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Preface

In the summer of 1971, when I was traveling with Bryce DeWitt and his other new
graduate students in Europe, I remember seeing him sitting at a desk for days on
end writing lecture notes. Since we had met just a few weeks before, I was
astonished at how focused and dedicated to this endeavor he was. We were staying
at the International Centre for Theoretical Physics outside Trieste, Italy and we
students had been given the task of reading a prerelease copy of Misner, Thorne,
and Wheeler’s new book Gravitation while Bryce wrote his notes. Bryce’s lectures
were to be given in the Fall of that year at Stanford where he would be visiting
after leaving The University of North Carolina at Chapel Hill to take a new
position at the Center for Relativity at The University of Texas at Austin.

We eventually all arrived in Austin in January of 1972. Later, when we got
offices in the new physics, math, and astronomy building, I was situated in the
little office outside his and was given the task of organizing his preprints, reprints,
and other papers. This sounds like a menial job, appropriate perhaps for a new
student, but it was one of the most memorable times of my life. Within these
papers were his lecture notes, favorite papers written by others, and many
unpublished calculations and manuscripts. Amongst these were more than three
hundred pages of the Stanford course he had given and I had not seen. The fact that
he had put them together in so short a time made me feel even more in awe of his
abilities and anxious to take any class he might teach. In fact, some of what was in
the Stanford notes eventually could be heard in his Theory of Everything course
(long before this term became popular for other reasons).

Bryce was one of the most respected researchers in Quantum Gravity and
related subjects of the last half of the twentieth century and into the twenty first
and, as with many such people, his teaching was perhaps not well known. But like
taking a class from Wheeler or Feynman, being a student of his was frankly
historic in my mind. Each day after one of his lectures, I would go back to my tiny
apartment and rewrite my notes line by line to try to absorb what he was saying in
a much deeper way than in the classroom. I had the honor of having many
wonderful teachers in my academic career, but few were as exciting to listen to as
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Bryce. Somehow, I got more from his words and equations on the blackboard than
ever before.

Bryce was not the kind of teacher who just taught in the classroom. He went to
lunch with his students very often and challenged us all to think more deeply into
any subject we were studying. I wish there had been recording technology like my
iPhone at the time. Some of those lunches were fascinating in the extreme.

Bryce not only taught advanced graduate courses, but also basic physics to
those large undergraduate classes so many universities have now. A few times, as
his teaching assistant, I would take over a class when he was out of town. Once,
one of the students came up to me after class to say something like, ‘‘We all love
Professor DeWitt, but it is nice to sometimes have someone like you give the
lecture. He is such a good lecturer and so awesome, we sometimes get caught up in
that and not what we are trying to understand. Having someone at our level give
the lecture makes us feel like if you can learn it to teach us, we have hope of
getting it too.’’ I smiled at her somewhat demeaning comment, but I did under-
stand what she was getting at.

When Bryce’s amazing and loving wife, Cecile, called me to see if I might edit
his notes and put them into book form, I was both honored and flabbergasted. It
took far too long to accomplish the task, I think mostly because I wanted per-
fection. Because Bryce was no longer around to make sure I did it right, there were
months when I could not deal with the work. But, here are the results.

This book is not a textbook, though it contains lectures and problems. Like
Bryce’s other books and papers (all of which should be studied thoroughly by any
serious person interested in quantum theory, relativity, and gravitation), these
chapters and the calculations in the appendices will give you some insight into his
thought processes and extraordinary talents as an equation manipulator.

Some of the chapters here are very complex. These are lecture notes after all
and you will find extensive detail, including appendices containing various side
calculations. It is certain that many of these lengthy derivations cannot be found in
any other book or paper.

I found the chapters related to Special Relativity to be nostalgic in particular.
The science fiction novel Tau Zero by Poul Anderson http://en.wikipedia.org/
wiki/Tau_Zero was one that Bryce had read and used the ideas in the book to
illustrate his lectures. He gave me his paperback copy of Tau Zero, which I still
treasure.

These notes were written nearly forty years ago. Clearly much has happened
since then and any subject that catches your interest should be followed up with
reading the latest work. Cecile and I choose to keep the book in the form that
Bryce wrote the notes and made as few changes or additions as possible. This is an
historical document designed to preserve his thoughts.

The process of converting hundreds of pages of handwritten notes and equa-
tions into the manuscript was tedious in the extreme. My deepest appreciation goes
to Steven Lyle and Christian Caron at Springer for their patience and major
support with the TeX and publishing issues, to Stephen Fulling for TeX guidance,
and to Jacob Bekenstein and Chris Eling for many comments on Chaps. 10–12.
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Very special thanks go to Brandon DiNunno in Austin who spent a great many
hours comparing the handwritten notes against the typeset text looking for issues
and typos that I did not find. Any problems of any kind with the book are entirely
mine. Errors and other comments can be sent to me at steve@smc.
vnet.net. I will collect any and put them up on the web.

The manuscript was processed using the TeXShop software on a Macbook Pro
computer. I drew illustrations using Adobe Illustrator.

My heartfelt affection and thanks to Cecile for her guidance and
encouragement.

Several times I offered to give the work over to someone else and she would
have none of it. I urge everyone to read the book, ‘‘The pursuit of Quantum
Gravity–Memoirs of Bryce DeWitt from 1946 to 2004.’’

Finally, my gratitude and love to my wife, Sunny, for her constant support and
encouragement in this and all my efforts.

July 2010 Steve Christensen
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Chapter 1
Review of the Uses of Invariants in Special
Relativity

1.1 Relative Velocity

The following standard summation and index notation is used with Greek indices
running from 0 to 3:

A2 ¼ A � A ; A � B ¼ glmA
lBm ¼ glmAlBm ¼ AlBl ;

ðglmÞ ¼ ðglmÞ ¼ diagð�1; 1; 1; 1Þ ; glrg
rm ¼ dm

l :

Let two observers be moving with constant 4-velocities u1
l and u2

l, respectively:

u2
1 ¼ u2

2 ¼ �1 ðc ¼ 1Þ:

Each observer sees the other move with a velocity of magnitude |v|. This quantity
must be a function of the only nontrivial invariant that can be constructed from u1

l

and u2
l, namely u1�u2. This invariant may be computed in a rest frame of u1:

ðul
1Þ ¼ ð1; 0; 0; 0Þ ; ðul

2Þ ¼ ðc; cvÞ ;

where

c ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p ¼ �u1 � u2 :

Now

1� v2 ¼ 1
c2

¼) v2 ¼ 1� 1
c2
¼ c2 � 1

c2
¼ ðu1 � u2Þ2 � 1

ðu1 � u2Þ2
:

Problem 1 Let v1 and v2 be the 3-velocities of the two observers in an arbitrary
inertial frame. Show that

B. DeWitt, Bryce DeWitt’s Lectures on Gravitation,
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jvj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðv1 � v2Þ2 � ðv1 � v2Þ2
q

1� v1 � v2
:

Proof Since -u1� u2 = c1c2(1 - v1 � v2),

v2 ¼ c2
1c

2
2ð1� v1 � v2Þ2 � 1

c2
1c

2
2ð1� v1 � v2Þ2

¼ 1� 2v1 � v2 þ ðv1 � v2Þ2 � ð1� v2
1Þð1� v2

2Þ
ð1� v1 � v2Þ2

¼ ðv1 � v2Þ2 � ðv1 � v2Þ2

ð1� v1 � v2Þ2
;

where we have used the fact that

ðv1 � v2Þ2 ¼ v2
1v2

2 � ðv1 � v2Þ2 : h

1.2 Doppler Shift

The amplitude of a plane monochromatic electromagnetic wave has a spacetime
dependence of the form Re(eik � x), where (kl) = (k0, k), with k the propagation
vector and k0([0) the angular frequency, the two being equal in magnitude,
i.e., k2 = 0. Because hyperplanes of constant phase are physically determined,
independently of the choice of coordinate system, k � x must be an invariant under
Lorentz transformations, and hence kl must transform as a 4-vector.

Let an atom having 4-velocity u0 emit a nearly monochromatic pulse of light
(photon) at the event x0 and let the pulse be detected at the event x by a detector
moving with 4-velocity u. Suppose jx� x0j � wavelength. Then, the pulse will be
nearly planar when it reaches x and will be characterized there by a propagation
4-vector k parallel to x - x0. Evidently,

k2 ¼ 0 ; ðx� x0Þ2 ¼ 0 ; k � ðx� x0Þ ¼ 0 :

The angular frequency of the pulse in the atom’s rest frame is

w0 ¼ �k � u0 :

This frequency is characteristic of the atom and is independent of the coordinate
system. The angular frequency observed by the detector is

w ¼ �k � u :
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Introduce a set of three orthonormal vectors ni
l (i = 1, 2, 3) in the inertial frame

carried by the detector. Together with the detector’s 4-velocity ul, these vectors
form what is called an orthonormal tetrad or vierbein:

ni � nj ¼ dij ; ni � u ¼ 0 ; u2 ¼ �1 :

and such a tetrad is often referred to as defining a local rest frame, in this case, a
local rest frame for the detector. The triad ni

l (i = 1, 2, 3) is said to form a basis
for the hyperplane of simultaneity of the detector and to generate a projection
tensor

Plm � nl
i nm

i ¼ glm þ ulum

on this hyperplane.
Let v be the 3-velocity of the atom relative to the local rest frame of the

detector, and let m be the unit vector characterizing the direction from which the
pulse appears to come in this frame. We have

vi ¼
u0 � ni

c
¼ �u0 � ni

u0 � u
; c ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p ;

mi ¼
k � ni

k � u ðremember k � u\0Þ ;

mimi ¼
ðk � niÞðni � kÞ
ðk � uÞ2

¼ klPlmkm

ðk � uÞ2
¼ k2 þ ðk � uÞ2

ðk � uÞ2
¼ 1 ;

since k2 = 0. From these two 3-vectors, we may construct an important scalar,
namely, the component of the 3-velocity of the atom along the line of sight as
viewed from the local rest frame of the detector:

vR � mivi ¼ �
ðk � niÞðni � u0Þ
ðk � uÞðu0 � uÞ

¼ �k � u0 þ ðk � uÞðu � u0Þ
ðk � uÞðu0 � uÞ

¼ x0

xc
� 1 ;

whence

x0

x
¼ cð1þ vRÞ ;

or, in terms of wavelength,

k
k0
¼ cð1þ vRÞ ;

where c is the time dilation factor and 1 ? vR the ‘true’ Doppler shift. This is the
special relativistic Doppler shift formula.

It has become conventional to express the Doppler shift in terms of the
so-called red shift parameter:

1.2 Doppler Shift 3



z ¼ k� k0

k0
¼ cð1þ vRÞ � 1 :

In the non-relativistic limit v?0, we have

z �!
v!0

vR :

In the case in which the relative velocity is along the line of sight, so that vR = v,
the Doppler shift formula reduces to

k
k0
¼ 1þ v

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p ¼

ffiffiffiffiffiffiffiffiffiffiffi

1þ v

1� v

r

;

where

v [ 0 for recession (red shift) ;
v\0 for approach (blue shift) :

1.3 Aberration

Suppose another detector, moving with 4-velocity u0, observes, at (or near) the
event x, a pulse emitted at (or near) the event x0 by another atom, similar to the
first and also moving with 4-velocity u0. Introduce a local rest frame for the new
detector, characterized by a triad ni

0l :

n0i � n0j ¼ dij ; n0i � u0 ¼ 0 ; u02 ¼ �1 ;

n0li n0mi ¼ P0lm ¼ glm þ u0lu0m :

The components of the 3-velocity of the second detector as viewed in the local rest
frame of the first are

�vi ¼ �
u0 � ni

u0 � u ;

whereas the components of the 3-velocity of the first detector as viewed in the
local rest frame of the second are

�v0i ¼ �
u � n0i
u � u0 :

Note that

�vi�vi ¼
ðu0 � niÞðni � u0Þ
ðu0 � uÞ2

¼ u0lPlmu0m

ðu0 � uÞ2
¼ �1þ ðu0 � uÞ2

ðu0 � uÞ2
¼ �v0i�v

0
i

¼ 1� 1
�c2
;
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where

�c ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �v2
p ¼ �u � u0 ;

with �v the magnitude of the 3-velocity of either detector as viewed in the local rest
frame of the other. If desired, the local rest frames of the two detectors can be
aligned so that

ð�viÞ ¼ ð�v; 0; 0Þ ; ð�v0iÞ ¼ ð��v; 0; 0Þ :

Now let h be the angle between �vi and the unit vector mi in the rest frame of the
first detector. We have

�v cos h ¼ mi�vi ¼ �
ðk � niÞðni � u0Þ
ðk � uÞðu � u0Þ ¼ �

k � u0 þ ðk � uÞðu � u0Þ
ðk � uÞðu � u0Þ ¼ x0

x�c
� 1 ;

where x0 is the angular frequency of the pulse observed by the second detector.
The corresponding angle h0 in the rest frame of the second detector satisfies the
equation

��v cos h0 ¼ m0i�v
0
i ¼ �

ðk � n0iÞðn0i � uÞ
ðk � u0Þðu0 � uÞ ¼

x
x0�c
� 1 :

We now have

x0

x
¼ �cð1þ �v cos hÞ ; x

x0
¼ �cð1� �v cos h0Þ ;

1 ¼ �c2ð1þ �v cos hÞð1� �v cos h0Þ ;

1� �v2 ¼ 1þ �vðcos h� cos h0Þ � �v2 cos h cos h0 ;

cos h0 � cos h ¼ �vð1� cos h cos h0Þ ;

and finally,

cos h0 ¼ �vþ cos h
1þ �v cos h

:

1.3.1 Consistency Check

Since

�v2\1 and ð1� �v2Þ cos2 h� 1� �v2 ;

1.3 Aberration 5



it follows that

�v2 þ cos2 h� 1þ �v2 cos2 h ;

�v2 þ 2�v cos hþ cos2 h� 1þ 2�v cos hþ �v2 cos2 h ;

�vþ cos hj j � 1þ �v cos hj j :

Note that as �v! 1, the apparent direction of the emitting atom as viewed by the
second detector tends more and more toward the forward direction, i.e., the
direction in which the second detector moves relative to the first.

A more elegant aberration formula may be obtained by writing

h ¼ 1
2
ðhþ h0Þ þ 1

2
ðh� h0Þ ; h0 ¼ 1

2
ðhþ h0Þ � 1

2
ðh� h0Þ ;

cos h0 � cos h ¼ 2 sin
1
2
ðhþ h0Þ sin

1
2
ðh� h0Þ ;

and also

�v ¼ cos h0 � cos h

1� cos h cos h0
;

1� �v2 ¼ 1� 2 cos h cos h0 þ cos2 h cos2 h0 � cos2 h0 þ 2 cos h cos h0 � cos2 h

ð1� cos h cos h0Þ2

¼ ð1� cos2 hÞð1� cos2 h0Þ
ð1� cos h cos h0Þ2

¼ sin2 h sin2 h0

ð1� cos h cos h0Þ2
;

whence

�c ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �v2
p ¼ 1� cos h cos h0

sin h sin h0
:

Remember here that h and h0 lie between 0 and p so that both sin h and sin h0 are
positive. Finally,

2 sin
1
2
ðh� h0Þ ¼ �c�v

sin h sin h0

sin 1
2 ðhþ h0Þ :

In the non-relativistic limit �v! 0; this reduces to the classical formula used by
astronomers:

h� h0 �!
�v!0

�v sin h :

Problem 2 Show that

sinðh� h0Þ ¼
�v� �c�1

�c cos h0

1� �v cos h0
sin h0 :
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Then, because of the invariance of the aberration formula under the changes
h! h0; h0 ! h; �v! ��v; it follows that

sinðh� h0Þ ¼
�vþ �c�1

�c cos h

1þ �v cos h
sin h :

Note that for either h = p/2 or h0 = p/2, the aberration formula reduces to
sinðh� h0Þ ¼ �v:

Problem 3 Let the ecliptic latitude and longitude of a star (conventionally
measured from the vernal equinox in the direction of the earth’s orbital motion) be
w and /, respectively, as observed in the rest frame of the sun. The aberration
effect produced by the motion (velocity �v) of the earth in its orbit will cause these
angles to shift to new values, wþ dw and /þ d/, as viewed in a local rest frame
attached to the earth. Derive expressions for dw and d/ in terms of w; h;�v and the
ecliptic longitude a of the sun (Figs. 1.1, 1.2). Assume that the orbit of the earth is
a circle and that �v� 1: Show that, during a year, the apparent position of the star
in the sky as viewed from earth executes a tiny ellipse whose semi-major axis has
angular size �v (radians) and is oriented parallel to the ecliptic plane and whose
semi-minor axis has angular size �vj sin wj: Compute �v for the earth in seconds of
arc.

With the notation established above,

ðmiÞ ¼ ðcos w cos /; cos w sin /; sin wÞ ; ð�viÞ ¼ �vðsin a;� cos a; 0Þ ;
cos h ¼ cos wðcos / sin a� sin / cos aÞ ¼ cos w sinða� /Þ ;

m0i ¼
mi þ n�vi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðmj þ n�vjÞðmj þ n�vjÞ
p ¼ ð1� n�v cos hÞðmi þ n�viÞ ;

Fig. 1.1 Emitting atom and
detector
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for some n, and

cos h0 ¼ ð1� n�v cos hÞðcos hþ n�vÞ :

But

cos h0 ¼ ð1� �v cos hÞð�vþ cos hÞ :

Therefore n = 1 and

ð1� �v cos hÞ sin w ¼ sinðwþ dwÞ ¼ sin wþ dw cos w :

Hence,

dw ¼ ��v cos h
sin w
cos w

¼ ��v sin w sinða� /Þ

We also have

cosðwþ dwÞ ¼ cos w� dw sin w ; cosð/þ d/Þ ¼ cos /� d/ sin / ;

sinð/þ d/Þ ¼ sin /þ d/ cos / ;

cos w cos /� d/ cos w sin /� dw sin w cos / ¼ ð1� �v cos hÞ cos w cos /þ �v sin a ;

cos w sin /þ d/ cos w cos /� dw sin w sin / ¼ ð1� �v cos hÞ cos w sin /� �v cos a ;

Fig. 1.2 Earth orbit
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which give

d/ ¼
1

cos w sin / �dw sin w cos /þ �v cos h cos w cos /� �v sin að Þ
1

cos w cos / dw sin w sin /� �v cos h cos w sin /� �v cos að Þ

(

¼
�v

cos w sin /
cos h cos /

cos w � sin a
� �

�v
cos w cos / �

cos h sin /
cos w � cos a

� �

8

>

<

>

:

¼
�v

cos w sin / sinða� /Þ cos /� sin a½ 	
�v

cos w cos / � sinða� /Þ sin /� cos a½ 	

(

¼
�v

cos w sin / � sin a sin2 /� cos a sin / cos /
� �

�v
cos w cos / � sin a cos / sin /� cos a cos2 /ð Þ

(

Finally,

d/ ¼ ��v cosða� /Þ
cos w

�v ¼ 30 km/s ¼ 10�4 rad ¼ 20:600

semi-major axis ¼ cos wd/j jmax¼ �v ;

semi-minor axis ¼ dwj jmax¼ �v sin wj j :

1.4 Apparent Luminosity

Let a star having 4-velocity u0 emit monochromatic photons at a steady rate
uniformly in all directions. If x0 is the angular frequency of the photons in the
star’s rest frame and N0 is the number emitted per unit time, then the power output
or absolute luminosity of the star is

L0 ¼ N0x0 ð�h ¼ 1Þ :
Let some of the photons that are emitted by the star at an event x0 be detected by
an observer at event x. If the 4-velocity of the observer is u, then

ðx� x0Þ2 ¼ 0 ; �u0 � ðx� x0Þ ¼ r0 ; �u � ðx� x0Þ ¼ r ;

where r0 is the apparent distance of the detection event in the star’s rest frame and
r is the apparent distance of the emission event in the observer’s rest frame. Since
xl - x0

l is parallel to the propagation vector kl of the photons arriving at
the observer, it follows by arguments entirely similar to those used in deriving the
Doppler shift formula that

r0

r
¼ x0

x
¼ cð1þ vRÞ ;

with the obvious notation.
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Now introduce an orthonormal triad n0i
l to fix the orientation of the star’s rest

frame:

n0i � n0j ¼ dij ; n0i � u0 ¼ 0 ; u2
0 ¼ �1 :

In this frame, the photons that reach the observer are propagated in the direction of
the unit vector

X0i ¼ r�1
0 n0i � ðx� x0Þ :

Suppose the spacetime point x suffers a displacement dx. Then r0 and X0i suffer the
changes

dr0 ¼ �u0 � dx ; dX0i ¼ r�1
0 n0i � dxþ r�2

0 n0i � ðx� x0Þu0 � dx :

Let d1X0i and d2X0i be the changes in X0i corresponding to two such displacements
d1x and d2x. Then

d1X0id2X0i ¼ r�2
0 d1xþ r�1

0 u0 � d1xðx� x0Þ
� �

� P0 � d2xþ ðx� x0Þr�1
0 u0 � d2x

� �

;

where

Plm
0 ¼ glm þ ul

0um
0 :

But

P0 � dx ¼ dxþ u0u0 � dx ; P0 � ðx� x0Þ ¼ x� x0 � r0u0 ;

so

P0 � dxþ ðx� x0Þr�1
0 u0 � dx

� �

¼ dxþ ðx� x0Þr�1
0 u0 � dx :

Furthermore,

P0 � P0 ¼ P0 ;

so

d1X0id2X0i ¼ r�2
0 d1xþ r�1

0 u0 � d1xðx� x0Þ
� �

� d2xþ ðx� x0Þr�1
0 u0 � d2x

� �

:

Now suppose the displacements d1x and d2x lie in the observer’s hyperplane of
simultaneity and are at right angles to the line of sight to the star in the observer’s
rest frame. Then

u � dax ¼ 0 ; ðx� x0Þ � dax ¼ 0 ; a ¼ 1; 2 ;

and, remembering that (x - x0)2 = 0, we have

d1X0id2X0i ¼ r�2
0 d1x � d2x :
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This means that the portion of the unit sphere containing X0i, in the star’s rest
frame, is mapped via the photons themselves in a metric-preserving fashion with
only an overall rescaling factor of r0

-2 onto the plane in the observer’s rest frame
that is at right angles to the line of sight to the star. Therefore the photons that pass
through a surface element d2S in this plane were emitted in a solid angle

d2X0 ¼ r�2
0 d2S

in the star’s rest frame. The energy flux through this solid angle is

d2U0 ¼ L0
d2X0

4p
¼ L0

d2S
4pr2

0

:

To the observer, however, the energy flux through d2S differs from this value in
two respects. First, the apparent photon energy is changed from x0 to x, i.e., by
the Doppler shift factor x/x0 = c-1(1 ? vR)-1. Secondly, the rate at which
photons pass through d2S is itself changed by the same factor. Therefore, the
energy flux through d2S as seen by the observer is

d2U ¼ x
x0

	 
2

d2U0 ¼
x
x0

	 
2

L0
d2S

4pr2
0

:

This flux may also be expressed in the form

d2U ¼ L
d2S
4pr2

;

where L is the apparent luminosity of the star, i.e., the luminosity that a star at rest
at a distance r relative to the observer would have to have in order to produce such
a flux. Equating the two expressions, we find

L ¼ x
x0

	 
2 r

r0

	 
2

L0 ¼
L0

c4ð1þ vRÞ4
¼ L0

ð1þ zÞ4
:

Because the final expression is independent of frequency, it holds for a star with an
arbitrary spectrum. In the special case in which the relative 3-velocity of star and
observer is along the line of sight, the above formula reduces to

L ¼ 1� v

1þ v

	 
2

L0 ; where
v [ 0 for recession ;
v\0 for approach :

�

Using these formulas, it is important to distinguish between apparent luminosity
and apparent brightness. The former depends only on the relative velocity of star
and observer, whereas the latter varies inversely as the square of the distance r.
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Chapter 2
Accelerated Motion in Special Relativity

Let a particle of mass m be acted upon by a force F i in some inertial frame. Then

Fi ¼ dpi

dt
¼ m

€zi

_t
¼ m

€zi

c
; t ¼ z0;

where pi is the three-vector portion of the energy–momentum four-vector of the
particle in that frame:

pl ¼ m_zl;

the world line of the particle being represented in the parametric form zl(s) and the
dot denoting differentiation with respect to the proper time s:

�1 ¼ _z2 ¼ �ð_z0Þ2 þ _zi _zi ¼ �_t2c�2;

and

c ¼ 1� dzi

dt

dzi

dt

� ��1=2

:

The force that the particle actually ‘feels’ in its own instantaneous rest frame has
magnitude given by

FR ¼ ma;

where a is the absolute acceleration of the particle:

a2 ¼ €z2:

In general, FR = F, where F2 = FiFi. However, when the three-acceleration is
parallel (or antiparallel) to the three-velocity, the two magnitudes coincide, for we
then have

B. DeWitt, Bryce DeWitt’s Lectures on Gravitation,
Edited by Steven M. Christensen, Lecture Notes in Physics, 826,
DOI: 10.1007/978-3-540-36911-0_2, � Springer-Verlag Berlin Heidelberg 2011
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0 ¼ _z � €z ¼ �_z0 €z0 þ _zi €zi ¼ �_t €z0 � dz

dt

�

�

�

�

�

�

�

�

€zj j
� �

;

a2 ¼ � €z0
� �2þ€zi€zi ¼ 1� dz

dt

� �2
" #

€z2 ¼ €z2

c2
¼ F2

m2
:

Therefore, a particle which starts from rest under the action of a constant force
will experience a constant absolute acceleration.

