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Series Editors’ Foreword

The series Advances in Industrial Control aims to report and encourage technol-
ogy transfer in control engineering. The rapid development of control technology
has an impact on all areas of the control discipline. New theory, new controllers,
actuators, sensors, new industrial processes, computer methods, new applications,
new philosophies. . . , new challenges. Much of this development work resides in
industrial reports, feasibility study papers and the reports of advanced collaborative
projects. The series offers an opportunity for researchers to present an extended ex-
position of such new work in all aspects of industrial control for wider and rapid
dissemination.

Several monographs on control topics from the marine field have been published
in the Advances in Industrial Control monograph series, for example:

• Robust Control of Diesel Ship Propulsion by Nikolaos Xiros (ISBN 978-1-85233-
543-4, 2002);

• Ship Motion Control by Tristan Perez (ISBN 978-1-85233-959-3, 2005); and
• Control of Ships and Underwater Vehicles by Khac Duc Do and Jie Pan (ISBN

978-1-84882-729-5, 2009).

However, they are all characterised by being monographs about aspects of sea-
going-vessel or free-swimming remotely-operated-vehicle (ROV) control. On the
other hand, Dynamics and Control of Mechanical Systems in Offshore Engineering
by Wei He, Shuzhi Sam Ge, Bernard Voon Ee How and Yoo Sang Choo is quite
different in that it focuses on the units that make up the offshore oil and gas de-
livery system. Occasionally, topics such as the riser system appear as an isolated
or subsidiary chapter in marine control monographs; hence, a monograph that only
looks at the control of the complete offshore oil and gas platform delivery system is
a valuable entry to Advances in Industrial Control.

In its most basic form, the offshore oil and gas delivery system has three compo-
nents, a surface vessel, the riser tube, and the seabed installations. It is then possible
to start at the surface vessel, categorise the various vessel types and work through
the implications for the subsequent selections made for the riser and subsea tech-
nologies. The surface platform can be fixed, floating and moored, or free floating.
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viii Series Editors’ Foreword

A riser system is the “delivery tube” between the surface platform and the seabed
wellhead or a seabed production collection point. The riser can be flexible or fixed,
and the related control problem can also include the dynamics of the surface plat-
form. Furthermore, the riser is subject to two operational scenarios as a drilling riser
and a production riser. Even with this simplistic description, it is easy to understand
how this composite offshore engineering system begins to become very complex
very quickly. Industry solutions to the control problems include a riser management
system, an example of which is described in Chap. 9 of the monograph, where much
mechanical and physical detail of riser systems can be found.

Technically the monograph presents the modelling and control of distributed pa-
rameter systems, and uses robust adaptive control methods. Chapters 1 and 2 contain
the background material and mathematical preliminaries, respectively, and Chap. 10
closes the monograph with conclusions and future research issues. In between the
opening and closing chapters, the monograph reports on the following control prob-
lem areas:

• at the marine surface:

– control of a crane vessel guiding and positioning a subsea unit—Chap. 4;
– control of a flexible marine riser incorporating surface platform and subsea

payload dynamics—Chap. 5;
– control of a thrusters-assisted single-point mooring system—Chap. 6;

• the riser system:

– control of a flexible marine riser—Chap. 7;
– control of a flexible marine riser system with vessel dynamics—Chap. 8; and

• at subsea levels:

– control of the thruster-assisted installation of a subsea unit—Chap. 3.

The field of offshore production systems is a topic of great economic importance,
especially given the recent trend to exploit resources in deeper offshore fields. This
is an important monograph showing how control systems techniques can make a
contribution to this endeavour. The problems and the proposed solutions will be of
interest to the offshore engineering community and to the academic control com-
munity, who may be able to make even further contributions and become directly
involved in this field. This monograph certainly fills a gap in the Advances in Indus-
trial Control monograph series, being, quite possibly, a seminal control monograph
for the field and as such will be of interest to a wide range of industrial and control
readers.

M.J. Grimble
M.A. Johnson

Industrial Control Centre, Glasgow, Scotland, UK



Preface

Offshore engineering is concerned with the design and operation of systems in harsh
marine environmental conditions. It encompasses a whole spectrum of diverse mul-
tidisciplinary and complex systems and operations such as offshore installations,
structures, foundations, cables and pipelines, moorings, risers, drilling, mining, dis-
posal and salvage operations, etc. The design of mechanical systems to operate in
the harsh marine environmental conditions is one of the most challenging tasks in
offshore engineering. One part of the challenges is in the modeling and control of
such systems. This subject has received increasing attention in recent years with
growing energy demands extending oil and gas explorations to deeper and even
harsher environments.

The main purpose of the book is to investigate the fundamental issues includ-
ing dynamical modeling and control design for different mechanical systems in
offshore engineering. The book presents theoretical explorations on several fun-
damental problems for dynamics and control of marine mechanical systems. Moti-
vated by the need to develop a general dynamic modeling and control framework
to achieve system performance, concepts from control, mechanical structures, and
offshore fields are synthesized via a systematic approach and presented. The basic
theoretical framework is formed toward mechanical systems in offshore engineer-
ing, which not only extends the theory of mechanical structures, but also applies
to realistic problems faced by the industry. A comprehensive study is provided for
developing advance strategies for the modeling and control design of the systems
with guaranteed stability. By investigating the characteristics of mechanical mod-
els, advanced control approaches are presented for marine mechanical systems with
specific applications, i.e., installation systems, mooring systems, and riser systems.
The control designs are coupled with numerical simulations to illustrate the effec-
tiveness.

Offshore applications are characterized by the time-varying environmental dis-
turbances and the sea conditions. For riser systems, vibration and deformation of the
flexible structures due to the ocean current disturbances and the tension exerted at
the top can produce premature fatigue problems and failures that require costly re-
pairs. Proper control techniques are desirable for preventing damage and improving
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x Preface

the lifespan of these structures. The chapter on structural analysis and riser oper-
ations (contributed by Geoff Lyons and Minoo Patel) describing an on-board riser
operation management system that provides a real-time guidance for carrying out
connected and disconnected mode drilling riser operations on board a vessel as an
industrial case study.

The book contains ten chapters, which exploit several independent yet related
topics in detail.

Chapter 1 introduces the system description, background, and motivation of the
study and presents several general concepts and fundamental observations.

Chapter 2 presents several lemmas and properties used in the subsequent devel-
opment and derivations of the dynamical models, and further stability analysis for
the marine mechanical structures.

In Chap. 3, positioning control in the horizontal plane is investigated for the in-
stallation of subsea systems, with thrusters attached, under time-varying irrotational
ocean current, when the payload is near to the seabed. Backstepping in combina-
tion with adaptive feedback approximation techniques is employed in the design of
the control, with the option of high-gain observer for output feedback control. The
stability of the design is demonstrated through Lyapunov analysis where semiglobal
uniform boundedness of the closed-loop signals are guaranteed. The proposed adap-
tive neural control is able to capture the dominant dynamic behaviors without exact
information on the hydrodynamic coefficients of the structure and current measure-
ments.

In Chap. 4, the model of the coupled crane-cable-payload with nonuniform pa-
rameters is presented. Positioning control is derived for the coupled system with
uniform parameters using barrier Lyapunov functions. Through Lyapunov analysis,
it is shown that the coupled crane, payload flexible system is stable under the con-
trol action, the physical limits from operations planning and safety specifications
are not transgressed, and positioning of crane and payload is achieved. A stabilizing
boundary control is proposed for the coupled system with nonuniform parameters.
Rigorous Lyapunov stability analysis is carried out, and uniform boundedness of
the system is shown under the proposed control. Finally, the performance of the
proposed control is given through numerical simulations.

In Chap. 5, a robust adaptive boundary control of a marine installation system is
developed to position the subsea payload to the desired set-point and suppress the
cable’s vibration. The flexible cable coupled with vessel and payload dynamics is
described by a distributed parameter system with one partial differential equation
(PDE) and two ordinary differential equations (ODEs). Boundary control is pro-
posed at the top and bottom boundary of the cable based on the Lyapunov direct
method. Considering the system parametric uncertainties and the unknown ocean
disturbances, the developed adaptive boundary control schemes achieve the uni-
form boundedness of the steady-state error between the boundary payload and the
desired position. The control performance of the closed-loop system is guaranteed
by suitably choosing the design parameters.

Chapter 6 is dedicated on the control problem of a thruster-assisted single-point
mooring system, in the presence of uncertainties and unknown backlash-like hys-
teresis nonlinearities. Using backstepping technique and Lyapunov synthesis, and
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employing neural networks (NNs) to approximate the unknown nonlinear functions,
robust adaptive backstepping control is developed for the full-state feedback case.
Subsequently, in order to overcome the measure difficulty in the vessel velocity
vector, a high-order NN-based observer is constructed to estimate the unmeasur-
able state vector. It is shown that the proposed observer has an excellent estima-
tion performance in spite of the existence of uncertainties and unknown backlash-
like hysteresis nonlinearities. Based on this observer, robust adaptive output feed-
back control is developed via backstepping design. Under the proposed control, the
semiglobal uniform boundedness of all the signals in the closed-loop systems is
guaranteed for both full-state and output feedback cases.

In Chap. 7, boundary control for a coupled nonlinear flexible marine riser with
two actuators in transverse and longitudinal directions is developed to reduce the
riser’s vibrations. The dynamic behavior of the flexible riser is represented by a
distributed parameter system (DPS) model with partial differential equations (PDEs)
and the control is applied at the top boundary of the riser based on Lyapunov direct
method to suppress the riser’s vibrations. With the proposed boundary control, the
uniform boundedness under ocean current disturbances and exponential stability
under the free vibration condition is achieved. The proposed control is independent
of system parameters, which ensures the robustness of the system to variations in
parameters.

Chapter 8 studies the modeling and control of a flexible marine riser with the
vessel dynamics. Both the dynamics of the vessel and the vibration of the riser are
considered in the dynamic analysis, which make the system more difficult to control.
Boundary control is proposed at the top boundary of the riser to suppress the riser’s
vibration. Adaptive control is designed when the system parametric uncertainties
exist. Employing the Lyapunov direct method, the states of the system are proven to
be uniformly ultimately bounded. The state of the system will converge to a small
neighborhood of zero by appropriately choosing the design parameters. The design
is based on the PDEs of the system, thus avoiding some drawbacks associated with
the traditional truncated-model-based design approaches.

Chapter 9 serves as an industrial case study in this book. This chapter investi-
gates the structural analysis and the riser operations of fixed and floating offshore
structures using pipe connections between surface facilities and seabed as well as
pipes laying on or below the seabed for transportation of oil and gas. The analysis of
vertical marine risers under the influences of both internal and external forces is de-
scribed. Four configurations of the marine risers are introduced including free hand-
ing mode, connected mode, operational mode, and nonoperational but connected
mode. A marine riser can be maintained in an operable condition by ensuring that
the lower ball joint angle remains below about 4 degrees. Three operating proce-
dures are given to bring the angle down. The marine riser monitoring system pro-
vides information on the behaviors of the platform and the marine riser, and compar-
isons can be made with previous results for evaluating the projected fatigue life of
the riser. BPP-RMS, an example of the comprehensive Riser Management System
(RMS) for riser maintenance and inspection, is presented. BPP-RMS is an on-board
riser operation management system that provides a real-time guidance for carrying
out connected and disconnected mode drilling riser operations on board a vessel.
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Chapter 10, the last chapter, makes conclusions on this book.
In summary, this book covers the dynamical analysis and control design for ma-

rine mechanical systems. The book is primarily intended for researchers and engi-
neers in the control system and offshore engineering community. It can also serve
as a complementary reading on modeling and control of marine mechanical systems
at the post-graduate level.
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Chapter 1
Introduction

1.1 Background and Motivation

Accurate positioning for the installation of the subsea systems onto the seabed is
identified as one of the problems in subsea installation operations [1]. Subsea tem-
plates, Christmas trees, and manifolds have to be installed accurately in a speci-
fied spatial position and compass heading within tight limits, including rotational,
vertical, and lateral measurements. The tolerances for a typical subsea installation
are within 2.5 m of design location and within 2.5 degrees of design heading for
large templates [2] and are more stringent for the installation of manifolds into the
templates. With the push for using smaller installation vessels to reduce costs, the
operators are concerned with the transmission of motions from the surface vessel,
which are more susceptible to influences from the wave forces by virtue of their
smaller build. Remote Operated Vehicles (ROVs) are also used to aid structure po-
sitioning. This can be feasible for small structures but not for large templates as a
result of limited thrust available from the propulsion system. The entanglement of
the umbilical of the ROV with the lifting cable and other factors such as long path
lengths for round trip communication with the surface, noise, reaction delays, and
poor visibility may result in errors during placement [1].

The marine riser is used as a fluid-conveyed curved pipe drilling crude oil, nat-
ural gas, hydrocarbon, petroleum materials, mud, and other undersea economic re-
sources, and then transporting those resources in the ocean floor to the production
vessel or platform in the ocean surface [3]. A drilling riser is used for drilling pipe
protection and transportation of the drilling mud, while a production riser is a pipe
used for oil transportation [4]. The stiffness of a flexible marine riser depends on
its tension and length; thus, a riser that spans a long distance can produce large
vibrations under relatively small disturbances. In marine environment, vibrations
excited by vortices can degrade the performance of the flexible marine riser. If the
riser spacing and properties are kept constant, the risk of collision will increase with
increasing water depth since the static deflection due to the uniform current drag
is proportional to the square of the length [5, 6]. Vibrations of the riser due to the
ocean current disturbances and the tension exerted at the top can produce premature
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fatigue problems, which require inspections and costly repairs, and as a worst case,
environmental pollution due to leakage from damaged areas. Vibration suppression
by proper control techniques is desirable for preventing damage and improving the
lifespan of the riser.

Marine installation system is used as an accurate position control for marine in-
stallation operation in offshore engineering. Accurate position control for marine
installation operations has gained increasing attention in recent years [7–9]. Due to
the requirements for high accuracy and efficiency arising from the modern ocean
industry, improving reliability and efficiency of installation operations during oil
and gas production in the ocean environment is an active research topic that has re-
ceived much attention in offshore engineering. A typical marine installation system
consists of an ocean surface vessel, a flexible string-type cable, and a subsea pay-
load to be positioned for installation on the ocean floor. The surface vessel, to which
the top boundary of the cable is connected, is equipped with a dynamic position-
ing system with an active thruster. The bottom boundary of the cable is a payload
with an end-point thruster attached. This thruster is used for dynamic positioning of
the payload. The total marine installation system is subjected to the environmental
disturbances including the ocean current, wave, and wind. Taking into account the
unknown time-varying ocean disturbances of the cable leads to the appearance of
oscillations, which make the control problem of the marine installation system rel-
atively difficult. Vibration suppression and position control by proper control tech-
nique are desirable and feasible for the marine installation system.

In comparison with the dynamic positioning system, the thruster assisted position
mooring system for the anchored vessel is an economical solution in deep waters due
to the long operational period in harsh environmental conditions. Floating concepts
such as the use of Floating Production Storage and Offloading (FPSO) vessels in
combination with subsea systems and shuttle tankers have become possible with the
use of sophisticated positioning systems for precise and safe positioning. The two
main types of positioning systems are the dynamic positioning (DP) systems for free
floating vessels and the thruster-assisted position mooring (PM) system for anchored
vessels. Many results are obtained for control of dynamic positioning systems in
recent years by using the model-based approaches [10, 11] and backstepping-based
approaches [12, 13]. In [14], the problem of tracking a desired trajectory is discussed
for a fully actuated ocean vessel with dynamic positioning system in the presence of
parametric uncertainties and the unknown disturbances. In [15], a hybrid controller
is developed to extend the operability and performance of the dynamic positioning
system. Station keeping means maintaining the vessel within a desired position in
the horizontal plane, which has been identified as one of the typical problems in
offshore engineering. A typical thruster-assisted position mooring system consists
of an ocean surface vessel and several flexible mooring lines. The surface vessel, to
which the top boundary of the mooring lines is connected, is equipped with a dy-
namic positioning system with active thrusters. The bottom boundary of the moor-
ing lines is fixed in the ocean floor by the anchors. Station keeping for the mooring
system is hard to achieve due to the complicated system model and the unknown
time-varying ocean disturbances including the ocean current, wave, and wind. The
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mooring lines spanning a long distance can produce large vibrations under the ocean
disturbances, which can degrade the performance of the system and result in a larger
offset from the target position of the vessel.

The remainder of this chapter is organized as follows. In Sect. 1.2, control meth-
ods for marine systems are briefly reviewed, where the researches on control of
installation systems, mooring systems, and riser systems are discussed. In Sect. 1.3,
a brief introduction of the control techniques for flexible mechanical systems, espe-
cially for flexible string and beam systems, is presented. Background knowledge of
flexible systems is given first, and then the recent researches on boundary control of
flexible systems are discussed. Some research problems to be studied in this book
are highlighted, such as boundary control and robust adaptive control, which are
both theoretically challenging and practically meaningful. In Sect. 1.4, the literature
reviews of the adaptive and approximation-based control for rigid mechanical sys-
tems are presented. Especially, some research works on neural network control are
introduced. The outline of the book is given in Sect. 1.5.

1.2 Mechanical Systems in Offshore Engineering

Dynamics and control of marine mechanical systems under the time-varying ocean
disturbances have received increasing attention in recent years with growing energy
demands involving oil and gas development in deeper and harsher environments.
The three most common marine flexible systems, installation systems, riser systems,
and mooring systems, are consisted by different flexible mechanical systems such
as beam and string.

The trend in the offshore industry is toward increased use of installation systems
and floating platforms such as anchored Floating Production Storage and Offloading
(FPSO) vessels in deep water. Traditional marine installation systems consist of the
vessel dynamic positioning and crane manipulation to obtain the desired position
and heading for the payload [1, 2]. Such methods become difficult in deeper waters
due to the longer cable between the surface vessel and payload. The longer cable
increases the natural period of the cable and payload system, which in turn increase
the effects of oscillations. One solution to alleviate the precision installation prob-
lem is the addition of thrusters attached the payload for the installation operation
[7, 16, 17]. Such marine installation system consists of an ocean surface vessel, a
flexible string-type cable, and a subsea payload to be positioned for installation on
the ocean floor. The control for the dynamic positioning of the payload is challeng-
ing due to the unpredictable exogenous disturbances such as fluctuating currents and
transmission of motions from the surface vessel through the lift cable. The unknown
time-varying ocean disturbances along the cable lead to the appearance of oscilla-
tions. The paper [7] about the control of the marine installation systems focuses on
the dynamics of the payload, where the dynamics of the cable is considered as an
external force term to the payload. In [8, 18], the coupled crane-payload flexible
installation system with nonuniform parameters is presented, where a barrier Lya-
punov function is employed for control design and stability analysis. In [9, 19, 20],
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the flexible marine installation system with cable, vessel, and payload dynamics is
represented by a set of infinite-dimensional equations, (i.e., PDEs describing the
dynamics of the flexible cable) coupled with a set of finite-dimensional equations
(i.e., ODEs describing the lumped vessel and payload dynamics). Robust adaptive
boundary control of a marine installation system is developed to position the subsea
payload to the desired set-point and suppress the cable’s vibration.

With the development of offshore industry, the control problems of position-
ing systems for marine vessels are received increasing attention. During the past
decades, the research interests mainly focused on the DP systems, and several ex-
cellent control methods are proposed for DP systems; see [11, 14, 15, 21–29] and
references therein. Many good results [30–34] for control design of the mooring
system in the literatures rely on the ODE model with neglecting the dynamics of the
mooring lines. These works on the control of the thruster-assisted position moor-
ing systems mainly focus on the dynamics of the vessel, and the dynamics of the
mooring lines are usually ignored for the convenience of the control design. In ear-
lier research [30], a nonlinear passive observer for thruster-assisted position moored
ships is developed, where the force from the mooring lines are regarded as external
forces, and mooring system is modeled as an ODE system. A finite element model
of a single mooring line is derived in [35], but the control is not proposed for the sys-
tem. More recently, by using a structural reliability measure for the mooring lines,
the paper [31] proposes the control to maintain the probability of the mooring line
failure below an acceptable level regardless of changing weather conditions. In [32],
the switching control is designed for a positioning mooring system that allows the
thrusters to assist the mooring system in the varying environmental conditions. In
[34], the modeling and control of a positioning mooring system with a drilling riser
is investigated. In these works, the dynamics of the mooring lines is considered as
an external force term to the vessel dynamics. These kinds of model can influence
the dynamic response of the whole mooring system due to the neglect of the cou-
pling between the vessel and the mooring lines. To overcome this shortcoming, in
some papers, the mooring system is represented by two PDEs describing the dy-
namics of the mooring lines coupled with four ODEs describing the lumped vessel
dynamics. The paper [36] investigates the station keeping and tension problem in
order to avoid line tensions rising for the multicable mooring systems in which the
dynamics of the mooring lines are modeled as PDEs. But the paper does not provide
the detailed discussion for the control design.

In [11, 21, 22], Kalman filtering and optimal control methods are proposed for
linearized vessel models. Based on Lyapunov’s direct method, backstepping con-
trol methods are proposed in [23, 24], where a passive nonlinear observer is used
to estimate the vessel velocities. In [25], the problem of weather optimal dynamic
positioning is investigated by using the basic principle of pendulum, where the op-
timal control minimizes the load of the constant environmental disturbances on the
vessel. In [26], the ship dynamics are firstly transformed into a system affine in
the ship velocities by using global nonlinear coordinate changes, observers are ac-
cordingly designed to globally exponentially estimate unmeasured velocities, and
then the control is designed for underactuated ships by using Lyapunov’s direct
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method and backstepping technique, where the passive property of ship dynamics
and their interconnected structure are utilized. This method is extended in [27] by
adding integral actions to the control to compensate for a constant bias of envi-
ronmental disturbances. Alternatively, a reliability-based control algorithm for dy-
namic positioning of floating vessels is proposed in [29], a hybrid controller is de-
veloped in [15] to extend the operational weather window for marine operations to
harsh environments, and fuzzy neural network control is designed in [14] for the
case where the dynamic model of ship is unknown. An elegant learning control
design technique is proposed in [37] for a marine surface ship in uncertain dynam-
ical environments, where the proposed learning control can effectively exploit the
learned knowledge without readapting to the unknown system dynamics for another
similar control task to achieve a closed-loop stability and improved control per-
formance. In [38], leader-follower formation control is proposed for underactuated
autonomous underwater vehicles without the need for leader’s velocity and dynam-
ics.

Comparing with DP systems, there are relatively few results on PM systems.
Since the late of last century, the PM systems are proved to be a cost-effective so-
lution for offshore drilling rigs and floating oil production, and the control problem
of PM systems is investigated. Several excellent research results can be found in
[31–33, 39, 40]. In [31], an adaptive controller is designed such that the probability
of mooring line failure could be kept below a predefined acceptable level. By us-
ing a structural reliability measure for the mooring lines, the control protected the
mooring system whenever needed as a result of severe weather conditions and high
environmental loads. In [33], a three-level control strategy is presented for PM sys-
tems, where a nonlinear passive observer is employed to estimate the low-frequency
motion of moored vessel, and nonlinear output PID control law is used to keep the
vessel’s position and heading based on the measured states. For the PM systems
investigated in [32], several controllers are designed for heading, damping, restor-
ing, and mean force, respectively, and the authors integrated these controllers into
a switching control system that also included a set of models to track the exist-
ing operational conditions and the switching logics. In [31], a model of a futuristic
fish farming structure is established, and problems related to interconnected marine
structures and strategies for configuration control are studied. The control system is
designed such that the loading of the mooring system is limited and the strain in the
connectors between the modules is positive.

The physical structure of a marine riser system is shown in Fig. 1.1. In earlier
works of marine flexible risers [41–43], the modeling of the riser systems is in-
vestigated, and the simulations with different numerical methods are provided to
verify the effectiveness of the models. In [44, 45], distributed parameter models
with PDEs are used to analyze and investigate the dynamic response of the flexi-
ble marine riser under the ocean current disturbances. But the stability and control
design are not mentioned in these works. The Timoshenko model also can pro-
vide an accurate beam model, which takes into account the rotary inertial energy
and the deformation owing to shear. Compared with the Euler–Bernoulli model,
the Timoshenko model is more accurate at predicting the beam’s response. How-
ever, the Timoshenko model is more difficult to implement for control design due
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Fig. 1.1 The structure of a
marine riser system

to its higher order. For this reason, most of the flexible marine risers with bound-
ary control are based on the Euler–Bernoulli model [46]. In [47], boundary control
for the flexible marine riser with actuator dynamics is designed based on the Lya-
punov direct method and the backstepping technique. In [48], the boundary control
problem of a three-dimensional nonlinear inextensible riser system is considered
via the same method as in [47]. In [4], a torque actuator is introduced at the top
boundary of the riser to reduce the angle and transverse vibration of the riser with
guaranteed a closed-loop stability. In [49], boundary control for a coupled nonlinear
flexible marine riser with two actuators in transverse and longitudinal directions is
designed to suppress the riser’s vibration. In [50, 51], adaptive boundary control is
proposed for a flexible marine riser with vessel dynamics, where the coupling be-
tween the riser and the vessel is handseled. In these works, the riser is modeled as
an Euler–Bernoulli beam structure with PDEs for the purpose of dynamic analysis,
since the diameter-to-length ratio of the riser is small. Based on the distributed pa-
rameter model, various kinds of control methods integrating computer software and
hardware with sensors and actuators are investigated to design control to suppress
the riser’s vibration.
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1.3 Control of Flexible Mechanical Systems

In recent decades, dealing with the vibration problem of flexible systems has be-
come an important research topic, driven by practical needs and theoretical chal-
lenges. Lightweight mechanical flexible systems possess many advantages over
conventional rigid ones, such as lower cost, better energy efficiency, higher oper-
ation speed, and improved mobility. These advantages greatly motivate the appli-
cations of the mechanical flexible systems in industry. A large number of systems
can be modeled as mechanical flexible systems such as telephone wires, conveyor
belts, crane cables, helicopter blades, robotic arms, mooring lines, marine risers,
and so on. However, unwanted vibrations due to the flexibility property and the
time-varying disturbances restrict the utility of these flexible systems in different
engineering applications.

Many physical processes cannot be modeled by ODEs since the state of the sys-
tem depends on more than one independent variable [52]. The state of a given physi-
cal system, such as flexible structure, fluid dynamics, and heat transfer, may depend
on the time t and the location x. The flexible mechanical systems are dependent on
the spatial and temporal variables, which can be modeled as the distributed param-
eter systems. The model is represented by a set of infinite-dimensional equations
(i.e., PDEs describing the dynamics of the flexible bodies) coupled with a set of
finite-dimensional equations (i.e., ODEs describing the boundary conditions). The
model of the flexible mechanical system represented by a set of PDEs is difficult
to control due to the infinite dimensionality of the system, and many control strate-
gies for the conventional rigid-body system cannot be directly applied to solve the
control problem of the flexible system.

The most popular control approaches for the distributed parameter systems are
modal control based on the truncated discredited system model, distributed control
by using distributed sensors and actuators, and boundary control. Modal control for
the distributed parameter systems is based on truncated finite-dimensional modes
of the system, which are derived from finite element method, Galerkin’s method, or
assumed-modes method [53–61]. For these finite-dimensional models, many con-
trol techniques developed for ODE systems in [62–66] can be applied. The trun-
cated models are obtained via the model analysis or spatial discretization, in which
the flexibility is represented by a finite number of modes by neglecting the higher-
frequency modes. The problems arising from the truncation procedure in the model-
ing need to be carefully treated in practical applications. A potential drawback in the
above control design approaches is that the control can cause the actual system to be-
come unstable due to excitation of the unmodeled, high-frequency vibration modes
(i.e., spillover effects) [67]. Spillover effects that result in instability of the system
are investigated in [68, 69] when the control of the truncated system is restricted to
a few critical modes. The control order needs to be increased with the number of
flexible modes considered to achieve high accuracy of performance, and the control
may also be difficult to implement from the engineering point of view since full
state measurements or observers are often required. In an attempt to overcome the
above shortcomings of the truncated model-based modal control, boundary control
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where the actuation and sensing are applied only through the boundary of the sys-
tem utilizes the distributed parameter model with PDEs to avoid control spillover
instabilities. Boundary control combined with other control methodologies, such
as variable structure control [70], sliding-mode control [71], energy-based robust
control [72, 73], model-free control [74], the averaging method [75–79], and ro-
bust adaptive control [80–82], is developed. In these approaches, system dynamics
analysis and control design are carried out directly based on the PDEs of the system.

Distributed control [83–87] requires relatively more actuators and sensors, which
makes the distributed control relatively difficult to implement. Compared with the
distributed control, boundary control is an economical method to control the dis-
tributed parameter system without decomposing the system into a finite-dimensional
space. Boundary control is considered to be more practical in a number of research
fields, including the vibration control of flexible structures, fluid dynamics, and heat
transfer, which requires few sensors and actuators. In addition, the kinetic energy,
the potential energy, and the work done by the nonconservative forces in the process
of modeling can be directly used to design the Lyapunov function of the closed-loop
system.

The relevant applications for boundary control approaches in mechanical flexible
structures consist of second-order structures (strings and cables) and fourth-order
structures (beams and plates) [88]. The Lyapunov direct method is widely used since
the Lyapunov functionals for control design closely relate to kinetic, potential, and
work energies of the distributed parameter systems. Based on the Lyapunov direct
method, the authors in [47, 48, 61, 67, 70–74, 80, 81, 89–126] have presented re-
sults for the boundary control of the flexible mechanical systems. In [80], robust
adaptive boundary control is investigated to reduce the vibration for a moving string
with spatiotemporally varying tension. In [98], robust and adaptive boundary con-
trol is developed to stabilize the vibration of a stretched string on a moving trans-
porter. In [101], a boundary controller for a linear gantry crane model with a flexible
string-type cable is developed and experimentally implemented. An active boundary
control system is introduced in [102] to damp undesirable vibrations in a cable. In
[105], the asymptotic and exponential stability of an axially moving string is proved
by using a linear and nonlinear state feedback. In [127], a flexible rotor with bound-
ary control is illustrated, and the experimental implementation of the flexible rotor
controller is also presented. Boundary control is applied to beams in [128], where
boundary feedback is used to stabilize the wave equations and design active con-
strained layer damping. Active boundary control of an Euler–Bernoulli beam, which
enables the generation of a desired boundary condition at any designators position
of a beam structure, is investigated in [129]. In [107], a nonlinear control law is con-
structed to exponentially stabilize a free transversely vibrating beam via boundary
control. In [47, 48], a boundary controller for the flexible marine riser with actuator
dynamics is designed based on the Lyapunov direct method and the backstepping
technique. In [116], a linear boundary velocity feedback control is designed to en-
sure exponential stabilization of the vibration of a nonlinear moving string. In [103],
boundary control of a nonlinear string is investigated where feedback from the ve-
locity at the boundary of a string is proposed to stabilize the vibrations. It is notable
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that robust and adaptive control schemes have been applied to the boundary control
design in [9, 49, 50, 80, 81, 98, 130–132]. By using the Laplace transform to derive
the exact solution of the wave equation, boundary impedance control for a string
system is investigated in [104]. Recently, by combining the backstepping method
with adaptive control design, a novel boundary controller and observer are designed
to stabilize the string and beam model and tracking the target system. Many remark-
able results in this area are obtained in [114, 133–145]. However, this boundary
control method is hard to be applied to the marine flexible systems due to difficul-
ties in finding a proper gain kernel. For example, it is hard to find a gain kernel for
the model of the marine riser system subjected to the unknown ocean disturbances.
Employing the iterative learning control (ILC) scheme, the authors in [99, 100, 146]
propose the boundary control for a class of distributed parameter systems. In their
research, the external disturbance is assumed to be periodical so that the iterative
learning boundary control can be designed. However, the external disturbance is not
periodical in the ocean environment, which leads to that the ILC-based boundary
control may not be applied in the marine flexible systems.

In the literature of boundary control for the distributed parameter systems, func-
tional analysis and the semigroup theory are usually used for the stability analysis
and for the proof of the existence and uniqueness of PDEs; see, for example, [147–
155]. Such distributed parameter systems are described by operator equations on an
infinite-dimensional Hilbert or Banach space [156–158]. The stability analysis and
the solution existence are based on the theory of semigroups on infinite-dimensional
state spaces. In [48], the proof of the existence and uniqueness of the control system
is carried out by using an infinite-dimensional state space. In [80], the asymptotic
stability of the system with proposed control is proved by using semigroup theory.
In [147], stability of different infinite-dimensional systems is studied based on the
semigroup theory. In [145], the semigroup theory is utilized to prove the strong sta-
bility of a one-dimensional wave equation with proposed boundary control. In [152],
stabilization of a second-order PDE system under noncollocated control and obser-
vations is investigated in Hilbert spaces. In [159], a noncollocated boundary control
is developed to stabilize two connected strings with the joint anti-damping, and the
exponentially stability is proved by using the semigroup theory. With control at one
end and noncollocated observation at the other end, the exponential stability of the
closed-loop system is proved in [153]. In [154, 155], a uniformly exponentially sta-
ble observer is designed for a class of second-order distributed parameter systems,
and the uniqueness and stability of the system are proved based on the semigroup
theory.

Compared with the functional-analysis-based methods, the Lyapunov direct
method for the distributed parameter systems requires little background beyond cal-
culus for users to understand the control design and the stability analysis. In addi-
tion, the Lyapunov direct method provides a convenient technique for PDEs by using
well-understood mathematical tools such as algebraic and integral inequalities and
integration by parts.
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1.4 Adaptive and Approximation-Based Control for Marine
Systems

An intuitive solution to alleviate the precision placement problem is the addition of
thrusters for localized positioning when the payload is near the target site [160, 161].
The positioning control is challenging due to unpredictable exogenous disturbances
such as fluctuating currents and transmission of motions from the surface vessel
through the lift cable. In [162], experiments are carried for dynamic positioning of
a towed pipe. The nonlinear dynamics associated with the fluid phenomenon on the
payloads, represented by a continuous infinite-dimensional Navier–Stokes equation,
need to be reduced to a finite-dimensional approximate model that is normally ex-
perimentally determined. Due to the size, costs, and the variations in design and
construction, full-scale experiments may not be possible in all structures. In most
cases, the best way to determine the coefficients required are by means of model
testing, where uncertainties attributed to the materials, measurement, and scale ef-
fect exist.

Traditionally, such hydrodynamic loads are treated as bounded disturbances, and
the standard proportional-integral-derivative (PID) algorithm is applied in motion
control. The PID control is shown to exhibit good steady-state performance. How-
ever, its transient performance is less satisfactory, since the linear control action
tends to produce large overshoots. Although the PID control does not explicitly
contain any terms from the dynamic model, the tuning of the PID gains by ad-
vanced techniques such as LQR requires knowledge of the model. Without the use
of such techniques, PID tuning for the MIMO systems is generally nontrivial and
may require full-scale experiments.

In the dynamic control of offshore structures for installation, an important con-
cern is how to deal with unknown perturbations to the nominal model, in the
form of parametric and functional uncertainties, unmodeled dynamics, and dis-
turbances from the environment. Marine control applications are characterized by
time-varying environmental disturbances and widely changing sea conditions. In
this context, the stand-alone model-based control may not be the proper ideal since
it generally works best when the dynamic model is known exactly. The presence
of uncertainties and disturbances could disrupt the function of the feedback control
and lead to degradation of performance. We propose to overcome this problem for
the installation of subsea structures by adopting an intelligent control strategy in the
form of adaptive neural techniques to compensate for functional uncertainties in the
dynamic model and unknown disturbances from the environment. According to the
Stone–Weierstrass theorem, a universal approximator, such as a neural network, can
approximate any real continuous function on a compact set to an arbitrary degree of
accuracy. Such approximators can utilize a standard regressor function whose struc-
ture is independent of the dynamic characteristics, thus increasing the portability of
the same control algorithm on different marine systems. For systems in which the
dynamic models are well established and accurate, existing model-based schemes
can be augmented by intelligent control “modules” easily and flexibly to handle
disturbances from varying weather conditions and sea states.
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Direct compensation of the hydrodynamic loads is desirable but difficult to real-
ize in practice due to the difficulty in obtaining accurate parametric coefficients. For
control design, the parametric model should be simple enough for analysis and yet
be complex enough to capture the main dynamics of the system. The approximation
abilities of artificial NNs have been proven in many research works [163–167]. The
major advantages of parallel structure, learning ability, nonlinear function approxi-
mation, fault tolerance, and efficient analog VLSI implementation for real-time ap-
plications motivate the usage of NNs in nonlinear system control and identification.
NNs, combined backstepping designs, are reported in [168], using NN to construct
observes can be found in [169, 170], NN control in robot manipulators is reported
in [64, 171–173]. Adaptive neural control can overcome some limitations of model-
based control that requires exact knowledge of the system parameters [174, 175].
NNs can also be used as an alternative to parameterize the nonlinear hydrodynamic
loads when coupled with adaptive control for online tuning. NNs are embedded in
the overall control strategy for modeling and compensation purposes in [166, 176–
178]. In-depth developments in NNs for modeling and control purposes are made in
[175, 178–192].

1.5 Outline of the Book

The general objectives of the book are to develop constructive and systematic meth-
ods of designing control for marine mechanical systems with guaranteed stabil-
ity. By investigating the characteristics of several different marine models, control
strategies are proposed to achieve the performance for the concerned systems. The
book starts with a brief introduction of control techniques for a classes of marine
mechanical systems in Chap. 1.

Chapter 2 presents several lemmas and properties for the subsequent develop-
ment for the convenience of derives of the dynamical models and further stability
analysis for the marine mechanical structures.

In Chap. 3, positioning control in the horizontal plane is investigated for the in-
stallation of subsea systems, with thrusters attached, under time-varying irrigational
ocean current, when the payload is near to the seabed. Backstepping in combination
with adaptive feedback approximation techniques is employed in the design of the
control, with the option of high-gain observer for output feedback control. The sta-
bility of the design is demonstrated through Lyapunov analysis when the semiglobal
uniform boundedness of the closed-loop signals is guaranteed. The proposed adap-
tive neural control is able to capture the dominant dynamic behaviors without exact
information on the hydrodynamic coefficients of the structure and current measure-
ments.

In Chap. 4, the model of the coupled vessel, crane, cable, and payload with
nonuniform parameters is presented. Positioning control is derived for the cou-
pled system with uniform parameters using barrier Lyapunov functions. Through
Lyapunov analysis, it is shown that the coupled crane, payload flexible system is
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stable under the control action, the physical limits from operations planning and
safety specifications are not transgressed, and positioning of crane and payload is
achieved. A stabilizing boundary control is proposed for the coupled system with
nonuniform parameters. Rigorous Lyapunov stability analysis is carried out and the
uniform boundedness of the system is shown under the proposed control. Finally,
the performance of the proposed control is given through numerical simulations.

In Chap. 5, robust adaptive boundary control of a marine installation system is
developed to position the subsea payload to the desired set-point and suppress the
cable’s vibration. The flexible cable coupled with vessel and payload dynamics is
described by a distributed parameter system with one partial differential equation
(PDE) and two ordinary differential equations (ODEs). Boundary control is pro-
posed at the top and bottom boundaries of the cable based on the Lyapunov direct
method. Considering the system parametric uncertainties and the unknown ocean
disturbances, the developed adaptive boundary control schemes achieve the uni-
form boundedness of the steady-state error between the boundary payload and the
desired position. The control performance of the closed-loop system is guaranteed
by suitably choosing the design parameters.

Chapter 6 is dedicated to the control problem of a thruster-assisted single-point
mooring system in the presence of uncertainties and unknown backlash-like hys-
teresis nonlinearities. Using backstepping technique and Lyapunov synthesis and
employing neural networks (NNs) to approximate the unknown nonlinear functions,
robust adaptive backstepping control is developed for the full-state feedback case.
Subsequently, in order to overcome the measure difficulty in the vessel velocity
vector, a high-order NN-based observer is constructed to estimate the unmeasur-
able state vector. It is shown that the proposed observer has an excellent estima-
tion performance in spite of the existence of uncertainties and unknown backlash-
like hysteresis nonlinearities. Based on this observer, robust adaptive output feed-
back control is developed via backstepping design. Under the proposed control, the
semiglobal uniform boundedness of all the signals in the closed-loop systems is
guaranteed for both full-state and output feedback cases.

In Chap. 7, boundary control for a coupled nonlinear flexible marine riser with
two actuators in transverse and longitudinal directions is developed to reduce the
riser’s vibrations. The dynamic behavior of the flexible riser is represented by a dis-
tributed parameter system (DPS) model with partial differential equations (PDEs),
and the control is applied at the top boundary of the riser based on Lyapunov’s di-
rect method to suppress the riser’s vibrations. With the proposed boundary control,
the uniform boundedness under ocean current disturbance and exponential stability
under free vibration condition are achieved. The proposed control is independent
of system parameters, which ensures the robustness of the system to variations in
parameters.

Chapter 8 studies the modeling and control of a flexible marine riser with the
vessel dynamics. Both the dynamics of the vessel and the vibration of the riser are
considered in the dynamic analysis, which make the system more difficult to control.
Boundary control is proposed at the top boundary of the riser to suppress the riser’s
vibration. Adaptive control is designed when the system parametric uncertainties
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exist. Employing the Lyapunov direct method, the states of the system are proven to
be uniformly ultimately bounded. The state of the system will converge to a small
neighborhood of zero by appropriately choosing the design parameters. The design
is based on the PDEs of the system, thus avoiding some drawbacks associated with
the traditional truncated-model-based design approaches.

Chapter 9 investigates the riser operations of fixed and floating offshore struc-
tures using pipe connections between surface facilities and seabed as well as pipes
laying on or below the seabed for transportation of oil and gas. The analysis of
vertical marine risers under the influences of both internal and external forces are
described. Four configurations of the marine risers are introduced including free
handing mode, connected mode, operational mode, and nonoperational but con-
nected mode. A marine riser can be maintained in an operable condition by ensur-
ing that the lower ball joint angle remains below about 4 degrees. Three operating
procedures are given to bring the angle down. The marine riser monitoring system
provides information on the behaviors of the platform and the marine riser, and
comparisons can be made with previous results for evaluating the projected fatigue
life of the riser. BPP-RMS, an example of the comprehensive Riser Management
System (RMS) for riser maintenance and inspection, is presented. BPP-RMS is an
on-board riser operation management system that provides real-time guidance for
carrying out connected and disconnected mode drilling riser operations on board a
vessel.

The last chapter, Chap. 10, makes conclusions on this book and recommendations
on the future research works.



Chapter 2
Preliminaries

In this chapter, we provide some mathematical preliminaries, useful technical lem-
mas, and properties of the ocean disturbance, which will be extensively used
throughout this book. The chapter is organized as follows. Firstly, the Hamilton
principle is introduced in Sect. 2.1. Then, a brief introduction of the ocean distur-
bance on marine flexible structures is given in Sect. 2.2. Subsequently, the function
approximation using NNs is presented in Sect. 2.3, followed by Sect. 2.4 about some
useful technical lemmas for completeness.

2.1 The Hamilton Principle

As opposed to lumped mechanical systems, flexible mechanical systems have an
infinite number of degrees of freedom, and the model of the system is described by
using continuous functions of space and time. The Hamilton principle permits the
derivation of equations of motion from energy quantities in a variational form and
generates the motion equations of the flexible mechanical systems. The Hamilton
principle [193, 194] is represented by

∫ t2

t1

δ(Ek − Ep + W)dt = 0, (2.1)

where t1 and t2 are two time instants, t1 < t < t2 is the operating interval, δ denotes
the variational operator, Ek and Ep are the kinetic and potential energies of the
system, respectively, and W denotes the work done by the nonconservative forces
acting on the system, including internal tension, transverse load, linear structural
damping, and external disturbance. The principle states that the variation of the
kinetic and potential energies plus the variation of work done by loads during any
time interval [t1, t2] must equal zero.

There are some advantages using the Hamilton principle to derive the mathemat-
ical model of the flexible mechanical systems. Firstly, this approach is independent
of the coordinates, and the boundary conditions can be automatically generated by
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this approach [88]. In addition, the kinetic energy, the potential energy, and the work
done by the nonconservative forces in the Hamilton principle can be directly used
to design the Lyapunov function of the closed-loop system.

2.2 The Ocean Disturbance on Marine Mechanical Structures

Vortex-induced vibration (VIV) is a direct consequence of lift and drag oscillations
due to the vortex shedding formation behind bluff bodies [195]. The marine flexi-
ble structures used in offshore production system may get out of control when the
structural natural frequency of the risers and cables equals frequency of vortex shed-
ding. The effects of a time-varying ocean current, U(x, t), on a riser or a cable can
be modeled as a vortex excitation force [196, 197]. The current profile U(x, t) is
a function that relates the depth to the ocean surface current velocity U(t). The
distributed load on a marine flexible structure, f (x, t), can be expressed as a combi-
nation of the inline drag force, fD(x, t), consisting of a mean drag and an oscillating
drag about the mean modeled as

fD(x, t) = 1

2
ρsCD(x, t)U(x, t)2D + AD cos

(
4πfv(x, t)t + θ

)
, (2.2)

and an oscillating lift force fL(x, t), perpendicular to fD(x, t), about a mean de-
flected profile,

fL(x, t) = 1

2
ρsCL(x, t)U(x, t)2D cos

(
2πfv(x, t)t + ϑ

)
, (2.3)

where ρs is the sea water density, CD(x, t) and CL(x, t) are the time and spatially
varying drag and lift coefficients, respectively, D is the outer diameter of the flexible
structures, fv(x, t) is the shedding frequency, θ and ϑ are the phase angles, and AD

is the amplitude of the oscillatory part of the drag force, typically 20 % of the first
term in fD(x, t) [197]. The nondimensional vortex shedding frequency [4] can be
expressed as

fv(x, t) = StU(x, t)

D
, (2.4)

where St is the Strouhal number.
In this book, we consider the deflection of the marine flexible structures in trans-

verse and longitudinal directions. Hence, the distributed load can be expressed as

f (x, t) = fD(x, t)
1

2
ρsCD(x, t)U(x, t)2D + AD cos

(
4πfv(x, t)t + θ

)
. (2.5)

The transverse vortex-induced vibration (VIV) from the lift component is not con-
sidered in this book, but the proposed method can be similarly applied without any
loss of generality if only the lift component is considered.
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2.3 Function Approximation

In this book, a class of linearly parameterized NNs with radial basis functions (RBF)
is used to approximate the continuous function fj (Z) : Rq → R,

fnn,j (Z) = WT
j Sj (Z), (2.6)

where the input vector Z = [Z1,Z2, . . . ,Zq ]T ∈ ΩZ ⊂ R
q , the weight vector

Wj ∈ R
l , the NN node number l > 1, and Sj (Z) = [s1, s2, . . . , sl]T ∈ R

l . Universal
approximation results indicate that, if l is chosen sufficiently large, WT

j Sj (Z) can
approximate any continuous function, fj (Z), over a compact set ΩZ ⊂ R

q to any
desired accuracy. This is achieved as

fj (Z) = W ∗T
j Sj (Z) + εj (Z) ∀Z ∈ Ωz ∈R

q, (2.7)

where W ∗
j is the ideal constant weight vector, and εj (Z) is the approximation error,

which is bounded over the compact set, i.e., |εj (Z)| ≤ ε∗
j for all Z ∈ ΩZ with ε∗

j >

0 is an unknown constant. The ideal weight vector W ∗
j is an “artificial” quantity

required for analytical purposes. W ∗
j is defined as the value of Wj that minimizes

|εj | for all Z ∈ ΩZ ⊂ R
q , i.e.,

W ∗
j = arg min

Wj∈Rl

{
sup

Z∈ΩZ

∣∣fj (Z) − WT
j Sj (Z)

∣∣}. (2.8)

Typical choices for sk(Z) include the sigmoid function, hyperbolic tangent function,
and RBF. The RBF NN is a particular network architecture that uses l Gaussian
functions of the form

sk(Z) = exp

[−(Z − μk)
T (Z − μk)

η2
k

]
, k = 1,2, . . . , l, (2.9)

where μk = [μk1,μk2, . . . ,μkq ]T is the center of the receptive field, and ηk is the
width of the Gaussian function [198].

2.4 Lemmas

Lemma 2.1 [199] Let φ1(x, t) ∈ R and φ2(x, t) ∈ R be functions defined for x ∈
[0,L] and t ∈ [0,∞). The Cauchy–Schwarz inequality is

∫ L

0
φ1φ2 dx ≤

(∫ L

0
φ2

1 dx

) 1
2
(∫ L

0
φ2

2 dx

) 1
2

. (2.10)

Lemma 2.2 [88] The following inequalities hold:

φ1φ2 ≤ |φ1φ2| ≤ φ2
1 + φ2

2 ∀φ1, φ2 ∈R. (2.11)
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Lemma 2.3 [88] The following inequalities hold:

|φ1φ2| =
∣∣∣∣
(

1√
δ
φ1

)
(
√
δφ2)

∣∣∣∣≤ 1

δ
φ2

1 + δφ2
2 ∀φ1, φ2 ∈R and δ > 0. (2.12)

Lemma 2.4 [200] Let φ(x, t) ∈ R be a function defined for x ∈ [0,L] and t ∈
[0,∞) and satisfying the boundary condition

φ(0, t) = 0 ∀t ∈ [0,∞). (2.13)

Then the following inequalities hold:

∫ L

0
φ2 dx ≤ L2

∫ L

0

[
φ′]2 dx, (2.14)

φ2 ≤ L

∫ L

0

[
φ′]2 dx. (2.15)

If in addition to Eq. (2.13), the function φ(x, t) satisfies the boundary condition

φ′(0, t) = 0 ∀t ∈ [0,∞), (2.16)

then the following inequality also holds:

[
φ′]2 ≤ L

∫ L

0

[
φ′′]2 dx. (2.17)

Proof Define the inner product

(φ1, φ2) = 1

2

∫ L

0
φ1φ2 dx + 1

2α
φ1(L)φ2(L)

and the operator A0φ = [−φ′′, αφ′(L, t)]T , α > 0. Then we have

(A0φ,φ) = 1

2

∫ L

0
−φ′′φ dx + 1

2
φ′(L)φ(L)

= 1

2

∫ L

0

[
φ′]2 dx.

