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Preface

In the summer of 1971, when I was traveling with Bryce DeWitt and his other new
graduate students in Europe, I remember seeing him sitting at a desk for days on
end writing lecture notes. Since we had met just a few weeks before, I was
astonished at how focused and dedicated to this endeavor he was. We were staying
at the International Centre for Theoretical Physics outside Trieste, Italy and we
students had been given the task of reading a prerelease copy of Misner, Thorne,
and Wheeler’s new book Gravitation while Bryce wrote his notes. Bryce’s lectures
were to be given in the Fall of that year at Stanford where he would be visiting
after leaving The University of North Carolina at Chapel Hill to take a new
position at the Center for Relativity at The University of Texas at Austin.

We eventually all arrived in Austin in January of 1972. Later, when we got
offices in the new physics, math, and astronomy building, I was situated in the
little office outside his and was given the task of organizing his preprints, reprints,
and other papers. This sounds like a menial job, appropriate perhaps for a new
student, but it was one of the most memorable times of my life. Within these
papers were his lecture notes, favorite papers written by others, and many
unpublished calculations and manuscripts. Amongst these were more than three
hundred pages of the Stanford course he had given and I had not seen. The fact that
he had put them together in so short a time made me feel even more in awe of his
abilities and anxious to take any class he might teach. In fact, some of what was in
the Stanford notes eventually could be heard in his Theory of Everything course
(long before this term became popular for other reasons).

Bryce was one of the most respected researchers in Quantum Gravity and
related subjects of the last half of the twentieth century and into the twenty first
and, as with many such people, his teaching was perhaps not well known. But like
taking a class from Wheeler or Feynman, being a student of his was frankly
historic in my mind. Each day after one of his lectures, I would go back to my tiny
apartment and rewrite my notes line by line to try to absorb what he was saying in
a much deeper way than in the classroom. I had the honor of having many
wonderful teachers in my academic career, but few were as exciting to listen to as
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Bryce. Somehow, I got more from his words and equations on the blackboard than
ever before.

Bryce was not the kind of teacher who just taught in the classroom. He went to
lunch with his students very often and challenged us all to think more deeply into
any subject we were studying. I wish there had been recording technology like my
iPhone at the time. Some of those lunches were fascinating in the extreme.

Bryce not only taught advanced graduate courses, but also basic physics to
those large undergraduate classes so many universities have now. A few times, as
his teaching assistant, I would take over a class when he was out of town. Once,
one of the students came up to me after class to say something like, “We all love
Professor DeWitt, but it is nice to sometimes have someone like you give the
lecture. He is such a good lecturer and so awesome, we sometimes get caught up in
that and not what we are trying to understand. Having someone at our level give
the lecture makes us feel like if you can learn it to teach us, we have hope of
getting it too.” I smiled at her somewhat demeaning comment, but I did under-
stand what she was getting at.

When Bryce’s amazing and loving wife, Cecile, called me to see if I might edit
his notes and put them into book form, I was both honored and flabbergasted. It
took far too long to accomplish the task, I think mostly because I wanted per-
fection. Because Bryce was no longer around to make sure I did it right, there were
months when I could not deal with the work. But, here are the results.

This book is not a textbook, though it contains lectures and problems. Like
Bryce’s other books and papers (all of which should be studied thoroughly by any
serious person interested in quantum theory, relativity, and gravitation), these
chapters and the calculations in the appendices will give you some insight into his
thought processes and extraordinary talents as an equation manipulator.

Some of the chapters here are very complex. These are lecture notes after all
and you will find extensive detail, including appendices containing various side
calculations. It is certain that many of these lengthy derivations cannot be found in
any other book or paper.

I found the chapters related to Special Relativity to be nostalgic in particular.
The science fiction novel Tau Zero by Poul Anderson http://en.wikipedia.org/
wiki/Tau_Zero was one that Bryce had read and used the ideas in the book to
illustrate his lectures. He gave me his paperback copy of Tau Zero, which T still
treasure.

These notes were written nearly forty years ago. Clearly much has happened
since then and any subject that catches your interest should be followed up with
reading the latest work. Cecile and I choose to keep the book in the form that
Bryce wrote the notes and made as few changes or additions as possible. This is an
historical document designed to preserve his thoughts.

The process of converting hundreds of pages of handwritten notes and equa-
tions into the manuscript was tedious in the extreme. My deepest appreciation goes
to Steven Lyle and Christian Caron at Springer for their patience and major
support with the TeX and publishing issues, to Stephen Fulling for TeX guidance,
and to Jacob Bekenstein and Chris Eling for many comments on Chaps. 10-12.



Preface vii

Very special thanks go to Brandon DiNunno in Austin who spent a great many
hours comparing the handwritten notes against the typeset text looking for issues
and typos that I did not find. Any problems of any kind with the book are entirely
mine. Errors and other comments can be sent to me at steve@smc.
vnet.net. I will collect any and put them up on the web.

The manuscript was processed using the TeXShop software on a Macbook Pro
computer. I drew illustrations using Adobe Illustrator.

My heartfelt affection and thanks to Cecile for her guidance and
encouragement.

Several times I offered to give the work over to someone else and she would
have none of it. I urge everyone to read the book, “The pursuit of Quantum
Gravity—-Memoirs of Bryce DeWitt from 1946 to 2004.”

Finally, my gratitude and love to my wife, Sunny, for her constant support and
encouragement in this and all my efforts.

July 2010 Steve Christensen
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Chapter 1
Review of the Uses of Invariants in Special
Relativity

1.1 Relative Velocity
The following standard summation and index notation is used with Greek indices
running from 0 to 3:

2 v 1w U
A=A-A, A-B=n,A"B =n"A,B, =A,B",

(”uv) = (n") = diag(—1,1,1,1), Nuh” = 5; .
Let two observers be moving with constant 4-velocities uf and ub, respectively:
T=us =1 (c=1).

u

Each observer sees the other move with a velocity of magnitude Ivl. This quantity
must be a function of the only nontrivial invariant that can be constructed from u’
and u4, namely u;-u,. This invariant may be computed in a rest frame of u;:

(”!ll) = (1707070) ) (”g) = ()),VV) s
where
_ 1 _
v i
Now
1 1 2-1 ‘)t =1
1—\)2:—2 — V2:1——2:/ 2 :(ul l/lz) 3 .
Y y Y (M]'Mz)

Problem 1 Let v; and v, be the 3-velocities of the two observers in an arbitrary
inertial frame. Show that

B. DeWitt, Bryce DeWitt’s Lectures on Gravitation, 1
Edited by Steven M. Christensen, Lecture Notes in Physics, 826,
DOI: 10.1007/978-3-540-36911-0_1, © Springer-Verlag Berlin Heidelberg 2011



2 1 Review of the Uses of Invariants in Special Relativity

\/(Vl —v2)? = (v x )

|V‘: l—vl'V2

Proof Since —uy- us = y192(1 — vy - o),

2o r(—» )’ — 1
31—y )
1 =2v v+ (v va)t = (1= w})(1 —¥3)
B (1—v;-m)?
(v — ) — (v x )2
(1 —vy-v)?

)

where we have used the fact that

(v1 % vz)2 = v%v% - (n -vz)2 . O

1.2 Doppler Shift

The amplitude of a plane monochromatic electromagnetic wave has a spacetime
dependence of the form Re(e* *), where (k") = (k°, k), with k the propagation
vector and k°(>0) the angular frequency, the two being equal in magnitude,
i.e., K = 0. Because hyperplanes of constant phase are physically determined,
independently of the choice of coordinate system, k - x must be an invariant under
Lorentz transformations, and hence k* must transform as a 4-vector.

Let an atom having 4-velocity u, emit a nearly monochromatic pulse of light
(photon) at the event x, and let the pulse be detected at the event x by a detector
moving with 4-velocity u. Suppose |x — xo| > wavelength. Then, the pulse will be
nearly planar when it reaches x and will be characterized there by a propagation
4-vector k parallel to x — x,. Evidently,

=0, (x—x)"=0, k- (x—x)=0.
The angular frequency of the pulse in the atom’s rest frame is
wo = —k - Uup .

This frequency is characteristic of the atom and is independent of the coordinate
system. The angular frequency observed by the detector is

w=—-k-u.
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Introduce a set of three orthonormal vectors ni' (i = 1, 2, 3) in the inertial frame
carried by the detector. Together with the detector’s 4-velocity u”, these vectors
form what is called an orthonormal tetrad or vierbein:

_ _ 2 _
n,-~nj—5,»j, }’l,"Ll—O, u =-—1.

and such a tetrad is often referred to as defining a local rest frame, in this case, a
local rest frame for the detector. The triad n{* (i = 1, 2, 3) is said to form a basis
for the hyperplane of simultaneity of the detector and to generate a projection
tensor

P = nf‘nlv =" + v’

on this hyperplane.

Let v be the 3-velocity of the atom relative to the local rest frame of the
detector, and let m be the unit vector characterizing the direction from which the
pulse appears to come in this frame. We have

Ut n; U h 1

Ay —

P = = =

Y up-u’ V12’

- n;

k-u

=~

m; = (remember k - u<0) ,

(k) (i k) KPukt K (kw)’

(k- u)? (k- u)’ (k- u)®

since k> = 0. From these two 3-vectors, we may construct an important scalar,
namely, the component of the 3-velocity of the atom along the line of sight as
viewed from the local rest frame of the detector:

(k- n)(ni-uo) _ k-uo+ (k-u)(u-up) 2

VR = m;v; = = = -1,
N (k- u)(uo - u) (k- u)(uo - u) @y
whence
w
;0 = V(l + VR) )

or, in terms of wavelength,

L=y +w),
L0
where 7y is the time dilation factor and 1 4 vg the ‘true’ Doppler shift. This is the
special relativistic Doppler shift formula.

It has become conventional to express the Doppler shift in terms of the
so-called red shift parameter:
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A=A
= 0:}7(1+VR)—1.
Ao

In the non-relativistic limit v—0, we have

Z—>VR .
v—0

In the case in which the relative velocity is along the line of sight, so that vg = v,
the Doppler shift formula reduces to

A I+v I+
o V1—1? 1=’

v >0 for recession (red shift) ,
v<0 for approach (blue shift) .

where

1.3 Aberration

Suppose another detector, moving with 4-velocity ', observes, at (or near) the
event x, a pulse emitted at (or near) the event xy by another atom, similar to the
first and also moving with 4-velocity u,. Introduce a local rest frame for the new
detector, characterized by a triad n;-“ :

roor ro n_
ni-nj—é,-j, nou =0, u =-1,

/
_Hn{v — P/uv — n,uv + u/uu/v .

nl 1

The components of the 3-velocity of the second detector as viewed in the local rest
frame of the first are

u - n;

Vi =

w - u

whereas the components of the 3-velocity of the first detector as viewed in the
local rest frame of the second are

o u- n'
! u-u’
Note that
g = ) _WPul? LWy
(o - u) (o - u) (' - u)
-1 1

_)_)_2,



1.3 Aberration 5

where
1
=—u-u,
V1—3y?
with v the magnitude of the 3-velocity of either detector as viewed in the local rest

frame of the other. If desired, the local rest frames of the two detectors can be
aligned so that

=2

(v) = (v,0,0), ()= (-,0,0).

1

Now let 6 be the angle between v; and the unit vector m; in the rest frame of the
first detector. We have
(k-ni)(n; - u) k-vd+(k-u)(u-v) o

veos O = my; = (k- u)(u- ) - (k- u)(u-u) :wi?il,

where ' is the angular frequency of the pulse observed by the second detector.
The corresponding angle 6 in the rest frame of the second detector satisfies the
equation

k-n)(n -
—170030’:m;‘7§:_w:%_]

We now have

w/

= =51 +vcosf
o = (1 +veosd),

|e

=7(1 —vcosl'),

/

g

1=7*(1+vcos0)(1 —vcost),
1 -9 =1+7v(cos —cos®) —v*cosOcost |
cos @ —cosO = (1 —cosOcosl)) ,

and finally,

v+ cost

¢ =—""".
cos 1+ vcos0

1.3.1 Consistency Check

Since

<1 and (1-9)cos?0<1 -7,
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it follows that

7 +cos?0< 1 +v?cos? 0,
7 + 2vcos O + cos® 0 <1+ 2vcos 0 4 v* cos? 0,
[v+cosO] < |1 +vcos0| .
Note that as v — 1, the apparent direction of the emitting atom as viewed by the
second detector tends more and more toward the forward direction, i.e., the

direction in which the second detector moves relative to the first.
A more elegant aberration formula may be obtained by writing

1 / 1 / /_1 / 1 _
0=30+0)+50-0), ¢ =50+0)-50-0),

1 1
cos 0 — cos ) = 2sin§(0 +0) sinE(H -0,

and also

~ cosf —cosf
V=—
1 —cosfcosf’

» 1 —2cosOcos0 + cos® Ocos® 0 — cos? 0 +2cos O cos 0 — cos? O

1—v = —
(1 —cosfcost)
(1 —cos?0)(1 —cos?>@)  sin*Osin® ¢
(1 —cosOcos0')? (1 —cosfcos )’
whence
1 1 —cos 0 cos 0/

r= V1_32  sinOsin¢

Remember here that 6 and @' lie between 0 and 7 so that both sin § and sin &' are
positive. Finally,

sin 0 sin 0’

1
2sin=(0 — 0') = p———.
51n2( ) Wsin%(()—i—@')

In the non-relativistic limit ¥ — 0, this reduces to the classical formula used by
astronomers:

0—60 — vsinf.
v—0

Problem 2 Show that

sin(f — ') = ——~-——sin0' .
c
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Then, because of the invariance of the aberration formula under the changes
0— 0,0 — 0,y — —v, it follows that

\7+%cos0 .

Sin(f) — 0’) = msln

0.

Note that for either 0 = n/2 or (/ = w/2, the aberration formula reduces to
sin(0 — 0') = v.

Problem 3 Let the ecliptic latitude and longitude of a star (conventionally
measured from the vernal equinox in the direction of the earth’s orbital motion) be
Y and ¢, respectively, as observed in the rest frame of the sun. The aberration
effect produced by the motion (velocity v) of the earth in its orbit will cause these
angles to shift to new values, i/ + 0y and ¢ + d¢, as viewed in a local rest frame
attached to the earth. Derive expressions for dyy and d¢ in terms of \, 6, v and the
ecliptic longitude o of the sun (Figs. 1.1, 1.2). Assume that the orbit of the earth is
a circle and that v < 1. Show that, during a year, the apparent position of the star
in the sky as viewed from earth executes a tiny ellipse whose semi-major axis has
angular size v (radians) and is oriented parallel to the ecliptic plane and whose
semi-minor axis has angular size v|siny/|. Compute v for the earth in seconds of
arc.

With the notation established above,

(m;) = (cosycos ¢, cosysinp,sinyy) ,  (v;) = v(sina, — cos o, 0)

cos 0 = cos Y(cos ¢ sin o — sin ¢ cos o) = cos Y sin(ox — @) ,

= mij_é‘}i — :(l—é\_/’COS())(mi+é\_)i) s
V (mj + &) (m; + &v))
Fig. 1.1 Emitting atom and u

detector
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Fig. 1.2 Earth orbit

for some &, and
cos 0 = (1 — &veos 0)(cos O + &v) .
But
cos 0 = (1 —vcos 0)(v + cos0) .
Therefore ¢ = 1 and

(1 —vcosO)siny = sin(y + o) = sinyy + dy cos iy .
Hence,
sin

oy = —vcos OCOSli = —Vsiny sin(a — ¢)

We also have
cos(Y + 0Y) =cosyy — Y siny,  cos(¢p + d¢p) = cosp — dpsin¢
sin(¢ + d¢) =sind + dpcos ¢ ,

cosiycos ¢ — dpcosysin — Sy sinycosp = (1 —vecosl)cosiycos ¢ + vsina ,
cos Y sin ¢ + d¢p cos Y cos p — Sy siny sinp = (1 — vcos 0) cosysinp — veosa
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which give

cowsm(/) — 0y sinyy cos ¢ + v cos 0 cosyy cos ¢ — Vsin o)

5 =
¢ Coswcosd) (&Y siny sin ¢p — v cos 0 cos i sin p — v cos o)

0 cos ¢ .
cos 1// sin d) cmcosc:; — sm OC)
o cos 0'sin ¢

cos x// cos (15 cosy cos OC)

cOSlﬁsmd) Sln((x - ¢) COoS (,b — sin a}

COSI//cos¢> Sll’l(O( - d)) sin d) — COS O(]

compsmqs — sinasin’ ¢ — cos o sin ¢ cos )

Cowcow — sin o cos ¢ sin ¢ — cos o cos d))

Finally,
veos(a — ¢)

v = 30km/s = 10~* rad = 20.6"
cos

5p = —

semi-major axis = |cos Y|, =V ,

semi-minor axis = |0Y/| .= V[siny| .

1.4 Apparent Luminosity

Let a star having 4-velocity u, emit monochromatic photons at a steady rate
uniformly in all directions. If w, is the angular frequency of the photons in the
star’s rest frame and N, is the number emitted per unit time, then the power output
or absolute luminosity of the star is

:N()CO() ( :1).

Let some of the photons that are emitted by the star at an event x, be detected by
an observer at event x. If the 4-velocity of the observer is u, then

(x—xo)zzo, —up- (x—x0)=ro, —u-(x—xg)=r,

where r is the apparent distance of the detection event in the star’s rest frame and
r is the apparent distance of the emission event in the observer’s rest frame. Since
x" — xp is parallel to the propagation vector k* of the photons arriving at
the observer, it follows by arguments entirely similar to those used in deriving the
Doppler shift formula that

T (0]
70:;0:’))(14_‘}12)7

with the obvious notation.
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Now introduce an orthonormal triad n; to fix the orientation of the star’s rest
frame:

>
noi -nogj =05, noi-up =0, wug=—1.

In this frame, the photons that reach the observer are propagated in the direction of
the unit vector

.Q()i = Valn(),' . (.X —Xo) .

Suppose the spacetime point x suffers a displacement dx. Then ry and Q, suffer the
changes

dro = —ugp - dx , dQO[:raln0[~dx+r62n0i-(x—xo)uo~dx.

Let d;Qo; and d,€; be the changes in €, corresponding to two such displacements
d;x and d,x. Then

d; Q20;d2Q0; = raz [dlx + raluo ~dyx(x — xo)] <Py - [dzx + (x— xo)rgluo . dzx} ,

where
Py =n"" + ubuy .

But

Py -dx =dx+ upug - dx, Py (x—x9) =x—x9— rolg ,
SO

Py - [dx+ (x—xo)ro_luo-dx] = dx + (x — x0)rg ' - dx .
Furthermore,

Py-Py= Py,

S0

d; Q0;dr Qi = raz [dlx + ro’lug ~dix(x — xo)] . [dzx + (x— xo)raluo . d2x] .

Now suppose the displacements d;x and d,x lie in the observer’s hyperplane of
simultaneity and are at right angles to the line of sight to the star in the observer’s
rest frame. Then

u-dx=0, (x—x9)-dx=0, a=12,
and, remembering that (x — )co)2 = 0, we have

d1Q0d2Q0; = ry2dyx - dox .
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This means that the portion of the unit sphere containing €)y;, in the star’s rest
frame, is mapped via the photons themselves in a metric-preserving fashion with
only an overall rescaling factor of r;~ onto the plane in the observer’s rest frame
that is at right angles to the line of sight to the star. Therefore the photons that pass
through a surface element d>S in this plane were emitted in a solid angle

d*Qy = ry2d*S
in the star’s rest frame. The energy flux through this solid angle is

d*Q, d*s
=Ly——.
47 4nrd

d*®y = L,

To the observer, however, the energy flux through d*$ differs from this value in
two respects. First, the apparent photon energy is changed from wg to o, i.e., by
the Doppler shift factor w/wg = y71(1 + vR)fl. Secondly, the rate at which
photons pass through dS is itself changed by the same factor. Therefore, the
energy flux through d°S as seen by the observer is

2 2
dsS
P = (w) Py — (w) L35S
wo o) 4nrg
This flux may also be expressed in the form

d*s
o =1L
4qr?’

where L is the apparent luminosity of the star, i.e., the luminosity that a star at rest
at a distance r relative to the observer would have to have in order to produce such
a flux. Equating the two expressions, we find

2 2
L
L:(w) (r>LOZ4 : = 104'
wo/) \ro 71 +w) (1+2)

Because the final expression is independent of frequencys, it holds for a star with an
arbitrary spectrum. In the special case in which the relative 3-velocity of star and
observer is along the line of sight, the above formula reduces to

1—\2 .
I = v Lo. where v >0 for recession ,
1+v v<0 for approach .

Using these formulas, it is important to distinguish between apparent luminosity
and apparent brightness. The former depends only on the relative velocity of star
and observer, whereas the latter varies inversely as the square of the distance r.






Chapter 2
Accelerated Motion in Special Relativity

Let a particle of mass m be acted upon by a force F ' in some inertial frame. Then

. d i Zl 7
F' zlszsz, t=27°,
dr t Y
where p' is the three-vector portion of the energy—momentum four-vector of the
particle in that frame:

p = mi,

the world line of the particle being represented in the parametric form z"(t) and the
dot denoting differentiation with respect to the proper time t:

1= 22 _ _(20)2 +Z[zi — _Z:Zy—z7

B 1 dZi dZi _]/ 2
e dr dt '
The force that the particle actually ‘feels’ in its own instantaneous rest frame has
magnitude given by

and

Fr = ma,

where a is the absolute acceleration of the particle:

a =7
In general, Fr # F, where F?> = F'F'. However, when the three-acceleration is
parallel (or antiparallel) to the three-velocity, the two magnitudes coincide, for we
then have

B. DeWitt, Bryce DeWitt’s Lectures on Gravitation, 13
Edited by Steven M. Christensen, Lecture Notes in Physics, 826,
DOI: 10.1007/978-3-540-36911-0_2, © Springer-Verlag Berlin Heidelberg 2011
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i),
2 W0\2 | i dz : .0 22 F?
@ =—(@)+ = (1= () |2 ==

Therefore, a particle which starts from rest under the action of a constant force
will experience a constant absolute acceleration.
Let us determine the motion of such a particle under the initial conditions

0=z-z=—z°z0—|—zz=—t<z0i’a

z=0, z=0, t=0 att=0.

Since the motion is in a straight line, we may retain only two coordinates, ¢ and

z. We have
—1:_i2+22, i:\/1+227
0= —ii+z, 'i:%
.2 ..2
P=Pr2=(1-2)2 =
t 1422
Let u = z. Then Z = udu/dz and
d udu
adz = ——,
V14 u?

assuming motion in the positive z direction, whence

az=+V1+u?-1,
d
d‘[: < =
V(1 +az)* =1

1
7 =—cosh™' (1 + az),
a

2=(1+az)’ -1,
d(1 + az)
~1

(1
\/ (1 +az)?

<

Q=

1
= —(coshat — 1
z a(cos at — 1),

z = sinhar,

t = coshar,

t = —sinhar,
a

| oY)
= (Vitar 1) — {zﬂf 210,
a

t ast — 00,
dz at {at ast— 0,

V=E— =

dt 1+ a2

1 ast— oo.
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Table 2.1 Comparing proper

time and inertial time at T (year) 21y t (year)
different distances during the 1 0.0628 1.01
voyage 5 1.777 6.41

10 10.26 24.2

15 40.5 85.0

20 146 297

30 1806 3616

40 22 024 44 052

50 268 000 536 000

60 3 270 000 6 540 000

Problem 4 A cosmic spaceship departs from earth at a constant absolute accel-
eration of 950 cm/s? (slightly less than the acceleration due to gravity at the earth’s
surface). It maintains this acceleration for t/4 years of proper time, after which it
decelerates at the same rate and in the same direction for another /4 years of
proper time. At the end of this time it is at rest with respect to the earth, but at a
distance of z light years. Its crew at this point executes a certain assigned mission
on a nearby planet, which takes a negligible amount of time compared to 7, and
then returns to earth by an acceleration—deceleration procedure identical with that
of the outward journey. The total voyage has required t years of proper time. Let
t be the number of years that have elapsed on earth since departure. Obtain
expressions for z and ¢ in terms of 7, and construct a table giving z and ¢ for
selected values of 7 ranging from 1 to 60 years. (Hint: express the acceleration in
light years per year and use symmetry arguments to simplify the problem
Table 2.1)

Solution 4

3 x 1010
1 ly/year® = ﬁ =950 cm/s?,

so a = 1. By symmetry, we have

T T
:2( h——l), t = 4sinh .
Z COS 4 sin 4

Problem S Suppose the spaceship of Problem 4 did not attempt to return to earth
but merely executed a single acceleration—deceleration maneuver. How far would
it have traveled in 50 years of proper flight time, and how much time would have
elapsed back on earth?

Solution 5 We have

T T
,:2( h——l), t = 2sinh—.
Z COS 2 Sin 2

For © = 50 year, we have
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trzre’? =P =72 10° { | JEats;
light years.

Problem 6 A cosmic spaceship makes use of the following propulsion mecha-
nism. During an interval of proper time dzt the rest mass of the ship decreases by an
amount —dm. This mass decrement is used in the following way. A fraction &
(0 < £ < 1) is converted into kinetic energy (relative to the ship) of the remaining
fraction. This remaining fraction is ejected from the ship in a constant (backward)
direction, with the relative velocity v, corresponding to the kinetic energy it has
acquired. Express v, as a function of £. What is the proper impulse dp imparted to
the ship during the proper time dt as a result of the ejection of the ‘propellant’?
(Express it as a function of v, and dm.) What is the absolute acceleration a expe-
rienced by the ship as a result of this impulse?

Suppose the ship starts from rest (relative to some inertial frame) with an initial
mass mg, and suppose ¢ (and hence v.) remains constant in time. Obtain an
expression for the velocity v of the ship at any instant as a function of v,, m and
the mass m remaining at that instant. (Do not assume constant absolute acceler-
ation.) For what value of v, is the propulsion process most efficient, i.e., what
physically allowable value of v, yields the maximum value of v for a given m and
mo? To what value of & does this correspond? (To obtain the most efficient pro-
pulsion it will be necessary for the ship to carry antimatter as fuel.)

Solution 6 The kinetic energy of the fraction 1 — ¢ is equated with the rest
energy of the fraction ¢ to give

(l - é)(_dm)(Ye - 1) = é(_dm)a

whence
_ _ ¢ __1
(1—5)(“/5—1) 57 Ve_l_l_éa ye_l_v
vé—l—%zl—(l—@z:é(z—f)
Therefore,
Ve = 5(2_6)

The proper impulse imparted to the ship during the proper time drt is

|dp = (l _ é)(_dm)yev = (_dm)ve|

The absolute acceleration experienced by the ship as a result of this impulse is then
determined from
_dp dm

ma=—= —Ve—
dr dc’
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SO

We remember that

z d. d,. d
= - = —7 = —(t pp—
4 t dZ dt( V) dt(yv)
dv dv 1\dv
_ 32 v 5 2, L\
BRATRRFT y(v Jryl’)dt
:’V:;@:'))z9
dt dr’
so that
d
e adt = —v.dlogm,
1—12
and finally,

m
tanh ! v = v, log -
m

The result is

)
v = tanh log(ﬁ) =—w

For the most efficient propulsion, v, = 1, £ = 1, in which case we have

ng—l’)’l2
V=

2 2
my “+m-

Problem 7 Suppose in Problem 6 that v, is chosen for most efficient propulsion,
and suppose fuel is used at such a rate as to maintain constant absolute acceler-
ation. Obtain an expression for the mass m remaining at the proper time 7 (t = 0
when m = myg). Obtain the corresponding expression for m as a function of the
time ¢ in the inertial frame in which the spaceship is at rest when m = my. (Choose
the origin of time so that + = O at this instant.)

Suppose the spaceship executes a single acceleration—deceleration maneuver as
in Problem 6, with a = 950 cm/s”. Let the total proper time elapsed from the
beginning to the end of the maneuver be 7, and let the final mass of the ship (i.e.,
the payload) be m,. Construct a table showing the values of z, ¢, and mg/m for
selected values of t ranging from 1 to 50 years. Here z and ¢ are respectively the
total distance covered and the total time elapsed for the complete voyage in the
frame in which the spaceship is at rest when m = my. Include also a column in
your table giving the kinetic energy, in electron volts, of the interstellar hydrogen



18 2 Accelerated Motion in Special Relativity

Table 2.2 Parameters for Problem 7

7 (year) z (ly) 1 (year) mo/m, Kinax (€V)

1 0.255 1.04 2.718 1.20 x 108

3 2.70 4.26 20.09 1.27 x 10°

5 10.26 12.1 1484 481 x 10°
10 146 148 22 026 6.86 x 10'°
20 22 024 22 026 485 x 108 1.03 x 101
30 3 270 000 3 270 000 1.07 x 103 1.53 x 10"
40 485 000 000 485 000 000 2.36 x 10" 2.27 x 10"
50 72 000 000 000 72 000 000 000 5.20 x 10* 337 x 10"

nuclei (protons) as seen from the ship at the midpoint of the journey when the
relative velocity of ship and nuclei is a maximum. (Assume the hydrogen to be at
rest in the original rest frame.) This is the bombardment energy against which the
crew of the ship will have to be shielded (Table 2.2).

Solution 7 We have

my
ve = 1, a=——logm, at = log—,
dr m
whence
Now
m = my(cosh at — sinh ar),
S0
mo(V1+ a2 — at) — mo(1 — at),
m= 1 11— N
/i I mo
moat( 1+ 55 1) H—Og T

For the acceleration—deceleration maneuver with a = 1 1y/year2, we have (see

solution to Problem 6)

= 2((:0shE — 1),

T
t = 2sinh—
5 sinh,

. T
Ymax = fmax = coshi,

m _
m

T
Y

Kunax = 1y (max — 1) = 11y (cosh% ~1), where m, = 0.938 x 10° eV.

Problem 8 [Taken from Tau Zero by Paul Anderson, Doubleday, Garden City,
New York (1970).] A spaceship is traveling between galaxies at a velocity v with
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respect to the intergalactic gas. (This gas is presumably mainly hydrogen, although
it may consist of many other elements as well, including antihydrogen.) The ship is
equipped with a scoop of cross-sectional area A with which it traps the gas in its
path. The trapped gas is passed through a nuclear furnace which transmutes it (e.g.,
binding deuterium nuclei into helium, annihilating proton—antiproton pairs, etc.).
The reaction products are then ejected, with no loss of total energy (relative to the
ship), out the ‘back’ end of the ship. Let dm be the mass of gas trapped by the ship
in a proper time interval dr. This mass arrives with total energy ydm (y =
1/v/1 —v?) relative to the ship, and the reaction products leave with total energy
(1 =¢&)y'dm (y =1/v1 —v'?), where ¢ is the fractional decrease of rest mass
under the transmutation and v’ is the ejection velocity relative to the ship. By
equating the two energies, obtain a relation between 7, ' and ¢, and also an
expression for the total proper impulse transmitted to the ship as a result of the
transmutation of the mass dm.

If the ship is traveling sufficiently fast, the above process may be used as a kind
of ram-jet process whereby the ship is propelled without having to carry its own
fuel supply, so that its mass M remains constant. Obtain an expression for the
absolute acceleration a imparted to the ship by the ram-jet process as a function of
v (or y), A, &, M and the density p of the intergalactic gas (in its own rest frame).
Obtain the limiting form of this expression as v — 1, y— oo. How big will a be in
this limiting case if A = 10° m?, M = 10* kg, ¢ = 0.01, and p = 1072® kg/m*?
What implications does your answer have for the feasibility of such a ship? If the
origin of proper time is chosen so that the ship’s velocity is vy when 7 = 0, obtain
an expression for v as a function of 7 in the special case £ = 1 (total conversion of
matter). (Note: in solving this problem do not forget to take into account the
compression of the gas, as seen from the ship’s frame, resulting from the Lorentz
contraction. This is crucial!)

Solution 8 We have

(I=Sy'=»
and
2 2

np .2 _1:“/*1+f(2*f).

T (1-¢p (1-¢p
Hence,

dp = [(1 =&)YV —yv]dm
=[VrA—Trae =g - Vi —1)dm

Since

d
R Apyy = Apy/P — 1,

dr
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we have
Ldp _Ap 2-9
1 1 —1
T Mdr M(/ ) * P2 —1
ZE(D — H=E
— -y
In MKS units,
Apc* 1 10° x 10726 x 9 x 10'°
Alim = 55(2 o= PC _ =3 X001 x 1.9 x o m/s2,
whence
i = 9 x 1073 mys 1]
Now
1 v 1 1 —v? 1
2
1= —1= , 1 =1 -
7 1 -2 1 -2 +yz—l T v2

When ¢ = 1, we have (see also the solution to Problem 6)

2
dv :adt:@ Y (1—1)(1‘5,
v

1—12 M 1—1?
A
dv = ﬁpv(l —v)dr,
11 Ap
S Nav="2Pq
<v+1—v) M"
log— — 1 l_vzﬂr, Y =10 cape/m
Uy I—DQ M 1—v ]—VO

1420 etom), Y0 ehvrr/M.
1 Vo 1— Vo

voehri/M 1

T Lwg(errM ) - 1ee /M

2.1 Accelerated Meter Stick

Let a meter stick be idealized as a line parallel to the x'-axis in a certain Lorentz
frame characterized by coordinates x*. The points of the meter stick may be
labeled by a single parameter . Let x'(&, £) be the coordinates of the point & at the
time #(= x°). Suppose that
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x'(& 1) = ¢, 0<¢<1 (range of meter stick),
x2(&,t) =f(t), forall & where |f'(¢)|<1 for allt,
x*(&,¢) =0, forall Eandt.

Under these conditions, the meter stick always appears to be straight and parallel
to the x'-axis and to move in the (x', x*) plane in the x* direction according to a
law of motion given by the arbitrary function f(f). At least that is how it appears
in the present Lorentz frame! Note that all points of the meter stick appear to
move in unison in the x* direction in this frame. Because the concept of
simultaneity is frame-dependent, we may expect it to behave in a different
fashion in some other Lorentz frame. Let us see how it behaves in a Lorentz
frame that moves with velocity v(<1) in the x' direction relative to the present
frame. The relevant Lorentz transformation is

7 =1 7 =1
t+vx vt + X _ -
[ = — xlzi xzz_xz’ )C,’)’:_)C7

which yields

(&7 = V1 —v2x (1) —vi= V1 —v2E — i,

(61 = 2(E.1) #(%) (VI v2).

(&7 =x (1) = 0.

The first of these equations shows the meter stick moving in the X' direction
with velocity —v and suffering a Lorentz contraction in that direction. The
second equation shows the meter stick also moving in the ¥* direction, at a rate
reduced by the time dilation factor. This equation shows, moreover, that the
motion is now not in unison. The points having the greater ¢ values lead the
others. Although the third equation shows that the motion continues to be in a
plane, it is not possible to express the new appearance of the meter stick in terms
of a simple tilt in this plane. This would be possible only if the function f(¢) were
linear. More generally, the meter stick now ceases to appear as a straight line.
But meter sticks do not bend just because we choose to look at them in a new
reference frame! Or do they? In order to examine this question, we must study
the general problem of rigidity.

2.2 Rigid Motions in Special Relativity

We shall study first the general motion of an arbitrary continuous medium in
spacetime. We shall have occasion to consider continuous media several times in
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these lectures, and therefore the formalism developed here will have a utility
extending beyond the present context.

Let the component particles of the medium be labeled by three parameters &,
i=1,2,3, and let the world line of particle ¢ be given by four functions
x*(&, 1), n =0, 1, 2, 3, where 7 is its proper time. In the general theory of rela-
tivity the x may be arbitrary coordinates in curved spacetime, but here we may
assume them to be standard coordinates of some Lorentz frame.

Let & + 6 be the labels of a neighboring particle. Its world line is given by
the functions

X(E+8E 1) = xM(E 1) +4h(E,1)8E

where the comma followed by a Latin index denotes partial differentiation with
respect to the corresponding &. The four-vector xfj(f, 1)8& representing the dif-
ference between the two sets of world-line functions, is not generally orthogonal to
the world line of £. To get such a vector it is necessary to apply the projection
tensor on the instantaneous hyperplane of simultaneity:

= PIxTSE, PR =g i

where the dot denotes partial differentiation with respect to 7, and we note that in
general relativity the projection tensor will take the form P*' = g"¥ + x*x", with
g"" the metric tensor of spacetime. It is easy to verify that application of the
projection tensor corresponds to a simple proper-time shift of amount

8T = 1, K508,
so that
oxtt = X (& + 8¢, T+ ot) — XH(&, 7).

The two particles ¢ and £ 4 6¢ appear, in the instantaneous rest frame of either, to
be separated by a distance ds given by

(35)° = (0x) = 7,080,

where
7y = Pl

The quantity y;; is called the proper metric of the medium. The medium undergoes
rigid motion if and only if its proper metric is independent of 7. Under rigid motion
the instantaneous separation distance between any pair of neighbouring particles is
constant in time.

It is sometimes convenient to express the rigid motion condition j; =0 in
terms of derivatives with respect to the coordinates x". Just as the x* are functions
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of the éi and 7, so, inversely, may the fi and 7 be regarded as functions of the x*, at
least in the domain of spacetime occupied by the medium. We shall write

i ) M2 = _1a Pl”’ = n,uv + Uply.
If fis an arbitrary function over the domain occupied by the medium then
fu :f:iiiu T

where the comma followed by a Greek index denotes partial differentiation with
respect to the corresponding x. We also have

x-x=0 or u-u=0,

L . v n_
uuut, =0, iy = Uy U, uu'; =0,
Ml P SH
XiC, tXT, = o,

vi i i
ki =0 =0,
"o T
Tux; =0, T8 =1,

Vo Vo
wa’i = Puvu,i = Upy-
We now define the rate-of-strain tensor for the medium:
— o gl
Ty = /ijé,”év
= (Poex + Pocif + Pouxi5) €,
= (dgu, + u(,ur)(éz —u’ty) (5f — uf‘q‘,)
+ LtL,‘éf’u(éz — I,{T'E’v) + (5; — MGT,/L)MUJ?,V (21)
= Uylly + Uylty + 1, Ty + T ity
Uy = Ty Uy = Uy Ty
= Uy U Uy + Ut Uy g+ Uy Uy
= PP (g + Uz ).
The rate-of-strain tensor is seen to lie completely in the instantaneous hyperplane
of simultaneity. It is the relativistic generalization of the nonrelativistic rate-of-
strain tensor
rij = Vij + Vi,

where v; is a three-velocity field and the differentiation is with respect to ordinary
Cartesian coordinates. Let us look for a moment at this tensor. The nonrelativistic
condition for rigid motion is
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rj =0 everywhere.

This equation implies
0 =rijr = vijk + vji, (2.2)
0= rjx; = Vi + Viji- (2.3)

Subtracting (2.3) from (2.2) and making use of the commutativity of partial dif-
ferentiation, we find

Vijk — Viji = 0, (2.4)
which, upon permutation of the indices j and %, yields also

Vi — ik = 0. (2.3)
Adding (2.2) and (2.5) we finally get

vig =0,
which has the general solution
vi = —wix; + B, (2.6)
where w;; and f; are functions of time only. The condition r; = 0 constrains w;; to
be antisymmetric, i.e.,
Wjj = —Wji,

and nonrelativistic rigid motion is seen to be, at each instant, a uniform rotation

with angular velocity

w; = ésijk Wik

about the coordinate origin, superimposed upon a uniform translation with velocity
f:. Because the coordinate origin may be located arbitrarily at each instant, rigid
motion may alternatively be described as one in which an arbitrary particle in the
medium moves in an arbitrary fashion while at the same time the medium as a
whole rotates about this point in an arbitrary (but uniform) fashion. Such a motion
has six degrees of freedom.

It turns out that relativistic rigid motion, which is characterized by the condition

T =0 or Vi = 0,

has only three degrees of freedom! Pick an arbitrary particle in the medium and let
it be the origin of the labels &'. Let its world line x*(0,7) be arbitrary (but timelike).
Introduce a local rest frame for the particle, characterized by an orthonormal triad
n¥(7):

_ _ 2 _ wo_
n; - nj = 0y, n; - up =0, uy = —1, uy = x*(0, 7).



2.2 Rigid Motions in Special Relativity 25

Then let the world lines of all the other particles of the medium be given by
x(€,1) = x*(0,0) + Ent'(a), (2.7)

where ¢ is a certain function of the fi and 1. To determine this function, write
ut = (¢ T) = (uf + E)a,

all arguments being suppressed in the final expression. Here and in what follows, it
is to be understood that dots over uq and the n; denote differentiation with respect
to o, while the dot over ¢ denotes differentiation with respect to 7. It will be
convenient to expand 7; in terms of the orthonormal tetrad ug, n;:

nt' = apuly + Qunj“
The coefficients ag; are determined, from the identity
;- ug +n; g = 0,

to be just the components of the absolute acceleration of the particle ¢ = 0 in its
local rest frame:

ao; = n; - o,
and the identity
hi-nj+ni~f1j=0
tells us that €;; is antisymmetric:
Qj = —;i.
We now have
ut = [(1 + Eag ) uly + fiQijnJ‘-‘} G.
But
1= = = [(1 4 Ean) - EF0u0] 7,
whence
) CON2 i ~1/2
g = |:(1 + 5(10,‘) - f éjQiijk:| B (28)
The right hand side of this equation is a function solely of ¢ and the &'. Therefore

the equation may be integrated along each world line & = const., subject, say, to
the boundary condition

a(¢,0)=0.
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We shall, in particular, have the necessary condition
a(0,7) =1
We note that the medium must be confined to regions where
(14 &ap)” > EQud Qi (>0).

Otherwise, some of its component particles will be moving faster than light.
Let us now compute the proper metric of the medium. We have

ni-u=—Q;&q, (2.9)
x=nl 4 (ugy + 511'1’.‘)0 = +u'e oy,
Xl = -Q,;86 -6 g,

Vi = meﬁx:vi
=0j — Qikfk%' - jkfk",i - 5'72‘7-1%'
+ (Quée+670;) (o +67"a))
= 8+ 6" Q2

(2.10)

From this expression and the expression (2.8) for ¢ on the preceding page, we see
that the only way in which the motion of the medium can be rigid is either for all
the Q;; to vanish or for all the €, together with the ay;, to be constants, inde-
pendent of ¢. In the latter case the motion is one of a six-parameter family (the ;;
and the ag; are the parameters) of special motions known as superhelical motions,
of which we shall study one simple example later (constant rotation about a fixed
axis). For the present we concentrate on the case in which all the €;; vanish.

2.3 Fermi—-Walker Transport

When the ;; vanish the triad n}' is said to be Fermi—Walker transported along the
world line of the particle £ = 0. More generally, any tensor whose components
relative to the tetrad uf, nj' remain constant along the world line ¢ = 0 is said to be
Fermi—Walker transported along that world line. It is sometimes convenient to
express the condition for Fermi—Walker transport without reference to the triad n'.
Writing, for a vector A* along the world line,

A" = Al + A,
where
A, = —A - u, Ajap; = A - i,

we have, if A* is Fermi—Walker transported,
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Al -l no_ ) -l
AY = Ayiy + Ajapiug = A - (uouo - uguo),

an equation that admits of immediate generalization to tensors of arbitrary rank.

It is not possible to maintain the orientation (in spacetime) of the local-rest-
frame triad n}' constant along a world line unless that world line is straight. Under
Fermi—Walker transport, however, the triad remains as constantly oriented, or as
rotationless, as possible. The components of the 7; all vanish in the instantaneous
hyperplane of simultaneity.

For a general non-Fermi—Walker transported triad, the Q;; are the components
of the angular-velocity tensor that describes the instantaneous rate of rotation of
the triad in the instantaneous hyperplane of simultaneity. The general motion of
the medium introduced in (2.7) on p. 25 may be described formally as one in
which the particle £ = 0 moves in an arbitrary fashion and the medium as a whole
executes an arbitrary rotation about this particle. But only if the rotation is absent
is this motion truly rigid. Rigid motion in special relativity therefore possesses
only the three degrees of freedom that the particle ¢ = O itself possesses. Even
these three degrees of freedom are not always attainable. In the case of superhe-
lical motion, there are no degrees of freedom at all. Once the medium gets into
superhelical motion, it must remain frozen into it if it wants to stay rigid.

Problem 9 A particle undergoes acceleration dv/df in a certain inertial frame.
‘Attached’ to this particle is a four-vector $* that is orthogonal to the particle
world line and Fermi—Walker transported along this line. The four-vector therefore
satisfies the equations

S-u=0, S'=(S-iu",

where u is the particle’s four-velocity and the dot denotes differentiation with
respect to the proper time. Instead of dealing with S*, it is often convenient to work
with the three-vector part of

<Mt
§ =1,

where L} is the Lorentz boost transformation to the local rest frame of the particle:

@@=<_ﬁ 1+6?UW>

where
y= (1= v=v/|v|, 1 = unit dyadic.

Show that the boost transformation is indeed a Lorentz transformation and that the
inverse transformation L, '* back to the original frame is obtained from L! by
making the replacement v — —v. Show that in the boosted frame (rest frame), we
have S° = 0 and
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# = L' = (1,0,0,0).

In the boosted frame, we may write

S =118 + 'S = L’ngl"Ea + (S - u)ut,
of which the three-vector part reduces to

5 iio—lpg

S =LL"s.

By straight forwardly computing LLL,_ ' show that this equation may be rewritten
in the three-vector language

ds —
—=0xS
dr xS

and obtain an expression for Q in terms of 7y, v, and dv/dt. Suppose that the particle
moves with constant angular velocity @ around a circle of radius a. Obtain an

expression for the precession frequency IQl of the three-vector S under these
circumstances, and show that the precession is retrograde.

Solution 9 Note first that

Y —w y w
—w 1+(@=Dw /) \w 1+@H-1w

( e 7= =y = 1y )

v+ wHpy =1y =P+ 1+2(p— D)o+ (y — )99

—v2y2+2(y— D+ (y— 1)2 =(1 —vz)y2 —1=0.

Therefore, L, ' is indeed obtained by making the replacement v — — v. Now the
condition that L’j be a Lorentz transformation may be expressed in the form

NwloLy = Moo,
or, dropping indices,
L'yL=y,  L'q=nL"',  L=yL My,

where the superscript T denotes transpose. But, in virtue of the form of # and the
symmetry of L™" in the present case, the last equation is obviously satisfied.
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<0 .
To show that S~ vanishes, we first show that

oy — gy — [ - Y
wewn-(7 7 (0)
[t )()

(-2 47+ —1)]

From this it follows immediately that

0=S-u=S-u=-5.

Finally,
g . . U woow o v-v,,
(LM) — <_V3(v . V)V -, '))3(1/' . V)Vv + (V — 1) <V_2 —+ ﬁ — 27"1’)),

() <1+ o l)ﬁﬁ)’

(LLLJ._I,U) — —“/4(" . ",)vv _ 7)2",‘) + “/S(V . v)f:f)

Wy vy

+(y— 1)<v —|———27fu3> +93y = D)(v-v)v

2 7 3 (V—l)Z R
==y +y =2 +y'(r—1) | v
1 —1 y—1
+ / G 2) v-l-/zvi)
% %

2 y—l w o yp—1.
=l (v )+ (—* +l+y—y) +oa
= ( ),

whence
- 'y—l . _
= (vw —yv)-S
or
ds _
—=0xS
dt ’
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where

Q:—"’*lvx%:—(y—l)fzx%

V2

In the case of the particle moving in a circle, we have

%:wxv, w-v=0,
Q:—y‘;lvx (o xv)=— V_zl[vzw—(w-v)v],
so that
Q=-y—-lo
where
pl=dlol,  [=(1-de) "]

2.4 Flat Proper Geometry

When the Q; vanish the proper geometry of the medium is flat [see (2.10) on
p- 26]:

Vi = 0ij-
Moreover, we have [see (2.9) on p. 26]
ni-u= 07

so that the instantaneous hyperplane of simultaneity of the particle at £ = 0 is an
instantaneous hyperplane of simultaneity for all the other particles of the medium
as well, and the triad n serves to define a rotationless rest frame for the whole
medium. In other words, the coordinate system defined by the parameters ¢ may
itself be regarded as being Fermi—Walker transported, and all the particles of the
medium have a common designator of simultaneity in the parameter ¢. Because o
is not generally equal to 7, however, it is not possible for the particles to have a
common synchronization of standard clocks. The relation between ¢ and 7 is given
by (2.8) on p. 25 as

o= (1 + éiaol‘)_l,

which permits us to compute the absolute acceleration a; of an arbitrary particle in
terms of ag; and the &":
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0 0 ;
a; =n; - = n;- %O’ = (m,- . &[(1 + é]a()j)u()(ﬂ
= 6> (1 + &agj)n; - g
_ Qo
1+ éja()j.

We see that, although the motion is rigid and ‘rotationless’, not all parts of the
medium ‘feel’ the same acceleration.

When the €; vanish it is sometimes convenient to make use of ¢ and éi as
coordinates of spacetime. In these coordinates, the metric tensor takes the form

OxH| ox" 2. 9 vi N2
800 =—=—| =—| Ny =ud - =—(1+E&ay)",
0o |00 |, K
Ox*| ox" .1
8i0 = 80i = | A- 1/]“,:(1’1,"1/{)0 =0,
aé 066 14 !
ox*| ox¥
8ij = afi ga—fj gn/w =ni-n = 517?

which has a simple diagonal structure. We note that this metric becomes static, i.e.,
time-independent, with the parameter ¢ now playing the role of ‘time’, in the
special case in which the acceleration of each particle is constant.

Problem 10 The Rotationless Constantly Accelerating Medium

Suppose the particle at £ = 0 undergoes constant absolute acceleration from
rest in the x' direction in some inertial frame. One may choose initial conditions in
such a way that this motion takes the form

x°(0,0) = ésinh ao, x'(0,0) = écosh aa, x*(0,0) =0 =x%(0,0).

Introduce a convenient Fermi—Walker transported triad with which to define the
local rest frame of the particle, and let the spacetime coordinates of the remaining
particles of the medium be defined, in terms of the ¢ and the éi, as above. Obtain o
as a function of t under the boundary condition ¢ = 0 when 7 = 0. Obtain also
explicit forms for the functions x*(&, 7) as well as the metric of spacetime in the
coordinate system o, &. Draw a flow diagram in the (x°, x') plane, showing the
world lines of the particles of the medium. Draw on this diagram some instanta-
neous hyperplanes of simultaneity and indicate the maximum region of spacetime
accessible to the medium (Fig. 2.1).

Solution 10 We have
0 _ 1 _ o 2 _ 00— .3
uy = coshao, u, = sinhao, uy =0 = uy.

We may evidently choose
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Fig. 2.1 Flow diagram of a x°
rigid medium in inertial World lines
coordinates —
\ Instantaneous Hyperplanes
/ of Simultaneity
Z X!
£ >-1/a
Boundary of the
Domam of Accessibility
n? =sinhasc n =0 nd=0
ny =coshac nl=0 nl=0
n% =0 n% =1 n% =0
3 _ 3 _ 3 _
ny =0 n; =0 n3=1
apr = ny - g = a, apy = ny - itg = 0, aps = n3 - g =0,
1\—1
= +al)",  o=yg
1. . 1+aé' . art
x°(¢,1) = =sinhao + &' sinhac = sinh ]
a a 1+ aé
1 1 + aé! at
x'(¢,1) = 0 + &' coshas = cosh ;
a a + at
2
(&) =¢
3 3
x(&1)=¢

(8 )

_dlag( (1 +a51)2,1,1,1)

2.5 Constant Rotation About a Fixed Axis

The simplest example of a medium undergoing rigid rotation is obtained by

choosing
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ag; = 0, Q= w, Qo3 =0 = Q3.

The world line of the particle at ¢ = 0 is then straight, but the world lines of all the
other particles are helices of constant pitch. We have

6= {1 — {(5‘)2 + (52)2} }

and the proper metric of the medium takes the form

~1/2

1+ (60&)?  —(6w)*Ee'& 0
(i) = | —(60)’&& 1+ (6"’ 0
0 0 1

It is convenient to relabel the particles by means of three new coordinates
r, 0, z given by

&= rcoso, & = rsin, E=z

In terms of these coordinates the proper distance ds between two particles sepa-
rated by displacements dr, 60, and dz takes the form

r2

2 2
ds” = (0r) —i——l o

(80)* + (32)°.

