programs for the SDS are written in MODULA-2. Only a few modules are hardware
dependent: for the process computer, usually a multiprocessorsystem, a few hardware
chips, for the PC on the user side the user interfaces. The MODULA-2 software tools are
necessary for additional local programming and for cross programming.

The SDS is being implemented now on the user side with Macintosh Il and MacMETH, a
MODULA-2 software package for Macintosh. The process computer consists of a VME-
System for the 32-bit Motorola Processor family. The additional cross-software with
MacMETH adaption has some very useful time and effort saving features like incremental
linker and cross-debugging tools.

Conclusions

The concept for a Safety Design System (SDS) has been presented which facilitates the
systematic design of a safe mechatronic product. Its application has been shown for the
example of an electromagnetic rotor-bearing system.

The following steps characterize the systematic application of the SDS:

- derive the mathematical models for the elements of the mechatronic
product and chose control strategies as usual

- implement it to the SDS with the Interactive Configurator

- simulate

- improve your system based on simulation results and on diagnostic
results

- build your hardware and connect it to the SDS
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- test your hardware and use your on-line or your off-line diagnostics
to check and to improve safety features

These steps can be easily followed as the SDS creates a true working environment fot the
controller optimization and diagnostic strategies. It allows to eliminate safety relevant
failure sources already in the design phase and to carry over some safety relevant features
like diagnostics into the actual mechatronic product istself. Thereby time and effort for
developing a safe product will be reduced essentially.
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Summary

The modeling of mechanical parts in controlled systems is well
developed. Numerical and symbolical formalisms are available for
the generation of equations of motion 1like ADAMS or NEWEUL,
respectively. However, the dynamical behavior of the actively
controlled servomechanisnms and the corresponding electronic
control devices cannot be modeled with adequate accuracy.
Therefore, a combined dynamical simulation using a software model
of the mechanical parts and a hardware design of the active
elements 1is an economic strategy. However, the problem of the
interfaces between hardware and software has to be solved.

Introduction

In the dynamics of controlled mechanical systems the approach of
multibody systems is most appropriate. The mechanical parts are
modeled as rigid bodies interconnected by bearings, springs,
dampers and actively controlled servomechanisms. Typical examples
for such active mechanical systems are found in robotics, walking
machines, advanced vehicles and magnetically supported high speed
rotors. For the controller design often the state space approach
is used and the devices are realized by electronic components.
From this point of view active mechanical systems represent an

interdisciplinary science also known as mechatronics.

The method of multibody systems has been developed during the last
two decades and the state-of-the-art 1is presented in the
proceedings of IUTAM Symposia edited by Magnus [1] and Bianchi and
Schiehlen [2]; The state space approach is widely used in control
theory for a 1long time and, therefore, only the recent book of
Mansour [3] will be mentioned. The fundamentals of mechatronics
are presented in a survey by Schweitzer [{4].

The paper presents the approach of module design of multibody
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systems. The design offers especially the possibility to partition
a total system in mechanical parts and controlled elements. Then,
the complicated software of the mechanical parts and the actively
controlled servomechanisms interact in a natural way. The
essential variables for the interfaces are shown and the problem
of realtime simulation of the motion of the mechanical parts is
adressed. From another point of view, the approach can be also
interpreted as a more intelligent test rig for hardware elements.

Mechanical Part Modelling

The mechanical parts of a multibody system are given by rigid
bodies with inertia as well as bearings, springs and dampers
without inertia, Fig. 1. According to the free body principle,
each rigid body of the mechanical system is treated separately and
all elements without inertia are replaced by forces. The system's
position is given relative to an inertial frame by the

3xl-translation vector ri(t) of the center of mass Ci and the

3x3-rotation tensor Si(t) written down for each body of the
system, i= 1(1)p .

A free system of p bodies without any mechanical constraint
holds 6p degrees of freedom. Thus, the position of the system
can be uniquely described by 6épxl-position vector

x(t) = [x, x X

1 X2 ce Xgpl - (1)

Typical generalized coordinates of a free system are translational
coordinates,- Euler angles or relative distances. Then, the
system's position can also be represented by

ry=r;(x , S;=8;(x) ,1=11)p . (2)
Further, the translational und rotational velocity and

acceleration, respectively, of the system are found by
differentation with respect to the inertial frame as 3xl-vectors:
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vy o= Hoi(x) X(t) , oy = Hp;(x) X(t) (3)
oo 3Vi .
a; = HTi(x) x(t) + ;;T x(t) ’
oo awi .
a; = HRi(x) x(t) + ~—r x(t) . (4)
IxX

The 3x6p-matrices are Jacobians introduced for abbreviation. For
more details see Ref. [5].

A holonomic system of P bodies and q holonomic, rheonomic

constraints due to rigid bearings and/or active kinematical

elements results in £ = 6p-q positional degrees of freedom. The
constraint equation and its derivative

x = x(y,t) , x=1I(y) y+3% (5)

represent an explicit relation between the 6pxl-position vector
x(t) and the reduced fxl-position vector

Y(E) = [ ¥ ¥y --r YeIT (6)

summarizing the generalized coordinates of the holonomic system.
From (2) and (5) it follows for the system's position

ri = ri(Ylt) ' Si = Si(Ylt) ’ i=211p , (7)

and the accelerations read as

. vy av,
i = Jpi(y,t) y(E) + ;;T y(t) + 5=

o
]

8wi dw.,

ay = I (V,t) Y(E) + o Y(£) + 55 - (8)
Y

at
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The 3xf-Jacobian matrices can be also obtained from
J.,. =H,. I |, J_. =H_. I (9)

reducing the computational work in some cases.

Additionally to the holonomic constraints, in nonholonomic systems
there exist r nonholonomic constraints. The resulting number of
motional degrees of freedom is g = f-r . The nonholonomic
constraint equation and its derivative

. .
L4 L (1) . >
Y = ¥(y.z,t), Y =Ky,z) z+ 2 T y+—=¥gt (10)
ay

show the relation between the fxl-velocity vector §(t) and the
reduced gxl-velocity vector

z(t) = (2, 2, ... zg]T (11)

characterizing the generalized velocities of the nonholonomic

system. From (3), (5) and (10) it follows for the system's
velocity

Vi ='vi(y,Z,t) P @y = wi(YIzlt) (12)

and for the system's acceleration it remains

. vy o 9V
a; = Lo (y.2,t) 2(t) + —x5 ¥y + 55
ay
] . Bwi . awi
a; = LRi(Y'Z't) z(t) + E;T y + 3T - (13)

The nonholonomic constraints are rarely found in engineering

mechanics. Nevertheless, the approach of the generalized
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velocities can be applied to holonomic systems with great

advantage. Generalized velocities are widely used in gyrodynamics.

For the application of Newton's and Euler's equations to multibody
systems, the free body principle has to be used again. For each
body of the system these equations read as

_ efam r ac .

m, a; = fi + fi + fi , 1 = 1(1)p (14)
~ _ ,anm r ac

Ii oy + Wy Ii wy = 1i + li + 1i . (15)

The inertia is represented by the scalar mass my and the 3x3-
inertia tensor Ii with respect of the center of mass Ci of
each body. The forces and torques are 3xl-vectors, all torques
have to be related to the center of mass Ci of each body. The

applied mechanical forces f?m and torques lim

, respectively,
depend on the motion by physical 1laws. Further, the applied

control forces and torques are added. The reaction forces fg and

the reaction torques li , respectively, are due to the

constraints given by (5) and/or (10).

The proportional forces are characterized by the system's position
and time functions:

2 = f?_‘(x,t) . (16)

Conservative forces due to gravity and springs as well as purely
time-varying forces are proportional forces. The proportional-

differential forces depend on position and velocity:
£2 = f?(ic,?c,t) (17)

A parallel spring-damper configuration is a typical example for
this class of forces.
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The reaction forces and torques originate from bearings and
supports. They can be reduced to the generalized constraint forces
summarized in a (g+r)xl-vector as

9(t) = [9) 9y -+ 9y 1" - (18)
Then, it yields

£] = Fi(y,2) 9(t), 1 = L;(v,2) 9(t) (19)
where F. , L, are 3x(g+r)~distribution matrices. The

i i
generalized constraint forces are characteristic design parameters

of bearings and supports. The distribution matrices can be found
by geometrical considerations, too.

Controlled Element Modeling

The controlled elements in multibody systems may be kinematical or
dynamical elements, respectively. A kinematical controlled element
is nothing else than a rheonomic constraint as introduced by (5).
The time history of such a rheonomic constraint is due to a time
dependent control function. A possible delay between the control
function and the kinematical position of the active element can be
modeled by appropriate differential equations.

A dynamical controlled element results in applied forces depending
not only on position and velocity but also the control function.
Usually dynqmical elements show some delay between the control
function and the forces generated. Therefore, additional
differential equations are necessary.

The controlled element Ek , k=1(1)p , is acting between body Ki
and Kj ,- 1,3=1(1)p , see Fig. 1. The nodes P,

k and ij are
characterized by the body~-fixes quantities Uiy s

Vik and ujk ,
ij representing translational vectors and rotational tensors,
respectively. Then, the corresponding kinematical equations of the

element read as
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bk(y) =r; +8; gy - rJ -Sj uJk ’
_ T .T
Ck(y) ij Sj Si Vik ’ (20)
relating node Pik to node ij. In addition, the forces and
. . c c
torques acting to node ij are introduced as fjk . 1jk . Then,

according to the reaction principle, the forces and torques at

node P,

are given as
ik g

ik * (21)
The forces and torques, respectively, generated by element Ek
depend on the kinematics of the multibody system and the control

function u, (t) as

c _ c
ik = T Ppr Gy (8)) . (22)

For state feedback control, the control law reads as

L]
u(t) = - Kpy(t) - K fydt - Ky y(t) (23)
where the control gains are summarized in the matrices KP ' KI .
KD . However, the dynamical behaviour of the element Ek as well

as the phenomena due to digital electronic control devices are not
properly modeled by (22) and (23). Therefore, a combined software-
hardware simulation is a realistic approach. It turns out that the
relative motion of the controlled active element and the forces
and torques generated represent the essential interface variables.

The Newton-Euler equations of the global system are summarized in
matrix notation as follows. The inertial properties are written in
the 6px6p~diagonal matrix M , the 6pxl-force vectors Ec and

Ea represent gyroscopic forces and applied forces, respectively,
in the following scheme
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T

- T.T
g = [f] £3 ... 1] ... LS (24)

Similar schemes are used for the global 6épxf-matrix J and the
global 6pxg-matrix T , respectively, as well as for the global

6px (gq+r)-distribution matrix Q . Then, for holonomic systems
from it is obtained

M3V + C.y.t) = @™y,.y,t) + 0 g(t) + g° (25)

and for nonholonomic systems it follows

ML z(t) + a(v,z,t) = @™y,z,t) + 0 g(t) + g°C . (26)

The Newton~Euler equations represent for all systems 6p scalar
algebraic and differential equations. The numerical solution of
such equations is not straightforward, further mathematical
treatment is recommended.

The dynamical principles of D'Alembert and Jourdain result in
vanishing virtual work of all constraint forces and vanishing
virtual power, respectively. Thus, these principles can be used to
separate the Newton-Euler equations into purely differential
equations for the application of standard solution techniques. The
equations of motion are obtained by premultiplication with the
transposed global Jacobian matrix. Then, three advantages are
achieved simultaneously: i) symmetrization of the inertia matrix,
ii) reduction to minimal order of the differential equation

system, iii) elimination of the constraint forces and torques.
Holonomic systems with proportional - differential forces result

in ordinary multibody systems. The equations of motion are
obtained as -

M(y,t) Y(t) + k(y,¥,t) = ™(yv,v,t) + I (27)

where the fxf-symmetric positive definite inertia matrix M and
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the fxl-vectors k and g of generalized gyroscopic and applied
forces appear. Multibody systems are called general iff they are
not ordinary. Nonholonomic constraints produce general multibody
systems. The complete set of equations read as

L ] -

y = vy(y,z,t),

M(y,z,t) z(t) + k(y,z,t) = ™(y,z,t) + L0q° . (28)

The number of dynamical equations is further reduced now
characterized by the symmetric positive definite gxg-inertia
matrix M and the gxl-vectors k and g of the generalized
gyroscopic and applied forces.

A main problem in the dynamics of multibody systems is the
derivation of the equations of motion. Computer-aided formalisms
represent the adequate solution of the problem. The formalism
NEWEUL uses formula manipulation for the equations of motion
realized by index coding on the basis of FORTRAN 77. This results
in an excellent portability of the formalism. The resulting
symbolical equations of motion offer easy access to all dependent
variables like interface variables.

Intelligent Test Rig

The equations of motion (27) can not be solved by simulation since
the generalized applied control forces ac are not specified
accurately. However, these forces can be measured in a test rig.
For this purpose the hardware controlled element, Fig. 2, is
assembled in .a test rig. The global system is partitioned in
software simulation of the mechanical parts and hardware
measurements of the controlled element. The input variables of the

test rig are the translational and rotational relative motion b

k
’ Ck of element Ek of node ij according to (20). Further, the
information of the state y(t) , y(t) of the system is required

for the electronic control device. The node P.k is fixed in the

test rig and all the forces fjﬁ(t) and torques 1j§(t) are
measured at this boundary of the controlled element.
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The relative motion of node ij can be generated by six position
actuators as shown in Fig. 3. If Bk means the nominal 3xl-vector
between Pik and ij and the 3xl-vectors Tyam * RkAm defining
attachment points Am , 0m in the Pik-fixed frame, m=1(1)6,

then the deviations x of the actuator length 1 read as

Km

ka=l~|bk—Bk+(Ck—E)rkAm—RkAml (29)

where (20) is again to be considered.

It has to be mentioned that the computation has to be executed in
real time. This means that only very simple and very fast
integration codes can be used e.g. the Euler foreward method.
Further, simplifications of the model of the mechanical parts may
be helpful. For this purpose the influence of the generalized
gyroscopic forces has to be checked since these forces are
sometimes very small. With the increasing power and speed of
computers, the real time computation will be less difficult in the
future. The state-of-the-art in real time simulations of a moving
platform has been demonstrated by the Daimler-Benz driving
Simulator, see Drosdol et al. [6].

Active Vehicle Suspension

As a simple example an active automobile suspension will be
treated. A  complete theoretical analysis has been published in
Ref. [7]. Now some simulation results will be presented. The
system 1is defined in Fig. 4, the active element is also simulated
on the computer. Therefore, only the partitioning of the multibody
system is ‘demonstrated. The excitation of the vehicle is due a
quasiperiodic road profile.

Figure 5 shows the excitation and the motion of the mechanical
parts, Fig. 6 presents the forces of the active controlled element
due to the relative motion (91—§2) and the control feedback
u=--k6)°'1 . In real active elements usually both components of the
force are found. In particular, elastic suspensions of a
controlled element result always in forces due to the relative

motion.
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Conclusions

The problem of hardware-software interfaces for dynamical
simulations using the multibody system approach has been treated
in detail. The interface variables are the relative motion at the
one end of the actively controlled element and the forces
generated at the other end of this element. In addition the total
information of the system's state is necessary for feeding the
controller device. An essential problem remains the real time
simulation of the motion of the mechanical parts. Very simple
integration codes 1like Euler's foreward method offer today a
chance for real time computation. It is excepted that the
increasing power of computers will improve this situation.

References

1. Magnus, K. (ed.): Dynamics of multibody systems. Berlin/...:
Springer-Verlag 1978.

2. Bianchi, G.; Schiehlen, W. (eds.): Dynamics of multibody
systems. Berlin/...: Springer-vVerlag 1986.

3. Mansour, M.: Lineare dynamische Systeme. Stuttgart: Teubner
1988.

4. Schweitzer, G.: Mechatronic. Z. angew. Math. Mech., to appear.

5. Schiehlen, W.: Technische Dynamik. Stuttgart: Teubner 1985.

6. Drosdol, J.; Kading, W.; Panik, F.: The Daimler-Benz Driving
Simulator - New technologies demand new instruments. In: The
Dynamics of Vehicles, O. Nordstrém (ed). Lisse: Swets &

Zeitlinger 1986, S. 44-57.

7. Schiehlen,” W.: Optimierung von Radaufhidngungen. Z. angew.
Math.Mech. 61(1981), S. T56-T58.



74

frame

Relative motion

Force

Fig.2. Controlled element

Ky Pqq
by
K
2 D
ig.3. Position actuators 21
Fig.3 osi _i_Ye
. Controlled
OAYMI Mechanical parts element

1y

1

000 Y
-.02
Ye
-04
0 0. 1. 2.

3
) T [secl
Fig.5. Time history of motion

Fig.4. Active suspension

aopo. Y —-

20001481 -0 fe b -

-2000 1Y - DE= HHE=RE 00 - -

-4000.
0. 1

K]
1 [sec)
Fig.6. Time history of force



Graphical Tools



Towards Graphical Programming in Control
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Abstract

A graphical programming language for real-time programming is presented and discussed
with an example. The language is based on well defined interfaces, no side-effects, step-wise
refinement. Each program part is represented in a data flow view and a control flow view. A
Macintosh-style tool supports direct manipulation of the graphical representations, maintains
consistency between the two complementary views, and automatically generates code. An
application engineer implementing a complex control system benefits by a reduced need for
specific computer science skills (e.g. multi-tasking, synchronization) and by better software
documentation, quality, and easier maintainability and reuse. Major computer science aspects
are the step from textual to graphical program representation, the way to compose programs
by connecting available modules, and the target system independence. A program inherently
specifies the most parallel execution but may also be run sequentially.

Introduction

An implementor of a complex, dynamically controlled mechanical system (e.g. a robot) faces
computer science problems such as multi-tasking (in order to support several controllers),
synchronization (dependent controllers), exception handling (coping with faults in the process
to be controlled), low level device control, programming languages, and software engineer-
ing. Often, this knowledge is not available and the resulting software is costly, unreliable,
slow, of pure functionality, and difficult to maintain, i.e. there are enormous difficulties to
achieve the desired performance, to incorporate new sensors, new actuators, or new algo-

rithms, and to reuse software.

With the availability of low cost, high resolution graphical work stations new solutions to
these problems becorhe feasible. A control engineer is used to graphically represent his control
systems in block diagrams for closed loop control and in state or event diagrams for sequenc-
ing control. In computer science similar techniques, e.g. data flow diagrams and flow charts,
are used to represent programs. These similarities are a key to application-oriented program-
ming. Graphical tools with modern man machine interfaces supporting graphical program-
ming languages and automatic code generation are promising solutions towards allowing
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engineers with limited knowledge and experience in computer science to produce high-quality,
low cost, and efficient software within their application domain. Unfortunately most modern
methods - for example SA/SD [1], ProMod, SADT etc. for specification and design or Petri
Nets [2] - do not reduce the skills an application engineer needs. Their positive aspect is that
ideas and designs are represented in diagrams as it is common practice in all established engi-
neering disciplines. But these diagrams still must be translated into code manually and extra
work and the danger of inconsistencies arises when modifications have to be applied to both
the diagrams and the code.

A graphical tool [3, 4] for functional programming of programmable logic controllers within
large scale, continuously working control systems has already been designed and imple-
mented at the ABB Research Center and is in use (e.g. for power plants, transportation sys-
tems, and industrial automation). It has been very well accepted because programs are only
represented graphically for programming, debugging, and documentation. It is used for
continuous open- and closed-loop control problems with a small depth of connectivity. It
mainly supports functional programming by graphical representation of the data flow. The
lack of possibilities to handle events and control flow is the reason why it is not suited for
complex, mixed continuous and event-driven control.

This paper describes a new project at the ABB Research Center which aims to widen the
application domain to general real-time programming. The key idea is to represent each
program part in a data flow view and a separate control flow view. The project is further
influenced by experience made in a general purpose automation controller project |5] at the
IBM Watson Research Center.

The next section discusses our requirements to a graphical programming language. Then the
language definition is presented and illustrated by a programming example. A few details on
the programming tool are given followed by conclusions.

Requirements for a Graphical Programming Language

A graphical programming language needs a precise, complete semantic to allow code genera-
tion. In contrast to this, most diagram techniques only cover specific aspects and do not con-

tain enough semantic to fully represent a program.

Language concepts must be selected carefully to be appropriate for visualization. The attempt
to directly visualize concepts used in textual languages would certainly not lead to optimum

results.

Data flow representations are suited to visualize data dependencies and functional program-
ming. In case of data triggering these dependencies also specify the order of execution. The
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language must support the difference between ordinary data dependencies and data triggering
to unburden the programmer as far as possible.

Control flow representations are suited to visualize dependencies in the order of execution,
events, parallel paths, and synchronization (mutual exclusive blocks, waiting for stimuli).

The language must attempt to hide the target system configuration. Especially the task struc-
ture, which gives the amount of parallelism at run-time on a specific target system, should not
be shown. A program should inherently include the most possible parallelism which may be
mapped differently to different target systems during code generation. (In fact an application
engineer is not interested at all in the task structure. He is thinking in terms of - possibly par-
allel - data dependencies or multiple controllers - which may possibly be executed in parallel.)

Further, the language must be based on commonly accepted computer science concepts as
well defined interfaces, no side-effects, step-wise refinement, and well defined behaviour in
case of errors (exception-handling).

Tool Requirements

The language must be supported by an interactive, menu-driven tool with a user interface
similar to the de-facto standard which has been established by the Macintosh computers.

The basic requirements are on-line syntax check, maintaining consistency between data flow
and control flow automatically (appropriate editing operations necessary), automatic code
generation, and laser printer support to produce graphical documentation.

Definition of a Graphical Programming Language

Data Types

A data type defines a scalar or structured range of values including a default value. Data types
are defined similar to types in Modula-2. If nothing is specified properties of Modula-2 types
may be assumed.

A structured data type is either a RECORD type (fixed size, ordered collection of named
fields of possibly different types) or an ARRAY type (fixed size, ordered collection of num-
bered elements of equal type). A RECORD type definition includes a default value for each
field, an ARRAY type inherits the default value from its base type.

Predefined data types are BOOLEAN, INTEGER, REAL, CHAR, and STRING which is a

variable length, ordered collection of characters terminated by OC.

Additional data types may be defined by the user. If a type definition does not include a
default value, it is copied from the base type or is automatically determined as stated below.



80

- The range of values of an enumeration type is defined by a set of named constants.
The first constant is taken as default value if none is specified.

- The range of values of a subrange type is defined by a low and high bound within the
range of a scalar type. The low bound is taken as default value if none is specified
and if the range does not include the default value of the scalar type.

- A data type re-definition may have the purpose to define a new default value only.

Variables

A variable is a possibly named instance of a data type. A variable is part of a program, a
function implementation, or a device type implementation,

Attributes

An attribute is a named instance of a data type. An attribute is part of a program, a function
implementation, or a device type implementation. Its value does not change during program
execution (as a Modula-2 constant). Attributes are visible from everywhere. They are not
hidden by interfaces. The attribute mode determines whether its value may be set only locally
(mode local) or from everywhere (mode global).

Attributes allow to parametrize functions, devices, and programs conveniently without any
cost at run-time (e.g. coefficients of a controller). If attributes were part of function interfaces,
the definitions of functions would become rather clumsy. Nevertheless, the consistent use of
attributes is checked automatically.

Functions

A function is a named side-effect-free, reentrant operation. Its interface consists of its inputs
and outputs (data flow) and its termination events (control flow). A function instance is part of
a program, a function implementation, or a device type implementation.

The interface of a function must be provided before the function can be instantiated and before
its implementation, which is separate from the definition, can be defined.

Inputs and outputs are named instances of data types. They are called scalar or structured
according to their data type. An input or output is called discrete if one data object is con-
sumed or produced per execution of the function instance. It is called continuous if multiple
data objects are consumed or produced per execution of the function instance.

Similar to an IN-OUT parameter of a conventional procedure, a function output may be bi-

directional, i.e. be read when execution of a function instance starts.

Figure 2 shows examples of function interfaces.
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Devices

A device type is a self-acting RECORD type. An instance of a device type is called a device
an is part of a program, a function implementation, or a device type implementation.

Similar to an I/O peripheral, a device is an abstraction of a task to be performed independently
which is controlled through a data interface. In contrast to a variable, a device is active, i.e. it
may further process or modify its interface data autonomously.

The interface of a device type must be provided before it can be instantiated and before its
implementation, which is separate from the definition, can be defined.

Figure 2 shows the interface of a device type.

A data flow view shows data flow aspects of either the implementation of a function or a
device type, or a program. It consists of function instances, devices, variables, constants, and
data flow connections. Examples are found in figures 1a, 3,4, and 5.

The functions instances must be uniquely named. The function name is used as default name
of the instance as long as only one instance of the function appears within the same data flow

view.

Data flow connections define the flow of data objects between constants, variables, function
instances, and devices. A data flow connection points from a data source to one or several
data sinks. A data flow connection is attached to at least one function instance or an input or
output of the implementation. Constants, variables, and devices must not be connected with
each others directly.

Data triggering is expressed by one or several direct data flow connections between two func-
tion instances. The order of execution within a set of data triggered function instances is fully
specified by the flow of data. The effective flow of control is determined during code genera-
tion automatically. The control flow may be specified explicitly by avoiding data triggering,
i.e. by inserting variables between function instances.

A discrete data flow connection models the flow of one data object per execution of the
attached function instance. Discrete data flow connections may only be attached to discrete
function inputs and outputs. A continuous data flow connection models the flow of multiple
data objects per execution of the attached function instance. Continuous data flow connections
may only be attached to continuous function inputs and outputs.

Data flow connections must obey data type compatibility. If necessary, a data flow connection
of a structured type may be expanded to several connections of the corresponding component
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types or several data flow connections may be compressed to one connection of the corre-
sponding structured type.

Structured data flow connections are graphically represented by thick lines, continuous data
flow connections by double arrows.

Control Flow View

A control flow view shows the control flow aspects of either the implementation of a function
or a device type, or a program. It consists of actions, control flow connections, event sources,
and blocks with parallel paths. Examples are found in figures 1b, 3,4, and 5.

An action is either a function instance or a set of data triggered function instances. Its name
identifies the corresponding function instance(s) in the data flow view. The termination of the
execution of an action is marked by an event. An internal event is visible in the control flow
interface of the corresponding function, i.e. an internal event comes from the action itself. An
external event is a termination condition which cannot be influenced by the action.

Control flow connections define the execution order of actions. A control flow connection

typically points from an event to an action to be executed when the event occurs.
An event source creates multiple events (e.g. an interrupt or a periodic timer, see figure 5).

Devices used within a control flow view appear in the "uses"-list. Devices are initialized first.
In figure 1b the effective flow of control is obtained by nesting the xAxis control flow (see
figure 5) into the "use Servo"-block of the Gripper control flow, the yAxis control flow into
the "use Servo"-block of xAxis, and so on up to the control flow of PickAndPlace.

Standard Functions

A standard expression evaluator function may be used as generic function o perform simple

calculations (see function instances M/ and M2 in figure 4).

The standard action CASE may be used in control flow views to branch on disjunctive condi-

tions each formulated as a boolean expression (see figure 4).

The standard action WAIT may be used to wait on any external events each formulated as
boolean expression (see figure 4).

Programs and-Libraries

A program is the entity which may be executed in a run-time environment. A program consists
of declarations (library imports, data types, functions, and device types), of a data flow view,
and of a control flow view.
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A library is a collection of declarations (data types, functions, and device types). A library
may be imported by several programs.

Programming Example

The use of the language is illustrated with a example of robotics. A program to pick and place
an object is developed starting from servo control and commands as Move to move one or
more axis of a robot and centering Grasp to grasp an object. Many real-world problems (e.g.
a reasonable number of axis and kinematics) have been omitted to allow the example to fit into

this paper.

System Configuration and Control Concepts

The system consists of an X-Y-table with a two-finger gripper moving in X-direction. Each of
the three axis is equipped with an actuator and a absolute position sensor. The two fingers of
the gripper are each furnished with a binary touch sensor.

Each axis is to be controlled by a PI-controller which repeatedly compares the actual position
from the sensor with the desired position and computes new values to be passed to the
actuator.

As long as this desired position is only updated by small increments, it may be assumed that
the actual axis position follows continuously and smoothly. Therefore, the desired position
may also be used as current position of the axis by high level commands, and the interface
from a high level command to an axis consists only of the desired position.

On top of servo control a command Move is used for coordinated straight-line motion of one
or several axis of a robot from their current positions to given goal positions. A Move
consists of two steps. First a trajectory of the motion is planned and parametrized in time, and
then a set point generator repeatedly adjusts the desired positions of the involved servos to

produce a smooth, coordinated movement of all axis.

The purpose of the centering Grasp command is to pick up an object with a gripper furnished
with touch sensors. These sensors are used to avoid that the object is dropped when one
finger of the gripper hits it before the other. A wrist movement to compensate the closing of
the fingers is initiated in case that one finger touches the object first. Moving the fingers and
moving the wrist is done using the Move command.
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Fig. 1a: Data flow view of main program

Implementation

The main program shown in figure 1a (data flow view) and 1b (control flow view) opens the
gripper, moves it to a first point in order to pick up an object, moves to a second point, and
opens the gripper to release the object again.

The three axis and the gripper sensors are shown as devices. A device type Servo is postu-
lated as an abstraction of the servo controller. Its interface consists of the data field pos
modelling the. desired position of the axis. The device type LRSensor models two binary
inputs. Two instances of the function Move and an instance of Grasp access the devices to
perform the desired operations.
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Fig. 1b: Control flow view of main program

Figure 2 shows the interfaces of the functions Move, DMove, and Grasp and of the device
type Servo. DMove is similar io Move but the final position is given by an increment delta
relative to the current position instead of an absolute goal position. The implementations of
Move, Grasp, and Servo follow in figures 3-5.

Depending on the target computer configuration the example would be mapped to different
task structures. In case of a single processor, one task to be invoked every 20 ms would
execute all three instances of Servo. On a multi-processor, the servos could be assigned to
three tasks running on different processors.
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Fig. 2: Interfaces of functions Move, DMove, Grasp and of device type Servo
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Fig. 3: Implementation of function Move
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Fig. 5: Implementation of device type Servo

Programming Tool

A tool to suppoft the language is currently being implemented in Modula-2 on Macintosh II
using object-oriented programming techniques. Portability to other systems (e.g. VAXstation)
will be obtained by applying the Modula-2 Operating System Standard Interface OSSI
including its optional part which covers windowing, graphics, and menus [6].

The Macintosh-style user interface shows the data flow and control flow view of individual
functions, device types, and programs in multiple windows. The editing operations provided
in menus manipulate a program logically and typically affect both its data flow and its control
flow view. Consistency between the two views is maintained automatically.
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The prototype tool will automatically generate Modula-2 code. A rule how to map Modula-2
procedure heads to function interfaces will allow graphical programs to base on existing,
conventional code.

Conclusion

A new approach for real-time programming has been presented based on graphical
representation of both data flow and control flow in two complementary views.

An implementor of complex control systems may expect the following benefits from such a
programming environment: An application engineer will need less computer science knowl-
edge in programming language syntax, multi-tasking, synchronization etc. Problems specific
to the target system like the design of a task structure, of synchronized access of shared data,
and message exchange to realize data flow between functions will no more appear as part of
the program code. Further improvements are expected in software documentation, quality,
reuse, and productivity.

From the computer science point of view there are three major aspects which might have
drastic long term consequences on programming:

- The use of graphics to represent and manipulate programs instead of text.

- The possibility to compose programs by configuring existing modules which do not
know about each other and therefore are fully reusable (programming-in-the-large).

- Independence of target system: Programs defining their most parallel execution are
portable from single processors to multi-processors.

Although a simple example has been given in some detail many questions (e.g. exception
handling, code generation) concerning the language are not yet answered and it is not yet clear
which application areas would benefit most from this rather new way of programming.
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Summary

Space applications include problems where particularly complex
multibody motion needs to be designed, analyzed, and verified:
actively controlled satellites with flexible appendages, docking
spacecraft, space robots on orbiting platforms. Computer simula-
tion is one of the chief means to support these goals. Two
"traditional*® <classes of tools are <characterized by their
capabilities and limitations: nonlinear dynamic simulation soft-
ware and 3D solid model-based CAD systems with kinematic analys-
is features. An environment is proposed where the two classes
can be integrated in a synergistic fashion to support the com-
plete design and analysis cycle. The benefits of this concept
are discussed and realizations at Dornier are introduced to-
gether with examples from recent applications and an outlock on
further developments.

1. GRAPHICAL SIMULATION IN SPACECRAFT DESIGN

The high complexity and extreme demands on current European
space proJjects result in extraordinarily high importance of
pre-mission testing on ground. Yet, some of the most dominant
space conditions <cannot be satisfactorily reproduced in a
laboratory, such as the absence of gravity and the various
orbital dynamicé effects. As a consequence, the emphasis has to
be on kinematic and dynamic simulation for the analysis of per-

formance, operational and functional characteristics.