Since the operator A0 is positive and symmetric, we have

(A0φ,φ) ≥ λmin(A0)‖φ‖2

= λmin(A0)

(
1

2

∫ L

0
[φ]2 dx + 1

2α

[
φ(L)

]2)
,
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where λmin(A0) is the minimum eigenvalue of A0 given by the solutions of (λI −
A0)φ = 0. Therefore, we obtain

∫ L

0

[
φ′]2 dx ≥ λmin(A0)

(∫ L

0
[φ]2 dx + 1

α

[
φ(L)

]2)

≥ λmin(A0)

∫ L

0
[φ]2 dx.

The eigenfunctions of A0 have the following form:

W(x) = sinβx,

where the pinned boundary condition at x = 0 has been used, and λ = β2. The
frequency equation is

β sinβL − α cosβL = 0.

We are free to choose α = sin(1)
L cos(1) , so the minimum solution of the above equation

is β = 1
L

and λmin(A0) = 1
L2 , and we obtain

L2
∫ L

0

[
φ′]2 dx ≥

∫ L

0
[φ]2 dx.

Define φ1(x, t) = φ′(x, t) and φ2(x, t) = χ(s − x) = { 1, x≤s,
0, x>s,

where s ∈ [0, L) is a
constant. Using the Cauchy–Schwarz inequality, we have

∫ L

0
φ1φ2 dx =

∫ L

0
φ′(x, t)χ(s − x)dx = φ(s, t) ≤ s

1
2

(∫ L

0

[
φ′]2 dx

) 1
2

≤ L
1
2

(∫ L

0

[
φ′]2 dx

) 1
2

.

Therefore, we have

φ2 ≤ L

∫ L

0

[
φ′]2 dx.

Similarly, we have

[
φ′]2 ≤ L

∫ L

0

[
φ′′]2 dx. �

Lemma 2.5 Let φ(x, t) ∈ R be a function defined for x ∈ [0,L] and t ∈ [0,∞) and
satisfying the boundary condition

φ(0, t) = C ∀t ∈ [0,∞), (2.18)



20 2 Preliminaries

where C is a constant. Then the following inequality holds:

(φ − C)2 ≤ L

∫ L

0

[
φ′]2 dx ∀(x, t) ∈ [0,L] × [0,∞). (2.19)

Proof Define φ1(x, t) = φ′(x, t) and φ2(x, t) = χ(s − x) = { 1, x≤s,
0, x>s,

where s ∈
[0, L) is a constant. Using the Cauchy–Schwarz inequality, we have

∫ L

0
φ1φ2 dx =

∫ L

0
φ′(x, t)χ(s − x)dx

= φ(s, t) − C

≤ s
1
2

(∫ L

0

[
φ′]2 dx

) 1
2

≤ L
1
2

(∫ L

0

[
φ′]2 dx

) 1
2

. (2.20)

Therefore, we have

(φ − C)2 ≤ L

∫ L

0

[
φ′]2 dx, ∀(x, t) ∈ [0,L] × [0,∞). � (2.21)

Lemma 2.6 [201] Rayleigh–Ritz theorem: Let A ∈ R
n×n be a real, symmetric,

positive-definite matrix; therefore, all the eigenvalues of A are real and positive. Let
λmin and λmax denote the minimum and maximum eigenvalues of A, respectively.
Then for all x ∈R

n, we have

λmin‖x‖2 ≤ xT Ax ≤ λmax‖x‖2, (2.22)

where ‖ · ‖ denotes the standard Euclidean norm.

Lemma 2.7 [202, 203] For bounded initial conditions, ∀x and ∀t ≥ 0, if there exists
a C1 continuous and positive-definite Lyapunov function V (x, t) : n × + −→ 
satisfying κ1(‖x‖) ≤ V (x, t) ≤ κ2(‖x‖) and such that V̇ (x, t) ≤ −λV (x, t) + c,
where κ1, κ2 : Rn → R are class K functions, and c is a positive constant, then the
equilibrium point x = 0 of the system ẋ = f (x, t) is uniformly bounded.

Lemma 2.8 [204] For any real-valued continuous function f (x, y, z), x ∈R
m, y ∈

R
n, z ∈ R

p , there are smooth scalar functions α(x, y) ≥ 0 and β(z) ≥ 0 such that

∣∣f (x, y, z)
∣∣≤ α(x, y) + β(z). (2.23)

Lemma 2.9 [205] Consider the basis functions of Gaussian RBF NN (2.9) with Ẑ

being the input vector. If Ẑ = Z − εψ̄ , where ψ̄ is a bounded vector, and ε > 0 is a



2.4 Lemmas 21

constant, then we have

si(Ẑ) = exp

[−(Ẑ − μj )
T (Ẑ − μj )

η2
j

]
, j = 1,2, . . . , l,

S(Ẑ) = S(Z) + εSt ,

(2.24)

where St is a bounded vector function.

Lemma 2.10 [206] Suppose that a system output y(t) and its first n derivatives
are bounded and such that |y(k)| < YK with positive constants YK . Consider the
following linear system:

επ̇i = πi+1, i = 1, . . . , n − 1,

επ̇n = −λ̄1πn − λ̄2πn−1 − · · · − λ̄n−1π2 − π1 + η(t),
(2.25)

where ε is any small positive constant, and the parameters λ̄1 to λ̄n−1 are chosen
such that the polynomial sn + λ̄1s

n−1 +· · ·+ λ̄n−1s +1 is Hurwitz. Then, the follow
property holds:

ξk = πk

εk−1
− η(k−1) = −εψ(k), k = 1, . . . , n − 1, (2.26)

where ψ = πn + λ̄1πn−1 + · · · + λ̄n−1π1 with ψ(k) denoting the kth derivative of
ψ . Also, there exist positive constants t∗ and hk such that for all t > t∗, we have
‖ξk‖ ≤ εhk , k = 1,2,3, . . . , n.

Lemma 2.11 [207] For any positive constants kb , let Z1 := {z3 ∈ R : −kb < z3 <

kb} ⊂ R and N := Rl ×Z1 ⊂ Rl+1 be open sets. Consider the system

η̇ = h(t, η), (2.27)

where η = [w,z1]T ∈ N , and h : R+ ×N → R
l+1 is piecewise continuous in t and

locally Lipschitz in z, uniformly in t , on R+ ×N . Suppose that there exist functions
U : Rl → R+ and V3 : Z1 → R+, continuously differentiable and positive definite
in their respective domains, such that

V3(z3) → ∞ as z3 → −kb or z3 → kb, (2.28)

γ1
(‖w‖)≤ U(w) ≤ γ2

(‖w‖) (2.29)

where γ1 and γ2 are class K∞ functions. Let V (η) := V1(z3)+U(w), and let z3(0)
belong to the set z3 ∈ (−kb, kb). If

V̇ = ∂V

∂η
h ≤ 0, (2.30)

then z3(t) remains in the open set z3 ∈ (−kb, kb) for all t ∈ [0.∞).
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Definition 2.12 (Barrier Lyapunov Function [207]) A BLF is a scalar function
V (x), defined with respect to the system ẋ = f (x) on an open region D contain-
ing the origin, that is continuous, positive definite, has continuous first-order partial
derivatives at every point of D, has the property V (x) → ∞ as x approaches the
boundary of D, and satisfies V (x(t)) ≤ b, t ≥ 0, along the solution of ẋ = f (x) for
x(0) ∈D and some constant b.

As discussed in [207], there are many functions V1(z1) satisfying Definition 2.12,
which may be symmetric or asymmetric. Asymmetric barrier functions are more
general than their counterparts and thus can offer more flexibility for control de-
sign to obtain better performance. However, they are considerably more difficult to
construct analytically and to employ for control design. For clarity, the following
symmetric BLF candidate considered in [207] is used in this book:

V1 = 1

2
log

k2
b1

k2
b1 − z3

1

, (2.31)

where log(·) denotes the natural logarithm of (·), and kb is the constraint on z1. The
BLF escapes to infinity at z1 = kb . It can be shown that V1 is positive definite and
C1 continuous in the set z1 < kb1. The control design and results in this book can
be extended to the asymmetric BLF case.

Definition 2.13 (SGUUB [65]) The solution X(t) of a system is semi-globally uni-
formly ultimately bounded (SGUUB) if, for any compact set Ω0 and all X(t0) ∈ Ω0,
there exist μ> 0 and T (μ,X(t0)) such that ‖X(t)‖ ≤ μ for all t ≥ t0 + T .



Chapter 3
Dynamic Load Positioning

With the increased focus on subsea installation tasks to tap deep water fields, 21
companies, including five oil and gas operators and six major contractors, have come
together for a joint industry project named Deepwater Installation of Subsea Hard-
ware (DISH) [208]. The objective is to investigate and develop solutions for the
technical problems associated with installing subsea facilities such as templates and
manifolds in very deep water (≥3000 m). To carry out the installation operation,
active, passive, or hybrid heave compensation systems have been developed for off-
shore cranes or module handling systems for the installation operations. One of the
most critical phases of such operations is the water entry of the hardware through the
splash zone where it experiences hydrodynamic loads including slamming forces.
A smooth transition through the splash zone is desirable to prevent damage to the
payload.

Near the seabed, the subsea templates, Christmas trees, and manifolds have to
be installed accurately in a specified spatial position and compass heading within
tight limits, including rotational, vertical, and lateral measurements. The tolerances
for a typical subsea installation are within 2.5 m of design location and within 2.5
degrees of design heading for large templates [2] and are more stringent for the
installation of manifolds into the templates. Accurate positioning on the seabed has
been identified as one of the problems in subsea installation operations.

An intuitive solution to alleviate the precision placement problem is the addi-
tion of thrusters for localized positioning when the payload is near the target site
[160, 161]. The positioning control is challenging due to the unpredictable exoge-
nous disturbances such as fluctuating currents and transmission of motions from the
surface vessel through the lift cable. The nonlinear dynamics associated with the
fluid phenomenon on the payloads, represented by a continuous infinite-dimensional
Navier–Stokes equation, need to be reduced to a finite-dimensional approximate
model that is normally experimentally determined. Due to the size, costs, and vari-
ations in design and construction, full-scale experiments may be not possible for all
structures. In most cases, the best way to determine the coefficients required is by
means of model testing, where uncertainties attributed to the materials, measure-
ment, and scale effect exist. To overcome the limitations of model-based adaptive
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controllers, we adopt adaptive neural control techniques to compensate functional
uncertainties and unknown disturbances from the environment through online tun-
ing of the NN weights [209].

In this chapter, positioning control is investigated for the installation of sub-
sea systems, with thrusters attached, under time-varying irrotational ocean cur-
rent. The dynamic model and the effects of the current disturbance are presented
in Sect. 3.1. In Sect. 3.2, backstepping in combination with adaptive feedback ap-
proximation techniques is employed in the design of the control, with the option
of high-gain observer for output feedback control. The stability of the design is
demonstrated through Lyapunov analysis where the semiglobal uniform bounded-
ness of the closed-loop signals is guaranteed. The proposed adaptive neural control
is able to capture the dominant dynamic behaviors without exact information on the
hydrodynamic coefficients of the structure and current measurements. Comparative
simulations with linear PD, PD with adaptive term, and model-based controls are
carried out in Sect. 3.4.

3.1 Problem Formulation and Preliminaries

3.1.1 Dynamic Modeling

We consider the horizontal planar dynamics for surge, sway, and yaw motions of
the subsea payload. The geographic reference frame, North-East-Down (n-frame)
is chosen, defined relative to the Earth’s reference ellipsoid, with the xn, yn, and zn
axes directed toward the North, East, and Downward normals to the Earth’s surface,
respectively, and chosen such that the target installation location is at the origin.
The configuration in the n-frame is η = [xn, yn,ψn]T , where xn and yn describe
the distance from the target location, and ψn denotes the rotation about the zn axis.
The body-fixed reference frame (b-frame) is a moving coordinate frame with the
origin attached to the center of gravity and axes corresponding to the principle axis
of inertia. The frames assigned are represented in Fig. 3.1 with the payload velocity
defined in the b-frame as ν = [ub, vb, rb]T , where ub and vb ∈ R are the components
of the absolute velocity in the xb and yb directions, rb ∈ R describes the angular
velocity about the zb axis, and the vectors η and ν are related by the transformation

η̇ = J (η)ν, (3.1)

where

J (η) =
⎡
⎣cosψn − sinψn 0

sinψn cosψn 0
0 0 1

⎤
⎦ . (3.2)

Taking into account the inertial generalized forces, the hydrodynamic effects, the
gravity and buoyancy contribution, and the thrusters, the dynamics for low-speed
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Fig. 3.1 Subsea template with relevant frames

underwater positioning of the structure can be expressed in the canonical form for
robotics [210],

Mν̇ + C(ν)ν + D(ν)ν + g(η) = τ, (3.3)

where M ∈ R
3×3 is the system inertia matrix, C(ν) ∈ R

3×3 is the Coriolis-
centripetal matrix, D(ν) ∈ R

3×3 is the damping matrix, g(η) ∈ R
3 is the vector

of gravitational and buoyancy forces, and τ ∈R
3 is the control input.

3.1.2 Effects of Time-Varying Current and Disturbances

The effects of ocean current on positioning control of underwater structures are sig-
nificant. The current is normally assumed to be constant and irrotational for subsea
operations planning or control systems design [211]. That is, the current velocity is
vc = [vc,x, vc,y,0]T m s−1 with v̇c = 0. However, this assumption is not strictly true
and can adversely affect the performance of the control.

In this chapter, we extend the investigation to include the effects of a time-varying
irrotational current, vc(t) = [vc,x(t), vc,y(t),0]T . The magnitude Vc(t) is treated as
a first-order Gauss–Markov process,

V̇c(t) + μVc(t) = ω, (3.4)

Vmin ≤ Vc(t) ≤ Vmax, (3.5)

where ω is a Gaussian white noise, μ ≥ 0 is a constant, and Vmin and Vmax are
minimum and maximum magnitudes of the current speed, respectively, projected
based on hydrographic surveys done on site. In the horizontal plane, the current
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velocity can be decomposed to the b-frame via vc,x(t) = Vc(t) cosβc and vc,y(t) =
Vc(t) sinβc , where βc is the sideslip angle. The disturbance from the ocean current,
τc(η, ν, t), is obtained by applying Morrison’s equation for cylindrical members
or other appropriate empirical formulas depending on the geometry of the module
[212]. From (3.3) we obtain

Mν̇ + C(ν)ν + D(ν)ν + g(η) = τ + τd(η, ν, t), (3.6)

where τd(η, ν, t) = τc(η, ν, t) + τl(η, ν, t), τd ∈ R
3 represents the lumped distur-

bance resulting from the ocean current and unknown disturbance, τl , from the lift
cable.

Assumption 3.1 For time-dependent functions τd,i(t), i = 1,2,3, there exist con-
stants τ̄d,i ∈R

+ such that ‖τd,i(t)‖ ≤ τ̄d,i .

Remark 3.2 The subsea payloads are rigged according to rules and regulations set
by the classification societies. The dynamics in the roll and pitch are assumed to be
accounted for in the rigging configuration, and the heave motion due to the wave,
structure weight, and the upward tension of the cable is to be controlled by a separate
heave-compensated system.

Remark 3.3 Assumption 3.1 is reasonable as the effects of the disturbances are
largely attributed to the exogenous effects from the environment, which are finite
and bounded. The knowledge of exact values for τ̄d,i are not required. The surface
vessel is responsible for global positioning, while the thrusters on the payload are
responsible for local positioning and activated close to the target site. To improve
the performance further, the effects of the lift cable and coupling with the surface
vessel will be investigated in future work.

Assumption 3.4 The reference trajectory for the positioning of the payload, ηr , is
a bounded C2 function, sufficiently smooth to avoid sudden jumps of tracking error.

3.2 Adaptive Neural Control Design

The control objective is to position and orientate the payload for accurate placement
via attached thrusters. Tracking control is necessary when the installation is carried
out in proximity to other critical equipment on the seabed via a reference trajectory
ηr(t) = [xnr(t), ynr (t),ψnr(t)]T . We first consider the case where the full-state in-
formation ν and η are available. Dependency of the signals, where obvious, will be
omitted.
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3.3 Full-State Feedback

We define the generalized tracking error as z1(t) = η(t) − ηr(t) and obtain ż1 =
J (η)ν − η̇r . We introduce a virtual control α1 and define the second error variable
as z2(t) = ν(t) − α1(t). From (3.2) we have J (η)J T (η) = I and choose

α1(η, η̇r , z2) = J T (η)(η̇r − K1z1), (3.7)

where the gain matrix K1 = KT
1 > 0, and obtain

ż1 = J (η)(z2 + α1) − η̇r . (3.8)

Choosing a Lyapunov function candidate with quadratic z1,

V1 = 1

2
zT1 z1, (3.9)

and taking its time derivative along (3.8), we have

V̇1 = −zT1 K1z1 + zT1 J (η)z2. (3.10)

Differentiating z2 with respect to time, we have

ż2 = M−1[h(ν, η) + τ + τd(ν, η, t)
]− α̇1, (3.11)

where

h(ν, η) = −C(ν)ν − D(ν)ν − g(η), (3.12)

α̇1 = ∂α1

∂η
η̇ + ∂α1

∂η̇r

η̈r + ∂α1

∂z1
ż1. (3.13)

By Lemma 2.8 and Assumption 3.1, we are able to separate the disturbance term,
τd,i(η, ν, t), into bounding functions ai(η, ν) and bi(t),

∣∣τd,i(η, ν, t)∣∣≤ ai(η, ν) + bi(t), i = 1,2,3, (3.14)

and there exist some constants b̄i such that the time-dependent function |bi(t)| ≤ b̄i
for all t ≥ t0, where t0 ≥ 0 is the initial time. Next, consider the Lyapunov function
candidate and its time derivative

V ∗
2 = V1 + 1

2
zT2 Mz2, (3.15)

V̇ ∗
2 = −zT1 K1z1 + zT1 J (η)z2

+ zT2
(
h(ν, η) + τ − Mα̇1

)+ zT2 τd(η, ν, t). (3.16)
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From (3.14) we have

V̇ ∗
2 ≤ −zT1 K1z1 + zT1 J (η)z2 + zT2

(
h(ν, η) − Mα̇1 + τ

)

+
3∑

i=1

|z2,i |
(
ai(η, ν) + bi(t)

)
, (3.17)

where z2,i ∈ R for i = 1,2,3 are the elements of z2. Consider the model-based
control law

τmb = −J T (η)z1 − K2z2 − h(v, η)

+ Mα̇1 − K sgn(z2)
(
ai(η, ν) + b̄i

)
, (3.18)

where sgn(z2) = diag[sgn(z2,i )] is a robust sliding term for i = 1,2,3, sgn(·) is
the signum function, and K2 = KT

2 > 0 and K = diag(kii) ∈ R
3×3, kii > 1, i =

1,2,3, are gain matrices. By substituting (3.18) into (3.17) we can rewrite (3.17) as
V̇ ∗

2 ≤ −zT1 K1z1 − zT2 K2z2, which is negative semidefinite. Since uncertainties exist
in the parameters M , C(v), D(v), g(η), ai(η, ν), and b(t), or they are unknown, the
model-based control law (3.18) may not be realizable. To overcome this challenge,
we use NNs to approximate the uncertainties and propose the following control and
adaptation laws:

τ = −J T (η)z1 − K2z2 + ŴT S(Z), (3.19)

˙̂
Wi = −Γi

(
Si(Z)z2i + σiŴi

)
, (3.20)

where Ŵ = blockdiag[ŴT
1 , Ŵ T

2 , Ŵ T
3 ] are the NN weights, S(Z) = [ST

1 (Z),ST
2 (Z),

and ST
3 (Z)]T are the basis functions, Γi are constant gain matrices, and σi > 0,

i = i,2,3, are sigma modification constants that impose growth conditions on the
weight vectors to improve the stability of Ŵ when the system is subjected to
bounded disturbances [213]. The NN ŴT S(Z) approximates W ∗T S(Z) defined by

W ∗T S(Z) = −h(η, ν) + Mα̇1

− K sgn(z2)
(
ai(η, ν) + b̄i

)− ε(Z), (3.21)

where Z = [ηT , νT ,αT
1 , α̇1

T ]T are the input variables to the adaptive NN, and
ε(Z) ∈R

3 is the approximation error.

Remark 3.5 In this chapter, we address a more challenging problem by treating the
values of M , C(ν), D(ν), g(η), ai(η, ν), and b(t) as completely unknown. If indi-
vidual terms are known exactly, the terms can be excluded from the approximation
in Eq. (3.21) and incorporated explicitly as part of the adaptive neural control law
(3.19), similar to the model-based control (3.18).

Theorem 3.6 Consider the dynamic model (3.6), with control law (3.19) and adap-
tation law (3.20). Given that the full-state information is available, for each compact
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set Ω0 where (η(0), ν(0), Ŵ1(0), Ŵ2(0), Ŵ3(0)) ∈ Ω0, i.e., the initial conditions
are bounded, the trajectories of the closed-loop system are semiglobally uniformly
bounded. The closed-loop error signals z1, z2, and W̃ will remain within the com-
pact sets Ωz1 , Ωz2 , and ΩW , respectively, defined by

Ωz1 := {z1 ∈ R3
∣∣ ‖z1‖ ≤ √

D
}
, (3.22)

Ωz2 :=
{
z2 ∈ R3

∣∣∣∣ ‖z2‖ ≤
√

D

λmin(M)

}
, (3.23)

ΩW :=
{
W̃ ∈ Rl×3

∣∣∣∣ ‖W̃‖ ≤
√

D

λmin(Γ −1)

}
, (3.24)

where D = 2(V2(0)+C/ρ) with ρ and C defined in (3.31) and (3.32), respectively.

Proof Consider the augmented Lyapunov function candidate

V2 = V1 + 1

2
zT2 Mz2 + 1

2

3∑
i=1

W̃T
i Γ −1

i W̃i , (3.25)

where W̃i = Ŵi − W ∗
i , and W̃i , Ŵi , W ∗

i are the NN weight error, estimate, and
actual value, respectively. Differentiating (3.25), we obtain

V̇2 ≤ −zT1 K1z1 + zT1 J (η)z2 + zT2
[
h(ν, η) − Mα̇1 + τ

]

+
3∑

i=1

|z2,i |
(
ai(η, ν) + bi(t)

)+
3∑

i=1

W̃T
i Γ −1

i
˙̂
Wi. (3.26)

Using the approximation (3.21), we obtain

V̇2 ≤ −zT1 K1z1 + zT1 J (η)z2

+ zT2
[−W ∗T S(Z) − ε(Z) + τ

]+
3∑

i=1

W̃T
i Γ −1

i
˙̂
Wi. (3.27)

Substituting the control (3.19) and adaptation law (3.19) into (3.27) yields

V̇2 ≤ −zT1 K1z1 − zT2 K2z2 −
3∑

i=1

[
σiW̃

T
i Ŵi

]+ 1

2

∥∥ε̄(Z)
∥∥+ 1

2
zT2 z2, (3.28)

From the property

−σiW̃
T
i Ŵi ≤ −σi

2
‖W̃i‖2 + σi

2

∥∥W ∗
i

∥∥2 (3.29)
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we obtain V̇2 and the bounds ρ and C as

V̇2 ≤ −ρV2 + C, (3.30)

ρ = min

(
2λmin(K1),

2λmin(K2 − 1
2I3×3)

λmax(M)
, min
i=1,2,3

(
σi

λmax(Γ
−1
i )

))
, (3.31)

C =
3∑

i=1

σi

2

∥∥W ∗
i

∥∥2 + 1

2
‖ε̄‖2, (3.32)

where λmin(A) and λmax(A) denote the minimum and maximum real eigenvalues of
a matrix A, respectively. To ensure ρ > 0, the control gains K1 and K2 are chosen
to satisfy the following conditions:

λmin(K1) > 0, λmin

(
K2 − 1

2
I3×3

)
> 0. (3.33)

From (3.30) and Lemma 2.7 it is straightforward to show that the signals z1, z2, W̃1,
W̃2, and W̃3 are semiglobally uniformly bounded. From the boundedness of ηr in
Assumption 3.1 we know that η is bounded. Since η̇r is also bounded, it follows
that α1 is bounded, and, in turn, ν is also bounded. With W ∗

i as slow time varying,

we know that Ŵi is also bounded for i = 1,2,3. For completeness, the details of the
proof, similar to [203], are provided here. Multiplying (3.30) by eρt yields

d

dt

(
V2e

ρt
)≤ Ceρt . (3.34)

Integrating the above inequality, we obtain

V2 ≤
(
V2(0) − C

ρ

)
e−ρt + C

ρ
≤ V2(0) + C

ρ
. (3.35)

Substituting (3.25) into (3.35), we have

1

2
‖z1‖2 ≤ V2(0) + C

ρ
. (3.36)

Hence, z1 converges to the compact set Ωzs . The bounds of z2 and W̃i can be simi-
larly shown, and this concludes the proof. �

Remark 3.7 The stability result proposed is semiglobal in the sense that if the num-
ber of NN nodes l is chosen large enough such that the approximation holds on Ωz,
then the closed-loop stability can be guaranteed for bounded initial states and NN
weights. The exact sizes of the compact sets Ωz1, Ωz2, and ΩW are not available as
they depend on the unknown parameters W ∗ and ε.
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Remark 3.8 The control design and stability analysis in this chapter assume that the
thrusters are able to provide the force and torque as required. The effects of thruster
dynamics such as thruster saturation are explored in [214–216]. It is found that the
thruster saturation can cause a severe degradation in the tracking performance. This
problem can be alleviated through an appropriate choice of trajectory if the task and
disturbances are within the operational range of the propulsion system.

3.3.1 Output Feedback with the High-Gain Observer

The proposed control (3.19) requires full-state feedback η(t) and ν(t) to be imple-
mented. In the absence of velocity sensors such as the Doppler velocity log, we
introduce a high-gain observer design to estimate ν(t) through the certainty equiva-
lence property and separation principle.

By Lemma 2.10, πk+1
εk

converges asymptotically to η(k), the kth-order derivative
of η, i.e., ξk converges to zero with a small time constant (due to the high-gain
1/ε), provided that η and its k derivatives are bounded. Hence, πk+1/ε

k is suitable
as an observer to estimate the output derivatives up to the nth order. The observer
for system (3.6) is designed with n = 2, and the estimate of the unmeasurable state
vector z2 can be defined as

ẑ2 = J T (η)(π2/ε) − α1. (3.37)

From the full-state feedback case, we modify the control law (3.19) and adaptation
law (3.20) to obtain the control and adaptation laws for output feedback control as

τ = −J T (η)z1 − K2ẑ2 + ŴT S(Ẑ), (3.38)

˙̂
Wi = −Γi

(
Si(Ẑ1)ẑ2,i + σiŴi

)
. (3.39)

The time derivative of the Lyapunov function candidate V2 in (3.25) along the
closed-loop trajectory with (3.38) and (3.39) yields

V̇2 ≤ −zT1 K1z1 − zT2

(
K2 − 1

2
I3×3

)
z2 − zT2 K2z̃2

+
3∑

i=1

z2,i
[
ŴT

i Si(Ẑi) − W ∗T
i Si(Zi)

]

−
3∑

i=1

[
W̃T

i Si(Ẑi)ẑ2,i + σiW̃
T
i Ŵi

]+ 1

2
‖ε̄‖2. (3.40)

From Lemma 2.9, using the properties

σiW̃
T
i Ŵi ≤ σi

2

(∥∥W ∗
i

∥∥2 − ‖W̃i‖2), (3.41)
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∥∥Si(Ẑi)
∥∥2 ≤ li , (3.42)

and z̃2 = ẑ2 − z2 = J T (η)ξ2 and denoting Λ = diag[2li/σi] and

Vobs = (1/2)ξT
2 ξ2, (3.43)

we obtain

V̇2 ≤ −z1K1z1 − zT2

(
K2 − 3

2
I

)
z2 + 1

2
‖ε̄‖2 −

3∑
i=1

σi

4
‖W̃i‖2

+ λmax
(
KT

2 K2 + Λ
)
Vobs + 1

2

3∑
i=1

(
ε2‖Sti‖2 + σi

)∥∥W ∗
i

∥∥2
, (3.44)

which can be expressed in the form of (3.30):

V̇2 ≤ −ρV2 + C, (3.45)

ρ = min

(
2λmin(K1),

2λmin(K2 − 3
2I3×3)

λmax(M)
, min
i=1,2,3

( σi

4 ‖W̃i‖2

λmax(Γ
−1
i )

))
, (3.46)

C = 1

2

3∑
i=1

(
ε2‖Sti‖2 + σi

)∥∥W ∗
i

∥∥2 + λmax
(
KT

2 K2 + Λ
)
Vobs

+ 1

2
‖ε̄‖2, (3.47)

with the bound Vobs ≤ (1/2)ε2(h2
1 +h2

2). To ensure that ρ > 0, the control gains K1

and K2 are chosen to satisfy the following conditions:

λmin(K1) > 0, λmin

(
K2 − 3

2
I3×3

)
> 0. (3.48)

Theorem 3.9 Consider the dynamic model (3.6) with output feedback control
(3.38), adaptation law (3.39), and high-gain observer (2.25). For each compact
set Ω0 where (η(0), ν(0), Ŵ1(0), Ŵ2(0), Ŵ3(0)) ∈ Ω0, i.e., if the initial conditions
are bounded, the trajectories of the closed-loop system are semiglobally uniformly
bounded. The tracking error z1 converges to the compact set

Ωzs = {z1 ∈ R3
∣∣ ‖z1‖ ≤√Ds

}
, (3.49)

where Ds = 2(V2(0)+C/ρ) with ρ and C defined in (3.46) and (3.47), respectively.

Proof The stability proof of Theorem 3.9 along with (3.45), (3.46), and (3.47) fol-
lows Theorem 3.6 and is omitted for conciseness. �
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Remark 3.10 In this chapter, we assume that the position measurements are perfect
and propose a rigorous theoretical treatment of the output feedback problem using
high-gain observers corresponding to a non-model-based approach. If the output
measurements are contaminated with zero-mean Gaussian white noise within toler-
ance, careful implementation is necessary by designing ε to be sufficiently small.
Following [66], a saturation function can be used to overcome the peaking phe-
nomenon of the high-gain observer.

Remark 3.11 The tracking error has been shown to converge and remain within a
small neighborhood of the origin. If the residual error is desired to be lower, it can
be reduced so that C/ρ in both Theorems 3.6 and 3.9 decreases. The reduction is
achieved by increasing k1 and k2, the approximation accuracy of the NN, and the
high-gain 1/ε of the state observer [205].

3.4 Numerical Simulations

In this section, comparative studies are carried out via numerical methods on the
proposed control and three different control methodologies. A wet Christmas tree is
modeled as a cylinder with dimensions r = 1.0 m, L = 5.2 m, and m = 32240 kg
representing the radius, length, and dry mass, respectively. The parameters in the
dynamic equation (6) are M = MRB + MA, MRB = diag[32240,32240,16120],
MA = diag[16728,16728,0], C(ν) = [0,0, c13;0,0, c23;−c13,−c23,0], c13 =
(MA,22 − MRB,22)ν2, c23 = −(MA,11 − MRB,11)ν1, and D(ν) = 0.5ρwCDπr2ν,
where MRB is the rigid body inertia, MA is the added mass, CD is the drag co-
efficient, and ρw = 1024 kg m3 is the density of seawater. A cylindrical model is
chosen for the analysis of the controls for its well-studied hydrodynamic properties
and characteristics in the literature [197]. The simulation step size is 0.001 s with the
update rate for controls and observer set as 10 Hz. The sampling period of 0.1 s is
used to investigate the effects of long sampling rate. A fourth-order Runge–Kutta–
Merson program with adaptive step size is used to numerically solve the equation
of motions [64].

The control objective for the payload is to track a reference trajectory from an
initial state in the n-frame to the target site designated as the origin for installation.
The reference trajectory ηr(t) = [xnr(t), ynr (t),ψnr(t)]T is generated via a Hermite
polynomial of the third degree with the general expression

ηr(t, tr ) = η0 +
(

−2.0
t3

t3
r

+ 3.0
t2

t2
r

)
(ηf − η0), (3.50)

where η0 = [5.0,2.0,1.047]T and ηf = [0,0,0]T are the payload initial and final
positions, respectively, and tr = 150 s represents the time at which the reference tra-
jectory reaches the desired final position. The reference trajectory shown in Fig. 3.2
satisfies Assumption 3.1 and is continuous for all t , with bounded ηr , η̇r , and η̈r .
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Fig. 3.2 Reference trajectory
for position xn, yn and
orientation ψn

Fig. 3.3 Top: irrotational
current; bottom: disturbance
due to current in xn, yn
direction

From Sect. 3.1.2, the time varying current profile shown in Fig. 3.3 is generated
using Eq. (3.4) with bounds Vmax = 1.2 m s−1 and Vmin = 0.8 m s−1, and μ = 0 is
chosen to generate a more random ocean current. The current forces and the motion
of a cylinder in fluid are derived from Morison’s equations [212],

τ̄c,i = CDρw

Dc

2
|vc,i |vc,i + Cmρwπ

D2
c

4
v̇c,i , i = 1,2,3, (3.51)

where CD = 1.0, Cm = 1.0 is the added mass coefficient, Dc is the diameter of the
cylindrical member, and vc,i and v̇c,i are the velocity and acceleration of the current
in each direction, respectively. The effect of the current is a nonlinear force parallel
to the current itself due to the coupling effects of the hydrodynamic terms. However,
a reasonable hypothesis is made that the main contribution of the current to the
vehicle motion is observed along the current direction [217]. The irrotational current
is simulated to be 60◦ from the North-East, which results in a constant βc = 30◦ due
to the symmetry of the cylindrical payload. Figure 3.3 shows the disturbances due
to the current in the x, y direction.

3.4.1 Full-State Feedback

Four different cases are considered. In the first case, we examine the PD (propor-
tional derivative) control. Second, we include an adaptive mechanism to the PD
control for current compensation. Third, we evaluate the model-based control devel-
oped in (3.18), assuming that the parameters of the subsea structure are completely
known. In the fourth case, we investigate the proposed adaptive neural control.
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Fig. 3.4 Top: the norm of
generalized error ‖z1‖;
bottom: the norm of
generalized control input ‖τ‖
for PD control

Case 1: PD Control. The PD control represents one of the most widely used
controls and thus provides a baseline for the comparison of the performance of other
controls. In this case, we consider a PD control of the form

τ = −KP z1 − KDż1, (3.52)

where KP and KD are the proportionate and derivative gain matrices, respectively.
The closed-loop analysis of the PD control law applied to underwater dynamics is
similar to [216, 218] and not included here. An application of Lasalle’s invariance
theorem [219] shows that the PD control will perform set point regulation but not
trajectory tracking [220]. While the PD control does not perform trajectory track-
ing, it is included as the control objective is to dynamically position the load at a
fixed spatial position. Techniques such as linear quadratic regulator can be used to
tune the PD control for better performance but requires exact knowledge of the load
model parameters. The following sets of control gains have been implemented in the
simulations {KP = 5 × 105I3×3, KD = 5 × 105I3×3}, {KP = 6 × 105I3×3, KD =
6 × 105I3×3}, and {KP = 7 × 105I3×3, KD = 7 × 105I3×3}. Figure 3.4 shows the
norm of tracking error and the control input. The control action produces large over-
shoots in the transient phase, and the norm of the tracking error subsequently re-
duces to ‖z1‖ ≈ 0.1 during steady state. As the gains of KP and KD increase, the
tracking errors are reduced. Conversely, the tracking errors increase significantly
when the gains are reduced. In practice, large control gains are not recommended as
they reduce robustness and cause large overshoots due to noisy measurements.

Case 2: PD Control with Adaptive Mechanism. The control adapted from [217]
for an underwater vehicle combines a PD action with an adaptive compensation to
provide asymptotic trajectory tracking. The control is given as

τ = KDs + Kη̃ + ΦT λ̂, (3.53)

˙̂
λ = K−1

λ ΦT
T s, (3.54)
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Fig. 3.5 Top: the norm of
generalized error ‖z1‖;
bottom: the norm of
generalized control input ‖τ‖
for PD control with adaptive
mechanism

where s = ν̃ + Λpη̃, ν̃ = νr − ν, η̃ = ηr − η, νr = J T (η)ηr , the matrices KD , Λp ,
and K are positive gain matrices, K−1

λ = Γ > 0 is the adaptive gain matrix, λ̂ is
the adaptation weight, and ΦT

T s = J T (η)s is a regressor. The closed-loop stability
analysis can be found in [217] and is not repeated here. The matrices are chosen
as KD = 6 × 105I3×3, K = 6 × 105I3×3, and Λp = I3×3, and three cases with
Γ = 50I3×3, Γ = 100I3×3, and Γ = 200I3×3 are simulated. The norm of the track-
ing error and control input are shown in Fig. 3.5. It is observed that the transient
response of the PD control with adaptive mechanism is large due to the inability
of the adaptive mechanism to capture the effects of the current. However, when the
parameters have converged, the norm of error produced during steady state is lower
than that of the PD-type control. The control effort that corroborates the overshoot
in the transient region is also observed.

Case 3: Model-Based Backstepping Control. The model-based backstepping
control in (3.18) without the robust signum term is investigated here as follows:

τmb = −J T (η)z1 − K2z2 − h(ν, η) + Mα̇(ηr , η̇r , η̈r , z1, z2), (3.55)

assuming that the parameters of the subsea structure are completely known. The
effects of the control gains are examined by varying the control gain matrix K2.
Simulations are carried out for K1 = k1I3×3 and K2 = k2I3×3, with k1 = 5 and k2 =
10000, 20000, and 30000. The tracking errors and control input signals are shown
in Fig. 3.6. The norm of the tracking error for the model-based control without the
robust term is satisfactory with ‖z1‖ < 0.1. To achieve low tracking errors, model-
based control requires exact knowledge of the system dynamics and parameters.
This is difficult to achieve in practice as the geometry of the structure makes the
identification of the hydrodynamic effects complex. Inaccurate parameter values
can degrade the performance significantly. It is noted that the gains are significantly
lower than those of the PD and PD plus earlier adaptive mechanism controls, which
is advantageous for robustness toward noisy measurements.

Case 4: Proposed Adaptive Neural Control. Linearly parameterized approxi-
mators are used in the control law and update law in (3.7), (3.19), and (3.20).
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Fig. 3.6 Top: the norm of
generalized error ‖z1‖;
bottom: the norm of control
input ‖τ‖ for Model-based
control

Fig. 3.7 Top: the norm of
generalized error ‖z1‖;
bottom: the norm of
generalized control input ‖τ‖
for the proposed control with
varying Γ

Ŵ = diag[ŴT
1 , Ŵ T

2 , Ŵ T
3 ] are the approximation weights, S(Z) = [ST

1 (Z),ST
2 (Z),

ST
3 (Z)]T are Gaussian RBF (2.9), and Z = [ηT , νT ,αT

1 , α̇T
1 ] are the input variables.

A total of l = 512 nodes are employed for each ST
j (Z) with centers chosen as combi-

nations of μk,1 = μk,2 = {1.0,−1.0}, μk,3 = μk,6 = μk,9 = μk,12 = 0, and μk,4 =
μk,5 = μk,7 = μk,8 = μk,10 = μk,11 = {0.1,−0.1}. The effects of varying the con-
trol gains Γ are investigated with Γ = 1.0I3×3, Γ = 5.0I3×3, and Γ = 10.0I3×3,
σi = 1×10−5, η2

k = 5.0, i = 1,2,3, K1 = 5I3×3, and K2 = 20000I3×3, which satis-
fies the conditions in (3.33). From Fig. 3.7 it is observed that tracking performance
of the control is satisfactory with the norm of tacking error ‖z1‖ < 0.1 and low
transient overshoots for all three adaptation gains. The tracking error reduces the
adaptation gain corresponding to an increase in Γ . Note that care must be taken in
the design as a large Γ may result in numerical instability of the system. Figure 3.8
shows the boundedness of the adaptation weights where a larger Γ is shown to im-
prove the convergence rate. Similarly to model-based control, the gains are lower
than the PD-type controls, which improves the robustness of the control.
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Fig. 3.8 The norm of NN
weights ‖Ŵ‖ for the
proposed control with varying
Γ

Fig. 3.9 Top: tracking error
xn − xnr ; center: tracking
error yn − ynr ; and bottom:
tracking error ψn − ψnr for
different controls using
output feedback

3.4.2 Output Feedback

Using the certainty equivalence approach, the high-gain observer (2.26) has been
designed to obtain the velocity estimates ν̂ = J T (η)(π2/ε) with n = 2, γ1 = 2.0,
and ε = 0.1. The four control types in Sect. 3.4.1 are simulated with the velocity es-
timate ν̂ and parameters as follows: (i) PD control: {KP = 6 × 105I3×3, KD =
6 × 105I3×3}, (ii) PD plus adaptive: {Γ = 100I3×3}, (iii) Model-based: {K1 =
5I3×3, K2 = 20000I3×3}, and (iv) Adaptive Neural: {Γ = 5I3×3, Ẑ = [ηT , ν̂T , αT

1 ,

α̇T
1 ]}.

The tracking errors for different controls are shown in Fig. 3.9, while the norm
of tracking errors and control inputs are shown in Fig. 3.10. The proposed adaptive
neural and model-based controls formulated through backstepping of the system
dynamics produce better transient and steady-state response as compared to the PD
and PD with adaptive control. The proposed adaptive neural control produces the
lowest norm of error. This can be credited to the NN, which is able to capture the
system dynamics. From Fig. 3.10 we can see that the low tracking errors of the
proposed control are not the results of a larger control effort but are attributed to a
proper control action. Due to the large structural mass, the PD-type controls require
large control gains for accurate positioning. This is not recommended in practice
due to measurement noise, which can result in large overshoots. Figure 3.11 shows
the observer error for output feedback control under the adaptive neural control. The
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Fig. 3.10 Top: the norm of
generalized error ‖z1‖;
bottom: the norm of
generalized control input ‖τ‖
for different controls using
output feedback

Fig. 3.11 Observer error for
output feedback control using
the high-gain observer with
NN control

convergence of the high-gain observer estimates can be seen as the estimation errors
peak around 0.3 s and thereafter converge to a small neighborhood of zero.

3.5 Conclusion

In this chapter, stable adaptive neural-based positioning control has been designed
for installation of subsea structure with attached thrusters in the presence of time-
varying environmental disturbances and parametric uncertainties. Full-state feed-
back and output feedback cases have been considered. It has been shown that the
closed-loop signals under the proposed control are semiglobally uniformly bounded
and converge to a compact set, which can be made arbitrarily small through appro-
priate choice of design parameters. Simulation results have demonstrated that the
adaptive neural control is robust and effective in reducing the tracking error for the
subsea installation operation.



Chapter 4
Installation System with Constraints

In the previous chapter, we proposed a tracking control for the payload using an
adaptive neural technique to capture the dominant dynamic behaviors through online
tuning of the NN weights. This avoided the need for exact information on the hy-
drodynamic coefficients of the structure and current measurements. With the trend
toward installations in deeper waters, the longer cable increases the natural period
of the cable and payload system, which in turn increase the effects of pendulum-like
oscillations. Time-varying distributed currents may lead to large horizontal offsets
between the surface ship and the target installation site. An intuitive solution to al-
leviate the precision placement problem is the addition of thrusters for localized
positioning when the payload is near the target site [160, 161]. The control for the
dynamic positioning of the subsea payload is challenging due to unpredictable ex-
ogenous disturbances such as fluctuating currents and transmission of motions from
the surface vessel through the lift cable.

In this chapter, we investigate the coupled dynamics and control design of the
vessel-crane-cable payload system as shown in Fig. 4.1. The flexible lift cable can
be modeled by a set of PDEs that possesses an infinite number of dimensions, which
makes it difficult to control. To avoid the problems associated with the truncated-
model-based design of finite dimensionality, we design the boundary control and
perform Lyapunov analysis based on the PDE directly. We tackle the positioning
problem for the system with output constraints in the form of safety specifications
and operational limits. Existing methods to handle constraints include model pre-
dictive control, reference governors, and the use of set invariance.

For the practical system with physical constraints, we employ barrier Lyapunov
functions [221–224] in the design of positioning control for the flexible crane-cable-
payload subsystem to ensure that the constraints are not violated. The uniform sta-
bility of the flexible subsystem is shown, and asymptotic positioning of the bound-
aries is achieved. Next, we tackle the scenario where the nonuniformity of the cable,
uncertainties, and environmental disturbances are considered. Boundary control is
formulated using the nonlinear PDE of the cable. Numerical simulations are pro-
vided to illustrate the performance of the proposed controls.

W. He et al., Dynamics and Control of Mechanical Systems in Offshore Engineering,
Advances in Industrial Control, DOI 10.1007/978-1-4471-5337-5_4,
© Springer-Verlag London 2014
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Fig. 4.1 Model of subsea installation operation and cable

The remainder of this chapter is organized as follows. In Sect. 4.1, coupled dy-
namics of the surface vessel and the crane-cable-payload flexible subsection are
presented. Then, in Sect. 4.2, the vessel control is formulated via backstepping.
Positioning controls are proposed considering physical systems with practical con-
straints. Thereafter, a boundary control is derived for the case of a nonuniform cable
in Sect. 4.3. The simulation study in Sect. 4.4 demonstrates the effectiveness of the
proposed controls under a theoretical worst-case disturbance to stress the controls
and a more realistic disturbance to investigate the performance.

4.1 Problem Formulation

4.1.1 Dynamics of Surface Vessel

In the system considered, the top end of the lifting cable is attached to a crane,
onboard an ocean surface vessel, and the bottom attached to a subsea module to be
positioned for installation on the seafloor. The dynamics of the surface vessel can
be modeled as

Msÿs(t) + dsẏs(t) = τ(t) + fs(t), (4.1)
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where ys(t), ẏs(t), and ÿs(t) are the displacement, velocity, and acceleration of the
surface vessel, respectively, Ms is the mass of the surface vessel, ds is the damping,
τ(t) is the control force from the vessel dynamic positioning thrusters, and fs(t) is
the environmental disturbance. We assume that the motions of the vessel are com-
pletely determined by the waves and thruster, which is a reasonable assumption
since the vessel mass, wave forces, and thrust on it are much larger than the mass of
the crane and coupled forces.

4.1.2 Dynamics of the Crane-Cable-Payload Flexible Subsystem

Dynamic equations that govern the motion of the lifting cable can be derived through
the extended Hamilton principle or through discretization such as the finite element
method. It has been shown in [225] that, assuming small displacements and employ-
ing first-order Taylor series expansion, the equation of motion for the cable can be
obtained as

ρ(z)ÿ(z, t) + dcẏ(z, t) = ∂

∂z

[
T (z, t)y′(z, t)

]+ f (z, t), (4.2)

where y(z, t) is the displacement of the cable in the transverse direction, ρ(z) de-
notes the nonuniform mass per unit length of the cable, T (z, t) is the nonuniform
distributed tension, dc is the damping coefficient for the cable in fluid, and f (z, t)

denotes the distributed disturbance along the cable due to ocean currents.
The tension in the cable can be expressed as

T (z, t) = T0(z) + θ(z)
[
y′(z, t)

]2
, (4.3)

where T0(z) > 0 is the nonuniform tension in the undisturbed string, and θ(z) ≥ 0
is a weighting function that accounts for strain in the displaced cable together with
[y′(z, t)]2. In the case where the cable is assumed to be uniform, the tension is
assumed to be independent of z, with T0(z) = T0 and θ(z, t) = 0.5EA as used in
[94, 226]. Substituting the tension (4.3) into the dynamical model (4.2) yields the
governing equation of the lifting cable

ρ(z)ÿ(z, t) + dcẏ(z, t) = [T0(z) + 3θ(z)
[
y′(z, t)

]2]
y′′(z, t)

+ T ′
0(z)y

′(z, t) + θ ′(z)
[
y′(z, t)

]3 + f (z, t) (4.4)

with initial conditions expressed as

y(z,0) = c1(z) and ẏ(z,0) = c2(z) (4.5)

and boundary conditions

y(0, t) = b0(t) and y(L, t) = bL(t), (4.6)
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where {c1(z), c2(z)} and {b0(t)bL(t)} are arbitrary sets of initial conditions and
boundary conditions, respectively. The boundary conditions for the cable can be
described by the following dynamic equations:

M0b̈0(t) = u0(t) − T (0, t)y′(0, t) − d0(t)ḃ0(t) − M0ÿs(t), (4.7)

MLb̈L(t) = uL(t) + T (L, t)y′(L, t) − dL(t)ḃL(t) + fL(t), (4.8)

where u0(t) and uL(t) are the control forces, d0(t) and dL(t) are the damping coef-
ficients at points z = 0 and L, respectively, M0 is the mass of the crane on the vessel,
ML and fL(t) are the mass and the environment disturbance on the subsea module
attached to the bottom of the cable, respectively. The effects of the vessel motion on
the top boundary are coupled into the crane-cable-payload subsystem through ÿs(t)

in (4.7).

Assumption 4.1 For the distributed disturbance f (z, t) on the cable, we assume
that there exists a constant f̄ ∈ R

+ such that ‖f (z, t)‖ ≤ f̄ for all (z, t) ∈ [0,L] ×
[0,∞). This is a reasonable assumption as the effects of the time-varying current,
f (z, t), are exogenous, have finite energy, and hence are bounded, i.e., f (z, t) ∈
L∞([0,L]). For similar reasons, the environmental disturbances fs(t) and fL(t) are
assumed bounded, i.e., there exist positive constants f s and f L such that |fs(t)| ≤
f s and |fL(t)| ≤ f L for all t ∈ [0,∞).