The second term on the right of this equation may be understood as arising from
the Lorentz contraction phenomenon. The problem of the rotating medium is
sometimes posed as the so-called ‘spinning disc paradox’ and stated as follows.
A disc of radius r is set spinning with angular frequency @ about its axis. Radial
distances are unaffected, but distances in the direction of rotation become Lorentz
contracted. In particular, the circumference of the disc gets reduced to the value

2nRV'1 — w2R?. But this contradicts the Euclidean nature of the ordinary three-
space that the disc inhabits!

What in fact happens is that, when set in rotation, the disc must suffer a
strain that arises for kinematic reasons quite apart from any strains it suffers on
account of centrifugal forces. In particular, it must undergo a stretching of
amount (1 — > ;’2)_”2 in the direction of rotation, to compensate the Lorentz
contraction factor (I — w*r%)"? that appears when the disc is viewed in the
inertial rest frame of its axis, thereby maintaining the Euclidean nature of three-
space. It is this stretching factor that appears in the proper metric of the
medium.

We note that the medium must be confined to regions where r < ™' and that
its motion will not be rigid if w varies with time. We note also that the proper
geometry of the medium is not flat.
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Problem 11 Verify that the proper metric of the rotating medium takes the form

. r
dlag <1,m, 1)

with respect to the coordinates r, 0, z.

Solution 11 We have

Hence,

. 1
02:—2 >
1 — w?r

o od
Vir = or or yij
= cos’ 0 [l + (6)* sin? 0} —2(&)* sin” 0 cos? 0
+ sin® 0 [1 + (6wr)* cos? 0}
= 17

o aEod
Yo = Vor = or o0 Vij

= —rsinfcos 0 [1 + (6)*sin? 9} — r(6)*sinOcos’ 0
+ r(6)* sin® O cos 0 + rsin O cos 0 {1 + (6)* cos? 0}
= 07

o0& o¢
Ve = Vor = o a—Z%j =0, <(Pk>¢ = (%(lnak)>¢

& d¢

700 :@@Vij

= r?sin 0 [1 + (6er)? sin® 9} + 2r%(6er)* sin? 0 cos” 0

+r*cos? 0 [l + (6)* cos? 9}

2.2 2
2 N2 2 a°r N r
_r[l—f—(a)}—r(l—&— >_1w2r2’

1 — w?r?
o8 3¢
Vo: = V0 = g 3 Vi T 0,
_og ¢

VZZ_G_Z aZ’yl]:
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Problem 12 Show that the motion defined by the functions

3
(&) = ! +aaf sinh ao,
X (& 1) = ¢ +ve,
() =8,

3
(&) = ! +aa£ coshao,

where a and v are constants, is rigid. Here ¢ is a function of 7 and the éi, having a
form such that 7 is the proper time along each world line £ = const. Obtain the
proper metric of the flow and state (with arguments) whether the proper geometry
is flat.

Solution 12 We have

(&, 7) = (1 +a&)¢coshao,

Xl(é,r) = Vo,

Xz(é,‘c) =0,

P(&,1) = (1 +a®)ésinhaa,
whence

2 32 2] . OIS B Ve
—1l=u :—(14‘&5\) —Vvi|o, o= (1+aé~) —y
The medium is confined to the region
53 > _ 1— 1%
a

Now

<xf;) = (0,1,0,0), (xf‘z) = (0,0, 1,0),

(x’é) = (sinh ac+ (1 + ag’3)a$3 coshaa, vas, 0, coshao + (1 + a§3)0'73 sinh aa),

u-x3=—(1+aé®)gsinhaccoshas — (1 4 a&)*60 3 cosh® ac

+ vz()'o—g +(1+ a€3) sinhag coshao + (1 + a£3)2(}073 sinh? ao

= — [(1 + af3)2 — vz} 603 = —6'_1013,
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VZ

2 2.2
=x1-x1+w-x)) =1+vée=14+———>—"
=X+ (e x) 1+ a2

(1+a&)
(14a&)? —v?
whence
o1 - _
",)11:(1—1/2) ) v:]+a£3
Yo = = X1 X+ (u-xg)(u-x)=0,
Vi3 =31 = X1 - X3+ (ug)(u-x3) =vos —vos=0],
Yo = X2 Xp + (u 'x,2)2,
Yoy =73 =X x5+ (up)(u-x3)=0,
Y33 = X3 X3+ (“.3)2
= —[sinhac + (1 + a&¥)o 3 cosh aa]z—i—(vaﬁ)z
+ [cosh ac+ (1 + a§3)0730}2—|—(é’103)2
=1 [(1+a8) = = 672 (o)1=,
or

The stretching factor 1/(1 —7)?, although in only one direction, prevents the
proper geometry from being flat.

2.6 Irrotational Flow

When the Q; are nonvanishing, there exists no global hypersurface of simulta-
neity. This is a general property of rotational motion, whether rigid or not. The
motion, or flow, of a fluid medium is said to be irrotational if and only if there
exists a family of hypersurfaces that cut the world lines of all the particles of the
medium orthogonally. In order that such a family exist, one must be able to
write

Uy =i, (2.11)
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for some scalar function ¢. Here A is a normalizing factor and the hypersurfaces ¢
= const. are global hypersurfaces of simultaneity. We have

i=(=g00) ",

M 73/2 v 2.y
hu=(=0,0") Wby =0,
¢,H\’ = _)'_21'{/1)"1" + )\'_]u/’tu‘”

Uiy = AP 0y, PIPluG. = PP

y¥,ot-

Because of the commutativity of partial differentiation, we have, as the necessary
and sufficient condition for the integrability of (2.11),

PP (g — ttr ) = 0.
This is the condition for irrotational flow. Its nonrelativistic analog is (see p. 23)
Vij — Vji = 0,
which implies the existence of a scalar function ¢ such that
Vi = ¢,i-

A nonrelativistic motion that is both rigid and irrotational reduces simply to [see
(2.6) on p. 24]

Vi :ﬁﬂ

where f; is a function of time alone.






Chapter 3
Realizations of Continuous Groups

General relativity replaces the flat spacetime of special relativity by a curved
Riemannian manifold and extends the invariance group of the theory (i.e., the
group of transformations that leave the forms of all dynamical equations invariant)
from the Poincaré group to the group of general differentiable coordinate trans-
formations, known to mathematicians as the diffeomorphism group. It will be
helpful, in introducing the formal apparatus of general relativity, to develop first a
little of the theory of groups of continuous transformations.

A continuous group, in the abstract, is a group whose elements may be regarded
as points in a differentiable manifold. Moreover, if ¢ and &, are two group
elements then their product £;&,, as a point in the manifold, must depend in a
differentiable way on the points £; and &,. In any sufficiently small region of the
group (as in any differentiable manifold) a coordinate patch may be laid down
which attaches labels ¢“ to the group elements £. The index a may come from a
discrete finite set, in which case the group manifold is an ordinary finite dimen-
sional manifold, or it may come from a continuous set, in which case the group is
infinite dimensional. In the latter case the index a will typically stand for a col-
lection of labels, some discrete and some denoting points in another (finite
dimensional) manifold. When a comes from a continuous set the words ‘deriva-
tive’, ‘differentiation’ and ‘differentiable’ mean ‘functional derivative’, ‘func-
tional differentiation’ and ‘functionally differentiable’, and the summation
convention for repeated indices is extended to imply integration over the contin-
uous set.

Continuous groups are generally encountered not in the abstract but as trans-
formation groups in which each group element is envisaged as inducing a certain
diffeomorphism in some other manifold. Let ¢ be a point of this other manifold.
A coordinate patch may be laid down which attaches labels ¢’ to this point. If & is
sufficiently close to the identity it will induce a transformation ¢ — ¢ such that ¢
remains within the coordinate patch. In terms of coordinate labels, the transfor-
mation may be expressed in the explicit form

B. DeWitt, Bryce DeWitt’s Lectures on Gravitation, 39
Edited by Steven M. Christensen, Lecture Notes in Physics, 826,
DOI: 10.1007/978-3-540-36911-0_3, © Springer-Verlag Berlin Heidelberg 2011
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P =P ),

where the @' are differentiable functions of £ and ¢. We remark that the index i,
like the index a, may come from either a discrete set or a continuous set. As an
example from the first category, let the ¢’ be polar angles on a sphere on which the
rotation group acts. As an example from the second category, let the ¢’ be the
values of all components of some field (e.g., an electromagnetic field) at all points
of spacetime, and let the group be either the Poincaré group or the full diffeo-
morphism group.
The functions @ must satisfy the identities

¢i(f27 Q(él ) d))) = ¢i(52517¢)ﬂ ¢i(identith ¢) = d)i'

They are then said to provide a realization of the group. In the special case in
which the @' are linear homogeneous in the ¢', the realization is called a (matrix)
representation. In these lectures, it will usually suffice to confine our attention to a
single coordinate patch containing the identity in the group manifold. It is then
convenient to take the origin of coordinates at the identity element and to expand
the functions @' as polynomials in the &, plus remainders:

(#)°E" +0(&).

P(E0) = ¢+ B$)E 41

Consider now the following successive transformations:

ai = ¢i(£17¢)a
aj - ¢i(£27$) = ¢i(5261a (rb)?
?i = (Dl(ililai) = ¢i(é;162517¢)7
=05 9) = (G b g).
Expanding the first two equations to second order in the £, we find
=  _, 1
' =0+ (@) +59,(9)658 + 0(E)
; ; 1
= ¢' + D) + 3P (PG
‘ . 1
+ P(B)E + Py (P)P(D)E1ES + 5P (9)E38 + O(E),

the comma followed by a Latin index denoting differentiation with respect to a ¢.
In the special case &, = &l we may infer from this

@Z(éa+é—la)+2 ab(£a£b+f—laé lb)_|_(pz (p’fhf—l“: (53)’
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for all ¢, suppressing the argument ¢ in the expression. If the realization is
faithful, as we shall always assume it to be, we have

D&, ) = D(&,¢) for all ¢ if and only if & = &,

whence, as corollaries,

|<Dfu§“ =0 forall ¢ if and only if & = 0 for all a|

‘5*1“ = &4+ 0(&) forall & near the identity‘

Continuing now, we have
§ =9+ 0,(3) " + &) + 30, (3) G G+ 5™
+ 0, (8) 2} ()& e + 0(&)
=+ (S +E+E+ G
PO, (S Bd g 5E )
+ P88 + GG+ (G +E) (G )] + o)
= ¢’ + &, 9,(81¢5 - &&Y) + 0(&).

On the other hand, we have

P =BG 5E)

This tells us that & '¢7'¢,¢E,, which is known as the commutator of the group
elements &, and &,, differs from the identity by a coordinate interval that is only of
the second order in the £. We may in fact do the expanion

(&1E716,8) = cL.as + o),

where the necessary bilinearity of the first term in £{ and isa consequence of the
fact that it is antisymmetric in the labels 1 and 2, as follows from

N a 1 e —la e a
(&'5'68)" = (&5'4168) "=-(&"4168) o).
This implies that the coefficients Cj,. are antisymmetric in the indices b and c.

Comparing the two expansions for Ef , we finally get

¢LJ¢Jb - QDZ,;“DZ = (DICC;}I' (3.1)
The Cp. are known as the structure constants of the group. They depend both on
the group and on the choice of coordinates. For a change from one set of group
coordinates to another, however, it is only what happens in the immediate vicinity
of the identity that is relevant in determining how the Cj. change.
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Problem 13 By differentiating the differential identity (3.1) satisfied by the @,
show that the structure constants satisfy the cyclic identity

clce +clce, +clce, =o.

be ™~ ca ce~ab —
Solution 13 We have

@ (Cd ce. + clce, + Clee,)

e be ™~ ca ce~ab

= ((I);J@e - dindi’a) Cy, + (bca) + (cab)

= djﬁz.j(%,k¢lz - ‘p]c,k‘pl;) - (q');']’kqﬁ; - ¢£,kdjl;) @

.a
J

+ (bca) + (cab)
=0.

The identity itself then follows by faithfulness of the realization.

Problem 14 Obtain the structure constants of the rotation group O(3) in the
coordinate system in which £ (@ = 1, 2, 3) represents a rotation through the angle
|E] = (&“¢%)"* about the axis having direction cosines &|¢| relative to a Cartesian
frame. Use the realization in which the qSi (i =1, 2, 3) are the components of a 3-
vector on which the rotation ¢ acts. Note that in computing structure constants, it
suffices to confine attention to infinitesimal group operations, i.e., group elements
having infinitesimal coordinates d¢&¢. Such operations induce infinitesimal changes
in the ¢’ given by

5’ = & 5E.
Solution 14 We have
5¢i = 8iaj5§a¢j-
Therefore,
P = i/,

b, @), — ), b, = (ciasior — Eijtiak) "
= (3iOak — OitOab — OiaOpi + SitOpa)P*
= tickecab® = P'eeap-
Hence, finally,

C
Cah = Ecab-
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3.1 Representations

When the realization is a representation, the functions (or functionals) @' take the
form

P&, ¢) = D),
where the matrices D(¢) satisfy (with suppression of indices)

D(&,)D(&,) = D(&,&,),  forall &y, &.

Moreover,
¢;(¢) = G;j(]ya
where the matrices G, are given by
oD
6, — @)
(Sl P

and satisfy the commutation relation
(G4, Gp) = G.C,.
The G, are known as the generators of the representation.

Problem 15 Obtain the commutation relation satisfied by the generators Gj, of the
full linear group GL(n) in n dimensions, in the coordinate system in which &j
represents the matrix 03 + &5. (Note that we are now using a pair of indices on the
generators and group coordinates, because it is inconvenient to attempt to map
them into a single index.)

Solution 15 Use the representation provided by a contravariant vector ¢“ in
n dimensions. Then

6 = 05" = Gigract,
G = 8165,
(65, G3]; = GGy - GGy
= 55005505 — 6555050
— (8465 — 5;G1);.
or

(64, G5] = G5 — 5G5,
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3.2 Diffeomorphism Group

Suppose we have a differentiable manifold M. The diffeomorphism group on M,
denoted Diff(M) by mathematicians, is the group of all one-to-one differentiable
maps of M onto itself whose inverses are also differentiable. Mathematicians
usually confine themselves to C* maps, but we may assume merely differentia-
bility up to the lowest order needed in any discussion. The maps themselves are
known as diffeomorphisms.

Diffeomorphisms may be related to coordinate transformations as follows. Let a
coordinate patch be laid down on some open set of M. (This open set must be
homeomorphic to an open set of R", where # is the dimensionality of M.) Denote
the coordinates by x*. A diffeomorphism & that is sufficiently close to the identity
may be regarded as a deformation of the coordinate mesh (involving a possible
shift in the position of the coordinate mesh) in which every point is mapped into
another point in such a way that its coordinates in the original coordinate system
are identical with the coordinates of its image (under the mapping) in the deformed
coordinate system. A natural coordinatization of the diffeomorphism group itself
assigns to each diffeomorphism & a set of functions &£"(x) that display the relation
between the two coordinate systems in M:

= x4 & (x).

Here the set of numbers g, x, 2, replace the index a in the general dis-
cussion about continuous groups in this Chapter. We see that the diffeomorphism
group is infinite dimensional.

In the immediate vicinity of the identity, where the & become infinitesimal,
each point gets mapped into a neighbor that is reached by executing the dis-
placement —¢&". The diffeomorphism itself thus generates a flow which, at the
initial instant, is characterized by the contravariant vector having components — &,

Let us now compute the structure constants of the diffeomorphism group. As
before, we consider the commutator of two group elements &; and &:

)
)

xX)+ &) + & (D& (x) +0(8),
(

=¥ +EM@®+ S @+ @R +0E)

=g G (8 5 )@+ )
+&a+a" g +0E)

=x G- G40,
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where a comma followed by a Greek index denotes differentiation with respect to
an x and, in passing to the final forms, we have suppressed the argument x and used
the identity

gy re =o0).
Writing
(&'e'qa)'= [ar [arcr,ae o),

where one or more primes on an index indicates that the index is associated with a
corresponding point x’ or x”/, etc., and [ dx denotes standard integration over the
manifold M, we obtain

/M/m””g =& 8 -de,

whence

9 s,

d
Chy = 940 (x,") 220, ) — 03 (v, )

v Ox°

where 5(x, x’) is the delta function on M.

Instead of representing a contravariant vector, A say, by its components A” in a
given coordinate system, mathematicians like to represent it as a differential
operator

0

= A K
OxH

acting on the set of all (differentiable scalar) functions on M. This representation,
in which a contravariant vector is determined by its action on functions over M, is
coordinate independent.

It is sometimes convenient to use this representation for infinitesimal diffeo-
morphisms in which the & become components of contravariant vectors. We then
find that we may write

/dx’/dx”C" .8 ‘{a L= 68l

and the cyclic identity satisfied by the structure constants (see Problem 13)
becomes a corollary of the ordinary Jacobi identity satisfied by commutators of
linear operators.
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3.3 Tensors and Tensor Densities

The irreducible matrix representations of the diffeomorphism group are given by
the action of the group on the components of irreducible tensor fields (more
correctly, fensor density fields) in a given coordinate system. The action is said to
define the coordinate transformation law of the field in question. Thus let ¢
(x) stand for the set of components of some tensor density at the point x in a system
of coordinates x*. The diffeomorphism ¢ induces the coordinate transformation

= x4 E(x),
and a corresponding transformation in ¢:
$(F) = D(1 +0¢/ax)(x),

where D(1 + 0&/0x) is the representative of o) + 0&#/0x” in the corresponding
matrix representation of the full linear group.
In the infinitesimal case, the field transformation law takes the form

P(x +6¢) = d(x) + Glp(x)5¢), (x),

where the G4 are the generators of the representation D. Writing

$(x) + 0 (x) = (),

we find
op = —Lsc,
where, for any contravariant vector A, the operator £, is defined by
Ly = A"i - GHAY |
Ox# vk

when acting on a tensor ¢. The quantity L;:¢ is called the Lie derivative of ¢ with
respect to the vector 6. We note that £4, when acting on a scalar function,
reduces to A itself.

Problem 16 For any two contravariant vectors A and B, show that

(£4B")C

a‘xﬂ = [ADB]

Solution 16 We have

B, B+ 08) = B(x) + B' (024 (),

B! = —BLO&' + B'SE" = —L5:B",

B'(x) =
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LaB" = B"A" — A"B",

and hence,

(4B

=)

Problem 17 Using the commutation relation obtained in Problem 15 for the
generators of the linear group, show that

[La, LB] = Liap).
Solution 17 We have
6 v a a 0 DRT
[ACA,EB} = [ o G‘uA o B°— o GTB_G:|

= [A,B] - GIB, A" + GJA",,B° + (0!G] — 67GH)A" B,

= [A,B] = Gl (B, A" + BLAT, — A%, B — A",
) v L v a ) v a v a
= (Bra"—aLp") -~ G (BA" — A"
» Oxct s s A
= Liap)

In practice, the transformation laws for the components of all types of tensor
densities are most easily built up from the three prototypes:

_ i
Contravariant vector (;5“ (x) = % "(x),
xV
] ox"
Covariant vector d’u( X) = a—ud)v(x)
Density of weight w ¢ (%) = Eg)ﬂ $(x).
X

The corresponding infinitesimal laws are:
; B— R SEY VS EH

Contravariant vector 6¢" = —¢"0¢" + ¢'0¢",

Covariant vector 0¢, = —¢,,0 + ¢,

Density of weight w  d¢ = —¢ 6" —wpdc!,.
Problem 18 Show that the n-dimensional permutation symbol may be regarded as
representing, in every coordinate system, the components of either a completely
antisymmetric contravariant tensor density of weight 1, in which case we it in the

form !e#1-+# | or a completely antisymmetric covariant tensor density of weight —1,
in which case we write it as ’laﬂluﬂn.
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Solution 18 We have

() o o

Tapy ey, — Loavieve 1oy
& n — — .. & =g n
(x) oxn O ’
i 6()_6) Ox" x| 1
& A~ A Svievy = Cupp,-
Hyeelly ™ a(x) Oxtu Oxtin 1 oMy

Problem 19 Show that the Kronecker delta may be regarded as representing, in
every coordinate system, the components of a mixed tensor having one covariant
and one contravariant index.

Solution 19 This is proved by

oW, o,

Ve ox) f xeoxt Y

Problem 20 Show that an integral of the form | pdx taken over the manifold is
coordinate independent if and only if p is a density of weight 1.

Solution 20 We have
/ pdx = / (x) = / Bdx
o(x)

if and only if

Note that the integral may be carried out patch by patch so as to cover the whole
manifold.

3.4 Bitensors, Tritensors, and n-Tensors

More complicated matrix representations of the diffeomorphism group may be
obtained by forming direct products of tensor representations. Coordinate com-
ponents of bitensors transform according to the law defined by the direct product
of two tensor representations. Coordinate components of tritensors transform
according to the law defined by the direct product of three tensor representations,
and so on. In general, the coordinate components of n-tensors are functions of
n independent points of the manifold M, i.e., they are functions over the n-fold
Cartesian product of M with itself, viz.,

MxMXx---xM.
e

n times
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The simplest bitensor is the delta function, which is really a bidensity of total
weight unity. The weight may be shared arbitrarily between the two points, but in a
given context is usually well defined. The structure constants C', , of the diffeo-
morphism group are components of a tritensor, transforming as a contravariant
vector at the point x and as a covariant vector density of unit weight at x’ and x”.
Many other important examples of n-point tensors (especially bitensors) are
encountered in the theory of geodesics and Green’s functions.






Chapter 4
Riemannian Manifolds

A Riemannian manifold is a differentiable manifold in which a notion of length is
introduced at the local level. If x* and x" + dx" are the coordinates in a given
coordinate system of two infinitesimally close points, the infinitesimal distance
ds between them is defined by

ds® = gdxfdx’

where g,,, are the components of a special field associated with the manifold, the
combination of field and manifold constituting the Riemannian manifold. If
the notion of length is to be independent of the choice of coordinate system, the
special field must be a covariant tensor. This tensor is known as the metric tensor.
It may evidently be taken symmetric, because any antisymmetric part would make
no contribution to the distance concept.

The metric tensor having been introduced, the notions of orthogonality and
local parallelism may then be introduced by applying the classical Euclidean laws
to infinitesimal triangles. For this purpose, the laws of similar triangles must be
adopted ab initio as postulates, and the ‘postulate of parallels’ must be excluded, a
procedure that is reasonable as far as physics is concerned both because the laws of
similar triangles correspond immediately to the intuition of experience and
because experience is always limited to finite regions. By defining the right angle
as the angle of intersection of two lines that makes all four intersection angles
equal, and by guaranteeing its uniqueness through further axiomatic refinements
on the comparison of angles by means of the notions ‘greater than’ and ‘less than’
as well as ‘equality’, one may then derive the Pythagorean theorem in the well-
known manner.

Conversely, the Pythagorean theorem may be invoked to define right angles.
Thus, two ‘displacements’ d;x* and d,x" are said to be orthogonal if their lengths
satisfy the relationship

d;s® + dys® = ds? ,
B. Dewitt, Bryce DeWitt’s Lectures on Gravitation, 51
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where

dlS2 = guvdlx'udlxv , d252 = gw,dzx”dzx” ,
A5 = g (di — dox)(dix” — dox’) |

This relationship is readily seen to reduce to
dix - dox = gdixdox” = 0.

In using the classical Euclidean laws, of course, one assumes that the quantities
d, s2, d, s2, and ds” are positive and hence that the components of the metric tensor
at any point in any coordinate patch form a positive definite matrix. The formalism
of tensors, however, allows one to abandon the Euclidean origins of the metric
concept once it has outlived its usefulness as an initial guide. For an arbitrary
Riemannian manifold," we need only assume that g forms, in any coordinate
patch, a (sufficiently) differentiable, nonsingular, but not necessarily positive

v,

definite, matrix, the inverse of which will be denoted by g"":
8 uogm = (s;l .

Since the Kronecker delta defines a mixed tensor (see Problem 19), it follows that
the g"¥ are components of a symmetric contravariant tensor.

At any single point in a Riemannian manifold, a coordinate system may be
introduced in which the components of the metric tensor take the canonical form

(gw) = diag(—1,...,—1,1,...,1)

at that point. Since g,, must be nonsingular in every coordinate patch, it follows
that the canonical form is an invariant of the manifold. Spacetime in relativity
theory is assumed to be a four-dimensional Riemannian manifold in which the
canonical form of the metric is that of Minkowski®:

(']uv) = diag(_17 17 17 1) :

4.1 Local Parallelism

A Riemannian manifold possesses not only the local distance concept but also a
concept of local parallelism that arises naturally out of the classical Euclidean
laws. These laws permit one first of all to define an infinitesimal parallelogram in a

! Mathematicians sometimes call the manifold pseudo-Riemannian when the metric is not
positive definite.

2 Mathematicians sometimes refer to Riemannian manifolds for which the metric tensor has one
eigenvalue of one sign while all the others have opposite sign as Lorentzian manifolds.
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x}l + d1x"+ dzxu.f. ) dx’Jl

x"|+d.|X"l

Fig. 4.1 Establishing local parallelism

Riemannian manifold as an infinitesimal plane quadrilateral having opposite sides
of equal length. The relationship of such an object to an arbitrary coordinate mesh
is indicated schematically in Fig. 4.1.

The quantity ddx* is the change, arising from the variability in the shape of the
coordinate mesh from point to point as well as from changes in the intrinsic
geometry of the manifold, in the numerical magnitude of the y component of
either of the infinitesimal intervals d;x or d,x as it is displaced in a parallel fashion
along the other. It is evident from the figure that

1
dlS2 = (guv + Eguv.adlxa)dlxudlxv

1
= |:g/1v + 8uv,o (dﬂct7 + §d1x6>:| (dlx# + 5dx/‘)(d1x" + 5dxv) )
correct to the third infinitesimal order. Keeping terms only up to this order, we find
2g,di ' 0dx" + gy od1xdjx"dox” = 0,
and similarly,
280X 0dx" + g, odox"dox"dix” =0 .

These are the parallelogram equations.
Now let 4; and A, be two arbitrary parameters. Multiplying the first parallel-
ogram equation by A; and the second by /,, we find

1
guv(A1dixt + Apdoxt)ddx” = —E(ildlx“gu\,,’,, + Aodoxtg ey )dix"dox?

1 ) I
= _E(ildlxu + }*2d2xﬂ)(guv,a + Quoy — gvo’,u)dlx‘dZX

1 | 1 v a
= 7[‘}“,6(/L]dlxl + /dezxu)d]x dzx y
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where

1
Fuva = 5(8#»’,0 + 8uo,y — g\'a,u) = F;wv .

Since A, and /1, are arbitrary, we must infer that the general solution of the above
equation is

odxt = —F(fadlxvdgx” + O,
where
i, = gﬂrrwa 3

and where Q" is a quantity of the second infinitesimal order, necessarily linear in
dx" and d,x*, and orthogonal to both d;x" and d,x". The most general quantity of
this kind has the form

o' = gquv , Qu = A,uvadlxvdeﬁ )
where
A,uvzr = _Av;ur = _Aavu .
However, this implies
Auva = _Av;w = Aa;tv = _Auav )

and therefore, Q" is antisymmetric under interchange of d;x" and d,x". On the
other hand, because the parallelogram is a plane figure, ddx*, and hence Q¥, must
be symmetric under interchange of d;x* and d,x*. Another way of saying this is
that 6dx* can involve no preferred direction in the local subspace orthogonal to the
plane defined by d;x" and d,x". Therefore, we must have Q* = 0 and

odx" = —F{fgdlx"dzx” .

The objects I'}; and I';,, are known as the Christoffel symbols.

4.2 Parallel Displacement of Tensors

The concept of parallel displacement can be extended to an arbitrary tensor density

by considering an infinitesimal displacement —d&" of the entire coordinate mesh,

which produces the new coordinate system X* = x* + §£". Let us suppose that this

displacement is locally parallel at the point x, as indicated in Fig. 4.2.
Comparing this figure with Fig. 4.1 shows us that we must have

XH— &t (X)) — &t — 8¢ (x)] = XM — X+ T (XY — x")6E + O(x' — x)2 ,
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Fig. 4.2 Infinitesimal dis- m M H, s
placement of the coordinate x"- 6£ (x)
mesh

XM x*-8&¥(x)

for all neighboring points. Taking the limit X' — x, we find

o0& =TI 6%, atx.
Now let ¢ be the set of components of a tensor density field. We shall suppose that
this field is displaced ‘bodily’ along with the coordinate mesh in the neighborhood

of x, giving rise to a new field 3 In the new coordinate system x*, this field will
take the form z + 53, where

5p = —Ls: .

However, the new field must have, at least in the neighborhood of x, the same form
in the new coordinate system as the original field had in the old. That is,

— —
¢ +d8¢p =¢, nearx,

or
$:¢*5$:¢+ﬁ&j$=¢+ﬁag¢, near x ,

to first infinitesimal order.
This bodily displacement of the field is precisely the intuitive notion of parallel
displacement. In order to get the change in the magnitude of the field components

under parallel displacement, we must examine the displaced field $ at the displaced
point x — d¢, and compare it with the original field ¢ at the original point x.
The parallel displacement law for components is therefore

0 = ¢ (x — 88) — p(x) = — .6 + Loz
= —Gpoc! = G\ It poe .

ut ve

(4.1)

4.3 Covariant Differentiation

Now the quantity ¢ + d¢ is a set of components, in the original coordinate system,
of a tensor density at the point x — 8¢, and so is ¢(x — 6&). Therefore, the dif-
ference between the two sets is also a set of components of a tensor density at
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x — o0& or, to first infinitesimal order, at x. This difference defines the covariant
derivative of the field ¢:

4,08 = $(x = 36) — (¢ +3¢) = — (@, + G,I7,9)3¢"
whence
d)i,li = ¢«,H + G;Fﬁu(b .

The ¢., are components of a tensor density that has one more covariant index than
¢ has.

In practice the covariant derivatives of all types of tensor densities are most
easily built up from the three prototypes:

. B g o

Contravariant vector ¢!, = ¢, +I't ¢,
Covariant vector ¢, = ¢, — I, b,

Density of weightw ¢, = ¢ , —wl7 ¢ .

Using the second of these, it is easy to show that the covariant derivatives of the
metric tensor vanish:
8uvie = 8uv,o — F/ngrv - on-g,ur
= gm\(f - Fv;m' - F,um

1 1
= g,uv,rr - E(gvy,n' + gvr;“u - g;w,v) - E(g,u\n,o' + g;w,v - gwr,u)
=0.

Problem 21 Show that the covariant derivatives of d},'&"~# and ~'¢, , all
vanish.

Solution 21

ol =k 4+ TV ST T, o

TGV Vo T

=ri, It =0,

vo
18'?‘,]'“”" _1 8’“‘,'“‘“" + Iﬂ,:;,vlga,uzmuﬂ
ty L oty 0 o 1y,
e a s ry ettt =0,

-1 -1 o —1
ety = Eupeeper — Uiy Eope,

g —1 g —1 _
- Funv &ttty o T Fav Sy, = 0.

The last two results follow from the fact that both sides of the equations are
completely antisymmetric in the y; and hence the p; must be all different if one is
to get something different from zero. In the terms involving I/ or I Z ,» one then

gets nonvanishing contributions only when ¢ takes on the value p,,
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Covariant differentiation, like ordinary differentiation, obeys the Leibniz rule
when applied to factors in a product. Since the covariant derivatives of J vanish,
covariant differentiation commutes with the process of contraction of an upper
index with a lower index (setting the two equal and summing). By taking the
covariant derivative of the identity g,,g”" = J,, one infers that all the g!; vanish,
and hence that covariant differentiation commutes with the operation of raising
and lowering indices:

Al = gwAv y Bu = guva )

and so on. Finally, because the covariant derivatives of the permutation symbols
vanish it follows that the magnitude of the determinant of the metric tensor, which,
when written in the form

1 I
g= ‘det(glw)’ = E‘18#1.“%’13‘1'“‘ng#|v1' &

is seen to be a density of weight 2, also has vanishing covariant derivatives.”

4.4 Tensor Properties of the Lie Derivative

Owing to the symmetry of the Christoffel symbol I}, in its lower indices, it is easy
to verify that, in the expression for the Lie derivative £4¢ of a tensor density ¢
with respect to a contravariant vector A, ordinary derivatives may be replaced by
covariant derivatives:

£A¢ = A‘u¢,u - G€A¥u¢
=AM, + G I, 9) — GI(A), +17,A%)¢
= Ay — GYALD -

This means that £4¢ has the same coordinate transformation law as ¢ and that the
tensor density whose components are the elements of L4¢ is of the same type as
the tensor density whose components are the elements of ¢. This latter fact must
obviously be independent of the introduction of any metric tensor into the mani-
fold and could (with considerably more labor) have been verified directly prior to
our discussion of Riemannian manifolds.

The above result permits us to express the infinitesimal coordinate transfor-
mation law for the metric tensor in a particularly simple and symmetric form:

3 We confine our attention in these lectures to diffeomorphisms that may be connected
continuously to the identity.
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6guv = _[fécfg;w
= _gyv,aaig - govééfu - guoaéi,
= 755/1:\/ - ‘siv;y )

where

55;4 = guvéév .

4.5 The Curvature Tensor

Indices induced by covariant differentiation, like any other indices, may be raised
and lowered by means of the metric tensor. Not all authors agree on the proper
notation for this, some feeling that the semicolon should be raised and lowered
along with the index. We shall keep the semicolon firmly fixed in the lower
position thus:

g, = ¢!

There is disagreement also on the proper notation for repeated differentiation,
some authors feeling that a proliferation of commas or semicolons is required
along with the proliferation of indices. We believe that one comma, or semicolon
as the case may be, should suffice and accordingly will use the abbreviations

d),yv... = (¢,,u),u.. ’ ¢;HV--» = (¢¥H)é"»»< ’

for repeated ordinary and covariant differentiation with respect to the coordinates
x". One caution must be sounded, however, in using this notation. The order of the
indices following a comma is obviously unimportant. On the other hand, covariant
differentiation, unlike ordinary differentiation, is not generally commutative, and
therefore, the order of the indices following a semicolon is usually very important.

We shall nevertheless often wish to change the order of covariant differentia-
tions, and therefore, it will be extremely useful to know the commutation law for
covariant derivatives. For an arbitrary tensor density ¢, this may be computed in a
straightforward manner as follows:

¢;yv - qb;v,u = ((i):u)y + G:F;vd);u - Ffw(b;a - (:u A V)
= (¢, + G, d), + Gty (d, + GiT),¢) — ()
= G7(I%y = Th0) &+ (9]GL = 1GIE, b

ap,y av’ pp
oy av, pp ov

:G:(rf — T, 4TS T Fﬂ)qs

= _GngTTuvd) )
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where

T J7T I a3 TP T TP
Rauv - Fav“u Fau.v + Fp,urav F;)VFO'M .

In practice, the commutation laws for covariant differentiation of specific tensor
densities are built up from those of the three prototypes:

: oo g pp g7

Contravariant vector ¢!, by = —RELOT,
1 J— T

Covariant vector ¢ [y — d)u;ov =R, O s

Density of weight w Gy — Py =0
The last of these follows from the identity

RS, =T% —1%.,=0,

auy av,u au,v

which in turn follows from

1
Fgﬂ = gmrow = Eg(ﬁ(gor,u + 8ot — g‘m,a’)
1

1
_ -1 _
=58 gu=5logg), .

The R®;,, are components of a mixed tensor known as the Riemann tensor or
curvature tensor of the manifold. Note that we are able to infer the tensor character
without once computing the coordinate transformation law for the Christoffel
symbols out of which the components of the curvature tensor are built.

The curvature tensor satisfies some important algebraic and differential iden-
tities. These are most easily derived by first introducing a special coordinate
system. Let xo be an arbitrary point of the manifold and let (I'4,;)o be the Christoffel
symbol at that point in the coordinate system x*. Now introduce a new set of
coordinates x* related to the old ones by

1 v\ /=c  —
=% - E(F(,‘U)O(x - %) (X7 —%5) .
We have
Oxt 0% x
L _ 5/1 = —(I'*
xO xO ’ (axv>0 v (axvaxo'>0 ( vo‘)() ’

_ Ox% Ox*
(guv)o: <@@gm>oz (8o »

_ 0 [0Ox™ Ox?
Ewe)s = |5 \ewawt> )|,

( O%x® Ox? oxt %xP Ox" Ox” Ox* )

Geawors” e avors Y | G o vt
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= (—F;ﬂgrv - nggﬂﬂ + g:‘“’v”)o

_ery - ruov + guv,a)o
1

1
|:2(gva,,u + 8vu,e — g(m,v) - i(g/m,v + 8uv,o — go‘v”u) + 8w,
0
0

In the new coordinate system, the first derivatives of the metric tensor, and hence
also the Christoffel symbols, vanish at the point x,. That is to say, we can always
introduce a coordinate system in which the derivatives of g,, and the Christoffel
symbols vanish at a given fixed point.

Now, dropping the subscript 0, let x be an arbitrary point of the manifold. Then
in a coordinate system in which the Christoffel symbols vanish at that point, the
curvature tensor takes the form

Rrouv = Frav,u - qu,v

1
= E(gw,vu + 8wvon — 8ovru — 8roy — grpov T go'u,rv)

1

= _E(gru,av + 8ov,ru — 8rvion — ga,u,rv) , (42)

at that point, and its covariant derivative takes the form

Rrauv;p = Z(g‘c/c,o'vp + 8ov,iup — 8tvoup — gou.rvp) )
at that point. From these forms, one may readily infer the identities:

Rwuv = _va,u = wa ’
R‘muv + Rruva + R‘cvou =0 )
R‘muv;p + R‘mvp;u + Rro’p,u:v =0.

Since the quantities in these identities are components of tensors, the identities
hold not merely in the special coordinate system, but in any coordinate system at x.
Moreover, because x is arbitrary, they actually hold everywhere. The differential
identity is known as the Bianchi identity.

It is conventional to introduce special symbols for the contracted forms of the
curvature tensor. There are only two nontrivial contractions:

__ po

Ri”’ - R,u(rv
_ 10 _ 10 G TP _ 0 TP
- Fuv,(r Fa;t,v + Fparuv varu(r
= Rvu ’

and
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The quantity R, is known as the Ricci tensor, and R is known as the Riemann
scalar or curvature scalar.

4.6 n-Beins, Tetrads and Flat Manifolds

The coordinate transformation which brings the metric tensor into canonical form
at any point may be chosen linear. Denote the coefficients of such a transformation
by €. Then

o B

ee

u vg - nxﬁ Y

where n“ﬁ is the contravariant form of the canonical metric (and hence constant).
The efj are known as the components of an n-bein or, in the case of spacetime, of a
tetrad. The e}, are not uniquely determined at any point but may be subjected to
linear transformations of the form

S0 _ go p
e, = Lﬁeﬂ
that leave the canonical metric invariant:
Lj:ngn’é = .

In the case of spacetime, these transformations are homogeneous Lorentz
transformations.

The e}, need not vary discontinuously from point to point. Since the g"" are
differentiable, at least throughout a given coordinate patch, the ej, may likewise be
chosen differentiable throughout appropriate (overlapping) patches. The ej, are
then said to be components of an n-bein or tetrad field. For each o, e‘Z
(u=1,..,norpu=0,1,2,3) are the components of a covariant vector. These
vectors define a local canonical frame at each point of the manifold. We have
already encountered examples of such local frames in the u”, n}' (see Sect. 1.2),
which together constitute a tetrad.

It will be a convenience to raise and lower indices ¢, f§, etc., from the first part
of the Greek alphabet by means of the covariant and contravariant forms of the
canonical metric, viz., 1,5 and ;7“/3, just as we raise and lower indices u, v, etc.,
from the middle of the Greek alphabet by means of ¢"* and g,,. We then have

eweﬁ“ = 55 ,
which implies

TRY - oy SV
€658y = MNup » Copl = 5# y
v

ey =g, e =g,

and so on.



62 4 Riemannian Manifolds

Suppose now the curvature tensor vanishes. It is then possible to introduce,
throughout every coordinate patch, an n-bein field, i.e., n linearly independent
vector fields, whose covariant derivatives all vanish:

o
€y = 0.

This is so because the integrability condition for these equations is automatically
satisfied:
0= ez;w - ez;av = e:szr .

Such an n-bein field is obtained by taking a local canonical frame at any one point
and displacing it in a parallel fashion throughout the coordinate patch. When the
curvature tensor vanishes, parallel displacement becomes integrable, and the
concept of local parallelism may be extended to a concept of distant parallelism
throughout the patch. The resulting n-bein defines a canonical frame over the
patch. The canonical coordinates X* may be obtained from the original coordinates
x" by integrating the equations

evid
ox _
oxr R

the solubility of which is guaranteed by

62205 aZxot ‘ ;
- =e* —e*
OxH0x’  Ox'Ox* Vi Y

0 0 G 0\ ,0
- ev:y eu;v + (Fv,u Fyv)eo' =0.

The metric tensor in the canonical coordinates is obviously everywhere 7,5. Any
manifold that can be covered by canonical patches is said to be flat. The necessary
and sufficient condition that a Riemannian manifold be flat in a given region is
evidently that its curvature tensor vanish in that region.



Chapter 5
The Free Particle: Geodesics

We return now to physics by considering the simplest of all physical systems, the
free particle. In special relativity, which is the theory of flat spacetime, the tra-
jectory of a free particle is given, in a canonical (Minkowskian) coordinate system,
by a set of linear equations. The world line of the particle is therefore straight. If
the metric of special relativity were positive definite, the world line would be the
shortest path between any two points located on it. The metric is actually Lo-
rentzian and the world line of any real particle is time-like, i.e., #,,dx"dx" < 0.
Therefore, instead of working with an imaginary distance ds along the world line,
one introduces the proper time dt, where di* = — #,,dx"dx". By integrating dt
along the world line, one then extends the distance concept from a local concept to
a global idea of time along the world line. It then turns out that the straight world
line is the path that maximizes the proper time between any two points on it.

Whether maximizing or minimizing something, the important point is that the
world line of a particle is the solution of a variational problem in which a certain
functional of the trajectory is extremized. In physics, it is conventional to call this
functional the action.

Generalizing from flat spacetime to curved spacetime, general relativity
chooses for the action functional of a free particle and the expression will be

S= —m/dr, de? = —g,,dxtdx". (5.1)

The factor m is the rest mass of the particle and is introduced in order to give S the
dimensions of action. The minus sign is introduced so that the variational problem
corresponds to a least action principle, as is conventional in physics.

It is convenient to express the world line of the particle in parametric form
x" = 7"(1), where A is a parameter that increases monotonically as one moves
along the line toward the future, but that is otherwise arbitrary. The action then
takes the form

B. DeWitt, Bryce DeWitt’s Lectures on Gravitation, 63
Edited by Steven M. Christensen, Lecture Notes in Physics, 826,
DOI: 10.1007/978-3-540-36911-0_5, © Springer-Verlag Berlin Heidelberg 2011
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where we use the abbreviated notation

AP=A-A, A-B=g,()A*xX)B'(x), (1) = %z“(z).

In canonical coordinates in flat spacetime, if we set 4 = +° = 1, we obtain the
familiar action of special relativity:

S = —m/\/l—i2dt.

In order to compute the variation equations in the general case, it will be
advantageous first to introduce the concepts of covariant variation and covariant
differentiation with respect to the parameter 4. Let ¢ be the set of components
of an arbitrary tensor density defined along the world line z/(4), which depends
both on the world line and on the point selected along the world line, i.e., which
is a functional of both z(1) (as a function of 1) and A as a parameter. Let the
world line be modified by a displacement 8z#(1) that vanishes outside a certain
interval. The components of the tensor density will suffer a corresponding
variation 8¢. Let this variation be compared with the variation 8¢ that ¢
suffers under parallel displacement through the interval 6z*(1) [see Sect. 4.1 in
Chap. 4]:

6H¢ =-G1 (]5826.

u ve

The difference defines the covariant variation of ¢:

8¢ = 8p — ¢ = 8¢ + GV $dz°.

u vo

If ¢ is a field defined throughout the manifold, then its dependence on the world
line is a simple point dependence ¢(z(4)), so that

8¢ = ¢ 062",
and its covariant variation is given by
8¢ = ¢.,07".

We note, in particular, that the covariant variation of the metric tensor vanishes:

dg,w = 0.
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By choosing the displacement 8z to be tangent to the world line, we may, in a
similar manner, define the covariant derivative' of ¢ with respect to A:

D, d¢

¢s:m = TG0
If ¢ is a field we have
¢ =0,
and in particular,
&uw =0.

When there is no chance of confusion, the dot will be used in preference to the
symbol D/DA. For example, we shall write
s — Bzu7 A= Bzu’

DA
and so on.

Covariant variation and differentiation, like ordinary variation and differenti-
ation, obey the Liebniz rule when applied to factors in a product. Moreover, when
applied to scalars, they reduce to ordinary variation and differentiation. Using
these facts, together with

8 = 874 + T 2'87°

Vo

d - D
=—08'+TH 877" = —

u
i v D%

we may now express the least action principle in the form

O = 6S = m/(—22)_1/25’”&"82/‘(1)»

D
%m/gu‘,,ivaﬁz“d/l: —/puﬁz"dl,

=T
where

Pup = mgmzv (;“ = T)a

! The covariant proper time derivative may be used to generalize the concept of Fermi—Walker
transport (see Sect. 2.3 in Chap. 2) to arbitrary Riemannian manifolds. A tensor ¢ is said to be
Fermi-Walker transported along a curve having unit tangent vector u* if it satisfies the equation

q'S = (uti, — u”u‘,)GLqB.
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and where, in passing to the last line, 4 has been set equal to the proper time and an
integration by parts has been carried out. We shall normally always set A equal to
the proper time immediately after performing all variations required by a given
problem. We then have

w=—1, whereu" =z"
and
2 2 _ : _
p-+m” =0, withp, = mu,.

The p,, are the components of the four-momentum of the particle.
Because of the arbitrariness of 8z*, the least action principle leads us to the
dynamical equations

pu = 0.

Although in general relativity it is no longer possible to say that the four-
momentum of a free particle is constant, we may say that its covariant proper time
derivative vanishes.

By factoring out the rest mass and raising the index, one may rewrite the
dynamical equations for the free particle in the form

0 — s dzz"_i_l_# dz' dz°
f— Z T e—

a2 T g (5:2)

An alternative version is obtained through multiplication by dt:
du" = —TI'h u'dz’.

This version says that the world line of the particle may be generated by
repeatedly displacing its tangent vector in a parallel fashion along itself. That is,
not only does the world line maximize the proper time, but also it is “self-
parallel.” In a Riemannian manifold, a curve having these properties is called a
geodesic. Equation 5.2 are known as the geodesic equations. Note that the
geodesic equations involve no mass parameter. Hence, all bodies (particles)
behave alike in free fall in a gravitational field. Only under collisions, or in the
quantum theory, does mass make a difference in the absence of external (non-
gravitational) forces.

Geodesics in spacetime may also be spacelike or null. They all satisfy the
geodesic equations. The parameter t, however, is no longer proper time but is
known simply as an affine parameter. Spacelike geodesics neither maximize nor
minimize the distance between any two points on them; they merely make it
stationary. For spacelike geodesics, the affine parameter may be normalized to
equal the arc length. There is no natural normalization of the affine parameter for
null geodesics. It should be noted that the geodesic equations themselves guarantee
the constancy of z* along every geodesic.
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5.1 Isometries and Conservation Laws

Although we have seen that the values of the components of the four-momentum
of a particle are not generally conserved in general relativity, there are cases in
which conserved quantities exist other than the trivial quantity m. Suppose there
exists a contravariant vector ¢ such that the Lie derivative of the metric tensor with
respect to it vanishes everywhere:

0= ‘Cigutr = éu:v + év;/r

Such a field is known as a Killing vector field and the above equation is known as
Killing’s equation. The significance of a Killing vector field is the following.
Suppose we carry out the coordinate transformation

¥ = x4 gt

where ¢ is infinitesimal. Then the functional form of the metric tensor will suffer
the infinitesimal change

dgu = —Loeguy = —eLegu-

However, in view of Killing’s equations, this change vanishes. That is, the metric
tensor looks the same in the new coordinate system as in the old. Speaking more
physically, the geometry of spacetime looks the same from the point of view of the
new coordinate system as it did from the point of view of the old. Now remember
that coordinate transformations can be thought of as generated by diffeomor-
phisms, which in effect drag the coordinate mesh to a new location. In the case of
a coordinate transformation generated by a Killing vector, we can go further. We
can imagine the very manifold as moving or sliding on itself. The invariance of the
geometry under this motion assures that the manifold remains congruent to itself in
its new location. Such a motion is called an isometry.

The existence of a Killing vector field, and hence of an isometry, is evidently a
property of the geometry of the manifold. Isometries may be performed succes-
sively on a given manifold, and the set of all isometries admitted by the manifold
forms a group known as the isometry group or the group of motions of the
manifold. An isometry group is always a Lie group, and in the case of spacetime,
its dimensionality can never exceed 10. The maximum dimensionality is reached,
for example, in the case of flat spacetime, whose isometry group is the Poincaré
group.

If there exists a Killing vector field &, then any world line z/(t), whether or not
it satisfies the geodesic equations, will encounter precisely the same physical
(geometrical) environment after it has been displaced by an amount

82(c) = (" (1))
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as it encountered before. This means that the action will remain invariant under
such a displacement (see present chapter):

D .
0:65:/pl‘ESZHdTZS/Puf”dT'

If the geodesic equations are satisfied, this implies
d
3 (P Ede=0,

for all integration intervals, which in turn implies that p-¢ is a conserved quantity
or constant of the motion:

p - & = constant.

The direct verification of this is immediate:
d ) : v
G PO =Pt E=pulz

1 ,
= muﬂuvéy;v = Emuﬂu‘ (fu;v + év:u) =0.

5.2 Geodesic Deviation

Covariant variation and covariant differentiation with respect to 4, unlike ordinary
variation and differentiation, do not commute. Their commutation law is obtained
by the following calculation:

do

S D - VU 2O v dd) ) -7 a
8 — ;8¢ = 6<GM + G It ¢z > + G, ( T G % )&

_ % (86 + G 902°) — GiT%, (36 + G g )

= G} (T — Tl ) 027827 + (0,61 — 6/G) ) T, T, 42782

V1,0 P

= Gy (T, = Tl = DT — DT, ) 282"

VT,0 ve,T peT VT pt Vo

— GV R/l (]52‘[62{7'

w et
= —G R}, 978"

Problem 22 In the special case that the tensor ¢ is a field, the commutation law of

covariant variation and differentiation of ¢ may be derived directly from the

commutation law for covariant differentiation with respect to coordinates. Carry

out this derivation.
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Solution 22 We have
D
5¢ - 6¢ - 5(9{) #Zu) - m (qs;u&#)

Vel Ry 2V 1l D
= ¢ud' Y + ¢, 87" — ¢,,2'8" — ¢, #m&ﬂ

= (P — 920" = —GTRT  $2'82".

A commutation law like the above may seem terribly abstract and of little
practical importance. The appearance is misleading. In Riemannian geometry
such commutation laws usually involve the curvature tensor, and in general
relativity the curvature tensor gives a measure of the gravitational field.
(Where it vanishes, the field is zero, etc.) Frequently, the derivation of some
important physical result involving the curvature tensor can be most expedi-
tiously carried out by performing a commutation operation that yields the
curvature tensor. The derivation of the equation of geodesic deviation is a good
illustration of this.

Suppose we have two free-particle world lines (geodesics) that are separated
only by a very small (infinitesimal) distance. One may be regarded as a variation of
the other. In order to use the variational calculus, we shall need (prior to the
variation) to have the geodesic equations in the unconstrained form

(-9 "¢] =0

in which the parameter A has not yet been set equal to 7. The change from one
world line to the other leaves these equations intact. The covariant mathematical
statement of this fact is

/2.,
§— [ - } =0,
Di( 2)
with the basic variation 8z#(4) being understood to be the interval between points

on the two world lines having the same value of 1. By interchanging the operations
6 and D/DA, we may convert this statement into the following:

VoT

()
|
|o
&l
s
—~
ISl

o\ —1/2. . 1/2.,.
_ 2) 1 Z”} R* ( ) 2387

:—[(—zz)’3/22"(z-e§z)+(—z) Vo] - Ry (<) e
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We now note that
D
e =0
because of the geodesic equations (#* = 0) themselves, and that
v . ,
R, u'u’P, =R, u'u’,

because of the symmetries of the Riemann tensor. Therefore, the variational
equation may be brought to its final form, known as the equation of geodesic
deviation

i = R ubu’n’, (5.3)

Vot
where 1" is the perpendicular displacement from one world line to the other:

0" = Pis.