Besides the obvious importance of computer simulation of con-
trolled electromechanical systems motion such as docking space-

G. Schweitzer, M. Mansour

Dynamics of Controlled Mechanical Systems
IUTAM/IFAC Symposium Zurich/Switzerland 1988
© Springer-Verlag Berlin Heidelberg 1989
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craft or robots on orbiting platforms, the issue of detailed
visualization gains increasingly strong impact on their design
and evaluation. This has strongly promoted the use of 3D solid
model-based interactive computer graphics CAD systems as invalu-

able tools in all phases of product design and development [1].

Hence there have traditionally been two classes of CAE tools
relevant for the verification of complex multibody motion: non-
linear dynamic multibody systems simulation software packages
and 3D solid model-based CAD systems with wultra-realistic
graphics display features, but essentially restricted to kine-
matic motion simulation. This paper will expound typical capa-
bilities and representatives of both families and their distinct
domains of applicability, show up their potential interfaces,
and suggest environments that integrate these capabilities in a
highly beneficial synergy. This will be backed by examples from
our recent experience and supplemented by an outlook on promis-

ing further proceeding.

2. JO0OLS FOR DYNAMIC MULTIBODY SYSTEMS SIMULATION

2.1 Typical Capabilities

The required features of state-of-the-art multibody dynamic

simulation tools can be classified as follows:

Model Formulation

Definition of the kinematic model; dynamic model including
elastic properties, nonlinear sensors, actuators, passive de-
vices; driving inputs; control 1Jaw and application specific

models.

Desired Results

Automatic generation of the overall nonlinear equations of mo-
tion; evolution of the overall system state; nonlinear time
response simulation; frequency domain analysis and modal analys-

is of linearized systems; time domain control law synthesis; and
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graphical output on paper and on terminal screens {2D time

response plots, 3D stick figures).

2.2 Jypical Representatives

Here, a few systems will be presented that are being used at

Dornier for spacecraft and robotics simulation.

2.2.1 General-Purpose Multibody Systems Simulation

DCAP (Dynamics and Control Analysis Package) [2] which will in
the future be <called MIDAS (Multibody Interactive Dynamic
Analysis System) is a major effort of the European Space Agency
ESA to provide an automated design and checking tool for the
dynamics and control of rigid and flexible mechanical struc-
tures. It has traditionally been applied to actively controlled
satellites, but is equally useful for terrestrial systems and
robotics. A good evaluation with respect to elastic robots is
contained in [3]. The chief advantages of DCAP are its wide
scope of applicability (including elastic structures with inter-
faces to FEM data}), high flexibility (user defined models), and
widespread wuse 1in European space industry. Drawbacks are an
inherently 1low efficiency (Lagrange formalism) and low user

friendliness that is only recently being improved.

2.2.2 Robot Dynamics Simulation

For the specific needs of robot dynamics simulation we use
ROBSCAD [4] developed at the TH Darmstadt. A multitude of com-
monly wused robotics modules {rigid 1links, Jjoints, actuators,
sensors, controﬁ schemes, path planning methods, universal kine-
matic coordinate transformation) are selected and parameterized
in an interactive dialog. Other modules can be added by the
user. The robot motion can be commanded by a high level ‘'robot

program*. This makes ROBSCAD very convenient for quick analyses
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of different concepts. Major drawbacks are the restriction to
one rigid robot with no more than 12 Jjoints and the low speed
for high model ccmplexity {(gearbox elasticities, friction, back-
lash). DCAP and ADAMS can be used for robotics problems beyond

that scope {e.g. mobile/multi-arm/multiple robots}).

2.2.3 Specialized Orbital Spacecraft Dynamics Simulation

For the specific problem of AOCS (attitude and orbit control
system) design of spacecraft, a dedicated tool AOCSIM [5] was
established at Dornier. It mainly offers convenience for model-

ing the orbital kinematics and dynamics.

2.3 Inherent Limitations

For the purpose of verification of complex system motion, the

above mentioned tools have a few limitations in common:

e They all provide responses far from 'real-time"'. This is
not surprising given their detailed and involved analysis,
yet extremely bothersome for the assessment of "man-in-the-

loop"' systems such as teleoperated robots.

. They’a11 lack detailed geometric model information and 30D
display qualities. This, however, is essential for assess-
ing complex spatial relationships in moving systems that
often cannot be anticipated (collision, functional or oper-
ational inadequacies) and demand the intuitive information

compactness of pictures.
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3. 30 SOLID MODEL-BASED KINEMATIC SIMULATION CAD TOOLS

3.1 Typical Capabilities

3D Solid Modeling CAD systems that have traditionally only been
viewed in the mechanical design context are becoming increasing-
ly attractive for complex multibody motion verification by
virtue of their kinematic and geometrical analysis capabilities.
For a good survey of 3D solid geometry modeling, see [6]. Basic-

ally, the following features are expected:

Model Formulation

Definition of the 3D solid geometry; the 3D system hierarchy;
the relative location of the entities within the system, the
grouping of such poses into sequences; and definition of the

kinematic model.

Viewing and Display Features

Definition of a parallelrscentral viewing projection, 3D viewport
clipping, a layout of multiple views, a display mode (wire
frame, removal of hidden lines, shaded image displays), lighting

and shading conditions, and labeling and blanking options.

Graphics Qutput

Static or animated 3D displays in the selected viewing and dis-
play mode, with often extremely high realism, at 'real-time®
speeds, and augmented by auxiliary displays (cross sections,

exploded views, transparent parts).

Design Analysis

Distance and angle measurements; automatic computation of pro-
perties such as volume, mass, surface area, center of mass,
moments of inertia of individual entities or the whole system;
automatic inter}erence analysis between any two entities or
groups; kinematic analysis (trajectories of system variables
during prescribed stationary motion, equilibrium forces torques,

traces of points, animation of 3D system motion).
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Robotics Specific Features

Some CAD packages have dedicated robotics tools. They should
offer standard robot 1libraries; specific robots kinematics de-
finition; robot programming commands; displays of robot status;
animated 3D robot kinematic motion simulation; and conversion

into standard robot programming languages.

3.3 Typical Representatives

At Dornier, we mostly use CATIA, CAEDS and CADAM. CADAM still
has less importance in 3D systems analysis and will not be de-

scribed any further.
CATIA:

CATIA (Computer—-graphics Aided Three-dimensional Interactive
Application) [7] is a major commercial CAD,CAM system consisting
of several independent modules for applications such as 2D
drafting, advanced 3D curve and surface design, 3D solid geome-
try design, kinematic analysis, NC machining programming, and
robotics. It meets most of the above listed requirements to a
high degree, with the notable absence of a FEM pre~- and postpro-
cessor (which should become available soon). Especially the
Kinematics and Robotics modules offer excellent interactive
support. Compared with CAEDS, CATIA is faster, has much better
2D drafting and dimensioning and distinctly superior kinematics
and robotics features, but a somehow less systematic internal
structure -and disadvantages for storing system motions on file
for quick re-play. Beyond the standard features, the user may
define application specific macros with the IUA (Interactive
User Access) capability or use a powerful FORTRAN 1library of

CATIA functions for integration with other systems.

CAEDS,I-DEAS:

CAEDS (Computer~Aided Engineering Design System) [8] which is

also marketed as [-DEAS is another major mechanical CAE system
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and in most aspects a direct competitor with similar functional-
ity as CATIA. Its several modules (Object Modeler, System Mode-
ler, Graphics Finite Element Modeler, System Dynamics Analysis)
have a stronger bias towards structural and dynamic analysis and
fewer or no features in 2D drafting and NC machining. CAEDS
includes a kinematics module (®Mechanism Design' within the
System Modeler) and also robotic engineering problems can be
solved, yet with 1less direct support than CATIA. A definite
strong point of CAEDS is its Finite Element pre- and postproces-
sor (mesh generation, solution display on the solid model} which
is important for the simulation of flexible structures. CAEDS
offers good macro programming capabilities, standard data ex-
change, and a complete relational database management system for

internal or external project data.

Robotics Specific CAD Systems

For robot kinematics design, workspace analysis, workcell lay-
out, off-line programming, motion control, and verification, the
capabilities of solid modelers are extremely attractive, espe-
cially when coupled with realistic and highly interactive
graphics for *real-time® evaluation of task execution. Hence, a
number of such dedicated robotics CAD tools have emerged. Sur-
veys are given in [9, 10] and some NASA approaches for space
robots are described in [11, 12].

3.4 Inherent Limitations

For our purpose of complex systems motion verification, the
discussed CAD-type systems have, for all their advantages, the
drawback that no dynamic or control effects are modeled and only
*nominal" motioﬁs are displayed. In a more general context,
their capabilities are not integrated with the dynamic/control
simulation capabilities from Chapter 2. Such an integration is

the subject of the rest of this paper.
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4. AN INTEGRATED ANALYSIS AND SIMULATION ENVIRONMENT

4.1 The Design-sAnalysis Cycle
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Fig. 1: An Integrated Design-/Analysis Environment

After having analyzed the capabilities, benefits, and limita-
tions of both nonlinear dynamic simulation and solid model-based
CAD systehs, we have enough motivation to investigate a potent-
ial integration of the two for a synergistic compound design/
analysis environment such as depicted very generically in Fig.

1. A typical designrsanalysis cycle would then proceed as fol-

Tows:
1. Design of the mechanical system on the CAD Tool.
2. Kinematic analysis on the CAD Tool, i.e. assessing kinema-

tic and operational functionality (for robots: workspace

and dexterity analysis, task programs preparation).
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If necessary, modification of the kinematic and geometric
model on the CAD system (e.g. workcell layout optimization,

avoidance of interferences or obstructions).

(Automatic) extraction of relevant input data for the dy-
namic simulation, most notably on kinematic structure and
topology, geometric, and mass properties of the single
bodies. The more this process can be automated (involving a
conversion between the probably different internal repre-
sentations), the easier it 1is to guarantee consistency
between the CAD and dynamic models - an important issue

when modifications tend to arise frequently !

Augmentation of the inputs to the dynamic simulation tool
by further kinematic model data, all dynamic and control

law descriptions and system loads.

Detailed dynamic simulation, assessing performance, stabil-
ity, robustness of the controlled system. The outputs are
mostly time response trajectory data of dynamic system
variables that can immediately be displayed as conventional
2D plots.

(Automatic) feedback of the dynamic time response simula-
tion data to the CAD tool where they give rise to relative
motion or deflections of the system's bodies. Again this

may involve conversions between internal representations.

Analysis of the (dynamic) system motion in all its physical
detail on the CAD system via animated displays and exploit-
ing all the viewing and display capabilities. This way,
unanticipated behavior and problems due to geometric detail
can become immediately obvious {collisions, clearances).
The analytical interference checking feature of the solid
modeler will not rely on inspection alone to detect mal-
functions, which 1is very important for complex and in-

tricately compact mechanisms or environments.

If needed, modifications may be made on the control law and

steps 6 -~ 8 iterated to optimize the dynamic design.
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It may even be desired to modify the geometry or the kinematic
structure. In any case, this CAE environment offers features to
analyze the design in a multitude of facets and the automated
coupling relieves the user from tedious housekeeping and permits
to concentrate on the actual engineering problems. A side bene-
fit will always be excellent documentation by stunningly realis-
tic images or animations which convey understanding and verifi-
cation of even very complex spatial system motion in an appeal-

ingly compact and intuitive fashion.

4.2 Realization of Inteqrated Design-sAnalysis CAE Tools

At Dornier, work along the outlined approach has started in 13985
with a coupling of CAEDS and DCAP for rigid multibody systems
[13]. Applications to space robotics have been reported in
[14, 15]. A coupling of CAEDS and ROBSCAD for robotics analysis
was done in [16]. The reason why CAEDS was used in these pro-
jects was that CAEDS offered excellent interface possibilities

that only recently are becoming available for CATIA.

As an example, Fig. 2 shows a detail of a dynamic robot motion
animation on CAEDS. A small experiment manipulator transports a
materials sample from its containment and inserts it into a
melting furnace. The dynamic simulation of the controlled system
was done on DCAP with inputs from the mechanical design on
CAEDS. The critical motion analysis concerns the avoidance of

collisions that may result from dynamic overshoot effects.

Fig. 3 illustrates a few steps during a complex motion whereby a
robot winds filaments on a Y-shaped workpiece in an automated
carbon fiber composite structures manufacturing process. The
coordinated motion of robot and workpiece for generation of
prescribea windings was computed by an application specific
program and the results displayed with CAEDS to study feasibil-
ity (avoidance of collisions) and to derive clues for process

optimization.
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CAEDS Animation of a Robot Filament Winding Motion
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A loose coupling between independently developed and by their
nature rather distinct software tools is of course not optimal
in view of response time and overall performance, but a reason-
able approach when these tools are already available. Recently,
new tools have begun to emerge offering such integrated capabil-
ities for robotics in one homogeneous package: a German ROSI
[17] and a British ROSI [18] (which does not include solid mode-
ling, though).

On a somewhat wider scope, both NASA [11, 19, 20] and ESA [21]
have defined large concepts for space telerobotics simulation
facilities incorporating real-time computer graphics and varying
degrees of dynamic effects for robot system development, mission
and task planning, operator training, and on-line mission sup-
port. A NASA system IDEAS? integrating the IDEAS Solid Modeling
CAE system with spacecraft analysis software for development of
the US Space Station is described in [22].

4.3 Plans for the Future

Motivated by the good experience achieved with rather modest
means, we plan to proceed with a somehow more unifying approach
which is outlined in [23] for robotic engineering. It shall
involve an integrated CAE database, the Daimler-Benz 'CAE Data
Bus" [24] as a generic exchange mechanism, more of CATIA for the
solid modeling, kinematic, and robotic features, and an improved

release of DCAP for multibody dynamic analysis.

5. CONCLUSIONS

After laying out the particular impact of graphical simulation
for verifying the complex multibody motions of spacecraft and
space robotics, two classes of tools for this purpose have been
characterized: nonlinear dynamic simulation software and solid
model-based CAD systems. The message of this paper is that the

benefits of these classes can be greatly augmented by a syner-—
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gistic integration to support the complete design and analysis
cycle of controlled mechanical systems. Examples were given for
more or less complete realizations of this concept and results

from recent applications at Dornier were shown.
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Summary

The theoretical analysis is presented for the active vibration control of

a cantilever beam using a piezoelectric ceramic actuator. Control forces
(moments) are induced by a pair of piezoelectric ceramic actuators par-
tially bonded on the upper and lower side of the beam. The problem is first
reduced to a finite degree of freedom system with the Galerkin method, and
the control is determined by means of the optimal regulator theory. Numer-
ical calculations are carried out for six degree of freedom system, and the
effects of the location and length of the actuator are examined.

1 INTRODUCTION

As structures grow larger and lighter, unexpected vibrations which are
caused due to the lack of the structural stiffness, are easily occurred.
In these cases, usually, the passive vibration control method, in which
the energy of the induced vibrations is absorbed, have been used to
suppress the induced vibrations. Though this type of method with passive
damper has simple configuration and is very effective for vibration sup-
pressions of the structures indeed, when the vibration characteristics of
the system vary with time, the efficiency for vibration suppression decrea-
ses considerably. On the other hand, the active vibration control method,
in which the energy for vibration suppression is applied by the control-
ler, has been recently studied and applied to various kinds of industrial
fields[1, 2].

In this study, an active vibration control for a cantilever beam, which
is one of the fundamental element of the structures, is presented by
using the optimal regulator theory. A pair of piezoelectric ceramic, par-
tially bonded on the upper and lower side of the beam, is used to induce a
control moment as the actuator. In the numerical calculations, the effect
of the location and length of the piezoelectric ceramic on the efficiency

as a vibration damper are examined.

G. Schweitzer, M. Mansour
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108

2 THEORETICAL ANALYSIS
2.1 Dynamic model
Figure 1(a) shows a uniform cantilever beam with length L, cross-sec-
tion area 4, flexural rigidity EI and mass density p. At the upper and
lower side of the beam with distance x, from the clamped edge, a pair of

1
piezoelectric ceramic actuators with length x, -x., is bonded on.

2 1
When the electric current flows through the upper and lower piezo-
electric ceramics in the opposite direction and with the same magnitude,
respectively, the relation between the induced moment M and the added

voltage V is given by

M(t) = k%—i v(t) (1)
p

where d31, hp and k are a piezoelectric constant, the thickness of piezo-
electric ceramics and the constant determined from Young's modulus and the
cross~section geometry of piezoelectric ceramics and beam, respectively
(Figure 2), while ¢ is time. Then, the distributions of induced moment

along the beam become as shown in Figure 1(b).

(a) Coordinate system

©)

Xi Xz

(b) Bending moment diagram

M(t)

R

Lo~ -

Figure 1. Modeling

b : Width
Figure 2. Bending of a combined beam with width b
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On the assumption that the mass and the rigidity of the piezoelectric
ceramics can be neglected, the equation of motions and the boundary condi-

tions of the cantilever beam are given by

31*1‘7(5,‘5) + clasw(E:T) + BZW(E,T) - [86(5’51) _ 36(5’52) ]u('r)
agY dTog! at? 3E 3L 2)
2
w(0,7) = 007 _ 0, 2 w(1,1) _ w1 _ (3)
3 og2 ag3

where 6(E, Ei) is a Dirac delta function and ¢, is a material damping co-

1
efficient, and further, in the foregoing the following non-dimensional para-

meters are used.

- IM(z) - _w R A e
wlt) ==pr = &= w=p, TS L2/oa/ET » °Y T L2/pA/ET (4)

To solve the equation (2), we will apply the Galerkin method to egn(2)

by using the eigen-function of cantilever beam ¢n(E) which satisfy the

boundary conditions (3)

w(E, 1) = 7Z/Ich,,l(r)dan(“:) (5)

and which yields the following equations

n

£{6..a.(t) + cy6..a% a.(t) + 8, .a% a. = ¢, - $h(E)Y ul

o %57 18 0 J(T) i J(T)} {¢7’(52) ¢, (81 1)
(2 =1, 2,---, n)

where aj(T) is unknown time function and the dot stands for differentiation

(6)

with respect to non-dimensional time t, while aj is the non-dimensional

eigen frequency of the beam with order j, and Gi. is the kronecker delta.

2.2 Control design
In order to apply the optimal control theory, equation (6) should be

better rewritten in a state equation form as

2(t) = Az(t) + Bult) (7)

y(t) = Cx(1)
(8)

@) = [ ay(t), ay(t),--, a (1), ay(t), a(t), ", a (1) ! )
0, I 0
A= » B= s = l¢.(g.), 0] (10)
_ o y ’ _ i 70
67/-‘7-0’-!7-, claijaj ¢,L(52) ¢’L(El)
Then, to conduct the vibration control of the beam, it is necessary
to minimize the deflection of the beam as well as the control variable.

Thus, this control problem can be formulated as the optimal regulator prob-
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lem minimizing the performance index as follows:

J = J (xTQx + ru?) dt (11)
0
where @ and py are welghtlng matrix and weighting factor, respectively. The

optimal control variable u(T) which minimize the index s is given by
B -1 7 12
u (1) = -r B Px(t) (12)
in which P is a constant matrix which is obtained as the positive definite
solution of the following Ricatti matrix equation

P +2'p - 2 restp + Q=0 (13)

3 NUMERICAL CALCULATIONS

Based on the preceding analysis, numerical calculations were carried
1’ @ and r
as 0.03, 9.0[f] and 0.5, respectively. The initial conditions of the beam

were assumed as Wqy(l, 0)=0.1, ﬁo(l, 0)=0.

out taking the number 7=6 in equation (5), and the parameters ¢

At first, as an example of the results for vibration control, a com-
parison between the controlled and uncontrolled responses of the deflection
at the top of the beam, and the change of the control variable with time
are shown in Figure 3, when the ceramic actuator is located at £1=0.26,
§2=0.46. In this case, the length of the piezoelectric ceramic was taken
0.2L :52-51=0.2. Concerning the deflection w at the top of the beam, it
is normalized by the initial deflection of wy=0.1, and in the figure,
thinner line corresponds for the result which is not controlled, while
thicker line corresponds for that of controlled. From the figure, it can
be seen that owing to the control variable u* suggested in the lower dia-
gram of the Figure 3, the deflection at the top of the beam can be rapidly
damped. A

In the example as shown in Figure 3, there was no limitation on the
control variable u*. But in actual problems, when we use piezoelectric
ceramic as an actuator, the magnitude of induced moments produced by the
actuator may be limited, from various physical reasons. Then, the results
are shown in Figure 4, when the control variable U has limitted value with
uL=0.2 or 0.05. The initial conditions are the same as in Figure 3. 1In the
figure, thinner lines correspond for the results when uL=0.2, while thicker
lines correspond for those when % —0 0s, respectlvely From the figure,

inspite of the existence of the llmltatlon on u , eXcellent vibration damp-
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Comparison between controlled and uncontrolled responses of
beam at free end, and control variable u*

ing can be seen on the deflection W, except for a little lowering of dam-

ping efficiency for lower value with uL=0.05.

In order to get a higher damping efficiency, it is necessary to carry

out optimal design of the piezoelectric ceramic as an actuator, concerning

on it's location and length. So, at first, we will examine about the loca-

tion of the piezoelectric ceramic actuator. In Figure 5, the variation of

performance index J with the location of the piezoelectric ceramic 51 are
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U=0.20 U.=0.05
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Figure 4. Response of beam at free end and control variable with
limitation on u*
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Figure 5. Variation of J with location of actuator El H 52- §1=0.2
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W/ Wo u*
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Figure 6. Response of beam at free end and control variable : 52-£1=0.2
;(a) £1=0.6, 52=0.8; (b) El=0.0, £2=0.2

shown. In this case, the left-hand side of the edge of the ceramic, which
has length of 52-€1=0.2, is located at gl(ogglgo.a) on the beam. From the
figure, it can be seen that when the actuator is located at the clamped
end of the beam, J takes minimum, whereas J increases as the actuator moves
to the free end.

Here, to make clear the influence of the location of the actuator, on
both the time response of the beam and the control variable, the time res-

ponse of the free end of the beam and the control variable, when the ac-
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tuator is located at El=0.6 where J takes relatively large value, and at
El=0.0 where J takes minimum value, are shown in Figure 6(a) and 6(b).
From Figure 6(b), when the actuator is located at the clamped end of the
beam, it seems clear that the deflection at the top of the beam, suggested
by thicker line, is rapidly damped, and the corresponding control varia-
ble, suggested by thinner line, is a little in comparison with the result
of Figure 6(a), when the actuator is located at the neighborhood of the
free end.

Now, in practically, not all the state variables can be measured. In
such a case, we can use state vector j/(eqn(8)), and instead of eqn(1l), fol-
lowing performance index can be defined

J'= J (y2 + ru?) dt (14)

0
And here, by using the above index, similar diagram can be obtained on

0.02 0.02
, £:-&:i=0-20
J
0.01 - -10.01
0.00 . 0.00
0.00 0.40 0.80

Figure 7. Variation of J'=I:(y2+ ruz)dt with location of actuator El
51-52=0.2
the variation of J,with the location of the actuator, as Figure S. The
results are shown in Figure 7, when EL in eqn(10) was taken as 1.0. As
seems in thg figure, J’takes minimum when the actuator is located at £1=O.0,
and maximum when located at £1=0.8 as similar as in Figure 5. The time
response of the free end of the beam and of the control variable, at this
case, when the actuator is located at 51=0.6 and El=0.0 the same location
in Figure 6, are shown in Figure 8. Comparing Figure 6 with Figure 8, damp-
ing efficiency reduces when we take J/as the performance index. It should
be noted that when the actuator is located at the neighborhood of the free
end of the beam, Fig. 8(a), there seems few suppression of vibration.
Next, we will examine the effect of the length of the piezoelectric

ceramic actuator on the performance of the vibration control. It is a very

important factor for economical aspect as well as the efficiency for dam-
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pers. As an example, the variation of performance index , with the length
of the ceramic 52—51, when the ceramic is bonded on from clamped end of
the beam, are shown in Figure 9. As shown in the figure, J decreases and
tends to a saturated value as the increase of the length. This means that
the length of the actuator is suitably selected, we can make an optimal
vibration control of the beam economically.

The time response of the free end of the beam, and of the control va-
riable, when the length of the actuator 52—51 is 0.1 and 0.5 with §1=0.0,
are shown in Figure 10. Comparing this figure with Figure 6, the length

seems enough with 0.2/, in practically.

W/ o *

1.00 v 0.50
£2=0.10
d
0.50 €:=0-00 ( )J 0.25
0.00 0.00
-0.50 | —_— -4 -0.25
U::

-1.00 e 1 L ~-0.50

0} 2 4 6 8 10

T
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0.50 | ¢1=0-00 4 0.25
0.00 f 0.00
"0050 - —— w 1 _0'25
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T

Figure 10. Response of beam at free end and control variable, with diffe-
rent length of piezoelectric ceramic: €l=0.0; (a) £2=0.1 ; (b) £2=0.5
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4 CONCLUSIONS

Theoretical analysis is presented for the active vibration control
for a cantilever beam using a piezoelectric ceramic actuator. The problem
is solved by using the Galerkin method, and the control is determined by
means of the optimal regqulator theory. The main results obtained in the

range of the present analysis are summarized as follows:

(1) The possibility of the use of a piezoelectric ceramic, as an actuator
for active vibration control of the light weight structures, had been
confirmed.

(2) The numerical simulations on the active vibration control showed good
results, even when there exists the limitation on the performance of
the actuator, which seems to happen in practical problem.

(3) The optimal location of piezoelectric ceramic actuator was found at
the clamped end of the beam. When the length of the actuator is sui-
tably selected, we can make optimal vibration control of the beam, eco-
nomically.

(4) When not all the state variables can be measured, vibration control can
be also conducted by using a feed back of out-put ¥y, but the efficiency
as a damper decreases in this case. To avoid this situation, it is

necessary to use the observer to presume the state variables.
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Fiber Connected Tug of War
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ABSTRACT

“"Tug of War"” is one of the oldest and most popular sports
among the world. The game is simple and known that two teams
pull a rope each other, and one pulls the tug fixed on the
center of rope to its side is the winner. The problem of this
game is that all teams should be gathered at a same place.
Therefore the game between Zurich and Munich was not possible.
The objective of this research is to develop the system to make
the game possible for teams in different places. The system
consists of two machines and fiber connecting them, and a
machine placed at different places is playing a role of the
opponent for each team. The positions of ropes at different
places are controlled to track output of a model driven by the
difference nof the measured forces and the sum of the lengths of
two ropes is controlled not to be varied.

This paper presents a control system for the above
mentioned tug of war. It is implemented in a miniature system,
and checked the validity before the realization of a practical
system. The miniature system worked as expected. The practical

system is to be demonstrated at Aomori-Hakodate Exposition.

1. Introduction

The tug of war was once an official game in Olympiad and is
one of the most popular games in the worid. The game is known
that two teams pull a single rope each other, and the team
bringing tug put on the center of the rope to its side wins,
where a team consists of eight players. Thus the game could be
held only when all teams gathered at one place, and the game
between Zurich and Munich could not be held.

G. Schweitzer, M. Mansour
Dynamics of Controlled Mechanical Systems

IUTAM/IFAC Symposium Zurich/Switzerland 1988
© Springer-Verlag Berlin Heidelberg 1989
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This paper is concerned with the development of the systiem
which makes the tug of war between distant places possible. The
hardware of system is consisting of two machines located at each
place and a fiber connecting them. The machine pulls the rope
according to the reference given by the control system. The
control system has two layers, and the upper layer generates the
reference position based on a model according to the difference
of the forces measured at each rope. The secondary layer is for
the tracking control of the rope position to the output of the
model. The control system is devised based on the idea of the
virtual internal model following control (K.Kosuge, K.Furuta, T.
Yokoyama,1987). The control system of the second layer is
designed based on the model following servo controller (K.
Furuta, K.Komiya,1982), which has been developed from Davison's
servo control and Kreindler's model following control, and the
design algorithm is derived taking use of the idea of K.Furuta
(1987). Moreover, an adaptive controller with siding mode
proposed by J.E.Slotine and W.Li (1987) for a manipulator
control is used as a servo controller in the second layer and
the performance is compared to that of the model following servo
controller.

The control system is designed and implemented by a personal
computer (NEC PC) for the miniature tug of war system. It is
constructed for experimental analysis and evaluation. For the
actual implementation saturation of input devices and winding up
of integfators are considered and a reset method (K.Furuta,K.
Kosuge,M.Yamakita,1985) is employed for the control systems to
prevent such problems. Since this experimental system works
satisfactorily, the practical system has been developed based on
the results as in Photo 1.

2. Problem Formulation

First of all, we will consider desired properties for the
tug of war machine explained in the previous section. They
should be as follows:

1) The exerted tension at each side of the rope is the same

2) Movement of the rope is completely complement, which means
that an absolute value of the movement from the initial
position of one side is the same as that of opponent side and
the signs of the movements are opposite.
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Photo 1 Practical tug of war system : Tug Man

It is, however, impossible to make the system satisfy both
properties. Therefore, our machine is designed to control the
tug position with satisfying the property 1) because victory or
defeat is judged by the movement and players will play the game
or exert the force to a rope by watching it. Since the muvement
is not achieved by direct connection of a rope as the real tug
game, it must be controlled by an actuator according to the
difference of forces given to each rope.

In order to realize such a machine, Model Following Servo
(MFS) mechanism will be employed for each side of machine and it
is divided to two layers concerning to their designed function.
The upper layer generates the reference position based on a
model using the difference of the forces. Usually the model is
designed to simulate the dynamics of the rope. 1f, however, the
game should be 'done with allowing a certain handicap to a team,
it will be easily realized by modifying the model. The lower
layer achieves the position control to track the reference
position given from the upper layer. Therefore the problem can
be divided to two subproblems as follows:

I) How to deéign the model driven by the difference of the
forces.

) How to design the tracking system.
In our system, the model is assumed to be a linear time

invariant system like a mechanical one whose parameters are
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characterized by a mass, a viscosity and a spring constant.
After determing such parameters, the remained problem is how to

design a tracking system which will be explained in the next
section.

3. Design of Control System I

In the following discussion, we will refer an actuator (i.
e. a motor) and a rope to a plant and assign a number 1 or 2 to
each plant for convention. The dynamic equation for each plant
can be represented by

.

Xpi= Aixpi + Bpiupi + dil (1.a)

ypi = Cpixpi + diz’ (i=1, 2) (1.b)

. . 2 . . 2

where upiER is input, XpiER is state, ypiER is output, diIER
is state disturbance and dizeli is observation noise. A linear

time invariant model for an upper layer can be represented by

r= f1 - f2 (2.a)

4 =Ax +Br 2.

dt"m m'm m

ym1= mem (2.¢)

Yo = —mem, 2.d)
where fieR is a measured force, Am, Bm’ Cm are matrices having
proper dimensions and ymi is desired movement for each rope. In

order to achieve quick response for the tracking system, the
difference of the forces is assumed to be output of a sysiem as
follow:

U
qtXr = ALxL (3.a)

-

= C X . (3.b)
r’r

Combining (2.b) and (3.a), the following augmented state model
is obtained.

1/\ _an
atkm = ApXe
where

X A BC
~ m A m mr
xm = y Am =

X 0 A
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The purpose of the servo controller is to keep the error
defined by the following equation as small as possible under
several disturbances.

e, = ypi T Vi (i=1,2) (4)

In order to design the robust servo controller to disturbance or
noise, the following operator is introduced,
= i,j = 2
<I>d(s)dij 0 (i, 1,2) (5)

and it is called a disturbance rejection operator, which is the
same operator defined in (XK.Furuta,1987). Using the operator,

above equations can be rewritten as follows:

¢dxpi = A ¢dxp1 + B Qdupl (6.a)
¢dei = C @dxpl - Cm¢dxm (6.b)
@dx = médxm‘ (6.¢)

Combining (6.a), (6.b) and (6.c), we have a nexit augment system.

¢ .x A. 00O ¢

d pi i dxpi Bpi

dal e, _{c. 0 -C e.

qt i = i m i + 0 ¢dupi' (7)
¢dxm 00 Am ¢dxm

For this augment system the following criterion is minimized.

) 2 2
J(upi) = .YO (IleiuQ + I|¢dupilIR)dt, (8)

where Q is a semi positive definite matrix and R is a positive
definite one. The optimal control to the above criterion can be
obtained by state feedback under come condition as follow
(Kreindler,1969)

Pqupy = F g%, + Fyiep + Fai®aX, (9
Therefore actual input is given by

- ~1 o '
upi = Flixpi + F21¢d e, * F3ixm' ")

4. Design of Control system 1[I

In this section an adaptive controller with sliding mode
(J.E.Slotine and W.Li,1987) for a simple mechanical system is
illustrated. A mechanical system given by
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Ya := mX + ex + kX = u o
where Y:= E; M x] , at= [mec x]7T,

is considered, where the parameters are not known but m is not
zero. The aim of the control system is to make the output of
the plant track the output of a model given by

mxX +c X + Kx = u. (11
mom mom m m

For the above systems a sliding mode is defined as follows

§ 1= x + c0§, c, > 0. (12.a)

where x:= x—xm. (12.b)

In the original paper, the sliding mode S has been introduced to

prevent from using X in the control loop. Here, however, the
sliding mode S has rather meaning of specifying a mode in which
error converges.