Let us determine the motion of such a particle under the initial conditions

z ¼ 0; _z ¼ 0; t ¼ 0 at s ¼ 0:

Since the motion is in a straight line, we may retain only two coordinates, t and
z. We have

�1 ¼ �_t2 þ _z2; _t ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

1þ _z2
p

;

0 ¼ �_t€t þ _z€z; €t ¼ _z€z
_t
;

a2 ¼ �€t2 þ €z2 ¼ 1� _z2

_t2

� �

€z2 ¼ €z2

1þ _z2
:

Let u ¼ _z: Then €z ¼ udu=dz and

adz ¼ udu
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2
p ;

assuming motion in the positive z direction, whence

az ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2
p

� 1; u2 ¼ ð1þ azÞ2 � 1;

ds ¼ dz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ azÞ2 � 1
q ¼ 1

a

dð1þ azÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ azÞ2 � 1
q ;

s ¼ 1
a

cosh�1ð1þ azÞ;

z ¼ 1
a
ðcosh as� 1Þ;

_z ¼ sinh as;

_t ¼ cosh as;

t ¼ 1
a

sinh as;

z ¼ 1
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2t2
p

� 1
� 	

�!
1
2at2 as t! 0;

t as t!1;




v � dz

dt
¼ at

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2t2
p �!

at as t! 0;

1 as t!1:
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Problem 4 A cosmic spaceship departs from earth at a constant absolute accel-
eration of 950 cm/s2 (slightly less than the acceleration due to gravity at the earth’s
surface). It maintains this acceleration for s/4 years of proper time, after which it
decelerates at the same rate and in the same direction for another s/4 years of
proper time. At the end of this time it is at rest with respect to the earth, but at a
distance of z light years. Its crew at this point executes a certain assigned mission
on a nearby planet, which takes a negligible amount of time compared to s, and
then returns to earth by an acceleration–deceleration procedure identical with that
of the outward journey. The total voyage has required s years of proper time. Let
t be the number of years that have elapsed on earth since departure. Obtain
expressions for z and t in terms of s, and construct a table giving z and t for
selected values of s ranging from 1 to 60 years. (Hint: express the acceleration in
light years per year and use symmetry arguments to simplify the problem
Table 2.1)

Solution 4

1 ly=year2 ¼ 3� 1010

3:16� 107
¼ 950 cm/s2;

so a = 1. By symmetry, we have

z ¼ 2 cosh
s
4
� 1

� 	

; t ¼ 4 sinh
s
4
:

Problem 5 Suppose the spaceship of Problem 4 did not attempt to return to earth
but merely executed a single acceleration–deceleration maneuver. How far would
it have traveled in 50 years of proper flight time, and how much time would have
elapsed back on earth?

Solution 5 We have

z ¼ 2 cosh
s
2
� 1

� 	

; t ¼ 2 sinh
s
2
:

For s = 50 year, we have

Table 2.1 Comparing proper
time and inertial time at
different distances during the
voyage

s (year) z (ly) t (year)

1 0.0628 1.01
5 1.777 6.41
10 10.26 24.2
15 40.5 85.0
20 146 297
30 1806 3 616
40 22 024 44 052
50 268 000 536 000
60 3 270 000 6 540 000
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t � z � es=2 ¼ e25 ¼ 72� 109 years;
light years:




Problem 6 A cosmic spaceship makes use of the following propulsion mecha-
nism. During an interval of proper time ds the rest mass of the ship decreases by an
amount -dm. This mass decrement is used in the following way. A fraction n
(0 \ n B 1) is converted into kinetic energy (relative to the ship) of the remaining
fraction. This remaining fraction is ejected from the ship in a constant (backward)
direction, with the relative velocity te corresponding to the kinetic energy it has
acquired. Express te as a function of n. What is the proper impulse dp imparted to
the ship during the proper time ds as a result of the ejection of the ‘propellant’?
(Express it as a function of te and dm.) What is the absolute acceleration a expe-
rienced by the ship as a result of this impulse?

Suppose the ship starts from rest (relative to some inertial frame) with an initial
mass m0, and suppose n (and hence te) remains constant in time. Obtain an
expression for the velocity t of the ship at any instant as a function of te, m0 and
the mass m remaining at that instant. (Do not assume constant absolute acceler-
ation.) For what value of te is the propulsion process most efficient, i.e., what
physically allowable value of te yields the maximum value of t for a given m and
m0? To what value of n does this correspond? (To obtain the most efficient pro-
pulsion it will be necessary for the ship to carry antimatter as fuel.)

Solution 6 The kinetic energy of the fraction 1 - n is equated with the rest
energy of the fraction n to give

ð1� nÞð�dmÞðce � 1Þ ¼ nð�dmÞ;

whence

ð1� nÞðce � 1Þ ¼ n; ce � 1 ¼ n
1� n

; ce ¼
1

1� n
;

v2
e ¼ 1� 1

c2
e

¼ 1� ð1� nÞ2 ¼ nð2� nÞ:

Therefore,

ve ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nð2� nÞ
p

The proper impulse imparted to the ship during the proper time ds is

dp ¼ ð1� nÞð�dmÞcev ¼ ð�dmÞve

The absolute acceleration experienced by the ship as a result of this impulse is then
determined from

ma ¼ dp

ds
¼ �ve

dm

ds
;
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so

a ¼ �ve
d
ds

log m

We remember that

a ¼ €z
_t
¼ d

dt
_z ¼ d

dt
ð_tvÞ ¼ d

dt
ðcvÞ

¼ c3v2dv

dt
þ c

dv

dt
¼ c3 v2 þ 1

c2

� �

dv

dt

¼ c3dv

dt
¼ c2dv

ds
;

so that
dv

1� v2
¼ ads ¼ �ved log m;

and finally,

tanh�1 v ¼ ve log
m0

m
:

The result is

v ¼ tanh log m0
m

� �ve¼
m0
mð Þ

ve� m
m0

� 	ve

m0
mð Þ

veþ m
m0

� 	ve

For the most efficient propulsion, te = 1, n = 1, in which case we have

v ¼ m2
0�m2

m2
0þm2

Problem 7 Suppose in Problem 6 that te is chosen for most efficient propulsion,
and suppose fuel is used at such a rate as to maintain constant absolute acceler-
ation. Obtain an expression for the mass m remaining at the proper time s (s = 0
when m = m0). Obtain the corresponding expression for m as a function of the
time t in the inertial frame in which the spaceship is at rest when m = m0. (Choose
the origin of time so that t = 0 at this instant.)

Suppose the spaceship executes a single acceleration–deceleration maneuver as
in Problem 6, with a = 950 cm/s2. Let the total proper time elapsed from the
beginning to the end of the maneuver be s, and let the final mass of the ship (i.e.,
the payload) be m1. Construct a table showing the values of z, t, and m0/m for
selected values of s ranging from 1 to 50 years. Here z and t are respectively the
total distance covered and the total time elapsed for the complete voyage in the
frame in which the spaceship is at rest when m = m0. Include also a column in
your table giving the kinetic energy, in electron volts, of the interstellar hydrogen
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nuclei (protons) as seen from the ship at the midpoint of the journey when the
relative velocity of ship and nuclei is a maximum. (Assume the hydrogen to be at
rest in the original rest frame.) This is the bombardment energy against which the
crew of the ship will have to be shielded (Table 2.2).

Solution 7 We have

te ¼ 1; a ¼ � d
ds

log m; as ¼ log
m0

m
;

whence

m ¼ m0e�as

Now

m ¼ m0ðcosh as� sinh asÞ;

so

m ¼
m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2t2
p

� at
� �

�!
t!0

m0ð1� atÞ;

m0at
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
a2t2

q

� 1
� 	

�!
t!1

m0
2at:

8

<

:

For the acceleration–deceleration maneuver with a = 1 ly/year2, we have (see
solution to Problem 6)

z ¼ 2 cosh
s
2
� 1

� 	

; t ¼ 2 sinh
s
2
;

m0

m1
¼ es;

cmax ¼ _tmax ¼ cosh
s
2
;

Kmax ¼ mpðcmax � 1Þ ¼ mp cosh
s
2
� 1

� 	

; where mp ¼ 0:938� 109 eV:

Problem 8 [Taken from Tau Zero by Paul Anderson, Doubleday, Garden City,
New York (1970).] A spaceship is traveling between galaxies at a velocity t with

Table 2.2 Parameters for Problem 7

s (year) z (ly) t (year) m0/m1 Kmax (eV)

1 0.255 1.04 2.718 1.20 9 108

3 2.70 4.26 20.09 1.27 9 109

5 10.26 12.1 148.4 4.81 9 109

10 146 148 22 026 6.86 9 1010

20 22 024 22 026 4.85 9 108 1.03 9 1013

30 3 270 000 3 270 000 1.07 9 1013 1.53 9 1015

40 485 000 000 485 000 000 2.36 9 1017 2.27 9 1017

50 72 000 000 000 72 000 000 000 5.20 9 1021 3.37 9 1019
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respect to the intergalactic gas. (This gas is presumably mainly hydrogen, although
it may consist of many other elements as well, including antihydrogen.) The ship is
equipped with a scoop of cross-sectional area A with which it traps the gas in its
path. The trapped gas is passed through a nuclear furnace which transmutes it (e.g.,
binding deuterium nuclei into helium, annihilating proton–antiproton pairs, etc.).
The reaction products are then ejected, with no loss of total energy (relative to the
ship), out the ‘back’ end of the ship. Let dm be the mass of gas trapped by the ship

in a proper time interval ds. This mass arrives with total energy cdm ðc ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p

Þ relative to the ship, and the reaction products leave with total energy

ð1� nÞc0dm ðc0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v02
p

Þ; where n is the fractional decrease of rest mass
under the transmutation and t0 is the ejection velocity relative to the ship. By
equating the two energies, obtain a relation between c, c0 and n, and also an
expression for the total proper impulse transmitted to the ship as a result of the
transmutation of the mass dm.

If the ship is traveling sufficiently fast, the above process may be used as a kind
of ram-jet process whereby the ship is propelled without having to carry its own
fuel supply, so that its mass M remains constant. Obtain an expression for the
absolute acceleration a imparted to the ship by the ram-jet process as a function of
t (or c), A, n, M and the density q of the intergalactic gas (in its own rest frame).
Obtain the limiting form of this expression as t ? 1, c? ?. How big will a be in
this limiting case if A = 103 m2, M = 104 kg, n = 0.01, and q = 10-26 kg/m3?
What implications does your answer have for the feasibility of such a ship? If the
origin of proper time is chosen so that the ship’s velocity is t0 when s = 0, obtain
an expression for t as a function of s in the special case n = 1 (total conversion of
matter). (Note: in solving this problem do not forget to take into account the
compression of the gas, as seen from the ship’s frame, resulting from the Lorentz
contraction. This is crucial!)

Solution 8 We have

ð1� nÞc0 ¼ c

and

c02v02 ¼ c02 � 1 ¼ c2

ð1� nÞ2
� 1 ¼ c2 � 1þ nð2� nÞ

ð1� nÞ2
:

Hence,

dp ¼ ð1� nÞc0v0 � cv½ �dm

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � 1þ nð2� nÞ
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � 1
p

h i

dm

Since
dm

ds
¼ Aqcv ¼ Aq

ffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � 1
p

;
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we have

a ¼ 1
M

dp

ds
¼ Aq

M
ðc2 � 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ nð2� nÞ
c2 � 1

s

� 1

" #

�!
c!1

1
2
nð2� nÞAq

M

In MKS units,

alim ¼
1
2
nð2� nÞAqc2

M
¼ 1

2
� 0:01� 1:99� 103 � 10�26 � 9� 1016

104
m/s2;

whence

alim ¼ 9� 10�13 m/s2 !!

Now

c2 � 1 ¼ 1
1� v2

� 1 ¼ v2

1� v2
; 1þ 1

c2 � 1
¼ 1þ 1� v2

v2
¼ 1

v2
:

When n = 1, we have (see also the solution to Problem 6)

dv

1� v2
¼ ads ¼ Aq

M

v2

1� v2

1
v
� 1

� �

ds;

dv ¼ Aq
M

vð1� vÞds;

1
v
þ 1

1� v

� �

dv ¼ Aq
M

ds;

log
v

t0
� log

1� v

1� t0
¼ Aq

M
s;

v

1� v
¼ v0

1� v0
eAqs=M;

1þ v0

1� v0
eAqs=M

� �

v ¼ v0

1� v0
eAqs=M ;

v ¼ v0eAqs=M

1þv0 eAqs=M�1ð Þ ¼
1

1þ1�v0
v0

e�Aqs=M

2.1 Accelerated Meter Stick

Let a meter stick be idealized as a line parallel to the x1-axis in a certain Lorentz
frame characterized by coordinates xl. The points of the meter stick may be
labeled by a single parameter n. Let xi(n, t) be the coordinates of the point n at the
time t(= x0). Suppose that
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x1ðn; tÞ ¼ n; 0	 n	 1 (range of meter stick);

x2ðn; tÞ ¼ f ðtÞ; for all n; where jf 0ðtÞj\1 for all t;

x3ðn; tÞ ¼ 0; for all n and t:

Under these conditions, the meter stick always appears to be straight and parallel
to the x1-axis and to move in the (x1, x2) plane in the x2 direction according to a
law of motion given by the arbitrary function f(t). At least that is how it appears
in the present Lorentz frame! Note that all points of the meter stick appear to
move in unison in the x2 direction in this frame. Because the concept of
simultaneity is frame-dependent, we may expect it to behave in a different
fashion in some other Lorentz frame. Let us see how it behaves in a Lorentz
frame that moves with velocity t(\1) in the x1 direction relative to the present
frame. The relevant Lorentz transformation is

t ¼
�t þ v�x1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p ; x1 ¼ v�t þ �x1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p ; x2 ¼ �x2; x3 ¼ �x3;

which yields

�x1ðn;�tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p

x1ðn; tÞ � v�t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p

n� v�t;

�x2ðn;�tÞ ¼ x2ðn; tÞ ¼ f
�t þ v�x1ðn;�tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p

� �

¼ f
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p

�t þ vn
� 	

;

�x3ðn;�tÞ ¼ x3ðn; tÞ ¼ 0:

The first of these equations shows the meter stick moving in the �x1 direction
with velocity -t and suffering a Lorentz contraction in that direction. The
second equation shows the meter stick also moving in the �x2 direction, at a rate
reduced by the time dilation factor. This equation shows, moreover, that the
motion is now not in unison. The points having the greater n values lead the
others. Although the third equation shows that the motion continues to be in a
plane, it is not possible to express the new appearance of the meter stick in terms
of a simple tilt in this plane. This would be possible only if the function f(t) were
linear. More generally, the meter stick now ceases to appear as a straight line.
But meter sticks do not bend just because we choose to look at them in a new
reference frame! Or do they? In order to examine this question, we must study
the general problem of rigidity.

2.2 Rigid Motions in Special Relativity

We shall study first the general motion of an arbitrary continuous medium in
spacetime. We shall have occasion to consider continuous media several times in
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these lectures, and therefore the formalism developed here will have a utility
extending beyond the present context.

Let the component particles of the medium be labeled by three parameters ni,
i = 1, 2, 3, and let the world line of particle n be given by four functions
xl(n, s), l = 0, 1, 2, 3, where s is its proper time. In the general theory of rela-
tivity the xl may be arbitrary coordinates in curved spacetime, but here we may
assume them to be standard coordinates of some Lorentz frame.

Let ni ? dni be the labels of a neighboring particle. Its world line is given by
the functions

xlðnþ dn; sÞ ¼ xlðn; sÞ þ xl
;iðn; sÞdni;

where the comma followed by a Latin index denotes partial differentiation with
respect to the corresponding n. The four-vector xl

;iðn; sÞdni; representing the dif-
ference between the two sets of world-line functions, is not generally orthogonal to
the world line of n. To get such a vector it is necessary to apply the projection
tensor on the instantaneous hyperplane of simultaneity:

dxl � Pl
m xm
;idni; Plm ¼ glm þ _xl _xm;

where the dot denotes partial differentiation with respect to s, and we note that in
general relativity the projection tensor will take the form Plm ¼ glm þ _xl _xm; with
glm the metric tensor of spacetime. It is easy to verify that application of the
projection tensor corresponds to a simple proper-time shift of amount

ds ¼ glm _xl _xm
;idni;

so that

dxl ¼ xlðnþ dn; sþ dsÞ � xlðn; sÞ:

The two particles n and nþ dn appear, in the instantaneous rest frame of either, to
be separated by a distance ds given by

ðdsÞ2 ¼ ðdxÞ2 ¼ cijdnidnj;

where

cij ¼ Plmx
l
;ix

m
;j:

The quantity cij is called the proper metric of the medium. The medium undergoes
rigid motion if and only if its proper metric is independent of s. Under rigid motion
the instantaneous separation distance between any pair of neighbouring particles is
constant in time.

It is sometimes convenient to express the rigid motion condition _cij ¼ 0 in
terms of derivatives with respect to the coordinates xl. Just as the xl are functions
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of the ni and s, so, inversely, may the ni and s be regarded as functions of the xl, at
least in the domain of spacetime occupied by the medium. We shall write

ul � _xl; u2 ¼ �1; Plm ¼ glm þ ulum:

If f is an arbitrary function over the domain occupied by the medium then

f;l ¼ f;in
i
;l þ _f s;l;

where the comma followed by a Greek index denotes partial differentiation with
respect to the corresponding x. We also have

_x � €x ¼ 0 or u � _u ¼ 0;

ulul
;m ¼ 0; _ul ¼ ul;mu

m; ulul
;i ¼ 0;

xl
;in

i
;m þ _xls;m ¼ dl

m ;

ni
;lxl

;j ¼ di
j; ni

;l _xl ¼ 0;

s;lxl
;i ¼ 0; s;l _xl ¼ 1;

Plm _xm
;i ¼ Plmu

m
;i ¼ ul;i:

We now define the rate-of-strain tensor for the medium:

rlm � _cijn
i
;ln

j
;m

¼ _Prsx
r
;ix

s
;j þ Prs _xr

;ix
s
;j þ Prsx

r
;i _x

s
;j

� 	

ni
;ln

j
;m

¼ ð _urus þ ur _usÞðdr
l � urs;lÞ ds

m � uss;m
� �

þ us;in
i
;lðds

m � uss;mÞ þ ðdr
l � urs;lÞur;jn

j
;m

¼ _ulum þ ul _um þ _uls;m þ s;l _um

þ um;l � _ums;l þ ul;m � _uls;m
¼ ul;rurum þ ulurum;r þ um;l þ ul;m

¼ Pr
lPs

mður;s þ us;rÞ:

ð2:1Þ

The rate-of-strain tensor is seen to lie completely in the instantaneous hyperplane
of simultaneity. It is the relativistic generalization of the nonrelativistic rate-of-
strain tensor

rij ¼ vi;j þ vj;i;

where ti is a three-velocity field and the differentiation is with respect to ordinary
Cartesian coordinates. Let us look for a moment at this tensor. The nonrelativistic
condition for rigid motion is
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rij ¼ 0 everywhere:

This equation implies

0 ¼ rij;k ¼ vi;jk þ vj;ik; ð2:2Þ

0 ¼ rjk;i ¼ vj;ki þ vk;ji: ð2:3Þ

Subtracting (2.3) from (2.2) and making use of the commutativity of partial dif-
ferentiation, we find

vi;jk � vk;ji ¼ 0; ð2:4Þ

which, upon permutation of the indices j and k, yields also

vi;kj � vj;ki ¼ 0: ð2:5Þ

Adding (2.2) and (2.5) we finally get

vi;jk ¼ 0;

which has the general solution

vi ¼ �xijxj þ bi; ð2:6Þ

where xij and bi are functions of time only. The condition rij = 0 constrains xij to
be antisymmetric, i.e.,

xij ¼ �xji;

and nonrelativistic rigid motion is seen to be, at each instant, a uniform rotation
with angular velocity

xi ¼
1
2
eijkxjk

about the coordinate origin, superimposed upon a uniform translation with velocity
bi. Because the coordinate origin may be located arbitrarily at each instant, rigid
motion may alternatively be described as one in which an arbitrary particle in the
medium moves in an arbitrary fashion while at the same time the medium as a
whole rotates about this point in an arbitrary (but uniform) fashion. Such a motion
has six degrees of freedom.

It turns out that relativistic rigid motion, which is characterized by the condition

rlm ¼ 0 or _cij ¼ 0;

has only three degrees of freedom! Pick an arbitrary particle in the medium and let
it be the origin of the labels ni. Let its world line xl(0,s) be arbitrary (but timelike).
Introduce a local rest frame for the particle, characterized by an orthonormal triad
ni

l(s):

ni � nj ¼ dij; ni � u0 ¼ 0; u2
0 ¼ �1; ul

0 � _xlð0; sÞ:
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Then let the world lines of all the other particles of the medium be given by

xlðn; sÞ ¼ xlð0; rÞ þ ninl
i ðrÞ; ð2:7Þ

where r is a certain function of the ni and s. To determine this function, write

ul ¼ _xlðn; sÞ ¼ ðul
0 þ ni _nl

i Þ _r;

all arguments being suppressed in the final expression. Here and in what follows, it
is to be understood that dots over u0 and the ni denote differentiation with respect
to r, while the dot over r denotes differentiation with respect to s. It will be
convenient to expand _ni in terms of the orthonormal tetrad u0, ni:

_nl
i ¼ a0iu

l
0 þ Xijn

l
j :

The coefficients a0i are determined, from the identity

_ni � u0 þ ni � _u0 ¼ 0;

to be just the components of the absolute acceleration of the particle n = 0 in its
local rest frame:

a0i ¼ ni � _u0;

and the identity

_ni � nj þ ni � _nj ¼ 0

tells us that Xij is antisymmetric:

Xij ¼ �Xji:

We now have

ul ¼ 1þ nia0i

� �

ul
0 þ niXijn

l
j

h i

_r:

But

�1 ¼ u2 ¼ � 1þ nia0i

� �2� ninjXikXjk

h i

_r2;

whence

_r ¼ 1þ nia0i

� �2� ninjXikXjk

h i�1=2
: ð2:8Þ

The right hand side of this equation is a function solely of r and the ni. Therefore
the equation may be integrated along each world line n = const., subject, say, to
the boundary condition

rðn; 0Þ ¼ 0:
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We shall, in particular, have the necessary condition

rð0; sÞ ¼ s:

We note that the medium must be confined to regions where

1þ nia0i

� �2
[ niXikn

jXjk ð
 0Þ:

Otherwise, some of its component particles will be moving faster than light.
Let us now compute the proper metric of the medium. We have

ni � u ¼ �Xijn
j _r; ð2:9Þ

xl
;i ¼ nl

i þ ðu
l
0 þ nj _nl

j Þr;i ¼ nl
i þ ul _r�1r;i;

ulxl
;i ¼ �Xijn

j _r� _r�1r;i;

cij ¼ Plmx
l
;ix

m
;j

¼ dij � Xikn
kr;j � Xjkn

kr;i � _r�2r;ir;j

þ Xikn
k _rþ _r�1r;i

� �

Xjln
l _rþ _r�1r;j

� �

¼ dij þ _r2XikXjln
knl:

ð2:10Þ

From this expression and the expression (2.8) for _r on the preceding page, we see
that the only way in which the motion of the medium can be rigid is either for all
the Xij to vanish or for all the Xij, together with the a0i, to be constants, inde-
pendent of r. In the latter case the motion is one of a six-parameter family (the Xij

and the a0i are the parameters) of special motions known as superhelical motions,
of which we shall study one simple example later (constant rotation about a fixed
axis). For the present we concentrate on the case in which all the Xij vanish.