Chapter 6
Weak Field Approximation. Newton’s
Theory

In the region of spacetime containing the world lines of the sun and planets,
spacetime is flat to a very high degree of approximation. This means that a
coordinate system may be introduced for the whole solar system which is very
nearly canonical, i.e., inertial. In such a coordinate system, the metric tensor may
be written

Suv = Ny + By, where || Se < 1, VYu,v. (6.1)

This coordinate system is not unique. In addition to rotations and weak (low
velocity) Lorentz boosts, general coordinate transformations x* = x* + £* may
also be introduced all of which leave the quasi-canonical character of the coor-
dinate system intact. In the latter case, we must only require

|¢h|<e and I ol0|Se, Ya,v. (6.2)
To first order in small quantities, A, suffers the transformation
Ijl;w = h,uv - éy,v - éwu Cyu = VI,WCV7

under such a change in coordinates.
It is sometimes convenient to fix the coordinate system partially by imposing
the supplementary condition

=0,
where
1 g
l,uv = huv - E”]yvhv h= hg’)
1 g
h,w = luv — E"#"l’ = lg = —h.
B. DeWitt, Bryce DeWitt’s Lectures on Gravitation, 71

Edited by Steven M. Christensen, Lecture Notes in Physics, 826,
DOI: 10.1007/978-3-540-36911-0_6, © Springer-Verlag Berlin Heidelberg 2011



72 6 Weak Field Approximation. Newton’s Theory

Here and elsewhere when working in the weak field approximation, we shall use
the Minkowski metric to raise and lower indices. Because /,,, obeys the coordinate
transformation law

jyv = luv - iu,v - év,u + 17#\76:7(;»

whence
TR quv 0y Vi Ou __ quv 0y
l,v - l,v ey T é,v - i,a - ly + Sy

it is evident that /,, can be made to satisfy the supplementary condition by
choosing & to be a solution of the wave equation with a source:

Per = g =11,

The supplementary condition does not fix the coordinate system completely, for it
is left intact by low velocity Lorentz transformations and by coordinate transfor-
mations that satisfy the homogeneous wave equation

2+ = 0.

Such “coordinate waves” are sometimes eliminated by imposing boundary con-
ditions, leaving only the Lorentz transformations.

In the case of the solar system, the spacetime geometry has additional prop-
erties not possessed by all weak-field geometries. These properties stem from the
fact that the relative velocities of all the planets are very small when compared to
the velocity of light. If (as we may) we assume that there is a negligible amount of
gravitational radiation in the solar system, then the sun and planets themselves
become the primary sources of the &, term in the metric and, because of the
slowness with which the planets move, it follows that there exist quasi-canonical
coordinate systems, e.g., systems fixed with respect to the sun, in which all time
derivatives h,,o may be neglected when compared to spatial derivatives h,,;
(i =1, 2, 3). Such coordinate systems may be called quasi-stationary, and the
gravitational field itself may be called quasi-stationary. Any two quasi-stationary
coordinate systems are connected by (a) a rotation, (b) a general transformation
X = x" 4+ & in which the &, besides satisfying the previous conditions, have
negligible time derivatives, or (c) some combination of the two. Under the
restricted class of transformations (b), the components of 4, and [,, transform
according to

hoo = hoo, 700 = loo — &y,
hoi = hoi — & loi = loi — &o,s (6.3)
BU = hij - éi,/’ - éj,i? lj = llj 511 /1 + 5ljgkk
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The supplementary condition can be imposed upon 7,1}, by choosing & to satisfy
Vi = =1 (6.4)

It will be noted that A is the same for all quasi-stationary coordinate systems,
being unaffected either by rotations or by restricted transformations x* = x* + &*.
This uniqueness makes it possible for us now to establish contact between for-
malism and observation — more precisely, between Einstein’s theory of gravity
(general relativity) and Newton’s. Suppose we have a freely falling body (particle)
moving slowly (compared to light) with respect to a quasi-stationary coordinate
system in a quasi-stationary gravitational field. The world line z(t) of this body
satisfies the geodesic equation. Because of the slow motion and the fact that
lh,,| <1, we have

d*z d*7 0 dz! dz°

—=— (t=2 d |— — =1,

e e (7)) ad e < g

so that the geodesic equation becomes

a7z &

O0=—+4+T)=—5+=(h hioo — hoo.i
a2 ) a2 +2( 00 + hioo — hoo)
dz 1

= M

In the case of quasi-stationary weak fields, we may evidently make the iden-
tification

oy = —2®, (6.5)

where @ is the Newtonian gravitational potential.
It is useful to examine the conditions under which we may expect the gravi-
tational field to be quasi-stationary and weak. First, we must have

P« 1.
But in Newton’s theory,

GM
P~
where M is the mass of the object (or objects) producing the gravitational field, R is
the distance from the object, and G is the gravity constant. Hence, it must not be
possible to get closer to the object than a distance R satisfying

R> GM,

before the idealization of regarding the object as a mass point breaks down.
Effectively this means that the mass of the object must be spread over a distance
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R satisfying the above condition and hence that the density p of the object must
satisfy

GM 1
Gpr~ — <K —. 6.6
P~ < amy (6.6)
It will be noted that a test body falling from rest at infinity to the surface of this
object then acquires a velocity of only

GM 1/2
v~ (7) < 1,

and hence that the slow motion condition will generally be maintained even under
near collisions.

Another point of contact between formalism and observation can be established
by referring to the coordinate system attached to a rotationless constantly accel-
erated rigid medium, the metric of which is given in Chap. 2. This metric is static
and, over a range of ¢ satisfying

g < 1,
may be regarded as quasi-canonical. In this range we have
hoo = —2&ag;,
which corresponds to an effective Newtonian potential
@ = Elay,.

This is a statement' of the principle of equivalence: over a small region, the effects
of a constant acceleration cannot be distinguished from those of a uniform grav-
itational field. (Of course, no real gravitational field is everywhere uniform.)

Still another point of contact can be established by referring to the phenomenon
of the tides. The description of the tides in Newton’s theory is based on a com-
parison of the dynamical equations of two test bodies that are separated from one
another by a small interval #:

' This is the original principle of equivalence. Nowadays it is often referred to as the weak
principle of equivalence to distinguish it from the strong principle of equivalence, which says that
every valid Lorentz invariant theory can be immediately generalized to a valid general relativistic
theory by first presenting the formalism of the theory in standard Minkowski (canonical)
coordinates and then converting all ordinary spacetime derivatives to covariant derivatives.
Unfortunately, the strong principle of equivalence is not fool proof. It is sometimes possible to
present a Lorentz invariant theory in two different forms that generalize to distinct general
relativistic theories. The latter theories differ from one another by the presence or the absence of
certain terms involving the curvature tensor.



6 Weak Field Approximation. Newton’s Theory 75

d*z d?
— = —P,(2), -, :
o= i), 35 (@) = —dilz )

Subtracting one equation from the other, we obtain

d2ni

- —® . (6.7)

The analogous equation in general relativity is the equation of geodesic deviation.
To obtain the form that this equation takes in quasi-canonical coordinates, we must
first examine the Riemann tensor in these coordinates; in particular, we must
examine the relative magnitudes of the various terms of which it is composed. Let
L be defined by’

&
|hy\',ar|,§,iv VM,V,O'7‘E.

(L may be regarded as the minimum distance over which any of the 4, changes by
an appreciable fraction of itself.) By integration, we may then infer that

&
|hu\na|§Z; V,u, V,0.

From this it follows that the terms involving first derivatives of the metric tensor
are of order 82/L2, while those involving second derivatives are of order /L2,
Therefore we keep only the latter, obtaining [see (4.2)]

1
vam = - E (h;w,vr + hvwm - h,ur,va - hva.ur)~ (68)

We must also determine the form taken by the second covariant proper time
derivative:

it = = — i+ '’
d /d dn’
== ( n" + T n'u ) + It (dn + va’/ uﬂ)u
d2 1 dn’
= S+ Tl 0" + 20, Zhu” — T T, (' =

In passing to the final form, we have used the geodesic equation satisfied by u*. By
the arguments we applied to the Riemann tensor, the last term is now to be dropped
in comparison with the term in I}, ..

In the case of slow motion in quasi-canonical coordinates, we have (u") =
(1, 0, 0, 0), ;10 = 0, T = ¢, and the equation of geodesic deviation takes the form

2 Because, as we shall see later, the hyy satisfy a set of differential equations, none of the £, ;- is
ever infinite and therefore L > 0.
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dz’?i i i
@JF ool +200,

dﬂj P
ar = ROOj'Tl'

If, in addition, the field and coordinates are quasi-stationary, we have

Ty =0,
l. 1 1
Iy =Ty = 3 (8510 + &ioj — &) = 3 (hioj — hjo.i),
,- 1 1
Rooj = Riooj = =5 (hiogj + hojio — hiso0 = hooss) = 5 oo,
and hence,
U S D
dt2 - 0j,i 0i,j dr ) 00,571 -

We note that all the terms in this equation are invariant under the restricted class of
coordinate transformations given by (6.3), which maintain the quasi-canonical and
quasi-stationary character of the coordinate system. The second term on the right is
just the Newtonian term found in (6.7), if we again make the identification
hoo = —2@. The first term on the right is a new term that is predicted by Einstein’s
theory but not by Newton’s. The field ho;; — h; j appearing in this term is known as
the Lense—Thirring field. We shall see later that it is normally extremely weak and
becomes appreciable only in the vicinity of rapidly spinning matter.’

In the case of the quasi-canonical coordinate system attached to the constantly
accelerating medium, we note that sy, = 0 and hgo;; = 0, and hence there is no
tidal effect. This is not surprising, as we already know that spacetime is flat in this
case, so that R,,,; = 0. But it emphasizes the fact that it is the presence of tidal
forces that signals the presence of a real gravitational field as opposed to a uniform
or acceleration field.

In the presence of a mass M located at the origin of coordinates, we have

M i
oM ®; = GM -,
x| x|
GM ,_ .. X
—P ;i =—— (3% —5;), F=—, |x|#0.
) |x|3( .I) |x| | |

From this one may easily see that the tidal forces exerted on any spherical body in
the neighborhood of this mass tend to draw the body out into a prolate ellipsoid
having its long axis in the direction of x.

3 The gradient (hg;; — ho;j)x of the Lense-Thirring field is, in quasi-stationary coordinates,
equal to 2Ry It can therefore be defined, in these coordinates, as a line integral involving the
Riemann tensor.
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Problem 23 Let a free falling fluid spheroid of mass m and radius r be subject to
the gravitational action of a mass M at a distance |x| > r from the spheroid’s
center. Obtain an expression for the difference in height between high tide and low
tide on the spheroid as a function of m, M, r, and Ixl. Hint: Let ni be the com-
ponents of the radius vector from the center of the spheroid to a fluid particle on its
surface. Because Newtonian gravitational fields may be superposed, the dynamical
equation of the particle under the combined action of the mass M and the rest of
the spheroid is

e
a2 ]’

cinj  GM ;i o
(B — oy ——3n' +f = _?+f7
[l n
where f is the supporting (pressure gradient) force per unit mass at the surface of
the fluid and the “potential” ¥ is given by

GM . . . GM
= ———= (3X¥ — o' ——

2lx|? / In|

GM .. .. GM GM ,_,
- e (B — dy)nomy — ——+ r—3’708'i )

where 7}, is the value ' would have if M were zero and x' is the deviation from
this value. At equilibrium, we must have d*;'/d * = 0 and hence /' = 0W/0i'.
Since f can act only perpendicularly to the surface, it follows that the surface must
be equipotential, i.e., ¥ = constant. Neglecting viscous forces (drag) and the
effect of the continents, compute for the earth the difference in height between
high and low spring tides, i.e., the tides when the sun and moon are either at
opposition (full moon) or conjunction (new moon), using the following data:

mg =598 x 10* kg, re =6.38 x 10°m,
Mo =199 x 10¥kg, |x|, =1.50 x 10" m,
Muoon = 7.35 x 102 kg,  |x|,.0, = 3.84 x 108 m.

moon

Solution 23 High tide occurs when #, = X and low tide occurs when #, -* = 0
(71 = ni/In|). Let the value of #,-8y in these two cases be 37 and 3.1, respec-
tively. Then

GMr: GM GM

¥ = constant = — |x|3 . =l H
GMr* GM GM
=3 . T 3 oL,
2[x| r r
whence
GM 3GMr?
— (8un — o) =

2 2l
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and therefore

3M
O o

For the earth we have

3/ (Mo Mmoon
B — dup =5 —= <—5+ - )
m@ |x|O |x|m00n

3(6.38)* x 10% ( 199 x 100 7.35 x 102 )

=3 +
2 598 x10%* \(1.50)* x 103 (3.84)° x 102
3(6.38)" . 4 3(6.38)° ,
== 0.59 x 1073 4+1.30 x 1073) == 1.89 x 10
2 50 (09910774 1305107 =570 x 1.89 x

=0.785m.



Chapter 7
Ensembles of Particles

Suppose a region of spacetime is occupied by a large number N of identical
particles. Suppose that they possess a wide variety of momenta and that there are
so many of them that their spacetime and momentum distribution may be taken as
effectively continuous. We may then introduce a continuous function f(x, p) of x"
and p; such that f(x, p)d3xd3p is the number of particles in the volume element d’x
(= dx'dx?dx?) at the point x at “time”' x° having momenta in the range d’p(=
dp,dp,dp3) around p;. Let us ask the question: How does f transform under general
coordinate transformations?

The particles specified by x*, p;, d®x, and d’p are well defined and the number
fx, p)dxd®p therefore has significance independently of the choice of the coor-
dinate system. That is to say, f(x,p)d’xd’p is an invariant. Hence, if we find the
coordinate transformation law for the product d*xd®p, then we shall have found it
for f.

Let us look first at d°p, but instead of considering the 3-vector p;, let us consider
the 4-vector p,. This is the 4-momentum or energy—momentum 4-vector of a
particular particle at a particular spacetime point x*. It is therefore a local covariant
vector at that point and transforms according to

_ ox’
py = @ Ve

For an actual particle p, is constrained by the conditions

P>0,  pP+mr=0,

' x%is not strictly a “time”. However, we shall assume here that hypersurfaces of constant x° are

spacelike [which means det(g;) > 0 and g% < 0] and that x° increases as one moves toward the
future in any timelike direction.

B. DeWitt, Bryce DeWitt’s Lectures on Gravitation, 79
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and is said to lie on the mass shell. Let us, however, for the moment consider an
unrestricted increment: dp,, in p,,. This increment satisfies the same transformation
law as p,, itself:

-~ ox’
dp w = ﬁdpv.

From this, we obtain the transformation law for the energy—momentum 4-volume
element:
0(x)
d'p = —=d'p,
p &) p
where d*p = dpodp;dp.dps. We now recall that the magnitude of the determinant
of the metric tensor is a density of weight 2 and hence transforms according to

Therefore, the combination g~'/2d*p is coordinate invariant; it is the value of the
volume element d*p in a coordinate system in which the metric becomes locally
canonical.

Now let ¢(x, p) be an arbitrary scalar function of the x* and p,. We may restrict
this function to the mass shell by multiplying it by

0(p°)S(p* + m?).

The latter quantity is invariant under coordinate transformations that maintain the
orientation of x° and the spacelike character of the surfaces x” = constant. Hence

the integral
o) = g2 (x) / B0, 0) (") + m?)d*p

is a scalar. Now under a change dp, in the 4-momentum, the quantity pr+m?
suffers the change 2p#dp,. Hence, if we hold the p; fixed and integrate over py,
then we may write

d(p* + m?)

d(.pz + m2) = zpodp07 or dPO = 2p0 3

and
d3p
_ 12
D(x) =g / /¢ﬁ7

where ¢ and p0 are now restricted to the mass shell. However, ¢, thus restricted, is
still a scalar. Therefore, it follows that
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Lpdp o
1/ 2—0 is coordinate invariant.

To build an analogous invariant out of d*x, we begin by assuming that all the
particles in the phase space volume element at (x, p,) suddenly stop interacting
with one another (if they interacted before) and start moving like free particles.
Apart from some slight fuzzing due to the distribution of momenta in d’p, the
world lines of these particles will then fill a tube as shown in Fig. 1.

A natural invariant associated with this tube is the 3-volume of its orthogonal
Cross section, i.e., its size as viewed in its own rest frame. To determine this cross
section, we introduce a timelike unit vector n, orthogonal to the hypersurface

xo = constant:

00y —1/2
(m) = ((=¢*)7",0,0,0).
From the laws of minors and inverse matrices, we remember that

g% = (—g) ' det(gy).

We also remember that the magnitude of the 3-volume of the intersection of the
tube with the hypersurface x° = constant is

1/2
[det(gij)] / d®x = 81/2(—g00)1/2d3x.

Now this hypersurface does not generally intersect the tube orthogonally. In order
to get the 3-volume of the orthogonal section, we must multiply the above
expression by

n-u= (—gOO)_]/zuo.
Multiplying by an additional factor m, we find therefore that

gl/ 2p%d*x  is coordinate invariant.

Finally, multiplying this with the invariant 3-momentum element previously

obtained, we see that the factors g'/2p° cancel and that the ordinary phase space
volume element

Fig. 7.1 World tube of non-
interacting particles

XO: constant
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d’pd®x is coordinate invariant.

This in turn implies that the distribution function f(x, p) is a scalar.
In order to display the scalar property of f explicitly, it is often convenient to
replace f by a scalar function F of the x* and all four of the p,, viz.,

f(x,p) = F(x,p) ’po > 0,p2+m2=0"

As there is an infinite ways of extending f off the mass shell, there is no unique
way of choosing F. However, any two choices, F; and F,, will be related by

Fi(x,p) = F2(x,p) + Q(x,p,p* + m*), where Q(x,p,0) =0, Vx* p,,

and the scalar function Q has no effect on any physical computations involving F
or F, on the mass shell. From now on we assume some particular choice has been
made for F.

The function F, although a scalar, is a generalization of the usual idea of a
scalar function because of its dependence on the p,. This has the consequence
that its covariant derivative with respect to a coordinate is not just a simple
gradient as it is for an ordinary scalar function. It is easy enough to see that its
derivative with respect to p, transforms as a contravariant vector. Its ordinary
derivative with respect to x*, however, generally has no simple transformation
character.

To obtain the appropriate definition for the covariant derivative we return, as
always, to the idea of parallel displacement. As F is a scalar, it must suffer no
change in magnitude under parallel displacement through an interval dx* :

oF =0.

However, we may break dF up into a part that arises from its dependence on the x*
and a part that arises from its dependence on the p,.:

oF
OF = 0,F + —dp,.
Opy #

As the p,, are the components of a covariant vector, we have
opy = szp(rdxv-
Therefore,

oF '
O, F = f@szpadx‘.
n
The covariant derivative of F is now defined, in the usual manner, by

Fdx* = F(x + dx,p) — [F(x,p) + 0,F (x,p)],
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which yields

oF . OF

Fu=3a+ wPog,

Problem 24 Show that (pz); « = 0 and use this result to demonstrate that if

Fi(x,p) = Fa(x,p) + Q(x,p,p2 + mz), where Q(x,p,0) =0, Vx",p,,
then Fy,, and F»,, coincide on the mass shell.
Solution 24 We have
2
(), = giﬂ I}upagézv)
= g'ipwo + 20, pop’
= (~&wou+ 20 0)P"D”
= (—8vou t 8ovuu + Zouy — Guua)P'P” = 0.

For a quicker derivation, one may simply introduce a coordinate system in which
the g, vanish at x. As Q(x, p, 0) = 0, it follows that derivatives of Q with
respect to its first two arguments vanish on the mass shell. Therefore, covariant
differentiation, like ordinary differentiation, obeys the chain rule, we have

2 2
Fli,ll |p2+m2:0 = F25,“ |p2+m2:0 + Q?(P +m ):u |p2+m2:0
= F21,,U|p2+m2:0’

where Q3 denotes the derivative of Q with respect to its third argument.
Suppose none of the particles in the ensemble is either created or annihilated in
the course of time, so that the total number of particles remains constant. This

number is given by
/f./dfxp

= /j0d3x = /judzﬂ7

z

where

3

= V@Pﬂp
/

—2 / P p)0G0)5(0 + mP)d'p

and X is the hypersurface x’ = constant. The quantity j* is evidently a contra-

variant vector density of unit weight. From this fact, it follows that the integral
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J; 5j'd%,, with X fixed in spacetime, is invariant under coordinate transformations.
In order to show this, we introduce another contravariant vector density k& which is
identical with j* in a finite neighborhood of X but which vanishes at a finite
distance to the past of 2. We may then write

z
/ X, = / k'dx, = / Kt dx,

p) 2

and the question reduces to whether or not k/, transforms as a density of unit
weight. That it does follows from the fact that the covariant divergence of a
contravariant vector density of unit weight reduces to the ordinary divergence:

K = K TR — ) = K

Therefore, |, 5j"dX}, is independent of the choice of coordinates.

Now not only is fzj"dZ « independent of the coordinate system, but it is also
independent of X. This follows from the fact that, for any spacelike hypersurface, a
coordinate system can be found in which that hypersurface is given by x° =
constant and in which the integral reduces to | °d*x = N. Therefore,

2
0= / Az, — / jdz, = / Judtx,
21 22 Zz

for all spacelike 2| and X,. As 2; and 2, are arbitrary, the spacetime region
between them can be reduced to an arbitrarily small neighborhood of any space-
time point. In order that the above relation hold for all 2| and 2, therefore, we
must have’

wo_

T = 0.
Since j* is a sum over timelike future-pointing 4-vectors, it is itself timelike.
Therefore, we may introduce the quantities

.2)1/2

p=(-j /2

. po=g "p, W =plj

whence
w=-1, j=p, (pu"),=0.

Here, u" is the mean 4-velocity of the particles at x and may be regarded as the
flow vector at x of the fluid medium formed by the particle ensemble. p, is the

2 After we have this, we may let X be any connected hypersurface that intersects completely the
support of the vector density j*, cutting all its flow lines an odd number of times. Then, X need
not be spacelike, even in part.
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proper number density of the particles at x, i.e., the particle density as viewed in a
local Minkowskian rest frame of the medium at x.

In the special case that the particles of the ensemble are free particles that do
not interact with each other, i.e., the world line of each is a geodesic, the con-
servation law !, = 0 reduces to a simple condition on the distribution function
F(x, p). As geodesic motion is derivable from a variational principle, a Hamilto-
nian formulation of the basic equations can be set up, although we shall not do this
here. As of the canonical invariance® of the phase space volume element d*xd’p
and because the motion in phase space of any particle may, through the Hamilton
equations, be regarded as the unfolding-in-time of a canonical transformation, the
phase space volume occupied by the particles originally in d’xd*p remains con-
stant in time. However, because the number of particles in this volume element is
fd*xd®p and because this number is constant, one may conclude in turn that f has
vanishing total time derivative. This is Liouville’s theorem.

As it makes no difference whether the total derivative is taken with respect to
time or with respect to proper time, we may recast Liouville’s theorem in the
covariant form:

= g — aijcﬂ aldp e
dr  Ox¥ Op, dt
6F oF

~ o +@(W+FP“>

OF
—F m i _IFA ﬂ7
uX + apﬂp,u m P
using p, = 0.

Problem 25 Let G(x, p) be an arbitrary scalar function of the x* and p, having
effectively compact support in p-space. By making use of the definition of the
covariant derivative of such a function, together with integration by parts, show
that

é%/pG@pﬂp U/”G( p)d'p.

(Be sure to write p* = g"'p,.) Use this result together with the first result of
Problem 24 to show that the condition F,,p" = 0 guarantees that j!, =

Solution 25 We have

0 oG
m 4 4
au/ Gd*p /(HmG+paJd

g v g aG

Coordinate transformations can be shown to be canonical transformations, and hence the
coordinate invariance of d*xd®p is a special case of this.
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— / (p'uG;'u —P"8""8sG + ¢ T5,psG + p”rzﬂc;) d*p
= [ P16+ (e + T+ Py
= /p’“‘G:#d“p.
Therefore, using (p°)., = 0 and 3(p°)d(p* + m?) = 0, we have
B = =2 [ PR )OO + ' =0,

For a quicker derivation, one may introduce a coordinate system in which the g,;, »
vanish at x.

Problem 26 Milne’s Cosmology. Show that the distribution function

F(x,p)=2Z / o(x — Ap)dA

satisfies the condition F ,p" = 0 for a free particle gas. Here spacetime is assumed
to be flat, the coordinates are assumed to be canonical (Minkowskian), Z is a
normalizing constant, and the integrand is the 4-dimensional delta function of
x* — Jp". Obtain the function f(x, p), and show that the momentum distribution is
isotropic, with all momenta represented. Show that, at time K = 0, all the particles
are concentrated at x = 0, while at time x” = 7, those particles having velocity
v are located at x = vt. The distribution is evidently one that corresponds to an
explosion that takes place at the origin at time x° = 0. For any particle, the proper
time lapse since the explosion is therefore

T = [0() — 0(—x")] (—)"/%.
Show that
7 = Zm?[0(:x°) — 0(—x")]0(—x*)x* (—x*) 2,

po = (=) = Zm0(=)(—) 7 = Zm*0(—)|e| 7,

and hence that the world lines of the particles fill the entire interior of the light
cone through the origin (— x* > 0).

By taking the particles to be galaxies having roughly identical masses, we
obtain a model for a Big Bang cosmology in which gravity is neglected. As the
4-dimensional delta function is a scalar under Lorentz transformations, the dis-
tribution function F has the same form in all Lorentz frames having the same
origin. This means that the “universe” has the same appearance as viewed from
every galaxy. To determine this appearance, we may choose an “observer” galaxy
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having zero velocity. As optical information comes to this galaxy along its past
light cone, one may conveniently take this cone as the hypersurface X. Let (x) be
a point on 2 and let r be the apparent position of the galaxy whose world line
passes through that point, i.e., the actual position of the galaxy at the time it
emitted the radiation received by the observer galaxy at rest at the origin. If the
vertex of the cone X is at (¢, 0, 0, 0) with # > 0, then (x*) = (¢ — r, r). The surface

element of X may be taken in the form: (dX,) = (d*r,7d’r), where # = r/r. Use

this to express the integral | 5j#d2 ), as an integral over the volume elements dr of
apparent position. Although the latter integral diverges, showing that the total
number of galaxies is infinite, the integrand has an immediate interpretation as the
apparent or optical density of galaxies as seen by the observer galaxy at the origin.

Obtain this optical density as a function of r and 1.

Solution 26 We have

F.p'=2 / Pl u(x — Ap)di = —-Z / a&(x — /p)di

= —Z[3(x = 7p)| === 0,

A=—00""

for all finite x*, and

whence

f(x.p) = l%&(x _—

Then

ji=2 / PF(x,p)0(p)3 (0 + m?)d'p

2Z/d4p / dip"s(x — 2p)0(p°)o(p* + m?)
=27 / 27x0(0 7 06472 + mP)dA.

To evaluate this last integral, let & = )72, Then

1 1
A=+ 173 =482, di= ;55—3/2(15, 730 = —Efdé,
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and

po = (=7)'1% = Z0(~) (~) P = w0~ e
On 2, we have
—x*=(t— r)2 —r =7 —2r=1(t - 2r),
t—r4rr
1Az, = Zm?® / ——d’r = / &’r,
/] ! 2(t —2r)? Pop
z r<t/2

where

Zm?
— M -2
oo = i 2 (=)

Problem 27 As the total number of galaxies in the preceding problem is infinite,
one might argue that, if all the galaxies are assumed to have the same absolute
luminosity Ly, then the universe will appear to be infinitely bright. Let L be the
apparent luminosity of a galaxy at an apparent distance r. If the time of obser-
vation (made by the observer galaxy at the origin) is ¢, then the recession velocity
of this galaxy is #/(r — r). Express L as a function of Ly, t and r. Now let d>® be the
radiation energy flux from the galaxy through a surface element d*S orthogonal to
the line of sight and located at the origin. The apparent brightness of the galaxy is
then
o L

B=——-= .
d’>s  4nr?

By summing this quantity over all the galaxies lying in a solid angle d>Q from the
origin, obtain the total brightness of the sky per unit solid angle, i.e., d°Byy/d*Q,
and show that it is finite for > 0. (Note that the calculation is somewhat unre-
alistic in that it assumes L to be the same for all galaxies and hence fails to allow
for aging effects.)

The immediate data received by an observer at the origin who views the above
“universe” are red shift z and brightness B of individual galaxies, and the galactic
distribution function D defined so that Dd*Qdz is the number of galaxies in the
solid angle d*Q (from the observer) that are observed to have red shifts lying
between z and z 4 dz. Obtain B and D as functions of Z, m, L, ¢, and z. Check your
answers by obtaining d?Bq / d*Q directly from B and D.
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Solution 27 We have

r t—2r t
V= : l—v= ; l+v=—-"
t—r - t—
L 1—v ZLO_(t—Zr)2
1+v g
Hence,
dz—:/pBrzdr:4—/pLdr
0 0
Zm’Ly | 1 (t—2r)
= mLO/O(t—2r) 2( zr)dr
4n / t(t —2r) t
t/2
Zm? Ly q
= r
4713 ’
0
and finally
dthOK - Zm2L0
dQ  8ur?
Now
14+v t
1+2)7% = = t—2r=
(1+2) l—v =27 " (1+2)°
2 L
[+’ —1]r=20+27,  r= 2r9, g b
2(1+z (1+2)
so that
L Ly 1
CAnr? w224 7)?
Further,
Zm?
pop 71‘—3(1 +Z)47
and
Zm? 22427 4| 1 2
Ddzzpoprzdr: ’?(I—FZ)M( +Z)4t3 _d +z2 ,
& 4(1+z) I+z (1+2)

89
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SO
= lZmZZZ(Z + Z)2
47 (142)°
Finally,
d’By /OC DB Ly [ dz Zm?*Ly
= Z = = :
d’Q / 4n? J (1+2)° 8u
as above.

7.1 Gases at Equilibrium

An ensemble of interacting particles that has attained a state of quasi-equilibrium
is called a gas. True equilibrium, in which the parameters of the gas remain
constant in time, cannot be reached unless spacetime possesses a timelike Killing
vector field &, If & is the only Killing vector possessed by spacetime, then, at
equilibrium, the flow lines of the gas must be parallel to £. Moreover, if the gas is
sufficiently dilute or if the interparticle forces are sufficiently weak that the time
average of the interaction energy is negligible compared to the kinetic energy of
the particles (Boltzmann’s point-collision approximation), then the standard
arguments of statistical mechanics lead to the conclusion that the equilibrium
distribution function of the gas must be simply a function of the only constant of
motion possessed by the free particles, namely &-p :

F(x,p) = (¢ p).

The form of the function ¢ will depend on the temperature and total number of the
particles and on their nature: classical, quantum, boson, fermion, massive, mass-
less, conserved, not conserved, etc. If spacetime possesses more than one inde-
pendent Killing vector field, then the vector ¢ above may, but need not, be
replaced by an arbitrary linear combination of these. The only requirement is that
the combination be everywhere timelike in the region occupied by the gas.

It is easy to verify that the above distribution function leads to a mean
4-velocity or flow vector for the gas that is parallel to £*. Let

P(y) = / ' @ (y)dy.
Then
7 =2 [ patep)ow)sp? + i)'y
)

=22 [ v p0ws? + sy
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The last integral is a scalar density at x which depends only on g, and &*. It must
necessarily have the form:

[ p000100° + ety = X2
for some function X,,,. Therefore,

J'=4g'l2x,(&)e,

m

and hence j* and u* are parallel to &. We have, in fact,
- (_52)71/25;4'

Problem 28 Suppose the particles of a gas at equilibrium, having a distribution
function of the form F(x,p) = @(&-p) where & is a timelike Killing vector,
suddenly ceased to interact with one another. Show that the distribution function
would remain unchanged. (Hint: Show that F is an allowable distribution function
for an ensemble of non-interacting particles.)

Solution 28 We have
(€)= Epv+ T, = E py.

Therefore,
F‘-,upﬂ = ¢/(f 'P);/Ap“ - gp’é:"#pvp”

= %qjlpﬂpv(éy;v + év:,u) =0,
as required.

In equilibrium statistical mechanics, the temperature enters through a Lagrange
multiplier that is introduced, in the computation of the most probable distribution,
to account for the conservation of the sum > &-p over all the gas particles. We
may introduce it here through a simple rescaling of & and @ so that the distri-
bution function takes the form:

F(x,p) = A®(fo< - p),
where @ is a universal function depending only on the nature of the gas and A is a
constant proportional to the total particle number when this number is conserved
under a temperature change, and unity when it is not. The Lagrange multiplier f,
has the physical interpretation
1
ﬁ 0 — k_T(),

where T is the local temperature of the gas (measured by a thermometer!) at a
point where &* is chosen to have the normalization ¢&* = —1. The local temper-
ature at an arbitrary point is given by
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1
B= T’
where
B=(=&)"po,
so that
F(x,p) = A®(Bu - p).
Evidently,

T = (—62>71/2T(),

so that the local temperature is not generally a constant, even at equilibrium, but
varies from point to point. Although this result was obtained by analyzing an
idealized gas it must also hold true for real gases, since they may be placed in
contact with idealized gases, at least in thought experiments. The local temperature
at equilibrium satisfies a differential equation that is an immediate consequence of
the Killing property of &“. To obtain it, we first compute

oy = (=&) P + (=8) 28,86,
ﬁu;vﬁv = (_52)715;1;\'5\) + (_62)725;150-5‘!50;\)
= (&) g
The differential equation immediately follows:

E)yEE Ty + (—8) LT

T+ ' T = (—
(=) (Epy + E)T
0.

Note that the temperature is constant along any flow line:

T, u" = 0.
Problem 29 Suppose the constantly accelerated medium of Problem 10 is a gas.
By finding a Killing vector that generates the flow lines show that this gas can be at
thermal equilibrium, and obtain an expression for the variation of 7 with the
Lagrangian coordinate &, (Hint: Use the metric for the system of coordinates
0, ¢")

Solution 29 As the Killing vector in the coordinate system g, & try

(&) = (1,0,0,0).
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Check:
éy = 8u05
Cuw + o = Sy + S — ZFZv‘fff

= &uo,v + &v0,u — 2F()uv
= 8w,0 = 0,

because the metric is static. Now
2 2
& =g =—(1+ad)",

whence

T
T — (—ey 2 = 0
( é) 0 1+a§/

Note that the temperature decreases with increasing &' at the same rate as the
absolute acceleration.






Chapter 8
Production of Gravitational Fields
by Matter

We have examined, in an introductory way, the effect of gravity on matter, or at
least on particles. In order to study the complete interaction between gravity and
matter, in particular the production of gravitational fields by matter,' we must
endow the gravitational field with dynamical properties. For many reasons, e.g.,
conservation laws, quantization, etc., it is desirable to do this by means of a
variational or least action principle. To the action functional Sy, for the matter,
suitably generalized (by the strong equivalence principle) to curved spacetime, one
adds an action functional Sg for the gravitational field. Sg must be coordinate
invariant and a functional of the metric field g,, alone. The most general such
functional that leads to differential equations of order no higher than the second
has the form

Sg = K/gl/sz4x—|—/’L/gl/2d4x7
where x and 1 are certain constants.” The total action is then
S =S¢ + Swm, (8])

and the dynamical (field) equations are

35 3Sc | 8Sw
68 uv 58 v 58 v '

o35 _ 3
Y Y 2

! The term ‘matter’ will here include electromagnetic fields.
2 The minus sign attached to the 2 is conventional. A can, in fact, have either sign.

B. Dewitt, Bryce DeWitt’s Lectures on Gravitation, 95
Edited by Steven M. Christensen, Lecture Notes in Physics, 826,
DOI: 10.1007/978-3-540-36911-0_8, © Springer-Verlag Berlin Heidelberg 2011
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where 8/8g,, and 5/3®" are the operators of functional differentiation and the @
are the dynamical variables that describe the matter.

In order to compute the functional derivative 8Sg/8g,,, we first compute the
variations

1
8['5,; = Sgufrrva + Egm(Sgw,n' + Sgw,v - nga,r)

1
= —g"T" 8g:p + Eg*”(iigma + 880 — O8voir

+ F‘lc}asgp" + FCUSgTﬂ
+ FZTv8gI)¢7 + Fg\'SgTP
- Fﬂv)rsgpa - F§r6gVﬂ)

1
= Egl“ (Sg‘rv,a + 8oy — nga,r)a

oR,  =oI.  —9dI"

auy av,u au,v
T P T T TP T P
+6FWFW +FW6FW SvaF(m vaarmm
=0dly,, — o8I,

—I,,8r,, +1% 8l +173I7,

Vi

+ 15800, — 08I, — I 81
+ 08 + I8 8%, — I 8I% — I 817,
=3It —8I"

avii auv

1
- Egrp(Sgﬂﬂ;"ﬂ + 88 pvion — O8avipu — 08poyy — O8puov + O8ayipv)

= _%3Tp(58p#;ov + 88vipu — O8pvion — Oouspy
+R,8870 + R.,,88,7), (8.2)
OReouy = R,y 082i + 8uiORL,,

= _%(Sgw;av + 08ovitu — O&wvion — O&opy
+ Ri'mﬁgm - Rﬁmﬁgd)

= —%(Sgwm + 08ivs T Oovieu + O8aviue-
— 88rviou — 88rviuo — O8ary — Ogopuve
+ R, 88 + R}y, 88c1 + Rl g + Ry, 080
—R},,88: — R},,88w — R.. 8¢, — R, 880
+ 2R 80 — ZR();WSgT;')
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1
_Z(Sgw;av + Sgr,u;va + Sgav;w + Sgav;m~
- 681\);0# - Sg‘rv;ya - 6go';m:v - Sgo;t;v‘r
_Rjrasgiﬂ + R/);‘msgiv - Ri‘uvagi‘r + RiHV8g16> )

OR,, = OR},, =0I",  — oI

nav uv;o uo;v

1
= Egm (Bgf,u;va + 8grv:;w - Sg/lv;ro' - Sgru;av - 8gro;uv + Sgua;r\))

= Egm (Sg/w;vr + ngu;m - Sguv:ar - Sgo'r;;w)a
SR = 84" Ry + g"5R,
= g (SFZL A 8['74(;‘) - R#vsgllv

= g - UT (Sgua vt 6g,uv;m - RWSguw

Oguvs

Sguv _ *gngng 681/2 1/2 ny
’ 2

where dg,, is an arbitrary variation in the metric tensor.

Applying these results to the action Sg and carrying out a covariant integration
by parts,” we find

3Sg = K/S(gl/zR)d4x+ﬂu/ﬁgl/zd“x

1
= K/gl/ |: ﬂv(SFZva BFZ(Fl) - (R,uv 2 W >5gllv:|

1
+§)v/ 1/2 8" g dx

1 1
=— / g'? |:K (R“" — 5g""R> — zﬂvg""] ngd“x,

whence it follows that

86 1 R T T
=- RY — —¢"R) — jg"|.
L 28 28

This yields Einstein’s gravitational field equations:

1 1 1
Kg1/2 (Ruv - EguvR> - ET’” + i/lgl/zg'uv)

3 38,y is assumed to have compact support in spacetime.
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where

7o = 205,
08

T"', which is a tensor density, is known variously as the stress—energy density,
energy—momentum density, or energy—momentum—stress density of the matter. The
reason for this terminology does not become fully apparent until one has analyzed
the dynamics of various kinds of bulk matter in some detail, but one can already
make a beginning at understanding by examining what it looks like in the case of a
free particle.

8.1 Energy-Momentum Density of a Free Particle

The action functional of the free particle is given by (5.1). To obtain the functional
derivative of this action with respect to the metric tensor g,, we must subject g, to
a variation 8g,,. If the world line of the particle does not intersect the support of
dg,v, the action will remain unaffected. It is evident therefore that the functional
derivative is going to involve a delta function d(x, z) having as arguments the point
x where the derivative is being taken and the location z*(/) of the particle. We shall
use indices from the first part of the Greek alphabet to denote tensors taken at the
point z*(4) and from the middle of the alphabet to denote tensors taken at the point
x". With this convention we may employ the abbreviations

8w = g,uv(x)7 8op = gazﬁ(z()V))'

We shall also need the identity

ngﬂ — 5
Sg#v =

where

Oy = (640% + 6,.6)6(x, 2)|

o=u,1=f"

N —

04 is a bitensor density of unit weight at the point x and zero weight at the point z. It
satisfies

, 1 . .
5;‘;;‘, = _5(55;/‘ + 5;f;a)7 ol = 040(x,2)|

as may be verified by passing to a coordinate system in which the derivatives of
g vanish at x. Finally, for later use, we shall record here two other properties of
the functional derivative:
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e Functional differentiation is commutative (like ordinary differentiation).

e Functional differentiation commutes with ordinary differentiation with respect
to coordinates or world line parameter 4 (It does not commute with covariant
differentiation!).

The computation of the energy—momentum density for the free particle is now
elementary. We find

=295 _ ozt (— -1724,,
Sguv / )

o B — W B
P /5 ﬁz Zdtr = /5(1/3[7 u’dr.

Let us look at the special form this expression takes in canonical coordinates in flat
spacetime.”

™ = /p"(r)uv(r)é(x —z(7))dz

dz%(z
= [ pow ot - - 200) G
=d(x —2)p"=; :
()=
so that
T = 6(x —z)p", T' =d(x —2)p"V, Vv = Z—;.

The three-dimensional delta function appearing in these last equations displays
like a beacon the pointlike character of the particle. 7% is clearly the particle’s
energy density: All the energy p° is located where the particle is! 7% is just as
clearly the momentum density. However, if one remembers the relativistic relation
p' = p°V' between momentum and energy, one can alternatively regard momentum
as a rate of transport of energy. This permits T, or T if you like, to be interpreted
also as a rate of flow of energy per unit area or energy flux density. In a similar
vein, TV is to be regarded as a momentum flux density.

8.2 The Weak Field Approximation

We are now in a position to establish another point of contact between formalism
and observation, a point of contact that will, in particular, enable us to determine

* In flat spacetime, the world line is of course straight, but we make no use of this at this point
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the value of the constant x. We again assume that the gravitational field is so weak
that we may introduce a quasi-canonical coordinate system. We note that this
forces us for the present to assume that the constant A vanishes. For if it were not
zero, spacetime could not be even approximately flat, in the large, even in the
absence of matter. It would instead be forced to have a constant scalar curvature
that is easily found by contracting Einstein’s equations:

R =-2}/k.

To find the form that Einstein’s equations take in the weak field approximation
we first compute the Riemann tensor. For this purpose, we recall that we may use
the expression obtained in (4.2) for the Riemann tensor in a coordinate system in
which the first derivatives of the metric tensor vanish at the point of interest. We
have seen that the terms that involve the first derivatives in an arbitrary coordinate
system are, in a quasi-canonical coordinate system, of the second order in small
quantities and hence may be dropped. Therefore we have used the notation and
thereafter [see (6.8)],

1

R/cvm' = _E(h/w,vr + hvr,/w - h/tr,vo’ - hva,,ur)'

This expression is known as the linearized Riemann tensor, and the weak field
theory is often called the linearized theory. The linearized Riemann tensor has an
important property: It is invariant under the approximate coordinate transformation
law for the h,, given by (6.2). In this respect the linearized Riemann tensor is
similar to the electromagnetic field tensor, which is invariant under gauge trans-
formations,” and for this reason the approximate coordinate transformation law is
often called a gravitational gauge transformation. The reason for the gauge
invariance of the linearized Riemann tensor is not hard to see. When &* is small the
functional form of the full Riemann tensor suffers a change that can be accurately
expressed as a sum of terms of the form —R,,; ,&”, =R,y 5,E” -, ete. (infinitesimal
coordinate transformation law). But as these terms are of the second order in small
quantities they may be dropped in the weak field approximation. (R, unlike the
metric tensor, is already of the first order in small quantities.) The gauge invari-
ance of the linearized Riemann tensor may also, of course, be verified by direct
computation.

Problem 30 Verify the gauge invariance of the linearized Riemann tensor by
direct computation.

5 The analogy goes deeper than this. The electromagnetic field tensor is a curl. The linearized
Riemann tensor is a double curl. 1t is obtained by antisymmeterizing the second derivative —
Nygye /2in pand v and in ¢ and 1.
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Solution 30 We have

1
R;wo‘r = R,uva‘r + E(éﬂ,avr + 6(7,[”"[ + év;ua + fnvuo
$o

_éuo‘/cr - Soyvur T é/t,rva - é‘r,uva)

= R,uvm:-

The importance of the gauge invariance of the linearized Riemann tensor lies
in the fact that the presence or absence of a real gravitational field is characterized
by the presence or absence of a nonvanishing Riemann tensor. This tensor
represents the gravitational field, and in the weak field approximation we have, in
it, an invariant characterization of the field, i.e., an expression for the field that is
independent of which quasi-canonical coordinate system we are using.

Let us now compute the linearized Ricci tensor and curvature scalar:

1
__77{” (h,uvpr + hanuv - hav,ur - hu‘c,av)a

Ruv = VI{”RWW = )

R = 11" Ry = I 15,

The linearized Einstein equations then follow immediately:

1 1
T — (h;w(r WY oy _ hva,u)
2K 2\° h 7 e

1 w (0 ot
+ 57’]’ (l’l’a — h,o‘r)

1 1 1
— _ ll”'O' _ ,uvlo‘ _ l,uv _ luo‘v _luv
2 < e T e T e TR

_ Jor + llv,u =+ n,uvla =+ nuvlar _ li’]”l”)
R 2% R 0T 2 R

— 5 (),
If we impose the supplementary condition /4" = 0 (sometimes called choosing the
Lorentz, harmonic, or de Donder gauge), these equations take the particularly
simple form

K

Contact with observation is made by choosing for T"" the energy—momentum
density of a point particle. There is, of course, a contradiction here. If the particle
is a point the field /*¥ will become singular at the particle itself, thus violating the
weak field approximation. Worse still, this will continue to be true even in the full
theory, and hence the particle will have no geodesic to follow because the very
notion of Riemannian manifold breaks down where the particle is. This means, of
course, that the point particle picture is an idealization. We must smear the particle
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out. It is true that we can then no longer be absolutely sure that the point particle
picture is a valid idealization but must check it later, after the fact, which we shall
do.

Let us suppose that the particle has mass M and is located at the origin. Then its
(idealized) energy—momentum density has only one nonvanishing component,
viz., T, given by

T% = M (x). (8.3)

The particle being at rest, we may choose a stationary quasi-canonical coordinate
system. Actually, this choice involves another assumption, namely that no gravi-
tational waves are present. In the special gauge or coordinate system in which the
supplementary condition 4* = 0 is satisfied, /* then has only one nonvanishing
component lOO, which satisfies the equation

1 1
VA = 1% = ——M5(x).
K K

(We recall that the supplementary condition can also be imposed in a quasi-
stationary coordinate system.) If more than one ‘particle’ is present, there will be
additional terms on the right side of the equation. (This follows from the additivity
of action functionals.) Owing to the interaction of the particles, they will no longer
remain at rest. In order that it remain possible to keep the coordinates quasi-
stationary, the density of the masses must satisfy Gp < (GM)™? [see (6.6)] in
accord with our previous statement that the particles must in reality be smeared
out.
The solution of the above differential equation that satisfies

lim [ =0,
|x|—00

and is to be taken seriously only for Ix| > GM, is

M 1 1
ZOO = = —
(x) 4 |x| dnkG
where @ is the Newtonian potential of the particle. From this we get
11 1
1=—1"=—ly, hoo=1loo+l=zlpo=— P
00, Moo = loo + St = 5too Py
1 1 1
hij — ll] - 551][ - 551'1‘1()0 - _5IJW¢7 h()i == l()i - O

If we transform now to another quasi-stationary coordinate system using the
transformation laws (6.3), h; and hy; will assume other values, but sy will remain
unchanged.

In order that general relativity in the weak field approximation agree with
Newtonian theory in its account of the motion of bodies under the action of
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gravitational forces, we have seen in (6.5) that we must make the identification
hgo = —2@. Comparing this with our present result we see that the constant x
must be given by

1
T 16nG

The full Einstein equations therefore take the form

1
g/’ (R“V — 56"R > = 8nGT" + 81Gig'*g"". (8.4)

8.3 Energy—Momentum-Stress Density of a Gas
at Equilibrium

If more than one particle is present their action functionals simply add together and
the total energy—momentum density takes the form

=2 / Oy, P = Z / Ot P ff
n

If the particles are numerous enough to be described effectively by a continuous
distribution function f(x, p), the above summation may be replaced by an

integration:
T = /d3 /d pf (z,p /5“;;7%/f ZO
- [ [ Shozrn
/ Pufxp)—g ap

=2 [ P Ep06")00 + )y

where F(x, p) is an extension of f(x, p) off the mass shell. Here the particles are
assumed to be non-interacting (except through their averaged gravitational forces—
Vlasov approximation). However, the expression obtained for 7" is also valid for
interacting particles under the Boltzmann collision approximation, in particular for
a gas at equilibrium in a spacetime with a timelike Killing vector &*. Choosing the
distribution function in the form F(x, p) = ®(&-p) in this case, and defining

y y
y) = / dy’ / dy"@(y"),
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we may write

T = 2/19”19"(1’(6 -p)O(P°)3(p* + m?)d'p
2
0,06,
o
—4 12_Y vZ/ 2
5 [£'Z,,(8)]
= 4g' 2 [¢"Z (&) + 2EEZ ()],

=2 [81/2Zm (52)}

where
§12Z,(2) = / O - p)I(P")o(p + mP)d'p.

It is customary to reexpress the energy—momentum-stress density of a gas in terms
of the pressure p and the proper energy density w, defined by®

p=4Z,(&), wo+p=8(-)Z1(&).
These definitions yield

T = g"*[(wo + p)@'@’ + pg"
= g!/? [WOE"EV —|—pﬁ“"}. (8.3)
The appropriateness of these definitions may be checked by passing to a local

canonical rest frame of the gas at any point. At the chosen point we then have
7°=0=7"and

wo =T = /p"f(x,p)d%o = /p°<p((—52)1/2p0)d3 ,
pd; =T = /p"lﬂ'f(x,p)@p = /1!9iv"f15((—52)1/2170)d3 :

with p® = 1/p? + m2, in precise accord with our customary definitions of energy
density and pressure.

S Note that these equations allow one to determine the pressure and energy distribution in the gas
directly from a knowledge of ¢ and @, and hence of the function Z,,.



Chapter 9
Conservation Laws

In the case of the free particle, we interpreted various components of the energy—
momentum-—stress density as fluxes of energy and momentum. This interpretation
can obviously be extended also to particle ensembles and gases. When we speak of
fluxes we usually think of quantities that are conserved. In special relativity,
energy and momentum are conserved. In general relativity, they are no longer
generally conserved, at least if we do not include the energy and momentum of the
gravitational field itself. Nevertheless, their densities and fluxes satisfy a covariant
generalization of a true conservation law, which is quite easy to obtain.

Consider the action functional for the matter, Sy;. This functional is coordinate
invariant. Therefore, if dg,, and SP™ are the changes induced in the metric tensor
and the matter dynamical variables by an infinitesimal coordinate transformation,
we must have

SSvM. . OSu
0= | —dg,,d 3,
/ Sg ST g

with implicit summation or integration over the index A. When the matter
dynamical equations are satisfied, the second term vanishes. Therefore, writing

Sguv = _6511;\! - 66\!;;“

assuming that 8¢, has compact support, and carrying out integration by parts, we
have

OSMm
0= 6 (Séu y + 6Ev )
8 uv
=— / T8¢, dhx = / TR, d"x.
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As 8¢, is arbitrary, we have
i =0,
whenever the matter dynamical equations are satisfied.
We emphasize that this last equation generally holds only when the matter
dynamical equations are satisfied. In fact, in many cases, it is completely equiv-

alent to the matter dynamical equations and can be used in place of them. This may
be illustrated with the case of the free particle. We have

T = /5’;};;vp“u/3dr =— / 55;pp“2ﬁdr

—/Sgp“drz /5§p°‘dr.