The control input of the adaptive controllier with a sliding
mode is given by

m
u= E§ -8 x x] el "KgS
k
1= YC3 -k S, (13)

= e " a e = —/\ A A T
where Yc ¢= [x-S x x] y & = Lm A ’
and the adaptation law is give by
~ -1
a = - ch' (14)

where a contains the estimated parameters and " is a positive
definite matrix. The stability of the closed loop system can be

proved by taking the following functional as a lyapunov
functiaon.

Vity:s %(Sms + 33y, (15)

A

where a:= a - a.

Taking a derivative of eqn. (15),
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SmS + alla

S{mS + [x—S . x:l a - Y. &)

V(t)

Y &y = - s
S(u-Y a} SK4S = 0. (16)

This inequality shows the global stability of the system.

5. Experimental Apparatus

In our experiments the plant is composed of a servo motor,

a pulley and a rope as in Photo 2. Its input and output

relationship can be represented by a fecllowing transfer function
Kpi

Hpi(S) = S(TpiS+l)’ (17)

where input is consumed voltage and output is rotational angle.
In (17) the dynamics due to electric servo between input voltage
and electric current have been ignored because its response is
very fast comparing to that of other parts. Eqn. (17) can be

also represented by a state space equation as follows

Photo 2 Miniature tug of war system
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4 01 0
aTxpi = o -1 Xpi + K upi (18.a)
T T
= 8.
ypy = [1 0]x (18.b)

pi
This equation is corresponding to (l1.a) of the previous section.
The parameters of the plant 1 are as follows:
K = 1.56 [rad/sec/V], T = 1.8 [secl.

Parameters of the plant 2 were assumed to be similar to those of
the plant 1, where they have been determined by an individual
identification procedure. Using such parameters a state space
model of plant 1 is presented by

d_dt'x - 0.0 1.0 |, L. 0.0, 1 (19.a)
P 0.0 -0.16] P 0.98] P

ypr = 1.0 0.0]x (19.b)

The model driven by difference of forces is a mechanical
system given by the following equation.
mym + cym + kym = Gr,
where m is a mass, ¢ is a viscosity, k is a spring constant and
G is a constant gain. Egn. (13) can be also represented by
state space equation as follows :

d 01 0

aTxm = -k -¢ xm + g r (20.a)
m m m

Y, = [1 o] X, (20.b)

In our experiment the spring constant have been set to zero to
simulate the dynamics of a rope. This equation is corresponding
to (2.b) or (11). Since in our experiment we tried to simulate a
real rope as exactly as possible, the model generating reference

position to the tracking system have been chosen as follows
é%xm - 0.0 1.0 x_ + 0.0 r (21.a)
0.0 ~4.0 4.0
Yo = [40.0 0.0] X (21.1)

The pole of the model was chosen by experiments so that the

movement to a force is natural and excessive input was not
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regquired to achieve the movement. And the output gain 40 has
been determined so that the movement of the rope to the exerted

force was long enough.

5. Experimental Result 1

Since in our design of the control system state disturbance
and observation noise are assumed to be constant, the
disturbance rejection operator can be chosen as follow

@d(s) = 5. 22)

Corresponding to the selection of the operator, the control is
determined by

u. = F

t A
pi lixpi + F2iSOeidt + Faixm' 23)

The input r to the model was assumed to be output of an
integrator and its state space model was represented by

é%xr = 0, (24.a)
r = x_. (24.b)

r
Using state space models described above, feedforward or
feedback gain can be determined if Q and R are specified. For
experiments of the miniature mode! Q and R were determined as
follows

Q = 1.0e+6, R=1.0 (25)
Feedforward and feedback gains for these weighting parameters
could be calculated using a CAD system DPACS, which was
developed by Furuta Lab., and they were obtained as

T 3.89¢3 T
F .=|"97-0 F - -316.0, F._.= |4.27e3 (26)
PL ol -14.0 p2 p3
. 1.70e2

Note that the third gain in Fp3 is a feedforward gain from input

of the model to the plant, which will be shown later to be
significant for the stability of the servo system. Fig. 1 shows
the block diagram of the control system I for each machine.

Fig. 2 shows the experimental result of the miniature model
exerted some forces to a rope. The actual controller has been
realized by a digital computer and its sampling interval was 4
[msec]. In order to avoid the problems of saturation of input
devices and winding up of integrators the reset algorithm of
integrators (K.Furuta etc.1985) has been employed in the actual
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controller. Fig. 2 shows that the model following servo
controller gives good tracking performance to the reference

output from the model.

It also shows that the servo controller
is insensitive for par

ameter variation of the plant since plant

2 has a good response to the reference even if parameters of the

system are not identified and are assumed to be similar

to those
of plant 1.
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6. Experimental Result 1[I

The adaptive controller with a sliding mode explained in
the section 4 was also applied to the same plant (18). The
parameters of the control system were as follows

kd= 10000, Cy = 100 and " = 0.1. 27)

Fig. 3 shows the block diagram of the adaptive controller and
Fig. 4 shows the experimental result controlled with those
parameters, where the estimated parameters were set to zero in
advance. The controller was realized by the same digital
computer and the sampling interval was 1 [msec]. In the actual
implementation of the controller the adaptation law was modified
so that the adaptation of the parameters is stopped if control
input exceeds over allowed values, otherwise they were to
diverge. Fig. 4 shows that the controller gives a good response
except small deviation even even if parameters of plants are
completely unknown. Therefore, the controller will be a very
powerful controller if it is difficult to identify parameters of
plant in advance.

7. Analysis of Stability

Sometimes a servo controller controlling a position which
affects the input force to the controlled system leads to
instability of the system. 1In this section the stability of the
system controlled by the model following servo controller

Fig. 3 Block diagram of control system 11
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proposed in the paper is investigated and it will show that the
stability of the system is maintained for vast characteristics
of the environment which is a model of a plaver. For
simplicity it is assumed that force exerted to a rope in a
plant 2 is Kkept constant, and the stability of the plant 1 is
considered. The controlled system which consists of a model and
an actuator is considered as a system whose input is force and

whose output is movement of a rope, and players of a team can be

Controlled Systen s?

M(t) <

Fig. b Block diagram of equivalent closed loop system
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considered as an environment which gives a negative force
feedback to the system if an actuator pulls the rope against
players. (See Fig. 5) It will be valid that the environment can
be modeled as a mechénical system whose parameters depend on
time and position for small change of movement. First we will

assume that the environment is a pure mass whose dynamics is

given by
v = - i =
M(t)ypl f if yp1 s 0 (28.a)
0 = -f if ypl > 0, (28.b)

where ypl is measured from an equilibrium and it has negative

sign if the actuator pulls. The relationship between force and
acceleration can be represented as linear time invariant and the
corresponding transfer function H(s) for the experimental system
is given by
s(14853+207852+135005+44000)
s1416.753+1355%+6125+1100

and its Nyquist plot is given in Fig. 6. As shown that the

H(s)

29)

linear part satisfies the condition of positive realness, we can

apply hyper stability theorem to the closed loop system. As
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denoted in (28), the feedback loop is non-negative, which
ensures the stability of the system. 1t should be noted that it
is crucial for H(s) to be positive real that the model has a
direct part.

Though the environment has been assumed to be a pure mass
in the preceding discussion, the analysis gives a good inference
of the stability for general cases. Concerned about the shape
of the Nyquist plot in Fig. 6 the stability will be kept if the
environment has damping factors. If the environment contains a
spring constant, high gain control may lead instability, but the
control system has large stability margin since high frequency
signals are reduced by unmodeled damping factors.

7. Conclusion

One of realization techniques of a fiber connected tug of
war machine has been proposed and the validity of the control
system was checked by a miniature model. Since the control
system was designed using the idea of virtual internal model
following control, it can be realized that the game is done
under several conditions, i.e. allowing handicaps to a team aor
without an opponent team for a training. It has been also
studied that the servo system in the control system has good
stability under variations of an environment.

The model following servo controller has been implemented
as a controller in a practical tug of war machine based on the
experiments of the miniature machine. Implementation of the
adaptive controller to a practical system however, is under
consideration, but it will be implemented in near future because
it has been convinced that it has similar performance as the
model following servo controller from the experiments and it is
expected that the adaptive controller is to be more robust for a
change of load.

Finally, we would like to stress that it is very
interestinig that one of the oldest sports has been reconstructed
as a 'High Tech.' sports, a fiber connected tug of war, using
modern control theory. There should be other such applications
for which modern technologies can be applied.

Authors acknowledze that the idea of the fiber connected

tug ofwar is given by NTT, and appreciate their support.
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Structure of Magnetic Bearing Control System
for Compensating Unbalance Force

Takeshi Mizuno

Faculty of Engineering, Saitama University, Urawa

Toshiro Higuchi

Institute of Industrial Science, University of Tokyo, Tokyo

summary

A magnetic bearing control system is constructed in which
an unbalanced rotor can be suspended without whirling even if
certain system parameters vary from their nominal values. The
concept of designing the control system is that unbalance
forces are estimated by an observer and cancelled by the
electromagnetic forces of the bearing. It is shown
theoretically that the original controller can suspend the
rotor without whirling for the parameter variations of the
controlled object but loses the property for a change of the
rotational speed. The structure of a new controller is
presented which holds the property even if the rotational
speed is perturbed. The controller is obtained by modifying the
original controller based upon a formula of Laplace transform.

1 Introduction

The magnetic bearing can suspend a rotor without any
mechanical contact and lubrication. For these inherent advan-
tages it has been applied in a various fields: vacuum tech-
niques, space Eechnology, machine tools and so on. An active-
type magnetic bearing has another advantage that the bearing
force acting on the rotor can be controlled actively according
to the states of the rotor. For this property it can have
additional functions which have not been achieved by conven-
tional bearings. Making the most use of this feature, the
authors have developed a control system in which an unbalanced
rotor can be suspended without whirling1). The control system
was designed based upon the theory of output regulation with
internal stabilityz). The concept of design is that the effects
of unbalance are estimated by an observer and are cancelled by
the electromagnetic forces of the bearing according to the
estimation.

In practical application, sensitivity considerations of

G. Schweitzer, M. Mansour
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the designed control system are important because there is
usually a discrepancy between the physical reality and mathe-
matical model. If the designed control system were proved to be
very sensitive to parameter changes, the control method would
be useless in practice. This paper shows that the controller,
which was constructed according to the theory, holds the
property of the output regulation under perturbations of the
nominal models of the controlled object but loses the property
when the rotational speed varies from the nominal value. In
order to overcome this problem the controller is modified to
generate compensation signals by using exogenous signals

synchronized with actual rotation.

2 Equations of Motion for Magnetic Bearing System

A model, which is used for investigation of a typical
totally active magnetic bearing system dynamics, is shown in
Fig.1. Since the rotor is treated as a rigid body in this
paper, it has six degrees of freedom of motion. In order to
keep the rotor rotating about an fixed axis, the magnetic
bearing has to control five degrees of freedom of motion.
Eight electromagnets, which are numbered as@,..., in Fig.1,
are used to control two translational motions and two

rotational motions in the radial directions. Two electromagnets

N
—47F;3
B 411 F
F 6
S \4
9X ——‘/‘ F? 7
Foect 11 Fs
Fs 0 v
X

Fig.1 Basic Model of a totally Fig.2 Coordinate axes and
active magnetic bearing forces acting on the
( - : electromagnets) rotor
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which are numbered as @, are used to control one transla-
tional motion in the axial direction.

To derive the equations of motion a coordinate frame O-xyz
fixed in space is defined as shown in Fig.2; the origin O
corresponds to the center of the rotor S§ in the desired
position and z-axis corresponds to its rotating axis.

The attractive force of the magnet numbered as<:)is
represented as Fpe The directions of F1,".,F8 are also shown
in Fig.2. For small motions about the stationary, F, can be
approxXimated by a linear relation:

FL=Fg-Gd,+Hi, n=1,...,8 (1)
where
Fopistationary force
G,H:coefficients of the linearised model of the magnet

i tincremental current flowing through the winding

d,:incremental gap between the rotor and the magnet

Each 4, is determined by the translational and rotational
displacements of the rotor.
When the rotor is driven to rotate at a constant speed w ,

the equations of motion in the radial directions are given by1)

mis-4st=H(i1~i3+15—i7)+m€w2cos(wt+a) (2)
My -4Gyg=H(i,y-ig+ig-ig)+mew?sin(wt+a) (3)
S \ )
Irex+Iaw9y~4Gl BX
éH(—iz+i4+i6—18)l+(Ir—Ia)Tw2cos(wt+B) (4)
w . )
1,.8,-T,08,-4G1%0,
=H(iq-i3-ig+i7)1+(I.-I_) tw?sin( wt+B) (5)

where
m:mass of the rotor
I ,I.:polar and transverse mass moments of inertia of the
rotor
l:distance between the center of the rotor and the
magnets
a,B:parameters on angular location of static and dynamic
unbalance
eseccentricity of the rotor(amount of static unbalance)
T:angle between the rotational axis and the principal

axis (amount of dynamic unbalance)
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Xg1¥gidisplacements of the rotor center S in x and y

directions

BX,Gy:angular displacements of rotor axis about x and y axes

From egs.(2),...,(5) the dynamics of the magnetic bearing

system is expressed by a set of equations of the type:

X(t)=Ax(t)+Bu(t)+Dw(t)
w(t)=Ew(t)

(6)
(7)

where
x=[xq %, X5 izlt, u=[u, u2]t, w=[w, w2]t
01 0 O 00 00
ala 0 0 cuw B P O pl 1 O E=[o —w}
0 0 0 1 00 00 w 0
0 -cwa 0 0 b 01

The variable and coefficients are defined as shown in Table 1.
It is remarked that the

be exogenous disturbance to the system

effects of unbalance are considered to

k(t)=Ax(t)+Bu(t) (8)
and the dynamics of the disturbance can be described by a

linear constant-coefficient equation (7).

3 Control System Design

This chapter shows the procedure of designing the control
system based upon the theory of output regulation with internal

Table 1 .
Variables and meaning
coefficients in symbol | in subsystem in subsystem
each subsystem related to related to
' translation rotation
X4 Xg ex
Xy Yg ey
u-l l1-l3+i5—l7 —12+l4+l6—18
u, iy-ig+ig-ig ig1-i3-ig+iy
Wy cewlcos(wt+a) (1-c)Tw?cos(wt+B)
Wy cew?sin(wt+a) (1-c)Tw?sin(wt+B)
a 4G/m 461%/1,
H/m H1/I,
c 0 I1,/1,
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stability. The ways of designing are described as follows.

First, define a combined system as

% (t)=A_x_(t)+B u(t) (9)
Yelt)=Cox (t)  (=x(t)) (10)

] AC{AD], BC=[B], Ce=l14 0]
w 0 E 0 14:identity matrix

Output regulation with internal stability is achieved by a

where

control
u(t)=Px_(t) (11)
=P x(t)+P,w(t) (12)
such that

(i) a closed-loop system

%(t)=(A+BP)x(t) (13)
is stable (internal stability) and

(ii) C.expl(A +B P)t]—=0 as t—=00 (14)
(output regulation)

Second, construct a feedback matrix P which satisfies
conditions (i) and (ii). Considering the internal symmetry of

the controlled object, P, is given in the form3)

Pg Py "Pe O
P1=-[ d Pv c ] (15)

pc 0 pd pv
The elements are selected to satisfy the stability conditions:
(s1) (bpg-a)bp,+bp cw>0 (16)

(s2) (bpg-a)(bp,)?-(bp.)2+b*p,p cw>0 (17)

The matrix P, is given in the form

1[1 0}
poc. (18)
27 bg

so that the unbalance forces are cancelled by the magnetic
forces.

Third, an observer which estimates w(t) will be con-
structed since it is difficult to detect the instant value of
w(t) directly during rotor running. According to the observer

theory a second-order observer can be constructed as

Z(t)=(E-VD)z(t)+(-VA+EV-VDV)x(t)-VBu(t) (19)
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wW(t)=z(t)+Vx(t) (20)

where G(t)(:[ﬁ1,Q2]t) denotes an estimator of w(t) and

2z 0 o 0 v
z:{ ], v:
Zy 0 -v 0 o
For convergence the parameter ¢ must satisfy

g > 0 (21)
Consequently the control input u(t) is determined as

u(t)=Pyx(t)-@(t)/b (22)

Substituting egs.(20) and (22) into eq.(19), the state equation

of the observer is transformed as

z2(t)=Ez(t)+Rx(t) (23)

where
ryq Ty Iy 'rzz]
R=
21 T22 11 T2
r11=—0(a—bpd)—vbpc, rq5=0bp,+v(1-c)uw
r21=v(a—bpd)-0bpc, ry5=-vbp,+a(1-cluw

The block diagram of the magnetic bearing system with the
compensator for unbalance is shown in Fig.3. The obtained
dynamic compensator has an internal model of the disturbance,
that is to say, a generator of two-phase alternating signals

whose frequency is equal to the rotational frequency.

4 Sensitivity Analysis

It has been confirmed theoretically and experimentally
that the constructed compensator can remove whirling motion due
to unbalance completely for the nominal model1). In this
chapter the influences of deviations of the system parameters
on the property of output regulation are analysed.

In the sequel a parameter p (p=a, b, c or w) will be re-
presented-as a sum of a nominal value p® and a perturbation Ap.

Define complex variables
X=Xq+3Xy, Usuq+iuy, W=w +iW,, z=21+j2Z,, Q=G1+j§2
(24)
and denote each Laplace-transformed variable by the

corresponding capital. By using these variables the transfer



function representation of the system is written as

1 b =~
X(s)= g (W(s)-25 f(s))
(r11°%4r.5%8)+3(r54%+r,,°%s)
Z2(s)= 11 12 21 22 X(s)

s-jw
N(s)=2(s)+(0-jv)sX(s)

w(0)

w(s)=s—jm
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(25)

(26)

(27)

(28)

where the initial values of the variables but w(t) are set to

be zero for simplicity; t(s) is defined as
t(s)=s?+(bp,-jcw)s+(bpg-a-jbp,)
and rj4° denotes the value of riy

effects of unbalance

X4

compensator for unbalance

(29)

for nominal values of the

Fig.3 Block diagram of the control system with a compensator

for unbalance which has an internal model
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parameters. From egs.(25),...,(27) the estimation by the

observer is obtained as follows.

o-jv

W(s)= 5 t%(s)wW(s) (30)
(s-Juw’)t(s)+(0-3vIt°(s)w

where t%(s) is defined as
t°(s)=s?+(b°p,-jc’w’)s+(b°’pg-a’-jb’p.) (31)

The estimation error of the observer is given by

s—jw°+(0—jv)5:é?)(%3—1)
W(s)-W(s)= - W(s) (32)
s-jw?+{o-3v) E“E(s?
€1
= w(0)+(other terms) (33)
s~-jw
where
J'Aw+(o—jv)E—?;Jw—“)’2 (%3—1 )
cq= (34)

0y
jAm+(0—jv)%n£téJm°;—)

Substituting eq.(30) into (25) we have

s-juw’ W(s)
X(s)= . . (35)
. o ... b t(s) t(s)
(s-Jjw )+(0—Jv)got—(-s(7)
€2
= w(0)+(other terms) (36)
s-jw
where
jAw 1
02;—- (37)

042 ) .
S e T

Assuming that the stability of the closed-loop system
incorporated with the compensator for unbalance is preserved,
the stationary state can be determined by the first term in
eq.{33) or eq.(36). By estimating these terms the following
conclusions on stationary states are obtained.

(1) When only the parameters contained in matrix A vary from
their nominal values, the output of observer converges to the

exact state asymptotically.
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(2) When b varies and the rotational speed is kept a nominal
value, the error of the observer does not converge to zero but
the property of output regulation is hold.

(3) For a change of w, which means that the rotor speed varies
from the nominal value, output regulation fails; for a small
change, the amplitude of whirling motion of the rotor is

proportional to the amplitude of Aw.

5 Modification of the Compensator

Equation (36) implies that if the value of parameter w in
the internal model is set to the actual value, the whirling
motion will disappear. One of the methods by which this
property is obtained is that the parameter w in the controller
is changed adaptively according to the output of a sensor which
detects the angular frequency of the rotor. 1In this chapter
another method will be presented.

The concept of designing is to construct a model of dis-
turbance dynamics by using exogenous signals synchronized with
actual rotation, As is mentioned in Chapter 3, the compensator
has an internal model which generates two-phase alternating
signals whose frequency is set to that of rotation. Instead of
generating the signals, exogenous signals whose frequency is
truly eéual to the rotational frequency will be used.

The dynamics of the compensator, which is shown in Chapter

3, can be described as

Z(s)=F(s)R(s)X(s) (38)
where
1
F(S)=s_jm (39)
R(s):(r11+r125)+j(r21+r225) (40)

The inverse transformed functions of F(s) and R(s)X(s) are
f(t)=exp(jwt) (41)
(%) (E£)=((r1 1419 280043 (91 +15,80)x(£) (42)

where x(0) is assumed to be zero. A formula of the Laplace
transform says that when the response function for a system is
given by the product of two function of s, the corresponding

time function of the system can be found by convolving the
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corresponding two time functions. Applying this formula to

eqg.(38), z(t) can be represented as

t
Z(t)if gl{t-1)(r*x)(1)drT
0

t
=exp(jmty~ ((r11+r1zé%4+j(r21+r22é%4)x(1)exp(—jwr)dr
0

(43)
In eq.(43) the terms to be integrated are composed by a
measurable variable x(t) and sinusoidal signals whose angular
frequency is equal to the rotational frequency. When sinusoidal
signals synchronized with actual rotation are used to calculate
the integration, the critical parameter w contained in the
compensator is automatically set to the exact value. As a
result the property of output regulation is preserved even if
the rotational speed varies from the nominal value. The block

diagram of the modified controller is shown in Fig.4.

6 Simulation
To confirm the effectiveness of the modified controller,
numerical simulations are performed. The values of parameters

used in the simulations are listed in Table 2. In the following

for unbalance using exogenous

cosb sinb synchronized signals

O_Q
N a ks
MIPAS = +
+ _d -
V3t
T T
d
d R
A v=4 21*T225%
Wy —g4 L dE + + a X5
> ] T11+0123¢
o9
dt d
coswt sinwt coswt -sinwt
( synchronous signals )
M Xcos6-ysinb —— |
| e |
| inf+ycosd
AL btk IR P & | Fig.4
} T : Block diagram of a compensator
| ]
| ]

l-function of the component TJ
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Table 2 Parameters and initial conditions used for simulations

nominal values values in perturbed systems
a® 1.00 ct 0.549 case(a) case(b)
b’ 1.00 w? 3.46 a,b,c nominal nominal
values in the desiged controller w 3.11 3.80
Pg 3.26 rqq 2.89 xq(0) -0.0487 -0.0723
Py 2.55 rq, 3.26 %4(0) 0.399 0.471
Pc 2.42 51 -3.10 x5(0) -0.128 -0.124
o] 1.28 oo 1.99 %5(0) -0.152 -0.275
v 0.00 z1(0) 0.00 wq (0) 0.810 1.21
z5(0) 0.00 w5 (0) 0.00 0.00

simulations, w is assumed to decrease (case (a)) or increase
(case(b)) by 10 per cent from its nominal value; all the other
parameters are assumed to be nominal.

Figure 5 and 6 show the responses when the original and
modified compensator for unbalance are used; in the figures
broken lines show the stationary motion of the rotor before the
the compensation for unbalance starts at t=0. When the
compensator with an internal model is used, residual whirling
motion of the rotor is observed. As contrasted with the
original compensator, the modified compensator can completely
eliminate the effects of unbalance on the rotor motion even if
the rotating'speed is perturbed. These results show the

modification is effective.

7 Conclusion

This paper presents the design, sensitivity analysis and
modification of a magnetic bearing control system with
compensation for unbalance. The modified control system, which
uses external signals synchronized with actual rotation, can
remove completely the whirling motion due to rotor unbalance

even if the rotational speed varies from the its nominal wvalue.
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ABSTRACT

This paper selects sensors and actuators (location, type and number) from an
admissible set. We seek an approximate solution to this integer programming problem.
Given the optimal use of the entire admissible set of sensors and actuators, it is possible to
decompose the quadratic cost function into contributions from each stochastic input and
each weighted output. In the past, these suboptimal cost decomposition methods of sensor
and actuator selection have been used to locate perfect (infinite bandwidth) sensors and
actuators on large scale systems. This paper extends these ideas to the more practical case
of imperfect actuators and sensors with dynamics of their own. Secondly, the old cost
decomposition methods are discarded for improved formulas for sensor and actuator
deletion (from the admissible set). These results show that there exists an optimal number
of actuators (it is possible to use too few and too many). Preliminary attempts to solve this
new research question are described. It is also shown that there exists optimal dynamics of
the actuators. NASA’s SCOLE example demonstrates the concepts.

1.0 INTRODUCTION

The objective of this paper is to develop and evaluate a method for the selection of
sensors and actuators in the control of finite-dimensional linear systems using imperfect
sensors and actuators -- devices which do not provide instantaneous responses, but have
dynamics of their own. In addition, the actuator and sensor noise may be correlated. This
important case allows the use of accelerometer sensors (this always yields correlated plant
and measurement noise). Correlation of the noise and the presence of dynamics in the
actuator and sensor devices can significantly affect the optimal selection of both the
number and location of sensors and actuators. Also, the dynamics of these devices can be
tuned for better system performance. (Actuators can be too slow or too fast). Hence, the
algorithms herein produce design requirements (time constants and noise levels permitted)
for actuator devices.

Consider the series connection of three dynamical elements, the actuators described
by the dynamics y,=C,(sI-A,)'B,(u+w;,), the plant described by the dynamics
Yp= Cp(sI—Ap)"pr(ya+W0m), the  sensors  described by the  dynamics
z= Cs(sI—As)“lBs(yp+vin), where

G. Schweitzer, M. Mansour
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IUTAM/IFAC Symposium Zurich/Switzerland 1988
© Springer-Verlag Berlin Heidelberg 1989
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w2 win, wIm, v, ] (1.1)
vty 2 vou ()

are correlated white noise processes

w(t) w U
E [V(t)} wr(), vT(‘t)]=[U V] 3(t—1) (1.2)

and the dimensions of the vectors are
x,€ R™, Xp€ R™, x,e R™, ue R™,
Ya€ R? y e RP, ze R™ ve R™,

In the control of large space structures, the locations of sensors and actuators
becomes a critically significant "degree of freedom” in control design [14-19]. Among
over 60 recent contributions to the sensor and actuator selection (SAS) problem, only [4],
[71, [10], [11], and [12] consider noisy actuators (W, V nonzero). In all cases, the
disturbances are modelled as Gaussian, white, and uncorrelated (W, V diagonal, U = 0).
Most of the SAS literature takes no account of actuator or sensor dynamics. Two
exceptions are McClamrock [19], and Howell and Baxter, [6]. In [1] the authors extend the
cost decomposition approach [2] to accommodate noise correlation between sensor and
actuator noise sources (W, V not diagonal, U#0). A key conclusion in [1] is that the
proper sensor/actuator selection and placement can be drastically affected by noise
correlation. For example, the deletion of a noise source (by making an actuator or sensor
noise free) may degrade performance contrary to the usual expectations when noise sources
are uncorrelated. However, [1] does not handle sensor and actuator dynamics. That is the
contribution of this paper.

A discussion of the effect of actuaror dynamics is given by Goh and Caughey [8].
The analysis of [8] and [9] demonstrates that plant frequencies occurring above the actuator
bandwidth can lead to closed loop instability, even for co-located sensors and actuators.
Goh and Cdughey do not address the problem of selection of dynamic actuators nor
sensors. That is the goal of this paper. The tools of cost decomposition [2-4] have to be
modified substantially to handle this case.

This paper is organized as follows. First the augmented system model including
sensor and actuator dynamics is examined for controllability, observability. These
dynamics are used to define expressions which reflect the effectiveness of each dynamic
actuator or sensor in minimizing the cost function. Finally, the method is illustrated by
application both to small scale numerical examples and to NASA’s SCOLE flexible space
structure model.
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2.0 System Dynamics
The system described by (1.1) has the structure

Xx=Ax +Bu+Dw

y=Cx (2.1a)
z=Mx +v
where
A, 0 O B, B, 0 0O
A=|BC, A, 0], B={0|, D=0 B, 0 (2.1b)
0 BG, A, 0 0 0 B,
C, 00 Xa Win
C= 0c,o " X=fxpl , w=|wo, 2.1c)
Xs Vin

M=[00M,], xeR" n=Ana+np+nS

2.1 Controllability, Observability Properties

Suppose the plant (Ap Bp) is controllable. It is of interest to know whether the
addition of dynamic sensors and actuators will render the system uncontrollable. This
question is resolved by the following result.

Theorem 1:

Suppose A,, Ap, A have no common eigenvalues, and G(s) A Ca(sI—Aa)'lBa,
Gy(5) 2 Cy(s-A) B, Gy(5) 2 C,(sI-A,)'B,. Then (A, B) in (2.1b) is a controllable pair
if and only if

i) (A, B,) is a controllable pair.
ii) rank [N-A,, B,Gy(W] =n,, for all A=M[A,),
iii rank [MI-A,, BGp(MG(M] = ng for all A=A[A].

The proof is an extension of the results in [20] where it is proved that the tandem
connection of two dynamic system (Aj, B, C;) and (A,, By, C,) with transfer functions
G (s) and Gy(s) respectively, is controllable if and only if (Aq, B,) is controllable and rank
[AI-Ag, B,G(W)] = dim(A,), where A =A;[A,], assuming A[A,] # A[A,] for any i, j. To
prove theorem 1, we need only to apply these results to the tandem connection of three
dynamic systems G,(s), Gp(s), G,(s). The reader will recognize i) and ii) as the necessary

and sufficient conditions for controllability of the tandem connection of the actuators and
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plant G,(s) and Gp(s). Condition (iii) readily follows by grouping the plant and the sensors
as the "second" system Gz(s)=Gp(s)Ga(s) and applying the theorem [20] using
G(s) = Gy(s). #

Corollary to Theorem 1:

(A, B) is controllable if (A,, B,), (AP, Bp), (A, By) are all controllable pairs and
a) rank [G,(M)]=a for all k= N[A,].
b) rank [Go(MG,(M)]=pfor all L=L[A].

Proof:

Conditions a) and b) will not decrease the column rank of B,G,(X) or B{G,(A)G,(A)
below that of By, B, respectively. Theorem 1, and full row rank of [Al-A,B ], [AI-A, Bg]
is equivalent to controllability of (Aj, Bp) and (A, By). #

Quite often complete controllability is not required. The following conditions allow
the plant x,, to be controllable even if the entire system is not controllable.

Theorem 2

The plant vector x,

controllable pair where B, 4 B.C..

is completely controllable if and only if (Ap, By is a

Proof:
By definition the plant state x, is controllable if x,, taken as an output of (2.1), is
“output controllable." This requires

rank[C,B, C,AB,C,A’B, --- C,A™'B]=n, (2.2)
where
A, 0 O B,
A=[BC, A, 0|, B=|0 (23)
0 BG, A, 0
Cy=[010].

Now (2.2) becomes, upon substitutions,
rank[B,C,, A,B,C,, AZB,C,, ..., AJ'B,C,l .

This concludes the proof. #
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Remark: Note that the plant Xp is controllable if (Ap, Bp) is controllable and C, has
full row rank.

2.2 Observability
The sensor and actuator dynamics can also hinder our ability to observe the entire
system from the outputs of the sensors. The following result sorts out these circumstances.

Theorem 3:
Suppose A, Ap, A, have no common eigenvalues. Then (A,M) in (2.1) is an
observable pair if and only if
i) (A, C)) is an observable pair
Al-A,
Gs(l)Gp(l)CJ =n, forall 7L=?»i[Ap], AlA,L
A=A,
iii) rank G,MG, =n, forall A=N[AJ.

it) rank

The proof is based upon this result from [ ]: If A; and A, have no common

eigenvalues then the tandem connection of (A, By, C;) and (A,, B,, C,) is observable if and
Al-A,

only if 1) (A,, Cy) is observable and, 2) rank [ GZ(X)CJ =dim A, for all L = 4;[A,]. Now
let (A, B,, C,) represent (A}, By, C;) and the randem connection of (Ap, BP, Cp) and
(A, B;, C)) represent system (A,, B,, C,). Hence, G,(s) = Gs(s)Gp(s), and G(s) = Gy(s). It
follows that the observability of G(s) and G,(s) requires 1) observability of Gy(s) [written
as (Aps, Cps)] and the observability of Gy(s) requires i) and iii). #

Remark: (A, M) is observable if (A,, C,), (Ap, Cp) and (A, C;) are observable pairs and
G;(A) has linearly independent columns for A=A[A[, i=1,2, .., n, and GS(B)GP(B) has
linearly independent columns for § = Xi[Ap], i=1,2,..,nyand B=AfALi=1,2, -+« ng

2.3 Defining the Cost Function

With the properties of the augmented system established, optimal control design for
the augmented system is now considered. In the augmented system (2.1), the actuator
command is given by u(t), the actuator response y,(t) (contained in the augmented output
vector y) is distinct from u(t) due to actuator dynamics. We wish to weight both the input
and the output of the actuators. For this reason, and in view of the relation of y,(t) to the

design goals as discussed above, minimization of cost functions of the form
V=E. [yl + llu@®llF] (2.4a)

and
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Q =diag[Q,;,Q), Q>0 (2.4b)

provides a stable optimal closed-loop solution, provided (A,C) (A, M) are detectable,
(A,D)and (A, B) are stabilizable.