2.3 Fermi–Walker Transport

When the Xij vanish the triad ni
l is said to be Fermi–Walker transported along the

world line of the particle n = 0. More generally, any tensor whose components
relative to the tetrad u0

l, ni
l remain constant along the world line n = 0 is said to be

Fermi–Walker transported along that world line. It is sometimes convenient to
express the condition for Fermi–Walker transport without reference to the triad ni

l.
Writing, for a vector Al along the world line,

Al ¼ Auul
0 þ Ain

l
i ;

where

Au ¼ �A � u0; Aia0i ¼ A � _u0;

we have, if Al is Fermi–Walker transported,
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_Al ¼ Au _ul
0 þ Aia0iu

l
0 ¼ A � _u0ul

0 � u0 _ul
0

� �

;

an equation that admits of immediate generalization to tensors of arbitrary rank.
It is not possible to maintain the orientation (in spacetime) of the local-rest-

frame triad ni
l constant along a world line unless that world line is straight. Under

Fermi–Walker transport, however, the triad remains as constantly oriented, or as
rotationless, as possible. The components of the _ni all vanish in the instantaneous
hyperplane of simultaneity.

For a general non-Fermi–Walker transported triad, the Xij are the components
of the angular-velocity tensor that describes the instantaneous rate of rotation of
the triad in the instantaneous hyperplane of simultaneity. The general motion of
the medium introduced in (2.7) on p. 25 may be described formally as one in
which the particle n = 0 moves in an arbitrary fashion and the medium as a whole
executes an arbitrary rotation about this particle. But only if the rotation is absent
is this motion truly rigid. Rigid motion in special relativity therefore possesses
only the three degrees of freedom that the particle n = 0 itself possesses. Even
these three degrees of freedom are not always attainable. In the case of superhe-
lical motion, there are no degrees of freedom at all. Once the medium gets into
superhelical motion, it must remain frozen into it if it wants to stay rigid.

Problem 9 A particle undergoes acceleration dv/dt in a certain inertial frame.
‘Attached’ to this particle is a four-vector Sl that is orthogonal to the particle
world line and Fermi–Walker transported along this line. The four-vector therefore
satisfies the equations

S � u ¼ 0; _Sl ¼ ðS � _uÞul;

where u is the particle’s four-velocity and the dot denotes differentiation with
respect to the proper time. Instead of dealing with Sl, it is often convenient to work
with the three-vector part of

S
l ¼ Ll

m Sm;

where Lm
l is the Lorentz boost transformation to the local rest frame of the particle:

Ll
m

� �

¼ c �cv
�cv 1þ ðc� 1Þv̂v̂

� �

;

where

c ¼ ð1� v2Þ�1=2; v̂ ¼ v=jvj; 1 ¼ unit dyadic:

Show that the boost transformation is indeed a Lorentz transformation and that the
inverse transformation Lm

-1l back to the original frame is obtained from Lm
l by

making the replacement v! �v. Show that in the boosted frame (rest frame), we
have �S0 ¼ 0 and
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ul ¼ Ll
m um ¼ ð1; 0; 0; 0Þ:

In the boosted frame, we may write

_S
l ¼ _Ll

m Sm þ Ll
m

_Sm ¼ _Ll
m L�1m

r S
r þ ðS � _uÞul;

of which the three-vector part reduces to

_S
i ¼ _Li

lL�1l
j S

j
:

By straight forwardly computing _Li
lL�1l

j ; show that this equation may be rewritten
in the three-vector language

dS

dt
¼ X� S;

and obtain an expression for X in terms of c, v, and dv/dt. Suppose that the particle
moves with constant angular velocity x around a circle of radius a. Obtain an
expression for the precession frequency |X| of the three-vector S under these
circumstances, and show that the precession is retrograde.

Solution 9 Note first that

c �cv

�cv 1þ ðc� 1Þv̂v̂

 !

c cv

cv 1þ ðc� 1Þv̂v̂

 !

¼
c2 � c2v2 c2v� cv� cðc� 1Þv

�c2vþ cvþ cðc� 1Þv �c2vvþ 1þ 2ðc� 1Þv̂v̂þ ðc� 1Þ2v̂v̂

 !

¼
1 0

0 1

 !

;

because

�v2c2 þ 2ðc� 1Þ þ ðc� 1Þ2 ¼ ð1� v2Þc2 � 1 ¼ 0:

Therefore, Lm
-1l is indeed obtained by making the replacement v ? - v. Now the

condition that _Ll
m be a Lorentz transformation may be expressed in the form

glmL
l
rLm

s ¼ grs;

or, dropping indices,

LTgL ¼ g; LTg ¼ gL�1; L ¼ gL�1Tg;

where the superscript T denotes transpose. But, in virtue of the form of g and the
symmetry of L-1 in the present case, the last equation is obviously satisfied.
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To show that S
0

vanishes, we first show that

ulð Þ ¼ Ll
m um

� �

¼
c �cv

�cv 1þ ðc� 1Þv̂v̂

 !

c

cv

 !

¼
c2ð1� v2Þ

�c2 þ cþ cðc� 1Þ½ �v

 !

¼
1

0

 !

:

From this it follows immediately that

0 ¼ S � u ¼ S � u ¼ �S
0
:

Finally,

_Li
l

� 	

¼ �c3ðv � _vÞv� c _v; c3ðv � _vÞv̂v̂þ ðc� 1Þ _vv

v2
þ v _v

v2
� 2

v � _v
v2

v̂v̂

� �� �

;

L�1l
j

� 	 cv

1þ ðc� 1Þv̂v̂

� �

;

_Li
lL�1l

j

� 	

¼ �c4ðv � _vÞvv� c2 _vvþ c3ðv � _vÞv̂v̂

þ ðc� 1Þ _vv

v2
þ v _v

v2
� 2

v � _v
v2

v̂v̂

� �

þ c3ðc� 1Þðv � _vÞv̂v̂

þ ðc� 1Þ2 _vv

v2
þ v _v

v2
v̂v̂� 2

v � _v
v2

v̂v̂

� �

¼ �c4v2 þ c3 � 2
c� 1

v2
þ c3ðc� 1Þ � ðc� 1Þ2

v2

" #

ðv � _vÞv̂v̂

þ �c2 þ c� 1
v2
þ ðc� 1Þ2

v2

" #

_vvþ c� 1
v2

v _v

¼ c2 � c2 � 1
v2

� �

ðv � _vÞv̂v̂þ ð�c2 þ 1þ c2 � cÞ _vv

v2
þ c� 1

v2
v _v

¼ c� 1
v2

v _v� _vvð Þ;

whence

_S ¼ c� 1
v2

v _v� _vvð Þ � S;

or

dS

dt
¼ X� S;
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where

X ¼ �c�1
v2 v� dv

dt
¼ �ðc� 1Þv̂� dv̂

dt

In the case of the particle moving in a circle, we have

dv

dt
¼ x� v; x � v ¼ 0;

X ¼ �c� 1
v2

v� ðx� vÞ ¼ �c� 1
v2

v2x� ðx � vÞv
� �

;

so that

X ¼ �ðc� 1Þx

where

jvj ¼ ajxj; c ¼ ð1� a2x2Þ�1=2

2.4 Flat Proper Geometry

When the Xij vanish the proper geometry of the medium is flat [see (2.10) on
p. 26]:

cij ¼ dij:

Moreover, we have [see (2.9) on p. 26]

ni � u ¼ 0;

so that the instantaneous hyperplane of simultaneity of the particle at n = 0 is an
instantaneous hyperplane of simultaneity for all the other particles of the medium
as well, and the triad ni

l serves to define a rotationless rest frame for the whole
medium. In other words, the coordinate system defined by the parameters ni may
itself be regarded as being Fermi–Walker transported, and all the particles of the
medium have a common designator of simultaneity in the parameter r. Because r
is not generally equal to s, however, it is not possible for the particles to have a
common synchronization of standard clocks. The relation between r and s is given
by (2.8) on p. 25 as

_r ¼ 1þ nia0i

� ��1
;

which permits us to compute the absolute acceleration ai of an arbitrary particle in
terms of a0i and the ni:

30 2 Accelerated Motion in Special Relativity



ai ¼ ni � _u ¼ ni �
ou

or
_r ¼ _rni �

o

or
1þ nja0j

� �

u0 _r
� �

¼ _r2ð1þ nja0jÞni � _u0

¼ a0i

1þ nja0j
:

We see that, although the motion is rigid and ‘rotationless’, not all parts of the
medium ‘feel’ the same acceleration.

When the Xij vanish it is sometimes convenient to make use of r and ni as
coordinates of spacetime. In these coordinates, the metric tensor takes the form

g00 ¼
oxl

or

�

�

�

�

n

oxm

or

�

�

�

�

n

glm ¼ u2 _r�2 ¼ �ð1þ nia0iÞ2;

gi0 ¼ g0i ¼
oxl

oni

�

�

�

�

r

oxm

or

�

�

�

�

n

glm ¼ ðni � uÞ _r�1 ¼ 0;

gij ¼
oxl

oni

�

�

�

�

r

oxm

onj

�

�

�

�

r

glm ¼ ni � nj ¼ dij;

which has a simple diagonal structure. We note that this metric becomes static, i.e.,
time-independent, with the parameter r now playing the role of ‘time’, in the
special case in which the acceleration of each particle is constant.

Problem 10 The Rotationless Constantly Accelerating Medium
Suppose the particle at n = 0 undergoes constant absolute acceleration from

rest in the x1 direction in some inertial frame. One may choose initial conditions in
such a way that this motion takes the form

x0ð0; rÞ ¼ 1
a

sinh ar; x1ð0; rÞ ¼ 1
a

cosh ar; x2ð0; rÞ ¼ 0 ¼ x3ð0; rÞ:

Introduce a convenient Fermi–Walker transported triad with which to define the
local rest frame of the particle, and let the spacetime coordinates of the remaining
particles of the medium be defined, in terms of the r and the ni, as above. Obtain r
as a function of s under the boundary condition r = 0 when s = 0. Obtain also
explicit forms for the functions xl(n, s) as well as the metric of spacetime in the
coordinate system r, ni. Draw a flow diagram in the (x0, x1) plane, showing the
world lines of the particles of the medium. Draw on this diagram some instanta-
neous hyperplanes of simultaneity and indicate the maximum region of spacetime
accessible to the medium (Fig. 2.1).

Solution 10 We have

u0
0 ¼ cosh ar; u1

0 ¼ sinh ar; u2
0 ¼ 0 ¼ u3

0:

We may evidently choose
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n0
1 ¼ sinh ar n0

2 ¼ 0 n0
3 ¼ 0

n1
1 ¼ cosh ar n1

2 ¼ 0 n1
3 ¼ 0

n2
1 ¼ 0 n2

2 ¼ 1 n2
3 ¼ 0

n3
1 ¼ 0 n3

2 ¼ 0 n3
3 ¼ 1

a01 ¼ n1 � _u0 ¼ a; a02 ¼ n2 � _u0 ¼ 0; a03 ¼ n3 � _u0 ¼ 0;

_r ¼ ð1þ an1Þ�1; r ¼ s
1þan1

x0ðn; sÞ ¼ 1
a

sinh arþ n1 sinh ar ¼ 1þ an1

a
sinh

as

1þ an1

x1ðn; sÞ ¼ 1
a
rþ n1 cosh ar ¼ 1þ an1

a
cosh

as

1þ an1

x2ðn; sÞ ¼ n2

x3ðn; sÞ ¼ n3

glm
� �

r;n¼ diag �ð1þ an1Þ2; 1; 1; 1
� 	

2.5 Constant Rotation About a Fixed Axis

The simplest example of a medium undergoing rigid rotation is obtained by
choosing

Fig. 2.1 Flow diagram of a
rigid medium in inertial
coordinates
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a0i ¼ 0; X12 ¼ x; X23 ¼ 0 ¼ X31:

The world line of the particle at n = 0 is then straight, but the world lines of all the
other particles are helices of constant pitch. We have

_r ¼ 1� x2 ðn1Þ2 þ ðn2Þ2
h in o�1=2

and the proper metric of the medium takes the form

cij

� �

¼
1þ ð _rxn2Þ2 �ð _rxÞ2n1n2 0

�ð _rxÞ2n1n2 1þ ð _rxn1Þ2 0

0 0 1

0

B

B

@

1

C

C

A

:

It is convenient to relabel the particles by means of three new coordinates
r, h, z given by

n1 ¼ r cos h; n2 ¼ r sin h; n3 ¼ z:

In terms of these coordinates the proper distance ds between two particles sepa-
rated by displacements dr; dh; and dz takes the form

ds2 ¼ ðdrÞ2 þ r2

1� x2r2
ðdhÞ2 þ ðdzÞ2:

The second term on the right of this equation may be understood as arising from
the Lorentz contraction phenomenon. The problem of the rotating medium is
sometimes posed as the so-called ‘spinning disc paradox’ and stated as follows.
A disc of radius r is set spinning with angular frequency x about its axis. Radial
distances are unaffected, but distances in the direction of rotation become Lorentz
contracted. In particular, the circumference of the disc gets reduced to the value

2pR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2R2
p

: But this contradicts the Euclidean nature of the ordinary three-
space that the disc inhabits!

What in fact happens is that, when set in rotation, the disc must suffer a
strain that arises for kinematic reasons quite apart from any strains it suffers on
account of centrifugal forces. In particular, it must undergo a stretching of
amount (1 - x2 r2)-1/2 in the direction of rotation, to compensate the Lorentz
contraction factor (1 - x2r2)1/2 that appears when the disc is viewed in the
inertial rest frame of its axis, thereby maintaining the Euclidean nature of three-
space. It is this stretching factor that appears in the proper metric of the
medium.

We note that the medium must be confined to regions where r \ x-1 and that
its motion will not be rigid if x varies with time. We note also that the proper
geometry of the medium is not flat.
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Problem 11 Verify that the proper metric of the rotating medium takes the form

diag 1;
r2

1� x2r2
; 1

� �

with respect to the coordinates r, h, z.

Solution 11 We have

_r2 ¼ 1
1� x2r2

:

Hence,

crr ¼
oni

or

onj

or
cij

¼ cos2 h 1þ ð _rÞ2 sin2 h
h i

� 2ð _rÞ2 sin2 h cos2 h

þ sin2 h 1þ ð _rxrÞ2 cos2 h
h i

¼ 1;

crh ¼ chr ¼
oni

or

onj

oh
cij

¼ �r sin h cos h 1þ ð _rÞ2 sin2 h
h i

� rð _rÞ2 sin h cos3 h

þ rð _rÞ2 sin3 h cos hþ r sin h cos h 1þ ð _rÞ2 cos2 h
h i

¼ 0;

crz ¼ czr ¼
oni

or

onj

oz
cij ¼ 0; huki/ ¼ h=ðln akÞi/

chh ¼
oni

oh
onj

oh
cij

¼ r2 sin2 h 1þ ð _rxrÞ2 sin2 h
h i

þ 2r2ð _rxrÞ2 sin2 h cos2 h

þ r2 cos2 h 1þ ð _rÞ2 cos2 h
h i

¼ r2 1þ ð _rÞ2
h i

¼ r2 1þ x2r2

1� x2r2

� �

¼ r2

1� x2r2
;

chz ¼ czh ¼
oni

oh
onj

oz
cij ¼ 0;

czz ¼
oni

oz

onj

oz
cij ¼ 1:

34 2 Accelerated Motion in Special Relativity



Problem 12 Show that the motion defined by the functions

x0ðn; sÞ ¼ 1þ an3

a
sinh ar;

x1ðn; sÞ ¼ n1 þ vr;

x2ðn; sÞ ¼ n2;

x3ðn; sÞ ¼ 1þ an3

a
cosh ar;

where a and m are constants, is rigid. Here r is a function of s and the ni, having a
form such that s is the proper time along each world line n = const. Obtain the
proper metric of the flow and state (with arguments) whether the proper geometry
is flat.

Solution 12 We have

_x0ðn; sÞ ¼ ð1þ an3Þ _r cosh ar;

_x1ðn; sÞ ¼ v _r;

_x2ðn; sÞ ¼ 0;

_x3ðn; sÞ ¼ ð1þ an3Þ _r sinh ar;

whence

�1 ¼ u2 ¼ � ð1þ an3Þ2 � v2
h i

_r2; _r ¼ ð1þ an3Þ2 � v2
h i�1=2

:

The medium is confined to the region

n3 [ � 1� v

a
:

Now

xl
;1

� 	

¼ ð0; 1; 0; 0Þ; xl
;2

� 	

¼ ð0; 0; 1; 0Þ;

xl
;3

� 	

¼ sinh arþ ð1þ an3Þr;3 cosh ar; vr;3; 0; cosh arþ ð1þ an3Þr;3 sinh ar
� �

;

u � x;1 ¼ v _r; u � x;2 ¼ 0;

u � x;3 ¼ �ð1þ an3Þ _r sinh ar cosh ar� ð1þ an3Þ2 _rr;3 cosh2 ar

þ v2 _rr;3 þ ð1þ an3Þ sinh ar cosh arþ ð1þ an3Þ2 _rr;3 sinh2 ar

¼ � ð1þ an3Þ2 � v2
h i

_rr;3 ¼ � _r�1r;3;
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c11 ¼ x;1 � x;1 þ ðu � x;1Þ2 ¼ 1þ v2 _r2 ¼ 1þ v2

ð1þ an3Þ2 � v2

¼ ð1þ an3Þ2

ð1þ an3Þ2 � v2
;

whence

c11 ¼ ð1� v2Þ�1; v � v
1þan3

c12 ¼ c21 ¼ x;1 � x;2 þ ðu � x;1Þðu � x;2Þ¼ 0 ;

c13 ¼ c31 ¼ x;1 � x;3 þ ðu;1Þðu � x;3Þ ¼ vr;3 � vr;3¼ 0 ;

c22 ¼ x;2 � x;2 þ ðu � x;2Þ2¼ 1 ;

c23 ¼ c32 ¼ x;2 � x;3 þ ðu;2Þðu � x;3Þ¼ 0 ;

c33 ¼ x;3 � x;3 þ ðu;3Þ2

¼ � sinh arþ ð1þ an3Þr;3 cosh ar
� �2þðvr;3Þ2

þ cosh arþ ð1þ an3Þr;3r
� �2þ _r�1r;3

� �2

¼ 1� ð1þ an3Þ2 � v2 � _r�2
h i

ðr;3Þ2¼ 1 ;

or

ðcijÞ ¼ diag 1
1�v2; 1; 1
� 	

The stretching factor 1=ð1� vÞ2; although in only one direction, prevents the
proper geometry from being flat.

2.6 Irrotational Flow

When the Xij are nonvanishing, there exists no global hypersurface of simulta-
neity. This is a general property of rotational motion, whether rigid or not. The
motion, or flow, of a fluid medium is said to be irrotational if and only if there
exists a family of hypersurfaces that cut the world lines of all the particles of the
medium orthogonally. In order that such a family exist, one must be able to
write

ul ¼ k/;l ð2:11Þ

36 2 Accelerated Motion in Special Relativity



for some scalar function /. Here k is a normalizing factor and the hypersurfaces /
= const. are global hypersurfaces of simultaneity. We have

k ¼ �/;l/
l
;

� 	�1=2
;

k;l ¼ �/;l/
l
;

� 	�3=2
/m
;/;ml ¼ k2um/;ml;

/;lm ¼ �k�2ulk;m þ k�1ul;m;

ul;m ¼ kPr
l/;rm; Pr

lPs
mur;s ¼ kPr

lPs
m/;rs:

Because of the commutativity of partial differentiation, we have, as the necessary
and sufficient condition for the integrability of (2.11),

Pr
lPs

mður;s � us;rÞ ¼ 0:

This is the condition for irrotational flow. Its nonrelativistic analog is (see p. 23)

vi;j � vj;i ¼ 0;

which implies the existence of a scalar function / such that

vi ¼ /;i:

A nonrelativistic motion that is both rigid and irrotational reduces simply to [see
(2.6) on p. 24]

vi ¼ bi;

where bi is a function of time alone.
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Chapter 3
Realizations of Continuous Groups

General relativity replaces the flat spacetime of special relativity by a curved
Riemannian manifold and extends the invariance group of the theory (i.e., the
group of transformations that leave the forms of all dynamical equations invariant)
from the Poincaré group to the group of general differentiable coordinate trans-
formations, known to mathematicians as the diffeomorphism group. It will be
helpful, in introducing the formal apparatus of general relativity, to develop first a
little of the theory of groups of continuous transformations.

A continuous group, in the abstract, is a group whose elements may be regarded
as points in a differentiable manifold. Moreover, if n1 and n2 are two group
elements then their product n1n2, as a point in the manifold, must depend in a
differentiable way on the points n1 and n2. In any sufficiently small region of the
group (as in any differentiable manifold) a coordinate patch may be laid down
which attaches labels na to the group elements n. The index a may come from a
discrete finite set, in which case the group manifold is an ordinary finite dimen-
sional manifold, or it may come from a continuous set, in which case the group is
infinite dimensional. In the latter case the index a will typically stand for a col-
lection of labels, some discrete and some denoting points in another (finite
dimensional) manifold. When a comes from a continuous set the words ‘deriva-
tive’, ‘differentiation’ and ‘differentiable’ mean ‘functional derivative’, ‘func-
tional differentiation’ and ‘functionally differentiable’, and the summation
convention for repeated indices is extended to imply integration over the contin-
uous set.

Continuous groups are generally encountered not in the abstract but as trans-
formation groups in which each group element is envisaged as inducing a certain
diffeomorphism in some other manifold. Let / be a point of this other manifold.
A coordinate patch may be laid down which attaches labels /i to this point. If n is
sufficiently close to the identity it will induce a transformation /! / such that /
remains within the coordinate patch. In terms of coordinate labels, the transfor-
mation may be expressed in the explicit form

B. DeWitt, Bryce DeWitt’s Lectures on Gravitation,
Edited by Steven M. Christensen, Lecture Notes in Physics, 826,
DOI: 10.1007/978-3-540-36911-0_3, � Springer-Verlag Berlin Heidelberg 2011
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/i ¼ Uiðn;/Þ;

where the Ui are differentiable functions of n and /. We remark that the index i,
like the index a, may come from either a discrete set or a continuous set. As an
example from the first category, let the /i be polar angles on a sphere on which the
rotation group acts. As an example from the second category, let the /i be the
values of all components of some field (e.g., an electromagnetic field) at all points
of spacetime, and let the group be either the Poincaré group or the full diffeo-
morphism group.