Now let A, be an arbitrary covariant vector of compact support. Multiplying both
sides of this equation by A, and integrating over spacetime. If 75" = 0, one gets

/A“’)“df =0.

As A, is arbitrary, this implies p* = 0.

Although T"" has vanishing covariant divergence, this does not imply a true
conservation law. T"" accounts only for the energy and momentum of the matter.
When a gravitational field is present (i.e., when spacetime is not flat), it can
exchange energy and momentum with the matter. One might ask whether the
energy and momentum of the gravitational field could be accounted for by treating
the gravitational action functional Sg in the same way. It too is coordinate inde-

pendent and hence satisfies
(6&;) _o.
6g w/ oy

In this case, however, the relation is an identity that holds whether or not the field
equations are satisfied. Its explicit form is

1 1
0=——— L g2 R™—Zg"R) +8rGig" |} .
| (- 3e%) +seore |

The term in / drops out right away, as also does the factor g'’%, leaving

1
0= (R™ ——g"R) .
G

This is known as the contracted Bianchi identity.

Problem 31 Show that the identity

1
0= (R"™ ——g"R
(= 5%)

can be obtained by contracting the Bianchi identity twice.
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Solution 31 We have

0=R" +RY +RM

;o Vo oV

=R, — Rﬁ;u o R:;;\r = 280y (R,uv - %ng) .
WV

The contracted Bianchi identity imposes no constraint on the gravitational field.
It does, however, impose a constraint on the matter through the Einstein equations,
forcing T" to have vanishing covariant divergence. In many cases, therefore, the
matter dynamical equations are superfluous; the Einstein equations are sufficient.
It is nice, however, to know that the equations obtained from the complete vari-
ational principle are at least consistent. They would not be consistent if Sy; were
not coordinate independent.

The presence of a gravitational field does not always mean that the matter
variables satisfy no true conservation laws of their own. In special cases, con-
served quantities can be built out of the T"", namely, when spacetime admits an
isometric motion corresponding to a Killing vector . For we then have

(éuT'uv) v = éu;vTW + é;tT;l\l,v

1 v
- E(éﬂ;" + év;u)T# =0,

implying the conservation of

[ ez,
P

where X is any connected hypersurface that intersects completely the support of
the vector density £, 7", cutting all its flow lines an odd number of times.

Problem 32 Show that the stress tensor of a particle ensemble
™ =2 / P'P'F(x,p)0(P°)o(p* + m?)d*p,

has vanishing covariant divergence if the distribution function satisfies F., p" = 0.
In the special case of a dilute gas at equilibrium, in which F has the form
F(x, p) = ®(&- p), identify the conserved quantity associated with the Killing
vector &,

Solution 32 The result is proven by introducing a coordinate system in which the
derivatives g, , vanish at x.
We identify the conserved quantity by

éHT,u\r _ _gl/2(_£2)1/ZEvWO7
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whence
/éﬂT""dZH: —/gl/zﬁo(—fz)l/zwod3x: const. X /%@V,
b

where d*V = g!/?u%d>x. Imagine spacetime to be divided into flow tubes parallel
to &". The conserved quantity may be defined as the sum of wy/T over all the tubes,
weighted by the 3-volume of the orthogonal section of each tube.

9.1 Energy, Momentum, Angular Momentum and Spin

When spacetime is flat, its group of motions is the full Poincaré group and there
are correspondingly many conserved quantities. Strictly speaking, this case cannot
be realized physically unless spacetime is empty, with nothing to be conserved
(and with the constant A equal to zero)! Spacetime can be flat only if dynamical
behavior is withheld from the gravitational field and the geometry is “externally”
imposed. Nevertheless, flatness is a highly accurate approximation in practice,
except under extreme astrophysical conditions.
In canonical coordinates in flat spacetime, Killing’s equation takes the form:

‘f,u.,v + év,y =0,
which has the general solution
&y =ay +1px',

where the a,, [, are constants with
Ly = =l

The corresponding conserved quantity is
./z(aﬂ + X" T d2; = a,P* — %ZHVJ’”7
where
Pt = /ZTWdZV , JH = /Z(x“T"" —x'T*)dX,.

As the a,, [, are arbitrary, it follows that P* and J*" are independently conserved.
They are known respectively as the fotal energy—momentum 4-vector and total
angular momentum tensor of the matter.
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Although it is not easy to prove in general, the vector P* is always time-like'
(and oriented to the future if the sign of Sy; has been chosen correctly). Therefore,
it may be used to define a mean rest frame for the matter as well as a total energy,
or mass M, in that frame:

M = —P°.
The corresponding mean 4-velocity is given by
Ut =M"'P.

Although the P transform as the components of a vector under the full Poincaré
group, the J*' transform as the components of a tensor only under the homoge-
neous Lorentz group. Under displacements

X = xt 4 EH E* = constant,
they transform according to
T = JW 4 EPY &R,

A true tensor under the Poincaré group can be constructed out of J*¥ by passing to
the mean rest frame of the matter or, equivalently, projecting J*" onto the corre-
sponding hyperplane of simultaneity:

S = PRPYJTT PR = g 4 UM

In the mean rest frame, only the spatial components of S** are nonvanishing and
they then coincide with the spatial components of J*'. As the mean 3-momentum
vanishes in this frame, the contributions to the spatial components of J*' come
only from the overall spin of the matter. S*' is, therefore, called the spin angular
momentum tensor. The orbital angular momentum tensor may be defined as the
difference between J** and S"":

LW — Jw _ ey
=JW —JW —U*UJ" = U'UJH — URUYULUJ"
= (M7'UJ%" + Urt)P* — (M~ U,J™ + U't)P*,
where 7 is an arbitrary parameter.
Strictly speaking, only the spatial components of J* refer to angular momen-

tum. If the hypersurface X is chosen to be the hyperplane x° = 1, then the temporal
components of J*' take the form:

JO% =P — XLP°, (9.1)

! See, however, the special case described on p. 175, in which P* is null in the eikonal
approximation.
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where X% are the coordinates of the center of energy of the matter:
e
E — P() .
The conservation of the J% may be stated in the form:

dX}E_P"ivi Vi Ui
de PO Ik

which says that the center of energy moves with the mean 3-velocity of the matter.

The concept of center of energy is not frame independent. To get an invariant
concept, we must again pass to the mean rest frame. In this frame, we have
(U =(-1,0,0, 0) and P° = M, and we may express the center of energy in the
form:

. 1 . )
Xt = —(=J% + P’y

PO
1 . .
=—UJ" +U't
u +
If we also define, in this frame,
X =r= iU,J"0 +U%
E— M v ’

and remember that rest-frame time 7 is equal to proper time 7, then we see that X
and the Xy are equal to the components of the true 4-vector,

1
Xt =—U,J" + Utr.
" +U't

However, Xg and the X5 coincide with the components of X* only in the rest frame.

X", which is really a linear function of the parameter 7, and hence a straight
world line, may be called the covariant center of energy. In terms of it, the orbital
angular momentum tensor may be reexpressed in the form (see above):

™ = X'P' — X"P*.

It will be noted that L*" is actually independent of t. In fact, both L** and $*" are
separately conserved.



Chapter 10
Phenomenological Description
of a Conservative Continuous Medium

The energy—momentum-—stress density evidently plays the role of source for the
gravitational field and is in many ways analogous to the electric charge in elec-
tromagnetic theory. However, because matter in all its forms is coupled to the
gravitational field, this source can be much more complicated than electric charge.
Many times we may wish to find the gravitational field produced by a certain
material system without knowing or being able to write an action functional for the
system. We then need a general description of the system and its dynamical
behavior that will enable us to keep track of its energy and momentum content and
obtain an energy—momentum-stress density for it without necessarily knowing its
structure in all fundamental respects. An example of such a description, which
covers a wide range of practical cases, is the phenomenological treatment of a
conservative continuous medium. By “conservative” we mean that there are no
irreversible dissipative processes at work. Once having found the energy—
momentum-stress density for a conservative medium, we shall find it not difficult
to introduce dissipative mechanisms either again phenomenologically or, if that is
insufficient, by the use of distribution functions and all the paraphernalia of the
Boltzmann and other types of transport equations.

We use the notation in Chap. 1 and thereafter, but we add two new elements, an
orthonormal triad field n} defined throughout the medium and satisfying
everywhere

ng - Np = 5aba ng - u= 07 ut = aﬁx"(é,‘c),
T
and a scalar field w, equal at each point to the proper energy density at that point,
i.e., the density of total energy (rest mass as well as internal energy) as viewed in
the local rest frame defined by the n/ at that point. We do not impose any addi-
tional conditions on the nf, e.g., Fermi—Walker transport, beyond their orthonor-
mality and orthogonality to u".

B. DeWitt, Bryce DeWitt’s Lectures on Gravitation, 111
Edited by Steven M. Christensen, Lecture Notes in Physics, 826,
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We shall assume that the dynamical behavior of the medium is determined
solely by its proper energy density and its internal stresses. The stresses, which
will be analyzed purely phenomenologically, will be described presently. First,
however, we devote attention to wy. This density is defined in a local Cartesian rest
frame of the medium. It will be convenient to re-express it also relative to the
arbitrary curvilinear coordinates x* of spacetime, as well as in the internal coor-
dinate system provided by the labels &'

The transformations between the local Cartesian rest frame and the (in general
curvilinear) frame of the & are described by the transformation coefficients

— i
Ay = NapX';
and their inverses
“li _ zi u
Al = f’ﬂna.

We note that
AuiAgj = NapXling x’; = Pt = vy,
where P, projects orthoognally to u*. Hence that'
det(A,) = p1/2 where y = det(y;)-
The proper energy density in the ¢ coordinate system is therefore

we = det(Ag)wo = yl/zwo.

Problem 33 Prove that A, li (Eéfﬂnﬁf) is both a left and a right inverse of A,;
(=ngx"). Prove also the following identities:

—lig—1j _ —lig=l _ ij —
Aa lAg ) = ,))117 yijAa lAb = 5ab7 VZJAaiAbj - 5ab7
where Y is the contravariant proper metric tensor, inverse to y;;.

Solution 33 We have
A Ay = & pling X’ = & (0 + uw'u,)x) = 0,
Aa,-Ab_” = naﬂxﬁéf‘,nz = Ngu(04 — X'ty )ny = dap.
Furthermore,
vudy VALY = ApAnAT ALY = AuALY = 6],

1l A Y = AaAgAL Ay Y = b = Sa,

1 > . . .
We assume the ¢ axes to have the same relative orientation as the vectors n,.
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Y AGAY = A ATYA LAY = Scabeb = Oub,

as required.

113

Let us also note that the matrices, formed from components of u", n! satisfy

—ur\"
v v v
( i ) () = (—uu’ + ) = (),
a a

from which it may be inferred that

ut 2 1
— [det(nfj)] =det(g") = —g ',

and hence, assuming u”, nf, nb, ns to have, respectively, the same relative ori-

entation as positive displacements along the x°, x', x, x* axes,

ut —-1/2
det(nfj) =g .
From this and the fact that

—u tr u’u —1 —u
! = H ) det )= g1/2’
Nay n, Nay
it follows, by the theory of minors, that
EabcMayNbyNee = 7161#\’6(?1/2”7’

and hence,

Sijk“/l/ 2 = gdet(Aw) = EabcAaiApAck

I H.v._ o
= EabcNapMbyleaX i X ;X i

= ’lsw\,ggl/zufxﬁx;xi
=8"kgl/2 0(x) .
] a(,l:7 é)
This last relation enables us to write
o(x

we = 7" 7wy =

where w is the proper energy density of the medium relative to the coordinates x*:

— ,1/2
W:g/W().

W is a scalar under both transformations of the ¢ (relabelling) and transformations
of the x*, whereas w; is a scalar under transformations of the x* but transforms as a
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density of unit weight under transformations of the £. The quantity w is a scalar
under transformations of the ¢ but transforms as a density of unit weight under
transformations of the x*.

We now ask: How does the proper energy density vary with time? If the
medium is conservative, which means that energy does not flow around by dis-
sipative mechanisms, w, can vary only as a result of the action of forces on the
component parts of the medium. These forces can be described phenomenologi-
cally by means of a stress tensor. Suppose for a moment that the coordinates x*
have been chosen to be canonical at a certain point x, oriented in such a way that

ult
()
becomes the unit matrix at x, and adjusted in the neighbourhood of x so that the
derivatives of the metric tensor vanish at x. Then the coordinates x may be
regarded as an extension of the local Cartesian (Minkowskian) frame (which
strictly speaking has mathematical existence only in the tangent space) to a small
neighborhood of x. Let dX, be a directed surface element in this frame. Then, from
simple continuity arguments, the material on the side of dX, away from the

direction in which dX, points must exert on the material on the opposite side a
force that depends linearly on dX,,:

dF, = tpd2y.

The coefficients 7, of the linear dependence are called the components of the
stress tensor in the local Cartesian rest frame.

The force dF, is a contact force and, as such, must respect the law of action and
reaction. This means that the material on the side of dX, toward which dX, points
must exert a force —dF, across dX,. As a consequence the total force experienced
by a small volume V of the medium, as a result of the action of the surrounding
medium, is given by

Fa: 7\/dFa :7\/tabdzb:7‘/tah7bd3x’

p) z Vv

where X is the surface of V. Here, V is assumed to contain the point x and the
derivative in the final integrand is taken with respect to the extended local coor-
dinates. Because V is otherwise arbitrary, it is evident that the internal stresses
which the tensor ¢, describes give rise to a net force density in the immediate
vicinity of x given by

Ja = —tapp.

Suppose the origin of the coordinates x* is taken at the point x. Then, lowering the
spatial indices on the x", we may express the torque, about x, exerted on V by the
surrounding medium in the form
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T,=- / gabc-xbch = —é&abc /xblcddzd
X z

= —&ube /(xbtcd)’ddSX = T(E + T(Elv
\%4

where

1 3 11 3
Ta = &abe /xbfcd X, Ta = &abc / tbcd X.
\%4 |4

T%, whose value depends on the location of the origin, is what one would expect to
get for the torque using the force density f,. 7%, whose value is independent of the
location of the origin, is an unexpected residual. We can argue that this residual
must vanish, as follows. In the limit V — 0, it may be expressed simply as

)
Ta = Veapclpe-

On the other hand, the moment of inertia of V is of the order
I~ wo VS/ 3 .

The residual torque therefore imparts a contribution to the angular acceleration of
V given by
TH
i —2/3. —1
w, = Ta ~V / Wo  Eabelbe,
which becomes infinite as V — 0. But this is absurd. We must therefore conclude
that

Eabelpe = 07

or, alternatively,

tab — tha = (5acébd - 5ad5hc)[cd = &abebecdled = 0.

That is, the stress tensor is necessarily symmetric.
The symmetry of the stress tensor may be illustrated in the particularly simple
case of a gas at equilibrium, where we obviously have

lap = péaba

p being the pressure. We note that p, like wy, is a scalar.

The stress tensor, like the energy density, can be expressed not only in the local
Cartesian rest frame, but also in the ¢ coordinate system and in the general system
of spacetime coordinates x*. When viewed in an arbitrary coordinate system,
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however, it is conveniently regarded as a tensor density, known as the stress
density. The relevant definitions are then

1 =" PA A g, 1 = g Pl
We note that
*'u, = 0.
Problem 34 Show that
0(1, &)

g, = PLPYx XA,

a(x) ot Ty

Solution 34 We have

tij _ VI/ZA;UA;U[(J}) — y1/2£f#ng {vnztab
O(x)
0(t, &)

r vt .
=y\Pg e d = SRS

) G2 v
tay = 7 PAuARtT =y / Ny X Xt

whence
v 1/2 v 1/2 v, —1/2 o T j
=g / nhnpta, = g / nhnyy / naax_’inbrxd»t’"
o(r, & ,
= (t, )Pngxfx?t’J,
o(x) A

as required.

Consider now three nonparallel infinitesimal displacements 8;& that are fixed in
the medium and have the same orientation as the vectors n. Relative to the local
Cartesian rest frame, these become

d8ixy = Ay,
and they define an infinitesimal parallelipiped whose volume is
8V = det(8;x,) = det(A)det(5;&) = y1/2det(8;).

The surface elements of the three pairs of opposite faces of this parallelipiped are
+96,%,, where
1

8[ 2, = 5 EijkEabe 6ij Skxc

1 m n
= 5 Eijk EabcApmAcn 6j é 8k é

1
= 5Vl/zsijkslmnA7llaSjémSkén-
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The forces exerted on these faces by the surrounding medium are +94;F,, where
1 1/2 -1/
OiF, = —tup0;2) = —57 P ejeimAy tapd;E" 31 E"
1
1
= - 5 SijkglmnAartr Sjém6k£n~

During an increment dt of proper time, the faces of the parallelipiped will suffer
displacements relative to its center given by

1/d 1. )
2 s, A S E
:i:2 <d‘L’ S,xa>dr :|:2Aa,5lf dr.

The rate of change of the energy density we with proper time may be computed by
taking into account the work done by the forces £8;F, on the faces of the par-
allelipiped as a result of these displacements:

; d
ivedet(3:¢1) = -

T

: d
[wedet(8;&)] = I (wodV)
= <d Sixa) SiFa = A.assiéssiFa
dt
1 . )
= - E 8ijk(C"lmnAasAurl‘rl 8i é‘s 8j ém Sk én .

Factoring out the determinant, we get

. . ’ 1 . . ;i
we = —AyAut f=— E (AaiAaj + AaiAaj)tj

o Ldf 1 a(x) soglog] v
= —E/ijt’ = _Emyijé"g{"tl (see Problem 34) (10.1)
— 1 a(x) wo__ a(x) yny
T2 T T et

where r,, is the rate-of-strain tensor [see (2.1) on p. 23]. However,

=5 e ™ |
= a?ix)@ {W% (") + w,ﬂx#] = a?fxé) (wu).,.

Hence, finally,

(1), + 18" = 0,
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or, alternatively,
—uy(wun” + 1), = 0.
Having accounted for the energy balance in the medium, we have now to account

for the momentum balance. This is much easier. Consider again the parallelipiped
of volume 6V. Its four-momentum is

pt = woutdV.

In the local (instantaneous) rest frame of the parallelipiped, the time rate of change
of this momentum is equal to

RauP" = Wonauit" 8V = woaadV,

where the dot denotes the covariant proper time derivative and the a, are the rest-
frame components of the absolute acceleration of 8V. This change of momentum
can only be caused by the forces of stress which are

Fo=—g Png,a8v.
Equating F, and n,,p", we get
0 = ngu(wit + 1)
= ngu(wu” + 1)
= ngu(wul'u” + 1),

where orthogonality of n,, and u" has been used. This may be combined with the
energy balance equation to yield finally

T =0,
where 7" is the energy—momentum-—stress density:
™ = wulu" + 1.

It will be observed that this agrees completely with the result previously obtained
for a gas at equilibrium [see (8.5) on p. 104] if we identify u" with #* and
remember that for a gas at equilibrium we have

= gl/ZP;wp.

It is instructive to examine 7" in canonical coordinates in the case of flat
spacetime in which one has the strictly conserved quantities

Pt = / T4z,
p)

Separating P* into its energy and momentum components and choosing for X the
hypersurface x” = constant, we have
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P’ = / Ty, P = / T0d%.
These expressions, together with the differential identities
0 i i0 ij
™, +71% =0, T°,+77,=0,

allow one to make the identifications

o 7% = energy density,

e 7 = 7% = momentum density = energy flux density,

e 7Y = momentum flux density, in complete agreement with our analysis of the
more primitive case of the point particle (see p. 99).

In the case of the conservative medium we have (remembering that g"> = 1 in
canonical coordinates)

7% = wou'u® + vivit?, T = woulu' + v,
in which we have used repeatedly

IHQ = tf;ivia Vi = ﬁa
Up

which follows from the constraint #"'u, = 0. The first terms on the right-hand sides
of these equations are easy to understand. Because of Lorentz contraction the
proper energy density, i.e., the total energy density of the medium in the local
Cartesian rest frame becomes wou” in an arbitrary Lorentz frame, and these terms
evidently give the contributions to the densities of energy and momentum arising
from the bulk motion of the matter. The remaining terms, however, are curious
residuals arising from the internal stresses.

That the residuals are by no means unimportant and are, in fact, essential may
be illustrated by the amusing example given in the following problem.

Problem 35 A battery B, an electric motor M, a paddle wheel W, and a tank
containing a viscous liquid L are all mounted on a platform P that is supported,

NV,
Q w

M — /I
B L

[ P |

o] ©

/ / ST/

Fig. 10.1 The Battery Cart
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through wheels with frictionless bearings, by a smooth table T at rest in the labo-
ratory. The chemical energy of the battery drives the motor which, through a moving
belt, turns the paddle wheel which stirs up and hence heats the viscous liquid. The
platform is initially at rest in the laboratory. When the motor is turned on, energy
leaves the battery and reappears in the form of heat in the liquid. Because of con-
servation of momentum, the center of energy of the device must remain motionless in
the laboratory, and hence the platform must shift to the left. It is not possible to
account for the energy transport by the mass motion of the belt, because as much mass
is transported in one direction as the other. A term tijvj is needed for this purpose.

We may suppose the upper portion of the belt to be under tension and the lower
portion to be experiencing no stresses. If the x' axis is taken in the direction of the
belt then effectively the only nonvanishing component of 7/ in the upper portion of
the belt will be #''. Moreover, this component will be negative because the stress is
one of tension. Other portions of the device are also under stress. For example, the
region of the platform between the motor and the paddle wheel is under com-
pression. This may be described by a single positive component 7'! of /.

Determine the route by which energy is transported from one end of the device
to the other as seen in three different reference frames.

e The frame in which the platform is at rest.

e The laboratory frame in which the table is at rest.

e The frame in which the upper portion of the belt is at rest. Is the route Lorentz
invariant?

Solution 35

e Energy flows to the right along the upper portion of the belt.

e Energy flows to the right along the upper portion of the belt and to the left, at a
lesser rate, through the platform.

e Energy flows to the right through the platform. The route depends on the frame
of reference.

10.1 The Elastic Medium

In the case of an elastic medium the proper energy density we is assumed to be a
function solely of the proper metric 7;, i.e., to depend only on the local defor-
mations of the medium. The rest mass contained in a proper volume element d*¢ is
evidently w5d3€, and an action functional can be introduced for the medium by
obvious extension of the action functional (5.1) for a free particle on p. 63:

S = —/dz/d%wé(—xz)l/z.

Here, x* are functions of the & and a parameter A that is to be set equal to proper
time after variations have been performed. The dot denotes covariant differenti-
ation with respect to 4. From the fact that
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Oowe .
a_yija
'})..

y

We =
we may infer that the stress tensor density in the ¢ coordinate system is given by

[see (10.1) on p. 117]

l‘ij _ _26w5

. 10.3
= (103)

Now we recall that
=P x" P, = + 1 2
Vij /‘"xf; fj’ v 8y Uylty, u' = (—x ) /

Hence, variation of the action will require some care to perform. Let us proceed
systematically, using the covariant variation technique introduced on p. 64. First
varying the dynamical variables of the medium, i.e., the x, we have

Sut = (—i2) g, X 0T + (—i2) /2o
= (—x ) 1/2P” Sx" = P"Sx u’

EPW = uuguv + u‘,guﬂ = (uPys + uvPW)5xf’;uT,

1 . 1. _
dwe = *—fu&’ii f—t (5wa X'+ ZPfo;Sx;)
= —uuu me =y t”Sx — P‘,,leﬁthyﬁx:a

L pvV Tl
= —P!P'x%x JSx#v

ot T ,1
ox)

= — " 8x .y Probl 4),
a(i,f) X (see Problem 34)

where we have used

5x —8x + I _x%6x"

o J
= (O, + I}, 0x° )x‘;
= 6xa i

and where
Oxy = guox’,
_ = D
§(—i2)'? = —(—i2) Vg, 1B = it 2"

= —(—xz)l/zu“u”&cw.
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On the other hand, if we vary the metric tensor we get

1 ,
out = — (_.X ) 3/2xﬂx x658va = _u“u‘uO—Sgwn
2 2
v 1 v, .o
5“# = Uu Sgpv + Eu;tu u ngm
SPMV = 5g,,‘ + uyu(i&gva + ut'u([&gua + uﬂu"uo—uTSg‘”
= PZPnggf,
1 i pipv.,.o 1 a(x) i4
dwe = —EIJPZPTX,X]ng = _ia(l, B 138 v,
1 1
6(—x2)1/2 _ _E(_XZ) l/2x/th8g E(_)-CZ)I/Zuuuvag’uv

Under combined variation of the x* and the metric tensor, we therefore find

S = /dﬂ/dgé|: 1/2uuu» Jra?)(x)f) }(Sx,”—i— Sgw)

ny 4
— [ T"s,,d"x,

where
oS
g ()

T =2 = wuru’ + ",

1
Sw =75 (S 4 8%y + 38 p)-

suv 18 known as the invariant strain tensor. It vanishes for any combined change in
the x* and g, that corresponds merely to an infinitesimal coordinate
transformation.

We see that the energy—momentum—stress density has exactly the form that our
phenomenological analysis found for it. Moreover, in this case the dynamical
equations are identical with the divergence condition on 7"':

N o(x) -
T, ) e A(r, &)

10.2 The Viscous Thermally Conducting Gas

In a local Cartesian rest frame the energy—momentum-—stress density of a con-
servative medium takes the block form
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(3 1)

In the case of a gas at equilibrium the form is actually diagonal:

wy _ [ Wo 0
(T )_(0 péab).

This latter form is often used even for gases that are not at equilibrium. This
corresponds to assuming that no matter how the state of the gas changes, locally at
any point the gas always adjusts instantaneously to the equilibrium conditions
appropriate to the proper particle number density py and proper energy density w
at that point. Such instantaneous changes follow adiabatic curves and are revers-
ible. The local entropy per particle at any point remains constant, and even though
the temperature may vary from point to point, no energy transport by thermal
conduction is allowed.

This approximation is adequate for the description of acoustic waves in a gas
that is otherwise at equilibrium, but it fails in the presence of shock waves. Real
gases are both thermally conducting and viscous. The viscosity alters the simple
stress tensor pd,;, and the thermal conduction produces an energy flux g, even in
the local rest frame, so that the energy—-momentum-stress density takes the general
form

= (),
qa tap
or, in a general frame,
™ = wu'u" + u'q" + u"g" + ',
u-g=0, u,’ = 0.

(We have dropped the bars over the u' that we had previously placed there in the
case of gases to denote the mean four-velocity of the component particles.)

It is not difficult to decide on phenomenological expressions for ¢" and .
T, + u,u" T vanishes at equilibrium, so any departure from zero for this quantity
must indicate a non-equilibrium situation, so we take

gt = —},gl/zP“v(T;v +uyou’T), A1>0,

where A is the thermal diffusion coefficient of the gas. It may depend on py and wy,.
For ", we choose

, 1 , L
t“"=g”2[<p—5usr>P‘”—us<r‘”—§rP"‘)} >0, pis>0,
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where ug and ug are respectively the coefficients of bulk and shear viscosity, and
r=rl =Py =2P"u, = 2ul,

1,y being the rate-of-strain tensor. ug and pig may also depend on py and wy,.

Here, p and T are to be understood as the pressure and temperature the gas
would have at any point if it were in a state of equilibrium appropriate to the values
of py and wy at that point. That is, p and T are to be taken as given by the
equilibrium equation of state of the gas. A corresponding entropy per particle, s,
may then be defined by the differential identity

ds:deerdpal)
T

where e is the proper energy per particle:

wo w /

€= R P:gl

2
Do-
Po P 0

Evidently this phenomenological description of the gas will fail if the distribution
function of the gas departs too markedly from an instantaneous equilibrium
distribution.

Problem 36 [Taken from C. Eckart, Phys. Rev. 58, 919 (1940).] The dynamical
behavior of the viscous thermally conducting gas is completely determined by the
divergence condition 7! = 0 together with the equilibrium equation of state and
the equations that express the dependence (if any) of A, ug, and ug on pg and wy. It
is worth checking, however, that the result is consistent with the elementary
principles of thermodynamics. Consider a small element of the gas contained in a
volume V in the local rest frame. If there were no heat flow out through the surface
2 of V, the entropy contained in V would be expected to increase as a result of
irreversible processes. Heat flow, however, can reduce the entropy, at least when
the flow is low, because of the term de/T in the expression for ds. If we choose the
coordinates x" to match the local rest frame as closely as possible in V (8o = 0),
we therefore expect the following mathematical statement to hold:

d 3 1 entropy increase due
@/ posdx = — / T qd2i+ to irreversible processes’
1% z

or, equivalently,
/(psu” + T’lq");#d3x >0.
14

The final integrand being a covariant quantity, and the volume being arbitrary, we
should have in any coordinate system

(psu* + Tflq“):# >0.
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Derive this inequality from the entropy equation together with the divergence

conditions
T =0, (pu"),, = 0.

Hint: first prove the following:

| .
(WMH);H + qf;t + qﬂuﬂzvuv + Efw Ty = 0,

(Wuu) n = pe%/luﬂ7 (p_l);uu# = p_lu';uy' (1O4>

Solution 36 We have
peut = (peu“)m = (wu“);u,
0 =u, T = u,(wu'v" + u'q" +u'q" + t’“’);‘,
= —(wu");v — q‘v + u#u"qﬁ, + uut;‘f,"

1
v v
= 7(Wu'u) o qu’u - qﬂuﬂl\’u — =t Fuv,

; 2
(p~ "), = —p~2pu = p~lul,
T(psu* + T_lq")w = Tps,u" + T(T_lq");u
= peu + pp(py "), it +T(T™'q"),,
= (wu"),, + g"’pult + T(T"'q"),,
= —q, — ¢ uyu’ — %t’”’rﬂv + %gl/zpr + T(T’lq")m
=T '¢"(Ty + uut'T)

1 1 : R
+§g1/2r‘uv |:§,UB7‘P,” +MS (V’” _gp'u r>:|

, 1
= 281/2T_1PM(T;/A + “u;U“JT)(T;v + uv;r”TT) + ZNBgl/z”z

1 1 v 1w
+ E,usgl/2 (r,,v — ng,r) (r" — §P” r) >0.






Chapter 11
Solubility of the Einstein and Matter
Equations

One of the essential conditions that must be satisfied by any system of dynamical
equations is that they give rise to a well-posed initial value problem. There must be
precisely enough equations to determine uniquely the full physical evolution of the
system, once initial conditions have been specified. We now examine this problem
for the Einstein and matter equations.

We consider the matter equations first, confining our attention to the cases in
which they are either identical with or fully equivalent to the divergence equations
T!) = 0. In the case of the elastic medium these equations must yield a set of
world lines given by the functions x"(&, 1). These functions are not unique in a
given physical situation, however, because the parameter A is arbitrary. The action
functional in the elastic medium is invariant under the group of diffeomorphisms
of the one-dimensional A-manifold. This corresponds to the fact that the functions
x"(&, 2) do not really represent four degrees of freedom per component particle,
but only three. Choose a space-like hypersurface . Once one specifies the point of
intersection of each world line with X (three pieces of information per particle) and
its normalized tangent vector u/ at that point (three more pieces of information per
particle), the whole future history of the medium should be determined by the
dynamical equations. Six pieces of information for each set of values for the labels
& corresponds to three degrees of freedom per particle. The dynamical equations
T!) = 0, however, are four equations per particle, and therefore the motion of the
medium appears to be underdetermined.

In this case appearances are deceiving. The four equations 7%’ = 0 are actually
not independent. They are connected by the identity

—u, T = —wy(wu'u” + 1), = (wu), | 4wyt
=00 T
=0,
B. DeWitt, Bryce DeWitt’s Lectures on Gravitation, 127
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where we have used (10.1) and (10.2) to go from the first to second lines, and the
last line follows from the definition (10.3) of /. In this case the motion of the
particles determines how 7;; varies with time, and w; and / are at all times
completely determined by y;;. Therefore, the dynamical equations lead to a well-
posed initial value problem, and the motion is completely determined.

The same is also true for gases. The motion of gases can also be described in
terms of four functions x*(&, 1). Here, again the number of degrees of freedom per
world line (really a mean flow line in this case) is only three because of the
arbitrariness of the parameter A. In the case of the viscous thermally conducting
gas, however, the equations 7% = 0 do nor satisfy an identity and are actually
independent. This does not mean that the motion is overdetermined. The equation
u,I*) = 0 is needed in order to establish the time rate of change of the proper
energy density w. Then we is no longer determined simply by y;; but depends on
heat flow and the state of motion of neighboring parts of the gas. And wg, or w, is
needed, together with p, to determine p and T (through the equilibrium equation of
state) and hence, together with r,,, the stress tensor density #". Only if the gas is
viscousless and non-conducting, adjusting instantaneously to the equilibrium
equation-of-state conditions, does u, 7% vanish identically. In this case the flow is
isentropic and, once the entropy per particle has been set as a function of the &, it
remains constant. wg, which can be expressed in terms of p, and the entropy
through the equation of state, then depends only on the y;; (on 7!2 really), and an
action functional can be introduced which yields the equations 7%’ = 0 from a
variational principle, just as for the elastic medium.

It will be noted that the dynamical equations satisfy an identity in precisely
those cases in which an action functional can be introduced that is invariant under
the actions of an infinite dimensional group (the diffeomorphism group of the
A-manifold in the above examples). This is no accident but is an illustration of a
general rule. Other examples are the free particle (mz* = 0) for which the identity
is mglxﬁZ“Zﬁ = 0, the electromagnetic field (Maxwell’s equations, see Chap. 14) for
which the identity is Fj = 0, and the gravitational field for which the identity is
the contracted Bianchi identity. We now study the last of these examples.

The metric tensor g, has ten components. Because the diffeomorphism group
of spacetime is an invariance group for the theory, the particular values g,,, assume
in a given physical situation result partly from the accident of choosing a coor-
dinate system. The specification of a diffeomorphism requires four functions over
spacetime, and therefore only six of the g,, can be determined by the Einstein
equations. It is often convenient to choose these six to be the ‘spatial’ components
g7 and to fix goo and g, in advance as certain functions, or even functionals, of the
g; and their ‘time’ derivatives g; o on each hypersurface x° = constant. It is
always possible to fix goy and g¢; in this way, as these four components merely
determine the physical spacing between two hypersurfaces x° = fand x° = 1 + d,
and the manner in which the coordinate mesh in each hypersurface distorts as one
passes from such hypersurface to the next. That the six g; are not then overde-
termined by the ten Einstein equations is due to the existence of the contracted
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Bianchi identity, which actually consists of four equations. Of the ten Einstein
equations only six are really independent. These may be taken to be the equations

Y
+= E =0.
dgi e

The remaining Einstein equations are not, however, to be dropped from sight and
disposed of just like that. It turns out that they impose constraints on the initial
data g; and g;; o on the initial hypersurface x° = constant. This is most easily seen
by combining the contracted Bianchi identity with the matter equations and
rewriting the combination in the form

<8SG L1 1 T"0> _ <6S_G+ 1 T’”) e (SSG T‘“)

8g/40 0 Sg;u i nga

The right-hand side of this equation contains no third ‘time’ derivatives of the g;;.
Neither does it contain any second time derivatives of goo or the gg;, as may be
checked by referring to (4.2) and noting that, because of its symmetries, the
Riemann tensor itself contains no second time derivatives of go or the go;.
Therefore, even if gy and g, are replaced by functionals of the g; and g;; o, the
right-hand side of this equation still contains no third time derivatives of the g,j.'
The same must be true of the left-hand side. From this it follows that the four
Einstein equations

8& + lTHO =0
6g 10 2
contain no second time derivatives of the g; but are constraints on the initial data.
Suppose these constraints are satisfied on one hypersurface x° = constant. Will
the six other Einstein equations ensure that they remain satisfied on all the other
hypersurfaces x° = constant? The answer is yes, as may be seen by noting that

when the six dynamical equations are satisfied, the combination of the Bianchi
identity and matter equations reduces to

38 1 38 1 88 1
( =S4 T“O) 5"( G+—T’°) 2r§g< =S4 T’0>
080 0 0gio 0gio

<6SG L1 700>’
3800

so that the derivative of the left-hand side vanishes for all time.

Problem 37 In electromagnetic theory, one of Maxwell’s equations is a con-
straint: FO[L‘ — /% = 0. It is shown that the other Maxwell equations F w—J=0

1 .. . . p . . . . .
This is true in practice even when 7" itself involves derivatives of the metric tensor.
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together with the identity (F~' — j*). . = 0 ensure that the constraint, when once
imposed, holds forever.
Solution 37 We have
ov_ 0
(F;v‘ —J ),0

—(Fy =/, = I(Fy =J")
—I5,(FY =),

as claimed.

We are now in a position to determine the number of physically distinct degrees
of freedom possessed by the gravitational field. Because of the constraints, it is
possible freely to specify only 8 independent combinations of the 12 initial data
functions g; and g;; 0. Not all of these eight combinations are physical, however.
For example, we can carry out a transformation of coordinates in the initial
hypersurface. If goo and g, are defined in terms of the g; and g;;( in a covariant
way, so that gog is a scalar and g, are the components of a covariant vector under
such a transformation, then the geometry of the resulting spacetime (which is the
only aspect of the gravitational field that is physical) will remain completely
unchanged and so will the succeeding hypersurfaces x° = constant. This means
that at most five independent combinations of the initial data are physical.

Actually, there are only four. To see this suppose for example that spacetime is
asymptotically flat. Then it is possible to give some absolute significance to the
canonical coordinate systems at infinity because of the Poincaré group of isometric
motions that holds sway there. But even if we choose one of these systems, we can
extend the hypersurfaces x” = constant into the nonflat region in many different
ways. To each of these ways corresponds a different set of initial data. The mathe-
matical expert on initial data problems accepts these as distinct, but we as physicists
know better. The same conclusion also holds if 3-space is compact so that the
‘universe’ is finite. In this case there is no preferred coordinate system at infinity to
which to tie the hypersurfaces x° = constant. Furthermore, it makes no sense to
speak of displacing the whole history of the gravitational field forward in time,
thereby getting a physically distinct field, the way one can in the case of nongravi-
tational fields in flat spacetime. Two universes having the same overall spacetime
geometry are identical. One cannot be said to ‘lie to the future’ of the other. This
means that the choice of initial hypersurface itself has no physical significance.

The freedom to choose the initial hypersurface and the freedom to select the
coordinate system in this hypersurface together dispose of four freely specifiable
functions, thus leaving only four independent combinations of the initial data that
can affect the physical situation. The existence of these four indicates that the
gravitational field has only two physically distinct degrees of freedom per point of
3-space. These two will make their appearance later in the form of the two
independent states of polarization permitted to plane gravitational waves.

It is to be noted that the very existence of these degrees of freedom implies that
the Einsteinian gravitational field is a dynamical entity in its own right, capable of
propagating in the absence of sources. The gravitational field of Newton has no
such freedom.
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11.1 The Cosmological Constant

The term in A in the gravitational action functional Sg gives rise to a term—
871G 4g'?g" on the right-hand side of Einstein’s equations (8.4), which adds to the
matter ‘source term’ 8nGT"'. When A > 0, this term corresponds to a medium
having a proper energy density 4 and a negative pressure —A. When 1 < 0, the
pressure is positive but the energy density is negative. In either case it corresponds
to a medium with unusual properties!

Because Einstein’s theory with 4 = 0 describes very well the gravitational
dynamics of the solar system, the galaxy, and even clusters of galaxies, the term in
A can play a role only at the cosmological level. For this reason the A term is
known as the cosmological term, and A itself is known as the cosmological con-
stant. Moreover an upper bound can be placed on 4, which is roughly equal to the
mean density of presently observed matter in the universe:

2510720 kg/m?.

Because this density is so small and because we shall not be concerned with
cosmological problems in these lectures, we shall from now on set 4 = 0.






Chapter 12
Energy, Momentum and Stress
in the Gravitational Field

12.1 Condensed Notation

In discussing the general theory of gravitation (and, indeed, other field theories as
well), it is convenient on many occasions to employ a highly condensed notation.
In brief, we shall replace the symbol g,,(x) by the symbol ¢' and denote functional
differentiation by a comma, so that the Einstein and matter dynamical equations
take the forms

Sgi +Sm; =0
Sma =0 ’

Here, the index i may be thought of as standing for the sextuplet u, v, x°,

x', %, ¥, and the symbol ¢ may be regarded as a replacement for g.

This notation, with ¢ replacing g, brings to mind the notation introduced to
discuss realizations of continuous groups. The analogy is deliberate. The infini-
tesimal coordinate transformation law

Sguv = _Béu:v - 66\&# = - /(5;16’;\' + 5\'0’;u)8£a/d4xl

yields a realization (a matrix representation, in fact) of the diffeomorphism group
and is a special case of

S¢' = @' 3¢ (see Problem 14).

Here the index a may be understood as standing for the quintuplet

/ / / /
J,xo,xl,xz,x3,

and the symbol @', as representing the bitensor density —(Ouoryy + Ovorsp)-
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With this notation, the coordinate invariance of the gravitational action func-
tional may be expressed in the form

0 = 38Sg = Sg,0¢' = S, D3¢,

with summation or integration over repeated indices. Because A&“ is arbitrary, it
follows that

86 @ = 0.

This is just the contracted Bianchi identity. In a similar manner, we may write the
divergence condition satisfied by the energy—momentum—stress density:

T;0, =0 when Sya =0,

where
Ti = ZSM,i-

12.2 Variation of the Action

Suppose, we have a solution of Einstein’s empty space equations Sg,i = 0 (for
example, flat spacetime). Let us denote this solution by ¢} in some coordinate
system. Suppose, we introduce into the empty spacetime described by this solution
a material system described by an action functional Sy;. The introduction of the
material system will cause the spacetime geometry to change. The new metric
tensor may be expressed (in some coordinate system) in the form

o = b+

where the field ¢’ measures the deviation from the background field ¢k induced by
the introduction of the material system. The field ¢, together with the dynamical

variables @ of the material system, satisfies the dynamical equations

Sa.ilep + @] + Swmil®@, o + ] =0
Sma[®@, @5 +¢] =0 [

We now note that if we subtract from the first equation the equation satisfied by the
background field, namely

Sa.iles] =0,
the resulting pair of equations may be expressed in the form
3 3S

55 % S0
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where S is a new action functional given by
S[Q)Bv d)v(I) = S'G[(/)Bv d)} + SM[(I)a P+ ¢],

Scles, ¢] = Scles + ¢] — Scles] — Sc.iles]¢'.

The significance of the new action functional is that, using it, one may formally
regard ¢’ as being just an ordinary field like any other, and it (together with the
material system) may be regarded as evolving in the presence of an externally
imposed gravitational field . This may be seen in several ways. Firstly, a formal
Taylor expansion of S yields

Sl &, ® = 3 Saslonld' + 5 Sauloald'$g* + -

-+ + Sulpg, PSw[@g, P’ + - -

The first term in the expansion is just the action functional for a field that prop-
agates freely in the background ¢}, satisfying the linear field equations
Sc,,,»j[goB]q&i = 0. The remaining terms describe the coupling of this field to itself
and to the material system.
Secondly, if we define
886 A
T, = ZW = 2{Sc.[ps + ¢] — Sa,[es] — Sc.ilesld' },
B
we may rewrite the field equations for ¢’ in the form

85w _ 8w
8p' T oph’

Scﬁu[ws]aﬁ’z—%(THrT;), T,=2 (12.1)
which illustrates a feedback principle for the gravitational field: The gravitational
field partly produces itself. The quantity 7; may be regarded as the energy—
momentum-—stress density carried by the field ¢'. It, together with the energy—
momentum-stress density 7; of the material system, serves as a source for the field
Q.

It is not hard to show that the total energy—momentum-stress density, 7; + 7 ;,
has vanishing covariant divergence relative to the background field ¢} when the
dynamical equations 8S/A¢’ = 0 and 55/8®" = 0 are satisfied. For this purpose,
we have only to show that the action functional S is coordinate independent and
then use arguments identical to those employed in showing that 7; (or 7"") by itself
has vanishing covariant divergence relative to the total field ¢’. The demonstration
depends on the adoption of the following coordinate transformation laws:

Sy = O, [pp]3¢7, 8¢’ = V' [0]5" = D, [y + $]5E,

AP = Ag' — Mgy = D ;¢ AE".
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The final expression above follows from the fact that the metric tensor transforms
linearly under the diffeomorphism group. We note that the tritensor density (I)Z ;18
metric independent.

Swm 1is already invariant under the above transformations, so we have only to
analyze Sg. Using the contracted Bianchi identity, we find that S suffers the
change

386[¢p; #] = Sl + P, [@p + DI — S.i[@p] P, [0p]5E"
— S6,i[0p] P} (@] 'O — Si (g P, ;'S

_ 5(Sc,l0pl®.l0p]) ica
= _ oy e $5E = 0.

That is, it suffers no change. We, therefore, have immediately

; 5S 3S
(Tl + T,)(D;[(PB] =0 when 872‘1 =0and % =0.

It should be pointed out that this result is actually required for consistency. This
may be seen by functionally differentiating the contracted Bianchi identity

56,1@8]®,[gg] = 0.
We have
S6.il@p| P, [@g] + SGJ[‘PB](DL,,' =0, (12.2)
which reduces to
S6.ijl0s| @, (o) = 0,

by virtue of the equation Sg j[¢g] = O satisfied by the background field. Therefore
if (T; + 7 ;)@ [pg] did not already vanish by virtue of the dynamical equations, it
would be forced to vanish by virtue of the equation

(T; +T))

N =

Sc.ilesld =

alone.

In calling (7; + 7 ;)@ [¢g] a covariant divergence, we are assuming that both T;
and 7'; are contravariant tensor densities. We already know that 7; transforms as a
contravariant tensor density under the infinitesimal coordinate transformation laws
above. To show that 7'; is a contravariant tensor density, we have only to show that
it transforms similarly to 7;. Let 3®* be the change suffered by the matter
dynamical variables under the infinitesimal coordinate transformation. Then,
because of the coordinate invariance of Sy , we have

0=065y = SM,A&I’A + SM,i(I)L[(pB + ¢Joc”.
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Now 8®" is metric independent. Therefore, functional differentiation of this
identity yields

0 = SmndD* + Sm ¥ [@p + PIOE* + Sm P, 5,

hence
6Ti = ZSSMJ‘ = ZSMA’,‘AS(DA + ZSM,ij(D{;[(PB + (]5}56“

= _SMJ(D{;,I“%H = —qu)zﬁf“.
Similarly,
8T = 28{Sc.i[ps + ¢ — Sciles] — Scilesld'}
= 2{$6,4{0n + 910, (05 + 9] — Sc.5(0a] ¥/ 03]
2 — S i [@p] P, [@p] 9" — So,g[eoB]@f;m"}aé“
2{—SGJ[¢B + IO, ; + S,j[0p] Y, ; + Saiik [¢B]®’;ﬁi¢k}5éa
—T,®/ 3¢,

a,l

where we have used (12.2) to reach the penultimate line. This proves the above
claim that 7; transforms in the same way as T;.

However, it is not convenient in practice to adopt the above coordinate trans-
formation laws. This is because there is no unique way of splitting a given metric
@' into a background metric ¢} and a remainder @', even when the background
geometry is chosen a priori. The background metric can still be chosen in any one
of its infinity of equivalent presentations under the diffeomorphism group. Thus
one cannot pretend that the field ¢’ is well defined as a covariant tensor. In practice
one must arbitrarily choose a particular form for ¢k, hold it fixed, and place the
entire burden of coordinate transformation onto ¢’ so that it transforms according
to

89 = 89 = O[] = (@' [pp] + ¥, ¢/ )3

T continues to transform like a covariant tensor density under this transformation
because Sy depends on ¢ only through the sum @} + ¢'. But the energy—
momentum-stress density 7" of the gravitational field no longer has a simple
transformation law. Only under the isometry group of the background geometry,
generated by Killing vectors 6&° (if any) satisfying

O [pg]5E" =0,

does it transform like a contravariant tensor density. For this reason 7"" is often
called a pseudo-tensor density.

Because 7" does not transform like a tensor density under general coordinate
transformations it is impossible to assign a definite location to the energy,
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momentum and stress in the gravitational field. Nevertheless, if 3-space is infinite
and ¢' vanishes sufficiently rapidly at infinity, there is an absolutely conserved
quantity, namely

/ T +TM)dZ, (X spacelike),
b

associated with every Killing vector ¢, that the background geometry possesses,
which is well defined and independent of the choice of coordinate system despite
the non-tensorial character of 7. For consider any two distinct coordinate sys-
tems in the neighborhood of the spacelike hypersurface X. These may be extended
into the future in such a way that they ultimately merge and become identical
there. Because X itself may be displaced to this future region without altering the
value of the integral, and because the integrals in the two coordinate systems are
obviously identical there, it follows that they were always identical.

12.3 Asymptotic Stationary Gravitational Fields
in the Full Nonlinear Theory

Suppose, we introduce into a flat empty spacetime a finite material system. The
spacetime will then be only asymptotically flat and will depart more or less
strongly from flatness near the material system, depending on its density. Such a
combined system is conveniently described by choosing the Minkowski metric #,,,
as a background metric ¢%. The deviation ¢ of the true metric from Minkowskian
is then simply the field £, introduced in (6.1), and the gravitational field equations
take the form

1 o |
-5 (l/”,g” Sy LA L 11’”1‘”_“) = 8nG(T™ + T™). (12.3)

It will be convenient in what follows to choose units in which
G=1
These equations may then be reexpressed in the form

1
_ |HOVT _ TRV TRV
167 + ’

where

HHMovT = _(luvnar + lornuv _ lurnov _ lavn,ur).

H""" has the same algebraic symmetries as the curvature tensor. In view of its
antisymmetry in v and 7z, it follows that

HovT —
H ,OTV 07
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which is consistent with the conservation law
(™ +T1"), =0.

This conservation law, which holds when the dynamical equations are satisfied,
allows one to introduce the following absolutely conserved quantities:

Pl — / (TH + T™)dS,,
p)

g =[BT <X (0 4 T,
z

These are respectively the total energy—momentum 4-vector and total angular
momentum tensor of the combined matter—gravitational field system. Choosing =
to be the hypersurface x” = 7 and making use of the gravitational field equations,
we may reexpress these quantities in the forms

Pt = / (T + T")d’x

1 1 i
- H,uaOr d3 - / H;sz <d3
167 / T X

1 .
= lim — / H'"" _d2S;,
S—oo 167 s ’

T = /[xu(TVO 4 TVO) _xv(Tu() + T"O)}d3x

_r
T 16n

_ L |:(xvar701 a) _ (va;mOr o) _Hva()y . + H;w()v 0:| d3x
167'C ’ T ’ T ’ ?

1 . .
—_ quaOz ) _ ( vH,uaOz )
167 {(x ) o )

/i0 i0 /00, 00v
—H"Y + B - HTY  + HE ‘AO} &’

uggveOt v pypo0t 3
(xH ot x'H ,M)dx

— lim L/ (x,qur;Oi _ va,uJOi + HROv _ I_Ivio;x)dZSi7
S*’OO 167‘[ S 70’ 7

where S is a 2-surface homologous to a sphere and the instruction limg_.,, means

that S is to be expanded to infinity in all directions.

The presentation of P* and J*” as surface integrals at infinity makes it partic-
ularly easy to relate them to the asymptotical structure of the gravitational field.
We shall in fact see that if the asymptotic field is stationary (in a certain Lorentz
frame), it is completely determined by P" and J**. A stationary asymptotic field
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(no gravitational waves) is a weak field. In the asymptotic region, we may assume
the coordinate system to be quasi-canonical and, in fact, quasi-stationary. We shall
then restrict our coordinate transformations to those that preserve the quasi-
stationary character of the coordinates.

We shall also assume that the field &, vanishes at infinity at least as fast as 1/r,
where r = |x|. 7" then vanishes at least as fast as 1/r*, for its dominant terms in
the asymptotic region have forms like h°"hl", and hg *h”"". This asymptotic
behavior, together with the finiteness of the material system, is entirely consistent
with (12.3). In fact, it will be obvious later that no other assumption about
asymptotic behavior would be consistent both with this equation and with the
(assumed) finiteness of P* and J*'.