3.0 SELECTION OF DYNAMIC SENSORS AND ACTUATORS
3.1 Closed-Loop Input/Output Cost Analysis

In order to write the expressions for the closed-loop input and output costs, it is first
necessary to put the fully augmented system, under closed loop steady-state optimal state-
estimate feedback control, in the following state space form:

(1) = Ax(t) + Dw(t) (3.1a)
¥(®) = Cx(t) (3.1b)
V=E. V0, V0=yOQ®, (3.1c)
where

X' =lTxl, yT=p1T wi=[wT, V) (3.1d)

A BG D0 Cco Q0 w U
A=lpy A+BG—FMJ D=1y F} ,C= lo G} Q=19 RJ W=\ v] (.Ie)
G =-R7BTk, 0=KA +ATK ~KBR™'B"K +CTQC (3.1
F =[PM™+DUIV™!, 0=[A-DUV'MIP + P[A-DUVM]T (3.1g)

-PMv-MP + DWDT - pUV-lUTDT

Equation (3.1a) describes a linear system driven by zero mean white noise. The
contribution of the ith input w;(t) in the total cost function (3.1c) is called the "input cost".
The contribution of the ith output y;(t) in (3.1b) in the total cost function (3.1c) is called the
"output cost.". Formulas for the input and output costs were first derived in [2] and we shall
cite the essential results that will be needed here.

For the system (3.1) the "output costs" V7, defined by

VY 2 (1I/2)(E .V foy)y;) (3.2a)
are calculated ‘as follows [2]
V¢ =[CXCTQJ; (3.2b)

where X is the steady state covariance satisfying
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0=AX+XAT+DWDT (3.2¢)

and where the output costs satisfy the cost decomposition property

% vVY=V. (3.2d)
i=1
The "input costs" are defined by
V¥ £ (112)(E..QV ow)w;) (3.3a)
and are found from [2]
V¥ = DTSDW]; (3.3b)
where S satisfies
0=ATS+SA +CTQC (3.3¢)

and where the input costs also satisfy the cost decomposition property

Nw
V=V (3.3d)

The input and output costs represent the in situ contributions that the noise inputs and
the system outputs make in the cost function. We may also wish to know the amount by
which the cost function will be reduced if a noise input is eliminated. This amount, AV,
is defined as

AViw =V - VRi (34)

where Vp; is the value of the cost function after the iy, noise inpur is eliminated, (but the
controller is not redesigned) and AV{" is the cost reduction due to eliminating w; A
positive value for AV;" indicates that elimination of the i, input will reduce the cost, while
negative AV,” indicates that a cost increase will follow noise elimination. It was shown in
[1] that the AV maiy be positive or negative in the presence of noise correlation. (Hence,
the concept of "beneficial noise" in linear systems).

Partitioning the matrices W and D facilitates direct solution for the cost reduction,
yielding

AVY =2V - dSdW;; . (3.5)
The closed-loop covariance X may be written

P+N N
N N

(3.6)

where P satisfies eqn (3.1g) and where N satisfies:
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0=N(A+BG)T + (A+BG)N +FVFT (3.7

Also, S has the following form

K+L -L
=, . (3.8)
where K satisfies eqn (3.1f) and where L satisfies
0=L(A-FM)+(A-FM)'L + GTRG (3.9)

For notational convenience the steady state covariance X is partitioned as follows:
X, X2 X3
X =[P+N]=|X}5 X, Xp (3.10)
T T
X3 X3 Xs

Using the notation of (3.10) and the special structure of the closed-loop system matrices in
eqn (3.13) the following expressions may be derived [2] for the output costs

VP =[CX,CoQuli i=1, - ny (3.11a)
VI=[CX,CTQL i=1, - n, (3.11b)
V{#=[GNG™R]; i=1,n, (3.11c)
and for the input costs
V¥ =DTKALDWY;  i=1, o, (3.122)

Vi = DT KALIDW i i=1, -, (3.12b)
Vyes= [FTLFV], i=1,---n, (3.12¢)

and the input cost reductions
AVY =[DTK+L)DW -DTLFUTY;,  i=1, - n, (3.132)
AVY®=[DTK+L)DW = DTLFU™, yiny i=1, - n, (3.13b)
AV =[FTLFV —-FTLFV —-FTLBUJ;. i=1, ---n, (3.13c)

A straightforward approach to the selection of sensors and actuators leads to integer
programming [23]. Due to the numerical intensity of this approach, we seek a suboptimal
alternative. Equations (3.1)-(3.13) provide the ingredients to a "cost decomposition"
approach which motivates our approach. However we shall not use the cost decomposition
of {2], since it does not lead itself to the inclusion of sensor and actuator dynamics. We
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shall also modify the basic formulas of [2], since [2] does not utilize the AV information
available in (3.13).

3.2 Dynamic Actuator Effectiveness Values

Now that the closed-loop input and output costs have been determined for systems
with dynamic sensors and actuators, it remains to use the cost decomposition results (3.11-
3.13) to define expressions which reflect the effectiveness of each sensor and actuator in the
cost function. This section defines the effectiveness values for dynamic actuators. The
approach we recommend for non-dynamic actuators is to subtract the contribution the iy,
actuator’s noise in the cost function from the contribution of its control signal, and to label
this difference the "effectiveness” of the iy, actuator, V', That is,

V&= VE— AVY (3.14)

This subtracts the "bad" from the "good" contributions of the actuator to measure its
effectiveness. This approach is different from [2] due to the AV{" term. In [2] only the
V¥ term from (3.3a) was used in (3.14). The results of applying (3.14) to sensor and
actuator selection for a range of small and large scale examples have demonstrated the
improvement of this approach.

Extending the definition (3.14) for applicability to systems with dynamic actuators,
we proceed as follows. In (3.1) there are two noise sources associated with each actuator:
command noise, w,,, which is filtered by the actuator dynamics; and output noise, wg, which
is additive with the actuator output. Thus, the noise contribution associated with the i
actuator is given by the sum of AV;** and AV;*",

The beneficial control cost for each actuator is not immediately evident. First, recall
that it is the actuatar output y (1), not its input u(t), which drives the system. Next, note that
the contribution of the i, actuator’s output in the cost function, V{*, includes the effects of
noise wy;. That is, even in the open loop (u=0), VY*#0 for [W,];; >0 with dynamics.
Hence, to define the beneficial (control) portion of V{* it is necessary to subtract the portion
of V{* which is due to noise. This can not be accomplished exactly, since the actuator
command u(t) and the command noise w,(t) are correlated for t >T. An approximation is
obtained, however, by solving for V{* when u = 0 (that is, in the open loop). We define the
contribution of wy; to V* and the contribution of u; to V{* as follows, using the open loop

covariance of the actuator states X;:
(V¥ = 1CX.ClQul; (3.152)
and

VP = VP = [V1Y = [CuXX)CTQ,l; (3.15b)
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where X, solves
0=AX,+XAT+B,W,BT. (3.15¢)

Finally, the input costs and the decomposition of the output cost V{* are combined in
an effectiveness formula for dynamic actuators

V= [V - AV — AV, (3.16)

Note that in the absence of command input noise, [VY*]¥ and V;*® are both zero. Also, in
the absence of actuator dynamics, y,(t) is equivalent to u;(t). Thus the expression (3.16)
reduces to the original effectiveness formula of [2] in the absence of actuator dynamics.
Note also that (3.16) is applicable whether or not the actuator noise signals are correlated
with other noise sources, and it is applicable to systems with actuator dynamics of arbitrary
order.

3.3 Dynamic Sensor Effectiveness Values

Unlike the actuator noise, (which has a direct path to the output, independently of the
controllers influence) the noise associated with sensors reaches the system only through the
controller. Since the gains in the Kalman filter of the LQG controller represent an optimal
trade-off of each sensor’s (beneficial) measurement information versus the (performance
degrading) impact of its noise, then a AV’ of large magnitude is indicative of a highly
effective sensor. That is, the fact that a sensor’s noise is being allowed to heavily affect the
cost means that its measurement information is even more critical to performance. For this
reason, the following effectiveness formula for non-dynamic sensors generalized to
accommodate the possibility of noise correlation, was presented in [1]:

v d Avyl . (3.17)

For dynamic sensors there are two possible noise inputs associated with each sensor.
As in the non-dynamic case, both noise inputs reach the system dynamics through the
controller dynamics. Thus a straightforward extension of (3.17) to dynamic sensors is

VI = [AVY®] + [AV™] . (3.18)

Note that this formula is applicable in the presence of sensor dynamics of arbitrary order,
and applies whether or not any of the noise sources are correlated with one another.

These are new formulas and are quite different from the sensor and actuator
effectiveness criteria suggested in [2]. Ref. [2] did not use AV information nor could [2]
handle dynamic devices.

This section concludes with the suggestion that (3.16) and (3.18) provide effective
measures of the contribution of each actuator and sensor in a closed loop optimal LQG
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control (with sensor and actuator dynamics properly included).

CONCLUSIONS

A new method of sensor and actuator selection (SAS) has been derived for
application to systems with dynamic sensors and actuators -- that is, systems in which the
response of the sensors and actuators to their inputs is not instantaneous but governed by
dynamics. The extended SAS method is applicable to systems in which the sensor and
actuator dynamics are of arbitrary order. Application to simple numerical examples in [18]
demonstrates that there usually exists optimal dynamics (an actuator can be too fast and too
slow). This raises new research questions on the optimum component design in large scale
systems.

Application of the actuator selection method in detail to NASA’s SCOLE space
structure demonstrated that even uniform actuator dynamics can affect the optimal
selection of actuators.
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A Simple Active Controller to Supress Helicopter
Air Resonance in Hover and Forward Flight
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Summary

A coupled rotor/fuselage helicopter analysis with the important effects of blade
torsional flexibility, unsteady acrodynamics, and forward flight is presented. This
model is used to illustrate the effect of unsteady acrodynamics, forward flight, and
torsional flexibility on air resonance. Next a nominal configuration, which experi-
cnces air resonance in forward flight, is sclected. A simple multivariable compensator
using conventional swashplate inputs and a single body roll rate measurement is then
designed. The controller design is based on a linecar estimator in conjunction with
optimal feedback gains, and the design is done in the frequency domain using the
Loop Transfer Recovery method. The controller is shown to suppress the air reso-
nance instability throughout wide range helicopter loading conditions and forward
flight spceds.

Nomenclature

Variables with an overbar are dimensional. Unless otherwise stated, variables
without an overbar are non-dimensionalized by the blade mass My, rotor radius R,
and the rotor rate Q.

a Rotor blade lift curve slope

ar Horizontal tail lift curve slope

AR Horizontal tail aspect ratio

A, B, C First order system, control, and output matrices
Blade semi chord

Cao Blade drag coefficient

Caor Horizontal tail drag coefficient

€ Hinge offset o

f Fuseclage drag arca = f/2bR

FFT, GGT State and observation noise covariances

G(s), K(s) System and compensator matrices

Iy Blade flap incrtia about hinge offsct

Lexe Ly Fusclage roll and pitch inertias

J, Blade pitch inertia

J,, 3, Intcgral of the blade flap and lead-lag bending inertias

Kc, K; Feedback and filter gains

Ky Ky, K, Flap, lag, and torsion spring constants

1 Blade length

1 Model error function

L(s) Unstructured multiplicative error matrix

Mg Fusclage mass

Np Number of blades

P., P; Positive semi-definite solutions to the Riccati equation

q. Recovery factor

Q,R State weight and control weight matrices

R, Elastic coupling coefficient

Ry Ryys Ry, Translational degrees of freedom of the fusclage
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Dynamics of Controlled Mechanical Systems
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S(s), T(s) Sensitivity and command response transfer matrices
St Horizontal tail area
Vv Forward flight speced
W, W, State and observation noise processcs
XA Blade acrodynamic center offset from the blade elastic axis
X Yoo Zb Position of the blade center of mass from the hinge offset
Xumer Ly X and Z position of the fusclage center of mass
Xatts Zan X and Z position of the rotor hub center from point M
Xum Lyt X and Z position of the horizontal tail a.c. from point M
U,y System state, control, and input vectors
X,y Estimator state and output vectors
o Rotor trim pitch angle
By Blade precone angle
y Lock number
04,0, 0, Collective, sine, and cosine inputs
0 Pitch of k-th blade
o Solidity ratio = 2Nybfn L
u Advance ratio = V cos(ay )/ RQ
Yy K-th blade angle = ¢ + (k — 1)2n/Ny
Azimuth angle of blade measure from straight aft position
W, Cross over frequency
wp Inplane lead-lag frequency
wp, W, W, Rotating first flap, lag, and torsional blade frequencics
af ¢ ], of ¢ ] Mimimum and Maximum singular values
(*) Derivative wrt to the azimuth angle
MIMO Multiple Input/Multiple Output
SISO Single input/Single output
LTR Loop Transfer Recovery
Introduction

The need to reduce the mechanical complexity and weight of the rotor hub on
helicopters has generated considerable interest in hingeless and bearingless rotors.
Though these new rotor configurations are simple and lightweight they can experience
other undesirable dynamic problems. One important problem that can arise in soft-
in-planc rotor systems is termed “air resonance”, and is a condition where the blade
lead-lag motions strongly interact with the fuselage pitch or roll motion in flight
[1,2] . This acromechanical phenomenon produces large fuselage oscillations and
is clearly undesirable when unstable or weakly stable. The approach to suppressing
ground resonance in articulated rotor systems has been through lcad-lag dampers for
cach rotor blade. This approach can also be applied to air resonance of hingeless
rotors systems, but this solution tends to destroy the mechanical simplicity and acro-
dynamic cleanliness inherent in hingeless and bearingless rotors. Another possible
means of stabilizing or augmenting stability of air resonance is through an active
controller operating with a conventional swashplate. This approach is feasible from
a practical point of view only if it is simple to implement sincc it must compete
against the straightforward mechanical solution to this problem based on lag
dampers. Such an active controlier would need sensing and actuating devices leading
to an expensive system. However, with the inevitable introduction of other active
control devices such as higher harmonic control (HHC) for vibration suppression
[3, 4, 5] this argument is considerably weakened. Vibration control requires sensors
and actuators with bandwidths well above the 1/rev frequency. Since the air reso-
nance instability results in an unstable lead-lag regressing mode (i.c. the mode asso-
ciated with the |1 — w | frequency) these devices would also be sufficient for air
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resonance control.  Thus, sensing and actuator hardware, which may be already
available, could be used for additional purposes below the frequency range intended
for the vibration control objective.

Rescarch in the active control of air and ground resonance has been limited to
a few studies [6,7, 8], where various theoretical active control studies were pre-
sented. The helicopter models used in these studics were quite limited since important
cffects such as torsional flexibility of the rotor blades, forward flight, and unsteady
acrodynamic were all neglected. Furthermore, the studies dealing with the active
control of air resonance did not adequately demonstrate the ability of the control
schemes to operate through the wide range of operating conditions which can
normally be encountered. The primary objectives of this paper are:

(1) To illustrate the importance of unsteady aerodynamics, blade torsional flexibility
and the role of periodic cocfficients (or forward flight) on this problem,

(2) To remove the limitations inherent in previous studies by using a coupled,
rotor/fuselage model, in which the important effects of forward flight, unsteady
acrodynanics, and blade torsional flexibility are included.

(3) To demonstrate the feasibility of designing a simple active controller capable of
suppressing air resonance throughout the flight envelope representive of the wide
range of operating conditions which may be encountered by a helicopter.

Mathematical Model

The mathematical model of the rotor/fuselage system is that of Ref. 9 and 10,
and its salient features are described next. The fuselage is represented as a rigid body
with five degrees of freedom, where three of these are linear translations and two are
angular positions of pitch and roll (Fig. 1). Yaw is ignored since its effect in the air
resonance problem is known to be small. A simple offset hinged spring restrained
rigid blade model is used to represent a hingeless rotor blade (Fig. 2). This assump-
tion simplifies the cquations of motion, while retaining the essential features of the
air resonance problem. In this model, the blade elasticity is concentrated at a single
point called the hinge offset point, and torsional springs are used to represent this
flexibility. The dynamic behavior of the rotor blade is represented by three degrees
of freedom for each blade, which are flap, lag, and torsion motions. The aerodynamic
loads of the rotor blades are bascd on quasi-stcady Greenberg’s theory, which is a two
dimensional potential flow strip theory [11,12]. Compressibility and dynamic stall
cffects are neglected, though they could be important at high advance ratios.
Greenberg's theory is an extension of Theodorsen theory, which accounts for a time
dependent lead-lag motion and constant collective pitch of the blade. Unsteady
acrodynamic effects, which arc created by the time dependent wake shed by the
airfoil as it undergoes arbitrary time dependent motion, are accounted for by using a
dynamic inflow model. This simple model uses a third order set of lincar differential
equations driven by pertubations in the acrodynamic thrust, roll moment, and pitch
moment at the rotor hub. The three states of these equations describe the behavior
of perturbations in the induced inflow through the rotor plane. The model cocffi-
cients used in this paper are those of Ref. 13 .

The cquations of motion of the coupled rotor/fusclage system arc very large and
contain geometrically nonlincar terms due to moderate blade deflections in the acro-
dynamic, incrtial, and structural forces. Furthermore, the coupled rotor/fusclage
cquations have additional complexity due to the presence of the fusclage degrees of
frcedom. To reduce the equations to a manageable size, an ordering scheme is used
in the derivation of the equations of motion to systematically remove the higher order
nonlincar terms [14] . The ordering scheme is based on the assumption that
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1+ O(ed)=1 (1)

which states that terms of order &2 are negligible relative to terms of order unity. The
term ¢ is a non-dimensional parameter, which quantifies the meaning of a “small”
term. For our purposes, it represents the slopes of the deflections of the blades, which
usually are of an order of magnitude which is less than .15. The blade degrees of
freedom are assigned an order of g, while the fusclage degrees of freedom are of order
€32, A symbolic manipulation program is then used to generate the nonlinear sct of
equations of the rotor/fusclage system using the ordering scheme. Five fuselage
cquations result of which three enforce the fusclage translational equilibrium and two
enforce the roll and pitch cquilibrium. The three resulting rotor blade equations are
associated with the flap, lag, and torsional motions of each blade. Also, the aero-
dynamic thrust and roll moments at the hub center are determined for the perturba-
tion acrodynamics in the dynamic inflow cquation. All of these equations can be
found in detail in Ref. 9.

The active control to suppress the air resonance instability is implemented
through a conventional swashplate. The pitch of the k-th rotor blade is given by the
expression

Opk = (60 + AB()) 4 (6 ic + AOIC) COS(lllk) + (015 + AB]S) Siﬂ(l/lk) (2)

The A terms arc small and these represent the active control inputs, while those
without A are the inputs necessary to trim the vehicle.

The stability of the system is determined through the linearization of the
equations of motion about a blade equilibrium solution and the helicopter trim sol-
ution. The helicopter trim and cquilibrium solution are extracted simultancously us-
ing harmonic balance for a straight and level flight condition [10] . After
lincarization, a multi-blade coordinate transformation is applied, which transforms
the set of rotating blade degrees of freedom to a set of hub fixed non-rotating coor-
dinates [15]. This transformation is introduced to take advantage of the favorable
propertics of the non-rotating coordinate representation. The original representation
has periodic coefficients with a fundamental frequency of unity, however, the trans-
formed system has coefficients with a higher fundamental frequency. These higher
frequency periodic terms have a reduced influence on the behavior of the system and
can be ignored in some analyses at low advance ratios [14]. In hover, the original
system has periodic coefficients with a frequency of unity, but the transformed system
has constant coefficients.

Once the transformation is carried out, the system is rewritten in first order
form.

X =A@+ B(Y)u 3)

The fundamental frequency of the coefficient matrices depends on the number of
rotor blades. For an odd bladed system the fundamental frequency is N, per revo-
lution, while for an even bladed system the fundamental frequency is N,/2 per revo-
lution [157". Stability can now be determined using either an eigenvalue analysis or
Floquet theory for the periodic problem in forward flight. An approximate stability
analysis in forward flight is also possible by performing an eigen analysis on the
constant cocfficient portion of the system matrices in Eq. (3) .

The mathematical model was carefully tested by comparing results to other in-
vestigators’ analytical and cxperimental results. The correlation with these results
was good and verified that the effects of torsion, unsteady acrodynamics, and forward
flight were accurately represented in the model [9, 10] .
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Influence of New Modeling Effects on the Helicopter Configuration

The configuration used in this paper is the same as the “Nominal Configuration
in Ref. 10, and the data for the configuration is shown in Table 1 . The parameters
are selected so as to yicld a nominal configuration somewhat similar to the MBB 105
helicopter in size and weight. The nominal configuration differs from the MBB 105
in that it has an unstable air resonance mode, which was induced by adjustments in
some rotor and body parameters. The system has 37 states. The five body degrees
of freedom and the twelve rotor degrees of freedom (three degrees of freedom for each
blade) produce 34 position and rate states. The dynamic inflow model augments the
system with three more states giving a total system order of 37. Figure 3 shows the
pole locations in the s-plane of the dominant modes of the nominal configuration at
1 =0.3. The lead-lag regressing modec is associated with the air resonance instability
and is mildly unstable in this flight condition. It is with the body roll mode that the
lead-lag regressing mode interacts. Thus, for this particular configuration, the domi-
nant body motion of the instability is the rolling motion of the fusclage.

”

TABLE 1
Data of the nominal configuration.

Characteristic Dimensions
Blade mass = 52 kg
Rotor radius = 4.9 m
Rotor rate = 425 RPM

Rotor Data
1=.85 c=.15 wyg; = 1.15 at zero pitch
Xy, = .36 y = 5.0 wy, = .620
I, = .18 Cyg = .01 wry = 3.00
J, = .00015 a = 590 .5 percent damping
Jy, = 0. X, = 0. g = .07
J, = .00015 vy = 0. R, = 1.0
B, = 0. b = 0.02749 N, = 4.0
Fuselage Data
Mg = 32. f = .60
Iy = 1.0 Zayn = 2667
Ieyy = 4.0 mc = 0333
Horizontal Tail Bata
Xyr = 1.0 ar = 5.0
St = .04 Cgor = 007

Figure 4 illustrates the influence of unstecady aerodynamics as well as the the
effect of periodic cocfficients (or forward flight) on the lecad-lag regressing mode
damping of the open loop configuration. The two sets of curves represent air reso-
nance damping of the configuration with quasi-steady acrodynamics and with dy-
namic inflow at various advance ratios. Dynamic inflow captures primarily the low
frequency unstcady acrodynamic effect which is known to be important for coupled
rotor/fuselage acromechanical problems such as air resonance. The stabilizing effect
of forward flight, which is evident in the figure, is consistent with behavior observed
in previous studics [14] . For hover, the system has constant cocfficients and thus
the constant cocfficient approximation and the periodic system produce the samc re-
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sults, as is clearly evident in the figure. It is also evident from the figure that the ef-
fect of periodic coefficients is relatively minor. The quasisteady aerodynamic model
produces a more stable system than the model which includes the unsteady aero-
dynamic effects as represented by the dynamic inflow model. It is also worthwhile
mentioning that considerable differences between the two models exist particularily
at low advance ratios.

Figure 5 shows that neglecting the torsional degree of freedom on the nominal
configuration increases the instability of the lead-lag regressing mode. The trend of
the two curves also tends to diverge at high advance ratios. The addition of torsion
also tends to amplify the effect of the periodic terms. At high values of advance ratio,
the flap-lag-torsion model shows a much greater difference between the constant and
periodic stability analysis than does the flap-lag analysis. Additional results of other
effects can be found in Refs. 9 and 10. Furthermore, in Ref. 10, preliminary control
studies were conducted on the configuration at the nominal weight to assess the im-
portance of various modeling effects. In these studies, simple full state feedback from
the linear deterministic optimal regulator problem was used [16] . The relevant re-
sults that will be used throughout this paper are:

(1) The torsional degree of freedom and unsteady aerodynamics are an important ef-
fect in an air resonance controller design model. Significant errors can arise in the
closed loop damping if these effects are ignored.

(2) The collective pitch input is not important in controlling the air resonance insta-
bility in forward flight up to u = .4.

(3) The periodic cocfficients of the linearized model have a small effect on the open
and closed loop damping of the air resonance mode for advance ratios up to 0.4.
Thus, the constant coefficient approximation of the model should be sufficient for the
initial control design.

The feasibility of using a simple controller to suppress the air resonance insta-
bility throughout a wide range of operating conditions is one of the primary objectives
of this paper. To accomplish this, parameters must be varied and the stability of the
closed loop system must be evaluated. The parameter variations considered in this
paper are limited to those that change during the normal operation of the helicopter.
Thus, the significant parameters are the advance ratio g, fusclage mass My, fuselage
inertias Icyy, Icyy, and the fusclage center of gravity position Xyc and Zyc. Checking
the stability for every combination of these parameters would require an excessive
amount of labor. A more convenient approach consists of introducing approximate
relations which govern the variations of Igy , Iy Zmc » and Xy, resulting from
practical combinations of fuel, cargo and passenger mass which may be encountered
during the normal operation of the aircraft. These relations can be found in Ref. 9.

Since the preliminary studies revealed that the periodic terms are negligible, the
stability analyses presented are based on the constant coefficient model (i.e. the con-
stant portion of A and B of Eq. (3)), unless otherwise indicated. The open loop
lead-lag regressing damping of the helicopter configuration throughout its the flight
regime is shown in Fig. 6. The horizontal axis is the advance ratio, while the vertical
axis is the fuselage mass non-dimensionalized by the blade mass of 52 kg. A non-
dimensional fuselage mass of 32 plus four blades corresponds to the nominal total
mass of 1872 kg. The figure indicates the system experiences an air resonance insta-
bility throughout most of the flight regime. Marginal stability exists at an advance
ratio greater than .35 and the point of the deepest instability is at Mg = 30 and in
the vicinity of hover.
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Compensator Design Method

The controller aimed at suppressing air resonance in the flight envelope of the
helicopter is based on an optimal state estimator in conjunction with optimal feed-
back gains [16] . A constant coefficient model is assumed since the results of the
preliminary control studics [ 10] indicated a periodic model was unnecesary. Sum-
marizing, we assume a linear system of the form

X=Ax+Bu+w, xeR"™ ueR™ €]

y=Cx+w, yesRl (5)

where w, and w, are the state and cbservation noise processes. A few measurements
y are used to drive the estimator

X=AX+Bu+K(y-¥) (6)
y=CX )
K¢=PCl(GGTy™! ®)

The optimal filter gains K; come from the steady state Riccati equation

0=AP;+ PAT + FFT — picT(GGT)~!cp; ©)

where the state and observation noise processes are uncorrelated zero mean white
noise processes with state and observation noise covariances FFT and GGY . The es-
timator states are then used to form the control law

u=-—KX=-R7BTP2 (10)

The feedback gains are determined from the linear quadratic Guassian (LQG) opti-
mal control problém which minimizes

T,
J=E{ lim -‘—J Tx'Qx+uTR u 1dg) (1)
Tf—’oo Tf 0

The matrix Q is the positive semi-definite state weight matrix and R is the positive
definite input weight matrix. The gains result from selecting these weight matrices
and solving for the positive semi-definite solution of

0=ATP,+PA+Q-PBR'BTP, (12)

which is the dual of the filter Riccati cquation. In the s-plane, the estimator and
optimal feedback gains form a compensator
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K(s) = K sl — A + BK, + K,C)"'K; (13)

The approach outlined above is a powerful approach to feedback design, how-
cver, if the design model differs from the actual plant to be controlled, as is the case
of any real system, poor performance and even instability can occur. The possibility
of a controller lacking “robustness” is not surprising since no provision is made to
account for uncertainty in the design process. In all applications, the design model
and the actual plant to be controlled will have unavoidable differences due to the
limitations associated with formulating models of physical systems. Our objective in
this paper is to design a controller at an operating condition and require it to function
adequately at the off design conditions. Thus, the differences between the design
model and the actual plant to be controlled will be exacerbated. An additional
drawback of the design mecthod described above is that there are many possible
choices of design variables in the covariance, state weight, and input weight matrices.
This selection process is difficult without the use of important concepts (c.g. band-
width) that have proved so uscful in SISO time invariant linear control design [17].
To overcome these difficulties, the multivariable frequency domain design methods
of Refs. 18,19, and 20 arc used. This will allow interpretation of the design process
using frequency domain concepts and account for the possibility high frequency
modcling crror. Furthermore, this can be done while retaining the structure of the
state space approach previously described.

With these points in mind, it is now necessary to discuss the design process for
MIMO systems in the frequency domain. The general problem is one of designing a
compensator K(s) to control the MIMO system (G(s) + AG(s)) as shown in Fig. 7.
How the compensator is selected is not important for this brief discussion, but for this
paper it will be accomplished through the state estimator and optimal regulator by
sclecting the filter covariance and regulator weight matrices. In addition to mecting
a given performance spccification is the requirement that the controller do so in the
presence of modeling errors represented by AG(s) in the figure. The specific repre-
sentation of this error is in the form of an unstructured multiplicative uncertainty at
the model output.

G(s)+ AG(s) = L1 + L(s)]G(s) (14)

Other unstructured uncertainty models are available depending on the type of mod-
eling errors one encounters, but for the objectives of this paper (14) is quite sufficient.
What is of particular interest is the singular values of the uncertainty matrix L. In
particular, the maximum singular values, which define the error function.

Im(@) = 7[ L(jw)] (15)

The error function 1. (w) characterizes the magnitude of the modeling error at all
frequencies. The maximum (minimum) singular value of any matrix A is the square
root of the maximum (minimum) cigenvalue of the matrix product AAH, The singu-
lar values arc quantities used to characterize matrices as either “large” or “small”. A
small matrix.is one with a small maximum singular value, while a large matrix is one
with a large minimum singular value. For a system, a typical curve of 1 {w) might
look like Fig. 8a. A high modeling fidelity is shown at the low frequencics, but this
fidelity gives way to large errors when the frequency becomes sufficiently large. Fig-
ure 8b indicates where the singular values of this system might be restricted for the
crror bound shown.

With this specific characterization of the error bound in the model, one can ex-
amine two fundamental aspects of control design, performance and stability. For the
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closed loop system in Fig. 7, a general statement of performance can be found by
using the output sensitivity matrix given by

S(jw) = (1 + G(jw)K(jw)) ™! (16)

Adjustment of the size of this function through K(s) affects the closed loop perform-
ance of the system. High gain results in small S, which gives a closed loop system that
is less sensitive to the disturbance inputs and command inputs shown in Fig. 7. The
closed-loop stability of the system is determined from the MIMO Nyquist stability
criteria, which requires

1
Ip(@)

Equation (17) guarantees stability, of course, if the error in the model is precisely as
in Eq. (14) . This stability requircment demands a low gain at frequencics where the
model uncertainty is high. This is so, since a large error function necessitates small
T(s), which in turn requires a small loop gain. Thus, mecting both performance and
stability requirements is a task of adjusting the singular values of T to small values
when modeling uncertainty is high and adjusting the singular values of S to small
values to give good closed loop performance. These two criteria cannot be met si-
multancously since both T and S cannot be both made arbitrarily small. This is casily
seen when one considers that S+T=1 and a decrease in one always requires a in-
crease in the other.

The design process can be carried out using plots of the singular values of T and
S to adjust the size of cach in the appropriate frequency range [19] . Alternately,
this process can be visualized by using the singular values of the open loop
feedforward cascade GK [18]. Figure 9 shows an example of the singular values of
GK that have been placed between the bounds representing performance and stabil-
ity requirements. The low frequency requirements are to make the lower singular
values clear the performance requirements (high gain to produce small S). The fre-
quency where the error function nears unity is where the loop cross over (i.e. where
o,L T]~1) necds to be placed in order to avoid an instability due to modeling error,
which can be seen from Eq. (17) . When @l T(w)]l < <1, then
5[ T(jw)]~5[ G(jw)K(jw)] and the maximum singular value of the open loop transfer
function GK must be less than the inverse of 1, for stability to be maintained (low
gain for small T).