The functions Ui must satisfy the identities

Ui n2;Uðn1;/Þð Þ � Uiðn2n1;/Þ; Uiðidentity;/Þ ¼ /i:

They are then said to provide a realization of the group. In the special case in
which the Ui are linear homogeneous in the /i, the realization is called a (matrix)
representation. In these lectures, it will usually suffice to confine our attention to a
single coordinate patch containing the identity in the group manifold. It is then
convenient to take the origin of coordinates at the identity element and to expand
the functions Ui as polynomials in the n, plus remainders:

Uiðn;/Þ ¼ /i þ Ui
að/Þn

a þ 1
2
Ui

abð/Þn
anb þ Oðn3Þ:

Consider now the following successive transformations:

/i ¼ Uiðn1;/Þ;

/i ¼ Uiðn2;/Þ ¼ Uiðn2n1;/Þ;

/i ¼ Uiðn�1
1 ;/Þ ¼ Uiðn�1

1 n2n1;/Þ;

/i ¼ Uiðn�1
2 ;/Þ ¼ Uiðn�1

2 n�1
1 n2n1;/Þ:

Expanding the first two equations to second order in the n, we find

/i ¼ /i þ Ui
að/Þna

2 þ
1
2
Ui

abð/Þna
2n

b
2 þ Oðn3Þ

¼ /i þ Ui
að/Þn

a
1 þ

1
2
Ui

abð/Þn
a
1n

b
1

þ Ui
að/Þna

2 þ Ui
a;jð/ÞU

j
bð/Þn

b
1n

a
2 þ

1
2
Ui

abð/Þna
2n

b
2 þ Oðn3Þ;

the comma followed by a Latin index denoting differentiation with respect to a /.
In the special case n2 = n1

-1, we may infer from this

Ui
aðn

a þ n�1aÞ þ 1
2
Ui

abðn
anb þ n�1an�1bÞ þ Ui

a;jU
j
bn

bn�1a ¼ Oðn3Þ;
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for all /, suppressing the argument / in the expression. If the realization is
faithful, as we shall always assume it to be, we have

Uiðn1;/Þ ¼ Uiðn2;/Þ for all / if and only if n1 ¼ n2;

whence, as corollaries,

Ui
ian

a ¼ 0 forall / if and only if na ¼ 0 for all a

n�1a ¼ �na þ Oðn2Þ forall n near the identity

Continuing now, we have

/i ¼ /i þ Ui
ia /
� �

ðn�1a
1 þ n�1a

2 Þ þ 1
2
Ui

ab /
� �

ðn�1a
1 n�1b

1 þ n�1a
2 n�1b

2 Þ

þ Ui
a;j /
� �

Uj
b /
� �

n�1b
1 n�1a

2 þ Oðn3Þ

¼ /i þ Ui
a na

1 þ na
2 þ n�1a

1 þ n�1a
2

� �

þ 1
2
Ui

ab na
1n

b
1 þ na

2n
b
2 þ n�1a

1 n�1b
1 þ n�1a

2 n�1b
2

� �

þ Ui
a;jU

j
b nb

1n
a
2 þ n�1b

1 n�1a
2 þ nb

1 þ nb
2

� �

n�1a
1 þ n�1a

2

� �� �

þ Oðn3Þ
¼ /i þ Ui

a;jU
j
b nb

1n
a
2 � nb

2n
a
1

� �

þ Oðn3Þ:

On the other hand, we have

/i ¼ /i þ Ui
a n�1

2 n�1
1 n2n1

� �aþ � � � :

This tells us that n2
-1n1

-1n2n1, which is known as the commutator of the group
elements n1 and n2, differs from the identity by a coordinate interval that is only of
the second order in the n. We may in fact do the expanion

n�1
2 n�1

1 n2n1

� �a¼ Ca
bcn

b
2n

c
1 þ Oðn3Þ;

where the necessary bilinearity of the first term in n1
c and n2

b is a consequence of the
fact that it is antisymmetric in the labels 1 and 2, as follows from

n�1
1 n�1

2 n1n2

� �a¼ n�1
2 n�1

1 n2n1

� ��1a¼ � n�1
2 n�1

1 n2n1

� �aþOðn4Þ:

This implies that the coefficients Cbc
a are antisymmetric in the indices b and c.

Comparing the two expansions for /i, we finally get

Ui
a;jU

j
b � Ui

b;jU
j
a ¼ Ui

cCc
ab: ð3:1Þ

The Cbc
a are known as the structure constants of the group. They depend both on

the group and on the choice of coordinates. For a change from one set of group
coordinates to another, however, it is only what happens in the immediate vicinity
of the identity that is relevant in determining how the Cbc

a change.
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Problem 13 By differentiating the differential identity (3.1) satisfied by the Ua
i ,

show that the structure constants satisfy the cyclic identity

Cd
aeCe

bc þ Cd
beCe

ca þ Cd
ceCe

ab ¼ 0:

Solution 13 We have

Ui
d Cd

aeCe
bc þ Cd

beCe
ca þ Cd

ceCe
ab

� �

¼ Ui
a;jU

j
e � Ui

e;jU
j
a

� �

Ce
bc þ ðbcaÞ þ ðcabÞ

¼ Ui
a;j Uj

b;kU
k
c � Uj

c;kU
k
b

� �

� Ui
b;kU

k
c � Ui

c;kU
k
b

� �

;j
Uj

a

þ ðbcaÞ þ ðcabÞ

¼ 0:

The identity itself then follows by faithfulness of the realization.

Problem 14 Obtain the structure constants of the rotation group O(3) in the
coordinate system in which na (a = 1, 2, 3) represents a rotation through the angle
nj j = (nana)1/2 about the axis having direction cosines na nj j relative to a Cartesian

frame. Use the realization in which the /i (i = 1, 2, 3) are the components of a 3-
vector on which the rotation n acts. Note that in computing structure constants, it
suffices to confine attention to infinitesimal group operations, i.e., group elements
having infinitesimal coordinates dna. Such operations induce infinitesimal changes
in the /i given by

d/i ¼ Ui
adna:

Solution 14 We have

d/i ¼ eiajdna/j:

Therefore,

Ui
a ¼ eiaj/

j;

Ui
a;jU

j
b � Ui

b;jU
j
a ¼ ðeiajejbk � eibjejakÞ/k

¼ ðdibdak � dikdab � diadbk þ dikdbaÞ/k

¼ eickecab/
k ¼ Ui

cecab:

Hence, finally,

Cc
ab ¼ ecab:
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3.1 Representations

When the realization is a representation, the functions (or functionals) Ui take the
form

Uiðn;/Þ ¼ Di
jðnÞ/

j;

where the matrices D(n) satisfy (with suppression of indices)

Dðn1ÞDðn2Þ ¼ Dðn1n2Þ; for all n1; n2:

Moreover,

Ui
að/Þ ¼ Gi

aj/
j;

where the matrices Ga are given by

Ga ¼
oDðnÞ
ona

�

�

�

�

na¼0

and satisfy the commutation relation

Ga;Gb½ � ¼ GcCc
ab:

The Ga are known as the generators of the representation.

Problem 15 Obtain the commutation relation satisfied by the generators Gb
a of the

full linear group GL(n) in n dimensions, in the coordinate system in which nb
a

represents the matrix db
a ? nb

a. (Note that we are now using a pair of indices on the
generators and group coordinates, because it is inconvenient to attempt to map
them into a single index.)

Solution 15 Use the representation provided by a contravariant vector /a in
n dimensions. Then

d/a ¼ dna
b/

b ¼ Gac
db/

bdnd
c ;

Gac
db ¼ da

dd
c
b;

Ga
b;G

c
d

� �e

f ¼ Gea
bgGgc

df � Gec
dgGga

bf

¼ de
bd

a
gd

g
dd

c
f � de

dd
c
gd

g
bd

a
f

¼ da
dGc

b � dc
bGa

d

� �e

f
;

or

Ga
b;G

c
d

� �

¼ da
dGc

b � dc
bGa

d:
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3.2 Diffeomorphism Group

Suppose we have a differentiable manifold M. The diffeomorphism group on M,
denoted Diff(M) by mathematicians, is the group of all one-to-one differentiable
maps of M onto itself whose inverses are also differentiable. Mathematicians
usually confine themselves to C? maps, but we may assume merely differentia-
bility up to the lowest order needed in any discussion. The maps themselves are
known as diffeomorphisms.

Diffeomorphisms may be related to coordinate transformations as follows. Let a
coordinate patch be laid down on some open set of M. (This open set must be
homeomorphic to an open set of Rn, where n is the dimensionality of M.) Denote
the coordinates by xl. A diffeomorphism n that is sufficiently close to the identity
may be regarded as a deformation of the coordinate mesh (involving a possible
shift in the position of the coordinate mesh) in which every point is mapped into
another point in such a way that its coordinates in the original coordinate system
are identical with the coordinates of its image (under the mapping) in the deformed
coordinate system. A natural coordinatization of the diffeomorphism group itself
assigns to each diffeomorphism n a set of functions nl(x) that display the relation
between the two coordinate systems in M:

xl ¼ xl þ nlðxÞ:

Here the set of numbers l, x1, x2, ..., xn replace the index a in the general dis-
cussion about continuous groups in this Chapter. We see that the diffeomorphism
group is infinite dimensional.

In the immediate vicinity of the identity, where the nl become infinitesimal,
each point gets mapped into a neighbor that is reached by executing the dis-
placement -nl. The diffeomorphism itself thus generates a flow which, at the
initial instant, is characterized by the contravariant vector having components -nl.

Let us now compute the structure constants of the diffeomorphism group. As
before, we consider the commutator of two group elements n1 and n2:

xl ¼ xl þ nl
1ðxÞ;

x
l ¼ xl þ nl

2ðxÞ
¼ xl þ nl

1ðxÞ þ nl
2ðxÞ þ nl

2 ;mðxÞn
m
1ðxÞ þ Oðn3Þ;

x
l
¼ x

l þ n�1l
1 ðxÞ;

x
l
¼ x

l
þ n�1l

2 x
� �

¼ x
l þ n�1l

1 ðxÞ þ n�1l
2 ðxÞ þ n�1l

2 ;mðxÞn
�1m
1 ðxÞ þ Oðn3Þ

¼ xl þ nl
1 þ nl

2 þ n�1l
1 þ n�1l

2 þ n�1l
1 ;m þ n�1l

2 ;m

� �

nm
1 þ nm

2

� �

þ nl
2 ;mn

m
1 þ n�1l

2 ;mn
�1m
1 þ Oðn3Þ

¼ xl þ nl
2 ;mn

m
1 � nl

1 ;mn
m
2 þ Oðn3Þ;
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where a comma followed by a Greek index denotes differentiation with respect to
an x and, in passing to the final forms, we have suppressed the argument x and used
the identity

nl þ n�1l þ n�1l
;m nm ¼ Oðn3Þ:

Writing

n�1
2 n�1

1 n2n1

� �l¼
Z

dx0
Z

dx00Cl
m0r00n

m0
2 nr00

1 þ Oðn3Þ;

where one or more primes on an index indicates that the index is associated with a
corresponding point x0 or x00, etc., and

R

dx denotes standard integration over the
manifold M, we obtain

Z

dx0
Z

dx00Cl
m0r00n

m0

2 nr00

1 ¼ nl
2 ;mn

m
1 � nl

1 ;mn
m
2;

whence

Cl
m0r00 ¼ dl

m dðx; x00Þ
o

oxr
dðx; x0Þ � dl

rdðx; x0Þ
o

oxm
dðx; x00Þ;

where d(x, x0) is the delta function on M.
Instead of representing a contravariant vector, A say, by its components Al in a

given coordinate system, mathematicians like to represent it as a differential
operator

A ¼ Al o

oxl

acting on the set of all (differentiable scalar) functions on M. This representation,
in which a contravariant vector is determined by its action on functions over M, is
coordinate independent.

It is sometimes convenient to use this representation for infinitesimal diffeo-
morphisms in which the nl become components of contravariant vectors. We then
find that we may write

Z

dx0
Z

dx00Cl
m0r00n

m0

2 nr00

1
o

oxl
¼ n1; n2½ �;

and the cyclic identity satisfied by the structure constants (see Problem 13)
becomes a corollary of the ordinary Jacobi identity satisfied by commutators of
linear operators.
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3.3 Tensors and Tensor Densities

The irreducible matrix representations of the diffeomorphism group are given by
the action of the group on the components of irreducible tensor fields (more
correctly, tensor density fields) in a given coordinate system. The action is said to
define the coordinate transformation law of the field in question. Thus let /
(x) stand for the set of components of some tensor density at the point x in a system
of coordinates xl. The diffeomorphism n induces the coordinate transformation

xl ¼ xl þ nlðxÞ;

and a corresponding transformation in /:

/ðxÞ ¼ Dð1þ on=oxÞ/ðxÞ;

where D(1 ? qn/qx) is the representative of dm
l ? qnl/qxm in the corresponding

matrix representation of the full linear group.
In the infinitesimal case, the field transformation law takes the form

/ðxþ dnÞ ¼ /ðxÞ þ Gl
m/ðxÞdnm

;lðxÞ;

where the Gm
l are the generators of the representation D. Writing

/ðxÞ þ d/ðxÞ � /ðxÞ;

we find

d/ ¼ �Ldn/;

where, for any contravariant vector A, the operator LA is defined by

LA ¼ Al o

oxl
� Gl

m Am
;l;

when acting on a tensor /. The quantity Ldn/ is called the Lie derivative of / with
respect to the vector dn. We note that LA, when acting on a scalar function,
reduces to A itself.

Problem 16 For any two contravariant vectors A and B, show that

LABlð Þ o

oxl
¼ A;B½ �:

Solution 16 We have

B
lðxÞ ¼ oxl

oxm
BmðxÞ; B

lðxþ dnÞ ¼ BlðxÞ þ BmðxÞdnl
;mðxÞ;

dBl ¼ �Bl
;mdnm þ Bmdnl

;m ¼ �LdnBl;
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LABl ¼ Bl
;mA

m � Al
;mB

m;

and hence,

LABlð Þ o

oxl
¼ A;B½ �:

Problem 17 Using the commutation relation obtained in Problem 15 for the
generators of the linear group, show that

LA;LB½ � ¼ L½A;B�:
Solution 17 We have

LA;LB½ � ¼ Al o

oxl
� Gl

m Am
;l; Br o

oxr
� Gr

s Bs
;r

	 


¼ A;B½ � � Gr
s Bs

;rlAl þ Gl
m Am

;lrBr þ dl
s Gr

m � dr
m Gl

s

� �

Am
;lBs

;r

¼ A;B½ � � Gl
m Bm

;rlAr þ Bm
;rAr

;l � Am
;rlBr � Am

;rBr
;l

� �

¼ Bl
;mA

m � Al
;mB

m
� � o

oxl
� Gl

m Bm
;rAr � Am

;rBr
� �

;l

¼ L½A;B�:

In practice, the transformation laws for the components of all types of tensor
densities are most easily built up from the three prototypes:

Contravariant vector /
lðxÞ ¼ oxl

oxm
/mðxÞ;

Covariant vector /lðxÞ ¼
oxm

oxl/mðxÞ;

Density of weight w /ðxÞ ¼ oðxÞ
oðxÞ

	 
w

/ðxÞ:

The corresponding infinitesimal laws are:

Contravariant vector d/l ¼ �/l
;mdnm þ /mdnl

;m;

Covariant vector d/l ¼ �/l;mdnm þ /mdnm
;l;

Density of weight w d/ ¼ �/;ldnl � w/dnl
;l:

Problem 18 Show that the n-dimensional permutation symbol may be regarded as
representing, in every coordinate system, the components of either a completely
antisymmetric contravariant tensor density of weight 1, in which case we it in the
form 1el1...ln ; or a completely antisymmetric covariant tensor density of weight -1,
in which case we write it as �1el1...ln

:
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Solution 18 We have

1el1...ln ¼ oðxÞ
oðxÞ

oxl1

oxm1
� � � oxln

oxmn

1em1...mn ¼ 1el1...ln ;

�1el1 ...ln
¼ oðxÞ

oðxÞ
oxm1

oxl1
� � � oxmn

oxln

�1em1...mn ¼ �1el1...ln
:

Problem 19 Show that the Kronecker delta may be regarded as representing, in
every coordinate system, the components of a mixed tensor having one covariant
and one contravariant index.

Solution 19 This is proved by

d
l
m ¼

oxl

oxr

oxs

oxmd
r
s ¼

oxl

oxr

oxr

oxm ¼ dl
m :

Problem 20 Show that an integral of the form
R

qdx taken over the manifold is
coordinate independent if and only if q is a density of weight 1.

Solution 20 We have
Z

qdx ¼
Z

q
oðxÞ
oðxÞdx ¼

Z

qdx

if and only if

qðxÞ ¼ oðxÞ
oðxÞqðxÞ:

Note that the integral may be carried out patch by patch so as to cover the whole
manifold.

3.4 Bitensors, Tritensors, and n-Tensors

More complicated matrix representations of the diffeomorphism group may be
obtained by forming direct products of tensor representations. Coordinate com-
ponents of bitensors transform according to the law defined by the direct product
of two tensor representations. Coordinate components of tritensors transform
according to the law defined by the direct product of three tensor representations,
and so on. In general, the coordinate components of n-tensors are functions of
n independent points of the manifold M, i.e., they are functions over the n-fold
Cartesian product of M with itself, viz.,

M �M � � � � �M
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

n times

:
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The simplest bitensor is the delta function, which is really a bidensity of total
weight unity. The weight may be shared arbitrarily between the two points, but in a
given context is usually well defined. The structure constants Cl

m0r00 of the diffeo-
morphism group are components of a tritensor, transforming as a contravariant
vector at the point x and as a covariant vector density of unit weight at x0 and x00.
Many other important examples of n-point tensors (especially bitensors) are
encountered in the theory of geodesics and Green’s functions.
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Chapter 4
Riemannian Manifolds

A Riemannian manifold is a differentiable manifold in which a notion of length is
introduced at the local level. If xl and xl ? dxl are the coordinates in a given
coordinate system of two infinitesimally close points, the infinitesimal distance
ds between them is defined by

ds2 ¼ glmdxldxm ;

where glm are the components of a special field associated with the manifold, the
combination of field and manifold constituting the Riemannian manifold. If
the notion of length is to be independent of the choice of coordinate system, the
special field must be a covariant tensor. This tensor is known as the metric tensor.
It may evidently be taken symmetric, because any antisymmetric part would make
no contribution to the distance concept.

The metric tensor having been introduced, the notions of orthogonality and
local parallelism may then be introduced by applying the classical Euclidean laws
to infinitesimal triangles. For this purpose, the laws of similar triangles must be
adopted ab initio as postulates, and the ‘postulate of parallels’ must be excluded, a
procedure that is reasonable as far as physics is concerned both because the laws of
similar triangles correspond immediately to the intuition of experience and
because experience is always limited to finite regions. By defining the right angle
as the angle of intersection of two lines that makes all four intersection angles
equal, and by guaranteeing its uniqueness through further axiomatic refinements
on the comparison of angles by means of the notions ‘greater than’ and ‘less than’
as well as ‘equality’, one may then derive the Pythagorean theorem in the well-
known manner.

Conversely, the Pythagorean theorem may be invoked to define right angles.
Thus, two ‘displacements’ d1xl and d2xl are said to be orthogonal if their lengths
satisfy the relationship

d1s2 þ d2s2 ¼ ds2 ;

B. Dewitt, Bryce DeWitt’s Lectures on Gravitation,
Edited by Steven M. Christensen, Lecture Notes in Physics, 826,
DOI: 10.1007/978-3-540-36911-0_4, � Springer-Verlag Berlin Heidelberg 2011
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where

d1s2 ¼ glmd1xld1xm ; d2s2 ¼ glmd2xld2xm ;

ds2 ¼ glmðd1xl � d2xlÞðd1xm � d2xmÞ :

This relationship is readily seen to reduce to

d1x � d2x � glmd1xld2xm ¼ 0 :

In using the classical Euclidean laws, of course, one assumes that the quantities
d1 s2, d2 s2, and ds2 are positive and hence that the components of the metric tensor
at any point in any coordinate patch form a positive definite matrix. The formalism
of tensors, however, allows one to abandon the Euclidean origins of the metric
concept once it has outlived its usefulness as an initial guide. For an arbitrary
Riemannian manifold,1 we need only assume that glm forms, in any coordinate
patch, a (sufficiently) differentiable, nonsingular, but not necessarily positive
definite, matrix, the inverse of which will be denoted by glm:

glrgrm ¼ dm
l :

Since the Kronecker delta defines a mixed tensor (see Problem 19), it follows that
the glm are components of a symmetric contravariant tensor.

At any single point in a Riemannian manifold, a coordinate system may be
introduced in which the components of the metric tensor take the canonical form

ðglmÞ ¼ diag �1; . . .;�1; 1; . . .; 1ð Þ

at that point. Since glm must be nonsingular in every coordinate patch, it follows
that the canonical form is an invariant of the manifold. Spacetime in relativity
theory is assumed to be a four-dimensional Riemannian manifold in which the
canonical form of the metric is that of Minkowski2:

ðglmÞ ¼ diag �1; 1; 1; 1ð Þ :

4.1 Local Parallelism

A Riemannian manifold possesses not only the local distance concept but also a
concept of local parallelism that arises naturally out of the classical Euclidean
laws. These laws permit one first of all to define an infinitesimal parallelogram in a

1 Mathematicians sometimes call the manifold pseudo-Riemannian when the metric is not
positive definite.
2 Mathematicians sometimes refer to Riemannian manifolds for which the metric tensor has one
eigenvalue of one sign while all the others have opposite sign as Lorentzian manifolds.
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Riemannian manifold as an infinitesimal plane quadrilateral having opposite sides
of equal length. The relationship of such an object to an arbitrary coordinate mesh
is indicated schematically in Fig. 4.1.

The quantity ddxl is the change, arising from the variability in the shape of the
coordinate mesh from point to point as well as from changes in the intrinsic
geometry of the manifold, in the numerical magnitude of the l component of
either of the infinitesimal intervals d1x or d2x as it is displaced in a parallel fashion
along the other. It is evident from the figure that

d1s2 ¼ glm þ
1
2

glm;rd1xr

� �

d1xld1xm

¼ glm þ glm;r d2xr þ 1
2

d1xr

� �� �

ðd1xl þ ddxlÞðd1xm þ ddxmÞ ;

correct to the third infinitesimal order. Keeping terms only up to this order, we find

2glmd1xlddxm þ glm;rd1xld1xmd2xr ¼ 0 ;

and similarly,

2glmd2xlddxm þ glm;rd2xld2xmd1xr ¼ 0 :

These are the parallelogram equations.
Now let k1 and k2 be two arbitrary parameters. Multiplying the first parallel-

ogram equation by k1 and the second by k2, we find

glmðk1d1xl þ k2d2xlÞddxm ¼ �1
2
ðk1d1xlglm;r þ k2d2xlglr;mÞd1xmd2xr

¼ �1
2
ðk1d1xl þ k2d2xlÞðglm;r þ glr;m � gmr;lÞd1xmd2xr

¼ �Clmrðk1d1xl þ k2d2xlÞd1xmd2xr ;

Fig. 4.1 Establishing local parallelism

4.1 Local Parallelism 53



where

Clmr ¼
1
2
ðglm;r þ glr;m � gmr;lÞ ¼ Clrm :

Since k1 and k2 are arbitrary, we must infer that the general solution of the above
equation is

ddxl ¼ �Cl
mrd1xmd2xr þ Ql ;

where

Cl
mr ¼ glsCsmr ;

and where Ql is a quantity of the second infinitesimal order, necessarily linear in
d1xl and d2xl, and orthogonal to both d1xl and d2xl. The most general quantity of
this kind has the form

Ql ¼ glmQm ; Ql ¼ Almrd1xmd2xr ;

where

Almr ¼ �Amlr ¼ �Arml :

However, this implies

Almr ¼ �Amlr ¼ Arlm ¼ �Alrm ;

and therefore, Ql is antisymmetric under interchange of d1xl and d2xl. On the
other hand, because the parallelogram is a plane figure, ddxl; and hence Ql, must
be symmetric under interchange of d1xl and d2xl. Another way of saying this is
that ddxl can involve no preferred direction in the local subspace orthogonal to the
plane defined by d1xl and d2xl. Therefore, we must have Ql = 0 and

ddxl ¼ �Cl
mrd1xmd2xr :

The objects Cmr
l and Clmr are known as the Christoffel symbols.

4.2 Parallel Displacement of Tensors

The concept of parallel displacement can be extended to an arbitrary tensor density
by considering an infinitesimal displacement �dnl of the entire coordinate mesh,
which produces the new coordinate system xl ¼ xl þ dnl: Let us suppose that this
displacement is locally parallel at the point x, as indicated in Fig. 4.2.

Comparing this figure with Fig. 4.1 shows us that we must have

x0l � dnlðx0Þ½ � � xl � dnlðxÞ½ � ¼ x0l � xl þ Cl
mrðx0m � xmÞdnr þ Oðx0 � xÞ2 ;
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for all neighboring points. Taking the limit x0? x, we find

dnl
;m ¼ �Cl

mrdnr ; at x :

Now let / be the set of components of a tensor density field. We shall suppose that
this field is displaced ‘bodily’ along with the coordinate mesh in the neighborhood

of x, giving rise to a new field /
!
: In the new coordinate system xl; this field will

take the form /
!þ d/

!
; where

d/
!¼ �Ldn /

!
:

However, the new field must have, at least in the neighborhood of x, the same form
in the new coordinate system as the original field had in the old. That is,

/
!þ d/

!¼ / ; near x ;

or

/
!¼ /� d/

!¼ /þ Ldn /
!¼ /þ Ldn/ ; near x ;

to first infinitesimal order.
This bodily displacement of the field is precisely the intuitive notion of parallel

displacement. In order to get the change in the magnitude of the field components

under parallel displacement, we must examine the displaced field /
!

at the displaced
point x� dn; and compare it with the original field / at the original point x.
The parallel displacement law for components is therefore

d/ ¼ /
!ðx� dnÞ � /ðxÞ ¼ �/;ldnl þ Ldn/

¼ �Gm
l/dnl

;m ¼ Gm
lC

l
mr/dnr :

ð4:1Þ

4.3 Covariant Differentiation

Now the quantity /þ d/ is a set of components, in the original coordinate system,
of a tensor density at the point x� dn; and so is /ðx� dnÞ: Therefore, the dif-
ference between the two sets is also a set of components of a tensor density at

Fig. 4.2 Infinitesimal dis-
placement of the coordinate
mesh
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x� dn or, to first infinitesimal order, at x. This difference defines the covariant
derivative of the field /:

�/;ldnl ¼ /ðx� dnÞ � ð/þ d/Þ ¼ � /;l þ Gm
rC

r
ml/

� �

dnl ;

whence

/;l ¼ /;l þ Gm
rC

r
ml/ :

The /;l are components of a tensor density that has one more covariant index than
/ has.