Because 7" vanishes outside a finite region and 7*" vanishes so rapidly at
infinity, the field in the asymptotic region effectively satisfies the equation

Q=[W O _uov _ pou + ;,I,uvlar
i iV Vi w gij
=1 ,i_l,i —1 .,i+y]; [ Jijo
the final form following from the stationarity of the asymptotic field. We now ask
whether we can simplify this equation by imposing the supplementary condition
"' . = 0, without violating the assumptions made thus far. Schematically (dropping

indices), we have the asymptotic behavior

M

I~ =

r

)

where M is some constant. In order to impose the supplementary condition we
must carry out a gauge transformation (coordinate transformation) where the
gauge parameter & satisfies an equation of the form [see (6.4)]

ViE=V-L
This implies
£ oM In—
~Mln—.
: M

If we now choose r so big that both M/r and (M/r) In(r/M) may be neglected in
comparison with unity, then the quantities

M\ > M\> r

may be neglected in comparison with / and V¢, and the gauge transformation may
indeed by carried out consistently with asymptotic fall-off of order 1/r or faster.
This defines the asymptotic region.

With the supplementary condition imposed (remember that coordinate trans-
formations leave P* and J*” unaffected), we have only to solve the simple equation
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V2, = 0.

The general solution of this equation, which has the required asymptotic behavior,
is

A

B,ix!
i

—+
,

+0(r7),

Ly =
Hy ]"3

where A, and B,,; are arbitrary constants. Some of the arbitrariness of these
constants is removed by the supplementary condition. We have

Ayxl B — 3B ix'y
/uz 4 D i +

0= l#,’,i = — 0(/‘74),

r r

where X' = x'/r, from which it may be inferred that
Au =0, Bij = B;téii + Cuyj,

where the B, and C, are certain constants, with the latter satisfying

Cuij = —Cjr-

By combining the antisymmetry of Cy in j and k with the symmetry of By in i
and j, we can reexpress B completely in terms of B;. We have

Bioj + Cijx = Bjoi + Cji,

or

Ciix — Cjix = Bjoiw — Bidjx,  Cyji — Cji = Bjowi — By,

Crij — Citj = Bidyj — Bydj;.

Adding these last three equations and dividing by 2, we find

Ciix = Bjoir — Bidyj,

and hence,
Bjjx = Bioj + Bjoy — Bidy;.

The asymptotic field now takes the form

Ao Booix' . Box' + Co;x’

lop=—+——4+0(""3 loi o
00 p + 3 +0(r™), Iy 3 +0(r™),
B,‘Xj + B‘Xi - 5,“B](Xk _
lj = o 9.

This may be simplified by carrying out an additional gauge transformation with the
gauge parameters given by
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in the appropriate region. These parameters satisfy
V#¢, =0 (in the asymptotic region),

and hence the gauge transformation leaves the supplementary condition intact. In
the new gauge, we have [see (6.3)]

- Ago Boox -
loo =loo — &y = -t —+0(r™*), Boo; = Booi — B,

Boxi - C(),'jxj

b = oy = o = b = =5~ = =5~ +0(),
lj =l = &ij = &+ 0iCen
Bi / B; R 5,B k
=l — s jx3 il =0(r ).

r

From now on, we assume this transformation already to have been carried out so

that we may drop the bars.
We are now ready to compute P and J*'. Because HX’' vanishes in the

asymptotic region, it does not matter what shapes the surface S assumes as it
expands to infinity. For simplicity, we may assume it to be a sphere and write

d*S; = Xr’d*Q,

where d?Q is the element of solid angle subtended at the origin. We then have

= lim — / H°’°f (A2

S—oo 16T
_ _SILHOICF/(IOO Uy lol‘an)szsj
o[ Es i vl
P e / H S
— _S]LrgcE (lzon/k + l]k i0 lik,,,jO _ ljonik) szSk

=0.
In terms of the total rest mass (or rest energy)

M= (-P})'?
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of the matter—gravitational field system, we have

Ao = 4M.

We note that the total 3-momentum vanishes, as befits a system that gives rise to a
stationary asymptotic field. If the 3-momentum did not vanish, the asymptotic field
would not be stationary.

The vanishing of P’ implies the vanishing of the total orbital angular momen-
tum so that the spatial components of JY are just the components of the total spin
angular momentum:

Si = Ji
= S]erozlé_n : (lejkOZJ( _ xjHlkOIﬁk 4 Hll()j _ H]lOz)d2S1
.1 o o ,
= _shllolcﬁ/s [x (lzonkl 4 g0 _ il _ lkon/l)’k

(0 K | gL 0 il KO kO, il
=2 (IO + 1 = 1 = 1O

4 liOnlj 4 lljnio _ liji’]lo _ llonij

P . . .. 12.4
_110’,’11 4 111]710 _ l]lnl() _ lloﬂ]l] d2S1 ( )
1 N N N N A
= ﬁ [x C()jk (5kl — 3xkxl)x1 — x]C(),'k <5kl — 3)/‘xl)xl
47
+Coud* ¥ — Copi*i']d*Q
_ 3 N sk ai\ 42
= E A (C(),'kx X — ngkx x)d Q
1 1
7 (Coij = Coii) = 5 Coj.
As for the temporal components of J*', we have
0i _ 1; ij0k i 770j0k 0k0i ik00 '\ 12
J _SILTQE/S(IH [~ XHY g g )d S,
1 . . . . .
— lim —— {zOOk k00 _ jOKkj0 _ 40, 0k)
I o J [ (O P = B = )
_ (l()()nki 4 kg0 _ ik _ lkOnOi)] &5,
(12.5)

1 . _ -
= lim — [)ACZ (—Aoor)ACk + B()Ok - 3Booj.f(fjf(?k).f€k
r—o0 167 J4,
—Aoor)ACi - Booj)ACj)ACi} dzg

3 o 1-
= ——— [ By#/i'd’Q = —— B,
1671/4,r 00X 4%
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According to (9.1),
J" =P = XpP' = —X'P’ = —MX',

where X' is the center of energy of the matter—gravitational field system in the rest
frame (covariant center of energy). We may therefore make the identification

Booi = 4MX;,
and we have finally

oo =4+ M2 4 0(r7?)

loi = 2?/ +0(r73) in the asymptotic region.

lj=0(r)

No particularly useful purpose is served by retaining the term in X; above. This
term arises from the fact that the origin of coordinates has not been placed at the
center of energy.' It may be removed by carrying out the coordinate shift

X = xt 4 R
where
O=0 and & =-X".
We then have
Pt=pt, JT =]y &P - P =Y,
% :JOi-i-fOPi _ fiPO = Jo L pmx = 0,
loo = loo — loo.u&" + O(r™?)

= loo + loo X'+ O(r)

AMX;x!

am
_ -3\ _
=y — 3 + O(r ) =

1 03
Zo0),

- Y
loi = loi = loi "+ O(r™*) = —réx +0(r?),

Iy = L =l + 0(r=) = O(r™).

We shall henceforth assume this transformation already to have been carried out
and drop the bars.

' If the source of the gravitational field is so dense that topological anomalies occur in the strong
field region, the coordinate origin may not physically exist. The shift transformation is
nevertheless valid.
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It is now necessary to point out a slight inconsistency in the above derivations.
In order to relate the asymptotic field to the total spin angular momentum it was
necessary to retain not only terms of order 1/ but also terms of order 1//*. Now the
dominant spherically symmetric (monopole) term 4M/r in Iy, gives rise to terms in
T" that fall off asymptotically like 1/*. When these terms are used as sources in
the full nonlinear field equations (12.3), they give rise to corrections of order 1/
in the asymptotic fields, i.e., to terms falling off at the same rate as terms that have
been retained. To be sure, these terms are of order (M/r)* in magnitude and hence
are typically very much smaller than the terms that have been retained. However,
we need to check whether they can affect the values that have been obtained for P*
and J*', or, conversely, whether nonlinear corrections have to be introduced into
the coefficients of the dominant asymptotic terms of /,, when they are expressed in
terms of P* and J*" (actually M and Sj).

Because the monopole term 4M/r is spherically symmetric, a coordinate system
may be chosen in which the nonlinear corrections 6/, induced by this term are
themselves spherically symmetric (no preferred directions). Explicitly,

x'x
it

X 0

S A=Y iz

w
AIO():ﬁa Alp =X 2

for some constants W, X, Y, Z. Being of order 1/r2, these terms are readily seen to
have no effect on P*. Their effect on SY is determined by referring to (12.4).
Noting that Aly;; = 0, we have

AST = — lim — [ (YAI®, — YA+ AT — APy &S,
S—oo 167 S ’ i

Noting also that Al ;, = 0, and hence
(xiAsz,, — AT, 4+ A — Azion“) 1
= AP, — AI°,+ AI°, — AP, =0,

we see that it does not matter how S is chosen in the computation of ASY. Choosing
a sphere, we find

X

167
4

AST = — (% (8 — 3%%") — ¥ (64 — 3%'%!) + ¥'6; — ¥/, d*Q

=0.
In the case of J%, we have from (12.5),

. 1 ) . ) .
A = Jim S (x’AlOO,k — XA~ AR 4 Alk’>d25k.
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Here it does matter how S is chosen, for we have

(WA, — ¥AP, — AP+ Al"i)‘k: A XA — AP — AP, — AP,
+ Alki,k
= XA, — AP ),

which is not generally equal to zero. The reason for the sensitivity of 4J% to the
choice of S may be understood by remembering that J* gives the location of
the center of energy of the matter—gravitational field system. 4J% comes from the
asymptotic contribution to the integral — [ ¥ TOPx. Asymptotically, 7% s
spherically symmetric, and hence one would say that the asymptotic contribution
vanishes by symmetry. However, if one remembers that T falls off asymptoti-
cally like 1/r*, one sees that this is really an improper integral (logarithmically
divergent). In order to make it well defined, one must specify precisely how its
boundary is to tend to infinity. The symmetry argument is, of course, valid here.
One should integrate over the region inside a sphere and then let the radius of the
sphere tend to infinity.” This is equivalent to choosing the surface S above to be a
sphere. With this choice and the replacement d°S; = r*%*d*Q, one readily finds
that every term in the integrand for AJ% contains an odd number of unit vector
components &', and hence that

AJ% =0,

by symmetry. The correction terms arising from the nonlinearity of the full field
equations are therefore seen to have no effect on P* and J**. This does not mean
that the gravitational field itself makes no contribution to these quantities. Indeed,
in regions of strong curvature, 7" can be even more important than 7*". It means
only that the asymptotic part of the field makes no contribution. The asymptotic
field merely registers the imprint of P* and J*".

Summing up, we have the following theorem: For every asymptotically sta-
tionary gravitational field a coordinate system can be introduced in which the field
takes the canonical asymptotic form

aM W o '
loo~ —+—=+ 003, Iy~ X=+o0@u3
00 - + 2 + (r )a 0 3 + 3 + (r )7

0jj . inxj

72 7

li~Y +0(r3),

where M is the total mass energy (gravitational as well as material) of the source,
S;j is the total spin angular momentum, and W, X, Y, Z are constants of order M.

2 Tt does not matter where the sphere is centered. Provided only its center is held fixed while its
radius tends to infinity, the final result will be invariant under displacements of the sphere.
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Conversely, if a coordinate system is found in which the field takes the canonical
asymptotic form one may immediately identify the total mass and spin of the
source from the pertinent coefficients.

Computing

4M W -3Y-Z

lilﬁz—loo-f-liiN—T— 3 +0(r7?),

I%

and remembering that

1
8wy = 'I,w(l —El) + l,uv,

we find for the canonical asymptotic form of the metric tensor the expressions

M W 28 _ A
go~ —l+=—+=+0(7), gi~""F—+X5+0(7),
r r I r

72 74

2M i = xiw B
gij~(1+r>5,-j+Y L+ Z5 -+ 0(r ),
where

W:%(W+3Y+Z), X=X, Y:%(W—YJFZ), Z=2Z.
The asymptotic form for the metric tensor of a uniformly moving source may be
obtained from this by a Lorentz transformation.

Some concluding remarks are in order concerning the above results. We note
first of all that the dominant (monopole) terms in the asymptotic metric are
identical to those we previously calculated for a point particle in the weak field
approximation. We have therefore justified the point particle idealization. Indeed,
the justification goes farther than this. With a Minkowskian background metric, the
center of energy of the combined matter—gravitational field system moves in a
straight line. At a great distance from the material source, the dimensions of the
source dwindle to insignificance and this line effectively marks the location of the
source, i.e., it becomes the world line of the source. Now imagine that we have
many such sources, all at large distances from one another. Collectively, they
produce a background field that is no longer flat. Nevertheless, coordinate patches
can be introduced around each source, which, near their outer edges, are canonical
to high accuracy. Each patch may be regarded as marking the domain of a local flat
background geometry. Each source moves in a straight line relative to a canonical
coordinate system laid down in this local background. This implies that each
source moves along a geodesic in the global background field produced collec-
tively by all the other sources. For the geodesic is the only invariantly defined
curve that has the appearance of a straight line (d’z*/dt> = 0) in each locally
canonical coordinate system (l"%y = 0) that is laid down along its length. Thus the
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point particle idealization is justified even to the extent of describing correctly the
dynamical behavior of the sources. One must only take care to separate the ‘self-
field’ of each source from the background geometry. Although such a separation
cannot be unique close to the source, it is well defined asymptotically.

Suppose, finally, that the whole collection of sources is bounded and that even
the global geometry ultimately becomes flat at great distances from the ensemble.
Then a flat background can be introduced for the ensemble and a total energy,
momentum and angular momentum defined. These quantities, which include
contributions from the global curvature will be conserved if the motion of the
sources is so slow that the global asymptotic field is quasi-stationary. We shall see
later that these quantities will be conserved even if some of the sources are moving
at high velocity, provided only that their mutual interactions are so weak that the
acceleration of each is small relative to a coordinate system that is quasi-canonical
in the field of all the other sources. If, on the other hand, the accelerations become
appreciable (in some level of approximation) then gravitational radiation must be
taken into account, and there will be a net outflow of energy, momentum and
angular momentum from the ensemble, as we shall see.

12.4 Newtonian Approximation

It is of interest to compare the contributions which 7*" and 7" each make to the
total energy when the conditions for the validity of the Newtonian approximation
hold, namely, when the size R of each source is very much greater than its so-
called gravitational radius GM:

R> GM.

Under these conditions, the maximum value that 7% can assume (in quasi-
canonical coordinates) is, apart from factors of 1/16m, etc., of order

1 GM?
T%~ E(Vh)% =
TOO, on the other hand, will be of order
T ~ %.
Therefore,
7% GM
T00 ~ R < 1,

and 7™ is seen to be negligible compared to 7°. This is true even though 7% is
distributed in space around the source whereas 7% is confined to the material
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source itself. For the total contribution to P° from 7% is of order GM?*/R, while
that from 7% is, of course, of order M.

It is also of interest to compare 7% with the other components of the energy—
momentum-—stress density. In the mean rest frame of the source the components 7%
typically arise from rotation and are of order

TOl ~ VTO(),

where v is the ‘rim’ rotation velocity. But the maximum value that v can attain
without the source flying apart is, for astronomical objects,

GM 1/2

Therefore, T%<T%. As for the components 7Y, these typically arise from internal
pressure, which is of order
GM*> M

PSR
Therefore the TV too are negligible compared to 7%, and 7% is seen to dominate
everything in the Newtonian approximation. This provides yet one more justifi-
cation for the point particle idealization used in the weak field analysis, in which
7% was the only surviving component of 7" [see (8.3)].






Chapter 13
Measurement of Asymptotic Fields

The asymptotic field of a quasi-stationary source registers the imprint of the total
mass and total spin angular momentum of the combined matter—gravitational
field system. These quantities can therefore be determined by experiments carried
out in the asymptotic region without ever going near the source. The total mass
may be determined simply by examining the Keplerian orbits of test bodies and
comparing their size with their periods, in the familiar manner of celestial
mechanics.' In this chapter, we shall indicate how to measure (in principle) the
spin angular momentum of the source by observations of the behavior of gyro-
scopes in the asymptotic region.

We shall see latter (Appendix A) that the spin angular momentum 4-vector S*
of a gyroscope is Fermi—Walker transported along the gyroscope’s world line. This
means it satisfies the equations (see Problem 9 in Chap. 2 and Footnote 1 in
Chap. 5)

SE=(S-i)u", S -u=0,

where u" is the gyroscope’s velocity 4-vector (u”> = — 1) and the dot denotes
covariant differentiation with respect to the proper time. In Problem 9 in Chap. 2,
it was found that the vector S* precesses in the case of flat spacetime when * # 0.
This precession is known as Thomas precession. In a curved spacetime we shall
see that there is a precession even when u# = 0.

In order to compute this precession, it is convenient to introduce a tetrad field eZ
satisfying

B % oy
r]a[;eZe{, = 8un eZe{,g’“ = Nyp-

In the local canonical frame provided by the tetrad ej, the components of S* are
given by

' The location of the center of energy relative to the asymptotic Cartesian coordinates is given by
the focus of the Keplerian ellipses.
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§* = ezS“.
These components satisfy the differential equation
Qo __ o Qi o G
§*=é,8" + ¢S
=€), S"u" + e} (S - iu
eﬁevSpu* + (S a)u”
In order to describe precession, we need to relate S* to a pure 3-vector. This we can
do by carrying out a boost from the local tetrad frame to the local rest frame of the

gyroscope. The boost transformation coefficients are those given in Problem 9 in
Chap. 2:

(L;;)—<_VW 1+(;y—v1)99)’ (L’}”)_(vvy 1+(yw—1)ﬁ9>’

where

Defining
we then have

and
S =13+ 18

_L/f LS 4+ L ﬁeﬁteéf; LS + (S - in)w*

Taking only the spatial components of this equation and making use of the results
of Problem 9 in Chap. 2 as well as of the fact that

L = i = 1,

we find

where
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The first term on the right of this last equation may be rewritten in a form that
distinguishes between contributions coming from the curvature of spacetime and
contributions coming from the absolute acceleration of the gyroscope. We first
write

S N I AN
Vi=Yy ouw, vi=y ou—y Ty,

and remember that v*y*> = 9> — 1. This allows us to express the first term in the

form

1
y+1

(il — i),

We next compute
A B 1} o 1
uw =eu +eu
N no v o
=e,uu +a ,

o v By o
= eweﬁe},u u +a

where the a” are the components of the absolute acceleration in the local tetrad
frame. The first term of Q; then becomes

A

y+1

(via; — vja;) — (viejuy — vjeiw)ege;uﬁu’.

.
7+ 1

Some authors regard only the first of these two terms as giving rise to the
Thomas precession, while others regard both as giving rise to it. That is, there is
disagreement as to precisely what should be called the Thomas precession in
general relativity. The first group of authors likes to regard gravitational forces
as special, because these forces do not contribute to a;. The second group likes to
regard the (coordinate) accelerations produced by gravitational forces as no
different from the accelerations produced by any other forces. Locally, of course,
there is no way of distinguishing the contributions to the precession arising from
the two kinds of forces, because all of the quantities appearing in the above
expressions depend on an arbitrary choice of tetrad field. However, in a closed
orbit in a stationary field there is a cumulative precession over each period,
which is physically well defined and which can be split in a physically well-
defined way into a part arising from absolute acceleration and a remainder
determined by spacetime geometry.
Collecting the above results we now have

_ Y Wy yagof
Q= _H—l(viaj —vja;) — equvege,u’ My,
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where (using e, € = — epu, €5)

Mg-ﬁ = ﬁ(viéfuﬁ - vjéfuﬁ - Vi5jﬁua +Vj51ﬁ"‘“)
P Y R Py
oL LT - L L)

Explicitly, component by component, we find
00 _
M;" =0,

2
Ok v 1 o .
M = _mviéjk + 570+ (7 = D)9¥e] = (i =)

(V,’éjk — Vjéik)

,)) )
2(p+1)

Kl V2 P P
i = m(\’z ikVI — Vi ;le)

1 . o .

+ 510 + (7 = 1)viv] [0+ (y = Vi) = (i = )
1

= 5(5ik5jl — 0j0ir)

using
P oyl
— =0.
Y+ 1 + V2
Hence finally,
Q= —L(v-a' —via;) — L(V-e" — vjetYeouve u”
[/ VJrllJ Jei y+1jj JE€i )E0uvEy

. nov. o
— €iyvej e U

Suppose now that the gravitational field is weak and that the coordinate system
is quasi-canonical so that g,, = #n,, + h,,, where lh,| < 1. Then in the weak
field approximation, there is a natural choice for the tetrad field, namely

1
ea# = 1’]06‘u + Qhwt + O(hz)

We then have
a
Couv = Copy — F#veom'

1 1 oh
= Ehcm,v - E(hacu.v + hocv,,u - h,uv,zx) + O(ha) ,

1 Oh
= (Mo — hay h—
Z(h# y sﬂ) + 0( ax>
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and, dropping terms of order h0h/0x,

Y
Q= _ﬁ(viaj - vjai)

2
Y
- m[vi(hjo,o = hooj) — vi(hioo — hoos)+ vivi(hio — hor) — vivi(hico — hoii)] -

1
-5 (B0 — hiog + vic(hixi — hixy)]

In the special case of slow motion relative to a quasi-stationary coordinate system
in a quasi-stationary gravitational field, this expression reduces to

1 1 1
Q= ) [vi (aj - EhOOJ) - <ai - EhOO,i)]

- lVk(hjk,i — hirj) — l(hjo,i — hio,)
2 2

in which no distinction need be made between the 3-velocity v; relative to the

tetrad frame and the coordinate 3-velocity. (This assumes that a; is not much

greater than hg; in order of magnitude.)

It will be observed that the Lense-Thirring field makes its appearance in the
third (last) term of the final expression. When a Lense—Thirring field is present, the
gyroscope will precess even when it is at rest. It will also be observed that the first
and third terms are invariant under gauge transformations that preserve the quasi-
stationary character of the coordinate system (see p. 72). The second term, how-
ever, is not. Under a gauge transformation it, and therefore Q;;, suffers the change

1 .
AQ; = Evk(é;,i = Cii) g

This change is not physical but arises simply from the fact that the gauge trans-
formation induces a change in the ‘natural’ tetrad field. The precession is being
defined relative to the new local tetrad frames! Remembering that v, = x; (no
distinction now between 7 and f), we see that

1d

AL =34

(& — &)

and, hence over a closed orbit, AQ;; produces no cumulative effect:

f AQdt = 0.

Let us now apply these results to a gyroscope moving in the asymptotic field of
a quasi-stationary source. Referring to p. 146, we have
M Ay M

hoo = - hoi = 3 M= 751';7
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where M is the mass and Sf-f is the spin angular momentum tensor of the source.
Therefore,

Xi .ifk
]’l()()’i = —2]‘4’/'—;7 hij,k = _2M5Uﬁ7
2 /M Mo « R xt
h(),"]' = r_S(SU — 3Sikxk)gj), X — 7,
whence
3IM, | R
.Q,'j = —E(V,'Clj — vja,-) — Eﬁ(v,-xj — iji)
| .
(28} - 38Maud + 38} )
Defining
1 1
Q= E&ij,‘h s = Eﬁijksf;?,
and noting that
738iij]1-\l/[)ACl)ACk = 736,-jksﬂm5x5qfck

= 3(8i1Skm — SimOu)Shri ,

Lo oM M
= 3xinS T 3Sl
we find that we may write the gyroscope precession equation in the form

ds —
—=0xS
dt %

9

where, in standard units with the constants G and c restored, the gyroscope pre-
cession frequency Q is given by

1 3GM
Q= v X a

. G o
5.3 y X % — ——=(1 — 3xx) - SM.
C

2c2r? c2rd

Assuming that @ and M are known, we see finally that an observation of Q2 yields a
determination of S™.

It will be observed that the contribution to Q arising from S™ causes the
gyroscope axis to turn in the same direction as the source, i.e., Q parallel to $™, in
polar regions (X parallel or antiparallel to S™) and in the opposite direction in
equatorial regions (X perpendicular to S™). This effect has an analog in hydro-
dynamics. Consider a rotating solid sphere immersed in a viscous fluid. As it
rotates, the sphere will drag the fluid along with it. At various points in the fluid,
one may imagine little rods, free to rotate about a central pivot but otherwise held
fast. Near the poles, the fluid will rotate the rods in the same direction as the sphere
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rotates. But near the equator, because the fluid is dragged more rapidly at small
radii than at large, the end of a rod closest to the sphere experiences a stronger
dragging force than the end farthest from the sphere. Consequently the rod rotates
in a direction opposite to that of the sphere. We may therefore say that a rotating
source of gravitation affects its surroundings as if it were dragging some kind of a
medium along with it.

Problem 38 In the case of the earth the asymptotic field region begins already at
the earth’s surface. Moreover the contribution of the gravitational field to M and
SM is negligible, so that M may be regarded as simply the mechanical mass of the
earth, and S™ may be expressed as I where [ is the earth’s mechanical moment of
inertia and o is its rotational angular frequency vector. Suppose the gyroscope is at
rest on the surface of the earth at a latitude «. Using

I = 0.334MR?,

where R is the radius of the earth and the factor 0.334 has been determined from
geological and astronomical studies, obtain an expression for the average (Q) of
the precession frequency over one sidereal day (86 164 s) in terms of G, ¢, M, R,
o and o. Using the values

G=6067x10"kg 'm’s™2, M =598x10*kg, R=6.38x 10°m,

find the magnitude of (Q) at the equator. Express your answer in seconds of arc per
year.

Now suppose the gyroscope is in circular orbit about the earth. Let r be the
radius of the orbit and n the unit vector perpendicular to the orbit. Obtain an
expression for (Q) (orbital average) in terms of G, ¢, M, I, R,  and n. Show that
when the orbit is polar the contribution to () from the orbital motion is at right
angles to that arising from the Lense—Thirring field produced by $™. Compute the
magnitudes of these two contributions for the case in which the orbit is at an
altitude of 500 km above the earth’s surface.

Solution 38 We have

GM 2GM . GI o
a—= Fx7 = CZWV 2_133(1 3xx) ,
y=Ro xX, vxi=R(®x%)xi=—R(l-3it) o,
2GM e 0.334GM s
Q= 2R (l—xx)-w—T(l —3xx) -
GM oo ’
:cz—R(l.67l— 1.00xx) - @

whence

GM

(@) =5

(1.67 — 1.00sin* 2)



158 13 Measurement of Asymptotic Fields

Now,

| |_ 27
1= 36164

and

1 2n

larcsec yr = = =154 x 10 Prads™".

360 x 3600 x 3.16 x 107
At the equator (¢« = 0), we have

1.67GM
()] = &T'w‘

167 x6.67 x 107! x 5.98 x 10**
N 9 x 106 x 6.38 x 10°
=847 x 10 rad s7!

847 x 107

T154x10-5 0.550 arcsec yrfl

In orbit we, have a = 0 and

sT'=730x 10 rads!,

x 7.30 x 107>

v GM GM\ ' GM\ '/
o= |v|:<r> , vx:%:—() n,

r2’

3(GM)Y* G

r

Q=-——S—n———(1-3x%x) o, (xx)= %(l —nn),

2 52 c2r3

so that

3Gm)>** a1

_ " (
(@) = 2 apn "l

In polar orbit we have n - @ = 0 and this reduces to
(@) = (@) + (@)
where

3(GMm)**?
orb\ __ LT\ __
(@) = Wna (@)

Now,

GM = 6.67 x 107! x 5.98 x 10** =3.99 x 10" m?s72,

(GM)** =7.97 x 10*' m®/?s73,

1—3nn) o

Gl
- 2c2r3w




13 Measurement of Asymptotic Fields 159

r=6.38x 10° 4+ 0.50 x 10° = 6.88 x 10°m,
P2 =1.24 x 10" m/?,
1 =0.334MR* = 0.334 x 5.98 x 10** x (6.38)* x 10'> = 8.13 x 10*" kg m.

Therefore,
3 7.97 x 10%!
by | _ —12 ~1
(™) = S g5 T0te % T2a x 1or = 107 X 107 P rad s
1.07 x 10712
= W = 6.96 arcsec yr71
and

()| = 6.67x 107! x 813 x 107 . s
2% 9 x 1016 x (6.88)° x 10'8
=6.76 x 107 rad s~
_595%x 1071

154 x 10713

= 0.439 arcsec yr~!






Chapter 14
The Electromagnetic Field

The action functional for the free electromagnetic field in a curved spacetime is a
straightforward generalization of that in canonical coordinates in a flat spacetime:

1 v 14
SE:—ﬁ/gl/zFﬂvF‘udx,

Fro =Avu —Apy = Ay — FSHA(, —Apy+ FZVAG
=Avu — Ay

In a locally canonical coordinate system, one may make the usual identifications
(Ay) = (=9, A),
Ei=Fijp=Ao; —Aip, E=-V¢$—Ay,

1
H; = Egiijjk = &jrAr, H=V xA,
where ¢ is the scalar potential, A is the 3-vector potential, E is the electric field
vector, and H is the magnetic field vector. We note that the electromagnetic field
tensor satisfies the covariant generalization of a familiar identity:

Fu\';a + F\'a;u + Fo':,,uv = Av:uo’ - Au;va +Aa:vu - A\';au +Au;av - Ao’;uv
= AT(RE;M + R/va + er"u) =0.
The electromagnetic field tensor, and hence the action functional itself, is
invariant under gauge transformations:

Ay=A,+&,=A,+¢&, (&is ascalar).

Denoting by dSg the change induced in Sg by an infinitesimal gauge transfor-
mation generated by an infinitesimal gauge parameter 6, we may write
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5SE 6SE
0=0Sg = [ ——0Adx= [ ——o¢,4d°
E /5AH wEx /5AH Cud'x

_ dSE 4
= /((SA,) ;uéid X.

Because of the arbitrariness of 3¢, this implies

s
5’4" HY

But under a general variation 6A,, we have

0.

1
0Sg = _8_/ 8" F1 (8A sy — 6A ) d*x
v

1 1/2 ) 4
= / g'PFI oA, d'x,

whence

6SE 1 1/2 "
=——g /°F"
oA, 45

= (e,
- .,
—%[(g'/zF“") .+ Fﬁ.‘vg'/zF”}
. |

1 1/2
= (g!2Fm) .
4n(g )y

The above differential identity may now be verified directly. Because Sg /04, is a
vector density, we have

5SE 5SE 1 1/2 )
= = | —— = — FH =0.
(51),7 (55), 7 e

L
Fi =

Alternatively,

—

E(F % —-F fﬁ;)
= (TR, FURS)
= %(F”VRW — F"°R,,) = 0.
The electromagnetic energy—momentum-—stress density is readily computed by
first writing Sg in the form

1 )
SE = 7@ gl/zgugg‘TFquard4xv
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and remembering that F,, is metric independent when its indices are downstairs.
Using 6g"" = —g"°¢"" 0g,., we find

a5 1 D
E E_g1/2 Fé_lFm——ngmFm )
0g, 4m 4

TE =2

The combined action functional for the electromagnetic and gravitational fields
in the presence of charged matter is given by

S= SG[gyv] + SE[guwAy] + SM[g,uvaA/u dSAL

where Sy is the action functional for the material system and the ¢* are the matter
dynamical variables. (Here we are treating the electromagnetic field separately
from the material system.) Note that Sy is a functional of the g, and the A, as well
as of the @*. In quantum field theory the &* are the components of a complex
tensor (or spinor) field ¢ whose coupling to the electromagnetic field is determined
by the principle of minimal coupling (akin to the strong equivalence principle):
Every ordinary derivative ¢, appearing in the matter field Lagrangian when no
electromagnetic field is present, is replaced by the combination ¢, — i eA,p,
where e is the unit charge of the matter field quanta (typically, the charge on the
electron). Because ordinary derivatives become covariant derivatives when a
gravitational field is present, this means that in general relativity matter field
derivatives occur only in the combination

0 .
D,p, whereD, = T G Iy, —ieA,.
D, may be regarded as a kind of generalization of the covariant derivative. It is
invariant under electromagnetic gauge transformations provided the matter field is
understood as gauge transforming according to the law

P =eo.
In the non-quantal description of bulk matter, the coupling to the electromag-
netic field is usually described by an explicit coupling term in the matter action

functional Sy;. For example, the action functional for a point particle bearing a
charge e becomes

Sm=—m / (=)' Pdi+e / A 22,

where the new second term is the electromagnetic coupling term. It is always
important to check that the coupling term is gauge invariant. For the point particle
we have

oSy = e/&ézazxdﬂt = e/dd)(Sé(z)di =0,

in which it is assumed that & has compact support.
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The dynamical equations for the combined gravitational-electromagnetic—
charged matter system are

8S 1 Vol o1 o
= = - R™ — —g"R ) + 8nG(T" + T
PP 16nG[ § 28" R) + 86T+ )|
oS 1 12 . , .
=5A = 4n(_ g/ Fh +4mj")  (Maxwell’s equations),
I
0= 08 _9Sm
oot T st
where
, . 0Sm ., 0Su
T =M =M
M 08 0A,

and j" is the charge current density. Because of the dynamical equations them-
selves, we have the following covariant divergence laws:

(Te" +Tv),, =0, Ji =

The former, which assures consistency with the contracted Bianchi identity, has

already been proved (see Chap. 9). The latter, which assures consistency with the
identity F%),= 0, can be proved analogously. Let 39" be the change (if any)
induced in the @* by an infinitesimal gauge transformation 6¢. Then because of

the gauge invariance of Sy, we have

5S
0=oSm= | - AM(sé (dhx +

0Sm

— 1 4
5¢A5<I>A = /]ﬁlﬁéd X.

The arbitrariness of §¢ leads at once to i, = 0. If the @* are unaffected by gauge
transformations then the covariant divergence of j* vanishes ibecause dentically
whether the dynamical equations are satisfied or not. The point particle provides an
example of this. In this case we have

J* :e/é’;zﬂi,
Jﬂ—e/éw “dl——e/é (x,2)z%dA

= —e/dﬂé(x z)dA =0,

the final integral vanishing because the world line of the particle is constrained to
be timelike, and hence z(4) ultimately becomes infinitely remote from any
spacetime point x.

and
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Because the covariant divergence of a vector density is the same as the ordinary

divergence, the condition j!, = 0, unlike (7% + Ty )., = 0, is a true conservation
law. The conserved quantity in this case is the total charge Q:

Q:/j“dZ,l.
b

In the case of the point particle, we may evaluate this integral by choosing X to be
a hypersurface x” = constant:

Q= e/dzﬂ/dzag‘z“ :e/d3x/d/15(x7z)20
b
= e/d3x/dz05(x,z) =e.

Problem 39 In the case of the point particle, show that the divergence law
(Te' +T4), =0,

when combined with Maxwell’s equations g"*FY = 4 j*, implies the equations
of motion mz* = eFjzl.

Solution 39 We have

0=(Tg"+T),

_ 1 1/2 Ve 1 v a1 ,u\ 7% ﬁ
—Lng <FJF 8 Fock ™" ) +m [ 8,22 de .

, 1 ,
= R, 4 B 4 PP L
m / 5ﬁ};;vi"‘2/}df

—F!j7 — /5# 22584t
m 5V -aDéu
= —eF} Ldt—m [ 2 De tdt

:/5” eFﬁzﬁ—sz )dz,

whence
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14.1 Electromagnetic Waves

In studying special solutions of Maxwell’s equations it is convenient to impose the
so-called Lorentz supplementary condition on the vector potential:

Al =0.

If this condition does not already hold it can be made to hold by carrying out the
gauge transformation

A/t - Au + é:,m

where the gauge parameter ¢ is a solution of the inhomogeneous curved spacetime
wave equation

N AW
é;;t_ A;u'

Solutions of this equation can be found with the aid of appropriate biscalar Green’s
functions. From now on we shall assume the gauge transformation already to have
been carried out and drop the bar over the A,,.

In this section we shall study solutions of Maxwell’s equations in the absence of
charged matter (Spy = 0). When the supplementary condition holds these equa-
tions take the form

0= —F = —A 4 AW
— A — ARY = AP — REA".

We seek a solution of these equations in the so-called eikonal approximation. This
approximation is based on an expansion of the form

0 2 1 3
Ay = (A,L+AH+~~> cos ¢ + (AH+A,,+~~) sin ¢.

The solution is assumed to be that of a locally plane monochromatic wave having a
propagation vector k, at any point equal to the gradient of the so-called eikonal
function ¢ at that point:

k/c = (b;,u'

The coefficients A, are assumed to vary slowly compared to ¢, and their mag-

n
nitudes are assumed to decrease in such a way that none of the products k,A, are
n—1

bigger in order of magnitude than the biggest of the derivatives A ,.,. Moreover,
the components of the curvature tensor are assumed to be of the second order in
smallness compared to the products kk,.
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Substituting the expansion into the supplementary condition and into Maxwell’s
equations and setting terms of like order independently equal to zero, we obtain the
following equations:

0
—Atk, =0,
1 0
Afk, + AL, =0,
2# lu
—Alk, + Al =0,
3 . 2
Ak, + Al =0,
and so on, together with
0
—AM* =0,
1 0 0
—AMK® = 2ALK" — AFK!, = 0,
2 1 1 0 0
—AFK® + 241K + AFK], + ALY — REAY = 0,
3 2 2 1 1
—AMI® = 2AKK" — AFK!, 4+ ALY — REAY =0,

and so on. We have immediately

¥ =0,
and hence,
k'kyy, =0,
which, together with the solution
Koy = Ky

that follows from k, being the gradient of a scalar, implies
kyk” = 0.

That is, the lines orthogonal to the wave fronts ¢» = constant are null geodesics.
These lines are the rays of geometrical optics, and we see that light (electro-
magnetic radiation) really does travel with the velocity of light!
If we now define
0 0 n

200 1y
a =A% e =f,, fu=a Ay
we then have

n n—1
=1, k-e=0, k-f=(-1)al(af"),, n>l,

(azk#)m = 0’ 2a;HkM + aki;t — O’ e{lvkv _ 0,
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n—1

ik = S |y, R

The eikonal approximation consists in writing

Ay~ ae,cosq,
and in recognizing a as the amplitude and e,, as the polarization vector of the wave.
The equation (a*k*)., . = 0 is a conservation law for the wave, and the equation
eh k" = 0 says that the wave is linearly polarized with the polarization vector being

transported in a parallel fashion along the null rays orthogonal to the wave fronts.

n
The coefficient vectors f# represent small corrections to the eikonal approxima-
tion. They may all (including ¢") be chosen tangent to some initial spacelike
hypersurface, with components satisfying the initial constraints

n n—1
kof =(=1)"a'(af"),.
Their values elsewhere may then be obtained by integrating each of the equations

n
for f4k" (in succession) along the null rays. The integration automatically pre-
serves the constraint equations, as may be verified by the following computation:

0= (k-A) K" — (k-A) K"
n—1 1 n 1
= (1AL S AR =31k, (A.“ v RgA")

ouy

1 n
- (- )A" K+ (1) ATRE K4 (=D AL,

N =
—

—
N

=

bl .
=

=

=

=

1 n n— . v 1 . n—1
—5(-1) (kHA §v>‘+§(—1) KA+

[V
= _5(71) ( B v v
eyt ’12“2%1( 1R Al
2 # 2 2 i
1 nnjll o pv 1 ;21 1~ ﬂ' i l_u Vv
= —§<—1) A k Ro‘\u _EA _EA \RGM —EA GR\/A

1 yn_vz 1 n o _v 1n-2 nov 1 n720_ 14 '
+3 REA —5(—1) k,R:A +§A o T3 A °RL,,
W >
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n
The coefficients f* in the eikonal expansion for a given wave are not uniquely
determined, for we may always carry out a gauge transformation of the form

Ap=Au+ Sy,
where the gauge parameter ¢ satisfies the homogeneous wave equation
o
é:u =0.
If we write an eikonal expansion for ¢,

f:a(3+5+~~~)sin¢fa(&+a3+~~)cos¢,

we find that the coefficients ¢ must satisfy

n 1 n— K
((l)mk" =0, auk'= E(—l)”a‘1 (a al) , n>1,
7

n
and that the coefficients f, suffer the gauge transformations

e, = eﬂ—i-c(l)kﬂ, fu zfﬂ-i-crllkﬂ - (—l)"a”(anc;])ﬂ, n>1.

n
These transformations of course leave the relations satisfied by the f* unchanged:

e=1, k-e=0,
kof — (1) <f> =k f—(-1)a(a"a") k- <—1>"a‘(a?“l)
i ! *
= —(=1)"a! [analkl‘ —(=1)"! a'a’ u}
(@) )

= (-1 B "k~ (-1 a (a "az)”] =0,
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n—1\" 1 _
e (5 e (e
—(—1)”(171 |:(ana1) kv:l +(_1)na71(a ;ll> k;”‘
(1) (o'’ K= (—1)a! a)
(=1 ) (~1fa'(a"a’) K
1 nn—1 'uv 71( n—2)v
S (o)
1 n— — n=2\"
+§(—1)"R‘V‘[ alkv—(—l)" 1a’1(a a2>']
1 n—1\H"_ | 1 n_— n=1,, \
:—E(—l)"a_l(a al)'k;“,—i——(—l) a ‘(a alk;\,),

1 n—2\"* 1 nn 1 n—2\"#
—I—Ea*l(a az) —5(—1) 1k’“—2 1(a az)

1 n— ) 1 n — n— v
——a! (a az) RW 4+—(—1)"RY a'k - (-1 et (a az)
2 o 2

1 n—
:_( )n lkaR\,u

1 n—
: ~(—1)"R""a k" =0.

2

Now suppose the wave sweeps over a test particle of charge e and mass
m. Suppose further that the wave is very weak so that we may treat the disturbance
d¢&% in the particle coordinates, produced by the wave, as an infinitesimal. In the
absence of the wave, the particle follows a geodesic:

i) "¢] -0

The equation for 6% is therefore

eFi = mﬁﬁ[(fiz)_]/zia} = mﬁ%[(fiz)_l/zia}

—mij"* — mR}, (,u/}u7'11‘57

=T

(see Chap. 5), where u* (= z%) is the 4-velocity the particle would have in the
absence of the wave and

n* = P;j,ézﬁ .
Now the Maxwell field that appears in this equation has the form

Fop = Apa = Aup
—la(ksep — kpey) + -] sing

+ | (aep),, — (aen) s+ alkof s — kuf ) + | cos .
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It is convenient to use the gauge flexibility and choose the polarization vector so
that it is perpendicular to the undisturbed 4-velocity:

e-u=20.

If this equation is not already satisfied we have only to carry out a gauge trans-

. . L0 .
formation with a gauge parameter £ whose coefficient a, in its eikonal expansion,
is given along the world line of the particle by

0 e-u
a=

k-u

The equation for #* then becomes
.y €d oy . o By 0
i =e (k-u)sind + Ry su"u'n’ +---.

If we assume that there is no appreciable gravitational radiation present, so that the
term in the curvature tensor varies slowly compared to sin ¢, and if we remember
that a, ¢*, and k-u also vary slowly compared to sin¢, then we may write
effectively

., ea D e D? [ae* .
= D s =, D<k¢>

which has the solution

o
N = L ¢.
mk-u
Along the (undisturbed) world line of the particle, sin ¢ oscillates with angular
frequency

w=—k-u.

The electromagnetic wave is seen to cause the test particle to oscillate with this
same frequency about its undisturbed position. The amplitude of the oscillation is
ealmm.

Waves of nearly monochromatic electromagnetic radiation need not be linearly
polarized. It is possible to superpose two waves that have the same eikonal
function but are 90° out of phase, obtaining

A# = aI(EI# + - ) COS¢ — aH(EH# + - ) sin (]5

If a; = ayy and the unit vectors ef and efj are orthogonal, forming a right handed
system with ef; = w™!P"k, (k" assumed pointing to the future), then this wave is
circularly polarized with a right handed helicity. If a; = —ayy, the wave is circu-
larly polarized with a left handed helicity. The motion of a test particle in such a
field is given by
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e .
n* = %(ale‘f sin ¢ + aef; cos ).

14.2 Energy, Momentum, and Angular Momentum
in Electromagnetic Waves

The energy-momentum-—stress density in an electromagnetic wave is easily
obtained in the eikonal approximation. For a linearly polarized wave, we have

Fuy = —a(kye, — kye,) sin ¢,
FIF' = @ (Key — kpe")(K'e” — k7¢") sin® ¢

= a’kMk" sin® ¢,
and
FyF’" =0,
so that
™ = gl/jk”k" sin? ¢.
47

This approximation rigorously satisfies the divergence law T% = 0, as may
immediately be verified by using the relations k° = 0, ki4k" = 0 and (a?k")., = 0.
It is also frequently useful to introduce the mean value of 7" averaged over a
wavelength:

1/2,2
) g'7a )
T = Sk
(") =5~

It too satisfies the divergence law:
(™)., = 0.

In order to discuss angular momentum in the wave, it is necessary to include the
next term in the eikonal expansion of F,,. For simplicity we confine the analysis to
the case of a wave packet in flat spacetime for which the propagation vector is
constant, i.e., k,;, = 0. In canonical coordinates the following equations then hold:

=0, k=0, a,k'=0,
: 1 1 ) : 1
Sk = —5a” (ae"),, k-f=—a (ae")

ehk' =0, k-e=0.
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If we specialize to the case of a circularly polarized wave for which the polari-
zation vectors ef' and efj are both orthogonal and constant, we then have

1
wo_ _ _ -1 u
ey — 0, k-een=0, k 'fI,H = —a ageyy,

1
nogv -1 v u
fLH.,vk _Ea a.,epn-

If the helicity of the packet is right handed (a; = a;; = a), the electromagnetic field
tensor takes the form

Fyv = —a [(k,,elv — kvem) sin ¢ + (k‘,env — kven,t) Ccos ¢]
1 1
+ {a,ﬂelv —ayey +a (kﬂflv — k‘flu” cos ¢

1

1
_ |:a”u€H\,v - aJveII'u +a (kl/fllv - kfo“>:| Sin ¢,

and we have

FUP' = a2 (K er, — koel') (K€l — k°¢!) sin? ¢
+ a* (k'er, — koel') (K'ef; — k%e}y) sin ¢ cos ¢
+ a*(keny — koely) (kK'ef — ke}) sin ¢ cos ¢
+ a* (K'en, — koely) (K'e5 — k7e}y) cos® ¢

.
— a(k'ery — kqel) [afef —a’e] +a (k" 7=k’ f)} sin ¢ cos ¢
I
a(k"er; — kqet') [afe{’l — a:’e}} +a <k"f§’I ﬂ
1
— a(k"ens — koey) [a‘vef - af’ef +a <kvfi7 —k° })} cos” ¢
1 1
a(k*ens — koely) [a:’eﬂ —ad’ey+a <k” o— k“fh)] sin ¢ cos ¢
four more terms like the last four
but with the indices p and v interchanged
= a’ kMK’

a[—k“ ' —K'a" + Kejefa, +Kefefa,

|
—2k'k (er - f1)a — K'el'efa, — k'ejefa .

n,v A SR NN N AN N
+ k a +k a klejefa s — k'eyefia o

|
+2k"K" (en - fu)a + k'ejefia  + kMefiefia | sin ¢ cos ¢
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1
+a [—k”eﬁefa,g — kK'epela, + 2k"k (er - fu)a + k'efefa, + k”efeﬂavg} sin® ¢
, 1 , ) 2
+alklejefa, + kel efa, — 2k'k" (en - f1)a — k'eljefa , — k' efefa q | cos” .

In the present case, with constant k* and efy; in flat spacetime, it is possible to

|
choose f1; so that

1 1 1 1
er-fi=en fu, e-fu=en-f1=0.
The above expansion then reduces to
voe __ 2 v L,V 0 v o vi I o oo
FEFY = a°k'k" + ak" (efef; — efje] )a s + ak’(el'ef; — efef )aq.
This yields
Fy F°" =0,

and’

(14.1)

2
., a ;1 ,
T = KK+ [k (e — eqel) + K (efef — efie])] (@),

To compute the energy, momentum, and angular momentum, it is convenient to
choose a gauge in which ¢{ = 0 = ¢{] in the coordinate system one is working in.
Then, choosing X to be a hypersurface x° = constant, we find

Pt = / THdX,
z
" wa’ 3 W u i woi 2\ 13
=k Hd x + %(61 e —epey) | (a )Jd x
= Nhk",
where @ = £° and

1 213 1 2
N=_L &x = — [ Prrdz,.
4nh/“’“ o 4nh/2a "

! Note that this energy—momentum-—stress density satisfies the conservation law

1 : s
T3 = oK (efef; — enef)(@”) ,, = 0.
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N is the number of coherent photons out of which, in the quantum theory, the
electromagnetic wave is built. This number is conserved in the eikonal approxi-
mation because of the divergence law (azk"):u =0.

The angular momentum tensor is computed in a similar fashion:

= / (VT — X'T*)dE,
P
wa? , 3
= /E(x“k‘ —ka‘u)d X
w v i v i v i i
+ /@[xu(elen — eqey) — x'(ef'ey — eﬁgl)] (az),id3x
= XgP' — XpP" + Nh(ef'ef;, — efey),

where X is the center of energy:

1
Xt = (P°) /x“TOOd3x = —4nNh/x“wa2d3x.

Because P" is a null vector in the present case, it is not possible to pass to a mean
rest frame of the radiation in which to define a spin component of the angular
momentum. We adopt instead an alternative procedure. We define the 4-vector

1
K+ = 5 i) W
which is both gauge invariant and independent of the location of the origin of
coordinates. We note that
K-P=0,

and because det(n,,) = — I,

1 , .
KZ — _Z 18"“01 718/‘pK;LPVJO-TPp]K/L

1 V SO ST V SO ST V S0 ST
- —1(5 508% + 516757 + 555907

YK KA p

AYKkYp kYpYA

—070907 + 8,075, — 8,870 )PVJMP”J";'
= P, J"P"J,, = (P-Xg)*P* = 0.

That is, K* is a null vector orthogonal to P". Because P" is itself a null vector this
implies that K is parallel to P*:
K" = SP*.

The constant of proportionality S is defined to be the spin angular momentum of
the field. It is easily computed by setting u = 0:
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1
NhoS = P’S = K° = Egzjkpi-]jk
= NhsijkP,-teeIIk = (Nh)zwgijkifieljellka

where k; = k;/|k|. Assuming that e, ey, k (in that order) form a right handed
orthonormal system (like the coordinates), we have

S = Nh.

Another way of computing S, and one that gives the rationale for calling it the
spin angular momentum, is to introduce at any instant (x0 = constant) a coordinate
system with origin at the center of energy (X = 0) and then to compute the
angular momentum 3-vector

Ji= %Sijkjjk-
It is easy to see that one gets J; = Sk;. Because the center of energy is at the origin,
this angular momentum is pure spin. It is seen to be parallel to the propagation
vector. The magnitude N% found for S may be interpreted as indicating that the
N photons that make up the wave all have spin angular momentum 7 and that all
the spins are pointing in the same direction. When the wave has right handed
(positive) helicity, the spins all point parallel to the propagation vector. When the
wave has left handed (negative) helicity, S is equal to —N7, and the spins all point
antiparallel to the propagation vector. In a linearly polarized wave, half the pho-

tons have their spins parallel to k and the other half have their spins antiparallel to

k, and S is zero. The spins of massless quanta can only be found in the parallel and
antiparallel configurations.



Chapter 15
Gravitational Waves

Consider a region of spacetime free of matter in which Einstein’s empty space
equations hold:

5Sa 1, 1
0= =——g!2[RW™ — ZgR G=1).
ogw  16m° < 2% > G=1)

Suppose the curvature tensor in this region is separable into two components, a
slowly varying component and a rapidly varying component. Stated more pre-
cisely, suppose there exists a family of coordinate patches in which the compo-
nents of the curvature may be expressed as the sum of two terms, one that is slowly
varying and has magnitude of order 1/R?* and one that varies rapidly over dis-
tances of order 4 < R. Then we may say that we have a situation in which
gravitational waves of wavelengths ~ 1 are propagating in a smooth background
geometry having a curvature characterized by the length R, which may be called a
mean radius of curvature. We may express the separation between background and
waves by writing the full metric tensor, which we shall denote by g;f"f, as the sum
of two terms, a tensor g, representing the background geometry and a tensor #,,,
representing the waves:

g:f\t = guw + -
We have seen that in the completely general theory such a separation has no
physical meaning. Even when spacetime is asymptotically flat, it generally has
only a global meaning. Here, however, because of the existence of the special
coordinate systems (special family of patches) in which the curvature separates
into two parts, we shall find that the corresponding separation of the metric has
quasi-local physical meaning. We shall consider two kinds of coordinate trans-
formations. Under the first, both g, and £, transform like tensors. But in order to
remain within the family of special coordinate systems, the transformation coef-
ficients 0x* /Ox" must be smooth functions varying appreciably only over distances

B. DeWitt, Bryce DeWitt’s Lectures on Gravitation, 177
Edited by Steven M. Christensen, Lecture Notes in Physics, 826,
DOI: 10.1007/978-3-540-36911-0_15, © Springer-Verlag Berlin Heidelberg 2011
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much greater than 1. Moreover, they must nowhere correspond to a boost' that
Doppler shifts the wavelengths of any of the gravitational waves to magnitudes
large compared to A.