A convenient ‘means of achicving this loop shape selection is through Loop
Transfer Recovery (LTR), which is outlined in Refs. 18 and 20 . This method can
be considered an optimal balancing of the contradictory requirements of good per-
formance (high gain, small S(s)) and maintaining stability in the face of uncertainty
(low gain, small T(s)). To discuss the mcthod, the input weight matrix is chosen as
R = p2l and the state weight matrix is Q = 2ZHHT + Q, in the optimal regulator. In
the filter, the observation noise covariance is E[wowﬂ = p#l and the state noise
covariance is E[w,wT] = q}FFT . The first step in the method is the filter design,
where p;, qi and F are selected to give an optimal fiiter gain Ky These valucs are
selected to give a desired loop shape defined by the maximum and minimum singular
values of the matrix C(Is — Ay 'K, The guidelines for selecting this loop shape are
those which were previously described for selecting the loop shape G(s)K(s). Once the
desired loop shape is determined, the second step is to recover it through the regulator
by setting H=C and letting q, approach a large enough value. This second step is
based on the result

7L T(jw)] = FLG(s)K(sXI + G(s)K(s) ™11 <

(17)
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G(s)K(s) - C(sl — AY 'K as g, — oo (18)

for minimal phase G(s) (i.c. all transmission zeroes in the left half of the s-plane)
[18,21]. With this result in mind, the statement “ q. large enough” simply means
large enough to recover the desired loop shape that was selected in the filter design.
The requirement that G(s) be minimal phase is necessary since the recovery process
of Eq. (18) inverts the plant dynamics making the zeroes of G(s) the poles of the
compensator K(s). If the zeroes are in the right half of the s-plane, then with a large
enough gain the compensator poles eventually become unstable. The procedure pre-
viously discussed is sometimes referred to as “Sensitivity Recovery” [16].

An important result of interpreting the loop recovery method as an optimal bal-
ancing of T and S is that the frequency regions where C(sl — A) 'K, is large are re-
gions of high penalty on the size of S. Choosing a loop shape that is large in a given
frequency range results in small S, which is a region where good performance is ex-
pected. Thus, choosing a loop shape shape entails placing the peaks of the loop in the
frequency region where “tight” control is desired. Two other propertics of the LTR
method are that the loop shape is guaranteed to have a high frequency runoft pro-
portional to 1/w and it has guaranteed robustness properties at the loop cross over.
Regarding the last item, if the error is precisely as in Eq. (14) , then a 50 percent
modeling crror at the loop cross over is possible without destabilizing the closed loop
system. These two properties are also useful in selecting the loop shapes of the control
design. Since the model is expected to have higher errors in the high frequency re-
gions, the loop runoff can be used to attenuate the effects of these errors by proper
placement of the loop cross over frequency.

Controller Design

The design approach of this paper is to select an operating point to design a
constant gain controller, and use this controller throughout the operating range of the
helicopter. The design point is chosen to be in hover (¢ = 0) with the nominal weight
(M = 32), which is a point near the region of worst instability for the configuration.

A single roll rate measurement of the fuselage and the sinc and cosine swashplate
inputs are chosen to control the instability. The selection of the inputs is based on the
previous control studies, which demonstrated the ineffectiveness of the collective
swashplate input in controlling the air resonance instability in forward flight [10].
The roll rate is sclected as the measurement since it is this motion that the lead-lag
motion of the blades interacts with during the air resonance instability. Examination
of the eigenvectors of the unstable mode confirm this statement showing that the roll
motion is dominant when compared to the pitch motion. The lead-lag degrees of
frecdom of the blades also could serve as measurement. However, it is preferrable to
usec mcasurements taken from a non-rotating reference frame (i.c. the frame of the
fuselage). This avoids the problem of transmiting signals across the rotor head.

The full model with the given sct of inputs and output is not minimal phase,
which is a requirement of the loop recovery method for selecting design loop shapes.
However, a reasonable minimal phase reduced model can be formulated that closely
ressembles the full model input/output characteristics in the frequency range of in-
terest. This is a perfectly acceptable practice provided that the the design model er-
rors are considered during the loop shaping process [20]. The reduced model is
formed by removing modes from the full model. This is accomplished by transform-
ing the full system to block diagonal form and then striking out the states from the
model that are associated with the undesirable modes. The design model that meets
the minimal phase requirement is one consisting of the body roll, body pitch, lead-lag
regressing, and the lead-lag progressing mode. The open loop poles of the design
model arc given in Table 2 and their order is the order of the modes in the model.
The collective and differcntial lead-lag modes are near the frequency range of the air
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resonance instability (Fig. 3), but are not retained since they arc uncontrollable and
unobservable in the hover condition. The low frequency body modes are also not
retained in the model since control over these modes is not the objective of this paper.
These modes are in the frequency range of order .01/rev, which is a full decade below
the frequency range of interest. Thus, it is assumed a high pass filter can be used if
necessary to leave these modes unaffected by the air resonance controller. This would
also prevent any interaction of the controller with pilot inputs or any Stability Aug-
r[ncniation System (SAS) on the vehicle for controlling the low frequency body modes
22].

TABLE 2
Open loop poles of the design model.

-.05231 +j.16818 Body Pitch
.00439 +j.37095 Lcad-Lag Regressing
-09223 +j.40111 Body Roll
-.00634 4 j 1.8335 Lead-Lag Progressing

The design model is eighth order and closely ressembles the full modcl, as can
be seen in the singular value plot of Fig. 10.. The model has only one output, so the
maximum and minimum singular values of the system are the same. The reduced
model is very close to the full model in the frequency range of interest capturing the
peak duc to the lead-lag regressing mode, which is the unstable mode that is to be
controlled. The model also captures the sharp peak of the other dominant mode of
the system, which is the lead-lag progressing mode. Naturally, removal of the higher
and lower frequency modes produces the errors in these regions. The gain and phase
plots for cach input/output combination were also compared for the full and reduced
models and they too showed good agreement up to a frequency ncar 1/rev. A reduced
model is being used in the design and care must be exercised in the placement of the
bandwidth of the controller. The reduced model is valid in the frequency range below
1/rev, so the crossover of the loop shape should not greatly exceed this value.

With the design model chosen, the next step might be to generate the error
function by generating models at various operating points. However, this approach
is of dubious value. In theory, once 1, is defined the closed loop stability can be
checked through Eq. (17) without regencrating the models at the full range of oper-
ating conditions. Unfortunately, as stated before, Eq. (17) is only true if the ecrrors
in the system are precisely as indicated in Eq. (14) (i.e. a multiplicative unstructured
uncertainty at the model output), which is not necessarily the case. Because of this,
a check of the closed loop stability using the controller on the full model throughout
the operating range is still necessary. In addition to the stability problem is the
problem of cvaluating the performance of the controller. The performance as indi-
cated by the size of S (Eq. (16)) or by the singular value boundary (Fig. 9) are both
useful for discussion purposes, but they are not a practical means of cvaluating the
performance of the problem of this paper. What is of real interest is the amount of
damping in the the lcad-lag regressing mode, which also requires that the design be
checked at all of the operating points. Thus, instead of calculating the error function
directly, an assumed error fuction is used to guide the design process through the
ideas of loop cross over and loop run off. Stability and performance of the controller
is then checked directly at all of the operating points. The assumed error function is
to be of the form as in Fig. 8 with good model fidelity at low frequency and poor fi-
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delity at the higher frequencies. The eventual cross over frequency of the loop GK
is determined by the location at which the error function of the system becomes too
large (i.c. I, > 1 ). Obviously, it is assumed that the air resonance mode is adequately
modeled, so a lower bound on the cross over frequency is at the instability frequency
of .37. The upper limit on the crossover is limited to 1/rev due to the existence of the
unavoidable 1/rev noise and the limitations in the reduced design model.

TABLE 3

Closed loop poles of controller A.

-.44445 +j2.0286

-.07980 4 j1.8333 Lead-lLag Progressing
-.30337 +j.37971

-.03659 + j.37472

-.00780 4 j.37441 Lead-Lag Regressing
-.10205 +j.17774

-.06748 +j.17178

-1.0290

-152.52

The first controller is designated controller A, and is chosen with the filter noise
covariances given by E[wsw's"ﬁ=(.001)21 and E[w,w!]=(.0012 . Since the state
noisc covariance is diagonal, all of the states have equal state noise disturbances en-
tering into them. The regulator is chosen with weight matrices R=1 and
Q=321+ q2 CTC. A recovery factor of q. = 10,000 is sufficient to recover the loop
shape show in Fig. 11. Examination of this loop shape shows two peaks near the
lead-lag regressing frequency and the lead-lag progressing frequency. The cross over
frequency of the first peak is near .73, which is well below the one per revolution re-
quirement. The closed loop poles of the controller applied to the design model are
given in Table 3. The lead-lag regressing mode is stabilized from an open loop
damping of .00439 to a closed loop damping of -.00780, and the Icad-lag progressing
mode is shifted from -.0063 to -.080, which is beneficial though not necessary, since
this mode was stablc before the application of the controller. This shift in the lead-lag
progressing mode is the result of the large gain seen in the peak near 1.8 in Fig. 11.
Applying this controller to the full model yields a stable lead-lag regressing and
progressing damping. Unfortunately, the flap progressing damping is strongly de-
stabilized thoughout most of the operating range of the vehicle. Figure 12 shows this
mode is only marginally stable at a very high loading condition, and below My = 37
the mode is unstable for all advance ratios. The reason for this higher mode desta-
bilization is the peak in the loop gain at 1.8, which is not necessary since the lead-lag
progressing mode is not what needs to be stabilized. This particular loop shape places
a high gain near the lead-lag progressing mode frequency, which is near a region
where the dcsign model begins to significantly deviate from the full model. From the
discussion in the previous section on modclmg uncertainty, it is clear that this choice
of loop shape is a poor one.

The next controller, designated controller B, uses the same weight functions as
before cxcept with a  different state noise covariance given by
E[wwI]=(.001%diag[1,1,1,1,1,1,0,0] . This choice gives input noises into all
modecs except the lead-lag progressing mode and effectively filters this mode out of the
loop shape. The loop shape of this controller is also shown in Fig [1 and it only has
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one cross over frequency near .73. The peak near 1.8 is eliminated from this loop
shape, and the only region of high gain is near the instability. The closed loop poles
of this controller arc the same as those of Table 3 except for the lead-lag progressing
mode, which is not moved from its open loop position of -.00634 + j 1.83. The ap-
plication of this controller on the full model gives stable lead-lag regressing damping
as shown in Fig. 13. The damping is stable throughout the flight regime being the
weakest in the vicinity of M =23 and = .11.

Controller B was checked to verify that the periodic terms in the full model do
not significantly alter the stability results. The controller was also checked to show
that excessively large control inputs are not necessary to suppress the air resonance
instability. A time domain simulation showed that the closed loop system could
suppress an angular roll rates as large as 6.5 deg/sec with less than two degrees of
swashplate input. Addtional results on the other controller designs can be found in
Refs. 9 and 23 .

Concluding Remarks

A coupled rotor/fuselage helicopter model which accounts for the effects of blade
torsional flexibility, unsteady aerodynamics, and forward flight was developed. Re-
sults obtained from using this model indicated that the role of torsional flexibility and
unsteady acrodynamics is important, while the effects of forward flight (or periodic
cocfficients) is fairly small. Subsequently, the model was used to demonstrate the
cffectiveness of using an active control system to stabilize air resonance. The heli-
copter configuration considered was selected to be unstable in the whole flight envel-
ope, thus this paper also demostrates the practical fecasibility of using an active
controller to augment the stability of the lead-lag regressing mode, which is known to
play a key role in helicopter air resonance. The controller was designed using multi-
variable frequency domain techniques with the optimal estimator and optimal regu-
lator structure. The technique, which is based on transfer function singular values,
proved to be particular effective resolving problems that would not be obvious if only
the covariance and weight matrices were used in the design process. To select the
design loop shapes, Loop Transfer Recovery was used, which can be interpreted as
an optimization balancing system performance requirements and the requirement of
stability in the presence of modeling errors.

The controller used a single roll rate measurement and both the sine and cosine
swashplate inputs. “This configuration is particularily simple since the measurement
is taken from a non-rotating (frame of the fusclage) reference avoiding the nced to
send signals across the rotor head. Using sine and cosine inputs is also simple and
can be accomplished through a conventional swashplate mechanism. A constant four
mode design model consisting of the body roll and pitch modes and the lead-lag re-
gressing and progréssing modes was found to be quite practical for control design.
The controller was shown to stabilize the system throughout a wide range of loading
conditions and forward flight speeds and it required small inputs of the order of three
degrees or less.
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Summary

A new dynamic control system for flexible space environment use manipulators has
been developed from the practical viewpoint. The key concept in the proposed method
is that the local position and torque PD feedback loop at each joint should be used
for position and structural vibration control. First, the authors derived manipulator
dynamics, and then feedback control was developed, using an appropriate potential
function. Secondly, an experimental setup using an air suspended SCARA flexible
manipulator is described. The effectiveness of this method has been verified by ex-
perimental results, adapting it to automatic payload handling.

1. Introduction

In the near future, many robots will be used in space for extravehicular tasks, such
as construction of a space station, or periodic repair, cleaning, and maintenance of
satellites. Most of these robots must be structurally flexible, reflecting the necessity
for their light weight based upon minimum energy consumption and shipping cost,
as well as handling of large mass payloads in a no gravity environment. Therefore, it
is necessary to control the structural vibration in this flexible arm for quick, precise
tracking of the trajectories and accomplishment of tasks.

Recently, there have been a number of studies reported concerning this subject.
Sakawa [1] used the optimal control theory selecting the mode amplitude as a control
parameter. Cannon [2] used the feedback from the link’s end-point position. These
methods are effective for a one-link arm. However, it seems difficult to apply these
methods to multi-link manipulators from the viewpoint of dynamic model derivation.

The authors developed a new dynamic control method from the application viewpoint.
In this method, flexible manipulators are simply controlled by the local position and
torque feedback at each joint. An experimental 1.5 m long flexible arm was con-
structed to investigate the eflectiveness of this method. Experimental results obtained
through automatic payload handling showed the effectiveness of this method.

G. Schweitzer, M. Mansour

Dynamics of Controlled Mechanical Systems
IUTAM/IFAC Symposium Zurich/Switzerland 1988
© Springer-Verlag Berlin Heidelberg 1989
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2. Mathematical Model Derivation

Let us consider a planar flexible manipulator with n degrees of freedom (d.o.f.). The

following assumptions were made for this arm:
(1) Deflection w is small, and any extension is neglected.
(2) Friction and backlash are neglected in the system.

(3) The Euler-Bernoulli model is used for the beam, for which the rotary inertia
and shear deformation eflecls are neglected.

The motion of the arm with a bending vibration is described by the coordinate system
shown in the Fig. 1. y; is defined as follows [2]:

y,'(T,',t) =r,-0,-(t)+w,-(r,-,t) t=1,---,n. (1)
Also, the local vector d; is denoted as follows:
d,':(r,',y,',l)t i:l,---,n. (2)

Note that superscript ¢ denotes a transpose while the other ¢ denotes time. The
position vector for any point at r; on link ¢, with respect to the base, is given as:

d?:Rxdt i:l,-,n (3)

where RR; denotes a transpose matrix. The system kinctic energy can be written as

n I
K= Z./o kidr; (4)
i=1

where k; dernotes the kinetic energy per unit length. It can be expressed in a quadratic
form as follows:

ki = %itrace(d?d?‘) (5)

where p; is the mass per unit length and the dot denotes the time derivative. The
potential energy V can be written in the form:

V= }:/ vidr; (6)

i=1

8w \? 1 3y \°
E L) = ZEL—5 ) .
= 35 ) =35k 54)

I; is the area moment of inertia for the link 7 about the neutral axis. E; is Young’s

where

modulus for the link. The Lagrangian is defined as:



n 1
L= Z/o Lidr;
i=1

where

L,‘ .—_k-,-—v,-.

Using Hamilton’s principle[3], the following is obtained:

8t\ow ) OrF\oy/) dw
The boundary conditions are (Fig. 2):
( OL;
- = M;(0)
8y§, ri=0
0 (3[4)
—(22)] =@
o \owt )| =0
. ¥i(0,¢) = y;(0,2) = 0
aL; _
_éy_:l‘ ro=I, - M’(I‘)
0 (08L;
\ é;(@") ro=l, - Q‘(I‘)

where the prime denotes the derivative with r;. Let us define p; as

oL
7

Pi

Using this, Eq.(8) is rewritten with boundary conditions as

Fig.l. Coordinates for n 1link Fig.2. Flexible manipulator
flexible manipulator in a horizontal plane

. 2 . .
a(aL,)_a (aL,) OLi _ o ocm<t.
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(7)
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o O
ag‘]f (10)
pi=—o— = F(H; )+ {Mi(O)é(r,»)} 0<m <
Yi or;

where

FUT) = Qu(0)8(r) + Qe — ) = o M D8(rs — 1)) + 3250

n
Z/ Hi=K+V
=1 0

and § denotes Dirac’s delta function.

3. Flexible Manipulator Control

Let us consider the control law from the standpoint of energy control in the system
where the energy is both kinetic and potential. If the potential energy accumulates
in the link, vibration naturally occurs. Such vibration is caused by the exchange
of potential energy to kinetic energy. Accordingly, the authors considered that the
vibration restraint would be accomplished by modifying this energy flow, so as to
minimize both kinetic and potential energy at the target point.

When controlling the global motion for general rigid manipulators, such as those
for most industrial robots, each joint is independently controlled by simple linear
feedback. With this algorithm, Takegaki [4] showed that the system potential encrgy
had a very large effect on both dynamic and static mechanical properties and that
it was natural to attempt to improve the system characteristics by modifying the
potential energy. In the case of flexible manipulators, a careful, accurate control of
each joint angle is necessary for implementing the global motion and is accomplished
in the same way.

Let us consider the potential function as follows:
v = v1i + vai. (11)

This is a desired potential function, which is chosen in accordance with the control
goal. vy; is the position control function:

1 t Rt 1
v1,~_—”(6—9)2 @ >0,¢>0 (12)

where 8} is a target point. vy; is the vibration control function:
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Voi = CjV;. (13)
An additional damping D; is considered as follows:
. d
rD; = —c;b,-0.-6(r,-) - dia{riF(Hi)} b >0,d; > 0. (14)
Let us denote H; as follows:

Hi = ki + vi + v + vai. (15)
From Eq. (10), we obtain
i oH;
i = o—
3Pi_ (16)
. JH; -
pi = —a—y_—F(Hi)—i—Di
setting
el 8H; aFI,- —
=M )} = 22 ) — 22 Ry + Ds. 17
e M 000)} = 52 4 P (1) = ST — RO + D ()

Eq. (16) denotes the system dynamics after vy; and vy; are added. Now, denoting u;
as the actuator torque,
M,'(O) = U; — J,~f9.~ (18)

is satisfied at ; = 0 (J; : inertia of output axis). Then, the integral of Eq. (17) with
r; gives :
" . d
u; = J;0; +c,~[{a;(0;-" —0;)—1);0.‘} —T,] —d,‘aT; (19)

where
T: = E;Lw!(0,%).

Eq. (19) shows that the controller consists of the local position and torque feedback
loop, as indicated in Fig. 3. The authors named this law the LTIP method (Local
Torque feedback In the Position lcop). Let us consider H as a Lyapunov function for
the system.

| =

»* | Position Torque Manipulator
e — PD Feedback + PD Feedback P
[e

Fig.3. Control blockdiagram
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n 1
I_I = Z H,' dT‘,’ (20)
i=170

Differentiating H along the solution trajectory in Eq. (16), we obtain

= Z/ (G + G+ Gyt

—‘Z( —bic;0? — d; ;16,4 (0, t)—d/ E;Lw!?dr;) (21)

i=1

1;
< Z[ (bic; — -42)02 — —E I;{2d; ] wi?dr; — E;Lw!(0,1)}].

i=1
Therefore, if d; = 0 or
1 Y 1
Zd,'./ 1b:-'2dr,- > E;I,"Lbél"(o,t), bic; > -Z'd,2 (22)
0

is satisfied, asymptotic stability is proved by Lyapunov’s Second Method [5].

4. Experimental Setup

An experimental equipment was built to investigate the validity of this method. The
authors named this equipment TESRA-1 (Teleoperated Elastic Space Robot Arm).
This equipment consisted of a two dimensional air suspended flexible manipulator,
payload, and controller. Fig. 4 shows this equipment.

The flexible manipulator was about 1.5 m long. It had two flexible links and three
d.of. (shoulder, elbow, wrist). An actuator was installed at each joint. It consisted of
a DC motor and a planetary gear reducer (1:100 reduction ratio). The sensor system
consisted of a potentiometer for sensing the joint angle, a tachogenerator for sensing
the motor velocity, and the strain gages at the base of each link for sensing the joint
torque. Flexible links for this manipulator were made from stainless steel. The link
diameter was 6 mm. The total weight for each joint and hand were 4 kg and 1 kg.
This arm floated on an acrylic plate base, using four air bearings so as to simulate a
no gravity environment in the horizontal plane. A small CCD camera, 35 mm (W) x
43 mm (HI) x 70 mm (L), was installed on the manipulator’s hand (Fig. 5).

The payload consisted of lead sheets. By piling up these sheets, the weight could be
changed up to 300 kg. A handle for grasping was installed at one side of this payload
and a target marker was attached on it. This marker consisted of a rectangle formed
by 4 LED points, 40 mm (W) x 30 mm (II).
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This manipulator was controlled by a MOTOROLA digital computer VME-10 system
as the main computer. Its MPU was the 16-bit 68010, and the VERSAdos multi-
tasking system was used as the operating system. Sensor outputs were sampled at 15
msec intervals through a 32 ch A/D board. Commands were fed to the servo drivers
through the 4 ch D/A board. Fig. 6 shows this system composition.

5. Experimental Result

The LTIP method was applied to a typical space environment robot task; automatic
handling of a very large mass payload. Fig. 7 shows this task sequence. First, the
manipulator was located about 40 ¢cm from the payload. When the start command was
actuated, the manipulator searched for the target marker with the CCD camera. After
detecting this marker, the manipulator started to approach the payload, using position
and attitude data obtained from the relative positions of the 4 LED points. When
there were no vibration control for the manipulator, the image of the marker from
CCD camera vibrated due to link vibration, therefore it was very diflicult to detect
the correct position and attitude. For example, Fig. 8 shows the manipulator motion
without the LTIP. Although each joint moved along the planned path, vibration
occurred. Fig. 9 shows the motion with the LTIP, effective vibration restraint is
obvious. The high frequency vibration in the angle record results from the resolution
of the data sensing system.

The manipulator grasps the handle of the payload within 2 mm positioning accuracy.
Finally, the manipulator transports the 40 kg payload about 80 cm and positions it us-
ing the LTIP method. If this experiment were carried out without vibration restraint
control, the link would begin to vibrate at about 0.1 IIz. This vibration continues for
a minute and a half. lowever, using the LTIP method, no structural vibration occurs
such that smooth and quick positioning can be realized. Fig. 10 shows the results of
the LTIP measured from the time when the manipulator approached until grasping
the handle. The manipulator arrived at the transient target point after 16 seconds
with minimum vibration. This vibration results from the wrist actuator movement
which pivots the CCD camera so that it is always pointing toward the target. Ilere,
control gains were chosen by trial and error.

6. Conclusions

In this study, the authors proposed the LTIP method for dynamic countrol of f{lexible
manipulators from the energy flow view-point. In the LTIP, desired torque is calcu-
lated from a comparison between desired angle and actual output. Then the actuator
is controlled so that joint torque becomes equal to the desired torque. In the exper-
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iment demonstrated here, the authors used a SCARA manipulator to disregard the
torsional vibration. However, this method is also adaptable for general manipulators,
and the experiment on 3D arm was implemented at Miura laboratory, The Univ. of
Tokyo [6].
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Fig.4. TESRA-I configuration

Fig.5. CCD camera and target marker
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Abstract

The single-axis gravitational orientation mode is considered
for the Salyut 6 and 7 orbital stations. An integral statis-
tical technique is described for determining the real rota-
tional motion of the stations in this mode by the solar and
magnetic sensor indications. The technique is illustrated by
computations of residual microaccelerations aboard the sta-
tion; their knowledge is important for an analysis of some
technological experiments.

Introduction
The Soviet orbital stations Salyut 6 and 7 represent elonga-
ted structures with large lateral moments of inertia. This
fact allowed an extensive use of the single-axis gravitatio-
nal orientation mode of the station [1, 2]. In this mode the
station performs the oscillatory or rotational motion around
the longitudinal axis directed approximately along the local
vertical. To cafry out some scientific experiments it is ne-
cessary to know the station orientation more exactly. Below,
an integral statistical technique is described for determi-
ning the attitude motion of the Salyut 6 and 7 stations in
the gravitational orientation mode by using the solar and mag-
netic sensor indications [3]. At given times the sensors allow
the onboard measurements og’the Earth's magnetic field strength
H and the unit vector S indicating the direction to the
Sun (measurements of S are possible only on the illuminated
part of orbit). A set of measurements performed on some time
interval is processed by using the least square method and
integrating the motion equations of the station with respect
to the center of mass. The developed technique allowed solving
a number of scientific problems that required knowledge of
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the station's attitude motion. To illustrate this technique
we estimate microaccelerations aboard the station, which is
necessary to analyze some technological experiments [4].

BEquations of attitude motion of the station

The time interval, on which the processing is performed, is
approximately equal to a period of the station revolution
along the orbit. Also it is known that during this interval
the station is in the state of gravitational orientation. These
circumstances allow using rather simple motion equations for
statistical processing. The equations are derived under the
following assumptions. The station is assumed to be a rigid
body whose configuration is a cylinder with three attached
inertia-free plates - the solar batteries. Each battery has

a single degree of freedom - it can rotate about its axis that
crosses the center of battery and an axis of the cylinder. On
the part of orbit illuminated by the Sun the batteries are
turned so that angles of incidence of solar rays on their sur-
faces are minimal., In the Harth's shadow the batteries are
fixed with respect to the cylinder and take the positions they
occupied at the time when the station entered into the shadow.

The orbit of the station's center of mass is circular and in-
variable in the absolute space. The gravitational and resto-
ring serodynamic torque effects are taken into account. It is
assumed that etmosphere is fixed in the absolute space, its
density along orbit is constant and the air molecules suffer
an absolutely nonelastic collision at the interaction with
the station. Moreover, it is assumed that the longitudinal
axis of the station slightly deviates from the local vertical.

In order to write the motion equations we introduce two right-
hand Cartesian systems of coordinates: the 03645»‘”3 X3 system
formed by the principal central axes of inertia of the sta-

tion, and the orbital system 0X,X,X; . The axis &4
coincides with the longitudinal axis of the station and is
directed to the service module, the axis )(3 is parallel

to the geocentric radius vector of point 0 , the axis X4
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is directed along tangent to the orbit towards the station
motion., Orientation of the system O.x,,xz X3 with respect
to OX‘IXZ X5 is given by angles ¥ , & and B [1-3].
The angles are determined in the following way. In order to
transform the system OX,;X,X; into QOxyo,x3 it should
be turned first by angle &+ JL’/Z around the second axis,
then by angle JB around the third axis and finally by angle

¥ around the first axis. Angles & and A give the di-
rection of the ac4 axis in the orbital system of coordinates,
while angle & gives the station turning around this axis.
Vhen 8=ﬁ =0 , the X, axis is directed to the Farth's
center,

Let Z{ be an arbitrary vector; Xy, a, and az are its
components in one of the introduced coordinate systems. If
these componints are related to the 01‘4\1,‘3 X3 system we
may write @ = (a4, a5, X3)x ; if they are re-
lated to the OX, X ,X, system, we write & = (a1, a,,az)x.
For the arbitrary vector o = (ag,2,,23) 0= (A, A 25 Az )x
the relations

Za‘kak (i=:/23)

are valid, where ”a.y_k,uL k =4 is the matrix of transfor-
mation of the system Ox4x2x3 into OX,,X X3 .
Elements of this matrix are expressed through angles ¥ , &
and ﬁ « The first and third rows of the matrix have the
form

ay=-sin&cosp , Qg = ~0s6 cosp,
A4y = €058 Sin¥+5in& sinp cos¥, Qz,=-5indsin¥+c0s8sing cosd,
Q43 = 058 cwsd - sin&'sinp sind, o 33 =-5indcosy-cosd sing sind.

We introduce the designations: £ is the time; ty is en
initial point of the interval on which the measurements are
processed; @y 1s the angular velocity of orbital motion;
T=wy (t- t4) is the dimensionless time; Q= Wy (.Q.,,,,Q,Z,Q.a)x
is the absolute angular velocity of the station; ’w'z _Q.zCos J-
- .9..3 sind, ‘LLT &ZSLn5+SL3COSX, A, B anda C are the
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moments of inertis of the station with respect to the axes ¢,,

L, and Xz ; )\=A/C,/LL=(B-C)/A . The motion equations
have the form [3]:

. 2 u}" .
X=SL1‘wat%F>,3=—c—o-§j%-—i, ﬁ'—'ws,

Quy= p(Qp 3~ 303033)~ Asz Pz,

W, = w’zwgtgje - 3sinbcoss cosp +AQs )
w3=-wzzt?ﬁ - 300325&@360.38 +AQg,

Qs = Qeosy-Q'sin¥, Qp=Qsind+Qcosy,
Q =-[(14p)( Q4825 - 303 233) = g3 1] /(1+A11),
Q'= (1-p)( 42y - 30503 )+ Ayg P, ~Qyz Py,
Pr =2t ps[wo mace (|agyl,]oqz])+thq] s+

+ (Up*+2Uy) Joty | ] ,

- 2 2 2
Py = pal0ys] ! [uo ma (s -y, ,0)+ Uy an},
U= min(ve, 1) 5 Uy = mask (V-5 0),

u’z =mm(?jé_yl4’0)’

k4

2\~ 1 2 oY
vy =85 [(5f+55)7 %, uy =18, [(S7+ 87 ) g

3
J =§ SLQ'(} (j=1.2,3).

Here the point denotes differentiation in T ; "Q‘Z. and ._Q,3
should be expressed through ‘U.YZ and W3 ; Mg Mo and g
are the dimensionless aerodynamic parameters; (S'!:SZHSJ >x=s
is the unit vector directed from point 0 to the Sun. If
the station is illuminated by the Sun we calculate U7y and

'U"z by the above formulae. If the station is in the Karth's

shadow, the 'U',} and ’lfz preserve the values they had when
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the station entered into the shadow. In order the values of
Uy and Ué were determined at the beginning of motion,
the time ‘t4 should be always chosen on the illuminated part
of the orbit. The parameters i have the form: M =
=?°2d£ /Awf‘ (i=1,2,3) , where O; and &; are characte-
ristic areas and coordinates in the Ckc1ak:r3 system
of gsome elements of the station surface, ¢==con$t is an
absolut value of the aerodynamic drag force acting on the unit
area of the station surface perpendicular to the free air
stream. To determine equations (1) finally it is necessary to
give the functions Si =SL‘ ('E) (L='i,2,,3) , and the criterion
for the station stay in the Farth's shadow. According to [3],
we shall asgsume that the Sun is fixed with respect to the or-
bit. Then

54 = 510 COS(T'To)— 530 sin (T’TO) ’ ,5'2 =SZo ’

S3=S4a SIN(T-T,)+ Sy 08(T-Tp) , (2)

where Tp and 'SL'O (l:=1,2,3) are constants, S£+Szzé+s3i=i.
The station will be in the Barth's shadow if 3 <
6—1/1—t§w,’j/3/t5-2/3 ' , where %, = 6378 km is the
Earth's radius, E = 398603 ks 2 ig its gravitational pa-
rameter. Equations (1) contain five parameters: A , 28 and
K (i=1,2,3) . The values of A and M are known
rather accurately, while the values of f‘i just approximately.
Therefore, at the statistical processing of sensor indications

the parameters A and are supposed to be known, and the
parameters /L[(i==1,2,3) are considered as unknown and
determined by the processing together with the unknown initial
conditions of the motion.

The single-axis gravitational orientation mode,

The single-axis gravitational orientation mode of the station
igs called its motion when Lp |+ |sind | <<d , i.e. the
angle between the Xy and }C3 axes is near zero or 180°,
The orbital stations Salyut 6 and 7 together with the docked
Soyuz and Progress spacecraft have the form of an elongated
structure which is characterized by a small parameter A .
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As a Tule, A$ 0,05, O<p%0.1, 0<pgs1, |ppls1, luslzn.
At A'=0 , 1.e. for the station in the form of a rod with
longitudinal axis Xy > the system (1) admits two families
of particular solutions of a special form. In these families

Sing=0,p=0, Wy =1, ws =0 (3)

and the variables ¥ and 511 are defined by the equations

Y=, Qqy=-pusin¥osd-p,cos8[u,cosy|cos¥ |+ i

+wo mac (0s2¥,0) sign (cos¥)] .