Remark 4.2 For control design, only the assertion that there exists an upper bound
on the disturbance in Assumption 4.1, ‖f (z, t)‖ < f̄ , is necessary. The knowledge
of the exact value for f (z, t) is not required for all (z, t) ∈ [0,L] × [0,∞). As
such, different disturbance models up to various levels of fidelity, such as those
found in [195, 196, 227–229], can be applied without affecting the control design
or analysis.

Remark 4.3 The effects of using cables with variation in parameters, uncertainties,
disturbances, and the transition between the air and water surface can be incorpo-
rated explicitly through ρ(z), T0(z), θ(z), and f (z, t).

Assumption 4.4 The values of ρ(z), T0(z), and θ(z) are bounded by known con-
stant lower and upper bounds for all x ∈ [0,L] as follows:

0 ≤ ρ ≤ ρ(z) ≤ ρ, (4.9)

0 ≤ T ≤ T0(z) ≤ T , (4.10)

0 ≤ θ ≤ θ(z) ≤ θ. (4.11)

The partial derivatives ρ′(z), T ′
0(z), and θ ′(z) are within a known range. This is rea-

sonable as general values can be determined in the material selection and operation
engineering phase.
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4.2 Control Design

As the dynamics of the surface vessel is coupled into the crane-cable-payload sys-
tem, we first propose a control design for the surface vessel using the backstepping
approach [63]. Next, we design positioning controls u0(t) and uL(t) for the crane
and subsea payload, employing SBLF in view of the constraints on the physical sys-
tem. In the following subsection, we examine the coupled system with a nonuniform
cable and propose a stabilizing boundary control. For conciseness, the dependency
of the terms will be omitted where obvious.

4.2.1 DP Control of Surface Vessel

The control design and stability analysis of the vessel with a DP system for global
positioning are demonstrated through the backstepping methodology [63]. We de-
fine error variables z1 = ys −ysd and z2 = ẏs −α1, where ysd is the desired position
for the surface vessel. Differentiating z1 with respect to time yields ż1 = z2 + α1.
Consider the Lyapunov function candidate V1 = (1/2)z2

1 and choose the virtual con-
trol as α1 = −k1z1. The time derivative of V1 is

V̇1 = −k1z
2
1 + z1z2. (4.12)

Differentiating z2 with respect to time yields ż2 = m−1
s (−dsẏs + τ + fs(t)) − α̇1,

where α̇1 = −k1ż1. Consider the augmented Lyapunov function candidate V2 =
V1 + (1/2)msz

2
2. Taking its time derivative, we have

V̇2 ≤ −k1(t)z
2
1(t) + z1(t)z2(t) + z2(t)

(−dsẏs(t) + τ(t) − msα̇1(t)
)

+ ∣∣z2(t)
∣∣f s.

Designing the model-based vessel control as

τ = −z1(t) − k2z2(t) + dsẏs(t) + msα̇1(t) − urs, (4.13)

where urs = sgn(z2(t))f s , we obtain

V̇2 ≤ −k1z
2
1(t) − k2z

2
2(t). (4.14)

Lemma 4.5 Consider the vessel dynamics (4.1) with Assumption 4.1, under the ac-
tion of full-state feedback control law (4.13). Then the vessel position in the closed-
loop system ys converges to the desired position ysd asymptotically.

Proof With the choice of α1 and τ as above, the time derivative of the Lyapunov
function candidate V2 is negative semidefinite. The global asymptotic stability of
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Fig. 4.2 (a) Schematic illustration of the coupled system with constraints and target and (b) sym-
metric barrier functions [223]

z1(t) and z2(t) can be concluded [63], i.e., z1(t), z2(t) → 0, and the vessel position
ys converges to the desired position ysd asymptotically. �

4.2.2 Boundary Positioning Control Using Barrier Lyapunov
Functions

During subsea installation operations, positioning of the subsea module is desired.
As the practical system is subjected to constraints on both the motion of the crane
at the top boundary and the maximum offset the payload can deviate at the bottom
boundary as shown in Fig. 4.2(a), SBLFs are employed in the position control design
for the top crane and bottom payload. By ensuring the boundedness of an SBLF
[221–223] in the closed loop coupled with the dynamics of the flexible cable system,
we ensure that (i) the coupled crane-cable-payload flexible system is stable, (ii) the
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physical limits are not transgressed, and (iii) simultaneous positioning of the crane
and payload for installation is achieved.

4.2.2.1 Stability of Flexible System Under Distributed Disturbance

In this subsection, we consider a simplified cable model [88] of (4.4) to illustrate
the positioning control design technique using SBLF as follows:

ρÿ(z, t) + dcẏ(z, t) = Py′′(z, t) + f (z, t), (4.15)

where P = T (z, t) = T (0, t) = T (L, t) > 0 is the constant tension, with conditions
b0(t) and bL(t) in (4.6), boundary dynamics (4.7) and (4.8), distributed viscous
damping, and disturbance f (z, t) for the positioning of the subsea module. To facil-
itate the stability analysis, we introduce the transformation

w(z, t) = y(z, t) − z

L
bL(t) + z − L

L
b0(t) (4.16)

to obtain the modified governing equation as

ρẅ(z, t) + dcẇ(z, t) = Pw′′(z, t) + f ∗(z, t), (4.17)

where we obtain the distributed disturbance as

f ∗(z, t) = f (z, t) − z

L

(
ρb̈L(t) + dcḃL

)+ z − L

L

(
ρb̈0(t) + dcḃ0

)
(4.18)

with pinned conditions at the boundaries and initial conditions

w(0, t) = w(L, t) = 0, (4.19)

w(z,0) = c3(z), ẇ(z,0) = c4(z). (4.20)

For the stability analysis of the transformed flexible subsystem subjected to the
distributed disturbances, we consider the following Lyapunov function candidate:

Vp(t) = Va(t) + Vb(t) (4.21)

with

Va(t) = 1

2

∫ L

0

{
ρẇ2(z, t) + P

[
w′(z, t)

]2}
dz, (4.22)

Vb(t) =
∫ L

0
ρβw(z, t)ẇ(z, t) dz, (4.23)

where β > 0 is a small positive weighing constant satisfying the inequality

β <
min{ρ, P }

2ρ max{1,L2} . (4.24)
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Lemma 4.6 The function Vb(t) in (4.23) with crossing term w(z, t)ẇ(z, t) can be
upper and lower bounded as

0 ≤ λ1Va(t) ≤ Vb(t) ≤ λ2Va(t), (4.25)

where λ1 and λ2 are positive constants.

Proof From Eq. (4.23) and Lemma 2.4, using Young’s inequality, we obtain

∣∣Vb(t)
∣∣ ≤
∫ L

0
ρβ
{
ẇ2(z, t) + w2(z, t)

}
dz

≤
∫ L

0
ρβ
{
ẇ2(z, t) + L2[w′(z, t)

]2}
dz

≤ 2ρβ max{1,L2}
Lmin{ρ,P, } Va(t), (4.26)

which can be rewritten as

−2ρβ max{1,L2}
min{ρ,P } Va(t) ≤ Vb(t) ≤ 2ρβ max{1,L2}

min{ρ,P } Va(t). (4.27)

Thus, Vb is bounded as

λ1Va(t) ≤ Vb(t) ≤ λ2Va(t), (4.28)

where

λ1 = 1 − 2ρβ max{1,L2}
min{ρ,P } Vb(t) > 0, (4.29)

λ2 = 1 + 2ρβ max{1,L2}
min{ρ,P } Vb(t) > 1, (4.30)

provided that inequality (4.24) is satisfied. �

Lemma 4.7 The time derivative of the Lyapunov function candidate in (4.21) can
be upper bounded with

V̇p(t) ≤ −λ3Va(t) + εp, (4.31)

where λ3 and εp are positive constants defined as

λ3 = min{β(P − dcδ2L
2 − δ3L

2), dc − δ1 − β(ρ + dc
δ2
)}

max{ρ,P } > 0, (4.32)

εp =
(

1

δ1
+ β

δ3

)
max

t=[0,∞)

∫ L

0
f ∗2(z, t) dz > 0. (4.33)
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Proof Taking the time derivative of Va(t) in (4.22), performing integration by parts
with boundary conditions (4.19), and using Lemma 2.3 with δ1 > 0 and disturbance
(4.18), we have

V̇a(t) =
∫ L

0

{
ρẇ(z, t)ẅ(z, t) + Pw′(z, t)ẇ(z, t)

}
dz

≤
∫ L

0

{−dcẇ
2(z, t) + ẇ(z, t)f ∗(z, t)

}
dz

≤
∫ L

0

{
−(dc − δ1)ẇ

2(z, t) + 1

δ1
f ∗2(z, t)

}
dz. (4.34)

Taking the time derivative of Vb(t) in (4.23) as above with Lemma 2.4 and constants
δ2, δ3 > 0 yields

V̇b(t) =
∫ L

0
ρβwẅ + ρβẇ2 dz

= β

∫ L

0
−dcwẇ + Pww′′ + wf ∗ + ρẇ2 dz

≤ β

∫ L

0

(
ρ + dc

δ2

)
ẇ2 − (P − dcδ2L

2 − δ3L
2)[w′]2 + 1

δ3
f ∗2 dz.

(4.35)

Combining Eqs. (4.34) and (4.35), we have

Vp(t) ≤
∫ L

0
−β
(
P − dcδ2L

2 − δ3L
2)[w′]2 −

[
dc − δ1 − β

(
ρ + dc

δ2

)]
ẇ2

+
(

1

δ1
+ β

δ3

)
f ∗(z, t) dz

≤ −λ3Va(t) + εp, (4.36)

where λ3 and εp are given in (4.32) and (4.33), respectively. �

Remark 4.8 It is observed that under Assumption 4.1 where f (z, t) ∈ L∞, if the
boundary states b0, ḃ0, b̈0, bL, ḃL, and b̈L of the original system (4.4) are bounded,
we obtain εp < ∞.

4.2.2.2 Positioning Control Using Barrier Lyapunov Functions

In this subsection, we design positioning controls for the boundary crane and pay-
load using BLF, after which the main result will be formalized.
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Top Boundary Consider the crane dynamics at the top boundary for the cable in
Eq. (4.4):

M0b̈0(t) = u0(t) − T (0, t)y′(0, t) − d0(t)ḃ0(t) − M0ÿs(t), (4.37)

where the system state b0(t) at the top boundary is required to satisfy |b0(t)| <
k0c with constraint k0c being a positive constant. We define the error coordinates
z3 = b0 − b0d and z4 = ḃ0 − α2, where α2 is a virtual control to be designed. To
design a control that does not drive b0 out of the interval (−k0c, k0c), the following
Lyapunov function candidate comprising a barrier function [221] with schematic
shown in Fig. 4.2(b) is proposed for the top boundary as

V3 = φ0

2
log

k2
b

k2
b − z2

3

, (4.38)

where φ0 is a positive constant, log(∗) is the natural logarithm of (∗), and kb =
k0c − A0 is the constraint on z3, where A0 < k0c is a positive constant, that is, we
require |z3| < kb . It can be shown that V3 is positive definite and C1 continuous on
the set |z3| < kb and thus is a valid Lyapunov function candidate. The derivative of
V3 is given by

V̇3 = φ0z3ż3

k2
b − z2

3

= φ0z3(z4 + α2)

k2
b − z2

3

, (4.39)

for which the design of virtual control

α2 = −(k2
b − z2

3

)
φ1z3, (4.40)

where φ1 > 0 is a constant, yields

V̇3 = −φ0φ1z
2
3 + φ0z3z4

k2
b − z2

3

. (4.41)

In the second step, choose a Lyapunov function candidate as follows:

V4 = V3 + 1

2
z2

4, (4.42)

which yields the derivative

V̇4 = −φ0φ1z
2
3 + φ0z3z4

k2
b − z2

3

+ z4M
−1
0

(
u0 − T (0, t)y′(0, t) − d0ḃ0 − M0ÿs − α̇2

)
,

where α̇2 is given by

α̇2 = φ1
(
3z2

3 − k2
b

)[
z4 − (k2

b − z2
3

)
φ1z3
]
. (4.43)
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By designing the control as

u0 = T (0, t)y′(0, t) + d0ḃ0 + M0ÿs + α̇2 − M0

(
φ2z4 + φ0z3

k2
b − z2

3

)
, (4.44)

where φ2 > 0 is a constant, we have

V̇4 = −φ0φ1z
2
3 − φ2z

2
4. (4.45)

Bottom Boundary Similar to the methodology as for the top boundary, we con-
sider payload dynamics at the bottom boundary for the crane-cable-payload in
Eq. (4.4):

MLb̈L(t) = uL(t) + T (L, t)y′(L, t) − dL(t)ḃL(t) + fL(t), (4.46)

where the system state bL(t) at the bottom boundary is required to satisfy the con-
straint |bL(t)| < kLc with kLc being a positive constant. We define the error coordi-
nates z5 = bL − bLd and z6 = ḃL − α3, where α3 is a virtual control, and design the
Lyapunov function candidate with a barrier function for the payload dynamics as

V5 = φ3

2
log

k2
c

k2
c − z2

5

, (4.47)

where φ3 is a positive constant, and kc = kLc − AL the constraint on z5, where
AL < kLc is a positive constant. The derivative of V5 is given by

V̇5 = φ3z5ż3

k2
c − z2

5

= φ3z5(z6 + α3)

k2
c − z2

5

, (4.48)

for which the design of virtual control

α3 = −(k2
c − z2

5

)
φ4z5, (4.49)

where φ4 > 0 is a constant, yields

V̇5 = −φ3φ4z
2
5 + φ2z5z6

k2
c − z2

5

. (4.50)

In the second step, choose a Lyapunov function candidate as follows:

V6 = V5 + 1

2
z2

6, (4.51)

which yields the derivative

V̇6 ≤ −φ3φ4z
2
5 + φ3z5z6

k2
c − z2

5

+ z6M
−1
L

(
uL + T (L, t)y′(L, t) − dLḃL − α̇3

)

+ M−1
L |z6|fL(t), (4.52)
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where α̇3 is given by

α̇3 = φ4
(
3z2

5 − k2
c

)[
z6 − (k2

c − z2
5

)
φ4z5
]
. (4.53)

By designing the control as

uL = −T (L, t)y′(L, t) + dLḃL + α̇3 − urblf − ML

(
φ5z6 + φ2z5

k2
c − z2

5

)
, (4.54)

where urblf = sgn(z6)f̄L, and φ5 > 0 is a constant, we have

V̇6 ≤ −φ3φ4z
2
5 − φ5z

2
6. (4.55)

The following theorem presents the result on the positioning control and the sta-
bility of the system.

Theorem 4.9 Consider the flexible cable system (4.15) transformed to (4.17) with
boundary conditions (4.19), initial conditions (4.20), crane dynamics (4.37) at the
top boundary, payload dynamics (4.46) at the bottom boundary, full-state feedback
controls (4.44) and (4.54), Assumption 4.1, and Lemmas 2.7–4.7. For the boundary
states b0, ḃ0, b̈0, bL, ḃL, and b̈L of the original system (4.15) with initial conditions
in the sets Ω0 and ΩL, where (b0(0), ḃ0(0)) ∈ Ω0 := {(b0, ḃ0) ∈ R

2| − k0c < b0 <

k0c} and (bL(0), ḃL(0)) ∈ ΩL := {(bL, ḃL) ∈ R2| − kLc < bL < kLc}, the following
properties hold:

(i) The flexible system (4.17) subjected to distributed displacement f ∗(z, t) under
Assumption 4.1 is uniformly bounded, i.e., w(z, t) ∈ L∞ for all (z, t) ∈ [0,L]×
[0,∞), with all closed-loop signals bounded, which implies that the original
system (4.15), y(z, t) ∈ L∞ for all (z, t) ∈ [0,L] × [0,∞).

(ii) The positioning error z3 is asymptotically stable, i.e., b0(t) → b0d(t) as
t → ∞ with all states are bounded, and the constraint |z3(t)| < kb is never
violated.

(iii) The positioning error z5 is asymptotically stable, i.e., bL(t) → bLd(t) as
t → ∞ with all states bounded, and the constraint |z5(t)| < kc is never vio-
lated.

Proof (i) Since V̇4 ≤ 0, it can be shown that V4(t) is bounded for all t > 0, provided
that V4(0) is bounded and |z3(0)| < kb . From (4.42) it follows that V3(t) is bounded.
According to (4.38), we know that if V3(t) is bounded, it must be true that |z3(t)| �=
kb . Therefore, the tracking error z3 remains in the region |z3(t)| < kb . Hence, we
have |b0(t)| < k0c, and the states ḃ0 and b̈0 at the top boundary are bounded. The
boundedness of bL, ḃL, b̈L can be similarly shown. Since the boundary states are
bounded, Lemma 4.7 holds, and Vp(t) is upper bounded with Eq. (4.31). From
Eqs. (4.25) and (4.31) we have

V̇p(t) ≤ −λVp(t) + εp, (4.56)
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where λ = λ3/λ2. The uniform boundedness of w(z, t) can be shown by multiplying
Eq. (4.56) by eλt :

∂

∂t

(
Vpe

λt
)≤ εpe

λt . (4.57)

Integration of the above and application of Lemma 2.7 with Eqs. (4.25) and (4.22)
yield

λ1Va(t) ≤ Vp(t) ≤ Vp(0) + εp

λ
∈ L∞. (4.58)

Since Va(t) is bounded, ẇ(z, t) and w′(z, t) are bounded for all (z, t) ∈ [0,L] ×
[0,∞). Using Lemma 2.4, we obtain w(z, t) ∈ L∞, and hence y(z, t), y′(z, t) ∈
L∞. At this point, we have shown that all signals in the positioning controls (4.44)
and (4.54) are bounded. Finally, using Assumption 4.1 and Eqs. (4.17) to (4.20), we
conclude that ẅ(z, t) and hence ÿ(z, t) are bounded for all (z, t) ∈ [0,L] × [0,∞).

(ii) To show that b0(t) → b0d as t → ∞, we compute V̈4 as follows:

V̈4 = −2φ0φ1z3ż3 − 2φ2z4ż4. (4.59)

From the boundedness of the closed-loop signals, we can show that V̈2 is bounded
and uniformly continuous. Using Barbalat’s lemma [62], z3(t), z4(t) → 0 as
t → ∞. Hence, the state b0(t) → b0d(t) as t → ∞.

(iii) The proof is similar to that in (i) and will be omitted for conciseness. �

Remark 4.10 In the control design, a particular choice of SBLF, e.g., V5 =
(φ3/2) log (k2

c /(k
2
c − z2

5)) was employed. We can extend the result for asymmet-
ric barrier Lyapunov functions (ABLS) or general forms of barrier functions in
Lyapunov synthesis satisfying V5(z5) → ∞ as z5 → −kb or z5 → kc by following
the methodology in [223], where kb �= kc > 0 are the barrier constraints.

Remark 4.11 To handle unknown perturbations to the nominal model in the
form of parametric uncertainties or modeling errors, adaptive model-based or
approximation-based control techniques can be employed following the framework
setup in [203, 222, 223].

4.3 Boundary Stabilization of Coupled System with Nonuniform
Cable

In this subsection, we consider the nonuniformity of the cable and design boundary
controls for stabilization of the crane and payload thruster using the PDE of the
flexible subsystem subjected to a distributed disturbance via Lyapunov synthesis.

Consider the following Lyapunov function candidate:

V (t) = Vc(t) + Vd(t) + Ve(t), (4.60)
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where

Vc(t) = 1

2

∫ L

0

{
ρ(z)ẏ2(z, t) + T0(z)

[
y′(z, t)

]2 + 1

2
θ(z)
[
y′(z, t)

]4}
dz,

(4.61)

Vd(t) = 1

L

∫ L

0

{
ρ(z)γ (z)zẏ(z, t)y′(z, t)

}
dz, (4.62)

Ve(t) = 1

2
M0ḃ

2
0(t) + 1

2
ML

[
ẏ(L, t) + 3

8
γ (L)y′(L, t)

]2

, (4.63)

and γ (z) is a positive scalar function satisfying the inequality

0 <

∫ L

0
γ (z) dz <

Lmin{ρ, T , θ}
2ρ

. (4.64)

Lemma 4.12 The function Vd(t) with crossing term
∫ L

0 ẏ(z, t)y′(z, t) dz can be up-
per and lower bounded as

0 ≤ λ4Vc(t) ≤ Vd(t) ≤ λ5Vc(t), (4.65)

where λ4 and λ5 are positive constants.

Proof From Eq. (4.62) by Young’s inequality we have

∣∣Vd(t)
∣∣≤
∫ L

0
ρ(z)γ (z)

{
ẏ2(z, t) + [y′(z, t)

]2}
dz. (4.66)

Comparing (4.66) with (4.62), we obtain

∣∣Vd(t)
∣∣ ≤
∫ L

0
ρ(z)γ (z)

{
ẏ2(z, t) + [y′(z, t)

]2}
dz (4.67)

≤ 2ρ
∫ L

0 γ (z) dz

Lmin{ρ, T , θ}Vc(t), (4.68)

which can be rewritten as

− 2ρ
∫ L

0 γ (z) dz

Lmin{ρ,T , θ}Vc(t) ≤ Vd(t) ≤ 2ρ
∫ L

0 γ (z) dz

Lmin{ρ,T , θ}Vc(t). (4.69)

Thus, Vd is bounded as

λ4Vc(t) ≤ Vd(t) ≤ λ5Vc(t), (4.70)
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where

λ4 = 1 − 2ρ
∫ L

0 γ (z) dz

Lmin{ρ,T , θ}Vd(t) > 0, (4.71)

λ5 = 1 + 2ρ
∫ L

0 γ (z) dz

Lmin{ρ,T , θ}Vd(t) > 1, (4.72)

provided that condition (4.64) is satisfied. �

Lemma 4.13 Designing boundary controls u0(t) and uL(t) at z = 0 and L, respec-
tively, as

u0(t) = −k0ẏ(0, t) + 2T (0, t)y′(0, t) + d0(t)ḃ0(t) + M0ÿs , (4.73)

uL(t) = −kL

[
ẏ(L, t) + 3

4
γ (L)y′(L, t)

]
− urbc + dLḃL(t)

− 2T (L, t)y′(L, t) − 3

4
MLγ (L)ẏ′(L, t), (4.74)

where urbc = sgn[ẏ(L, t) + 3
4γ (L)y′(L, t)]f L, the time derivative of the Lyapunov

function candidate in (4.60) can be upper bounded with

V̇ (t) ≤ −λ6
[
Vc(t) + Ve(t)

]+ ε, (4.75)

where λ6 > 0 and ε > 0 are positive constants.

Proof Taking the time derivative of Vc(t), performing integration by parts, using
Lemma 2.3 with δ4 > 0, and substituting the governing equation of the cable (4.4),
we have

V̇c(t) =
∫ L

0

{
ρẏÿ + T0y

′ẏ′ + θ
[
y′]3ẏ′}dz

≤ T (L, t)ẏ(L, t)y′(L, t) − T (0, t)ẏ(0, t)y′(0, t)

− (dc − δ4)

∫ L

0
ẏ2 dz + 1

δ4

∫ L

0
f 2 dz. (4.76)

A similar treatment of Vd(t) as for Vc(t) above, with δ5 > 0, yields

V̇d (t) = 1

L

∫ L

0
γ z
{
y′ρÿ + ρẏẏ′}dz

≤ 1

2
γ (L)T0(L)

[
y′(L, t)

]2 − 1

2L

∫ L

0

(
∂{γ z}
∂z

T0 − γ zT ′
0

)[
y′]2 dz

+ 3

4
γ (L)θ(L)

[
y′(L, t)

]4 − 1

4L

∫ L

0

(
3
∂{γ z}
∂z

θ − γ zθ ′
)[

y′]4 dx
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+ 1

2
γ (L)ρ(L)ẏ2(L, t) − 1

2L

∫ L

0

∂{γρz}
∂z

[ẏ]2 dz + δ5

L

∫ L

0
γ 2z2[y′]2 dx

+ 1

δ5L

∫ L

0
f 2 dz. (4.77)

For clarity, we separate Ve(t) into Ve0(t) and VeL at z = 0 and z = L, respectively,
for the boundary control design. Taking the time derivative of Ve0(t) along Eq. (4.7)
yields

V̇e0 = ẏ(0, t)
[
u0(t) − T (0, t)y′(0, t) − d0(t)ḃ0(t) − M0ÿs

]
. (4.78)

Substituting the boundary control of the crane (4.73) at z = 0 into Eq. (4.78), we
obtain

V̇e0 = ẏ(0.t)
[−k0ẏ(0, t) + T (0, t)y′(0, t)

]

= −k0ẏ
2(0, t) + T (0, t)y′(0, t)ẏ(0.t). (4.79)

Substituting the designed boundary control (4.74) at z = L, we have

V̇eL(t) ≤ −kL

[
ẏ(L, t) + 3

4
γ (L)y′(L, t)

]2

− T (L, t)y′(L, t)ẏ(L, t)

− 3

4
γ (L)T (L, t)

[
y′(L, t)

]2
. (4.80)

Combining Eqs. (4.76), (4.77), (4.80), and (4.79), we obtain

V̇ (t) ≤ 1

2
γ (L)T0(L)

[
y′(L, t)

]2 + 3

4
γ (L)θ(L)

[
y′(L, t)

]4 + 1

2
γ (L)ρ(L)ẏ2(L, t)

− 1

2L

∫ L

0

(
∂{γ z}
∂z

T0 − γ zT ′
0 − 2δ5γ

2z2
)[

y′]2 dz

− 1

4L

∫ L

0

(
3
∂{γ z}
∂z

θ − γ zθ ′
)[

y′]4 dx

− 1

2L

∫ L

0

(
∂{γρz}

∂z
+ 2Ldc − 2Lδ4

)
[ẏ]2 dz +

(
1

δ4
+ 1

δ5L

)∫ L

0
f 2 dz

− k0ẏ
2(0, t) − kL

[
ẏ(L, t) + 3

8
γ (L)y′(L, t)

]2

− 3

4
T (L, t)γ (L)

[
y′(L, t)

]2
.

Using θ(L)[y′(L, t)]2 = T (L, t) − T0(L), we have

V (t) ≤ −1

4
γ (L)T0(L)

[
y′(L, t)

]2 + 1

2
γ (L)ρ(L)ẏ2(L, t)
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− kL

[
ẏ(L, t) + 3

4
γ (L)y′(L, t)

]2

− 1

4L

∫ L

0

(
3
∂{γ z}
∂z

θ − γ zθ ′
)[

y′]4 dx

− 1

2L

∫ L

0

(
∂{γ z}
∂z

T0 − γ zT ′
0 − 2δ5γ

2z2
)[

y′]2 dz

− 1

2L

∫ L

0

(
∂{γρz}

∂z
+ 2Ldc − 2Lδ4

)
[ẏ]2 dz − k0ẏ

2(0, t)

+
(

1

δ4
+ 1

δ5L

)∫ L

0
f 2 dz. (4.81)

From the first three terms in (4.81) we have

−1

4
γ (L)T0(L)

[
y′(L, t)

]2 + 1

2
γ (L)ρ(L)ẏ2(L, t)

− 1

2
kL

[
ẏ(L, t) + 3

4
γ (L)y′(L, t)

]2

≤ −
[
−kL

9

32
γ (L)2 + 1

4
γ (L)T0(L)

][
y′(L, t)

]2

− 1

2

[
kL

2
− γ (L)ρ(L)

]
ẏ2(L, t). (4.82)

From Eqs. (4.81), (4.82), and (4.60) we can show that

V̇ (t) ≤ −λ6
[
Vc(t) + Ve(t)

]+ ε (4.83)

where

λ6 = min

{∫ L

0

(
∂{γ (z)ρ(z)z}

Lρ(z)∂z
+ 2dc

ρ(z)
− 2δ4

ρ(z)

)
dz

∫ L

0

1

LT0(z)

(
∂{γ z}
∂z

T0 − γ zT ′
0 − 2δ5γ

2z2
)
dz,

∫ L

0

1

2Lθ(z)

(
3
∂{γ z}
∂z

θ − γ zθ ′
)
dz,

2k0

M0
,

2kL
ML

}
> 0, (4.84)

ε =
(

1

δ4
+ 1

δ5L

)
max

t=[0,∞)

∫ L

0
f 2 dz ≤ ∞ (4.85)

with admissible values of control gain kL bounded as

2γ (L)ρ(L) < kL <
8

9

T0(L)

γ (L)
. � (4.86)
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By Eqs. (4.65) and (4.75) we can rewrite the time derivative of the Lyapunov
function candidate in the form of Lemma 2.7 as

V̇ (t) ≤ −λV (t) + ε, (4.87)

where λ = λ6/λ5. The following theorem presents the results for the boundary for
the coupled system.

Theorem 4.14 Consider the coupled system (4.1), (4.4), (4.7), and (4.8), with ini-
tial conditions (4.5), boundary conditions (4.6), scalar function γ (z) satisfying in-
equalities (4.64) and (4.32), Assumptions 4.1 and 4.4, full-state feedback from the
vessel, crane, and payload, vessel control (4.13), and boundary controls (4.73) and
(4.74). Then the closed-loop system subjected to the distributed disturbance f (z, t)

is uniformly bounded.

Proof The uniform boundedness of the deflection y(z, t) can be shown by multi-
plying Eq. (4.87) by eλt :

∂

∂t

(
V eλt
)≤ εeλt . (4.88)

Integration of the above and application of Lemma 2.7 yield

V (t) ≤
(
V (0) − ε

λ

)
eλt + ε

λ
≤ V (0) + ε

λ
∈ L∞. (4.89)

Utilizing Eqs. (4.61) and (4.65), we have

Vc(t) ≤ 1

λ4
V (t) ∈ L∞. (4.90)

Since Vc(t) is bounded, ẏ(z, t) and y′(z, t) are bounded for all (z, t) ∈ [0,L] ×
[0,∞). By Lemma 4.5, since ẏ(z, t) and y′(z, t) are bounded, the boundary controls
(4.73) and (4.74) are bounded. From the above statements and Eqs. (4.4)–(4.8) we
can conclude that ÿ(z, t) and y(z, t) ∈ L∞. �

Remark 4.15 The challenge in addressing nonuniformities when working with
boundary control lies in the determining an appropriate (nonuniform) cross term
in the Lyapunov function [88]. In [98], the increasing nonuniform term in the form
of γ (z) = γ1e

γ2z with γ1 > 0 sufficiently small and γ2 large was proposed. When
T0(z) and θ(z) are constants, γ (z) and γ (z)ρ(z) can be chosen to be nondecreasing.

Remark 4.16 The robust signum control terms in control (4.13), (4.54), and (4.74)
may induce chattering due to the discontinuous property which results in mechanical
wear and tear. To solve this problem, several nice smooth modifications have been
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investigated in the literature, such as boundary layers [230, 231] and the use of a
hyperbolic tangent function [232], which has the following nice property:

0 ≤ |χ | − χ tanh

(
χ

εd

)
≤ 0.2785εd ∀χ ∈R, (4.91)

where εd > 0. For example, let urs = k3 tanh(z2/εd) in (4.13) where k3 ≥ f̄s . From
(4.14) and (4.91), we obtain

V̇2 ≤ −k1z
2
1 − k2z

2
2 + 0.2785k3εd . (4.92)

Obviously, V̇ is strictly negative whenever the errors z1 and z2 are outside the com-
pact set

Ωcs = {(z1, z2) | k1z
2
1 + k2z

2
2 ≤ 0.2785k3εd

}
, (4.93)

i.e., z1 will converge to a small neighborhood of zero, whose size is adjustable by
the design parameters k1 and k2. By smoothing the signum function, the closed-loop
system is stable with a small residual error and a reduction in chattering. Similar
smoothing modifications can be applied for urblf and urbc in (4.54) and (4.74), and
the analysis is omitted for conciseness.

4.4 Numerical Simulations

4.4.1 Worst-Case Harmonic Disturbances

The closed-loop system (4.1) and (4.2) with boundary dynamics (4.7) and (4.8),
distributed disturbance (2.5), vessel control (4.13), positioning controls (4.44) and
(4.54), and stabilizing boundary controls (4.73) and (4.74) is simulated to investigate
the performance of the proposed controls under theoretical worst-case disturbances.
A nondimensionalization and finite difference scheme is used to numerically solve
the PDE.

The vessel with Ms = 9.6 × 107 kg and ds = 9.2 × 107 starts the initial condition
ys(0) = 10.0 m with target position ysd = 0.0 m at the origin. The crane with M0 =
1.0 × 106 kg, d0 = 8.0 × 105, cable with T (z, t) = T0 + 0.5EA[y′(z, t)]2, T0 =
4.0 × 106 N, L = 1000 m, E = 4.0 × 109, D = 0.2 m, ρ = 8.02 kg m−3, dc = 0,
and payload modeled as a cylinder with ML = 4 × 105 kg, dL = 2 × 105, height
hc = 10.0 m, and diameter Dc = 5.0 m starts initially at rest and is excited by a
distributed transverse load. It is noted that the damping of the cable dc and robust
signum terms in all proposed controls are set to zero to demonstrate the robustness
of the proposed control.

The ocean surface current velocity U(t) is modeled as a mean flow with worst-
case sinusoid components ωi = {2.2189,4.4378,6.6567,8.8756} for i = 1 to 4 that
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Fig. 4.3 (Top) surface vessel position with desired position at the origin, (center) vessel control
thrust, and (bottom) disturbance acting on the vessel

match the first four natural frequencies of the cable. The current U(t) can be ex-
pressed as

U(t) = Ū + Um

N∑
i=1

sin(ωit), i = 1,2, . . . ,N, (4.94)

where Ū is the mean flow current, and Um is the amplitude of the oscillating flow.
The full current load is applied from z = 0 to 300 m and thereafter linearly declines
to an oscillating current with mean 1.0 m s−1 at z = 1000 m to obtain a depth-
dependent ocean current profile U(z, t). The distributed disturbance is generated
using Eq. (2.5), the disturbance on the vessel is generated as

fs = [3 + 0.8 sin(0.7t) + 0.2 sin(0.5t) + 0.2 sin(0.9t)
]× 106, (4.95)

and the disturbance on the subsea payload modeled as a cylinder is derived from
Morison’s equation

fL = 1

2
CDρshDc

∣∣U(L, t)
∣∣U(L, t), (4.96)

where CD = 1.0 is the drag coefficient.

Surface Vessel Control The surface vessel subjected to disturbance (4.95) is sim-
ulated under the action of backstepping control (4.13) with control gains k1 = 1.0
and k2 = 5.0 × 107. The position, control, and disturbance on the surface vessel are
shown in Fig. 4.3, where it can be observed that the backstepping control is able to
position the vessel near its desired position at the origin.
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Fig. 4.4 Spatial-time representation of cable motions without control under worst-case distur-
bances. The top boundary is at the crane, and the bottom boundary at the subsea payload

Crane-Cable-Payload Subsystem Without Controls Under the action of the
vessel control, the dynamics of the cable is simulated without control, and the 3D
spatial time representation is shown in Fig. 4.4. It can be seen that at t = 500 s, the
subsea payload has deviated 150 m from the origin under the action of the distributed
disturbance on the cable and the disturbance force acting on the payload due to the
current.

SBLF Positioning Controls The positioning controls (4.44) and (4.54) devel-
oped using SBLF are simulated with crane desired position b0d = 0 m, constraints
k0c = 30 m and A0 = 10 m, control gains φ0 = φ1 = φ2 = 10, subsea payload de-
sired position bLd = 10 m, constraints kLc = 50 m and AL = 30 m, and control
gains φ3 = φ4 = φ5 = 5.0. The 3D spatial time representation is shown in Fig. 4.5,
and the position, control, and tension at the top (crane) and bottom (subsea pay-
load) boundaries are shown in Figs. 4.6 and 4.7, respectively. The designed control
is able to keep the crane at the desired position, and the subsea payload position
converges from the origin to the desired position when the system is subjected to
the environmental disturbances.

Stabilizing Boundary Control The boundary controls (4.73) and (4.74) are sim-
ulated with k0 = kL = 5×108 and γ = 1×10−5. The 3D spatial time representation
for the boundary control is shown in Fig. 4.8, and the position, control, and tension
at the top (crane) and bottom (subsea payload) boundaries are shown in Figs. 4.9 and
4.10, respectively. From the simulations it is observed that the proposed boundary
control can stabilize the boundary at the origin under the influence of the distur-
bances.
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Fig. 4.5 Spatial-time representation of cable motions with positioning control under worst-case
disturbances. The top boundary is at the crane, and the bottom boundary is at the subsea payload,
maintained at desired position bL = 10 m

Fig. 4.6 (Top) Position of the crane with desired position at origin, (center) control force on the
crane, and (bottom) tension at crane with position control (4.44) under worst-case disturbances

Remark 4.17 To demonstrate the robustness of the proposed control, the damping
of the cable and all robust signum terms in all proposed controls are set to zero.
The ocean surface current and hence the distributed disturbance are simulated with
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Fig. 4.7 (Top) Position of the payload with desired position at BLD = 10 m, (center) control force,
and (bottom) cable tension at subsea payload with positioning control (4.54) under worst-case
disturbances

Fig. 4.8 Spatial-time representation of the cable motions control with stabilizing boundary con-
trols (4.73) and (4.74) under worst-case disturbances

worst-case sinusoid components to excite large-amplitude transverse resonance in
the cable. As such, a large oscillating control signal is required to keep the payload
at the target location.
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Fig. 4.9 (Top) Position of the crane, (center) control force on the crane, and (bottom) tension at
crane with stabilizing boundary control (4.73) under worst-case disturbances

Fig. 4.10 (Top) Position of the payload, (center) control force on the payload, and (bottom) tension
at payload with stabilizing boundary control (4.74) under worst-case disturbances

4.4.2 Practical Disturbances

To validate the proposed control under practical disturbances, hydrodynamic analy-
sis has been carried out for the vessel to calculate the vessel disturbance fs . The ex-
citation forces for wave, wind, and current and the Response Amplitude Operations
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(RAOs) of the vessel are generated using a hydrodynamic software. The underwa-
ter dimensions of the vessel are 355 m length × 57 m breath × 11.8 m maximum
drought. Head sea, wind, and current in the same direction are simulated with JON-
SWAP spectrum of significant wave height, Hs = 3.0 m (rough sea), peak period of
spectrum = 7.0 s, γ coefficient = 3.30, and Harris wind spectrum with wind veloc-
ity = 10.0 m s−1. The second-order drift forces are calculated based on the Lagally
approach [233].

The ocean surface current velocity U(t) can be modeled by using a first-order
Gauss–Markov process [234]

U̇ (t) + μU(t) = ω(t), (4.97)

Umin ≤ U(t) ≤ Umax, (4.98)

where ω(t) is Gaussian white noise, μ ≥ 0 is a constant, Umin = 1.6 m s−1 and
Umax = 2.4 m s−1 are chosen minimum and maximum magnitudes of the current ve-
locity, respectively, and μ = 0. The full current load is applied from z = 0 to 300 m,
and thereafter linearly decline to 0.1U at z = 1000 m to obtain a depth-dependent
ocean current profile U(z, t). The hyperbolic tangent function smoothing modifica-
tion with εd = 1 × 10−3 for the signum terms, f s = 4 × 106 N, f L = 1500 N, and a
rate limiter with time constant τc = 0.2 has been applied to the following proposed
controls.

Surface Vessel Control The surface vessel subjected to disturbance fs is simu-
lated under the action of backstepping control (4.13) with urs = tanh(z2(t)/εd)f s

and control gains k1 = 10.0 and k2 = 5.0 × 106. The position, control, and distur-
bance on the surface vessel are shown in Fig. 4.11, where it can be observed that
the backstepping control is able to position the vessel near its desired position at the
origin.

Crane-Cable-Payload Subsystem Without Controls Under the action of the
vessel control, the dynamics of the cable is simulated without control, and the spa-
tial time representation is shown in Fig. 4.12. It can be seen that at t = 200 s, the
subsea payload has deviated more than 30 m from the origin under the action of the
distributed disturbance on the cable and the disturbance force acting on the payload
due to the current.

SBLF Positioning Controls The positioning controls (4.44) and (4.54) devel-
oped using SBLF are simulated with crane desired position b0d = 0 m, constraints
k0c = 30 m and A0 = 10 m, control gains φ0 = φ2 = φ3 = φ5 = 0.5, φ1 = φ4 = 5.0,
urblf = tanh(z6/εd)f̄L, subsea payload desired position bLd = 10 m, and con-
straints kLc = 50 m and AL = 30 m. The spatial time representation is shown in
Fig. 4.13, and the position, control, and tension at the top (crane) and bottom (sub-
sea payload) boundaries are shown in Figs. 4.14 and 4.15, respectively. The designed
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Fig. 4.11 (Top) Surface vessel position with desired position at the origin, (center) vessel control
thrust, and (bottom) disturbance acting on the vessel

Fig. 4.12 Spatial-time representation of cable motions without control. The top boundary is at the
crane, and the bottom boundary at the subsea payload
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Fig. 4.13 Spatial-time representation of cable motions with positioning control. The top boundary
is at the crane, and the bottom boundary is at the subsea payload, maintained at desired position
bL = 10 m

Fig. 4.14 (Top) Position of the crane with desired position at origin, (center) control force on the
crane, and (bottom) tension at crane with position control (4.44)

control is able to keep the crane at the desired position, and the subsea payload posi-
tion converges from the origin to the desired position when the system is subjected
to the environmental disturbances.

Stabilizing Boundary Control The boundary controls (4.73) and (4.74) are sim-
ulated with urbc = tanh((ẏ(L, t) + 3

4γ (L)y′(L, t))/εd)f L, k0 = kL = 1 × 109, and
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Fig. 4.15 (Top) Position of the payload with desired position at BLD = 10 m, (center) control
force, and (bottom) cable tension at subsea payload under positioning control (4.54)

Fig. 4.16 Spatial-time representation of the cable motions control under stabilizing boundary con-
trols (4.73) and (4.74)

γ = 1 × 10−3. The spatial time representation for the boundary control is shown
in Fig. 4.16, and the position, control, and tension at the top (crane) and bottom
(subsea payload) boundaries are shown in Figs. 4.17 and 4.18, respectively. From
the simulations it is observed that the proposed boundary controls can stabilize the
boundary at the origin under the influence of the disturbances.
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Fig. 4.17 (Top) Position of the crane, (center) control force on the crane, and (bottom) tension at
crane with stabilizing boundary control (4.73)

Fig. 4.18 (Top) Position of the payload, (center) control force on the payload, and (bottom) tension
at payload with stabilizing boundary control (4.74)

4.5 Conclusion

In this chapter, the model of the coupled vessel, crane, cable, and payload with
nonuniform parameters has been presented. Positioning controls have been derived
for the coupled system with uniform parameters using barrier Lyapunov functions.
Through Lyapunov analysis, it was shown that the coupled crane-payload flexible
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system is stable under the control action, the physical limits from operations plan-
ning and safety specifications are not transgressed, and positioning of crane and
payload is achieved. A stabilizing boundary control is proposed for the coupled sys-
tem with nonuniform parameters. Rigorous Lyapunov stability analysis is carried
out, and the uniform boundedness of the system was shown under the proposed con-
trol. Finally, the performance of the proposed controls have been illustrated through
numerical simulations.

During the lowering operation on long lines, there can be very significant dy-
namic effects on the lift cable and load. The excitation caused by the motions of
the surface vessel can be amplified with large oscillations and high dynamic tensile
loads in the lifting line, which may result in breaking of the lifting cable. Con-
sidering the ship motions, control of longitudinal vibrations and tension to reduce
the high dynamic tensile loads is desirable in ocean engineering. Due to the cou-
pled effects, the control design and the direct proof for the Lyapunov stability are
quite difficult. Boundary control on axially moving systems has been studied in
[80, 105, 108, 116, 235], which may inspire the control design for the longitudi-
nal vibrations of the flexible systems. Passive or active heave compensator can be
incorporated following [236]. Coupled with the ship motions, heave control in the
longitudinal direction to reduce the high dynamic tensile loads is desirable for safe
and reliable operations. In the marine environment, the control longitudinal vibra-
tions and tension are challenging due to the unpredictable ocean disturbances such
as fluctuating currents and transmission of motions from the surface vessel through
the lift cable.

In the simulations, the control is able to generate the adequate response for posi-
tioning the payload at the desired location within tight limits. For implementation,
thruster performance needs to be included during the operation planning process
such as weather window selection and safety considerations to ensure that the en-
vironmental forces are within operational limits and the required thrust is available
for positioning.



Chapter 5
Marine Installation System

5.1 Introduction

The accurate position control for marine installation operations has gained increas-
ing attention when the trend in the offshore industry is toward the deep water. Due to
the requirements for high accuracy and efficiency arising from the modern ocean in-
dustry, improving reliability and efficiency of installation operations during oil and
gas production in the ocean environment is a challenging research topic in offshore
engineering. Traditional marine installation systems consist of the vessel dynamic
positioning and crane manipulation to obtain the desired position and heading for
the payload [1, 2]. Such methods become difficult in deeper waters due to the longer
cable between the surface vessel and payload. The longer cable increases the natural
periods of the cable and payload system, which in turn increase the effects of oscil-
lations. One solution to alleviate the precision installation problem is the addition of
thrusters attached the payload for the installation operation [7].

Such marine installation system consists of an ocean surface vessel, a flexible
string-type cable, and a subsea payload to be positioned for installation on the ocean
floor as depicted in Fig. 5.1. The surface vessel, to which the top boundary of the
cable is connected, is equipped with a dynamic positioning system with an active
thruster. The bottom boundary of the cable is a payload with an end-point thruster
attached. This thruster is used for dynamic positioning of the payload. The total ma-
rine installation system is subjected to environmental disturbances including ocean
current, wave, and wind. A cable that spans a long distance can produce large vi-
brations under relatively small disturbances, which can degrade the performance of
the system and result in a larger offset from the target installation site. The control
for the dynamic positioning of the payload is challenging due to the unpredictable
exogenous disturbances such as fluctuating currents and transmission of motions
from the surface vessel through the lift cable. Taking into account the unknown
time-varying ocean disturbances of the cable leads to the appearance of oscillations,
which make the control problem of the marine installation system relatively diffi-
cult. Current research [7] on the control of the marine installation systems focuses
on the dynamics of the payload, where the dynamics of the cable is ignored for the
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Fig. 5.1 A typical flexible
marine installation system

convenience of the control design. The dynamics of the cable is considered as an
external force term to the payload. In this chapter, all the dynamics of the vessel, ca-
ble, and payload are considered. The flexible marine installation system with cable,
vessel, and payload dynamics is represented by a set of infinite-dimensional equa-
tions (i.e., PDEs describing the dynamics of the flexible cable) coupled with a set of
finite-dimensional equations (i.e., ODEs describing the lumped vessel and payload
dynamics).

For the marine installation system, the dynamic position control of the payload is
as vital as the vibration suppression of the cable. Therefore, in the control design, it
is necessary to consider both vibration suppression and the dynamic positioning. In
the framework of boundary control, we are going to investigate the robust adaptive
boundary control problem for the string-type model with system parametric uncer-
tainty and under unknown time-varying ocean disturbance. The adaptive control
design aims to compensate the effects of both parametric and disturbance uncer-
tainties and achieve the uniform ultimate boundedness. In this chapter, we design
the boundary control based on the distributed-parameter model of the flexible ma-
rine installation system. The stability analysis of the closed-loop system is based on
Lyapunov’s direct method without resorting to the semigroup theory or functional
analysis. Although a flexible marine installation system is considered in this chapter
specifically, the analysis and control design can be extended and applied for posi-
tion control and vibration suppression for a class of mechanical string-type system
exposed to undesirable distributed transverse loads. In this chapter, the dynamics
of the vessel, payload, and vibration of the cable are considered in the dynamic
analysis. The main contributions of this chapter include:
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(i) The dynamic model of a flexible marine installation system subjected to ocean
current disturbance is derived based on the Hamilton principle. The governing
equation of the system is represented as a nonhomogeneous hyperbolic PDE
with unknown disturbance term f (x, t).

(ii) Two implementable boundary controllers at the top and bottom boundaries of
the cable are designed to position the subsea payload to the desired set-point
and suppress the cable’s vibration. Robust adaptive boundary control is de-
signed to compensate for the system parametric uncertainty and the effect of
unknown time-varying distributed disturbance f (x, t).

(iii) With the proposed boundary control, the uniform boundedness of the instal-
lation system under ocean disturbance is proved via Lyapunov synthesis. The
control performance of the system is guaranteed by suitably choosing the de-
sign parameters.

The rest of the chapter is organized as follows. The governing equation (PDE)
and boundary conditions (ODEs) of the flexible marine installation system are in-
troduced by use of the Hamilton principle in Sect. 5.2. The boundary control design
via Lyapunov’s direct method is discussed separately for both exact model case
and system parametric uncertainty case in Sect. 5.3, where it is shown that the uni-
form boundedness of the closed-loop system can be achieved by the proposed con-
trol. Simulations are carried out to illustrate performance of the proposed control in
Sect. 5.4. The conclusion of this chapter is given in Sect. 5.5.

5.2 Problem Formulation

For the marine installation system shown in Fig. 5.1, the frame X–Y is the fixed
inertia frame, and the frame x–y is the local reference frame fixed along the vertical
direction of the surface vessel. The top boundary of the cable is at the vessel, and
the bottom boundary of the cable is at the underwater payload. Forces from thrusters
on the vessel and payload are the control inputs of the system, and the boundary
position and slope of the cable are used as the feedback signals in the control design.
pd is the desired target position, p(t) is the position of the vessel, w(x, t) is the
elastic transverse reflection with respect to frame x–y at the position x for time t ,
and y(x, t) := p(t)+w(x, t) is the position of the cable with respect to frame X–Y
at the position x for time t . Note that w(L, t) = 0 due to the connection between the
vessel and the top boundary of the cable.

In this chapter, we only consider the transverse degree of freedom. We assume
that the original position of the vessel is directly above the subsea payload with no
horizontal offset, and the payload is filled with seawater.