Under the second kind of coordinate transformation, the transformation coef-
ficients 0x* /0x" may vary rapidly, but in this case the g, are held fixed and the full
burden of the transformation is placed on A,,. In order to remain within the family
of special coordinate systems, transformations of this kind, which may be called
gauge transformations, must involve displacement of the coordinate mesh through
distances of order much smaller than 4. This will prove to be the basic reason why
it makes good physical sense to speak of the distribution of energy, momentum,
and stress carried by gravitational waves, and to assign to each contribution to the
total energy, momentum, and stress a location in a region having dimensions d of
the order of a few /.

In order to simplify the problem of analyzing gravitational waves, we shall
assume that they are weak enough so that we may neglect their interaction with
each other and apply the superposition principle as a valid approximation.
Explicitly, we assume that in any one of the special coordinate systems that is
locally canonical in the background geometry, we have

hy ~a, where a < 1.

It is then appropriate to expand Einstein’s equations about the background
geometry:

o 95l _ aScle] | [55sg[g] 1520Salgl
5gt0l 58;4" 5g’u\r 2 5g,uv 5gxﬁ s
where
58, 8’8,
o= [ 28 S5gypd*x,
5g,uv 5g'u\75ga//}/
oS / / 53
2 G 4 1 4. 1 G
d d 5ga/ ’(Sg./r N
5g;w 581“ 5gx’/i/5g/”()” B V"o
and so on.

Our first (and most tedious) task is to compute these first and second variations
of the Einstein equations. The first variation is readily calculated with the aid of
the results assembled in Chap. 8. We find

! We shall see that gravitational waves propagate with the speed of light.
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oS 1
167155 G:_5|:g1/2<g;wgw 2gy\g0‘r>R :|
8y

— g1/2 |:; (R;Lv ;g;wR) goz[i+gmcRﬁv+gvacRyﬁ7 %gmcgﬁvR . %guvRaﬁ

off

1/2[

+ 2g 8"78" 87 (88uysps + 08y — 08 piys — 08yoi0p)

+ gﬂ‘gwgy(s(égcw:/?é - 58&[5’;“/6)} .

Before beginning the computation of the second variation, let us make more
precise the nature of the splitting of the total metric in g, and A,,, and the kind of
approximation scheme we are envisaging. We shall require that

<g;ﬁ[> = 8uv, <huv> =0,

where the angle brackets denote the following averaging process. Choose one of
the special coordinate systems. Make it as canonical as possible (relative to the
background geometry) in as big a region as possible around the point x at which
the average is desired. The domain of effective canonicity will have dimensions
much larger than 4, for significant departures from canonicity will occur only over
distances of order R. Let f(x — x') be a smooth non- negative function of the
coordinate differences x* — x*, which vanishes for Ix* — x*| > d, where d is of
the order of a few A, and that satlsﬁes the normalization condition

/f(x)d4x =1

in these coordinates. Then for any tensor field ¢, we define its average at x by

/fx—x K)d*y .

Once having defined the average in this nearly canonical coordinate system, we
then treat the average as a tensor of the same type, in transforming to any other
coordinate system.

As covariant derivatives become ordinary derivatives in the domain of effective
canonicity (about x) of the above coordinate system, we have

(6, / it =000t = [ | Zorta )| gtyaty

/f )C—)C u )d4 ' = /f(x_xl)¢;;1/(x/)d4xl
) + O(d/R*){b(x)),

where covariant differentiation is to be understood in this section as defined with
the background metric. We also have Of /0x* ~f/d and hence
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This has the consequence that

1
bu~ = (i) + 0 (o) ).
where ¢ and i/ are any two tensor fields. Finally, we note that
(suld) =g, (g5i0) = guld),

(RS 6) = Runoe(9),

and so on.

To discuss the approximation scheme of this section, it will be convenient to

employ the condensed notation introduced in Chap. 12. For gfvt, &uv» and hy,, we

shall write @i ,, @', and ¢', respectively:

P =0+ ¢, (9) =9 () =0.
Einstein’s equations take the form

1 . 1 .
0= Sgi[e + ¢] = Sgi + Sciid’ + ESG,zjjkd)Jd)k + ySG,zj/‘k1¢J¢k¢l +ey

in which the functional derivative coefficients in the expansion are to be under-
stood as evaluated with the background metric. The term SG,iquj is just the first
variation that we computed in present chapter, evaluated with 6g,s = h,g. Using
the averaging rules obtained above, one readily sees that

(Sc.id’) = Sa(¢’) = 0.

Therefore, performing the averaging operation on Einstein’s equations, we find

(Sc.d’ ") — % (Sciud’d ¢y +---.

1
Sc,i = 5

The first term on the right-hand side of this equation is the average of the second
variation. We shall see currently that the second variation contains terms of the

form h%.h7™, h,. h™™", etc. Hence this term is of the order a? /). The next term is

of order a*/ 42, and so on.
Subtracting Einstein’s equation from its average, we get

Seid’ = — % (Sc.ixd’¢* — (Sciud’d"))

- % (SG,ijklff’jﬁbk(f)l - <SG,ijkl¢j¢k¢l>) —e

(15.1)
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The first term on the right of this equation is of order az/)hz, the second is of order
a’/2%, and so on. These terms describe the interaction of the gravitational waves
with each other. Our present approximation, based on a<1, is to neglect these
terms and write simply the homogeneous equation

Sc¢’ = 0.

This equation is derivable from an action functional of the form

Sowlo. 8] = 5 Saslold'd

and it describes the gravitational waves as freely propagating in the background
geometry without acting on each other. The waves do act on the background
geometry, however, through the equation for Sg, /[¢]. In the same spirit of
approximation, we shall keep only the first term on the right of this equation. It
then may be written in the form

Sgi = —%(TFW) (15.2)

where 75" is the energy—momentum—stress density of the waves:

O0Scw

TSV =2 2%
0!

1

= S’ d". (15.3)

Notice that it is only the average of this density that serves as a source for the
background field.
It may not be the only source. All we know is that Sg;, or more explicitly

1
g1/2 (R,uv _ 2g,uvR) ,

is of order a*/ 7% in the region of interest. The full Riemann tensor, which is of
order 1/ R? in magnitude, will register the effect of any sources located in other
regions. Hence we can only say that

Weritten in the form
A
arg ﬁ < 1;

the inequality is, of course, compatible with our assumption about the smallness
of a.

Let us now return to the expression for the first variation computed in present
chapter. With g,s = h.p the terms involving the Ricci tensor in this expression
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are of order a®/2*. These are a factor of a smaller than terms we have already
thrown away on the right-hand side of (15.1). Therefore, they may be completely
ignored, and we find for Eq. 8.3) satisfied by the gravitational waves (see Chap. 8)

hfw;a + hll”’ - hz;va - hg;;ur + 8w (hgrfr - h;) =0, (154)
where
h = h,
indices on the A, being raised and lowered by means of the background metric.
Multiplying this equation by g"*, we find
Ry, —hl, =0, (15.5)

which allows the simplification

Ko, o+ hoyy — hC. —hC = 0.

;o wvo Viuo

When we vary the Ricci tensor terms appearing in the first variation, in the process
of computing the second variation, we obtain terms that, by virtue of the equations

for ¢’ and ¢, are of order a® //* and a* //? in magnitude. But the second variation

itself is of order a?/ /%, and hence these terms may be thrown away. Most of the
terms that must be retained come from variations like 6(9gyp.,s). This is readily
computed to be

S(08upys) = O1(08upy — T5,08up — T'3,080e) 5 — Ty (08epy — I'%, 0845 — T',082:)
- F/g;a(égoté,y - Fiyégsé - ngégacs) - Ff()‘(égoc/},é - Fiéégsﬁ
- F;}gégas)]
= (=00%,08sp — 0T, 082),5 — 1 5508ep — O 508z — OT5508up:c-

Omitting terms that are of order a*/ J2 by virtue of the gravitational wave equation,
we now find

, 0Sg 1 Los, : , :
T — 52 — 1/2 _hyv() B AL AL A
e { 5@»} oy 16x° 2 s & oy = Mo = I3

U g o
+4878 Vg” [(hi;/f + hpy = Hop)hey + (Mg + higey — hig ey

- (h%;“ * hi;ﬁ B Z“)hgh" + (hf:’;x + hi;v — I )hsﬁ

7%

_(hi;v + hf’;fx - hi‘/ Vhap — (hﬁﬁzv + hi‘;/f - h%v;)hs“ 5

1 8 s
288 [ Iy — B s — (B, + ey = i

| P
-3 g gh g1 [(hi;ﬁ oy — hEp ey + (B + By, — hEp e

B
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by = B g — (B By = |

+ %g’”‘g"’jg“’"S [( o Mo = o Yy + (s iy — B Y

+ (hgs + h. g — higs Yoy + (B 5 + H5 /;a Wiy + (W5 + s — hos ) hpes
(hg 5 TGy = Mg gy — (Mo + W — hos Yhepy — (h[s s T h5.5 — hgs Yhoey
= (h55 + 5 — B Yhope — (B g+ g — B Vg — (B p + g 5 — hp Ve

(h8 ] + h/; o ha/ﬁ;)h}’5§€} - %gﬂvé’“ﬁgyo [(hi;(s + hfs;a - hia-)hw;ﬁ

+ (h;;(; + hl:;y B hfré;)h%;lﬁ + (hl[;f;,é + hg;/} B h;}é;)hayze (h; P h h )hf/f v

—( %;5 + hg;/)’ o ?M;)h“s;“/ - (h o T h(; i h/ )haﬁ g} }

— 1 1/2 [/’lmh‘w harhv,u — RO pOT Ry
]677.' ;T Hoxd oT;
1ho’rhp _ lhﬂrh 1h(nhp 4 WY ot + WYHpOT _ piv ot
op;T 4 ;0T 4 oTip [ g;'hT ;00T
_ lho’ulhv _ lh,uzrth _ lhva,uh‘ + huﬂIh\’ _ huﬂIhv + l/’l“wh
2 ; 0T, 2 ; 30 2 H 50 H T;0 H 05T 2 3 50

: 1
s (h:rz;h:;p —hhe +5

1 1
atp _ 2oty Zhoho ).
ST hapie = ZHT hocy + 4h,gh;)}

In the present approximation (which regard the gravitational waves as propa-
gating without interacting with each other), this energy—momentum-—stress density
satisfies the usual divergence law

Towe = 0.

The proof of this law is very tedious if one attempts to work directly with the
tensor components /,,, but it becomes very easy if one uses the compact notation.
From the wave equation Sg ;¢ = 0 and the identity

i _ i i
D,Sc,ijk = —SG,ikPy; — 56,ji Py >

which_follows from functionally differentiating the contracted Bianchi identity
(Sg.@',= 0) twice, we get

TiGW@Z = @;Sqijk(ﬁj(ﬁk
=_ (SG,I-@; S+ 6 J-,-<p;1,{) Bk = 0.
Because @, is basically just a differential operator, we have also

(170, = (177 d,) =0,
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or, in tensor notation, "
<TGW>;\J = 07

which establishes the consistency of the equation
1
GW
Sai=—5(I77)
with the contracted Bianchi identity.

Although TGw satisfies the divergence law, it is not gauge invariant, i.e., it is
not invariant under the class of coordinate transformations discussed, in which the
whole burden of transformation is placed on A,,. Its average, however, is nearly
gauge invariant, and it is of interest to examine semi-quantitatively just how
nearly. Let the coordinate transformation be expressed in the form

3= x4 &

the coordinates x* belonging, of course, to the special class. Then, in order that the
coordinates x* also be members of the special class, the £* must be no bigger than
al and their first derivatives must be no bigger than a. The gauge transformation
law for Ay, then takes the formthe coordinates x" belonging, of course, to the
special class. Then, in order that the coordinates x* also be members of the special
class, the &" must be no bigger than a/ and their first derivatives must be no bigger
than a. The gauge transformation law for £, then takes the form

By = Ry + Ahyy,  Ahyy = —Ey — &, + O(d?),
or, in the compact notation,
A’ = @ [p]¢" + O(a?).
Under this transformation, T,GW suffers the change
ATEY = S6u (207 AQ + Ad/AG)
= —(Soi®s,; + Scu®h,) (29" + Ad) + 0(a’/7?)
= —Sc.u®s ;& (207 + AdY) + Sg, ) DL &+ 0(a /7).

The second term in the final expression is of order a*/ /% and may be completely
neglected. The first term, on the other hand, is of the same order as T?W itself,

namely a®/ J2. Therefore, dropping all higher order terms we have effectively
ATV = —Sga®l & (2¢7 + AdY),

which shows that 78" is not at all gauge invariant. The expression on the right-

hand side of this last equation, however, involves the second functional deriv-

ative Sg;, which is effectively a second-order diffferential operator. Therefore,
making use of the averaging rules obtained, we find for the average of ATV,

(ATOV) = —Sa4( 84,2297 + ApT)) ~ 1 (84,097 + Ap)

a’ 2 aw
= 0(@) ~ E(E )-
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We see that the change in (TSWV) caused by a gauge transformation is smaller than
<T,»GW ) itself by the factor (A/d)>. It is this result that permits us to regard the
energy and momentum of a gravitational wave as localized within a region of size
d (by the averaging process). The error we make in doing this decreases inversely
as d” with increasing d.

The approximate gauge invariance of (70" ) (or (T%)) allows us to make a
special choice of gauge.We begin by carrying out a gauge transformation for
which the gauge parameter xi* satisfies the differential equation

(&% — &), = W — B

Because of the wave equation h!;;, — hf;' = 0 [see (15.5)], both the left and right-

hand sides of this equation have vanishing covariant divergence, and hence the
equation is consistent. From its analogy to Maxwell’s equation, however, we know
that its solution is not unique. If £ is a solution, then so is

&=t

for any A. We may get a particular solution by imposing the Lorentz condition
&, =0 on & Actually, this is not the most convenient condition for present
purposes. We shall choose instead

1

If this condition does not already hold, we can impose it by carrying out the
transformation Eu = &' 4+ A* with A chosen to be a solution of the inhomogeneous
wave equation

1
With &* thus chosen,” we find
h=h-— 2551 =0
and
T v v v
A
< S
=Rt — hlt— (& = &), + 28R
= 07

P

2 The resulting & will be of order a/, as required, if /,, is of order a.
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to order a/2. From now on we assume this gauge transformation already to have
been carried out and drop the bars. Both TGw and the wave equation then take on
considerably simpler forms. We find

0=h,., — R, —hRS, —hiR:, — R, = + 2R h,.,

uv;o Tt uve nttve T o vittuo v;

to order a/ 52, and
0y 1 2|0t v v Iy Iy
T’GW = 167Ig1/ [h (h/;;r + ha’;lr - h{ar - hﬁrr;)
1
- Eh:ﬂ:uh:;r; + hfmrhz;a - h‘;umht‘;;r (156)

1 1
+ gﬂv <Z h?fﬂhar:p - Eh;o-rphaﬂﬁf>:| ’

to order a/ /2. In obtaining the latter expression we have also dropped terms that
are of order a’/ 22 by virtue of the wave equation. In the wave equation itself, we
have dropped the terms in the Ricci tensor (of order @/ %) but have retained the
term in the Riemann tensor (of order a/ R?) even though this term is small
compared to the remaining term (of order a//*). The reason for doing this is that
the resulting equation is rigorous in the limit of a becoming infinitesimal (and &,
satisfying h!)’ = 0, h = 0) independently of the relative magnitudes of A and R.

15.1 Eikonal Approximation

The gravitational wave equation, like the electromagnetic wave equation, may be
solved in the eikonal approximation. To obtain a locally plane monochromatic
wave we make the Ansatz

0 2 1 3
hyy = (hyy + hyy + - -) cos ¢ + (huy + hyy + - -) sin @,
and then insert it into the supplementary conditions %!, = 0, h = 0, and into the
n
wave equation, making assumptions about the coefficients /,, analogous to those

made about the coefficients /n\ﬂ in Chap. 14. We find
0 v nu
—hwk" =0, h, =0, Vn,

! v 0\’
huk® + 1. =0,

2

1
—ik” + 1, =0,
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3 v 2V
hyk” + B, =0,

and so on, and
0
—huk* =0,
[N 0 0
—hyk™ — 2hy.0k” — h#vk;‘f7 =0,

2 1 1 0
—hyk® + 2ok + bk, + G+ 2R‘”hm =0,

yny
3 2 2 o 2 o T
—huk” — 2h,.ck° — h,“,k + hw — 2Rﬂvhm =0,
and so on, where, as before,
k/c = (b;p'
Again we have
2 ) )
k=0, k=0, kuyy=rkyu, kuk'=0. (15.7)
Defining
10 0 0 n
at = —hwh e =f fw=a lh,m
we have

1 n
Zo oMV no_ "
26#‘,6 =1, €,=0 f,=0 Vn

n—1 v
eli"k - 0 f/tvkt = ( )nﬂil <Cl f y\) ’ n Z 17
(@k"),, =0, 2a,k" +akhi =0, euok” =0, (15.8)
n _1 n—1 o a‘cn71
( 1) a af/w +2Ryvf ot | nZl

e,y 18 the polarization tensor of the wave. It is seen to be propagated in a parallel
fashion along the null geodesics that constitute the rays orthogonal to the wave
fronts. Consistency of the two equations involving k" satisfied by the coefficients

Nl'—‘

f;u aka =

n
Jf v 1s verified by the following computation in which the Ricci tensor is, as usual,
treated as vanishing:
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0= (Zm,k‘) ke — <Z,wk"> ke

n—1 1n ' 1 n—1 n
= (=1)"h" k° +§hﬂkakf’0 ——(_1)nkv< h G+ 2R h m)

;o 2 nio
nnil\’ g nn71 TV 1,0 n”*l TV 1,0 1 ’1”71\’ ag
= ()" gk (1) R (1) e RK 43 (1) ek

1 n—1 g 1 n—1 n—1
(K e ) R e~ 1R R

n n—1 L | nnfl ) 1 nnilv
(=1) (h W;rrkU)_E(—l) B ok + 5 (1) B K

n72o_ 51";2 v ] nnflv .
h wio + 2R/-w h ot ) + 5 (_1) h ﬂv;k;g
1 ;

2 ;
1n-2 ) 1n-—2 1n-2 ' 1n-2 i
Py ;e E h T‘WRL(W - E h M'f;URcm - E h llViTRz'm

O"C\’n O"Cn_zv 1 n_zva 1 n2 v n2 v ’
R e = RICh Lt B (R RS )

wy

=0.

n
The coefficients f, in the eikonal expansion for a given wave are not uniquely
determined, for we may always carry out a gauge transformation

Py = Py = S = Sy
where the gauge parameter ¢, satisfies the homogeneous wave equation
v =0,
as well as the supplementary condition

& =0,

for such gauge transformations leave the conditions A%’ = 0 and & = 0 intact. If
we write an eikonal expansion for &,

éu:a(gu+zzz,,+-~) sin¢—a<a‘zu+2¢ﬂ+-~-) cos ¢,

we find that the coefficients Z’lﬂ must satisfy

k-4=0, k-Z:(—1)"a—‘(a”a‘ﬂ), n>1,
1

)
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n , 1 n o _ n— v
?zwkv =0, auk :5(—1) a l(a alu) , n>1,

n
and that the coefficients f,, suffer the gauge transformations

_ 0 0
ey = ey — auk, — ak,,

Jw=Fw— ‘%kv - gvku +(=1)"a”! {(analﬂ)f’_(analv) »J '

n
These transformations of course leave the relations satisfied by the f,, unchanged:
1— SHY 1 uy 2 Oykv 02k2 0 k 2 _ 1
Ee,ﬂ,e = Eew,e —2enad'k" +a’k”+ (a-k)” =1,

0
o R A S
e, =e,—2a-k=0,

Zu n, n no—1( n=1\*
fl=fr =2 k+2(~1)"a (a a u);:()v
ek’ = ek — @k’ — ky (a-k) =0,

u 1\ n n
f,uvkv - (_l)na71 ((1 f uv) :f,uvkv - aukz - kﬂ (a ’ k)

)

+(~=1)"a™! [(analu> ;v—l- (anal‘,) J K’
1

n- n— n— _ n— n— Y
—(=1)"a™" {a fuw—a alﬂk\, — alalvkﬂ + (=) [(a a2H> +(a azv) } }
w )
= l’laz(ng; = O’

0 0
- g
ok’ = (e — auky — avky) ,k” =0,

no e\
fﬂ";ak —E(—l)n a 1<afuv> +2Ruvf T

i

— Frnok” = (duks + @k, k“+(1)"{a" [(a”&‘,t) +(d'd") ]} ke
0 vV SH 0

e () e b )]

i
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a

+%“'[(“"az“);er(“nazv);J (- )R;;f,ﬂ

o

+(= 1) Rar( a_ + "a k) R"Ea*l |:(ana20);r+(anazr)30:|

= % (=1)"a”! {(analﬂ) 'v—i- (anﬁlv) ;u] kS, 4 (— 1)"a! (angzlﬂ> mk”

) ’

+(1)"a Ry K+ (1) a7 (d'd) K (1) R K
o

ma

n— n— 1 n—
+(=1)"a! (a alu) Ko+ (—=1)"a! (a al‘,) k0 +-(—-1)"a : k7,
K o B 2
1 n— 1 n— n— g
+=(-1)"a : k” a! (a azﬂ> +<a az‘,) +(=1) R‘”( + "7 k )
2 2 v il g

+RZ€ -1 |:(ana20-> +((1”&21> :l
T i

1 n— n—
=—(-1)"a"! {(a al,,) +(a aﬁ,) ]k‘;
2 v il
1 1 n—2\° 1 n—
—y(-1rat(dd "”),v‘i“‘l (@), —5 0 (dads)
1 an—1 4 1 an—1 o
—5a 1(a ) —1)"a k., —(—1) a ki,
1 il n— n—
- [ 2 a a2 ) } —l—R”T -1 [(a aza) +(a azf) }
2 U 3T 0
1 an=1 1 s 1 nh— L n—2 0
= _5(7 ) k Ruﬂ 5(71) a vk"’“o’—za l(a a T>;JR,u\y
l n— 1 n— g 1 n—
- Eafl (a alﬂ) ;TR;‘: Jria*l (a azrum'); ficfl (a azz);oR:Z
l 1 n—1 0 1 1 n—2 g ot —1 n—2 n—2 . 0
,Ea (a a V>;TRU.“+§“ (a a rv;m);Jera (a a 0) ;T+ (a a T);a =0.

Now suppose the wave sweeps over a pair of test particles initially at rest relative to
one another and separated by a small interval n* (< A) satisfying #-u = 0, where
u is the 4-velocity of either of the particles. Let us also suppose that 1/R* < a/?,
so that the contribution of the wave to the total Riemannian tensor is much greater
than that of the background geometry. [Note that this implies a® 5/12 / R? < a (see
present chapter), which is consistent with a < 1.] Then the wave dominates the
equation of geodesic deviation [see (5.3) in Chap. 5] which governs the behavior of
n*. Using the expression (8.2) for 5R§W given in Chap. 8, we find’

* The quantity in the parentheses in this equation is gauge invariant to order a/ 2. The u* are

4-velocities normalized to unity relative to gl
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Dz’/la _ 1 o h o h Rh R W b7 0
D = 3 W T sy = oy = o + Ryghap — Ry oh)utun’,
tot

where D/D,,, denotes covariant proper time differentiation based on gj;,. Keeping
only the dominant term of the eikonal expansion, i.e.,

ha/; = aeyp COS ¢, ha/;:y(s = —aea/;kyk(s COS (,f)7

and dropping the terms in the background Riemann tensor (of order a/R?), we
convert this equation to

DZ’,IO!
D12

tot

1 N
= Ea(é';(kﬁké + epsk”k, — eskpk, — eﬁ,,k‘“k(;)u"u"n‘S cos .

A further simplification is achieved by carrying out a gauge transformation with a

gauge parameter of the form described on p. 189, whose coefficient 2,1 in its
eikonal expression is given, along the world line of the test particle pair,® by

0 -1

1
a, = (k-u) epu’ — 3 (k- u) k' u%e,q.

The new polarization tensor then becomes
_ -1 -1 -2
e = ey — (k-u)" kyeyou® — (k-u)” kyeyou® + (k- u) "kkyu’ueq.,

and satisfies

1
@ =0, Sene" =1,

ek’ =0, guu’ =0.

We shall assume this transformation already to have been carried out and drop the
bar. The equation of geodesic deviation then reduces to

D21705 1 . p

D2, 2%

(k - u)* cos ¢.
tot 2

In order to integrate this equation we introduce a local rest frame for the test
particle pair, which is Fermi—Walker transported, relative to the total metric g;f"f
along the world line of the pair. Using parentheses around indices to denote

components relative to the local frame, we have

* The coefficient 2# generally cannot be chosen in this way throughout all of spacetime unless
the background geometry is flat.



192 15 Gravitational Waves

En® 1 g
T = 3%k cos ¢,

tot

which may be rewritten effectively in the form

@ 1 d*
dn” _ 14 )
a2, 2dz, [T ‘f’]’

tot

because the proper time derivatives of a, eE?), n'® , and ko, are small compared to

ko) a, ko) ef) ko™, and k), respectively. The condition @ < 1 now allows us
to write the following solution:

o o 1 o
1 (1i0) = {52/3)) +§aegﬂ>) cos qS] n?(0).

The motion of the test particle pair provides a simple characterization of the
polarization of a gravitational wave. Let us for simplicity drop the parentheses on
the indices above and replace T, by ¢, the local time. Then the motion in the local
frame is given by the formula

1
n;(1) = (5,7 + 5 aejj cos wt) n;(0), = —k)-

The temporal components of the polarization tensor e,z vanish in this frame so that
it becomes effectively a 3-tensor e;;. In fact, if the 3-axis is chosen in the direction

of k(= k/w), then it becomes effectively a 2-tensor because of the condition
eijfcj =0.
The remaining conditions
e; =0, %eijeij =1

tell us, furthermore, that the 1-axis and 2-axis may be rotated into a position for
which e;; takes the form

1 0 O
(eij) = 0 -1 0
0 0 O

The relative motion of the two particles is seen to be at right angles to the direction
of propagation of the wave. Thus gravitational waves, like electromagnetic waves,
are transverse waves, i.e., their dominant action on test bodies is transverse to the
propagation direction. The relative motion of the test particles also depends on the
orientation of the vector #,. The effect of the relative orientation is best displayed
by replacing the pair of particles by a ring of particles forming, in the absence of
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O OO0

wt=0 wt=m/2 wt=3mn/2

Fig. 15.1 Effect of a gravitational wave on a ring of test particles

the wave, a circle in the (1,2) plane. In the presence of the wave, the circle suffers
the sequence of distortions in time depicted in the Fig. 15.1.

We shall use a special symbol, namely, e, ,, for the polarization tensor char-
acterizing nearly monochromatic gravitational waves giving rise to test particle
motions having the above transverse orientation. This tensor may be decomposed
into products of unit vectors as follows:

Cipy = €1u€ly — Cuelly, (159)
where, in the special local frame,

(31;4) =(0,1,0,0), (ellu) = (0,0,1,0).

We note that the state of the wave remains invariant under a rotation about k
through 180°, whereas in the electromagnetic case a rotation through 360° is
required to return to the same state. Moreover, the negative field is obtained by a
rotation through only 90°, whereas in the electromagnetic case a rotation through
180° is required. How do we get to an orthogonal state of polarization? In the
electromagnetic case, the orthogonal state is obtained by rotation through 90°. In
analogy with the above results we expect that the orthogonal state is attained in the
gravitational case by rotating through only 45°. We introduce the new unit vectors

er —L(e +emy), e —L(—e +emy), e-e;=0
1;4*\/5 In ) Hy*\/z In M) 1°¢n — Y

and define

1 1
Cxpy = eiﬂei‘, - ehﬂehv = 5 (e + emy)(ery + emy) — 5 (—ery + emy) (—en + eny)
= epem + enemy.
(15.10)

We have

wo_ wo_
xu — 9 Eexuvex =1, éxwe, =0,
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which confirms the orthogonality of the rotated state. The existence of these two
polarization states corresponds to the two distinct degrees of freedom per point of
3-space that the gravitational field possesses (see Chap. 11).

The polarization tensor of an arbitrary wave may be expressed as a linear
combination of e, and e, ,:

€y = €4,y COS O + ey, Sin o,

cosoe  sina O
(ej) = | sina —cosa O
0 0 0

Actually this canonical form can be employed not merely along the world line of
the test particle pair, but throughout spacetime, with ey, and ey, chosen to be the
orthonormal unit vectors introduced in Chap. 14 to describe the polarization of
electromagnetic waves. The proof is as follows. First choose a spacelike’ hyper-
surface X and introduce a set of tangent orthonormal triads throughout it, with the
third member of each triad pointing parallel to the projection of k" on X at that
point. ey, and ey, may be chosen as the other two members of each triad. Next,
introduce a set of timelike unit vectors orthogonal to ¥ and adjoin to them the
triads, to form a set of orthonormal tetrads throughout 2. Finally, carry the tetrads
by parallel transport along the null geodesics generated by k*, thus defining a set of
local canonical frames throughout spacetime.

In each of the local frames ey, and ey, will point in the direction of two of the
axes, and the propagation vector k* will take the form

(k") = (@,0,0, ®).

The six conditions ¢}, = 0, e,,k" = 0, and e, e/ = 2 then tell us that the most
general polarization tensor e, takes in each frame the form

a b c —a
() = b coso sina —b
’” ¢ sina —cosa —c |’
—a —b —c a
a —b —c a
(") = —b cos sina.  —b 7
—c sina —cosa —c
a —b —c a

so that there are 10 components, 6 conditions, and 4 independent parameters
a, b, ¢, and a. Moreover, by virtue of the conditions k,,,k" = 0 and e,,.;k” = 0
[see (15.7) and (15.8) in Sect. 15.1], the parameters a, b, ¢, o, and o will be

5 The words ‘spacelike’, ‘orthonormal’, ‘parallel transport’, etc., are all to be understood as
relative to the background geometry.
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constant along each geodesic generated by k. Now carry out the gauge trans-

. . . . . 0 .
formation described in Sect. 15.1, with the coefficients a, chosen to have, in each

local frame, the form
0 1 /1 1
(aﬂ> =- (Ea, b,c, —§a>.

Then a -k = 0,a,,k" = 0, and

() = (em "kﬂ>

-
1 0 1 1
= (ew) + —,0,0,w) a) 0 <2a7b7c,—2a)
—a/2 )
—a/2 0 0 a/2 —a/2 —-b —c a/2
-b 0 0 b 0 0 0 0
= (em) + -
—c 0 0 c 0 0 0 0
a/2 0 0 —a/2 a2 b ¢ —a/2
0 O 0 0
0 cosa sina O
|0 sino —cosa 0
0 O 0 0

as required.
From now on we shall assume that the polarization tensor has this canonical
form and drop the bar. We then write

€y = €4,y COS 0L+ €5y Sina,

where e, and e, are given in terms of ej, and ey, by (15.9) and (15.10) in
Sect. 15.1, respectively. The conditions

v v
el,,;vk =0, eIIu:vk =0,
insure that
I o
e+uv;ok =0, exuv;ok =0,

and the condition e,,..k” = 0 requires that o be constant along each geodesic
generated by k, i.e.,

okt = 0.



196 15 Gravitational Waves

15.2 Lines-of-Force Representation and Circularly Polarized
Waves

Consider the ring of test particles introduced in Sect. 15.1. If this ring is centered
on the origin then the particle at position x; moves according to the law

-'xi =F i
where the force per unit mass F; has the form

1
Fi=— 5 wzaeijxj Cos wt.
The magnitude of this force increases as the magnitude of x increases. Moreover, it
satisfies the divergence law

1
Fi;=— szaeii coswt =0,

and hence the force field may be represented by a lines-of-force diagram, with the
density of lines proportional to the magnitude of F. The lines-of-force diagram
appropriate to the instant ¢t = 0 for the state of polarization depicted in Fig. 15.1 is
shown in Fig. 15.2.

The density of lines increases as distance from the origin increases. The
direction of the field lines reverses after half a period (wt = m), and the field
vanishes at wt = n/2, 3n/2, etc. The lines-of-force diagram appropriate to the
orthogonal state of polarization (e,,) is obtained from the above diagram by
rotation through 45°.

Waves of the type we have been considering up to now are all said to be
linearly polarized. On the other hand, elliptically polarized waves are also

Fig. 15.2 Lines-of-force X,
diagram at the instant t = 0
for the state of polarization
depicted in Fig. 15.1

X,

e+uv
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eYoRoloLu

wt=0 wt=mn/2 wt=3m/2

Fig. 15.3 Effect of a circularly polarized gravitational wave with right-handed helicity on a ring
of test particles. The wave is propagating out of the paper

possible, just as they are in the electromagnetic case. These are obtained by
superposing two linearly polarized waves 90° out of phase:

hyy = ar(eqpy + - --) cos ¢ — an(exyy + - - -) sin ¢.

If a; = ay;, the wave is circularly polarized with right-handed helicity. If ¢; = —ayj,
the wave is circularly polarized with left-handed helicity. Figure 15.3 shows the
successive distortions of the test particle ring in the case of circular polarization with
right-handed helicity. It will be noted that each particle in the ring executes a small
circle once each period, and the ring pattern as a whole rotates through 180° in the
right-handed sense each period. If one uses a lines-of-force diagram to represent a
circularly polarized wave then the diagram must be rotated through 180° each period.

15.3 Energy, Momentum, and Angular Momentum
in Gravitational Waves

The energy—-momentum-—stress density TGw is easily computed in the case of
nearly monochromatic gravitational waves. Keeping only the dominant terms in
the eikonal approximation, we have for a linearly polarized gravitational wave

hy = aey cos ¢, hye = —aeykssing,  hyyoe = —aeksk; cos ¢.

Inserting these expressions into the expression (15.6) for TGw in present chapter,
and making use of the relations satisfied by the polarization tensor e, (see Sect.
15.1), we find that the only non-vanishing terms are those in h°" %Y. and h7™ hy...
Reintroducing the gravitation constant, we, therefore, get

1y 1 ot UV 1 oTULV
Té}W = 167[Gg1/2 (_h hgz; - Eh 'uhrir:>
12,2
816 aGk“kV(Zcos ¢ — sin’ @)
g1/2 2

I,V 2
o Gkk(cos ¢ + cos2¢).
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The average of this expression is given by

1/2,2
yny _ g'a
< GW> - 321G

Kk
Both TGw and (TGw) rigorously satisfy the divergence laws
L wo\
Tow, =0, <TGW>;V_ 0,

in this approximation, by virtue of the relations k* = 0, Kbk =0, and
(a®k*), =0

In order to discuss the angular momentum in the wave, we shall confine our
attention, as in the electromagnetic case, to a nearly monochromatic plane cir-
cularly polarized wave propagating in a flat spacetime. Again it is necessary to

include the next higher terms in the eikonal expansion. For right-handed helicity
we have

1 1
hyy = a(eqycos ¢ — ey sin ) + <f+,,v sin ¢ + f ,,y COS (]5),

hyye = —ake (e Sin @ + ey, cOS @) + <a,ge+w, + aa]lcw\,kg) cos ¢
- <a,ae><pv + a]l‘ka,;> sin ¢,
By e = —akoke (€4 COS P — €y Sin Q)
- [(aﬁakf + aks)erw + a}wkakf] sin ¢
- [(a_,gkf +ake)exu + ajlfxﬂvkgkr] cos ¢.

Here k, and the polarization tensors are constants, and a and the f’s satisfy (see
Sect. 15.1)

1 1
av#kﬂ =0, f+mkllk" =0, fxuvkﬂkv =0,

1 1
Vo —1 v v —1 v
fﬂ‘,k =—a eipa, fx,wk =—a expa,

1

1 1 1 1
g __ -1 o g __ -1 _o
eruv,ak = - Ea a €ty fxyv,ak = - Ea az€xuy-

Evidently we may choose the f’s so as to satisfy

1 1 1
wo_ m w wo_
e+mf+ = eX/tfo ) e+,uvf>< =exw/+ = 0.
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We shall also assume the gauge to be chosen so that the polarization tensors have
their canonical forms in terms of the orthonormal (constant) vectors eju and epu
[see (15.9) and (15.10)]. We then have the additional relations

L oov u o
e el = (efers — eqers)(efef — efieyy) = efe] + eyeyy,

u oV __ (1 u g _v g v
el pe% = (elens + epens)(ef ey + efe]) = efef + epeyy,

H av U H a v (A v H v
= (efer; — eqenq)(ef ey + eqey) = efey — eqey,

€€,
n +ov _ (L1 A g
Cxucl+ = (ef eno + eers) (ef ey — eqery) = —ef'ey + eqey.-

We are now ready to compute the following quantities:

h7* Y. = —a(ecos ¢ — e%sin P) [(a"k +a .k’ >e+0 + af &'k T} sin ¢
, i
— a(eTcos ¢ — e'sin @) [(afkf + a_rk"> el + af’iak’} cos ¢

1 1
—d < I'sin ¢ + f7 cos d)) k'ke (e ,c08 p — el sin ¢)
= —aa.k"(e'! ;¢ sin ¢ cos ¢ — €'} el sin® P + e‘;aefcos2 ¢
— el Y7 sin ¢cos ¢ — ¢'{ e sin pcos P — eﬂ_e‘”cos ¢ + el e sin” ¢
+ e _e7'sin dpeos ) = € ,eTk" (a )’T,
WS, =0,
hthy = —a*k"k" (e77cos ¢ — €77Sin ) (€.44:C0S  — e qeSin )

1
—a(eTcos ¢ — elsin ) [(af‘k" +a'k")e o + af+mk"kv} sin ¢
1,
—a(efcos ¢ — efsin ) [(af’k" +a'k")exqr + af ok } cos ¢
L (1 1 ,
—a ( V'sin ¢ 4 f7 cos (;S) k'kY (€45:c08 p — exqr8in @)

= 24*k"k" — 2a (a"k" + a’k")sin ¢cos p — 2aze+f+mk“k"sin ¢cos ¢

+ 2a(a"k" + a"k")sin ¢cos ¢ + 2d%e ‘f o k"K'sin ¢pcos o = —2a°k k",
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e,
=a’k"k’ (e17"sing+ e cos ) (e45:Sind+exq:cos )

1 1
—ak"(e'sing+e cos¢) Kaj’cqm —l—afﬂnkv) cos¢— (af’eXJT +afmk"> sinqb]

I
—ak’ [(a”e —|—af+”k“> cos¢— (af‘e‘f—l—qf‘fk") sind)} X (€4 eSiNp+exsCos)

=2a*k"k’,

Rty = —ak®(¢'’sin ¢
1 1
+ elcos @) [(qaefH + aff'Hka> cos ¢ — (avge‘;f + afvxrka) sin q’)}

i 1
— aky [(afe’f f’fkf) cos ¢ — (afeﬁ” +f‘;”k1> sin db} x (e’ sin ¢

+ el cos )

h'Th, = —ak® (e}’sin ¢
+ e7cos ¢) [(a,feia + a}iak1> cos ¢ — (avrevxa + a}‘;akf> sin (;5}
— ak, Kafe’f +]]”’fkf>cos ¢ — <afe’;" —&—]l";"kI) sin d)] x (! sin ¢
+ ¢} cos )
—0,
HPhgpe =0, Hhye, =0,

Inserting these results into the expression (15.6) for TGw in current chapter, we
find

1
é;v 16 G [ j—o’ ifk‘( ) + €V+O_€(:<Tk#(az)’_[ + 2a2k'ukv - aZk,ukv:|

2

k'K 4

~ 161G 167G [k (efef; — eqe]) + k' (e ef; — efre])] (a2)10,

which may be compared with the analogous expression for a circularly polarized
electromagnetic wave given in (14.1) in Chap. 14. Proceeding exactly as in that
case, we find for the total energy—momentum vector and angular momentum
tensor

Pt = / ThwdZ, = NRk!,
2

J = XEP" — XLP'+ ONh(el e}y — elie}).
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Here N is the number of coherent gravitons out of which, in the quantum theory,
the gravitational wave is built. It is given by

1 1
N = 2k, = ———— 243
16nGh/“ " 16nGh/”“ *
)

where @ = k°. In the expression for J*', it is assumed that the gauge is chosen so
that e? =0= e?l, and Xg is the center of energy:

|
Xt =—— [ Xwddx.
E = 162GN# / voadx

When the origin of coordinates is shifted so that the world line of the center of
energy passes through it, we find J; = Sk;, with

S = 2Nh.

Gravitons evidently have spin angular momentum 27, twice the value for photons.
Like photons, their spins can be oriented only parallel or antiparallel to the

propagation vector k.

15.4 Weak Radiation in Flat Spacetime

We consider the situation where

lim A, (x) =0,

X—00
and define
o\ ! 1 T X0 _ 0
(a) =3 [ jo it
Then
0 o\! i 0 0 10N 4.0 0
=5 (5) M@= [ 560 =¥ )de® =y (x),

oo
o\ "o 1 [ X0—x° 2 o
(a_) a0 ) =5 | T g e ()X

1 [ 0y O X0 — 0 0
=3 ] s a0 [ =0
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Consequently,
() (&)
0x0 \ ox0 ox0 /) ox0
Similarly,
ENER R
Ox# \ OxY ox0 ) owr’
Now define
V2 hy(x) = i/—L%mww
4n | |x —x'|
Then
V2V 2l (x) = V72V2hy (x) = hyy (),
so that
ViV 2=V V=1
Also

ONTP(oN, (o) '(oaNTa o,
ox0 ox0 ) TR T\ 0 ox0/) a0 ox0

o\ 'o
= (@) @h,uv = h,uw

noting that 0h,, / ox® — 0 as x— oo because the operator affects only the depen-
dence on x". Suppose the gauge has been chosen so that

h=0, =0, [O’hy=0,
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as described in current chapter. Then

using the fact that

. o\ ?

since the operator affects only the dependence on x°, to justify the last step.
We now make a gauge transformation

o\! 1/0\ 1/0\ "
é”:<6x°) ho“_2(6x0> hoo é°:2<6x0> hoo,

2
go=0, ¢ =0,
with
h}::r = huv - éu,v - fv.,,m
whence
R =0, Phy =0, hy" =0,

TT
ho;; = hOu - 50,# - émO

1/0\! 1/0\"
= hoy — 2 (@) hoo,u — hou + 3 (@) hoo,. = 0.

In an arbitrary gauge,
h,uv = hzg - éu,v - év,,uv

with no restrictions on &, except that it should vanish at co.
Consider the transverse 3-dimensional projection operator

0,0

P,”Eéi'——4 - .
v Vo o Oox/
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We have
0 0

b =Piz 5= 0, Pi=2, PyiPy=Pj
and the obvious theorem
hy" = PyPjhy.

Note that, in this form, the statement #' ¢ = 0 is just one of the constraints on the
Cauchy initial value data for the linearized Einstein equations:

W' = Pyhy = hy =V 2y = V2 (hiigy — hiyg)-
and the 00 field equation is [see (15.4)]

0= hgo# + hoo — thioﬂ — (h"u"‘ — hﬂu)
= —hoo,00 + hoo,i — 00,00 + Moo + 2h00,00 — 2hoi0i — hoooo + 2hoioi — hij i

o 1
B0,y + P

= hiijj — hij j.

15.5 Generation of Gravitational Waves

We have

g =g o =g 4y + 1S

where A, is smooth, or
Pt = P+ ¢ + dgw-

From (15.2) and (15.3), we have

Sao] = — 5 (TO) = Saulol( Howdboy).

We include T,-GW with the matter. From Chap. 12, we get
p g
. 1
Sa.jlesld’ = —3 (T; +(T7Y) + T)),

where

T =2{Sciles + ¢] — Sc.iles] — SG,ij[q’BW‘j}
= Sc.klppld’ " + -+
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is smooth. If the source T; is non-stationary, it will produce an outward flux
(T,GW> and cause secular changes in ¢’ and 7,;. We shall neglect these in a first
approximation. Then in a flat background with gauge /) = 0, we get (see
Chap. 12)

O = —16n(T" +7T"), G=1.

This equation is rigorous if hﬂ‘, is included in 7"'. We include hfyv with h,,, for
the present and consider the secular changes later.
In the slow motion approximation, the velocity of moving matter is v < 1. In

any case,
1/2
vs< M .
~\R

The frequency of the waves satisfies

4 <
R

1
W~ —
R 9
and the wavelength

I R
Ao —~—> R

w v
Now
Tt £ |x —x'|,x)
N ¢ ) 3.
li(x)—4/ to x| dx’,
where

_ .0 wo__
t=x, T =

T 4T T

tot,v =

the last of these following from the dynamical equations. Hence,

1 (x) = 4/efx’-v Ti(txr x)d3x’
(r= x]) = 4AW (rtir)r |:4Bi,uv(::|:r)] f% {4cvuv£tir)} lf"”
where
A (1 / T (tx )%, B™(1) = / AT (1, x) A

Ci (1) = / AT (1% )dx,
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and so on. This expansion is valid only asymptotically. We should check that the
gauge condition is still satisfied:

B (x) = zgf?o(t,x) + 1 (t,x)

4A'u0 AM BmO BtV — Cijﬂo 2
r r i r ij

’ ’

where everything is evaluated at r & r. But A = P*. Hence, neglecting secular
changes inside the asymptotic region, we have AR = prt = (. Moreover,

1 pi 1 0 1 i
A — B0 — /(Tiot —X Ttlt)to) /(Tiot Tﬁfu)
~ [(rti - ayri) e —o.

Discarding the surface integral corresponds to neglecting secular changes.
Furthermore,

B 4 piki _ (iin /( ’T{‘O/t xJngt — ijﬁ)tO) X
/(x T{Ut + XJT{ut + xijlotk> x =0,

and so on. We have the useful identities

TtOtO + ( T{[gt) TlO

tot?

1 . .
Ex’x’ T?&OO + (x Tk 4 Ik

tot tot

1 kl

) B (x x]Ttot) ki
1
00 ik ik kO
2 ]Ttot 00 +5 (X T]tot + ‘x]Tlot> 2 ()C x]TtotO) &
1 i j700 ]

= Ex ijtot,O() + Tti)t + x x Ttot Ok
_ le

tot*

Now choose coordinates so that P° = M, P' =0, X' = 0, and define

I = /xiij?(?td3x.
Then

A =pm, A% =0,

oo 1.
AV = /T?md%x = /x’x”]'?&ood% = EI,-j,
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i00 i 700 43
B = /XlTlotd X = 0’
B — / HTEEx = / x {xiT?&O + (xiTﬁ?l) k] d'x
0 i j00 g3
= /(—x’Tlét +xlijtot,0)d X

1 . o o
:_/( T — X T o+ x0T )d3x

2 tot tot tot,0
1 1.
= =58i+ 51

ij00
Cc"™ = I,:]'.

Therefore,
aM I;i(t +
l(f(x) _+2{M} e,
ij

r r
. 2 i Il t+
P (x) = ( SJ) _Z[M] oo
VA r J

where the first term on the right-hand side of each of these, familiar from the quasi-
stationary case (see Chap. 12), changes only secularly, and
i Li(t£r
i =2 D
Terminating the series here corresponds to neglecting retardation across the source
and working only to the quadrupole approximation. Furthermore,

, 4aM Ii(t + Ii(t +
liz—l(f+li:———2|:l‘(t r)] +2 U(t )
r r ij r

+...’

1
+ _ g+
huv - luv - Enﬂvliv

2M Ii(t £+ I;(t £
o, futn] (hiezn)
ij

hy =
00 r

r

W= % +2M R
0i r ; r ; ’

= 27M5U 4 5ij |:Ikl(fr:|: V):| n 2],'](1‘ + V) — 5,jlkk(l‘ + r) "

ij
r K r
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Now

Itk r)) _ Lty I;(t £ r)x;
r ; 3 2o

Iij(t:I:r) :_Iik(t:tr)+3I,:-(tir))qixk:tiik(tzi:r)
r W r rd

72

7,-j(t =+ r)xjxg n 7,,-([ %+ 7)xjxx

F3 L

r3 ’

Iij(t + }") 3x,-ijij(t + r) 3x,-ijij(t + r) xl‘)ijij(l + r)
= TR =D g e e
r i r r4 r

where Q;; is the energy quadrupole moment tensor

1
i : e — — .e y e = .
Qj = [lj 3 51]Ikk Qll =0
We make the gauge transformation

20;(t£r)
+ il
50 3 r ) 61

Then
E(j):o = hgo - 25(?,0

o N 3xix; 0 . 3xx 0 N Xl JE 4L;

11
L + N
r rd r r3 r 3r
+ Nt ot
2M  3xix Qi 3xixQn xixOi
ij ij ij
= T g T T
r r r r

oM (OF
— + d 4
r r B
S
E(J; = h(:;:l - 53:,1'

:_(@> (2w 2y 2lix 20
J

r r3 r2 373 312
28;\ 205  205x
= — — —3 :I: —2 + “ e
r/; r r

:_(ﬁ> +2(Q_> L
r J r . ’

J



15.5 Generation of Gravitational Waves 209

Ei _ 2—M5] + 57 <3xkle,fl ¥ 3xkxl Q,ﬁ +xkxlj,§) _ léjﬁ n 211;}: - 25,’1'11?;/3
v rot : r rt k

r3 3 r
My (PR L Snn Qi 6 D) 20
r r rt r3 r
oM + 20+
:_51.]._’_51.].(%) +&+...’
r r l r
where
Q; =0Qi(t£r), I =Lit+r)
Now
pfCED) _ (o PN\ fE£r)
r or? r
X X - 1..
:V-ngairyfﬁf@in}—;ﬂntﬂl 1
:mﬁ@yoiﬂ+7ﬂ¢113¢2y01ﬂ+7f0iﬂ—;ﬂjiﬁ
=47 (x)f (1).
Hence,

D2|Ef(t_r)f(t+r):|0 DZ(ﬁ*_EJr):O D2hrad:0
b /u -l,[ ? )

r r w
where h;f‘vd is the free radiation part of the asymptotic field defined by
ad — 7— _ 7+
By =h,, —hy,.
Note that 2! # 0. If the source of gravitational waves remains non-stationary for

only a finite amount of time and if we assume retarded boundary conditions, then
at large distances from the source and at times #~r, we have
- d
huv = h, + 0(1/’.)’

w
with the O(1/r) terms being stationary. More generally,
— 1
— _ 1.SW rad
h#v - huv + Ehuv )
where hiyv is the standing wave ‘potential’ given by

1 /- —
SW _ — +
i =3 ().