One family of solutions is obtained from (3), (4) at §=0
the other at 0 =JC . In the both families the axis X,
coincides with JK& . In the family where & =JU these axes
have the same direction; in the family with &'=0  the oppo-
site directions.
INED.E X the system (1) do not have solutions of the form

of (3), (4); however, if A<<1 its solutions with initial
conditions satisfying the relation sin?4d(0) + B 2(0) +
+ [u, (0)-17% + w3?(0) << 4 will differ slightly from

the ones of (3), (4) on a fixed time interval. This circum-
stance is due to the fact that the solutions of the system

(1) continuously depend on the parameters and initial condi-
tions. The station motion in the single-axis gravitational
orientation mode is described by just the above solutions.Con-
tinuous dependence of the solutions of system (1) on the para-
meters and initial conditions ensures the existence of this
orientation mode on the finite, generally short, time intervals.
Special theoretical and experimental studies are needed to as-
certain whether the gravitational orientation can exist on long
time intervals [1, 2, 5]. Below the solutions of system (1) are
used for approximation of the station motion on time intervals
not more than 2 hours.

Determining the motion parametres.

The station is provided with the sensors that allow at given
times measuring the Earth's magnetic field utrength. H (ﬁq,

ha, 'h,s )x and the Sun position vector S (81,52 , 53):)8-
The time interval on which the processing is made approximate-
ly equals to the orbital period and contains several tens of
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points for which the measurements are available. The processing
consists of a few stages.

At the first stage, for the actual~prbit of_Ihc gtation and

the times, at which the vectors S and H were mecasured,
the components of these vectors are calculated in Epe orbital
system of coordinates: §=(51732>S3)X and H=(H,,,H2,H3)X.

As a result, we obtain a get of numbers:

( ( .
tn’ szn)’ kin)’ S£ n)Q Hl:(n) (”’=1"") N; L='{12’3)' (5)

They indicate the results of measuring the values of S; , h;
and the calculated values of Si , Hi at the time tn' In (5)
t1<t2 <...<'[ZN , and for the times ¢, when the station is in
the Barth's shadow §;W=S%=0 (i=1,2,3) . At the se-
cond stage, we determine (W, and the constants To,,Szo in
(2) by using the values tn and Si(n) . For this we consi-
der the function

N
Vi@, 4)- 2 {[57- 5005 0 (1,2, ) + 55 sin & (-t )]+

+[$P=PTF+ [ SO S B sin . (ty-te)- 5 s 2 (£, 1)),
where Q. >0 , k=1,2,...,V, ’S,,Ck)l + | S;k)‘ >0. Then we
determine (0%, m)=wt9m£rz Y8, %) and accept to, = SL¥,

To=wo (tm-t4), Sio =Si('n) (i=1,2,3).

Ags soon as a)oA ig found, the values t,¢ in (5) are repla-
ced by Z}Zj;u)o(iﬁz— t4) , and the measured and calculated
values of H are normed to unity. Such a transformation pro-
vides the reduction of processed data to the dimensionless form
and introduces the same scale for components of Ei. and 27 .

The final stage of the data processing consists of obtaining
the solution of system (1) that would bring into agreement the

measured and calculated values of E? and FT/ﬂ?T] . At
the given A\ “and the solution of this system is deter-
mined by the vector € Rg s Whose first six components are
initial conditions at point Tﬁ =0 and the last three
components are /14 , A/LZ , and ,X/Ls (the parameters
ftz ,/13 enter into the system (1) as the products
A 2 s Afb3 ). On the solutions of (1) we define
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the function
n)

N 3 3
qS(a)=w‘sZ= Z,[ - 2. Sk Qi <‘fnﬂa+
N 3 n n
v, 3 L S e ]

n=1 L= ~ ~
(n) (n)
where ujg and 1LYH are positive constants, hi and /41
are normed measured and calculated components of H in the

coordinate systems Ooc,, XL, .’133 and 0X4X2X3 res-
pectively. According to the least square method we take

A .

oL = arngmin P (o) as an estimate of the vector o .

Minimization of @(d,) is carried out by using first a random
search and then the Marquardt method. The standard errors of
the motion parameter estimates obtained by the least square
method with measurements on the time interval -~ 90 min are
~ 0.5° in angles and ~ 0.0015%/s in angular velocities [6].
By processing the star photometer indications we could obtain
an independent estimate of accuracy in determining the motion
paramcters [7]. If a star gets into the photometer field of
vision, we may estimate an error in the knowledge of the sta-
tion orientation by comparing the calculated and actual posi-
tions of the star on the celestial sphere. The maximal error
thus obtained is 3.3°. In most cases it did not exeed 2°.

As an example we present the results of processing of infor-
mation (5) obtained on board of the Salyut 7 station and re-
ferring to revolution 1595 (29.07.1982). The station motion
determined as a result of processing is shown in Fig. 1, whe-
re the plots of the functions ¥(t) , &(¢) , Js{t) and
(=W, 82 (t) ({=1,2,3)  are presented.

In this case t1 = 8h26m26S in the decret Moscow
time, M = 43 , the number of measurements E;. is 26, Zdé=1,
Wy = 0.4, P(X) = 0.0867. As it is seen from the figure

the statibn, in fact, regularly rotates about its axis :c4(in
angle ¥ ) performing small oscillations with respect to the
axis }(3 « The period of rotation is about 23 min; the oscil-
lation periods of axis 2, in angles Y (in the orbital
plan) and §) (in the direction perpendicular to the orbital
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plane) are equal, respectively, to 55 and 48 min.

Calculation of microaccelerations on board of the orbital

station.

By knowing the station motion we may determine the microacce-
leration at any point of the station as a function of time.
Let the point P  be fixed in the coordinate system Ox,a,%3
and given in it by the radius vector e - The microaccelera-
tion at the point P ig called a difference between the
Earth's gravitational field strength at this point and the
absolute acceleration of it. The microacceleration is calcula-
ted by the formulae [4]

R=R°+R*, B%=dE,, L (6)
o= Px(ad/dt)+ (& xF ) x @+ wiBE; (E,F)-F)

where E" =(6Zz1, Qs Ai3) s 1s the unit vector along the axis

Xi(i=1,2,3), d is an absolute value of the station accele-

ration due to the aerodynamic drag. The component ﬁ,a in

the expression for ;{ is equal to this acceleration taken

with opposite sign, while the component Z?a is due to the

gravitational and inertial forces. For convenience, from ET”

we extract the component

— Y — —~ —> o~ > pugs
n =yx(dw/dt)+(wa)xw—wf(szy)XEz (7)
which appears as a result of the station motion with respect

to the orbital coordinate system. If the station is fixed in
this system, m t =0 .

By basing on formulae (6) and (7) a computing code was const-
ructed to determine microaccelerations at any given point of
the station. The values of vector components ETZ, ;{o, W
and ’ri=(n1,nz,n3)x as well as the values of IFL'Z‘ , 'Eol
and fﬁ:l (|W*|=d is the input parameter) were printed in

the tabulated form and output on the plotter.

In Fig. 2 the microaccelerations are given for revolution

1595 of the Salyut 7 station. The computations were performed
for gr = (2.5m, 1.45m, -0.8m) , , which corresponds to the
technological device "Splav", and d = 7.257-10'6 ms™2,

As it is seen from Fig. 2 the microaccelerations undergo ra-
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ther regular oscillations. A component of period 23 min is
distinct on all plots, and, in addition, a component of pe-
riod 12 min & 0.5°23 min can be also observed in the curve
‘sz\ . Analysing formulae (6) and (7) we may conclude that
such oscillations appear due to the station rotation about
axis X4 o This conclusion is confirmed by a comparison bet-
ween the functions ni(t) (i=1,2,3) in Fig. 2 and the func-
tions a)z(t), ab(t) in Fig. 1. While analysing the two last
functions we should take into account that in the gravitational
orientation mode ), (¢)=w, cos¥ (t), w3(f)%—wosin3(t) (com-
pare relations (3)).

The microacceleration computed by formulae (6) and (7) is an
averaged value - the background. In fact, oscillations caused
by various vibrations of the station body are unposed on this
background. If we assume that the station is a rigid body
these ogcillations cannot be taken into account. However, du-
ring technological experiments special measures are taken to
eliminate them,
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Summary

Stability of an attitude motion of a large dual spin spacecraft is studied; the
cffects of various kinds of asymmetries of the spacecraft and energy
dissipations in the spacecraft are examined. Attitude instabilities due to
interactions between the asymmetries and the interactions between the
asymmetries and the energy dissipations are examined in detail. The analysis
is based on the method of multiple time scales. The results are verified by
numerical solutions based on the Floquet’s theorem.

Introduction

A dual spin spacecraft consists of two bodies, a rotor and a stator. The
stator is despun to keep its mission equipments fixed in an inertia space. The
rotor is spun at high spin rate to exert a gyroscopic stiffness to the system.
The spacecraft, on which an angular momentum is exerted, has a lot of
energy as a kinetic energy of rotation. When this kinetic energy of rotation
is transferred through various processes into other degrees of freedom, the
attitude motion becomes unstable. One means of energy transfer is a
parametric resonance due to asymmetries in the spacecraft, i.e., unequal
moments of inertia of the rotor and the stator about the axes perpendicular
to the spin axis and unequal bending stiffness of the shaft, which connects
the rotor and the stator, in the transverse directions etc.[1],[2]. Besides these
asymmetries, there is another asymmetry to be considered; an unequal
reaction torque of a moving part in the spacecraft to the main bodies also
causes an attitude motion unstable. The other means of energy transfer is a
frictional force between a moving part and the main bodies of the
spacecraft(3].

The attitude motion may also become unstable through the interactions
between the asymmetries and the interactions between the asymmetries and
the energy dissipations. This paper deals with various kinds of unstable
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attitude motion due to the asymmetries of the spacecraft and the energy
dissipations in the spacecraft. The analysis is based on the method of
multiple time scales. The results are verified by numerical solutions based
on the Floquet’s theorem.

Equations of Motion

A spacecraft model is shown in Fig.1. The spacecraft consists of a stator and
a rotor which are connected by a shaft. The shaft which is fixed on the rotor
has a joint with two degrees of freedom of rotation. The rotor is spun at a
constant speed w,, while the stator is fixed in an inertia space. The moments
of inertia of the rotor and the stator about the axes perpendicular to the
spin axis are supposed to be unequal. Unequal bending stiffness of the shaft
at the joint is also supposed.

Reference axes O—XYZ are set in such a way that the origin O coincides
with the mass center of the spacecraft, the axis Z coincides with the nominal
spin axis of the spacecraft and the axes X Y Z rotate about the Z axis with
the angular velocity w,. An attitude of the rotor is denoted by a rotation 9y

y4
oi
Y
ai
X
Fig. 2 Pendulum model
z
—X

/—__.

Fig. 1 Spacecraft model Fig. 3 Mass-Spring model
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about the X axis and a rotation ¢y about the Y axis. An attitude of the
stator is also denoted by a rotation ¢y about the X axis and a rotation ¢y
about the Y axis. A moving part in the rotor, e.g., fuel in a tank and a
flexible appendage is modeled as a pendulum; n pendulums are set in the
rotor which rotate along an axis perpendicular to the spin axis (Fig.2). An
angle of rotation of pendulum ¢ is denoted by ;. On the other hand, a
moving part in the stator is modeled as a mass and a spring (Fig.3). The
mass moves along a line perpendicular to the spin axis. A displacement of
the mass is denoted by z. The moving parts exert frictional forces on the
main bodies. Usually, a dual spin spacecraft is composed of a heavy rotor
and a light stator, and so, the asymmetry of the stator is assumed to be
small. The frictional forces which act between the moving parts and main
bodies are assumed to be small.

Equations of motion of the system are derived by adopting the variables 1y,
Yy ¢x» Oy 8; and z as generalized coordinates. By neglecting higher order

terms, the equations of motion are given as follows:

(MO + e M) T+ (GO + 6T + (KO + ek = ¢ F(z, 1)
T+ 2w,z + we = W(U) )

where
UT = (&, 8, 69, ¥, 30, 60)
IO =yt iy, U =gy — iy, IV = gy + iy,
OO = gy — iy, O = Pife" 6 = - 37i 0,7

Parameter € is a small parameter expressing a magnitude of the asymmetry
of the stator and frictional forces; matrices M(l), G and KW are mass,
gyro and stiffness matrices relating to the asymmetry of the stator and vec-
tor F expresses a reaction torque of the moving part in the stator and fric-
tional forces of moving parts in the rotor.

Analysis

Stability of a solution of Eq.(1) is examined by using the method of multiple
time scales[4]. Consider the following eigenvalue problem

ATA
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where H(A
and lf‘T =

tor.

= M(O)/\,Z + G(O)/\i + KO, A; is an eigenvalue,
D202 @i“), 6™, @‘-(_), éi(_)’ 6,7) is a corresponding eigenvec-

D)
(

Introduce the following transformation based on the solutions (2).

t, = ¢t

U= 3} ZE"U?")(tO)exp(ti) )
n=0i=1

T = Zs"z(")(to,ti)
n=0

Substituting Eq.(3) into Eq.(1) and equating the coefficients of like powers
of € in each coefficient of exp(#;) to zero, we obtain the following equations

to order £°.
HO) U tg) = 0 @
50 4 20w 3O + w2 = WU (tp)exp(t;))

A zeroth order approximation solution to U is given by

U= 5090 (t5)exp(t) (5)

i=1

where g,(o)(to) is a scalar function of %; which is determined to the next
approximation.
Solution (5) is expressed by superposition of the modes of attitude motion.
The modes of the attitude motion have the following characteristics. When
the asymmetries in the rotor do not exist, the eigenvalues of the modes are
pure imaginaries and the modes are classified into two groups, (+) mode and
(=) mode, where the modes whose components corresponding to /S S
and ©7) are zero are called (+) mode and the modes whose components
corresponding to ¥V, &™) and 6 are zero are called (—) mode. When the
asymmetries in the rotor exist, the separation of the components of the
modes become incomplete. In the case where the natural frequencies of two
modes are close, these two modes may become unstable due to the asym-
metries in the rotor, i.e., the asymmetry of the rotor, the asymmetry of the
shaft and the asymmetry of the reaction torques of the moving parts in the
rotor. This instability can be examined by the zeroth order solution (5).
On the other hand, instabilities of attitude motion due to the asymmetry of
the stator and energy dissipations in the rotor and stator are examined to
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the first order approximation. From Egs.(1) and (3), equations for v and
z(1) are given as follows:

dg©)(
40 | e, oy

0
6
50 4 200,50 + w2 = WU (tp)exp(t) (©)

HOY U = L)

where
9H()))
aX;

L)) = -

From the condition that U() must be bounded, the following equation is

derived.
. . dg(O(2,)
vl 0 ————

+ UIFGE®, 09y <o (7

When any two modes of attitude motion are not in resonance,
A; = Aj # 2iw,, a change in the attitude motion is determined by the energy
dissipations in the rotor and the stator. In this case, Eq.(7) is reduced to
dg,(o)
dt

+ bgl® = (8)

a;
where
4= U[LO)U, b =5 + b0

i m?,‘,

b,-(+) = “cr’\iéi(+)2 - [( aré‘l_(+) + brw"i(+))2X',(+)]

i mj,
2

b0 =~ 207 - {(ardsi(—) + br!ﬁi(-))2xx’(—)}

-1
X(*) = (,\,.:tiw,)‘*[(,\,.iiw,)? + 2¢,w, (A iw,) + wf}

The eigenvalue A;; of Eq.(8) is given by
Xi = AP+ 00 = —pB/a; - /g, (9)
From Eqgs.(5),(9), the damping factor §; of the i-th mode is given by
§; = ~Re(3; P + 2,9 (10)
Stability of the i-th mode is determined by the sign of the damping factor o,
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When any two modes of attitude motion are in resonance, A; — A iR 2w, a
change in attitude motion is determined by the asymmetry of the stator as
well as energy dissipations in the rotor and the stator. In this case, Eq.(7) is

reduced to
dg{® ) X
a; ¢;t + (b — igA)g” + c.‘j(”g}O) =0
(11)
dg{®
a; d]t + (b + ig;4;)91") + ¢;79{¥ = 0
where

A = A =2i(w, + 4y)
o = és(o)exP("iAijt)
c‘,j(+) = —i_( Aj"iwr)2¢i(+)d§j(_)
6 = =iy (\ie,) 18,8
The eigenvalue determined by Eq.(11) is denoted by A, and then, the
damping factor §; of the i-th mode is given by

Stability of the i-th mode is determined by the sign of §;.

Numerical Examples and Discussions

The results obtained are applied to a spacecraft model. The spacecraft has
two pendulums in the rotor which rotate about an axis parallel to the Y
axis. Parameters of the spacecraft are listed in Table 1. Figure 4 shows the

Table 1 Parameters of the spacecraft

. 397 [kg m%] k, 2x10* [Nm / rad]
i 235 [kg m?] k, 15w? [Nm / rad]
3, 4.2 kg m’) my, 2 (kg

™ 73.4 [kg m%] b, 0.34 [m]

Ty, 15 [kg m?] a, 1.53 [m]

i, 300 [kg m?)
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natural frequencies of the modes of attitude motion in the case where all the
asymmetries in the spacecraft are reduced to zero, where (+) (or (—)) sign
indicates that the mode belongs to (+) (or (—)) mode. The precession mode,
which corresponds to the drift of the angular momentum vector and is an
integral of motion, is omitted.

From Fig.4, it is possible that the 2nd and the 7th modes become unstable
due to the asymmetries in the rotor in the vicinity of w, = 22 rad/s. Figure 5
shows the damping factor 4, of the 2nd mode obtained by the zeroth order
solution (5). In the case I, where the asymmetries of the rotor and the shaft

50

NATURAL FREQUENCY (RAD/S)

0 4 8 12 16 20 24
SPIN RATE w, (RAD/S)

Fig. 4 Natural frequencies of the modes of attitude motion
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Fig. 5 Damping factor é, of the 2nd mode



214

are reduced to zero, the asymmetry of the reaction torque of the moving
parts in the rotor, which exerts about only the Y axis, causes the 2nd mode
unstable. In the case II, where the asymmetry of the rotor is set up, i.e., the
moment of inertia of the rotor about the Y axis increases 2mr = —15 kgm?,
the asymmetries of the rotor and the reaction torque balance out and the
instability disappears. In the case III, where the moment of inertia of the
rotor about the Y axis decreases i ,, = 15 kgm?, the asymmetries of the
rotor and the reaction torque are superimposed and the instability region
extends. The numerical results of the damping factor calculated by the

Floquet’s theorem are shown with solid circles. They are in good agreement
with analytical results.

Figure 6 shows the damping factor 6, of the 2nd mode as a function of the
asymmetry of the rotor, where the energy dissipation is assumed to occur
only on the stator. In this case, the stability rule derived by the energy sink
method says that the attitude motion of the spacecraft is stable. When the
asymmetry of the rotor is small, the damping factor 6, is positive. However,
when the asymmetry of the rotor becomes large, the damping factor &,
becomes negative. The reason is as follows: from Egs.(9),(10), damping fac-
tor 4, is given by

§; =6+

5
4.
+)
,;," 31 S2
2 2
< S2
P
S
g \|=o
i |
v
£ -2 (-
S 32
3 -3
-4
-5
50 100

ASYMMETRY OF ROTOR i, (KG-M?)

Fig. 6 Damping factor 6, of the 2nd mode
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where
6'.('*') = Re(b£(+)/al~), 6"(_) = Re(bi(_)/ai)

Factors §," and 6 are the contributions of (+) and (—) mode components
of the i-th mode to the damping factor §;, respectively. From Eq.(10), it is
found that, if the i-th mode belongs to (+) ( or (=) ) mode and the natural
frequency of the mode is greater than the spin rate of the body on which a
frictional force exerts, §{* ( or 6,17 ) is positive and 6, (or 6,7 ) is nega-
tive. Figure 6 shows factors 8, and 6, as a function of the asymmetry of
the rotor. For the value of the asymmetry 1 _ greater than 130 kg m?, 8,
becomes dominant and the 2nd mode turns out to be unstable. The stability
rule derived by the energy sink method no longer holds for a dual spin space-
craft with a large asymmetry.

From Fig.4, it is possible that the 3rd and the 7th modes become resonant
and unstable due to the asymmetries of the stator near w, = 13.7 rad/s.
Figure 7 shows the damping factor 8, of the 3rd mode based on the first
order approximation solution (12). In the case I, where a large amount of
asymmetry of the rotor is set up, an unstable region appears near w, = 13.7
rad/s. On the contrary, in the case II, where the asymmetries of the rotor
and the reaction torque balance out, the unstable region disappears. The

04

©
N
T

DAMPING FACTOR §,
(o]
(o]

13 135 14
SPIN RATE w, (RAD/S)

Fig. 7 Damping factor §; of the 3rd mode
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reason is as follows: it is found, from Eq.(11), that this type of instability
depends on mainly parameter cij(” and cj,-(_). Since parameters c,-]-(+) and
cj,-(") are the functions of & i(+)’ i J-("), if the modes ¢ and j belong to the same
mode ((+) mode or (—) mode), parameters ¢;*) and Cji(_) become very small
when the asymmetries in the rotor are reduced. If any two modes belong to
the same mode ((4+) mode or (—) mode), the instability due to asymmetry

needs the interactions between the asymmetries in the rotor and the stator.

Conclusion

Stability of an attitude motion of a large dual spin spacecraft is studied.

Main conclusions are as follows:

(1) An attitude motion of the spacecraft may become unstable due to an
unequal reaction torque of moving parts in the spacecraft perpendicular
to the spin axis.

(2) The effect of the energy dissipation in the spacecraft on the attitude sta-
bility depends on the asymmetries in the spacecraft; stability rule
obtained by the energy sink method, in some cases, may no longer give a
correct result.

(3) An interaction between asymmetries in the rotor and the stator may
cause the attitude motion unstable.

The analysis is based on the method of multiple time scales. The results are
verified by numerical solutions based on the Floquet’s theorem.
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Appendix -- The elements of Eq.(1)
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W= 3 [Zi(a,qi;*) + b I (AT + 2i w; — wiexp(t, + i w,t)
; :

-—;;(a,éﬁ + b A2 — 2w — wWDexp(t, — i w,) ]

M means that all the element of M are replaced by its complex conjugate.
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Robot Control in Cartesian Space with Adaptive
Nonlinear Dynamics Compensation
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Abstract

A motion control scheme is presented that allows for controller design directly in
terms of task specific cartesian variables, rather than in joint variables. The overall
control structure is separated into a discrete-time position controller plus an underlying
dynamics compensator which assures the extended cartesian plant - the manipulator and
the dynamics compensator - to behave like a set of decoupled unit masses in cartesian
space. The cartesian compensator matrices are computed based on a model reference
adaptive control scheme rather than using the explicit dynamical equations. The control
structure was tested successfully in simulations and experiments for a three degrees of
freedom high speed robot.

1. Introduction

Mechanical manipulators belong to a class of multibody systems which exhibit a
dynamic behaviour that must be described by strongly nonlinear differential equations.
These nonlinearities are associated both with positional variables and with velocity vari-
ables. Nevertheless, the control strategies for practically all industrial manipulators cur-
rently in use are based on classical linear control theory. Although a few more advanced
industrial robot controllers compensate for some of the position-dependent nonlinear
terms, such as gravity terms, they all neglect the velocity dependent nonlinear terms in
the controller design, which restricts the manipulators to slow motions.

In several publications more advanced control schemes have been suggested which
actively compensate for all nonlinear dynamic forces [1,8]. These schemes require the
online evaluation of complex expressions in the dynamical equations, a task that gives rise
to a considerable amount of computational effort. Furthermore, the control is generally
done in joint space,-rather than in a task-specific coordinate-space, such as a cartesian
space. This requires the transformation of the task description (the desired motion) and
of the controller specifications (maximum allowable deviations etc.) from task-specific
space into joint space.

Recently, a scheme was proposed by Khatib [6], where the dynamical equations are
first cast in terms of joint variables, but are then transformed into task-specific cartesian
variables, wherupon they are used for the design of an underlying nonlinear dynamics
compensator, the result being a linear closed loop system. This procedure offers three
significant advantages over those used conventionally:

1) It allows for a simple controller design, since for the motion controller the total
system to be controlled (manipulator plus compensator) should behave like a set of
decoupled unit masses.

2) It allows for a controller design directly in terms of task-specific variables, rather
than in joint variables. Among other things, this leads to a control structure

G. Schweitzer, M. Mansour

Dynamics of Controlled Mechanical Systems
IUTAM/IFAC Symposium Zurich/Switzerland 1988
© Springer-Verlag Berlin Heidelberg 1989



222

that permits a natural partition into complementary position-controlled and force-

controlled subspaces.

3) It eliminates the need for any inverse kinematic transformation, i.e. a transforma-
tion from the task-specific cartesian variables into joint variables.

However, there are at least two obstacles which, so far, have limited the practical appli-
cation of the above approach:

1) The unit-mass behaviour is guaranteed only so long as there is a perfect match
between the real system (the manipulator) and the dynamic model on which the
compensator is based. This implies that all geometric and inertia parameters, e.g.,
the load mass, must be known at all times.

2) Since the compensator design is based on a continuous time, zero delay model,
the expressions underlying the dynamic model must be evaluated so quickly that
discretization effects do not degrade performance. However, even with a computa-
tionally efficient formulation of the dynamical equations, the number of operations
for a complete 6 d.o.f. manipulator model is still very large.

In this paper, a solution is suggested for these two problems. Instead of designing
a cartesian dynamics compensator on the basis of the explicit dynamical equations, the
compensation is formulated as a nonlinear model reference adaptive controller (MRAC)
in cartesian space. The reference model consists of a set of n unit masses in cartesian
space, where n is the number of degrees of freedom of the manipulator. The adaptive
algorithm forces the dynamic response of the total system - the manipulator plus its
adaptive compensator - to converge to that of the reference model. The algorithm
can be applied to any multibody system; it is not confined to manipulators, and no
restrictions are placed on the choice of generalized coordinates or generalized speeds.
Also, it does not require any knowledge about the inertia properties of the system.

The approach taken in this paper was inspired by [4]. Their scheme, however,
applies to joint space control only and is both more involved and less general than the
one presented here. For other approaches to manipulator control based on adaptive
control theory the reader may refer to [2,5].

The remainder of the paper is organized as follows: First, the dynamical equations
in cartesian variables and the nonlinear dynamics compensator for a manipulator are
presented in a general form. The discrete time controller for motion control in carte-
sian variables is described next. The controller is designed to take into account time
delays for computations, AD/DA-conversions, etc. Thereafter, the MRAC scheme for
cartesian dynamics compensation is outlined. A proof for the asymptotic stability of
the adaptive compensator is given in the Appendix. In sections 6 and 7, both the adap-
tive compensation and the deterministic compensation based on the complete dynamical
equations are applied to a three-degree-of-freedom high speed robot. The performance
of both compensator types are demonstrated and discussed on the basis of simulations
and experimental results. Finally, the extension of the presented control concept to si-
multaneous control of position and contact forces, often called hybrid control [1], will be
discussed.

2. Dynamical equations in cartesian space

To obtain the dynamical equations of a general manipulator in cartesian variables,
one may start with the dynamical equations in terms of n independent joint coordinates
¢; and n independent joint speeds ¢;, where n is the number of degrees of freedom of the

manipulator. The dynamical equations in joint variables can be written in the general
form

M(q)d + V(a,q9) =F (1)
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where M(q) denotes the n X n inertia matrix of the manipulator, V(q, q) contains all
velocity dependent terms arising from inertia forces and inertia torques, as well as gravity
force terms, and the n joint forces and joint torques are included in F. In joint space
control, the controller determines directly the driving joint forces and joint torques in
F, doing so on the basis of error signals generated by differences between actual and
desired values for joint coordinates ¢; and joint speeds ¢; (¢ = 1,...,n). In cartesian
space control, the controller outputs F¢ are imaginary cartesian force- and torque-
components acting directly on the end effector, and the controller inputs are differences
between actual and desired values for end effector (TCP) position °x and velocity °X in
a cartesian reference frame C fixed in space (Fig. 1). To derive the dynamical equations
of the manipulator in cartesian space, i.e., of the cartesian plant shown in Fig. 1, one
uses the following well known relationships [1]:

% =Ja)q (2

Fo(q) =1 T (q)F 3)

where ©J denotes the Jacobian of the end effector TCP for the cartesian frame C. By
taking the derivative with respect to time of Eq. (2) to obtain §(q,q, °X), and using
Egs. (1...3), the dynamical equations in cartesian space can be written as

Mo(q)*% + Vo(q, &) = Fo (4)
where *
(1...4) Mo(a) =377 (a)M(q)®T " (q) (5)
(1...5) Vo(q,d) = — Mo(@)®H(@)d + ©I " () V() (6)
q
‘i’; e ontesliar

Figure 1: Cartesian control system

3. Compensation of nonlinear dynamics

Equation (4), describing the cartesian plant shown in Fig. 1, is inherently nonlinear,
both in position and in velocity variables. This makes it impossible to design a cartesian
controller based on linear control theory. However, since Eq. (4) should represent the
nonlinear plant dynamics correctly, we use this model to actively compensate for all
nonlinearities. To this end, we imagine that the cartesian controller output, which shall
now be called ©u, is input to an extended cartesian plant (Fig. 2) incorporating the
previous cartesian plant plus a nonlinear dynamics compensator. The compensator is
chosen such that the input Fg to the cartesian plant is determined by

Fc =Mc(q)*u+ Ve(q,4) (7

* Numbers in parentheses to the left of an equal sign refer to previous equations used
to form the equation under consideration.
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Assuming that Mc(q) and V(q,§) model the dynamics of the cartesian plant per-
fectly, the extended cartesian plant dynamics is given by

(4.7) °%(t) = “u(?) (8)

As a result, the cartesian controller can be designed to control a set of n completely
decoupled unit masses.

Figure 2: Eztended cartesian plant

4. Discrete time cartesian controller

The design of the cartesian controller is based on the continuous-time extended
cartesian plant model given in Eq. (8). However, in a practical implementation on a
microprocessor system the controller output “u(t) will not be updated continuously,
but only at discrete times. The rate at which ®u is updated is determined by the time
delays introduced through finite computation times for the control algorithm, for AD-
conversions if analog sensor signals (e.g., tachometer signals) are to be converted, etc.
Therefore, the plant model of Eq. (8) is extended to include a zero order hold element
acting on the controller output. Additionally, an integral feedback on position errors
is used to ensure convergence to the desired position even in the presence of constant
disturbing forces, such as unmodeled friction forces. For each of the n unit masses to

be controlled in cartesian space the following discrete-time state space representation
then can be derived as

(z1)k41 = (21)k + T(22)x + Té(-‘”s)k

(22)k+1 = (z2)r + T(z3)k

(#3)k+1 = “us

(Fk+1 =(2a)k — (21)k 9)
The four state variables 1,22, 3,4 correspond to cartesian position, cartesian veloc-

ity, delayed controller output, and position error integral, respectively. Since all four
states are directly accessible, a complete state controller can be used:

Cup = — (k1 [(ml)k —_ "zd] + kz[(:tg)k - cid] + k3($3)k + k4($4)k) (10)

‘zq and °d4 represent the desired position and velocity, respectively. The choice of
numerical values for the feedback gains k;,...,ks can be based on optimal control
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theory or on a pole placement scheme for discrete-time linear systems. For the results
presented in this paper, pole placement was used.

The discrete-time state controller of Eq. (10) is designed to control a system that
can be represented by Eq. (9). Equation (9) is an exact discrete-time representation
of a continuous-time unit mass as described by Eq. (8), with a zero order hold on
the driving force. However, Eq. (8) is an idealized representation of the extended
cartesian plant, i.e., the manipulator plus the cartesian dynamics compensation. The
main assumptions underlying Eq. (8) are:

1) Equation (4) is an exact model of the manipulator dynamics.

2) The matrices Mg(q) and Vg(q,q) can be updated continuously.
Of course, neither assumption can be totally valid in a practical implementation. As
regards the model, the main difficulties are posed by friction forces and by the determi-
nation of inertia parameters, such as masses and moments of inertia, especially when
an unknown load mass is carried by the manipulator. On the other hand, geometrical
parameters such as constant angles and lengths of links can be obtained relatively ea-
syly and very accurately. The second assumption means that the performance of the
overall control system will be strongly dependent on how quickly the two matrices can
be updated. Considering the constantly increasing efficiency of computer hardware,
one may anticipate that this will become less of a problem in the future. At present,
the online evaluation for a six degree of freedom manipulator cannot be carried out
sufficiently quickly by reasonably priced hardware.

5. Adaptive cartesian dynamics compensation

The use of a model reference adaptive controller (MRAC) for the cartesian dy-
namics compensation could solve most of the above mentioned problems. The MRAC
described in this paper is an extension of an MRAC scheme presented in [4]. The
extension includes the application to cartesian space compensation as opposed to joint
space compensation. Also, no assumptions regarding the structure of V¢ are made,
which at the same time simplifies the adaptive scheme and makes it applicable to a
bigger class of multibody systems. This simplification largely reduces the number of
operations and the number of adjustable parameters.

