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Preface

This book is aimed at students making the transition from a final year undergradu-
ate course on general relativity, based on one of the many introductory texts, to a
specialized subfield of general relativity covered by an existing research monograph.
We present a variety of topics under the general headings of gravitational waves in
vacuo and in a cosmological setting, equations of motion, and black holes, all hav-
ing a clear physical relevance and a strong emphasis on space–time geometry. The
topic of black hole physics is particularly extensive and so a selection of classical and
quantum aspects, with suitable introduction, has been made with a view to comple-
menting the recent text, Introduction to Black Hole Physics, by Frolov and Zelnikov
(2011). Each chapter in this book could be used as a basis for an advanced under-
graduate or early postgraduate project since our intention is to whet the appetite of
readers who are exploring avenues into research in general relativity and who have
already accumulated the required technical knowledge. To be more specific we expect
the reader to have completed an introductory course on general relativity at the level
of Introducing Einstein’s Relativity by Ray d’Inverno (1992) and then to have supple-
mented this material with additional techniques by individual study or in a taught
MSc programme. The additional technical knowledge required involves the Cartan cal-
culus, the tetrad formalism including aspects of the Newman–Penrose formalism, the
Ehlers–Sachs theory of null geodesic congruences, and the Petrov classification of grav-
itational fields, all of which are treated clearly and economically by S. Chandrasekhar
(1983) in the mathematical preliminaries for The Mathematical Theory of Black Holes.
For the geometry underpinning the cosmology treated here it would be hard to surpass
the lecture notes of G. F. R. Ellis (1971). The topics covered in this book are not indi-
vidual applications of any one of these techniques. Our attitude to the techniques is
to regard them as available to us in whole or in part (mainly in part) as each situation
demands. The presentation of each chapter is research monograph style rather than
textbook style in order to impress on interested students the need to present their
research in a clear and concise format. Our hope is that students with our taste in
general relativity will find a treasure trove here.
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1
Minkowskian space–time

Space–time geometry was introduced into relativity theory in the classical paper by
Minkowski (1909) [translated by Lorentz (1923)] and so we begin our presentation
from the space–time viewpoint on general relativity by considering some aspects of
Minkowskian space–time. We discuss non-singular and singular Lorentz transforma-
tions, infinitesimal Lorentz transformations, and exploit the similarities of the latter
to electromagnetic fields. An elegant presentation, which has influenced us, is that of
Trautman et al. (1965). A natural generalization of the Lorentz transformations leads
to the geometrical construction of a gravitational wave.

1.1 Lorentz tansformations

The line-element of Minkowskian space–time, in rectangular Cartesian coordinates
and time, is given by

ds2 = dx 2 + dy2 + dz 2 − dt2 = ηij dx idx j . (1.1)

Here x i = (x , y , z , t) for i = 1, 2, 3, 4, respectively, and we use units in which the speed
of light in vacuum is c = 1. In general Latin indices will take values 1, 2, 3, 4, the
Einstein summation convention will apply, and (ηij ) = diag(1, 1, 1,−1) are the com-
ponents of the Minkowskian metric tensor in coordinates x i with (ηij ) = (ηij )−1 =
diag(1, 1, 1,−1) and Latin indices are raised and lowered as usual with ηij and ηij ,
respectively.

There is a one-to-one correspondence between points of Minkowskian space–time
with position vectors x = (x , y , z , t) and 2 × 2 Hermitean matrices. Given a point x
we write the corresponding 2 × 2 Hermitean matrix in the form

A(x) =
(
−z + t x + iy
x − iy z + t

)
. (1.2)

The standard way of demonstrating the action of the proper, orthochronous Lorentz
transformations on Minkowskian space–time is to recognize that if U is a 2 × 2 mat-
rix with complex entries and unit determinant (unimodular), and thus involving six
real parameters, then the 2 × 2 matrix UA(x)U †, where U † denotes the Hermitean
conjugate of U , is itself a 2 × 2 Hermitean matrix and hence there exists a point
x′ = (x ′, y ′, z ′, t ′) of Minkowskian space–time for which

A(x′) = UA(x)U †. (1.3)
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Calculating the determinants of both sides of this matrix equation immediately
results in

−x ′2 − y ′2 − z ′2 + t ′2 = −x 2 − y2 − z 2 + t2. (1.4)

Hence the transformation from x to x′, and vice versa, implicit in (1.3) is a Lorentz
transformation which on more detailed examination is revealed to be proper (orienta-
tion preserving) and orthochronous (preserving the time direction). We will henceforth
refer to such transformations simply as Lorentz transformations. On account of the
quadratic dependence on U in (1.3) it is clear that there are two unimodular matrices
±U corresponding to each Lorentz transformation. The matrices U are elements of
the group SL(2,C) while the transformations from x to x′, and vice versa, constitute
the six-real-parameter proper, orthochronous Lorentz group.

Given a unimodular matrix U it is straightforward to calculate explicitly the cor-
responding Lorentz transformation from (1.3). It is not quite so straightforward to cal-
culate the two unimodular matrices corresponding to a given Lorentz transformation
and so a little practice is useful. The reader can check that the diagonal matrices

U = ±
(

e−iφ/2 0
0 eiφ/2

)
, (1.5)

correspond to the spatial rotation

x ′ = x cos φ + y sin φ, (1.6)
y ′ = −x sin φ + y cos φ, (1.7)
z ′ = z , (1.8)
t ′ = t , (1.9)

whereas the matrices

U = ±
(

cos θ
2 sin θ

2
− sin θ

2 cos θ
2

)
, (1.10)

correspond to the spatial rotation

x ′ = x cos θ + z sin θ, (1.11)
y ′ = y , (1.12)
z ′ = −x sin θ + z cos θ, (1.13)
t ′ = t . (1.14)

Also the diagonal matrices

U = ±
(( 1−v

1+v

)−1/4 0

0
( 1−v

1+v

)1/4

)
, (1.15)

correspond to the Lorentz boost

x ′ = x , (1.16)
y ′ = y , (1.17)
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z ′ = γ(v) (z − v t), (1.18)
t ′ = γ(v) (t − v z ), (1.19)

where γ(v) = (1 − v 2)−1/2 is the Lorentz factor, and the matrices

U = ± 1√
2

( √
γ(v) + 1 −

√
γ(v) − 1

−
√

γ(v) − 1
√

γ(v) + 1

)
, (1.20)

correspond to the Lorentz boost

x ′ = γ(v) (x − v t), (1.21)
y ′ = y , (1.22)
z ′ = z , (1.23)
t ′ = γ(v) (t − v x ). (1.24)

These one-parameter subgroups of the proper, orthochronous Lorentz group are
useful for illustrative purposes below. In the latter two examples the primed frame
of reference is moving with constant 3-velocity v < 1 in the z -direction relative to
the unprimed frame in the case of (1.16)–(1.19) and in the x -direction relative to the
unprimed frame in the case of (1.21)–(1.24).

1.2 Non-singular and singular Lorentz transformations

The position vector of a point on the future null-cone with vertex at the origin
(0, 0, 0, 0) of the coordinates x i in Minkowskian space–time is given by

x = (x , y , z , t) with t > 0 and x 2 + y2 + z 2 = t2. (1.25)

This vector can be written in parametrized form as

x = t (sin θ cos φ, sin θ sin φ, cos θ, 1), (1.26)

with the polar angles θ, φ having the usual ranges 0 ≤ θ ≤ π and 0 ≤ φ < 2π. Thus
a null direction on the future null-cone (1.25) is specified by the angles θ, φ. It is
convenient to use the complex number

ζ = eiφcotan
θ

2
, (1.27)

in place of the polar angles. The real and imaginary parts of this complex number
specify the image in the equatorial plane of the stereographic projection from the
north pole (corresponding to θ = 0) of a point on the unit 2-sphere. Thus (1.26) takes
the form

x = t
(

ζ̄ + ζ

1 + ζζ̄
,
i(ζ̄ − ζ)
1 + ζζ̄

,
ζζ̄ − 1
ζζ̄ + 1

, 1
)

, (1.28)

with the bar denoting complex conjugation. Hence the points of the extended com-
plex plane (the complex plane including the point at infinity ζ = ∞, with the latter
corresponding to θ = 0) are required to specify all of the null directions on the future
null-cone (1.25). Clearly the point at infinity of the extended complex plane specifies
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the generator t = z of the null-cone (1.25). Under a proper, orthochronous Lorentz
transformation, (1.28) is transformed to another null position vector

x′ = t ′
(

ζ̄ ′ + ζ ′

1 + ζ ′ζ̄ ′
,
i(ζ̄′ − ζ ′)
1 + ζ′ζ̄ ′

,
ζ ′ζ̄ ′ − 1
ζ ′ζ̄ ′ + 1

, 1
)

, (1.29)

whose direction is specified by the complex number ζ′. Now

A(x) =
2 t

1 + ζζ̄

(
1 ζ

ζ̄ ζζ̄

)
, (1.30)

with a similar equation for A(x′). The relationship between ζ ′ and ζ will tell us how
null directions on the null-cone are transformed under the Lorentz transformations
under consideration. This information is readily obtained by substituting (1.30) and
the corresponding expression for A(x′) into (1.3) for any

U =
(

α0 β0
γ0 δ0

)
, (1.31)

where α0, β0, γ0, δ0 are complex numbers satisfying α0δ0 − β0γ0 = 1. Straightforward
algebra reveals that

ζ′ =
γ̄0 + δ̄0ζ

ᾱ0 + β̄0ζ
. (1.32)

Such transformations constitute the fractional linear group of transformations of the
extended complex plane. We have noted that there are two matrices U (differing only in
sign) corresponding to each Lorentz transformation whereas it is clear from (1.32) that
there is a one-to-one correspondence between proper, orthochronous Lorentz trans-
formations and fractional linear transformations. In fact these latter two groups of
transformations are isomorphic.

Fixed points of the transformation (1.32) correspond to null directions left invariant
by Lorentz transformations. For a given Lorentz transformation the fixed points ζ are
given by the roots of the quadratic equation

β̄0ζ
2 + (δ̄0 − ᾱ0)ζ − γ̄0 = 0, (1.33)

over the field of complex numbers. Hence in general a proper, orthochronous Lorentz
transformation leaves two null directions on the null-cone invariant. Such trans-
formations are called non-singular. However it is obviously possible to have Lorentz
transformations for which the roots of the quadratic equation (1.33) are equal. In these
cases only one null direction on the null-cone is left invariant. Such transformations
are called singular Lorentz transformations or null rotations.

The fixed points of the transformation (1.32) corresponding to the non-diagonal
case (1.10) above are ζ = ±i and the corresponding invariant null directions, obtained
from (1.28), are tangent to the null geodesic generators y = ±t of the null-cone with
vertex (0, 0, 0, 0). The fixed points corresponding to (1.20) are ζ = ±1 and the corres-
ponding invariant null directions are tangent to the lines x = ±t . The diagonal cases
(1.5) and (1.15) both have β0 = 0 = γ0 and α0 �= δ0. In this case we see that (1.33) has
the solution ζ = 0. Also rewriting (1.33) in the form

β̄0 + (δ̄0 − ᾱ0)ζ−1 − γ̄0ζ
−2 = 0, (1.34)
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it follows that ζ = ∞ when β0 = 0 = γ0 and α0 �= δ0. Hence the invariant null directions
in the cases (1.5) and (1.15) are tangent to the lines z = ±t . Consequently all four
examples in the previous section are non-singular Lorentz transformations. An example
of a singular Lorentz transformation is

x ′ + iy ′ = x + iy + w (t + z ), (1.35)
t ′ − z ′ = t − z + ww̄(t + z ) + w(x − iy) + w̄(x + iy), (1.36)
t ′ + z ′ = t + z , (1.37)

where w �= 0 (w = 0 for the identity transformation) is a complex number with complex
conjugate w̄ . In this form it is easy to check that (1.4) is satisfied. The corresponding
matrices U are found to be

U = ±
(

1 w
0 1

)
. (1.38)

The unique fixed point of (1.32) is thus ζ = 0 and the corresponding invariant null dir-
ection is tangent to the line z = −t . The transformations (1.35)–(1.37) constitute an
Abelian, two-(real)-parameter subgroup of the proper, orthochronous Lorentz group.
It is interesting to transform (1.35)–(1.37) from the coordinates (x , y , z , t) to the
coordinates (ξ, η, r , u) via

ξ =
x

z + t
, (1.39)

η =
y

z + t
, (1.40)

r = z + t , (1.41)

u = −1
2
(z − t) − 1

2
(x 2 + y2)

z + t
. (1.42)

Now (1.35)–(1.37) takes the simpler form

ξ′ + iη′ = ξ + iη + w , r ′ = r , u ′ = u. (1.43)

Even more revealing is to write the Minkowskian line-element (1.1) in the coordinates
(ξ, η, r , u). This results in

ds2 = r 2(dξ2 + dη2) − 2 du dr , (1.44)

which was first given by Ivor Robinson (see Rindler and Trautman (1987)) as a
byproduct of his study of the Schwarzschild line-element in the limit of the mass
m → +∞. It is immediate from (1.44) that r = 0 is a null geodesic with u an affine
parameter along it and that (1.43) is a Lorentz transformation which leaves this null
geodesic invariant. This observation by Robinson is of great significance in the history
of singular Lorentz transformations [see Synge (1965), p.viii].

Robinson’s interesting limit of the Schwarzschild solution referred to above is
obtained by first writing the Schwarzschild line-element in the form (a more common
form of the Schwarzschild line-element can be found in (3.1) below)

ds2 =
r 2(dξ2 + dη2)

cosh2 λ ξ
− 2 du dr −

(
λ2 − 2

r

)
du2, (1.45)
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with

λ = m−1/3, (1.46)

and then taking the limit λ → 0 (equivalently m → +∞) to arrive at the line-element

ds2 = r 2(dξ2 + dη2) − 2 du dr +
2
r

du2. (1.47)

This is the flat space–time line-element (1.44) with the addition of a term (the final
term) which is singular at r = 0. The reader may like to show that, with a suitable
coordinate transformation, it can be put in the vacuum Kasner (1925) form:

ds2 = T 4/3(dX 2 + dY 2) + T−2/3dZ 2 − dT 2. (1.48)

1.3 Infinitesimal Lorentz transformations

A convenient way to introduce infinitesimal Lorentz transformations in the formalism
above is via the approximately unimodular matrices

U = ±
(

1 + ε(a1 + ia2) + O(ε2) ε(b1 + ib2) + O(ε2)

ε(c1 + ic2) + O(ε2) 1 − ε(a1 + ia2) + O(ε2)

)
. (1.49)

Here ε is a small real parameter controlling the approximation where we neglect O(ε2)
terms but keep a note of their presence. Also a1, a2, b1, b2, c1, c2 are six real numbers.
Now using (1.3) the corresponding infinitesimal Lorentz transformation can be written
in the form (for i = 1, 2, 3, 4)

x ′i = x i + εLi
j x

j + O(ε2), (1.50)

where x ′i = (x ′, y ′, z ′, t ′) and

(Li
j ) =

⎛
⎜⎜⎜⎜⎜⎝

0 −2a2 b1 − c1 b1 + c1

2a2 0 b2 + c2 b2 − c2

−(b1 − c1) −(b2 + c2) 0 −2a1

b1 + c1 b2 − c2 −2a1 0

⎞
⎟⎟⎟⎟⎟⎠ , (1.51)

with the upper index on L indicating the rows and the lower index indicating the
columns in this matrix. Let x i = x i(s) be a time-like world line in Minkowskian space–
time, with s the arc length or proper-time along it. Let ui = dx i/ds and then ηij ui uj =
ui ui = −1 for all s. Thus ui is the 4-velocity of the particle with world line x i = x i (s).
Since ui ui is conserved along this world line it follows that ui (s1) and ui(s2), for
s1 �= s2, must be related by a Lorentz transformation. In particular ui(s + ε) and ui (s),
for small ε, must be related by an infinitesimal Lorentz transformation for which the
entries in the matrix (1.51) depend upon s. Thus

ui (s + ε) = ui (s) + εLi
j (s)u

j (s) + O(ε2). (1.52)
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Dividing by ε and taking the limit ε → 0 yields the propagation law for ui(s) along
the world line:

dui

ds
= Li

j u
j . (1.53)

As usual we can write the components of the 4-velocity ui in terms of the 3-velocity
�u of the particle in the form

ui = γ(u) (�u, 1) where �u =
(

dx
dt

,
dy
dt

,
dz
dt

)
and γ(u) = (1 − u2)−1/2, (1.54)

with u2 = �u · �u. Hence (1.53) can be written more explicitly as
d
dt

(
γ(u)

dxα

dt

)
= Lα

β

dx β

dt
+ Lα

4 , (1.55)

d
dt

γ(u) = L4
β

dx β

dt
, (1.56)

where Greek indices take values 1, 2, 3 with the Einstein summation convention con-
tinuing to apply and where we have used the fact that L4

4 = 0 from (1.51). Defining
the 3-vectors

�U = (b1 + c1, b2 − c2,−2a1), (1.57)
�W = (b2 + c2,−b1 + c1,−2a2), (1.58)

we can rewrite (1.55) and (1.56) in 3-vector notation as
d
dt

(γ(u)�u) = �u × �W + �U , (1.59)

dγ(u)
dt

= �u · �U . (1.60)

It is easy to see, by taking the scalar product of (1.59) with �u, that (1.60) is a con-
sequence of (1.59). The 3-velocity dependence of the 3-force on the right-hand side of
(1.59) is identical to the 3-velocity dependence of the classical Lorentz 3-force acting
on a charged particle moving in an electromagnetic field. We can make this connection
more explicit by writing

�U =
q
m

�E =
q
m
(
E 1,E 2,E 3) , (1.61)

�W =
q
m

�B =
q
m
(
B 1,B 2,B 3) . (1.62)

Now (1.59) becomes

m
d
dt

(γ(u)�u) = q
(
�u × �B + �E

)
, (1.63)

which is identical to the equations of motion of a charge q of mass m moving in an
electric field �E and a magnetic field �B . The matrix (1.51) can be written

(Li
j ) =

q
m

⎛
⎜⎜⎜⎝

0 B3 −B2 E 1

−B3 0 B1 E 2

B 2 −B1 0 E 3

E 1 E 2 E 3 0

⎞
⎟⎟⎟⎠ . (1.64)
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We note that if we neglect O(ε) terms then with U given by (1.49) the fixed null
directions of the infinitesimal Lorentz transformations generating the transport of ui

along the time-like world line are given by ζ(s) such that

(b1 − ib2)ζ2 − 2(a1 − ia2)ζ − (c1 − ic2) = 0. (1.65)

In terms of the vectors �E and �B we have (ignoring a factor of q/m which is unnecessary
here)

a1 + ia2 = −1
2
(
E 3 + iB 3) , (1.66)

b1 + ib2 =
1
2
(
E 1 + iE 2)+

i
2
(
B 1 + iB2) , (1.67)

c1 + ic2 =
1
2
(
E 1 − iE 2)+

i
2
(
B 1 − iB2) . (1.68)

Hence we see that the roots of (1.65) are equal if and only if

|�E |2 − |�B |2 = 0 and �E · �B = 0, (1.69)

indicating that the time-like world line of the charged mass is generated by a succession
of infinitesimal singular Lorentz transformations provided the charge is moving in a
purely radiative electromagnetic field. Further information, such as the transformation
laws for �E and �B under the Lorentz boost (1.21)–(1.24), can be deduced from the
construction given here.

1.4 Geometrical construction of a gravitational wave

With ξ + iη =
√

2Z we can rewrite (1.39)–(1.42) equivalently as

x + iy = r
√

2Z , x − iy = r
√

2 Z̄ , z + t = r and − z + t = 2 u + 2 r Z Z̄ , (1.70)

with the bar as usual denoting complex conjugation. Thus the line-element (1.44) takes
the form

ds2 = 2 r2dZ dZ̄ − 2 du dr . (1.71)

It is easy to check now that u = constant are null cones with vertices on the null
geodesic r = 0. When the proper, orthochronous Lorentz transformation (1.3), with
U given by (1.31), is written in terms of the coordinates Z , Z̄ , r , u it can be simplified
to read

r ′ = 2 γ0γ̄0u + r |
√

2 γ0 Z + δ0|2, (1.72)

r ′ Z ′ =
√

2 α0 γ̄0 u + r
(√

2 γ̄0 Z̄ + δ̄0

) ( 1√
2

β0 + α0 Z
)

, (1.73)

u ′ =
u r

2 γ0 γ̄0 u + r |
√

2 γ0 Z + δ0|2
. (1.74)

As a first step in generalizing this transformation let

f (Z ) =
1√
2
β0 + α0 Z

δ0 +
√

2 γ0 Z
, (1.75)
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and, denoting the derivative of this with a prime, we can write (1.72)–(1.74) in the
form (Hogan, 1994)

r ′ =
r
|f ′|

(
1 +

u
4 r

∣∣∣∣ f ′′f ′

∣∣∣∣
2
)

, (1.76)

u ′ = u |f ′|
(

1 +
u
4 r

∣∣∣∣ f ′′f ′

∣∣∣∣
2
)−1

, (1.77)

Z ′ = f (Z ) − u
2 r

f ′ f̄ ′′

f̄ ′

(
1 +

u
4 r

∣∣∣∣ f ′′f ′

∣∣∣∣
2
)−1

. (1.78)

Now assume that f (Z ) is an arbitrary analytic function and calculate the line-element
from

ds2 = 2 r ′2dZ ′ dZ̄ ′ − 2 du ′ dr ′,

= 2 r 2
∣∣∣dZ − u

2 r
H̄ (Z̄ ) dZ̄

∣∣∣2 − 2 du dr , (1.79)

where

H (Z ) =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

. (1.80)

The analytic function (1.80) vanishes if and only if the function f (Z ) is fractional linear
as in (1.75). Penrose’s (1972) ‘spherical’ impulsive gravitational wave having as history
in space–time the future null-cone u = 0 is obtained from this simply by replacing the
coefficient u of H̄ in (1.79) by u ϑ(u) where ϑ(u) is the Heaviside step function which
is unity for u > 0 and vanishes for u < 0. The Ricci tensor, calculated with the metric
tensor given via the line-element (1.79) with u replaced by u ϑ(u), vanishes, indicating
that we have a vacuum space–time in particular on u = 0 (the space–time is of course
Minkowskian for u > 0 and for u < 0). There is only one Newman–Penrose component
of the Riemann curvature tensor and it is

Ψ4 =
1

2 r
H (Z ) δ(u). (1.81)

This fact indicates that the Riemann tensor is type N (radiative) in the Petrov classi-
fication with ∂/∂r as degenerate principal null direction. The profile is a Dirac delta
function which is singular on the history of the wave u = 0 and the field is also sin-
gular on the null geodesic r = 0 which is a generator of the null-cone u = 0. Thus the
wavefront has a singular point on it and so the wave is not strictly spherical. Further
details including the construction of this wave using a ‘cut and paste’ approach can
be found in Penrose (1972) and Barrabès and Hogan (2003b) and references therein.



2
Plane gravitational waves

Most introductory texts on general relativity present plane gravitational waves of
arbitrary profile as solutions of Einstein’s vacuum field equations in the linear approx-
imation. Starting in this way we lead the reader through a sequence of gauge
transformations to a metric tensor which is an exact solution of the vacuum field
equations. We specialize to impulsive plane gravitational waves having a Dirac delta
function profile and then give a simple derivation of the Khan–Penrose solution of
Einstein’s vacuum field equations describing the gravitational field following the head-
on collision of such plane waves. By comparison the head-on collision of electromagnetic
shock waves, having a Heaviside step function profile, leading to the Bell–Szekeres
solution of the vacuum Einstein–Maxwell field equations, is described and the corres-
ponding solution of Einstein’s field equations for colliding gravitational shock waves
is also given. Finally we consider high-frequency gravitational waves propagating in
a vacuum and examine the similarities between plane and approximately spherical
fronted waves.

2.1 From linear approximation to colliding waves

In order to establish notation for this very familiar topic we begin by writing the
metric tensor components as small perturbations of the Minkowskian metric tensor
thus:

gij = ηij + γij , (2.1)

where ηij is given via (1.1) and γij = γji with γij = γij (x , y , z , t). We can consider γij
as the components of a tensor field on Minkowskian space–time with metric tensor
having components ηij . Now define the star conjugate of γij by

γ∗
ij = γij −

1
2
ηij γ, (2.2)

with γ = ηij γij . If γ∗
ij satisfies the coordinate conditions

ηjkγ∗
ij ,k = 0, (2.3)

with the comma denoting partial differentiation with respect to xk , then Einstein’s
vacuum field equations in the linear approximation reduce to the 4-dimensional wave
equation
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(
∂2

∂x 2 +
∂2

∂y2 +
∂2

∂z 2 − ∂2

∂t2

)
γ∗

ij = 0. (2.4)

The corresponding gravitational field is described by the linearized Riemann tensor
with components

Rijkm(γ) =
1
2

(γim,jk + γjk ,im − γik ,jm − γjm,ik ) . (2.5)

If ξi (x , y , z , t) are the components of a vector field on Minkowskian space–time, with
ξi = ηij ξ

j , and if ξi satisfies the wave equation(
∂2

∂x 2 +
∂2

∂y2 +
∂2

∂z 2 − ∂2

∂t2

)
ξi = 0, (2.6)

then the equations (2.3), (2.4), and (2.5) are invariant under the transformation

γij → γ̄ij = γij − ξi ,j − ξj .i . (2.7)

Since in particular this means that Rijkm(γ) = Rijkm(γ̄) we shall refer to (2.7) as a
gauge transformation.

To obtain plane wave solutions with arbitrary profile travelling in the positive
z -direction (say) let u = z − t = ki x i and take

γ∗
ij = γ∗

ij (u) , γ∗
ij k

j = 0. (2.8)

Now since γ∗
ij ,k = γ̇∗

ij kk , with the dot denoting differentiation with respect to u, and
ηij k i k j = ki k i = 0 it is straightforward to see that (2.3) and (2.4) are satisfied. In
addition we have

γij k j =
1
2
γ ki , (2.9)

and

Rijkm =
1
2

(γ̈imkj kk + γ̈jk ki km − γ̈ik kj km − γ̈jmki kk ) , (2.10)

from which we deduce that

Rijkmkm = 0, (2.11)

which indicates that the linearized Riemann tensor is type N (radiative type) in the
Petrov classification with k i as degenerate principal null direction. The null hyper-
surfaces u = constant in Minkowskian space–time are generated by the null geodesic
integral curves of the vector field k i and are the histories of planes parallel to the xy-
plane travelling with the speed of light in the positive z -direction. Thus u = constant
are the histories of the wavefronts of the plane waves. Now choose ξi = ξi(u) so that
the wave equation (2.6) is satisfied and the gauge transformation (2.7) reads

γ̄ij = γij − ξ̇i kj − ξ̇j ki , (2.12)

from which we obtain

γ̄∗
ij = γ∗

ij − ξ̇i kj − ξ̇j ki + ηij ξ̇k kk . (2.13)
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We note that since γ∗
i3 + γ∗

i4 = γ∗
ij k

j = 0 we have γ̄∗
i3 + γ̄∗

i4 = γ̄∗
ij k

j = 0. In view of (2.13)
we see that we can choose ξ1(u) such that ξ̇1 = γ∗

13 = −γ∗
14 in order to have γ̄∗

13 =
0 = γ̄∗

14. We can also choose ξ2(u) such that ξ̇2 = γ∗
23 = −γ∗

24 to have γ̄∗
23 = 0 = γ̄∗

24.
Finally it is convenient to choose ξ3(u) and ξ4(u) so that ξ̇3 − ξ̇4 = γ∗

33 = −γ∗
34 and

ξ̇3 + ξ̇4 = −(γ∗
11 + γ∗

22)/2. The latter choices for ξ3 and ξ4 will ensure that γ̄∗
ij is trace-

free and so γ̄∗
ij = γ̄ij . Now, dropping the bars, we can say that without loss of generality

γij (u) for plane waves travelling in the positive z -direction has the property that all
components can be taken to vanish except for γ11 = −γ22 and γ12. The reader can
verify that a further gauge transformation results in

γ̂ij = γij − λi ,j − λj ,i = H kikj , (2.14)

and

H =
1
2
γ̈11(x 2 − y2) + γ̈12 x y , (2.15)

with

λ1 =
1
2
{γ11 x + γ12 y}, (2.16)

λ2 =
1
2
{γ12 x − γ11 y}, (2.17)

λ3 = −1
4
{γ̇11 (x 2 − y2) + 2 γ̇12 x y}, (2.18)

λ4 =
1
4
{γ̇11 (x 2 − y2) + 2 γ̇12 x y}. (2.19)

Clearly λi satisfies the wave equation (2.6). All components of λi are harmonic func-
tions of x and y . Now the line-element of the space–time with metric tensor (2.1) can
be written (dropping the hat in (2.14))

ds2 = dx 2 + dy2 + dz 2 − dt2 + H du2, (2.20)

where du = kidx i . With u = z − t and −2 v = z + t this takes the slightly simpler
form

ds2 = dx 2 + dy2 − 2 du dv + H du2. (2.21)

Remarkably the metric tensor given by this line-element is an exact solution of
Einstein’s vacuum field equations and the space–time is a model of the gravitational
field due to a train of plane gravitational waves of arbitrary profile. The fact that there
are two arbitrary functions of u in H given by (2.15) demonstrates that the waves have
two degrees of freedom of polarization just like plane electromagnetic waves.

We shall next transform the line-element (2.21) into a form in which the metric
tensor components are independent of x and y . This is known as the Rosen (1937)
form and, although the transformation can be given for the general case of γ̈11 �= 0
and γ̈12 �= 0 [see, for example, Futamase and Hogan (1993)] we will consider here the
special case of γ̈12 = 0. The coordinate transformation is (x , y , u, v) → (x ′, y ′, u ′, v ′)
given by

x = F (u ′) x ′, (2.22)
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x = G(u ′) y ′, (2.23)
u = u ′, (2.24)

v = v ′ +
1
2
F Ḟ x ′2 +

1
2
G Ġ y ′2, (2.25)

with the dot indicating differentiation with respect to u ′, and F (u ′),G(u ′) chosen to
satisfy

F̈ − 1
2
γ̈11 F = 0 and G̈ +

1
2
γ̈11 G = 0. (2.26)

The resulting Rosen form of the line-element (2.20) is

ds2 = F 2dx ′2 + G2dy ′2 − 2 du ′ dv ′. (2.27)

From now on we shall drop the primes on the coordinates in (2.26) and (2.27).
Our freedom to choose the function 1

2 γ̈11 corresponds to our freedom to choose the
profile of the plane gravitational waves. For a single plane impulsive wave we should
choose 1

2 γ̈11 = δ(u), where δ(u) is the Dirac delta function which is singular on the
null hypersurface u = 0. With this choice in (2.26) we find that

F = 1 + u ϑ(u) and G = 1 − u ϑ(u), (2.28)

where ϑ(u) is the Heaviside step function which is equal to unity for u > 0 and vanishes
for u < 0. Now the line-element reads

ds2 = (1 + u ϑ(u))2dx 2 + (1 − u ϑ(u))2dy2 − 2 du dv . (2.29)

The metric given via this line-element is a solution of the vacuum field equations
Rij = 0, where Rij are the components of the Ricci tensor. These field equations hold
everywhere, in particular on u = 0. The non-identically vanishing components of the
Riemann tensor are proportional to δ(u) (thus Rijkl ∝ δ(u)). Hence we see that if
u < 0 or u > 0 then (2.29) is the line-element of Minkowskian space–time (vanishing
Riemann tensor) and the Riemann tensor is singular on the null hypersurface history
u = 0 of the plane impulsive gravitational wave. In the space–time with line-element
(2.29) there are two families of intersecting null hypersurfaces, u = constant and v =
constant. Thus a plane, homogeneous, impulsive gravitational wave propagating in the
opposite direction to that with history u = 0 above, with history in space–time v = 0,
is described by a space–time with line-element

ds2 = (1 + v ϑ(v))2dx 2 + (1 − v ϑ(v))2dy2 − 2 du dv . (2.30)

Following the collision of two such waves we have u > 0 and v > 0 and the gravitational
field is described by a vacuum space–time with line-element of the form (Khan and
Penrose 1971, Szekeres 1970, 1972)

ds2 = e−U+V dx 2 + e−U−V dy2 − 2 e−M du dv , (2.31)

where U ,V ,M are functions of u and v . A simple but important observation about
this line-element is that under the coordinate transformation u → ū(u) and v → v̄(v)
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the form of the line-element is unchanged but the function M is transformed to M̄
with

e−M̄ = e−M du
dū

dv
dv̄

. (2.32)

The region of space–time u < 0 has line-element (2.30) and the region of space–time
v < 0 has line-element (2.29). The space–time model of the vacuum gravitational field
after the collision has line-element of the form (2.31) with u > 0, v > 0 and with the
functions U ,V ,M satisfying the following boundary conditions:

On v = 0, u > 0:

U = − log(1 − u2) , V = log
(

1 + u
1 − u

)
, M = 0 ; (2.33)

On u = 0, v > 0:

U = − log(1 − v 2) , V = log
(

1 + v
1 − v

)
, M = 0. (2.34)

Clearly these conditions ensure continuity of the metric tensor components on the
boundaries v = 0, u > 0 and u = 0, v > 0 of the post-collision region of the space–
time. With subscripts denoting partial derivatives, the vacuum field equations to be
satisfied by the functions U ,V ,M in (2.31) read:

Uuv = Uu Uv , (2.35)

2Vuv = Uu Vv + Uv Vu , (2.36)

2Uuu = U 2
u + V 2

u − 2Uu Mu , (2.37)

2Uvv = U 2
v + V 2

v − 2Uv Mv , (2.38)

2Muv = Vu Vv − Uu Uv . (2.39)

The first of these equations can be written (e−U )uv = 0 and this is easy to integrate
to

e−U = f (u) + g(u), (2.40)

and so to satisfy (2.33) and (2.34) we have

e−U = 1 − u2 − v 2. (2.41)

Now V is calculated from (2.36) while M is given by (2.37) and (2.38) with (2.39) the
integrability condition (or the consistency condition) for (2.37) and (2.38). To solve
(2.36) we write it in a way that suggests a simplifying assumption (see Barrabès and
Hogan (2003b)), namely,

2
∂2

∂u ∂v
log

(
Vv

Vu

)
=
(

Uv
Vu

Vv

)
v
−
(

Uu
Vv

Vu

)
u
. (2.42)

The simplifying assumption that this equation suggests is to try the separation of
variables

Vv

Vu
=

A(u)
B(v)

. (2.43)
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To determine the functions A(u) and B(v) we only require the boundary values of Vu
and Vv which we can calculate from (2.36). For example (2.36) evaluated at v = 0 and
using (2.33) and (2.41) yields the differential equation

d
du

(Vv )v=0 =
u

1 − u2 (Vv )v=0, (2.44)

and so

(Vv )v=0 =
a0√

1 − u2
, (2.45)

with a0 a constant of integration. But (2.34) gives

(Vv )u=0 =
2

1 − v 2 , (2.46)

and thus for (2.45) and (2.46) to agree when v = 0 and when u = 0 we must have
a0 = 2. Hence

(Vv )v=0 =
2√

1 − u2
. (2.47)

Similarly we have

(Vu)v=0 =
2

1 − u2 and (Vu)u=0 =
2√

1 − v 2
. (2.48)

Now evaluating (2.43) at u = 0 and at v = 0 will determine the functions A(u) and
B(v). We easily find that

Vv

Vu
=

√
1 − u2

√
1 − v 2

. (2.49)

Introducing the coordinates ū, v̄ via

ū = sin−1 u and v̄ = sin−1 v , (2.50)

we see that (2.49) becomes the first-order wave equation

Vū = Vv̄ , (2.51)

which immediately integrates to V = V (ū + v̄). When v = 0 we have v̄ = 0 and, by
(2.33) and (2.50), we have

V = log
(

1 + sin ū
1 − sin ū

)
when v̄ = 0. (2.52)

Hence for ū > 0 and v̄ > 0 we arrive at

V (ū, v̄) = log
(

1 + sin(ū + v̄)
1 − sin(ū + v̄)

)
= log

{(
cos ū + sin v̄
cos ū − sin v̄

)(
cos v̄ + sin ū
cos v̄ − sin ū

)}
. (2.53)

The equality of the arguments of the logarithms here is a nice trigonometric identity
to establish. In terms of the barred coordinates we see that (2.41) reads

e−U = cos(ū − v̄) cos(ū + v̄), (2.54)
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from which it follows that U satisfies the second-order wave equation

Uūū = Uv̄v̄ . (2.55)

The reader can readily check that this equation is equivalent to the vanishing of the
right-hand side of (2.42). To calculate M we first calculate M̄ , using the field equations
written in terms of the barred coordinates and M̄ , and then obtain M from (2.32). It
is convenient to define

Q̄ = M̄ +
1
2

U , (2.56)

and then (2.37) and (2.38) in the barred variables reduce to

Q̄ū = Q̄v̄ = 2 tan(ū + v̄). (2.57)

We note at this point that (2.39) in the barred variables reads

Q̄ūv̄ =
1
2

Vū Vv̄ , (2.58)

and this is now satisfied on account of (2.57) and V given by (2.53). To solve (2.57)
we need the boundary conditions: When ū = 0 we must have Q̄ = −2 log cos v̄ and
when v̄ = 0 we must have Q̄ = −2 log cos ū, which follow easily from the boundary
conditions above expressed in terms of the barred coordinates. We thus obtain from
(2.57) the solution

Q̄ = −2 log cos(ū + v̄). (2.59)

With this and (2.47) and (2.49) we have

eM̄ =
(

cos(ū − v̄)
cos3(ū + v̄)

)1/2

. (2.60)

Now (2.32) with (2.50) yields

e−M = e− 3
2 U {cos2(ū − v̄) cos ū cos v̄}−1. (2.61)

The functions U ,V ,M in (2.31) for u > 0, v > 0 are given by (2.54), (2.53), and
(2.61), respectively. Writing them in terms of the coordinates u, v we have U given by
(2.41), V is now

eV =

(√
1 − u2 + v√
1 − u2 − v

)(√
1 − v 2 + u√
1 − v 2 − u

)
, (2.62)

and M is given by

e−M =
(1 − u2 − v 2)3/2

{
√

1 − u2
√

1 − v 2 + u v}2
√

1 − u2
√

1 − v 2
. (2.63)

When (2.41), (2.62), and (2.63) are substituted into the line-element (2.31) we arrive at
the Khan–Penrose (1971) solution of Einstein’s vacuum field equations. This expression
for the line-element is valid for u > 0, v > 0. To obtain an expression valid for all u, v
we simply replace u and v in (2.41), (2.62), and (2.63) by u+ = u ϑ(u) and v+ = v ϑ(v),
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respectively. The reader can verify that the Khan–Penrose solution for u > 0, v > 0
has a singularity in the curvature tensor at e−U = 1 − u2 − v 2 = 0 and so the solution
is valid in the region u > 0, v > 0 only up to the quadrant of the circle u2 + v 2 = 1.
Further properties of this solution can be found in Griffiths (1991).