The kinetic energy of the installation system Ek can be represented as

Ek = 1

2
M

[
∂y(L, t)

∂t

]2

+ 1

2
ρ

∫ L

0

[
∂y(x, t)

∂t

]2

dx + 1

2
m

[
∂y(0, t)

∂t

]2

, (5.1)
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where x and t represent the independent spatial and time variables, respectively,
M denotes the mass of the surface vessel, m denotes the mass of bottom payload,

y(L, t) = p(t), ∂y(L,t)
∂t

= ∂p(t)
∂t

, and ∂2y(L,t)

∂t2 = ∂2p(t)

∂t2 are the position, velocity, and
acceleration of the vessel, respectively, ρ > 0 is the uniform mass per unit length of
the cable, and L is the length of the cable.

The potential energy Ep due to the strain energy of the cable can be obtained
from

Ep = 1

2
T

∫ L

0

[
∂w(x, t)

∂x

]2

dx, (5.2)

where T is the tension of the cable. The definition of y(x, t) yields ∂y(x,t)
∂x

= ∂w(x,t)
∂x

.
Then we have

Ep = 1

2
T

∫ L

0

[
∂y(x, t)

∂x

]2

dx. (5.3)

The virtual work done by ocean current disturbance on the vessel, cable, and payload
is given by

δWf =
∫ L

0
f (x, t)δy(x, t) dx + d1(t)δy(L, t) + d2(t)δy(0, t), (5.4)

where f (x, t) is the distributed transverse load on the cable due to the hydrody-
namic effects of the ocean current, wave, and wind, d1(t) denotes the environmental
disturbances on the vessel, and d2(t) denotes the environmental disturbances on the
paylaod. The virtual work done by damping on the vessel, cable, and payload is
represented by

δWd = −
∫ L

0
c
∂y(x, t)

∂t
δy(x, t) dx − c1

∂y(L, t)

∂t
δy(L, t)

− c2
∂y(0, t)

∂t
δy(0, t), (5.5)

where c is the distributed viscous damping coefficient of the cable, c1 denotes the
damping coefficient of the vessel, and c2 denotes the damping coefficient for the
payload. We introduce the control u1 applied to the top boundary of the cable from
the thruster attached in the vessel and the control u2 applied to the bottom boundary
of the cable from the thruster attached in the payload. The virtual work done by the
boundary control is written as

δWm = u1(t)δw(L, t) + u2(t)δw(0, t). (5.6)

Then, we have the total virtual work done on the system as
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δW = δWf + δWd + δWm

=
∫ L

0

[
f (x, t) − c

∂y(x, t)

∂t

]
δy(x, t) dx

+
[
u1(t) + d1(t) − c1

∂y(L, t)

∂t

]
δy(L, t)

+
[
u2(t) + d2(t) − c2

∂y(0, t)

∂t

]
δy(0, t). (5.7)

Applying the Hamilton principle [193], we obtain the governing equation of the
system as

ρÿ(x, t) − Ty′′(x, t) + cẏ(x, t) = f (x, t) (5.8)

for (x, t) ∈ (0,L) × [0,∞) and the boundary conditions of the system as

u1(t) + d1(t) − c1ẏ(L, t) − Mÿ(L, t) − Ty′(L, t) = 0, (5.9)

u2(t) + d2(t) − c2ẏ(0, t) − mÿ(0, t) + Ty′(0, t) = 0, (5.10)

for t ∈ [0,∞).

Remark 5.1 With consideration of the distributed transverse load f (x, t), the gov-
erning equation of the installation system, Eq. (5.8), is represented by a nonhomo-
geneous hyperbolic PDE. This model differs from the string system governed by a
homogeneous PDE in [80, 98, 101–103, 105, 108, 110, 114, 116].

Assumption 5.2 For the distributed load f (x, t) on the cable, the disturbance d1(t)

on the vessel, and the disturbance d2(t) on the payload, we assume that there exist
constants f̄ ∈ R

+, d̄1 ∈ R
+, and d̄2 ∈ R

+, such that |f (x, t)| ≤ f̄ for all (x, t) ∈
[0,L] × [0,∞), |d1(t)| ≤ d̄1 for all t ∈ [0,∞), and |d2(t)| ≤ d̄2 for all t ∈ [0,∞).
This is a reasonable assumption as the time-varying disturbances f (x, t), d1(t), and
d2(t) have finite energy and hence are bounded, i.e., f (x, t) ∈ L∞([0,L]), d1(t) ∈
L∞, and d2(t) ∈ L∞.

Remark 5.3 For control design in Sect. 5.3, only the assertion that there exist up-
per bounds on the disturbance in Assumption 5.2, |f (x, t)| < f̄ , |d1(t)| ≤ d̄1, and
|d2(t)| ≤ d̄2, is necessary. The knowledge of the exact values for f (x, t), d1(t), and
d2(t) is not required. As such, different distributed load models up to various lev-
els of fidelity, such as those found in [195, 196, 227–229], can be applied without
affecting the control design or analysis.

Property 5.4 [237] If the kinetic energy of system (5.8)–(5.10), given by Eq. (5.1),
is bounded for all t ∈ [0,∞), then ẏ(x, t), ẏ′(x, t), and ẏ′′(x, t) are bounded for all
(x, t) ∈ [0,L] × [0,∞).
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Property 5.5 [237] If the potential energy of system (5.8)–(5.10), given by
Eq. (5.3), is bounded for all t ∈ [0,∞), then y′(x, t) and y′′(x, t) are bounded
for all (x, t) ∈ [0,L] × [0,∞).

5.3 Control Design

The control objective is to design boundary control to position the subsea payload
to the desired set-point pd and simultaneously suppress the vibrations of the cable
in the presence of the time-varying ocean disturbance. The control forces u1(t) and
u2(t) are from the thruster in the vessel and the thruster attached in the subsea pay-
load, respectively. In this section, the Lyapunov direct method is used to construct
boundary control u1(t) and u2(t) at the top and bottom boundaries of the cable and
to analyze the stability of the closed-loop system.

In this chapter, we analyze two cases for the flexible marine installation system:
(i) exact model-based control, i.e., T , m, and c2 are all known; and (ii) adaptive
control for the system parametric uncertainty, i.e., T , m, and c2 are unknown. For
the first case, robust boundary control is introduced for the exact model of the instal-
lation system subjected to ocean disturbance. For the second case where the system
parameters cannot be directly measured, the adaptive control is designed to com-
pensate the system parametric uncertainty.

5.3.1 Exact Model-Based Boundary Control of the Installation
System

To stabilize the system given by governing Eq. (5.8) and boundary conditions,
Eqs. (5.9) and (5.10), we propose the following boundary control:

u1(t) = −kqy(L, t) − kvẏ(L, t) − sgn
[
ẏ(L, t)

]
d̄1, (5.11)

u2(t) = −kp
(
y(0, t) − pd

)− ksua(t) − Ty′(0, t) + mẏ′(0, t) + c2ẏ(0, t)

− sgn(ua)d̄2, (5.12)

where sgn(·) denotes the signum function, kq , kv , kp , and ks are the positive control
gains, and the auxiliary signal ua is defined as

ua(t) = ẏ(0, t) − y′(0, t). (5.13)

After differentiating the auxiliary signal, Eq. (5.13), multiplying the resulting equa-
tion by m, and substituting Eq. (5.10), we obtain

mu̇a(t) = Ty′(0, t) + d2(t) − mẏ′(0, t) − c2ẏ(0, t) + u2(t). (5.14)
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Substituting Eq. (5.12) into Eq. (5.14), we have

mu̇a(t) = −ksua(t) − kp
(
y(0, t) − pd

)+ d2(t) − sgn(ua)d̄2. (5.15)

Remark 5.6 The proposed boundary control does not require distributed sensing,
and all the signals in the boundary control can be measured by sensors or obtained
by a backward difference algorithm. y(L, t) and y(0, t) can be sensed by two the
global positioning systems (GPS) located in the vessel and the end-point thruster,
respectively. y′(0, t) can be measured by an inclinometer at the bottom boundary
of the cable. For the exact model-based boundary control (5.12), the tension of the
cable can be measured via a force sensor. In practice, the effect of measurement
noise from sensors is unavoidable, which will affect the controller implementation,
especially when the high-order differentiating terms with respect to time exist. In
our proposed controller (5.11) and (5.12), ẏ(L, t), ẏ(0, t), and ẏ′(0, t) with only
one time differentiation with respect to time can be calculated with a backward
difference algorithm.

Remark 5.7 The control design is based on the distributed-parameter model,
Eqs. (5.8) to (5.10), and the spillover problems associated with traditional truncated
model-based approaches caused by ignoring high-frequency modes in controller
and observer design are avoided.

Consider the Lyapunov function candidate

V = V1 + V2 + Δ, (5.16)

where the energy term V1, auxiliary term V2, and small crossing term Δ are defined
as

V1 = β

2
ρ

∫ L

0
[ẏ]2 dx + β

2
T

∫ L

0

[
y′]2 dx + β

2
M
[
ẏ(L, t)

]2 + βkp

2

[
y(0, t) − pd

]2

+ βkq

2

[
y(L, t)

]2
, (5.17)

V2 = 1

2
mu2

a, (5.18)

Δ = αρ

∫ L

0
(x − L)ẏy′ dx, (5.19)

where α and β are two positive weighting constants.

Lemma 5.8 The Lyapunov function candidate given by (5.16), can be upper and
lower bounded as

0 ≤ λ1(V1 + V2) ≤ V ≤ λ2(V1 + V2), (5.20)
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where λ1 and λ2 are two positive constants defined as

λ1 = 1 − 2αρL

min(βρ,βT )
> 0, (5.21)

λ2 = 1 + 2αρL

min(βρ,βT )
> 1, (5.22)

provided that

α <
min(βρ,βT )

2ρL
. (5.23)

Proof Substituting inequality (2.11) into Eq. (5.19) yields

|Δ| ≤ αρL

∫ L

0

([
y′]2 + [ẏ]2)dx

≤ α1V1, (5.24)

where

α1 = 2αρL

min(βρ,βT )
. (5.25)

Then, we obtain

−α1V1 ≤ Δ ≤ α1V1. (5.26)

If α is a small positive weighting constant satisfying 0 < α <
min(βρ,βT )

2ρL , then we
obtain

α2 = 1 − α1 = 1 − 2αρL

min(βρ,βT )
> 0, (5.27)

α3 = 1 + α1 = 1 + 2αρL

min(βρ,βT )
> 1. (5.28)

Then, we further have

0 ≤ α2V1 ≤ V1 + Δ ≤ α3V1. (5.29)

Given the Lyapunov function candidate in Eq. (5.16), we obtain

0 ≤ λ1(V1 + V2) ≤ V ≤ λ2(V1 + V2), (5.30)

where λ1 = min(α2,1) = α2 and λ2 = max(α3,1) = α3 are positive constants. �
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Lemma 5.9 The time derivative of the Lyapunov function in (5.16) can be upper
bounded with

V̇ ≤ −λV + ε, (5.31)

where λ and ε are two positive constants.

Proof Differentiating Eq. (5.16) with respect to time leads to

V̇ = V̇1 + V̇2 + Δ̇. (5.32)

The first term of Eq. (5.32)

V̇1 = A1 + A2 + βMÿ(L, t)ẏ(L, t) + βkp
(
y(0, t) − pd

)
ẏ(0, t), (5.33)

where

A1 = βρ

∫ L

0
ẏÿ dx, (5.34)

A2 = βT

∫ L

0
y′ẏ′ dx. (5.35)

Substituting the governing equation (5.8) into A1, we obtain

A1 = β

∫ L

0
ẏ
(
Ty′′ + f − cẏ

)
dx. (5.36)

Using the boundary conditions and integrating Eq. (5.35) by parts, we obtain

A2 = βT

∫ L

0
y′d(ẏ)

= βTy′(L, t)ẏ(L, t) − βTy′(0, t)ẏ(0, t) − βT

∫ L

0
ẏy′′ dx. (5.37)

Substituting Eqs. (5.36) and (5.37) into Eq. (5.33), we have

V̇1 = βTy′(L, t)ẏ(L, t) − βTy′(0, t)ẏ(0, t) − βc

∫ L

0
[ẏ]2 dx + β

∫ L

0
f ẏ dx

+ βMÿ(L, t)ẏ(L, t) + βkp
[
y(0, t) − pd

]
ẏ(0, t)

+ βkqy(L, t)ẏ(L, t). (5.38)

Substituting Eqs. (5.9) and (5.13) into Eq. (5.38), we obtain
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V̇1 = −βT

2

[[
ẏ(0, t)

]2 + [y′(0, t)
]2]+ βT

2
u2
a + β

[
u1 + d1 − c1ẏ(L, t)

]
ẏ(L, t)

− βc

∫ L

0
[ẏ]2 dx + β

∫ L

0
f ẏ dx + βkp

(
y(0, t) − pd

)
ẏ(0, t)

+ βkqy(L, t)ẏ(L, t). (5.39)

Substituting Eq. (5.11) and using inequality (2.12), we obtain

V̇1 ≤ −βT

2

[[
ẏ(0, t)

]2 + [y′(0, t)
]2]+ βT

2
u2
a − β(kv + c1)

[
ẏ(L, t)

]2

− β(c − δ2)

∫ L

0
[ẏ]2 dx + β

δ2

∫ L

0
f 2 dx + βkp

2δ1

[
y(0, t) − pd

]2

+ βkpδ1

2

[
ẏ(0, t)

]2
, (5.40)

where δ1 and δ2 are positive constants.
The second term of Eq. (5.32) can be rewritten as

V̇2 = muau̇a,

≤ −ksu
2
a + kpu

2
a − kp

[
y(0, t) − pd

]2 + 8kpL
∫ L

0

[
y′]2 dx + 8kp

[
y(L, t)

]2

+ 4kpp
2
d, (5.41)

where inequalities (2.11) and (2.15) are employed. We obtain the third term of
Eq. (5.32) as

Δ̇ = αρ

∫ L

0

(
(x − L)ÿy′ + (x − L)ẏẏ′)dx

= α

∫ L

0
(x − L)y′[Ty′′ + f − cẏ

]
dx + αρ

∫ L

0
(x − L)ẏẏ′ dx. (5.42)

After integrating Eq. (5.42) by parts and using the boundary conditions, we ob-
tain

Δ̇ ≤ αT L

2

[
y′(0, t)

]2 − αT

2

∫ L

0

[
y′]2 dx + αL

δ3

∫ L

0
f 2 dx + αLδ3

∫ L

0

[
y′]2 dx

+ αcL

δ4

∫ L

0
[ẏ]2 dx + αcLδ4

∫ L

0

[
y′]2 dx + αρL

2

[
ẏ(0, t)

]2

− αρ

2

∫ L

0
[ẏ]2 dx, (5.43)
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where δ3 and δ4 are positive constants. Substituting Eqs. (5.40), (5.41), and (5.43)
into Eq. (5.16), we obtain

V̇ ≤ −
(
βc + αρ

2
− αcL

δ4

)∫ L

0
[ẏ]2 dx − βδ2 − β(kv + c1)

[
ẏ(L, t)

]2

−
(
αT

2
− 16kpL − αLδ3 − αcLδ4

)∫ L

0

[
y′]2 dx

−
(
ks − kp − βT

2

)
u2
a −
(
βT

2
− αρL

2
− βkpδ1

2

)[
ẏ(0, t)

]2

−
(
βT

2
− αT L

2

)[
y′(0, t)

]2 − kp

(
1 − β

2δ1

)[
y(0, t) − pd

]2

+
(

β

δ2
+ αL

δ3

)∫ L

0
f̄ 2 dx + 4kpp

2
d + 8kp

[
y(L, t)

]2

≤ −λ3(V1 + V2) + ε, (5.44)

where the constants ks , kv , kp , kq , α, β , δ1, δ2, δ3, and δ4 are chosen to satisfy the
following conditions:

α <
min(βρ,βT )

2ρL
, (5.45)

βT

2
− αρL

2
− βkpδ1

2
≥ 0, (5.46)

βT

2
− αT L

2
≥ 0, (5.47)

σ1 = βc + αρ

2
− βδ2 − αcL

δ4
> 0, (5.48)

σ2 = αT

2
− 16kpL − αLδ3 − αcLδ4 > 0, (5.49)

σ3 = β(kv + c1) > 0, (5.50)

σ4 = 1 − β

2δ1
> 0, (5.51)

σ5 = ks − kp − βT

2
> 0, (5.52)

σ6 = 8kp > 0, (5.53)

λ3 = min

(
2σ1

βρ
,

2σ2

βT
,

2σ3

βM
,

2σ4

β
,

2σ5

m
,

2σ6

βkq

)
> 0, (5.54)

ε =
(

β

δ2
+ αL

δ3

)∫ L

0
f̄ 2 dx + 4kpp

2
d ∈ L∞. (5.55)
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From inequalities (5.30) and (5.44) we have

V̇ ≤ −λV + ε, (5.56)

where λ = λ3/λ2 and ε are positive constants. �

With the above lemmas, the exact model-based control design for the flexible ma-
rine installation system subjected to ocean current disturbance can be summarized
in the following theorem.

Theorem 5.10 For the system dynamics described by (5.8) and boundary con-
ditions (5.9)–(5.10), under Assumption 5.2 and the boundary control (5.11) and
(5.12), given that the initial conditions are bounded, the transverse reflection w(x, t)

of the closed-loop system is uniformly bounded, and the system boundary error sig-
nal e(t) = y(0, t) − pd remains within the compact set Ω defined by

Ω := {e ∈ R | |e| ≤ D
}
, (5.57)

where D =
√

2
βkpλ1

(V (0) + ε
λ
).

Proof Multiplying Eq. (5.31) by eλt yields

∂

∂t

(
V eλt
) ≤ εeλt . (5.58)

Integrating the above inequality, we obtain

V ≤
(
V (0) − ε

λ

)
e−λt + ε

λ
≤ V (0)e−λt + ε

λ
∈ L∞, (5.59)

which implies that V is bounded. Using inequality (2.15) and Eq. (5.17), we have

β

2L
Tw2(x, t) ≤ β

2
T

∫ L

0

[
w′(x, t)

]2
dx = β

2
T

∫ L

0

[
y′(x, t)

]2
dx

≤ V1 ≤ V1 + V2 ≤ 1

λ1
V. (5.60)

Appropriately rearranging the terms of the above inequality (5.60), we obtain that
w(x, t) is uniformly bounded as follows:

∣∣w(x, t)
∣∣≤
√

2L

βT λ1

(
V (0)e−λt + ε

λ

)
∀(x, t) ∈ [0,L] × [0,∞). (5.61)

Combining Eq. (5.17) and inequality (5.60) yields

βkp

2

[
y(0, t) − pd

]2 ≤ V1 ≤ V1 + V2 ≤ 1

λ1
V ∈ L∞, (5.62)
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∣∣y(0, t) − pd

∣∣≤
√

2

βkpλ1

(
V (0)e−λt + ε

λ

)
∀t ∈ [0,∞). � (5.63)

Remark 5.11 In the above analysis, the deflection of the cable w(x, t) can be made
smaller, provided that the design control parameters are appropriately selected. By
choosing the proper values of α and β , it is shown that the increase in the control
gains kv and ks will result in larger σ3 and σ5, which will lead to a greater λ3. Then
the value of λ will increase, which will reduce the size of Ω and bring a better
vibration suppression performance.

Remark 5.12 Even though y(0, t) may be far from the desired position pd , it is
guaranteed that the steady bottom boundary state error y(0,∞) − pd can be made
smaller, provided that the design parameters are appropriately selected. It is easily
seen that the increase in the control gains kv and ks will result in a better tracking
performance. However, increasing kv and ks will lead to a high-gain control scheme.
Therefore, in practical applications, the design parameters should be adjusted care-
fully for achieving suitable transient performance and control action.

Remark 5.13 From Eq. (5.60) we can state that V1 and V2 are bounded for all
t ∈ [0,∞). The boundedness of V1 and V2 implies that ẏ(x, t), y′(x, t) are bounded
for all (x, t) ∈ [0,L] × [0,∞) and ua is bounded for all t ∈ [0,∞). Then, we can
obtain that the potential energy, Eq. (5.3), is bounded. Using Property 5.5, we can
further obtain that y′′(x, t) is bounded for all t ∈ [0,∞). From the boundedness
of ẏ(x, t) we can state that ẏ(0, t) and ẏ(L, t) are bounded for all t ∈ [0,∞).
Therefore, we can conclude that the kinetic energy of the system in Eq. (5.1) is
also bounded for all t ∈ [0,∞). Using Property 5.4, we can obtain that ẏ(x, t) and
ẏ′(x, t) are also bounded for all (x, t) ∈ [0,L] × [0,∞). Applying Assumption 5.2,
Eq. (5.8), and the above statements, we can state that ÿ(x, t) is also bounded for
all (x, t) ∈ [0,L] × [0,∞). From the above information we see that the proposed
controls (5.11) and (5.12) ensure that all internal system signals including w(x, t),
y′(x, t), ẏ(x, t), ẏ′(x, t), and ÿ(x, t) are uniformly bounded. Since y′(x, t), ẏ(x, t),
and ẏ′(x, t) are all bounded for all (x, t) ∈ [0,L] × [0,∞), we can conclude that
the boundary controls (5.11) and (5.12) are also bounded for all t ∈ [0,∞).

5.3.2 Robust Adaptive Boundary Control for System Parametric
Uncertainty

The previous exact model-based boundary control Eq. (5.11) requires the exact
knowledge of the marine installation system. Adaptive boundary control is designed
to improve the performance of the system via parameter estimation when the system
parameters are unknown. The exact model-based boundary control provides a step-
ping stone toward the adaptive control, which is designed to deal with the system
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parametric uncertainty. In this section, the previous boundary control is redesigned
by using adaptive control when T , m, and c2 are all unknown. We rewrite Eq. (5.14)
in the following form:

mu̇a = PΦ + d2 + u2, (5.64)

where the vectors P and Φ are defined as

P = [y′(0, t) −ẏ′(0, t) −ẏ(0, t)
]
, (5.65)

Φ = [T m c2]T . (5.66)

We propose the following adaptive boundary control for the system:

u1 = −kqy(L, t) − kvẏ(L, t) − sgn
[
ẏ(L, t)

]
d̄1, (5.67)

u2 = −PΦ̂ − ksua − sgn(ua)d̄2 − kp
(
y(0, t) − pd

)
, (5.68)

where the parameter estimate vector Φ̂ is defined as

Φ̂ = [T̂ m̂ ĉ2]T . (5.69)

The adaptation law is designed as

˙̂
Φ = Γ PT ua − rΓ Φ̂, (5.70)

where Γ ∈ R
3×3 is a diagonal positive-definite matrix, and r is a positive constant.

We assume that all the eigenvalues of Γ are real and positive, and denote by λmax
and λmin the maximum and minimum eigenvalues of Γ , respectively. The parameter
estimate error vector Φ̃ ∈ R

3 is defined as

Φ̃ = Φ − Φ̂. (5.71)

Substituting Eq. (5.68) into Eq. (5.64) and substituting Eq. (5.71) into Eq. (5.70),
we have

mu̇a = PΦ̃ − ksua + d2 − sgn(ua)d̄2 − kp
(
y(0, t) − pd

)
, (5.72)

˙̃
Φ = −Γ PT ua + rΓ Φ̂. (5.73)

Remark 5.14 For the proposed adaptive control (5.68), the parameter estimation
term, signum term, and auxiliary signal term are introduced to compensate the sys-
tem parametric uncertainty and the effect of unknown time-varying distributed dis-
turbance. The controls (5.67) and (5.68) are independent of system parameters, and
the knowledge of the exact values of disturbance f (x, t), d1(t), and d2(t) is not re-
quired, thus possessing stability robustness to variations in system parameters and
unknown disturbance.
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Consider the Lyapunov function candidate

Va = V + 1

2
Φ̃T Γ −1Φ̃, (5.74)

where V is defined in Eq. (5.16).

Lemma 5.15 The Lyapunov function candidate given by (5.74) can be upper and
lower bounded as

0 ≤ λ1a
(
V1 + V2 + ‖Φ̃‖2)≤ Va ≤ λ2a

(
V1 + V2 + ‖Φ̃‖2), (5.75)

where λ1a and λ2a are two positive constants defined as

λ1a = min

(
1 − 2αρL

min(βρ,βT )
,

1

2λmax

)
, (5.76)

λ2a = max

(
1 + 2αρL

min(βρ,βT )
,

1

2λmin

)
. (5.77)

Proof From inequality (5.20) we have

λ1(V1 + V2) ≤ V ≤ λ2(V1 + V2), (5.78)

where λ1 and λ2 are positive constants defined in Eqs. (5.21) and (5.22). Using the
properties of matrix Γ and Lemma 2.6, we have

1

2λmax
‖Φ̃‖2 ≤ 1

2
Φ̃T Γ −1Φ̃ ≤ 1

2λmin
‖Φ̃‖2. (5.79)

Combining inequalities (5.78) and (5.79), we have

0 ≤ λ1a
(
V1 + V2 + ‖Φ̃‖2)≤ Va ≤ λ2a

(
V1 + V2 + ‖Φ̃‖2), (5.80)

where λ1a = min(α2,
1

2λmax
) and λ2a = max(α3,

1
2λmin

) are positive constants. �

Lemma 5.16 The time derivative of the Lyapunov function in (5.74) can be upper
bounded with

V̇a ≤ −λaVa + ψ, (5.81)

where λa and ψ are positive constants.

Proof We obtain the time derivative of the Lyapunov function candidate in
Eq. (5.74) as

V̇a = V̇ + Φ̃T Γ −1 ˙̃
Φ. (5.82)
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Substituting Eq. (5.72) into the second term of Eq. (5.32), we have

V̇2 = muau̇a

≤ −ksu
2
a + kpu

2
a − kp

[
y(0, t) − pd

]2

+ 16kpL
∫ L

0

[
y′]2 dx + 4kpp

2
d + PΦ̃ua. (5.83)

Applying the results of Lemma 5.9 and substituting Eqs. (5.40), (5.83), and (5.43)
into Eq. (5.16), we obtain

V̇ ≤ −λ3(V1 + V2) + PΦ̃ua + ε, (5.84)

where λ3 is defined in Eq. (5.54), and ε is defined in Eq. (5.52). Substituting in-
equalities (5.84) into Eq. (5.82) yields

V̇a ≤ −λ3(V1 + V2) + Φ̃T
(
PT ua + Γ −1 ˙̃

Φ
)+ ε. (5.85)

Substituting Eq. (5.73) into Eq. (5.85), we have

V̇a ≤ −λ3(V1 + V2) + rΦ̃T Φ̂ + ε

≤ −λ3(V1 + V2) − r

2
‖Φ̃‖2 + r

2
‖Φ‖2 + ε

≤ −λ3a
(
V1 + V2 + ‖Φ̃‖2)+ r

2
‖Φ‖2 + ε, (5.86)

where λ3a = min(λ3,
r
2 ) is a positive constant. From inequalities (5.80) and (5.86)

we have

V̇a ≤ −λaVa + ψ, (5.87)

where λa = λ3a/λ2a and ψ = r
2‖Φ‖2 + ε > 0.

With the above lemmas, the adaptive control design for the marine installation
system subjected to ocean current disturbance can be summarized in the following
theorem. �

Theorem 5.17 For the system dynamics described by (5.8) and boundary condi-
tions (5.9)–(5.10), under Assumption 5.2, with the boundary controls (5.67) and
(5.68) and the adaptation law (5.70), given that the initial conditions are bounded,
the closed-loop system is uniformly bounded, and the system boundary error signal
e(t) = y(0, t) − pd remains within the compact set Ωa defined by

Ωa := {e ∈ R | |e| ≤ Da

}
, (5.88)

where Da =
√

2
βkpλ1a

(Va(0) + ψ
λa

).
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Proof Multiplying Eq. (5.81) by eλat yields

∂

∂t

(
Vae

λat
)≤ δeλat . (5.89)

Integrating the above inequality, we obtain

Va ≤
(
Va(0) − ψ

λa

)
e−λat + ψ

λa

≤ Va(0)e
−λat + ψ

λa

∈ L∞, (5.90)

which implies that Va is bounded. Using inequality (2.15) and Eq. (5.17), we have

β

2L
Tw2(x, t) ≤ β

2
T

∫ L

0

[
w′(x, t)

]2
dx = β

2
T

∫ L

0

[
y′(x, t)

]2
dx ≤ V1

≤ V1 + V2 ≤ 1

λ1a
Va. (5.91)

Appropriately rearranging the terms of the above inequality, we obtain that w(x, t)

is uniformly bounded as follows:

∣∣w(x, t)
∣∣≤
√

2L

βT λ1a

(
Va(0)e−λat + ψ

λa

)
∀(x, t) ∈ [0,L] × [0,∞). (5.92)

Combining Eq. (5.17) and inequality (5.56) yields

βkp

2

[
y(0, t) − pd

]2 ≤ V1 ≤ V1 + V2 ≤ 1

λ1a
Va ∈ L∞, (5.93)

∣∣y(0, t) − pd

∣∣≤
√

2

βkpλ1a

(
Va(0)e−λat + ψ

λa

)
, ∀t ∈ [0,∞). � (5.94)

Remark 5.18 From the similar analysis of Remarks 5.11 and 5.12 we can conclude
that both steady bottom boundary state error y(0,∞)−pd and the deflection of the
cable w(x, t) can be made smaller by appropriately choosing the control gains kp ,
kq , kv , and ks .

Remark 5.19 From Eq. (5.90) we can obtain that the parameter estimate error Φ̃

is bounded for all t ∈ [0,∞). Using the derivation similar to that employed in
Remark 5.13, we can state that the proposed controls, Eqs. (5.67) and (5.68), en-
sure that all internal system signals including y(x, t), y′(x, t), ẏ(x, t), ẏ′(x, t), and
ÿ(x, t) are uniformly bounded. Since Φ̂ , y′(x, t), and ẏ(x, t) are all bounded for all
(x, t) ∈ [0,L]×[0,∞), we can conclude that the robust adaptive boundary controls,
Eqs. (5.67) and (5.68), are also bounded for all t ∈ [0,∞).
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Table 5.1 Parameters of the flexible marine installation system

Parameter Description Value

L Length of the cable 1000.00 m

D Diameter of the cable 0.05 m

M Mass of the vessel 9.60 × 107 kg

m Mass of the payload 4 × 105 kg

c1 Damping coefficient of the vessel 9.00 × 107 N s m−1

c2 Damping coefficient of the payload 2.00 × 105 N s m−1

T Tension 4.00 × 106 N

ρ Mass per unit length of the cable 8.02 kg m−1

ρs Sea water density 1024.00 kg m−3

c Distributed damping coefficient of the cable 1.00 N s m−1

pd Desired set-point 50.00 m

5.4 Numerical Simulations

Simulations for a marine installation system under ocean disturbance are carried
out to demonstrate the effectiveness of the proposed boundary controls Eqs. (5.11)
and (5.12). Numerical methods are applied to obtain the approximate solution of
system (5.8)–(5.10) when there is no obtainable analytical solution. In this chap-
ter, we select the finite difference method to simulate the system performance with
boundary control.

The cable, initially at rest, is excited by a distributed transverse disturbance due to
ocean current. The corresponding initial conditions of the marine installation system
are given as

y(x,0) = 0, (5.95)

∂y(x,0)

∂t
= 0. (5.96)

The system parameters are given in Table 5.1.
In the simulation, the ocean surface current velocity U(t) is given by Eq. (4.94).

We assume that the full current load is applied from x = 1000 m to x = 0 m and
thereafter linearly declines to zero at the ocean floor, x = 0, to obtain a depth-
dependent ocean current profile U(x, t) as in Chap. 3. The distributed load f (x, t)

is generated by Eq. (2.5) with CD = 1, θ = 0, St = 0.2, and fv = 2.625. The dis-
tributed load at the top boundary of the cable is shown in Fig. 5.2. The disturbance
d1(t) on the vessel is generated by the equation

d1(t) = [3 + 0.8 sin(0.7t) + 0.2 sin(0.5t) + 0.2 sin(0.9t)
]× 106. (5.97)

The disturbance d2(t) on the payload is given by the equation

d2(t) = [3 + 0.8 sin(0.7t) + 0.2 sin(0.5t) + 0.2 sin(0.9t)
]× 104. (5.98)
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Fig. 5.2 The distributed load at the top boundary of the cable f (L, t)

The position of the cable for free vibration, i.e., u1(t) = u2(t) = 0, exposed to
ocean disturbance is shown in Fig. 5.3. The boundary position of the cable is given
in Fig. 5.4. It is clear that the system is unstable and the vibration of the cable is
quite large.

The position of the cable with the active PD controls u1(t) = −K1(y(L, t) −
yd) − K2ẏ(L, t) and u2(t) = −K3(y(L, t) − yd) − K4ẏ(L, t), by choosing K1 =
1×106, K2 = 1×106, K3 = 1×104, and K4 = 1×104, is presented in Fig. 5.5. The
corresponding boundary position of the cable and boundary control input are shown
in Figs. 5.6 and 5.7. The position of the cable with exact model-based controls,
Eqs. (5.11) and (5.12), by choosing kv = 2 × 107, kp = 4 × 102, and ks = 2 ×
1010, under ocean disturbance is shown in Fig. 5.8. The corresponding boundary
position of the cable and boundary control input are shown in Figs. 5.9 and 5.10.
When the system parameters T , m, and c2 are unknown, the position of the cable
with adaptive controls, Eqs. (5.67) and (5.68), by choosing kv = 2 × 107, kp =
4 × 102, ks = 2 × 1010, r = 0.001, and Γ = diag{5 × 106,1 × 104,5 × 106}, under
ocean disturbance is shown in Fig. 5.11. The parameter estimators, T̂ , m̂, and ĉ2

for the adaptive boundary control are presented in Fig. 5.12. The corresponding
boundary position of the cable and boundary control input are shown in Figs. 5.13
and 5.14.

Figures 5.5, 5.8, and 5.11 illustrate that the PD control, model-based boundary
control, and adaptive boundary control are all able to bring the subsea payload to the
desired position pd = 50 m and stabilize the cable at the small neighborhood of its
equilibrium position. In comparison with the control, the installation system with
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Fig. 5.3 Position of the cable without control

Fig. 5.4 Boundary position of the cable without control
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Fig. 5.5 Position of the cable with PD control

Fig. 5.6 Boundary position of the cable with PD control
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Fig. 5.7 PD control inputs u1(t) and u2(t)

Fig. 5.8 Position of the cable with model-based boundary control
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Fig. 5.9 Boundary position of the cable with model-based control

Fig. 5.10 Model-based control inputs u1(t) and u2(t)
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Fig. 5.11 Position of the cable with robust adaptive boundary control

Fig. 5.12 Parameter estimation
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Fig. 5.13 Boundary position of the cable with robust adaptive control

Fig. 5.14 Adaptive control inputs u1(t) and u2(t)
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the model-based boundary control and the robust adaptive control in this chapter
converges quite quickly and has a better performance.

5.5 Conclusion

In this chapter, both position control and vibration suppression have been investi-
gated for a flexible marine installation system subjected to the ocean disturbance.
Two cases for the flexible marine installation system have been studied: (i) exact
model-based control and (ii) adaptive control for the system parametric uncertainty.
For the first case, a boundary controller has been introduced for the exact model of
the installation system. For the second case where the system parameters cannot be
directly measured, to fully compensate the effect of unknown system parameters, a
signum term and an auxiliary signal term have been introduced to develop a robust
adaptive boundary control law. Both types of boundary control have been designed
based on the original infinite-dimensional model (PDE), and thus the spillover in-
stability phenomenon has been eliminated. All the signals of the closed-loop system
have been proved to be uniformly bounded by using the Lyapunov direct method.
The exact model-based boundary controls (5.11) and (5.12) require the measure-
ment of the tension, top position, and slope of the cable, while the robust adaptive
boundary controls (5.67) and (5.68) only require measurements of the top position
and slope of the cable. The proposed schemes have offered implementable design
procedures for the control of marine installation systems since all the signals in the
control can be measured by sensors or calculated by a backward difference algo-
rithm. The simulation results have illustrated that the proposed control is able to
position the payload to the desired set-point and suppress the vibration of the cable
with a good performance.



Chapter 6
Adaptive Control of Thruster-Assisted
Single-Point Mooring Systems

6.1 Introduction

In this chapter, we investigate the control problem of single-point mooring sys-
tems, which are often used in offshore loading or offloading gas or fluid products.
Also, in this chapter, we consider unknown backlash-like hysteresis, which may
exist in thruster dynamics. As we know, hysteresis often occurs in actuators, such
as wear and tear gears, while the existence of hysteresis limits both static and dy-
namic performances of feedback control systems [238]. A fundamental method to
deal with hysteresis is the inverse compensation, where the hysteresis effect is can-
celed out by constructing a proper inverse of the hysteresis operator, see, e.g., [239]
and [240]. Alternatively, there are also some approaches for controller synthesis
by using the properties of the hysteresis model, and the reader may refer to, for
instance, [241–246], etc. In [241], backlash-like hysteresis is first presented as a lin-
ear term plus a bounded nonlinear term, and then adaptive control is designed for
a class of single-input-single-output (SISO) nonlinear dynamic systems preceded
by unknown backlash-like hysteresis nonlinearities. This class of systems is recon-
sidered in [242], where bounded external disturbances are also taken into account,
and robust adaptive backstepping control is developed. Furthermore, using a similar
method to deal with hysteresis, the authors in [243] design decentralized adaptive
control for unknown interconnected systems with both backlash-like hysteresis and
interactions between subsystems. In [244], adaptive variable structure control is de-
signed for a class of affine nonlinear systems by using the stop or play hysteresis
operators to define the Prandtl–Ishlinskii hysteresis. Employing this definition, in
[245] and [246], adaptive neural network control is proposed for uncertain pure-
feedback nonlinear systems with hysteresis input and nonlinear systems with both
uncertain hysteresis inputs and time-varying state delays, respectively. All above-
mentioned control methods are state feedback control, so output feedback control
should be investigated for nonlinear systems with hysteresis input when some sys-
tem states are hard to be measured.

In this chapter, both state feedback and output feedback control are designed
for thruster-assisted single-point mooring systems with unknown backlash-like hys-
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Fig. 6.1 Geometry of
single-point mooring system

teresis in thruster dynamics. This chapter is organized as follows. In Sect. 6.2, the
dynamic model of a single-point mooring system is given, and preliminaries are
presented. In Sect. 6.3, state feedback control is proposed, and then output feedback
control is presented by constructing a HONN-based observer to estimate the unmea-
surable state vector of the single-point mooring system. The stability of closed-loop
systems is analyzed. In Sect. 6.4, simulations of a single-point mooring system are
demonstrated to illustrate the effectiveness of the proposed control methods. Finally,
in Sect. 6.5, conclusions are obtained.

6.2 System Dynamics and Preliminaries

6.2.1 System Dynamics

The motions and state variables of the single-point mooring system are defined
and measured with respect to two principal reference frames: earth-fixed frame and
body-fixed frame. As shown in Fig. 6.1, the earth-fixed frame is denoted as (xe, ye)

with its origin located at the connection of the mooring line and the mooring ter-
minal. The (xe, ye) plane lies on the water surface, and the xe axis points along the
desired heading of the vessel. The body-fixed frame, denoted as (xb, yb), is fixed to
the vessel body, while the origin coincides with the center of gravity of the moored
vessel. The xb axis is directed from aft to fore along the longitudinal axis of the
vessel, and the yb axis is directed to starboard.

6.2.1.1 Vessel Dynamics

The multiple-input-multiple-output (MIMO) dynamics of a three degree-of-freedom
(DOF) moored surface vessel can be expressed as

{
η̇ = J (η)v,

Mv̇ + C(v)v + D(v)v + g(η) = τmoor(η) + Φ(τc) + τenv(η),
(6.1)
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where the output η = [ηx, ηy, ηψ ]T ∈ R
3 consists of the position (ηx, ηy) and

heading (ηψ) of the vessel in the earth-fixed inertial frame, respectively; v =
[vx, vy, vψ ]T ∈ R

3 shows the vessel-frame surge, sway, and yaw velocities, respec-
tively; τc = [τu, τv, τr ]T ∈ R

3 represents the generalized force vector in surge, sway,
and jaw generated by the propulsion system; Φ(τc) = [φ1(τc1),φ2(τc2),φ3(τc3)]T ∈
R

3 is a vector-valued backlash-like hysteresis input nonlinearity; M is the inertia
matrix with M = MT > 0, and C(v) and D(v) are the matrix of Coriolis and cen-
tripetal terms and the damping matrix, respectively, all of which are unknown; g(η)
is an unknown vector of restoring forces due to gravitational forces and moments;
τmoor(η) denotes the mooring force vector in surge, sway, and jaw generated by
the mooring line tension, which will be defined later; τenv(η) is an unknown distur-
bance from environment, which is mainly produced by wind and wave; and J (η) is
the three DOF rotation matrix,

J (η) =
⎡
⎣cosηψ − sinηψ 0

sinηψ cosηψ 0
0 0 1

⎤
⎦ . (6.2)

For the backlash-like hysteresis input nonlinearity, Φ(τc) = [φ1(τc1),φ2(τc2),

φ3(τc3)]T , its ith element is defined as follows:

dφi(τci)

dt
= hri

∣∣∣∣dτcidt

∣∣∣∣
(
haiτci − φi(τci)

)+ hBi

dτci

dt
, i = 1,2,3, (6.3)

where τci denotes the input to backlash-like hysteresis, hri, hai , and hBi are con-
stants, and hai > 0 is the slope of the lines satisfying hai > hBi . Based on the anal-
ysis in [241], Eq. (6.3) can be solved explicitly:

φi

(
τci(t)

) = haiτci(t) + di(τci), i = 1,2,3, (6.4)

di(τci) = [φi(τci)(0) − haiτci(0)
]
e−hri (τci−τci (0)) sgn(τ̇ci )

+ e−hriτci sgn(τ̇ci )
∫ τci

τci (0)
[hBi − hai]e−hriςj sgn(τ̇ci ) dςj . (6.5)

The solution indicates that dynamic (6.3) can be used to model a class of backlash-
like hysteresis. Figure 6.2 shows that model (6.3) generates backlash-like hysteresis
curves, where the parameters hri = 1, hai = 2.866, and hBi = 0.289, the input sig-
nal τci(t) = 4.8 sin(3.6t), and the initial condition τci(0) = 0. As demonstrated in
[241], di(τci) is bounded, i.e., |di(τci)| ≤ d∗

i . In this chapter, we assume that d∗
i is

unknown.
Using the above notation, the vector-valued backlash-like hysteresis input non-

linearity, Φ(τc), can be written in the following form:

Φ(τc) = Haτc + D(τc), (6.6)

where Ha = diag{ha1, ha2, ha3} > 0, and D(τc) = [d1(τc1), d2(τc2), d3(τc3)]T with

‖D(τc)‖ ≤ D∗, D∗ =
√
d∗2

1 + d∗2
2 + d∗2

3 being an unknown positive constant.
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Fig. 6.2 Hysteresis curves

6.2.1.2 Mathematical Model of Mooring Force

For the purpose of slow motion dynamic analysis of mooring system, mooring line
is modeled quasi-statically [247, 248]. The geometry of the single-point mooring
system is shown in Fig. 6.1. From Fig. 6.1, the mooring force vector in surge, sway,
and jaw generated by the mooring line tension, τmoor, can be expressed as

τmoor(η) = [T (η) cos
(
ω(η)
)
,−T (η) sin

(
ω(η)
)
,−xpT (η) sin

(
ω(η)
)]T

, (6.7)

where T (η) denotes the actual tension of the mooring line, xp is the distance from
the center of gravity of the moored vessel to the connection of the mooring line and
the moored vessel, and ω(η) is the angle between the xb axis and the mooring line,
which can be calculated from

ω(η) = arcsin

(
ηy + xp sinηψ

l(η)

)
+ ηψ. (6.8)

The deformed length of the mooring line l(η) is a function of η, which can be
calculated from

l(η) =
√
(ηx − xp cosηψ)2 + (ηy + xp sinηψ)2. (6.9)

In this chapter, the mooring line is considered to be a synthetic rope. Following
the method of [248] and [249], the actual tension T (η) in the mooring line can be
described by

T (η) = pm

(
l(η) − lw

lw

)qm

Sb, (6.10)

where Sb is the average breaking strength, pm and qm are empirically determined
constants, and lw is the working length of the unstrained rope.
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6.2.1.3 Mathematical Models of Wind and Waves

In this chapter, wind and waves are considered as the main environmental distur-
bance. This means that the environmental disturbance can be expressed as

τenv(η) = τwind + τwave(η), (6.11)

where τwind is the force vector in surge, sway, and jaw generated by wind, and
τwave(η) denotes the force vector produced by waves.

Mathematical models of wind forces and moment are introduced into the single
mooring systems to improve the performance and robustness of the system in ex-
treme conditions. The force vector in surge, sway, and jaw generated by wind, τwind,
can be formulated as [234]

τwind =
⎡
⎣Fxwind
Fywind
Nwind

⎤
⎦=
⎡
⎢⎣

1
2Cxd(γr )ρaV

2
r AT

1
2Cyd(γr)ρaV

2
r AL

1
2CNd(γr)ρaV

2
r ALLv

⎤
⎥⎦ , (6.12)

where Fxwind, Fywind, and Nwind denote the wind forces and moment in the horizon-
tal plane, respectively; Vr and γr are the relative wind speed and angle with respect
to the vessel bow, respectively; Cxd(γr) and Cyd(γr) are the empirical force coeffi-
cients; CNd(γr) is a moment coefficient; ρa is the density of air; AT and AL are the
transverse and lateral projected areas; and Lv is the overall length of the vessel.

The force vector in surge, sway, and jaw produced by waves, τwave(η), can be
presented by [250]

τwave(η) =
⎡
⎣Fxwave(η)

Fywave(η)

Nwave(η)

⎤
⎦=
⎡
⎣ρwgLvCxv cos3(θ0 − ηψ)

ρwgLvCyv sin3(θ0 − ηψ)

ρwgL2
vCNv sin 2(θ0 − ηψ)

⎤
⎦ , (6.13)

where Fxwave(η), Fywave(η), and Nwave(η) denote the wave forces and moment in
the horizontal plane, respectively; ρw is the density of water; θ0 is the absolute
angle of attack; g is the gravitational constant; and Cxv , Cyv , and CNv are the wave
excitation coefficients in surge, sway, and yaw, respectively.

6.2.2 Control Objective and Assumptions

As mentioned in [251], the position mooring system can be controlled in both set-
point control mode and tracking control mode, where the setpoint control objective
is to keep the vessel at the specified setpoint position or heading, and the tracking
control make the vessel track a reference trajectory that is computed from the old
to the new position or heading setpoint. Therefore, given a desired position or a de-
sired trajectory, ηd , the control objective is to design a stable control law to ensure
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that the tracking error converges to a very small neighborhood of the origin in finite
time, while all signals of the closed-loop system are bounded.

Before the control design, the following assumptions are made for the system,
while a useful lemma is presented.

Assumption 6.1 The desired trajectory vector ηd is continuous, differentiable, and
twice differentiable, while ηd , η̇d , and η̈d are all bounded.

Assumption 6.2 The inertia matrix M and the slopes of the hysteresis Ha are un-
known, but there exist positive constants m∗, h̄∗

a , and h∗
a such that ‖M‖ ≤ m∗ and

h∗
a ≤ ‖Ha‖ ≤ h̄∗

a .

6.2.3 Nonlinear Function Approximation Using HONN

In control engineering, NNs are usually used as a tool for modeling nonlinear func-
tions because of their good capabilities in function approximation. In this chapter,
the following high-order neural networks (HONNs) are used to approximate the
continuous function Q(Z) : R

q → R
n [252],

Q(Z) = WT S(Z), W ∈R
l×n and S(Z) ∈R

l ,

S(Z) = [s1(Z), s2(Z), . . . , sl(Z)
]T

,

si(Z) =
∏
j∈Ii

[
s(Zj )

]κj (i), i = 1,2, . . . , l,

where Z = [Z1,Z2, . . . ,Zq ]T ∈ ΩZ ⊂ R
q is the input vector, positive integer l de-

notes the neural network node number, and n is the dimension of the function vector,
{I1, I2, . . . , Il} is a collection of l nonordered subsets of {1,2, . . . , q}, and κj (i) are
nonnegative integers, W is an adjustable synaptic weight matrix, s(Zj ) is chosen as
the hyperbolic tangent function s(Zj ) = (eZj − e−Zj )/(eZj + e−Zj ).

For a desired function Q∗(Z), there exists an ideal weight matrix W ∗ such that
the smooth function Q∗(Z) can be approximated by an ideal NN on a compact set
ΩZ ⊂ R

q

Q∗ = W ∗T S(Z) + εZ, (6.14)

where εZ is the bounded NN approximation error satisfying ‖εZ‖ ≤ ε0 on the com-
pact set, which can be reduced by increasing the number of the adjustable weights.
The ideal weight matrix W ∗ is an “artificial” quantity required for analytical pur-
pose and is defined as that minimizing ‖εZ‖ for all Z ∈ ΩZ ⊂ R

q in a compact
region, i.e.,

W ∗ � arg min
W∈Rl×p

{
sup

Z∈ΩZ

∥∥Q∗ − WT S(Z)
∥∥}, ΩZ ⊂ R

q,

and compact set Ωw ⊂ R
l×p. (6.15)
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In general, the ideal NN weight matrix W ∗ is an unknown constant. Its estimate Ŵ ,
should be used for controller design, which will be discussed later.

6.3 Control Design

To control the single-point mooring system (6.1), we will first investigate full-state
feedback control under the assumption that all states of the vessel can be obtained.
And then, output feedback control will be proposed for the case where only the sys-
tem output can be obtained. Both the full-state feedback control and output feedback
control will be designed via backstepping method.

6.3.1 Full-State Feedback Control

Step 1: Consider the first equation of the single-point mooring system (6.1). Define
error variables z1 = η − ηd and z2 = v − α1, and consider the Lyapunov function
candidate V1 = 1

2z
T
1 z1. Differentiating z1 with respect to time yields

ż1 = J (η)(z2 + α1) − η̇d . (6.16)

Noting the property J T (η)J (η) = I and choosing the virtual control as

α1 = J T (η)(η̇d − K1z1), (6.17)

where K1 = KT
1 > 0, the time derivative of V1 along the trajectories of (6.16) is

given by

V̇1 = −zT1 K1z1 + zT1 J (η)z2. (6.18)

The first term on the right-hand side (RHS) is stabilizing, and the second term will
be handled in the next step.