The reference model in the MRAC should incorporate the desired behaviour of the
extended cartesian plant as described by Eq. (8). Therefore,

(8) °k(t) =u(?) (11)

is used as a reference model, where “%(t) measures the position of the n decoupled
reference model unit masses in cartesian space. The design goal of the MRAC scheme
is to adjust adaptively the elements of matrices Mc and Vc shown in Fig. 3 so that
the errors “e(t) and “&(t) defined as

“e(t) = °x(t) — °x(t) and &(t) = °k(t) — °x(t) (12)
converge to zero. This again means that the dynamic behaviour of the extended carte-

sian plant converges to that of the reference model. To this end, the cartesian driving
forces are determined by the following control algorithm (Fig. 3):

Fo(t) = Mg ()°u(t) + Vo(t) + hy%e + h,%é (13)
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For the adaptation of Mg(t) and V() an additional error feeback,

Y(t) = ¢, e(t) + e 6(2) (14)
is required. Then, with 7,5, °y;, “u; denoting the elements of MC, °y, “u, respectively,
the adaptation algorithm for Mg is given by

1
Mmii(t) = mi(0) + km,'/ “yi(T)ui(7)dr; 1=1,2,3
0
1
‘ﬁ'l,’j(t) = ﬁl,‘j(O) + km,'j/ [°y,~(r)°u,—(‘r) + cy,'(r)cu,-(r)]dr; ,j=1,2,3,i #j (15)
0

and with 9; denoting the elements of Vg

t

0;(t) = 0:(0) + ku; “yi(r)dr; 1=1,2,3 (16)
0

Under the assumption that Mg and V¢ remain constant during the adaptation, the
adaptive dynamics compensation can be proven to be asymptotically stable if the fol-
lowing conditions on the choice of the error feedback coefficients are satisfied:

Cp, Cu,y hp’ hy 20 , ¢y > Cps
cohyI—c,Mc >0 , (cohp+cphy)I—c,Mc >0 (17
An outline of the stability proof is given in the Appendix.

Figure 3: Cartesian Control System with MRAC dynamics compensation
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6. Three degrees of freedom high speed robot

Position controller and dynamics compensation were tested on the cylindrical three
degrees of freedom high speed robot (3] depicted in Fig. 4. A schematic representation
of the robot model is shown in Fig. 5, where B, denotes a fixed point on the vertical axis
of rotation of body 1, B} denotes the center of mass of body i (:=2,3), and D stands for
the TCP of the end effector. Three dextral sets of unit vectors are introduced: z Zos Yy Zo
are inertially fixed with z, parallel to the vertical axis of rotation of body 1, z 1Yz
are fixed on body 3 w1th z; parallel to z; and z, parallel to the horizontal axis of
relative translation from body 3 to body 2, Zes Yoo Zc are fixed on the task-dependent
cartesian compliance frame C in which the robot control should be formulated. To
characterize the orientation of compliance frame C relative to the inertially fixed frame
0, three orientation angles a, ag, a3 are introduced. A general orientation of frame C
relative to frame 0 is obtained by starting with originally coincident orientations and
first rotating C about a line parallel to z, by an amount a;, then rotating C about a
line parallel to the newly oriented unit vector Y. by an amount a3, and finally about

a line parallel to z- by an amount a3. The correspondmg direction cosine matrix is
given by
CQaCl3 —CQa8(x3 Sp
OCT = sajsagcag + sazcay  —sSaSagsag + cazcay  —sagcog (18)

—ca8apcag + sagsag coySaasaz 4+ cazsa cQy cag

Figure 4 Figure 5
Three degree of freedom high speed robot  Robot model
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The following position vectors describe the relative position of the points in Fig. 5:

B]-Bz = L1£1 + ¢z

B P

B\ B3 =qsz; + Loy, + (g2 + L3)z,

v

B:;D =d1£1 + dzﬂl + dall (19)

The inertia properties of the three bodies are modelled such that all central prin-
cipal axes are parallel to one of the unit vectors z,,y,,2;, and the center of mass of
body 1 lies on the vertical axis of rotation.

Only a few intermediate results of the derivation of the dynamical equations will
be given in the sequel. First, by writing the absolute velocity of tool center point D

in components of frame 1, the Jacobian *Jp of point D in frame 1 components can be
obtained as

—(I2+dz) 0 1
IJD = g +dy 0 0 (20)
0 10

The Jacobian of point D in frame C components can be calculated from Egs. (18,20)
according to

CJp =5TITIp (21)

where T denotes the direction cosine matrix of frame 1 relative to frame 0. The
matrices M(q), V(q,q), and F then can be found as

Lot + I + Li®ma + Iy + (ga® + Lo*)m; 0 ~m3Ls
M(q) = 0 ma + Maeq + m3 0
—m3L2 0 M3eq + mg
(22)
2m3q31gs R
V(q’ (-l) = (m2 + m3)g ) F= F2 (23)
—maqsdr’? Fy

where m; is the mass and I; the central principal moment of inertia about a vertical
line of body ¢ (¢ = 2,3), mieq is a translationally accelerated mass equivalent to the
rotational inertias of the rotor of the driving motor, gears and other rotating force
transmission elements, ;¢ is the central principal moment of inertia about a vertical
line of body 1 plus equivalent inertias for driving motor, gear box etc., Fyz; is the
driving torque vector acting on body 1 and Fyz;, F3z, are the driving force vectors
acting on bodies 2 and 3, respectively.

From Egs. (21, 22, 23) the dynamical equations (4) in cartesian space C can be
obtained with the help of Eqgs. (5, 6).
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7. Simulations and experimental results

The performance of the control schemes under consideration was first investigated
by means of a very detailed simulation model for the manipulator of Fig. 4. It included
not only a realistic model of the mechanical structure, including friction forces etc.,
but also a model of the electric drive units and of the time delays caused by finite
computation times for the different parts of the controller. The controller was pro-
grammed in MODULA-2 and implemented on two Motorola 68000 microprocessors,
with the discrete-time position control of Egs. (9,10) running on the first, and the
dynamics compensation on the second. For more details on the actual implementation,
the reader may refer to [2)].

First, a few simulation results will be shown, where the deterministic cartesian
dynamics compensation of section 3 is used. Figure 6 shows three repositioning ma-
neouvres, each over a distance of 30 cm in 0.3 seconds. In Figure 6a a vertical motion is
simulated, in Figure 6b a horizontal motion, and in Figure 6¢ a motion parallel to g for
a; = 45 Deg., a; = 0 Deg., a3 = 45 Deg. The dashed line represents the commanded
trajectory and the solid line the actual trajectory. The three resulting trajectories are
basically identical, which shows that the cartesian dynamics compensation works well.
Here, it should again be pointed out, that the position controllers for every direction in
the cartesian frame C are identical. However, the dynamics of the cartesian plant (the
manipulator) depends very much on the direction in which the motion is performed.
For a vertical motion the driving forces must overcome gravity and accelerate a total
mass mg + Mg +mg of 12 kg, for a horizontal motion only a mass m3 +mg., of 5 kg is
accelerated, and in Figure 6c¢ all three axes are moving simultaneously with a nonlinear
dynamic coupling between axes one and three. The largest errors occur during accel-
eration and deceleration phases. The main reason for this is that the command of the
actual driving forces F acting on the manipulator is delayed by approximately 10 ms,
which is the time needed for the computation of the matrices Mg, Vg and ©J” and the
requisite matrix multiplications and additions shown in Figures 1 and 2. Significantly
smaller errors are obtained for reduced delay times and/or for slower movements.
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Simulation results with deterministic dynamics compensation: Commanded and actual
position vs. time

Figure 7 shows measurements on the actual robot corresponding to the simulations
in Fig. 6a and 6b. The reason for the steps in the actual position measurements is that
new positions are stored only at the rate at which the position controller is running,
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i.e., every 13 ms. Since the rotational degree of freedom was not yet in operation at the
time the measurements were taken, no measurement corresponding to Fig. 6c is shown.
Instead, a measurement of a repositioning maneouver over 0.3 m in vertical direction
with a repositioning time of 0.6 seconds is displayed in Fig. 7c. The close coincidence
between commanded and actual trajectory indicates that for more reasonable but still
quite short positioning times the controller quality is very acceptable.
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Measured results with deterministic dynamics compensation: Commanded and actual
position vs. time

Figure 8 shows simulation results of the same repositioning maneouvers as in Fig.
6. For these simulations, _however, the adaptive dynamics compensation of section 5
was used. The matrices Mg and Vg were initialized with zeroes, which represents a
worst case assumption. The adaptive compensation ran at a rate of 1 KHz, whereas the
sampling time of the position controller was kept at 13 ms. Again, the results for the
three movements in different directions are almost identical, which indicates the proper
functioning of the adaptive compensator. The undesireable overshoot can be reduced or
even completely eliminated by taking one or several of the following measures: A more
realistic initialization of Mg and Vg; an increase in repositioning time; a different
choice of the commanded trajectory in the end phase of the motion; probably a better
choice of the feedback coefficients cp, ¢y, hp and h,, and an increase in sampling rate
for the adaptive compensator.
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Simulation results with adaptive dynamics compensation : Commanded and actual po-
sition vs. time
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Because the stability proof for the adaptive compensation is based on the assump-
tion that Mg and Vg remain constant during the adaptation, a few cases were simu-
lated where the load mass was instantaneously changed, but no unacceptable responses
were obtained.

Here, it should be made clear again that, although the cartesian adaptive compen-
sation does not require a model of the manipulator dynamics, it does require a correct
model for the manipulator geometry underlying the transformations €J(q) and °x(q)
between joint space and cartesian space. The overall behavior of the cartesian plant
is made to converge towards the desired unit mass behavior, but errors in the trans-
formations within the cartesian plant (Fig. 1) will lead to errors in the end effector
position.

8. Extension to simultaneous control of position and contact forces

The concept of cartesian control can be applied very naturally to the problem of
simultaneous control of position and contact forces [1,6]. In [2], the control concepts
presented in this paper were extended to simultaneously control position along the un-
constrained directions of the cartesian frame C, e.g., the ones in a cartesian subspace
spanned by g and Y and contact forces along the constrained directions of a com-
plementary cartesian subspace, e.g., the one spanned by z. As for the type of contact,
it is modelled to be stiff, which means that kinematical constraints are introduced.
Consequently, the matrices in the cartesian dynamical equations (4) must be reformu-
lated to describe motion in the position controlled subspace only. However, motion
in the position controlled subspace may lead to dynamic forces in the force controlled
subspace. Therefore, a model equivalent to Eq. (4) for the force controlled subspace
must be derived, which is then used to design a dynamics compensator analogous to
Eq.(7). The resulting extended cartesian plant for the force controlled subspace can be
represented by a simple zero order hold element for each force controlled direction in
frame C. A discrete time force controller is then derived to control a zero order hold
plant. Finally, the cartesian dynamics compensator for the force controlled subspace
was also formulated as an MRAC, and the whole control scheme was successfully tested
on the three degrees of freedom high speed robot described in section 6 [2].

9. Conclusions

A control scheme was presented that allows for controller design directly in terms
of task specific cartesian variables, rather than in joint variables. The overall control
structure was separated into a discrete-time position controller and an underlying dy-
namics compensator which assures the extended cartesian plant - the manipulator plus
the dynamics compensator - to behave like a set of decoupled unit masses in cartesian
space. To overcome the problems of unknown inertia parameters as well as to shorten
the cycle time of the dynamics compensator, a model reference adaptive control scheme
was presented for updating the cartesian compensator matrices rather than computing
these matrices based on the explicit dynamical equations. The control structure was
applied to and tested on a three degrees of freedom high speed robot. Simulations
and experimental results showed that even for very fast positioning maneouvres the
resulting responses are well behaved.
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Appendix
Stability proof for adaptive nonlinear dynamics compensation

First, the definitions and basic results of hyperstability theory that will be used in
the stability proof are summarized [7,9]:

The standard multivariable feedback system depicted in Fig. 9 is formed by a
linear time-invariant feedforward block and a nonlinear time-varying feedback block.
A nonlinear time-varying feedback block w(°y,t) is denoted as belonging to the class
{P} if it satisfies the Popov integral inequality

t
/ wl(r)y(r)dr > —%* for all >0 (A1)
0

with 49 being a positive constant depending only on initial conditions.

¢yt

t :
m(t) G(s) -

w(Cy,t)

Figure 9: Standard multivariable feedback system

A standard nonlinear feedback system is said to be asymptotically hyperstable
if it is globally asymptotically stable for all feedback blocks w(®y,t) € {P}. Once
the feedback block satisfies inequality (A.1), the hyperstability properties of the total
feedback system will depend only on the characteristics of the feedforward block. The
necessary and sufficient condition for a standard nonlinear feedback system with class
{P} nonlinezrity to be asymptotically hyperstable is that the transfer matrix of the
linear feedforward block be strictly positive real.

The first step in the stability proof is to show that the MRAC dynamics compen-
sator as shown in Fig. 3 can be represented in the form of a standard nonlinear feedback
system. To this end, the equations describing the robot dynamics, the reference model
dynamics, and the adaptive compensator structure are combined to

(4,11)  Mo(t)°&(t) + Vo(t) = Fo(t) + Mo(t) %(£) - Mo(t)°u(?)

(13) =Mc(t)°u(t) + Vo(t) + hpoe(t) + hy°&(t)
+ Mo(t)°k(t) — Mo(t)®u(?) (4.2)

(4.2,12) M(t)°4(t) + ho &(t) + hy®e(t) = [Mo(t) — Mo(t)]°u(?)
+ Vo(t) - V() (4.3)
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After m(t) has been defined as

m() = [Mo(t) — Mo(t)]°u(t) + Vo(t) - Vo(t) (4.4)
the transfer matrix G(s) from input m to output °y as defined in Eq. (14) is given by
G(s) = °y(s)m™(s)
(14,A.3,A.4) = [epI + ¢, Is)[Mcs? + hyIs + h,I]* (A.5)

with I being the unit matrix. Equation (A.5) represents the linear block in the standard
nonlinear feedback system. Since the linear block must be time invariant, the robot
inertia matrix M ¢ must be assumed to remain constant during the adaptation process.
The nonlinear block is then defined as

w(t) = — m(%)
(44) = [NIo() - Mo(®)]u(t) - Vo(t) + Vo) (4.6)

Next, w(t) must be shown to satisfy inequality (A.1). Writing the inner product
of input and output as a summation from 1 to the number of degrees of freedom n, one
obtains

(4.6) /0 wl(r)ey(r)dr =33 /0 i(r) — mjileus(r)Cy;(r)dr

J=1 i=1

+2 /0 [8:(7) = vi(7)] ys(r)dr (A7)

i=1
The validity of inequality (A.1) can be shown separately for each value of the summation
indices ¢ and j. First, the second term in the right-hand side of Eq. (A.7) is integrated
using Eq. (16):
t t T
(16) / [B:(1) = vi(7)]°yi(r)dr = / [6:(0) — vi + kyi | C“yi(o)do)yi(r)dr
0 0 0
2 — [8:(0) — vi]*/2kvi (A.8)

For the right-hand side of inequality (A.8) to be constant, V¢ must be regarded as
constant during the adaptation process. Inequality (A.8) can be proven as follows:
Define auxiliary quantities

a=6;0)—v; , k=kuy>0 , g(t)=Cy(t) , h(t)=g(t)—g(0) (4.9
and rewrite inequality (A.8) in terms of these quantities:
[ o+ [ stotolitrdr = alate) - o0) - ks@)lo(0) - 40 + H1o2(0) - 50

(4.9) =ah(t) + -]2ih2(t)

a?

a k 2
= ﬁ*@’“ﬂ 3%

2k

\Y

(A.10)
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The same reasoning can be used to prove analogous inequalities obtained for every
value of 7, j in the double summation in Eq. (A.7).

The last step in the stability proof is to show that the transfer matrix G(s) as
defined in Eq. (A.5) is strictly positive real. The conditions on the gains ¢, ¢y, bp,
and h, as stated in Eq. (17) are chosen such that this requirement is fulfilled for all
symmetric positive definite matrices M. For more details, the reader may refer to [2)].
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Modeling and Control of Elastic Robot Arm
with Prismatic Joint

* "
M. GURGOZE , P. C. MULLER

Safety Control Engineering
University of Wuppertal
D-5600 Wuppertal 1, FRG

Summary

A reasonable modeling and a suitable design of a control system
for the translational motion of an elastic robot arm with a
prismatic joint is a still open problem. In this paper the dy-
namic behaviour of such an elastic beam is described with re-
spect to control requirements. A complex control system is ob-
tained represented approximately by a set of ordinary linear
time-variant differential equations of variable order. Certain
approaches of designing a feedback control are discussed.

Introduction

The application of industrial robots to advanced manufacturing
tasks requires highly accurate position and/or force control.
Actual limitations to these requirements are mainly caused by
elasticity, Coulomb friction and backlash in the system. A ba-
sic problem is to develop a control feedback for damping out
the elastic vibrations such that the end-effector can perform
its tasks without delay. In almost all the investigations so
far, elastic robots with revolute joints have been considered
only, i. e. the. flexible members of the robot has been assumed
to have fixed lengths. Surveys and recent results on the fast
control of elastic robots with rotational degrees of freedom

are given by Henrichfreise [1] and Ackermann [2].

Just recently first results on translational moving flexible
robot arms with prismatic joints were published. Lilov and
Wittenburg [3] presented a general formalism to model the dyna-

mics of chains of rigid bodies and elastic rods with revolute
*
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and prismatic joints. By Riemer and Wauer [4] the equations of
motions were derived for a planar two-body system with beam-
shaped substructures and with a revolute-prismatic joint. Wang
and Wei considered the vibrations of a moving flexible robot
arm with prismatic joint [5] and its feedback control [6]. Here,
the vibrations of the robot arm were composed of two bending
motions. The torsional motion as well as gravitational effects
were neglected. The driving motion of the prismatic joint was
assumed to consist only of a translation along and a rotation

about the vertical axis.

In this paper a more general problem is discussed. A robot with

a flexible arm is considered as shown in Fig. 1. The prismatic

arbitrarily driven
prismatic joint

Y ~.

e 4
- <
yS
N
Fig. 1. Sketch of elastic robot arm
joint connecting the elastic beam and - in general - the pre-

ceeding robot link is built such that the beam axis and the
link axis- are made to coincide at two or more points by bear-
ings which allow only relative translational motion yS(t). The
orientation and the motion of the preceeding link and with that
the orientation and the motion of the joint may be arbitarily
given; it characterizes orientation and motion of a reference

coordinate system, cf. {xB, Ygr ZB} and VB(t), mB(t) in Fig. 2.
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The elastic vibrations of the beam are composed of bending mo-
tions in the x- and z-directions perpendicular to the y-axis

of the beam and of a torsional motion about the y-direction.

Based on the rigid body model of the non-elastic robot arm in
the following two approaches of modeling the motion of the
elastic robot arm will be considered: continuum model and multi-
body model. Subsequently certain remarks on the problem of re-
duction of model order will be presented to obtain a suitable
model for control design. Finally the design of a control feed-
back for an active damping of the elastic vibrations will be

discussed.

Rigid Body Model

Firstly we consider the problem of a rigid robot arm with pris-
matic joint. Here, only the equation of translational motion
of the arm relatively to the prismatic joint has to be derived.
This results in

2 2

mYg m(me * wBy) Yg =

- m(vBy * Vex “Bz T VBz “Bx

- m g(sin o cosy + coso sinB siny)

+ Q? + F(t) (1)

Bx’ VBy' VBz 3P4 Upyr Upys

wp, are the components of velocity Vg and angular velocity wg

of the joint represented in the joint-fixed coordinate system;

where m is the mass of robot arm; v

the angles o, B, y characterizethe actual orientation of the
joint and are needed to represent gravitational effects; the
normal force O aleeS ducto a dynamic end load, and finally

F(t) is the ax1al control force.

Usually the task of the robot will define certain time func-
tions E(t), E(t), Y(t) for the orientation and VB(t), mB(t)
for the motion of the joint as well as ys(t) for the relative

position of the robot arm. Then equation (1) defines the re-
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quired control force F(t).

Continuum Model

The vibrations of the elastic robot arm are composed of bending

motions wx, W, and torsional motion B, cf. Fig. 2. To derive

prismatic joint

Q)

Fig. 2. Elastic robot arm

the equations of motion the generalized Hamilton's principle is
applied:
2
f [6(T - V) + 6'A] dt = O . (2)
.
1
The kinetic energy T is due to translation and rotation of each
element of the beam. The potential energy V has to be regarded
with respect to bending and torsion as well as to gravitational
effects and axial forces. The virtual work §'A has to be cal-
culated due to the axial control force F(t) at the joint and

the end load consisting of force Q(t) and torque M(t).

According (2) a coupled set of one ordinary differential equa-

tion for the driven translational motion and three partial
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differential equations for the two bending and the torsional
vibrations is derived. Additionally, boundary conditions and
time—-variant intermittency conditions depending on ys(t) will
appear. For example, the bending wx(y, t) is gouverned by the

partial differential equation

-

p A {w —wg, yomup, (ytyg) + vy
- [y 4y, -5 _+S 1w (y-2) + wi
YsTY¥27™8g2" 22 Y x Y72 X

2
n 2_L 1
522[wX (y'-7-) + 2ywx]}

N} =

+E I w'"
2 X

) .
" n ”
+ op (b witb, witby B1+b, W tbe B

“(bygwe) '’ - (bywy)!'e —(bg,B)*e

(b gwi) T = (bggwl) e = (bgB)'tl = 0. (3)

Here, y; are accelerations according to the body velocity Vgt
sgz has regard to gravitational effects, 522 contains squares
of components of Wy and charcterizes centrifugal effects, and
b.. are abbreviations of transformed moments of inertia of

cross-sectional areas. As usual, E IZ means flexural rigidity,

o is mass density, and A denotes cross-sectional area.
The intermittency conditions related to w, are

w_ (y, t) =0, w!'(y, t) = 0. (4)
* y= —yg(t) * y= -y (t)

The partial differential equation of the bending wz(y, t) looks
similarly to (3). The equation of torsional vibration is simpler
than (3) and is not represented. The ordinary differential

equation of the translational motion of the robot arm is a mo-

dification of (1):
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Yg * Syp¥g = - vy t Sg2 *Y¥Bx T Yx“Bz
1
+ — + F(t . 5
SAT [Qy (t)] (5)

This set of coupled differential equations describes a uncon-
ventional and troublesome control problem. Considerung the com-—
ponents of Vg and wg as kinematical control inputs and F(t) as
force control input then we have a nonlinear control problem
also including time derivatives of the control inputs. In the
section after next some remarks on reduction of model order and

of an approximate simplification will be presented.

Multibody Model

Another approach modeling the dynamic behaviour of an elastic
robot arm is based on the theory of multibody systems. For this,
the beam will be physically discretized and it will be consi-
dered as a chain of small beam-like rigid subbodies coupled by
fictitious Cardan joints and ficitious springs and dampers re-
presenting elasticity and material damping of the beam, cf.

Fig. 3.

prismatic joint
= fu(t)

Fig. 3. Multibody model of elastic robot arm
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The coefficients of the elastic springs are determined according
to the correspondence of static deformation under static end

load. This results in equal coefficients

3 EI i-1
X

_ N 2
k(! - 1. _'_3- Z_ m , (6)
i m=1
kB = (i-1) G IT' (7)
k = 3E I, N l£1 m2 (8)
T TL T3
Y i m=1

of the bending springs (ka, kY) and the torsional spring (kB)
between the subbodies j+1 and j for j = i-1,...... ,1 1if sub-

body no. i contacts the prismatic joint.

Assuming small relative angels aj, Bj' Yj between the subbodies
the theory of multibody systems can be applied, cf. e. g.
Schiehlen [7] . For example, the kinematic of each subbody has
to be determined. With regard to small angles a typical result
is

W, = w, *+ 2., + w, Z.. (9)

where w; = wp is the angular velocity of subbody no. i, w. is

J
the angular velocity of subbody no. j, and
i-1 i-1
T _ ST
23y = oz = E_ [am By Ym]. (10)
m=j m=]j

More complicated is the expression of acceleration aj of the

center of mass o6f subbody no. j, which is not written down here.

Applying Newton's and Euler's equations of motion to each sub-
body, the following equations are obtained including the con-

straint forces Rj:

. a. . , - 8, . R. 1
J 73 J j j=1,3 73-1' (1)

I. w., + w, I. \= - K(zj - 2 +

j-1)

Ai(Rj + 5. ) (12)

.R.
j-1,373-1
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where S. is linearized direction cosine matrix relating the

j-1,3
two body-fixed bases of subbodies no. j-1 and j, Gj charachte~-
rizes gravitational effects, and K denotes a diagonal matrix
of the spring coefficients (6 - 8). Eliminating the constraint
forces, and introducing state space notation by a state vector
T °T T
. z .z
i-

. ]T
1 Yg %9 i-1 ¥s

e Z , (13)
finally a set of differential equations of first order is ob-
tained:

. -

X, = Ai(vB,mB,vB,w

i B,F) X + b, F. (14)

i
This mathematical model applies as long as subbody no. i con-
tacts the prismatic joint. The system matrix Ai depends on the
kinematic control inputs Vg and wg and its time derivaties as
well as on the axial control force F. Again a untypical control
problem has been encountered. A change of the description no.

i to that of no. i-1 or no. i+1 will appear if yg cross the

values
Yo = 2i-2-N or Yg = 2i-N. (15)

It has to be noted that the dimension of the state vector Xy

depends on 1i:
dim X, = 6(i-1) + 2. (16)

Model Reduction

Neither the continuum model (3 - 5) nor the multibody model
(14) are suitable for a feedback control design. Therefore,
adequate simplifications are needed. Firstly looking on the
continuum model, a Ritz-Galerkin approach may be applied. As-
suming certain known shape functions wxi(y), wzi(y), wBi(y),
the approximations

b'4

w (y,t) = £ a_ (t) w_ (y),
X n=1 Xm
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n
Z
wly,t) = = azm(t) wzm(y), (17)
m=1
g
gly,t) = £ a_, (t) w, (y)
m=1 PNm Bm
lead to_ . . .
X = A(VB, Wpr Vg Wgi F; Ygr Ys) X+ b F (18)

with a state vector

xm %zm aBm Ys %m %zm qgm ys] : (19)

x = [a
Comparing (18) with (14) an additional dependence of A on Yg
and és can be noted. But this is nothing else than the substi-

tution of the index i of Ai‘

The suitable choice of shape functions is very difficult be-
cause of the intermittency condition (4). Therefore, these func-
tions usually depend on ys(t). A possible selection are the in-
stanteneous natural modes for the motionless joint, i. e. for

vB = 0, wp = 0.

To get a model (14) or (18) of low order, the number of subbo-
dies or the number of shape functions has to be low. This is
essentially the question for a wvery good choice of shape func-

tions which is still unsolved for our problem.

An additional simplification may be a piecewise approximation
of the system matrices in (14) or (18) considering typical time
historries of the kinematical control inputs. Very often the
point-to-point control is realized by trapezoidal time func-

tions. During a start interval O < t< t, the system matrix A

1
and analogously Ai of (14) may be replaced by

Awms A, = Ale v 0) (20)

1

£ W 0, 0, ¢ Fo: y

Bo’ Bo' so’

where v w
Bo’ "Bo’

prezoidal functions and € »~ 0.1 ./. 0.2. Afterwards, during

t,< t<t

FO represent maximum constant values of tra-

the approximation is

1 2
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A s A 0, O, F_; v__r O) (21)

2 = A(vBo' “Bo’

where 2ysm =y + Yg1+ In the last period t2 < t < t, of bra-

yo 3
king the robot motion, the system matrix is approximated by

As A, = A(e v

3 e w, , 0, 0, ¢ Fo; Ygq7 o). (22)

Bo' Bo

Here Yoo and Ys1 denote the start and the end position of the
translational motion of the robot arm. Summarizing, the state
equations (14) or (18) can be represented by a family of con-
ventional time-invariant systems

x(j)(t) = A. x(j)(t) + b( ) F(t), t

. . t < t, 2
3 3 j-1 = g (23

where F(t) is the usual control input.

Control Concept

Looking for a suitable method for the control design it has to
be noticed again that the gouverning equations of motion are
very unconvenient for usual design methods. For example, the
robust decentralized control algorithms [1, 2] successfully
developed and implemented for elastic robots with rotational
degrees of freedom cannot be applied. There is a different
structure of control inputs and additionally there is a certain
loss of controllability of the elastic vibrations in the

neighbourhood of rest positions.

Therefore the authors shall apply two different control design
methods. On the one hand the design of a robust control with
respect to the multi-model-problem (23) will be considered ac-
cording to Ackermann [8]. On the other side a suitable deter-
mination of the input functions will be considered regarding
the method of Meckel and Seering [9] to avoid the excitation of
the elastic motions. The authors are hopefully looking forward
to reducing the elastic vibrations of a robot arm with prisma-

tic joint by one of these design methods.
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A Decentralized and Robust Controller for Robots
Dr. L. Guzzella, Dr. A.H. Glattfelder
Corporate R&D, Sulzer bros., CH-8401 Winterthur, Switzerland

1. INTROD N

There seems to be a rather broad agreement in the robotics researcher community that a good
solution of the robot motion-control problem would be given by some sort of compensation of all
nonlinear effects [1]. After that the well known and powerful linear systems theory could be used
to control robots. Unfortunately this appealing solution has some still unresolved problems the
main two of which are the parameter sensitivity of the compensators and the large amount of on-
line computations. This paper presents a new controller structure which is able to cope with both
problems.

The first idea is to separate the robot in two subsystems, viz. the arm-system (large workspace and
inertia) and the hand-system. The arm-system is modeled assuming a fixed hand, i.e. the hand is
modeled as a passive payload. The hand-system is modeled assuming a constant arm-position. For
both systems a decentralized nonlinear compensator is proposed. This decentralization produces
simpler compensators of smaller order and is well suited to a parallel controller-structure (thus the
real-time implementation becomes feasible).

The second idea is to eliminate the parameter sensitivity of the compensators by using a reference
model and a variable structure controller (VSC) which guarantees a zero error between plant and
model states, i.e. the VSC eliminates all unwanted couplings between the arm and the hand system.
In the literature some algorithms for robots using VSC's have already been presented [2], [3]. All
of them require a rather cumbersome stability analysis. This paper will show that with some

reasonable assumptions’the stability analysis can be performed in a simpler way.

The following section will give the formal problem statement and will introduce some definitions.
Section 3 will introduce the design procedure giving the structure of the controller. In Section 4 the
ideas introduced in Section 3 will be used studying the system in the "sliding mode". In Section 5
the stability analysis is done. The last Section 6 gives an example of the complete design and

analysis procedure and shows some digital simulations of a 3 degree of freedom robot.
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2. PROBLEM DESCRIPTION AND DEFINITIONS
A dynamic system is here defined to be a robot if it can be described by the following differential
equation:

M(@y) ¥ = fy®.y®) +u®;  y®, u@® e R® 6]

The vectors y(t) and u(t) represent generalized coordinates respectively forces of the robot (1).
The matrix M(y) is the mass-matrix and therefore symmetric and positive definite for all possible
y(). The vectorfunction f(y(t),y(t)) represents nonlinear couplings due to centrifugal and Coriolis
forces and also the gravitational effects. The actuators are assumed to be very fast (neglected
actuator dynamics).

Using the following definitions:

xj(t)=yi(t), i=L3,...n-1,i=1,2,...p, n=2p
x() = ;). j=2,4,...n, i=1,2,..p

and introducing the structural matrices Q e R™ and Be R™P:
Q, 01 b, 0
Q, b
the second degree equation (1) can be transformed in a first order one :
() = Q x() + BMX) [f(x) + u(®)] x(®) e R @)

In the sequel it is assumed that the robot has m degrees of freedom (dof) in the arm system and q
dof in the hand system (m+q=p). The vectors x(t) and u(t) can now be partitioned into the
following two parts:

x(t) = xA(t),l )T xPeR™, xHe RM and u(®) = [ v @), ui(®]" uAeR™; uHe RY
This separation introduces four sub-matrices in the matrix M(x) and two coupling functions :
M;;(0) M0 )
M(x) = fx) =
M,,(x) Mp,(x) tH(x)
With this partitions equation (2) can be rewritten as follows:
KA = QP xAm + BAM,, (0 + SMATT [ A + 8t + uh )] (3a)

K = Q"M@ + B M0 + M1 [ #(x) + 88 0x,u) + ) (3b)
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with: SMAX) = - M, (%) Myy(x) ' My, (x) sMAx) e R™™
sttt = -M,,(x) M22(x)'1{fH(x)+uH(t)} 8 *(x) € R™
SMM(x) = - My, (x) M;;(0'M (%) sM"(x) e R
3 (x,ut) = My, oM, 0 (FA e +ut ) 5ft(x) € RY

The matrices Q% R*™?™, Qe R BAc RZ™™ and BHe R?% have the same structure as
the matrices Q and B defined above. Due to the symmetry and positive definiteness of M the
matrices M, and M,, are symmetric and positive definite, too (i.e. their inverses exist). Also the
matrices M”+8MA and M22+2§MH have to be symmetric. In addition it can be shown that this

matrices are positive definite such that the existence of the corresponding inverses is guaranteed.