2.2 Electromagnetic shock waves

Henceforth in this chapter we shall only consider line-elements of the simple form
(with M = 0)

ds2 = e−U+V dx 2 + e−U−V dy2 − 2 du dv , (2.64)

where U and V are in general functions of u and v . We can write (2.64) as

ds2 = (ϑ1)2 + (ϑ2)2 − 2ϑ3ϑ4 = gabϑ
aϑb , (2.65)

with the basis 1-forms defined by

ϑ1 = e(−U+V )/2dx = ϑ1, (2.66)
ϑ2 = e−(U+V )/2dy = ϑ2, (2.67)
ϑ3 = du = −ϑ4, (2.68)
ϑ4 = dv = −ϑ3. (2.69)

These 1-forms define a half-null tetrad. The constants gab are the components of the
metric tensor on this tetrad and tetrad indices are lowered [as in the second equalities
in (2.66)–(2.69)] and raised using gab and its inverse gab = gab , respectively. With
subscripts on U ,V denoting partial differentiation the non-vanishing components of
the Riemann curvature tensor on the half-null tetrad are

R1212 =
1
2

(UuUv − VuVv ) , (2.70)

R1313 =
1
2

(Uuu − Vuu) −
1
4

(Uu − Vu)2
, (2.71)

R1314 =
1
2

(Uuv − Vuv ) −
1
4

(Uu − Vu) (Uv − Vv ) , (2.72)

R2323 =
1
2

(Uuu + Vuu) −
1
4

(Uu + Vu)2
, (2.73)

R2324 =
1
2

(Uuv + Vuv ) −
1
4

(Uu + Vu) (Uv + Vv ) , (2.74)

R1414 =
1
2

(Uvv − Vvv ) −
1
4

(Uv − Vv )
2
, (2.75)

R2424 =
1
2

(Uvv + Vvv ) −
1
4

(Uv + Vv )
2 . (2.76)

The non-identically vanishing components of the Ricci tensor on the half-null tetrad,
Rab = gcd Racbd , are given by

R11 = −Uuv + Uu Uv + Vuv −
1
2

(UuVv + UvVu) , (2.77)
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R22 = −Uuv + Uu Uv − Vuv +
1
2

(UuVv + UvVu) , (2.78)

R33 = Uuu − 1
2
(
U 2

u + V 2
u
)
, (2.79)

R34 = Uuv −
1
2

(UuUv + VuVv ) , (2.80)

R44 = Uvv −
1
2
(
U 2

v + V 2
v
)
. (2.81)

The Weyl conformal curvature tensor components Cabcd on the tetrad are related to
the components Rabcd of the Riemann curvature tensor on the tetrad, the components
Rab of the Ricci tensor on the tetrad, and the Ricci scalar R = gab Rab by the formula

Cabcd = Rabcd +
1
2

(gad Rbc + gbc Rad − gac Rbd − gbd Rac)

+
1
6

R (gac gbd − gad gbc) . (2.82)

We note that the Newman–Penrose (1962) components ΨA for A = 0, 1, 2, 3, 4 of the
Weyl conformal curvature tensor are related to the tetrad components of the Riemann
and Ricci tensors by

Ψ0 = R1313 −
1
2
R33 + iR1323, (2.83)

Ψ1 =
1√
2

(R3431 + iR3432) −
1

2
√

2
(R31 + iR32) , (2.84)

Ψ2 =
1
2

(
R3434 + iR3412 − R34 +

1
6
R
)

, (2.85)

Ψ3 =
1√
2

(
R3414 − iR3424 +

1
2
R41 +

1
2
iR42

)
, (2.86)

Ψ4 = R1414 −
1
2
R44 − iR1424, (2.87)

with R = R11 + R22 − 2R34.
A quick perusal of the passage from (2.21) to (2.27) will reveal that a similar

coordinate transformation applied to (2.21) when

H = A(u) (x 2 + y2), (2.88)

will also lead, after dropping the primes, to a homogeneous metric tensor (having
components independent of x and y) given by the line-element

ds2 = F 2dx 2 + G2dy2 − 2du dv , (2.89)

where F (u) and G(u) satisfy

F̈ − AF = 0 and G̈ − AG = 0. (2.90)

A simple solution corresponding to the choice A(u) = −a2ϑ(u), where ϑ(u) is the
Heaviside step function used above and a is a constant, is given by

F (u) = G(u) = cos a u+, (2.91)
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where u+ = u ϑ(u). In differentiating this function we note that dϑ(u)/du = δ(u) and
also f (u) δ(u) = f (0) δ(u) and ϑ2(u) = ϑ(u). The resulting line-element

ds2 = cos2 au+(dx 2 + dy2) − 2du dv , (2.92)

is interesting from a physical point of view. It fits into the expression (2.64) and
therefore the calculation of the Ricci tensor is easily carried out using the formulae
(2.77)–(2.81) to obtain

Rab = 2a2ϑ(u)δ3
a δ3

b . (2.93)

These are the vacuum Einstein–Maxwell field equations

Rab = 2Eab , (2.94)

with the electromagnetic energy tensor

Eab = FacFb
c − 1

4
gab Fcd F cd , (2.95)

derived from the Maxwell 2-form

F =
1
2

Fab ϑa ∧ ϑb = a ϑ(u)ϑ1 ∧ ϑ3. (2.96)

It is simple to check that this 2-form is a solution of Maxwell’s vacuum field equations
dF = 0 = d∗F , where d is the exterior derivative and the star indicates the Hodge
dual. This Maxwell field is type N (the radiative type) in the Petrov classification of
2-forms and describes electromagnetic radiation with propagation direction in space–
time given by the vector field ∂/∂v . The profile of the wave is the step function and
so we have here an electromagnetic shock wave.

The head-on collision of two electromagnetic shock waves is described by the Bell–
Szekeres (1974) solution of the vacuum Einstein–Maxwell field equations with line-
element

ds2 = cos2(au+ + bv+) dx 2 + cos2(au+ − bv+) dy2 − 2 du dv , (2.97)

where b is a constant and v+ = v ϑ(v). When v < 0 this coincides with (2.92) and when
u < 0 it describes the second incoming electromagnetic shock wave with propagation
direction in space–time given by the vector field ∂/∂u. The region of space–time corres-
ponding to u < 0 and v < 0 is Minkowskian while the region u > 0, v > 0 corresponds
to the post-collision and has line-element given by (2.97) with u+ = u and v+ = v .
Calculation of the tetrad components of the Ricci tensor using the formulae above
yields the only non-identically vanishing components to be

R11 = −R22 = −2a b ϑ(u)ϑ(v) , R33 = 2 a2ϑ(u) , R44 = 2 b2ϑ(v). (2.98)

These are the vacuum Einstein–Maxwell field equations (2.94) with the electromag-
netic energy tensor calculated from the Maxwell 2-form

F = a ϑ(u)ϑ1 ∧ ϑ3 + b ϑ(v)ϑ1 ∧ ϑ4. (2.99)

This 2-form is easily seen to satisfy Maxwell’s vacuum field equations. We see in (2.99)
the incoming electromagnetic shock waves in the regions u < 0 and v < 0 and that the
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electromagnetic field in the post-collision region u > 0, v > 0 is a simple superposition.
The Newman–Penrose components of the Weyl conformal curvature tensor vanish
except for

Ψ0 = a δ(u) tan bv+ and Ψ4 = b δ(v) tan au+. (2.100)

This shows that before and after the collision the space–time is conformally flat and
following the collision impulsive gravitational waves, one with history u = 0, v > 0,
described by Ψ0, and another with history v = 0, u > 0, described by Ψ4, are created.
These products of the collision of the electromagnetic shock waves constitute a redis-
tribution, following the collision, of the energy in the incoming shock waves. Further
properties of the Bell–Szekeres solution can be found in Griffiths (1991).

When u > 0, v > 0 we make the following coordinate transformations on the line-
element (2.97): if a b > 0 define coordinates ξ, η by

√
2ab ξ = a u + b v and

√
2ab η =

a u − b v then (2.97) when u > 0, v > 0 reads

ds2 = g ′
ABdxAdxB + g ′′

ABdyAdyB , (2.101)

with

g ′
ABdxAdxB = −dξ2 + cos2(

√
2ab ξ) dx 2, (2.102)

g ′′
ABdyAdyB = dη2 + cos2(

√
2ab η) dy2, (2.103)

and with capital letters taking values 1, 2 and xA = (ξ, x ), yA = (η, y). Thus (2.101)
indicates that the Bell–Szekeres manifold (with line-element given by (2.97) with u >
0, v > 0) is the Cartesian product of two 2-dimensional manifolds. Calculation of the
Riemann curvature tensor for (2.102) and for (2.103) reveals the forms

R′
ABCD = 2ab (g ′

AD g ′
BC − g ′

AC g ′
BD), (2.104)

R′′
ABCD = −2ab (g ′′

AD g ′′
BC − g ′′

AC g ′′
BD ), (2.105)

respectively, indicating that the 2-dimensional manifolds have constant curvature
of opposite signs. On the other hand, if a b < 0 then defining coordinates ξ, η by√
−2ab ξ = a u + b v and

√
2ab η = a u − b v results again in (2.101) but now with

g ′
ABdxAdxB = dξ2 + cos2(

√
−2ab ξ) dx 2, (2.106)

g ′′
ABdyAdyB = −dη2 + cos2(

√
−2ab η) dy2. (2.107)

Calculation of the Riemann curvature tensor components in each case again results in
(2.104) and (2.105) so that again the two 2-dimensional manifolds each have constant
curvature of equal and opposite sign but with the signs of the curvatures reversed
compared to those of (2.102) and (2.103) because now a b < 0. The space–time with
line-element (2.101), with g ′

AB and g ′′
AB given either by (2.102) and (2.103) or by (2.106)

and (2.107), is a Bertotti–Robinson (Bertotti 1959, Robinson 1959) space–time. This
property of the Bell–Szekeres space–time is well known (Stephani et al. 2003, p. 399).
It is the prime motivation for the discussion in the next section.
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2.3 Gravitational shock waves

The Bertotti–Robinson space–time described above is a homogeneous solution of the
vacuum Einstein–Maxwell field equations. The so-called Nariai–Bertotti (Nariai 1999,
Bertotti 1959) space–time is a homogeneous solution of Einstein’s vacuum field equa-
tions with a cosmological constant Λ. This latter space–time manifold is also the
Cartesian product of two 2-dimensional manifolds with line-element of the form (2.101)
but for which the two 2-dimensional manifolds have the same constant curvature
(rather than having constant curvatures of opposite signs). It has recently been demon-
strated (Barrabès and Hogan, 2011) that the Nariai–Bertotti space–time coincides with
the post-collision space–time following the head-on collision of two plane, homogen-
eous, gravitational shock waves. This demonstration begins with the case Λ < 0. A
convenient representation of the Nariai–Bertotti line-element is given in this case by
(2.101) with

g ′
ABdxAdxB = −dξ2 + cos2(

√
−Λ ξ) dx 2, (2.108)

g ′′
ABdyAdyB = dη2 + cosh2(

√
−Λ η) dy2, (2.109)

with xA = (ξ, x ), yA = (η, y). The Riemann curvature tensors for these 2-dimensional
manifolds are given by

R′
ABCD = −Λ (g ′

AD g ′
BC − g ′

AC g ′
BD), (2.110)

R′′
ABCD = −Λ (g ′′

AD g ′′
BC − g ′′

AC g ′′
BD), (2.111)

indicating that the manifolds with line-elements (2.108) and (2.109) have equal con-
stant curvatures. Now put Λ = −2g0g1, where g0, g1 are real constants and define new
coordinates u, v in place of ξ, η by

√
−Λ ξ = g0u + g1v , (2.112)

√
−Λ η = g0u − g1v . (2.113)

Making these transformations in (2.108) and (2.109) and then substituting the results
into (2.101) results in

ds2 = cos2(g0u + g1v) dx 2 + cosh2(g0u − g1v) dy2 − 2 du dv . (2.114)

For the case Λ > 0 the line-elements (2.108) and (2.109) are replaced by

g ′
ABdxAdxB = dξ2 + cos2(

√
Λ ξ) dx 2, (2.115)

g ′′
ABdyAdyB = −dη2 + cosh2(

√
Λ η) dy2. (2.116)

Now (2.110) and (2.111) take the same form so that in this case the two 2-dimensional
manifolds have equal constant curvatures but of opposite sign to the equal constant
curvatures in the case of Λ < 0. In this case the transformations (2.112) and (2.113)
are replaced by

√
Λ ξ = g0u + g1v , (2.117)√
Λ η = g0u − g1v . (2.118)
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Making these transformations in (2.115) and (2.116) and then substituting the results
into (2.101) results again in (2.114).

Now we wish to consider (2.114) to be the result of a collision and to effect this
we replace u by u+ = u ϑ(u) and v by v+ = v ϑ(v) in the metric tensor components in
(2.114). Hence we consider the line-element

ds2 = cos2(g0u+ + g1v+) dx 2 + cosh2(g0u+ − g1v+) dy2 − 2 du dv ,

= (ϑ1)2 + (ϑ2)2 − 2ϑ3ϑ4,

= gabϑ
aϑb , (2.119)

with the constants gab the components of the metric tensor on the half-null tetrad
defined via the basis 1-forms, with the 1-forms {ϑa}, for a = 1, 2, 3, 4 defined by

ϑ1 = cos(g0u+ + g1v+) dx , ϑ2 = cosh(g0u+ − g1v+) dy , ϑ3 = du , ϑ4 = dv . (2.120)

This fits the pattern of (2.66)–(2.69) with

e−U = cos(g0u+ + g1v+) cosh(g0u+ − g1v+), (2.121)

eV =
cos(g0u+ + g1v+)
cosh(g0u+ − g1v+)

. (2.122)

We now use (2.77)–(2.81) to calculate the tetrad components of the Ricci tensor and
(2.70)–(2.76) followed by (2.83)– (2.87) to evaluate the Newman–Penrose components
of the Weyl conformal curvature tensor. As a guide to the reader in carrying out these
calculations we give the following partial derivatives as examples:

Uu = g0ϑ(u){tan(g0u+ + g1v+) − tanh(g0u+ − g1v+)}, (2.123)

Uv = g1ϑ(v){tan(g0u+ + g1v+) + tanh(g0u+ − g1v+)}, (2.124)

and

Uuv = g0g1ϑ(u)ϑ(v){sec2(g0u+ + g1v+) + sech2(g0u+ − g1v+)},
(2.125)

Uuu = g0δ(u){tan g1v+ + tanh g1v+} + g2
0ϑ(u){sec2(g0u+ + g1v+)

−sech2(g0u+ − g1v+)},
(2.126)

Uvv = g1δ(v){tan g0u+ + tanh g0u+} + g2
1ϑ(v){sec2(g0u+ + g1v+)

−sech2(g0u+ − g1v+)}. (2.127)

The Ricci tensor components on the half-null tetrad are given by

Rab = Λ ϑ(u)ϑ(v) gab − g0δ(u){tan g1v+ + tanh g1v+} δ3
aδ

3
b

−g1δ(v){tan g0u+ + tanh g0u+} δ4
aδ

4
b , (2.128)

with

Λ = −2g0g1. (2.129)
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Thus the regions of the space–time with line-element (2.119) for which u < 0 and for
which v < 0 are vacuum space–times (the pre-collision regions). The region for which
u > 0 and v > 0 (the post-collision space–time) is a solution of Einstein’s vacuum field
equations with a cosmological constant:

Rab = Λ gab . (2.130)

The delta function terms in (2.128) describe light-like shells of matter [such as bursts
of neutrinos for example, see Barrabès and Hogan (2003b)] with histories in space–
time given by u = 0, v > 0 (the term with coefficient g0) and by v = 0, u > 0 (the
term with coefficient g1). The Newman–Penrose components of the Weyl conformal
curvature tensor are given by

Ψ0 =
1
2
g0 δ(u){tan g1v+ − tanh g1v+} + g2

0 ϑ(u), (2.131)

Ψ1 = 0, (2.132)

Ψ2 =
1
3
g0 g1ϑ(u)ϑ(v), (2.133)

Ψ3 = 0, (2.134)

Ψ4 =
1
2
g1 δ(v){tan g0u+ − tanh g0u+} + g2

1 ϑ(v). (2.135)

Here the delta function terms represent impulsive gravitational waves created after
the collision. The wave in Ψ0 has history in space–time the portion of a null hyper-
surface u = 0, v > 0 and the wave in Ψ4 has history in space–time the portion of
the null hypersurface v = 0, u > 0. Before the collision in the region v < 0 we see
that the only non-vanishing component of the Weyl tensor is Ψ0 = g2

0 ϑ(u). This
is a vacuum region, as noted following (2.129) above, and the Weyl tensor there-
fore coincides with the Riemann tensor which is type N (radiative type) in the
Petrov classification with ∂/∂v as degenerate principal null direction. The profile of
the wave is proportional to ϑ(u) and so this is an incoming plane, homogeneous
gravitational shock wave. Similarly in the region u < 0 we have another incom-
ing plane, homogeneous gravitational shock wave with propagation direction ∂/∂u
described by the step function Ψ4 = g2

1 ϑ(v). The post-collision region is u > 0, v > 0
and there the non-vanishing Weyl tensor components are given by Ψ0 = g2

0 ,Ψ2 =
g0g1/3,Ψ4 = g2

1 and this gravitational field is the Petrov type D Nariai–Bertotti
homogeneous solution of Einstein’s vacuum field equations with a cosmological
constant.

We have seen in the previous section how the energy in the incoming electromag-
netic shock waves is redistributed after the collision in such a way that two impulsive
gravitational waves are created. The situation following the collision of the gravita-
tional shock waves in this section is somewhat more dramatic. The redistribution of
the energy in the incoming waves in this case takes the form of the creation of two
impulsive gravitational waves, two light-like shells and a cosmological constant (in
the post-collision region). The cosmological constant also represents a form of energy
(so-called dark energy) since it can be viewed as describing a perfect fluid matter dis-
tribution in which the isotropic pressure p and proper density μ satisfy the equation of
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state p + μ = 0. It is possible to combine the electromagnetic and gravitational shock
waves into a single light-like signal. A head-on collision of such signals has been studied
by Barrabès and Hogan (2011).

2.4 High-frequency gravity waves

For modelling astrophysical processes two of the most useful families of gravitational
waves are bursts of gravitational radiation, perhaps accompanied by matter travelling
with the speed of light, such as neutrinos, and high-frequency gravitational waves.
For the case of high-frequency waves the fundamental building blocks are monochro-
matic waves. We are concerned here with approximate solutions of Einstein’s vacuum
field equations in which the approximations are controlled by a small parameter λ
(say) which plays the role of the wavelength of the radiation. The line-element for the
approximate vacuum space–time model of the gravitational field of a train of homo-
geneous, monochromatic, plane gravitational waves can be put in the form (Burnett,
1989)

ds2 = 2Bλ(u)2
∣∣∣dζ + λ W̄ (u) sin

u
λ

d ζ̄
∣∣∣2 − 2 du dv . (2.136)

Here Bλ(u) is a real-valued function of the real coordinate u which also depends upon
the real parameter λ ≥ 0. W (u) is an arbitrary complex-valued function of u (the bar,
as always, denotes complex conjugation). The hypersurfaces u = constant are null and
are generated by the null geodesic integral curves of the vector field ∂/∂v with v real
and an affine parameter along them. The null hypersurfaces are the histories of the
plane wavefronts of the gravitational waves. For calculations it is natural to start with
the null tetrad defined by the basis 1-forms

ω1 = Bλ(u)
(
dζ + λ W̄ (u) sin

u
λ

d ζ̄
)

, (2.137)

ω2 = ω̄1, (2.138)
ω3 = du, (2.139)
ω4 = dv . (2.140)

The components Rab of the Ricci tensor calculated on this null tetrad satisfy

Rab = O(λ), (2.141)

and in this sense the vacuum field equations are approximately satisfied for small λ,
provided Bλ(u) satisfies

B̈λ + |W |2 sin2 u
λ

Bλ = 0, (2.142)

with the dots denoting differentiation with respect to u. The Newman–Penrose
components of the Riemann curvature tensor on the null tetrad satisfy

Ψ0 = λ−1W sin
u
λ

+ O(λ0) and ΨA = O(λ) for A = 1, 2, 3, 4. (2.143)
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Thus for small λ the Riemann tensor is type N in the Petrov classification with ∂/∂v
the degenerate principal null direction. In addition the profile of the waves has large
amplitude and short wavelength (high frequency).

Let us suppose that the high-frequency waves exist (W (u) �= 0) for a finite interval
u1 ≤ u ≤ u2. Let u ′ be any value of u in this interval and let ϑ(u − u ′) be the Heaviside
step function which is equal to unity for u − u ′ > 0 and which vanishes for u − u ′ < 0.
We can use this function as a Greens’ function for the differential equation (2.142).
Multiplying (2.142) by the step function and integrating by parts results in the integral
equation

Ḃλ(u ′) = Ḃλ(u2) +
∫ u2

u1

ϑ(u − u ′) |W (u)|2 Bλ(u) sin2 u
λ

du. (2.144)

We assume that Bλ(u) has a uniform λ = 0 limit on the interval u1 ≤ u ≤ u2. To take
the limit of (2.144) we use the Riemann–Lebesgue theorem (Olmsted, 1959) which
states that if a real-valued function A(u) is integrable (and therefore could be a step
function) on the interval u1 ≤ u ≤ u2 then

lim
λ→0

∫ u2

u1

A(u) cos
u
λ

du = 0. (2.145)

Hence it follows that

lim
λ→0

∫ u2

u1

A(u) sin2 u
λ

du =
1
2

∫ u2

u1

A(u) du. (2.146)

Thus taking the limit λ → 0 of the equation (2.144) results in the integral equation

Ḃ0(u ′) = Ḃ0(u2) +
1
2

∫ u2

u1

ϑ(u − u ′) |W (u)|2 B0(u) du. (2.147)

Differentiating this equation with respect to u ′, using dϑ(u − u ′)/du ′ = −δ(u − u ′)
where δ(u − u ′) is the Dirac delta function singular at u = u ′, demonstrates that
B0(u) satisfies the differential equation

B̈0 +
1
2
|W |2 B0 = 0. (2.148)

Also assuming Bλ(u) has an expansion for small λ > 0 of the Isaacson (1968a) form

Bλ(u) = B0(u) + λ f1
(u

λ

)
B1(u) + λ2f2

(u
λ

)
B2(u) + · · · , (2.149)

then using (2.142) and (2.148) we find that, for small λ > 0,

Bλ(u) = B0(u) − 1
8
λ2B0(u) |W (u)|2 cos

2 u
λ

+ O(λ3). (2.150)

Now the line-element (2.136) becomes, for small λ > 0,

ds2 = ds̃2 + O(λ), (2.151)

where

ds̃2 = 2B0(u)2 |dζ|2 − 2 du dv . (2.152)
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Hence the assumption of high-frequency or short-wavelength gravitational waves has
resulted in the space–time model splitting into a background space–time with line-
element (2.152) and a small perturbation of first order in λ. The background space–
time is not a vacuum space–time. Calculation of the Ricci tensor components R̃ij in
the coordinates x i = (ζ, ζ̄, u, v) using the metric given via the line-element (2.152)
together with (2.148) results in

R̃ij = |W (u)|2ki kj , (2.153)

where ki dx i = du and thus k i is a null vector field in this background space–time.
The dependence on λ in (2.141) and (2.143) and the algebraic form of the background
Ricci tensor (2.153) are what one expects in general for high-frequency gravitational
waves following the pioneering work of Isaacson (1968a, 1968b) [see also Choquet-
Bruhat (1969) and MacCallum and Taub (1973)]. For an application of these ideas to
inhomogeneous plane waves see Barrabès and Hogan (2007).

Gravitational waves from isolated sources have almost spherical wavefronts asymp-
totically. In the simplest cases the wavefronts have histories in space–time which are
expanding, shear-free null hypersurfaces (Bondi et al. 1962, Sachs 1962, Newman and
Unti 1962, Hogan and Trautman 1987). The space–time model of the vacuum grav-
itational field of such waves in the high-frequency approximation is described by a
line-element of the form (Futamase and Hogan, 1993)

ds2 = 2 r 2p−2
λ

∣∣∣∣dζ +
λ p2

λ

r
W̄ (ζ̄, u) sin

u
λ

d ζ̄

∣∣∣∣
2

− 2 du dr − cλ du2. (2.154)

Here pλ(ζ, ζ̄, u) is a real-valued function, W is an arbitrary analytic function, and the
real-valued function cλ(ζ, ζ̄, u, r) is given by

cλ = Kλ − 2 r Hλ −
2mλ

r
, (2.155)

where

Kλ = Δλ log pλ , Hλ = p−1
λ ṗλ , mλ = mλ(u), (2.156)

with

Δλ = 2 p2
λ

∂2

∂ζ∂ζ̄
, (2.157)

and the dot indicates partial differentiation with respect to u. Now the Ricci tensor
calculated with the metric tensor given via the line-element (2.154) has the form
(2.141) for small λ provided the following field equation is satisfied:

ṁλ − 3mλ Hλ −
1
4
ΔλKλ + p4

λ|W |2 sin2 u
λ

= 0. (2.158)

The corresponding Riemann curvature tensor has Newman–Penrose components ΨA =
O(λ0) for A = 0, 1, 2, 3 and

Ψ4 =
1
r
λ−1p2

λW sin
u
λ

+ O(λ0) = O(λ−1). (2.159)
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Thus for small λ the gravitational field described by this space–time is type N in
the Petrov classification with degenerate principal null direction ∂/∂r . The integral
curves of this vector field generate the null hypersurfaces u = constant and these null
geodesics have real expansion r−1 and complex shear

σ =
λ p2

λ

r 2 W sin
u
λ

+ O(λ2) = O(λ). (2.160)

Thus for small λ the integral curves of ∂/∂r are expanding, shear-free null geodesics.
In this sense the high-frequency waves are approximately spherical since their histories
in space–time are approximately future null cones. Now writing (2.158) as

∂

∂u
(p−3

λ mλ) =
1
4
p−3

λ ΔλKλ − pλ |W |2 sin2 u
λ

, (2.161)

and multiplying it by the step function, in the same manner as we treated (2.142)
above, and then taking the limit λ → 0 using the Riemann–Lebesgue theorem, we find
that p0 and m0 satisfy the differential equation

ṁ0 − 3m0 H0 −
1
4

Δ0K0 +
1
2
p4

0 |W |2 = 0. (2.162)

Now the line-element (2.154) can be written in the form

ds2 = ds̃2 + O(λ), (2.163)

with

ds̃2 = 2 r 2p−2
0 |dζ|2 − 2 du dr − c0 du2, (2.164)

with c0 given by (2.155)–(2.157) with λ = 0. This background space–time is a
Robinson–Trautman (1960, 1962) space–time with Ricci tensor components R̃ij in
coordinates x i = (ζ, ζ̄, r , u) given, on account of (2.162), by

R̃ij =
p4

0 |W |2
r 2 ki kj , (2.165)

with kidx i = du. Once again the space–time model of the gravitational field of the
high-frequency waves has split into a background and a small perturbation with the
background Ricci tensor having a characteristic algebraic form (proportional to the
square of the null propagation vector of the radiation). The background space–time
is exact and in the present case is a non-vacuum Robinson–Trautman (1960, 1962)
space–time. Robinson–Trautman space–times satisfying (2.165) are known to decay
to the Schwarzschild space–time under reasonable conditions of smoothness on the
2-dimensional subspaces u = constant, r = constant (Lukács et al. 1984). When this
happens W = 0 and the high-frequency radiation disappears. Such a decay of high-
frequency radiation from an isolated gravitating system is not surprising.



3
Equations of motion

We describe a recently developed approach (Futamase et al. 2008, Asada et al. 2010) to
obtaining equations of motion of Schwarzschild, Reissner–Nordström, or Kerr particles
(with small mass and charge) moving in external fields using Einstein’s vacuum field
equations, or the Einstein–Maxwell vacuum field equations as appropriate, together
with the assumption that near the particle the wavefronts of the radiation produced
by the motion of the particle are smoothly deformed spheres. No divergent integrals
arise in this approach.

3.1 Motivation

We begin with the Eddington–Finkelstein form of the Schwarzschild line-element:

ds2 = p−2
0 (dξ2 + dη2) − 2 du dr −

(
1 − 2m

r

)
du2, (3.1)

with

p0 = 1 +
1
4
(ξ2 + η2), (3.2)

and m is the constant mass of the source. The coordinates ξ, η are stereographic
coordinates on the unit 2-sphere and thus have the ranges −∞ < ξ < +∞,−∞ <
η < +∞. The coordinate u is a null coordinate (in the sense that the hypersurfaces
u = constant are null) and has the range −∞ < u < +∞. The coordinate r is an
affine parameter along the generators of the null hypersurfaces u = constant, with
ξ, η labelling these generators, and we take r to have the range 0 ≤ r < +∞.

When m = 0, (3.1) becomes the line-element of Minkowskian space–time:

ds 2
0 = p−2

0 (dξ2 + dη2) − 2 du dr − du2. (3.3)

We will refer to this space–time as the background space–time and take it as a model of
the external field in which the mass m is located. Since in this case it is Minkowskian
space–time, no external gravitational field exists. The coordinate transformation

x = −r p−1
0 ξ, (3.4)

y = −r p−1
0 η, (3.5)
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z = −r p−1
0

(
1 − 1

4
(
ξ2 + η2)) , (3.6)

t = u + r , (3.7)

results in

ds2
0 = dx 2 + dy2 + dz 2 − dt2. (3.8)

We see from (3.4)–(3.7) that in this Minkowskian space–time r = 0 is the time-like
geodesic x = y = z = 0, t = u with u proper-time or arc length along it. We also see
from (3.4)–(3.7) that, for r > 0,

x 2 + y2 + z 2 = (t − u)2 with t − u > 0. (3.9)

It thus follows that u = constant are future null-cones with vertices on the time-
like geodesic r = 0. Finally we observe from (3.4)–(3.7) that when u = constant the
coordinate r is an affine parameter along the generators of the future null-cones and
that each generator is labelled by ξ, η. We will introduce the (small) mass m as a
perturbation of this background space–time which is singular on r = 0. In the present
case this perturbation is

γij dx i dx j =
2m
r

du2. (3.10)

It is fortuitous in this case that the perturbation is exact in the sense that the per-
turbed space–time is an exact solution of Einstein’s vacuum field equations. When the
background space–time is non-flat the best we shall be able to achieve is knowledge of
the background space–time in the neighbourhood of an arbitrary time-like world line
r = 0 and then to obtain the perturbation of the background due to the presence of
the mass (or charged mass, as the case might be) by solving approximately Einstein’s
vacuum field equations (or the Einstein–Maxwell vacuum field equations, if the small
mass m has a small charge e). The differential equations for the time-like world line
r = 0 in the background space–time (on which the perturbations are singular) will
be called the equations of motion of the small mass. In the example under considera-
tion these are the time-like geodesic equations. The same conclusion can be drawn if,
instead of starting with the Schwarzschild solution (3.1), we were to have started with
the Reissner–Nordström solution given by the line-element

ds2 = p−2
0 (dξ2 + dη2) − 2 du dr −

(
1 − 2m

r
− e2

r 2

)
du2, (3.11)

giving the space–time model of the field of a mass m of charge e. The corresponding
potential 1-form is

A =
e
r

du, (3.12)

and the corresponding Maxwell field, together with the metric given via the line-
element (3.11), satisfies the vacuum Einstein–Maxwell field equations. The background
space–time (got by putting m = e = 0) is again (3.3) and there is no external field
(electromagnetic or gravitational) and so the world line r = 0 in the background space–
time is a time-like geodesic. We thus in particular see that there is no runaway motion.
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To illustrate how Einstein’s vacuum field equations can determine the equations
of motion of a small mass m we can take a slightly broader view of the construction
described above. In the background Minkowskian space–time with line-element (3.8)
make, in place of (3.4)–(3.7), the coordinate transformation [see, for example, Newman
and Unti (1963) or Synge (1970)]:

x i = wi(u) + r k i , (3.13)

where x i = (x , y , z , t) for i = 1, 2, 3, 4. Here r = 0 is an arbitrary time-like world line
with parametric equations x i = wi (u). We write the components of the tangent to this
line as vi (u) = dwi/du and require this to be a unit vector so that vj v j = ηij v i v j = −1.
Thus u is proper-time or arc length along the time-like world line and v i(u) is the
4-velocity of the particle with world line r = 0. Its 4-acceleration is then ai(u) = dv i/du
and hence aj v j = 0. In addition to (3.13) we take

kj k j = 0 and kj v j = −1. (3.14)

Hence k i is a null vector and it is future-pointing (since kj v j < 0) and normalized by
the second equation here. We shall take

P0 k i = −ξ δi
1 − η δi

2 −
(

1 − 1
4
(ξ2 + η2)

)
δi
3 +

(
1 +

1
4
(ξ2 + η2)

)
δi
4. (3.15)

Now the second equation in (3.14) implies that

P0 = ξ v 1(u) + η v 2(u) +
(

1 − 1
4
(ξ2 + η2)

)
v 3(u) +

(
1 +

1
4
(ξ2 + η2)

)
v 4(u). (3.16)

Differentiating (3.15) with respect to u yields

∂k i

∂u
= −h0 k i , (3.17)

where h0 = P−1
0 Ṗ0 and the dot denotes partial differentiation with respect to u. Taking

the scalar product of (3.17) with respect to the Minkowskian metric tensor with
components ηij , and using the second of (3.14), we arrive at

h0 = P−1
0 Ṗ0 = aj k j . (3.18)

Equation (3.17) is a transport law for k i along the world line r = 0 which preserves
(3.14). An alternative transport law for k i preserving (3.14) is described in Appendix
B. From (3.13) we have

dx i = (v i − r h0 k i) du + k i dr + r
∂k i

∂ξ
dξ + r

∂k i

∂η
dη. (3.19)

Direct calculation from (3.15) reveals that

∂ki

∂ξ

∂k i

∂ξ
=

∂ki

∂η

∂k i

∂η
= P−2

0 and
∂ki

∂ξ

∂k i

∂η
= 0. (3.20)

Hence using (3.19) we arrive at the line-element of Minkowskian space–time:

ds2
0 = ηij dx i dx j = r 2P−2

0 (dξ2 + dη2) − 2 du dr − (1 − 2 h0r) du2. (3.21)
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If the world line r = 0 is a geodesic then ai = 0 and we can take, without loss of
generality, v i = δi

4 which results in P0 = p0 in (3.2) and so (3.21) reduces to (3.3) in
this case. If we now introduce the mass m in the same way as it enters (3.1), just for
illustrative purposes, then we are to consider a space–time with line-element

ds2 = r 2P−2
0 (dξ2 + dη2) − 2 du dr −

(
1 − 2 h0r − 2m

r

)
du2, (3.22)

= (ϑ1)2 + (ϑ2)2 − 2ϑ3 ϑ4, (3.23)

where the 1-forms are given by

ϑ1 = r P−1
0 dξ, (3.24)

ϑ2 = r P−1
0 dη, (3.25)

ϑ3 = dr +
1
2

(
1 − 2 h0r − 2m

r

)
du, (3.26)

ϑ4 = du . (3.27)

A calculation of the Ricci tensor components Rab on the half-null tetrad defined via
these 1-forms reveals that

Rab =
6m h0

r2 δ4
a δ4

b . (3.28)

Hence we see that if the vacuum field equations Rab = 0 are to be satisfied for m �= 0
we must have h0 = 0 which, on account of (3.18), means that aj k j = 0 for all k j

and thus aj = 0 and the world line r = 0 in the Minkowskian background space–time
with line-element (3.21) must be a geodesic. The point of this artificial example is to
demonstrate the possibility that the field equations can lead to the equations of motion
in the sense that we have defined them following (3.10) above. In practice the field
equations alone are not sufficient to determine the equations of motion. In addition to
the field equations we will assume that the wavefronts of the radiation produced by
the moving mass are smoothly deformed 2-spheres near the particle.