In practice the covariant derivatives of all types of tensor densities are most
easily built up from the three prototypes:

Contravariant vector /l
;m ¼ /l

;m þ Cl
rm/

r ;
Covariant vector /l;m ¼ /l;m � Cr

lm/r ;
Density of weight w /;l ¼ /;l � wCm

ml/ :

Using the second of these, it is easy to show that the covariant derivatives of the
metric tensor vanish:

glm;r ¼ glm;r � Cs
lrgsm � Cs

mrgls

¼ glm;r � Cmlr � Clmr

¼ glm;r �
1
2
ðgml;r þ gmr;l � glr;mÞ �

1
2
ðglm;r þ glr;m � gmr;lÞ

¼ 0 :

Problem 21 Show that the covariant derivatives of dl
m ;

1 el1 ...ln and �1el1...ln
all

vanish.

Solution 21

dl
m;r ¼ dl

m;r þ Cl
srd

s
m � Cs

mrd
l
s

¼ Cl
mr � Cl

mr ¼ 0 ;

1el1...ln
;m ¼1 el1...ln

;m þ Cl1
rm

1erl2...ln

þ � � � þ Cln
rm

1el1...ln�1r � Cr
rm

1el1...ln ¼ 0 ;

�1el1...ln;m ¼�1 el1...ln;m � Cr
l1m
�1erl2...ln

� � � � � Cr
lnm
�1el1...ln�1r þ Cr

rm
�1el1...ln

¼ 0 :

The last two results follow from the fact that both sides of the equations are
completely antisymmetric in the li and hence the li must be all different if one is
to get something different from zero. In the terms involving Clm

rm or Cr
lmm, one then

gets nonvanishing contributions only when r takes on the value lm.
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Covariant differentiation, like ordinary differentiation, obeys the Leibniz rule
when applied to factors in a product. Since the covariant derivatives of dm

l vanish,
covariant differentiation commutes with the process of contraction of an upper
index with a lower index (setting the two equal and summing). By taking the
covariant derivative of the identity glrgrm = dl

m , one infers that all the g;r
lm vanish,

and hence that covariant differentiation commutes with the operation of raising
and lowering indices:

Al ¼ glmAm ; Bl ¼ glmB
m ;

and so on. Finally, because the covariant derivatives of the permutation symbols
vanish it follows that the magnitude of the determinant of the metric tensor, which,
when written in the form

g � detðglmÞ
�

�

�

� ¼ 1
n!

1el1...ln 1em1...mn gl1m1 . . .glnmn

�

�

�

� ;

is seen to be a density of weight 2, also has vanishing covariant derivatives.3

4.4 Tensor Properties of the Lie Derivative

Owing to the symmetry of the Christoffel symbol Cmr
l in its lower indices, it is easy

to verify that, in the expression for the Lie derivative LA/ of a tensor density /
with respect to a contravariant vector A, ordinary derivatives may be replaced by
covariant derivatives:

LA/ ¼ Al/;l � Gl
m Am

;l/

¼ Alð/;l þ Gm
rC

r
ml/Þ � Gl

m ðAm
;l þ Cm

rlArÞ/
¼ Al/;l � Gl

m Am
;l/ :

This means that LA/ has the same coordinate transformation law as / and that the
tensor density whose components are the elements of LA/ is of the same type as
the tensor density whose components are the elements of /. This latter fact must
obviously be independent of the introduction of any metric tensor into the mani-
fold and could (with considerably more labor) have been verified directly prior to
our discussion of Riemannian manifolds.

The above result permits us to express the infinitesimal coordinate transfor-
mation law for the metric tensor in a particularly simple and symmetric form:

3 We confine our attention in these lectures to diffeomorphisms that may be connected
continuously to the identity.
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dglm ¼ �Ldnglm

¼ �glm;rdnr � grmdnr
;l � glrdnr

;m

¼ �dnl;m � dnm;l ;

where

dnl ¼ glmdnm :

4.5 The Curvature Tensor

Indices induced by covariant differentiation, like any other indices, may be raised
and lowered by means of the metric tensor. Not all authors agree on the proper
notation for this, some feeling that the semicolon should be raised and lowered
along with the index. We shall keep the semicolon firmly fixed in the lower
position thus:

glm/;m ¼ /l
; :

There is disagreement also on the proper notation for repeated differentiation,
some authors feeling that a proliferation of commas or semicolons is required
along with the proliferation of indices. We believe that one comma, or semicolon
as the case may be, should suffice and accordingly will use the abbreviations

/;lm... ¼ ð/;lÞ;m... ; /;lm... ¼ ð/;lÞ;m... ;

for repeated ordinary and covariant differentiation with respect to the coordinates
xl. One caution must be sounded, however, in using this notation. The order of the
indices following a comma is obviously unimportant. On the other hand, covariant
differentiation, unlike ordinary differentiation, is not generally commutative, and
therefore, the order of the indices following a semicolon is usually very important.

We shall nevertheless often wish to change the order of covariant differentia-
tions, and therefore, it will be extremely useful to know the commutation law for
covariant derivatives. For an arbitrary tensor density /, this may be computed in a
straightforward manner as follows:

/;lm � /;ml ¼ ð/;lÞ;m þ Gr
sC

s
rm/;l � Cr

lm/;r � ðl$ mÞ
¼ ð/;l þ Gr

sC
s
rl/Þ;m þ Gr

sC
s
rmð/;l þ Gq

kC
k
ql/Þ � ðl$ mÞ

¼ Gr
s Cs

rl;m � Cs
rm;l

� �

/þ ðdr
kGq

s � dq
s Gr

kÞCs
rmC

k
ql/

¼ Gr
s Cs

rl;m � Cs
rm;l þ Cs

kmC
k
rl � Cs

qlC
q
rm

� �

/

¼ �Gr
s Rs

rlm/ ;
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where

Rs
rlm ¼ Cs

rm;l � Cs
rl;m þ Cs

qlC
q
rm � Cs

qmC
q
rl :

In practice, the commutation laws for covariant differentiation of specific tensor
densities are built up from those of the three prototypes:

Contravariant vector /l
;mr � /l

;rm ¼ �Rl
smr/

s ;
Covariant vector /l;mr � /l;rm ¼ Rs

lmr/s ;
Density of weight w /;lm � /;ml ¼ 0 :

The last of these follows from the identity

Rr
rlm ¼ Cr

rm;l � Cr
rl;m ¼ 0 ;

which in turn follows from

Cr
rl ¼ grsCrsl ¼

1
2

grsðgrs;l þ grl;s � gsl;rÞ

¼ 1
2

g�1g;l ¼
1
2
ðlog gÞ;l :

The Rs
rlm are components of a mixed tensor known as the Riemann tensor or

curvature tensor of the manifold. Note that we are able to infer the tensor character
without once computing the coordinate transformation law for the Christoffel
symbols out of which the components of the curvature tensor are built.

The curvature tensor satisfies some important algebraic and differential iden-
tities. These are most easily derived by first introducing a special coordinate
system. Let x0 be an arbitrary point of the manifold and let (Cmr

l )0 be the Christoffel
symbol at that point in the coordinate system xl. Now introduce a new set of
coordinates xl related to the old ones by

xl ¼ xl � 1
2
ðCl

mrÞ0 xm � xm
0

	 


xr � xr
0

	 


:

We have

xl
0 ¼ xm

0 ;
oxl

oxm

� �

0

¼ dl
m ;

o2xl

oxmoxr

� �

0

¼ �ðCl
mrÞ0 ;

glm

	 


0
¼ oxr

oxl

oxs

oxmgrs

� �

0

¼ ðglmÞ0 ;

glm;r

	 


0
¼ o

oxr

oxs

oxl

oxq

oxmgsq

� �� �

0

¼ o2xs

oxroxl

oxq

oxmgsq þ
oxs

oxl

o2xq

oxroxmgsq þ
oxs

oxl

oxq

oxm

oxk

oxrgsq;k

� �

0
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¼ �Cs
rlgsm � Cq

rmglq þ glm;r

� �

0

¼ �Cmrl � Clrm þ glm;r
	 


0

¼ �1
2
ðgmr;l þ gml;r � grl;mÞ �

1
2
ðglr;m þ glm;r � grm;lÞ þ glm;r

� �

0

¼ 0 :

In the new coordinate system, the first derivatives of the metric tensor, and hence
also the Christoffel symbols, vanish at the point x0. That is to say, we can always
introduce a coordinate system in which the derivatives of glm and the Christoffel
symbols vanish at a given fixed point.

Now, dropping the subscript 0, let x be an arbitrary point of the manifold. Then
in a coordinate system in which the Christoffel symbols vanish at that point, the
curvature tensor takes the form

Rsrlm ¼ Csrm;l � Csrl;m

¼ 1
2
ðgsr;ml þ gsm;rl � grm;sl � gsr;lm � gsl;rm þ grl;smÞ

¼ �1
2
ðgsl;rm þ grm;sl � gsm;rl � grl;smÞ ; ð4:2Þ

at that point, and its covariant derivative takes the form

Rsrlm;q ¼ �
1
2
ðgsl;rmq þ grm;slq � gsm;rlq � grl;smqÞ ;

at that point. From these forms, one may readily infer the identities:

Rsrlm ¼ �Rsrml ¼ Rlmsr ;

Rsrlm þ Rslmr þ Rsmrl ¼ 0 ;

Rsrlm;q þ Rsrmq;l þ Rsrql;m ¼ 0 :

Since the quantities in these identities are components of tensors, the identities
hold not merely in the special coordinate system, but in any coordinate system at x.
Moreover, because x is arbitrary, they actually hold everywhere. The differential
identity is known as the Bianchi identity.

It is conventional to introduce special symbols for the contracted forms of the
curvature tensor. There are only two nontrivial contractions:

Rlm ¼ Rr
lrm

¼ Cr
lm;r � Cr

rl;m þ Cr
qrC

q
lm � Cr

qmC
q
lr

¼ Rml ;

and

R ¼ Rl
l :
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The quantity Rlm is known as the Ricci tensor, and R is known as the Riemann
scalar or curvature scalar.

4.6 n-Beins, Tetrads and Flat Manifolds

The coordinate transformation which brings the metric tensor into canonical form
at any point may be chosen linear. Denote the coefficients of such a transformation
by el

a. Then

ea
leb

m glm ¼ gab ;

where gab is the contravariant form of the canonical metric (and hence constant).
The el

a are known as the components of an n-bein or, in the case of spacetime, of a
tetrad. The el

a are not uniquely determined at any point but may be subjected to
linear transformations of the form

ea
l ¼ La

beb
l

that leave the canonical metric invariant:

La
cLb

dg
cd ¼ gab :

In the case of spacetime, these transformations are homogeneous Lorentz
transformations.

The el
a need not vary discontinuously from point to point. Since the glm are

differentiable, at least throughout a given coordinate patch, the el
a may likewise be

chosen differentiable throughout appropriate (overlapping) patches. The el
a are

then said to be components of an n-bein or tetrad field. For each a, el
a

(l = 1, ..., n or l = 0, 1, 2, 3) are the components of a covariant vector. These
vectors define a local canonical frame at each point of the manifold. We have
already encountered examples of such local frames in the ul, ni

l (see Sect. 1.2),
which together constitute a tetrad.

It will be a convenience to raise and lower indices a, b, etc., from the first part
of the Greek alphabet by means of the covariant and contravariant forms of the
canonical metric, viz., gab and gab, just as we raise and lower indices l, m, etc.,
from the middle of the Greek alphabet by means of glm and glm. We then have

ealebl ¼ db
a ;

which implies

el
aem

bglm ¼ gab ; ealeam ¼ dm
l ;

ea
leb

m gab ¼ glm ; el
aem

bg
ab ¼ glm ;

and so on.
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Suppose now the curvature tensor vanishes. It is then possible to introduce,
throughout every coordinate patch, an n-bein field, i.e., n linearly independent
vector fields, whose covariant derivatives all vanish:

ea
l;m ¼ 0 :

This is so because the integrability condition for these equations is automatically
satisfied:

0 ¼ ea
l;mr � ea

l;rm ¼ ea
sRs

lmr :

Such an n-bein field is obtained by taking a local canonical frame at any one point
and displacing it in a parallel fashion throughout the coordinate patch. When the
curvature tensor vanishes, parallel displacement becomes integrable, and the
concept of local parallelism may be extended to a concept of distant parallelism
throughout the patch. The resulting n-bein defines a canonical frame over the
patch. The canonical coordinates xa may be obtained from the original coordinates
xl by integrating the equations

oxa

oxl
¼ ea

l ;

the solubility of which is guaranteed by

o2xa

oxloxm
� o2xa

oxmoxl
¼ ea

m;l � ea
l;m

¼ ea
m;l � ea

l;m þ ðCr
ml � Cr

lmÞea
r ¼ 0 :

The metric tensor in the canonical coordinates is obviously everywhere gab. Any
manifold that can be covered by canonical patches is said to be flat. The necessary
and sufficient condition that a Riemannian manifold be flat in a given region is
evidently that its curvature tensor vanish in that region.
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Chapter 5
The Free Particle: Geodesics

We return now to physics by considering the simplest of all physical systems, the
free particle. In special relativity, which is the theory of flat spacetime, the tra-
jectory of a free particle is given, in a canonical (Minkowskian) coordinate system,
by a set of linear equations. The world line of the particle is therefore straight. If
the metric of special relativity were positive definite, the world line would be the
shortest path between any two points located on it. The metric is actually Lo-
rentzian and the world line of any real particle is time-like, i.e., glmdxldxm \ 0.
Therefore, instead of working with an imaginary distance ds along the world line,
one introduces the proper time ds, where ds2 = - glmdxldxm. By integrating ds
along the world line, one then extends the distance concept from a local concept to
a global idea of time along the world line. It then turns out that the straight world
line is the path that maximizes the proper time between any two points on it.

Whether maximizing or minimizing something, the important point is that the
world line of a particle is the solution of a variational problem in which a certain
functional of the trajectory is extremized. In physics, it is conventional to call this
functional the action.

Generalizing from flat spacetime to curved spacetime, general relativity
chooses for the action functional of a free particle and the expression will be

S ¼ �m

Z

ds; ds2 ¼ �glmdxldxm: ð5:1Þ

The factor m is the rest mass of the particle and is introduced in order to give S the
dimensions of action. The minus sign is introduced so that the variational problem
corresponds to a least action principle, as is conventional in physics.

It is convenient to express the world line of the particle in parametric form
xl = zl(k), where k is a parameter that increases monotonically as one moves
along the line toward the future, but that is otherwise arbitrary. The action then
takes the form

B. DeWitt, Bryce DeWitt’s Lectures on Gravitation,
Edited by Steven M. Christensen, Lecture Notes in Physics, 826,
DOI: 10.1007/978-3-540-36911-0_5, � Springer-Verlag Berlin Heidelberg 2011
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S ¼ �m

Z

ð�_z2Þ1=2dk;

where we use the abbreviated notation

A2 ¼ A � A; A � B ¼ glmðxÞAlðxÞBmðxÞ; _zlðkÞ ¼ d
dk

zlðkÞ:

In canonical coordinates in flat spacetime, if we set k = x0 = t, we obtain the
familiar action of special relativity:

S ¼ �m

Z

ffiffiffiffiffiffiffiffiffiffiffiffi

1� _z2
p

dt:

In order to compute the variation equations in the general case, it will be
advantageous first to introduce the concepts of covariant variation and covariant
differentiation with respect to the parameter k. Let / be the set of components
of an arbitrary tensor density defined along the world line zl(k), which depends
both on the world line and on the point selected along the world line, i.e., which
is a functional of both zl(k) (as a function of k) and k as a parameter. Let the
world line be modified by a displacement dzlðkÞ that vanishes outside a certain
interval. The components of the tensor density will suffer a corresponding
variation d/: Let this variation be compared with the variation dk/ that /
suffers under parallel displacement through the interval dzlðkÞ [see Sect. 4.1 in
Chap. 4]:

dk/ ¼ �Gm
lC

l
mr/dzr:

The difference defines the covariant variation of /:

�d/ ¼ d/� dk/ ¼ d/þ Gm
lC

l
mr/dzr:

If / is a field defined throughout the manifold, then its dependence on the world
line is a simple point dependence /(z(k)), so that

d/ ¼ /;ldzl;

and its covariant variation is given by

�d/ ¼ /;ldzl:

We note, in particular, that the covariant variation of the metric tensor vanishes:

�dglm ¼ 0:
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By choosing the displacement dzl to be tangent to the world line, we may, in a
similar manner, define the covariant derivative1 of / with respect to k:

_/ ¼ D
Dk

/ ¼ d/
dk
þ Gm

lC
l
mr/_zr:

If / is a field we have

_/ ¼ /;l _zl;

and in particular,

_glm ¼ 0:

When there is no chance of confusion, the dot will be used in preference to the
symbol D/Dk. For example, we shall write

€zl ¼ D
Dk

_zl; vzl ¼ D
Dk

€zl;

and so on.
Covariant variation and differentiation, like ordinary variation and differenti-

ation, obey the Liebniz rule when applied to factors in a product. Moreover, when
applied to scalars, they reduce to ordinary variation and differentiation. Using
these facts, together with

�d_zl ¼ d_zl þ Cl
mr _zmdzr

¼ d
dk

dzl þ Cl
mrdzm _zr ¼ D

Dk
dzl;

we may now express the least action principle in the form

0 ¼ dS ¼ m

Z

�_z2
� ��1=2

glm _zm�d_zldk

�!
k!s

m

Z

glm _zm D
Ds

dzldk ¼ �
Z

_pldzldk;

where

pl ¼ mglm _zm ðk ¼ sÞ;

1 The covariant proper time derivative may be used to generalize the concept of Fermi–Walker
transport (see Sect. 2.3 in Chap. 2) to arbitrary Riemannian manifolds. A tensor / is said to be
Fermi–Walker transported along a curve having unit tangent vector ul if it satisfies the equation
_/ ¼ ðul _um � _ulumÞGm

l/:
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and where, in passing to the last line, k has been set equal to the proper time and an
integration by parts has been carried out. We shall normally always set k equal to
the proper time immediately after performing all variations required by a given
problem. We then have

u2 ¼ �1; where ul ¼ _zl

and

p2 þ m2 ¼ 0; with pl ¼ mul:

The pl are the components of the four-momentum of the particle.
Because of the arbitrariness of dzl; the least action principle leads us to the

dynamical equations

_pl ¼ 0:

Although in general relativity it is no longer possible to say that the four-
momentum of a free particle is constant, we may say that its covariant proper time
derivative vanishes.

By factoring out the rest mass and raising the index, one may rewrite the
dynamical equations for the free particle in the form

0 ¼ €zl ¼ d2zl

ds2
þ Cl

mr
dzm

ds
dzr

ds
: ð5:2Þ

An alternative version is obtained through multiplication by ds:

dul ¼ �Cl
mrumdzr:

This version says that the world line of the particle may be generated by
repeatedly displacing its tangent vector in a parallel fashion along itself. That is,
not only does the world line maximize the proper time, but also it is ‘‘self-
parallel.’’ In a Riemannian manifold, a curve having these properties is called a
geodesic. Equation 5.2 are known as the geodesic equations. Note that the
geodesic equations involve no mass parameter. Hence, all bodies (particles)
behave alike in free fall in a gravitational field. Only under collisions, or in the
quantum theory, does mass make a difference in the absence of external (non-
gravitational) forces.

Geodesics in spacetime may also be spacelike or null. They all satisfy the
geodesic equations. The parameter s, however, is no longer proper time but is
known simply as an affine parameter. Spacelike geodesics neither maximize nor
minimize the distance between any two points on them; they merely make it
stationary. For spacelike geodesics, the affine parameter may be normalized to
equal the arc length. There is no natural normalization of the affine parameter for
null geodesics. It should be noted that the geodesic equations themselves guarantee
the constancy of _z2 along every geodesic.
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5.1 Isometries and Conservation Laws

Although we have seen that the values of the components of the four-momentum
of a particle are not generally conserved in general relativity, there are cases in
which conserved quantities exist other than the trivial quantity m. Suppose there
exists a contravariant vector n such that the Lie derivative of the metric tensor with
respect to it vanishes everywhere:

0 ¼ Lnglm ¼ nl;m þ nm;l:

Such a field is known as a Killing vector field and the above equation is known as
Killing’s equation. The significance of a Killing vector field is the following.
Suppose we carry out the coordinate transformation

�xl ¼ xl þ enl;

where e is infinitesimal. Then the functional form of the metric tensor will suffer
the infinitesimal change

dglm ¼ �Lenglm ¼ �eLnglm:

However, in view of Killing’s equations, this change vanishes. That is, the metric
tensor looks the same in the new coordinate system as in the old. Speaking more
physically, the geometry of spacetime looks the same from the point of view of the
new coordinate system as it did from the point of view of the old. Now remember
that coordinate transformations can be thought of as generated by diffeomor-
phisms, which in effect drag the coordinate mesh to a new location. In the case of
a coordinate transformation generated by a Killing vector, we can go further. We
can imagine the very manifold as moving or sliding on itself. The invariance of the
geometry under this motion assures that the manifold remains congruent to itself in
its new location. Such a motion is called an isometry.

The existence of a Killing vector field, and hence of an isometry, is evidently a
property of the geometry of the manifold. Isometries may be performed succes-
sively on a given manifold, and the set of all isometries admitted by the manifold
forms a group known as the isometry group or the group of motions of the
manifold. An isometry group is always a Lie group, and in the case of spacetime,
its dimensionality can never exceed 10. The maximum dimensionality is reached,
for example, in the case of flat spacetime, whose isometry group is the Poincaré
group.

If there exists a Killing vector field n, then any world line zl(s), whether or not
it satisfies the geodesic equations, will encounter precisely the same physical
(geometrical) environment after it has been displaced by an amount

dzlðsÞ ¼ enl zlðsÞð Þ
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as it encountered before. This means that the action will remain invariant under
such a displacement (see present chapter):

0 ¼ dS ¼
Z

pl
D
Ds

dzlds ¼ e
Z

pl
_nlds:

If the geodesic equations are satisfied, this implies
Z

d
ds
ðp � nÞds ¼ 0;

for all integration intervals, which in turn implies that p�n is a conserved quantity
or constant of the motion:

p � n ¼ constant:

The direct verification of this is immediate:

d
ds
ðp � nÞ ¼ _p � nþ p � _n ¼ pln

l
;m _zm

¼ mulumnl;m ¼
1
2

mulumðnl;m þ nm;lÞ ¼ 0:

5.2 Geodesic Deviation

Covariant variation and covariant differentiation with respect to k, unlike ordinary
variation and differentiation, do not commute. Their commutation law is obtained
by the following calculation:

�d _/� D
Dk

�d/ ¼ d
d/
dk
þ Gm

lC
l
mr/_zr

� �

þ Gm
lC

l
mr

d/
dk
þ Gk

qC
q
ks/_zs

� �

dzr

� d
dk

d/þ Gm
lC

l
mr/dzr

� �

� Gk
qC

q
ks d/þ Gm

lC
l
mr/dzr

� �

_zs

¼ Gm
l Cl

ms;r � Cl
mr;s

� �

/_zsdzr þ dm
qGk

l � dk
mGm

q

� �

Cl
mrC

q
ks/_zsdzr

¼ Gm
l Cl

ms;r � Cl
mr;s � Cl

qrC
q
ms � Cl

qsC
q
mr

� �

/_zsdzr

¼ Gm
lRl

mrs/_zsdzr

¼ �Gm
lRl

mrs/_zrdzs:

Problem 22 In the special case that the tensor / is a field, the commutation law of
covariant variation and differentiation of / may be derived directly from the
commutation law for covariant differentiation with respect to coordinates. Carry
out this derivation.
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Solution 22 We have

�d _/� D
Dk

�d/ ¼ �d /;l _zl
� �

� D
Dk

/;ldzl
� �

¼ /;lmdzm _zl þ /;l
�d_zl � /;lm _zmdzl � /;l

D
Dk

dzl

¼ ð/;lm � /;mlÞ_zldzm ¼ �Gr
s Rs

rlm/_zldzm:

A commutation law like the above may seem terribly abstract and of little
practical importance. The appearance is misleading. In Riemannian geometry
such commutation laws usually involve the curvature tensor, and in general
relativity the curvature tensor gives a measure of the gravitational field.
(Where it vanishes, the field is zero, etc.) Frequently, the derivation of some
important physical result involving the curvature tensor can be most expedi-
tiously carried out by performing a commutation operation that yields the
curvature tensor. The derivation of the equation of geodesic deviation is a good
illustration of this.