Step 2: Differentiating z2 with respect to time yields

ż2 = M−1[−C(v)v − D(v)v − g(η) + τmoor(η) + Φ(τc) + τenv(η)
]

− α̇1, (6.19)

where α̇1 = (∂α1/∂η)η̇ + (∂α1/∂η̇d)η̈d + (∂α1/∂z1)ż1. Substituting (6.6) into
(6.19), we have

ż2 = M−1[−C(v)v − D(v)v − g(η) + τmoor(η) + Haτc + D(τc) + τenv(η)
]

− α̇1. (6.20)
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Consider the Lyapunov function candidate V ∗
2 = V1 + 1

2z
T
2 H−1

a Mz2. Its derivative
along (6.20) is

V̇ ∗
2 = −zT1 K1z1 + zT1 J (η)z2 + zT2

[
Q(Z) + τc + H−1

a D(τc)
]
, (6.21)

where Q(Z) = H−1
a [−C(v)v − D(v)v − g(η) + τmoor(η) + τenv(η) − Mα̇1] with

Z = [ηT , vT ,αT
1 , α̇T

1 ]T . The matrices M , C(v), D(v), and g(η) are unknown, while
τmoor(η) and τenv(η) are difficult to be calculated since some coefficients of a real
mooring system are hard to obtain, for example, the average breaking strength Sb ,
the constants pm and qm in (6.10), the empirical force coefficients Cxd(γr) and
Cyd(γr), the moment coefficient CNd(γr), and the wave excitation coefficients Cxv ,
Cxv , and Cxv . Therefore, in this chapter, we handle τmoor(η) and τenv(η) as unknown
functions. To compensate for the unknown function Q(Z), we can employ HONN
to approximate Q(Z), which can be expressed as

Q(Z) = W ∗T S(Z) + εZ, (6.22)

where W ∗ ∈ R
l×3 denotes the ideal constant weight matrix, S(Z) ∈ R

l , l is the
neural network node number, and εZ ∈ R

3 is the approximation error with ‖εZ‖ ≤
ε∗
Z and constant ε∗

Z > 0.
Since W ∗ is unknown, we can use its estimate Ŵ to construct the adaptive control

τc and the NN weight adaptation law as follows:

τc = −J T (η)z1 − K2z2 − ŴT S(Z) − β̂ Tanh

(
z2

b

)
, (6.23)

˙̂
W = Γw

[
S(Z)zT2 − σwŴ

]
, (6.24)

˙̂
β = Γβ

[
Tanh

(
z2

b

)
zT2 − σββ̂

]
, (6.25)

where K2 ∈R
3×3 is a diagonal positive matrix; β̂ ∈R

3×3 is the estimate of the pos-
itive matrix β∗ = λβmI with λβm = ε∗

Z + ‖H−1
a ‖D∗; b > 0 is a positive constant;

Tanh( z2
b
) = [tanh( z21

b
), tanh( z22

b
), tanh( z23

b
)]T with z2i (i = 1,2,3) being the ith el-

ement of z2; Γw = Γ T
w ∈ R

l×l > 0 and Γβ = Γ T
β ∈ R

3×3 > 0 are design constant
matrices; and σw > 0 and σβ > 0 are design constants.

Remark 6.3 The positive constant matrix β∗ and the positive constant λβm are in-
troduced only for analysis of the stability of the closed-loop system, and we do not
need to know their true values in the whole procedure of control design.

Denote W̃ = Ŵ − W ∗ and β̃ = β̂ − β∗ and consider the augmented Lyapunov
function candidate

V2 = V1 + 1

2
zT2 H−1

a Mz2 + tr

{
1

2
W̃T Γ −1

w W̃

}
+ tr

{
1

2
β̃T Γ −1

β β̃

}
. (6.26)
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The time derivative of V2 along the trajectories of (6.20), (6.23), (6.24), and (6.25)
is given by

V̇2 = V̇1 + zT2 H−1
a Mż2 + tr

{
W̃T Γ −1

w
˙̃
W
}+ tr

{
β̃T Γ −1

β
˙̃
β
}

= −zT1 K1z1 + zT1 J (η)z2 + zT2
[(
ŴT − W̃T

)
S(Z) + εZ + τc + H−1

a D(τc)
]

+ tr
{
W̃T
[
S(Z)zT2 − σwŴ

]}+ tr

{
β̃T

[
Tanh

(
z2

b

)
zT2 − σββ̂

]}

= −zT1 K1z1 − zT2 K2z2 + zT2
[
εZ + H−1

a D(τc)
]

− zT2 β∗ Tanh

(
z2

b

)
− σw tr

{
W̃T Ŵ

}− σβ tr
{
β̃T β̂
}
. (6.27)

Denote β = εZ + H−1
a D(τc)� [β1, β2, β3]T . The following property is always es-

tablished: |βi | ≤ ‖β‖ ≤ ‖εZ‖ + ‖H−1
a ‖‖D(τc)‖ ≤ λβm for all i = 1,2,3, which

implies that

zT2
[
εZ + H−1

a D(τc)
]=

3∑
i=1

z2iβi ≤ λβm

3∑
i=1

|z2i |. (6.28)

Considering (6.28) and using the facts that

−σw tr
{
W̃T Ŵ

}≤ −σw

2
‖W̃‖2

F + σw

2

∥∥W ∗∥∥2
F
, (6.29)

−σβ tr
{
β̃T β̂
}≤ −σβ

2
‖β̃‖2

F + σβ

2

∥∥β∗∥∥2
F
, (6.30)

we have

V̇2 ≤ −zT1 K1z1 − zT2 K2z2 + λβm

3∑
i=1

|z2i |

− λβmzT2 Tanh

(
z2

b

)
− σw

2
‖W̃‖2

F + σw

2

∥∥W ∗∥∥2
F

− σβ

2
‖β̃‖2

F + σβ

2

∥∥β∗∥∥2
F
. (6.31)

Using the equality −λβmzT2 Tanh( z2
b
) = −λβm

∑3
i=1[z2i tanh( z2i

b
)] and the property

of the function tanh(·) [253] that

0 ≤ |x| − x tanh

(
x

b

)
≤ 0.2785b for b > 0, x ∈ R, (6.32)
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we obtain

V̇2 ≤ −zT1 K1z1 − zT2 K2z2 + λβm

3∑
i=1

[
|z2i | − z2i tanh

(
z2i

b

)]

− σw

2
‖W̃‖2

F + σw

2

∥∥W ∗∥∥2
F

− σβ

2
‖β̃‖2

F + σβ

2

∥∥β∗∥∥2
F

≤ −zT1 K1z1 − zT2 K2z2 − σw

2
‖W̃‖2

F − σβ

2
‖β̃‖2

F + μ∗
1, (6.33)

where

μ∗
1 = 0.8355bλβm + σβ

2

∥∥β∗∥∥2
F

+ σw

2

∥∥W ∗∥∥2
F
. (6.34)

The following theorem shows the stability and control performance of the closed-
loop system.

Theorem 6.4 Consider the single-point mooring system (6.1) with Assumptions 6.1
and 6.2, the full-state feedback control law (6.23), and the adaptation laws (6.24)
and (6.25). For bounded initial conditions, there exist constant matrices K1 > 0,
K2 > 0,Γw > 0,Γβ > 0, σw > 0, and σβ > 0 such that the overall closed-loop con-
trol system is semiglobally stable in the sense that all signals in the closed-loop
system are bounded and the tracking error is smaller than a prescribed error bound.

Proof Denote by λmin(•) and λmax(•) the minimum and maximum eigenvalues of •,
respectively, and let

ρ1 = min

{
2λmin(K1),

2h∗
aλmin(K2)

m∗ ,
σw

λmax(Γ
−1
w )

,
σβ

λmax(Γ
−1
β )

}
. (6.35)

From (6.33) and (6.35) we can obtain that

V̇2 ≤ −ρ1V2 + μ∗
1. (6.36)

Multiplying (6.36) by eρ1t yields

d(V2(t))e
ρ1t

dt
≤ eρ1tμ∗

1. (6.37)

Integrating over [0, t] leads to

0 ≤ V2(t) ≤ μ∗
1

ρ1
+
[
V (0) − μ∗

1

ρ1

]
e−ρ1t . (6.38)

The above inequality implies that all signals of the closed-loop system, i.e., z1, z2,
W̃ , and β̃ , are uniformly ultimately bounded. Furthermore, Ŵ , β̂ , η, v, α1, and τc
are also uniformly ultimately bounded. From (6.34) and (6.35) we know that for
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any given constants b, σw , and σβ , the value of
μ∗

1
ρ1

can be made arbitrarily small

by increasing λmin(K1) and λmin(K2) and decreasing λmax(Γ
−1
w ) and λmax(Γ

−1
β ).

Therefore, the tracking error z1 can become arbitrarily small. This completes the
proof. �

6.3.2 Output Feedback Control

In the previous subsection, we have designed a full-state feedback adaptive control
of the single-point mooring system for the case where all states can be obtained.
However, in practice, it is hard to measure the velocity vector v. To deal with this
problem, output feedback control is considered in this subsection for the single-point
mooring system by using HONN observer to estimate the velocity vector.

6.3.2.1 HONN-Based Observer

Adding and subtracting Kvv on the RHS of the second equation of the single-point
mooring system (6.1) and substituting (6.6) into (6.1) yield

⎧⎪⎨
⎪⎩
η̇ = J (η)v,

v̇ = −Kvv + M−1[MKvv + τmoor(η) + τenv(η)

+Haτc − C(v)v − D(v)v − g(η)] + M−1D(τc),

(6.39)

where Kv = kvI > 0 is a positive constant matrix with constant kv > 0. If we denote

Qo(Zo) = M−1[MKvv + τmoor(η) + τenv(η) + Haτc − C(v)v − D(v)v − g(η)
]
,

the continuous function Qo(Zo) can be estimated by HONN as

Qo(Zo) = W ∗T
o S(Zo) + εZo, (6.40)

where W ∗
o ∈ R

lo×3 is the ideal weight matrix, Zo = [ηT , vT , τT
c ]T , εZo ∈ R

3 is the
approximation error with ‖εZo‖ ≤ ε∗

Zo
and constant ε∗

Zo
> 0, and lo is the neural

network node number. Thus, the HONN observer can be designed as follows:

⎧⎪⎨
⎪⎩

˙̂η = J (η)v̂ − Kη(η̂ − η),

˙̂v = −J (η)(η̂ − η) − Kvv̂ + ŴT
o S(Ẑo),

˙̂
Wo = Γo[S(Ẑo)(η̂

T − ηT ) − σoŴo],
(6.41)

where Kη = kηI > 0 is a positive constant matrix with constant kη > 0, Ẑo =
[η̂T , v̂T , τ T

c ]T , Ŵo ∈ R
lo×3 denotes the estimation of the ideal weight matrix W ∗

o ,
Γo ∈R

lo×lo > 0 is a design constant matrix, and σo > 0 is a design constant.
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Lemma 6.5 For bounded system output η and control input τc, consider the NN
observer (6.41). There exist an instant t∗ and small constants εη and εv such that,
for all t > t∗, the following inequalities hold: ‖η̂ − η‖ ≤ εη and ‖v̂ − v‖ ≤ εv .

Proof Denote η̃ = η̂ − η, ṽ = v̂ − v, and W̃o = Ŵo − W ∗
o . Subtracting Eq. (6.39)

from Eq. (6.41) and subtracting W ∗
o on both sides of the last equation in (6.41), the

state space error description of the observer is
⎧⎪⎨
⎪⎩

˙̃η = J (η)ṽ − Kηη̃,

˙̃v = −J (η)η̃ − Kvṽ + ŴT
o S(Ẑo) − W ∗T

o S(Zo) − εZo − M−1D(τc),
˙̃
Wo = Γo[S(Ẑo)η̃

T − σoŴo].
(6.42)

Choosing the Lyapunov function candidate

Vo = 1

2
η̃T η̃ + 1

2
ṽT ṽ + 1

2
tr
{
W̃T

o Γ −1
o W̃o

}
, (6.43)

the time derivative of Vo along (6.42) is given by

V̇o = η̃T ˙̃η + ṽT ˙̃v + tr
{
W̃T

o Γ −1
o

˙̃
Wo

}

= −η̃T Kηη̃ + ṽT
[−Kvṽ + ŴT

o S(Ẑo) − W ∗T
o S(Zo) − εZo − M−1D(τc)

]

+ tr
{
W̃T

o

[
S(Ẑo)η̃

T − σoŴo

]}

= −η̃T Kηη̃ − ṽT Kvṽ + ṽT W̃ T
o S(Ẑo) + ṽT � + η̃T W̃ T

o S(Ẑo)

− σo tr
{
W̃T

o Ŵo

}
, (6.44)

where � = W ∗T
o S(Ẑo) − W ∗T

o S(Zo) − εZo − M−1D(τc). Since the hyperbolic tan-
gent function si(•) is bounded, both S(Ẑo) and S(Zo) are bounded. Furthermore,
� is bounded due to the boundedness of W ∗, εZo , and D(τc), which implies that
‖�‖ ≤ �∗ with constant �∗ > 0. Using the inequalities

ṽT W̃ T
o S(Ẑo) ≤ 1

2γ
ṽT ṽ + γ lo

2
‖W̃o‖2

F ,

η̃T W̃ T
o S(Ẑo) ≤ 1

2γ
η̃T η̃ + γ lo

2
‖W̃o‖2

F ,

ṽT � ≤ 1

2γ
ṽT ṽ + γ

2
�∗2,

−σo tr
{
W̃T

o Ŵo

} ≤ −σo

2
‖W̃o‖2

F + σo

2
‖W ∗

o ‖2
F ,

we have

V̇o ≤ −
(
kη − 1

2γ

)
η̃T η̃ −

(
kv − 1

γ

)
ṽT ṽ −

(
σo

2
− γ lo

)
‖W̃o‖2

F + μ∗
o, (6.45)



6.3 Control Design 109

where γ is a positive constant, and μ∗
o = γ

2 �
∗2 + σo

2 ‖W ∗
o ‖2

F . Choosing the parame-
ters as

kη >
1

2γ
, kv >

1

γ
, σo > 2γ lo (6.46)

and denoting

ρo = min

{
2

(
kη − 1

2γ

)
,2

(
kv − 1

γ

)
,
σo − 2γ lo

λmax(Γ
−1
o )

}
, (6.47)

we can obtain that

V̇o ≤ −ρoVo + μ∗
o. (6.48)

The above equation implies that the state estimation errors η̃ and ṽ converge to
the compact set Ωso := {η̃ ∈ R

3, ṽ ∈ R
3| ‖η̃‖ ≤ √2μ∗

o/ρo and ‖ṽ‖ ≤ √2μ∗
o/ρo}

asymptotically. Since ρo is adjustable, μ∗
o/ρo can be made arbitrarily small. There-

fore, for any given small constants εη and εv , there exists an instant t∗ such that,
for all t > t∗, the following inequalities hold: ‖η̂ − η‖ ≤ εη and ‖v̂ − v‖ ≤ εv . This
completes the proof. �

6.3.2.2 Output Feedback Control Design

Based on the above observer, output feedback robust adaptive control for the single-
point mooring systems (6.1) can be constructed as follows.

Step 1: Consider the first equation of (6.1). Define the error variables z1 = η −
ηd and ẑ2 = v̂ − α1 and consider the Lyapunov function candidate V1 = 1

2z
T
1 z1.

Differentiating z1 with respect to time yields

ż1 = J (η)(−ṽ + ẑ2 + α1) − η̇d . (6.49)

Noting that J T (η)J (η) = I and choosing the virtual control as

α1 = J T (η)(η̇d − K1z1), (6.50)

where K1 = KT
1 > 0, the time derivative of V1 along the trajectories of (6.49) is

given by

V̇1 = −zT1 K1z1 − zT1 J (η)ṽ + zT1 J (η)ẑ2. (6.51)

The first term on the RHS is stabilizing, and the last two terms will be handled in
the next step.

Step 2: Differentiating ẑ2 with respect to time yields

˙̂z2 = ˙̂v − α̇1, (6.52)
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where α̇1 = (∂α1/∂η)η̇ + (∂α1/∂η̇d)η̈d + (∂α1/∂z1)ż1. From ṽ = v̂ − v we know
that ˙̂v = v̇+ ˙̃v. Substituting ˙̂v into (6.52) and considering the second equation of the
system (6.1), we have

˙̂z2 = M−1[τmoor(η) + τenv(η) + Haτc − C(v)v − D(v)v − g(η)
]+ M−1D(τc)

− α̇1 + ˙̃v. (6.53)

Consider the Lyapunov function candidate V ∗
2 = V1 + 1

2 ẑ
T
2 H−1

a Mẑ2. Its time deriva-
tive along (6.53) is

V̇ ∗
2 = −zT1 K1z1 − zT1 J (η)ṽ + zT1 J (η)ẑ2

+ ẑT2
[
Q(Z) + τc + H−1

a D(τc)
]+ ẑT2 H−1

a M ˙̃v, (6.54)

where Q(Z) = H−1
a [τmoor(η) + τenv(η) − C(v)v − D(v)v − g(η) − Mα̇1] with

Z = [ηT , vT ,αT
1 , α̇T

1 ]T . The unknown function Q(Z) can be approximated by using
HONN, which can be represented by

Q(Z) = W ∗T S(Z) + εZ, (6.55)

where W ∗ ∈ R
l×3 denotes the ideal constant weight matrix, S(Z) ∈ R

l , l is the
neural network node number, and εZ ∈ R

3 is the approximation error with ‖εZ‖ ≤
ε∗
Z and constant ε∗

Z > 0. However, since the velocity vector v is not available, we
can use its estimation to substitute it. Then, we construct the adaptive control τc and
the NN weight adaptation law as

τc = −J T (η)z1 − K2ẑ2 − ŴT S(Ẑ) − β̂ Tanh

(
ẑ2

b

)
, (6.56)

˙̂
W = Γw

[
S(Ẑ)ẑT2 − σwŴ

]
, (6.57)

˙̂
β = Γβ

[
Tanh

(
ẑ2

b

)
ẑT2 − σββ̂

]
, (6.58)

where Ŵ ∈ R
l×3 denotes the NN weight matrix, S(Ẑ) ∈ R

l with Ẑ = [ηT , v̂T , αT
1 ,

α̇T
1 ]T , l is the neural network node number, and Tanh( ẑ2

b
) = [tanh( ẑ21

b
), tanh( ẑ22

b
),

tanh( ẑ23
b
)]T with ẑ2i (i = 1,2,3) being the ith element of the vector ẑ2, K2 ∈ R

3×3

is a diagonal positive matrix; β̂ ∈ R
3×3 is the estimate of the positive matrix β∗ =

λβmI with λβm = 2lom∗
h∗
a

‖W ∗
o ‖+ 2l‖W ∗‖+ ε∗

Z + m∗ε∗
Zo

h∗
a

; b > 0 is a positive constant;

Γw = Γ T
w ∈ R

l×l > 0 and Γβ = Γ T
β ∈ R

3×3 > 0 are design constant matrices; and
σw > 0 and σβ > 0 are design constants.

Theorem 6.6 Consider the single-point mooring system (6.1) with Assumptions 6.1
and 6.2, the output feedback control law (6.56), the observer (6.41), and the adap-
tation laws (6.57) and (6.58). For any given positive constant γ > 0 and bounded
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initial conditions, if the parameters satisfy

K1 >
1

2
I, K2 >

m∗2

2h∗2
a

(
1 + kv + 1

γ

)
I,

kη >
1

2γ
+ 1

2
, kv > 1 + 2

γ
, σo > γ lo,

then the overall closed-loop control system is semiglobally stable in the sense that
all signals in the closed-loop system are bounded and the tracking error is smaller
than a prescribed error bound.

Proof Denoting W̃ = Ŵ − W ∗ and β̃ = β̂ − β∗ and considering the augmented
Lyapunov function candidate

V2 = Vo + V1 + 1

2
ẑT2 H−1

a Mẑ2 + tr

{
1

2
W̃T Γ −1

w W̃

}
+ tr

{
1

2
β̃T Γ −1

β β̃

}
, (6.59)

the time derivative of V2 along the trajectories of (6.54), (6.56), (6.57), and (6.58) is
given by

V̇2 = V̇o + V̇1 + ẑT2 H−1
a M ˙̂z2 + tr

{
W̃T Γ −1

w
˙̃
W
}+ tr

{
β̃T Γ −1

β
˙̃
β
}

= V̇o − zT1 K1z1 − zT1 J (η)ṽ + zT1 J (η)ẑ2 + ẑT2 H−1
a M ˙̃v

+ ẑT2

[
W ∗T S(Z) + εZ − J T (η)z1 − K2ẑ2 − ŴT S(Ẑ) − β̂ Tanh

(
ẑ2

b

)

+ H−1
a D(τc)

]
+ tr
{
W̃T
[
S(Ẑ)ẑT2 − σwŴ

]}

+ tr

{
β̃T

[
Tanh

(
ẑ2

b

)
ẑT2 − σββ̂

]}
. (6.60)

Adding and subtracting ẑT2 W ∗T S(Ẑ) on the RHS of (6.60) and substituting the sec-
ond equation of (6.42) into (6.60) yield

V̇2 = −zT1 K1z1 − ẑT2 K2ẑ2 − zT1 J (η)ṽ

− ẑT2 H−1
a MJ(η)η̃ − ẑT2 H−1

a MKvṽ + ẑT2 H−1
a MW̃T

o S(Ẑo)

− ẑT2 β − ẑT2 β∗ Tanh

(
ẑ2

b

)
− σw tr

{
W̃T Ŵ

}− σβ tr
{
β̃T β̂
}+ V̇o, (6.61)

where

β = H−1
a MW ∗T

o

[
S(Ẑo) − S(Zo)

]+ W ∗T [S(Z) − S(Ẑ)
]− H−1

a MεZo + εZ.
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If we denote β := [β1, β2, β3]T , the following property is always established for
i = 1,2,3:

βi | ≤ ‖β‖ ≤ m∗

h∗
a

∥∥W ∗
o

∥∥∥∥S(Ẑo) − S(Zo)
∥∥+ ∥∥W ∗∥∥∥∥S(Z) − S(Ẑ)

∥∥+ ‖εZ‖

≤ +m∗

h∗
a

‖εZo‖λβm, (6.62)

which implies that

−ẑT2 β = −
3∑

i=1

ẑ2iβi ≤ λβm

3∑
i=1

|ẑ2i |. (6.63)

Considering Eq. (6.63) and property (6.32) and using the inequalities

−zT1 J (η)ṽ ≤ 1

2
zT1 z1 + 1

2
ṽT ṽ,

−ẑT2 H−1
a MJ(η)η̃ ≤ m∗2

2h∗2
a

ẑT2 ẑ2 + 1

2
η̃T η̃,

−ẑT2 H−1
a MKvṽ ≤ kvm

∗2

2h∗2
a

ẑT2 ẑ2 + kv

2
ṽT ṽ,

ẑT2 H−1
a MW̃T

o S(Ẑo) ≤ m∗2

2γ h∗2
a

ẑT2 ẑ2 + γ lo

2
‖W̃o‖2

F ,

−σw tr
{
W̃T Ŵ

} ≤ −σw

2
‖W̃‖2

F + σw

2

∥∥W ∗∥∥2
F
,

−σβ tr
{
β̃T β̂
} ≤ −σβ

2
‖β̃‖2

F + σβ

2

∥∥β∗∥∥2
F
,

we have

V̇2 ≤ −zT1

(
K1 − 1

2
I

)
z1 − ẑT2

[
K2 − m∗2

2h∗2
a

(
1 + kv + 1

γ

)
I

]
ẑ2

− σw

2
‖W̃‖2

F cγ lo2‖W̃o‖2
F − σβ

2
‖β̃‖2

F + 0.8355bλβm + σw

2

∥∥W ∗∥∥2
F

+ σβ

2

∥∥β∗∥∥2
F

+ (1 + kv)

2
ṽT ṽ + 1

2
η̃T η̃ + V̇o. (6.64)

Substituting (6.45) into (6.64) leads to

V̇2 ≤ −zT1

(
K1 − 1

2
I

)
z1 − ẑT2

[
K2 − m∗2

2h∗2
a

(
1 + kv + 1

γ

)
I

]
ẑ2 − σw

2
‖W̃‖2

F

− σβ

2
‖β̃‖2

F −
(
kη − 1

2γ
− 1

2

)
η̃T η̃ −

(
kv

2
− 1

2
− 1

γ

)
ṽT ṽ
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− (σo − γ lo)

2
‖W̃o‖2

F + μ∗
1, (6.65)

where μ∗
1 = 0.8355bλβm + σw

2 ‖W ∗‖2
F + σβ

2 ‖β∗‖2
F +μ∗

o . Furthermore, choosing the
parameters such that

K1 >
1

2
I, K2 >

m∗2

2h∗2
a

(
1 + kv + 1

γ

)
I,

kη >
1

2γ
+ 1

2
, kv > 1 + 2

γ
, σo > γ lo

(6.66)

and denoting

ρ1 = min

{
2λmin

(
K1 − 1

2
I

)
,

2h∗
aλmin(K2 − m∗2

2h∗2
a
(1 + kv + 1

γ
)I )

m∗ ,
σw

λmax(Γ
−1
w )

,

σβ

λmax(Γ
−1
β )

,2

(
kη − 1

2γ
− 1

2

)
,

(
kv − 1 − 2

γ

)
,
(σo − γ lo)

λmax(Γ
−1
o )

}
, (6.67)

we can obtain that

V̇2 ≤ −ρ1V2 + μ∗
1. (6.68)

Similarly as in the proof of Theorem 6.4, we can conclude from (6.68) that all
signals of the closed-loop system are uniformly ultimately bounded. Furthermore,

for any given constants b, σw , σβ , γ , and σo, the value of
μ∗

1
ρ1

can be made arbitrarily
small by adjusting the parameters K1, K2, kη , kv , Γw , Γβ , and Γo. Therefore, the
tracking error z1 can become arbitrarily small. This completes the proof. �

6.4 Simulations

In our simulation study, we consider the model of Cybership II [254, 255], a 1:70
scale supply vessel replica built in a marine control laboratory in the Norwegian
University of Science and Technology, which can be represented by (6.1). For clarity
and completeness, its parameters are first given in this section.

The system inertia matrix M , the matrix of Coriolis and centripetal terms C(v)

and the damping matrix D(v) are given as

M =
⎡
⎣25.8 0 0

0 33.8 1.0115
0 1.0115 2.76

⎤
⎦ ,

C(v) =
⎡
⎣ 0 0 −33.8vy − 1.0115vψ

0 0 25.8vx
33.8vy + 1.0115vψ −25.8vx 0

⎤
⎦ ,
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Fig. 6.3 Control
performance

D(v) =
⎡
⎣

−Xu − Xuuuv
2
x 0 0

0 −Yv − Yvvvv
2
y −d23(v)

0 −d32(v) −Nr − Nrrrv
2
ψ

⎤
⎦ ,

where d23(v) = Yr + Yrrrv
2
ψ + Yvvrv

2
y + Yvrrvyvψ and d32(v) = Nv + Nvvvv

2
y +

Nvrrv
2
ψ + Nvvrvψvy . This nonlinear damping matrix D(v) is valid for all feasi-

ble velocities [255]. In this chapter, the parameters are chosen as Xu = −0.7225,
Xuuu = −5.8664, Yv = −0.8612, Yvvv = −36.42, Nr = −1.9, Nrrr = −0.75,
Yr = 0.1079, Yrrr = −3.45, Yvvr = −0.425, Yvrr = −0.425, Nv = 0.1052,
Nvvv = −0.75, Nvrr = 0.04, and Nvvr = 0.04. The matrix g(η) is specified as

g(η) = [0.2 cosηψ − 0.36 sinηψ,0.2 sinηψ + 0.36 cosηψ,0.18].
The hysteresis parameters are chosen as hr1 = 1, ha1 = 1, hB1 = 0.2, hr2 = 1,
ha2 = 1, hB2 = 0.2, hr3 = 1, ha3 = 2, and hB3 = 0.3. The mooring line is consid-
ered as the nylon vetted rope, where pm = 0.14, qm = 1.93, lw = 1 m, xp = 0.6, and
Sb = 6.80625 lbf. The initial states of ship dynamics are η(0) = [−0.15,6,0.0837]T
and v(0) = [0.2,9,0.1]T , where all units are SI.

The parameters of state feedback controller are listed as follows. The number of
neurons used is l = 102, and the initial neural network estimate Ŵ (0) = 0. The de-
sign parameters are chosen as K1 = diag{0.1,0.1,0.1} and K2 = diag{0.4,0.4,0.4}.

First, keep the vessel at a desired position with ηxd = −0.12 and ηyd = 0.58 and
a desired heading ηxd = 0 by using the proposed state feedback control. Simulation
results are shown in Figs. 6.3, 6.4, 6.5 and 6.6. Figure 6.3 shows the position of
the surface vessel, which demonstrates control performance. Figure 6.4 exhibits the
system outputs following the desired trajectory, while Figs. 6.5 and 6.6 display the
bounded control inputs and the norm of NN weighting matrix, respectively. From
the above simulation results we can clearly see that there are large errors between the
desired outputs and real outputs at the initial simulation time. After several seconds
vibration, the vessel surge, sway, and yaw can be maintained in a small neighbor-
hood of their desired values. Under the proposed control, the surface vessel can be
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Fig. 6.4 States of surface vessel

Fig. 6.5 Control inputs

maintained at a fixed position and heading after several seconds adaptation, while
the control inputs and NN weighting matrix are all bounded.

Next, let the vessel track a desired trajectory, ηd(t) = [ηxd(t), ηyd(t), ηψd(t)]T
by using the previous control, where ηxd = √

0.02t, ηyd = 10 cos(0.1ηxd(t)), and
ηψd(t) = tan−1(dηyd/dηxd). This gives a maximum desired speed of 0.2 m s−1,
which corresponds to 3.1 knots in the full-scale vessel. The simulation results are
shown in Figs. 6.7, 6.8 and 6.9. It can be observed that the tracking performance
of the ship is satisfactory, while Fig. 6.7 shows that the ship remains within a small
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Fig. 6.6 Norm of NN
weighting matrix, ‖Ŵ‖

Fig. 6.7 Tracking
performance

neighborhood of the desired path. Figure 6.8 demonstrates the system outputs fol-
lowing the desired trajectory, and Fig. 6.9 displays the bounded control inputs,
respectively. From the above simulation results it can be seen that the vessel surge,
sway, and yaw can track their desired trajectories, although there are large track-
ing errors at the initial simulation time. At the same time, the control inputs are all
bounded.

6.5 Conclusion

In this chapter, both full-state and output feedback adaptive neural network controls
are investigated for single-point mooring system with unknown backlash-like hys-
teresis in truster dynamics. The backlash-like hysteresis is transformed into a liner
term plus a bounded nonlinear term, and then an effective full-state feedback control
is proposed via backstepping design. To overcome the measure difficulty in the ve-
locity vector, a HONN-based observer is constructed to estimate the unmeasurable
states, and then an output feedback adaptive neural network control is developed.
The closed-loop systems for both control schemes are proved to be semiglobally



6.5 Conclusion 117

Fig. 6.8 States of surface vessel

Fig. 6.9 Control inputs

uniformly ultimately bounded. Simulations of a ship model have demonstrated that
the single-point mooring system is able to both keep the vessel at the specified set-
point position and heading and track the desired trajectory under the proposed con-
trols.



Chapter 7
Coupled Nonlinear Flexible Marine Riser

7.1 Introduction

Vibration problems of slender bodies in ocean engineering such as oil drilling and
gas exploration have received increasing attention. Improving reliability and effi-
ciency of operations during oil and gas production in the ocean environment is a
challenging research topic in offshore engineering. With the trends toward exploit-
ing resources in deep waters and harsher environments, the vibration problem of
riser becomes more and more significant [256]. A typical marine riser system de-
picted in Fig. 7.1 is the connection between a vessel on the ocean surface and a
well head on the ocean floor. A drilling riser is used for drilling pipe protection
and transportation of the drilling mud, while a production riser is a pipe used for
oil transportation. The stiffness of a flexible marine riser depends on its tension
and length, and thus a riser that spans a long distance can produce large vibrations
under relatively small disturbances. In marine environment, vibrations excited by
vortices can degrade the performance of the flexible marine riser. Vibrations of the
riser due to the ocean current disturbance and tension exerted at the top can produce
premature fatigue problems, which require inspections and costly repairs, and as a
worst case, environmental pollution due to leakage from damaged areas. Vibration
reduction to minimize the bending stresses is desirable for preventing damage and
improving lifespan.

For purpose of dynamic analysis, the flexible riser is regarded as a distributed pa-
rameter system which is infinite-dimensional and mathematically represented by
PDEs with various boundary conditions involving functions of space and time.
The riser system can be modeled as an Euler–Bernoulli beam structure since the
diameter-to-length ratio of the riser is small from the ocean surface to the ocean
floor. In practice, dynamics of flexible risers are usually represented by a set of
PDEs with appropriate boundary equations or approximated by ordinary differential
equations (ODEs). In [3, 44, 45], PDEs based on the Euler–Bernoulli beam model
have been used to analyze the dynamic response of the flexible marine riser system
under the ocean current disturbance. In [48], a boundary controller for the flexible
marine riser with actuator dynamics is designed based on Lyapunov’s direct method
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Fig. 7.1 A typical marine riser system

and the backstepping technique. In [4], a boundary control law is designed to gen-
erate the required signal for riser angle control and transverse vibration reduction
with guaranteed closed-loop stability, and the exponential stability of the system is
proved under the free vibration conditions. The dynamics of the flexible mechani-
cal system is modeled by a set of PDEs with infinite number of dimensions, which
makes it difficult to control.

In this chapter, we design the boundary control law based on the distributed pa-
rameter system model of the flexible riser system. As shown in Fig. 7.1, the control
is implemented at the top of the riser through two actuators in transverse and lon-
gitudinal directions. The control objective is to design a controller to reduce both
transverse and longitudinal vibrations of the riser. The control inputs from the two
actuators in the vessel are designed via Lyapunov’s direct method, and the required
measurements for feedback are the displacement in the transverse and longitudi-
nal directions at the top of the riser. Although a flexible riser is considered in this
chapter specifically, the analysis and control design can be extended and applied for
vibration control for a class of tensioned beams exposed to undesirable distributed
transverse loads. Other examples of practical application in the marine environment
include free hanging underwater pipelines or drill strings.

In former marine flexible riser research, the axial deformation of the riser is usu-
ally ignored for the convenience of dynamic analysis. Only the transverse dynamics
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of the riser is considered, and the coupling between transverse and longitudinal
displacements is neglected, which can influence the dynamic response of the riser
system and lead to an imprecise model. In this chapter, both the axial deformation
and transverse displacement of the riser are considered in the dynamic analysis. To
the best of our knowledge, this is the first application of boundary control to a flexi-
ble marine riser for reduction of transverse and longitudinal vibrations through two
actuators. The main contributions of this chapter include:

(i) A coupled nonlinear dynamic model of the marine flexible riser for reduction
of transverse and longitudinal vibrations is derived under the distributed ocean
current disturbance.

(ii) An implementable boundary control with two actuators in transverse and lon-
gitudinal directions is designed to reduce both transverse and longitudinal vi-
brations of the marine flexible riser.

(iii) The uniform boundedness under ocean current disturbance and exponential
stability under free vibration condition is proved via Lyapunov’s direct method.

(iv) Numerical simulations via finite difference method are used to verify the effec-
tiveness and performance of the proposed controller.

The rest of the chapter is organized as follows. Section 7.2 illustrates the dy-
namic equations (PDEs) of the flexible riser and boundary conditions by analyzing
the dynamics of this flexible structure with fluctuant environmental disturbances. In
Sect. 7.3, the boundary control design via Lyapunov’s direct method is discussed for
this coupled nonlinear flexible beam, where it is shown that the uniform bounded-
ness of the closed-loop system can be guaranteed under the distributed ocean current
disturbance and the exponential stability can be achieved under free vibration con-
dition. The numerical simulation with the finite difference method is presented in
Sect. 7.4 to verify the performance of the proposed controller. The conclusion of
this chapter is given in Sect. 7.5.

7.2 Problem Formulation

In this chapter, we assume that the vessel is directly above the subsea well head
with no horizontal offset and the riser is filled with seawater. The flexible marine
riser with uniform density and flexural rigidity is modeled as the Euler–Bernoulli
beam structure since the diameter-to-length ration of the riser is small.

The kinetic energy of the riser system Ek can be represented as

Ek = 1

2
ρ

∫ L

0

[(
∂w(x, t)

∂t

)2

+
(
∂v(x, t)

∂t

)2]
dx, (7.1)

where x and t represent the independent spatial and time variables, respectively,
w(x, t) and v(x, t) are the displacements in the transverse and longitudinal direc-
tions of the riser at the position x for time t , ρ > 0 is the uniform mass per unit
length of the riser, and L is the length of the beam.
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The potential energy Ep due to the bending and the axial deformation [59] can
be obtained from

Ep = 1

2
EI
∫ L

0

[
∂2w(x, t)

∂x2

]2

dx + 1

2
T

∫ L

0

[
∂w(x, t)

∂x

]2

dx

+ 1

2
EA
∫ L

0

{
∂v(x, t)

∂x
+ 1

2

[
∂w(x, t)

∂x

]2}2

dx, (7.2)

where T is the tension of the riser, EI is the bending stiffness, and EA is the axial
stiffness. The first term of Eq. (7.2) is due to the bending, the second term is due to
axial force, and the third term is due to the strain energy of the beam.

The work done by ocean current disturbance on the riser is given by

Wf =
∫ L

0
f (x, t)w(x, t) dx, (7.3)

where f (x, t) is the distributed transverse load due to the hydrodynamic effects
of the ocean current. The work done by linear structure damping is represented
by

Wd = −
∫ L

0
c1

[
∂w(x, t)

∂t

]
w(x, t) dx −

∫ L

0
c2

[
∂v(x, t)

∂t

]
v(x, t) dx, (7.4)

where c1, c2 > 0 are the structural distributed transverse and longitudinal damping
coefficients, respectively. Both c1 and c2 are assumed to be constant in this chap-
ter. We introduce the boundary control at the top boundary of the riser to produce
a transverse motion uT and a longitudinal motion uL for vibration reduction. The
work done by the two actuators can be written as

Wm = uT w(L, t) + uLv(L, t), (7.5)

and the total work W done on the system is given by

W = Wf + Wd + Wm

=
∫ L

0

{[
f (x, t) − c1

∂w(x, t)

∂t

]
w(x, t) − c2

[
∂v(x, t)

∂t

]
v(x, t)

}
dx

+ uT w(L, t) + uLv(L, t). (7.6)

Applying the Hamilton principle, Eq. (2.1), we obtain the governing equations
of the system as

ρẅ + EIw′′′′ − Tw′′ − f + c1ẇ − EAv′′w′ − EAv′w′′ − 3

2
EA
(
w′)2w′′ = 0, (7.7)
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ρv̈ + c2v̇ − EAv′′ − EAw′w′′ = 0 ∀(x, t) ∈ (0,L) × [0,∞). (7.8)

Setting the terms with single integrals in the Hamilton principle equation equal to
zero, we obtain the boundary conditions of the system as

w′′(0, t) = w′′(L, t) = w(0, t) = v(0, t) = 0, (7.9)

−EIw′′′(L, t) + Tw′(L, t) + EAv′(L, t)w′(L, t) + 1

2
EA
[
w′(L, t)

]3 = uT (t),

(7.10)

1

2
EA
[
w′(L, t)

]2 + EAv′(L, t) = uL(t) ∀t ∈ [0,∞). (7.11)

Property 7.1 [4, 237] If the kinetic energy of system (7.7)–(7.11), given by
Eq. (7.1), is bounded for all (x, t) ∈ [0,L]×[0,∞), then ẇ′(x, t), ẇ′′(x, t), v̇′(x, t),
and v̇′′(x, t) are bounded for all (x, t) ∈ [0,L] × [0,∞).

Property 7.2 [4, 237] If the potential energy of the system (7.7)–(7.11), given
by Eq. (7.2), is bounded for all (x, t) ∈ [0,L] × [0,∞), then w′′(x, t), w′′′(x, t),
w′′′′(x, t), and v′′(x, t) are bounded for all (x, t) ∈ [0,L] × [0,∞).

Assumption 7.3 For the distributed disturbance f (x, t), we assume that there exists
a constant f̄ ∈R

+ such that ‖f (x, t)‖ ≤ f̄ for all (x, t) ∈ [0,L] × [0,∞). This is a
reasonable assumption as the effects of the time-varying current f (x, t) have finite
energy and hence are bounded, i.e., f (x, t) ∈ L∞([0,L]).

Remark 7.4 For control design in Sect. 7.3, only the assertion that there exists an
upper bound on the disturbance in Assumption 7.3, ‖f (x, t)‖ < f̄ , is necessary.
The knowledge of the exact value for f (x, t) is not required for all (x, t) ∈ [0,L] ×
[0,∞). As such, different VIV models up to various levels of fidelity, such as those
found in [195, 196, 227–229], can be applied without affecting the control design
or analysis.

Remark 7.5 The VIV problem can be separated into the drag and the lift compo-
nents, perpendicular to each other. The vector sum results in a force with oscillat-
ing magnitude and direction, thereby producing the figure of “8” response in the
riser. Under Assumption 7.3, it is possible that control applied to these two cases
in separate axes may be sufficient for vibration reduction of the VIV problem. The
combination of drag and oscillating lift will be treated in future analysis using a 3D
riser model.

7.3 Control Design

The control objective is to reduce the vibrations of the riser, i.e., w(x, t) and v(x, t),
under the time-varying distributed transverse load f (x, t) from the ocean current.
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In this section, Lyapunov’s direct method is used to construct boundary control laws
uT (t) and uL(t) at the top boundary of the flexible marine riser and to analyze the
close-loop stability of the system.

To stabilize the system given by Eqs. (7.7) and (7.8), we propose the following
control laws:

uT = −k1ẇ(L, t) − k2w(L, t), (7.12)

uL = −k3v̇(L, t) − k4v(L, t), (7.13)

where ki , i = 1,2,3,4, are positive constants.

Remark 7.6 The control is independent of system parameters, thus possessing sta-
bility robustness to variations in system parameters. The control design is based
on the distributed parameter system model given by Eqs. (7.7) and (7.8), and the
spillover problems associated with traditional truncated model-based approaches
caused by ignoring high-frequency modes in controller and observer design are
avoided. For recent results on model-based control of distributed system, which are
helpful in avoiding spillover effects, the readers can refer to [57, 58].

Remark 7.7 In the proposed controller (7.12) and (7.13), w(L, t) and v(L, t) can be
measured through position sensors at the top boundary of the riser. In practice, the
effect of measurement noise from sensors is unavoidable, which will affect the con-
troller implementation, especially when the high-order differentiating terms with re-
spect to time exist. In our proposed controller (7.12) and (7.13), ẇ(L, t) and v̇(L, t)

with only one time differentiating with respect to time can be obtained through a
backward difference algorithm of the values of w(L, t) and v(L, t). It is noted that
differentiating twice and three times positions w(L, t) and v(L, t) with respect to
time to get ẅ(L, t),

...
w(L, t), v̈(L, t), and

...
v (L, t), respectively, is undesirable in

practice due to noise amplification. For these cases, observers are needed to design
the estimates of the state values according to the boundary conditions.

7.3.1 Uniformly Stable Control Under Ocean Current Disturbance

Consider the Lyapunov function candidate

V (t) = Eb(t) + Ec(t) + Ed(t). (7.14)

The energy term Eb(t), an auxiliary term Ec(t), and a small crossing term Ed(t)

are defined as

Eb = 1

2
ρ

∫ L

0

(
ẇ2 + v̇2)dx + 1

2
EI
∫ L

0

[
w′′]2 dx + 1

2
EA
∫ L

0

(
v′ + 1

2

[
w′]2)2

dx
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+ 1

2
T

∫ L

0

[
w′]2 dx, (7.15)

Ec = k2 + β1k1

2
w2(L, t) + k4 + β2k3

2
v2(L, t), (7.16)

Ed = β1ρ

∫ L

0
wẇ dx + β2ρ

∫ L

0
vv̇ dx, (7.17)

where ki , i = 1,2,3,4, are positive control parameters, and βj , j = 1,2, are small
positive weighting constants.

Lemma 7.8 The Lyapunov function candidate given by (7.14) can be upper and
lower bounded as

0 ≤ λ1
(
Eb(t) + Ec(t)

)≤ V (t) ≤ λ2
(
Eb(t) + Ec(t)

)
, (7.18)

where λ1 and λ2 are positive constants.

Proof Using inequality (2.12) and the inequality 2[v′(x, t)]2 ≤ [w′(x, t)]2 [257],
we have

|Eb| ≥ 1

2
min

[
ρ,T − EA

2δ
,EA,EA

(
1

4
− δ

)]

×
∫ L

0

{
ẇ2 + v̇2 + [w′]2 + [v′]2 + [w′]4}dx,

where δ is a positive constant.
Substituting inequalities (2.11) and (2.14) into Eq. (7.17) yields

|Ed | ≤ β1ρ

∫ L

0
ẇ2 dx + β1ρL

2
∫ L

0

[
w′]2 dx + β2ρ

∫ L

0
v̇2 dx

+ β2ρL
2
∫ L

0

[
v′]2 dx

≤ αEb, (7.19)

where

α = 2ρ
max(β1, β1L

2, β2, β2L
2)

min[ρ,T − EA
2δ ,EA,EA( 1

4 − δ)] . (7.20)

Then, we obtain

−αEb ≤ Ed ≤ αEb. (7.21)



126 7 Coupled Nonlinear Flexible Marine Riser

Considering β1 and β2 as two small positive weighting constants and choosing them
properly, we can obtain

α1 = 1 − α = 1 − 2ρ
max(β1, β1L

2, β2, β2L
2)

min(ρ,T ,EI,EA)
> 0, (7.22)

α2 = 1 + α = 1 + 2ρ
max(β1, β1L

2, β2, β2L
2)

min(ρ,T ,EI,EA)
> 1. (7.23)

Then, we further have

0 ≤ α1Eb ≤ Eb + Ed ≤ α2Eb. (7.24)

Given the Lyapunov function candidate in Eq. (7.14), we obtain

0 ≤ λ1
(
Eb(t) + Ec(t)

)≤ V (t) ≤ λ2
(
Eb(t) + Ec(t)

)
, (7.25)

where λ1 = min(α1,0.5(k2 + β1k1),0.5(k4 + β2k3)) and λ2 = max(α1,0.5(k2 +
β1k1),0.5(k4 + β2k3)) are positive constants. �

Lemma 7.9 The time derivative of the Lyapunov function in (7.14) can be upper
bounded with

V̇ (t) ≤ −λV (t) + ε, (7.26)

where λ and ε are positive constants.