The calculations given in the previous paragraph were aimed at making a point
regarding how the equations of motion of a small mass m might be obtained using the
vacuum field equations. Up to and including (3.21) they will be extremely useful to us
in the remainder of this chapter. We can take them a little further in a way that will
be very helpful later. We first note that the coordinates ξ, η, r , u each depend upon the
rectangular Cartesian coordinates and time x i = (x , y , z , t) in a way that is obtained
by inverting the transformation (3.13). Without explicitly inverting (3.13) we can still
derive the derivatives of ξ, η, r , u with respect to x i by first differentiating (3.13) with
respect to x j to obtain

δi
j = (v i − r h0k i ) u,j + k i r,j + r

∂ki

∂ξ
ξ,j + r

∂k i

∂η
η,j , (3.29)

with the comma indicating partial differentiation. Multiplying this by ki yields

kj = −u,j , (3.30)
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which shows that the null vector field with components k i is tangent to the
hypersurfaces u = constant. Next multiplying (3.29) by vi gives

vj = −(1 − r h0)u,j − r,j , (3.31)

from which we have

r,j = −vj + (1 − r h0) kj . (3.32)

Multiplying (3.29) by ∂ki/∂ξ and using (3.20) results in

ξ,j =
1
r
P2

0
∂kj

∂ξ
, (3.33)

and multiplying (3.29) by ∂ki/∂η and using (3.20) results in

η,j =
1
r
P2

0
∂kj

∂η
. (3.34)

Thus with x i = (x , y , z , t) we have, for future reference,

du = −kj dx j , (3.35)

dr = −vj dx j + (1 − r h0) kj dx j , (3.36)

r P−1
0 dξ = P0

∂kj

∂ξ
dx j , (3.37)

r P−1
0 dη = P0

∂kj

∂η
dx j . (3.38)

Now substituting (3.30), (3.32), (3.33), and (3.34) into (3.29), and raising the index j
using ηij , we arrive at the very useful formula:

ηij = −v i k j − v j k i + k i k j + P2
0

(
∂k i

∂ξ

∂k j

∂ξ
+

∂k i

∂η

∂k j

∂η

)
. (3.39)

With k i given by (3.15) we thus have

ki ,j =
∂ki

∂u
u,j +

∂ki

∂ξ
ξ,j +

∂ki

∂η
η,j ,

= h0 ki kj +
1
r

P2
0

(
∂ki

∂ξ

∂kj

∂ξ
+

∂ki

∂η

∂kj

∂η

)
,

=
1
r
{ηij + vi kj + vj ki − (1 − r h0) ki kj}. (3.40)

We can calculate directly from (3.40) that

ki ,j k j = 0, (3.41)

θ =
1
2

k i
,i =

1
r
, (3.42)



Example of a background space–time 33

ω =

√
1
2
k[i ,j ] k i ,j = 0, (3.43)

|σ| =

√
1
2
k(i ,j ) k i ,j − θ2 = 0, (3.44)

where the square brackets denote skew-symmetrization and the round brackets denote
symmetrization. The first of these confirms that the integral curves of k i are null
geodesics. The second equation shows that neighbouring null geodesics converge on
the time-like world line r = 0. The third and fourth equations show that the null
geodesic integral curves of k i are twist-free [since they generate the null hypersurfaces
u = constant on account of (3.30)] and shear-free, respectively. Hence the null hyper-
surfaces u = constant are future null-cones with vertices on r = 0. Finally we note the
following second partial derivatives [see Asada et al. (2010) p. 85 for a derivation]:

∂2k i

∂ξ2 = P−2
0 (v i − k i) − ∂

∂ξ
(log P0)

∂k i

∂ξ
+

∂

∂η
(log P0)

∂k i

∂η
, (3.45)

∂2k i

∂η2 = P−2
0 (v i − k i) +

∂

∂ξ
(log P0)

∂k i

∂ξ
− ∂

∂η
(log P0)

∂k i

∂η
, (3.46)

∂2k i

∂ξ∂η
= − ∂

∂η
(log P0)

∂k i

∂ξ
− ∂

∂ξ
(log P0)

∂k i

∂η
. (3.47)

3.2 Example of a background space–time

The simplest example to illustrate a violation of geodesic motion is probably to con-
sider a Reissner–Nordström particle of small mass m = O1 and small charge e = O1
moving in an external Einstein–Maxwell vacuum field. The external field is modelled
by a general solution of the Einstein–Maxwell vacuum field equations in which an
arbitrary time-like world line is identified. In the neighbourhood of this world line the
space–time is Minkowskian, if we neglect O(r 2) terms where r is a measure of distance
from the world line. In general the line-element of the background space–time can be
written in the form [derived in Asada et al. (2010)]

ds2 = (ϑ1)2 + (ϑ2)2 − 2ϑ3ϑ4 = gab ϑa ϑb , (3.48)

with

ϑ1 = r p−1(eα cosh β dξ + e−α sinhβ dη + a du) = ϑ1, (3.49)

ϑ2 = r p−1(eα sinhβ dξ + e−α cosh β dη + b du) = ϑ2, (3.50)

ϑ3 = −dr − c
2

du = −ϑ4, (3.51)

ϑ4 = −du = −ϑ3 . (3.52)
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The constants gab are the components of the metric tensor calculated on the tetrad
defined via these 1-forms. In addition the functions p, α, β, a, b, c have the form

p = P0(1 + q2 r 2 + q3 r 3 + · · · ), (3.53)

α = α2 r 2 + α3 r 3 + · · · , (3.54)

β = β2 r 2 + β3 r 3 + · · · , (3.55)

a = a1 r + a2 r 2 + · · · , (3.56)

b = b1 r + b2 r 2 + · · · , (3.57)

c = 1 − 2 h0 r + c2 r 2 + · · · , (3.58)

with P0 and h0 given by (3.16) and (3.18), respectively. The coefficients of the various
powers of r here are functions of ξ, η, u. Thus the integral curves of the vector field ∂/∂r
are null geodesics generating the null hypersurfaces u = constant and have complex
shear σ and expansion θ given by

σ = 2 (α2 + iβ2) r + 3 (α3 + iβ3) r 2 + · · · , (3.59)

θ =
1
r
− 2 q2r − 3 q3r 2 + · · · . (3.60)

Thus the null hypersurfaces u = constant are approximately future null-cones, with
vertices on r = 0, in the vicinity of the time-like world line r = 0. The potential 1-form
near the world line r = 0 can be put in the form

A = Ldξ + M dη + K du, (3.61)

with

L = r2 L2 + r 3 L3 + · · · , (3.62)

M = r2 M2 + r 3 M3 + · · · , (3.63)

K = r K1 + r2 K2 + · · · , (3.64)

and with the coefficients of the powers of r functions of ξ, η, u. The tetrad components
Fab of the Maxwell field that we will require are

F13 = −2P0 L2 + O(r), (3.65)

F23 = −2P0 M2 + O(r), (3.66)

F34 = K1 + O(r) . (3.67)

We thus obtain the functions L2,M2, and K1 by calculating these equations on the
world line r = 0. In view of (3.35)–(3.38) and (3.49)–(3.58) we see that when r = 0 we
have

ϑ1 = P0
∂kj

∂ξ
dx j = ϑ1, (3.68)
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ϑ2 = P0
∂kj

∂η
dx j = ϑ2, (3.69)

ϑ3 =
(

vj −
1
2
kj

)
dx j = −ϑ4, (3.70)

ϑ4 = kj dx j = −ϑ3 . (3.71)

Thus we can conclude from (3.65)–(3.67) that

L2 =
1
2

Fij (u) ki ∂k j

∂ξ
, (3.72)

M2 =
1
2

Fij (u) ki ∂k j

∂η
, (3.73)

K1 = Fij (u) ki v j , (3.74)

where Fij (u) = −Fji (u) are the components of the (external) Maxwell field calculated
in the coordinates x i = (x , y , z , t) on the world line r = 0. Maxwell’s vacuum field
equations require these three functions to satisfy

K1 = P2
0

(
∂L2

∂ξ
+

∂M2

∂η

)
, (3.75)

∂K1

∂ξ
= −2L2 +

∂

∂η

{
P 2

0

(
∂M2

∂ξ
− ∂L2

∂η

)}
, (3.76)

∂K1

∂η
= −2M2 −

∂

∂ξ

{
P 2

0

(
∂M2

∂ξ
− ∂L2

∂η

)}
, (3.77)

and using the formulae (3.45)–(3.47) it is straightforward to verify that this is indeed
the case. In addition we note that, from (3.45) and (3.46),

Δk i = 2 (v i − k i), (3.78)

where

Δ = P 2
0

(
∂2

∂ξ2 +
∂2

∂η2

)
, (3.79)

is the Laplacian on the unit 2-sphere. It thus follows from (3.74) that

ΔK1 + 2K1 = 0, (3.80)

and so K1 is an l = 1 spherical harmonic.
The tetrad components Cabcd of the Weyl conformal curvature tensor which we

shall require in the neigbourhood of r = 0 are found to be

C1313 + iC1323 = 6 (α2 + iβ2) + O(r), (3.81)

C3431 + iC3432 =
3
2
P−1

0

(
a1 + ib1 + 4P 2

0
∂q2

∂ζ̄

)
+ O(r), (3.82)
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with ζ = ξ + iη. The functions α2, β2, a1, b1, q2 must satisfy the Einstein–Maxwell
vacuum field equations

Rab = 2Eab , (3.83)

where Rab are the components of the Ricci tensor calculated on the tetrad given via
the 1-forms (3.49)–(3.52) and Eab are the electromagnetic energy–momentum tensor
components on this tetrad calculated from the tetrad components Fab of the Maxwell
tensor via the formula

Eab = Fca F c
b −

1
4

gab Fcd F cd , (3.84)

where the constants gab , which appear above in (3.48), are the tetrad components of the
metric tensor and tetrad indices are raised and lowered using gab and gab , respectively,
with gab gbc = δa

c . The field equations (3.83) yield

q2 =
2
3
P 2

0 (L2
2 + M 2

2 ). (3.85)

Substituting for L2 and M2 from (3.72) and (3.73) and using (3.39) results in

q2 = −1
6
Fp

i(u)Fpj (u) ki k j . (3.86)

The differential equations emerging from (3.83) to be satisfied by α2, β2, a1, b1, and q2
are

2 (α2 + iβ2) = − ∂

∂ζ̄

(
a1 + ib1 + 4P 2

0
∂q2

∂ζ̄

)
, (3.87)

a1 + ib1 + 4P 2
0

∂q2

∂ζ̄
= 2P4

0
∂

∂ζ

(
P−2

0 (α2 + iβ2)
)

. (3.88)

Now using (3.68)–(3.71) and (3.86) we find from (3.81) and (3.82) that

α2 =
1
6
P 2

0 Cijkl(u) k i ∂k j

∂ξ
kk ∂k l

∂ξ
, (3.89)

β2 =
1
6
P 2

0 Cijkl(u) k i ∂k j

∂ξ
kk ∂k l

∂η
, (3.90)

and

a1 =
2
3
P 2

0

(
Cijkl (u)k i v j k k ∂k l

∂ξ
+ Fp

i(u)Fpj (u) ki ∂k j

∂ξ

)
, (3.91)

b1 =
2
3
P 2

0

(
Cijkl (u)k i v j k k ∂k l

∂η
+ Fp

i(u)Fpj (u) ki ∂k j

∂η

)
. (3.92)

Here Cijkl (u) are the components of the Weyl conformal curvature tensor of this back-
ground space–time calculated on r = 0 in the coordinates x i = (x , y , z , t). Using the
formulas (3.45)–(3.47) one can verify that (3.86) along with (3.89)–(3.92) satisfy the
differential equations (3.87) and (3.88).
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3.3 Equations of motion of a Reissner–Nordström particle in first
approximation

We now introduce the small mass m with small charge e as a perturbation of
the background space–time which is singular on the world line r = 0 in this back-
ground. The perturbed space–time will have line-element of the form (3.50)–(3.52)
and the perturbed potential 1-form will have the form (3.61) but with the functions
p, α, β, a, b, c given by

p = P̂0 (1 + q̂2 r2 + q̂3 r 3 + · · · ), (3.93)

α = α̂2 r 2 + α̂3 r3 + · · · (3.94)

β = β̂2 r 2 + β̂3 r 3 + · · · , (3.95)

a =
â−1

r
+ â0 + â1 r + â2 r 2 + · · · , (3.96)

b =
b̂−1

r
+ b̂0 + b̂1 r + b̂2 r 2 + · · · , (3.97)

c =
e2

r 2 − 2 (m + 2 f̂−1)
r

+ ĉ0 + ĉ1 r + ĉ2 r 2 + · · · , (3.98)

where the coefficients of the various powers of r are functions of ξ, η, u; functions
here that are non-vanishing in the background differ from their background values by
O1 terms and functions here that vanish in the background are small of the following
orders: â−1 = O1, â0 = O1, b̂−1 = O1, b̂0 = O1, and f̂−1 = O2. In addition the functions
L,M ,K are given by

L = L̂0 + r2 L̂2 + r 3 L̂3 + · · · , (3.99)

M = M̂0 + r2 M̂2 + r3 M̂3 + · · · , (3.100)

K =
(e + K̂−1)

r
+ K̂0 + r K̂1 + r2 K̂2 + · · · , (3.101)

with

L̂0 = O2 , M̂0 = O2 , K̂0 = −e h0 + O2, (3.102)

which ensures that near r = 0 the potential 1-form will resemble the Liénard–Wiechert
potential 1-form up to a gauge term. Otherwise K̂−1 = O2 and the remaining coeffi-
cients of powers of r differ from their background values by O1 terms. Finally we note
that since P̂0 in (3.93) differs from its background value of P0 given in (3.16) by O1
terms we can write

P̂0 = P0 (1 + Q1 + Q2 + O3), (3.103)

where Q1 = O1 and Q2 = O2. It now remains to require that the perturbed metric
tensor and potential 1-form should satisfy the perturbed Maxwell and Einstein vacuum
field equations. For the purpose of the current illustration we will derive the equations
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of motion of the Reissner–Nordström particle of small mass and charge, moving in
the external field described in the previous section, with an O2 error. Hence we will
not have to satisfy the perturbed field equations to a high degree of accuracy. For
example from the perturbed Maxwell equations we shall only require K̂1 = K1 + O1
with K1 given by (3.74). Einstein’s field equations R̂13 − 2 Ê13 = 0 and R̂23 − 2 Ê23 = 0
have leading terms in powers of r starting with r−2. When the coefficients of r−2 are
required to be small of second order we find that

â−1 = −4 e P2
0 L2 + O2 = O1, (3.104)

b̂−1 = −4 e P2
0 M2 + O2 = O1 . (3.105)

The leading term in R̂11 + R̂22 − 2 (Ê11 + Ê22) = 0 in powers of r is r−2 and requiring
its coefficient to be small of second order results in

ĉ0 = 1 + ΔQ1 + 2Q1 + 8 e Fij k i v j + O2. (3.106)

Using these results in the leading r−2 term in R̂44 − 2 Ê44 = 0 leads to the following
differential equation for Q1:

−1
2

Δ(ΔQ1 + 2Q1) = 6m ai pi − 6 e Fij pi v j + O2. (3.107)

We have used pi = hi
j k j with hi

j = δi
j + v i vj the projection tensor which projects vec-

tors orthogonal to v i . Thus pi vi = 0, pi pi = 1, and pi = ki − v i . Also using (3.45) and
(3.46) implies that Δpi + 2 pi = 0 so that the components pi are each l = 1 spherical
harmonics. Integrating (3.107) and discarding the singular solution of the homogeneous
equation [(3.107) with zero on the right-hand side] results in

ΔQ1 + 2Q1 = 6m ai pi − 6 e Fij pi v j + A(u) + O2, (3.108)

where A(u) = O1 is a function of integration. Now the first two terms on the right-
hand side of this equation are l = 1 spherical harmonics and so if we require that Q1
be singularity free as a function of ξ, η, for −∞ < ξ < +∞ and −∞ < η < +∞, we
must have

m ai pi − e Fij pi v j = O2, (3.109)

for any unit space-like vector pi orthogonal to v i . Hence we must have

m ai = e Fij v j + O2, (3.110)

which are the equations of motion in first approximation. We have here the expected
appearance of the Lorentz 4-force.

In the perturbed space–time the line-elements induced on the null hypersurfaces
u = constant are given, for small r , by

ds2
0 = r 2P̂−2

0 (dξ2 + dη2), (3.111)

with P̂0 given by (3.103). These null hypersurfaces are the histories of the possible
wavefronts of the radiation produced by the motion of the charged mass. If there is no
perturbation the degenerate line-elements (3.111) are the line-elements of 2-spheres.
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In general we assume that they are smooth perturbations of 2-spheres in the sense that
the functions Q1,Q2, etc. are non-singular for −∞ < ξ < +∞ and −∞ < η < +∞.
Such singularities would constitute ‘directional singularities’ and their presence would
contradict the notion that the charged mass is an isolated body. The example given
above demonstrates the importance of this assumption for the derivation of the
equations of motion. When the calculations given here are extended to the next order
of approximation, electromagnetic radiation reaction effects appear in the equations of
motion as well as ‘tail terms’ (which depend on the past history of the charged mass)
and an additional external 4-force of second order [see Asada et al. (2010) for details].

3.4 Background space–time for a Kerr particle

We will now consider the extension of this scheme to derive equations of motion of
small rotating masses. Equations of motion are derived which are linear in the spin of
a Kerr particle moving in an external vacuum gravitational field. They exhibit spin–
curvature interaction and their derivation assumes that the spin is finite and the mass
of the Kerr particle is small. This case raises important challenges for future research.
The calculations have been carried out by Shinpei Ogawa and one of us (PH). We
begin by modifying the Minkowskian line-element (3.21).

To describe a spinning body we develop the geometrical construction leading
to (3.21) in such a way that spin variables are introduced into the line-element of
Minkowskian space–time to accompany the 4-velocity and 4-acceleration variables
already present. We do this in such a way that if ai = 0 then the line-element of
Minkowskian space–time coincides with the Kerr line-element with three components
of angular momentum (Barrabès and Hogan 2003b, p. 37) in the special case in which
the mass m vanishes. Let si(u) be the components of a vector field in coordinates
x i = (x , y , z , t) defined along the world line x i = wi(u) in Minkowskian space–time
and satisfying

si vi = 0 and
dsi

du
= (aj sj ) v i . (3.112)

Thus si is a space-like vector field which is Fermi transported along x i = wi (u). When
the mass parameter m is introduced later we will be able to interpret si as describing
angular momentum per unit mass and so we will henceforth refer to si as the spin
vector. To introduce the spin vector into the Minkowskian line-element we modify
(3.13) to read

x i = wi (u) + r k i + U i , (3.113)

with

U i = P2
0

(
∂k i

∂ξ
Fη −

∂k i

∂η
Fξ

)
, (3.114)

F = −si k i = −s1 k 1 − s2 k2 − s3 k 3 + s4 k 4 . (3.115)
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The subscripts on F denote partial derivatives and k i and P0 are given by (3.15)
and (3.16). Clearly U i(ξ, η, u) satisfies vi U i = 0 = ki U i . Hence in particular r =
vi (x i − wi (u)). Notwithstanding appearances we emphasize that the set of points of
Minkowskian space–time which lie on the world line x i = wi(u) and the set of points
of Minkowskian space–time with coordinates (3.113) with si �= 0 are two disjoint sets.
The dependence of ξ, η, r , u on x i implied by (3.113) is different from that implied by
(3.13). This will become obvious below when we calculate the partial derivatives of
ξ, η, r , u with respect to x i , which we will require later. The calculation of ηij dx idx j

is lengthy and makes use of the following derivatives:

∂U i

∂ξ
= (v i − k i )Fη +

∂k i

∂η
F , (3.116)

∂U i

∂η
= −(v i − k i)Fξ −

∂k i

∂ξ
F , (3.117)

∂U i

∂u
= P2

0

(
∂h0

∂ξ

∂k i

∂η
− ∂h0

∂η

∂k i

∂ξ

)
F

−P2
0

(
∂h0

∂ξ
Fη −

∂h0

∂y
Fξ

)
k i . (3.118)

We also require the scalar products, with respect to the Minkowskian metric tensor
ηij in coordinates x i , involving derivatives of U i with respect ξ, η, u which are listed
in Appendix C. The line-element of Minkowskian space–time can then be written in
coordinates ξ, η, r , u in the form

ds2 = ηij dX idX j = gAB (dxA + bAdΣ)(dxB + bBdΣ) − 2dr dΣ − c dΣ2, (3.119)

where xA = (ξ, η), bA = gAB bB , with gAB the components of the inverse of gAB , and

dΣ = −du − Fη dξ + Fξ dη, (3.120)

which is not in general an exact differential,

g11 = P−2
0

(
r + P 2

0FFη
∂h0

∂η

)2

+ P−2
0 F 2

(
1 − P 2

0 Fη
∂h0

∂ξ

)2

, (3.121)

g22 = P−2
0

(
r + P 2

0FFξ
∂h0

∂ξ

)2

+ P−2
0 F 2

(
1 + P 2

0Fξ
∂h0

∂η

)2

, (3.122)

g12 = g21 = −∂h0

∂η
FFξ

(
r + P2

0 FFη
∂h0

∂η

)
− ∂h0

∂ξ
FFη

(
r + P 2

0 FFξ
∂h0

∂ξ

)

+F 2
(

Fξ
∂h0

∂ξ
− Fη

∂h0

∂η

)
, (3.123)
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b1 = −r
∂

∂η
(h0F ) − P2

0

(
∂h0

∂ξ
Fη −

∂h0

∂η
Fξ

)
Fη + Fη

+F 2 ∂h0

∂ξ
− F 2P2

0 Fη

((
∂h0

∂ξ

)2

+
(

∂h0

∂η

)2
)

, (3.124)

b2 = r
∂

∂ξ
(h0F ) + P 2

0

(
∂h0

∂ξ
Fη −

∂h0

∂η
Fξ

)
Fξ − Fξ

+F 2 ∂h0

∂η
+ F 2P2

0 Fξ

((
∂h0

∂ξ

)2

+
(

∂h0

∂η

)2
)

, (3.125)

and

c = 1 − 2h0r − 2P2
0

(
∂h0

∂ξ
Fη −

∂h0

∂η
Fξ

)

−F 2P2
0

((
∂h0

∂ξ

)2

+
(

∂h0

∂η

)2
)

+ bAbA . (3.126)

We note that if the 4-acceleration ai vanishes then h0 = 0 and we can choose v i(u) = δi
4

for all u and the line-element (3.119) reduces to

ds2 = (r 2 + F 2)p−2
0 (dξ2 + dη2) − 2dΣ

{
dr +

1
2
(du − Fη dξ + Fξ dη)

}
, (3.127)

with p0 defined as in (3.2). The Kerr solution with mass m and angular momentum
J = (ms1,ms2,ms3) is given by (Barrabès and Hogan, 2003b)

ds2 = (r 2 + F 2)p−2
0 (dξ2 + dη2) − 2dΣ {dr − Fη dξ + Fξ dη + S dΣ} , (3.128)

with

S =
1
2
− m r

r 2 + F 2 . (3.129)

Hence in (3.127) we have arrived at a form of the line-element of Minkowskian space–
time which is obtained from the Kerr solution, with three components of angular
momentum, specialized to the case m = 0.

Clearly the line-element (3.119) is very complicated. To simplify matters we shall
henceforth neglect spin–spin terms and in addition assume that the 4-acceleration ai

is proportional to the spin si . If there is no spin then the question we are considering
becomes that of deriving the equations of motion of a Schwarzschild particle mov-
ing in an external vacuum gravitational field. This leads to geodesic motion in first
approximation (see Section 3.3 when the charge vanishes). Hence we expect violation
of geodesic motion due to spin to be proportional to the spin in first approximation.
Thus h0 is proportional to si and (3.119) reduces to
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ds2 = r 2P−2
0

{(
dξ +

P 2
0

r 2 Fη dΣ
)2

+
(

dη − P2
0

r 2 Fξ dΣ
)2
}

−2 dr dΣ − (1 − 2h0r)dΣ2, (3.130)

with dΣ defined by (3.120). The spin–spin terms here can be neglected. We have
included them simply to make the expression for the line-element easier to work with
below when introducing basis 1-forms [see (3.149)–(3.152)].

The coordinate transformation (3.113) expresses the rectangular Cartesian and
time coordinates x i in terms of the coordinates ξ, η, r , u. Conversely we can in principle
express ξ, η, r , u each as functions of x i and equivalently therefore consider ξ, η, r , u
as scalar functions on Minkowskian space–time. To calculate the gradients of these
functions we begin by differentiating (3.113) with respect to x j to obtain, neglecting
spin–spin terms,

δi
j = (v i − r h0k i )u,j + k i r,j +

(
r

∂k i

∂ξ
+

∂U i

∂ξ

)
ξ,j +

(
r

∂k i

∂η
+

∂U i

∂η

)
η,j . (3.131)

Multiplying this successively by ki , vi , ∂ki/∂ξ, and ∂ki/∂η, and utilizing the scalar
products in Appendix C, we arrive at

kj = −u,j − Fη ξ,j + Fξ η,j , (3.132)

vj = −(1 − rh0)u,j − r,j , (3.133)

∂kj

∂ξ
= rP−2

0 ξ,j + P−2
0 F η,j , (3.134)

∂kj

∂η
= −P−2

0 F ξ,j + rP−2
0 η,j , (3.135)

respectively. Solving these, neglecting spin–spin terms, we find that

ξ,j =
P2

0

r
∂kj

∂ξ
− P2

0 F
r 2

∂kj

∂η
, (3.136)

η,j =
P2

0

r
∂kj

∂η
+

P2
0 F
r 2

∂kj

∂ξ
, (3.137)

r,j = −vj + (1 − r h0)kj +
Fη P2

0

r
∂kj

∂ξ
− Fξ P2

0

r
∂kj

∂η
, (3.138)

u,j = −kj −
Fη P2

0

r
∂kj

∂ξ
+

Fξ P2
0

r
∂kj

∂η
. (3.139)

When these are substituted into (3.131), neglecting spin–spin terms, we obtain the
Minkowskian metric tensor components in coordinates x i in the expected form

ηij = P2
0

(
∂k i

∂ξ

∂k j

∂ξ
+

∂k i

∂η

∂kj

∂η

)
− k i v j − k j v i + k i k j . (3.140)
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Using (3.136)–(3.139) we can derive the formulae:

ki ,j =
1
r
{ηij + kivj + vi kj − (1 − r h0) ki kj}

+
F P2

0

r 2

(
∂ki

∂ξ

∂kj

∂η
− ∂ki

∂η

∂kj

∂ξ

)
, (3.141)

Ui ,j = −1
r
(vi − ki)Uj +

F P 2
0

r

(
∂ki

∂ξ

∂kj

∂η
− ∂ki

∂η

∂kj

∂ξ

)
, (3.142)

and in addition (3.138) can be written

r,j = −vj + (1 − r h0)kj +
1
r
Uj . (3.143)

From (3.138) we have r,j k j = −1 and, as in the spin–free case above, we can take
r as a parameter along the integral curves of k i . As a consequence of (3.141) we have
the equations

∂k i

∂r
= k i

,j k j = 0,
∂k i

∂u
= k i

,j v j = −h0k i , (3.144)

satisfied in this case also. The first of these shows that the integral curves of ki , in the
present case with si �= 0, are null geodesics with r an affine parameter along them.
The second equation in (3.144) is consistent with k i given by (3.15) and (3.16). We
easily calculate from (3.141) that, neglecting spin–spin terms,

θ =
1
2
k i

,i =
1
r
, (3.145)

ω =

√
1
2
k[i ,j ]k i ,j =

F
r 2 , (3.146)

|σ| =

√
1
2
k(i ,j )k i ,j − θ2 = 0, (3.147)

with the square brackets around indices denoting skew-symmetrization and the round
brackets denoting symmetrization. These equations mean that, neglecting spin–spin
terms, the integral curves of the null vector field k i which satisfies (3.141) are geodesics
having expansion θ, twist ω, and vanishing complex shear σ (with |σ| denoting the
modulus of σ). Using (3.136)–(3.139) we find that k i∂/∂X i = ∂/∂r confirming that r
is a parameter along the integral curves of k i .

Writing (3.130) in terms of basis 1-forms we have

ds2 = (ϑ1)2 + (ϑ2)2 − 2ϑ3 ϑ4, (3.148)

with

ϑ1 = rP−1
0

(
dξ +

P2
0 Fη

r 2 du
)

= ϑ1, (3.149)

ϑ2 = rP−1
0

(
dη − P2

0 Fξ

r 2 du
)

= ϑ2, (3.150)
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ϑ3 = dr +
1
2
(1 − 2 h0r) dΣ = −ϑ4, (3.151)

ϑ4 = dΣ = −ϑ3 . (3.152)

By (3.136)–(3.139) these can be written

ϑ1 =
(

P0
∂kj

∂ξ
+

P0F
r

∂kj

∂η
− P0Fη

r
kj

)
dx j , (3.153)

ϑ2 =
(

P0
∂kj

∂η
− P0F

r
∂kj

∂ξ
+

P0Fξ

r
kj

)
dx j , (3.154)

ϑ3 = kj dx j , (3.155)

ϑ4 =
(

vj −
1
2
kj −

P 2
0Fη

r
∂kj

∂ξ
+

P2
0Fξ

r
∂kj

∂η

)
dx j . (3.156)

These will be of particular interest to us in the next section when we discuss the full
background space–time.

Defining the vector field

K i = k i +
1
r
U i , (3.157)

using (3.139) and (3.141)–(3.143) we see that, neglecting spin–spin terms, K i satisfies

KiKi = 0 , Kivi = −1, (3.158)

Kj = −u,j , (3.159)

and

Ki ,j =
1
r
{ηij + Kivj + viKj − (1 − r h0)KiKj } . (3.160)

Thus Ki satisfies the same equations, and therefore possesses the same geometrical
properties, as k i does when si = 0 [comparing (3.160) with (3.40)]. In particular Ki is
approximately (neglecting spin–spin terms) null, geodesic, twist-free, shear-free, and
has expansion r−1. By (3.159) the integral curves of Ki generate the approximately
null hypersurfaces u = constant. By (3.113) we have

x i = wi (u) + r K i , (3.161)

and so for large values of r we see that K i approximates ki and that the null geodesic
integral curves of K i appear to converge on the world line x i = wi(u). For this reason in
the sequel we will regard x i = wi (u) as representing the history of the relativistically
moving Kerr particle and the equations of motion, which we seek using Einstein’s
vacuum field equations, are differential equations for this world line. Finally we note
that

P2
0

(
∂k i

∂ξ

∂k j

∂η
− ∂k i

∂η

∂k j

∂ξ

)
= εijkl kk vl , (3.162)
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where εijkl is the 4-dimensional Levi-Cività permutation symbol with the convention
that ε1234 = 1 and (3.114) can thus be written

U i = εijkl sj kk vl . (3.163)

Defining the spin tensor

sij = εijkl v k s l = −sji , (3.164)

we have sij v j = 0 and, using the properties of the permutation symbol,

si =
1
2
εijkl vj skl , (3.165)

demonstrating that the spin vector si is the Hodge dual of the spin tensor contracted
once with the 4-velocity v i . Substitution of (3.165) into (3.163) yields

U i = sij kj , (3.166)

and thus (3.157) can be written

Ki =
(

ηij +
1
r
sij
)

kj , (3.167)

indicating that, for large r , K i differs from k i by an infinitesimal Lorentz transform-
ation generated by the spin tensor sij .

3.5 Equations of motion of a Kerr particle in first approximation

In the manner adopted in Section 3.2 we require a general form for the line-element
of the background space–time, which plays the role of the space–time model of the
external vacuum gravitational field. In the light of Section 3.2 and of (3.120) we write
the line-element of the background space–time in the form

ds2 = r 2p−2
{

(eα cosh β dξ + e−α sinhβ dη + a dΣ)2

+(eα sinhβ dξ + e−α cosh β dη + b dΣ)2
}
− 2 dr dΣ − c dΣ2,

= (θ1)2 + (θ2)2 − 2 θ3 θ4, (3.168)

with

θ1 = r p−1(eα cosh β dξ + e−α sinhβ dη + a dΣ), (3.169)

θ2 = r p−1(eα sinhβ dξ + e−α cosh β dη + b dΣ), (3.170)

θ3 = −dr +
1
2
c dΣ, (3.171)

θ4 = dΣ, (3.172)

and

p = P0(1 + q1r + q2r 2 + · · · ), (3.173)
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α = α1r + α2r2 + · · · , (3.174)

β = β1r + β2r 2 + · · · , (3.175)

a =
1
r 2 P2

0 Fη +
a−1

r
+ a0 + a1r + · · · , (3.176)

b = − 1
r 2 P2

0 Fξ +
b−1

r
+ b0 + b1r + · · · , (3.177)

c = c0 + c1r + · · · . (3.178)

The coefficients of the various powers of r here are functions of ξ, η, and u. We can
obtain α1, α2, β1, β2 by consideration of the Riemann curvature tensor of the back-
ground. We shall require some of the tetrad components of the background curvature
tensor Rabcd . To obtain these we return to the Minkowskian space–time considered
in the previous section. Using the tetrad defined via the 1-forms (3.153)–(3.156) the
tetrad components which are of particular interest to us are R1313 and R1323. When
written in coordinates x i these are found to be

R1313 =
2
r
P2

0 FRijkl (u)
∂k i

∂ξ
k j ∂kk

∂η
k l + P2

0 Rijkl (u)
∂k i

∂ξ
k j ∂kk

∂ξ
k l

+O(F ) + O(r), (3.179)

R1323 = −2
r
P 2

0 FRijkl (u)
∂k i

∂ξ
k j ∂kk

∂ξ
k l + P 2

0 Rijkl (u)
∂k i

∂ξ
k j ∂kk

∂η
k l

+O(F ) + O(r), (3.180)

where Rijkl (u) are the components of the Riemann curvature tensor of the background
space–time, in coordinates x i , calculated on the world line x i = wi(u). In arriving at
(3.179) and (3.180) we have Taylor expanded Rijkl (xp) about the world line x i = wi(u)
using (3.113) and neglected spin–spin terms. It is important to emphasize that the
world line x i = wi (u) does not correspond to r = 0 on account of (3.113). Direct
calculation using (3.168)–(3.179) yields in this case

R1313 =
2 (α1 + 2F β2)

r
+ 6α2 + 6Fβ3 + O(r), (3.181)

R1323 =
2 (β1 − 2F α2)

r
+ 6β2 − 6Fα3 + O(r), (3.182)

from which we conclude, in the light of (3.179) and (3.180), that

α1 = 4F β2, (3.183)
β1 = −4F α2, (3.184)

α2 =
1
6
P 2

0 Rijkl (u)
∂k i

∂ξ
k j ∂kk

∂ξ
k l + O(F ), (3.185)

β2 =
1
6
P 2

0 Rijkl (u)
∂k i

∂ξ
k j ∂kk

∂η
k l + O(F ) . (3.186)
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The spin terms, denoted by O(F ) here, will not be required in the sequel since terms
arising there which involve α2 and β2 will be multiplied by spin terms and we con-
sistently neglect spin–spin terms. If Rab denotes the components of the background
Ricci tensor calculated on the half-null tetrad defined by the 1-forms (3.169)–(3.179)
then these components in general contain a finite number of terms involving inverse
powers of r followed by a term independent of r and an infinite number of terms
involving positive powers of r . The background space–time is a vacuum space–time
and so Rab = 0. Equating to zero the coefficients of r−1 and r0 in R33 gives

q1 = 0 , q2 = 0. (3.187)

The vanishing of the leading r 0 terms in R13 and R23 yield

a1 = P4
0

(
∂

∂ξ
(P−2

0 α2) +
∂

∂η
(P−2

0 β2)
)

+ O(F ) ,

=
2
3
P 2

0Rijkl (u)k i v j kk ∂k l

∂ξ
+ O(F ), (3.188)

b1 = −P4
0

(
∂

∂η
(P−2

0 α2) −
∂

∂ξ
(P−2

0 β2)
)

+ O(F ) ,

=
2
3
P 2

0Rijkl (u)k i v j kk ∂k l

∂η
+ O(F ) . (3.189)

The vanishing of the r 0 terms in R11 − R22 and R12 result in

α2 =
1
4

(
−∂a1

∂ξ
+

∂b1

∂η

)
+ O(F ), (3.190)

β2 =
1
4

(
−∂a1

∂η
− ∂b1

∂ξ

)
+ O(F ), (3.191)

and these are satisfied by the functions given above in (3.185), (3.186), (3.188), and
(3.189). Next the vanishing of the coefficient of r−1 in R11 − R22 + 2i R12 provides the
complex differential equation(

∂

∂ξ
+ i

∂

∂η

)
(a0 + ib0) = 14 iF (α2 + iβ2) ,

= −7i
(

∂

∂ξ
+ i

∂

∂η

)[
(Fξ − iFη)P 2

0 (α2 + iβ2)
]

.

(3.192)

The two real equations here are solved by the particular integrals:

a0 = −7P2
0 (α2 Fη − β2 Fξ), (3.193)

b0 = −7P2
0 (α2 Fξ + β2 Fη) . (3.194)
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The vanishing of the coefficients of r−2 in R13 and R23 results in

a−1 = 0, (3.195)
b−1 = 0 . (3.196)

Finally the vanishing of the coefficients of r−2 and r−1 in R11 + R22 yields, respectively,

c0 = P2
0

(
∂2

∂ξ2 +
∂2

∂η2

)
log P0 = Δ log P0 = 1, (3.197)

c1 = −2 h0 − FP 2
0

(
∂

∂η
(P−2

0 a1) −
∂

∂ξ
(P−2

0 b1)
)

+ 5(a1Fη − b1Fξ), (3.198)

while the remaining Ricci tensor components involve functions which will not be
required.

Following the example of Section 3.3 we now introduce the small mass m of the
rotating source with 4-velocity v i , 4-acceleration ai , and spin si by perturbing the
functions (3.173)–(3.179) to read

p̂ = P̂0(1 + q̂1r + q̂2r2 + · · · ), (3.199)

α̂ = α̂1r + α̂2r2 + · · · , (3.200)

β̂ = β̂1r + β̂2r 2 + · · · , (3.201)

â =
1
r 2 P2

0 Fη +
â−1

r
+ â0 + â1r + · · · , (3.202)

b̂ = − 1
r 2 P2

0 Fξ +
b̂−1

r
+ b̂0 + b̂1r + · · · , (3.203)

ĉ = −2m
r

+ ĉ0 + ĉ1r + · · · , (3.204)

where perturbed quantities, indicated with hats, differ from their background values by
terms of first order which we denote by O1 = O(m). It will be convenient to write P̂0 in
the form (3.103). The coefficients of the various powers of r here are functions of ξ, η, u.
We will solve Einstein’s vacuum field equations for them to the accuracy required to
determine the equations of motion for the world line x i = wi(u) described above in
first approximation. In so doing we will have to ensure that the resulting components
of the perturbed metric tensor are free of directional singularities. Although we have
already explained how these singularities manifest themselves in the present context in
Section 3.3 we emphasize again that these are singularities corresponding to particular
values of the coordinates ξ and η and typically such singularities correspond to ξ = ±∞
and/or η = ±∞. The perturbed half-null tetrad θ̂1, θ̂2, θ̂3, θ̂4 is given by (3.169)–(3.172)
with p, α, β, a, b, c replaced by p̂, α̂, β̂, â, b̂, ĉ above. The vanishing of the perturbed
Ricci tensor components R̂ab on the perturbed half-null tetrad constitute Einstein’s
vacuum field equations. As in the case of the background space–time these components
typically involve a finite number of terms involving inverse powers of r followed by
an infinite series in r . We need to derive equations which ensure that the coefficients
of these powers of r are small in terms of m. We systematically work through these
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coefficients making them sufficiently small in order to derive the equations of motion
for the world line x i = wi(u) in the background space–time in first approximation
(with an O2 error). To begin with we find that

R̂33 = −4
r
(q̂1 + O2) + (6 q̂2 + O2) + O(r), (3.205)

and so we take

q̂1 = O2 , q̂2 = O2. (3.206)

The coefficients of r−2 in R̂13 and R̂23 are small of second order in terms of m provided

â−1 = 2 b̂0F + O2, (3.207)

b̂−1 = −2 â0F + O2 . (3.208)

We note that these equations are consistent with (3.193)–(3.196) because the zeroth
order values of a0 and b0 given in (3.193) and (3.194) are spin terms and, since we
are consistently neglecting spin–spin terms, they give no contribution to the right-
hand sides of (3.207) and (3.208). Thus there are no zeroth-order terms on the right-
hand sides of (3.207) and (3.208) and this is consistent with (3.195) and (3.196). The
coefficient of r−1 in R̂13, denoted (−1)R̂13, is given by

(−1)R̂13 = 4 b1P−1
0 F − 4P0(α2Fη − β2Fξ) − P3

0

(
∂

∂ξ
(P−2

0 α1) +
∂

∂η
(P−2

0 β1)
)

+ O1.