The aim of this work is to find controllers uA(t) and uH(t) which force the states xA(t) and xH(t) to
follow some desired independent motions di(t) and de(t). Moreover the designer should be able
to prescribe in a natural way the dynamics of this motion, i. e. the overall system should be linear

with arbitrarily placeable poles.

3, CONTROLLER DESIGN

The first step in the design procedure is the formulation of a decoupled reference model of the
system (3). Of course this reference model should be as close to the real system as possible since
this will reduce the controller effort for matching both systems. The reference models are given by
the following nonlinear equations (4a/b):

A0=Q* 20 +BANY N [ A + WA, e R (4a)
2o =Q" M + BN [ Y + W, e RM (4b)

The models (4) are required to have the same dimensions as the robot (1), no other assumptions are
necessary. If the inputs wheR™ and w'e R™, which will be defined later, are fed to both the

robot (3) and the reference models (4) the system depicted in the next figure is formed (onlyone
half of the system is shown the other half being analogous). Due to the neglected couplings and to
the imperfect reference models the state-error will not vanish.

arm reference model reference state
error
: +
input arm system  |—— arm state
couplings
hand system

Figure 1, plant and reference model for the arm sub-system
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At this point the "variable structure controller” (VSC) {4] can be introduced. Its purpose is to
suppress the state-errors between robot and reference models thus producing a perfectly known
and decoupled input-output behaviour of the subsystem shown in Figure 2 (the hand sub-system is
not shown since it is completely analogous).

arm reference model

€rror

> x20)

arm system

couplings

Figure 2, first controller-shell producing a perfect plant-model matching

The VSC have the following form:
2 = C* x* - 240) ul 0 =- (@ +d /) Ao+ d 2 WP signsto) (52)
sfo =t oMy - M) ul @ =- @ +d 2 WA+ d 2w oD signs?®) (5b)

The vectors sA(t)e R™ and sH(t)e RY, which will play an important role in the next section, are the
so called switching variables. The matrices CA and CH can always be chosen to be orthogonal to
the matrices BA and BH respectively [5]. Since this fact simplifies the derivations without hiding
the main ideas, it is assumed in the sequel that this special choice has been adopted.

The vectors uvAs(t)e R™ and uf}s(t)e R are nonlinear functions of the state-error between the plant
and the reference-model. In Section 5 conditions will be given for the gains d of the VSC which
will make sure that the state-error between the reference model and the plant vanishes. Assuming
this zero state-error the compensator can be defined using only the reference model characteristics
(4) which of course are perfectly known (again only the arm system is shown).

Figure 2 xA(t)

Figure 3, second controller-shell producing a linear input-output-behaviour
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From the outside this second shell has a linear transfer function, i.e. it consists of m decoupled
integrator pairs. The last step represents a classical linear system design, e.g. a pole placement by

state feedback. Since no integral part is assumed in the linear controller an additional gain-matrix
R” can be introduced to produce a zero steady-state error xA(oo) - x‘:‘(oo).

A
X4 [(3 J So— R

Figure 4, third controller-shell producing an overall behaviour with arbitrary poles

In order to use consistent representations the original system equations (3) are reformulated using

the matrices N* and N/ respectively the vectors gA and gH introduced in equation (4a/b):

XA = QMM + BAINA ) + SNA)T ! [ g2 x™) + ag“(x,uﬁ) +um] (62)
o = QM + BRINH&M) + aNHx)1! [ gixh) + 8glxu®) + uf(®)] (6b)
with: ENAX) = My, (x) - NAG™) + 8MAR) 5 Bghixu) = FAx) - gh ™) + 88 ™) (7a)

SNMx) = M, 00 - NGy + aMM(x) ;8 xu®) = H(x) - g + 8tflx ™ (7b)
The structure of the controller is now completely defined and can be summarized in the Figure 5.

linear feedback

KA
compensator arm system
A
N'x? K <—]
A A
g&x)
A arm reference-model
w () M z2A = . equation (4a)
arm VSC
A
u, (0= equation (5a)
A
X, (1) fant
d yy v’ N * A th)
I 4 " X = e equation (6a) | —>
M

'U‘ couplings

Figure 5, complete controller-structure for the arm sub-system (hand sub-system analogous)
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4, Sy, HAV LIDING MODE

The derivations in this chapter are shown for the arm-subsystem only. The equations of the hand-
subsystemn are almost identical, in fact the only difference consists in the super- or subscripts which
have to be changed. Therefore only the final result is given for both parts.

The sliding mode is characterized by the identity sA(t) = 0. Using this relation the "equivalent
control method" [4] can be applied. This method uses the obvious fact that the switching variable
sA(t) can only vanish identically if its first time derivative vanishes, too. From this fact a control
uc‘:(t) can be calculated which is equivalent to uf,\S(t) (CA is chosen to be orthogonal to BA):

BAWD = - [N*+ BNAICAIQAXA - QA2 - BANA [ + whT) - [ + B + wh ®)

If this equivalent control vector (8) is applied on the arm system (4a) and (6a) the following very
simple arm error-dynamics are obtained (cA(t) = xA(t) - zA(t)):

M =M1-BACM QP et =1T* Q% () (92)

Therefore the error-dynamics of the arm is governed by a simple linear differential equation.
Moreover the poles of the matrix I'IAQA are determined by the entries of the matrix ct only [5]
(note that those poles of (9a) lying in the origin do not affect the behaviour of the sliding system

teD.

Thus, for the moment supposing that the sliding mode is stable, the error between both hand and
arm reference model vanishes with an exponential decay rate which is arbitrarily chosen by the
designer. For some sufficiently large times t>t™ the error eA(t) can be assumed to be virtually zero.
An other approach would be to introduce a start-up procedure which guarantees zero errors. In this

case, assuming a persistent sliding mode, the error remains zero for all times.

. * . . .
For times t>t  the nonlinear compensators will have the desired effect on the real robot. The
compensated and controlled robot-dynamics in the sliding mode are given by:

@ = [Q*- BAKA x*) + BAR* x50 (10a)

Using the same argumentation the compensated and controlled dynamics of the hand system can be
found:

M@ = 1 QP - BHKM <P + BHRM xM(p) (10b)

Since the pairs {QA, BA} and [QH, BH} are structurally completely controllable the designer can
specify an arbitrary pole-placement by choosing appropriate matrices KA respectively K [8] (of
course any other synthesis method can be used now, e.g. LQG or frequency-domain approaches).
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5 BILITY A 1
Before starting the stability analysis a lemma used below is introduced.

Lemma: If M=M">0 => M,; +5M*>0 and M,,+5M">0

Proof: M>0 => xATM“xA + xATM12 xH + xHTM21 xA + xHTM22 xH >0
since xA and xH are arbitrary one can choose xH = - lez M,, xA
=> xAT My, - My, Milz M, - My, Milz M, + Mp Milz My, Milz M, ) xA
=xAT (M, - M, MM, ) xA = xAT (M, + 3MA}xA >0 Q
The second assertion is proved by choosing xA= - M'll1 M,, xH Q
The general stability analysis is rather cumbersome and the resulting stability conditions are quite

conservative. Here a reasonable assumption is adopted in order to simplify things. In fact zero
initial errors eA(to)=xA(to)-zA(t°) and eH(to)=xH(t0)-zH(to) are assumed. This is not a restrictive

assumption, since at start-up most robots perform some kind of reference-mark localization which
can be used to initialize the reference model.

In the sequel only the stability analysis of the arm-system is shown. The hand-system can be
analyzed in the same way such that only the results will be given here. Since the error eA(t) is
assumed to be zero the dynamics of the switching variable sA(t) are described by the following
equation (the vector zA(t) is substituted by xA(t)):

@ = IN*HONAT g5 +wuly] - N [ghew?] (11)

In this equation the input uH(t) is still involved (SgA is a function of x(t) and u“(t)). In order to be
able to calculate the derivative of the switching function the vector uH(t) is replaced by its
equivalent value u:;(t). This corresponds to the “hierarchical control"-principle introduced in [4].

After some algebraical manipulations the following ugi(t) is found (€ = I-MZIM;IIMIZM;Z):

-1 -1 S 1 -1
ug() = - FLe MpN™ g 4 M, NA g+ (M, NT - 27w o+ (M, NA7- 27 M, M W (12)
The stability proof uses the following Lyapunov-function:

vA® = A0 TIM, 0+MA01sA () = S TINA A NA IS (D = s*OTPeos*®  (13)

Due to the lemma the matrix P(x) is symmetric and positive definite, therefore vA(t) is a valid
Lyapunov-function candidate. The time derivative of VA is given by the equation (14):

VA =2 5207 P) 580 + 52 )T Pxx) s2) (14)
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The second term in (14) can be neglected since it is of second order small (remember the error eA(t)
is virtually zero therefore sA(t) is small, too). Using equations (7a), (11) and (12) the derivative of
the Lyapunov function (13) can be calculated:

vA® = 25*0" { p0+ph 0w O+ph oW - (@ +d A WA S IWODsigns* @)} (15)

The functions p';‘(x)e R™, p';(x)e R™™ and p?(x)e R™ ysed in (15) are defined by:

-1 -1
PR =4 - M N g - M NP g (16a)
-1 - -
Pyt = 1- M NA"+ M, [ Mpp+SM" "M, M; (16b)
- -1
P00 = Mgl MM - M ,NH (16¢)

A sufficient stability condition for the VSC-gains is given by the following bounds:

> max{Ipfeon) da > max(lIpheon) dey> max(lipfcol)  (17)
X X X

The norm operators used here are the Euclidean length of p’;‘ and the greatest singular value of p’2\

and p‘;‘. Using exactly the same argumentation sufficient condition for gains of the hand VSC can

be found. Definition of p}:(x)e RY, pl;(x)e R¥ and pl;(x)e RY™:

-1 -1
PO =1 - MyN™ g™ - My NA"gh (182)
-1 - -
Py() = 1- MyNT "+ M, [ M, +8MAT'M,,M;) (18b)
- -1
P3(x) = My [ M, +8MA1 - M, NA (18¢)

Stability conditions for the gains of the hand VSC:
d> max{Ipten) duly > max (lipH o) dep > max{lph M} (19)
X X X
The maximum values of the VSC-gains have to be found over the entire set of planned trajectories.

This can be done by simulating the compensated and controlled reference system and inserting z(t),
which is equal to x(t), into the stability conditions (17) respectively (19).

The main result of this work is summarized in the following Theorem:

Theorem: If the gains of both VSC (5a) and (5b) fulfill the stability conditions (17) respectively

(19) and if the system depicted in Figure 5 starts with zero plant-model state-errors then
this errors will remain zero for all times t>t,.
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Proof: For the arm-system: If the VSC-gains are chosen greater as imposed by condition (17)
and if the robot starts at t | with zero arm-error (and thus in sliding mode) the derivative

of the Lyapunov-function (13) will be smaller than zero for all times t>t . Since the
Lyapunov-function (13) has a minimum for sA(t)=0 the sliding mode will be stable for
all t>t, too. But if this is true the error is governed by the equation (9a) and therfeore
the error has to remain zero for all times t>t (of course the designer is supposed to
choose such a matrix CA which produces a stable error system).

Of course the same argumentation is valid for the hand-system, too. Q

6. EXAMPLE

The presented example has 2 dof in the arm system and 1 dof in the hand system. This robot is able

to reach a certain point in its workplane and to produce a desired orientation of the tool. The

geometry is defined in the following sketch:

L0

Figure 6, sketch of the analyzed robot with 3 dof

The differential equation (1) for this robot is given by the following expressions (in order to avoid
overloaded equations in the sequel the time dependencies of variables are often ommitted):

MR2+r’x\1[R+R0]2 0 1’1\1[R+R0]rocos(d)-(p) (&Is(t)
0 M+m fhrysin(®-@) (1)
M[R+Rg]rcos(@-¢)  mrgsin(d-¢) fhrg2 60
2{MR+m[R+R]JR® - M[R+Rylrgp2sin(d-¢) A ug(t)
= Mrgp2cos(d-¢) + (MR+M[R+Ry]} D2 + | uR(®)

mv[R+Rlrg®2sin(®-9) - 2mrgRdeos(@-¢) u(t)
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For the sake of simplicity no inertia at R(t) = 0 is introduced; therefore R(t) has always to be greater
than a certain minimal value R ;.

The reference models (4a/b) are defined by the following two equations.

Arm system:
MRZ2+ m[R+Rg+1g]2 0 L 10) -2{MR(t)+ m[R+Rg+rol JROD() ug(t)
= +
0 M+m /J\ gy (MR+ m[R+Ry+ro]} 92 ug(t)
Hand system: (mrg? ) o) = ug(t)
The nominal values of the parameters are :
M =10 (kg) m=1 (kg) R, =1 (metre) ry = 0.2 (metre)

The pay-load fi-m is assumed to be the main time-varying parameter (e.g. pick-and-place tasks)

. .« e . A
and its variation range is assumed to be 0 < m-m < 0.5m.

The desired motion is represented by a step-function starting at ®(t,)=¢(t,)=0 and R(t)=0.5 (at
stand-still) with the set-points ©(ee)=1/4, R(e=)=1.0 and @(ee)=n/2. The dynamics of the closed-
loop system are determined by the matrices K and K". This matrices are choosen in the followin g
way:

O 4) arm-poles -1, -242j K" = (32 8 ) hand-poles -444j

The following figure shows the behaviour of the system with no VSC and maximum pay-load.

0.8F T ] 1.1F robot 1.6F ——}

robots, / A reference model

reference model]

Z \referlence model /( I \\
% () RO T 90 ‘Qbot-
ol L L sl L L L] e N

0.0 3.0 0.0 © 30 00 3.0

Figure 7, closed-loop behavicur without VSC
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As expected the neglected nonlinear couplings and the parameter errors cause the robot to diverge

from the reference model.

The VSC is determined by the choice of the matrices C* and C™ and by the calculation of the VSC-
gains. Matrices C* and C! determine the error-dynamics which are choosen to produce stable error
poles in the sliding mode:

2-(3300)  eeon

For the calculation of the VSC-gains the following parts of equation (3) are needed.

Arm subsystem :

MR*+f[R+R)* 0
M= 0 M+

sah -M[R+RyIcos(®-¢)  -M[R+R;]sin(®-¢)cos(®-¢)
* \ A[R+R Isin(@-¢)cos(@-) B sin2(®-¢)

Hand subsystem :
My, = (M)
SMH = (-(M2[R+R ]2 cos2(®-¢)}/(MRZM[R+R ]2} - (M2Z sin(P-0)}/(M+n))

With that the stability conditions (16) and (18) can be applied to this example. The qualitative
behaviour of the resulting VSC-gains for the planned trajectory are shown in the next figure:

h\ dlf._ | dlv’v‘ | dl‘/;__ \H'\ dIH_ le | IH
. X 1] |W ]
! NI T N T

Figure 8, qualitative behaviour of the VSC-gains

The explicit numerical values are:

A A A H H H
dA25974. dA21260. d21095. d'2004995. d 120850 d)20.09651..
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With that the VSC is completely specified and its effect on the system is shown in the last figure.
As expected the VSC produces a perfect model-plant matching.

0.8-F I T 114 robot ] L6
robOK eference model
reference

74 y— reference model —t
/ model / | /\ robot
74 D) / R(t) [ e (1)
0.0 —/ I 0.5 I 0.0-
0.0 30 00 30 00 3.0

Figure 9, closed-loop behaviour with VSC
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Abstract

The paper investigates the dynamic characterization of redundant manipulators and
formalizes the problem of dynamic optimization in manipulator design. The dynamic
performance of a manipulator is described by both inertial and acceleration charac-
teristics as perceived at the end-effector operational point. The inertial characteristics
at this point are given by the operational space kinetic energy matrix (pseudo-kinetic
energy matrix for a redundant manipulator) which is dependent on the kinematic and
inertial parameters of the manipulator and varies with its configuration. The accel-
eration characteristics of the end-cffector are described by a joint torque/acceleration
transmission matrix. In addition to their dependency on the kinematic and inertial pa-
rameters, the acceleration characteristics depend on the velocities and actuator torque
bounds. The dynamic optimization is formalized in terms of finding the design pa-
rameters under the various constraints to achieve the smallest most isotropic and most
uniform end-effector inertial properties, while providing the largest, most isotropic, and
most uniform bounds on the magnitude of end-effector acceleration. This approach is
used in the design of ARTISAN, a ten-degree-of-freedom manipulator currently under
development at Stanford University.

Introduction

Over the past two decades, an important research effort has been devoted to the
development of robot systems. This effort has produced significant improvements in
dexterity, workspace, and kinematic characteristics of robot mechanisms. Research in
kinematics has developed means for the analysis of workspace characteristics {8,9] ,

and the cvaluation of kinematic performance [2,6,11].

Manipulators are high1y nonlinear and coupled systems. During motion a manipulator
is subject to inertial, centrifugal, and Coriolis forces. The magnitude of these dynamic
forces cannot be ignored when large accelerations and fast motions are considered.
The dynamic characterization is, therefore, an essential consideration in the analysis,
design, and control of these mechanisms. One of the most significant characteris-
tics in evaluating manipulator performance is associated with the dynamic behavior
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of its end-effector. The end-effector is indeed the part most closely linked to the
task. These characteristics cannot be found in the manipulator joint space dynamic
model, as it provides a description of joint motion dynamics. The description, analy-
sis and control of manipulator systems with respect to the dynamic characteristics of
their end-effectors has been the basic motivation in the development of the operational
space formulation [3,5]. The end-effector dynamic model is a fundamental tool for the

analysis and dynamic characterization of manipulator systems.

The inertial characteristics at some point on the end-effector or the manipulated object
are given by the operational space kinetic energy matrix. The kinetic energy matrix,
or the generalized inertia ellipsoid [1], establishes the relationship between end-effector
forces and accelerations. However, this relationship does not relate the actual actuator
torque input to the end-effector accelerations. The description of the acceleration char-
acteristics is an essential requirement for the evaluation of the dynamic performance of
manipulators. The operational space dynamic model has been used to establish [4], for
different regimes, the input/output relationships between joint forces and end-eftector
acceleration. A similar relationship has been used to establish a measure of dynamic
manipulability [12].

The joint torque/acceleration transmission matrix has been used in the design of ma-
nipulators with improved dynamic characteristics. An optimal selection of the design
parameters has been shown [4] to significantly improve the end-effector dynamic char-

acteristics by providing large, isotropic, and uniform end-effector accelerations.

In this paper, the dynamic characterization integrates both inertial and accelera-
tion properties. The dynamic optimization is aimed at obtaining the smallest, most
isotropic and most uniform end-effector inertial characteristics, while providing the
largest, most isotropic, and most uniform bounds on the magnitude of end-effector
acceleration. The approach is extended to redundant manipulator systems and used

in the design of ARTISAN, a ten-degree-of-freedom redundant manipulator.

End-Effector Equations of Motion

The end-effector position and orientation, with respect to an inertial reference frame
Ro is described by the relationship between R and a coordinate frame Rg of origin
O attached to this effector. © is called the operational point. It is with respect to
this point that motions and active forces of the effector are specified. An operational
coordinate system associated with an m-degree-of-freedom effector and a point ©, is

a set x of m independent parameters describing the effector position and orientation
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in Rp. For a non-redundant n-degree-of-freedom manipulator, i.e. n = m, these
parameters form a set of of generalized operational coordinates. The effector equations

of motion in operational space {3,5] are given by
A(x)% + p(x, %) + p(x) = F; (1)

where A(x) designates the kinetic energy matrix, and p(x) and F are respectively the
gravity and the generalized operational force vectors. u(x,X) represents the vector of
centrifugal and Coriolis forces. The dynamic decoupling and motion control of the

manipulator in operational space is achieved by selecting the control structure
F = A(X)F* + p(x, %) + p(x); )

and the end-effector becomes equivalent to a single unit mass, I,,, moving in the
m-dimensional space,

Ik = F*. (3)

F* is the input of the decoupled end-effector. This provides a general framework for
the implementation of various control structures at the level of decoupled end-effector.
The generalized joint forces T' needed to produce the operational forces F of (eq. 2)

are given, using the Jacobian matrix J(q), by
' = J7(q)F; (4)

where q represents the vector of generalized joint coordinates.

Redundant Manipulators

A set of operational coordinates, which describes the end-effector position and orien-
tation, is not sufficient to completely specify the configuration of a redundant manip-
ulator. Therefore, the dynamic behavior of the entire system cannot be described by
a dynamic model in operational coordinates. With respect to a system of generalized

joint coordinates, the equations of motion of a manipulator can be written in the form

A(q)q +b(q,q) +g(q) =T (5)

where b(q, q), g(q), and T, represent the Coriolis and centrifugal, gravity, and gener-

alized forces in joint space; and A(q) is the n X n joint space kinetic energy matrix.

While the dynamics of the entire system cannot be described in operational coordi-
nates, the dynamic behavior of the end-effector itself, can still be described, and its

equations of motion in operational space can still be established. In fact, the structure
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of the effector dynamic model is identical to that obtained in the case of non-redundant
manipulators {eq. 1). In the redundant case, however, the matrix A should be inter-
preted as a “pseudo kinetic energy matrix”. This matrix is related to the joint space
kinetic energy matrix by A = [JA-'JT]-1.

Another important characteristic of redundant manipulator is concerned with the rela-
tionship between operational forces and joint forces. In the case of non-redundancy, an
operational force vector F' is produced by the joint force vector JTF. The additional
freedom of redundant mechanism results in infinities of possible joint force vectors T

However, for a given F, all possible joint forces I' satisfy the relation
F=JT; (6)

where

J(@) = A7 (a)T T (@)A(a)- (7)
J(q) is actually a generalized inverse of the Jacobian matrix. A joint force vector I' can
then be decomposed into two terms: one contributes to the operational force vector,
and the other only acts internally (in the null space associated with the Jacobian
matrix)

T = JT(Q)F + L — J7(a)7" (Q)IT.; (8)

where I, is the n X n identity matrix and T', is an arbitrary joint force vector. It has
been shown that a generalized inverse that is consistent with the system’s dynamics is
unique [5] and given by (eq. 7). This generalized inverse corresponds to the solution

that minlmizes the manipulator’s instantaneous kinetic energy.

The relationships between the components of the operational space and joint space

dynamic models are

AMa) = [J(@A (@I (q)]™} 9)
wa,@) = I (q)b(q,a) — A(q)h(q, 4); (10)
p(a) = 7 (a)glq); (11)

where h(q,q) = J(q)q. The previous relationships are general. In particular, they
still apply to non-redundant mechanisms. In this case of zero degree of redundancy,
the matrix J reduces to J~!.

Similar to the case of non-redundant manipulators, the dynamic decoupling and con-
trol of the end-effector can be achieved by selecting an operational command vector of
the form (eq. 2). The manipulator joint motions produced by this command vector are

those that minimize the instantaneous kinetic energy of the mechanism. Asymptotic
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stabilization is achieved by the addition of dissipative joint forces. In order to pre-
clude any effect of the additional forces on the end-effector and maintain its dynamic
decoupling, these forces are selected to act in the dynamically consistent nullspace
associated with J(q). In the actual implementation, the control vector is developed
in a form [5] that avoids the explicit evaluation of the expression of the generalized

inverse of the Jacobian matrix.

End-Effector Dynamic Performance

The dynamic response of a mechanical system is determined by its inertial character-
istics. Reducing the magnitude of inertias improves the system’s dynamic response.
The end-cffector inertial characteristics at a configuration q are described by the ki-
netic energy matrix A(q). It’s effective inertia at a configuration q, when moving in
a direction u is given by uTA(q)u. The effective inertia varies with the configuration
and direction. Isotropic and uniform inertial characteristics are therefore essential to

provide isotropic and uniform end-effector’s dynamic response.

The second characteristic is concerned with the acceleration characteristics at the end-
effector. This is the minimum achievable acceleration given the bounds on actuator
torques. Equivalently, this characteristic can be stated in terms of the bounds on the
operational force vector F*, the input of the decoupled end-effector in (eq. 3). Let us
examine the operational command vector F in (eq. 2), which achieves the dynamic
decoupling and control of end-effector motion. Only a fraction of these operational
forces, namely F* the input of the decoupled end-effector, contributes to the end-
effector acceleration. The end-effector dynamic performance is, therefore, dependent
on the extent of the boundaries of F*, which determine the limitations on the magni-

tude of available end-effector acceleration.

The vector F of (eq. 2) is produced from the actuator joint force vector I' by 7T(q)I‘,
J(q) is equal to J/“l(q) for a non-redundant manipulator. Substituting in (eq. 2)
yields,

—=T " .
J (@) = AM@)F* + p(q,9) + p(a);
which, using (eq. 9- 11), can be written as

F* = E(q)[T — b(q,q) - g(q)]; (12)

where

E(q) = J(q)A™(q). (13)
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and

Bla,q) = [J7(a)7" ()] b(a,d) — I7(a)A(a)h(q, 4); (14)
ga) = [J7(@)7 (a)] ga)- (15)

b(q,q) and g(q) are the joint force vectors corresponding to the end-effector Cori-
olis and centrifugal forces, and Gravity forces. For a non-redundant manipulator,
[JT(q)jT(q)] reduces to the identity matrix and g(q) becomes identical to g(q). For
a redundant manipulator, §(q) reperesents the part of g(q) that has a contribution at
the end-effector, b(q, q) is similarly interpreted. Given (eq. 3), the matrix E(q) also
establishes the relationship between joint torques and accelerations.

% = E(q)T; (16)

where

T =T -b(q,q) - &a) (17)
T represents the vector of joint forces that contributes to the end-effector accelera-
tions. These contributing forces are limited by the boundaries of actuator torques. At
zero velocity the matrix E(q) describes the bounds on the end-effector accelerations
corresponding to the bounds on joint actuator torques corrected for the gravity. The

bounds on T has been used [4] to construct a joint force normalization matrix Ny(q).
This matrix has been used to define

Eo(q) = WE(q)No(a); (18)

where W is a weighting matrix for the normalization of angular and linear accelera-
tions. The matrix Eo(q) can be interpreted as a joint force/acceleration transmission
matrix at zero-velocity. Bounds on actuator torques are modified at non-zero veloc-
ities. Coriolis and centrifugal forces that arise at non-zero velocities also affect the

bounds on T. Similarly to Ey(q), a matrix E,(q)

E,(q) = WE(q)N,(q); (19)

has been constructed to describe the joint force/acceleration transmission at maxi-
mum operating velocities. At a given configuration q, the end-effector’s acceleration

characteristics will be described by the matrices Eo(q) and E,(q).

Dynamic Optimization

The dynamic optimization is aimed at finding the design parameters under the various
constraints to achieve the smallest, most isotropic, and most uniform end-effector in-

ertial properties, while providing the largest, most isotropic, and most uniform bounds



265

on the magnitude of end-effector acceleration, or equivalently, on the command vector
F* both at low and high velocities. The performance at high velocity is important for
fast and gross motion, while performance at low velocity is particularly important for

fast response in tasks with small range of motion, such as part-mating operations.

At a given configuration q, the matrices A{q), Eo(q), and E,(q) are functions of
the manipulator’s geometric and motion parameters; e.g. link length, mass, moment
of inertia, centers of mass, actuator mass, and bounds on actuator torques. Let %

designate the set of these parameters.

The design process would typically start with an initial design based on workspace and
geometric considerations. The various design parameters would be estimated within
some range. These specifications and the dynamic and structural requirements form
the set of design parameters 1. Let {u;(7);t = 1,...,n,} and {vi();i = 1,...,n,}
designate the sets of equality and inequality constraints on the manipulator design
parameters 7.

Expressed as a function of the manipulator configuration q and the design parameters
n, the matrices A(q), Eo(q,n) and E,(q,n) constitute the basic components in this
optimization problem. At a given configuration, the problem is to find the optimal de-
sign parameters 7, under the constraints {u;(77)} and {v;(n)}, that minimize some cost
function based on the end-effector inertial and acceleration characteristics. This cost
function is made up of three weighted components associated with the characterisitics
of the matrices A(q), Eo(q), and E,(q),

C(q1 77) = Ewici(q, 77);

i=1

subject to the equality and inequality constraints
u(n) =0 i=1,...,n,

v.(’?)SO t=1,...,7m

where w; are the weight coefficients. The cost function associated with the kinetic
energy matrix is aimed at providing small and isotropic inertial properties at q. The
magnitude characteristics is described by the norm ||A(q)||, and the isotropic properties
are represented by the matrix condition number, i.e. £(A(q,7)). The first component

becomes
Ci(q,n) = [I[A(a, n)ll + erx(Ala, 7)));

The cost functions associated with the end-effector accelerations at zero and maximum

oper-.ing velocity are aimed at providing the largest and most isotropic properties at
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q. This is .
Ca(q,n) = [m + az6(Eo(q,m))};

1
Cs(a,n) = 77 + ess(Eu(q,m))]-
(@) =g gqy * eorB@m)
where ay, a,, a3. Finally, the problem of dynamic optimization over the manipulator
work space Dqy can be expressed as
minimize /D C(q,n)w(q)dq;
q
subject
w(n)=0 i=1,...,n,;
v(n) <0 i=1,...,n,

where the function w(q) is used to relax the weighting of the cost function C(q,7) in

the vicinity of the work space boundaries and singularities.

Application to ARTISAN

Optimal dynamic characteristics at the end-effector has been one of the basic goals in
the ARTISAN project [7]. These include high performance joint torque control ability,
motion redundancy, micro-manipulation ability [10], light structure, and integrated
sensing. The kinematic structure of the ARTISAN is divided into three subsystems:
wrist positioning structure, wrist and micro-manipulator. The wrist positioning struc-
ture is the part of the manipulator composed of the first four joints. Joint 1 and joint
2 are intersecting, orthogonal revolutes. Joints 3 and 4 are revolutes with axes parallel
to the axis of joint 2. This part of the system forms a redundant structure if we regard
This part of the system forms a redundant structure with respect to the positioning
of the wrist point. The dynamic optimization has been applied to the design of the
redundant structure formed by the first four degrees of freedom of ARTISAN.

The design parameters consisted of the links’ dimensions, masses, inertias, and motor
parameters. The dynamic optimization was conducted in three main steps. Based on
the preliminary design, the inertial characteristics were first optimized. This resulted
in an initial selection of dimensions and mass distribution. This first set of design
parameters is used to initjalize, the second step which is aimed at providing optimal
acceleration characteristics. Actuators are chosen in this second step. The overall

optimization is achieved in the third step.

This procedure, illustrated in Fig. 1., has led to a significant reduction of the search

space in steps 1 and 2 and provided a good initial estimate for the overall optimization
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in step 3. It is important to mention the impact of the various weights on the final

solution.

Workspace, Kinematic
and Prelitninary Dynamic
Considerations

o Initial Design
Constraints

Inertial Characteristic
Optimization
¥
Acccleration Characteristic
Optimization

Inertial + Acceleration
Characteristic
Optimization

Fig. 1. The Three Step Optimization Procedure

The optimization was carried out using a sequential quadratic programming (SQP)
algorithm. The results of this optimization for ARTISAN has been compared to a
PUMA 560 arm. Fig. 2. shows the inertial characteristics of the PUMA arm (Fig. 2.a.)
and ARTISAN (Fig. 2.b). At a given position of the end-effector, these figures show
the projections of the ellipsoids associated with the three eigenvalues of A. Because
of the redundancy, different ellipsoids would result at given end-effector poistion. The
ellipsoids shown in Fig. 2.b. correspond to those that have the largest eigenvalues.
Also, the scale used in Fig. 2.b. is twice that of Fig. 2.a. The average effective inertia
of the PUMA is roughly three times that of ARTISAN.
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Fig. 2. The inertial Characteristics

Fig. 3. illustrates the minimum available end effector acceleration for the PUMA
(Fig. 3.a.) and ARTISAN (Fig. 3.b) at zero joint velocity. The circles depict the min-
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imum available accelerations at points in the workspace. On an average, the minimum
available accelerations for ARTISAN is twice that of the PUMA arm for same joint
torques.
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Fig. 3. Minimum Available End-Effector Accelerations

Fig. 4. shows the condition numbers of the acceleration characteristics at zero joint
velocity for ARTISAN to be uniform over the workspace. These characteristics has

been estimated to be roughly half of those computed for PUMA arm.

Fig. 4. Acceleration Characteristics
Conclusion

The dynamic characterisitics of manipulator systems have been described by the in-
ertial and acceleration properties as perceived at their end-effectors. These charac-
terisitics have been used in the developement of a methodology for the dynamic opti-
mization in manipulator design. The optimization problem has been expressed as the
minimization, with respect to the design parameters and constraints, of a cost function
based on these characteristics. The small isotropic and uniform inertial characteris-
tics will provide higher dynamic response at the end-effector. The large isotropic and

uniform bounds on the end-effector accelerations will be translated into a large and
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well conditioned operational space command vector. The application to ARTISAN has
demonstrated the effectiveness of this methodology to provide higher dynamic char-
acteristics. With an optimal redistribution of masses, dimensions, and actuators, the

resulting design has been shown to be significantly superior to conventional designs.
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