Proof We differentiate Eq. (7.14) with respect to time to obtain

V̇ (t) = Ėb + Ėc + Ėd . (7.27)

The first term of Eq. (7.27)

Ėb = B1 + B2 + B3 + B4, (7.28)

where

B1 = ρ

∫ L

0
ẇẅ dx + ρ

∫ L

0
v̇v̈ dx, (7.29)

B2 = EI
∫ L

0
w′′ẇ′′ dx, (7.30)

B3 = EA
∫ L

0

(
v′ + 1

2

[
w′]2)(v̇′ + w′ẇ′)dx, (7.31)

B4 = T

∫ L

0
w′ẇ′ dx. (7.32)
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Using the governing equation in the expression for B1, we obtain

B1 =
∫ L

0
ẇ

(
−EIw′′′′ + Tw′′ + 3

2
EA
[
w′]2w′′ + EAw′′v′ + EAw′v′′

+ f − c1ẇ

)
dx +

∫ L

0
v̇
(
EAv′′ + EAw′w′′ − c2v̇

)
dx. (7.33)

Applying the boundary conditions and integrating Eq. (7.30) by parts, we obtain

B2 = EI
∫ L

0
w′′d
(
ẇ′)

= −EIw′′′(L, t)ẇ(L, t) + EI
∫ L

0
ẇw′′′′ dx. (7.34)

Applying the boundary conditions and integrating Eq. (7.31) by parts, we obtain

B3 = EAv′(L, t)v̇(L, t) − EA
∫ L

0
v̇v′′ dx + EAv′(L, t)w′(L, t)ẇ(L, t)

− EA
∫ L

0
ẇ
(
v′′w′ + v′w′′)dx + 1

2
EA
[
w′(L, t)

]2
v̇(L, t) − EA

∫ L

0
v̇w′w′′ dx

+ 1

2
EA
[
w′(L, t)

]3
ẇ(L, t) − 3

2
EA
∫ L

0
ẇ
[
w′]2w′′ dx. (7.35)

Using the boundary conditions and integrating Eq. (7.32) by parts, we obtain

B4 = T

∫ L

0
w′d(ẇ)

= Tw′(L, t)ẇ(L, t) − T

∫ L

0
ẇw′′ dx. (7.36)

Substituting Eqs. (7.33), (7.34), (7.35), and (7.36) into Eq. (7.28), we have

Ėb =
(

−EIw′′′(L, t) + Tw′(L, t) + EAw′(L, t)v′(L, t) + 1

2
EA
[
w′(L, t)

]3)

× ẇ(L, t) +
(

1

2
EA
[
w′(L, t)

]2 + EAv′(L, t)

)
v̇(L, t) − c1

∫ L

0
ẇ2 dx

− c2

∫ L

0
v̇2 dx +

∫ L

0
f ẇ dx. (7.37)
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Using inequality (2.12), we obtain

Ėb ≤ uT ẇ(L, t) + uLv̇(L, t) − (c1 − δ1)

∫ L

0
ẇ2 dx − c2

∫ L

0
v̇2 dx

+
∫ L

0

1

δ1
f 2 dx, (7.38)

where δ1 > 0 is a positive constant.
The second term of Eq. (7.27)

Ėc = (k2 + β1k1)w(L, t)ẇ(L, t) + (k4 + β2k3)v(L, t)v̇(L, t). (7.39)

The third term of Eq. (7.27) is rewritten as

Ėd = β1ρ

∫ L

0

(
ẇ2 + wẅ

)
dx + β2ρ

∫ L

0

(
v̇2 + vv̈

)
dx

= β1

∫ L

0

[
−EIww′′′′ + Tww′′ + fw − c1wẇ + 3

2
EAww′2w′′ + EAww′′v′

+EAww′v′′ + ρẇ2
]
dx + β2

∫ L

0

[
EAvv′′ + EAvw′w′′ + ρv̇2 − c2vv̇

]
dx

= D1 + D2 + D3 + D4 + D5 + D6 + D7 + D8 + D9 + D10 + D11 + D12,

(7.40)

where

D1 = −β1

∫ L

0
EIww′′′′ dx, (7.41)

D2 = β1

∫ L

0
Tww′′ dx, (7.42)

D3 = β1

∫ L

0
fwdx, (7.43)

D4 = −β1

∫ L

0
c1wẇ dx, (7.44)

D5 = β1

∫ L

0

3

2
EAww′2w′′ dx, (7.45)

D6 = β1

∫ L

0
EAww′′v′ dx, (7.46)

D7 = β1

∫ L

0
EAww′v′′ dx, (7.47)
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D8 = β1

∫ L

0
ρẇ2 dx, (7.48)

D9 = β2

∫ L

0
EAvv′′ dx, (7.49)

D10 = β2

∫ L

0
EAvw′w′′ dx, (7.50)

D11 = β2

∫ L

0
ρv̇2 dx, (7.51)

D12 = β2

∫ L

0
c2vv̇ dx. (7.52)

After integrating Eqs. (7.41) and (7.42) by parts and using the boundary conditions,
we obtain

D1 = −β1EIw(L, t)w′′′(L, t) − β1EI
∫ L

0

[
w′′]2 dx, (7.53)

D2 = β1Tw(L, t)w′(L, t) − β1T

∫ L

0

[
w′]2 dx. (7.54)

Using inequalities (2.12) and (2.14), we obtain

D3 ≤ β1

δ2

∫ L

0
f 2 dx + β1δ2

∫ L

0
w2 dx

≤ β1

δ2

∫ L

0
f 2 dx + β1δ2L

2
∫ L

0

[
w′]2 dx (7.55)

D4 ≤ β1
c1

δ3

∫ L

0
ẇ2 dx + β1c1δ3L

2
∫ L

0

[
w′]2 dx, (7.56)

where δ2, δ3 > 0. Integrating Eq. (7.45) by parts, we obtain

D5 = β1

∫ L

0

3

2
EAww′2d

(
w′)

= 3β1

2
EAw
[
w′]3∣∣L

0 − 3β1

2
EA
∫ L

0
w′(w′[w′]2 + 2ww′w′′)dx. (7.57)

The polynomial of the last term in Eq. (7.57) is the same as D5. Rewriting Eq. (7.57),
we obtain

D5 = β1

2
EAw(L, t)

[
w′(L, t)

]3 − β1

2
EA
∫ L

0

[
w′]4 dx. (7.58)
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After integrating Eqs. (7.46), (7.49), and (7.50) by parts and using the boundary
conditions, we obtain

D6 = β1EAw(L, t)w′(L, t)v′(L, t) − β1EA
∫ L

0

[
w′]2v′ dx − D7, (7.59)

D9 = β2EAv(L, t)v′(L, t) − β2EA
∫ L

0

[
v′]2 dx, (7.60)

D10 = β2EAv(L, t)
[
w′(L, t)

]2 − β2EA
∫ L

0
v′[w′]2 dx − D10. (7.61)

The last term in Eq. (7.61) is the same as D10. Rewriting Eq. (7.61), we obtain

D10 = β2

2
EAv(L, t)

[
w′(L, t)

]2 − β2

2
EA
∫ L

0
v′[w′]2 dx, (7.62)

Using inequality (2.12), we obtain

D12 ≤ β2
c2

δ4

∫ L

0
v̇2 dx + β2c2δ4L

2
∫ L

0

[
v′]2 dx, (7.63)

where δ4 > 0. Combining the above expressions D1–D12 and utilizing the boundary
conditions (7.10) and (7.11) , we obtain

Ėd(t) ≤ β1w(L, t)uT + β2v(L, t)uL − β1EI
∫ L

0

[
w′′]2 dx − β1T

∫ L

0

[
w′]2 dx

+ β1

δ2

∫ L

0
f 2 dx + β1δ2L

2
∫ L

0

[
w′]2 dx + β1

c1

δ3

∫ L

0
ẇ2 dx

+ β1c1δ3L
2
∫ L

0

[
w′]2 dx − β1

2
EA
∫ L

0

[
w′]4 dx − β1EA

∫ L

0

[
w′]2v′ dx

+ β1

∫ L

0
ρẇ2 dx − β2EA

∫ L

0

[
v′]2 dx − β2

2
EA
∫ L

0
v′[w′]2 dx

+ β2

∫ L

0
ρv̇2 dx + β2

c2

δ4

∫ L

0
v̇2 dx + β2c2δ4L

2
∫ L

0

[
v′]2 dx. (7.64)

Substituting Eqs. (7.38), (7.39), and (7.64) into Eq. (7.27), we obtain

V̇ (t) ≤ [ẇ(L, t) + β1w(L, t)
]
uT + [v̇(L, t) + β2v(L, t)

]
uL

−
(
c1 − δ1 − β1ρ − β1

c1

δ3

)∫ L

0
ẇ2 dx −

(
c2 − β2ρ − β2

c2

δ4

)∫ L

0
v̇2 dx

− β1EI
∫ L

0

[
w′′]2 dx − β1

2
EA
∫ L

0

[
w′]4 dx
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−
(
β1 − β2

2

)
EA
∫ L

0

[
w′]2v′ dx − (β2EA − β2c2δ4L

2)∫ L

0

[
v′]2 dx

+
(

1

δ1
+ β1

δ2

)∫ L

0
f 2 dx

− (β1T − β1δ2L
2 − β1c1δ3L

2)∫ L

0

[
w′]2 dx + (k2 + β1k1)w(L, t)ẇ(L, t)

+ (k4 + β2k3)v(L, t)v̇(L, t). (7.65)

Then substituting the control law given by Eqs. (7.12) and (7.13) into Eq. (7.65), we
obtain

V̇ (t) ≤ −k1
[
ẇ(L, t)

]2 − k2β1
[
w(L, t)

]2 − k3
[
v̇(L, t)

]2 − k4β2
[
v(L, t)

]2

−
(
c1 − δ1 − β1ρ − β1

c1

δ3

)∫ L

0
ẇ2 dx −

(
c2 − β2ρ − β2

c2

δ4

)∫ L

0
v̇2 dx

− β1EI
∫ L

0

[
w′′]2 dx −

(
β1 − β2

2

)
EA
∫ L

0

(
v′ + 1

2

[
w′]2)2

dx

− (β1T − β1δ2L
2 − β1c1δ3L

2)∫ L

0

[
w′]2 dx +

(
1

δ1
+ β1

δ2

)∫ L

0
f 2 dx

≤ −λ3(Eb + Ec) + ε, (7.66)

where

λ3 = min

(
2k2β1

k2 + β1k1
,

2k4β2

k4 + β2k3
,

2σ1

mz

,
2σ2

mz

,
2σ3

EI
,

2σ5

EA
,

2σ7

T

)
> 0, (7.67)

σ1 = c1 − δ1 − β1ρ − β1
c1

δ3
> 0, (7.68)

σ2 = c2 − β2ρ − β2
c2

δ4
> 0, (7.69)

σ3 = β1EI > 0, (7.70)

σ4 = β1

2
EA > 0, (7.71)

σ5 =
(
β1 − β2

2

)
EA > 0, (7.72)

σ6 = β2EA − β2c2δ4L
2 > 0, (7.73)

σ5 ≤ min(4σ4, σ6)

4
, (7.74)

σ7 = β1T − β1δ2L
2 − β1c1δ3L

2 > 0, (7.75)
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ε =
(

1

δ1
+ β1

δ2

)∫ L

0
f 2 dx ≤

(
1

δ1
+ β1

δ2

)∫ L

0
f̄ 2 dx < ∞. (7.76)

From inequalities (7.25) and (7.66) we have

V̇ (t) ≤ −λV (t) + ε, (7.77)

where λ = λ3/λ2 > 0 and ε > 0. �

With the above lemmas, we are ready to present the following stability theorem
of the closed-loop riser system subject to ocean current disturbance.

Theorem 7.10 For the system dynamics described by (7.7) and (7.8) and bound-
ary conditions (7.9) to (7.11), under Assumption 7.3 and the control laws (7.12) and
(7.13), given that the initial conditions are bounded and that the required state infor-
mation given by w(L, t), v(L, t), ẇ(L, t), and v̇(L, t) is available, the closed-loop
system is uniformly bounded as follows:

∣∣w(x, t)
∣∣ ≤
√

2L

T λ1

(
V (0)e−λt + ε

λ

)
∀(x, t) ∈ (0,L) × [0,∞), (7.78)

∣∣v(x, t)∣∣ ≤
√

2L

EAλ1

(
V (0)e−λt + ε

λ

)
∀(x, t) ∈ (0,L) × [0,∞), (7.79)

where λ and ε are positive constants.

Proof Multiplying Eq. (7.26) by eλt yields

∂

∂t

(
V eλt
) ≤ εeλt . (7.80)

Integrating the above inequalities, we obtain

V (t) ≤
(
V (0) − ε

λ

)
e−λt + ε

λ
≤ V (0)e−λt + ε

λ
∈ L∞, (7.81)

which implies that V (t) is bounded. Utilizing inequality (2.15) and Eq. (7.15), we
have

1

2L
Tw2(x, t) ≤ 1

2
T

∫ L

0

[
w′(x, t)

]2
dx ≤ Eb(t) ≤ 1

λ1
V (t) ∈ L∞, (7.82)

1

2L
EAv2(x, t) ≤ 1

2
EA
∫ L

0

[
v′(x, t)

]2
dx ≤ Eb(t) ≤ 1

λ1
V (t) ∈ L∞. (7.83)

Rearranging the terms of the above two inequalities, we obtain

∣∣w(x, t)
∣∣ ≤
√

2L

T λ1

(
V (0)e−λt + ε

λ

)
∀(x, t) ∈ (0,L) × [0,∞), (7.84)
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∣∣v(x, t)∣∣ ≤
√

2L

EAλ1

(
V (0)e−λt + ε

λ

)
∀(x, t) ∈ (0,L) × [0,∞). (7.85)

From Eqs. (7.82) and (7.83) we can state that Eb(t) is bounded for all t ∈ [0,∞).
Since Eb(t) is bounded, ẇ(x, t), w′(x, t), w′′(x, t), v̇(x, t), and v′(x, t) are bounded
for all (x, t) ∈ [0,L] × [0,∞). From Eq. (7.1), the kinetic energy of the sys-
tem is bounded, and by Property 7.1, ẇ′(x, t) and v̇′(x, t) are bounded for all
(x, t) ∈ [0,L] × [0,∞). From the boundedness of the potential energy given by
Eq. (7.2), we can use Property 7.2 to conclude that w′′′′(x, t) and v′′(x, t) are
bounded for all (x, t) ∈ [0,L] × [0,∞). Finally, using Assumption 7.3, Eqs. (7.7)
through (7.11), and the above statements, we can conclude that ẅ(x, t) and v̈(x, t)

are also bounded for all (x, t) ∈ [0,L] × [0,∞). From Lemma 2.7 and the above
proof, it is shown that the deflections w(x, t) and v(x, t) are uniformly bounded for
all (x, t) ∈ [0,L] × [0,∞). �

Remark 7.11 From the above stability analysis, ẇ(x, t), v̇(x, t), w(x, t), and v(x, t)

are all bounded for all (x, t) ∈ [0,L] × [0,∞), and we can conclude the control
inputs of uT and uL are bounded for all t ∈ [0,∞).

7.3.2 Exponentially Stable Control Without Disturbance

In this section, by using the same Lyapunov function candidate (7.14) and the con-
trol laws (7.12) and (7.13) of Sect. 7.3.1, we analyze the free vibration case of the
flexible riser system, i.e., the ocean current disturbance f (x, t) = 0, and the expo-
nentially stability is proved.

Lemma 7.12 [203] For bounded initial conditions and for all x and t ≥ 0, if
there exists a C1 continuous and positive definite Lyapunov function V (x, t) :
n × + −→  satisfying κ1(‖x‖) ≤ V (x, t) ≤ κ2(‖x‖) and such that V̇ (x, t) ≤
−λV (x, t), where κ1, κ2 : Rn →R are class K functions, then the equilibrium point
x = 0 of the system ẋ = f (x, t) is exponentially stable.

Theorem 7.13 For the system dynamics described by (7.7) and (7.8) and boundary
conditions (7.9) to (7.11), if the free vibration case is considered, i.e., f (x, t) = 0,
the exponential stability under the free vibration condition can be achieved with the
proposed boundary controllers (7.12) and (7.13) as follows:

∣∣w(x, t)
∣∣ ≤
√

2L

T λ1
V (0)e−λt ∀(x, t) ∈ (0,L) × [0,∞), (7.86)

∣∣v(x, t)∣∣ ≤
√

2L

EAλ1
V (0)e−λt ∀(x, t) ∈ (0,L) × [0,∞), (7.87)

where λ and λ1 are positive constants.
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Proof From inequality (7.26), under the free vibration condition, i.e., f (x, t) = 0,
we obtain the time derivative of the Lyapunov function candidate (7.14) as

V̇ (t) ≤ −λV (t), (7.88)

where λ = λ3/λ2. Multiplying Eq. (7.88) by eλt yields

∂

∂t

(
V eλt
)≤ 0. (7.89)

Integrating the above inequality, we obtain

V (t) ≤ V (0)e−λt ∈ L∞, (7.90)

which implies that V (t) is bounded. Similarly, utilizing inequality (2.15) and
Eq. (7.15), we have

1

2L
Tw2(x, t) ≤ 1

2
T

∫ L

0

[
w′(x, t)

]2
dx ≤ Eb(t) ≤ 1

λ1
V (t) ∈ L∞, (7.91)

1

2L
EAv2(x, t) ≤ 1

2
EA
∫ L

0

[
v′(x, t)

]2
dx ≤ Eb(t) ≤ 1

λ1
V (t) ∈ L∞. (7.92)

Rearranging the terms of the above two inequalities, we obtain

∣∣w(x, t)
∣∣ ≤
√

2L

T λ1
V (0)e−λt ∀(x, t) ∈ (0,L) × [0,∞), (7.93)

∣∣v(x, t)∣∣ ≤
√

2L

EAλ1
V (0)e−λt ∀(x, t) ∈ (0,L) × [0,∞). (7.94)

From Lemma 7.12 and the above proof, we conclude that the free vibration riser
system under the control law is exponentially stable. �

Remark 7.14 For the free vibration case of the flexible riser system, the displace-
ments w(x, t) and v(x, t) exponentially converge to zero at the rate of convergence
λ as t −→ ∞.

7.4 Numerical Simulations

Simulations for a 1000 m riser under ocean current disturbance are carried out to
demonstrate the effectiveness of the proposed control laws (7.12) and (7.13). The
detailed parameters of the riser system are shown in Table 7.1. Numerical methods
are applied to get an approximate solution of system (7.7)–(7.11) when there is no
obtainable analytical solution. In this chapter, the finite difference (FD) scheme is
chosen to simulate the system performance.
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Table 7.1 Parameters of the riser system

Parameter Description Value

L Length of riser 1000.00 m

d Riser inner diameter 76.2 mm

D Riser external diameter 152.40 mm

EI Bending stiffness of the riser 1.22 × 105 N m2

EA Axial stiffness of the riser 3.92 × 107 N

T Tension 1.11 × 108 N

ρ Mass per unit length of the flexible riser 108.00 kg m−1

ρs Sea water density 1024.00 kg m−3

c1 Structural transverse damping coefficient 5.00 N s m−2

c2 Structural longitudinal damping coefficient 1.00 N s m−2

The riser, initially at rest, is excited by a distributed transverse disturbance due to
the ocean current. The corresponding initial conditions of the riser system are given
as

w(x,0) = ẇ(x,0) = v(x,0) = v̇(x,0) = 0. (7.95)

We assume that the full current load is applied from x = 1000 m to x = 0 m
and thereafter linearly declines to zero at the ocean floor, x = 0, to obtain a depth-
dependent ocean current profile U(x, t) as in Chap. 3. The distributed load f (x, t)

is generated by Eq. (2.5) with CD = 1, θ = 0, St = 0.2, and fv = 2.625. In this
chapter, we consider four simulation cases with different control inputs.

(i) The transverse and longitudinal displacements of the riser for free vibration
(i.e., without control input, k1 = k2 = k3 = k4 = 0) under ocean current distur-
bance are shown in Fig. 7.2.

(ii) With only transverse control input, i.e., k1 = k2 = 1 × 106 and k3 = k4 = 0, the
transverse and longitudinal displacements of the riser are shown in Fig. 7.3.

(iii) With only longitudinal control input, i.e., k1 = k2 = 0 and k3 = k4 = 1 × 108,
the transverse and longitudinal displacements of the riser are shown in Fig. 7.4.

(iv) With both transverse and longitudinal control inputs, i.e., k1 = k2 = 1 × 106

and k3 = k4 = 1 × 108, the transverse and longitudinal displacements of the
riser are shown in Fig. 7.5.

From Figs. 7.3, 7.4 and 7.5 it is observed that there is a significant reduction of
the riser’s transverse displacement when the transverse control is applied. Similarly,
when the longitudinal control is applied, a significant reduction of the riser’s longi-
tudinal displacement is observed. When control inputs in transverse and longitudinal
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Fig. 7.2 (a) Transverse displacement w(x, t) and (b) longitudinal displacement v(x, t)

directions are applied, the riser’s displacements in both transverse and longitudinal
directions are reduced. Peak displacement reduction in the middle and bottom of
the riser is observed although the actuators are not located at these positions. The
corresponding control inputs uT (t) and uL(t) are shown in Figs. 7.6 and 7.7, re-
spectively. It is shown that the transverse control input is of negative value, which
means that the actual transverse control input is exerted in the opposite direction
of the ocean disturbance f (x, t). The transverse control input varies between 0 and
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Fig. 7.3 (a) Transverse displacement w(x, t) and (b) longitudinal displacement v(x, t)

2.5 × 104 N, and the longitudinal control input varies between 0 and 1200 N, which
are implementable in practice.

Vibration displacements of the riser are examined at x = 1000 m and x = 500 m,
and the results for controlled and uncontrolled responses are shown in Figs. 7.8
and 7.9 respectively. With the two control inputs, it can be observed that the vibra-
tion displacements are reduced at both locations, which brings the top displacements
of the riser close to zero.
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Fig. 7.4 (a) Transverse displacement w(x, t) and (b) longitudinal displacement v(x, t)

7.5 Conclusion

Vibration regulation of a distributed-parameter marine flexible riser subject to the
ocean current disturbance has been investigated in this chapter. The boundary con-
trol has been developed with two actuators in transverse and longitudinal directions
based on the distributed-parameter system model with PDEs, and the problems asso-
ciated with traditional truncated-model-based design are overcome. With proposed
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Fig. 7.5 (a) Transverse displacement w(x, t) and (b) longitudinal displacement v(x, t)

control, closed-looped stability under external disturbance and exponential stability
under free vibration condition have been proven based on Lyapunov’s direct method.
The control is easy to implement since it is independent of the system parameters
and only two sensors and actuators are required. Numerical simulations have been
provided to verify the effectiveness of the presented boundary control.

In this chapter, we focused on a specific system model in the vertical plane. In
practice, all the marine flexible systems are located in the Earth-frame, which is
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Fig. 7.6 Transverse control input uT (t)

Fig. 7.7 Longitudinal control input uL(t)

a three-dimensional space including X, Y , and Z axes. In the three-dimensional
space, there are strong couplings between motions of a flexible marine system along
the X, Y , and Z axes. Due to the coupled effects, the modeling and control design for
the marine flexible systems in the three-dimensional space is not a straightforward
extension. These couplings make the control of a flexible marine system in the three-
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Fig. 7.8 Transverse displacements: (a) transverse displacement at x = 500 m, w(500, t) for
controlled (solid) and uncontrolled (dashed) and (b) transverse displacement at x = 1000 m,
w(1000, t) for controlled (solid) and uncontrolled (dashed)

dimensional space more difficult than the one studied in this book. Therefore, the
control problem of a flexible marine system that deforms in the three-dimensional
space is an interesting and challenging topic. For example, boundary control of a
three-dimensional flexible marine riser has been investigated in [47]. More investi-
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Fig. 7.9 Longitudinal displacements: (a) longitudinal displacement at x = 500 m, v(500, t) for
controlled (solid) and uncontrolled (dashed) and (b) longitudinal displacement at x = 1000 m,
v(1000, t) for controlled (solid) and uncontrolled (dashed)

gations are needed to explore the characteristics of such three-dimensional models
with available control techniques to mitigate the effects of couplings while satisfy-
ing the basic requirements for the concerned system.



Chapter 8
Flexible Marine Riser with Vessel Dynamics

8.1 Introduction

With the increased focus on offshore oil and gas development in deeper and harsher
environments, vibration control of the flexible marine risers has gained increasing
attention. The marine riser is used as a fluid-conveyed curved pipe drilling crude oil,
natural gas, hydrocarbon, petroleum materials, mud, and other undersea economic
resources, and then transporting those resources in the ocean floor to the production
vessel or platform in the ocean surface [3]. A drilling riser is used for drilling pipe
protection and transportation of the drilling mud, while a production riser is a pipe
used for oil transportation [4]. Vibration and deformation of the riser due to the
ocean current disturbance and tension exerted at the top can produce premature
fatigue problems, which require inspections and costly repairs.

For the purpose of dynamic analysis, the riser is modeled as an Euler–Bernoulli
beam structure with PDEs since the diameter-to-length ratio of the riser is small.
Based on the distributed-parameter model, various kinds of control methods in-
tegrating computer software and hardware with sensors and actuators have been
investigated to suppress the riser’s vibration. In [48], boundary control for the flex-
ible marine riser with actuator dynamics is designed based on the Lyapunov direct
method and the backstepping technique. In [4], a torque actuator is introduced at
the top boundary of the riser to reduce the angle and transverse vibration of the riser
with guaranteed closed-loop stability. In [49], boundary control for a coupled non-
linear flexible marine riser with two actuators in transverse and longitudinal direc-
tions has been designed to suppress the riser’s vibration. However, in these works,
only the riser dynamics is considered, and the coupling between riser and vessel is
neglected, which can influence the dynamic response of the riser system and lead to
an imprecise model.

Mathematically, the flexible marine riser with vessel dynamics is represented
by a set of infinite-dimensional equations (i.e., PDEs describing the dynamics of
the flexible riser) coupled with a set of finite-dimensional equations (i.e., ODEs
describing the vessel dynamics). The dynamics of the flexible mechanical system
modeled by a set of PDEs is difficult to control due to the infinite dimensionality
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of the system. The modal control method for the control design of PDE is based on
truncated finite-dimensional modes of the system, which are derived from the finite
element method, Galerkin’s method, or assumed-modes method [53, 54, 57–60].
The truncated models are obtained via the model analysis or spatial discretization,
in which the flexibility is represented by a finite number of modes by neglecting the
higher-frequency modes. The problems from the truncation procedure in the mod-
eling need to be carefully treated in practical applications. A potential drawback in
the above control design approaches is that the control can cause the actual system
to become unstable due to excitation of the unmodeled, high-frequency vibration
modes (i.e., spillover effects) [67]. Spillover effects that result in instability of the
system have been investigated in [68, 69] when the control of the truncated sys-
tem is restricted to a few critical modes. The control order needs to be increased
with the number of flexible modes considered to achieve high accuracy of perfor-
mance, and the control may also be difficult to implement from the engineering
point of view since full-state measurements or observers are often required. In an
attempt to overcome the above shortcomings of the truncated model-based control,
control methodologies, such as method based on bifurcation theory and the appli-
cation of Poincaré maps [258], variable structure control [70], sliding-mode control
[71], energy-based robust control [72, 73], model-free control [74], and boundary
control [8, 80, 81, 93, 97, 110, 111, 114, 116, 120], have been developed. In these
approaches, system dynamics analysis and control design are carried out directly
based on PDEs of the system. In contrast, boundary control where the actuation and
sensing are applied only through the boundary of the system utilizes the distributed-
parameter model with PDEs to avoid control spillover instabilities.

Boundary control is considered to be more practical in a number of research
fields including vibration control of flexible structures, fluid dynamics, and heat
transfer, which requires relatively few sensors and actuators. The relevant appli-
cations for this approach in mechanical flexible structures consist of second-order
structures (strings and cables) and fourth-order structures (beams and plates) [88].
In [98], robust and adaptive boundary control laws based on the Lyapunov synthesis
are developed to reduce the vibration of a stretched string on a moving transporter.
In [80], adaptive boundary control is designed for an axially moving string with a
spatiotemporally varying tension, where the system is proved to be asymptotically
stable. In [105], a boundary control law based on the Lyapunov method with sliding
mode is employed to guarantee the asymptotic and exponential stability of an axi-
ally moving string. In [101], boundary control for a linear gantry crane model with
a flexible cable is developed and experimentally implemented. In [114, 140], back-
stepping boundary controller and observer are designed to stabilize the string and
beam model, respectively. In [128], boundary control is presented to stabilize beams
by using active constrained layer damping. In [107], nonlinear boundary control is
constructed to exponentially stabilize a free transversely vibrating beam.

The rest of the chapter is organized as follows. The governing equation (PDE)
and boundary conditions (ODEs) of the flexible riser system are introduced by use
of Hamilton’s principle in Sect. 8.2. The boundary control design via the Lyapunov
direct method is discussed separately for both exact model case and system para-
metric uncertainty case in Sect. 8.3, where it is shown that the uniform boundedness
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Fig. 8.1 A typical flexible marine riser system

of the closed-loop system can be achieved by the proposed control. Simulations are
carried out to illustrate the performance of the proposed control in Sect. 8.4. The
conclusion of this chapter is given Sect. 8.5.

8.2 Problem Formulation

A typical marine riser system for crude oil transportation depicted in Fig. 8.1 is the
connection between a production vessel on the ocean surface and a well head on the
ocean floor. As shown in Fig. 8.1, the control is implemented from the actuator in the
vessel, i.e., the top boundary of the riser. In this chapter, we assume that the original
position of the vessel is directly above the subsea well head with no horizontal offset
and the riser is filled with seawater.

The kinetic energy of the riser system Ek can be represented as

Ek = 1

2
Ms

[
ẇ(L, t)

]2 + 1

2
ρ

∫ L

0

[
ẇ(x, t)

]2
dx, (8.1)

where x and t represent the independent spatial and time variables, respectively, Ms

denotes the mass of the surface vessel, w(L, t) and ẇ(L, t) are the position and
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velocity of the vessel, respectively, w(x, t) is the displacement of the riser at the
position x for time t , ρ > 0 is the uniform mass per unit length of the riser, and L is
the length of the riser.

The potential energy Ep of the riser system can be obtained from the equality

Ep = 1

2
EI
∫ L

0

[
w′′(x, t)

]2
dx + 1

2
T

∫ L

0

[
w′(x, t)

]2
dx, (8.2)

where EI is the bending stiffness of the riser, and T is the tension of the riser. The
first term of Eq. (7.2) is due to the bending, and the second term is due to the strain
energy of the riser.

The virtual work done by the ocean current disturbance on the riser and the vessel
is given by

δWf =
∫ L

0
f (x, t)δw(x, t) dx + d(t)δw(L, t), (8.3)

where f (x, t) is the distributed transverse load on the riser due to the hydrodynamic
effects of the ocean current, and d(t) denotes the environmental disturbance on the
vessel. The virtual work done by damping on the riser and the vessel is represented
by

δWd = −
∫ L

0
cẇ(x, t)δw(x, t) dx − dsẇ(L, t)δw(L, t), (8.4)

where c is the damping coefficient of the riser, and ds denotes the damping coef-
ficient of the vessel. We introduce the boundary control u from the actuator in the
vessel, i.e., the top boundary of the riser, to produce a transverse force for vibration
suppression. The virtual work done by the boundary control is written as

δWm = u(t)δw(L, t). (8.5)

Then, we have the total virtual work done on the system as

δW = δWf + δWd + δWm

=
∫ L

0

[
f (x, t) − cẇ(x, t)

]
δw(x, t) dx

+ [u(t) + d(t) − dsẇ(L, t)
]
δw(L, t). (8.6)

Subsequently, we obtain the governing equations of the system as

ρẅ(x, t) + EIw′′′′(x, t) − Tw′′(x, t) − f (x, t) + cẇ(x, t) = 0 (8.7)

for (x, t) ∈ (0,L) × [0,∞) and the boundary conditions of the system as

w′(0, t) = 0, (8.8)
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w′′(L, t) = 0, (8.9)

w(0, t) = 0, (8.10)

−EIw′′′(L, t) + Tw′(L, t) = u(t) + d(t) − dsẇ(L, t) − Msẅ(L, t), (8.11)

for t ∈ [0,∞).

Assumption 8.1 For the distributed load f (x, t) on the riser and the environmental
disturbance d(t) on the vessel, we assume that there exist constants f̄ ∈ R

+ and
d̄ ∈ R

+ such that |f (x, t)| ≤ f̄ for all (x, t) ∈ [0,L] × [0,∞) and |d(t)| ≤ d̄ for all
t ∈ [0,∞). This is a reasonable assumption as the time-varying disturbances f (x, t)

and d(t) have finite energy and hence are bounded, i.e., f (x, t) ∈ L∞([0,L]) and
d(t) ∈ L∞.

Remark 8.2 For control design in Sect. 8.3, only the assertion that there exist an
upper bound on the disturbance in Assumption 8.1, |f (x, t)| < f̄ and |d(t)| ≤ d̄ , is
necessary. The knowledge of the exact values for f (x, t) and d(t) is not required.
As such, different distributed load models up to various levels of fidelity, such as
those found in [195, 196, 227–229], can be applied without affecting the control
design or analysis.

Property 8.3 [237] If the kinetic energy of system (8.7)–(8.11), given by Eq. (8.1),
is bounded for all t ∈ [0,∞), then ẇ(x, t), ẇ′(x, t), ẇ′′(x, t), and ẇ′′′(x, t) are
bounded for all (x, t) ∈ [0,L] × [0,∞).

Property 8.4 [237] If the potential energy of system (8.7)–(8.11), given by
Eq. (8.2), is bounded for all t ∈ [0,∞), then w′′(x, t), w′′′(x, t), and w′′′′(x, t)
are bounded for all (x, t) ∈ [0,L] × [0,∞).

8.3 Control Design

The control objective is to suppress the vibration of the riser and stabilize the riser at
the small neighborhood of its original position in the presence of the time-varying
distributed load f (x, t) and the disturbance d(t) due to the ocean current. In this
section, the Lyapunov direct method is used to construct a boundary control law
u(t) at the top boundary of the riser and to analyze the closed-loop stability of the
system.

In this chapter, we analyze two cases for the riser system: (i) exact model-based
control, i.e., EI, T , Ms , and ds are all known; and (ii) adaptive control for the system
parametric uncertainty, i.e., EI, T , Ms , and ds are unknown. For the first case, robust
boundary control is introduced for the exact model of the riser system subject to the
ocean disturbance. For second case where the system parameters cannot be directly
measured, the adaptive control is designed to compensate the system parametric
uncertainty.
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8.3.1 Exact Model-Based Boundary Control of the Riser System

To stabilize the system given by governing Eq. (8.7) and the boundary conditions
(8.8)–(8.11), we propose the following control law:

u = −EIw′′′(L, t) + Tw′(L, t) − sgn(ua)d̄ + dsẇ(L, t) − k1Msẇ
′(L, t)

+ k2Msẇ
′′′(L, t) − kua, (8.12)

where sgn(·) denotes the signum function, k, k1, k2 are the control gains, and the
auxiliary signal ua is defined as

ua = ẇ(L, t) + k1w
′(L, t) − k2w

′′′(L, t). (8.13)

After differentiating the auxiliary signal Eq. (8.13), multiplying the resulting equa-
tion by Ms , and substituting Eq. (8.11), we obtain

Msu̇a = EIw′′′(L, t) − Tw′(L, t) + d − dsẇ(L, t) + k1Msẇ
′(L, t)

− k2Msẇ
′′′(L, t) + u. (8.14)

Substituting Eq. (8.12) into Eq. (8.14), we have

Msu̇a = −kua + d − sgn(ua)d̄. (8.15)

Remark 8.5 All the signals in the boundary control can be measured by sensors
or obtained by a backward difference algorithm. w(L, t) can be sensed by a laser
displacement sensor at the top boundary of the riser, w′(L, t) can be measured by
an inclinometer, and w′′′(L, t) can be obtained by a shear force sensor. In practice,
the effect of measurement noise from sensors is unavoidable, which will affect the
control implementation, especially when the high-order differentiating terms with
respect to time exist. In our proposed control (8.12), ẇ(L, t), ẇ′(L, t), and ẇ′′′(L, t)

with only one time differentiating with respect to time can be calculated with a
backward difference algorithm. It is noted that differentiating twice and three times
the position w(L, t) with respect to time to get ẅ(L, t) and

...
w(L, t), respectively, is

undesirable in practice due to noise amplification. For these cases, observers need
to design estimation of the states values according to the boundary conditions.

Remark 8.6 The control design is based on the distributed-parameter model, Eqs.
(8.7)–(8.11), and the spillover problems associated with traditional truncated model-
based approaches caused by ignoring high-frequency modes in controller and
observer design are avoided. For results on model-based control of distributed-
parameter system, which is helpful in avoiding spillover effects, the readers can
refer to [57, 58].

Consider the Lyapunov function candidate

V = V1 + V2 + V3, (8.16)
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where the energy term V1, an auxiliary term V2, and a small crossing term V3 are
defined as

V1 = βk2

2
ρ

∫ L

0
[ẇ]2 dx + βk2

2
EI
∫ L

0

[
w′′]2 dx + βk2

2
T

∫ L

0

[
w′]2 dx, (8.17)

V2 = 1

2
Msu

2
a, (8.18)

V3 = αρ

∫ L

0
xẇw′ dx, (8.19)

where k2 is the control gain, and α and β are positive weighting constants.

Lemma 8.7 The Lyapunov function candidate given by (8.16) is upper and lower
bounded as

0 ≤ λ1(V1 + V2) ≤ V ≤ λ2(V1 + V2), (8.20)

where λ1 and λ2 are positive constants defined as

λ1 = 1 − 2αρL

min(βρk2, βT k2)
and λ2 = 1 + 2αρL

min(βρk2, βT k2)
. (8.21)

Proof Applying inequality (2.11) to Eq. (8.19) yields

|V3| ≤ αρL

∫ L

0

([
w′]2 + [ẇ]2)dx

≤ α1V1, (8.22)

where

α1 = 2αρL

min(βρk2, βT k2)
. (8.23)

Then, we obtain

−α1V1 ≤ V3 ≤ α1V1. (8.24)

Considering α as a small positive weighting constant satisfying

0 < α <
min(βρk2, βT k2)

2ρL
,

we can obtain

α2 = 1 − α1 = 1 − 2αρL

min(βρk2, βT k2)
> 0, (8.25)
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α3 = 1 + α1 = 1 + 2αρL

min(βρk2, βT k2)
> 1. (8.26)

Then, we further have

0 ≤ α2V1 ≤ V1 + V3 ≤ α3V1. (8.27)

Given the Lyapunov function candidate in Eq. (8.16), we obtain

0 ≤ λ1(V1 + V2) ≤ V ≤ λ2(V1 + V2), (8.28)

where λ1 = min(α2,1) = α2 and λ2 = max(α3,1) = α3 are positive constants. �

Lemma 8.8 The time derivative of the Lyapunov function candidate (8.16) is upper
bounded with

V̇ ≤ −λV + ε, (8.29)

where λ and ε are positive constants.

Proof Differentiating Eq. (8.16) with respect to time leads to

V̇ = V̇1 + V̇2 + V̇3. (8.30)

The first term of Eq. (8.30)

V̇1 = A1 + A2 + A3, (8.31)

where

A1 = βρk2

∫ L

0
ẇẅ dx, (8.32)

A2 = βEIk2

∫ L

0
w′′ẇ′′ dx, (8.33)

A3 = βT k2

∫ L

0
w′ẇ′ dx. (8.34)

Substituting the governing equation (8.7) into A1, we obtain

A1 = βk2

∫ L

0
ẇ
(−EIw′′′′ + Tw′′ + f − cẇ

)
dx. (8.35)

Using the boundary conditions and integrating Eq. (8.33) by parts, we obtain

A2 = −βEIk2w
′′′(L, t)ẇ(L, t) + βEIk2

∫ L

0
ẇw′′′′ dx. (8.36)
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Using the boundary conditions and integrating Eq. (8.34) by parts, we obtain

A3 = βT k2

∫ L

0
w′d(ẇ)

= βT k2w
′(L, t)ẇ(L, t) − βT k2

∫ L

0
ẇw′′ dx. (8.37)

Using inequality (2.12), we obtain

V̇1 ≤ −βEI

2

[[
ẇ(L, t)

]2 + k2
2

[
w′′′(L, t)

]2 + k2
1

[
w′(L, t)

]2]+ βEI

2
u2
a

+ β|T k2 − EIk1|δ1
[
w′(L, t)

]2 + β

δ1
|T k2 − EIk1|

[
ẇ(L, t)

]2

+ βEIk1k2w
′′′(L, t)w′(L, t)

− β(c − δ2)k2

∫ L

0
[ẇ]2 dx + βk2

δ2

∫ L

0
f 2 dx, (8.38)

where δ1 and δ2 are positive constants.
The second term of Eq. (8.30)

V̇2 = Msuau̇a,

= −ku2
a + dua − sgn(ua)uad̄

≤ −ku2
a. (8.39)

The third term of Eq. (8.30)

V̇3 = αρ

∫ L

0

(
xẅw′ + xẇẇ′)dx

= α

∫ L

0
xw′[−EIw′′′′ + Tw′′ + f − cẇ

]
dx + αρ

∫ L

0
xẇẇ′ dx. (8.40)

After integrating Eq. (8.40) by parts and using the boundary conditions, we ob-
tain

V̇3 ≤ −αEILw′(L, t)w′′′(L, t) − 3αEI

2

∫ L

0

[
w′′]2 dx + αT L

2

[
w′(L, t)

]2

− αT

2

∫ L

0

[
w′]2 dx + αL

δ3

∫ L

0
f 2 dx + αLδ3

∫ L

0

[
w′]2 dx

+ αcL

δ4

∫ L

0
[ẇ]2 dx + αcLδ4

∫ L

0

[
w′]2 dx

+ αρL

2

[
ẇ(L, t)

]2 − αρ

2

∫ L

0
[ẇ]2 dx, (8.41)
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where δ3 and δ4 are positive constants. Applying inequalities (8.38), (8.39), and
(8.41) to Eq. (8.16) and utilizing inequality (2.12), we obtain

V̇ ≤ −
(
βck2 + αρ

2
− βδ2k2 − αcL

δ4

)∫ L

0
[ẇ]2 dx

−
(
αT

2
− αLδ3 − αcLδ4

)∫ L

0

[
w′]2 dx

− 3αEI

2

∫ L

0

[
w′′]2 dx −

(
βEI

2
− β

δ1
|T k2 − EIk1| − αρL

2

)[
ẇ(L, t)

]2

−
(
βEIk2

1

2
− αT L

2
− β|T k2 − EIk1|δ1 − |βEIk1k2 − αEIL|δ5

)

× [w′(L, t)
]2 −
(
βEIk2

2

2
− |βEIk1k2 − αEIL|

δ5

)[
w′′′(L, t)

]2

−
(
k − βEI

2

)
u2
a +
(
βk2

δ2
+ αL

δ3

)∫ L

0
f̄ 2 dx

≤ −λ3(V1 + V2) + ε, (8.42)

where ε = (
βk2
δ2

+ αL
δ3

)
∫ L

0 f̄ 2 dx = (
βk2
δ2

+ αL
δ3

)Lf̄ 2, and the constants k, k1, k2, α,

β , δ1, δ2, δ3, δ4, and δ5 are chosen to satisfy the following conditions:

α <
min(βρk2, βT k2)

2ρL
, (8.43)

βEIk2
1

2
− αT L

2
− β|T k2 − EIk1|δ1 − |βEIk1k2 − αEIL|δ5 ≥ 0, (8.44)

βEI

2
− β

δ1
|T k2 − EIk1| − αρL

2
≥ 0, (8.45)

βEIk2
2

2
− |βEIk1k2 − αEIL|

δ5
≥ 0, (8.46)

σ1 = βck2 + αρ

2
− βδ2k2 − αcL

δ4
> 0, (8.47)

σ2 = 3αEI

2
> 0, (8.48)

σ3 = αT

2
− αLδ3 − αcLδ4 > 0, (8.49)

σ4 = k − βEI

2
> 0, (8.50)

λ3 = min

(
2σ1

βρ
,

2σ2

βEI
,

2σ3

βT
,

2σ4

Ms

)
> 0. (8.51)
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From inequalities (8.28) and (8.42) we have

V̇ ≤ −λV + ε, (8.52)

where λ = λ3/λ2 and ε are positive constants. �

With the above lemmas, the exact model-based control design for riser system
subjected to the ocean current disturbance can be summarized in the following the-
orem.

Theorem 8.9 For the system dynamics described by (8.7) and boundary conditions
(8.8)–(8.11), under Assumption 8.1 and the control law (8.12), given that the initial
conditions are bounded, we can conclude the uniform boundedness (UB): the state
of the closed-loop system w(x, t) will remain in the compact set Ω defined by

Ω := {w(x, t) ∈R | ∣∣w(x, t)
∣∣≤ H1 ∀(x, t) ∈ [0,L] × [0,∞)

}
, (8.53)

where constant H1 =
√

2L
βT λ1k2

(V (0) + ε
λ
).

Proof Multiplying Eq. (8.29) by eλt yields

∂

∂t

(
V eλt
) ≤ εeλt . (8.54)

Integrating the above inequality, we obtain

V ≤
(
V (0) − ε

λ

)
e−λt + ε

λ
≤ V (0)e−λt + ε

λ
∈ L∞, (8.55)

which implies that V is bounded. Utilizing inequality (2.15) and Eq. (8.17), we have

βk2

2L
Tw2(x, t) ≤ βk2

2
T

∫ L

0

[
w′(x, t)

]2
dx ≤ V1 ≤ V1 + V2

≤ 1

λ1
V ∈ L∞. (8.56)

Appropriately rearranging the terms of the above inequality, we obtain that w(x, t)

is uniformly bounded as follows:

∣∣w(x, t)
∣∣≤
√

2L

βT λ1k2

(
V (0)e−λt + ε

λ

)
≤
√

2L

βT λ1k2

(
V (0) + ε

λ

)

∀(x, t) ∈ [0,L] × [0,∞). � (8.57)

Remark 8.10 By choosing proper values of α and β , it is shown that the increase
in the control gain k will result in a larger σ4, which will lead to a greater λ3. Then
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the value of λ will increase, which will reduce the size of Ω and produce a better
vibration suppression performance. We can conclude that the bound of the system
state w(x, t) can be made smaller, provided that the design control parameters are
appropriately selected. However, increasing k will bring a high-gain control prob-
lem. Therefore, in practical applications, the design parameters should be adjusted
carefully for achieving suitable transient performance and control action.

Remark 8.11 From Eq. (8.56) we can state that V1 is bounded for all t ∈ [0,∞).
Since V1 is bounded, ẇ(x, t), w′′(x, t), and w′(x, t) are bounded for all (x, t) ∈
[0,L]× [0,∞). From Eq. (8.1), the kinetic energy of the system is bounded, and by
Property 8.3, ẇ′(x, t) and ẇ′′′(x, t) are also bounded for all (x, t) ∈ [0,L]×[0,∞).
From the boundedness of the potential energy given by Eq. (8.2), we can use Prop-
erty 8.4 to obtain that w′′′(x, t) and w′′′′(x, t) are bounded. Using Assumption 8.1,
Eq. (8.7), and the above statements, we can state that ẅ(x, t) is also bounded for
all (x, t) ∈ [0,L] × [0,∞). From the above information it is shown that the pro-
posed control (8.12) ensures that all internal system signals, including w(x, t),
w′(x, t), ẇ(x, t), ẇ′(x, t), ẅ(x, t), w′′′(x, t), ẇ′′′(x, t), and w′′′′(x, t), are uni-
formly bounded. Since ẇ(x, t), w′(x, t), ẇ′(x, t), w′′′(x, t), and ẇ′′′(x, t) are all
bounded for all (x, t) ∈ [0,L] × [0,∞), we can conclude that the boundary control
(8.12) is also bounded for all t ∈ [0,∞).

Remark 8.12 For the system dynamics described by Eq. (8.7) and boundary condi-
tions (8.8)–(8.11), if f (x, t) = 0, the exponential stability can be achieved with the
proposed boundary control (8.12) as follows:

∣∣w(x, t)
∣∣≤
√

2L

βT λ1k2
V (0)e−λt ∀(x, t) ∈ [0,L] × [0,∞). (8.58)

8.3.2 Robust Adaptive Boundary Control for System Parametric
Uncertainty

In Sect. 8.3.1, the exact model-based boundary control (8.12) requires the exact
knowledge of the riser system. Adaptive boundary control is designed to improve the
performance of the system via parameter estimation when there are some unknown
parameters. The exact model-based boundary control provides a stepping stone to-
ward the adaptive control, which is designed to deal with the system parametric
uncertainty. In this section, the boundary control (8.12) is redesigned by using the
adaptive control since the EI, T , ds , and Ms are unknown. We rewrite Eq. (8.14) in
the form

Msu̇a = PΦ + d + u, (8.59)

where vectors P and Φ are defined as

P = [w′′′(L, t) −w′(L, t) −ẇ(L, t) k1ẇ
′(L, t) − k2ẇ

′′′(L, t)
]
, (8.60)
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Φ = [EI T ds Ms]T . (8.61)

We propose the following adaptive boundary control law for the system:

u = −PΦ̂ − kua − sgn(ua)d̄, (8.62)

where the parameter estimate vector Φ̂ is defined as

Φ̂ = [ÊI T̂ d̂s M̂s]T . (8.63)

The adaptation law is designed as

˙̂
Φ = Γ PT ua − rΓ Φ̂, (8.64)

where Γ ∈ R
4×4 is a diagonal positive-definite matrix, and r is a positive constant.

We denote the maximum and minimum eigenvalues of the matrix Γ as λmax and
λmin, respectively. The parameter estimate error vector Φ̃ ∈R

4 is defined as

Φ̃ = Φ − Φ̂. (8.65)

Substituting Eq. (8.62) into Eq. (8.59) and using Eq. (8.65) in Eq. (8.64), we have

Msu̇a = PΦ̃ − kua + d − sgn(ua)d̄, (8.66)

˙̃
Φ = −Γ PT ua + rΓ Φ̂. (8.67)

Consider the Lyapunov function candidate

Va = V + 1

2
Φ̃T Γ −1Φ̃, (8.68)

where V is defined by Eq. (8.16).

Lemma 8.13 The Lyapunov function candidate given by (8.68) is upper and lower
bounded as

0 ≤ λ1a
(
V1 + V2 + ‖Φ̃‖2)≤ Va ≤ λ2a

(
V1 + V2 + ‖Φ̃‖2), (8.69)

where λ1a and λ2a are positive constants defined as

λ1a = min

(
1 − 2αρL

min(βρk2, βT k2)
,

1

2λmax

)
, (8.70)

λ2a = max

(
1 + 2αρL

min(βρk2, βT k2)
,

1

2λmin

)
. (8.71)

Proof From inequality (8.20) we have

λ1(V1 + V2) ≤ V ≤ λ2(V1 + V2), (8.72)
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where λ1 and λ2 are positive constants defined in Eq. (8.21). From the properties of
the matrix Γ we have

1

2λmax
‖Φ̃‖2 ≤ 1

2
Φ̃T Γ −1Φ̃ ≤ 1

2λmin
‖Φ̃‖2. (8.73)

Combining inequalities (8.72) and (8.73), we have

0 ≤ λ1a
(
V1 + V2 + ‖Φ̃‖2)≤ Va ≤ λ2a

(
V1 + V2 + ‖Φ̃‖2), (8.74)

where λ1a = min(λ1,
1

2λmax
) and λ2a = max(λ2,

1
2λmin

) are positive constants. �

Lemma 8.14 The time derivative of the Lyapunov function candidate (8.68) is up-
per bounded with

V̇a ≤ −λaVa + ψ, (8.75)

where λa and ψ are positive constants.

Proof We obtain the time derivative of the Lyapunov function candidate Eq. (8.68)
as

V̇a = V̇ + Φ̃T Γ −1 ˙̃
Φ. (8.76)

Substituting Eq. (8.66) into the second term of Eq. (8.30), we have

V̇2 = Msuau̇a

= −ku2
a + dua − sgn(ua)d̄ua + PΦ̃ua

≤ −ku2
a + PΦ̃ua. (8.77)

Applying the results of Lemma 8.7 and utilizing inequalities (8.38), (8.77), and
(8.41) in V̇ , we obtain

V̇ ≤ −λ3(V1 + V2) + PΦ̃ua + ε, (8.78)

where λ3 is defined in Eq. (8.51), and ε is a positive constant. Application of in-
equality (8.78) to Eq. (8.76) yields

V̇a ≤ −λ3(V1 + V2) + Φ̃T
(
PT ua + Γ −1 ˙̃

Φ
)+ ε. (8.79)

Substituting Eq. (8.67) into inequality (8.79), we have

V̇a ≤ −λ3(V1 + V2) + rΦ̃T Φ̂ + ε

≤ −λ3(V1 + V2) − r

2
‖Φ̃‖2 + r

2
‖Φ‖2 + ε

≤ −λ3a
(
V1 + V2 + ‖Φ̃‖2)+ r

2
‖Φ‖2 + ε, (8.80)
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where λ3a = min(λ3,
r
2 ) is a positive constant. From inequalities (8.74) and (8.80)

we have

V̇a ≤ −λaVa + ψ, (8.81)

where λa = λ3a/λ2a and ψ = r
2‖Φ‖2 + ε > 0. �

With the above lemmas, the adaptive control design for the riser system subjected
to the ocean current disturbance can be summarized in the following theorem.