(3.209)

With α1, β1 given by (3.183) and (3.184) and with a1 given by (3.188) this reduces to

(−1)R̂13 = O1, (3.210)

neglecting, as always, spin–spin terms. This accuracy will be sufficient for our purposes.
Similarly

(−1)R̂23 = −4 a1P−1
0 F − 4P0(−α2Fξ + β2Fη)

−P 3
0

(
− ∂

∂η
(P−2

0 α1) +
∂

∂ξ
(P−2

0 β1)
)

+ O1 ,

= O1 . (3.211)

The coefficients of r0 in R̂13 and R̂23 are the background values plus O1 terms. The
background values vanish on account of (3.188) and (3.189) and thus these coefficients
are both O1 quantities. It will be convenient from now on to denote the coefficient
of rn in R̂ab by (n)R̂ab . With the vanishing of the background values of (0)R̂11 − (0)R̂22

and (0)R̂12 leading to (3.190) and (3.191) these components of the perturbed Ricci
tensor are small O1 quantities. In order to determine the O1 terms in â−1 and b̂−1
we see from (3.207) and (3.208) that we require the O1 terms in â0 and b̂0. Writing
â0 = a0 + A + O2 and b̂0 = b0 + B + O2 with A = O1 and B = O1 we find, using the
background values (3.193) and (3.194), that



50 Equations of motion

(−1)R̂11 − (−1)R̂22 = 2
(

∂A
∂ξ

− ∂B
∂η

)
− 16m α2 + O(m F ) + O2, (3.212)

(−1)R̂12 =
∂A
∂η

+
∂B
∂ξ

− 8m β2 + O(m F ) + O2 . (3.213)

These are solved with the particular integrals

A = −2m a1 + O(m F ) + O2 and B = −2m b1 + O(m F ) + O2, (3.214)

and thus in the light of (3.193) and (3.194) we have

â0 = −7P2
0 (α2 Fη − β2 Fξ) − 2m a1 + O(m F ) + O2, (3.215)

b̂0 = −7P2
0 (α2 Fξ + β2 Fη) − 2m b1 + O(m F ) + O2, (3.216)

and in addition (3.207) and (3.208) give

â−1 = −4m F b1 + O2, (3.217)

b̂−1 = 4m F a1 + O2, (3.218)

after neglecting spin–spin terms. Now

(−2)R̂11 − (−2)R̂22 =
∂â−1

∂ξ
− ∂b̂−1

∂η
− 2 b̂0Fξ − 2 â0Fη − 4mα1 + O2 ,

= −4m F
(

∂a1

∂η
+

∂b1

∂ξ
+ 4β2

)
+ O2 ,

= O2, (3.219)

by (3.191) neglecting spin–spin terms and similarly

(−2)R̂12 =
1
2

∂â−1

∂η
+

1
2

∂b̂−1

∂ξ
+ â0 Fξ − b̂0 Fη − 2m β1 + O2,

= 2m F
(
−∂b1

∂η
+

∂a1

∂ξ
+ 4α2

)
+ O2,

= O2, (3.220)

on account of (3.190) neglecting spin–spin terms. We now calculate R̂11 + R̂22 and to
begin with find that

(−2)R̂11 + (−2)R̂22 = 2ĉ0 − 2Δ̂ log P̂0 + 3P2
0

(
∂

∂ξ
(P−2

0 â−1) +
∂

∂η
(P−2

0 b̂−1)
)

−4FP2
0

(
∂

∂η
(P−2

0 â0) −
∂

∂ξ
(P−2

0 b̂0)
)

−2 (â0Fη − b̂0Fξ) + O2, (3.221)

where, with P̂0 given by (3.103), we have

Δ̂ log P̂0 = P̂2
0

(
∂2

∂ξ2 +
∂2

∂η2

)
log P̂0 = 1 + ΔQ1 + 2Q1 + O2. (3.222)
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Thus (−2)R̂11 + (−2)R̂22 = O2 yields, following substitution of â−1, â0, b̂−1, and b̂0 from
above,

ĉ0 = 1 + ΔQ1 + 2Q1 − 10m FP 2
0

(
∂

∂η
(P−2

0 a1) −
∂

∂ξ
(P−2

0 b1)
)

− 8m (a1Fη − b1Fξ) + O2 . (3.223)

Next (−1)R̂11 + (−2)R̂22 = O1 results in ĉ1 given by (3.198) with an O1 error, which will
be of sufficient accuracy for our purposes. On account of (3.207) and (3.208) we have

(−2)R̂34 = −1
2
P 2

0

(
∂

∂ξ
(P−2

0 â−1) +
∂

∂η
(P−2

0 b̂−1)
)
− (â0 Fη − b̂0 Fξ)

−FP2
0

(
∂

∂η
(P−2

0 â0) −
∂

∂ξ
(P−2

0 b̂0)
)

+ O2

= O2 . (3.224)

Since ĉ1 = c1 + O1 with c1 given by (3.198) we find that

(−1)R̂34 = O1. (3.225)

Turning now to R̂14 and R̂24 we have

(−3)R̂14 = P0Fη (ΔQ1 + 2Q1) + O2 = O1, (3.226)

and

(−3)R̂24 = −P0Fξ (ΔQ1 + 2Q1) + O2 = O1. (3.227)

In addition we have enough functions determined explicitly to find that (−2)R̂14 =
O1 = (−2)R̂24. Finally we consider R̂44. The leading term in the series of increasing
powers of r is the r−2 term. Its coefficient is (−2)R̂44 and (−2)R̂44 = O2 is given expli-
citly by

6m h0 = Δ

{
−1

2
(ΔQ1 + 2Q1) + 5m FP2

0

(
∂

∂η
(P−2

0 a1) −
∂

∂ξ
(P−2

0 b1)
)

+ 4m (a1Fη − b1Fξ)

}
+ 6m P2

0 F
(

∂

∂η
(P−2

0 a1) −
∂

∂ξ
(P−2

0 b1)
)

+ 9m (a1Fη − b1Fξ) − 3mP2
0

(
∂

∂ξ
(P−2

0 a0) +
∂

∂η
(P−2

0 b0)
)

+ 2m P2
0

(
Fξ

∂

∂η
− Fη

∂

∂ξ

)[
P2

0

(
∂

∂ξ
(P−2

0 a1) +
∂

∂η
(P−2

0 b1)
)]

+ O2 . (3.228)

We note that F given by (3.115) is an l = 1 spherical harmonic (thus ΔF + 2F = 0),
h0 = P−1

0 ∂P0/∂u is also an l = 1 spherical harmonic, a1 and b1 are given by (3.188) and
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(3.189), and a0 and b0 are given by (3.193) and (3.194). In preparation for substitution
into (3.228) we obtain

FP 2
0

(
∂

∂η
(P−2

0 a1) −
∂

∂ξ
(P−2

0 b1)
)

= 2 I1, (3.229)

P 2
0

(
Fξ

∂

∂η
− Fη

∂

∂ξ

)[
P2

0

(
∂

∂ξ
(P−2

0 a1) +
∂

∂η
(P−2

0 b1)
)]

= −4 I2, (3.230)

(a1Fη − b1Fξ) =
2
3

I3, (3.231)

P2
0

(
∂

∂ξ
(P−2

0 a0) +
∂

∂η
(P−2

0 b0)
)

= −14
3

I3, (3.232)

where

I1 = P2
0 Rijkl (u)smki v j ∂kk

∂η

∂k l

∂ξ
km , (3.233)

I2 = P2
0 Rijkl (u)smvi k j vk

(
∂k l

∂ξ

∂km

∂η
− ∂k l

∂η

∂km

∂ξ

)
, (3.234)

I3 = P2
0 Rijkl (u)smki v j kk

(
∂k l

∂ξ

∂km

∂η
− ∂k l

∂η

∂km

∂ξ

)
. (3.235)

Using (3.162) and the definition of the spin tensor (3.164) we can write

I1 = Î1 −
1
5
Rijkl (u)k iv j skl = Δ

(
− 1

12
Î1 +

1
10

Rijkl k i v j skl
)

, (3.236)

I2 = Δ
(
−1

6
I2

)
, (3.237)

I3 = Î1 − I2 +
3
10

Rijkl k i v j skl = Δ
(
− 1

12
Î1 +

1
6
I2 −

3
20

Rijkl k i v j skl
)

.

(3.238)

Here (3.236) defines Î1 which is an l = 3 spherical harmonic while the Riemann tensor
term in (3.238) is an l = 1 spherical harmonic. We see from (3.237) that I2 is an
l = 2 spherical harmonic while (3.238) demonstrates that I3 is a linear combination of
l = 1, l = 2, and l = 3 spherical harmonics. Substituting (3.229)–(3.232) and (3.236)–
(3.238) into (3.228) makes it possible to rewrite (3.228) in the form

Δ
[
−1

2
(Δ + 2)(Q1 + 2m Î1 + m I2) + 3m h0 − 3m Rijkl k i v j skl

]
= O2. (3.239)

Integrating this equation without introducing directional singularities results in
1
2
(Δ + 2)(Q1 + 2m Î1 + m I2) = 3m h0 − 3m Rijkl k i v j skl

+W (u) + O2 ,

= 3m aik i − 3m Rijkl k i v j skl

+W (u) + O2, (3.240)
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where W (u) = O1 is an l = 0 spherical harmonic. The first two terms on the right-
hand side here are each l = 1 spherical harmonics and unless they combine to produce
zero (or O2) the solution Q1 will have directional singularities. Hence we must have

m aik i = m Rijkl k i v j skl + O2, (3.241)

for all k i and thus we arrive at the equations of motion in first approximation:

m ai = m Ri
jkl v j skl + O2. (3.242)

In the light of (3.242) the equations of motion for the spin given in (3.112) take the
form, neglecting spin–spin terms,

dsi

du
= O1. (3.243)

Finally we note that an l = 0 or l = 1 spherical harmonic in Q1 is a trivial perturbation
(Futamase et al. 2008) and so, without loss of generality, we can put W (u) = 0 and
with the equations of motion (3.242) holding arrive at the solution

Q1 = −2m Î1 − m I2, (3.244)

which is a linear combination of an l = 3 and an l = 2 spherical harmonic.

3.6 Spinning test particles

The subject of equations of motion of small spinning masses moving in external gravita-
tional fields has a long history in general relativity starting most notably with the work
of Mathisson (1937) and followed by Papapetrou (1951), Corinaldesi and Papapetrou
(1951), and Dixon (1970a, 1970b, 1973). The significance of Mathisson’s pioneering
contribution has been assessed recently by Sauer and Trautman (2008) and by Dixon
(2008). Equations of motion of the form (3.242) have been obtained but with a factor
of one-half multiplying the 4-force on the right-hand side of (3.242). Such equations
of motion apply to spinning test particles whose gravitational fields are neglected. A
derivation of the equations of motion of a spinning test particle moving in an external
gravitational field is given, for example, by Papapetrou (1951). A specific comparison
with our approach is as follows:

(a) Papapetrou considers a small spinning mass whose gravitational field is neg-
lected (a test particle) whereas we consider the gravitational field of the small
spinning mass as a perturbation of a background space–time (not a test particle).

(b) For Papapetrou the history of the small spinning mass is a time-like world tube
in a background space–time in which an energy–momentum–stress tensor Tab

describes physically the particle. With respect to Tab multipole moments are
defined and the spinning mass is technically a pole–dipole particle. We describe
the spinning mass as a Kerr particle by making use of the Kerr solution.

(c) For Papapetrou and for us the background space–time is a model of the gravit-
ational field in which the small spinning mass is moving. However Papapetrou
does not use the field equations of the background whereas we do.
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(d) Papapetrou obtains the equations of motion from Tab
;b = 0, written in tensor

density form, where the covariant derivative, indicated by a semicolon, is with
respect to the Levi-Civita connection associated with the background metric
tensor. We obtain the equations of motion using the vacuum field equations for
the space–time perturbed by the presence of the small spinning mass.

Given these comparisons it would be a surprise indeed if the equations of motion
we derived coincided exactly with those of Papapetrou. The algebraic form of the
right-hand side of (3.242) is what one would expect but the numerical factor differing
from Papapetrou’s factor of one-half is a consequence of our use of the vacuum field
equations, which were not used by Papapetrou.

Using the current formalism it is relatively easy to devise a strategy to obtain
Papapetrou’s equations of motion for a spinning test particle. In general relativity a test
particle has a non-zero rest-mass and its gravitational field can be neglected compared
to the gravitational field in which it is freely moving. By the geodesic hypothesis, a
non-spinning test particle in a vacuum gravitational field has a time-like geodesic world
line in the space–time model of the gravitational field in which it is moving. We ask
the question: given the geodesic hypothesis for non-spinning test particles what are
the equations of motion of a spinning test particle moving in a vacuum gravitational
field? For simplicity we will continue to neglect spin–spin terms, but this restriction
could be systematically relaxed. We first consider the non-spinning test particle whose
world line, according to the geodesic hypothesis, is a time-like geodesic. From the
calculations in Section 3.4 with si = 0 we find in coordinates x i = (ξ, η, r , u) that the
only coordinate component of the metric tensor involving the 4-acceleration ai of the
world line x i = wi(u) is

g44 = −1 + 2 r h0 + O(r 2). (3.245)

The coefficient of 2 r on the right-hand side is an l = 1 spherical harmonic which
vanishes if, and only if, ai = 0. In this case the world line x i = wi (u) is the history
of a test particle moving in the vacuum gravitational field modeled by the space–
time described in Section 3.4. Equation (3.245) is a statement about the embedding
of the 3-surface u = constant in the 4-dimensional space–time since it represents the
scalar product, with respect to the metric tensor of the space–time, of the vector field
∂/∂u with itself and ∂/∂u is part of the description of the extrinsic geometry of the
3-surface. We note in passing that the (intrinsic) Gaussian curvature of the 2-surface
r = constant, u = constant does not involve ai explicitly. It is given by K/r 2 with

K = 1 + 2 r2 Rijkl (u) k i v j kk v l + O(r 2). (3.246)

The coefficient of 2 r 2 here is an l = 2 spherical harmonic. The absence of an l = 1
spherical harmonic in K means that the 2-surface has no ‘conical singularities’
(Robinson and Robinson, 1972) and thus is a smoothly deformed 2-sphere.

Turning now to the test particle with spin whose world line x i = wi (u) is described
in Section 3.4, the Gaussian curvature of the 2-surface u = constant, r = constant is
found in this case to be K/r 2 with
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K = 1 + r
(
−2 I1 + 4 I2 −

4
3

I3

)
+ O(r 2), (3.247)

with I1, I2, I3 given in (3.233)–(3.238). Substitution of (3.236)–(3.238) into (3.247)
results in

K = 1 + r
(

16
3

I2 −
10
3

Î1

)
+ O(r2). (3.248)

In this calculation the l = 1 spherical harmonic has dropped out and, as in the non-
spinning case, the 2-surface u = constant, r = constant is again a smoothly deformed
sphere. In addition (3.245) is now replaced by

g44 = −1 + 2 r (h0 + I1 − I3) + O(r 2) ,

= −1 + 2 r
(

h0 −
1
2

Rijkl(u) k i v j skl + I2

)
+ O(r2), (3.249)

using (3.236)–(3.238). The first two terms in the coefficient of 2 r here are l = 1
spherical harmonics while the third term in the coefficient of 2 r is an l = 2 spher-
ical harmonic. In the non-spinning case the equations of motion of a test particle are
obtained by equating to zero the l = 1 coefficient of 2 r in (3.245). If the equations of
motion of a spinning test particle are obtained in the same way then equating to zero
the l = 1 terms in the coefficient of 2 r in (3.249) results in

ai k i = h0 =
1
2

Rijkl(u) k i v j skl , (3.250)

for k i = v i + pi with pi any unit space-like vector satisfying vi pi = 0, and pi pi = 1.
It thus follows that the equations of motion of a spinning test particle, neglecting
spin–spin terms, are

ai =
1
2

Ri
jkl (u) v j skl , (3.251)

in agreement with Papapetrou (1951). The calculations described here have been
extended to include spin–spin terms by Bolgar (2012).

The approach to equations of motion described in this chapter offers a basis for a
critical assessment of the work of, for example, Gralla and Wald (2008) and of Pound
(2010) [see also the review by Poisson et al. (2011)] on the same topic. This is an
important challenge for future research.



4
Inhomogeneous aspects
of cosmology

The construction of inhomogeneous cosmological models in general relativity has been
comprehensively reviewed by Krasiński (2006). We are concerned in this chapter with
incorporating gravitational waves into isotropic cosmologies giving rise to inhomogen-
eities which are exact or approximate. We begin by considering exact inhomogeneity
in the form of the Ozsváth–Robinson–Rózga plane-fronted gravitational waves in the
presence of a cosmological constant Λ. This is followed by describing covariant and
gauge-invariant perturbation theory and using it to demonstrate how gravitational
waves can be introduced into isotropic cosmological models as perturbations. These
gravitational waves can then be used to construct a model of cosmic background
gravitational radiation.

4.1 Plane-fronted gravitational waves with a cosmological
constant

The exact vacuum space–time modelling the gravitational field of plane gravitational
waves, given by the line-element (2.21) with H given by the specific harmonic function
(2.15), can be generalized to (2.21) with H (x , y , u) a solution of

∂2H
∂x 2 +

∂2H
∂y2 = 0. (4.1)

This generalization describes the gravitational field of plane-fronted waves with parallel
rays (so-called pp waves) and is a solution of Einstein’s vacuum field equations. When
H = 0 the space–time is Minkowskian with line-element

ds2
0 = dx 2 + dy2 − 2 du dv , (4.2)

and (4.1) is the wave equation on this background space–time satisfied by any function
H (x , y , u). In the space–times with line-elements (2.21) or (4.2) u = constant are a
family of null hypersurfaces generated by the null, geodesic integral curves of the vector
field ∂/∂v . This vector field is covariantly constant and thus the integral curves have
vanishing expansion and shear. Since they generate u = constant they are obviously
twist-free. Introducing a cosmological constant into solutions of Einstein’s vacuum
field equations, such as the Schwarzschild and Kerr solutions, is quite a simple mat-
ter. Strangely introducing a cosmological constant into what is arguably the simpler
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pp-wave solution is not so straightforward, as the masterly construction by Ozsváth,
Robinson and Rózga (1985) demonstrates. Nevertheless it has striking similarities to
the vacuum pp-wave case. The line-element can be written in the form

ds2 = ds2
0 + Φ du2, (4.3)

where

ds2
0 = 2 p−2dζ d ζ̄ − 2 p−2q2du dr − p−2q2(2 q−1q̇ r − κ(u) r2) du2, (4.4)

with

p = 1 +
Λ
6

ζζ̄, (4.5)

q = β(u) ζ̄ + β̄(u) ζ + α(u)
(

1 − Λ
6

ζζ̄

)
, (4.6)

κ(u) = 2ββ̄ +
Λ
3

α, (4.7)

where α(u) is an arbitrary real-valued function of u and β(u) is an arbitrary complex-
valued function of u (with complex conjugate denoted by a bar) and the dot indicates
partial differentiation with respect to u. The line-element (4.4) is that of de Sitter
space–time in a coordinate system (ζ, ζ̄, r , u) based on a family of null hyperplanes
u = constant generated by the null, geodesic integral curves of the vector field ∂/∂r
which have vanishing expansion, twist, and shear (but ∂/∂r is not covariantly con-
stant). In each null hyperplane the integral curves are labelled by ζ, ζ̄. To complete
the parallel with the vacuum pp waves the real-valued function Φ(ζ, ζ̄, u) in (4.3) is a
solution of the wave equation on the space–time with line-element (4.4) [or (4.3)].

We will assume that Λ �= 0 but otherwise not distinguish between the cases Λ > 0
and Λ < 0 and thus we shall refer to all cases simply as de Sitter space–time. It is
well known [see, for example Synge (1965), p. 261] that de Sitter space–time can be
visualized as a quadric V4 in a 5-dimensional flat manifold V5. The line-element of V5
is taken to be

−dl2 =
3
Λ

(dX 0)2 + (dX 1)2 + (dX 2)2 + (dX 3)2 − (dX 4)2. (4.8)

The equation of the quadric V4 in this 5-dimensional manifold is taken to be
3
Λ

(X 0)2 + (X 1)2 + (X 2)2 + (X 3)2 − (X 4)2 =
3
Λ

. (4.9)

Following Synge it is useful to write these two equations in an obvious vector nota-
tion as

−dl 2 = dX · dX, (4.10)

and

X · X =
3
Λ

, (4.11)

respectively. We can parametrize the points on (4.11) with the four real parameters
x i with i = 1, 2, 3, 4 as follows:

X 0 = 1 − 2λ, X i = λ x i , (4.12)
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with

λ =
(

1 +
Λ
12

ηij x i x j
)−1

, (4.13)

with ηij given via (1.1). Substituting (4.12) and (4.13) into (4.8) specializes dl2 to

ds2
0 =

ηij dx i dx j(
1 + Λ

12ηij x i x j
)2 = gij dx i dx j . (4.14)

Straightforward calculation of the Riemann curvature tensor components Rijkm for the
metric given by this line-element yields

Rijkm =
Λ
3

(gim gjk − gjm gik ). (4.15)

This calculation confirms that (4.10) subject to the restriction (4.11) is the line-element
of the de Sitter universe of constant curvature Λ/3. To obtain the form (4.4) for the
line-element of de Sitter space–time we parametrize the points of V4 using (ζ, ζ̄, r , u)
by writing the position vector of a point on V4 ⊂ V5 in the form (Barrabès and Hogan,
2007)

X = Y(ζ, ζ̄, u) + p−1q r a(u), (4.16)

with p, q given by (4.5) and (4.6),

Y 0 = p−1
(

1 − Λ
6

ζζ̄

)
, (4.17)

Y 1 + iY 2 = p−1
√

2 ζ, (4.18)

Y 3 = p−1
{

l(u) ζ̄ + l̄(u) ζ + m(u)
(

1 − Λ
6

ζζ̄

)}
= Y 4, (4.19)

and

a0(u) = −Λ
3

m(u), (4.20)

a1(u) + ia2(u) =
√

2 l(u), (4.21)

a3(u) − a4(u) = −1, (4.22)

a3(u) + a4(u) =
Λ
3

m2 + 2 l l̄ , (4.23)

with

l̇(u) = β(u) and ṁ(u) = α(u). (4.24)

It thus follows that

Y · Y =
3
Λ

, a · Y = 0, a · a = 0 and ȧ · ȧ = κ(u). (4.25)
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Hence in particular Y is a point on V4 corresponding to r = 0. Also X in (4.16) is a
point on V4. Substitution of (4.16) into (4.10) to obtain the induced line-element ds2

0 ,
given by (4.4), on V4 requires the following scalar products:

a · ∂Y
∂u

= −p−1q ,
∂Y
∂u

· ∂Y
∂u

= 0, ȧ · ∂Y
∂u

= 0, (4.26)

and

∂Y
∂ζ

· ∂Y
∂ζ̄

= p−2,
∂Y
∂ζ

· ∂Y
∂ζ

= 0 =
∂Y
∂ζ̄

· ∂Y
∂ζ̄

, ȧ · ∂Y
∂ζ

=
∂

∂ζ
(p−1q). (4.27)

Tran (1988) has shown that the intersection of the quadric V4 with the null
hyperplane passing through the origin of V5 given by

b · X = 0 with b · b = 0, (4.28)

is a null hyperplane in V4. Moreover he has provided beautiful proofs that proper-
ties of the functions α(u), β(u) along with the sign of Λ determine whether or not
the null hyperplanes u = constant in V4 intersect. His results can be summarized
briefly as follows: if Λ > 0 then κ > 0 implies intersections and if Λ < 0 then (a) κ < 0
implies intersections, (b) κ = 0 implies intersections except if Imβ = 0 or Reβ = 0 or
Reβ = C Imβ for some constant C , and (c) κ > 0 implies intersections.

To complete the parallel with pp waves in the vacuum case we require the function
Φ(ζ, ζ̄, u) in (4.3) to satisfy the wave equation in the space–time with line-element
(4.3) or (4.4). Thus Φ must satisfy

p−1q Φζζ̄ + (p−1q)ζ Φζ̄ + (p−1q)ζ̄ Φζ = 0, (4.29)

with the subscripts denoting partial derivatives. This can be simplified by putting

Φ = p q−1H (ζ, ζ̄, u), (4.30)

and using the fact that

(p−1q)ζζ̄ = −Λ
3

p−3q . (4.31)

Thus (4.3) reads

ds2 = ds2
0 + p q−1H du2, (4.32)

and H (ζ, ζ̄, u) satisfies

Hζζ̄ +
Λ
3

p−2H = 0. (4.33)

The Ozsváth, Robinson, and Rózga (1985) solution of Einstein’s vacuum field equa-
tions with a cosmological constant is given by (4.32) together with (4.4) and (4.33). The
Weyl conformal curvature tensor of this space–time is type N in the Petrov classifica-
tion with ∂/∂r as degenerate principal null direction confirming that the space–time
is a model of the gravitational field due to pure gravitational radiation.
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4.2 Perturbations of isotropic cosmologies

All of the exact equations required before introducing approximations can be found
in the comprehensive lecture notes of Ellis (1971) with the exception that the Bianchi
identities given there apply only to a perfect fluid matter distribution whereas we shall
require them for a general matter distribution. The covariant approach to cosmology
originated in a systematic way with the work of Schücking, Ehlers and Sachs [see Ellis
(1971) and Ehlers (1993) for example] and Hawking (1966) gave the first description
of cosmological perturbations in this context. We make use of the gauge-invariant
and covariant cosmological perturbation theory of Ellis and Bruni (1989). This is a
particularly elegant way of handling cosmological perturbations which describe matter
and/or gravitational waves.

Since we are interested in space–times which are models of the gravitational field
of the cosmos we have, in a general local coordinate system {xa}, a metric tensor with
components gab = gba and a preferred congruence of world lines tangent to a unit time-
like vector field with components ua (with gab ua ub = ub ub = −1). The components
of the Riemann curvature tensor will be denoted Rabcd . The Ricci tensor components
are Rbd = gac Rabcd with gac defined as usual by gac gcb = δa

b and the Ricci scalar is
R = gab Rab = Ra

a . The Weyl conformal curvature tensor has components Cabcd given
in (2.82) above. With respect to the 4-velocity field ua the Weyl tensor is decomposed
into an ‘electric part’ Eab and a ‘magnetic’ part Hab given by

Eab = Capbq up uq and Hab = ∗Capbq up uq . (4.34)

Here ∗Capbq = 1
2ηap

rs Crsbq are the components of the left dual of the Weyl tensor.
The right dual has components C ∗

apbq = 1
2ηbq

rs Caprs . In both cases ηabcd =
√−g εabcd

where g = det(gab) and εabcd are the components of the 4-dimensional Levi-Cività
permutation symbol. It is interesting to make use of the algebraic symmetries of the
Weyl tensor to establish that the left and right duals are equal. Clearly the left and
right duals of the Riemann curvature tensor exist and they are not equal, unless
the space–time is a vacuum space–time. A knowledge of Eab and Hab is equivalent
to a knowledge of Cabcd . The expression for the Weyl tensor components in terms of
Eab and Hab , got by effectively inverting (4.34), is given by Ellis (1971). The energy–
momentum–stress tensor describing the matter content of the universe has components
Tab = Tba which can be decomposed with respect to the vector field ua in the form

Tab = μ ua ub + p hab + qa ub + qb ua + πab , (4.35)

with

hab = gab + ua ub , (4.36)

the projection tensor. In (4.35)

μ = Tab ua ub , (4.37)

is interpreted physically as the matter energy density measured by the observer with
4-velocity ua and

p =
1
3

Tab hab , (4.38)
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is the isotropic pressure. Also

qa = −Tbc hba uc , (4.39)

is the energy flow (or heat flow) measured by the observer with 4-velocity ua and
satisfying qa ua = 0, and

πab = Tcd
(

ha
c hb

d − 1
3

hab Tcd hcd

)
= πba , (4.40)

is the anisotropic stress (due, for example, to viscosity) and satisfying πab ub = 0 = πa
a .

We indicate covariant differentiation with respect to the Levi-Cività connection asso-
ciated with the metric tensor gab by a semicolon, partial differentiation by a comma,
and covariant differentiation in the direction of ua by a dot. Hence the 4-acceleration
of the time-like congruence is

u̇a = ua
;b ub , (4.41)

and ua;b can be decomposed as follows:

ua;b = ωab + σab +
1
3

θ hab − u̇a ub . (4.42)

Here

ωab = u[a;b] + u̇[a ub] = −ωba , (4.43)

is the vorticity tensor of the congruence tangent to ua . The square brackets denote
skew-symmetrization. Also

σab = u(a;b) + u̇(a ub) −
1
3

θ hab = σba , (4.44)

is the shear tensor, with round brackets denoting symmetrization and

θ = ua
;a , (4.45)

is the expansion (if θ > 0) or contraction (if θ < 0) scalar of the congruence. It thus
follows from (4.44) that gab σab = 0.

The equations which will play a central role in the sequel are obtained by projecting
in the direction of ua and orthogonal to ua , using the projection tensor (4.36), the
Ricci identities

ua;dc − ua;cd = Rabcd ub , (4.46)

the equations of motion and the energy conservation equation contained in

Tab
;b = 0, (4.47)

with Tab given by (4.35), and the Bianchi identities

Rabcd ;f + Rabfc;d + Rabdf ;c = 0, (4.48)

written in a more convenient form in terms of the Weyl conformal curvature tensor as

Cabcd
;d = Rc[a;b] − 1

6
gc[a R;b]. (4.49)
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Einstein’s field equations, absorbing the coupling constant into the energy–
momentum–stress tensor, read

Rab −
1
2

gab R = Tab . (4.50)

The projections mentioned above of the Ricci identities yield Raychaudhuri’s
equation,

θ̇ +
1
3

θ2 − u̇a
;a + 2 (σ2 − ω2) +

1
2

(μ + 3 p) = 0, (4.51)

where σ2 = 1
2 σab σab and ω2 = 1

2 ωab ωab , the vorticity propagation equation,

ha
b ω̇b +

2
3

θ ωa = σa
b ωb +

1
2
ηabcd ub u̇c;d , (4.52)

where ωa = 1
2 ηabcd ub ωcd is the vorticity vector, the shear propagation equation,

hf
a hg

b σ̇fg +
2
3

θ σab = hf
a hg

b u̇(f ;g) + u̇a u̇b − ωa ωb − σaf σf
b

+ hab

(
1
3
ω2 +

2
3

σ2 − 1
3

u̇c
;c

)

+
1
2

πab − Eab , (4.53)

the so-called (0, ν) field equation [see Ellis (1971) for the explanation of this
terminology],

2
3

ha
b θ,b − ha

b σbc
;d hd

c − ηacdf uc (ωd ;f + 2ωd u̇f ) = qa , (4.54)

the divergence of vorticity equation,

hb
a ωa

;b = u̇a ωa , (4.55)

and the magnetic part of the Weyl tensor,

Hab = 2 u̇(a ωb) − ht
a hs

b (ω(t
g ;c + σ(t

g ;c) ηs)fgc uf . (4.56)

The projections mentioned above of the equations of motion and the energy
conservation equation yield the equations of motion of matter,

(μ + p) u̇a = −hab (p,b + πc
b;c + q̇b) − (ωab + σab +

4
3

θ hab) qb , (4.57)

and the energy conservation equation,

μ̇ + θ (μ + p) + πab σab + qa
;a + u̇a qa = 0. (4.58)

Finally the projections mentioned above of the Bianchi identities yield equations
involving Eab and Hab which are roughly analogous to Maxwell’s equations in electro-
magnetic theory. The equations which emerge from the projections of (4.49) are the
div-E equation,
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hb
g Egd

;f hf
d = − 3ωf H b

f + ηbapq ua σd
p Hqd +

1
3

hb
f μ,f

+
1
2

{
−πbd

;d + ub σcd πcd − 3ωbd qd + σbd qd

− 2
3

θ qb + πbd u̇d

}
, (4.59)

the div-H equation,

hb
g H gd

;f hf
d = 3ωf Eb

f − ηbapq ua σd
p Eqd + (μ + p)ωb

+
1
2

ηb
qac uq qa;c +

1
2

ηb
qac uq (ωdc + σdc)πa

d , (4.60)

the Ė equation,

hb
f Ė fg ht

g + θ Ebt = − h(b
a ηt)rsd ur H a

s;d + 2H (b
s ηt)drs ud u̇r + E (t

s ωb)s

+ 3E (t
s σb)s − htb Edp σdp −

1
2

(μ + p)σtb

− 1
6

htb {μ̇ + θ (μ + p)} − q (b u̇ t) − 1
2

u(b q̇ t)

− 1
2

qt ;b +
1
2
{ωc(b + σc(b} ut) qc +

1
6

θ u(t qb)

− 1
2

π̇bt + πc(b ut) u̇c −
1
2
{ωc(b + σc(b}πt)

c

− 1
6

θ πbt , (4.61)

and the Ḣ equation,

hb
f Ḣ fg ht

g + θ H bt = h(b
a ηt)rsd ur Ea

s;d − 2E (b
s ηt)drs ud u̇r + H (t

s ωb)s

+ 3H (t
s σb)s − htb H dp σdp − q (t ωb)

− 1
2

η(t
rad {ωb)d + σb)d} ur qa

− 1
2

η(b
rad πt)a;d ur +

1
2

η(b
rad ut) ur {ωcd + σcd}πa

c .

(4.62)

We shall henceforth assume that the space–time is a perturbed Robertson–Walker
space–time. In this sense we have a background (unperturbed) space–time which is
isotropic with respect to every integral curve of the time-like vector field ua . The metric
tensor gab of this background space–time is the Robertson–Walker metric [given by
(4.102) below]. The background energy–momentum–stress tensor is given by (4.35)
specialized to a perfect fluid (with qa = 0 = πab and the scalars μ, p satisfy ha

b μ,a =
0 = ha

b p,a), which is the most general allowable matter distribution consistent with
isotropy. The background Weyl tensor vanishes on account of isotropy and so the
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background space–time is conformally flat. The integral curves of the vector field ua

must be geodesic, vorticity-free, shear-free, and with the scalar θ satisfying ha
b θ,a = 0.

Hence in this background (4.42) specializes to

ua;b =
1
3

θ hab . (4.63)

The Ellis–Bruni (1989) approach to describing perturbations of this isotropic back-
ground is to work with gauge-invariant small quantities rather than with small
perturbations of the background metric tensor. Such gauge-invariant variables are iden-
tified as being those variables which vanish in the background space–time. Hence for
an isotropic background the small, of first-order, gauge-invariant Ellis–Bruni variables
are Eab ,Hab , u̇a , ωab (or equivalently the vorticity vector ωa), σab ,Xb = ha

b μ,a ,Yb =
ha

b p,a ,Zb = ha
b θ,a , π

ab , and qa . The equations to be satisfied by these small quantities
are obtained from (4.51)–(4.62) neglecting nonlinear terms involving these small quant-
ities with the proviso that Raychaudhuri’s equation (4.51) and the energy conservation
equation (4.58) need to be modified to be expressed in terms of the gauge-invariant
variables. This latter is achieved by taking the partial derivatives of (4.51) and (4.58)
and then using the projection tensor ha

b to project the differentiated equations ortho-
gonal to ua while at the same time neglecting second-order small quantities. The result,
starting with (4.51), is the equation

Ż a + θ Za = θ̇ u̇a + hab (u̇c
;c),b −

1
2

X a − 3
2

Y a , (4.64)

while this sequence of operations applied to (4.58) yields

Ẋ a +
4
3

X a = μ̇ u̇a − hab (qc
;c),b − (μ + p)Za − θ Y a . (4.65)

The background value of θ̇ to be substituted into (4.64) is obtained from
Raychaudhuri’s equation (4.51) specialized to the isotropic background to read

θ̇ = − 1
3

θ2 − 1
2

(μ + 3 p). (4.66)

The background value of μ̇ to be substituted into (4.65) is obtained from (4.58)
specialized to the isotropic background to read

μ̇ = −θ (μ + p). (4.67)

All equations are tensorial with no particular coordinate system specified and so this
Ellis–Bruni perturbation theory is both gauge invariant and covariant.

4.3 Gravitational waves

For perturbations of isotropic cosmological models which describe pure gravitational
radiation only the perturbed shear σab of the matter world lines and the perturbed
anisotropic stress πab of the matter distribution are required along with the derived
perturbation variables Eab and Hab . These represent, in the present context, so-called
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tensor perturbations in a language often used in perturbation theory. All of the remain-
ing Ellis–Bruni gauge-invariant variables will be assumed to vanish from now on. From
the Ricci identities linearized in terms of the small non-vanishing gauge-invariant
variables we have the equations:

σ̇ab +
2
3

θ σab −
1
2

πab + Eab = 0, (4.68)

σab
;b = 0, (4.69)

and

Hab = −σ(a
g ;c ηb)fgc uf . (4.70)

The equations of motion of matter provide us with

πab
;b = 0, (4.71)

while the Bianchi identities yield the equations:

Eab
;b +

1
2

πab
;b = 0, (4.72)

and

H ab
;b = 0, (4.73)

from (4.59) and (4.60) and

Ė ab + θ Eab = −η(a
rsd H b)s;d ur − 1

2
σab − 1

2
π̇ab − 1

6
θ πab , (4.74)

Ḣ ab + θ H ab = η(a
rsd E b)s;d ur − 1

2
η(a

rsd πb)s;d ur . (4.75)

For solutions of (4.68)–(4.75) which describe simple gravitational waves, by which we
mean gravitational waves with clearly identifiable wavefronts, we need to identify in the
Robertson–Walker background space–time a family of null hypersurfaces which will
play the role of the histories of the wavefronts. One way of achieving this is to assume
that the basic gauge-invariant variables σab and πab have an arbitrary dependence on
a scalar function φ(xa) (say). The derived gauge-invariant variables Eab and Hab will
then inherit this dependence. Thus we write

σab = sab F (φ), πab = Πab F (φ), (4.76)

where F is an arbitrary function of φ(xa) and sab ,Πab are symmetric, trace-free, and
orthogonal to ua with respect to the background metric gab . Gauge-invariant vari-
ables of this form were first introduced into the Ellis–Bruni formalism by Hogan
and Ellis (1997) and the idea was developed by Hogan and O’Shea (2002a, 2002b)
and O’Shea (2004a, 2004b). The introduction of arbitrary functions into solutions of
Einstein’s equations describing gravitational waves goes back to the pioneering work of
Trautman (1962). Such waves have been described by Trautman as carrying arbitrary
information. Using (4.76) we obtain from (4.68) the equations

Eab =
(

1
2

Πab + pab

)
F + mab F ′, (4.77)
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where F ′ = dF/dφ and

pab = −ṡab −
2
3

θ sab , (4.78)

mab = −φ̇ sab , (4.79)

where φ̇ = φ,a ua �= 0. From (4.69) we have

sab
;b = 0 and sab φ,b = 0. (4.80)

Using (4.70) we find that

Hab = qab F + lab F ′, (4.81)

with

qab = −s(a
g ;c ηb)fgc uf , (4.82)

lab = −s(a
g ηb)fgc uf φ,c . (4.83)

By (4.71) we have

Πab
;b = 0 and Πab φ,b = 0. (4.84)

Next (4.72) and (4.73) yield the two sets of equations:

pab
;b = 0, pab φ,b + mab

;b = 0, mab φ,b = 0, (4.85)

and

qab
;b = 0, qab φ,b + l ab ;b = 0, l ab φ,b = 0, (4.86)

respectively. Finally (4.74) and (4.75) yield the two sets of equations:

Π̇ab +
2
3

θ Πab = −ṗab − θ pab − ur q (a
s;d ηb)rsd − 1

2
(μ + p) sab , (4.87)

φ̇ Πab = −φ̇ pab − ṁab − θ mab − ur

(
q (a

s φ,d + l (a s;d

)
ηb)rsd , (4.88)

φ̇mab + l (a s ηb)rsd ur φ,d = 0, (4.89)

and

q̇ ab − ur p(a
s;d ηb)rsd + θ qab = 0, (4.90)

φ̇ qab + l̇ ab + θ l ab − ur

(
p(a

s φ,d + m(a
s;d

)
ηb)rsd = 0, (4.91)

φ̇ l ab − m(a
s ηb)rsd ur φ,d = 0, (4.92)

respectively.
Putting

V ab = mab + il ab , (4.93)
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we can combine (4.89) and (4.92) into the single complex equation

φ̇V ab = i V (a
s ηb)rsd ur φ,d . (4.94)

We calculate from this that

φ̇ ηbpql V ab up = 2 i V a
[q λl ], (4.95)

where λa = hb
a φ,b . When this is substituted into the right-hand side of (4.94) we obtain

φ̇V ab = φ̇V ab + φ̇−1φ,d φ,d V ab . (4.96)

With φ̇ �= 0 and V ab �= 0 we must have

φ,d φ,d = 0. (4.97)

Thus the hypersurfaces φ(xa) = constant in the background Robertson–Walker space–
time must be null.

Substituting into (4.88) for pab given by (4.78) and for mab given by (4.79) results in

φ̇ Πab = 2 φ̇ ṡ ab +
5
3

θ φ̇ sab + φ̈ sab − ur

(
q (a

s φ,d + l (a s;d

)
ηb)rsd . (4.98)

Substituting qab and l ab into this from (4.82) and (4.83), respectively, finally results in

s ′ab +
(

1
2

φ,d
;d − 1

3
θ φ̇

)
sab = −1

2
φ̇ Πab , (4.99)

where s ′ab = sab;d φ,d . This is a propagation equation for sab along the null geodesics
tangent to φ,a in the background Robertson–Walker space–time.