210 15 Gravitational Waves

Now

TT __ rad __ prad 2y rad 2 rad —4 7 rad
hy = PuPuhy” = hii® — V" hy' — V7 + NV g g

2\ 2 3\ 2 o\ 0-—0
__ grad rad rad rad __ kl kl
=h;" = <6t> Miacxi — (6t> i + (at) Mg i = 51‘]( p ) ;
Qz; -0y _ ( ) (le Qk1> ) <Qi7< - ?1L<>
r ot r Kij r e
_ ( ) (le le) 9 Qi — ; +< ) (ka le)
ot r ij r ot r Klmmi
) ka o T
6t r i

5, |:ka1 (Q;rZé -0l N 3xkx1(QrkZ +0)) L }
Q,; Q,j (6) B [xkx, (O — ka) 3xe0(Qy + Q) 4. ]
" ij

ot r3 rt

ki

9

) zl@ik ~Oixy Q5 0y 305 + 0wy 1

r3 r2 r

_%%@M%ﬂﬂﬁﬁﬂ%+%mﬁk L

r3 r2 r*

= [2(05 = 0) — 28(Qy — Q) — 250 (Qy — Q) + Iytihi (Qy — Qi)

+ XXk (O — O] + = [4(0; + OF) — 8x:k(Q; + OF)

— 8%%(Qp + Q) + 2058k (Q + Q) + 108:%%%:(Qy + Q)] +

in which we keep terms to order 1/r2, and X = x/r. We also have
xa e R e e
hja == 1200y + 05) + 2u(Qy + Q) + 253(Q + Of) — e (O
T ja . . e .
+O) = Xikikiki(Qy + Q) + 3 [-6(Q; — Q) + 145 (Qy — Q)
+ 14530 — OF) — 505uki(0y — Of) — 158:%hu(0 — O]
1 .
+ =) (20 (0 — Op) — 28j05 (O — OFF) + 205 (O, — OF)
- 256,(Q;1 - 07) - 256,(Q,_a — O + Skt (O — Of) + djakididi(Qyy
— 0 + 2xixx (O, — O] +
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1 1
TTs — TTo

Asymptotically, hEvT should be separated into a smooth part and a gravitational
wave remainder that may be regarded as contributing to T6y. The terms that we
have retained above constitute effectively this wave part; the unwritten terms may
be lumped with the smooth part. (They drop off more rapidly with r and are
negligible at infinity.) Now (see current chapter)

1 1
Oa TT,TT TT, TT TT p TT
T8y = Tex {—(h,j o)+ I i + 5 hohi |

) _ lhTTh b +hTT-hTT _ hTTyhTT

1
ab TT (3, TT TT TT TT
TGW - hij (hai,bj +h —h —h; 2 ija ij, aij''bji bi,u

167 bi,aj ab,ij ij,ab

1 1 1
u g TT TT ; TT _ TT;TT TT; TT TT; TT
+ 5ab <4hij,hij7u - Zhij,khik,j)} - ﬁ { (hij hai,b),j + (hij hbi,a),j_ (hzj hub )

1
2

1 1 1
+ Oup [— 3 (hiTjThiTjT),oo + 3 (hiTjThij),kk 3 (hiTjThik),jk] }

0 1 1
TT; TT > - -
(hlj hai,O),th:)OC at0<r2> + 0(}’3),

ij,a""ij,b ai ai

1 1 1
(h,TjTh,'TjT),ab + Eh'TT hiy + (hTThbj),ij + 3 (hi hy ) 00— 3 (hTThbi),jj-

Now

and
h;Thijaot~j> %[—4@:@ + 8800 % +2%Q kxQ X+ 480 -0 %
450 -0 % — 480 k0 % +28Q kX0 k280 20 %
+ 45070 % —4%-Q xx-Q % — 4800 X +2%-Q k%0 %
—2%-Q XXQ K+ 480 k%0 % —3%-Q k%0 xk + %0 kX0 %
20 Q0 %+ 450 w0 % -0 A0 % +30 ivQ ]

wof}

= % [-407:0 +8%-Q0 -0 & — 2%-Q ax-Q x| + 0@),
14 I

[ Xa v e e e e o 1
ShiT, — [—2Q 0 44500 % — (30 %) } +0(=5).
Averaging TGw in spacetime over a few wavelengths is equivalent to averaging the
products of differentiated Q’s over a few periods if the source motion is quasi-
periodic, or over a total orbit if the source is an unbounded system (collision).
Moreover,
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and so on. Hence,

M), o (200 - 4054 60 7)o ).

t~r—o00 16712
We also have

RpT e e e
hijhaTsz oo 72 [*4jS Qi +40;; QyXika + 405 XiQyxi — 20,51 Qyy

— 205 kikahikiQy + 43340 0, — 43305 Oy Sk — 4354 010,

+ 200 Qp k%10 + 245 Qpkikakitn O, — 2051050 05, + 25010 O &k
e e 1

+ 2845101 %%: O — 0jaXiXi Qg XimXn Oy — XXX X1 QXX Q] + O <F—3>

% o e o e e

= 2 [_4jS O+ 4jS OuXiXa + 4Qj,' X0k — 2jS XiX X X10y + 4%i% 04 01

e d 1 1

= 206510 %% 0y, + 23130, Mk Qg + 253105 @ Xika] + 3¢ <r2> +0 <rg) ;

O R
(hgThZsz) — = [-40,0;, + 40,0, %%, + 40,%:%;Q;, — 20,8k ixi Oy

jinr—oor3
+ 4561;5&'@1'; Qj_a - Zikfclék_lfcbfcié; + ZXinQi_afckjngk—l + ijkale_l Q;,JAC:JACa
" 125%2]‘@]; O — 200 Q; Qi = 20%% QJ;;C" Ok + 145Cb5€ij;5Ci.%a5Ckfcl o
— 2005043 O;, + 145010y %1 0y — 14011010t Qg — 148551010y Q; XiXq
+ 43,50y O + 45,0, 0 + 402,05 0y, — 20,0540k O
— Ak %0y Oy + 120505, 0y, + 43,05 05, — 4 Qi O,

— Qi 0 — 200 0, + 60530 ik Oy + 205,05, ki Oy
T B
+ 4xpXi Qp X X1 Oy + 4xbkukj jS XiXa + 2%p XX O Xi Qia] + o o <r2)
Zo(L) 4 20(L) 4ol
o " \rr) o \r )’
L/ e
<(h3ThZ,Tb) s (rymi,) J.> o (850, ) + 800, T,

t~r—00 r3

e e e e 1
+ 12xaQbixixjkujk + 12beal-x,‘ijijk> + O<F>,

1
TT,TT
hU hab t~:)000 (r—2> s
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0 1 1
TT; TT
(70F) (z) o (3)
(hTThTT) 620 1 +aO Y. of !

- _ — — —_ _
b ) Ginr—oo 02 \r2) o \s3 )’
(hTThTT) .0 l
ij “ab gj/t~r—oo \#4 )]
(hTThTT> — 0 k)
vy ,ab [ t~r—oo )’

1 RaXp T oo oo e e
DS, o e [4030 80 Gk 260 5

— Ak Qxi Qp, + 2XaXpxi%; O XiXi Qg + 2XaXi Qphikt Qg + 4XaXaxi QX Oy,

— 4x,%; Qp ik O — 4akpX-Q Q- X + Ak Xk Qi Oy — XXX Qi Oy
—Axax; Q; O, + 25X Qpiky Qg + 2XaXpik; O Xaks Oy + 4xakixi Qxi Oy,

+ 4xo Xk Qi Qp — 6XaXik; Qi Oy + 4%k Qi Oy

— 2xaXpXixj Qi Xixi Qg — 2XaXiXs Qi Oy, + 4XaXpXiXj Qi Xiki Oy

— 2X%aXix1 Qi Oy, + AxaXiki Qi Oy, — 2XaXpXij Oy Xix Oy

. 0 1
— 2X.%1%QXi Q;, + same terms with a and b interchanged] + —0(—>

ot \r3
1oL
"4 b

L) — g a0+ 0 #7) L (40005 05

t~r—00 1’2

e e e 1
+ 4xX:0;; O, + 60X Qi XiXj Xk Qe + 6XpQ ;XXX ij> +0 (F) ,

1
TT; TT TT TT
<(haf iy ),,-,->t~:>m0(r—4>’ () ), 2.0
(hTThTT) - 0 1
ai Tbi ) i) oo\ A




214 15 Gravitational Waves

)Aca-;cb
Tab
{ Gw>t~ r—co 16712

B R T S N
1

+ 125,505 O, + 18%,0;5:%% Oy + 183,05k Q;> +0 <ﬁ) .

Secular changes in P* and JV are given by
dpP 10 3 i 13 i 2
—l = /Tiol Od /Tﬁ)tld X = Tﬁ)td
4 v

dS1J
= [ WTh 0T =~ [ ($Th -0 T )
vV Vv

[ (678 78~ (9T Th] - [ (T~ o)
v s

1 1 .
E/xx]sz —géij, E/xidzf):(),

4n 4n

1 A 1
= / Yk d?Q = G (0401 + 0ixdj1 + 0idjx),

(T =- [(oes

S
= lén (207:0° —4x-0 -0 %+ Q &k Q x)d*Q
4n
1 4 2N\ e e | R
— (25 ) @) =@,

dpi ;
<E> =- /<Téw>d25j =0,
S

which tells us that quadrupole gravitational radiation cannot be used as a pro-
pellant, i.e., we must go to octupole terms, and
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ds; . -
< dt)> = —/(x (Tgw> _xJ<TGkW>)dZSk
Sl
= [ {125 040 — 1255 0,0y + 185040,
4n

— 1850, 150, )20

1/ v e e 36 e 36 47
1 <4Qikaj —40,09, + EijQki - EQikaj> =3 <Qik ij>7

ds; 1 dSix 2 . e
<dt> B vk< di> -5 (0i0a)
The expansions leading to the above results are essentially expansions in powers of

R/r and A/r, useful in the radiation zone (r > A > R). In the near zone (1 >
r > R), an expansion in r// is more useful (see current chapter):

— 2M  3xix
h§0:T+ r"(Q,,ﬁ:rQ,,—i— rQ,]i rQ,] r“Q,,- 120r Ql] )

3x; xj

(ZFVQ’/ erUq:§r3Qij _674Qij:Fﬁ”SQij+“-)

)C)CJ

l .
<rQU:I:r Q,J r4QUigr5Qij+“'>+”"

hy; = rﬁ ’ _r_; <Qii +rQ; +§r2Q,-,~ igr3Qz:f +ﬁr4Qu’ +- )
+r—; (irQl;,- +77Q; i§r3Q,~j +gr4Qij+ . > + -
. 2M
h; = =0y

120
3xpx,
+ 0j rk l<:Ferlr le:F r le**r4Qk1¢*r Qk1+ )

3xx,
+ 0y rkl<Qk1i"Qk1+ POu+— erH——er,j:—r le-l- )

XX
+ 9y ; l<2Qk1iV Qk1+—er1i erl—i- )

2 (. 1 e 1 e
-|-;(szj:|:1’Q,:,'—|—§I’2Q,:]':|:6r3Ql:]~-i,--..)_|_...7

2M  3xx;0; lx,x ;
hg(\)v —+ F;Q] 2 ;,Q] + g xx]Ql] )

where only the first two terms are significant in the near zone,
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280% 20u% 1,
SW i i % 20.%
" = réj r2jj+Qijxj+Zr Q,‘j)Cj‘F"',

where only the first term is significant in the near zone,

hSW _ 5, <2M 35%:%10u 1ka1Qk1 )

o +8FXszle+

2.
+;Qij+rQ[j+"',
where only the first two terms are significant in the near zone, and finally,

rad rad
hOO = lsxx] QU SRR hOi :_ngj-xj_Fa

ra 2, 2 .
Bt = —4 0; gerij - E‘Sijxkxl Ou+ -+

The parameters M, S;;, Q; may (in principle) be determined by observing orbits in
the near zone but still in the Newtonian region. Quasi-stationarity makes the orbit
equations reduce effectively to

-
d"z' 1 qw
diz 2700

as can be seen from Chap. 6. There is no need to know the details of 7.
We make the gauge transformation

1
=205+, &= =205 — <O+,

503

5
with chfﬂ = 0. Then

7ra ra 4 PN
hiy = hgy — 200 = — 340 + o(r),

Rt = hEd — & — & = O(r),
np = hfad4 &ij = 5,2, ,
= r2C QU el Qk] 15 x]xk le 15 diaxs Ou + O(r*),

_ SW d

h,uv = h;w - éH,V - é"w# = hu zhitav :

Now suppose the source is Newtonian (R > M). Then the above expression for
ﬁ”‘d may be used even inside the source. The appropriate expression for /5y o in this

region, of course, will no longer take the form of a multipole expansion, but will be
that corresponding to the weak Newtonian field produced by the given mass
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distribution at any instant. In the absence of the component h’ad /2, the dynamics of
the source would be precisely that of Newtonian phys1cs, and the energy and
angular momentum of the source would be conserved. The component i_z;ﬁ,d/Z

accounts for the actual loss of energy and angular momentum by radiation. It
describes the radiation reaction. It introduces a slight additional force per unit
mass given by (see Chap. 6)

1/ —. 2 .
F,=— l (thg% - hg%{) =3 Q;ix; +0(r*)  (slow motion).

Let m,, and x,, be the mass and position of the nth particle of which the source is
composed. Then the rates of change of energy, momentum, and angular
momentum caused by this radiation reaction force are

dM . 2 . i 1. =
dr = ;mnFnixni = —ggmnxm-xanij = —§Q. 0,

E_ Zmn ni — _ézmn-xnjéij :Oa

because the origin is at the center of mass, and
% = &jjk ; My Xy Pk = — ggjjk Z mnxnjéklxnl
%gijk z,,: my, (xnjxnl ! onry, ) Ou = gbt]k Oji ékl :
Taking averages over periods or orbits, we get
(&) -sed)-—sen. (F)-

ds; 2 2 R
<dt> 81jk<lele> §3Uk<leQk1>a

in agreement with the results obtained by integrating fluxes in present chapter.






Appendix A
Spinning Bodies

A.1: Nonrelativistic Spinning Body in an Impressed

Electromagnetic Field

Mass of nth componentparticle my,
Charge of nth component particle en
Position of center of mass X
Position of nth componentparticle x +x,
Z mux, =0
n
Total mass m= Z my,
n
Total charge e = Z e,
n
Moment of inertia tensor 1= Z m, (xil — XuXy)
n

Charge moment tensor D = Z e, (x,zll — x,,xn)

n
Electric dipole moment (= Z '

n

. 1 .
Magnetic dipole moment u= EZ X, X Xy,
n

Electric quadrupole moment tensor

1 1
Q = Z €n (xnxn - gxil> =-D+ gl trD

n

219
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Electromagnetic potential vector (A)) = (—¢,A)
Electromagnetic field tensor w=Av— Ay
Electric field E=(F0)=-V¢—Ap
1
Magnetic field H, = Eaabc‘F be = EabcAcp

H =V x Aaab = gabch
where dots denote the time derivative and commas denote differentiation with
respect to spacetime coordinates (x') = (¢, x).

The impressed electromagnetic field will be assumed to satisfy Maxwell’s
empty-space field equations in the region occupied by the spinning body:

Fftrv = 07 Fyv,a + Fva,u + Fay,v = 07

where
FI =00 Foe, (1) = (1) = diag(~1,1,1,1),

so that

The Lagrangian is
1 L L
= Ez:m,,(x +x,) — Zend)(t,x +x,) + Z e Alt,x +x,) - (x +x,)
1 1 1
:Emui;mnﬁ —ed — zﬂ:enxn : V¢—§zn:enxn VYV xy— -

+eA-5c+Zen)'cn-A+Zenx,,-VA-x+Ze,,x,,-VA-J'c,,—f—

=L+ — (Zenxn A—|—2enxn VA -x, + - ->,
where all fields are evaluated at the center of mass and time ¢, and
1 1
L= meZ —edp+eA-x +§Zmnx,§ — Zenxn (Ve +Ay)
——Zenx,, V(Vo+Ap) -x, + Zen (x,-VA-x—x-VA -x,)
+§;en(xn VA i, — %, VA -x,) +

1 1 1
zimicz—ed)—i—eA-X—l—z;m,,x,%—i-C-E—i-EQ:VE

VO GExH) - HA+
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Consider now a rigid body. Its orientation is specified by three parameters ¢,
e.g., the Euler angles. The spin angular velocity vector w is given by

L i
q = Raw(l ’
where

i pi i pj i

RaJR’b —R,;R, = R, X, =0 xx,,
with the comma denoting differentiation with respect to the ¢g'. Also

—k — i =y R

EabcWpXne = Xna = Xna,iq = Xna,il\pWp,
whence
i
xna,in = &abcXnc-

The conjugate momenta are

oL
p=—=mx+eA+HXx{+ -,
ox
oL 1
Di = @ = ; mnxnaxnaﬁi + 5; engabc-xna-xnb‘iHc + -

The spin angular momentum is
i
Sa = le a
= i R+ RH,
— MpXppXnp,il\i + E €n&bcdXnbXnc,il\jI1d + -
n ¢ n
1
= E My Eped D cXndEbaeXne + E E engbcd-xnbscaexneHd + -
n n

g ”ln(écaéde (Sceéda)wc-fnd'fne
—l——l E €n(0daOpe — OdeOpba)XnpXneHy +
n a e e a n ne e
2 ~ d b d b b d

1
=l + EDade + ey
or
1
S:[-w+§Q'H+"'-
The Poisson brackets for the spin angular momentum are

(Sas Sp) = (PiRipijJé) = PiRiz.jRZ _ijé,iR;

. i .
= 5'abcpiRc = f'acho
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Assuming that [ has an inverse, so that

1
wll-<S—§D-H>+~--,

the Hamiltonian is
H=p i+pi—L
) . . .0
= mx —|—eA-x+x-(H><C)+Zm,,xn+ﬂ-H+~--—L

1, 1 S 1
= —mx —&-eqb—l—izn:mnxn—C-E—EQ.VE—&—n-,

2
with
1
x=—p-eA—Hx{)+-,
m
2=(oxx) =0k x(0xx,))=0- [wx} — x, (0 x,)]
= (xl—xx,) o,
1 1
Ezn:mnjciziwl-w,
so that
H—l(p A —H x ¢ + 6+ (s—tu.p).r (s-lp.m
TP T TP E) 2=
1
~(E-3Q:VE+---.
Now
(Sayxnb) = (PiRZ,xnb) = _-xnb,iR; = &abcXnc,

and therefore
(Sa,Cp) = €ancle,  (Sa,Die) = €apaDac + €acaDpa,

(Sm I[;I) = gahdl(;cl + Sacdlbj;[la (Sm th) = Sabdec + 8achbd7
and so on. Hence

S, = (84, H)
. 1
= —XpepcaHctadeC, + EwbDbCSacde — EabeLcEp

1
— 5(8abdec + €acaQpd)Ecp + - - -
= (5ba50e - 5he50a)thc§e + 8acd,ucHd + SacthEh -

. . 1
= xaHbe - Haxbé’b + Sabc(:ubHc + é‘bEC) - E(Sabdec + 8achbd)Ec,b + - )
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or

S:,uxH+C><(E+5c><H)—éV><(E-Q)+%(Q-V)XE+~~,

in which we have used

y:%Zenxn X Xp :%Zenxn x (o x xp)

—%En:en[wx':ﬁ — X, (%, - 0)] :%Q-w.

In the case of spherical symmetry,
I=11, D=Dl, (=0, Q=0

1 1
u=-Do, SzIw—i—EDH—l—---,

2
H= 1(p A) + ¢+ (s—Ltom 2+
“omP T C ) 2 '

Ignoring terms indicated by ... up to now,

) 1 1 1 1
S:ny:EDwa:§D1‘1<S—§DH> ><H:§D1‘15><H,

d .
$?=28-S=DI"'S-(SxH)=0,

dr
H= i(p —eA)’ +ed + Yo lprig u + I 'D*H>.
2m 2 2 8

The third term on the right hand side is a constant, inert term that affects neither
the orbital nor the spin dynamics. The last term affects only the orbital dynamics.
We now make the transition to a spinning particle, i.e., ¢ — 0, where ¢ is the
radius of the body. We have the finite quantities S, u, v, m = m + mp,

e = e. + e, where
my, = peripheral mass,

m. = central mass,
e, = peripheral charge,

e. = central charge,
v = mean rotation velocity.

Now
y 2 2
vewe, o~-—00, I~mpe”, D~epe”,
€

p~epve, ey~t — +oo, D~LEg— 0,
s s
S~mpve, my~s — 00, I~%—0,
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_ A}
me — —00, e. — Foo, [ 1Szw?wmpv2 — 00,

12
DI'S~pu, I''D*~—¢—0.
vS
Writing DI = ge/m, we have

ge
2m

and the limiting Hamiltonian becomes

1 2 L1 ge
—  p—eA st 55 H.
H=5,p—eA) +ep+s om

A.2: Relativistic Spinning Body in Impressed Electromagnetic
and Gravitational Fields

The metric is g,, and we use the notation
A-B=g,A'B, A’=A-A,
Aﬂ = g,uvAva Al = gWAVa 8#680‘} = 527

1

Flvlg = glmrvo’rv Fva‘c = E(gvr,c + 8oty — gvcr,r)v

R =TIt —TH TP Th —TPTh

Vot vo,T VT,0 ve' pt vt por
Ryvo"c = _Rvuor = Ra‘tuw Ruvo"c + R;w"cv + R,u‘rvo' = 0;

Ry=R, . R=R.

uve?
Covariant differentiation is given by
Al =AN+ VA% Ay =Auy — I, A,
and so on. The metric satisfies g,,. = 0. Then
A'»uva' - AHO’V = (A'»uv),a + r’grA?v - FfoAlfr - (V A O-)
= AL, + 1 AT+ AL
+ I A+ T5.1,A" — (v« o)
=R A"

We also have

Ryvorp + Ruvepo + Ruvper = 0.
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The world line of the center of energy is x"(t), with

Covariant differentiation with respect to 7 is given by

. D d ..

AF = AR = —AF 4 TR AR,
T dt

. D d oo

A# = —IAu = EA/‘ — FHO_AV.XJ,

and so on. If A" is a field then A* = A"%". For example,
guw =0,

and

and so on.
In a local rest frame e%(t), such that

eq - ep = dap, e, x =0,
we define the rest frame projection tensor

, , I TN
PH = ele! = g 4 (—i7) " A%,

and the frame rotation tensor
Quy = (=) ey ey = —Qu,
whence
e = (=)' P Quel + (—i2) " (eq - ¥)i.

When Q,, =0, the vectors e are generated by Fermi—Walker transport.
However, Fermi—Walker transport is non-integrable, i.e., it depends globally on
the world line and not merely locally. In order to have a local dependence, e.g.,
vectors e/ propagated by Fermi—Walker transport along preselected paths and then
boosted, we must allow Q,, # 0.

A variation of the orbit is denoted by dx*(t). Covariant variations are given by

OAM = SAM + T A'6x",  6A, = 0A, — I, A,8x°,
and so on. If A" is a field, then 6A* = AR ox". For example,

_ - , D
0guw =0, O0x'=0x"+ 1% x"ox" = D—5x” .
T
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Covariant variation and covariant differentiation with respect to t are not
generally commutative:

—. D - . . d- —
OA! — ——0A* = 0A* + Th AV0x° — —0AH — Tt 0A"X°
DT Vo dT vo

d d
= A" (I A + T, ( A A >5x
T

d d

— AT = (I A7) — T (54 4 1,475 )50
(Flvirr - Ffj‘ra + F{)O.sz FerFﬁG)Ava&xI
=Rt _A"x70x".

Vot

Now
0% =2k - 0%, de" = ddgpel + (—i2) ' (eq - 0X)FH,

for some antisymmetric 64,,. Also
D- P . . T, =\
E&eﬁ = 0ape), + 0ape) + 2(—x") " (X - X)(e, - 0%)%"
=12 Een- ov—1 D <.\.
+ (=x7)7 (&g - 0x)x* + (—x7) <ea 'Féx)x"
T
+ (=52) M (eq - 01) "

zé)labeZ+(—xz)l/zéiab{)bce"+( .2)7152@(61, 55)).CH
+2(=i2) (k- ®)(eg - 0%)i" + (—i2) "2 Qup(ep - 03)i"

_ — D _
+ (=) 2 (eq - 3) (& - 00)F + (—i2) ! (ea ~Eéx)xﬂ
+ (=) ey - 01)iH,
det = — (=)~ 1/z(x 3%)Qupely + (—Xz)l/z(SQabeZ
+ (=) 2 Qupbipce + (—i2) T Quy (e - 03)i"
+2(—22) 2 (k- 0x) (eq - X)X A+ (—52) " 0 up(ep - X)i"
— D-_
+ (—i2) (e, - %) (& - )& + (—x2) 7! (ea -Eax)x#

+ (—5%) Ry R 170X 4 (—i2) 7 (€4 - X)ORH,

0= DB‘L'SEH 56“ + Rl el x°ox"
= [0 = (=) (Qucb ey — Qo)
(=) P Qu (- 35) — (fxz)l/zma,,} ¢!
+ (—5) PR (e - 0%) — (—52) T P (e - X)OK + PR ypee) 7 0XT,
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whence
0= by — () (Quebey — Upedles) + ()2 59
()" 200u — () ¥ (s — epea) - B
— elie} Ry 0"

We now introduce the biscalar of geodetic interval o(z, x). We associate indices
from the first part of the Greek alphabet with z and those from the middle of the
alphabet with x. It is defined by the requirements

1 1 1
o= Ea.ﬂaf‘ = Ea.“a‘?‘ = i§S2’

limo, =0, limo, =0,
Z—X

z—X
and it has the properties
Oy = 0.,z0 = 0,507,
Oy = Oyury0. + 0005, = Oy 07 + G507,
limo.,, =gy, limo,p=g.,s, limo,, = —gu,
Z—X Z—X Z—X

T T T T
0w = O.putve0. + O prv0.g + O o0, + 010,

0= li_r}r;(—o.ﬂw + Opov + 0o + Oops) = 2?_13 .00
We may expand

1
Oy = 8w +Ayvaafr + EAyva‘chTUF + ey

where A5, Ao, €tC., are ordinary one-point tensors. We have
—A T + A gt + ...
O.uv¢ = Apvra0. w10 .4 ,

0=1imao ;= Aug.
7—X

Therefore
Gy = g + O(2).
We also have

_ T T T T
Oy = Oprva0. + O pury0., + O g0, + 0.0,

0=Um(—0 .+ Oy + Oops) = %111; Oy
.

7—X
Therefore,

o o 2
O.pa0’y = Oy — Opya0” = gy + O(57).
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The world line of the nth component particle is denoted by zi(7). It is
determined by

—0.4(20(2), X(7)) = Xna(T)€an(7),
— 0.2y = Oy’ + XngCay + Xnaaps
—22 =~ — Spadna — tna(8a - %) — Wnadup(8a - €) + O(s%)
= — i = Rpafna + 2%na(eq - ¥) — 2(—32) gy Qs + O(s5).
The rotation velocity relative to the Fermi—Walker transported frame is
Via = (=5%) k00 — QupXup,

and

2 =i — ()W A+ 2xa(eq - X) + O(s7)
= ()1 =D [14+2=2)" (1 =) xualea - B)] + O,
(=) 21 =) 2 4 (=) =) P xa(eq - %) 4+ O(5D).

n

( )1/2

The electromagnetic vector potential is A,,. We try to expand A, (z,)z} in powers
of x,, and X, :

A(xzz = A - X+ BuaXng + CpaXna + DnapXnaXnp + 0(52)-
Now

o o™

n
—O0.ua = C€au, —O.uun. = €ap-
M O %na ! M ke "

Also, since —o.,, differs from g, only by a quantity of order 5%,

oz}
O—Wax = eau + 0( )
na
Therefore,
0z
B.. = <Axan) :A’eaa
Xna x,=0
ozf oz
C —I—D,b)'cb:(A. N LA z
na nabXni 1ﬁaxm n 1axm o
= Ape, (X" + xpey) + A - éq,
whence

A=A -5+ (A eg)kng + (A - &4)Xng +Apvite, xn,
+ Apvel ey Xnakny + O(s )
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W= / Ldr,
with Lagrangian

n1/2 .
L=— Zm,,(—zﬁ) 24 ZenAazZ
_ 1/2Zm 1/2 1/zzm 1/2xna(ea %)

+eA-x+A- Z en(eahng + eaXna) + Aynite), Z €nXna
n n

The action is

+ Ayvele) Z enXpainy + O(s%)
n

d 1 ,
=L+ & (A-e,) Xn: €nXna + =Ayvelel z,,: €, XnaXnb + O(SZ) ,

2

where

L=—(- I/ZZm 1/2 1/2Zm 2x,,,l(ea X)
teA i+ (=) 2 (LEq + poHa) + O(s),
the symbols e, {,, t,, E,, and H, being defined as follows:
Total charge e= Z en

Electric dipole moment (= Z €nXna

1
Ha :Esabc E €nXnbVne

Electric field in local rest frame E,=(—i%)" 124 erF it

Magnetic dipole moment

1
Magnetic field in local rest frame H, = ES”bCF beWithF, = ehepFly

Note that the term (- (¥ x H) that appears in the Lagrangian in the
nonrelativistic case is missing here. This is because the E, are already the
components of the electric field in the instantaneous rest frame of the center of
energy of the body.

We shall now make four assumptions:

1. Nonrelativistic rotation: v2 < 1. Although this assumption does not relieve us
from the ultimate necessity of including the rotational energy in the total rest
mass of the body, it does allow us to ignore the internal energy associated with
strains produced in the body by centrifugal forces and special relativistic
contraction effects. (These energies are of order s*v2 and v, respectively.)
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2. Formal or quasi-rigidity: x,,a’,»R",, = E4pcXne- Then

i onN1/2pi . N1/2
q = (_x ) / Rlawav xna(_x ) Eabe DpXnc,
— _ 1
Via = 'Sabc(wb + Qb)xnc; Qa - fgachbc“

3. Inversion symmetry. By this we mean that for every component particle,
located at x,, say, there is another particle located at —x,, (relative to the center
of energy) that has the same mass and charge. An immediate consequence of
this assumption is {, = 0. Also, since v% is an even function of the x, (by the
quasi-rigidity assumption), we have

Zmn(] - Vlzl)_l/zxna = 07

so that the center of energy x"(r) is indeed located at the origin of local
coordinates. Note that inversion symmetry is much less restrictive than
spherical symmetry. Indeed, although we shall later make the spherical
symmetry assumption in the present nonrelativistic case, the appropriate
generalization of the spherical asymmetry assumption to the case of relativistic
rotation would require the energies m,(1 — v2)~'2 rather than the rest masses
m,, themselves to be spherically symmetrically distributed, an assumption that
would be rather ad hoc and hard to justify.

4. Smallness. By this we mean that the body is sufficiently small that the strains
(and associated internal energy) produced in the body by the curvature of
spacetime and by the gradients of the electromagnetic field may be neglected.
This will justify our neglecting terms of order s* in the Lagrangian, and we shall
henceforth no longer indicate these terms.

We note that when all the above assumptions are valid, the departure from true
rigidity of the formally rigid body is negligible.
The Lagrangian now takes the form

1
L=—my(—)"* + E(—fcz)l/z Zm,,vi +eA i+ (=) u H,,

n

where
mgy = E my,.
n

In calculating the dynamical equations for the internal (spin) motion of the
body, we may set the parameter t equal to proper time so that

- =1

The internal motion is then described by the Lagrangian

Ly = %Z mnvi + %Sabc‘Ha Z €nXnbVnc,



Appendix A: Spinning Bodies 231

where

¥
Vna = Xna,iq + 8Ltl;c"Ql)erc' - 8abc(a)b + Qb)xnc-

The conjugate momenta are

0L, 1
=== MyVnaXnai + =€abeH, enXnbXnc.i-
Di aq’ ; nVnatna,i ) abc a; nAnbAnc,i
The components of the spin angular momentum in the local rest frame are

Sa = piR;

1
= § mngbcd(wc + -Qc )-xndgbae-xne + ESdeHb E €nXnc€daeXne
n n

1
= Ip(op + Q) + iDabey

where the moment of inertia tensor I,, and charge moment tensor D,, are as
defined on p. 219.
Introducing a three-vector dyadic notation, we may write

1
w+Q:l_1-(S—§Q-H),

and the Hamiltonian for the internal motion may be expressed in the form

H, = piéli — L
1 1
= E Z mnvi — Eabe Z My Vna benc - EgabcgcdeHan Z €nXnbXne
n n n
1

:f(w+9)-I-(w—i—Q)—Q-l-(w—i—Q)—%Q-Q-H

1 1
——(S—-H-D)|-I'".
o(s-32)

1 1
=_(S—ZH-D)-I"!.
o(s-3r2) 4

Sa = (Sast)

S—%Q~H)—Q-(S—%D-H)——Q-Q~H
S 1D H Q-8
2_ )

N N

1
= E(wb + Qp)DpcacaHa + eapeR2eSp
- Sabc(,ubHc - QbSc) - Fab,uh + QabSb7

or
S=uxH-QxS.

The spin angular momentum four-vector is

St="S8zel, §-x=0, S,=S5" e,
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The magnetic dipole moment four-vector is

BC= ey, X =0, p,=p-eq
Then
St = S,et + S et

= e (Faptty + QapSp) + Sa [Quvel, + (eq - ¥)i]

— eltelel ooty + (8- )i

— PPFyop’ — (8- 2)i,

or
PY(S" — Fou’) = 0.

The spin angular momentum tensor is

S = Supelel,  Sup = apeSer Sy’ = 0.

The magnetic dipole moment tensor is

nwo_ n,v — Vo
B = Hap€,€hs  Hap = Eabcle, KX = 0.
Since

—1/2
/ €aplhvéabe, 8 = _det(g,w’)7

i g __
X'&; o€, = 8
we may also write
_ ol/2:2 _1,1/2:0 :
Sw=2¢8 / Xem08%, Sy =38 2% EiveS"”,
_ o1/2:4 o _1,1/2:2 va
Ky = 8 /23 Sty My =38 2k Eppva b

Now, using

1
Sa Qh = Zgacdghefscd Qef

1
= Z(éabéceédf + 5a65(;f5db + 5a_f'5cb5de

— OabOcfOde — OafOceOdb — OaeOchOdf )Scaef

1
= Eéabscdgcd + QacScbv

whence

Sa-Qb - San = QacSEb - chscav
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we find
Sab - SuchC = Eabc€cde (,udHe + SdQe)
= .uaHb - ,ubHa + 8.8 — Sp€2,
= Lacllep — Fbc;uca + QacSch - thscm
and hence
' = Sweliey + Saéliey + Sueliey
= (Fac,ucb — Fyepleq + QaeSer — chSca)eggZ
+ Sap{ [Qucel + (ea - X)¥"] e, + el [Qpeey + (e - X)3'] }
— PROF i — PF i — #4508, + 58
or

PLPY(S — Fou™ + Fiu”) = 0.

Alternative expressions are
1
Sab = €abeSe = Eape (‘%de zn: My XndVne + EFde Z: enxndgecfxnf> (see p. 231)

1 1
= E my (-xnavnb - xnbvna) + EFac § CnXneXnb — EFbc § €nXncXna
n n

n
and
1
Hap = €abcle = 5 § €n (xnavnb - xnbvna)-

n

The rotational kinetic energy is
1 2
KZEEH myv, = Hs+Q-8S.

Hence,

K=H,+Q-S+Q-S

oL, .
=5+ Q- S+Q (uxH-Qx5)
. 1. 1 .
= —Zn:mnvn (2 xx,) —EF,I,,,uub —EH-Zn:e,,xn X (2 X x,)
+ Q-8+ Quu,H, (see p. 231)

d ..,
= Sty Al ) + QuFuctty
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s R S
= _,uah‘QUCFCb - :uah(ed : x)-x#Fﬂ"e;? - EMHVFMV + QabFac,uch
A L
=3, Fox° — E,u“‘Fw,. (A1)

In calculating the dynamical equations for the orbital motion of the spinning

body, we may set 7 equal to the proper time only after performing the orbit
variation dx*(7). We make use of the following relations:

5(_5(2)1/2 — .ok, 5(_)-62)—1/2 — %ok,
delt = lape), + i (e, - Ok) (see p. 226),
0Qup = b — (Qucbicp — Qoedlca) + Qup(k - 85)
— ¥+ (eqtr — epeq) - Ok — €lie) R ek 0x7 (see p. 227),
Vg = (Vpa + QupXpp) (X - 0%) — 0Qupx,y  (see p. 228)
= Vya( - 8%) — [«Wlah — (QucOhcp — Qbedeq)

.. o y 0 T
—5i - (eaty — €peq) - 0% — €€} R gk 0x" | Xy,

1
6(:“(1H11) = E‘s (F#Vegel‘; Z enxnavnb>

1 , . =. . =
= EFWJ,u’“ 0x° + 0acFeptyy — XM F i 0%° + p Hy (% - 0%)

1 .
—fw {Mbc — (Qpa02de — Qeadlap) — % - (epec — ecep) - 0%

moy O ST
—epelR ok 5x] g €nXnaXne,
n

.= 1 2/ = /e =
OL = my(x - ox) — i;mnvn(x - 0%) + zn:m,,vn(x - %)
—+ |:5/.1ab — (Qac(”tcb — chéica) —X- (eueb — ebea) . Sx

v 20§ T
—e’a’ebmex’ﬁx] E MpXna Vb

= = 1
€Ay 0K - eA - 85 — 1, Ha( - 85) + SF o 67
+ 6iachb,uah - ).CMFMVIMXEXU + :uaHa (X . Sx)
1 . -
— E ab |:6Azbc - (de&)\,dc — QCdé/ldb) — x . (ebec _ eceh) . 6}6

oy O ST
—ehecR#mx’&c] g € XnaXne
n
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_ 1 . _
= (mo + K) ()C . 5)6) + ESab(S/Iab + Qpc0caSap — X"Sw&x"

1 - 1
+ ERWMX"S‘”éx“ + €A, X' 0x" + eA - 0% + E,u""F vo-u 0"

+ 0AacF oy, — ,UWF(VT)'CUE)'CM
d 1 ’ .
=3 |:(m0 + K) (.X ! 5X) + Esaba;hab + S;w-')éyaxu + €A - ox — /l#\,F(‘;)CG&XM

dt
D . vio 1 v Qo
+ _D_‘c[( 0+ K)gux" + SuX" — p, Fox }JrERHWxS
1,
+ eF 3" + W F e f 0"

2

The action principle 0W = 0 yields the dynamical equations

D ) oy N 1 .
E[(mo + K)i* 4 SEX — pVF o x° ] 2R{‘M)c 'S+ eFiR + E,uv"FfT‘v_. (A2)

As a test for consistency, multiplication of the equation by g,,,x" should yield an
identity which holds independently of the equation itself:

D .V M v ()' 1 2V QOT .V 1 Vo LU
_E[<m0+K)gmx + S — w, Fux ]—I—ERW”)CS +eF X —&—E,u Fygu X

. . 1 .
=K — ).CHSWXV + )-Cu'a'qu(\;xa + E,UWFW; = 07
by (A.1) on p. 234.

In the limit of a spherically symmetric point particle, we have

ge

Hyy :%Suw
1 _ ge 1 7 ge
K:_I ISZ——S'H:—I 152__SHVFV
2 2m 2 4m v

d 1 e
S =0
dr< ) ’

. SRS
= xo-:uavF,‘lxu - ilumFﬂvv

g€ i
—SME
dm K

and the dynamical equations take the form
mi 4 E(S"jé" _Sqop w_Squp x)
Dz 4m ' 2m '

1
— ER{‘Mx"S‘” + eFli’ + o S”’F{‘a ,
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where
_ 1 —1¢q2
m=my+ 51 S,

in which the second term on the right hand side is the spin energy. We note that the
compensating central mass m,, although again negatively infinite, differs from its
nonrelativistic value only by a fraction of order v* (see p. 223).

We now consider conservation laws. Suppose the geometry of spacetime admits
an isometry generated by a Killing vector &~,

é;t-v + 5\)44 =0.

Suppose furthermore that the Lie derivative L:F,,, of the electromagnetic field
tensor vanishes, i.e.,

0= _Fuv.,aéﬂ - Favéj; - F,uoé_o;

= _F;Lv-oéﬂ - Fové.(;l - F,ua'éiy

= —(Ayy —Apy) & — (Ave — Ag.\,)fi — (Agp —Apo)&,

= *(Avmréa +Ao’éﬂ‘)u + (A,u«rég + A(ri.o;l)m

+ (_R:wv + R:rm + Rzﬂw)Afé

= - Av-aéa +A”éi’)'# + (Au»aig +Aoéil).va

which implies
A,u»vév +Avé‘:u = B<;u

for some B. (This assumes that spacetime is connected.) Then any orbit x(1),

whether or not it satisfies the dynamical equations, will encounter precisely the
same physical environment after it has been displaced by an amount

ox (1) = ¢"(x(7))

as it encountered before. The Lagrangian itself, in fact, will be left invariant under
such a displacement provided the vector potential A, and the local frame vectors e/,
are properly chosen. Specifically, the vector potential must be chosen so as to
satisfy £L:A, = 0, and the local frame vectors must be defined in terms of a field e
that has vanishing Lie derivative. That is

Al +AL, =0

and

where

el &' —ellh =0 Va.
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The required vector potential may be obtained from the earlier one by carrying
out the gauge transformation

Ay =A,+ A,

where A is a solution of the equation

A8 = —B,
and the field ¢/, may be obtained by Lie displacement from a set of local frames
(determined only up to an arbitrary rotation) assigned to an arbitrary two-
parameter congruence of orbits. The local frames appropriate to the congruence
obtained by Lie displacing any other two-parameter congruence of orbits may be

obtained from these by local boosts.
Under the displacement dx*(t) = &"(x(1)), we now have

Slapeh + (e, - &) = e & = el

a=-y’
whence
LV
0lap = €€,y

Also
oL = 0.

For an orbit which satisfies the dynamical equations, the latter relation reduces
(see p. 235) to the statement that the quantity

. 1 .
(mop+K)(x- &) + ES”véw + S X' + eA - ox — p, F 7"

is a constant of the motion. This statement may also be verified directly as follows:

d : 1 v v V.o
a[(mo +K)x- ¢+ ES" Cop + S X' +eA - & — p, Fri® !

1 , RN o
= <§R(fmjc‘S‘" + eFi'%" + E,u”’FC‘(r) Eut (mo +K)x- &

- (PRF ot - 7S E 58 ik + SR G0
Ay K eAL R — &tV F kK

= ESH‘Rmeo'éT - 'u\a Tﬂ'é?\y + F:;l,un 5\'-/& + )CM)CUF{TT,MWQVH

I, . | . . g
- ES'M éa-vﬂxa + ESMR,uavrxaér - éu-r,u'w Fyox’x°
=0.

In the case of a flat empty spacetime, we introduce Minkowski coordinates, and
the general solution of Killing’s equation becomes

v
Cu=ceutenx’, &uw= —é&y,
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The dynamical equations reduce to

QU __ o Vo sveo QU
S = xx’S, — X"x° S,

d , )
d—(m)'c"—l—Sffjé”):O, m=my+K, K =0,
T

and the conserved quantity takes the form
) L . : 1 :
mi* (e, + &,0x") + ES’” v+ SEX (g4 + gx”) = g, P — ESMJ‘”,

where P and J"' are the energy—momentum four-vector and the total angular
momentum tensor, respectively:

Pl = mit 4+ S5, JM = xFPY — XP 4 S

The remarkable fact will be noted that the momentum of a relativistic spinning
particle is not generally parallel to its velocity.

We note also that the dynamical equations are of the third differential order.
This has the consequence that the particle can undergo non-uniform motion even
in the absence of external fields. Suppose we pass to a Lorentz frame in which the
particle comes to rest at some moment. Let us orient the spatial axes so that at that
moment the only nonvanishing components of the spin angular momentum tensor
are S;, = — S»;. Then, since

SUFY = JM578,, % — (¥ - X)i°SE =0,
mi + S’ = 0,

it follows that the acceleration can have nonvanishing components in the (1,2)
plane. We may therefore study the motion in this plane, but instead of adopting a
frame in which the particle comes momentarily to rest, we choose a frame in
which the three-momentum vanishes. It is then not difficult to see that the motion
must have the periodic form

1 0 dx! . 0
x' =acoswx’, V| =-—=—awsinwx’,
0
2
2 0 dx 0

X° = asin wx y V) = = awcos wx,

dx0
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= (1—d?w?) "2, =0,
x! = acosmr, x1 = —awsin®r, X = —a®’cosmr,
x? = asinor, 2 = aw cos o1, ¥ = —aw’ sin o,
2 =0, B=0 B=0.

We set
Sip=¢S, S =0=38,

where S is the magnitude of the spin angular momentum. From the conditions
0 = Soi" + St + Soai?,
0 = 810”4 S1pi% + S35 = 2°(S)9 + ESaw cos wx),
0 = Sai” + Spi! + o3 = i%(Sp0 + ESaw sin ),
0 = S308” + S31i" + S50 = 1083,

it follows that

0

Si0 = —ESawcos wx’, Sy = —ESawsinwx’, Sz = 0.

But since
$ = 358" = (5120 = (510 — (S)* = E82(1 — o?),
we find
E=(1— a2w2)71/27
So1 = Saw cos o, So2 = Sawsinwt, Spz3 = 0.

Finally, the vanishing momentum condition yields

0 = mi' + 3" + 8)i* + $3%° = —maw sin ot — ESaw” sin o,

0 = mi* + S50 + §2x! + S35 = maw cos @t + ESam” cos @,

0 =mi’ + Soi° + S}i! + $33° = 0,

whence

w . m
5(,0 = o

1— la? S

showing that the orbital motion must be retrograde to the spin and yielding the
following relation between amplitude and frequency:

SOy S|w
m B ’ \a)| S|w
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The magnitude of the frequency can vary from O to m/S, the amplitude varying
accordingly from co to 0.

We thus see that there is a one-parameter family of allowed circular motions in
flat empty space. In Lorentz frames in which the three-momentum is nonvanishing,
these motions become spiral or cycloidal.

The energy, total angular momentum and absolute acceleration for the above
motion are readily found:

P’ = mi® 4 8" 4§95 4 S5
=mé + $a°®° = mé + ESd*w’

m \ /2 m \3/? S|o|
:m(m) ‘(m) S'“’( ‘7)2“"5'“"7

mS

o]

Jos =xP3 —x3P2 + 823 =0, J31 =x3P) —x1P3+ 83 =0,
Jo1 = xoP1 — x1Py + So1 = amcosw‘c + Séaw coswt = 0,
Joo = xoP2 — x2Py + Sp2 = a\/m sinwt + Séaw sinwt = 0,
Jos = xoP3 — x3Py + So3 = 0,

Jo=x1P; —xoP1 +Sn =S =¢ES =

.. m S|w
(X2)1/2 1— | |7
S m
The following table is instructive:
v lool a P° Jin ()2
0 m/S 0 m S 0
1 0 0 0 0 m/S

We observe the surprising and non-intuitive fact that the faster the particle
circulates the smaller is the total energy, and the greater is the total angular
momentum even though the circulation is retrograde to the spin.

A particle that is initially at rest will generally find itself executing this sort of
Zitterbewegung after a field has acted upon it. Within the framework of the point
particle limit, this result must be regarded as an anomaly. We may ask, however,
how big the effect is in the case of a macroscopic spinning body. In this case we do
not have a compensating central mass and the spin angular momentum is mev (see
p- 223 for the notation). Let { be the fractional loss of rest mass (defined by the
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squared four-momentum) that the body would be computed as suffering if
idealized as a point particle. For the kinds of forces envisaged in macroscopic
situations we shall have { < 1.

In the frame in which the final three-momentum vanishes we have

(1= m =P = \/mS|o| = /m?ev|w|,
whence

evlw| =1-2¢,

1 /. Sl ev | mev|o —
o] m 1-=2 m VA < s,
mS m2ev P~ (1+0)S, alol Tl
= |— = = a = v/
12 ‘COl 1— ZC V= )

1/2_%\/75 \/— \/—
1

—2le 1
1-2 —==>1,
Wrot vV

Jol _

where @, is the angular velocity of rotation of the body. The radius of the
Zitterbewegung circle is seen to be very small compared to the radius of the body,
and the Zitterbewegung frequency is seen to be much greater than the rotation
frequency of the body. The effect is therefore macroscopically unobservable. That
it must, in fact, be spurious may be seen by remembering that a real rigid rotating
body is an elastic medium and that the dynamical equations of an elastic medium
are of only the second differential order even in relativity theory. The anomalous
Zitterbewegung will be replaced by elastic internal vibrations arising from both
relativistic effects and the fact that the field (gravitational and electric) is not
generally uniform over the body and hence cannot be represented completely
accurately by only one or two terms of a power series expansion.

A.3: Charge Current Density. Variation of Four-Vector
Potential

Setting t equal to the proper time after the variation, we have

1
OL = ex0A, + E,u“"ﬁF w = exl'0A, — [ 0A,.,

ow
% = = §% M 5% /'”
= 5A1(Z) B /(EQMX 5 ) b
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where

QZ = 5‘25(z,x(r)), Qi‘m = —0.u(z,x(7)),

with d(z, x(t)) treated as a density of unit weight at z and a scalar at x, so that
= /[—eé.ﬂ(z,x(r)))'c” + 0. (2, x(1) ) ] de

= 76/%5(@)((’[))(1’[ =0.

A.4: Energy—-Momentum-Stress Density. Variation
of Metric Tensor
Once again, setting t equal to the proper time after all variations, we have

1 ,
de; = Opayel, — 5(8" — ¥3")efdgus,
for some antisymmetric dp,,. We check that

v
de, - ey + e, - 0ep = —ele; 0g,

X 0e, = —il'e 08,

which are consistent with e,-e, = d,, and x - e, = 0. Now
1
5F€<r = E‘s [gm(gvrﬂ + 8oty — gwr,r)]

1 1
= _Egﬂpgd‘sé’pi(gvm + 8oty — gw,r) + Egl”(égw,a +08gry — 58"671)

p 1
= —g”pfﬁaégpi + Egur(agvr»a + 0801y — 6gva-r)
1 T
+ Egu (I}, 08 + 0,08y + 2,08 + %885,
_F{J)‘c(sgl)‘f - Fg"c(sg"ﬂ)
1 T
= Egu (58\'1»0 + 5801-\: - 5gva»1:)~

Variation of the metric and covariant differentiation with respect to t are not
generally commutative:

'H_R

d d
0A AN = 0| —AM + T A'X" | — —0A" — I X"0A"
D‘E(s (dr e ) dr vo*

_ L AV O
= oI A"X°,
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D . N |
Eﬁeﬁ = 0pape), + 0pgel + Ex‘x €;08v; + Ex”x €208yq

1 1 D
- Wy V)0 _ 03 VA o
z(g XX )eaégvo' z(g XX )ea ,L_(sg"”
= 0ppe), + 0pQpcel + 0p,(ep - X)i*

1 1
+ EX“X"eZ&gW + E)'c”)évegﬁgw

— E(g’” — x"x") [Qabe,fﬁgva + (e - X)X70gys + egﬁg‘,g.fxr],

1 .
(5é‘g = —EQaberCtxa‘sgvo’ + 5Qabez + Qab‘seg

+ E(ea S X)X %008y + (O - X)X + el k708, + (eq - 0X)H

1 .
= 7§Qabef;5c‘x”5gw + 8Qupe), + Qupbpp.e

Lo - ey o
— E(g’” — X3 Qupe; 08y + (e - X)X 55708 4

oy | eveg .
+ 0p 4 (ep - X)5H + Ex"x €508vs + X'x'x% e 01,
D ' V.o L
0 =—0el — oél! + e'x"0I'!,
Dt
: |
= 6pah - (Qac&pcb - ‘ch'épca) + EQabx X égVU — 0Qu eZ

L., I . iy 1 0 5.
+ Exujd €Z5gm - EP!” (ea : x)xgégva + EPu‘err(égvr»rr - Bg(i‘[-\’))

since |
I P S TER A R 4 iy, sTSTO 0T ST
2(g Mx")eCx 0gvsr — XX eqe X 0L + e5x°OIY.

1
— Eg”"e;’)'cf(—ég‘,a.f + 0g5vr + 081v-0 — 0861y)
L., v 0T
+ Ex"x e2x" (08voc — 08vor — 08coy + 08veq).-
From this it follows that
. 1 e
0=20p, — (R4c0p. — Qpebp,,) + EQabx x°0gve — 0Qup

| . . . Loy o v o
+ 54 [en(en - %) — ej(ea - %)]0gu — 54" (eief — €3ef)0guns,

1 ,
5Vna = Exnaxux‘ 6g/lv — 08X
1

= E(vna + Qabxnb)xﬂxv&guv - 6lbabxnb + (Qac‘spcb - ch5pw)xnb
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1 ey | .. v ..
- EQabxnbx’x 08 — Ex" [ea(eb -¥) —e)(eq -x)}xnbég,w

1
Y v _ o v o
+ Ex” (eaeb — ebea)xnbﬁguv.g,

1 L., )

op, = i&;bc ; enXnp |:§Vn¢-x‘.x 08y — 0PcgXnd + (Lce0Poq — RdeOPec)Xna

1 sl v . v ..