Theorem 8.15 For the system dynamics described by (8.7) and boundary condi-
tions (8.8)–(8.11), under Assumption 8.1 and the control law (8.62), given that the
initial conditions are bounded, we can conclude the uniform boundedness (UB): the
state of the closed-loop system w(x, t) will remain in the compact set Ωa defined by

Ωa := {w(x, t) ∈R | ∣∣w(x, t)
∣∣≤ H2 ∀(x, t) ∈ [0,L] × [0,∞)

}
, (8.82)

where the constant H2 =
√

2L
βT λ1ak2

(Va(0) + ψ
λa

).

Proof Multiplying Eq. (8.75) by eλat yields

∂

∂t

(
Vae

λat
) ≤ ψeλat . (8.83)

Integrating the above inequality, we obtain

Va ≤
(
Va(0) − ψ

λa

)
e−λat + ψ

λa

≤ Va(0)e
−λat + ψ

λa

∈ L∞, (8.84)

which implies that Va is bounded. Utilizing inequality (2.15) and Eq. (8.17), we
have

βk2

2L
Tw2(x, t) ≤ βk2

2
T

∫ L

0

[
w′(x, t)

]2
dx ≤ V1 ≤ V1 + V2 ≤ 1

λ1a
Va ∈ L∞.

Appropriately rearranging the terms of the above inequality, we obtain that w(x, t)

is uniformly bounded as follows:

∣∣w(x, t)
∣∣≤
√

2L

βT λ1ak2

(
Va(0)e−λat + ψ

λa

)
≤
√

2L

βT λ1ak2

(
Va(0) + ψ

λa

)

∀(x, t) ∈ [0,L] × [0,∞). � (8.85)

Remark 8.16 From the similar analysis of Remark 8.10 we can conclude that the
system state w(x, t) with the proposed robust adaptive boundary control can be
made smaller by choosing control gain k in Eq. (8.62) appropriately.
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Remark 8.17 From Eq. (8.84) we can obtain that the parameter estimate error Φ̃

is bounded for all t ∈ [0,∞). Using the derivation similar to those employed
in Remark 8.11, we can state that the proposed control (8.62) ensures that all
internal system signals, including w(x, t), w′(x, t), ẇ(x, t), ẇ′(x, t), ẅ(x, t),
w′′′(x, t), ẇ′′′(x, t), and w′′′′(x, t), are uniformly bounded. Since Φ̂ , w′(x, t),
ẇ(x, t), w′′′(x, t), and ẇ′′′(x, t) are all bounded for all (x, t) ∈ [0,L] × [0,∞),
we can conclude that the boundary adaptive control (8.62) is also bounded for all
t ∈ [0,∞).

Remark 8.18 For the system dynamics described by Eq. (8.7) and boundary con-
ditions (8.8)–(8.11), if there is no distributed disturbance for the riser system, i.e.,
f (x, t) = 0, the boundedness stability can be achieved with the proposed boundary
control (8.62) as follows:

∣∣w(x, t)
∣∣≤
√

2L

βT λ1ak2

(
Va(0)e−λat + r‖Φ‖2

2λa

)

∀(x, t) ∈ [0,L] × [0,∞). (8.86)

8.4 Numerical Simulations

Simulations for a riser of length 1000 m under the ocean current disturbance are car-
ried out to demonstrate the effectiveness of the proposed boundary control defined
in Eq. (8.12) and Eq. (8.62).

The riser, initially at rest, is excited by a distributed transverse disturbance due to
the ocean current. The corresponding initial conditions of the riser system are given
as

w(x,0) = 0, (8.87)

ẇ(x,0) = 0. (8.88)

The system parameters are given in Table 8.1.
In the simulation, the ocean surface current velocity U(t) is generated by

Eq. (4.94). The full current load is applied from x = 1000 m to x = 0 m and there-
after linearly declines to zero at the ocean floor, x = 0, to obtain a depth-dependent
ocean current profile U(x, t) as in Chap. 3. The distributed load f (x, t) is generated
by Eq. (2.5) with CD = 1, θ = 0, St = 0.2, and fv = 2.625. The disturbance d(t) on
the vessel generated by the following equation is shown in Fig. 8.2:

d(t) = [3 + 0.8 sin(0.7t) + 0.2 sin(0.5t) + 0.2 sin(0.9t)
]× 106. (8.89)

Displacement of the riser system for free vibration, i.e., u(t) = 0, under the ocean
disturbance is shown in Fig. 8.3. Displacement of the riser system with exact model-
based control Eq. (7.12), by choosing k = 1 × 107, under the ocean disturbance is
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Table 8.1 Parameters of the riser system

Parameter Description Value

L Riser length 1000.00 m

D Riser external diameter 152.40 mm

EI Riser stiffness 1.5 × 107 N m2

Ms Vessel mass 9.60 × 106 kg

ds Vessel damping 1 × 103 N s m−1

T Riser tension 8.11 × 107 N

ρ Riser mass per unit 500.00 kg m−1

ρs Sea water density 1024.00 kg m−3

c Riser damping 2.00 N s m−2

Fig. 8.2 Disturbance on the vessel d(t)

shown in Fig. 8.4. When the system parameters EI, T , ds , and Ms are unknown,
the displacement of the riser system with adaptive control (8.62), by choosing
k = 1 × 107, r = 0.0001, and Γ = diag{1,1,1,1}, under the ocean disturbance is
shown in Fig. 8.5. Figures 8.4 and 8.5 illustrate that the proposed boundary controls
(8.12) and (8.62) are able to stabilize the riser at the small neighborhood of zero by
appropriately choosing design parameters. The corresponding boundary control in-
puts for the exact model-based control and the adaptive control are shown in Fig. 8.6.
Both two control inputs vary between 0 and 5 × 104 N, which are implementable in
practice.
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Fig. 8.3 Displacement of the riser without control

Fig. 8.4 Displacement of the riser with exact model-based control

8.5 Conclusion

Vibration suppression for a flexible marine riser system subjected to the ocean cur-
rent disturbance has been presented in this chapter. Two cases have been investi-
gated: (i) exact model-based control and (ii) robust adaptive control for the system
parametric uncertainty. Robust boundary control has been proposed based on the
exact model of the riser system, and adaptive control has been designed to compen-
sate for the system parametric uncertainty. With the proposed control, closed-looped
stability under the external disturbance has been proven by using the Lyapunov di-
rect method. The proposed control has been designed based on the original infinite-
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Fig. 8.5 Displacement of the riser with adaptive control

Fig. 8.6 Control input u(t)

dimensional model (PDE), and the spillover instability phenomenon has been elim-
inated. The control is implementable since all the required signals in the control can
be measured by sensors or obtained by a backward difference algorithm. Numer-
ical simulations have been provided to illustrate the effectiveness of the proposed
boundary control.

In our control design, there is no term introduced to cope with the effect of the
time-varying distributed disturbance f (x, t). When the upper bound of the time-
varying distributed disturbance is large, the control performance will be affected.
For example, in the mooring system, H1 and H2 can receive a large value when the



162 8 Flexible Marine Riser with Vessel Dynamics

upper bound of the time-varying distributed disturbance increases. Even though the
sizes of H1 and H2 can be reduced by choosing the control gains kp , kv , and ks ap-
propriately, it may bring a high-gain control scheme. Observer for the time-varying
distributed disturbance may be regarded as one solution for such problem. State ob-
servers for distributed parameter systems have been investigated in [154, 155, 259–
265], which could be used to deal with the time-varying distributed disturbance
f (x, t). In the marine environment, the observer and control design is more chal-
lenging due to the complicated flexible system models coupled with the vessel’s
motion. Boundary control of flexible systems is currently an active research area,
and how to take into account the time-varying distributed disturbance in the control
design becomes an important and challenging problem.



Chapter 9
Structural Analysis and Riser Operations
(Geoff Lyons and Minoo Patel)

9.1 Introduction

Marine risers are slender ocean structures subjected to a wide range of internal and
external forces. Examples of internal forces are those due to self weight, internal
hydrostatic pressures, and the momentum and Coriolis forces induced by internal
flow. External forces arise from the action of hydrostatic pressures in the surround-
ing fluid and forces exerted by surface vessel motions, waves, and currents. This
chapter describes the analysis of vertical marine risers under the influence of these
forces and the subsequent application of the analysis to marine riser design. More
than this, the incorporation of the analysis techniques within sophisticated Riser
Management Systems enables improved operability, increased riser service lives,
and better safety. In this chapter, we introduce an example. The approach adopted
in this chapter is to start with the simplest of static models for a marine riser and
to guide the reader toward more complex dynamic models. This approach mirrors
the successive application of more complex analysis models with the progressive
development of a marine riser design.

The operation of fixed and floating offshore structures requires the use of pipe
connections between surface facilities and the seabed as well as pipes laying on or
below the seabed for the transportation of oil and gas. Pipes bridging the vertical
separation between surface vessel and seabed are called marine risers and are of
two fundamental types. Since the 1950s, drilling operations from fixed and floating
offshore structures have been carried out by using jointed steel pipes of between
0.204 m (8 in) to 0.762 m (30 in) external diameter to act as a conduit for the drill
pipe penetrating the seabed. Such drilling risers connect a surface platform to a
subsea wellhead. Drilling fluid (mud) at high pressure is transported to the drill face
through the hollow drill pipe and returns up to the surface vessel through the annulus
between the drill pipe and drilling riser. Marine risers are also used to transport oil
and gas from producing fields for processing up to a surface platform and back for
export through a subsea pipeline or a tanker loading system. Vertical steel marine
risers used for drilling or production can be split into two categories. Fixed offshore
structures tend to use risers that are clamped at intervals to structural members of
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Fig. 9.1 Riser and surface vessel configuration showing the basic parameters

the platform along their vertical run up to the surface. On the other hand, floating
or compliant offshore structures (such as drillships, semisubmersibles, tension leg
platforms, SPARS, buoys) tend to use freely strung risers that are only connected at
the surface and seabed. Such risers have to be held up with a sufficiently high tension
at their top to prevent buckling due to self weight of their very slender geometry.
These risers may also need to have heave compensating slip joints at their top end to
take up relative motions between the moving surface vessel and stationary seabed.

For several decades, the offshore industry has used pipes of composite steel and
elastomer construction for use as marine risers. These so called “flexible” risers
are strung in nonvertical catenary shapes from the surface platform and are often
supported by an intermediate buoy or string of buoyancy modules. More recently
entirely composite (GRP and carbon fiber) risers have been introduced into service.
Flexible risers are able to operate with much larger surface platform offset (from
above the subsea wellhead) than is permissible with more rigid top-tensioned steel
(and occasionally aluminium) risers, which are generally limited to offsets of be-
tween 7 % to 10 % of water depth. In some cases, a combined vertical steel riser
with flexible pipe connections at the surface offers a worthwhile design option; see
Fig. 9.2 for an example.

Both top-tensioned steel and flexible risers need to be carefully analyzed during
design to ensure that the pipes have acceptable levels of deformations, stresses, and
fatigue lives due to forces induced by currents, waves, and surface vessel motions.
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Fig. 9.2 Floating production vessel with rigid riser

The presence of internal hydrostatic pressure and external sea water pressure has a
fundamental effect on the governing equations for these tubular structures as does
the influence of current and wave flow around the pipe.

The marine riser is a critical component of offshore drilling and production op-
erations. Careful maintenance, inspection, and monitoring of the riser is required
in order to minimize the likelihood of failure. The following sections address these
issues.

Here, we mainly focus our attention on the top-tensioned risers of compliant
systems. The reader is directed to [266] for further information.
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9.2 Riser Loadings

A schematic view of a marine riser connected to a surface vessel is illustrated in
Fig. 9.1. Tension is applied to the top of the riser in order to prevent buckling col-
lapse of the structure under its own self weight. The correct magnitude of the applied
top tension is important in order to prevent overstressing on the one hand or buckling
and collapsing of the riser pipe on the other.

The top connection of the riser to the surface vessel is normally in the form of a
slip joint, which accommodates vertical motions of the surface vessel. This connec-
tion, together with the relatively high axial stiffness of the riser, results in low axial
strain. In contrast, risers are characterized by relatively low bending stiffnesses and
long lengths. Therefore, only lateral displacements of riser in shallow and moderate
water depths are of concern. As the riser deployment water depth increases, axial vi-
brations become increasingly more significant particularly for water depths greater
than 1000 m.

Internal forces within the riser consist of bending moments, shear forces, axial
tensions and body weight. Riser lateral accelerations result in inertial loads. Forces
also arise from the hydrostatic pressures of the internal riser fluid and the external
sea water. The dynamics of the internal riser fluid flow can also contribute to the
loading on the riser. Hydrodynamic forces are imposed on the riser as a result of
waves, current, and vessel motions.

The unsteady flow around a riser is complex and is not totally understood. How-
ever, a simple model for the hydrodynamic loading on a vertical circular cylinder
has been proposed by Morison et al. [267]. Morison’s equation was first proposed
for the hydrodynamic loading on a fixed vertical cylinder in shallow water. The
equation has been extended and experimentally verified to model the hydrodynamic
loading on arbitrarily orientated slender cylinders in all water depths [268]. Mori-
son’s equation states that the wave force df acting on a moving cylinder element of
length ds is given by

df =
[
ρπr2 dvn

dt
+ ρπr2Cm

(
dvn

dt
− d2xn

dt2

)

+ ρrCD

(
vn − dxn

dt

)∣∣∣∣vn − dxn

dt

∣∣∣∣
]
ds, (9.1)

where vn is the water particle velocity normal to the cylinder longitudinal axis, xn is
the cylinder displacement normal to its longitudinal axis, Cm and CD are the added
mass and drag coefficients of the cylinder, respectively, ρ is the fluid density, and r

is the cylinder’s radius.
The added mass and drag coefficients are functions of the Reynolds number, R,

and the Keulegan Carpenter number, K . R and K are given by

R = 2rUm

ν
, (9.2)
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Fig. 9.3 Lift coefficient against Reynolds number for various values of Keulegan–Carpenter num-
ber, K [268]

K = UmT

2r
, (9.3)

where Um is the peak flow velocity, ν is the kinematic viscosity, and T is the period
of flow oscillation.

The added-mass coefficient Cm is sometimes written in terms of an added-inertia
coefficient CM = 1 + Cm.

Morison’s equation (9.1) is used to model the in-plane hydrodynamic loading
on a marine riser. Out-of-plane forces also exist due to the formation of vortices
that induce an oscillating transverse lift force. This lift force, dL, for a segment of
length, ds, on a cylinder of radius r can be written as

dL = CLρrU
2
m ds, (9.4)

where ρ is the fluid density, and CL is the lift coefficient determined from experi-
mental data in planar oscillatory flow. Figure 9.3 presents values of CL against the
Reynolds number at a range of Keulegan–Carpenter numbers for smooth cylinders
from Sarpkaya and Isaacson [268].

The force oscillation can be taken to occur at the Strouhal frequency given by
taking a Strouhal number of 0.2. The Strouhal number, S, is given by

S = 2rf/U, (9.5)

where f is the frequency of vortex shedding, and U is the steady fluid velocity.
For smooth cylinders with Reynolds numbers greater than 1.5 × 106, a value of

CL = 0.20 may be used. Figure 9.4 (also from Sarpkaya and Isaacson) [268] gives
equivalent data for roughened cylinders with CL taken to be 0.25 for large K and R

together with a Strouhal number of 0.22.
The oscillatory nature of the lift force can induce dynamic excitation of the

loaded member. It is known that as the vortex shedding period of the cylinder ap-
proaches its natural period, this lift force increases considerably due to cylinder
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Fig. 9.4 Lift coefficient for rough cylinders as a function of Keulegan–Carpenter number for var-
ious roughness heights. Line a denotes smooth cylinder data for β from 1,000 to 2,000. Cross
hatched region denotes occurrence of CD data for rough cylinders with L/D = 1/200 [268]

motion, and a dynamic instability can result. In many practical situations, structural
failure has been known to occur in this fashion.

The steady drag force, fc , on a unit length of riser due to current is given by

fc = ρrCDU2, (9.6)

where U is the current velocity. This force can contribute a significant proportion of
the static lateral loading on a riser.

The value of drag coefficient, CD , to be inserted into Morison’s equation can only
be obtained experimentally. In theory, the value of the inertia coefficient, Cm, can be
calculated (it is, for example, 2.0 for a smooth cylinder in an ideal fluid). However,
measured values are used in practice, particularly when drag is the dominant force.
For irregular shapes, the inertia coefficient can be calculated using potential flow
diffraction theory.

Many experiments have been designed to measure values of drag and inertia
coefficients in steady or planar oscillatory flows, but their results can only be used
with caution for wave force prediction. The most useful experimental measurements
have been made in circumstances that model full-scale conditions within the ocean
environment. Measurements made offshore on large test structures in real seaways
are especially valuable.
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Table 9.1 Wave loading regimes

D/λ <0.20 >0.20

K < 25 Drag dominated flow regime. Morison’s equation
with Cm and CD values required for computing
wave forces. Drag coefficient is a function of
Reynolds number. For R > 1.5 × 106, Cm = 1.8,
CD = 0.62. For 105 <R < 1.5 × 106, Cm = 1.0,
and CD varies from 1.0 to 0.6

5 <K < 25 Intermediate regime between drag and inertia
domination. Morison’s equation applicable, but
published Cm and CD values exhibit wide
scatter. Flow behavior and consequent loading
complex and uncertain. For R < 1.5 × 106,
Cm = 1.8, CD = 0.62

K < 5 Inertia dominated regime. Morison’s equation or
diffraction theory for computing wave forces.
Cm = 2.0 Effect of CD is negligible.

Morison’s equation unsuitable
for computing wave forces.
Diffraction theory required.

One problem with the application of Morison’s equation is the large scatter in val-
ues of the inertia and drag coefficients. However, there is a useful degree of correla-
tion between the coefficients and two flow parameters, Keulegan–Carpenter number
K and Reynolds number R. Nevertheless, the scatter and hence some uncertainty
remain. Table 9.1 gives a summary of generally accepted added inertia and drag
coefficients for flow around circular cylinders in unconfined flow remote from solid
boundaries such as the seabed.

Sarpkaya [269] carried out many systematic studies of the variations of inertia
and drag forces for circular cylinders in planar oscillatory flow. Figures 9.5 and 9.6
present plots of Cm and CD against the Reynolds number and Keulegan–Carpenter
number for smooth cylinders from data prepared by Sarpkaya and Isaacson [268].
Figures 9.7 and 9.8 also present this data plotted as a function of the Keulegan–
Carpenter number with parameter β being the ratio of the Reynolds number to the
Keulegan–Carpenter number. It can be seen that the Cm and CD data show consis-
tent and physically meaningful correlations with the Keulegan–Carpenter number.

The surface finish of the cylinder influences its drag coefficient. Figure 9.9 shows
the effects of roughness on the steady flow drag coefficient. For planar oscillatory
flow, Sarpkaya and Isaacson [268] present recommended data for inertia and drag
coefficients as functions of roughness, Reynolds number and for Keulegan Carpen-
ter range of from 20 and 100.

Riser configurations often consist of a main conduit surrounded by smaller diam-
eter pipes. There is very little design information available at present on the effects
of flow interference in waves between groups of closely spaced cylinders, although
the physics of such phenomena are being researched at present. Recent work has
shown that planar oscillatory wave flow about circular cylinders induces motion of
vortex pairs that can induce substantial velocity magnifications in the flow around
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Fig. 9.5 Added inertia coefficient against Reynolds number for various values of Keulegan–Car-
penter number, K [268]

Fig. 9.6 Drag coefficient against Reynolds number for various values of Keulegan–Carpenter
number, K [268]

the cylinder. The presence of smaller cylinders around a larger-diameter cylinder
can interact with these velocity magnifications to give rise to significant interfer-
ence effects. Grass et al. [270] present research work in this area.
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Fig. 9.7 Added inertia coefficient plotted against Keulegan–Carpenter number for various values
of Reynolds number R and frequency parameter β [268]

Fig. 9.8 Drag coefficient against Keulegan–Carpenter number for various values of Reynolds
number R and frequency parameter β [268]

The influence of surface vessel motions on a marine riser may be decomposed
into two parts. The first component is the steady displacement of the vessel from
above the wellhead as a result of steady environmental forces being applied to the
vessel. This displacement is known as the static vessel offset. Superimposed on the
static offset are the vessel’s dynamic motions in response to waves. The motion of
the surface vessel represents a dynamic boundary condition that defines the hori-
zontal displacement of the top of the riser.

The riser is constrained laterally at the wellhead. The remaining rotational bound-
ary conditions applied to the riser depend on the riser base and top end equipment.
A flex or ball joint is often used at the riser base, which ensures free rotation and
hence no bending moments at the lower end. In practice, there is some rotational
stiffness associated with the riser end rotations, and this needs to be measured or
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Fig. 9.9 Variation of CDo

1+2 ε
D

with Reynolds number, R (from ESDU, 1986)

estimated for the purposes of riser analysis. Different riser boundary conditions are
illustrated in Fig. 9.10.

9.3 Governing Equations

A vertical marine riser may be regarded as a hollow “beam column.” The difference
between a column subjected to lateral loading and a marine riser is that the riser is
subjected to both internal and external hydrostatic pressures as well as to axial and
lateral loadings. The development presented here first considers the static loading
of a beam column and then extends the equations to apply to the static loading of
a marine riser. Finally, the full dynamic equation of motion for a marine riser is
presented.

If the riser is simply considered as a beam column, then the governing differential
equation used for lateral static deflection is

d2

dy2

(
EI

d2x

dy2

)
︸ ︷︷ ︸

A

−T (y)
d2x

dy2︸ ︷︷ ︸
B

−W
dx

dy︸ ︷︷ ︸
C

= f, (9.7)

where EI is the riser bending stiffness, T is the axial tension in the riser pipe wall,
W is the weight per unit length of riser, and f is the lateral force per unit length.
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Fig. 9.10 Riser end boundary conditions

Fig. 9.11 Conventional
vertical riser notation

The coordinate system used is shown in Fig. 9.11 with y measured from the bottom
of the riser and positive upward, while x denotes the horizontal riser deflection from
a vertical through the riser base.
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The first term (A) of Eq. (9.7) is the resistance to lateral loading resulting from
the riser’s flexural rigidity. The second term (B) is the lateral loading due to the
axial tension. The third term (C) is the lateral component of the riser’s weight as a
result of the riser’s slope.

If the riser contains drill pipe or external control lines, then, for the purposes of
analysis, these are usually incorporated into the physical properties of the riser.

If, however, the hydrostatic pressure of the riser’s internal and external fluid is
included in the analysis, a slightly different form of Eq. (9.7) is derived. The force
due to the hydrostatic external pressure distribution, which exists around the riser,
and also the force due to internal pressure (which is related to wellhead pressure)
are resolved into horizontal and vertical force components and incorporated into the
governing equation for static deflection to give

d2

dy2

(
EI

d2x

dy2

)
︸ ︷︷ ︸

A

−[T (y)︸︷︷︸
B

+AoPo(y) − AiPi(y)︸ ︷︷ ︸
C

]d2x

dy2

− (γsAs − γoAo + γiAi)︸ ︷︷ ︸
D

dx

dy
= f, (9.8)

where the additional terms are the external hydrostatic pressure around the riser,
Po, the internal hydrostatic pressure, Pi , with Ao being the cross-sectional area of
riser bore and wall, Ai , the cross sectional area of riser bore only, and As , the cross-
sectional area of riser wall. γi is the specific weight of fluid in the riser bore, γo
is the specific weight of fluid surrounding the riser tube (sea water), and γs is the
specific weight of riser pipe wall material. Note that the hydrostatic pressures vary
linearly with position along the y axis.

Equation (9.8) will be derived later but is valid for small deflections only, that is,
for offset angles less than 10◦ from the vertical. Therefore the error in applying this
equation to a vertical steel riser is usually negligible. Some interesting points con-
cerning the effects of pressure on the riser may be deduced by further consideration
of the third term C in Eq. (9.8). The AoPo(y)−AiPi(y) term comes from the lateral
effect of external and internal hydrostatic pressure. Its effect is similar to that of the
actual tension in the riser wall since this term also multiplies the second derivative
of displacement x. The pressure term does not modify the actual riser axial tension
or the resultant direct stress in the riser wall. For this reason, the collection of param-
eters that multiply the second derivative is sometimes called the “effective tension”,
Te, given by

Te = T + AoPo − AiPi. (9.9)

The concept of effective tension is a convenient mathematical grouping of pa-
rameters that have a similar effect. Equation (9.9) demonstrates that the effect of
external hydrostatic pressure is similar to that of a tensile axial force, while the in-
ternal pressure influences riser behavior as would a compressive force. The term
(γsAs − τoAo + γiAi) is equivalent to the corresponding term W in Eq. (9.7).
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Fig. 9.12 Notation for a riser
of arbitrary geometry

Fig. 9.13 Riser element

Now, the differential equation describing the static behavior of a marine riser
of arbitrary geometry is derived using the notation of Fig. 9.12 and the element
of Fig. 9.13. The analysis is restricted to two dimensions for simplicity. The static
forces acting on the pipe element of Fig. 9.13 can be listed as follows:

(a) An axial tension and shear force within the pipe wall material.
(b) A horizontal force due to the resultant of external and internal hydrostatic pres-

sures, (Fxo + Fxi)

(c) A vertical force due to the resultant of external and internal hydrostatic pres-
sures, (Fyo + Fyi)
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(d) A drag force due to steady current. The velocity vector is resolved into com-
ponents normal and tangential to the element, with only the normal component
assumed to exert a distributed force of N per unit length.

(e) The weight of the element WR , acting vertically downward.

Summing the components of force in the y direction for the element in Fig. 9.13
yields the equation

(T + dT ) sin(θ + dθ) − T sin θ − (V + dV ) cos(θ + dθ)

+ V cos θ + (Fyo + Fyi) − WR − N cos θr dθ = 0. (9.10)

Similarly, summing forces in the x direction yields

(T + dT ) cos(θ + dθ) − T cos θ + (V + dV ) sin(θ + dθ)

− V sin θ + (Fyo + Fyi) + N sin θr dθ = 0. (9.11)

These equations can be simplified for small dθ to

(T + dT ) cos(θ + dθ) − T cos θ + (V + dV ) sin(θ + dθ)

− WR − N cos θr dθ = 0 (9.12)

and

−(T sin θ − V cos θ) dθ + dT cos θ + dV sin(θ) + (Fyo + Fyi) sin θ

− Nr dθ = 0. (9.13)

Combining these expressions gives

T dθ − dV + (Fyo + Fyi − WR) cos θ − (Fxo + Fxi) sin θ − Nr dθ = 0. (9.14)

Continuing with the above analysis requires the forces on a cylindrical element
due to internal and external hydrostatic pressure (Fxo,Fxi,Fyo,Fyi) to be defined.
This is done using the derivation presented below.

A hollow cylindrical member submerged in a fluid and containing a fluid within
itself will experience a force due to the external and internal hydrostatic pressures of
both fluids acting on the surfaces of the cylinder. An element of the cylinder is shown
in Fig. 9.14. The resultant force is obtained by finding the force on an arbitrary
section of the element (shaded portion of Fig. 9.14) and resolving it into components
before integrating to obtain the total force on the element. Note that only the force
on the curved walls of the cylinder due to hydrostatic pressure is evaluated. The
force on the end cross-sections is not considered here since the cylinder is taken
to be very long and the end cross-section will usually terminate to a coupling such
that hydrostatic pressure will not act on the cylinder cross sections. Furthermore,
the axis system used in Fig. 9.14 is such that the hydrostatic pressure is taken to
increase linearly along the vertical axis.
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Fig. 9.14 Cylinder element

The angle φ is used to describe the position on the circumference of the element
to be analyzed. Initially, only the external pressure is considered in the derivation.
The forces due to the internal pressure can be readily deduced from those due to the
external pressure by a simple reversal of signs and change of diameter.

As shown in Fig. 9.14, the length, ds, of any strip on the cylinder circumference
parallel to its axis is given by

ds =
(
r + 1

2
D cosφ

)
dθ, (9.15)

where r is the element radius of curvature, D is the diameter of the pressure bearing
surface, and θ and φ are defined in Fig. 9.14. If the hydrostatic pressure on the
centreline of the element at its lower end is p, then the pressure, Pb , at various
levels along the bottom surface is given by

Pb = p − 1

2
γD cos θ sinφ, (9.16)

where γ is the weight per unit volume of the fluid medium. Also, the corresponding
pressure Pt at the top of the element is hydrostatic and given by the equation

Pt = Pb − γ cos θ ds (9.17)
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since

cos θ = dy

ds
. (9.18)

The area of the section of element described by arc dφ is given by

dA = 1

2
Dds dφ. (9.19)

The force that acts on this section of the element is then

dF = 1

2
(Pb + Pt ) dA. (9.20)

Substituting the expressions derived for dA, Pb , Pt into (9.20) gives

dF = 1

2
(Pb + Pt − γ ds cos θ)

(
1

2
Dds dφ

)
, (9.21)

dF =
(
p − 1

2
γD cos θ sinφ − 1

2
γ ds sin θ

)(
1

2
Dds dφ

)
. (9.22)

Replacing Eq. (9.15) for ds leads to

dF =
{
p − 1

2
γD cos θ sinφ − 1

2
γ

(
r + 1

2
− D cosφ

)
dθ sin θ

}

×
(

1

2
r + 1

4
D cosφ

)
Ddθ dφ. (9.23)

Expanding the individual terms gives

dF =
[

1

2
pDr dθ − 1

4
γDr2 sin θ(dθ)2

]
dφ

+
[

1

4
pD2 dθ + 1

4
γD2r cos θ dθ − 1

4
D2r sin θ(dθ)2

]
+ sinφ dφ

+
[

1

8
γD2 cos θ dθ − 1

8
γD3 sin θ(dθ)2

]
sin2 φ dφ. (9.24)

The differential force may be resolved into its three directional components
−Fx,Fy , and Fz along the x, y, and z axes, respectively. In this case, the analy-
sis is restricted to two dimensions, and since there is no deformation out of the x–y
plane, the resultant force in the z direction is taken as zero, i.e., Fz = 0.

dFx =
∫ φ=2π

φ=0
−dF sin θ sinφ (9.25)

dFy =
∫ φ=2π

φ=0
dF cos θ sinφ. (9.26)
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Therefore,

Fx = −
[

1

2
pDr sin θ dθ − 1

4
γ r2D sin2 θ(dθ)2

]∫ 2π

0
sinφ dφ

−
[

1

4
pD2 sin θ dθ + 1

4
γD2r sin θ cos θ dθ − 1

4
γD2r sin2 θ(dθ)2

]

×
∫ 2π

0
sin2 φ(dφ)

−
[

1

8
γD3 cos θ sin θ dθ − 1

16
γD3 sin θ(dθ)2

]∫ 2π

0
sin3 φ dφ, (9.27)

using
∫ 2π

0
sinφ dφ = 0,

∫ 2π

0
sin2 φ dφ = π,

∫ 2π

0
sin3 φ dφ = 0,

A = πD2

4

(9.28)

gives the force in the x direction on a curved beam as

Fx = −[pA + rγA(cos θ − sin θ dθ)
]

sin θ dθ. (9.29)

When the force due to internal pressure is considered, its form will be the same
but of opposite sign. Combining the effects of internal and external pressure for the
most general case gives

(Fxo+Fxi) = [(PiAi −PoAo)+r(γiAi −γoAo)(cos θ−sin θdθ)
]

sin θ dθ, (9.30)

where Po,Pi are the external and internal pressures, respectively, at the level of the
bottom of the element centreline.

The vertical force Fy is obtained in a similar way. Before the integration is per-
formed, the expression for the force in the vertical direction appears as

Fy = −
[

1

2
pDr dθ − 1

4
γ r2D sin θ(dθ)2

]
cos θ

∫ 2π

0
sinφ dφ

+
[

1

4
pD2 dθ + 1

4
γD2r cos θ dθ − 1

4
γD2r sin θ(dθ)2

]
cos θ

∫ 2π

0
sin2 φ(dφ)

+
[

1

8
γD3 cos θ dθ − 1

8
γD3 sin θ(dθ)2

]
cos θ

∫ 2π

0
sin3 φ dφ. (9.31)
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In evaluating this integral, the following results are used:

∫ 2π

0
sinφ dφ = 0,

∫ 2π

0
sin2 φ dφ = π,

∫ 2π

0
sin3 φ dφ = 0.

(9.32)

Thus, Eq. (9.31) becomes

Fy = [pA + rγA(cos θ − sin θ dθ)
]

cos θ dθ. (9.33)

As before, the effect of including the internal pressure acting on the element can
be done quite easily. The final expression for the vertical force on a curved inclined
element due to both internal and external pressures is given by

Fyo +Fyi = [(PoAo −PiAi)+ r(γoAo −γiAi)(cos θ − sin θ dθ)
]

cos θ dθ. (9.34)

Substituting the above expressions (9.30) and (9.34) for the resultant horizontal
forces, (Fxo + Fxi) and vertical forces, (Fyo + Fyi) due to internal and external
hydrostatic pressure, together with equations for the element weight and drag force,
into Eq. (9.9) yields

T dθ − dV − [(PiAi − PoAo) + r(γiAi − γoAo)(cos θ − sin θ dθ)
]

cos2 θ dθ

− WR cos θ − [(PiAi − PoAo) + r(γiAi − γoAo)(cos θ − sin θ dθ)
]

sin2 θ dθ

− Nr dθ

= 0, (9.35)

and after simplification this becomes

[T − PiAi + PoAo]dθ − dV

+ {(cos θ − sin θ dθ)(γoAo − γiAi) − γsAs cos θ − N
}
r dθ = 0 (9.36)

with WR = γsAsr dθ , where γs is the weight per unit volume of the pipe material,
and As is the pipe wall area of cross-section. It is of interest at this stage to rewrite
Eq. (9.36) for a nearly vertical pipe. This can be done by using ψ as the angle
between the pipe element and the vertical such that ψ = π/2 − θ and dy = −dθ .
Then, Eq. (9.36) can be rewritten in terms of ψ as

−[T − PiAi + PoAo]dψ − dV

− {(sinψ − cosψ dψ)(γoAo − γiAi) − γsAs sinψ − N
}
r dψ = 0. (9.37)
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Now, for small ψ , the expressions cosψ = 1, rdψ = −dy, sinψ = − dx
dy

, and
dψ
dy

= − d2x

dy2 are substituted into Eq. (9.37). After neglecting products of differen-
tials, dividing by dy, and using the small deflection equation

dV

dy
= d2

dy2

(
EI

d2x

dy2

)
, (9.38)

the equation becomes

d2

dy2

{
EI

d2x

dy2

}
− (T + PoAo − PiAi︸ ︷︷ ︸

A

)

{(
1 +
(
dx

dy

)2)}−1

︸ ︷︷ ︸
B

d2x

dy2

− (γsAs − γoAo + γiAi)
dx

dy︸ ︷︷ ︸
C

= N

{(
1 +
(
dx

dy

)2} 1
2

︸ ︷︷ ︸
D

. (9.39)

Note that the term A in the above equation arises from the lateral effects of in-
ternal and external pressure and is the source of the concept of effective tension
outlined earlier. The terms B and D, on the other hand, are due to the effects of riser
orientation. Now, because small deflections are assumed in vertical riser analysis,
terms B and D in Eq. (9.39) may be equated to unity to give

d2

dy2

{
EI

d2x

dy2

}
− (T +PoAo −PiAi)

d2x

dy2
− (γsAs −γoAo +γiAi)

dx

dy
= N, (9.40)

which is of a form similar to Eq. (9.8). The equation of equilibrium for the static
deflection of a marine riser Eq. (9.8) is readily extended to include riser dynamics.
The equation of horizontal motion for a marine riser is given by

m
d2x

dt2
+ c

dx

dt
+ d2x

dy2

[
EI

d2x

dy

]
− [T (y) + AoPo(y) − AiPi(y)

]d2x

dy2

− (γsAs − γoAo + γiAi)
dx

dy
= f (t). (9.41)

The horizontal deflection, x, of the riser is now a function of both position, y, and
time, t , and hence partial derivatives are used. m is the physical mass per unit length
of riser and contents, and c is the equivalent linear structural damping coefficient.
The two new terms in Eq. (9.41) are the inertia force m(d2x/dt2), which is a result
of the lateral acceleration of the riser, and the equivalent linear structural damping
c dx/dt . The lateral hydrodynamic force per unit length, f (t), is now a function of
time. This lateral force may be modeled by Morison’s equation.

Thus,

f (t) = ρπr2(1 + Cm)
dw

dt
+ πr2Cm

d2x

dt2
+ ρrCD

(
w − dx

dt

)∣∣∣∣w − dx

dt

∣∣∣∣, (9.42)
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where w is the horizontal external fluid particle velocity, ρ is the density of the
external fluid (sea water), ρ is the riser’s radius, and Cm and CD are the riser’s
added mass and drag coefficients, respectively.

Substituting Eq. (9.42) into Eq. (9.41) gives

(m + ma)
d2x

dt2
+ c

dx

dt
+ d2

dy2

[
EI

d2x

dy2

]
− [T (y) + AoPo(y) − AiPi(y)

]d2x

dy2

− (γsAs − γoAo + γiAi)
dx

dy

= ρπr2(1 + Cm)
dw

dt
+ ρrCD

(
w − dx

dt

)∣∣∣∣w − dx

dt

∣∣∣∣, (9.43)

where ma = ρπr2Cm.
ma is the added mass per unit length of the riser and is now combined with the

physical mass of the riser to form the inertial term on the left-hand side of Eq. (9.43).
The quadratic drag term on the right-hand side of Eq. (9.43) provides a formidable
analysis problem as a result of its nonlinear dependency on the relative velocity.

Analytical solutions of Eq. (9.43) do not exist, and some form of numerical so-
lution is necessary. One popular method of solution is the finite element method,
which is described in further detail in the following section.

9.4 Finite Element Analysis

This section describes a representative finite element analysis for the analysis of ver-
tical marine risers. In the context of vertical marine risers, there are special features
that must be accounted for in the analysis. These are briefly discussed first.

It is important to identify which elements of the contents of the riser influence
the tension. Since the marine riser is a long slender structure with relatively small
bending stiffness, it needs to be kept in tension to prevent buckling collapse. Tension
is applied to the top of the riser, and it is the weight in air of the riser pipe, associated
choke and kill lines, and the vertical force due to the internal and external hydro-
static pressures on a nonvertical pipe segment or buoyancy module, which cause a
variation in tension along the riser’s length. The weight of the separately tensioned
drill pipe and the riser fluid contents do not directly affect the tension variation.

However, the nontension contributing elements in a riser cross-section must be
accounted for when computing an effective lateral force component term C in
Eq. (9.39).

For deep water risers, the top tension requirement to prevent buckling collapse
can become excessive. In order to reduce top tension, one option is to attach buoy-
ancy modules along the length of the riser. The distribution of buoyancy modules
influences the tension variation in the riser; thus, altering its structural response and
internal stresses. The increase in diameter of a riser cross-section due to buoyancy
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Fig. 9.15 Element and global node description for a finite element idealization of a vertical riser.
(a) Risers element nodes; (b) Single beam element

modules also increases current and wave forces. This introduces considerable scope
for optimizing the intensity and distribution of buoyancy modules in deep water
applications.

9.4.1 Static Analysis

The static finite element analysis presented here is based on a governing equation of
the form given by Eq. (9.39). The description of the analysis is also restricted to two
dimensions for simplicity. The vertical riser pipe is idealized as an assembly of beam
elements as shown in Fig. 9.15. Each element possesses six degrees of freedom, two
translations, and one rotation at each end. The degrees of freedom for each beam
element are illustrated in Fig. 9.15. Consequently, the numerical computation is
two-dimensional with all external forces on the riser, including forces due to current
and waves acting in one plane.

The current loading q per unit length along the riser due to a lateral drag force is

q = 1

2
ρoCDd|Uc|Uc, (9.44)
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where ρo is the density of sea water, CD is a drag coefficient, d is an effective riser
external diameter, and Uc is the vector of current velocity. The variation of current
velocity with depth needs to be known.

A static analysis can also be used to relate riser deflections and stresses to cur-
rent and wave loadings in a quasi-static manner. For a known regular wave height
and period, the current velocity Uc can be superimposed onto the horizontal compo-
nent of the wave particle velocity Uw at any instant. The quasi-static hydrodynamic
loading can then be written as

q = 1

2
ρoCDd|Uc + Uw|(Uc + Uw) + 1

4
ρoπd2CMU̇w, (9.45)

where U̇w is the horizontal local component of wave particle acceleration, and CM

is an applicable inertia coefficient.
The total stiffness matrix, Sm, for each beam element is derived as the sum of the

standard elastic stiffness matrix, Se, and a geometric stiffness matrix, Sg , which is a
function of deflected element geometry and axial force on the element. Thus,

Sm = Se + Sg. (9.46)

For an element of length L and an “effective” axial tension Te , Se, and Sg in
member axes are given by

Se = EI

L3

⎡
⎢⎢⎢⎢⎢⎢⎣

AL2/I

0 12
0 6L 4L2

−AL2/I 0 0 AL2/I

0 −12 −6L 0 12
0 6L 2L2 0 −6L 4L2

⎤
⎥⎥⎥⎥⎥⎥⎦

(9.47)

and

Sg = Te

L

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0 6/5
0 L/10 2L2/15
0 0 0 0
0 −6/5 −L/10 0 6/5
0 L/10 −L2/30 0 −L/10 2L2/15

⎤
⎥⎥⎥⎥⎥⎥⎦

, (9.48)

where A is the area of steel cross-section, E is Young’s modulus, and I is the ap-
propriate second moment of area. The local effective axial tension, Te , is calculated
by accounting for the modification due to hydrostatic pressures in the surrounding
fluid, as described earlier in Eq. (9.9).

The fixed end action vectors AmL are obtained by using an assumed shape func-
tion N(y) in conjunction with a total lateral load distribution W(y). This load is
due to both the hydrodynamic loading q and an effective lateral load derived from
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term C in governing Eq. (9.39) with dx/dy obtained from an initially assumed un-
deflected riser configuration. Thus,

AmL = −
∫ lr

0
W(y)N(y)dy, (9.49)

where y is the vertical distance from the bottom ball or flex joint, and lr is the total
riser length. The final static member end actions Am are then obtained from

Am = Aml + SmDm, (9.50)

where Dm is the nodal displacement vector. These combined end actions are applied
incrementally in order to account for the changes in term C of Eq. (9.39) and the
nonlinear behavior caused by large deflections of the riser pipe. Thus, Am is divided
into a specified number of equal increments �Am, which are applied progressively
to obtain the incremental displacements �D through the equation

�D = S−1�Am, (9.51)

where D is the overall displacement vector, and S is the overall stiffness matrix.
Both D and S are in global coordinates. The overall stiffness matrix is reevaluated
after each load increment to account for the change in geometry due to large deflec-
tions.

9.4.2 Dynamic Analysis

The differential equation of motion for a system with many degrees of freedom and
having a mass matrix MT can be written as

MT D̈ + CḊ + SD = F, (9.52)

where D is the vector of nodal displacements, F is the vector of external forces, and
C and S are the structural damping matrix and overall stiffness matrix, respectively.
All the above vectors and matrices are defined in global riser axes.

The external force vector F due to wave action on the system is obtained from a
modified form of Morison’s Eq. (9.1),

F = ρoT V U̇ + Ma(U̇ − D̈) + B|U − Ḋ|(U − Ḋ), (9.53)

where V the diagonal matrix of elemental volumes, Ma is the added mass matrix,
B is the matrix of hydrodynamic drag coefficients, and U and U̇ are the horizontal
components of wave particle velocities and accelerations. It is assumed here that the
fluid-induced forces on a structure are given by the linear superposition of a drag
force and an inertia force. The first two terms of Eq. (9.53) signify the Froude–
Krylov and added mass forces, respectively, while the last term describes the drag
force.
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By substituting Eq. (9.53) into (9.52) with MT = M + Ma and rearranging we
get

MT D̈ + CḊ + SD = MaU̇ + B|U − Ḋ|(U − Ḋ). (9.54)

The above matrix equation cannot be used directly for incorporating the bound-
ary condition at the surface vessel, which requires that the riser top end must follow
the horizontal motion of the surface platform. This known horizontal riser nodal
translation at the surface (denoted by suffix B) can be separated from all other
unknown degrees of freedom (denoted by suffix A) through the following matrix
partitioning:

[
MTAA MTAB

MTBA MTBB

][
D̈A

D̈B

]
+
[
CAA CAB

CBA CBB

][
ḊA

ḊB

]
+
[
SAA SAB

SBA SBB

][
DA

DB

]

=
[
MHAA MHAB

MHBA MHBB

][
U̇A

U̇B

]
+
[
BAA BAB

BBA BBB

][|UA − ḊA|.(UA − ḊA)

|UB − ḊB |.(UB − ḊB)

]

+
[

0
FB

]
. (9.55)

Here, FB is a force required to cause the specified horizontal motion at the sur-
face. The dynamic response of the riser structure in terms of the remaining degrees
of freedom can be obtained solely from the upper set of equations from (9.55),
which do not contain FB .

9.4.3 Element Property Formulation

In the formulation of the beam element mass matrix, the lumped mass or the con-
sistent mass approach may be used. With the former approach, the entire mass is
assumed to be concentrated at nodes where the translational degrees of freedom
are defined. For such a system, the mass matrix has a diagonal form. Off-diagonal
terms disappear since the acceleration of any nodal point mass would only produce
an inertia force at that point. The consistent mass formulation, however, makes use
of the finite element concept and requires the mass matrix to be computed from the
same shape functions that are used in deriving the stiffness matrix. Coupling due to
off-diagonal terms exists, and rotational and translational degrees of freedom need
to be considered.

In theory, this consistent mass approach can lead to a greater accuracy, although
this improvement is believed to be small. On the other hand, the lumped mass for-
mulation is easier to apply because fewer degrees of freedom are involved, leading
to a simpler definition of element properties. The lumped mass formulation is cho-
sen for this analysis because the advantages of a small improvement in accuracy for
the consistent mass approach are outweighed by the additional computational effort
entailed in its implementation.
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Noting that off-diagonal terms of Ma , MT , and B are zero for the lumped mass
formulation, the following equations are obtained from (9.55):

MTAAD̈A + CAAḊA + SAADA

= MaAAU̇A + BAA

∣∣(UA − ḊA)
∣∣(UA − ḊA)

− CABḊB − SABDB. (9.56)

At the end of the static analysis, the stiffness matrix of the structure in its de-
formed position is available. In modeling the dynamic response about this mean stat-
ically deflected shape, the stiffness matrix is assumed to remain constant throughout
the dynamic analysis.

In the lumped mass approach, all the rotational degrees of freedom need to be
substructured out. Since vertical wave forces are not significant for the riser system,
the vertical translation degrees of freedom can also be eliminated. This feature can
lead to a substantial reduction in computer time and storage in the dynamic analy-
sis. The horizontal degrees of freedom having been segregated, the force-deflection
equations can be written in partitioned form as

[
SHH SHN

SNH SNN

][
DH

DN

]
=
[
FH

0

]
, (9.57)

where the subscript H denotes the horizontal degrees of freedom, and N denotes
the remaining vertical and rotational degrees of freedom.

From Eq. (9.57) we have

DN = −S−1
NNSNHDH . (9.58)

The condensed stiffness matrix suitable for use in the equations of motion is then

S∗
HH = SHH − SHNS−1

NNSNH . (9.59)

The matrix is further partitioned to separate out the top horizontal degree of free-
dom:

S∗
HH =

[
SAA SAB

SBA SBB

]
, (9.60)

where the subscript B denotes the vessel motion as before.
The mass matrix for each element is built up by concentrating half of the total

mass of mud, pipes, and buoyancy material at each end of the element. For a fully
submerged vertical element of volume V , the added mass associated with unit hori-
zontal body acceleration is ρ0CmV , where Cm is an added mass coefficient. Taking
half the added mass to be lumped at each node, the added mass submatrix for each
element is [ 1

2ρ0CmV 0
0 1

2ρ0CmV

]
. (9.61)
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This added mass matrix and the real mass matrix are summed together to give
the total mass matrix MTAA.

The manner in which the partially submerged element at the water surface is
idealized depends on the amount by which the element is wetted at the mean sea
level. If the wetted length Ls is less than half the element length, all the added mass
is lumped at the lower node, and the element submatrix becomes

[
ρ0CmAxLs 0

0 0

]
, (9.62)

where Ax is the total cross-sectional area of the riser element, including buoyancy
elements when present. Should Ls be greater than half the element length L, the
added mass associated with the lower half of the element is concentrated at the
lower node, while the rest of the hydrodynamic effects are taken to act on the top
node. The element submatrix for such a situation is

[ 1
2ρoCmAxLs 0

0 ρoCmAx(Ls − L
2 )

]
. (9.63)

For the riser structure, this appears to be a simple and logical way to treat the ele-
ment at the water surface in the lumped mass formulation. The hydrodynamic mass
matrix MaAA, which includes the Froude–Krylov forces, is built up from element
submatrices in a similar manner. The submatrices corresponding to Eqs. (9.62) and
(9.63) respectively are:

[
ρo(Cm + 1)AxLs 0

0 0

]
, (9.64)

[
ρoCmAxLs 0

0 ρo(Cm + 1)Ax(Ls − L
2 )

]
. (9.65)

Due to the unit relative horizontal velocity (U − Ḋ), the horizontal drag force
on a fully submerged element is 1

2ρoCDLd , where d is the diameter of the element.
The hydrodynamic damping submatrix for such an element is

[ 1
4ρoCDLd 0

0 1
4ρoCdLd

]
. (9.66)

The corresponding submatrices for a partially immersed element are

[
1
2ρoCDLsd 0

0 0

]
for Ls ≤ L

2
(9.67)

and [ 1
4ρoCDLd 0

0 1
2ρoCd(Ls − L

2 )d

]
for Ls >

L

2
. (9.68)
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The structural damping matrix may be explicitly defined as

C = α0MT + α1S. (9.69)

To obtain the coefficients αo and α1, the damping ratios, ζ1 and ζ2, in any two
modes need to be specified. An eigenvalue analysis is carried out to find the natural
frequencies corresponding to the two modes chosen. Bathe and Wilson [271] give
further details of this approach.