Consider now (4.87). Substituting into this for pab from (4.78) and for qab from
(4.82) and using the first of (4.70) and the Ricci identities satisfied by sab we arrive
at a wave equation for sab :

sab;d
;d − 2

3
θ ṡab −

(
1
3

θ̇ +
4
9

θ2
)

sab +
(

p − 1
3

μ

)
sab = −Π̇ab − 2

3
θ Πab . (4.100)

The key equations satisfied by φ(xa), sab , and Πab are (4.80), (4.84), (4.97), (4.99),
and (4.100). A lengthy calculation, indicated in some detail in Hogan and O’Shea
(2002a), establishes that these equations are mathematically consistent with each
other and also that the remaining equations in (4.85), (4.86), (4.90), and (4.91) are
automatically satisfied. We now seek to exhibit solutions of the key equations hav-
ing the property that the corresponding perturbed Weyl tensor components given by
(4.77) and (4.81) are type N in the Petrov classification with degenerate principal null
direction φ,a and thus with

Eab φ,b = 0 = Hab φ,b . (4.101)

We can then interpret physically the perturbations of the isotropic cosmological models
as describing pure gravitational radiation having the null hypersurfaces φ = constant,
in the background Robertson–Walker (RW) space–times, as the histories of the
wavefronts. To achieve this we first set out to discover some naturally occurring null
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hypersurfaces in the RW space–times. We begin with the general RW line-element in
standard form:

ds2 = R2(t)
{(dx 1)2 + (dx 2)2 + (dx 3)2}(

1 + k
4 r 2

)2 − dt2, (4.102)

with R(t) the scale factor, r2 = (x 1)2 + (x 2)2 + (x 3)2, and k = 0,±1 the Gaussian
curvature of the space-like hypersurfaces t = constant. We can transform (4.102) into
the following forms suitable for our purposes (Hogan, 1988):

ds2 = R2(t) {dx 2 + p−2
0 f 2 (dy2 + dz 2)} − dt2, (4.103)

with p0 = 1 + (K/4) (y2 + z 2), K = constant, and f = f (x ) and (i) if k = +1 then
K = +1 and f (x ) = sin x ; (ii) if k = 0 then K = 0,+1 with f (x ) = 1 when K = 0 and
f (x ) = x when K = +1; (iii) if k = −1 then K = 0,±1 with f (x ) = (1/2) ex when
K = 0, f (x ) = sinh x when K = +1 and f (x ) = cosh x when K = −1.

Case (i) above arises because when k = +1 the closed universe model with line-
element (4.102) has t = constant hypersurfaces having induced line-element dl2 =
R2(t) ds2

0 with

ds2
0 = dx 2 + sin2 x (dϑ2 + sin2 ϑ dϕ2), (4.104)

and y , z are stereographic coordinates given by y + iz = 2 eiϕ cot(ϑ/2).
Case (ii) occurs because when k = 0 the open, spatially flat universe model with

line-element (4.102) has t = constant hypersurfaces having induced line-element dl 2 =
R2(t) ds2

0 with

ds2
0 = dx 2 + dy2 + dz 2, (4.105)

or

ds2
0 = dx 2 + x 2 (dϑ2 + sin2 ϑ dϕ2), (4.106)

and in the latter we introduce the stereographic coordinates y , z again as above.
Case (iii) corresponding to (4.102) with k = −1 has three possibilities. The

t = constant hypersurfaces can, modulo the factor R2(t), be viewed as the future
sheet of a unit time-like hypersphere H3 in 4-dimensional Minkowskian space–time
M4. Writing the line-element of M4 as

ds2
0 = (dz 1)2 + (dz 2)2 + (dz 3)2 − (dz 4)2, (4.107)

the hypersphere H3 has equation

(z 1)2 + (z 2)2 + (z 3)2 − (z 4)2 = −1, z 4 > 0. (4.108)

The three possibilities of case (iii) are due to the different ways in which one can
parametrize (4.108). The first possibility is to take

z 1 + iz 2 = (y + iz ) p−1
0 sinh x , (4.109)

z 3 =
(

1
4
(y2 + z 2) − 1

)
p−1

0 sinh x , (4.110)

z 4 = cosh x , (4.111)
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with p0 = 1 + 1
4(y

2 + z 2). Substitution into (4.107) yields

ds2
0 = dx 2 + p−2

0 sinh2 x (dy2 + dz 2). (4.112)

The next possibility is to take

z 1 + iz 2 =
1
2

ex (y + iz ), (4.113)

z 3 =
1
4

ex (y2 + z 2 − 1) + e−x , (4.114)

z 4 =
1
4

ex (y2 + z 2 + 1) + e−x , (4.115)

and now (4.107) becomes

ds2
0 = dx 2 +

1
4

e2 x (dy2 + dz 2). (4.116)

Finally we have

z 1 + iz 2 = (y + iz ) p−1
0 cosh x , (4.117)

z 3 = sinh x , (4.118)

z 4 =
(

1
4
(y2 + z 2) + 1

)
p−1

0 cosh x , (4.119)

with p0 = 1 − 1
4 (y

2 + z 2). With this (4.107) takes the form

ds2
0 = dx 2 + p−2

0 cosh2 x (dy2 + dz 2). (4.120)

In the space–times with line-elements (4.103) the hypersurfaces

φ(xa) = x − T (t) = constant, (4.121)

with dT/dt = R−1(t) are null hypersurfaces. These null hypersurfaces are generated
by null geodesics having expansion

1
2

φ,a
;a =

f ′

R2 f
+

Ṙ
R2 . (4.122)

Here f ′ = df /dx and Ṙ = dR/dt . The integral curves of the vector field ∂/∂t are the
world lines of the fluid particles. The components of this vector field are ua and using
(4.121) we find that

2φ,a;b = ξa φ,b + ξb φ,a + φ,d
;d gab , (4.123)

with

ξa = − f ′

f
φ,a + R φ,d

;d ua . (4.124)

It follows from (4.123) that the null geodesic integral curves of the vector field φ,a are
shear-free in the optical sense (Robinson and Trautman, 1983).

For convenience we have used the same coordinate labels x , y , z , t in all of the
special cases above. The ranges of the coordinates will of course be different in the
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different cases. For example in case (ii) x ∈ (−∞,+∞) if K = 0 whereas x ∈ [0,+∞)
if K = +1. In addition the shear-free null hypersurfaces (4.121) differ from case to
case, and also within cases (ii) and (iii), as can be appreciated by considering the
intersections of these null hypersurfaces with the space-like hypersurface t = constant.
In case (i) the intersection is a 2-sphere. In case (ii) the intersection is a 2-sphere if
K = +1 and a 2-plane if K = 0. Hence (4.121) describes two quite different families
of shear-free null hypersurfaces that can arise in an open, spatially flat universe. In
case (iii) the intersection of (4.121) with t = constant can be a 2-space of constant
positive curvature (if K = +1), of constant negative curvature (if K = −1), or of zero
curvature (if K = 0), yielding three different families of shear-free null hypersurfaces in
a k = −1 open universe. A geometrical origin of these subcases is described in Hogan
(1988).

To solve the key equations (4.80), (4.84), (4.97), (4.99), and (4.100) satisfied by
φ(xa), sab , and Πab , beginning with (4.121), we note that since sab and Πab are each
trace-free and orthogonal to ua and to φ,a they each have only two independent
components. If we label the coordinates in (4.102) by x 1 = x , x 2 = y , x 3 = z , x 4 = t
then we begin by writing the non-vanishing components of sab and Πab as s33 =
−s22 = α(x , y , z , t) and s23 = s32 = β(x , y , z , t) and Π33 = −Π22 = A(x , y , z , t) and
Π23 = Π32 = B(x , y , z , t). It is convenient to define a null tetrad via the 1-forms:

ma dxa =
1√
2

R p−1
0 f (dy + idz ), (4.125)

m̄a dxa =
1√
2

R p−1
0 f (dy − idz ), (4.126)

ka dxa = R dx − dt , (4.127)

la dxa = −1
2

(R dx + dt). (4.128)

Thus ma , m̄a , ka , l a , with the bar denoting complex conjugation, constitute a tetrad
of null vectors with all scalar products among them vanishing except for ma m̄a = 1
and ka la = −1. In terms of this tetrad we have

sab = s̄ ma mb + s m̄a m̄b , (4.129)

with

s̄ = −R2 p−2
0 f 2 (α + iβ), (4.130)

and

Πab = Π̄ma mb + Π m̄a m̄b , (4.131)

with

Π̄ = −R2 p−2
0 f 2 (A + iB). (4.132)

Substitution of (4.129) into the first of (4.80) reveals that the real-valued functions α
and β must satisfy the Cauchy–Riemann equations:

∂

∂y
(p−4

0 α) − ∂

∂z
(p−4

0 β) = 0, (4.133)



Gravitational waves 71

∂

∂y
(p−4

0 β) +
∂

∂z
(p−4

0 α) = 0. (4.134)

Similarly (4.131) substituted into the first of (4.84) results in the real-valued functions
A and B satisfying the same equations:

∂

∂y
(p−4

0 A) − ∂

∂z
(p−4

0 B) = 0, (4.135)

∂

∂y
(p−4

0 B) +
∂

∂z
(p−4

0 A) = 0. (4.136)

To work with (4.133) and (4.134) it is convenient to make the change of dependent
variables from α, β to α0, β0 with

α0 = f 3 R3 α and β0 = f 3 R3 β, (4.137)

which clearly satisfy (4.133) and (4.134) which can be written in the form

∂

∂ζ̄
{p−4

0 (α0 + iβ0)} = 0, (4.138)

with ζ = y + iz . Hence

α0 + iβ0 = p4
0 G(ζ, x , t), (4.139)

where G is an analytic function of ζ. Now (4.130) becomes

s̄ = −R−1p2
0 f −1 G(ζ, x , t). (4.140)

The propagation equation (4.99) for sab along the integral curves of φ,a gives A,B in
terms of α0, β0. Then using (4.132) the end result can be written in the form

Π̄ = −2R−2 p2
0 f −1(DG + Ṙ G), (4.141)

with the operator D defined by

D =
∂

∂x
+ R

∂

∂t
=

∂

∂x
+

∂

∂T
, (4.142)

and T (t) introduced in (4.121). It follows in particular from (4.132) and (4.141) that
now A + iB is analytic in ζ and so the Cauchy–Riemann equations (4.135) and (4.136)
are automatically satisfied. With sab now given by (4.129) and (4.140) and with Πab

given by (4.131) and (4.141) we substitute these results into the wave equation (4.100).
The result, after a lengthy calculation, is the remarkably simple equation:

D2G + k G = 0, (4.143)

with k = 0,±1 labelling the RW backgrounds with line-elements (4.102). In deriving
(4.143) we have made use of the fact that f (x ) in (4.103), and the cases (i)–(iii),
satisfies

f ′′ = −k f and (f ′)2 + k f 2 = K . (4.144)
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The solutions of (4.143) are easily seen to be given by

G(ζ, x , t) = a1 (x + T ) + a2, (4.145)

for k = 0, by

G(ζ, x , t) = a1 sin
(x + T )

2
+ a2 cos

(x + T )
2

, (4.146)

for k = +1, and by

G(ζ, x , t) = a1 sinh
(x + T )

2
+ a2 cosh

(x + T )
2

, (4.147)

for k = −1. In all cases a1(ζ, x − T ) and a2(ζ, x − T ) are arbitrary functions of their
arguments. Corresponding to these solutions the Weyl tensor components (4.77) and
(4.81) can be written as

Eab + iH ab = −2R−2p2
0 f −1 ∂

∂x
(G F )ma mb , (4.148)

where now F = F (φ) = F (x − T ) is the arbitrary function introduced at the outset.
It is clear from (4.148) that now the equations in (4.101) are satisfied.

The propagation equation (4.99) for sab along the integral curves of the null vector
field φ,a demonstrates that if sab = 0 then Πab = 0. For the gravitational wave perturb-
ations we have calculated above there is an interesting converse property: if Πab = 0
then sab = 0 provided μ + p �= 0. To see this we first note from (4.141) that Πab = 0
implies that

DG + Ṙ G = 0. (4.149)

Substituting this into the wave equation (4.143) results in

(Ṙ2 − R R̈ + k)G = 0. (4.150)

Using Eistein’s field equations for the background RW space–time, the fluid proper
density μ and the isotropic pressure p satisfy

p = − Ṙ2

R2 − 2 R̈
R

− k
R

, (4.151)

μ =
3 Ṙ2

R2 +
3 k
R2 , (4.152)

from which we obtain
2
R2 (Ṙ2 − R R̈ + k) = μ + p, (4.153)

and so (4.150) can be written simply as

(μ + p)G = 0, (4.154)

from which the above result follows.
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4.4 Cosmic background radiation

Electromagnetic test fields on the RW space–times are described by a Maxwell tensor
with components Fab = −Fba satisfying Maxwell’s source-free field equations on the
RW space–times. With respect to the distinguished time-like direction ua in these
space–times we can define the electric and magnetic parts of this Maxwell field by

Ea = Fab ub and Ha = ∗Fab ua , (4.155)

respectively, with the components of the dual of the Maxwell tensor given by
∗Fab = 1

2ηabcd F cd . Maxwell’s source-free equations on the RW space–times read (Ellis,
1971)

Ea
;a = 0 H a

;a = 0, (4.156)

and

Ė a +
2
3

θ Eab = −ηabed ub He;d , (4.157)

Ḣ a +
2
3

θ H a = ηabed ub Ee;d . (4.158)

To solve these we introduce a 4-potential σa satisfying (Ellis and Hogan, 1997)

σa ua = 0 and σa
;a = 0, (4.159)

from which the Maxwell tensor Fab is calculated using

Fab = σb;a − σa;b . (4.160)

Now (4.156) and (4.158) are satisfied and (4.157) simplifies to the wave equation

σa;b
;b =

1
2

(μ − p)σa . (4.161)

In parallel with (4.76) we look for solutions of (4.159) and (4.161) of the form

σa = sa F (φ) with sa ua = 0. (4.162)

Now, taking advantage of the arbitrariness of the function F as before, the second of
(4.159) yields

sa
;a = 0 and sa φ,a = 0, (4.163)

while the wave equation (4.161) with sa �= 0 provides us with the equations:

φ,a φ,a = 0, (4.164)

s ′a +
1
2

φb
;b sa = 0, (4.165)

sa;b
;b =

1
2

(μ − p) sa , (4.166)

where s ′a = sa;b φ,b .
We begin with some simple sinusoidal, monochromatic electromagnetic waves on a

k = 0 RW space–time (Hogan and O’Farrell, 2011). The line-element of the space–time
is given by (4.102) with k = 0. First take

φ = δαβ nα xβ − T , (4.167)
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with Greek indices taking values 1, 2, 3. Also δαβ is the 3-dimensional Kronecker
delta and we see from (4.102) with k = 0 that δαβ = R−2gαβ . As before T (t) satisfies
dT/dt = R−1. The constants nα satisfy

n · n = δαβ nα nβ = 1. (4.168)

It is somewhat superfluous to write the Kronecker delta in, for example, (4.167) when
we could simply write φ = nα xα − T . However if we differentiate (4.167) with respect
to x λ we obtain φ,λ = δαλ nα and some people find it confusing to write this as φ,λ = nλ

since the indices on either side of the equation are in different positions. With the
choice (4.167) and the metric given via the line-element (4.102) with k = 0 we see
that (4.164) is satisfied. As candidate solutions of (4.159) and (4.161) we consider the
potential 1-form

σa dxa = λ δαβ (Bβ cos φ + C β sin φ). (4.169)

Here λ is a real constant, and B = (Bβ) and C = (C β) are constant 3-vectors related
to the 3-vector n = (nβ) by

B = b × n and C = b − (b · n)n, (4.170)

for any 3-vector b such that b · b = 1. We have the following useful relations:

n · B = n · C = B · C = 0, B · B = C · C = 1 − (b · n)2, (4.171)

and

δμα δνβ

{
nα nβ + (B · B)−1(Bα Bβ + C α C β)

}
= δμν. (4.172)

Both terms in (4.169) are of the form (4.162) with sa taking the form

sa = (δαβ aβ, 0) with a · n = 0, (4.173)

and with a a constant 3-vector. It is now straightforward to confirm that (4.163)–
(4.166) are satisfied. The expansion of these waves is given by (4.122) with f = 1
and so we see that the wavefronts are expanding on account of the expansion of the
universe. The unit 3-vector n gives the direction of propagation of the waves at any
point in the 3-space t = constant. With (4.169) in (4.160) and (4.155) we find that
Ea = (Eα, 0),Ha = (Hα, 0) and

Eα =
λ

R
δαβ (−Bβ sin φ + C β cos φ), (4.174)

Hα = − λ

R
δαβ (Bβ cos φ + C β sin φ). (4.175)

Also

Fα 4 = −F4 α = Eα and Fαβ = −Fβα = R εαβγ Hγ, (4.176)

where εαβγ is the 3-dimensional Levi-Cività permutation symbol. The electromagnetic
energy–momentum tensor associated with these waves has components

Mab =
1
2

(Fac Fb
c + ∗Fac

∗Fb
c). (4.177)
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Here Mab = Mba and M a
a = 0. Explicit calculation of these components for the

electromagnetic waves above, making use of (4.172) in particular to simplify Mμν ,
yields

Mμν =
λ2

R2 (B · B) δμα δνβ nα nβ, (4.178)

Mμ 4 = − λ2

R3 (B · B) δμα nα, (4.179)

M44 =
λ2

R4 (B · B). (4.180)

These equations can be written succinctly as

Mab =
λ2

R2 (B · B)φ,a φ,b . (4.181)

We note that B · B is written in terms of b and n in (4.171). To obtain a model
of the background electromagnetic radiation in the k = 0 RW universe we sum the
electromagnetic energy tensors for all such wave systems labelled by the directions of
b and n. Summing (which involves integrating) Mab over the directions of b results in

Mμν =
8π λ2

3R2 δμα δν β nα nβ, (4.182)

Mμ 4 = −8π λ2

3R3 δμα nα, (4.183)

M44 =
8π λ2

3R4 . (4.184)

Finally summing (i.e. integrating) over the directions of n we arrive at the energy–
momentum–stress tensor of the background electromagnetic radiation (remembering
that we are neglecting anisotropies) with components Mab given by

Mμν =
c2
0

R2 δμν, (4.185)

Mμ 4 = 0, (4.186)

M44 =
3 c2

0

R4 , (4.187)

with c2
0 = 32π2λ2/9. This can be summarized as

Mab = μe ua ub + pe gab , (4.188)

with

pe =
1
3

μe =
c2

0

R4 . (4.189)

The subscripts on the proper density and isotropic pressure of this perfect fluid energy–
momentum–stress tensor are chosen to reflect their origin in the electromagnetic waves.
The fluid 4-velocity is ua and the equation of state of the fluid is (4.189). We note
that Mab

;b = 0, as it should be.
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The construction of an isotropic model of background radiation above can be exten-
ded to include the RW universes with k = ±1 in (4.102). The end result will again
be the energy–momentum–stress tensor (4.188). Anticipating this we can simplify the
derivation by calculating this tensor along any one of the integral curves of the vector
field ua and then extending the result to all curves on the basis of isotropy. For conveni-
ence we shall work on the curve r = 0, with r defined following (4.102). With sa given
by (4.173) we now have sa = (f 2 aα/R2, 0). Also φ given by (4.167) satisfies (4.164)
with now gab given by (4.102). Calculating sa

;a along r = 0 we find that sa
;a = 0 and

(sa
;a),b ub = 0 but (sa

;a),α �= 0. This latter is given along r = 0 by

(sa
;a),α = − k

2R2 sα. (4.190)

Now (4.163)–(4.165) are satisfied along r = 0. The derivation of the wave equation
(4.166) has made use of the first of (4.163). If we do not assume that the first of
(4.163) is satisfied everywhere then the wave equation (4.166) is modified to read

sa;d
;d =

1
2

(μ − p) sa + hb
a (sd

;d ),b , (4.191)

along r = 0. This is automatically satisfied when a = 4. With sα = δαβ aβ we find that
along r = 0

sα;d
;d =

(
R̈
R

+
2 Ṙ2

R2 +
3 k
2R2

)
sα =

1
2

(μ − p) sα − k
2R2 sα. (4.192)

We have used (4.151) and (4.152) to arrive at the final equality here. Hence (4.191) is
satisfied along r = 0. Since the passage from sa to Fab involves only first derivatives
of sa , we obtain for Fab , and thus for Mab along r = 0, for the cases k = ±1, the
same expressions as those given by (4.174)–(4.176) and (4.181) in the case k = 0.
Hence summing the electromagnetic energy tensors with respect to the directions of
the 3-vectors b and n produces again the isotropic energy–momentum–stress tensor
(4.188).

A simple family of gravitational waves in a k = 0 RW universe, analogous to the
electromagnetic waves described by (4.16), are given by the special case of the waves
described in Section 4.3 with

σab dxa dx b = λR δαμ δβν

{
(Bμ Bν − C μ C ν) cos φ

+(Bμ C ν + C μ Bν) sin φ

}
dxα dx β, (4.193)

and

πab =
2 Ṙ
R

σab , (4.194)
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with λ,Bα,C α, and φ as in (4.16). Now the only non-vanishing components of the
electric and magnetic parts of the perturbed Weyl tensor are

Eαβ = λ δαμ δβν {(C μ C ν − Bμ B ν) sin φ + (Bμ C ν + C μ Bν) cos φ},
(4.195)

Hαβ = λ δαμ δβν {−(Bμ C ν + C μ Bν) sin φ + (C μ C ν − Bμ B ν) cos φ}.
(4.196)

Equivalently the non-vanishing components of the perturbed Weyl tensor are given by

Cαβγδ = −R2 εαβλ εγδσ Eλσ, Cαβγ 4 = R εαβσ Hσγ, Cα 4β 4 = Eαβ. (4.197)

The analogue of the electromagnetic energy tensor (4.177) is the Bel–Robinson tensor
(Penrose and Rindler, 1984)

Mabcd =
1
4

(Ca
p
b
q Ccpdq + ∗Ca

p
b
q ∗Ccpdq) . (4.198)

This satisfies M(abcd) = Mabcd (the round brackets denoting symmetrization) and
M a

acd = 0. For the current gravitational wave perturbations (4.195) and (4.196) we
find that Mabcd can be simplified to read

Mabcd = 2λ2 (B · B)2 φ,a φ,b φ,c φ,d , (4.199)

with B · B given by (4.171). Summing this, by integration, over all possible directions
of b gives

Mabcd =
64π λ2

15
φ,a φ,b φ,c φ,d , (4.200)

and then summing this, by integration, over all possible directions of n we arrive at an
isotropic tensor Mabcd associated with the gravitational radiation background given by

Mabcd =
c2
1

R4

{
ua ub uc ud + 2 h(ab uc ud) +

1
5

h(ab hcd)

}
, (4.201)

with c2
1 = 256π2 λ2/15. We have derived this expression starting with gravity wave

perturbations of an RW universe with line-element (4.102) with k = 0. Its extension
to include the cases k = ±1 follows the pattern of the extension to these cases of
the electromagnetic example above. The details can be found in Hogan and O’Farrell
(2011).

Since Mabcd is constructed from the Bel–Robinson tensor, which is quadratic in
the perturbed Weyl tensor components, it is a second-order, gauge-invariant, small
quantity. It has dimensions of (length)−4 and its divergence is given by

Mabcd
;d =

2 c2
1

3R4 θ

{
ua ub uc +

1
3

(hab uc + hbc ua + hac ub)
}

, (4.202)

after making use of (4.63). Alternatively we have(
Mabcd ua ub

)
;d = 0, (4.203)
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where

Mabcd ua ub =
c2
1

R4

(
uc ud +

1
3

hcd

)
. (4.204)

This tensor is symmetric, trace-free, and divergence-free. These are properties we
associate with an energy–momentum–stress tensor. On the other hand, (4.204) has
dimensions of (length)−4. Using the sale factor R(t) we can define an energy–
momentum–stress tensor with dimensions of (length)−2 by multiplying (4.204) by R2

0
for some R0 = R(t0) �= 0. This results in the energy–momentum–stress tensor

T ab = μg ua ub + pg hab , (4.205)

with

pg =
1
3

μg =
c2
1 R2

0

3R4 . (4.206)

The subscripts here on the proper density and isotropic pressure reflect the gravita-
tional wave origin of these variables. This is one way in which an energy–momentum–
stress tensor can be associated with a cosmic background of gravitational radiation. It
would be interesting to incorporate this second-order perturbation of the RW energy–
momentum–stress tensor into the Ellis–Bruni perturbation theory as a source of
second-order perturbations of isotropic cosmologies. Anisotropies in this gravitational
radiation background will thus be of third order.



5
Black holes

In comparison with the Newtonian theory of gravitation Einstein’s theory of gravit-
ation, general relativity, predicts two important new phenomena: gravitational waves
and black holes. Chapters 2 and 4 of this book have been mainly devoted to grav-
itational waves. Black holes will now be the subject of this chapter and the next
chapter. Following a review of the basic properties of black holes some selected
topics dealing with classical and quantum aspects of black holes are presented. In
particular we consider the formation of trapped surfaces during gravitational col-
lapse, the scattering properties of a high-speed Kerr black hole, the spontaneous
creation of de Sitter universes inside a black hole, and the effect of metric fluctuations
on Hawking radiation. Higher dimensional black holes will be studied in the next
chapter.

5.1 Introduction: Basic properties of black holes

We begin with a summary of some of the basic properties of black holes which will be
useful in this chapter. More information on black holes can be found for instance in
Frolov and Zelnikov (2011), Frolov and Novikov (1998), and Poisson (2004) and refer-
ences therein. We emphasize that the notation and sign conventions we use continue
to be those summarized in Appendix A and we use units in which the speed of light in
vacuo is c = 1 and the gravitational constant is G = 1. Uniqueness theorems on the
existence of black holes ensure that in vacuum, any static and asymptotically flat solu-
tion of the Einstein’s field equations which is spherically symmmetric must coincide
with the Schwarzschild solution. A similar result holds for stationary, vacuum, asymp-
totically flat space–times with the Kerr black hole as the unique black hole in this
case. These theorems have been extended to electrically charged black holes resulting
in the Reissner–Nordström black hole in the static case and Kerr–Newman black hole
for the stationary case. In the latter two cases the combined set of Einstein-Maxwell
vacuum field equations have to be solved. Only electrically neutral black holes will be
considered here however.

The Schwarzschild solution describes the gravitational field outside an isolated,
static, and spherically symmetric body with mass M . In terms of the Schwarzschild
coordinates x i = (r , θ, φ, t) the metric tensor of the space–time is given via the line-
element

ds2 = −f (r) dt2 + f −1(r) dr2 + r 2 dΩ2, (5.1)
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where dΩ2 = dθ2 + sin2 θ dφ2 is the line-element of the unit 2-dimensional sphere and
the function f is given by

f (r) = 1 − rH

r
, (5.2)

with rH ≡ 2M . The line-element (5.1) is singular at r = rH . However since the
curvature invariant, RijklRijkl = 48M /r 6, remains finite at r = rH we see that r = rH
is not a true singularity of the space–time but is in fact a coordinate singularity which
can be eliminated by a suitable change of coordinates. On the other hand, r = 0 is a
true singularity of the space–time. Various alternative forms of the Schwarzschild line-
element are made available by introducing different local coordinates. For example,
advanced and retarded time coordinates v and u, respectively, are defined by

dv = dt +
dr

f (r)
, du = dt − dr

f (r)
, (5.3)

and (5.2) becomes

ds2 = −f (r) du dv + r2 dΩ2. (5.4)

From (5.3) and the definition of f (r) we see that in the domain r > rH any future-
directed radial trajectory of a particle travelling with the velocity of light is outgoing
(ingoing) and corresponds to u = constant (v = constant). The radial coordinate r in
(5.4) is now a function of the pair of null coordinates (u, v). Introducing the so-called
tortoise radial coordinate r∗ defined by

r∗ =
∫

dr
f (r)

= r + 2M log
∣∣∣∣ r
rH

− 1
∣∣∣∣ , (5.5)

one obtains the following implicit form of r(u, v)

v − u = 2r∗. (5.6)

It follows from (5.5) that r∗ is well defined for r > rH and for r < rH and vanishes
at the singularity r = 0. The coordinate singularity r = rH is still present in the form
(5.4) of the line-element. It can be eliminated if the null coordinates (u, v) are replaced
by the Kruskal null coordinates (U ,V ) via the coordinate transformations

U = −e− u
2rH , V = e

v
2rH , (5.7)

With this new system of coordinates the line-element (5.4) is transformed into

ds2 = −32M 3

r
e−

r
rH dU dV + r2 dΩ2, (5.8)

showing that the metric tensor is now regular at r = rH . The implicit relation r =
r(U ,V ) is now given by

−UV =
(

r
rH

− 1
)

e
r

rH . (5.9)

An interesting property of the Kruskal coordinates is that by allowing U and V to
take positive and negative values (so that U = ∓e− u

2rH and V = ±e
v

2rH ) one obtains
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Fig. 5.1 The Kruskal diagram.

an extension of the space–time manifold. This extension is represented in Figure 5.1
where the angular coordinates (θ, φ) are suppressed. In Figure 5.1 only the domains I
and II are physically relevant. The curves r = constant correspond to the hyperbolae
UV = constant, with the two particular values U = 0 and V = 0 corresponding to
r = rH . Light rays are straight lines parallel to the coordinate axes U = 0 and V = 0.
In domain I any future-directed radial light ray U = constant is outgoing and reaches
infinity, while any future-directed radial light ray V = constant is ingoing and crosses
r = rH . In domain II both radial light rays U = contant and V = constant reach the
singularity r = 0. Therefore domain II has no causal influence on domain I and for
this reason is called the black hole interior. The semi-axis V > 0, or r = rH , separates
domains I and II and is called the future event horizon of the black hole. Regions III
and IV result from the analytic extension of the Schwarzschild solution and are not
physically relevant. For instance in a gravitational collapse they have to be replaced by
the interior solution of the Einstein field equations applicable to the collapsing body.

The event horizon r = rH is a stationary null hypersurface. Its normal ni = ∂i r
is a null vector and thus n · n|r=rH = grr |r=rH = f (rH ) = 0, with the dot denoting,
for convenience, the scalar product with respect to the space–time metric. Since the
Schwarzschild space–time is static the vector field ξ(t) = ∂/∂t is a Killing vector field
which is also null on the horizon in the sense that ξ(t) · ξ(t)|rH = gtt |rH = −f (rH ) = 0.
Thus the hypersurface r = rH is also a Killing horizon.

A compactified form of the Kruskal diagram is given by the Carter–Penrose diagram
in Figure 5.2. The significance of the symbols in the diagram are: J + is future null
infinity (v = +∞ , u finite); J − is past null infinity (u = −∞ , v finite); i 0 is spatial
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Fig. 5.2 The Carter–Penrose diagram for the Schwarzschild solution; dotted lines represent
the event horizons r = 2M .

infinity (r = +∞ , t finite); i+ is future time-like infinity (t = +∞ , r finite); and
i− is past time-like infinity (t = −∞ , r finite). A local coordinate system which is
often convenient and which is intermediate between the Schwarzschild coordinates
(t , r) and the double null coordinates (u, v) is provided by the Eddington–Finkelstein
coordinates (v , r) or (u, r). Using the definitions (5.3) one immediately obtains

ds2 = dv (2dr − f (r) dv) + r2 dΩ2, (5.10)

or

ds2 = −du (2dr + f (r) du) + r 2 dΩ2. (5.11)

We now consider the rotating Kerr black hole. Its line-element expressed in so-called
Boyer–Lindquist coordinates x i = (r , θ, φ, t) takes the form

ds2 = −
(

1 − 2Mr
ρ2

)
dt2 +

ρ2

Δ
dr 2 + ρ2 dθ2 +

Σ sin2 θ

ρ2 dφ2 − 4Mar sin2 θ

ρ2 dt dφ,

(5.12)
where

ρ2 = r 2 + a2 cos2 θ, (5.13)
Δ = r 2 − 2Mr + a2, (5.14)
Σ = (r2 + a2)2 + a2Δ sin2 θ. (5.15)

The mass of the black hole is M , the angular momentum is J = Ma, and a is
called the angular momentum parameter (the angular momentum per unit mass or
specific angular momentum). The line-element (5.12) is singular at the values of r
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for which Δ = 0 or ρ2 = 0. However the curvature invariant RijklRijkl for the Kerr
solution is

RijklRijkl =
48M 2(r2 − a2 cos2 θ)(ρ4 − 16a2r 2 cos2 θ)

ρ12 , (5.16)

which shows that only ρ2 = 0 is a true singularity of the space–time. The values of r
for which Δ = 0 correspond to coordinate singularities. Using Kerr–Schild coordinates
(described below) one shows that the singularity corresponding to ρ2 = 0 is located
on the ring with equation

x 2 + y2 = a2 , z = 0. (5.17)

The event horizon can be found by looking for a null hypersurface with equation
r = constant and thus by solving the equation

gij∂i r ∂j r = grr =
Δ
ρ2 = 0 . (5.18)

This equation possesses the two real solutions or roots:

r = r± = M ±
√

M 2 − a2, (5.19)

whenever a < M . Only the largest root r = r+ corresponds to the event horizon and
the domain r < r+ is the interior of the Kerr black hole. The smaller root r = r−
is called the inner apparent horizon and is also a Cauchy horizon which is a null
hypersurface beyond which predictability breaks down as it lies outside the domain of
dependence of any spatial slice covering all space. When a = M the Kerr black hole
is said to be extremal and when a > M no real solution of (5.18) exists and in this
case the Kerr solution is the space–time model of the gravitational field of a naked
singularity rather than a black hole. The Carter–Penrose diagram of the Kerr black
hole is shown in Figure 5.3.

The Kerr solution is stationary and admits the two Killing vector fields ξ(t) = ∂/∂t
and ξ(φ) = ∂/∂φ. We recall that a Killing vector field generates a one-parameter group
of isometries of space–time. A necessary and sufficient condition that ξ be a Killing
vector field is that it satisfies

ξi ;j + ξj ;i = 0, (5.20)

with covariant differentiation, as always, denoted by a semicolon. An important prop-
erty of a Killing vector field is that, given a geodesic γ with tangent u, the scalar
quantity ξ · u is conserved along γ and is called a constant of the motion. In addition
a Killing vector field satisfies ξi ;jk = Rijklξ

l on account of (5.20) and the Ricci iden-
tities. In particular for an observer with 4-velocity ui = (0, 0, φ̇, ṫ) the scalar product
u · ξ(φ) represents an angular momentum and it is a conserved quantity. Whenever it
vanishes the observer has no angular momentum and is referred to as a zero angular
momentum observer (ZAMO). In this case

Ω ≡ dφ

dt
= − gtφ

gφφ
=

2Mar
Σ

. (5.21)



84 Black holes

II

IIII

IV

r = 0 r = 0

r = 0r = 0

r+

r+

r+

r+

r−

r−

r−

r−

J+ J+

J− J−

Fig. 5.3 The Carter–Penrose diagram of the Kerr black hole with a < M ; dotted lines represent
the event horizon r = r+ and the inner apparent horizon r = r−.

Although the observer has no angular momentum, Ω, which actually represents an
angular velocity, is not zero. This phenomenon is known as the dragging of inertial
frames. At the event horizon r = r+ the quantity Ω is given by

ΩH =
a

a2 + r2
+

. (5.22)

This is called the angular velocity of the black hole. It can be shown that the vector

η ≡ ξ(t) + ΩH ξ(φ), (5.23)
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is a Killing vector and that it is null at the event horizon and thus η · η|H = 0. Therefore
the event horizon is also a Killing horizon.

The Kerr metric posseses the following Killing tensor of order 2:

Kij = Δ k(i kj ) + r2 gij , (5.24)

where ki and li are the null vectors defined by (suppressing indices for convenience)

k =
r 2 + a2

Δ
ξ(t) − ∂

∂r
+

a
Δ

ξ(φ), (5.25)

l =
r 2 + a2

Δ
ξ(t) +

∂

∂r
+

a
Δ

ξ(φ) , (5.26)

and the round brackets on the indices in (5.24) denote symmetrization. Kij uiuj is
conserved along a geodesic with tangent ui , and it is related to the Carter constant
Q = Kij ui uj − (u · ξ(φ) + a u · ξ(t))2. In general a Killing tensor of order m with
coordinate components Ki1..im is defined to be totally symmetric and to obey the
condition

K(j ;i1...im ) = 0. (5.27)

Killing tensors do not arise in any natural way from groups of isometries as is the case
with Killing vectors. However they do give rise to constants of the motion of the form
Ki1...im ui1 . . . uim .

We end this brief review of some of the basic properties of black holes by presenting
the Kerr–Schild form of the black hole metric (for more details see Section 5.3). This
form corresponds to writing the Kerr line-element as

ds2 = ηij dx i dx j + 2H ki kj dx i dx j , (5.28)

where ηij are the components of the Minkowski metric tensor given by the line-element

ηij dx i dx j = dx 2 + dy2 + dz 2 − dt2, (5.29)

ki is the null covariant vector field defined by the 1-form

ki dx i =
rx + ay
r 2 + a2 dx +

ry − ax
r 2 + a2 dy +

z
r

dz − dt , (5.30)

and

H =
Mr3

r 4 + a2z 2 . (5.31)

In addition we have k i = gij kj = ηij kj and the components of the inverse of the metric
tensor are given by gij = ηij − Hkik j . The system of coordinates x i = (x , y , z , t) used
in (5.28) corresponds to asymptotically rectangular Cartesian coordinates and time
with (x , y , z ) satisfying

x 2 + y2

r2 + a2 +
z 2

r 2 = 1. (5.32)

We note that the time coordinate t here is not the same as in (5.12). The Kerr–Schild
form of the Schwarzschild solution is obtained by putting a = 0 in the above equations.
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5.2 Collapsing null shells and trapped surface formation

A lapse of about forty years passed between the discovery of the Schwarzschild solution
in 1916 and its interpretation as a black hole, with the latter name first used by J.
A. Wheeler in a public lecture in 1967. The renewal of interest in this subject has
been in large part due to the theorems on singularities by Penrose (1965) establishing
the conditions for the inevitability of their formation in gravitational collapse, and by
Hawking (1967) concerning the initial singularity in cosmology [for a comprehensive
discussion see Hawking and Ellis (1973) and Frolov and Novikov (1998)]. These results
required the notions of trapped surfaces and horizons which are basic ingredients of
the general properties of a black hole.

The presence of an event horizon depends on the causal structure of the space–time
manifold M. Let J+(p) be the region of M which can be connected to some event p by
any unbroken future-directed, time-like or light-like curve. The region J+(p) is called
the causal future of p. One easily extends this definition to the causal past J−(p) of p
and to the causal future/past J±(S ) of some set of events S . For instance, the region
J−(J +) contains all the null geodesics which reach future null infinity J +. In contrast
the domain B of the space–time manifold M defined by

B ≡ M − J−(J +), (5.33)

is causally disconnected to null infinity. If B is not an empty set a black hole exists
and B is called the interior of the black hole (e.g. region II in Figures 5.1 or 5.2 in
the Schwarzschild example). Its boundary H = ∂B is the event horizon of the black
hole. The event horizon is a null hypersurface. It has a teleological nature in the sense
that one needs to know the whole history of the black hole in order to obtain it. This
remark is of particular importance for black holes which are dynamically formed after,
say, successive accretions of matter.