- Ex [ec(ed 'x) - ed(ec -x)]xndﬁg#‘,
1 : v o v o
+ Ex# (eced — €46, )xnbéguv-a:| y
1 "

oL = E(mo - K)x’uxvag,uv

. ,
+ Z mMpVya l:ivnax'uxv(sg,uv - 6pabxnb + (*Qacépcb - chapca)xnb

— ! [ea(e;, . X) — eb(ea 'x)}xnb‘sguv

2
| . ,
+ Ex“ (e‘aeb” — eieg)xnbﬁgw.g]
1 SR u 1 ue SO T v
- Z:uabFllbx X 5g;w + Hap 5pac c E(g XX )eaégaf ehFuv

1 | S .
+ 5 ab zﬂ: €nXna |:2anx/ X 5guv - 5pbcxnc + (th(spdc - ch‘spdb)xnc

Lory y .

— g [eblec %) — elen )] ety
1 :

—|—§jc“ (epe? — ez_eZ)x,,cﬁgﬂw}

1 ey 1 .

= E(mo + K)x#x 6g,uv + ESab‘spab + QueScp0p 4 + Facllep0p 4
1. ~0 QY 1. Vo 1 9 RN A A

- Ex"x 808w — EXHS 080 — E(g” — XXV U" F 0861

|
(Sar®pap) + 5"S 557 080

d
2dt 2

L., L, .
- EXMS Géguv»a + E,u O—Far (gw - xrxﬂ>6guva

1 ey 1
= z(mo + K)i"x"0gu +

where we have used the relations on p. 229. We may choose the proper time
interval in the action integral W = led‘E so that dp,, vanishes at the endpoints

when dg,, has compact support. Then introducing

s L/ .
5% — 5(@5{? + M{f)&(ax(f))v

=uv
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we have
ow
T =2
0845(2)
/ [(mo + K )5“ﬁx“x + 5”/‘)&‘5” 7 — 5326 A8
+5,°f;1‘“Fm (g™ — x"x") |dr.

Finally, let us consider conservation of energy-momentum. Let g4, A, and the
dynamical variables suffer an infinitesimal coordinate transformation dx*(t), o4,

580:[3 = 7got,[3:/5£y - g)f[i(sé:/g_ - gacy(sé://j = 7550(-[5’ - 55/5«1;
0Ay = —Ay g0l — Apdeh = —A,.p0" — ApdEl,.

Because of the coordinate invariance of the action, we have

W oW . .
0=46W= 3g, 5A d* ot +—6q' |d
/<5gx/f gﬂ+ ﬁ) Z+/(5“ oq' q) f

= /{—T“ﬁééa,ﬂ —jﬂ(A/;-a(SGm +Aa5€?ﬁ)} d*z

- / (7] - Fy")ocud®z,

where the penultimate line follows by virtue of the dynamical equations and the
last by virtue of the charge conservation law j.ﬁ g = 0. Since ¢, is arbitrary, we
must have

off B
Ty =Fy'.
Let us now check this. Making use of the identity

1
opf o o
5 - E(éﬂ.v év.y)7

O p
we find

T_Otﬁlf _ F;fi]'ﬁ = /{ (mo + K)&% %" — 7@% + ém))'c”s;%”

=

(5-‘/ + 5

Zuve T Zv-uo

) ngvo _ (51 4 éf.#)ﬂvaFW(gw _ )'Cr)-cﬂ)

Spev

—eFjoli + eFjol 1" de

/{5“ [(mo + K)x"] — 7(5; JHSVXT 25ZD (883"

1 1
R OIS 4 RY, O™
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_ _51 ( Ua O_IMTU _ P\’(TFO_‘E#T# _ X‘HS;X"T + ..xVSg_.X‘J)

=V
——(é,”+év.ﬂ> FS 4 5;“/4 e
o D w o U o o v
—=J T(,u Fyox?) — €8, Fix" + (6, F ) ,w" pdt
o D -1 JURAY oy .0
= é# DT[(mO+K)x +va —u Fvo'x]

1
__R/l ' S°F — eFv")'cV _ EluwFél(p}df

by virtue of the dynamical equations (A.2) on p. 235.



Appendix B
Weak Field Gravitational Wave

1

R,uvar = _E(h;w,vr + hvr,;w - hur,va - hva,ur>7

— RP — _RP _ RP
DR#"UT - R,uvar,p - R,uvrp,o R,uvp(r,r

— RP P P P
- erpﬁzf,u + R,urp,m‘ + Rvp(r,w + R,upa,ﬂ:v
= R;w,vr + er.;w - Rm,va - Rva:m
=0

in empty space because R,, = 0 in empty space.
A plane gravitational wave is given by

Ruor = Ao +cc., p* =0,
where the amplitude a,,, satisfies
Auvor = —Auvie = doty, Aot + Aoty + Aurvg = 0,
AuvoPp + uvepPo + AuypoPr = 0.
We introduce three vectors ey, e, and n satisfying
eq-€h=0m, e,-n=0 n*=—1, e,-p=0.
Define
pP=p+2(n-p)n.
Then
n-p=-n-p, p-p=2(n-p)’,

1_72:4(n~p)2—4(n-p)2:0, e,-p=0.
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Let 7, be any antisymmetric tensor satisfying
Twps + Tvopy + Toupy = 0.
T,, must have the form
T, = aupy, — apy,

for some a,,. It suffices to choose a, in the form
ay = dgeqy +ap,,
whence
Tyy = da(€aupy — €arpp) + a(pupry — PuPu)-
It is clear similarly that a,,,, must have the form

Auver = Aab(ea,upv - eavp,u)(ebopr - eb‘tpo') + Ba(eaupv - eavp,u)(po'l_’r - p‘cﬁo)
+ Ba(eaopr - ea‘cpo)(pﬂl_?v _pl’l_),u) + C(pﬂl_’v _pVﬁ,u)(pJﬁr _pl'l_’J)>

with A,, = — A, in which we have used the algebraic symmetries

Aver = —Quyeg = Aorpy-
But we also have
0 = auvor + Auory + Aprve
= Aw [ (eauPy — €app) (€boP — €b:Ps) + (€auPs — €aoPy) (€bePy — €pupe)
+(eaupr — eap) (€Po — evapy)]
+ Ba[(eaups = eap) (PoP: — PePo) + (€apPo — €asPy) (PP, — PiP:)
+(eaups = €atPp) (PiPs — Poby)]
+ Bu[(puPy — PvP)(€aoPs — €aips) + (Puly — PoPy)(€arPy — €anps)
+(puP: — PP (€arPs — €acDy)]
+ C[(pupy — PP (PoP: — PiPo) + PPy — PoP) (PP, — PiP:)
(PP = Pb) (PiPs — PoPy)]
=0.

Finally, using R,,, = 0 (empty space), we have

0= a:’;w
= Aab(eaupa - eaopu)(ebvpg - eZPv) + Ba(ea,upo - eaapu)(pvﬁa - paﬁv)
—i_BLl(ea\’p(7 - eZp")(pHﬁa _pﬂl_’y) + C(pﬂl_)r; _po'l_),u)(pvl_)(/_ _pal_)v)

= AwaPpPv + (p 'ﬁ)Ba(ea,upv + eavp,u) - I_J)C(I_?,va +[_7vpu)a



Appendix B: Weak Field Gravitational Wave 249

which implies
B,=0, C=0, A, =0,
whence, writing
AL =An =-An, A=Ap=Ay,

we have

or = Hyspvpe + Hyepups — Hyepopo — Hyopup-,
where

Hy, = A (epery — eyueny) +Ax(eipeny + enveyy).

The equation of geodesic deviation in the rest frame of a particle pair, with
n = (1, 0, 0, 0) in this frame, is

d277i _
a2
= —2[A+(e|,-el_,~ —eyiey) + Ay (eyey + €2i€|j)] ? cos ot;,

—RinO”Ij = _(Hijpopoeip‘x + c.C.>VIj

setting the particle pair at the origin and writing x° = . For IA,l, |A, .1, we
have (with = 0 when 7; = 0)

;fh(t) = {51] + 2[A+(€1,'61j — 6‘2,‘6‘2j> —|—Ax(eliegj + 62,'61]')} Ccos wt}nj(O)






Appendix C
Stationary Spherically (or
Rotationally) Symmetric Metric

The metric is given by

ds? = —F(r)d + 2E(r)x - dxdt + D(r)(x - dx)? + C(r)dx?,

1/2, t = x°. Note that

where r = (x-x)
dr = r'x - dx,

whence
x -dx = rdr.
Introducing spherical coordinates r, 0, ¢, where
x! =rsinfcosp, x> =rsinfsing, x° =rcosd,

we get

ds? = —Fdr* + 2rEdrdt + r*Ddr* + C(dr* 4 r*d0* + 7 sin® 0d¢?).

Let
! =1— / Edr.
F
Then
df = di — %dr, Fdi? = Fdf — 2rEdrdt + rzEzer,
and
ds? = —Fdr? + Gdr? + C(dr? + r*d6* + r? sin” 0d¢?),
where

251
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Let ¥ = C"?r. Then

1
dr = Cc'?dr + ErC-‘/zc’dr,

or
1c\!
dr = c—‘/2(1 + ErE) dr',
and
1\ 1\ 2
ds* = —Fdf? + cCc™! <1 + 2rC> dr* + <1 + 2rC> dr'?
+ 7%(d0* + sin” 0d¢*)

= —Fdr? + Adr? + F*(d0* + sin? 0d¢?),

where

G 1\’
A= (1 +E) <1 +EVE) :
We now drop the primes and write
ds?> = —e*®d® + *1dr? + r*(d0 + sin” 0d¢?),
where

1 1
dj:ilnF, AZEIHA

C.1: Introducing an Orthonormal Frame Field {e,}
and Its Dual {e*}
We have
g ' =n"e, ® ep, &=, ® e = gudx ® dx".
In the present case,
g = —e*?dr @ dr + *Adr ® dr 4 r?(d0 @ d6 + sin® 0d¢$ @ d¢)
=R+ +e e +e? @e?,
where
e =ePdr, ¢ =e'dr, ¢’ =rd, e®=rsin6de,

de' =e?@'dr ndr =e 1P N e,
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de’ =e'A'drAndr=0, de’ =drndl=r"e e Aé,
de? = sin0dr A d¢p + rcos 0d0 Adp = r'e e Ae? + r~' cot e’ A e?.
From the equation
de” = —wj A o

B

and the antisymmetry of the connection one-form w*’, we may infer that the

nonvanishing components of w”y are

o =e P =e?Pdt,

o =e P =e?P'dt,

o) = —r e e = —e~do),

Wy, = —rle™e? = —e sin 0d¢,
ol =r e e’ = e 4o,

w; = —r'cotfe? = —cos 0d¢,
o? =r e e = e sin0dg,

wﬁ =r ' cotfe? = cos 0d.

C.2: Computing the Curvature Tensor

The curvature two-form is
Q;} = dw;‘; + ol A w;;
Hence,
DA
Q =dol =" + &'(¥ — A)|dr Adt
_ 672/1[@" + @'((D' _ A')]e’ A et,
Q)= Ao =—rTe e N,
b =0, Ny = —r e AP A e?,
Q) = doj+ oy Aoj =e " A'drndd=rle A A,
b= dw;S + wp A wg

=e A sin0dr Adp —e " cos 0dO A dgp + e cos 0dO A d¢p
=rle A" Ne?,
Q) = do} + 0! A o, = sin0d0 A dp — e~ sin 6d0 A d¢p

= r’z(l — e’ZA)e(’ Ae?.
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From the equation

Q;} = %R%yy Ae’,
we may infer that the nonvanishing components of the curvature tensor are
Ryy = e [ + &' (& — A)], Ry =r'e &,
Ripp =1 'e 2@ Rypg=r e 4,

Riprp = rileizA/l/, Rogpop = }’72(1 — 672/1),

together with the components obtained from these by using the antisymmetry of
R.pys in its first pair of indices and in its last pair.
The nonvanishing components of the Ricci tensor

Ry = nyényﬁé
are
Ry = Ry + Rigo + Rigg = ¢ > [@" + &'(&' — A') +2r ' 9],
Ryr = —Ruri + Ryoro + Rygrp = 2 [0 — &' (' — A') + 27" 4],
Roo = —Rowr + Roror + Rogop = r~'e [0 + A" +r7' (¥ = 1)],
Rpp = —Rygs + Rorgr + Roogo = r e 2 [=@' + A" + 7' (e = 1)].

C.3: Vacuum Solution

In this case, R,z = 0, whence
o+ 1A =0.
The boundary condition is

lim @ =0 = lim 4.

F—00 F—00

Hence,

and we then have

so that

Mg 1 d
1—e24 " ¥ dr A
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Therefore
ln(l - e’M) = —Inr + const.,
and
C C 1 C
l—e == eM=e¥=1-—, @:—ln(l ——>.
r r 2 r
We check as follows:
o — C 1 /r? _C 1
21-C/r 2r2-Cr
o C r=C
2(r2 - Cr)z’
'+ (D —A)+2r Y = 207 + 27
_C 2r-C n C? 1 Lc 1
2(r2— Cr)2 2 (r2— Cr)2 r(r2 — Cr)
C

1 1
2 2
=— 5| 1" +zCr+=Cr+r"—Cr | =0.
r(rz—( r)z( 2 2 )

Now

Hence, C = 2MG and

2MG 2MG\ !
ds* = — (1 -— )dt2 + (1 — T) dr? + r*(d0* + sin? 0d¢?).

For a radially infalling photon,

0o XU (1 2MG\ (| 2MG ! dr\?
8T ar r r de) ’

dr { 2MG
dr r '

The Eddington time coordinate is

dr

r 1
2MG 1

r

-1
2M

# :t+2MGln‘

, dff =dr+
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whence
dt* 1 1 —1 4 2MC
E: 1_2MG+ r _1: I—M :_l’
r 2MG r
and
2MG d 2 2MG\ !
ds2(1 ><dt* = >+<1 ) dr
r i — 1 r (C.1)

+ 12(d0* + sin® 0d¢?)

2MG 4MG
ds* = — <1 - dr? + ——dr*dr
r r
2MG\ ! 2MG\?
+(1-== - (==
r r

2M AM M (C.2)
= - (1 — TG) ar? + MG gy 1 (1 +TG)dr2

dr? 4 r(d6* + sin® 0d¢?)

,
+ r*(d6? + sin” 6d¢*)
2MG
= —dr? + dr? + 2(d0? + sin” 0d¢p?) + ——(dr* + dr)*.
,
Returning to Cartesian coordinates, we have
2MG dx\
dSzZ_dt*2+dx2+—<dt*+x ) ’ FZ(X'X)I/Z,
r r
or
ds? = (1, + L) detdx”, & = dr,

where

MG\ '?/ x ,
(lu)=( ) (1,;), WL, = 0,

p
C.4: Metrics of the Form g,, = n,, + [, 1,, with "'l 1, = 0

Define I“=»*'l,. Then g"" = #*" — [*I". This is proved by
guagﬂ = (77/” - lula)(nav + lﬂ'l\’) = 56 + L =1, = 557
since [°l, = 0. Note also that

g, =1, I, =", =0,
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dlng = g"dég,w = 2(n"" — I'I")1,01, = 2I'61, = 0,
whence

det(g) = —g=-1, g=1, I}, =0.

C.4.1: Ricci Tensor

The Ricci tensor is

Ryw=R0, =T% —T% +I°T —I°T"

Hav uv,o JIIep! ot VL Vi ou
_ o _ qo gt
- Fyv‘o Fr,uro’v'

All equations must hold equally well if we rescale [, and write
g = Ny +odply, g =n"" —al"l’,

Equations must hold for arbitrary constant «. We have

1
Fiso = 32 (u) o + (ule),, = (1), .

—_

A" = ') (1), + (el = (W) ]

1
A () + (1), = W (le) ] + 37T ()

1 g g oT
Ruv = 3 {(z L) sy + (1) 4 — 1 (zﬂlv)m]

1
ocz([cr[r)ﬁ(lﬂlv)’r + Eoczl”lf(lﬂlv)m

1
o {(lﬂlr),ﬂ + (7). — 1P (L) pi| + Eazlalp(lrlﬂ),p}

1
a {(m{;),v + (L), — 0™ (I, ,} + Eoczlfl)'(lglv), ; }

+ 32 (7))  + IE (L) 4,

1 4 T 1 G JA 1 g7 T
= Sl + S ol = STl
1

1
- E(l”lu)ﬁf(mv)_ﬁ + Endlj;zﬂzm A
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1 1 1
+§lr,plylfvlp + Enaplr,plulfglv - E(l;vlu),p(lpl\'),)}
1 T 1A 10 o T
-3 (FPEL o1y + P L ). (C.3)

In empty spacetime, we have R, = 0, and since « is arbitrary the three terms
above must vanish separately. If /, . 0, the third term implies

a> =0, wherea, ="l ="(Ly + T 1") = ly,,

since I*I'T";,, = 0. We also have a- I = 0, whence
a, = Al, for some scalar functionA.
Now
at=g"ay =n"a, =Tl =TI\,
Define B=1",. Then the first term implies

O@ul) = [(A+B),] +[(A+B)L],

where
62

O =y .
1 OxHOx”

Contracting this equation with #** and dividing by 2, we get
[(A+ B)l"]_ﬂ: 0.
An alternative version of the uncontracted equation is
LOL + 4,00, + 20" ol = (A + B) , + 1,(A+ B) , + (A + B) ([ + L)
Multiplication with [, and removal of a common factor /, yields

01, = I"(A+B) , + A(A + B)
_ A2 2
= [I"(A + B)] ,~B(A +B) + A(A + B) = A> — B*.

But
0 =0(M,) =200, + n’”lf‘glm),
whence

n" Il =B — A%,
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We now prove that the term in «” in the expression (C.3) automatically vanishes
when the terms in o and o’ do:

() y(Luly) . = (A+ B)[ (L)) . = 2A(A + B)l,l,
Ul lyge =1 (Flys) g = T Lue = I°(AlL) , — AL,
=1I"A,l, +A21# — A%l =I°Al,,
CI(Ldy) oo = T (Luvoe 4 Dlyor + Luolye 4 Luch o)
=2(I"A, + A*)L,1,
(I°0,) (L) 5 = (L%, + L) (W, + Tl )
= L [(15F) = 15|+ ALl g+ ALF e + AL,
= L, [(A) , = BT+ 347]
N0l i1, = 11,(B* — A?)
Removing the factor oczlﬂlv/Z from the term in o, we now get

2A(A+ B) +2(AI° +A?) — (AI°) , + B ,I° — 3A%* + B* — A?
= (Al) , + (BI°) , = 0,

as claimed. From now on, we set oo = 1.

C.4.2: Stationary Case

We assume that the /, are independent of the coordinate x°. Write L,=1(1,4).
Since [, is null, 4 is a unit three-vector, and the equation

O(4) = [(A+B)L] ,+[(A+B)L],
decomposes into
VA(P) =0, V*(Pk)=[A+B)], (C4)
VA(Pliki) = [(A+ B)li] +[(A + B)IA] .-
The first equation allows the second to be rewritten in the form

P + 2(12)’,(;”,,( = [(A+B)I],.

This, together with the first equation, allows the third equation to be rewritten in
the form



260 Appendix C: Stationary Spherically (or Rotationally) Symmetric Metric

0 = Phigicli + Plidjae + 28 hirdix + 2(8) jdidjse + 2(1) Ak
—[(A+B)l| ;2 = [(A+ B)I] ;2; — (A + B)I(4ij + %)
=203 005 — (A+ B)l(Zij + A1),

or
T 1 T
M+M — gMM =0,
where
A+ B
M = (/li.j)v p= % (assumingA + B # 0).

Since 42 = 1, it follows that 4;4,; = 0, or M4 = 0. From Al,, = I'l,,,, we also

have
Al=1l,=1}l; whence Jl; =A,
and
ALy = I'(Lh),, = (L) j = Al + 1)ihij,

or

Mi =0,
assuming that I # 0. Evidently there exists an orthogonal matrix O such that

1
0i= 0], OMO"=diag(0,N),
0

where N is a 2 x 2 matrix satisfying
1
N+NT ——NNT =0.
p
Note that O;4; = 1 and 0,;0,; = 1, whence it follows that
01,‘ = /Ll

Note also that

1 1 1 1
(1 —N) (1 —NT> =1 —<N+NT—NNT> =1,
p p p p

which implies that 1 — N/p is a 2 x 2 orthogonal matrix and hence that

l—lN— cos —sinf or cos)  —sind
p  \sin@ cos0 —sinf —cos0 )’
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for some 6. Choosing the first possibility, we have

Np(lcos@ sin 0 )

—sinf 1 —cosf

and
0 0 0
Aij =0, 0 p(l —cos0) psin0 0,
0 —psin0  p(l —cos0)
= p(1 — c0s 0)( 02,0, + 03;03;) + psin 0(02;03; — 03;0;)
= p(1 —cos 0)(d; — 01;0);) + psin Oe; O
= o(0y — Aidj) + Peijlx,
where
o=p(l —cosf), p=psin.
Now
V-i=20, V xXAi=-=204,
and
Vx(VxA)=V(V-4) -V,
whence
VA =V(V-4) =V x (Vx4 =2Va+2V x (BA)
=2V — 24X VB 42V x A =2V — 24 x Vf —4f%4.
But also
Aiji = (O — Aidy) — dhijhy — odidi + ei(BAk)
or

V2h=Va— AA-Va) —2(® + 24— 4 x V. (C.5)
Subtracting one equation from the other, we get
0=Vo+ Ai-Va)+2(c? — f2)A— 4 x Vp,
whence
A-Va=p—o?, Vo= (f—a)i+ixV}p,
and (see below)

AxVou=2Ax(Ax V) =Ai(h-V)— V= —2api— V.
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Now
1
0=V (Vx4)=V-(Bh) =4 V+2ap,
whence
A-Vf==20p, Vf=-2afl—Aix Vo
Let y=a + if5. Then
L-Vy =4 - (Va+iVp) = 2 — o® — 2iaf = —7,

Vy =Va+iVB = (> — o —iaf)i+ A x (VB —iVa)
= —?A— ik x Vy,

and finally,
V2 = =), — (A7 ,4)
= =29(4-Vy) =’V -2 —-i(Vy) - (V x 4)
=29y = 20" = 2ify* =2°(y — . — i) =0,
(V) = 7" = (Ax V9)* = 9* — eipeimndy chon
1
=7 = (V)" = (4 V)P =50* +0Y) ="
Let & = 1/y. Then

Vw:_V;/:A+iixv—;: —iAx Vo,
Y Y

1
}chu:—y—szy:l, (Vo) =1,

Vo x Vo' =(A—id x Vo) x (A+ il x Vo)
— A4 Vo©) — (Vo)A i — (V)i A+id(A- Vo)
+ A(Vo") - (A x Vo)
=—i(Vo+ Vo) + A[(Vo") - (A x Vo) + 2i],

0=Vo- (Vo x Vo') = —i—i(Vo) - (Vo) + (Vo) - (A x Vo) + 2i,
Vo x Vo' = —i(Vo + Vo) + il + (Vo) - (Vo)

_ Vo+ Vo' —iVo x Vo'
o 1+ Vo - Vor ’
Note that Vo = 0 and V?f = 0. Let I* = fa. Then /> and hence f will be

determined by the two equations in (C.4) on p. 259. The first of these equations
yields

A
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0 = V*(I*) = aV?f + 2Vua - VF.
By noting that
o + 2 = p?(1 — 2 cos O + cos? 0 + sin 0)

=2p*(1 — cos 0) = 2ap = %(A + B),

whence
4+ 8) = S+ ) = o2 + ),
we may rewrite the second equation of (C.4) in the form
0=V*(P4) - [(A+ B,
= V2(fadi) — [f(o? + B)]
= (aV>f +2Va - V)4 + é(fa) g a2 h = [+ )]
= 2(fa) (8 — 4idy) + 2B(f2) jegpdn +faV 0 = [f (o7 + B)]
Using (C.5) for V24 on p. 261, we get
0 = 202V + 2faVa — 20%A(A - V) — 2fah(A - Vo) — 2ap4 x Vf
— 2fBA x Vo + faVa — fad(A- Va) — 2fa(a® + B2)
— fod x VB — (o2 + B*)Vf — 2faVa — 2f BV
= (o = PHVf — 2024(A - Vf) — 20BA x Vf + faVo — 3fa(f* — o)A
+2fBofi + VB) — 2fa(o? + B*)A — fau[Va — (B* — a?)A] — 2fBVP
= (o — PHVSf — 20%A(A - Vf) — 2084 x Vf.
Whence, dotting and crossing with 4,
0=—(>+p*)A-Vf, ori Vf=0,
0 = 24BVf + (2 — p*)A x Vf.

Since

det(oﬂz;ﬁﬁz a2_2_a§2> = (@ — P+ a2 = (2 + )40,

it follows that
Vf=0 and AxVf=0.

That is, f is a constant and /* = const. X a.



264 Appendix C: Stationary Spherically (or Rotationally) Symmetric Metric

C.5: Kerr Metric

In this case,

1
)= ———— o=1/(x+ia)’ = p+io,

(x + ia)?
p> — 0% +2ipo = 0* = (x +ia)’ = x> — & + 2ia - x.

We write

Then

pP—a*=r'—d*, po=a-x,

2
a-x
2 ( ) 22, (P —a)pt—(a-x)? =0,

{Z—a +\/ 2 —a?)’ +4(a- x)}

1
5{2—61 +\/r2+a2) —4(a><x)2}
1 1 p —io
G:—’ ’)):—: - :ﬁ’
P w p+t+10 p-+o
2 4 2
2, 2 » (a-x)” p*+(a-x)
po ot =p"+ = )
p? p?
p 3 5 1 pa - x
o= = ) = )
PP +a> i (a-x) 24 g2 p*+ (a-x)*
Vo = L(x+ia), Vo' = (i)
w=—(x+ia o' =—(x—ia
w ’ w* ’
. . . 2 2
14+ Vo Vo — 1 4 &0 xtia) _ ria
ww* p2+o-2
PP+ +r+d PP (- tad)+rt+d
- P+ - P+ a2
_ 2P+ )

p2+62 ’
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w*

I 1 11
Vo + Vo' —iVo x Vo' = <—+—>x+i(———>a
W W )

~(x +ia) x (x — ia)

o
1
= ww*[(w + o )x —i(w—ow")a+ 2a x x|
:m(px+0'a+a><x)
2p 1 1
=—5——5|¥+—=al@-x)+—-axx
pz+02[ pz( ) p ]
P Vo + Vo* —iVo x Vo* x+iaax+1a><x
1+ Vo-Vo* p +a2 P2

Choose axes so that a = (0,0,a) and x = (x,,z). Then
a-x=az, axx=(—ay,ax,0),
2

et () (i oy )
p? +a? p’mpT p? p?+a p?+a’p)’

(L,dx")* = P(dx° 4 4 - dx)?

__ A0 4 ATy, prra d+—dz2
p4+a2Z2 p2+a2 p2+ 2 :

Setting x° = #, we have finally, for the arc length,
ds* = ”Iuvdx#dfV + (l”dx“)z

2GMp? 0
P {dl + P az(de + ydy)

= —d? +dx? +
7

+———(xdy — ydx) + ;zdz} ;

2+2

265

where we have set C = 2GM so that the metric reduces to that of the Eddington

form (C.2) of the Schwarzschild metric on p. 256 when a = 0.
Alternative coordinates are #, p, 6, ¢ such that

cosf = E, (p +ia)e'? sin 0 = x + iy,
p

1
dz = d(pcos 0) = cos 0dp — p sin 0d0, ;zdz = cos? Odp — p sin O cos Od0,

dz? = cos? Odp? + p? sin® 0d6> — 2p sin 0 cos Odpdo),
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dx® 4+ dy? = [d(x+iy)[* = |d[(p+ia)e'’ sin0] |2

= [e!?sin0dp + (p +ia)e'’ cos 0d0 +i(p +ia)e' sin Od¢p ]2

= |sinfcos ¢pdp + (pcos p — asin @) cos§d0 — (psind + acos ¢) sinfd¢p
+i[sinOsin ¢dp + (psin ¢+ acos ¢) cos 0d0 + (pcos ¢ — asin ¢) sin Od ] |*

= [sinfcos ¢pdp + (pcos P —asing) cos 0dO — (psin ¢+ acos ¢) sin Odp)
+ [sin@sin¢dp + (psin¢ +acos ¢) cos 0d0 + (pcos ¢ — asinP) sin 0d<j>]2

=sin? 0dp® + 2psin O cos Odpdf — 2asin® 0dpd¢p + p? cos? Od6H*
—2apsinfcos 0d0d¢ + a® cos® 0d0* + 2apsin O cos 0dOd P + p*sin® Od*
+a”sin® 0d¢?,

dx? = dp? + (p* + @ cos? 0)d0? + (p* 4 a°) sin® 0d¢* — 2asin® Odpde,

1 1
xdx + ydy = §d|x +iyf = Ed[(p2 + a*) sin® 0]
= psin® 0dp + (p* + a*) sin 0 cos 6d0),

xdy — ydx = Im[(x — iy)d(x + iy)]
=Im{(p — ia)e ™ sin 0 [ei‘/’ sin 0dp + (p + ia)e'? cos 0d0
+i(p +ia)e' sin 0d¢] }
=1Im[(p — ia) sin? 0dp + (p* + a*) sin 0 cos 0d0 + i(p* + a?) sin’ 0d¢|
= —asin® O0dp + (p* + a*) sin® 0d¢,

ds? = —d? + dp® + (p* + a* cos® 0)d0* + (p* + a°) sin® 0d¢p* — 2asin® Odpd

2GMp P, . a@
PRy [dt + ) sin“ dp + p sin 0 cos 6dO — pzT sin” 6dp

02 2
2
+ asin® 0d¢ + cos? dp — p sin O cos Hdﬁ]

= —d? +dp? + (p* 4 a® cos? 0)d0? + (p* + a®) sin® 0d¢? — 2asin® Odpd

2GMp ( p* + a* cos 20

2
—_— d in® 0d .
p* + a%cos? 6 p* + a2 ptasin ¢>

We introduce new variables 7 and ¢’ given by

2GMp
t=1 ——d
+/p2+a272GMp P

2a a

/

= - dp.
o=9¢ +/<p2+a2 p2+a22GMp) P
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Then

2GM 2
p pdp> +dp? + (p? + @® cos® 0)d6?

d? = —(df + —— 7P
* < T e —2om

2a a 2
2 2\ winl l
0|d - d
+(p”+a")sin [¢ +(p2+a2 p2+a22GMp) p]

2a a
— 2asin® 0dp |d¢’ - d
asin p{¢+(p2+a2 p2+a2—2GMp> p}
2GMp , 2GMp p? —a
p? + a2 cos? 0 pPtal—2GMp - p?+a?

sin” 0 + cos? 0

2a* ) a2 5 , / 2
T g0 s 006

Everything in the round brackets of the last two lines amounts to

p* + a*cos* 0
p? +a? —2GMp’

Hence,
2GM
ds? = — (1 R f; cf)sz 9) d? + dp?
2G6Mp { 26Mp

p*+a>—2GMp | p?>+a?—2GMp

1 [4d®(p* +a® — 2GMp)

2GMp { p? + a?

a*(p* +a?)

0% +a* —2GMp
4a*(p? + a* — 2GMp)
Py
I 2p2 +2az cos® 0 }dp2

p? +a® — 2GMp

— 4a°

+ 2a2] sin? 0

2a>*GMp sin® 0
p? + a?cos? 0

4GM 4GM
+ P4 p d'dp
p2+a?2—-2GMp  p?+a®—2GMp

+ (p* + a® cos’ 0)d0* + <p2 +a+ ) sin” 0d¢”

a(p® +a?) 2GMp 5 ,
22a - B T e TP L in? 0dpd
* {a P TP s Ty R

4aGMpsin® 0 _,

dr'd¢’.

p% + a? cos? 0
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The terms in curly brackets here amount to

2GMp 1 —2d%(p* + a® — 2GMp) + a*(p* + a?)
T +a2—2GMp ' 2GMp p2 + a2 — 2GMp
p? +a*cos? 0
p* +a* —2GMp
B 1
- 2GMp(p? + a*> — 2GMp)

X {—(2GM,0)2 — a*(p* + d® — 4GMp) sin® 0 + 2GMp(p* + a* cos? H)}
_ 1
~ 2GMp(p? + a*> — 2GMp)

X [—(ZGMp)2 —a*(p* +a* — 2GMp) sin® 0 + 2GMp(p* + az)}

sin? 0

1
———(2GMp — a*sin® 0).

~2GMp
Also
1Jr2GM,o—azsin20_ p* + a?cos? 0
p>+a>—2GMp  p*+a* —2GMp’

Hence,
ds? 1 26Mp Ny, P H @80 2 4 (p? + a? cos? 0)d6?
F=—(1-—"T"— L e a

p? + a*cos? 0 p?+a* —2GMp e

2a2GM p sin* 0
p? + a2 cos? )

4aGMpsin® 0 _,

2 2 2 2 !
+<p +a° + >sm 0d¢ +mdldd)

A common alternative notation is

t/_>[a p—r 0_>63 ¢/"¢> a — —d,

p=Vrt+atcos2l, A=r*—2GMr+d°,

whence

2GM 2
ds? = — (1 7 r) dr* + pZdrz o

2a>GMr sin® 0 4aGMr sin® 0
+ (r2 +d+ %) sin” 0dg? — 2 4idg.
p p
Note that

2GMr
_ 7

1
?(A — a*sin’ 0) = (r? +a®* cos’ 0 — 2GMr) = 1

r2 +a?cos? 0
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1 1
— [(r2 +a*)* — d* Asin® 0} =— {(r2 +a?)? — d*(r* + a*) sin® 0+ 2a>GMrsin® 0
p p

5 5 2a*°GMrsin*0
— P+
p

4aGMr
02

%[2614 —2a(r* +a%)] = —

Hence we may write ds” in the alternative form

sin” 0
02

2
ds? = A dt — asin? 0d¢)? + P+ a)de — adi]*+2-dr + p2de?.
p? A P

Choose a > 0. Independent Killing vector fields ¢, and &, are
(55)2(1707070)7 (f;):(ovo»o»l),

with
2GMr 2a2GMrsin® 0\ .
f;'CtZ—(l— 5 >, f¢'f¢=<r2+a2+—2 )sm29,
p p
2aGMr sin® 0
g Ey= -
1" %¢ pz

and

1 .
(& &) -8 = E{4a2G2M2r2 sin* 0
+(p* —2GMr) [p*(r* + a*) 4+ 2a*GMrsin® 0] sin® 6}

)
0
_ Sln4 (4a2G2M27'2 sin2 9+p47’2 +p4612 i ZGMp2r3 — 2GMp202r
p

+2a*GMrp? sin” 0 — 44> G*M?*r” sin® 0)
sin 0
N

= (r* —2GMr + a*)sin® 0 = Asin 0.

[0*1? + p*a®> — 2GMr(r* + a* cos” 0)]
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Kerr Metric Subcalculations

2 _ : _ a’
pPia=r|lt—p=t | =1+ 0( 5]
2 2
== lo®)]
r
2
mraloE)]
1 1
l:pz—/&)—a [x+?a(a-x)—;axx} (@ — —a)
2
e o)
r r r
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.x)2 %{ +O<j_j>]’
)

0 _ a
=) o)
] M 1/2
= (rT)z(x, &ijk Xy ) [l + 0( )]
2M
= pp M
r
. . 2M
l()l:loll'\’ — 5 M T Simn mAn
2 (X — Cimm@mxn),
. .. 2M
“=1ry ~r—3(xi)qj — Xi€jmnAmXn — ijimnal715Cn)a
HOin _ _(loonl'j + lijnoo _ leniO _ liOan)
= —(3,:/‘100 + lij7
HIOK — ([0 y pkyi0 k0 i0ik)

il + Spb°,

= lim / H{Vds; = lim % / (—041% +19) d*S;
N
g ()
= 12214 [— (i) J—i— <r13xl~xj — ﬁsjm,,amx,-xn — }Laim,,amxjx,,) 75] rzfcdeQ
= 126—Mn (& — 3xu; + 3%; + 1) 4;,d°Q
fé” ’Q =M,

4n
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i ijO0k 12 - _ 5. 70 70y 42
P_Slggomn/H ds_lggom /( Ol + 0ul?) &Sy

S
i 1 i0 0\ 12
= lim o [ (< + 0ul} )%,
N
M ([ .
e - _51' (_J) 24 dZQ
167 [(ﬂ)k 2 "Xk
4n
2M
= Ton (5ik — 22X — 30q + 25ik55i5§j5€j)5€ksz
4n
aM
- T - A‘dZQ =
tor ] " 0,
4

Sy =J7 = lim % / (x"Hf,’jO’ — HMO it HflOi)dZSZ
—o0 167 ? ?
S

. 1 i i i i
= SILHOIOE/ [x (—(3k[l]() + (3j[lk0)"k — x](—ék/lo + 5,‘/lk0)1k
S
=0yl + 81 + 5,;7° — 5;1°]d%S,

2M Xj Xn Xk Xn
AT e T

4n

X [5 (xi Eimnd, x”) 0 (xk Elmn @ x")}

A Okl 5 T CimnUm™ 3 | T Oil\ ~5 — Skmnm™ 3

! r? r r? 31k
Xi Xn X Xn

+ 51j (ﬁ - 8imnamr_3) - 511 (r Flmnamrg

Xi Xy, X; XNy 2. 12
— 51-(—178- a —) +5~(—781 a —) rex;d=Q
i\;2 mnm’ 3 ii\;2 mnCm 3 }
+2)AC]‘)AC,‘)ACI + 356]‘5,‘1 — 2}2,'5,'1 + )Aciélj — )ACjéli)
- gjmnaméklénkjci + 38jmnam6kl-§cnxkxi + Skmnaméjlénkxi
- 3Skmnaméjljcnjckxi + gimnaméklénkxj - 38imnam5k1xnxkxj
- 8kmnam5ilénk-£j + 38kmnam(sil-%n-§ck-%j
- 2 1%92
_Simnaméljxn + 8jml1am51ixrt]xlcl Q
2M . o
=" | [gjmam(—%nk; + 3%u%; + Xu%;)
167
4n
P PSSP )
+&imntm (XnXj — 3%,X; — xnxj)}d Q
2M
2
=T - Ejmi — Eimj)Amd™ Q2 = Mejjnay,
167 ( 7 J) 7 )
4n
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S = Ma,
2M X; X;
h00:7+~“, h()i:2M7+2Sijfé+"‘,
r r r
iy = M 4 SR SN Gnee 1= )
v r rt rt '
Let
G =2MInr, &=-M=— 572
r r
so that
X 5ij XiXj SU Sikxkxj
fo,izzM}za Cij=— 7+Mr73_r7+2r74'
Then
— 2M — X;
hoo = hoo = ——+ -+, hoi = hoi — &0 = 2855 + -,
r ’ r
_ 8
hij = hij — &ij — & =2M-"4-,

Y
h:n‘”hﬂv=—hoo+hii:7+"'a

- _ 1 - - - 4M
loo = hoo — Stooh = hoo +5h =—=+"-+,

X

- _ _ _ 1. —
o = hoy = 2575+ zijzh,-,-—iéijh:0<—).
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Friedmann Cosmology

ds* = —dr* + a*(1)dQ?,
g =gudr* @ dx' = e ®ef = —dt @ dt + a’0” @ o*,
12

e =dt, e =ad®, do® = &m0’ AdC,
de” = —lc°c PN = - AeP
- o - B ’
o oy 1 o o o y
oy = Tye’ =5(=ch + ¢, +cip)e’s
1
dwﬁ+a) /\wﬁ Q/, /35e /\e
de' =0=wl, Neé,
de® = adr A 6 + aegpea” A o€
— ¢ t a 1 b c __ a t a b
—;e Ne —l—;&abce Ne = —w, Ne —wyNe,

a
¢ = e 4 vl = ac" =TI + I'%e”,
a

w

c b - t c
o) = Zsabce‘ +wle” = ege0” =175, + 17 €,

a
t _ta __ »_a__ pt t t b
W, = ¢ = a0 =TI, e +T,e

275
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! 13 1 b
Q, =dw, +w, Ao,
= adt A 6% + aegpeo” A 6° + agpgea’ A e

b c
b€ Ne,

a 1
= Ee’ ANe =R e Ne® + ER’
Q) = doj + of A o), + 0l A o,
= Eapebede N 0° + @20% A 07 + eaedbeped® A 6°
- (5ad5be - 5a65bd - 5ab5de + 5ae5db)0-d A a® + aZO.a A Ub

1 1 .
=—(1+a)e" Ne’ =Rj.e' Ne + 5 a e Nnel.
a

The nonvanishing components of the curvature tensor in the local orthonormal
frame are

a 1 .
R, = Eéaba Ry, = E(l + @) (84cOba — Saddbe),

and those obtained from these by the algebraic identities. The nonvanishing
components of the Ricci tensor are

i
Ry = Rywa = *3;

Rup = Ry, + RS,

a . 1 .2 a 2 )
= ;aah +;(1 +a )(5“5&;, — 50;,5,10) = |:a —+ ;(1 +a ):| 5,11,.

The curvature scalar is

a 1
R:—R,,+Rua:6{—+—2(1+a2)}
a a

The nonvanishing components of the Einstein tensor are

13
Gn:Rn—‘riR:z(] +a )7

1 a 1
Gap = Rap — ERéab - - |:2g + E(l + 02):| 5ub~

Let us check that the Einstein tensor satisfies the contracted Bianchi identity.
The nonvanishing connection components are
a a
Iy = Zéalw ry, = ;5aba ry =  abe,

SO
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G = e,G™ + I}, G + T'},G”

betao,

— etGTt + F;bGub + I"a Gtt

ta

d(3 al.a 1 asl
=—|S(0+d)| -3-|2+=5(1+d° —Z (1442 =
dt[az( —I—a)] 3a[2a+a2( —&—a)} +3aa2( +a) =0,

G% = e,G + I'},G" +T4,G"
=e,G" + TG + I5,G =0,

using the fact that ¢,G*” vanishes by homogeneity and I'%,.G* + T'5.G*” vanishes
by symmetry.

E.1: Cosmic Dust

The nonvanishing component of the stress—energy density is 7" = p, the mass—
energy density. The equations of motion for cosmic dust are

Ty =0,
which is automatically satisfied, and
" " d a

This has solution

3
_%

p= a—3,00-
Einstein’s equations for a cosmic dust are
G" = 8nGT", G =8rnGT*,

3 .2 a 3A 8nG 4

E(I—F(l ) :87IG;,00:§, A= 3 ayPo,

so that A is 8nG/3 times the mass contained in a cube of side a; at epoch ;. We
can in fact choose A = ay. Now

1A,
a A_ 2a
i 1, A A

Consequently, the equation G = 87GT*” = 0 is automatically satisfied.
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The equation

A
a=1/>—1
a
has solution
1 . 1
t= 2A(() —sinf), a= EA(I —cos0),

as can be seen from

1 . : 2
1:§A(1—0059)6:a@7 costl—Xa,

4a 4
sin0 = V1 —cos?20 = e

A A2

1 . A |da 4a? \/A
7 = ~Asin 00 = = = -1
a=Asm 24V A A a

as claimed.

E.2: Photon Gas

The stress—energy density for a photon gas has nonvanishing components

1
T"=p, T%=pdy = §p5ab.

Now
1
P = g,l%
so that
T =0

The equation of motion for a photon gas is

d a
0= T4 = e " + I, T + I4,G" = <d + 4) P,
t a
0= Tf;“ — ebTah + I—v(szThc + FZCTaba
the latter being automatically satisfied. This has solution g
p =30
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The Einstein equations for the photon gas are

G" =8nGT", G* =8rnGT®,

3 . at 3A2 8nG
a_z(l + (12) — SnGa—gpo = i A? — =N agpo,
where the latter can be set equal to a(z). Hence,
A2 A4 A2
a= —2—17 &Z#:——y
a 2 _ a
02
a 1 . 8mG  2A% A’ 8nGd}
—2£—a2(1+a)773 p:?*g* 3 a4p0: :

Therefore the equation G** = 872G T* = 0 is automatically satisfied.
The equation

has the solution
a=VA? -, =—-VA?—a®> (expansion phase),

since one then has

t 1 A2
] = - = 2 _ 2: _—
a= P avA a s 1.

E.1. Find the connection one-form, the connection components and the
curvature tensor for the flat three-space cosmology, for which the metric tensor is
given by

ds? = —df* + a*(dx* + dy* + dz?),
where a is a function of ¢, i.e.,
g = gudx' @ dx" = n,pe” ® ef = —dr @ dt + a?dx® ® dx“,
e =dt, e =adx"

Find the Ricci tensor, the curvature scalar and the Einstein tensor, and obtain
the differential equations for a in the case in which this universe is filled with
cosmic dust.

If the age of this universe (from the Big Bang) is known to be ¢, what is the
current mass density in this universe as a function of ¢? This is known as the
critical mass density required to make three-space flat. If the mass density is
greater than the critical density, the universe will recollapse, otherwise it will not.
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E.1 We have

t 12
de' =0 = -}, Ae,
. a
de* =adt Adx* = ' Ne = —af Ne' — wf AP,
a

a .
o = =" +1%e' = adx* = I'e' + I'%e",
a

a __ a,b __ __qa t a ¢
w, =w'e” =0=1TIye + 1.,
o =2t —adx =T &' + T,
a_a - — tat ab® >
r t I3 h o . a
Q, = dw, + w, A o, = adt A dx’
a 1
=—e’/\e“:Rtmbet/\eh—FER;bceb/\ec,
a

%)

a
a a a t a c __ a b
hfda)b+a)t/\wb+a)c/\wb7a—2e Ne

1
=Ry €' Ne + Ry e Ne.

2
The nonvanishing components of the curvature tensor are
. . 2
a a
t
Rath = Eéaba ch = E(éacébd - 5ad5bc)-

The nonvanishing components of the Ricci tensor are

. . . 2
a ; a .a
Ryt = Ry = *3;, Rap = Ruzb + szcb = (Cl + 2c12> 5ab-
The curvature scalar is
a o
R=—-Ry+Ru=6(-+—5]).
a a
The nonvanishing components of the Einstein tensor are

1 a* 1 a a
Gn - R[t + ER — 3;, Ga}) - Rab - ERéah - — <2a + az> 5a};.

The nonvanishing connection components are
a

a
I =-%u, I%=-"0uw.
ab a ’ th a

The contracted Bianchi identity is easily checked.
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The equations of motion for a cosmic dust and a photon gas are the same as in
the Friedmann case. The Einstein equations for a cosmic dust are

-2
i@ A 87G ,  81G ,
Sa=3%m A=z am =754

A
a= \/: aPa= A2,
a

Let a = 0 when t = 0. Then
§a3/2 — A2 — /8”3(;/)“3/%,

1
T 6nGr

Ps

or 1 = /6nGpt, or

o

If the age of the universe is known to be f, then 1/6nG#* is the critical mass
density required to make three-space flat. If the mass density is greater than this
value then the universe will recollapse.






Appendix F
Dynamical Equations and
Diffeomorphisms

SG[QD] + SM[QDv 43}’ §— @, u,v,xo,xl,xz,x3 - iv
SGi+8m; =0, Sva=0.
Under diffeomorphisms,

3¢' = QgL 60" = Oy, POL" = 0, D767,
5g,uv = Eﬁfg,uv = _5511:»' - 55&7:;( = /Qﬂ\’6’550,d4x/5

Q,uva’ = —(5ug';v + 5v0’;/1)7 5/4\)’ = guaég/ = 5/1V5<x7x/)7
0= 5SG = S,,'(s(/)i = S:ng&é%a

and therefore

S.,-Q"2 =0.
Similarly,
(S0} + Sma 0l @%) 6" = 0,
whence
SmiQ, =0, when Sys =0.
Defining
T, =28, TV = 2‘SSM,
' 0%
we have

T,-Q; =0, whenSuyu =0.
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This can be rewritten
0= / T Qyopdx’ = =2 / T 80 d*y
=2 / o7 Syud*y = 2T, .
We now write ¢ as a sum
o' = oy + ¢,
where @g is an empty space background field with
Sc.i[es] = 0.

The dynamical equations are

SG,i[(/)B + ¢] + SM,i[(pB + ¢7 (D] = Oa SM.,A[(pB + d)? 45] =0.

Let
Scles, ¢ =Sclop + @] — Scles] — Sc.ilesl¢’
— 2 Solonld' + SSuloald P+
where
Sclos, ¢) =Sclos + ¢] — Scles] — Sa.ilwsld’
= %SG,U[%WW + %Ss,ijk[wBW(ﬁ"(ﬁk -
Define
722558 = 256,l0y + 6] — 2Sc.lon] — 25610}
3
= 256,k [0p] ¢ " + %Sa.ijkl[%W PP+,
= e 4 O — Salog + 91— e + Swion + .
=0
= Sa.lopld’ + %(Ti + 1),
-

- 1 0S[pg, ¢, D]
. i (T, ) — B P
Sailesl¢’ = —(Ti+T)) 5%

)
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oSm o0Sm
T, = 2Swilog + ¢, ] = 29M — p22M
35S
—= 3§ o] =0.
50" Mal@p + ¢, D]

A possible diffeomorphism (coordinate transformation) law is
Sop = Qiloslol", 80’ = Q,[0)8C" = O} [pp + ¢]0C",
8" = 89" — doly = O, ¢/ 5.

When the realization is linear, there are no more terms in the series on the right
hand side of the last equation. Now

056[@5, §] = Sc.ilos + $|OL (o + 10" — Sg.i[@p] 0L [p]0E"
— S, 0p]d' O, 0p]6E" — S lwp] 0 10'6E"

= 5(SGJ[(/)B]Q]1[(/)B])¢16£(X =0
303 T

oSm[ep + ¢, 9] =0,
under the above transformations together with
0t = Q1,085
Hence,
(T; + T:) Q. [pg] = 0, When;ji =0 and % =0.
As a consistency check,
0 = Sg,i0s] 0, 8],
0 = SG.jl0s] 0, [@s] + S.iles]Q; = Sc.ijles] 0, @sl,
whence

0= O\ fnlSloald! = —50.[0u] (T3 + 7).

The transformations laws for 7; and 7 ; are
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0T, = 208w, + ¢, D]
= 25SM7ij[(pB + ¢7 (D]Q}“[(pB + ¢]5éa + SM,iA [(pB + ¢, @]Q’:B@Bb‘fa
5 .
= 257)1-{5MJ[¢>B + ¢, D0 [y + ¢] + Swalep + b, B|Q, D )68
— 2Sulop + ¢, 9|0 6
= -T,0,,8¢
07, = za{SG’i [(pB + (15] - SG,i[(PB} - SG,U‘[([)B]W}
= 2{Sc.jln + $Q, 06 + ¢] — Sc.jlos] Ol s]
_SG.,ijk[QDB]WQ];[QDB] - SG,lj[(/)B]Q;_kqbk}(Sg’“

= 2{ 56,08 + $10}, + S, 0610},

— 2 (SoploslOllio] + So 0104 l0]) ¢

30
+Sal0p]0) 4" f6E”
= -T,0, 8¢

These transformations, however, are physically meaningless.
Practical diffeomorphism laws are

S5 =0, 0" = 00" = Q)[pp + ¢]6C",
0t = Q1 dP5”,
The transformation law for 7; remains the same, but for 7 ; it becomes
6T ; = 28{Sc [ + ¢] — Sc.[es] — Sc.lesld }

=2{Sclon + 91005 + ¢] — Sc.ilos] (2 los] + 08" ) fo¢*
=2{ 5,105 + 910, + 610610, — SaloplQl " }oE"
= _TjQ{,,,’&éa - Z{SGJk[QDB]Q];,i + SG,U[(/’B]Q];,k}QSkéfa
= —T,0,,08 + 256 3 los] ¢ O 0610,

in which we have used, in passing to the last line, the identity

SGﬁiij]oA( + SGAijQ]c;,k =+ SGJkQé,i = 07

obtained from Sg; Q, = 0 by functionally differentiating twice. In general, only if
Qla[(pB](sé“ = O’
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i.e., if 6&* is a Killing vector field of the background field, does 7; transform like a
contravariant tensor density. It is often called a pseudo-tensor density.

Because 7" does not transform like a tensor density, it is impossible to assign a
definite location to the energy, momentum and stress in the gravitational field.
Nevertheless, the integral

/ (T + T1)dz,,
2

with £ a complete Cauchy hypersurface, is an absolutely conserved quantity for
every Killing vector field £ that the background geometry possesses. Moreover, it
is diffeomorphism invariant!
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