Suppose we have two free-particle world lines (geodesics) that are separated
only by a very small (infinitesimal) distance. One may be regarded as a variation of
the other. In order to use the variational calculus, we shall need (prior to the
variation) to have the geodesic equations in the unconstrained form

D
Dk

�_z2
� ��1=2

_zl
h i

¼ 0;

in which the parameter k has not yet been set equal to s. The change from one
world line to the other leaves these equations intact. The covariant mathematical
statement of this fact is

�d
D

Dk
�_z2
� ��1=2

_zl
h i

¼ 0;

with the basic variation dzlðkÞ being understood to be the interval between points
on the two world lines having the same value of k. By interchanging the operations
�d and D/Dk, we may convert this statement into the following:

0 ¼ D
Dk

�d �_z2
� ��1=2

_zl
h i

� Rl
mrs �_z2
� ��1=2

_zm _zrdzs

¼ D
Dk

�_z2
� ��3=2

_zl _z � �d_z
� �

þ �_z2
� ��1=2�d_zl

h i

� Rl
mrs �_z2
� ��1=2

_zm _zrdzs

�!
k!s

D
Ds

Pl
m

D
Ds

dzm

� �

� Rl
mrsu

murdzs;

where

Plm ¼ glm þ ulum; ul ¼ _zl ðk ¼ sÞ:
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We now note that

D
Ds

Pl
m ¼ 0;

because of the geodesic equations ð _ul ¼ 0Þ themselves, and that

Rl
mrsu

murPs
q ¼ Rl

mrqumur;

because of the symmetries of the Riemann tensor. Therefore, the variational
equation may be brought to its final form, known as the equation of geodesic
deviation

€gl ¼ Rl
mrsu

murgs; ð5:3Þ

where gl is the perpendicular displacement from one world line to the other:

gl ¼ Pl
mdzm:
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Chapter 6
Weak Field Approximation. Newton’s
Theory

In the region of spacetime containing the world lines of the sun and planets,
spacetime is flat to a very high degree of approximation. This means that a
coordinate system may be introduced for the whole solar system which is very
nearly canonical, i.e., inertial. In such a coordinate system, the metric tensor may
be written

glm ¼ glm þ hlm; where jhlmj. e � 1; 8l; m: ð6:1Þ

This coordinate system is not unique. In addition to rotations and weak (low
velocity) Lorentz boosts, general coordinate transformations �xl ¼ xl þ nl may
also be introduced all of which leave the quasi-canonical character of the coor-
dinate system intact. In the latter case, we must only require

jnl
;mj.e and jhlm;rn

rj.e2; 8l; m: ð6:2Þ

To first order in small quantities, hlm suffers the transformation

�hlm ¼ hlm � nl;m � nm;l; nl ¼ glmn
m;

under such a change in coordinates.
It is sometimes convenient to fix the coordinate system partially by imposing

the supplementary condition

llm
;m ¼ 0;

where

llm ¼ hlm �
1
2
glmh; h ¼ hr

r;

hlm ¼ llm �
1
2
glml; l ¼ lrr ¼ �h:

B. DeWitt, Bryce DeWitt’s Lectures on Gravitation,
Edited by Steven M. Christensen, Lecture Notes in Physics, 826,
DOI: 10.1007/978-3-540-36911-0_6, � Springer-Verlag Berlin Heidelberg 2011
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Here and elsewhere when working in the weak field approximation, we shall use
the Minkowski metric to raise and lower indices. Because llm obeys the coordinate
transformation law

�llm ¼ llm � nl;m � nm;l þ glmn
r
;r;

whence

�l
lm
;m ¼ llm

;m � nlm
;m � nml

;m � nrl
;r ¼ llm

;m þ nlm
;m ;

it is evident that �llm can be made to satisfy the supplementary condition by
choosing nl to be a solution of the wave equation with a source:

h2nl � nlm
;m ¼ llm

;m :

The supplementary condition does not fix the coordinate system completely, for it
is left intact by low velocity Lorentz transformations and by coordinate transfor-
mations that satisfy the homogeneous wave equation

h2nl ¼ 0:

Such ‘‘coordinate waves’’ are sometimes eliminated by imposing boundary con-
ditions, leaving only the Lorentz transformations.

In the case of the solar system, the spacetime geometry has additional prop-
erties not possessed by all weak-field geometries. These properties stem from the
fact that the relative velocities of all the planets are very small when compared to
the velocity of light. If (as we may) we assume that there is a negligible amount of
gravitational radiation in the solar system, then the sun and planets themselves
become the primary sources of the hlm term in the metric and, because of the
slowness with which the planets move, it follows that there exist quasi-canonical
coordinate systems, e.g., systems fixed with respect to the sun, in which all time
derivatives hlm,0 may be neglected when compared to spatial derivatives hlm,i

(i = 1, 2, 3). Such coordinate systems may be called quasi-stationary, and the
gravitational field itself may be called quasi-stationary. Any two quasi-stationary
coordinate systems are connected by (a) a rotation, (b) a general transformation
�xl ¼ xl þ nl in which the n, besides satisfying the previous conditions, have
negligible time derivatives, or (c) some combination of the two. Under the
restricted class of transformations (b), the components of hlm and llm transform
according to

�h00 ¼ h00;

�h0i ¼ �h0i � n0;i;

�hij ¼ hij � ni;j � nj;i;

�l00 ¼ l00 � ni;i;

�l0i ¼ l0i � n0;i;

�lij ¼ lij � ni;j � nj;i þ dijnk;k:

ð6:3Þ
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The supplementary condition can be imposed upon �llm by choosing nl to satisfy

r2nl � nl
;ii ¼ lli

;i : ð6:4Þ

It will be noted that h00 is the same for all quasi-stationary coordinate systems,
being unaffected either by rotations or by restricted transformations �xl ¼ xl þ nl:
This uniqueness makes it possible for us now to establish contact between for-
malism and observation – more precisely, between Einstein’s theory of gravity
(general relativity) and Newton’s. Suppose we have a freely falling body (particle)
moving slowly (compared to light) with respect to a quasi-stationary coordinate
system in a quasi-stationary gravitational field. The world line zl(s) of this body
satisfies the geodesic equation. Because of the slow motion and the fact that
|hlm| �1, we have

d2zi

ds2
¼ d2zi

dt2
ðt ¼ z0Þ and

dzi

ds

�

�

�

�

�

�

�

�

� dz0

ds

�

�

�

�

�

�

�

�

¼ 1;

so that the geodesic equation becomes

0 ¼ d2zi

dt2
þ Ci

00 ¼
d2zi

dt2
þ 1

2
ðhi0;0 þ hi0;0 � h00;iÞ

¼ d2zi

dt2
� 1

2
h00;i:

In the case of quasi-stationary weak fields, we may evidently make the iden-
tification

h00 ¼ �2U; ð6:5Þ

where U is the Newtonian gravitational potential.
It is useful to examine the conditions under which we may expect the gravi-

tational field to be quasi-stationary and weak. First, we must have

U� 1:

But in Newton’s theory,

jUj � GM

R
;

where M is the mass of the object (or objects) producing the gravitational field, R is
the distance from the object, and G is the gravity constant. Hence, it must not be
possible to get closer to the object than a distance R satisfying

R� GM;

before the idealization of regarding the object as a mass point breaks down.
Effectively this means that the mass of the object must be spread over a distance
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R satisfying the above condition and hence that the density q of the object must
satisfy

Gq� GM

R3
� 1

ðGMÞ2
: ð6:6Þ

It will be noted that a test body falling from rest at infinity to the surface of this
object then acquires a velocity of only

v� GM

R

� �1=2

� 1;

and hence that the slow motion condition will generally be maintained even under
near collisions.

Another point of contact between formalism and observation can be established
by referring to the coordinate system attached to a rotationless constantly accel-
erated rigid medium, the metric of which is given in Chap. 2. This metric is static
and, over a range of ni satisfying

jnia0ij � 1;

may be regarded as quasi-canonical. In this range we have

h00 ¼ �2nia0i;

which corresponds to an effective Newtonian potential

U ¼ nia0i:

This is a statement1 of the principle of equivalence: over a small region, the effects
of a constant acceleration cannot be distinguished from those of a uniform grav-
itational field. (Of course, no real gravitational field is everywhere uniform.)

Still another point of contact can be established by referring to the phenomenon
of the tides. The description of the tides in Newton’s theory is based on a com-
parison of the dynamical equations of two test bodies that are separated from one
another by a small interval g:

1 This is the original principle of equivalence. Nowadays it is often referred to as the weak
principle of equivalence to distinguish it from the strong principle of equivalence, which says that
every valid Lorentz invariant theory can be immediately generalized to a valid general relativistic
theory by first presenting the formalism of the theory in standard Minkowski (canonical)
coordinates and then converting all ordinary spacetime derivatives to covariant derivatives.
Unfortunately, the strong principle of equivalence is not fool proof. It is sometimes possible to
present a Lorentz invariant theory in two different forms that generalize to distinct general
relativistic theories. The latter theories differ from one another by the presence or the absence of
certain terms involving the curvature tensor.
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d2zi

dt2
¼ �U;iðzÞ;

d2

dt2
ðzi þ giÞ ¼ �U;iðzþ gÞ:

Subtracting one equation from the other, we obtain

d2gi

dt2
¼ �U;ijg

j: ð6:7Þ

The analogous equation in general relativity is the equation of geodesic deviation.
To obtain the form that this equation takes in quasi-canonical coordinates, we must
first examine the Riemann tensor in these coordinates; in particular, we must
examine the relative magnitudes of the various terms of which it is composed. Let
L be defined by2

jhlm;rsj.
e

L2
; 8l; m; r; s:

(L may be regarded as the minimum distance over which any of the hlm changes by
an appreciable fraction of itself.) By integration, we may then infer that

jhlm;rj.
e
L
; 8l; m; r:

From this it follows that the terms involving first derivatives of the metric tensor
are of order e2/L2, while those involving second derivatives are of order e/L2.
Therefore we keep only the latter, obtaining [see (4.2)]

Rlmrs ¼ �
1
2

hlr;ms þ hms;lr � hls;mr � hmr;ls
� �

: ð6:8Þ

We must also determine the form taken by the second covariant proper time
derivative:

€gl ¼ d
ds

_gl þ Cl
mr _gmur

¼ d
ds

dgl

ds
þ Cl

mrg
mur

� �

þ Cl
mr

dgm

ds
þ Cm

sqg
suq

� �

ur

¼ d2gl

ds2
þ Cl

mr;sg
murus þ 2Cl

mr
dgm

ds
ur � Cl

mrC
r
sqðgmus � gsumÞuq:

In passing to the final form, we have used the geodesic equation satisfied by ul. By
the arguments we applied to the Riemann tensor, the last term is now to be dropped
in comparison with the term in Cmr,s

l .
In the case of slow motion in quasi-canonical coordinates, we have (ul) =

(1, 0, 0, 0), g0 = 0, s = t, and the equation of geodesic deviation takes the form

2 Because, as we shall see later, the hlm satisfy a set of differential equations, none of the hlm,rs is
ever infinite and therefore L [ 0.
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d2gi

dt2
þ Ci

j0;0g
j þ 2Ci

j0
dgj

dt
¼ Ri

00jg
j:

If, in addition, the field and coordinates are quasi-stationary, we have

Ci
j0;0 ¼ 0;

Ci
j0 ¼ Cij0 ¼

1
2
ðgij;0 þ gi0;j � gj0;iÞ ¼

1
2
ðhi0;j � hj0;iÞ;

Ri
00j ¼ Ri00j ¼ �

1
2
ðhi0;0j þ h0j;i0 � hij;00 � h00;ijÞ ¼

1
2

h00;ij;

and hence,

d2gi

dt2
¼ ðh0j;i � h0i;jÞ

dgj

dt
þ 1

2
h00;ijg

j:

We note that all the terms in this equation are invariant under the restricted class of
coordinate transformations given by (6.3), which maintain the quasi-canonical and
quasi-stationary character of the coordinate system. The second term on the right is
just the Newtonian term found in (6.7), if we again make the identification
h00 = -2U. The first term on the right is a new term that is predicted by Einstein’s
theory but not by Newton’s. The field h0j,i - h0i,j appearing in this term is known as
the Lense–Thirring field. We shall see later that it is normally extremely weak and
becomes appreciable only in the vicinity of rapidly spinning matter.3

In the case of the quasi-canonical coordinate system attached to the constantly
accelerating medium, we note that h0i = 0 and h00,ij = 0, and hence there is no
tidal effect. This is not surprising, as we already know that spacetime is flat in this
case, so that Rlmrs = 0. But it emphasizes the fact that it is the presence of tidal
forces that signals the presence of a real gravitational field as opposed to a uniform
or acceleration field.

In the presence of a mass M located at the origin of coordinates, we have

U ¼ �GM

jxj ; U;i ¼ GM
xi

jxj3
;

�U;ij ¼
GM

jxj3
ð3x̂ix̂j � dijÞ; x̂i ¼ xi

jxj ; jxj 6¼ 0:

From this one may easily see that the tidal forces exerted on any spherical body in
the neighborhood of this mass tend to draw the body out into a prolate ellipsoid
having its long axis in the direction of x̂:

3 The gradient (h0j,i - h0i,j),k of the Lense–Thirring field is, in quasi-stationary coordinates,
equal to 2R0kij. It can therefore be defined, in these coordinates, as a line integral involving the
Riemann tensor.
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Problem 23 Let a free falling fluid spheroid of mass m and radius r be subject to
the gravitational action of a mass M at a distance jxj � r from the spheroid’s
center. Obtain an expression for the difference in height between high tide and low
tide on the spheroid as a function of m, M, r, and |x|. Hint: Let gi be the com-
ponents of the radius vector from the center of the spheroid to a fluid particle on its
surface. Because Newtonian gravitational fields may be superposed, the dynamical
equation of the particle under the combined action of the mass M and the rest of
the spheroid is

d2gi

dt2
¼ GM

jxj3
ð3x̂ix̂j � dijÞgj � GM

jgj3
gi þ f i ¼ � oW

ogi
þ f i;

where fi is the supporting (pressure gradient) force per unit mass at the surface of
the fluid and the ‘‘potential’’ W is given by

W ¼ � GM

2jxj3
ð3x̂ix̂j � dijÞgigj � GM

jgj

� � GM

2jxj3
ð3x̂ix̂j � dijÞgi

0g
j
0 �

GM

r
þ GM

r3
gi

0dgi;

where g0
i is the value gi would have if M were zero and dgi is the deviation from

this value. At equilibrium, we must have d2gi/d t2 = 0 and hence fi = qW/qgi.
Since fi can act only perpendicularly to the surface, it follows that the surface must
be equipotential, i.e., W = constant. Neglecting viscous forces (drag) and the
effect of the continents, compute for the earth the difference in height between
high and low spring tides, i.e., the tides when the sun and moon are either at
opposition (full moon) or conjunction (new moon), using the following data:

m� ¼ 5:98	 1024 kg; r� ¼ 6:38	 106 m;

M
 ¼ 1:99	 1030 kg; jxj
 ¼ 1:50	 1011 m;

Mmoon ¼ 7:35	 1022 kg; jxjmoon ¼ 3:84	 108 m:

Solution 23 High tide occurs when ĝ0 ¼ x̂ and low tide occurs when ĝ0 � x̂ ¼ 0
ðĝi

0 ¼ gi
0=jgjÞ: Let the value of ĝ0�dg in these two cases be dHg and dLg; respec-

tively. Then

W ¼ constant ¼ �GMr2

jxj3
� GM

r
þ GM

r2
dHg

¼ GMr2

2jxj3
� GM

r
þ GM

r2
dLg;

whence

GM

r2
ðdHg� dLgÞ ¼ 3GMr2

2jxj3
;
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and therefore

dHg� dLg ¼ 3
2

M

m

r4

jxj3

For the earth we have

dHg� dLg ¼ 3
2

r4
�

m�

M


jxj3

þ Mmoon

jxj3moon

 !

¼ 3
2
ð6:38Þ4 	 1024

5:98	 1024

1:99	 1030

ð1:50Þ3 	 1033
þ 7:35	 1022

ð3:84Þ3 	 1024

 !

¼ 3
2
ð6:38Þ4

5:98
ð0:59	 10�3 þ 1:30	 10�3Þ ¼ 3

2
ð6:38Þ4

5:98
	 1:89	 10�3

¼ 0:785 m:
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Chapter 7
Ensembles of Particles

Suppose a region of spacetime is occupied by a large number N of identical
particles. Suppose that they possess a wide variety of momenta and that there are
so many of them that their spacetime and momentum distribution may be taken as
effectively continuous. We may then introduce a continuous function f(x, p) of xl

and pi such that f ðx; pÞd3xd3p is the number of particles in the volume element d3x

ð� dx1dx2dx3Þ at the point xi at ‘‘time’’1 x0 having momenta in the range d3pð�
dp1dp2dp3Þ around pi. Let us ask the question: How does f transform under general
coordinate transformations?

The particles specified by xl; pi; d
3x, and d3p are well defined and the number

f ðx; pÞd3xd3p therefore has significance independently of the choice of the coor-
dinate system. That is to say, f ðx; pÞd3xd3p is an invariant. Hence, if we find the
coordinate transformation law for the product d3xd3p, then we shall have found it
for f.

Let us look first at d3p, but instead of considering the 3-vector pi, let us consider
the 4-vector pl. This is the 4-momentum or energy–momentum 4-vector of a
particular particle at a particular spacetime point xl. It is therefore a local covariant
vector at that point and transforms according to

pl ¼
oxm

oxl
pm:

For an actual particle pl is constrained by the conditions

p0 [ 0; p2 þ m2 ¼ 0;

1 x0 is not strictly a ‘‘time’’. However, we shall assume here that hypersurfaces of constant x0 are
spacelike [which means detðgijÞ[ 0 and g00 \ 0] and that x0 increases as one moves toward the
future in any timelike direction.

B. DeWitt, Bryce DeWitt’s Lectures on Gravitation,
Edited by Steven M. Christensen, Lecture Notes in Physics, 826,
DOI: 10.1007/978-3-540-36911-0_7, � Springer-Verlag Berlin Heidelberg 2011
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and is said to lie on the mass shell. Let us, however, for the moment consider an
unrestricted increment: dpl in pl. This increment satisfies the same transformation
law as pl itself:

dpl ¼
oxm

oxl
dpm:

From this, we obtain the transformation law for the energy–momentum 4-volume
element:

d4p ¼ oðxÞ
oðxÞd

4p;

where d4p � dp0dp1dp2dp3. We now recall that the magnitude of the determinant
of the metric tensor is a density of weight 2 and hence transforms according to

g ¼ oðxÞ
oðxÞ

� �2

g:

Therefore, the combination g�1=2d4p is coordinate invariant; it is the value of the
volume element d4p in a coordinate system in which the metric becomes locally
canonical.

Now let /(x, p) be an arbitrary scalar function of the xl and pl. We may restrict
this function to the mass shell by multiplying it by

hðp0Þdðp2 þ m2Þ:

The latter quantity is invariant under coordinate transformations that maintain the
orientation of x0 and the spacelike character of the surfaces x0 ¼ constant. Hence
the integral

UðxÞ ¼ g�1=2ðxÞ
Z

/ðx; pÞhðp0Þdðp2 þ m2Þd4p

is a scalar. Now under a change dpl in the 4-momentum, the quantity p2 þ m2

suffers the change 2pldpl. Hence, if we hold the pi fixed and integrate over p0,
then we may write

dðp2 þ m2Þ ¼ 2p0dp0; or dp0 ¼
dðp2 þm2Þ

2p0
;

and

UðxÞ ¼ g�1=2
Z

/
d3p

2p0
;

where / and p0 are now restricted to the mass shell. However, /, thus restricted, is
still a scalar. Therefore, it follows that
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g�1=2d3p

p0
is coordinate invariant:

To build an analogous invariant out of d3x, we begin by assuming that all the
particles in the phase space volume element at (xl, pl) suddenly stop interacting
with one another (if they interacted before) and start moving like free particles.
Apart from some slight fuzzing due to the distribution of momenta in d3p, the
world lines of these particles will then fill a tube as shown in Fig. 1.

A natural invariant associated with this tube is the 3-volume of its orthogonal
cross section, i.e., its size as viewed in its own rest frame. To determine this cross
section, we introduce a timelike unit vector nl orthogonal to the hypersurface
x0 ¼ constant:

ðnlÞ ¼ ð�g00Þ�1=2; 0; 0; 0
� �

:

From the laws of minors and inverse matrices, we remember that

g00 ¼ ð�gÞ�1detðgijÞ:

We also remember that the magnitude of the 3-volume of the intersection of the
tube with the hypersurface x0 ¼ constant is

detðgijÞ
� �1=2

d3x ¼ g1=2ð�g00Þ1=2d3x:

Now this hypersurface does not generally intersect the tube orthogonally. In order
to get the 3-volume of the orthogonal section, we must multiply the above
expression by

n � u ¼ ð�g00Þ�1=2u0:

Multiplying by an additional factor m, we find therefore that

g1=2p0d3x is coordinate invariant:

Finally, multiplying this with the invariant 3-momentum element previously
obtained, we see that the factors g1=2p0 cancel and that the ordinary phase space
volume element

Fig. 7.1 World tube of non-
interacting particles
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d3pd3x is coordinate invariant:

This in turn implies that the distribution function f(x, p) is a scalar.
In order to display the scalar property of f explicitly, it is often convenient to

replace f by a scalar function F of the xl and all four of the pl, viz.,

f ðx; pÞ ¼ Fðx; pÞ
�

�

p0 [ 0;p2þm2¼0:

As there is an infinite ways of extending f off the mass shell, there is no unique
way of choosing F. However, any two choices, F1 and F2, will be related by

F1ðx; pÞ ¼ F2ðx; pÞ þ Qðx; p; p2 þ m2Þ; where Qðx; p; 0Þ ¼ 0; 8xl; pl;

and the scalar function Q has no effect on any physical computations involving F1

or F2 on the mass shell. From now on we assume some particular choice has been
made for F.

The function F, although a scalar, is a generalization of the usual idea of a
scalar function because of its dependence on the pl. This has the consequence
that its covariant derivative with respect to a coordinate is not just a simple
gradient as it is for an ordinary scalar function. It is easy enough to see that its
derivative with respect to pl transforms as a contravariant vector. Its ordinary
derivative with respect to xl, however, generally has no simple transformation
character.

To obtain the appropriate definition for the covariant derivative we return, as
always, to the idea of parallel displacement. As F is a scalar, it must suffer no
change in magnitude under parallel displacement through an interval dxl :

dF ¼ 0:

However, we may break dF up into a part that arises from its dependence on the xl

and a part that arises from its dependence on the pl:

dF ¼ dxF þ oF

opl
dpl:

As the pl are the components of a covariant vector, we have

dpl ¼ Cr
lmprdxm:

Therefore,

dxF ¼ �oF

opl
Cr

lmprdxm:

The covariant derivative of F is now defined, in the usual manner, by

F;ldxl ¼ Fðxþ dx; pÞ � Fðx; pÞ þ dxFðx; pÞ½ �;
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which yields

F;l ¼
oF

oxl
þ Cr

mlpr
oF

opm
:

Problem 24 Show that (p2);l = 0 and use this result to demonstrate that if

F1ðx; pÞ ¼ F2ðx; pÞ þ Qðx; p; p2 þ m2Þ; where Qðx; p; 0Þ ¼ 0; 8xl; pl;

then F1;l and F2;l coincide on the mass shell.