The dynamical aspect of black hole formation is encapsulated in the notion of a
trapped surface. Let us consider a compact 2-dimensional space-like submanifold S
and both sets of ingoing and outgoing null geodesics orthogonal to S . If the expansion
rate of the ingoing and outgoing geodesics is everywhere negative on S then S is said
to be a trapped surface. It is said to be marginally trapped if one of the two null
geodesic congruences is expansion-free. If during the formation of the black hole one
visualizes a 3-dimensional space-like surface Σ then the boundary of the marginally
trapped region within Σ is called the apparent horizon. The apparent horizon evolves
with time and eventually ends in the formation of the event horizon. It is locally
given by the set of events where future-directed null geodesics have zero expansion.
According to the theorem by Hawking (1971) concerning the non-decreasing property
of the surface area of a black hole, the apparent horizon is always contained within
the event horizon. The Schwarzschild and Kerr black holes are stationary and describe
eternal black holes. The Schwarzshild apparent horizon and event horizon coincide
while for the Kerr solution r = r+ is both an event horizon and an outer apparent
horizon and r = r− is an inner apparent horizon and also a Cauchy horizon.

Trapped surfaces play an important role in the theorems on singularities. In 1970
Penrose and Hawking proved a theorem stating that if, during a gravitational collapse,
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a trapped surface is formed and some additional conditions are satisfied (in particular
energy conditions on the matter content), then a singularity necessarily forms. A sin-
gularity represents a pathological behaviour of space–time and generally corresponds
to the divergence of curvature invariants. It may also lead to a breakdown of causal-
ity as for instance in the case of what is called a naked singularity (see for example
the Kerr solution). The singularity which arises in a generic gravitational collapse is
admissible if it is hidden to external observers by an event horizon. This idea was
first articulated by Penrose in his famous cosmic censorship hypothesis. A weak 1969
version of the latter reads: ‘singularities formed in a generic gravitational collapse
cannot causally influence events near J +’. On the other hand, a strong 1971 version
reads: ‘singularities formed in a generic gravitational collapse must be space-like’ or
‘no singularity formed in a gravitational collapse can be seen by an observer unless
he falls into it’. No demonstrations of any of the versions of this hypothesis have yet
been given and no physically relevant counter-examples have been found.

In an attempt to build counter-examples to cosmic censorship Penrose (1973) con-
sidered a thin shell collapsing from infinity with the speed of light, hereafter referred
to as a null shell. If M is the total gravitational mass of the shell and if an apparent
horizon with area A forms during the collapse then the so-called Gibbons–Penrose
isoperimetric inequality [see also Gibbons (1972)]

A ≤ 4π (2M )2, (5.34)

holds. The validity of (5.34) was originally proved for closed convex shells and was
later extended to the non-convex case by Gibbons (1997) who also concluded that it
is impossible to construct a contradiction to cosmic censorship using collapsing shells.
Thorne proposed an alternative conjecture, the hoop conjecture, according to which
horizons form when and only when a mass M gets compacted in every direction into
a region whose circumference C in every direction satisfies

C ≤ 4πM . (5.35)

The two inequalities encapsulate the idea that horizons form whenever matter is suf-
ficiently compacted in a region of space. They do not refer to singularities but refer
to trapped surfaces and apparent horizons (the nature of the horizon is not specified
in the hoop conjecture), and a mathematical justification of their validity is easier
to propose because of the local nature of these surfaces. Let us consider the Penrose
(1973) model of a closed and convex thin shell S of dust collapsing from infinity with
the speed of light in an initially Minkowskian space–time. The space–time history of
S is a singular null hypersurface N whose interior remains flat. Let n be a future-
directed null vector tangent to the null generators of N and let k be a future-directed
null vector tangent to the congruence of outgoing null geodesics orthogonal to the
shell. Then n · n = 0 = k · k and we take n · k = −1 as they are both future-directed.
The surface stress–energy tensor of the null shell is Tαβ

S = μnαnβ δ(Φ) where μ is the
surface energy density of the shell, Φ(x ) = 0 is the equation of N , and δ(Φ) the Dirac
delta function which is singular on N . The expansion θ, the shear σ, and the twist ω of
the outgoing null congruence are discontinuous across N . Let us now assume that at
some moment of time an outer apparent horizon forms and coincides with S. Then the
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outer value of the expansion vanishes, and if one integrates Raychaudhuri’s equation
for the congruence tangent to k ,

dθ

dλ
+

θ2

2
+ σ2 + ω2 = Rij k i k j , (5.36)

one gets

θ = 8πμ. (5.37)

The extrinsic curvature K at any point of S calculated in Euclidean 3-space is thus
K = 2θ = 16πμ. On the other hand, we have the Minkowski (1903) inequality of
classical differential geometry

16πA ≤
(∫

K dS
)2

, (5.38)

which holds for any convex closed surface of area A. Combining (5.37) and (5.38)
one immediately obtains the Gibbons–Penrose isoperimetric inequality (5.34). The
gravitational mass of the shell M =

∫
μ dS is conserved during the collapse and it is

equal to the Bondi advanced mass, the ADM mass, and the Hawking quasi-local mass.
Had a model violating this inequality been constructible then no event horizon could
ever have developed in the collapse, fundamentally contradicting cosmic censorship.
Furthermore if cosmic censorship holds and a black hole results from the collapse then
it follows from the area theorem that the area of the apparent horizon A is smaller
than the area of the horizon of the final Schwarzschild black hole. Thus an upper
bound Emax to the energy emitted Erad as gravitational radiation is

Erad ≤ M −
√

A
16π

= Emax. (5.39)

As formulated by Thorne the hoop conjecture (5.35) is vague in the sense that the
type of horizon is not specified and various interpretations can be given to the mass
and to the circumference of the hoop. However we can demonstrate that by using
again the collapse of a null shell it is possible to obtain a more precise formulation
of this conjecture. Two inequalities of classical differential geometry will play a role
here analogous to the Minkowskian inequality in the derivation of (5.34). For any
compact and convex domain D of Euclidean 3-space with boundary ∂D two separate
sets of planar curves are constructed by (i) intersecting D with any 2-plane and by (ii)
considering the boundary of the orthogonal projection of D onto an arbitrary plane.
Let us respectively call L and l the maximum value of the perimeter of these curves.
It was shown by Barrabès et al. (1992) that

πL ≤
∫

K dS ≤ 4l , (5.40)

where K is the mean curvature at any point of ∂D. Using again the Penrose model of
a collapsing shell, and in particular the equation (5.37), one finds that

πL ≤ 16πM ≤ 4l . (5.41)
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A similar result was obtained by Tod (1992) and later discussed by Pelath et al. (1998).
In contrast to the original formulation of the hoop conjecture both the horizons and
the hoop are now given a precise definition. Furthermore the inequality (5.41) provides
a justification of the ‘when’ and ‘only when’ parts of the hoop conjecture. On the one
hand, it states that a necessary condition for the formation of an apparent horizon is
that any matter distribution with mass M gets compacted into a region whose plane
section in every direction has a maximum perimeter L such that L ≤ 16M , and on the
other hand, that a sufficient condition for the formation of an apparent horizon is that
any matter distribution with mass M gets compacted into a region whose orthogonal
plane projection has maximum perimeter l such that l ≤ 4πM . This last inequality
corresponds to the original formulation of the hoop conjecture (5.35).

We now illustrate these results with a few examples. The simplest example is
a spherical shell. In this case K = 2/R, μ = 1/8πR, R = 2M and since A = 4πR2

and L = l = 2πR it immediately follows that A = 4π(2M )2, L − 16M < 0, and
l = 2π(2M ), which agrees with (5.34) and (5.41). Furthermore the equation (5.39)
shows that Emax vanishes and thus, as expected, no gravitational radiation is emitted
during a spherical collapse. Let us now take for S a cylinder of length d , and with two
hemispherical caps of radius R at either end, which collapses radially inwards towards
its axis. On the cylinder part we have Kcyl = 1/R and on the hemispherical ends
Ksph = 2/R. Then by (5.37) one deduces that μcyl = 1/16πR, μsph = 1/8πR and one
gets for the total mass of the shell, at the moment of formation of the apparent horizon,

M =
R
2

+
d
8

. (5.42)

On the other hand

A = 4πR2 + 2πRd and L = l = 2πR + 2d . (5.43)

From these values it follows that (5.34) and (5.41) are satisfied since they give

A− 4π(2M )2 < 0, L − 16M < 0, and l − 2π(2M ) > 0. (5.44)

Also by (5.39) one sees that gravitational radiation is emitted during the collapse
since Emax > 0. The condition for the formation of an apparent horizon before the
cylinder collapses to a spindle is R > 0, which using (5.42) implies that d < 8M .
Hence if the cylinder is long enough it will collapse to a spindle singularity before an
apparent horizon forms. However one expects that the subsequent contraction along
the axis ultimately leads to a Schwarzschild black hole.

The Penrose model can be adapted to the collapse of a loop. For example, Hawking
(1990) considered a planar circular loop radially collapsing with the speed of light from
infinity in Minkowskian space–time. If we assume that the loop lies in the z = 0 plane
of the rectangular Cartesian coordinates (x , y , z ) then the space–time history of the
loop is a null 2-space L lying on the null-cone N whose internal geometry is everywhere
Minkowskian. The equations of L are t + r = 0, z = 0 and the 2-space L is represented
in Figure 5.4 by the two lines joining the points C and C ′ to the vertex of the cone.
The segment CC ′ corresponds to the disk D in the figure bounded by the loop.

To make use of the Penrose model requires a 2-surface playing the same role as
the 2-surface S above, in particular having a space–time history lying on N , and to



90 Black holes

t

z

t = 0

N

L

D

C
S S

k

k

k

k

Fig. 5.4 Collapse of a circular loop.

define the outgoing null vectors k orthogonal to S. Let us consider the light rays
perpendicular to the disk D. They are expansion-free and span two null planes which
intersect the null cone along a 2-surface which we can take as the 2-surface S. The
matter content of S is then concentrated at the cusps C and C ′. The inner value of
the expansion of the vector field k vanishes everywhere on S except at the cusps, while
its outer value vanishes everywhere on S when an apparent horizon forms on S, say
at time t = −a. Let us now derive the inner value of the expansion. The null vector
tangent to the generators of N has components nα = (−1, 0, 0, 1). The equations of S
are given by t + r = 0, t + a = |z |, from which one obtains

r =
a

1 + | cos θ| ≡ f (θ). (5.45)

The components of the vector field k derived from the conditions k · k = k · eθ =
k · eφ = 0 and k · n = −1 are

ka = (1 − F ,−∂θf , 0,−F ), (5.46)

with F = (1 −∇f .∇f )/2. The expansion of the vector field k is

θ =
1
f

(1 − 2Δ ln f ), (5.47)



Scattering properties of high-speed Kerr black holes 91

where 2Δ is the 2-dimensional Laplacian calculated on the unit 2-sphere with the
spherical polar coordinates (θ, φ). Replacing f (θ) by its expression (5.45) one gets, for
the expansion of the outgoing null geodesics,

θ =
1
a

δ
(
θ − π

2

)
, (5.48)

and by (5.37) the mass M of the 2-surface S is given by

M =
a
2

. (5.49)

As the area of the apparent horizon is twice the area of the disk D (i.e. A = 2πa2)
we find that

A = 8πM 2, (5.50)

which is in agreement with the Gibbons–Penrose isoperimetric inequality. Also since
L = l = 2πa we obtain L − 16 < M and l − 2πM = 0 which satisfies the inequalities
(5.41). During the collapse of a circular loop gravitational radiation is emitted and the
radiated energy has, by (5.39), a maximum value equal to Emax = M (1 − 1/

√
2).

5.3 Scattering properties of high-speed Kerr black holes

A light-like boost of the Kerr gravitational field in an arbitrary direction facilitates
the calculation of the angles of deflection of high-speed test particles in the Kerr
gravitational field. Relative to the high-speed particles the Kerr gravitational field
resembles an impulsive gravitational wave with a singular point on its wavefront (a
legacy of the isolated source of the gravitational field). There is a circular disk centred
on the singular point which has the property that photons colliding head-on with the
gravitational wave and within the disk are reflected backwards and travel with the
wave.

To obtain a suitable form of the Kerr solution of Einstein’s vacuum field equa-
tions for use in this section we begin with the Kerr line-element in the Kerr–Schild
form (Kerr 1963, Kerr and Schild 1965a, 1965b) in (5.28) above. However since we
will subsequently be applying a Lorentz boost to the solution [see (5.72) below] it
will be convenient, for clarity, to write the Kerr line-element out explicitly in barred
coordinates as

ds2 = ḡij d x̄ i d x̄ j = ds2
0 +

2M r̄ 3

r̄ 4 + A2 z̄ 2 (k̄i d x̄ i )2, (5.51)

with

ds2
0 = η̄ij d x̄ i d x̄ j = dx̄ 2 + dȳ2 + dz̄ 2 − d t̄2, (5.52)

and

k̄i d x̄ i =
(

r̄ x̄ + A ȳ
r̄2 + A2

)
dx̄ +

(
r̄ ȳ − A x̄
r̄2 + A2

)
dȳ +

z̄
r̄
d z̄ − d t̄ . (5.53)

The bars on the coordinates are for convenience and will disappear below. In (5.51)
the constant M is the mass of the source and J = (0, 0,M A) is the constant angular
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momentum of the source. The coordinate r̄ is a function of the coordinates x̄ , ȳ , z̄
given by

x̄ 2 + ȳ2

r̄2 + A2 +
z̄ 2

r̄ 2 = 1. (5.54)

The pioneering paper on light-like boosts of gravitational fields is the light-like boost of
the Schwarzschild field by Aichelburg and Sexl (1971). We have developed an approach
to this subject based on the Riemann curvature tensor (Barrabès and Hogan 2001,
2003a, 2004a) and so we shall require the Riemann tensor for the Kerr space–time in
the present context. In the barred coordinates this is given via

+R̄ijkl = R̄ijkl + i∗R̄ijkl , (5.55)

where ∗R̄ijkl = 1
2 η̄ijpq R̄pq

kl with η̄ijpq =
√−ḡ ε̄ijpq are the components of the left dual of

the Riemann tensor (the left and right duals being equal in a vacuum space–time).
Specifically in the Kerr case this reads

+R̄ijkl = − M r̄ 3

(r̄2 + i A z̄ )3

(
ḡijkl + i ε̄ijkl + 3 W̄ij W̄kl

)
, (5.56)

with

ḡijkl = ḡik ḡjl − ḡil ḡjk , (5.57)

and W̄ij = −W̄ji given via the 2-form

1
2
W̄ij d x̄ i ∧ dx̄ j =

r̄
r̄2 + i A z̄

[
x̄ (dx̄ ∧ d t̄ − i d ȳ ∧ dz̄ )

+ȳ (dȳ ∧ d t̄ − i d z̄ ∧ dx̄ )

+(z̄ + i A) (dz̄ ∧ d t̄ − i d x̄ ∧ dȳ)
]
. (5.58)

We shall require the Kerr solution when the angular momentum points in an arbitrary
direction in space and not in the positive z̄ -direction as it does here. Such a form
can be found in (3.128) above. However that form is not convenient for our purposes
now. Instead, with a, b, c real constants such that

√
a2 + b2 + c2 = A, we perform the

rotation

x̄ → − (a c2 + b2A)
A (b2 + c2)

x̄ − b c (a − A)
A (b2 + c2)

ȳ +
c
A

z̄ , (5.59)

ȳ → − b c (a − A)
A (b2 + c2)

x̄ − (a b2 + c2A)
A (b2 + c2)

ȳ +
b
A

z̄ , (5.60)

z̄ → c
A

x̄ +
b
A

ȳ +
a
A

z̄ . (5.61)
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Under this rotation J → (M c,M b,M a) and thus the angular momentum of the
source points in an arbitrary direction relative to the new x̄ , ȳ , z̄ axes. With (5.59)–
(5.61) the function r̄ in (5.54) now depends upon the new barred coordinates according
to the equation

r̄4 + (a2 + b2 + c2 − x̄ 2 − ȳ2 − z̄ 2) r̄ 2 = (c x̄ + b ȳ + a z̄ )2. (5.62)

Also the following transformations are consequences of (5.59)–(5.61):

dx̄ 2 + dȳ2 + dz̄ 2 → dx̄ 2 + dȳ2 + dz̄ 2, (5.63)

x̄ d x̄ + ȳ d ȳ + (z̄ + i A) dz̄ → (x̄ + i c) dx̄ + (ȳ + i b) dȳ
+(z̄ + i a) dz̄ , (5.64)

ȳ d x̄ − x̄ d ȳ → (a ȳ − b z̄ )
A

dx̄ +
(c z̄ − a x̄ )

A
dȳ +

(b x̄ − c ȳ)
A

dz̄ , (5.65)

and

x̄ d ȳ ∧ dz̄ + ȳ d z̄ ∧ dx̄ + (z̄ + i A) dx̄ ∧ dȳ
→ (x̄ + i c) dȳ ∧ dz̄ + (ȳ + i b) dz̄ ∧ dx̄ + (z̄ + i a) dx̄ ∧ dȳ . (5.66)

It thus follows that under the rotation (5.59)–(5.61) the Kerr metric tensor retains the
Kerr–Schild form so that

ḡij = η̄ij + 2H k̄i k̄j , (5.67)

with η̄ij = diag(1, 1, 1,−1),

H =
M r̄ 3

r̄4 + (a · x̄)2 , (5.68)

and

k̄i d x̄ i =
(a · x̄) (a · d x̄)
r̄ (r̄2 + |a|2) +

r̄ (x̄ · d x̄)
r̄2 + |a|2 − a · (x̄ × d x̄)

r̄2 + |a|2 − d t̄ . (5.69)

In these formulae a = (c, b, a) with |a|2 = a2 + b2 + c2 and x̄ = (x̄ , ȳ , z̄ ) with r̄ given
in terms of x̄ , ȳ , z̄ by (5.62). The centre dot and cross denote the usual scalar and
vector products in 3-dimensional Euclidean space. This form of the Kerr line-element
has been given by Weinberg (1972) with Weinberg’s angular momentum pointing in
the opposite direction to ours. The Riemann curvature tensor is now given by

+R̄ijkl = − M r̄3

(r̄ 2 + i (a · x̄))3

(
ḡijkl + i ε̄ijkl + 3 W̄ij W̄kl

)
, (5.70)

with ḡijkl given now by (5.57) and (5.67) and W̄ij by

1
2
W̄ij d x̄ i ∧ dx̄ j =

r̄
r̄2 + i (a · x̄)

[
(x̄ + i c) (dx̄ ∧ d t̄ − i d ȳ ∧ dz̄ )

+(ȳ + i b) (dȳ ∧ d t̄ − i d z̄ ∧ dx̄ )

+(z̄ + i a) (dz̄ ∧ d t̄ − i d x̄ ∧ dȳ)
]
. (5.71)
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We now make a Lorentz boost in the x̄ -direction given by (remembering that we
use units for which c = 1)

x̄ = γ (x − v t), ȳ = y , z̄ = z , t̄ = γ (t − v x ), (5.72)

with γ = (1 − v 2)−1/2. In carrying out this boost we make the assumption [as in for
example Aichelburg and Sexl (1971)] that the relative energy p of the Kerr source
remains fixed and thus the rest-mass scales as M = p γ−1. In addition we assume that
the components of the angular momentum per unit mass orthogonal to the boost
direction (the constants b and a) remain constant but the component c in the boost
direction scales as c = ĉ γ−1, where ĉ is a constant [see Barrabès and Hogan (2003a) for
an explanation of this]. The physical explanation of the scaling of c is that the multipole
moments of the isolated source of a gravitational field suffer a Lorentz contraction
in the boost direction (Barrabès and Hogan 2001). In the Kerr case the multipole
moments are constructed from the mass and the angular momentum per unit mass in
a manner described by Zel‘dovich and Novikov (1978) in such a way that the Lorentz
contraction in the direction of the boost is equivalent to the scaling of c in that
direction given here. When (5.72) is applied to the Riemann tensor (5.70) we obtain
the Riemann tensor components denoted +Rijkl without a bar. We then take the light-
like limit v → 1 to obtain the Riemann tensor components denoted +R̃ijkl . The latter
are therefore given by

+R̃ijkl = lim
v→1

+Rijkl . (5.73)

To evaluate this limit we need the following: first we have the identity

r̄3

[r̄ 2 + i (a · x̄)]3
=

1
[(ȳ + i b)2 + (z̄ + i a)2]

∂

∂x̄

(
(x̄ + i c) r̄

r̄ 2 + i (a · x̄)

)
. (5.74)

We derive from this [the reader may wish to consult Barrabès and Hogan (2003a) for
assistance] the limit

lim
v→1

γ r̄ 3

[r̄ 2 + i (a · x̄)]3
=

2 δ(x + t)
(y + i b)2 + (z + i a)2 , (5.75)

where δ(x + t) is the Dirac delta function which is singular on x + t = 0.
Differentiating (5.75) with respect to ȳ = y and using

∂r̄
∂ȳ

=
r̄ 3ȳ + r̄ b (a · x̄)
r̄4 + i (a · x̄)2 , (5.76)

we obtain another useful limit:

lim
v→1

γ r̄5

[r̄2 + i (a · x̄)]5
=

4
3

δ(x + t)
[(y + i b)2 + (z + i a)2]2

. (5.77)
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Now evaluating (5.73) we find, for example,

+R̃1212 = 4 p
{

z + i a + i (y + i b)
(z + i a)2 + (y + i b)2

}2

δ(x + t),

= 4 p
{

z + b + i (y − a)
(z + b)2 + (y − a)2

}2

δ(x + t). (5.78)

We can rewrite this in the form
+R̃1212 = (hyy − ihyz ) δ(x + t), (5.79)

with

h = 2 p log{(y − a)2 + (z + b)2}, (5.80)

and the subscripts on h in (5.79) denote partial derivatives. When all of the components
of the light-like boosted Riemann tensor (5.73) are calculated in this way we find that
R̃ijkl ≡ 0 except for

+R̃1212 = +R̃2424 = −+R̃1313 = −+R̃3434 = −+R̃3134 = +R̃2124

= (hyy − i hyz ) δ(x + t), (5.81)

+R̃1213 = +R̃2434 = +R̃3124 = +R̃2134

= i (hyy − i hyz ) δ(x + t), (5.82)

with h given by (5.80). This Riemann curvature tensor can be obtained from the metric
tensor given via the line-element

ds2 = dx 2 + dy2 + dz 2 − dt2 = 2 h δ(x + t) (dx + dt)2. (5.83)

We have arrived here at a space–time model of the gravitational field of a plane,
inhomogeneous, impulsive gravitational wave with the null hyperplane x + t = 0 as
the history of the wavefront. The curvature tensor has a delta function singularity
(reflecting the profile of the wave) and is also singular on the null geodesic generator
y = a, z = −b of the null hyperplane x + y = 0. The Aichelburg–Sexl (1971) result
for the boosted Schwarzschild solution is obtained by putting the angular momentum
parameters b and a to zero. Since the angular momentum per unit mass c in the
boost direction scales differently from the transverse components b and a in terms
of the 3-velocity v of the observer in (5.72) it does not appear in the light-like limit
v → 1. Hence the effect of the presence of the angular momentum is simply to shift the
singularity on the wavefront (a legacy of the original isolated source) from y = z = 0
in the Schwarzschild case to y = a, z = −b for the Kerr field with angular momentum
J = (M c,M b,M a) if the light-like boost is in the x -direction.

The reader may wish to compare the approach to the light-like boost of the Kerr
field here with the point of view described in Balasin and Nachbagauer (1996). There
the angle α between the axis of symmetry of the Kerr field and the direction of boost
is introduced and the authors conclude that from their point of view ‘only the limiting
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cases α = 0 and α = π/2. . . . . . admit a solution in closed form’. In addition they point
out that in their analysis ‘the general case allows a perturbative treatment if one
suitably rescales the coordinates and expands the resulting expression with respect to
sin α’. We have avoided these restrictions by first tilting the axis of the Kerr source
and then boosting in the x̄ -direction. The positive advantages of our Riemann tensor
centered approach are emphasized in Barrabès and Hogan (2003a, 2003b).

Let S̄ be the rest-frame of the Kerr source and S the rest-frame of a high-speed
particle projected into the Kerr field. From the point of view of S the Kerr gravitational
field resembles that of an impulsive gravitational wave modelled by the space–time with
line-element (5.83). In S the world line of the particle is a time-like geodesic of (5.83).
In S we assume that the particle is located at x = 0, y = y0, z = z0. It starts moving
after encountering the gravitational wave. Using the time-like geodesic equations of the
space–time with line-element (5.83) we can obtain the 4-velocity of the particle before
and after encountering the impulsive gravitational wave, calculated in the frame S
(Barrabès and Hogan 2004b). The components of the 4-velocity of the particle before
and after scattering in the frame S̄ are obtained by Lorentz transformation (5.72)
with v close to unity. If α is the deflection angle out of the x̄ z̄ -plane of the high-speed
particle after encountering the gravitational wave and if β is the deflection angle out
of the x̄ ȳ-plane then these angles are given by

tan α =
˙̄y√

˙̄x 2 + ˙̄y2
=

Y1

{Z 2
1 + γ2 [X1 (1 − v) + v ]2}1/2 , (5.84)

tan β =
˙̄z
˙̄x

=
Z1

γ {X1 (1 − v) + v} , (5.85)

with the dots indicating differentiation with respect to proper time and X1,Y1,Z1
calculated from (5.80) according to

X1 = −1
2
[
(hy)2

0 + (hz )2
0
]
, (5.86)

Y1 = −(hy)0, (5.87)
Z1 = −(hz )0. (5.88)

The brackets around the partial derivatives followed by a subscript zero here denote
that the quantity is calculated at y = y0, z = z0. Thus for v close to unity we find that

tan α =
−4M (y0 − a)

[{(y0 − a)2 + (z0 + b)2 − 4M 2}2 + 16M 2 (z0 + b)2]1/2 , (5.89)

and

tan β =
−4M (z0 + b)

(y0 − a)2 + (z0 + b)2 − 4M 2 . (5.90)

If the projected particle starts at y0 = −η (with η > 0), z0 = 0 then for large impact
parameter η, (5.89) and (5.90) give the small angles of deflection



Scattering properties of high-speed Kerr black holes 97

α =
4M
η

− 4M a
η2 , (5.91)

β = −4M b
η

. (5.92)

The first of these agrees with the small angle of deflection of a photon moving in the
equatorial plane of the Kerr source calculated by Boyer and Lindquist (1967).

It is interesting from a physical and a geometrical point of view to study time-like
and null geodesics in the space–time with line-element (5.83). In this way we get a
picture of the scattering properties of high-speed particles and photons in the Kerr
gravitational field. In particular we shall exhibit the focusing behaviour of a time-
like congruence in the space–time with line-element (5.83) and see that it is precisely
what one would expect in the field of a rotating source. We then consider the head-on
collision of photons with the gravitational wave and demonstrate that some photons
are reflected backwards on collision with the wave leading to the phenomenon of the
dimming of the signal. In addition it can be shown (Barrabès et al. 2005) that if the
photons are replaced by electromagnetic waves then it is the high-frequency waves
that are reflected by the gravitational wave.

Time-like geodesics in the space–time described by the line-element (5.83) have
been studied by Barrabès and Hogan (2004b). Let τ be proper-time along such a
geodesic with τ < 0 on the geodesic before it intersects the null hyperplane x + t = 0,
τ = 0 at the intersection of the geodesic with x + t = 0 and τ > 0 after the intersection
and to the future of the null hyperplane. For the simplest initial conditions we find
that a time-like geodesic is given for τ < 0 by

x = x0 + x1 τ, (5.93)
y = y0, (5.94)
z = z0, (5.95)
t = −x0 + t1 τ, (5.96)

and for τ > 0 by

x = x0 + x1 τ + X1 τ + X̂1, (5.97)
y = y0 + Y1 τ, (5.98)
z = z0 + Z1 τ, (5.99)
t = −x0 + t1 τ − X1 τ − X̂1, (5.100)

with X̂1 = (h)0 and X1,Y1,Z1 given by (5.86)–(5.88). Also x1 + t1 = 1 and x1 − t1 =
−1. We have here two time-like congruences parametrized by x0, y0, z0, one for τ < 0
and the more interesting one for τ > 0. The unit time-like tangent to the congruence
on the future side of τ = 0 has components in coordinates x , y , z , t given by

v i = (x1 + X1,Y1,Z1, t1 − X1). (5.101)

We can consider x0, y0, z0, τ as scalar fields defined by (5.97)–(5.100) on the region
of Minkowskian space–time τ ≥ 0. Hence v i becomes a vector field in the region
τ ≥ 0 whose integral curves constitute the time-like congruence we wish to study.
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In coordinates x i = (ζ, ζ̄, x0, τ) with ζ = y0 + iz0 we have

vi dx i = dx0 − dτ and v i ∂

∂x i =
∂

∂τ
, (5.102)

and the line-element of Minkowskian space–time for τ ≥ 0 reads

ds2 =
∣∣∣∣dζ − 2 τ

∂2(h)0

∂ζ̄2
d ζ̄

∣∣∣∣
2

+ 2 dτ dx0 − dτ 2. (5.103)

In the region of Minkowskian space–time τ < 0 the time-like congruence is given by
(5.93)–(5.96). In the coordinates x i = (ζ, ζ̄, x0, τ) the line-element can be written for
τ < 0 as

ds2 = |dζ|2 + 2 dτ dx0 − dτ 2. (5.104)

Using the Heaviside step function ϑ(τ), which as before is unity if τ > 0 and vanishes
if τ < 0, we can combine the line-elements (5.103) and (5.104) into one convenient
formula:

ds2 =
∣∣∣∣dζ − 2 τ ϑ(τ)

∂2(h)0

∂ζ̄2
d ζ̄

∣∣∣∣
2

+ 2 dτ dx0 − dτ 2. (5.105)

Calculation of the Riemann and Ricci tensors directly from this reveals that the
Riemann tensor has a delta function singularity on τ = 0 (since τ = 0 is the history
of an impulsive gravitational wave) and the Ricci tensor vanishes for all values of τ ,
in particular for τ = 0.

To calculate the properties of the time-like congruence of integral curves of the
vector field v i given by (5.102) for τ > 0 we require the components of the covariant
derivative of v i (or vi). This is indicated by a semicolon and is found to be expressible as

vi ;j = μ̂1 n(1)i n(1)j + μ̂2 n(2)i n(2)j = vj ;i , (5.106)

with n(1)i ,n(2)i given via the 1-forms

n(1)i dx i =
i
2

(1 + 2 τ |hζζ |)
{(

hζζ

|hζζ |

)1/2

dζ −
( |hζζ |

hζζ

)1/2

d ζ̄

}
,

(5.107)

n(2)i dx i =
i
2

(1 − 2 τ |hζζ |)
{(

hζζ

|hζζ |

)1/2

dζ +
( |hζζ |

hζζ

)1/2

d ζ̄

}
.

(5.108)

We emphasize that hζζ = ∂2(h)0/∂ζ2 here. The vectors n(1)i ,n(2)i are unit space-like
vectors orthogonal to each other and to v i and are parallel transported along the
integral curves of v i . Clearly from (5.106) the geodesic congruence is twist-free. The
scalars μ̂1, μ̂2 are given by

μ̂1 =
2 |hζζ |

1 + 2 τ |hζζ |
, (5.109)
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μ̂2 =
−2 |hζζ |

1 − 2 τ |hζζ |
, (5.110)

and thus the contraction of the congruence is

θ = vi
;i = μ̂1 + μ̂2 = − 8 τ |hζζ |2

1 − 4 τ 2|hζζ |2
. (5.111)

The shear tensor associated with the congruence is now

σij = vi ;j −
1
3

θ (gij + vi vj ). (5.112)

A useful orthonormal tetrad which is parallel transported along the congruence is
{ni

(1),n
i
(2),n

i , v i} with ni given by

ni ∂

∂x i =
∂

∂x0
+

∂

∂τ
. (5.113)

We can write the shear tensor in terms of this orthonormal tetrad as

σij = μ1 n(1)i n(1)j + μ2 n(2)i n(2)j + μ3 ni nj , (5.114)

with

μ1 = μ̂1 −
1
3

θ , μ2 = μ̂2 −
1
3

θ , μ3 = −1
3

θ. (5.115)

The orthonormal tetrad vectors {ni
(1),n

i
(2),n

i , vi} are eigenvectors of the shear tensor
with corresponding eigenvalues μ1, μ2, μ3, 0. From (5.111) and (5.115) we see that
μ1 + μ2 + μ3 = 0, confirming that gij σij = 0 as it should be. The time-like congruence
approximates the world lines of high-speed particles after they have been deflected
by the rotating black hole. By (5.111) the lines of the congruence converge at τ = τ0
given by

τ0 =
(y0 − a)2 + (z0 + b)2

4 p
. (5.116)

But (5.98) and (5.99) give

y − a = (y0 − a)
(

1 − τ

τ0

)
, (5.117)

z + b = (z0 + b)
(

1 − τ

τ0

)
, (5.118)

demonstrating that the right-hand sides vanish at τ = τ0. Hence the paths of the high-
speed particles converge on a straight line after being scattered by the black hole and
this straight line is the intersection of the planes y = a, z = −b.

The head-on collision of photons with the gravitational wave having τ = 0 as its
history is an interesting study. In the region of Minkowskian space–time τ < 0, to the
past of the history of the impulsive gravitational wave, we consider a congruence of null
geodesics tangent to the null vector field (in coordinates x , y , z , t) with components

(−)l i = (1, 0, 0, 1). (5.119)
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The superscript minus on a quantity will denote its value prior to the collision with the
gravitational wave. We shall find useful a null tetrad composed of (−)l i , (−)ni , (−)mi ,
and (−)m̄i with

(−)ni =
1
2

(1, 0, 0,−1) and (−)mi =
1√
2

(0, 1, i , 0), (5.120)

and (−)m̄i the complex conjugate of (−)mi . All of the scalar products among the null
tetrad vectors defined here vanish with the exception of (−)ni (−)li = 1 = (−)m̄i (−)mi .
Starting with a null geodesic with tangent (5.119) in the region to the past of the null
hyperplane x + t = 0 we wish to follow it through the null hyperplane into the region
to the future of the hyperplane. To do this we must solve the null geodesic equations
in the space–time with line-element (5.83). If the parametric equations of the null
geodesic are x i = x i (λ) with λ an affine parameter and λ < 0 on the null geodesic
before encountering the null hyperplane x + t = 0 ⇔ λ = 0 and λ > 0 on the null
geodesic after encountering the null hyperplane x + t = 0 we find [see Barrabès et al.
(2005) for details] that for λ < 0 the null geodesic is given by

x = x0 + λ, (5.121)
y = y0, (5.122)
z = z0, (5.123)
t = −x0 + λ, (5.124)

with x0, y0, z0 constants of integration, and for λ > 0 the null geodesic is given by

x = x0 + λ + X1 λ + X̂1, (5.125)
y = y0 + Y1 λ, (5.126)
z = z0 + Z1 λ, (5.127)
t = −x0 + λ − X1 λ − X̂1, (5.128)

where now

X̂1 = (h)0 , X1 = −(hy)2
0 − (hz )2

0 , Y1 = −2 (hy)0 , Z1 = −2 (hz )0, (5.129)

with the functions inside the round brackets with the subscript zero evaluated at
y = y0, z = z0. It is clear from an inspection of (5.121)–(5.128) that the point at which
the null geodesic in λ < 0 meets the null hyperplane λ = 0 and the point from which
it leaves the null hyperplane and enters the region λ > 0 are two different points (both
specified by the constants x0, y0, z0) on account of a translation along the generators
of λ = 0 in going from the past side of λ = 0 to the future side. The tangent to the
null geodesic on the future side of λ = 0 is

l i = (1 + X1,Y1,Z1, 1 − X1). (5.130)

A useful null tetrad defined on the future side of λ = 0 at the point specified by x0, y0, z0
is given by l i ,ni ,mi , m̄i with
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ni =
1
2

(1, 0, 0,−1) = (−)ni , (5.131)

mi =
1√
2

(
−1

2
(Y1 + iZ1), 1, i ,

1
2

(Y1 + iZ1)
)

, (5.132)

with m̄i the complex conjugate of mi .
To aid the development of the geometrical analysis, the vectors l i ,ni ,mi , m̄i defined

on the future side of λ = 0 by (5.130)–(5.132) can be extended to vector fields in the
region λ > 0 by parallel transport along the null geodesics tangent to l i emanating into
the region λ > 0 from each point on the future side of λ = 0 specified by x0, y0, z0. We
require the derivatives of these vector fields with respect to x i = (x , y , z , t). To achieve
this we note that x0, y0, z0, λ can be extended to scalar fields on the region λ > 0 by
reading (5.125)–(5.128) as defining x0, y0, z0, λ as functions of x , y , z , t . Calculating the
derivatives of x0, y0, z0, λ in this way we first find that

∂λ

∂x i = ni and
∂x0

∂x i =
1
2

li . (5.133)

It thus follows that the integral curves of the vector fields ni , l i are twist-free null
geodesics. The integral curves of the vector field ni generate the null hyperplanes
λ = constant > 0 while the integral curves of the vector field l i generate the null
hypersurfaces x0 = constant. The latter is the case since the integral curves of l i are
found below to have contraction and shear. The derivatives of y0 and z0 are required
and are given by the following: If

ϕ = 1 − 4λ2 {(hyz )2
0 + (hyy)2

0}, (5.134)

then we find that

ϕ
∂y0

∂x
= −1

2

{
(y1 + Y1)

(
1 + λ

∂Z1

∂z0

)
− (z1 + Z1)λ

∂Y1

∂z0

}
= ϕ

∂y0

∂t
,

(5.135)

ϕ
∂z0

∂x
= −1

2

{
(z1 + Z1)

(
1 + λ

∂Y1

∂y0

)
− (y1 + Y1)λ

∂Z1

∂y0

}
= ϕ

∂z0

∂t
,

(5.136)

ϕ
∂y0

∂y
= 1 + λ

∂Z1

∂z0
, (5.137)

ϕ
∂z0

∂y
= −λ

∂Z1

∂y0
, (5.138)

ϕ
∂y0

∂z
= −λ

∂Y1

∂z0
, (5.139)

ϕ
∂z0

∂z
= 1 + λ

∂Y1

∂y0
. (5.140)
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Using these formulae we arrive at

σ = li ,j mi mj =
−4 {(hyy)0 + i(hyz )0}

1 − 4λ2 {(hyy)2
0 + (hyz )2

0}
, (5.141)

and

ρ = li ,j mi m̄j =
−4λ

{
(hyy)2

0 + (hyz )2
0
}

1 − 4λ2 {(hyy)2
0 + (hyz )2

0}
. (5.142)

The scalar σ is the complex shear of the null geodesic congruence tangent to l i for
λ > 0 and the real scalar ρ is the contraction of this congruence. The vector (−)l i in
(5.119) is a constant vector field in λ < 0 and thus its integral curves are twist-free,
expansion-free, and shear-free null geodesics. We see from (5.141) and (5.142) that on
crossing λ = 0 this congruence experiences a jump in the shear while the contraction
is continuous at λ = 0 (since ρ vanishes on λ = 0). This characteristic behaviour of a
null geodesic congruence intersecting the history of an impulsive gravitational wave
was first pointed out by Penrose (1972). Now that we have available in (5.133)–(5.140)
the derivatives of x0, y0, z0, λ with respect to x , y , z , t we can evaluate the derivatives
of X1,Y1,Z1 in (5.129) and then the derivatives of l i ,ni ,mi in (5.130)–(5.132). The
end result is the neat formulae:

li ,j = σ̄ mi mj + σ m̄i m̄j + ρ (mi m̄j + m̄i mj ), (5.143)
ni ,j = 0, (5.144)
mi ,j = −ρni mj − σ ni m̄j , (5.145)

with σ and ρ given by (5.141) and (5.142). From (5.142) it follows that neighbouring
null geodesics tangent to l i intersect when λ = λ0 > 0 given by 4λ2

0{(hyy)2
0 + (hyz )2

0} =
1. With h(y , z ) given by (5.80) the intersection occurs when

8 p λ0 = (y0 − a)2 + (z0 + b)2. (5.146)

It follows from (5.126) and (5.127) that

y − a = (y0 − a)
(

1 − λ

λ0

)
, (5.147)

z + b = (z0 + b)
(

1 − λ

λ0

)
, (5.148)

and thus when λ = λ0 given by (5.146) the integral curves of the vector field l i focus
on the straight line y = a, z = −b. That the rays converge on a straight line is due to
the fact that the lensing source is moving on a straight line. For the regions of space–
time corresponding to λ > 0 and λ < 0 we may regard yi = (x0, y0, z0, λ) as ‘optical
coordinates’, in the terminology of Synge (1964), based on the null hyperplane λ =
0. The relationship between these optical coordinates and the rectangular Cartesian
coordinates and time is given by (5.125)–(5.128) for λ > 0 and by (5.121)–(5.124) for
λ < 0. With ζ = y0 + iz0 the line-element of the space–time including the history of
the impulsive gravitational wave analogous to (5.105), in coordinates yi , is found to be
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ds2 =
∣∣∣∣dζ + 2λϑ(λ)

∂Y1

∂ζ̄
d ζ̄

∣∣∣∣
2

+ 4 dλ dx0. (5.149)

The 4-momentum of photons prior to head-on collision with the gravitational wave
is given by (5.119) and immediately after collision on the future side of the null
hyperplane λ = 0 the 4-momentum is given by (5.130) which we can write explicitly as

l i =
(

1 − 16 p2

R2
0

,−8 p (y0 − a)
R2

0
,−8 p (z0 + b)

R2
0

, 1 +
16 p2

R2
0

)
, (5.150)

where R2
0 = (y0 − a)2 + (z0 + b)2. For R0 < 4 p this 4-momentum is given approxim-

ately by

l i = −16 p2

R2
0

(1, 0, 0,−1) = −32 p2

R2
0

ni , (5.151)

with ni given by (5.131) and we note that ni is past-pointing. It follows from (5.151)
that photons colliding with the gravitational wave sufficiently close to the singular
point y0 = a, z0 = −b are reflected back and accompany the gravitational wave which
is moving in the reflected direction. Hence there will be observers who will see a circular
disk on their sky corresponding to

(y0 − a)2 + (z0 + b)2 ≤ 16 p2. (5.152)

Since this is an approximate result the disk is not opaque to these observers but the
light passing through it is dimmed since most of it is reflected backwards. When the
incoming photons are replaced by monochromatic, plane electromagnetic waves (whose
electromagnetic field is considered a test field on the Minkowskian space–time λ < 0)
it is found that only waves of frequency ω > p−1 are reflected and thus fail to pass
through the gravitational wave (Barrabès et al. 2005).