For Rayleigh damping,

[
ζ1
ζ2

]
= 1

2

[
1
ω1

ω1
1
ω2

ω2

][
α0
α1

]
. (9.70)

From Eq. (9.70) we have

α0 = 2
(
ζ1ω1 − α1ω

2
1

)
,

α1 = 2(ζ1ω1 − ζ2ω2)

ω2
1 − ω2

2

.
(9.71)

A damping ratio of 5 % in the first two modes is usually chosen for all the anal-
yses carried out in this work. The actual level of structural damping that should be
specified is rather unclear in current literature.

9.4.4 Frequency Domain Solution

A linearized form of the equation of motion may be obtained by replacing the drag
term in Eq. (9.56) with a suitable equivalent linear damping term, which is propor-
tional to the relative velocity UA − ḊA. For such a linear system,

MTAAD̈A + (CAA + BeqAA)ḊA + SAADA

= MaAAU̇A + BeqAAU − CABḊB − SABDB. (9.72)

Since the current velocity imposed is not sinusoidal, only the wave particle ve-
locity UA and the structure velocity ḊA can be included in the fluid interaction term.
The stiffness matrix in the frequency analysis will therefore be obtained from the
final statically deformed shape caused by current and riser internal forces.

From linear wave theory, the elevation of a single wave train may be represented
by

ξ = a cos(kx − ωt), (9.73)

where a is the wave amplitude, k is the wave number, and ω is the wave frequency.
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The corresponding horizontal wave particle velocities, Uw , and accelerations,
U̇w , are given by

Uw = ωa
coshk(y − lr + h)

sinh kh
cos(kx − ωt), (9.74)

U̇w = ω2acoshk(y − lr + h)

sinh kh
sin(kx − ωt), (9.75)

where h is the water depth.
Rewriting Eq. (9.74) in complex form gives

Uw = Re

[
coshk(y − lr + h)

sinh kh
eikxe−iωt

]
(9.76)

or

Re
(
U ′

ω

)
eiωt , (9.77)

where U ′
w is a complex amplitude. Similarly,

U̇ω = Re
(−iωU ′

w

)
eiωt . (9.78)

The steady-state response of the system represented by Eq. (9.72) to a sinusoidal
wave will also be proportional to e−iωt . Thus,

DA = Re
(
D′

Ae
−iωt
)
, (9.79)

where (D′)A is the complex amplitude vector.
Differentiating Eq. (9.79) and substituting Eqs. (9.77) and (9.78) into (9.72) gives

[
SAA − ω2MTAA − iω(CAA + BeqAA)

]
D′

A

= MaAA

(−iωU ′
W

)+ BeqAAU
′
W = F ′, (9.80)

where F ′ is the complex forcing amplitude vector, and Beq is an equivalent linear
damping matrix. The linearization of the damping is described later.

Since the matrix Beq contains a term in A, available only from the final solution,
an iterative calculation scheme needs to be derived. Starting from a trial solution
for the displacement DA,Beq is estimated, and the set of complex algebraic equa-
tions (9.80) are solved for a new set of displacements, (D′)A. These displacements
are compared with the previous set of values, and the whole calculation is repeated
with a better estimate of Beq until the real and imaginary parts of DA differ by a
small specified tolerance.

Since damping forces are responsible for the dissipation of energy in a vibratory
system, the obvious, and most common, way of obtaining Beq is to equate the work
done by the linearized and the nonlinear forces such that

Beq(U − Ḋ) ≡ B|U − Ḋ|(U − Ḋ). (9.81)
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For the purpose of illustration, a convenient node where x is assumed to be zero is
chosen. By Eq. (9.74) the wave particle velocity is

U = R cosωt, (9.82)

where

R = ωa cosh k(y − lr + h)

sinh kh
. (9.83)

Let the corresponding riser nodal velocity be defined by

Ḋ = Q cos(ωt − φ), (9.84)

where Q is the amplitude of vibration velocity, and φ is an arbitrary phase differ-
ence. The relative velocity is

(U − Ḋ) = R cosωt − Q cos(ωt − φ) = RT cos(ωt − ψ), (9.85)

where

RT = (R2 − 2RQ cosφ + Q2)1/2
,

tanψ = −Q sinφ

R − Q cosφ
.

(9.86)

The work done by the damping force B|U − Ḋ|(U − Ḋ) over an elemental dis-
placement dD may be written as

dW = B
∣∣RT cos(ωt − ψ)

∣∣RT cos(ωt − ψ)Q cos(ωt − φ)d(ωt). (9.87)

Using the substitutions β = ωt − ψ and γ = ωt − φ, we can express the work
done over a complete wave period by this nonlinear term as

W =
∫ 2π−ψ

−ψ

B|RT cosβ|RT cosβQ cos(β + γ )dB = 8

3
QBR2

T cosγ (9.88)

by splitting up the limits of integration to account for the modulus sign, and assum-
ing that γ = ωt − φ is time independent.

The work done by an equivalent linearized damping force Beq(U − Ḋ) over a
wave cycle is readily obtained from

W =
∫

BeqRT cos(ωt − ψ)Q cos(ωt − φ)d
(
ω(t)
)

= πQBeqRT cosγ. (9.89)

Finally, equating the work done by the two damping terms gives

Beq = 8

3π
BRT . (9.90)
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Hence, the equivalent linear damping matrix in Eq. (9.80) is given by

Beq = 8

3π
B
∣∣(U − Ḋ)max

∣∣. (9.91)

The other issue remaining in the iterative solution of Eq. (9.80) is the choice of
the initial estimate of the displacement vector, D′

A.
To ensure that Eq. (9.80) converges rapidly to the final solution, a reasonably

accurate initial estimate of the displacements D′
A and thus of the velocities ḊA is

required for evaluating the equivalent damping matrix from the total mass matrix
and the diagonal terms of the stiffness matrix. Then, assuming a damping ratio of
10 %, the initial estimate of Beq is taken to be

Beq

⎡
⎢⎣
(M11

T AAS
11
AA)

1/2 0 0
0 (M22

TAAS
22
AA)

1/2 0

(MNN
TAAS

NN
AA )1/2

⎤
⎥⎦ . (9.92)

This matrix is substituted into Eq. (9.80), which is subsequently solved for the
initial trial solution. This method leads to rapid convergence with only two or three
iterations required for forcing frequencies away from the structure’s resonant fre-
quencies. Up to 10 iterations may be necessary in the region of resonance frequen-
cies.

9.4.5 Time Domain Solution

The basic method of analysis here involves integrating Eq. (9.52) through discrete
steps in time and accounting for the nonlinear drag loading without a linearization
approximation.

In the equation of motion, Eq. (9.54), the generalized fluid velocity can be de-
composed into the static current velocity Uc and a wave particle velocity Uw . Thus,
Eq. (9.54) becomes

MT D̈ + CḊ + SD = MaU̇w + B|Uw + UC − Ḋ|(Uw + Uc − Ḋ), (9.93)

where Uc is taken to be zero for the current velocity. The requirement to sum the
current and wave velocities before applying the resultant loading through the square-
law relationship requires the current velocity to be ignored in the static analysis that
precedes this time-domain calculation.

The time step integration of the equation of motion also allows irregular wave
sequences (and the corresponding surface vessel surge responses) to generate ran-
dom dynamic excitation forces on the riser. This wave sequence can be specified
in two ways. A wave elevation spectrum of the incident irregular waves with ran-
dom phase can be used to generate the Fourier transform of the wave elevation.
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The Fourier transform of the subsurface wave velocities and accelerations and sur-
face vessel surge motions may be obtained using the appropriate transfer functions.
These Fourier transforms are inverse Fourier transformed to generate correspond-
ing time series of these quantities for use in the dynamic analysis. However, this
procedure can be cumbersome and computationally time-consuming. Therefore, a
simple alternative method is usually employed. The incident wave elevation is speci-
fied as a “frequency comb” sum of individual sinusoidal components with randomly
distributed phase angles. The subsurface wave kinematics and surface vessel surge
response are then readily computed by summing the effects of all the sinusoidal
components in the wave spectrum.

The numerical time step integration technique proposed by Newmark is used
with the following relations:

Ḋt+�t = Ḋt + [(1 − δ)D̈t + δD̈t+�t

]
�t, (9.94)

Ḋt+�t = Ḋt + Ḋt�t +
[(

1

2
− β ′
)
D̈t + β ′D̈t+�t

]
�t2, (9.95)

where β ′ and D are parameters that can be varied to achieve acceptable integration
accuracy and stability. The subscript t denotes the variable at the beginning of the
time interval �t .

The direct integration analysis does rely on selection of an appropriate time step
which must be small enough to obtain sufficient accuracy, although a time step
smaller than necessary would reflect on the cost of the solution. Bathe and Wil-
son [271] have analyzed the stability and accuracy of various numerical integration
schemes and suggested that, for reasonable accuracy, the time step-to-period ratio
be not greater than 1/6 for the highest significant mode. In its standard form, the
Newmark technique is unconditionally stable.

The two parameters D and β ′ introduced in Eq. (9.95) indicate how the accel-
eration is modeled over the time interval. The parameters D = 1/2 and β ′ = 1/6
correspond to a linearly varying acceleration. Newmark’s original scheme, which is
pursued here, uses D = 1/2 and β ′ = 1/4 and gives a constant-average acceleration-
based integration scheme. Using the latter values in Eq. (9.95) and rearranging gives:

Ḋt+�t = 4

(�t)2

[
D̈t+�t − Dt − (�t)Ḋt

]− D̈t , (9.96)

Ḋt+�t = 2

(�t)
[D̈t+�t − D̈t ] − Ḋt . (9.97)

Then expressing Eq. (9.93) explicitly at instant t + �t and using the lumped-
mass approach with the top vessel surge motion duly separated as in Eq. (9.56), we
get

MTAAD̈A,t+�t + CAAḊA,t+�t + SAADA,t+�t

= MaAAU̇WA,t+�t
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+ BAA

∣∣(UWA + UCA − ḊA)
∣∣
t+�t

(UWA + UCA − ḊA)t+�t

− CABḊB,t+�t − SABDB,t+�t . (9.98)

Substituting Eq. (9.96) into Eq. (9.98) and rearranging gives
[

4MTAA

�t2
+ 2CAA

�t
+ SAA

]
DA,t+�t

= MaAAU̇WA,,t+δt

+ BAA

∣∣(UWA + UCA − ḊA)
∣∣
t+�t

− CABḊB,t+�t − SABDB,t+�t

[
4

�t
MTAA + DAA

]
ḊA,t

+
[

4MTAA

�t2
+ 2CAA

�t

]
DA,t + MTAAD̈A,t = Ft+�t . (9.99)

This is the basic equation used in the time step integration scheme.
The solution scheme assumes that displacement, velocity, and acceleration vec-

tors at time zero are known and the solution is required from time zero to time t .
The given time span τ is subdivided into equal time intervals �t = τ/n, where n is
the number of time intervals. The algorithm calculates the solution at the next re-
quired time step from the information known at the previous time steps. The process
is repeated until the solution at all discrete time points is known.

To initialize the numerical solution, the acceleration corresponding to zero time
is derived from the reduced form of Eq. (9.99) giving

D̈A|t=0 = M−1
TAA

[
MaAAU̇WA,0 + BAA

∣∣(UWA + UCA)0
∣∣(UWA + UCA)0

− CABḊB,0 − SABDB,0
]∣∣

t=0. (9.100)

Arriving at Eq. (9.100), the unknown value of velocity ḊA,t+�t of the forcing
vector of Eq. (9.99) has been approximated to ḊA,t . The approximation gives an
acceptable degree of accuracy, provided that the time step chosen is sufficiently
small. An alternative approach to this would require an elaborate iterative scheme
with a significantly greater computation effort.

By the simultaneous equation (9.99) the displacements are simply obtained from

ḊA,t+�t = J −1Ft+�t , (9.101)

where

J = 4

�t2
MTAA + 2

�t
CAA + SAA. (9.102)

The inversion of matrix J in the above equation can be made more efficient by
the use of banded equation solvers as suggested by Bathe and Wilson [271]. How-
ever, J is independent of time and needs to be inverted once only. When ḊA,t+�t is
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Fig. 9.16 Displacement for a
marine riser compared with
API case 500-20-ID

known, the accelerations and velocities at time t + �t are derived from Eqs. (9.96)
and (9.97).

9.4.6 Typical Results

Finite element calculations of the type presented here can be validated by a number
of methods.

For the static analysis, the finite element formulation can be checked by com-
parison with the analytic result for an idealized weightless tensioned beam. Such
comparisons can confirm the validity of the computational procedure and indicate
the number of finite elements required for an acceptable level of accuracy.

The American Petroleum Institute Committee on the Standardization of Offshore
Structures defined a set of test risers as a basis for comparing the performance of
riser analysis methods for both static and dynamic loadings. Nine anonymous par-
ticipants in this study submitted solutions for the various test cases, and API Bulletin
2J [272] gives the overall comparisons. These are displayed in terms of maximum
bending stress value and position, maximum total stress (axial plus peak bending),
as well as upper and lower riser angles from the vertical.

The frequency domain and time domain dynamic analyses presented here have
also been compared with the dynamic analyses in the API bulletin. Figures 9.16
and 9.17 show typical results for one of the API test risers; the plotted API values
are the maximum and minimum of the combined results from the nine calculations
compiled in the bulletin. The frequency domain analysis is computed conventionally
using a regular wave period of 9 s and wave height of 6.096 m. The time domain
analysis uses a single frequency “comb” to produce equivalent data but with the
nonlinear drag force due to current and wave velocities included in the calculations.
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Fig. 9.17 Stresses for a
marine riser compared with
API case 500-20-ID

It should be emphasized that none of the results published in the API bulletin has, to
our knowledge, been directly validated by measurements on full-scale risers. Never-
theless, this comparison gives an indication of agreement between the other methods
and the analysis presented here.

A comparison of the time domain and frequency domain analyses presented in
Figs. 9.16 and 9.17 gives an indication of the effects of nonlinear fluid loading on the
riser structural response. A static current profile is included, and so the time domain
and frequency domain results differ markedly owing to the effect of the square law
drag force with and without linearization. However, the frequency domain results
are at lower values for the induced stresses.

The finite element analysis and the frequency domain and time domain solutions
outlined in this section attempt to balance the small computing cost advantages of
linearization against the additional accuracy available from the nonlinear time do-
main calculation. The frequency domain analysis uses the linearization approxima-
tion of equal energy dissipation between nonlinear damping and equivalent linear
damping in the solution. An alternative linearization technique for frequency do-
main analysis has been tested by Krolikowski and Gray [273]. It is based on a statis-
tical minimization of mean squared error between the nonlinear damping force and
its linear representation used in the analysis. The statistical approach uses lineariza-
tion at the discrete frequency components of a wave spectrum to arrive at a global
linearized damping force with a least squares minimized error. This technique al-
lows a frequency domain method to be applied over a wider frequency range, in
contrast to the linearization method used in the analysis presented here, which is
used for regular waves only.

The technique of linearization by least squares minimization is not followed up
in the frequency domain analysis presented here. This is because both riser meth-
ods developed here have been aimed at computing riser motions and stresses, the
latter for feeding into fatigue calculations based on linear elastic theory or fracture
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mechanics. The fracture mechanics approach demands the representative stress time
histories for a marine riser in waves to be known in detail, particularly in terms of
the sequences of stress cycles that are likely to occur. A computationally efficient
time domain analysis is capable of producing this information, whereas frequency
domain analyses, whatever their level of sophistication in linearization, operate in
the frequency domain where the phase information which governs wave sequencing
is lost.

A further feature, which has promoted the use of an efficient time domain analy-
sis for riser calculations, is based on the comparative performance of the frequency
domain and time domain analyses, which shows that there are substantial differences
in peak stresses between the two analyses. These discrepancies may be reduced by a
more sophisticated linearization technique in the frequency domain analyses, but the
discrepancies do highlight the importance of modeling the nonlinear fluid loading
on the riser cross-section in a physically representative manner.

An additional problem associated with marine risers occurs in the analysis of
multitube production risers of complex cross-sectional geometries. These may be
made up of a central structural riser with a number of large diameter satellite flow
lines or as a bundle or array of flow lines. The beam finite element analysis tech-
niques described in this chapter need to be extended to these production risers. Patel
and Sarohia [274] suggest one solution by equivalencing a production riser of com-
plex cross-section to a simpler single-tube marine riser, which is then used for the
finite element analysis. This approach is sufficient for a global riser analysis, but it
needs to be used with care when localized riser fluid forces or member stresses are
required. Krolikowski [275] presents an alternative frequency domain approach.

9.5 Principles of Operation

Whether the riser is required for drilling or production duty, the fitness for purpose
of the design is determined by the estimates of its likely loading conditions. These
conditions include environmental forces and, if applicable, surface support motions.
Confident estimates of these are essential. They are not limited to static behavior,
but should include dynamic response. For rigid risers, the likely causes of failure
are local material yielding and Euler column buckling.

The design of all types of tensioned risers is affected by:

(i) static and dynamic motions of the surface vessel;
(ii) tensioner stroke limits and response rates;

(iii) bottom connection angle limits;
(iv) distribution of buoyancy modules.

Additionally, drilling risers are particularly affected by:

(i) mud weight;
(ii) drill string tension;

(iii) possible abnormal gas pressure.
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Fig. 9.18 Aid to optimizing riser top tension

Whilst production risers are particularly affected by:

(i) buoyancy modules for the free-standing mode
(ii) drag of multiple piping;

(iii) rigidity of multiple piping;
(iv) installation, repair and maintenance procedures.

9.5.1 Riser Top Tension and Supplementary Buoyancy

Currently (2013), there is increasing need to develop fields in the region of 3000 m
water depth. The tensioning requirements for risers in these water depths are sub-
stantial. A truly vertical riser connected at the seabed has no buoyancy force. This is
because buoyancy is the resultant net force acting vertically on a body, and if there is
no horizontal surface on which the hydrostatic pressures may act, the resultant force
is zero. However, disconnection on the riser from the seabed or its inclination will
exhibit a buoyancy force. Generally, for risers, the combined effects of self-weight
and buoyancy yields a net negative force, which is destabilizing in that the riser
will continue to move away from the vertical unless restrained. This restraint is pro-
vided by means of top tensioning, which may be aided by the use of supplementary
buoyancy modules along the riser length.

A nearly optimum choice of top tension can be arrived at by calculating the sum
of the reduction in bending stress and the increase in axial stress with increase in
top tension shown in Fig. 9.18.

Care must be taken to ensure that the lateral component of top tension does not
result in excessive horizontal deflection of the bottom BOP stack, Fig. 9.19. The
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Fig. 9.19 BOP eccentricity resulting in bending of the conductor column

moment due to the BOP weight and its eccentricity may lead to bending failure of
the seabed conductor column. Reduction in top tension requirement is particularly
advantageous in very deep water. Care must be taken to ensure that such reductions
do not lead to local compression, which is more likely to occur near the seabed.

Buoyancy modules in use include air-filled cans in which the volume of air may
be controlled from the surface and so alter the buoyancy available. Other forms do
not offer this control but have cost advantages in certain cases. Materials for these
include cellular polystyrene, syntactic foams which may contain spheres of various
materials, and foamed aluminium. Some of these materials can deteriorate with time
resulting in a change in buoyancy. Manufacturers should be consulted for suitability
of depth ratings.

Addition of buoyancy modules beneficially reduces the bending stresses by
“straightening” the riser by tension and also adversely increases the lateral hydrody-
namic loading and bending stresses on the riser. Careful design and usage is required
to ensure the desired benefit.

9.5.2 Drilling Riser Configurations

Whilst drilling risers are essentially of one form, during their operational life, they
will be used in several configurations. These are:
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(i) Free-hanging mode
This situation will occur in the early stages of drilling and possibly during the
drilling program. An associated free-hanging configuration occurs initially as
the hole is spudded-in during running of the 36-inch hole opener and 26-inch
hole bit, as well as the running of 30-inch and 20-inch conductors and 18.75-
inch wellhead. These operations are performed without a riser connecting the
surface vessel to the sea bed, with the free-hanging conductor’s guidance aided
by a utility guide frame and guidelines, although guidelineless systems also
have applications.

This free-hanging riser mode is important operationally since current action
can have adverse effects on it. However, the conditions for lowering the riser
itself with its blowout preventor stack at its free end present greater difficulties.
Careful control of this operation is critical since the BOP stack may weigh up
to 200 tonnes in air and is an expensive item. BOP stacks may be landed with
the aid of guidelines or without. If no guidelines are used, then recourse to
acoustic positioning transponders and underwater television cameras is made.

As the stack nears the wellhead, it can be liable to damage by a heavy land-
ing or impact, since the surface vessel will be heaving to some extent whatever
the sea-state. As the final joints of the riser are added, the riser tensioner wires
are added below the slip joint enabling part of the load to be transferred to
them, and so a proportion of the total load is taken by the rig’s surface motion
compensator. The remainder is taken by the riser’s tensioning wires. Hence,
the stack may be landed with minimum jarring.

The riser, once connected to the wellhead, will inevitably enter the free-
hanging configuration at least once more in its life. That is when it is retrieved
along with the BOP stack on completion of the drilling programme. It is possi-
ble, however, especially when drilling in particularly hostile environments that
the riser will be pulled, that is, retrieved to prevent damage to it. Depending
upon the water depth and weather severity, among other factors, the riser may
be disconnected and hung-off, that is, not fully retrieved. In this configuration,
only the lower riser package part of the BOP stack remains attached to the
lower end of the riser.

(ii) Connected modes
It is in this mode that the riser will spend the majority of its working life. In this
condition, the primary operational concerns are the riser’s static and dynamic
performance induced by the rig’s horizontal motions as it maintains station
over the wellhead. These motions will have steady components from mooring
offset and oscillating motions due to wave action.

The connected mode may be further divided into two separate conditions:

(a) Operational
The flex joint angle must be less than 4 degrees in this mode.

(b) Nonoperational but connected
For flex joint angles greater than 4 degrees, normal drilling operations can-
not continue. but the riser can remain connected.
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(iii) Operational Mode
The maximum 4-degree flex joint angle for this mode arises so as not to dam-
age the riser bore (by internal drill pipe) or the BOP during drilling operations.
The 4-degree angle criterion is derived from combination of experience and ex-
perimental data. In actual service, this flex joint angle will coincide with vessel
offsets of between 3 to 4 % of water depth. Furthermore, it is normally im-
possible to maintain an operable flex joint angle (that is below 4 degrees) with
the surface vessel offset to over 6 % of water depth). This corresponds to the
3.3-degree angle of offset (from the vertical) of the line connecting the vessel
to the BOP. Thus, the desirable maximum vessel offset is normally 3 to 4 % of
water depth when drilling or running large tools, although the offset needs to be
much less when running casing and other special-purpose operations. These,
however, only occur for a relatively short proportion of the total drilling time.

For particular riser systems, graphs or tables for determining optimum top
tension under prescribed operating conditions should be prepared. These rec-
ommended tensions only offer a starting point and may be in error because the
recommendations are based on site estimates of current and waves that may
also be in error. For example, underestimating the current acting on the lower
part of the riser will lead to a low estimate for optimum riser tension, and this
will be reflected in the flex joint angle.

The flex joint angle does give a reasonable indication of riser stresses. In
particular, the flex joint angle will give an indication of riser problems, usually,
low tension or large offset, but it alone cannot give a complete analysis of the
situation.

Use of a sophisticated Riser Management System operating with real-time
environmental data to provide a more representative analysis. See Sect. 9.7.

(iv) Nonoperational but Connected Mode
Figure 9.20 is a typical example of maximum/minimum stress behavior in a
riser when the flex joint is on or near its angular motion stop. When on its
stop, maximum and minimum stresses will occur at or near the connection
between the riser and flex joint. When the flex joint is off its stop, maximum
stresses will occur at another position in the riser. In Fig. 9.20, the flex joint
is just off the stop when the maximum and minimum stresses at the ball joint
become coincidental. For this case, the flex joint disengages at about 100 kips.
Increasing the tension to 150 or 190 kips has little effect on the riser stress,
but decreasing the tension to 50 kips could lead to riser failure. The minimum
tension to be allowed for the conditions stated in the figure is 100 kips.

In practice, riser tension cannot be held precisely constant during floating drilling
operations, and the actual tension will fluctuate about a mean value. The magnitude
of fluctuation is believed to be about 15 % of the mean tension. Thus, as an example,
if 100 kips is the minimum permissible tension for a riser, then the recommended
setting should be 100/0.85 or 118 kips in order to make an allowance for the fluc-
tuation. The actual tension will then be in the range 100 to 136 kips. According to
Fig. 9.20, this is the calculated tension setting to minimize the riser stress for 10 %
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Fig. 9.20 Typical curve of stress vs applied tension of riser—nonoperational mode

offset. Lower offsets will require lower tensions using the same criterion. When set-
ting tensions, the possibility of a partial tensioner failure can be accommodated by
increases in recommended settings.

9.5.2.1 Operating Factors

Since a marine riser is sensitive to vessel offset, the influence of mooring capabil-
ity and reliability plays a key part in system performance. In operating conditions,
vessel offset must be such as to maintain flex joint angle below 4 degrees. In the
non-operational but connected case, care must be taken to ensure that a too low ten-
sion and excessive vessel offset do not cause riser yield and permanent deformation.
Figure 9.21 gives an example of the stress increase due to increasing vessel offset
at constant tension. It can be seen that at 225 kips tension, the maximum riser stress
increases from 11 ksi at 6 % vessel offset to 34 ksi at 10 % vessel offset. In this
instance, the riser would be damaged if its material yield stresses was below 34 ksi.
However, for all offsets from 3 to 10 %, the yield stress would not be exceeded if
the recommended tension of 296 kips for 10 % offset is used.

The above considerations lead to three conditions that must be followed to main-
tain riser integrity under nonoperational but connected conditions:
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Fig. 9.21 An example of the effect of vessel offset on stress at a constant tension

(i) Setting the tension to that suitable for maximum possible offset minimizes the
risk of overstressing the riser.

(ii) The capability of the vessel mooring system to limit vessel excursions under
the worst anticipated conditions should be fully known.

(iii) Procedures should be devised to monitor vessel position and to manipulate the
moorings so that the vessel will be held within the design offset value and such
that the riser will be released prior to the design offset value being exceeded.

9.5.2.2 Operating Procedures

A marine riser can be maintained in an operable condition by ensuring that the lower
flex joint angle remains below about 4 degrees. Increase of the flex joint angle above
this value is often an indicator of a riser structural problem either due to a too high
vessel offset or a too low top tension. The latter could arise if the current and wave
forces on the riser string have been underestimated.

If the flex joint angle does go above 4 degrees, when the riser is operational, the
following procedure is useful in bringing the angle down.
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(i) Check vessel offset, and if it is greater than 4 %, reduce the offset by adjustment
of the vessel mooring system. It may be possible to move a moored vessel (by
slackening mooring lines) using the riser angle itself in water depths less than
76.20 m (250 ft).

(ii) If the flex joint angle remains above 4 degrees with vessel offset of less than
4 % of water depth, then increase the top tension from being equal to riser
weight in water to a point where it exceeds the riser weight in water by 10 %.
This should decrease the flex joint angle by more than 0.5 degree.

(iii) Continue to increase tension in increments of 5 to 10 % of the riser weight
in water until the resultant change in lower flex joint angle is less than 10 de-
grees. Note that the flex joint angle will help with increasing the top tension
to minimize riser stresses but it does not yield the levels of these stresses. The
flex joint angle should not be used to minimize riser tension because a rel-
atively small change in vessel offset can require significantly higher tension
settings.

A sophisticated Riser Management System will advise the operator of the rec-
ommended top tension. See Sect. 9.7.

Modern work-over and production risers also employ so-called stress joints to
replace the lower flex joint. The stress joint is a rigid riser section tapering from
a large cross-sectional area at the riser base to the cross-section of the riser pipe
at some height above the base. Stress joints are designed to take the high bend-
ing moments applied by lateral forces on the riser and its own weight and re-
spond only by structural deflection. They, therefore, eliminate the problems of high
curvature experienced in the internal bore of a flex joint but at the expense of
higher local moments. The bending moment that can be applied at stress joints
is usually limited by the moment that can be applied on the BOP stack. Some
stress joints are made out of titanium to improve their strength to weight ra-
tio.

9.5.3 Riser Failure Modes

The principal failure modes for risers include local material yielding and Euler col-
umn buckling (elastic instability). The probability of occurrence of these failure
modes may be minimized by using analysis methods to select the appropriate riser
top tension and arrangement of buoyancy modules for the prevailing operating con-
ditions. Use of a too high tension on the riser may be indicated by excessive wear
of the tensioning equipment. Insufficient tensioning leading to the onset of buckling
may be indicated by large angles of rotation at the lower flex joint. Large angles of
rotation at the lower flex joint may also be due to large vessel offsets.

It is important to understand the likely causes of riser failure when designing
and operating a riser system. Almost inevitably, this understanding of failure causes
comes from past experience. Listed below are the main failure modes for tensioned
risers:
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Response Cause

1. Buckling Failure to predict multiple curvature
Failure to predict high curvature
Inadequate top tension available
Inadequate tensioner rate
Excessive bending in free-hanging condition
Failure of buoyancy modules

2. Flex Joint Damage Drill String
Fatigue BOP Fatigue Damage Blowout
Risk

Drill bit, collars, casing causing mechanical damage
as a result of excessive flex joint angle

3. Riser/Conductor Failure Excessive bending moment due to vessel excursion
and BOP weight

4. Emergency Disconnect Failure Excessive bending causing binding

5. Riser to Supplementary Buoy
Overstressing

Out of phase dynamics of system elements

6. Conductor Pipe Failure and BOP
Stack Collapse

Resonant excitation of BOP

9.6 In Service Monitoring

The minimum monitoring information required for marine riser operations com-
prises:

(i) surface platform heave motion;
(ii) surface platform horizontal position with respect to the wellhead; and

(iii) angle from the vertical of the riser at the lower flex joint.

This information must be continuously available to operating personnel as it
warns of the possibility of riser failure. The heave motion indicator warns of ex-
cessive vertical motions that require disconnection of the riser from the wellhead.
The surface vessel’s position is normally indicated by an acoustic or satellite posi-
tioning system and is used to warn of excessive vessel offsets. Typically, connected
risers can sustain a maximum offset of approximately 10 % of the water depth. Op-
erations such as drilling will often require a smaller maximum offset of around 5 %.
Similarly, the maximum permitted lower flex joint angle from the vertical during
operations is 4 degrees. Exceedance of the lower flex joint limits on the maximum
offset limit will result in failure of the riser.

It is desirable in the case of production risers (for which long-term fatigue as-
sessment should be available) to install a comprehensive surface vessel and marine
riser monitoring system. In the case of drilling risers, the use of Riser Management
Systems becomes increasingly important for greater water depths.

Typical monitoring systems may acquire over 100 channels of data, which are
usually analyzed and reduced to a more manageable size on site before being re-
turned (via the internet if desired) to the design office for possible further analysis
and review. These data provide valuable information on the actual behavior of the
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platform and the marine riser and comparisons can be made with results predicted
from calculation methods including the projected fatigue life of the riser.

In the context of monitoring a marine riser, measurements of the environmental
conditions, vessel position and motions, and marine riser parameters are required.

These parameters are now explained in more detail.

(i) Environmental Conditions:

(a) Wave elevation at three points around the surface platform or a measure of
wave elevation and directionality.

(b) Wind speed and direction at two locations on the surface platform.
(c) Current velocity components in two directions either relative to the vessel

or in absolute terms.

(ii) Vessel Motions:

(a) Vessel mean horizontal position relative to a subsea reference point such
as the wellhead.

(b) Surface platform wave-induced motions in heave, surge, sway, roll, pitch,
and yaw.

(c) Surface platform mean inclination in roll and pitch together with orienta-
tion (heading).

(iii) Marine riser parameters:

(a) Riser tension.
(b) Lower flex joint angles in orthogonal directions.
(c) Subsurface motions, velocities, and accelerations of one or more segments

of riser pipe.
(d) Fluid particle velocity components relative to the riser pipe at one or more

pipe segments.
(e) Strains (and hence stresses) in one or more segments of the riser pipe.
(f) Wellhead fluid pressures and flow rates.
(g) Curvature of one or more segments of riser pipe.

Full-scale structural monitoring provides a means by which in-service behavior
and structure maintenance programmes can be planned more effectively. There is
an increasing acceptance of the fact that the initial capital cost of a structural moni-
toring system is likely to be small compared to the savings in maintenance cost that
can be achieved by effective use of the data arising from the system.

9.7 Riser Management Systems

The simplest (and most common) approach to determine the safe operation of a
riser is to conduct analysis prior to carrying out drilling operations based on ex-
pected environmental conditions (wind, wave, current), vessel and riser physical
form and properties (for quasi-static and dynamic responses). Typically, this will
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determine for specified riser tension safe operating envelopes of vessel lateral mo-
tion (restrained by the DP capability of the vessel), the limits of which are set by
undesirable stresses, bending moments, and deflections of the riser.

This is not the optimal way of proceeding since the limits as set will generally
be overly conservative because of unrealistic assumptions of the way in which the
environmental forces act (for example, collinear assumed for wind, wave, and cur-
rent, which is generally not so). Also there are difficulties in perfectly accurately
modeling the dynamic behavior of the vessel (for example, response in a random
sea).

However, by measuring environmental conditions, vessel motions, and riser mo-
tions along with tensions, mud weight, etc. it is possible to use this information
within a computer model that is part of a Riser Management System (RMS) on the
vessel to estimate the static and dynamic response of the riser. These estimates en-
able more reliable limits to be set than the former (shore-based) analysis, and as a
consequence, the operability of the riser may be improved.

9.7.1 Riser Inclination and Current Profile

The quality of operational RMS calculated stress, bending moments, and deflection
analysis improves with improving quality of input data. It is of course possible to
measure stress directly, and such approaches are used for stress joints in workover
riser arrangements. Flex joints used in drilling risers significantly remove the bend-
ing stresses where they are located.

However, there are bending stresses within the main body of the riser that can
be readily inferred from the knowledge of the riser inclination. As a minimum, in-
clination measurements at the top and bottom are required to provide a reasonable
representation.

For very deep riser applications, the influence of currents is most important.
These currents can have shear in both speed and direction along the length of the
riser. Just monitoring the riser angles at top and bottom, with an assumption of uni-
form current from the surface, will provide less accurate estimates of riser stresses
than when an accurate knowledge of the current profile is available to be fed into the
RMS riser analysis model, or the riser profile is available by some other form of in-
strumentation. Hence, the provision of Acoustic Doppler Current Profiling (ADCP)
is highly recommended.

If none of the above is available, the RMS will function as intended but with a
lower level of accuracy than can otherwise be achieved.

9.7.2 BPP-RMS

BPP-RMS [276] is an example of a comprehensive Riser Management System that
provides for the requirements mentioned in the foregoing and provides additional
capabilities.
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Fig. 9.22 Typical main display of BPP-RMS (Drillship)

It provides optimum position advice for the vessel, limiting the flex-joint angles
and wellhead loads within preset limits. This ensures less wear of the riser and helps
the operator to maximize the time available for emergency disconnect operations.

It provides real-time guidance for carrying out connected and disconnected mode
drilling riser operations on board a vessel. The system combines a simple, intuitive
operator’s interface with a state-of-the-art numerical 3D finite element model of
the riser system that is used to predict the behavior of the riser in the prevailing
conditions. The main display of BPP-RMS (Drillship) is illustrated in Fig. 9.22. Its
main functions are as follows:

• Integrate and display riser-related data from existing vessel systems in a consis-
tent and operator-oriented manner;

• Compute and display the rig envelope of operation and optimum rig location in
the prevailing metocean conditions;

• Compute the minimum and maximum top tension limits and the optimum top
tension;

• Automatically acquire data from other relevant vessel systems where available;
• Computed data may be streamed to any desired networked system.

BPP-RMS calculates and displays the following operational guidance parame-
ters:
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Fig. 9.23 Joint tracking page with fatigue advice (BPP-RMS)

Operational Guidance Parameters

Operating envelope for riser and vessel under prevailing metocean conditions and riser loads (top
tension and internal fluid density) for connected (drilling) and connected (standby) modes of
operation
Minimum stability tension (as per API-RP16Q)
Maximum tension limit under prevailing metocean conditions
Recommended total top tension under prevailing metocean conditions
Recommended vessel position under prevailing metocean conditions (based on multiple criteria)
Estimated required time to disconnect (drift off dependent)

BPP-RMS also automatically generates a detailed report file containing relevant
results at regular intervals. Based on the data from the DP system and environmen-
tal sensors, the RMS provides information on the “time to go” margin before the
emergency disconnect sequence has to be initiated.

9.7.3 Joint Tracking

As shown in Fig. 9.23, the primary function of the riser joint tracker is as a database
containing the joint sequence for each well and the time in operation for each partic-
ular joint identified by its serial number or equivalent. These data will be exported
by means of a file to the unit’s maintenance system after each drilling operation.
Keeping track of where in the riser string the joints have been used enables to some
extent rotation of joints from well to well to avoid joints staying repeatedly in the
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most loaded areas. The information can also be used in the process of inspection
planning, i.e., selecting the most loaded joints as candidates for inspection.

The riser joint deployment sequence is input by the operation and stored in the
database for each well in order to keep track of where the joints have been used.
Joints close to the surface will experience the most fatigue loading due to direct
wave loading, whereas joints in the lower part of the riser may be more prone to
fatigue loading due to vortex shedding. By rotating the positioning of joints within
each rating class, the wear will be distributed between the joints.

Some basic means of tracking the riser components with visual ID enables the
service lives of the sections to be tracked and managed. A more sophisticated system
is to use RFID tracking.

9.7.4 Wave-Induced Motion Fatigue

The wave/vessel induced motions of the riser cause stresses that contribute to fatigue
damage. For each component within the riser, it is possible to estimate the fatigue
damage accumulated (and hence the remaining fatigue life). This may be estimated
from the dynamic model of the riser in BPP-RMS that is continuously running. This
provides a constant update on fatigue lives of all joints and aids in choice of section
location when running the riser (from a fatigue perspective). This is more useful
than hind-casting of the fatigue that is possible by reviewing the data on shore.

The contributions of vortex-induced vibrations (VIV) to fatigue damage [277–
280] can be similarly assessed running suitable VIV analytical software such as
BPP-VIVALL [281–283] within the RMS. This can be supplemented by suitable
instrumentation (strain or inertial based) located along the riser. The choice is de-
pendent on operational possibilities to run connecting cables (for real-time high-rate
VIV data) or to use lower-rate acoustic data transfer.

9.8 Riser Maintenance and Inspection

Each riser component, especially riser joints, must receive frequent periodic inspec-
tion and maintenance. This requires labeling and keeping records of each riser com-
ponent. Visual inspections should be made each time the riser is run. Resilient seals
should be inspected and replaced when necessary. Each entire joint should be in-
spected, particularly at the sealing areas. Damaged joints should be sent ashore for
additional inspection and repair.

Annual inspections should be performed on all riser components, especially the
riser joints. It is preferable, but not essential, to inspect the joints on land, under
more controlled conditions than are available on a drilling vessel. Prior to inspection,
the joint must be cleaned thoroughly, and it is advisable to sand blast the joints at
the welds to remove the paint. All seals should be removed, and the joint visually
inspected.
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Welds should be inspected using a combination of the following techniques:
DYES will detect only cracks that penetrate the surface. These are low-viscosity

oil-base dyes that thoroughly wet the metal and penetrate any cracks on the surface.
To use dyes, the paint must be removed from the joints.

MAGNETIC PARTICLE INSPECTION will detect cracks at or near the surface.
Magnetic flux density increases at discontinuities in a steel medium. The riser is
magnetized, and magnetic particles are used for detection since they collect at the
cracks. It is advisable to sand blast the areas around the welds prior to magnetic
particle inspection.

ULTRASONIC inspection may detect cracks below the surface but may miss
cracks that are isolated near the surface. Acoustic signals are very sensitive to den-
sity changes in a transmitting medium and are reflected readily by high-density dis-
continuities such as steel and air or steel and water. The transmitter and receiver are
both run inside of the riser; thus paint, flotation material, or air cans do not have to
be removed for inspection.

X-RAY inspections are for internal cracks and may miss cracks at the surface.
X-ray techniques depend on radiation absorption and must be used on the bare riser
only.

ACPD (alternating current potential difference) inspection devices detect the in-
creased drop in electrical potential associated with the increased surface path length
as a result of a crack.

No single-inspection technique will find all the cracks that may exist, however,
dyes and magnetic particle inspections are the most popular. The decrease in catas-
trophic failures of risers can be attributed in part to improved riser inspection tech-
niques. After the welds have been thoroughly inspected, the riser should be repaired,
and the seals replaced.

Proper handling techniques for tubular goods apply to risers. The connector pin
should be protected when not in use. Only lift subs that are designed for the riser
should be used. Hard banding on drill pipe will cause unnecessary wear to the riser
and BOPs and should not be used on a drilling vessel.

High standards of material quality and construction are used in the manufacture
of risers. Under no circumstances should field welding on the riser be permitted.

The position of riser joints along the length of the riser should be rotated period-
ically. This ensures that the service conditions for each joint are evenly distributed
and that no individual riser joint is continuously subjected to a highly loaded part of
the riser.

9.9 Conclusion

In this chapter, we have investigated vertical riser operations from principally float-
ing offshore structures. For these the pipe connections (the riser) between surface
facilities and seabed are for transportation of oil and gas, as well as drilling and
workover operations. Analysis methods for vertical marine risers under the influ-
ences of both internal and external forces have been described. Sophisticated riser
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analysis tools have been developed which enable operations in ultra-deep waters, of-
ten with complex and difficult currents. Operators are increasingly appreciating the
benefits that Riser Management Systems offer for improved operability, increased
service lives of risers, and importantly as an aid for improving safety. Four modes
of operation that marine risers may experience have been introduced, namely free-
hanging, connected, operational, and non-operational but connected modes. It has
been considered that typically a marine drilling riser can be maintained in an op-
erable condition by ensuring that the lower flex joint angle remains below about 4
degrees (depending on particular flex joint design). Three operating procedures are
described which may be used to reduce this angle. Marine riser monitoring systems
provide information on the behaviors of the platform, and the marine riser. By ad-
ditionally using a suitable analytical model of the riser dynamics within these it is
possible to estimate the expended fatigue life of the riser. BPP-RMS, an example of
such a comprehensive Riser Management System (RMS) for riser maintenance and
inspection, has been presented. It is a state-of-the-art on-board riser operation man-
agement system that provides real-time guidance for carrying out connected and
disconnected mode riser operations on board drilling and workover vessels.



Chapter 10
Conclusions

The book has been dedicated to the modeling and control design of the marine me-
chanical systems subjected to the environmental disturbances. The results of the
research work conducted in this book are summarized in each chapter, and the con-
tributions made are reviewed. The key results are listed as follows.

In Chap. 3, stable adaptive neural-based positioning control has been designed
for installation of subsea structure with attached thrusters in the presence of time-
varying environmental disturbances and parametric uncertainties. The main contri-
butions are: (i) the full-state and output feedback adaptive neural control design to
generate surge, sway, and yaw control commands for subsea positioning in pres-
ence of parametric uncertainties and disturbances, (ii) the rigorous stability analysis
via backstepping and Lyapunov synthesis to demonstrate the semiglobal uniform
boundedness of the tracking error, and (iii) the investigation on the effects of a time-
varying current on the proposed control in comparison with different control meth-
ods that do not compensate the current explicitly or generally assume ocean currents
to be constant. Simulation results have demonstrated that the adaptive neural con-
trol is robust and effective in reducing the tracking error for the subsea installation
operation.

In Chap. 4, the model of the coupled vessel, crane, cable, and payload with uni-
form and nonuniform parameters has been presented. The contributions in the study
of the coupled system are (i) the coupled modeling of the vessel, crane, flexible
cable, and subsea payload where nonuniformity, parametric uncertainties, and dis-
tributed disturbances are admissible in the PDE model of the cable. The cable un-
der consideration need not be uniform, and the tension can be a function of both
transverse gradient and axial coordinate, (ii) the design of positioning control using
symmetric barrier Lyapunov functions (SBLFs) and stability analysis of the coupled
system. Through Lyapunov synthesis, we have ensured that the coupled system is
stable, the physical safety limits are not transgressed, and simultaneous positioning
of the crane and payload is achieved, and (iii) design of the stabilizing boundary con-
trol via Lyapunov synthesis when nonuniformity in the flexible cable is considered.
Through rigorous stability analysis, the uniform boundedness of the coupled system
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is demonstrated when excited by the distributed environment load. The performance
of the proposed control has been illustrated through numerical simulations.

In Chap. 5, both position control and vibration suppression have been considered
for a flexible marine installation system. Two cases for the flexible marine installa-
tion system are studied: (i) exact model-based control and (ii) adaptive control for
the system parametric uncertainty. For the first case, a boundary controller has been
introduced for the exact model of the installation system. For second case where the
system parameters cannot be directly measured, to fully compensate the effect of
unknown system parameters, a signum term and an auxiliary signal term have been
introduced to develop a robust adaptive boundary control law. Both types of bound-
ary control have been designed based on the original infinite-dimensional model
(PDE), and thus the spillover instability phenomenon has been eliminated. All the
signals of the closed-loop system have been proved to be uniformly bounded by us-
ing the Lyapunov direct method. The proposed schemes have offered implementable
design procedures for the control of marine installation systems since all the signals
in the control can be measured by sensors or calculated by a backward difference
algorithm. The main contributions include: (i) the mathematical model of the ma-
rine installation system has been described as a nonhomogeneous hyperbolic PDE;
and (ii) two implementable boundary controllers at the top and bottom boundary of
the cable have been designed to position the subsea payload to the desired set-point
and suppress the cable’s vibration.

In Chap. 6, both state feedback and output feedback control have been designed
for thruster-assisted single-point mooring systems with unknown backlash-like hys-
teresis in thruster dynamics. The backlash-like hysteresis has been transformed into
a liner term plus a bounded nonlinear term, and then an effective full-state feed-
back control has been proposed via backstepping design. The main contributions of
this chapter can be summarized as follows: (i) in the presence of both uncertainties
and unknown backlash-like hysteresis nonlinearities, robust adaptive full-state feed-
back has been presented via backstepping design, and all signals of the closed-loop
system are semiglobally uniformly ultimately bounded; (ii) an observer has been
constructed to estimate the unmeasurable velocity vector of the single-point moor-
ing system, where high-order neural network (HONN) is employed to approximate
the unknown nonlinear functions; and (iii) by using the previous HONN-based ob-
server, adaptive output feedback control has been proposed via backstepping design
for the case where the velocity vector of a single-point mooring system is unmea-
surable.

In Chap. 7, we have studied the vibration problems of a coupled nonlinear marine
flexible riser subjected to the ocean disturbances. The riser system is modeled as a
nonlinear PDE system via the Hamilton principle. The difficulty of the control of the
nonlinear PDE system lies in the couplings between the transverse and longitudinal
vibrations. To overcome this difficulty, we have developed the boundary control
with two actuators in transverse and longitudinal directions based on the distributed-
parameter system model, and the problems associated with traditional truncated-
model-based design are overcome. With the proposed control, uniform boundedness
under the ocean current disturbances and exponential stability under free vibration
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condition have been theoretically proved based on the Lyapunov direct method. The
control is easy to implement since it is independent of the system parameters and
only two sensors and actuators are required. The main contributions are: (i) the
coupled nonlinear dynamic model of the marine flexible riser for transverse and
longitudinal vibrations reduction has been formulated; and (ii) the implementable
boundary control with two actuators in transverse and longitudinal directions has
been designed to reduce both transverse and longitudinal vibrations of the marine
flexible riser.

In Chap. 8, robust adaptive boundary control for a flexible marine riser with
vessel dynamics has been designed to suppress the riser’s vibration. To provide
an accurate and concise representation of the riser’s dynamic behavior, the flexi-
ble marine riser with vessel dynamics has been described by a distributed parameter
system with a partial differential equation (PDE) and four ordinary differential equa-
tions (ODEs). Two cases have been investigated: (i) exact model-based control and
(ii) robust adaptive control for the system parametric uncertainty. Robust boundary
control has been proposed based on the exact model of the riser system, and adap-
tive control has been designed to compensate the system parametric uncertainty.
With the proposed control, closed-looped stability under the external disturbances
has been proven by using the Lyapunov direct method. The state of the system is
proven to converge to a small neighborhood of zero by appropriately choosing de-
sign parameters. The main contributions are: (i) the model of the marine flexible
riser with vessel dynamics has been formulated; and (ii) robust adaptive boundary
control at the top boundary of the riser has been developed to suppress the riser’s
vibration.

In Chap. 9, we have investigated riser structural analysis, riser operations, and
riser management systems. The main contributions are summarized as (i) the analy-
sis of vertical marine risers under the influences of both internal and external forces
have been described; (ii) four configurations of the marine risers have been intro-
duced; (iii) three operating procedures have been given to bring the angle down;
and (iv) BPP-RMS, an example of the comprehensive Riser Management System
(RMS) for riser maintenance and inspection, has been presented.
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