Solution 24 We have

ðp2Þ;l ¼
op2

oxl
þ Cr

mlpr
oðp2Þ
opm

¼ gmr
;l pmpr þ 2Cr

mlprpm

¼ ð�gmr;l þ 2CrmlÞpmpr

¼ ð�gmr;l þ grm;l þ grl;m � gml;rÞpmpr ¼ 0:

For a quicker derivation, one may simply introduce a coordinate system in which
the glm,r vanish at x. As Q(x, p, 0) = 0, it follows that derivatives of Q with
respect to its first two arguments vanish on the mass shell. Therefore, covariant
differentiation, like ordinary differentiation, obeys the chain rule, we have

F1;ljp2þm2¼0 ¼ F2;ljp2þm2¼0 þ Q3ðp2 þ m2Þ;ljp2þm2¼0

¼ F2;ljp2þm2¼0;

where Q3 denotes the derivative of Q with respect to its third argument.
Suppose none of the particles in the ensemble is either created or annihilated in

the course of time, so that the total number of particles remains constant. This
number is given by

N ¼
Z

d3x

Z

d3pf ðx; pÞ

¼
Z

j0d3x ¼
Z

R

jldRl;

where

jl ¼
Z

ulf ðx; pÞd
3p

u0

¼ 2
Z

plFðx; pÞhðp0Þdðp2 þ m2Þd4p

and R is the hypersurface x0 ¼ constant. The quantity jl is evidently a contra-
variant vector density of unit weight. From this fact, it follows that the integral
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R

R jldRl, with R fixed in spacetime, is invariant under coordinate transformations.
In order to show this, we introduce another contravariant vector density kl which is
identical with jl in a finite neighborhood of R but which vanishes at a finite
distance to the past of R. We may then write

Z

R

jldRl ¼
Z

R

kldRl ¼
Z

R

�1

kl
;ld4x;

and the question reduces to whether or not k,l
l transforms as a density of unit

weight. That it does follows from the fact that the covariant divergence of a
contravariant vector density of unit weight reduces to the ordinary divergence:

kl
;l ¼ kl

;l þ Cl
mlkm � Cm

mlkl ¼ kl
;l:

Therefore,
R

RjldRl is independent of the choice of coordinates.
Now not only is

R

RjldRl independent of the coordinate system, but it is also
independent of R. This follows from the fact that, for any spacelike hypersurface, a
coordinate system can be found in which that hypersurface is given by x0 ¼
constant and in which the integral reduces to

R

j0d3x ¼ N. Therefore,

0 ¼
Z

R1

jldRl �
Z

R2

jldRl ¼
Z

R1

R2

jl;ld4x;

for all spacelike R1 and R2. As R1 and R2 are arbitrary, the spacetime region
between them can be reduced to an arbitrarily small neighborhood of any space-
time point. In order that the above relation hold for all R1 and R2, therefore, we
must have2

jl;l ¼ 0:

Since jl is a sum over timelike future-pointing 4-vectors, it is itself timelike.
Therefore, we may introduce the quantities

q ¼ ð�j2Þ1=2; q0 ¼ g�1=2q; ul ¼ q�1jl;

whence

u2 ¼ �1; jl ¼ qul; qulð Þ;l¼ 0:

Here, ul is the mean 4-velocity of the particles at x and may be regarded as the
flow vector at x of the fluid medium formed by the particle ensemble. q0 is the

2 After we have this, we may let R be any connected hypersurface that intersects completely the
support of the vector density jl, cutting all its flow lines an odd number of times. Then, R need
not be spacelike, even in part.
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proper number density of the particles at x, i.e., the particle density as viewed in a
local Minkowskian rest frame of the medium at x.

In the special case that the particles of the ensemble are free particles that do
not interact with each other, i.e., the world line of each is a geodesic, the con-
servation law j;l

l = 0 reduces to a simple condition on the distribution function
F(x, p). As geodesic motion is derivable from a variational principle, a Hamilto-
nian formulation of the basic equations can be set up, although we shall not do this
here. As of the canonical invariance3 of the phase space volume element d3xd3p
and because the motion in phase space of any particle may, through the Hamilton
equations, be regarded as the unfolding-in-time of a canonical transformation, the
phase space volume occupied by the particles originally in d3xd3p remains con-
stant in time. However, because the number of particles in this volume element is
f d3xd3p and because this number is constant, one may conclude in turn that f has
vanishing total time derivative. This is Liouville’s theorem.

As it makes no difference whether the total derivative is taken with respect to
time or with respect to proper time, we may recast Liouville’s theorem in the
covariant form:

0 ¼ dF
ds
¼ oF

oxl
_xl þ oF

opl

dpl

ds

¼ oF

oxl
_xl þ oF

opl
_pl þ Cr

lmpr _xm
� �

¼ F;l _xl þ oF

opl
_pl ¼ m�1F;lpl;

using _pl ¼ 0:

Problem 25 Let G(x, p) be an arbitrary scalar function of the xl and pl having
effectively compact support in p-space. By making use of the definition of the
covariant derivative of such a function, together with integration by parts, show
that

o

oxl

Z

plGðx; pÞd4p ¼
Z

plG;lðx; pÞd4p:

(Be sure to write pl ¼ glmpm.) Use this result together with the first result of
Problem 24 to show that the condition F;lpl = 0 guarantees that j;l

l = 0.

Solution 25 We have

o

oxl

Z

plGd4p ¼
Z

glm
;l pmGþ ploG

oxl

	 


d4p

¼
Z

�glrgrm;lpmGþ plG;l � plCr
mlpr

oG

opm

	 


d4p

3 Coordinate transformations can be shown to be canonical transformations, and hence the
coordinate invariance of d3xd3p is a special case of this.
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¼
Z

plG;l � plgmrglm;rGþ glmCr
mlprGþ plCm

mlG
� �

d4p

¼
Z

pl G;l þ gmr �glm;r þ Clmr þ Cmrl
� �

G
� �

d4p

¼
Z

plG;ld4p:

Therefore, using (p2);l = 0 and dðp0Þdðp2 þ m2Þ ¼ 0, we have

jl;l ¼ jl;l ¼ 2
Z

plF;lðx; pÞhðp0Þdðp2 þ m2Þd4p ¼ 0:

For a quicker derivation, one may introduce a coordinate system in which the glm,r

vanish at x.

Problem 26 Milne’s Cosmology. Show that the distribution function

Fðx; pÞ ¼ Z

Z

1

�1

dðx� kpÞdk

satisfies the condition F,lpl = 0 for a free particle gas. Here spacetime is assumed
to be flat, the coordinates are assumed to be canonical (Minkowskian), Z is a
normalizing constant, and the integrand is the 4-dimensional delta function of
xl � kpl. Obtain the function f(x, p), and show that the momentum distribution is
isotropic, with all momenta represented. Show that, at time x0 = 0, all the particles
are concentrated at x = 0, while at time x0 = t, those particles having velocity
v are located at x = vt. The distribution is evidently one that corresponds to an
explosion that takes place at the origin at time x0 = 0. For any particle, the proper
time lapse since the explosion is therefore

s ¼ hðx0Þ � hð�x0Þ
� �

ð�x2Þ1=2:

Show that

jl ¼ Zm2 hðx0Þ � hð�x0Þ
� �

hð�x2Þxlð�x2Þ�2;

q0 ¼ ð�j2Þ1=2 ¼ Zm2hð�x2Þð�x2Þ�3=2 ¼ Zm2hð�x2Þjsj�3;

and hence that the world lines of the particles fill the entire interior of the light
cone through the origin (- x2 [ 0).

By taking the particles to be galaxies having roughly identical masses, we
obtain a model for a Big Bang cosmology in which gravity is neglected. As the
4-dimensional delta function is a scalar under Lorentz transformations, the dis-
tribution function F has the same form in all Lorentz frames having the same
origin. This means that the ‘‘universe’’ has the same appearance as viewed from
every galaxy. To determine this appearance, we may choose an ‘‘observer’’ galaxy
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having zero velocity. As optical information comes to this galaxy along its past
light cone, one may conveniently take this cone as the hypersurface R. Let (xl) be
a point on R and let r be the apparent position of the galaxy whose world line
passes through that point, i.e., the actual position of the galaxy at the time it
emitted the radiation received by the observer galaxy at rest at the origin. If the
vertex of the cone R is at (t, 0, 0, 0) with t [ 0, then (xl) = (t - r, r). The surface
element of R may be taken in the form: ðdRlÞ ¼ ðd3r; r̂d3rÞ; where r̂ ¼ r=r: Use
this to express the integral

R

RjldRl as an integral over the volume elements d3r of
apparent position. Although the latter integral diverges, showing that the total
number of galaxies is infinite, the integrand has an immediate interpretation as the
apparent or optical density of galaxies as seen by the observer galaxy at the origin.
Obtain this optical density as a function of r and t.

Solution 26 We have

F;lpl ¼ Z

Z

1

�1

pld;lðx� kpÞdk ¼ �Z

Z

1

�1

d
dk

dðx� kpÞdk

¼ �Z dðx� kpÞ½ �k¼1k¼�1¼ 0;

for all finite xl, and

f ðx; pÞ ¼ Z

Z

1

�1

dðx� kpÞdðx0 � kp0Þdk

¼ Z

p0
d x� p

p0
x0

	 


;

whence

f ðx; pÞ ¼ Z

p0
dðx� vx0Þ

Then

jl ¼ 2
Z

plFðx; pÞhðp0Þdðp2 þ m2Þd4p

¼ 2Z

Z

d4p

Z

1

�1

dkpldðx� kpÞhðp0Þdðp2 þ m2Þ

¼ 2Z

Z

1

�1

k�5xlhðk�1x0Þdðk�2x2 þ m2Þdk:

To evaluate this last integral, let n = k-2. Then

k ¼ �n�1=2 ; k�5 ¼ �n5=2; dk ¼ �1
2
n�3=2dn; k�5dk ¼ �1

2
ndn;
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and

jl ¼ Z hðx0Þ � hð�x0Þ
� �

xl
Z

1

0

dðnx2 þ m2Þndn

¼ Zm2 hðx0Þ � hð�x0Þ
� �

hð�x2Þxlð�x2Þ�2;

q0 ¼ ð�j2Þ1=2 ¼ Zm2hð�x2Þð�x2Þ�3=2 ¼ Zm2hð�x2Þjsj�3:

On R, we have

�x2 ¼ ðt � rÞ2 � r2 ¼ t2 � 2tr ¼ tðt � 2rÞ;
Z

R

jldRl ¼ Zm2
Z

r\t=2

t � r þ r�̂r
t2ðt � 2rÞ2

d3r ¼
Z

qopd3r;

where

qop ¼
Zm2

tðt � 2rÞ2
hðt � 2rÞ

Problem 27 As the total number of galaxies in the preceding problem is infinite,
one might argue that, if all the galaxies are assumed to have the same absolute
luminosity L0, then the universe will appear to be infinitely bright. Let L be the
apparent luminosity of a galaxy at an apparent distance r. If the time of obser-
vation (made by the observer galaxy at the origin) is t, then the recession velocity
of this galaxy is r/(t - r). Express L as a function of L0, t and r. Now let d2U be the
radiation energy flux from the galaxy through a surface element d2S orthogonal to
the line of sight and located at the origin. The apparent brightness of the galaxy is
then

B � d2U

d2S
¼ L

4pr2
:

By summing this quantity over all the galaxies lying in a solid angle d2X from the
origin, obtain the total brightness of the sky per unit solid angle, i.e., d2Btot=d2X,
and show that it is finite for t [ 0. (Note that the calculation is somewhat unre-
alistic in that it assumes L0 to be the same for all galaxies and hence fails to allow
for aging effects.)

The immediate data received by an observer at the origin who views the above
‘‘universe’’ are red shift z and brightness B of individual galaxies, and the galactic
distribution function D defined so that Dd2Xdz is the number of galaxies in the
solid angle d2X (from the observer) that are observed to have red shifts lying
between z and zþ dz. Obtain B and D as functions of Z, m, L0, t, and z. Check your
answers by obtaining d2Btot=d2X directly from B and D.

88 7 Ensembles of Particles



Solution 27 We have

v ¼ r

t � r
; 1� v ¼ t � 2r

t � r
; 1þ v ¼ t

t � r
;

L ¼ 1� v

1þ v

	 
2

L0 ¼
ðt � 2rÞ2

t2
L0

Hence,

d2B

d2X
¼
Z

1

0

qBr2dr ¼ 1
4p

Z

1

0

qLdr

¼ Zm2L0

4p

Z

1

0

hðt � 2rÞ 1

tðt � 2rÞ2
ðt � 2rÞ2

t2
dr

¼ Zm2L0

4pt3

Z

t=2

0

dr;

and finally

d2Btot

d2X
¼ Zm2L0

8pt2

Now

ð1þ zÞ2 ¼ 1þ v

1� v
¼ t

t � 2r
; t � 2r ¼ t

ð1þ zÞ2
:

ð1þ zÞ2 � 1
h i

t ¼ 2ð1þ zÞ2r; r ¼ zð2þ zÞ
2ð1þ zÞ2

t; L ¼ L0

ð1þ zÞ4
;

so that

B ¼ L

4pr2
¼ L0

pt2

1

z2ð2þ zÞ2

Further,

qop ¼
Zm2

t3
ð1þ zÞ4;

and

Ddz ¼ qopr2dr ¼ Zm2

t3
ð1þ zÞ4z2ð2þ zÞ2

4ð1þ zÞ4
t3 1

1þ z
� zð2þ zÞ
ð1þ zÞ3

" #

dz;
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so

D ¼ 1
4

Zm2z2ð2þ zÞ2

ð1þ zÞ3

Finally,

d2Btot

d2X
¼
Z

1

0

DBdz ¼ Zm2L0

4pt2

Z

1

0

dz

ð1þ zÞ3
¼ Zm2L0

8pt2
;

as above.

7.1 Gases at Equilibrium

An ensemble of interacting particles that has attained a state of quasi-equilibrium
is called a gas. True equilibrium, in which the parameters of the gas remain
constant in time, cannot be reached unless spacetime possesses a timelike Killing
vector field nl. If nl is the only Killing vector possessed by spacetime, then, at
equilibrium, the flow lines of the gas must be parallel to nl. Moreover, if the gas is
sufficiently dilute or if the interparticle forces are sufficiently weak that the time
average of the interaction energy is negligible compared to the kinetic energy of
the particles (Boltzmann’s point-collision approximation), then the standard
arguments of statistical mechanics lead to the conclusion that the equilibrium
distribution function of the gas must be simply a function of the only constant of
motion possessed by the free particles, namely n�p :

Fðx; pÞ ¼ Uðn � pÞ:

The form of the function U will depend on the temperature and total number of the
particles and on their nature: classical, quantum, boson, fermion, massive, mass-
less, conserved, not conserved, etc. If spacetime possesses more than one inde-
pendent Killing vector field, then the vector n above may, but need not, be
replaced by an arbitrary linear combination of these. The only requirement is that
the combination be everywhere timelike in the region occupied by the gas.

It is easy to verify that the above distribution function leads to a mean
4-velocity or flow vector for the gas that is parallel to nl. Let

WðyÞ ¼
Z y

UðyÞdy:

Then

jl ¼ 2
Z

plUðn � pÞhðp0Þdðp2 þ m2Þd4p

¼ 2
o

onl

Z

Wðn � pÞhðp0Þdðp2 þ m2Þd4p:
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The last integral is a scalar density at x which depends only on glm and nl. It must
necessarily have the form:

Z

Wðn � pÞhðp0Þdðp2 þ m2Þd4p ¼ g1=2Xmðn2Þ;

for some function Xm. Therefore,

jl ¼ 4g1=2X0mðn2Þnl;

and hence jl and ul are parallel to nl. We have, in fact,

ul ¼ ð�n2Þ�1=2nl:

Problem 28 Suppose the particles of a gas at equilibrium, having a distribution
function of the form Fðx; pÞ ¼ Uðn � pÞ where nl is a timelike Killing vector,
suddenly ceased to interact with one another. Show that the distribution function
would remain unchanged. (Hint: Show that F is an allowable distribution function
for an ensemble of non-interacting particles.)

Solution 28 We have

ðn � pÞ;l ¼ nm
;lpm þ Cr

mlprn
m ¼ nm

;lpm:

Therefore,

F;lpl ¼ U0ðn � pÞ;lpl ¼ U0nm
;lpmp

l

¼ 1
2
U0plpmðnl;m þ nm;lÞ ¼ 0;

as required.
In equilibrium statistical mechanics, the temperature enters through a Lagrange

multiplier that is introduced, in the computation of the most probable distribution,
to account for the conservation of the sum

P

n�p over all the gas particles. We
may introduce it here through a simple rescaling of nl and U so that the distri-
bution function takes the form:

Fðx; pÞ ¼ AUðb0n � pÞ;
where U is a universal function depending only on the nature of the gas and A is a
constant proportional to the total particle number when this number is conserved
under a temperature change, and unity when it is not. The Lagrange multiplier b0

has the physical interpretation

b0 ¼
1

kT0
;

where T0 is the local temperature of the gas (measured by a thermometer!) at a
point where nl is chosen to have the normalization n2 = -1. The local temper-
ature at an arbitrary point is given by
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b ¼ 1
kT
;

where

b ¼ ð�n2Þ1=2b0;

so that

Fðx; pÞ ¼ AUðbu � pÞ:

Evidently,

T ¼ ð�n2Þ�1=2T0;

so that the local temperature is not generally a constant, even at equilibrium, but
varies from point to point. Although this result was obtained by analyzing an
idealized gas it must also hold true for real gases, since they may be placed in
contact with idealized gases, at least in thought experiments. The local temperature
at equilibrium satisfies a differential equation that is an immediate consequence of
the Killing property of nl. To obtain it, we first compute

ul;m ¼ ð�n2Þ�1=2nl;m þ ð�n2Þ�3=2nln
rnr;m;

ul;mu
m ¼ ð�n2Þ�1nl;mn

m þ ð�n2Þ�2nln
rnmnr;m

¼ ð�n2Þ�1nl;mn
m:

The differential equation immediately follows:

T;l þ ul;mu
mT ¼ ð�n2Þ�3=2nmnm;lT0 þ ð�n2Þ�1nl;mn

mT

¼ ð�n2Þ�1nmðnl;m þ nm;lÞT
¼ 0:

Note that the temperature is constant along any flow line:

T;lul ¼ 0:

Problem 29 Suppose the constantly accelerated medium of Problem 10 is a gas.
By finding a Killing vector that generates the flow lines show that this gas can be at
thermal equilibrium, and obtain an expression for the variation of T with the
Lagrangian coordinate n0. (Hint: Use the metric for the system of coordinates
r, ni.)

Solution 29 As the Killing vector in the coordinate system r, ni try

ðnlÞ ¼ ð1; 0; 0; 0Þ:
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Check:

nl ¼ gl0;

nl;m þ nm;l ¼ nl;m þ nm;l � 2Cr
lmnr

¼ gl0;m þ gm0;l � 2C0lm

¼ glm;0 ¼ 0;

because the metric is static. Now

n2 ¼ g00 ¼ �ð1þ an0Þ2;

whence

T ¼ ð�n2Þ�1=2T0 ¼
T0

1þ an0

Note that the temperature decreases with increasing n0 at the same rate as the
absolute acceleration.
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Chapter 8
Production of Gravitational Fields
by Matter

We have examined, in an introductory way, the effect of gravity on matter, or at
least on particles. In order to study the complete interaction between gravity and
matter, in particular the production of gravitational fields by matter,1 we must
endow the gravitational field with dynamical properties. For many reasons, e.g.,
conservation laws, quantization, etc., it is desirable to do this by means of a
variational or least action principle. To the action functional SM for the matter,
suitably generalized (by the strong equivalence principle) to curved spacetime, one
adds an action functional SG for the gravitational field. SG must be coordinate
invariant and a functional of the metric field glm alone. The most general such
functional that leads to differential equations of order no higher than the second
has the form

SG ¼ j
Z

g1=2Rd4xþ k
Z

g1=2d4x;

where j and k are certain constants.2 The total action is then

S ¼ SG þ SM; ð8:1Þ

and the dynamical (field) equations are

0 ¼ dS

dglm
¼ dSG

dglm
þ dSM

dglm
;

0 ¼ dS

dUA ¼
dSM

dUA;

1 The term ‘matter’ will here include electromagnetic fields.
2 The minus sign attached to the k is conventional. k can, in fact, have either sign.

B. Dewitt, Bryce DeWitt’s Lectures on Gravitation,
Edited by Steven M. Christensen, Lecture Notes in Physics, 826,
DOI: 10.1007/978-3-540-36911-0_8, � Springer-Verlag Berlin Heidelberg 2011
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where d=dglm and d=dUA are the operators of functional differentiation and the UA

are the dynamical variables that describe the matter.
In order to compute the functional derivative dSG=dglm, we first compute the

variations

dCl
mr ¼ dglsCsmr þ

1
2

glsðdgsm;r þ dgsr;m � dgmr;sÞ

¼ �glsCq
mrdgsq þ

1
2

gls dgsm;r þ dgsr;m � dgmr;s
�

þ Cq
srdgqm þ Cq

mrdgsq

þ Cq
qsmdgqr þ Cq

rmdgsq

� Cq
msdgqr � Cq

rsdgmqÞ

¼ 1
2

gls dgsm;r þ gsr;m � dgmr;s
� �

;

dRs
rlm ¼ dCs

rm;l � dCs
rl;m

þ dCs
qlC

q
rm þ Cs

qldCq
rm � dCs

qmC
q
rl � Cs

qmdCq
qrl

¼ dCs
rm;l � dCs

rl;m

� Cs
qldCq

rm þ Cq
rldCs

qm þ Cq
mldCs

rq

þ Cs
qmdCq

rl � Cq
rmdCs

ql � Cq
lmdCs

rq

þ Cq
rmdCs

ql þ Cs
qldCq

rm � Cq
rldCs

sqm � Cs
qmdCq

qrl

¼ dCs
rm;l � dCs

rl;m

¼ 1
2

gsqðdgqr;ml þ dgqm;rl � dgrm;ql � dgqr;lm � dgql;rm þ dgrl;qmÞ

¼ �1
2

gsqðdgql;rm þ dgrm;ql � dgqm;rl � dgrl;qm

þ Rk
qlmdgkr þ Rk

rlmdgqkÞ; ð8:2Þ

dRsrlm ¼ Rk
krlmdgsk þ gskdRk

rlm

¼ �1
2
ðdgsl;rm þ dgrm;sl � dgsm;rl � dgrl;sm

þ Rk
slmdgkr � Rk

rlmdgskÞ

¼ �1
4

�

dgsl;rm þ dgsl;mr þ dgrm;sl þ dgrm;ls:

� dgsm;rl � dgsm;lr � dgrl;sm � dgrl;ms

þ Rk
srmdgkl þ Rk

lrmdgsk þ Rk
rsldgkm þ Rk

msldgrk

� Rk
srldgkm � Rk

mrldgsk � Rk
rsmdgkl � Rk

lsmdgrk

þ 2Rk
slmdgkr � 2Rk

rlmdgsk

�
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¼ �1
4

�

dgsl;rm þ dgsl;mr þ dgrm;sl þ dgrm;ls:

� dgsm;rl � dgsm;lr � dgrl;sm � dgrl;ms

�Rk
msrdgkl þ Rk

lsrdgkm � Rk
rlmdgks þ Rk

slmdgkr

�

;

dRlm ¼ dRr
lrm ¼ dCr

lm;r � dCr
lr;m

¼ 1
2

grs dgsl;mr þ dgsm;lr � dglm;sr � dgsl;rm � dgsr;lm þ dglr;sm
� �

¼ 1
2

grs dglr;ms þ dgmr;ls � dglm;rs � dgrs;lm
� �

;

dR ¼ dglmRlm þ glmdRlm

¼ glm dCr
lm;r � dCr

lr;m

� �

� Rlmdglm

¼ glmgrs dglr;ms � dglm;rs � Rlmdglm
�

;

dglm ¼ �glrgmsdgrs; dg1=2 ¼ 1
2

g1=2glmdglm;

where dglm is an arbitrary variation in the metric tensor.
Applying these results to the action SG and carrying out a covariant integration

by parts,3 we find

dSG ¼ j
Z

dðg1=2RÞd4xþ k
Z

dg1=2d4x

¼ j
Z

g1=2 glm dCr
lm;r � dCr

lr;m

� �

� Rlm � 1
2

glmR

� �

dglm

� 	

d4x

þ 1
2
k
Z

g1=2glmdglmd
4x

¼ �
Z

g1=2 j Rlm � 1
2

glmR

� �

� 1
2
kglm

� 	

dglmd
4x;

whence it follows that

dSG

dglm
¼ �g1=2 j Rlm � 1

2
glmR

� �

� 1
2
kglm

� 	

:

This yields Einstein’s gravitational field equations:

jg1=2 Rlm � 1
2

glmR

� �

¼ 1
2

Tlm þ 1
2
kg1=2glm;
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where

Tlm � 2
dSM

dglm
:

Tlm, which is a tensor density, is known variously as the stress–energy density,
energy–momentum density, or energy–momentum–stress density of the matter. The
reason for this terminology does not become fully apparent until one has analyzed
the dynamics of various kinds of bulk matter in some detail, but one can already
make a beginning at understanding by examining what it looks like in the case of a
free particle.