5.4 Inside the black hole

One of the most famous theorems concerning black holes is the no-hair theorem which
states that for a generic gravitational collapse, and provided cosmic censorship is valid,
the field exterior to the event horizon has the Kerr–Newman form characterized by
just three parameters (mass M , charge Q , and angular momentum J = Ma). During
the collapse perturbations developing at the surface of the star produce emission of
gravitational radiation which dies out with advanced time as an inverse-power law
(Price 1972a, 1972b) and the end product of the collapse is, in the most general case,
a Kerr–Newman black hole. We are interested in this section in the interior of the
black hole. Inside the event horizon of a Schwarzschild black hole (i.e. for r < 2M )
the radial coordinate r becomes time-like and the direction of time coincides with the
direction of decreasing r . The singularity at r = 0 is a space-like hypersurface and
all hypersurfaces r = constant < 2M are space-like and have topology S 2 × R (see
Figure 5.5). In the case of a charged and/or rotating black hole the singularity at
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P

M

M

Q
r = 0

r = r0

r = const. < 2M

Fig. 5.5 Hypersurfaces r = constant inside a Schwarzschild black hole with mass M ; the lines
MP, MQ and M′P, M′Q are null rays starting at r = r0 < 2M and reaching the singularity
at r = 0.

r = 0 is time-like and there exists an inner apparent horizon which is at the same time
a Cauchy horizon. It has been shown by Penrose (1968) that the inner horizon is a
surface of infinite blueshift and is unstable when perturbed. This property lies at the
origin of the phenomenon of mass inflation discovered by Poisson and Israel (1989,
1990) which we now briefly describe.

Because of the interaction with the space–time curvature (acting as a potential bar-
rier) part of the gravitational radiation which is emitted during gravitational collapse
is back-scattered onto the black hole and its energy density is infinitely blueshifted as
it approaches the Cauchy horizon. The coexistence near the inner (Cauchy) horizon of
the blueshifted, back-scattered radiation and of the outflux of radiation from the star
as it shrinks within the black hole produces a spectacular effect; the gravitational mass
and the curvature of space–time are inflated to values which are classically unlimited.
This phenomenon has been dubbed mass inflation. Externally no trace of this is detect-
able as it happens inside the black hole. Outside observers continue to be influenced
by a gravitational mass that is unchanged from the stellar precursor. From the point
of view of space–time geometry the outflux of radiation merely plays the catalytic role
of focusing generators which initiates the contraction of the generators of the Cauchy
horizon. On the other hand, the large increase in the mass produces a deflation of the
inner horizon and a separation of the Cauchy and inner horizons occurs. Mass inflation
has the effect of making the charge and angular momentum (which are conserved) neg-
ligible. Hence the geometry near the Cauchy horizon becomes of Schwarzschild type
and it is expected that a space-like singularity forms.

Provided one stays outside the region near the singularity where quantum gravity
effects are important (i.e. a region where curvature becomes greater than 1/l 2Pl where
lPl =

√
�G/c3 = 10−33cm is the Planck length) it is legitimate to use the classical
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and even semiclassical laws of physics to explore the interior of a black hole. It is
generally assumed that the problem of the existence of a singularity will be solved
once gravity is quantized and space–time geometry is modified and replaced by a new
singularity-free geometry. Following these ideas Markov (1984) proposed a limiting
curvature principle. He claimed that the curvature invariant is bounded above so that
RijklRijkl < 1/l4 where l is of the order of the Planck length lPl. For a Schwarzschild
black hole this corresponds to values of the radial coordinate which are smaller than
r0 such that, in ordinary units,

RijklRijkl =
12(2GM /c2)2

r 6
0

=
1
l 4Pl

. (5.153)

The value of r0 for a stellar black hole is such that lPl � r0 � 2GM /c2. For values
of r smaller than r0 it is expected that vacuum polarization has a self-regulatory
effect on the rise of curvature and that once the quantum fluctuations have died
away the de Sitter state arises naturally (Markov and Mukhanov 1985, Mukhanov
and Brandenberger 1992, Polchinski 1989, Israel and Poisson 1988). A model of a
spontaneous transition from the Schwarzschild to the de Sitter metric along the space-
like hypersurface r = r0 was proposed by Frolov et al. (1990). We describe here another
possibility based on the creation of disconnected de Sitter universes with light-like
boundaries taking the form of light-like shells. Light-like or null shells are often used to
provide simplified models for the description of gravitational collapse (see for instance
Section 5.5 below). We start by presenting a summary of some of their basic properties.

5.4.1 Colliding null shells

A singular hypersurface in general relativity is defined as a hypersurface across which
the metric is continuous but not its first derivatives. An immediate consequence of this
is the presence of a singular term δ(Φ(x )) in the expression for the Riemann curvature
where Φ(x ) = 0 is the equation of the singular hypersurface. When the hypersurface is
time-like it represents the history of a thin shell and when the hypersurface is space-
like it can be interpreted as a sudden phase transition, as in the model proposed by
Frolov et al. (1990). In the light-like case we have in general coexistence of an impulsive
gravitational wave and of a null shell (thin shell moving at the speed of light). The
case of a pure impulsive wave (see Chapter 2) corresponds to a regular Ricci tensor
and a Weyl tensor containing a singular Dirac δ-term, and for a pure null shell the
Weyl tensor is regular but the Ricci tensor is singular and contains a Dirac δ-term. A
general description of singular null hypersurfaces can be found in Barrabès and Hogan
(2003b) and Barrabès and Israel (1991).

We limit ourselves here to spherically symmetric null shells. In terms of Eddington–
Finkelstein retarded or advanced time w , the metric of a general spherically symmetric
geometry is

ds2 = −eψ dw(f eψ dw + 2ζ dr) + r 2 (dθ2 + sin2 θ dφ2), (5.154)

where ψ, f are functions of w and r . The sign factor ζ is +(−)1 if r increases (decreases)
toward the future along a ray w = constant. Consider a thin shell whose history Σ is a
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light-cone w = constant, which splits space–time into two domains M±, where +(−)
refers to the future(past) side of Σ. The metric in M± has the form (5.154) with
different functions ψ±, f±. We assume that ζ is the same on both sides of Σ (the case
ζ+ �= ζ− occurring for instance when Σ is a common horizon to M±). The intrinsic
metric on Σ is

ds2|Σ = r2 (dθ2 + sin2 θ dφ2) = gab dξadξb , (5.155)

where ξa = (r , ξA) = (r , θ, φ), with a = 1, 2, 3 and A = 2, 3, are intrinsic coordinates
on Σ and the three basis vectors e(a) = ∂/∂ξa are tangent to Σ. The metric gab is
degenerate on a light-like hypersurface and one takes as pseudo-inverse the symmetric
matrix gab

∗ formed by bordering with zeros the contravariant 2-metric gAB inverse of
gAB . The normal to a light-like hypersurface is tangent to its null generators. It is
convenient to choose as future-directed light-like vector n normal to Σ

na = ζ
∂xa

∂r
. (5.156)

It can be shown that the surface stress–energy tensor S ij = Sab ei
(a)e

j
(b) of a spherically

symmetric light-like shell having the null hypersurface Σ as history takes the perfect
fluid form

Sab = μnanb + Pgab
∗ , (5.157)

where μ and P represent respectively the surface energy-density and surface pressure
of the thin shell and are given by

μ =
ζ

8πr
(f+ − f−) , P = − ζ

8π
(∂rψ+ − ∂rψ−). (5.158)

If one introduces the mass function M (r ,w), such that f = 1 − 2M (r ,w)/r , then the
mass of the shell, m ≡ 4πr 2μ, reads

m = −ζ(M+ − M−), (5.159)

and is generally a function of r and w . In what follows we assume that M± have static,
spherically symmetric geometry, such as Schwarzchild, Reissner–Nordström, de Sitter,
or any superposition of these. Then there is no dependence on the time coordinate
w and one can set ψ = 0. The parameter r is affine and the null shell is pressureless
(P = 0).

Consider the collision of two spherical light-like shells, and in particular two con-
centric shells (one ingoing and the other outgoing) which collide in a 2-sphere S with
radius r0. The two shells re-emerge from S as two new light-like spherical shells. We
call the corresponding null hyperfaces Σ3 and Σ4 before the collision, and Σ1 and Σ2
after the collision (see Figure 5.6). These null hypersurfaces divide space–time near
S into four sectors which we label clockwise from noon as A,B ,C ,D . We introduce
the index I = 1, 2, 3, 4 labelling the null shells. On each ΣI we choose a parameter
λI (not necessarily affine but the same on both faces) along the null generators of
ΣI and denote by l a(I )∂a = ∂/∂λI the light-like vector tangent to the generators (it is
often convenient to take λI = r). The dilation rate KI of an element of intrinsic 2-area
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Σ1 Σ2

Σ3Σ4

A

B

C

D r0

Fig. 5.6 Collision of two concentric, spherical, light-like shells Σ3, Σ4 at radius r = r0 resulting
in two concentric, spherical, light-like shells Σ1, Σ2.

convected along these generators is equal to KI = 2r−1 l a(I )∂ar , and we form the four
scalar functions

FA =
K1K2

l(1) · l(2)
, FB =

K3K4

l(3) · l(4)
, FC =

K2K3

l(2) · l(3)
, FD =

K1K4

l(1) · l(4)
. (5.160)

Using the property (l(1) · l(2))(l(3) · l(4)) = (l(1) · l(4))(l(2) · l(3)) one sees that, at each point
of the 2-sphere of collision S ,

FAFB = FCFD . (5.161)

Introducing f = gabr,ar,b = grr this relation becomes

fA(r0) fB (r0) = fC (r0) fD (r0). (5.162)

It was first derived by Dray and ’t Hooft (1985) and Redmount (1985) and later
generalized to cases including rotating black holes by Barrabès et al. (1990). If one
introduces the local mass functions MA,MB ,MC ,MD , then (5.162) yields a local rela-
tion between their values at the collision. For weak fields, to linear order (neglecting
quadratic potential energy terms) it expresses conservation of gravitational mass in
the collision. We note that a conservation relation also exists between the masses of
the shells. Using (5.159) to define the masses mI of the shells, and the sign convention
for ζ, we find that

m1 = MA − MD , m2 = MC − MA, m3 = MC − MB , m4 = MB − MD , (5.163)

from which immediately follows the conservation relation m1 + m2 = m3 + m4 between
the masses of the null shells.
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5.4.2 Creation of de Sitter universes

In the model proposed by Frolov et al. (1990) and discussed above the singularity at
r = 0 of the Schwarzschild geometry is eliminated by the occurence of an instantaneous
phase transition from the Schwarzschild geometry to the de Sitter geometry along
the whole space-like hypersurface r = r0 inside the black hole [see (5.153)]. It seems
however natural to expect that such a transition would occur randomly both in space
and time. Hence we shall study the model, presented by Barrabès and Frolov (1996),
of a spontaneous creation of de Sitter phase bubbles at arbitrary points along the
hypersurface r0. For the creation of a single bubble we use the properties of colliding
null shells described above. We assume in Figure 5.6 that only the null shells Σ1
and Σ2 are present and therefore that the sectors B, C, and D are identical and not
separated. The corresponding figure describes the spontaneous creation of a pair of
light-like shells with sector A having de Sitter geometry and sectors B, C, D having the
same Schwarzschild geometry. Since fB (r0) = fC (r0) = fD(r0) �= 0 the relation (5.162)
leads to

fA(r0) = fB (r0), (5.164)

with fB (r) = 1 − 2M /r , fA(r) = 1 − r 2/a2. The mass of the black hole is M and a is
the radius of the de Sitter horizon so that a2 = 3/Λ = 3/8πρdS. We deduce immediately
the following relation

r 3
0 = 2M a2, (5.165)

giving a � r0 � 2M . The creation of the de Sitter bubble occurs in the region
of the de Sitter space–time where all future-directed light rays contract and both
shells converge towards r = 0 (see Figure 5.7). Using (5.158) with ζ = −1, and
(5.165), the mass m(r) = 4πr 2μ(r) of the two light-like shells takes the common
value

m(r) = −M
(

1 − r 3

r 3
0

)
. (5.166)

This relation shows that m(r) is zero at the moment of creation of the de Sitter
phase bubble and that it is later negative and equal to m(0) = −M when the shells
hit the singularity r = 0. By comparison with the model proposed by Frolov et al.
(1990), where the transition between the Schwarzschild and de Sitter space–times
occurs instantaneously at r = r0, we now have a situation which is no longer homo-
geneous as one moves along this hypersurface. This allows for the possibility of
simultaneous creation of several de Sitter bubbles along r = r0 which will enhance the
inhomogeneity of this hypersurface. The Schwarzschild line-element near r = 0 can be
approximated as

ds2 ∼ − r
2M

dr2 +
r

2M
dt2 + r 2 dΩ2. (5.167)
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r = 0

r = 0 i+i+

r0

r = a

r = 2M r = 2M

r = ∞

J+

J+

Fig. 5.7 Creation of a single de Sitter phase bubble, with parameter a, at r = r0 within the
horizon of a Schwarzschild black hole of mass M ; the lower pair of dotted lines represent
the Schwarzschild horizon r = 2M and the upper pair represent the de Sitter horizon r = a
(Barrabès and Frolov, 1996).

Introducing the proper-time coordinate τ via dτ = −(r/2M )dr with dr < 0 we
arrive at

ds2 = −dτ 2 +
(
−4M

3τ

)2/3

dt2 +
(

9M τ 2

2

)2/3

dΩ2. (5.168)

Consider a couple of de Sitter bubbles created at two different vertices both located
on the hypersurface r = r0 . If the vertices are close enough their light-like boundaries
may intersect and different scenarios of what can happen at the intersection can be
proposed. It can be shown (Barrabès and Frolov, 1996) that the maximum coordinate
distance between the vertices in order to have intersection is Δtmax = r 2

0 /2M = a2/r0.
When the vertices are separated by a distance smaller than Δtmax the light-like bound-
aries intersect at some value r1 of the radial coordinate such that 0 < r1 < r0. Assume
that the null shells cross each other without any interaction other than gravitational
interaction, and that a new de Sitter space–time with horizon a ′ �= a forms in the
future of r1. Applying the general relation (5.162) for colliding null shells we arrive at
two different possibilities. For a ′ < r1 < a the new de Sitter universe coexists indef-
initely with the two initial ones until r → ∞ (Figure 5.8a) and for a < a ′ < r1 it
finally occupies the whole space (Figure 5.8b). Another scenario in which the two
null shells merge into a time-like shell separating the two initial de Sitter bubbles
has been considered by Barrabès and Frolov (1996). All of these models show that
a large number of disconnected de Sitter universes can be created within the time
tevap = tPl(M /MPl)3 needed for the quantum evaporation of the black hole. Such scen-
arios provide a classical singularity-free model of a black hole interior which might
have interesting applications to the information-loss puzzle since it opens connections
to other universes.
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r = 0 r = 0
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r = ∞
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r = 0 r = 0
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r = ∞
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r = a
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Fig. 5.8 Creation of a pair of de Sitter phase bubbles with parameter a at r = r0 followed by the
intersection of their boundaries at M(r = r1) and the subsequent production of a new de Sitter
universe with parameter a ′; case (a) corresponds to a′ < r1 < a and case (b) to a < a ′ < r1

(Barrabès and Frolov, 1996).

5.5 Metric fluctuations and Hawking radiation

In his original derivation of black hole radiance Hawking (1975) considered the
propagation of a linear quantized field in a classical background geometry [see also
Birrel and Davies (1982) and Carroll (2004)]. The mean value of the energy–momentum
tensor is taken as the source of the gravitational field which is itself treated classic-
ally. The validity of this semiclassical approach has been questioned, in particular the
controversial role of arbitrarily large (‘transplanckian’) frequencies of vacuum fluctu-
ation (’t Hooft 1985, 1996, Brout et al. 1995) and the impact of gravitational back
reaction due the emission of quanta. Zero-point fluctuations of quantum fields induce
fluctuations of the metric. We study in this section how the fluctuations of the black
hole geometry affect the properties of Hawking radiation (Barrabès et al., 1999). To
describe these fluctuations quantum mechanically and to determine their effects on
Hawking radiation requires full quantum gravity which is technically a very complic-
ated problem. The modifications of Hawking radiation due to the metric fluctuations
will be extracted within a simpler framework in which these fluctuations are treated
classically. Furthermore only spherically symmetric fluctuations will be considered and
the scattering by the gravitational potential barrier which occurs in the 4-dimensional
d’Alembertian will be neglected.

We use a model proposed by York (1983) in which the fluctuating geometry near
the horizon of the black hole is represented by a Vaidya metric with a fluctuating
mass. Using an advanced time coordinate the Vaidya line-element reads

ds2 = −
(

1 − 2m(v)
r

)
dv 2 + 2dv dr + r 2 dΩ2, (5.169)

with here

m(v) = M [1 + μ(v)]θ(v), (5.170)
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μ(v) = μ0 sin(ωv)θ(v). (5.171)

The mass of the black hole fluctuates with frequency ω and the dimensionless amp-
litude μ0 is assumed to be small (μ0 � 1) for a black hole with mass M much larger
than the Planck mass. The Heaviside step function θ(v) in (5.170) indicates that the
formation of the black hole results from the collapse of a massive null shell with mass
M . The origin v = 0 of the advanced-time coordinate is taken to correspond to the
collapse of the shell (see Figure 5.9). Hence for v < 0 the space–time geometry is flat
while it is of Vaidya type when v > 0.

r = 0

r = 0

i +

A

B

P

H

Q
u

J+

J−

v = 0

VH

V0(u)

Fig. 5.9 Conformal diagram of a black hole formed by the collapse of a spherical null shell; the
double line v = 0 is the history of the collapsing null shell. The solid dark line PABQ represents a
light ray leaving J− at advanced time v = V0(u) and reaching J + at retarded time u (Barrabès
et al., 1999).
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The energy–momentum tensor associated with the metric (5.169) is given by

Tab =
la lb
4πr 2 [M δ(v) + Mμ(v) θ(v)] , (5.172)

where la = −v,a is a future-directed null vector field tangent to ingoing radial null
rays. The first term in Tab corresponds to the collapsing null shell whose space–time
history is the null hypersurface v = 0 and the second term is the source of the Vaidya
metric. We use the geometric optics approximation to obtain the solution of the wave
equation and to study the propagation of radial null rays in the fluctuating geometry
(5.169). Ingoing radial null rays are given by v = constant, while outgoing null rays
obey the equation (

1 − 2m(v)
r

)
dv = dr . (5.173)

In order to solve this equation we use a perturbation method and write

r(v) = R(v) + ρ(v) + σ(v) + · · · . (5.174)

Here R(v) is the solution in the absence of fluctuations (μ0 = 0) while ρ(v) and σ(v)
are first- and second-order terms, respectively, in the perturbation parameter μ0. We
find from (5.173) when v > 0 that

2
dR
dv

= 1 − 2M
R

, (5.175)

2
dρ

dv
− 2M

R2 ρ = −2M
R

μ, (5.176)

2
dσ

dv
− 2M

R2 σ =
2M
R

[
ρμ

R
− ρ2

R2

]
. (5.177)

We begin by looking for the perturbed position, rH = RH + ρH + σH + · · · , of the
event horizon. From the zeroth-order equation R is constant and equal to RH = 2M .
Introduction of this value into (5.176) and (5.177) and solving these equations leads
to the following:

ρH = 2Mμ0

[
Ω cos(ωv) + sin(ωv)

1 + Ω2

]
, (5.178)

σH = 2Mμ2
0

[
2Ω2(2 − Ω2) cos(2ωv) + Ω(1 − 5Ω2) sin(2ωv)

2(1 + Ω2)2(1 + 4Ω2)

]
. (5.179)

We have introduced here the dimensionless frequency Ω = ω/κ where κ = (4M )−1

is the surface gravity of the unperturbed black hole with mass M . The resulting
expression of rH shows that the position of the event horizon of the perturbed black
hole fluctuates. It follows that the surface area A(v) = 4πr2

H of the event horizon and
the surface gravity κ = m(v)/r 2

H also fluctuate and have mean values equal to

Ā ∼ 16πM 2
[
1 +

μ2
0

2(1 + Ω2)

]
, (5.180)
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and

κ̄ ∼ κ

[
1 +

μ2
0

2(1 + Ω2)

]
, (5.181)

respectively. Computation of the modified Hawking flux of radiation will later show
that κ̄ is identical to the renormalized surface gravity. The mean value of the Hawking
temperature is T̄H = κ̄/2π (in units for which the Boltzman constant is unity) and the
changes of area δA = Ā − A and of temperature δTH = T̄H − TH obey the relation

δA
A =

δTH

TH
. (5.182)

This induces a modification of the entropy of the black hole. Its mean value satisfies
dS̄ = dE/T̄H where E = m̄(v) = M and it is equal to

S̄ =
Ā
4

(
1 − μ2

0

2(1 + Ω2)

)
, (5.183)

instead of the usual relation S = A/4.
We start by studying Hawking radiation in the absence of metric fluctuations (so

that μ0 = 0) and considering an outgoing null ray which reaches future null infinity J +

at a given value u of retarded time. Tracing back in time this null ray one arrives at the
trajectory PABQ on Figure 5.9. Such a ray starts from past null infinity J−, converges
radially and diverges again after bouncing off at (r = 0). On its way towards J + it
crosses the null shell where v = 0. Our aim is to obtain the relation V0(u) between the
value of the advanced time at the departure of the ray from J− and the value of the
retarded time at its arrival at J +. The future of a null ray leaving J − has a different
destination depending upon the value of the advanced time at its departure. Looking at
Figure 5.9 and considering all possibilities for ingoing null rays leaving J− at different
values of v one sees that: (i) for v > 0 the ray directly hits the singularity r = 0; (ii)
for v < VH the ray reaches J + after reflection at r = 0; and (iii) for VH < v < 0 the
ray propagates in the trapped region until reaching the singularity after reflection at
r = 0. Only case (ii) is relevant for the study of Hawking radiation.

We first derive the relation V0(u) in the absence of fluctuation (μ0 = 0). In the
flat space–time domain (v < 0) we have the usual relation v − u = 2r and in the
Schwarzschild domain (v > 0) this relation becomes v − u = 2[r − 2M + 2M ln{(r −
2M )/2M }] [see (5.5) and (5.6)]. In both domains v (u) is constant along an ingoing
(outgoing) radial null ray. Calling V0 the initial value of advanced time at departure
from J −, and R0 the value of the radial coordinate when the ray crosses the shell at
v = 0, it can be shown that

V0 = −2R0 and − u = 2
[
R0 − 2M + 2M ln

(
R0

2M
− 1

)]
. (5.184)

The first relation in (5.184) is obtained when v < 0 and the second when v > 0. Since
the radial coordinate is continuous across the singular null hypersurface (v = 0) these
relations combine to give the required expression for V0(u).

In the presence of metric fluctuations (μ0 �= 0) the part of the trajectory in the
domain v > 0 is modified and to the same retarded time u at arrival at J + will
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correspond a new value V (u) of advanced time at departure from J −. The first
equation in (5.184) is now replaced by

V (u) = −2[R0(u) + ρ0(u) + σ0(u)], (5.185)

where the subscript zero still refers to the interesection of the ray with the hypersur-
face v = 0. The first- and second-order terms ρ and σ of (5.174) are solutions of the
equations (5.176) and (5.177). These equations can be rewritten in the common form

df
dv

− Mf 2 = F , (5.186)

with

f = ρ , F = −M
R

, (5.187)

for the first-order perturbation and

f = σ , F =
M
R2 μρ − M

R3 ρ2, (5.188)

for the second-order perturbation. It is convenient to use (5.175) in order to replace
the variable v by the dimensionless variable x = (R − 2M )/2M and to introduce the
dimensionless quantities

ũ = κu , Ṽ = κV , ρ̃ =
ρ

2M
, σ̃ =

σ

2M
. (5.189)

We then find that

ρ̃(x ) =
x

1 + x

∫ ∞

x

dξ

ξ2 (1 + ξ)μ̂(ξ), (5.190)

σ̃(x ) = − x
1 + x

∫ ∞

x

dξ

ξ2 ρ̃(ξ)
[
μ̂(ξ) − ρ̃(ξ)

1 + ξ

]
, (5.191)

where μ̂(ξ) = μ0 sin[Ω(ξ + ln ξ + ũ)]. In these equations the constant of integration has
been chosen in such a way that the perturbed ray arrives at J + at the same retarded
time u as the unperturbed one. Introducing these results into (5.185) results in

Ṽ (ũ) = −[1 + x0 + ρ̃(x0) + σ̃(x0)], (5.192)

where x0 = (R0 − 2M )/2M satisfies

ũ = −x0 + ln x0. (5.193)

We are interested in the rays propagating near the horizon and arriving at J + at late
time u � 1. Solving (5.193) by iteration gives

x0 = e−ũ (1 − e−ũ) + O(e−3ũ), (5.194)

showing that x0 is a very small quantity. After some lengthy calculations it can be
shown that Ṽ (ũ) takes the following form [cf. equations (5.2)–(5.5) of Barrabès et al.
(1999)]

Ṽ (ũ) = −e−ũ [1 + A1 sin(Ωũ + ϕ1) + A2 sin(2Ωũ + ϕ2) + Cũ] , (5.195)
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where A1,A2 and the phases ϕ1, ϕ2 are functions of the dimensionless frequency Ω =
ω/κ and C is given by

C = − μ2
0

2(1 + Ω2)
. (5.196)

We do not need A2 or ϕ2 for our final results. For A1 and ϕ1 we have

A1 = μ0
q(Ω)

(1 + Ω2)1/2 + 2μ2
0
q(Ω)(Ω2 − 1)
Ω(1 + Ω2)3/2 , (5.197)

ϕ1 = −ϕΓ(Ω) + arctan Ω, (5.198)

where ϕΓ(Ω) is a real function which, for large values of Ω, behaves as ϕΓ ∼ Ω, and

q(Ω) =
√

2π√
Ω(e2πΩ − 1)

. (5.199)

Finally we study the energy flux and the asymptotic spectrum of Hawking radi-
ation. To this end we calculate the contribution of the s-mode of a quantum scalar
massless field to Hawking radiation. Neglecting the scattering by the gravitational
potential barrier amounts to using a 2-dimensional approximation in which ingoing
and outgoing modes decouple completely. Assuming that the field is in its vacuum
state before the formation of the black hole, we use the following relation which gives
the mean energy flux of Hawking radiation at J +:

dE
du

≡ 4πr 2 〈Tuu〉ren =
κ2

12π

(
dṼ
dũ

)1/2
d2

dũ2

⎡
⎣(dṼ

dũ

)−1/2
⎤
⎦ . (5.200)

Introducing (5.195) into this equation produces an expression which can be written
as the sum of a permanent part and a fluctuating part. Only the permament part will
contribute to the total energy received at J +. Direct calculation yields(

dE
du

)perm

=
κ2

48π

[
1 +

1
2
μ2

0 Ω2 q2(Ω) − 2C
]

, (5.201)

with C given by (5.196). This latter term, which gave a linear contribution in (5.195),
does not contribute to the fluctuating part of dE/du. Since μ0 � 1 it can be absorbed
into eũ and removed from (5.195). Such a transformation corresponds to the renor-
malization of the surface gravity, κ → κr = κ(1 − C ). We note that it is identical to
the mean value κ̄ introduced earlier in (5.181). Hence the permanent part of the mean
energy flux at J + can be rewritten as(

dE
du

)perm

=
κ2

r

48π

[
1 + μ2

0
πΩ

e2πΩ − 1

]
. (5.202)

The modifications of the energy flux, which are due to the fluctuations of the met-
ric, manifest themselves in the renormalized surface gravity [see (5.196)] and in the
additional term μ2

0 πΩ(/(e2πΩ − 1). Both modifications are of second order in μ0 and
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decrease when the frequency of the fluctations increases. In the absence of fluctuations
the usual expression of (dE/du)0 = κ2/(48π) holds.

Still using the 2-dimensional aproximation, and neglecting the effect of the grav-
itational barrier, we can extract the asymptotic spectrum of Hawking radiation from
the properties of the Bogoliubov coefficients (Birrel and Davies 1982, Carroll 2004,
Brout et al. 1995). These coefficients are given by the overlap of the initial (ingoing)
modes which are specified at J− and the final (outgoing) modes specified at J +.
Since s-modes satisfy the 2-dimensional equation ∂u∂vφ = 0 they can be decomposed
in terms of plane waves as

φν(v) =
e−iνv
√

4πν
, φλ(u) =

e−iλu
√

4πλ
, (5.203)

where ν is the energy measured at J− for the in-modes, and λ is the energy measured
at J + for the out-modes. The reflection condition at r = 0 implies that the scattered
in-modes are given by φν(V (u)). Then the Bogoliubov coefficients are given by

αν,λ =
∫

du φ∗
ν(V (u)) i

←→
∂u φλ(u) =

∫
du

eiν V (u)
√

4π ν

e−iλ u
√

πλ−1
, (5.204)

βν,λ =
∫

du φν(V (u)) i
←→
∂u φλ(u) =

∫
du

e−iν V (u)
√

4π ν

e−iλ u
√

πλ−1
. (5.205)

In the unperturbed geometry one sees from (5.192) and (5.193) that for large
u, κV0(u) = −1 − e−κ u approximately. Extending the domain of validity of the
asymptotic behaviour of V0(u) for all u, one finds that

αν,λ = B(ν, λ)
eπλ/κe−ν/κ

√
2πκν

, βν,λ = B(ν, λ)
eπλ/κ

√
2πκν

, (5.206)

where the function B(ν, λ) is given by

B(ν, λ) = Γ
(

iλ
κ

) √
λ

2πκ

(ν

κ

)−iλ/κ

e−πλ/2κ, (5.207)

and Γ(z ) is the gamma function. The mean number of quanta reaching J + per unit
retarded time is derived from the general expression

< n̄λ >=
∫ N dν |βν,λ|2∫ N dν/κν

. (5.208)

The time average here is obtained by integrating over ν up to the cut-off frequency N
and then dividing the resulting expression by the denominator as indicated.

Without fluctuations of the metric the mean number of quanta reaching J + takes
the form

< n̄λ >0 =
1
2π

1
e2πλ/κ − 1

. (5.209)

This is a Planck distribution with temperature T = κ/2π = (8πM )−1. In the pres-
ence of fluctuations one needs to use the perturbed expression (5.195) for V (u).
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This leads to a modification of the mean rate of quanta reaching J + which is now
equal to

〈n̄λ〉 =
1
2π

1
e2πλ/κr − 1

−
(

A1

2κr

)2 2λ

e2πλ/κr − 1
,

+
(

A1

2κr

)2 [
λ − ω

e2π(λ−ω)/κr − 1
+

λ + ω

e2π(λ+ω)/κr − 1

]
, (5.210)

where A1 is given by (5.197). The modifications of the asymptotic spectrum of Hawking
radiation appear in the renormalization of surface gravity and in the existence of three
additional terms. Among them the two last terms in (5.210) contain Bose thermal
factors showing that ±ω plays the role of a chemical potential which facilitates leakage
of energy and is reminiscent of superradiance.



6
Higher dimensional black holes

Higher dimensional space–times, with dimensions D = 4 + k with k > 0, are a common
ingredient in most theories attempting to unify gravity with the other forces of nature.
This idea, which originated a long time ago with the work of Kaluza (1921) and
Klein (1926), has received a new impetus from later developments in field theory and,
in particular, string theories. The k extra dimensions have so far eluded detection,
the conventional explanation being that they are compactified within radii of the
order of the Planck length lPl ∼ 10−33cm. This corresponds to energies of the order of
EPl = 1019 GeV which are well out of reach compared to energies currently available.
Some recent models consider larger dimensions [as large as a millimetre (Antoniadis
et al., 1998)] and even infinite extra dimensions (Randall and Sundrum, 1999). They
have received a lot of attention because they offer a way to lower energy from the
Planck scale to the weak scale (of TeV order) and to provide an explanation for the
large disparity between these two scales (the so-called hierarchy problem). They also
raise the prospect of experimental verification and, in particular, the production of
mini black holes at future colliders. In the so-called brane-world models the standard
fields are confined to a 4-dimensional time-like hypersurface (the brane) embedded in
a higher dimensional space–time (the bulk) where only gravity can propagate. Black
holes on the other hand can be either attached to the brane or move in the bulk.

Let us assume that the k extra dimensions have radius of order l , and call respect-
ively MPl,D and GD the Planck mass and the gravitational coupling constant for a
D-dimensional space–time. In the ordinary case D = 4 the D index is omitted and we
write simply MPl and G for these quantities. At distances r � l much smaller than the
radii of the extra dimensions the gravitational force has the usual expression derived
from Gauss’ law:

F = GD
m1m2

r 2+k . (6.1)

On the other hand, when r � l the extra dimensions can be ignored and the
gravitational force can be approximated as

F ∼ GD
m1m2

l k r 2 . (6.2)

Hence the corresponding effective 4-dimensional gravitational constant G is such that
G ∼ GD l−k , in units for which � = c = 1. From the definition of the Planck mass in
arbitrary dimensions one has GDM D−2

Pl,D = 1 and therefore

M k+2
Pl,D ∼ M 2

Pl l
−k . (6.3)
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This relation shows that increasing the size of the extra dimensions lowers the Planck
scale which can eventually be made of the order of the electroweak scale MEW ∼ TeV
(for example with k = 2 and l ∼ 100 μm−1 mm).

Another interesting consequence of large extra dimensions is the possible pro-
duction of mini black holes at an energy scale which is accessible to high-energy
experiments and exists in cosmic rays (Eardley and Giddings 2002, Rychkov 2004,
Yoshino and Rychkov 2005, Cardoso et al. 2005, Horowitz 2012). Describing scatter-
ing processes of elementary particles leading to the production of black holes requires
a full theory of quantum gravity. Since in these processes the centre-of-mass energy
is much larger than the Planck mass a semiclassical approach can be followed. It
is thus important to extend to higher dimensions properties of black holes which
are already known in four dimensions. In this chapter, after a brief description of
D > 4-dimensional black holes, we generalize to arbitrary dimensions the geometrical
inequalities, already presented in Chapter 5, which give conditions for the formation of
a trapped surface. This has application to the formation of apparent horizons (and thus
of a black hole) in the collision of high-energy particles, as in the work of Yoshino and
Nambu (2002). Also since scattering by ultra-relativistic spinning particles requires a
knowledge of their gravitational fields the metric of a D-dimensional Kerr black hole
boosted to the speed of light will be derived. This has been used to propose a model
of the gravitational field of a spinning radiation beam pulse (a gyraton) in higher
dimensions (Frolov and Fursaev 2005, Frolov, Israel and Zelnikov 2005).

6.1 Brief outline of D-dimensional black holes

Black holes are characterized by the presence of an event horizon. In a 4-dimensional
stationary space–time a theorem of Hawking states that the surface topology of the
event horizon has to be a 2-sphere, and furthermore uniqueness theorems for black
hole solutions have been demonstrated. These properties are lost in dimensions larger
than four. There exist solutions for which the event horizon has the topology of a
(D − 2)-sphere (SD−2) and one still speaks of black holes. There also exist solutions
with different topology, such as for example black rings where the event horizon has
the topology S 1 × SD−3 (Emparan and Reall 2002, Emparan and Myers 2003, 2008).

The higher dimensional analogue of the Schwarzschild 4-D solution of the vacuum
Einstein equations was obtained a long time ago by Tangherlini (1963). Its line-element
has the form

ds2 = −f (r) dt2 +
1

f (r)
dr 2 + r 2 dΩ2

D−2, (6.4)

where r is the radial coordinate, and dΩ2
D−2 is the line-element of the unit (D − 2)-

sphere (dΩ2
n+1 = dθ2

n+1 + sin2 θn dΩ2
n for n ≥ 1). The function f (r) is given by

f (r) = 1 − 16πGD M
(D − 2)sD−2 rD−3 . (6.5)
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Here M is the mass of the black hole and sn is the area of the unit sphere Sn . Thus

sD−2 =
2π(D−1)/2

Γ(D−1
2 )

, (6.6)

with the gamma function appearing in the denominator. The Tangherlini solution
has the same causal structure as the Schwarzschild solution. It has an event horizon
corresponding to the value r = rH of the radial coordinate such that

rH =
(

16πGDM
(D − 2) sD−2

)1/(D−3)

. (6.7)

Note that this relation shows that GDM ∼ (length)D−3.
The metric of a D-dimensional rotating black hole has been obtained by Myers and

Perry (1986). While in four dimensions Kerr black holes have only two paramaters,
the mass M and the angular momemtum parameter a, in D > 4 dimensions they are
characterized by the mass M and l angular momentum parameters where l is given by

l =
[
D − 1

2

]
. (6.8)

The notation [N ] indicates the integer part of N . Thus l = (D − 1)/2 when D is odd
and l = (D − 2)/2 when D is even. The number l of angular momentum parameters
is related to the existence of [(D − 1)/2] Casimirs of the group SO(D − 1) of spatial
rotations. It represents here the number of independent 2-planes of rotation. The
l angular momentum parameters will be denoted by ai with i = 1, 2, . . . , l and the
angular momentum in the i -th plane of rotation is

Ji =
2M

D − 2
ai . (6.9)

The Myers–Perry metric admits the (l + 1) Killing vectors ξ(t) = ∂t and ξ(i) = ∂φi

with i = 1, 2, . . . , l . It is the most general metric describing the field of a D-dimensional
rotating black hole and is most easily written in the Kerr-Schild form:

gab = ηab + H kakb , (6.10)

where ka is a null vector and H a function of the coordinates xa , with a = 1, 2, . . . ,D
and xD = t being the time cordinate. Also ηab is the D-dimensional Minkowski
metric, ka = gabkb = ηabkb and gab = ηab − H kakb . For the spatial coordinates it is
convenient to replace the set (x 1, . . . , xD−1) by either the l = (D − 1)/2 pairs of
coordinates (x i , yi) with i = 1, 2, . . . , l when D is odd or, when D is even, by the set
(x i , yi , xD−1 ≡ z ) with now l = (D − 2)/2. For odd values of D we have l = (D − 1)/2
and we define

F = 1 −
l∑

i=1

a2
i
(
(x i )2 + (yi )2

)
(r 2 + a2

i )2 , (6.11)

Π =
l∏

i=1

(r2 + a2
i ), (6.12)
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with
l∑

i=1

(x i )2 + (yi )2

r 2 + a2
i

= 1. (6.13)

The last equation implicitly defines r in terms of the spatial coordinates (x i , yi ). The
function H and the null vector ka of the Myers–Perry metric (6.10) are given by

H =
rD−3
H r 2

F Π
, (6.14)

ka dxa =
l∑

i=1

r(x i dx i + yi dyi ) + ai (x i dyi − yi dx i)
r 2 + a2

i
− dt , (6.15)

where rH is the same as in (6.7). We note that rH is not a horizon for a rotating
black hole. When D is even F and Π continue to be defined as above but with now
l = (D − 2)/2 and r defined by

l∑
i=1

(x i)2 + (yi)2

r 2 + a2
i

+
z 2

r 2 = 1. (6.16)

The function H and the null vector ka are now

H =
rD−3
H r
F Π

, (6.17)

ka dxa =
l∑

i=l

r(x i dx i + yi dyi ) + ai (x i dyi − yi dx i )
r 2 + a2

i
+

z dz
r

− dt . (6.18)

When all of the angular parameters vanish we obtain the Kerr–Schild form of the
Tangherlini metric.

The metric (6.10) can be put in Boyer–Lindquist form by considering r in (6.13)
or (6.16) as a coordinate and introducing the angular coordinates μi , φi when D is
odd, and μi , φi , α when D is even, defined by

x i = (r 2 + a2
i )1/2μi cos

(
φi − tan−1 ai

r

)
, (6.19)

yi = (r 2 + a2
i )1/2μi sin

(
φi − tan−1 ai

r

)
, (6.20)

z = α r . (6.21)

The relations (6.13) and (6.16) imply that when D is odd,
l∑

i=1

μ2
i = 1, (6.22)

and when D is even,
l∑

i=1

μ2
i + α2 = 1. (6.23)



122 Higher dimensional black holes

Following further coordinate transformations t → t̄ and φi → φ̄i , to eliminate some of
the off-diagonal components of the metric, the line-element when D is odd becomes

ds2 =
ΠF

Π − rD−3
H r 2

dr 2 +
l∑

i=1

(r 2 + a2
i ) (dμ2

i + μ2
i d φ̄2

i )

+
rD−3
H r 2

ΠF
(d t̄ + ai μ2

i d φ̄i )2 − d t̄2, (6.24)

and when D is even becomes

ds2 =
ΠF

Π − rD−3
H r

dr 2 +
l∑

i=1

(r 2 + a2
i ) (dμ2

i + μ2
i d φ̄2

i )

+ r2 dα2 +
rD−3
H r
ΠF

(d t̄ + ai μ2
i d φ̄i )2 − d t̄2, (6.25)

with F and Π given by (6.11) and (6.12). Using these forms of the line-element for
large values of r the interpretation of M , introduced in (6.5), and of Ji , introduced
in (6.9), as, respectively, the mass and the angular momentum in the i -th plane of
rotation is confirmed.

The horizons of a rotating D-dimensional black hole are given by the solutions of
grr = (grr )−1 = 0. From (6.24) and (6.25) these equations become

Π − rD−3
H r 2 = 0, (6.26)

when D is odd and

Π − rD−3
H r = 0, (6.27)

when D is even. The singularities, horizons, and their topology have been discussed
by Myers and Perry (1986). Other properties concerning the existence of Killing–Yano
tensors and symmetric Killing tensors generating symmetries which are analogous to
those of the 4-dimensional Kerr black hole are described by Frolov and Sojkovic (2003),
Frolov (2003), Frolov and Kubiznak (2007), and Frolov and Zelnikov (2011).

6.2 Gibbons–Penrose isoperimetric inequality and the hoop
conjecture in D dimensions

In this section we generalize the results of the previous chapter to space–times with
dimension D > 4. As in Chapter 5 we use the Penrose model of a convex thin shell
collapsing in a vacuum from infinity with the speed of light. It is easy to see that the
following equation still holds:

K = 16πGD μ, (6.28)

where K is the extrinsic curvature of the (D − 2)-surface of the shell and μ is its surface
energy density. The gravitational constant GD now appears in (6.28) as this relation
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is obtained from the D-dimensional analogue of Raychaudhuri’s equation (5.36). The
total mean curvature Q of the shell is defined by

(D − 2)Q =
∫

KdS . (6.29)

With M =
∫

μdS the total conserved mass (identical with the ADM mass and Bondi
advanced mass) of the shell, we find from (6.28) and (6.29) that

(D − 2)Q = 16πGD M . (6.30)

In arbitrary dimensions the Minkowski inequality (Minkowski, 1903) [see also Burago
and Zalgaller (1988), p. 212] states that: for any closed convex m-dimensional surface
immersed in Rn , with 2 ≤ m < n, its area Am satisfies

sm (Am)m−1 ≤ Qm , (6.31)

where Q is the total mean curvature and sm is the area of the unit m-sphere [see
(6.6)]. If (6.31) is applied to the imploding shell we obtain, since m = D − 2 and using
(6.30), the D-dimensional form of the Gibbons–Penrose isoperimetric inequality

sD−2 (AD−2)D−3 ≤
(

16πGDM
D − 2

)D−2

. (6.32)

According to this a marginally trapped surface, and therefore an apparent horizon,
forms during the collapse of the shell provided its mass M is concentrated within
a sufficiently compact domain whose boundary has an area satisfying (6.32). The
Gibbons–Penrose inequality of general relativity, A2 ≤ 4 (2GM )2, is recovered by
putting D = 4 in (6.32). Introducing the Schwarzschild radius

rH =
(

16πGDM
(D − 2) sD−2

)1/(D−3)

, (6.33)

into (6.32) yields another familiar form of the Gibbons–Penrose inequality

(AD−2)D−3 ≤ sD−2 rD−2
H . (6.34)

We now consider the hoop conjecture in the present context. In order to generalize
the inequalities (5.41) to higher dimensions we first need to obtain the generalized
form of the geometrical inequalities (5.40). The following proposition has been estab-
lished by Barrabès et al. (2004): Let D be a convex domain of Rn and Q the total
mean curvature of the boundary ∂D of D. Let ωn−2 be the maximum area of the
boundary of its orthogonal hyperplane projections, and Ωn−2 the maximum area of
(n − 2)-dimensional sections of ∂D by hyperplanes. Then the total mean curvature Q
satisfies the following inequalities

sn

2sn−2
Ωn−2 ≤ Q ≤ sn−1

sn−2
ωn−2. (6.35)

The derivation of this proposition is based upon two geometrical results. The first is
the Cauchy formula which states that between the area An−1(∂D) of the boundary
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∂D of a convex domain D ∈ Rn and the mean volume Vn−1(pξ(D)) of the orthogonal
plane projections of D in an arbitrary direction there exists the relation

An−1(∂D) =
1

bn−1

∫
ξ∈Sn−1

Vn−1(pξ(D)) dS . (6.36)

In this expression Sn−1 is the unit (n − 1)-sphere, bn the volume of the unit n-ball
with sn−1 = n bn , ξ is a unit vector, and pξ indicates the projection in the direction
of ξ onto a hyperplane orthogonal to ξ. The second geometrical result applies to any
compact q-dimensional domain D ∈ Rp+q , with p ≥ 2, and states that its area Aq(D)
obeys the equality

Aq(D) =
sp

sp−1sp+q

∫
ξ∈Sp+q−1

An−2(pξ(D))dξ, (6.37)

where ξ and pξ have the same significance as in the Cauchy formula (6.36). The Cauchy
formula is then used to obtain the lower bound of (6.35) and the upper bound is a
consequence of (6.37). If we now introduce into (6.35) the relation (6.30) between the
mass M of the shell and the total mean curvature Q we find, since n = D − 1, that

sD−1

2sD−3
ΩD−3 ≤ 16GD

D − 2
M ≤ sD−2

sD−3
ωD−3. (6.38)

The formulae

sn

sn−2
=

2π

n − 1
and

sn−1

sn−2
=

√
π

Γ
(n−1

2

)
Γ
( n

2

) ωD−3, (6.39)

can be used to rewrite (6.38) as

π

D − 2
ΩD−3 ≤ 16GD

D − 2
M ≤

√
π

Γ
(D−2

2

)
Γ
(D−1

2

)ωD−3. (6.40)

The inequalities (6.40) specialize to the inequalities (5.41) in the particular case
of D = 4. Since we have the dimensional relation GDM ∼ ΩD−3 ∼ ωD−3 ∼
(length)D−3, what was referred to as a hoop in general relativity becomes a (D − 3)-
dimensional closed strip in a space–time with D dimensions. In the brane-world models
only one of the D − 3 dimensions of the strip belongs to the brane; the D − 4 remaining
dimensions are in the bulk.

6.3 Light-like boost of higher dimensional black holes

Working with the Riemann curvature tensor, which is gauge invariant and unambigu-
ously represents the gravitational field, is a mathematically sound approach to describe
a Lorentz boosted gravitational field. Such an approach was adopted to obtain the
gravitational field of an isolated gravitating body boosted to the velocity of light and
was illustrated with many examples (Barrabès and Hogan 2003b) and used to derive
scattering properties of high-speed sources (see Chapter 5). Since this method however
requires lengthy calculations in four dimensions, only the weak field approximation will
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be considered for space–times with arbitrarily large dimensions. The validity of this
approximation will be checked against the case of the D = 4 Kerr black hole for which
the exact solution is known.

To begin with consider a black hole with mass M and angular momentum para-
meter a rotating around the z -axis of the Cartesian coordinates (x , y , z ). The Lorentz
boost can be implemented in an arbitrary direction (Barrabès and Hogan, 2004a) but
for simplicity we only consider here the two cases corresponding to a longitudinal boost
in the z -direction or to a transverse boost in (say) the x -direction. In both cases the
mass of the black hole is rescaled as M = p γ−1 where γ is the Lorentz factor. With
such a rescaling the energy p stays finite since M → 0 when γ → ∞. The angular
momentum parameter is rescaled differently according to the direction of the boost.
A justification of this can be given by boosting a gravitating body with multipole
moments and is described by Barrabès and Hogan (2003b) in the 4-dimensional case.
For a transverse boost (in the direction of the x -axis) the angular momentum para-
meter a is not rescaled. Then since M → 0 the angular momentum J = Ma vanishes
in the limit γ → ∞ and we obtain the boosted Kerr space–time with line-element

ds2 = −du dv + dy2 + dz 2 − 4p δ(u) ln[(y − a)2 + z 2] du2, (6.41)

with u = t − x , and v = t + x . It is clear from this that although J → 0 the influence
of rotation is still present in this line-element through the appearance of the parameter
a. The line-element (6.41) describes the space–time model of the gravitational field of
a plane-fronted impulsive gravitational wave whose history is the null hyperplane with
equation u = 0. The null generator of this hypersurface corresponding to y = a, z = 0
is a line singularity which is a remnant of the Kerr black hole. In comparison with
the metric of a boosted Schwarzschild black hole [see (6.42)] the rotation produces
a shift in this line singularity in the y-direction. This effect, known for a long time,
has been checked by considering the deflection of highly relativistic particles in the
Kerr gravitational field (Barrabès and Hogan, 2003b). For a longitudinal light-like
boost (in the direction of the z -axis) the angular momentum parameter is rescaled as
â = aγ, with â finite. Hence a → 0 when γ → ∞ and the boosted Kerr space–time
has line-element in this case given by

ds2 = −du dv + dy2 + dz 2 − 4p δ(u) ln(x 2 + y2) du2, (6.42)

with u = t − z and v = t + z . This time the effect of rotation completely disappears
and the boosted line-element is the Aichelburg–Sexl (1971) line-element, which is
the line-element of the boosted Schwarzschild space–time. This line-element again
describes the space–time model of the gravitational field of an impulsive plane gravit-
ational wave with space–time history u = 0 and has a singularity on the null geodesic
generator y = z = 0 of the null hypersurface u = 0.

We now compare these exact results with the expression for the boosted Kerr
line-element which is obtained by imposing from the very beginning the weak field
approximation (i.e. M and a small). We thus start with the following linearized form
of the Kerr line-element

ds̄2 = ηabd x̄ ad x̄ b +
2M
r̄

(d t̄2 + dx̄ 2 + dȳ2 + dz̄ 2 ) +
4Ma
r̄3 (x̄ d ȳ − ȳd x̄ )d t̄ , (6.43)
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where x̄ a = (x̄ , ȳ , z̄ , t̄), and r̄2 = x̄ 2 + ȳ2 + z̄ 2. As before the bar refers to a quantity
before making the Lorentz boost, and the same unbarred quantity corresponds to its
boosted value after taking the limit γ → ∞. The following two formulae will now be
used and will also later be useful for dimensions D > 4:

lim
γ→∞

γ√
γ2u2 + ρ2

= −2 ln |ρ|δ(u) +
1
|u| , (6.44)

and, for m > 1,

lim
γ→∞

γ

(γ2u2 + ρ2)m/2 =
√

π
Γ(m−1

2 )
Γ(m

2 )
δ(u)
ρm−1 . (6.45)

Here Γ(x ) is the gamma function satisfying the relations Γ(x + 1) = x Γ(x ) for x > 0,
Γ(1) = Γ(0) = 1 and Γ(1/2) =

√
π.

In the case of a longitudinal boost (i.e. for t̄ = γ(t − vz ), z̄ = γ(z − vt), x̄ = x ,
ȳ = y) both M and a are rescaled. When γ → ∞ we have dz̄ ∼ −γdu and d t̄ ∼ γdu
and the line-element (6.43) becomes

ds2 = ηαβdxαdx β +
4p
|u|du

2 − 4p ln(x 2 + y2) δ(u) du2, (6.46)

with u = t − z . A coordinate transformation then brings this line-element into the
form (6.42). As noted earlier the rescaling of a in this case wipes out the effect
of rotation. For a transverse boost along the x -axis (i.e. for t̄ = γ(t − vx ), x̄ =
γ(x − vt), ȳ = y , z̄ = z ) and in the limit γ → ∞ we have dx̄ ∼ −γdu and d t̄ ∼ γdu,
with u = t − x . In this case only the mass M is rescaled and not a and the boosted
line-element (6.43) is given by

ds2 = −dudv + dy2 + dz 2 +
4p
|u|du

2 − 8p δ(u)
(

ln ρ − ay
ρ2

)
du2, (6.47)

with ρ =
√

y2 + z 2, u = t − x , and v = t + x . It is easy to check that (6.47) is identical
to the linearized form of (6.41) for small M and small a.

We now apply the weak field approximation to higher dimensional (D > 4) black
holes, and consider rotating black holes, the non-rotating solution being simply
obtained by equating to zero all the angular momentum parameters. The line-element
is given by (6.10) with the additional relations (6.11)–(6.16). When the mass M of the
black hole and the angular momentum parameters ai are small an approximate form
of (6.10) is the following:

ds̄2 = ηab d x̄ ad x̄ b + 2Φ
[
d t̄2 +

d σ̄2

D − 3

]
+ 4 d t̄

l∑
i=1

Ai (x̄ i d ȳ i − ȳ i d x̄ i), (6.48)

where, as above, bars refer to quantities before the Lorentz boost. We have introduced
the spatial line-element

d σ̄2 =
l∑

i=1

[(dx̄ i )2 + (dȳ i)2 ] + εdz̄ 2, (6.49)
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with ε = 0 and l = (D − 1)/2 when D is odd and with ε = 1 and l = (D − 2)/2 when
D is even. The quantities Φ and Ai which appear in (6.48) are given by

Φ =
16πGDM

(D − 2)sD−2 r̄ D−3 =
rD−3
H

2 r̄D−3 , (6.50)

and

Ai =
16πGDJi

4sD−2 r̄ D−1 , (6.51)

where rH is found in (6.7) and

r̄ 2 =
l∑

i=1

[(x̄ i)2 + (ȳ i)2 ] + εz̄ 2. (6.52)

We recall that M is the mass of the black hole, Ji = 2Mai/(D − 2) is the angular
momentum in the i -th biplane of rotation, and the area sn of the unit sphere Sn is
given in (6.6).

6.3.1 Space–times with odd dimension

For space–times with an odd number of dimensions we write the coordinates as x̄ a =
(x̄ 1, ȳ1, . . . , x̄ l , ȳ l , t̄) with l = (D − 1)/2. The direction of the boost is transversal as it
necessarily lies within one of the biplanes of rotation. Therefore none of the angular
momentum parameters is rescaled, ai remains finite for i = 1, 2, . . . , l when the Lorentz
factor γ → ∞, and for the mass we have M = pγ−1. If say the x̄ j -axis is the direction
of the Lorentz boost then

x̄ j = γ (x j − vt) , t̄ = γ (t − vx j ) , ȳ j = yj , x̄ i = x i , ȳ i = yi , (6.53)

for i �= j . We define the retarded time coordinate u = t − x j in this case. When
γ � 1 we have x̄ j ∼ −γu and t̄ ∼ γu . Then an approximate form of the boosted
line-element is

ds2 ∼ ηab dx adx b + 2
(

D − 2
D − 3

)
Φγ2du2 + 4Aj γ

2(−udyj + yj du)2

+
2Φ

D − 3

⎡
⎣(dyj )2 +

∑
i �=j

((dx i )2 + (dyi )2)

⎤
⎦+ 4

∑
i �=j

Aiγ(x idyi − yidx i )du.
(6.54)

In the expressions (6.50) and (6.51) for Φ and Ai we have, since ε = 0,

r̄ 2 ∼ γ2u2 + ρ2 , ρ2 ≡ (yj )2 +
∑
i �=j

[(x i )2 + (yi )2]. (6.55)

The rescaling of M and the invariance of the ai ’s imply that the last two terms of
(6.54) become negligible in the light-like limit. Using (6.45) with D > 4 leads to

lim
γ→∞ 2Φ γ2 =

(
D − 3
D − 2

)
4πGD p Γ(D−4

2 )

π
D−2

2 ρD−4
δ(u), (6.56)
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and

lim
γ→∞ 4Aj γ2 =

8πGD p aj Γ(D−2
2 )

π
D−2

2 ρD−2
δ(u). (6.57)

Then the line-element (6.54) is given exactly, in the light-like limit, by

ds2 = ηab dx adx b +
4πGD p Γ(D−4

2 )

π
D−2

2 ρD−4
δ(u)

[
1 +

D − 4
ρ2 aj y j

]
du2, (6.58)

where the property u δ(u) = 0 of the Dirac delta function has been used. It can be
checked that the line-element (6.58) coincides with the line-element

ds2 = ηab dxa dx b +
4πGD p Γ(D−4

2 ) δ(u) du2

π
D−2

2

[
(yj − aj )2 +

∑
i �=j [(x i )2 + (yi)2]

] D−4
2

, (6.59)

when this line-element is linearized with respect to aj . This latter expression shows
that the effect of the rotation is to produce a shift along the yj -axis perpendicular
to the x j -axis in the j -th 2-plane of rotation, an effect which already appeared when
D = 4 [see (6.41)].

6.3.2 Space–times with even dimension

When the number of dimensions D is even the coordinates are given by the set x̄ a =
(x̄ 1, ȳ1, . . . , x̄ l , ȳ l , z̄ , t̄ , ) with l = (D − 2)/2. The direction of the boost can either be
the z -axis or it can lie within one of the biplanes of rotation. In the first case the
boost is of the longitudinal type and both M and the ai ’s are rescaled according to
M = mγ−1 and ai = âiγ

−1. In the second case it is transversal and only M is rescaled
as M = pγ−1. From (6.49) and (6.52) we have

d σ̄2 =
l∑

i=1

[(dx̄ i )2 + (dȳ i)2 ] + dz̄ 2 , r̄2 =
l∑

i=1

[(x̄ i )2 + (ȳ i)2 ] + z̄ 2. (6.60)

We consider first a transversal boost along the x̄ j -axis. The notations used above when
D is odd still apply, in particular for the relations (6.54) and (6.58), but with ρ now
given by

ρ2 ≡ (yj )2 +
∑
i �=j

[(x i )2 + (yi )2] + z 2. (6.61)

We find that the boosted line-element reads

ds2 = ηab dxadx b +
4πGDp Γ(D−4

2 )

π
D−2

2 ρD−4
δ(u)

[
1 +

D − 4
ρ2 aj yj

]
du2. (6.62)

In parallel with the case of odd dimensions, (6.62) is identical with the linearized form
of the line-element

ds2 = ηab dx a dx b +
4πGDp Γ(D−4

2 ) δ(u) du2

π
D−2

2

[
(yj − aj )2 +

∑
i �=j [(x i )2 + (yi)2] + z 2

] D−4
2

. (6.63)
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On the other hand, for a boost in the direction of the z̄ -axis,

z̄ = γ (z − vt) , t̄ = γ (t − vz ) , x̄ i = x i , ȳ i = yi , (6.64)

for i = 1, 2, . . . , l and thus when γ � 1 we have z̄ ∼ −γu and t̄ ∼ γu, with u = t − z .
Hence the boosted line-element is given approximately by

ds2 ∼ ηab dxadx b + 2
(

D − 2
D − 3

)
Φγ2du2 +

2Φ
D − 3

[
l∑

i=1

((dx i )2 + (dyi)2)

]

+ 4
l∑

i=1

Aiγ(x idyi − yidx i )du. (6.65)

In the expressions for Φ and the Ai ’s we have

r̄ 2 ∼ γ2u2 + ρ2 and ρ2 ≡
l∑

i=1

[(x i )2 + (yi )2]. (6.66)

Since the boost is in the z -direction and is longitudinal all the angular momentum para-
meters scale according to ai = âiγ

−1 with âi finite in the limit γ → ∞. The expression
(6.56) still applies but we have limγ→∞ Φ = limγ→∞ Aiγ = 0, and the last two terms
of (6.65) disappear. The boosted line-element is thus

ds2 = ηab dxadx b +
4πGD p Γ(D−4

2 )

π
D−2

2 ρD−4
δ(u) du2, (6.67)

with ρ given by (6.66). The effect of rotation has disappeared in the longitudinal boost
as was the case when D = 4. Equation (6.67) represents the ultra-relativistic limit of
the boosted Tangherlini black hole solution (6.4) for D > 4.
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Appendix A
Notation

We give a brief summary here of the notation and sign conventions used in this book.
Throughout we use units in which the speed of light in a vacuum is c = 1 and the
gravitational constant is G = 1. We use a metric of signature +2. Latin indices take
values 1, 2, 3, 4 and Greek indices take values 1, 2, 3. Latin letters from the second
half of the alphabet will generally denote coordinate components of tensor fields on
space–time. In a local coordinate system x i the components of the metric tensor are
(gij ) and the line-element of space–time is

ds2 = gij dx i dx j . (A.1)

Partial derivatives are indicated by a comma (for example f,i = ∂f /∂x i) and covariant
derivatives by a semicolon (for example vi ;j = vi ,j − Γk

ij vk where Γk
ij are the components

of the Riemannian connection). Latin letters from the first half of the alphabet will
generally denote tetrad components starting with the introduction of a set of basis
1-forms ϑa . In terms of these we can write

ds2 = gab ϑa ϑb , (A.2)

where gab are now the components of the metric tensor on the tetrad basis defined via
the 1-forms. We will always normalize the basis so that gab are constants. Denoting
exterior differentiation by d , the components ωab = −ωba of the Riemannian connection
1-form are given by the first Cartan structure equation:

dϑa = −ωa
b ∧ ϑb . (A.3)

Here tetrad indices a, b, c, . . . are raised with gab , where gab gbc = δa
c and so gab are the

components of the inverse of the matrix with entries gab . Thus ωa
b = gac ωcb . Tetrad

indices are lowered with gab . The curvature 2-form Ωab = −Ωba is obtained from the
second Cartan structure equation:

Ωab = dωab + ωac ∧ ωc
b . (A.4)

From this we obtain the tetrad components of the Riemann curvature tensor Rabcd
from

Ωab =
1
2

Rabcd ϑc ∧ ϑd . (A.5)
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The Ricci tensor has components Rab = gcd Racbd and the Ricci scalar is R = gab Rab .
From these the components Cabcd of the Weyl conformal curvature tensor are

Cabcd = Rabcd +
1
2

(gad Rbc + gbc Rad − gac Rbd − gbd Rac) +
1
6

R (gac gbd − gad gbc) .

(A.6)
We often specialize (A.2) to

ds2 = (ϑ1)2 + (ϑ2)2 − 2ϑ3 ϑ4. (A.7)

In this case the basis of 1-forms defines a ‘half-null’ tetrad meaning that the tetrad
consists of two space-like vectors and two null vectors. On such a tetrad the Newman–
Penrose components of the Weyl conformal curvature tensor are given by

Ψ0 = R1313 −
1
2
R33 + iR1323, (A.8)

Ψ1 =
1√
2

(R3431 + iR3432) −
1

2
√

2
(R31 + iR32) , (A.9)

Ψ2 =
1
2

(
R3434 + iR3412 − R34 +

1
6
R
)

, (A.10)

Ψ3 =
1√
2

(
R3414 − iR3424 +

1
2
R41 +

1
2
iR42

)
, (A.11)

Ψ4 = R1414 −
1
2
R44 − iR1424, (A.12)

with R = R11 + R22 − 2R34.
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Transport law for k along r = 0

In place of (3.15) let us write

P ki = −ξ λi
(1) − η λi

(2) −
(

1 − 1
4
(ξ2 + η2)

)
λi

(3) +
(

1 +
1
4
(ξ2 + η2)

)
λi

(4), (B.1)

with {λi
(b)(u)}4

b=1 an orthonormal tetrad defined along the world line r = 0 with λi
(4) =

v i and the orthonormal triad {λi
(α)}3

α=1 satisfying λi
(α) vi = 0 for α = 1, 2, 3. Thus on

account of the second of (3.14) the function P in (B.1) is given by

P = 1 +
1
4
(ξ2 + η2). (B.2)

We assume that {λi
(α)}3

α=1 is transported along r = 0 according to

∂λi
(α)

∂u
= (v i aj − v j ai)λ(α)j + ωij λ(α)j , (B.3)

with ωij (u) = −ωji (u) and ωij (u)v j (u) = 0. If ωij = 0 then this transport law becomes
Fermi–Walker transport while the final term in (B.3) supplies a spatial rotation to the
triad {λi

(α)}3
α=1 (Misner et al. 1973, p. 174). It follows from (B.3) that

ω(αβ) ≡ ωij λi
(α) λi

(β) = λ(α)i λ̇i
(β) = −ω(βα), (B.4)

with the dot, as always, denoting differentiation with respect to u. From (B.1) and
(B.2) we see that (B.3) implies the transport law

∂k i

∂u
= (v i aj − v j ai ) kj + ωij kj , (B.5)

for k i along r = 0. This transport law preserves (3.14) along r = 0 just as the transport
law (3.17) did. Using (B.5) in conjunction with the transformation (3.13) we have

dx i = {(1 + r aj k j ) v i + r ai + r ωij kj } du + ki dr + r
(

∂k i

∂ξ
dξ +

∂k i

∂η
dη

)
. (B.6)

In utilizing this to evaluate the Minkowskian space–time line-element in coordinates
ξ, η, r , u a useful identity is found to be

P2
∣∣∣∣(ai + ωij k j )

∂k i

∂ξ
− i(ai + ωij k j )

∂k i

∂η

∣∣∣∣
2

= (ai + ωij k j ) (ai + ωil kl ) − (ai k i)2.

(B.7)
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Using this with (B.6) we obtain

ηij dx i dx j = r 2P−2

{(
dξ + P 2 (ai + ωij k j ) ∂k i

∂ξ
du
)2

+
(

dη − P2 (ai + ωij k j ) ∂k i

∂η
du
)2
}

− 2 du dr − (1 − 2H r)du2, (B.8)

with H = −aj k j and P given by (B.2). With k i given by (B.1) we have

H = −ai k i = −P−1
{

ξ a(1) + η a(2) +
(

1 − 1
4
(ξ2 + η2)

)
a(3)

}
, (B.9)

where a(α)(u) = ai(u)λi
(α)(u) for α = 1, 2, 3. If we now define the function

q(ξ, η, u) = − η

(
1 − 1

4
ξ2 +

1
12

η2
)

a(1) − ξ

(
1 +

1
12

ξ2 − 1
4
η2
)

a(2)

+ ξη a(3) +
1
2
(ξ2 − η2)ω(12) − η

(
1 +

1
4
ξ2 − 1

12
η2
)

ω(13)

− ξ

(
1 − 1

12
ξ2 +

1
4
η2
)

ω(23), (B.10)

with ω(αβ)(u) given by (B.4), then (B.8) can be rewritten in the Robinson–Trautman
(1960, 1962) form

ηij dx i dx j = r 2P−2

{(
dξ − ∂q

∂η
du
)2

+
(

dη − ∂q
∂ξ

)2
}

− 2 du dr − (1 − 2H r)du2.

(B.11)

This form of the Minkowskian space–time line-element was first published by Molenda
(1984). In some situations it is more useful than the form (3.21) [see, for example Hogan
and Ellis (1989)].



Appendix C
Some useful scalar products

For Chapter 3 the following list of scalar products involving the vector field U i defined
in (3.114) are useful in calculating the line-element (3.119):

∂ki

∂ξ

∂U i

∂ξ
= 0, (C.1)

∂ki

∂η

∂U i

∂ξ
= −P−2

0 F , (C.2)

vi
∂U i

∂ξ
= 0, (C.3)

ki
∂U i

∂ξ
= Fη, (C.4)

∂ki

∂η

∂U i

∂η
= 0, (C.5)

∂ki

∂ξ

∂U i

∂η
= P−2

0 F , (C.6)

vi
∂U i

∂η
= 0, (C.7)

ki
∂U i

∂η
= −Fξ, (C.8)

∂Ui

∂u
∂U i

∂u
= −F 2P2

0

((
∂h0

∂ξ

)2

+
(

∂h0

∂η

)2
)

, (C.9)

vi
∂U i

∂u
= −P 2

0

(
∂h0

∂ξ
Fη −

∂h0

∂η
Fξ

)
, (C.10)

∂Ui

∂u
∂U i

∂ξ
= −P2

0

(
∂h0

∂ξ
Fη −

∂h0

∂η
Fξ

)
Fη −

∂h0

∂ξ
F 2, (C.11)

∂Ui

∂u
∂U i

∂η
= P2

0

(
∂h0

∂ξ
Fη −

∂h0

∂η
Fξ

)
Fξ −

∂h0

∂η
F 2, (C.12)

ki
∂U i

∂u
= 0, (C.13)

∂ki

∂ξ

∂U i

∂u
=

∂h0

∂η
F , (C.14)
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∂ki

∂η

∂U i

∂u
= −∂h0

∂ξ
F , (C.15)

∂Ui

∂ξ

∂U i

∂ξ
= −P−2

0 F 2 − F 2
η , (C.16)

∂Ui

∂η

∂U i

∂η
= −P−2

0 F 2 − F 2
ξ , (C.17)

∂Ui

∂ξ

∂U i

∂η
= Fξ Fη . (C.18)
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Ozsváth, I., Robinson, I., and Rózga, K. (1985). J. Math. Phys., 26, 1755–1761.
Papapetrou, A. (1951). Proc. R. Soc. A, 209, 248–258.
Pelath, M. A., Tod, K. P., and Wald, R. (1998). Class. Quantum Grav., 15, 3917–3934.
Penrose, R. (1965). Phys. Rev. Lett., 10, 57–59.
Penrose, R. (1968). Batelles Rencontres. W. A. Benjamin, New York, pp. 121–235.
Penrose, R. (1972). General Relativity: Papers in Honour of J. L. Synge. Clarendon
Press, Oxford, pp. 101–115.

Penrose, R. (1973). Ann. N. Y. Acad. Sci., 224, 125–134.
Penrose, R. and Rindler, W. (1984). Spinors and Space–Time, Vol. 1. Cambridge
University Press, Cambridge.

Poisson, E. (2004). A Relativist’s Toolkit: The Mathematics of Black Hole Mechanics.
Cambridge University Press, Cambridge.

Poisson, E. and Israel, W. (1989). Phys. Rev. Lett., 63, 1663–1666.
Poisson, E. and Israel, W. (1990). Phys. Rev. D , 41, 1796–1809.
Poisson, E., Pound, A., and Vega, I. (2011). Living Rev. Relativity , 14 (7).
Polchinski, J. (1989). Nucl. Phys. B , 325, 619–630.
Pound, A. (2010). Phys. Rev. D , 81 (024023).
Price, R. H. (1972a). Phys. Rev. D , 5, 2419–2438.
Price, R. H. (1972b). Phys. Rev. D , 5, 2439–2454.
Randall, L. and Sundrum, R. (1999). Phys. Rev. Lett., 83, 3370–3373.
Redmount, I. H. (1985). Prog. Theor. Phys., 73, 1401–1426.
Rindler, W. and Trautman, A. (1987). Gravitation and Geometry. Bibliopolis, Naples.
Robinson, I. (1959). Bull. Acad. Polon., 7, 351–352.
Robinson, I. and Robinson, J. R. (1972). General Relativity: Papers in Honour of J.
L. Synge. Clarendon Press, Oxford, pp. 151–166.

Robinson, I. and Trautman, A. (1960). Phys. Rev. Lett., 4, 431–432.
Robinson, I. and Trautman, A. (1962). Proc. R. Soc. A, 265, 463–473.
Robinson, I. and Trautman, A. (1983). J. Math. Phys., 24, 1425–1429.
Rosen, N. (1937). Phys. Z. Sowjet , 12, 366–372.
Rychkov, V. S. (2004). Phys. Rev. D , 70 (044003).
Sachs, R. (1962). Proc. R. Soc. A, 270, 103–126.
Sauer, T. and Trautman, A. (2008). Acta Physica Polonica B (Proceedings
Supplement), 1, 7–26.

Stephani, H., Kramer, D., MacCallum, M. A. H., Hoenselaers, C., and Herlt, E.
(2003). Exact Solutions of Einstein’s Equations, 2nd edn. Cambridge University
Press, Cambridge.

Synge, J. L. (1964). Relativity: The General Theory. North Holland, Amsterdam.
Synge, J. L. (1965). Relativity: The Special Theory. North Holland, Amsterdam.
Synge, J. L. (1970). Annali di Matematica Pura ed Applicata, 84, 33–60.
Szekeres, P. (1970). Nature, 228, 1183–1184.



References 141

Szekeres, P. (1972). J. Math. Phys., 13, 286–294.
’t Hooft, G. (1985). Nucl. Phys. B , 256, 727–745.
’t Hooft, G. (1996). Int. J. Mod. Phys. A, 11, 4623–4688.
Tangherlini, F. R. (1963). Nuovo Cimento, 27, 636–651.
Tod, K. P. (1992). Class. Quantum Grav., 9, 1581–1591.
Tran, H. V. (1988). The Geometry of Plane Waves in Spaces of Constant Curvature.
PhD thesis, The University of Texas at Dallas.

Trautman, A. (1962). Recent Developments in General Relativity. PWN, Warsaw, pp.
459–463.

Trautman, A., Pirani, F. A. E., and Bondi, H. (1965). Lectures on General Relativity.
Prentice-Hall, New Jersey.

Weinberg, S. (1972). Gravitation and Cosmology. John Wiley, New York.
York, J. W. (1983). Phys. Rev. D , 28, 2929–2945.
Yoshino, H. and Nambu, Y. (2002). Phys. Rev. D , 66 (065004).
Yoshino, H. and Rychkov, V. S. (2005). Phys. Rev. D , 71 (044028).
Zel‘dovich, Ya. B. and Novikov, I. D. (1978). Relativistic Astrophysics, Volume 1:
Stars and Relativity. University of Chicago Press, Chicago.



Index
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Fermi–Walker transport, 133
fluctuating geometry, 110, 112
fluid 4-velocity, 75
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induced metric, 38, 59, 68
infinite blueshift, 104
infinitesimal Lorentz transformation, 6, 8, 45
information-loss, 109
ingoing null rays, 113
inhomogeneous cosmological models, 56
inner apparent horizon, 83, 104
inner horizon, 104
integral curve of a vector field, 11, 34, 56, 63
interior of a black hole, 105

intrinsic metric, 106
invariant null direction, 4
isotropic cosmological models, 56, 64, 67

K
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Lorentz transformation, 2, 4–6, 8
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Maxwell 2-form, 19
Maxwell’s equations, 19
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metric fluctuations, 79, 110, 113
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naked singularity, 83, 87
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132
no-hair theorem, 103
non-singular Lorentz transformation, 5
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null generators, 87, 106
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Ozsváth–Robinson–Rózga space–time, 56



144 Index

P
Papapetrou’s equations of motion, 55
particle scattering, 96
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perturbed Weyl tensor, 67, 77
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photon scattering, 97
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Reissner–Nordström black hole, 79
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Schwarzschild black hole, 79, 103
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tetrad components of Riemann tensor, 18
tetrad components of Weyl tensor, 35
thin shell, 87
time-like congruence, 61, 97
topology, 103, 119, 122
tortoise radial coordinate, 80
total mean curvature, 123
transplanckian, 110
transport law, 30, 133
trapped surface, 86, 123
twist, 43, 57, 87
twist-free, 33, 98

U
ultra-relativistic, 119
unimodular matrices corresponding to Lorentz

transformation, 2, 6
uniqueness theorem, 119

V
vacuum fluctuation, 110
Vaidya metric, 110–112
violation of geodesic motion, 33, 41
vorticity propagation equation, 62
vorticity tensor, 61

W
wavefront, 11, 26, 38, 67, 74
weak field approximation, 125
Weyl conformal curvature tensor, 18, 36, 60, 72,

105, 132

Z
zero angular momentum observer, 83
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