8.1 Energy–Momentum Density of a Free Particle

The action functional of the free particle is given by (5.1). To obtain the functional
derivative of this action with respect to the metric tensor glm we must subject glm to
a variation dglm. If the world line of the particle does not intersect the support of
dglm, the action will remain unaffected. It is evident therefore that the functional
derivative is going to involve a delta function d(x, z) having as arguments the point
x where the derivative is being taken and the location za(k) of the particle. We shall
use indices from the first part of the Greek alphabet to denote tensors taken at the
point za(k) and from the middle of the alphabet to denote tensors taken at the point
xl. With this convention we may employ the abbreviations

glm ¼ glmðxÞ; gab ¼ gab zðkÞð Þ:

We shall also need the identity

dgab

dglm
¼ dlm

ab;

where

dlm
ab �

1
2

dl
rd

m
s þ dm

rd
l
s

� �

dðx; zÞjr¼a;s¼b:

dab
lm is a bitensor density of unit weight at the point x and zero weight at the point z. It

satisfies

dlm
ab;m ¼ �

1
2
ðdl

a;b þ dl
b;aÞ; dl

a � dl
m dðx; zÞjm¼a;

as may be verified by passing to a coordinate system in which the derivatives of
glm vanish at x. Finally, for later use, we shall record here two other properties of
the functional derivative:
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• Functional differentiation is commutative (like ordinary differentiation).
• Functional differentiation commutes with ordinary differentiation with respect

to coordinates or world line parameter k (It does not commute with covariant
differentiation!).

The computation of the energy–momentum density for the free particle is now
elementary. We find

Tlm ¼ 2
dS

dglm
¼ m

Z

dlm
ab _za _zbð�_z2Þ�1=2dk

�!
k!s

m

Z

dlm
ab _za _zbds ¼

Z

dlm
abpaubds:

Let us look at the special form this expression takes in canonical coordinates in flat
spacetime.4

Tlm ¼
Z

plðsÞumðsÞd x� zðsÞð Þds

¼
Z

plðsÞumðsÞd x� zðsÞð Þd x0 � z0ðsÞ
� �dz0ðsÞ

_z0ðsÞ

¼ dðx� zÞplum

u0













z0ðsÞ¼x0

;

so that

Tl0 ¼ dðx� zÞpl; Tli ¼ dðx� zÞplvi; vi ¼ ui

u0
:

The three-dimensional delta function appearing in these last equations displays
like a beacon the pointlike character of the particle. T00 is clearly the particle’s
energy density: All the energy p0 is located where the particle is! Ti0 is just as
clearly the momentum density. However, if one remembers the relativistic relation
pi = p0vi between momentum and energy, one can alternatively regard momentum
as a rate of transport of energy. This permits Ti0, or T0i if you like, to be interpreted
also as a rate of flow of energy per unit area or energy flux density. In a similar
vein, Tij is to be regarded as a momentum flux density.

8.2 The Weak Field Approximation

We are now in a position to establish another point of contact between formalism
and observation, a point of contact that will, in particular, enable us to determine

4 In flat spacetime, the world line is of course straight, but we make no use of this at this point
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the value of the constant j. We again assume that the gravitational field is so weak
that we may introduce a quasi-canonical coordinate system. We note that this
forces us for the present to assume that the constant k vanishes. For if it were not
zero, spacetime could not be even approximately flat, in the large, even in the
absence of matter. It would instead be forced to have a constant scalar curvature
that is easily found by contracting Einstein’s equations:

R ¼ �2k=j:

To find the form that Einstein’s equations take in the weak field approximation
we first compute the Riemann tensor. For this purpose, we recall that we may use
the expression obtained in (4.2) for the Riemann tensor in a coordinate system in
which the first derivatives of the metric tensor vanish at the point of interest. We
have seen that the terms that involve the first derivatives in an arbitrary coordinate
system are, in a quasi-canonical coordinate system, of the second order in small
quantities and hence may be dropped. Therefore we have used the notation and
thereafter [see (6.8)],

Rlmrs ¼ �
1
2
ðhlr;ms þ hms;lr � hls;mr � hmr;lsÞ:

This expression is known as the linearized Riemann tensor, and the weak field
theory is often called the linearized theory. The linearized Riemann tensor has an
important property: It is invariant under the approximate coordinate transformation
law for the hlm given by (6.2). In this respect the linearized Riemann tensor is
similar to the electromagnetic field tensor, which is invariant under gauge trans-
formations,5 and for this reason the approximate coordinate transformation law is
often called a gravitational gauge transformation. The reason for the gauge
invariance of the linearized Riemann tensor is not hard to see. When nl is small the
functional form of the full Riemann tensor suffers a change that can be accurately
expressed as a sum of terms of the form -Rlmrs,qn

q, -Rlm rqn
q

,s, etc. (infinitesimal
coordinate transformation law). But as these terms are of the second order in small
quantities they may be dropped in the weak field approximation. (Rlmrs, unlike the
metric tensor, is already of the first order in small quantities.) The gauge invari-
ance of the linearized Riemann tensor may also, of course, be verified by direct
computation.

Problem 30 Verify the gauge invariance of the linearized Riemann tensor by
direct computation.

5 The analogy goes deeper than this. The electromagnetic field tensor is a curl. The linearized
Riemann tensor is a double curl. It is obtained by antisymmeterizing the second derivative -

hlr,ms /2 in l and m and in r and s.
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Solution 30 We have

Rlmrs ¼ Rlmrs þ
1
2

nl;rms þ nr;lms þ nm;slr þ ns;mlr

�

�nm;rls � nr;mls � nl;smr � ns;lmr

�

¼ Rlmrs:

The importance of the gauge invariance of the linearized Riemann tensor lies
in the fact that the presence or absence of a real gravitational field is characterized
by the presence or absence of a nonvanishing Riemann tensor. This tensor
represents the gravitational field, and in the weak field approximation we have, in
it, an invariant characterization of the field, i.e., an expression for the field that is
independent of which quasi-canonical coordinate system we are using.

Let us now compute the linearized Ricci tensor and curvature scalar:

Rlm ¼ grsRlrms ¼ �
1
2
grs hlm;rs þ hrs;lm � hrm;ls � hls;rm
� �

;

R ¼ glmRlm ¼ �hl
;l þ hlm

;lm:

The linearized Einstein equations then follow immediately:

1
2j

Tlm ¼ � 1
2

hlmr
;r þ hlm

; � hlrm
;r � hmrl

;r

� �

þ 1
2
glm hr

;r � hrs
;rs

� �

¼ � 1
2

llmr
;r �

1
2
glmlr;r � llm

; � llrm
;r þ

1
2

llm
;

�

� lmrl
;r þ

1
2

lml; þ glmlr;r þ glmlrs
;rs �

1
2
glmlr;r

�

¼ � 1
2

llmr
;r � llrm

;mr � lmrl
;r þ glmlrs

;rs

� �

:

If we impose the supplementary condition lm
lm = 0 (sometimes called choosing the

Lorentz, harmonic, or de Donder gauge), these equations take the particularly
simple form

h2llm ¼ �1
j

Tlm:

Contact with observation is made by choosing for Tlm the energy–momentum
density of a point particle. There is, of course, a contradiction here. If the particle
is a point the field llm will become singular at the particle itself, thus violating the
weak field approximation. Worse still, this will continue to be true even in the full
theory, and hence the particle will have no geodesic to follow because the very
notion of Riemannian manifold breaks down where the particle is. This means, of
course, that the point particle picture is an idealization. We must smear the particle
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out. It is true that we can then no longer be absolutely sure that the point particle
picture is a valid idealization but must check it later, after the fact, which we shall
do.

Let us suppose that the particle has mass M and is located at the origin. Then its
(idealized) energy–momentum density has only one nonvanishing component,
viz., T00, given by

T00 ¼ MdðxÞ: ð8:3Þ

The particle being at rest, we may choose a stationary quasi-canonical coordinate
system. Actually, this choice involves another assumption, namely that no gravi-
tational waves are present. In the special gauge or coordinate system in which the
supplementary condition lm

lm = 0 is satisfied, llm then has only one nonvanishing
component l00, which satisfies the equation

r2l00 ¼ �1
j

T00 ¼ �1
j

MdðxÞ:

(We recall that the supplementary condition can also be imposed in a quasi-
stationary coordinate system.) If more than one ‘particle’ is present, there will be
additional terms on the right side of the equation. (This follows from the additivity
of action functionals.) Owing to the interaction of the particles, they will no longer
remain at rest. In order that it remain possible to keep the coordinates quasi-
stationary, the density of the masses must satisfy Gq � (GM)-2 [see (6.6)] in
accord with our previous statement that the particles must in reality be smeared
out.

The solution of the above differential equation that satisfies

lim
jxj!1

l00 ¼ 0;

and is to be taken seriously only for |x| � GM, is

l00ðxÞ ¼ M

4pj
1
jxj ¼ �

1
4pjG

U;

where U is the Newtonian potential of the particle. From this we get

l ¼ �l00 ¼ �l00; h00 ¼ l00 þ
1
2

l ¼ 1
2

l00 ¼ �
1

8pjG
U;

hij ¼ lij �
1
2
dijl ¼

1
2
dijl00 ¼ �dij

1
8pjG

U; h0i ¼ l0i ¼ 0:

If we transform now to another quasi-stationary coordinate system using the
transformation laws (6.3), hij and h0i will assume other values, but h00 will remain
unchanged.

In order that general relativity in the weak field approximation agree with
Newtonian theory in its account of the motion of bodies under the action of
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gravitational forces, we have seen in (6.5) that we must make the identification
h00 = -2U. Comparing this with our present result we see that the constant j
must be given by

j ¼ 1
16pG

:

The full Einstein equations therefore take the form

g1=2 Rlm � 1
2

glmR

� �

¼ 8pGTlm þ 8pGkg1=2glm: ð8:4Þ

8.3 Energy–Momentum–Stress Density of a Gas
at Equilibrium

If more than one particle is present their action functionals simply add together and
the total energy–momentum density takes the form

Tlm ¼
X

n

Z

dlm
anbn

pan
n ubn

n dsn ¼
X

n

Z

dlm
anbn

pan
n ubn

n

dz0
n

u0
n

:

If the particles are numerous enough to be described effectively by a continuous
distribution function f(x, p), the above summation may be replaced by an
integration:

Tlm ¼
Z

d3z

Z

d3pf ðz; pÞ
Z

dlm
abpaubdz0

u0

¼
Z

d4z

Z

d3p

u0
dlm

abpaubf ðz; pÞ

¼
Z

plumf ðx; pÞd
3p

u0

¼ 2
Z

plpmFðx; pÞhðp0Þdðp2 þ m2Þd4p;

where F(x, p) is an extension of f(x, p) off the mass shell. Here the particles are
assumed to be non-interacting (except through their averaged gravitational forces–
Vlasov approximation). However, the expression obtained for Tlm is also valid for
interacting particles under the Boltzmann collision approximation, in particular for
a gas at equilibrium in a spacetime with a timelike Killing vector nl. Choosing the
distribution function in the form F(x, p) = U(n�p) in this case, and defining

HðyÞ ¼
Z y

dy0
Z y0

dy00Uðy00Þ;
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we may write

Tlm ¼ 2
Z

plpmUðn � pÞhðp0Þdðp2 þ m2Þd4p

¼ 2
o2

onlonm
g1=2Zmðn2Þ
h i

¼ 4g1=2 o

onl
nmZ 0mðn

2Þ
� �

¼ 4g1=2 glmZ 0mðn2Þ þ 2nlnmZ 00mðn2Þ
� �

;

where

g1=2Zmðn2Þ ¼
Z

Hðn � pÞhðp0Þdðp2 þ m2Þd4p:

It is customary to reexpress the energy–momentum–stress density of a gas in terms
of the pressure p and the proper energy density w0 defined by6

p ¼ 4Z 0mðn
2Þ; w0 þ p ¼ 8ð�n2ÞZ 00mðn

2Þ:

These definitions yield

Tlm ¼ g1=2 ðw0 þ pÞulum þ pglm½ �
¼ g1=2 w0ulum þ pPlm

� �

: ð8:5Þ

The appropriateness of these definitions may be checked by passing to a local
canonical rest frame of the gas at any point. At the chosen point we then have
Ti0 = 0 = T0i and

w0 ¼ T00 ¼
Z

p0f ðx; pÞd3p ¼
Z

p0U ð�n2Þ1=2p0
� �

d3p;

pdij ¼ Tij ¼
Z

pivjf ðx; pÞd3p ¼
Z

pivjU ð�n2Þ1=2p0
� �

d3p;

with p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ m2
p

, in precise accord with our customary definitions of energy
density and pressure.

6 Note that these equations allow one to determine the pressure and energy distribution in the gas
directly from a knowledge of nl and U, and hence of the function Zm.

104 8 Production of Gravitational Fields by Matter



Chapter 9
Conservation Laws

In the case of the free particle, we interpreted various components of the energy–
momentum–stress density as fluxes of energy and momentum. This interpretation
can obviously be extended also to particle ensembles and gases. When we speak of
fluxes we usually think of quantities that are conserved. In special relativity,
energy and momentum are conserved. In general relativity, they are no longer
generally conserved, at least if we do not include the energy and momentum of the
gravitational field itself. Nevertheless, their densities and fluxes satisfy a covariant
generalization of a true conservation law, which is quite easy to obtain.

Consider the action functional for the matter, SM. This functional is coordinate
invariant. Therefore, if dglm and dUA are the changes induced in the metric tensor
and the matter dynamical variables by an infinitesimal coordinate transformation,
we must have

0 �
Z

dSM

dglm
dglmd

4xþ dSM

dUAdUA;

with implicit summation or integration over the index A. When the matter
dynamical equations are satisfied, the second term vanishes. Therefore, writing

dglm ¼ �dnl;m � dnm;l;

assuming that dnl has compact support, and carrying out integration by parts, we
have

0 ¼ �
Z

dSM

dglm
dnl;m þ dnm;l

� �

d4x

¼ �
Z

Tlmdnl;md
4x ¼

Z

Tlm
;m dnld4x:

B. Dewitt, Bryce DeWitt’s Lectures on Gravitation,
Edited by Steven M. Christensen, Lecture Notes in Physics, 826,
DOI: 10.1007/978-3-540-36911-0_9, � Springer-Verlag Berlin Heidelberg 2011
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As dnl is arbitrary, we have

Tlm
;m ¼ 0;

whenever the matter dynamical equations are satisfied.
We emphasize that this last equation generally holds only when the matter

dynamical equations are satisfied. In fact, in many cases, it is completely equiv-
alent to the matter dynamical equations and can be used in place of them. This may
be illustrated with the case of the free particle. We have

Tlm
;m ¼

Z

dlm
ab;m paubds ¼ �

Z

dl
a;b pa _zbds

¼ �
Z

_dl
a pads ¼

Z

dl
a _pads:

Now let Al be an arbitrary covariant vector of compact support. Multiplying both
sides of this equation by Al and integrating over spacetime. If T;m

lm = 0, one gets
Z

Aa _pads ¼ 0:

As Aa is arbitrary, this implies _pa ¼ 0:
Although Tlm has vanishing covariant divergence, this does not imply a true

conservation law. Tlm accounts only for the energy and momentum of the matter.
When a gravitational field is present (i.e., when spacetime is not flat), it can
exchange energy and momentum with the matter. One might ask whether the
energy and momentum of the gravitational field could be accounted for by treating
the gravitational action functional SG in the same way. It too is coordinate inde-
pendent and hence satisfies

dSG

dglm

� �

;m

¼ 0:

In this case, however, the relation is an identity that holds whether or not the field
equations are satisfied. Its explicit form is

0 � � 1
16pG

g1=2 Rlm � 1
2

glmR

� �

þ 8pGkglm

� �� 	

;m

:

The term in k drops out right away, as also does the factor g1/2, leaving

0 � Rlm � 1
2

glmR

� �

;m

:

This is known as the contracted Bianchi identity.

Problem 31 Show that the identity

0 � Rlm � 1
2

glmR

� �

;m

can be obtained by contracting the Bianchi identity twice.
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Solution 31 We have

0 �Rlm
lm;r þ Rlm

mr;l þ Rlm
rl;m

�R;r � Rl
r;l � Rm

r;m � �2grl Rlm � 1
2

glmR

� �

;m

:

The contracted Bianchi identity imposes no constraint on the gravitational field.
It does, however, impose a constraint on the matter through the Einstein equations,
forcing Tlm to have vanishing covariant divergence. In many cases, therefore, the
matter dynamical equations are superfluous; the Einstein equations are sufficient.
It is nice, however, to know that the equations obtained from the complete vari-
ational principle are at least consistent. They would not be consistent if SM were
not coordinate independent.

The presence of a gravitational field does not always mean that the matter
variables satisfy no true conservation laws of their own. In special cases, con-
served quantities can be built out of the Tlm, namely, when spacetime admits an
isometric motion corresponding to a Killing vector nl. For we then have

ðnlTlmÞ;m ¼ nl;mT
lm þ nlTlm

;m

¼ 1
2
ðnl;m þ nm;lÞTlm ¼ 0;

implying the conservation of
Z

R
nlTlmdRm;

where R is any connected hypersurface that intersects completely the support of
the vector density nlTlm, cutting all its flow lines an odd number of times.

Problem 32 Show that the stress tensor of a particle ensemble

Tlm ¼ 2
Z

plpmFðx; pÞhðp0Þdðp2 þ m2Þd4p;

has vanishing covariant divergence if the distribution function satisfies F;lpl = 0.
In the special case of a dilute gas at equilibrium, in which F has the form
F(x, p) = U(n� p), identify the conserved quantity associated with the Killing
vector nl.

Solution 32 The result is proven by introducing a coordinate system in which the
derivatives glm,r vanish at x.

We identify the conserved quantity by

nlTlm ¼ �g1=2ð�n2Þ1=2umw0;
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whence

Z

R
nlTlmdRl ¼ �

Z

g1=2u0ð�n2Þ1=2w0d3x ¼ const.�
Z

w0

T
d3V ;

where d3V ¼ g1=2u0d3x. Imagine spacetime to be divided into flow tubes parallel
to nl. The conserved quantity may be defined as the sum of w0/T over all the tubes,
weighted by the 3-volume of the orthogonal section of each tube.

9.1 Energy, Momentum, Angular Momentum and Spin

When spacetime is flat, its group of motions is the full Poincaré group and there
are correspondingly many conserved quantities. Strictly speaking, this case cannot
be realized physically unless spacetime is empty, with nothing to be conserved
(and with the constant k equal to zero)! Spacetime can be flat only if dynamical
behavior is withheld from the gravitational field and the geometry is ‘‘externally’’
imposed. Nevertheless, flatness is a highly accurate approximation in practice,
except under extreme astrophysical conditions.

In canonical coordinates in flat spacetime, Killing’s equation takes the form:

nl;m þ nm;l ¼ 0;

which has the general solution

nl ¼ al þ llmx
m;

where the al, llm are constants with

llm ¼ �lml:

The corresponding conserved quantity is
Z

R
ðal þ llmx

mÞTlrdRr ¼ alPl � 1
2

llmJ
lm;

where

Pl ¼
Z

R
TlmdRm ; Jlm ¼

Z

R
ðxlTmr � xmTlrÞdRr:

As the al, llm are arbitrary, it follows that Pl and Jlm are independently conserved.
They are known respectively as the total energy–momentum 4-vector and total
angular momentum tensor of the matter.
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Although it is not easy to prove in general, the vector Pl is always time-like1

(and oriented to the future if the sign of SM has been chosen correctly). Therefore,
it may be used to define a mean rest frame for the matter as well as a total energy,
or mass M, in that frame:

M2 ¼ �P2:

The corresponding mean 4-velocity is given by

Ul ¼ M�1Pl:

Although the Pl transform as the components of a vector under the full Poincaré
group, the Jlm transform as the components of a tensor only under the homoge-
neous Lorentz group. Under displacements

xl ¼ xl þ nl; nl ¼ constant;

they transform according to

Jlm ¼ Jlm þ nlPm � nmPl:

A true tensor under the Poincaré group can be constructed out of Jlm by passing to
the mean rest frame of the matter or, equivalently, projecting Jlm onto the corre-
sponding hyperplane of simultaneity:

Slm � Pl
rPm

sJ
rs; Plm ¼ glm þ UlUm:

In the mean rest frame, only the spatial components of Slm are nonvanishing and
they then coincide with the spatial components of Jlm. As the mean 3-momentum
vanishes in this frame, the contributions to the spatial components of Jlm come
only from the overall spin of the matter. Slm is, therefore, called the spin angular
momentum tensor. The orbital angular momentum tensor may be defined as the
difference between Jlm and Slm:

Llm ¼ Jlm � Slm

¼ Jlm � Jlm � UlUrJrm � UmUsJ
ls � UlUmUrUsJ

rs

¼ ðM�1UrJrl þ UlsÞPm � ðM�1UrJrm þ UmsÞPl;

where s is an arbitrary parameter.
Strictly speaking, only the spatial components of Jlm refer to angular momen-

tum. If the hypersurface R is chosen to be the hyperplane x0 = t, then the temporal
components of Jlm take the form:

J0i ¼ tPi � Xi
EP0; ð9:1Þ

1 See, however, the special case described on p. 175, in which Pl is null in the eikonal
approximation.
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where XE
i are the coordinates of the center of energy of the matter:

Xi
E ¼

1
P0

Z

xiT00d3x~:

The conservation of the J0i may be stated in the form:

dXi
E

dt
¼ Pi

P0
¼ Vi; Vi ¼ Ui

U0
;

which says that the center of energy moves with the mean 3-velocity of the matter.
The concept of center of energy is not frame independent. To get an invariant

concept, we must again pass to the mean rest frame. In this frame, we have
(Ul) = (-1, 0, 0, 0) and P0 = M, and we may express the center of energy in the
form:

Xi
E ¼

1
P0
ð�J0i þ PitÞ

¼ 1
M

UmJ
mi þ Uit:

If we also define, in this frame,

X0
E � t ¼ 1

M
UmJ

m0 þ U0t;

and remember that rest-frame time t is equal to proper time s, then we see that XE
0

and the XE
i are equal to the components of the true 4-vector,

Xl � 1
M

UmJ
ml þ Uls:

However, XE
0 and the XE

i coincide with the components of Xl only in the rest frame.
Xl, which is really a linear function of the parameter s, and hence a straight

world line, may be called the covariant center of energy. In terms of it, the orbital
angular momentum tensor may be reexpressed in the form (see above):

Llm ¼ XlPm � XmPl:

It will be noted that Llm is actually independent of s. In fact, both Llm and Slm are
separately conserved.
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Chapter 10
Phenomenological Description
of a Conservative Continuous Medium

The energy–momentum–stress density evidently plays the role of source for the
gravitational field and is in many ways analogous to the electric charge in elec-
tromagnetic theory. However, because matter in all its forms is coupled to the
gravitational field, this source can be much more complicated than electric charge.
Many times we may wish to find the gravitational field produced by a certain
material system without knowing or being able to write an action functional for the
system. We then need a general description of the system and its dynamical
behavior that will enable us to keep track of its energy and momentum content and
obtain an energy–momentum–stress density for it without necessarily knowing its
structure in all fundamental respects. An example of such a description, which
covers a wide range of practical cases, is the phenomenological treatment of a
conservative continuous medium. By ‘‘conservative’’ we mean that there are no
irreversible dissipative processes at work. Once having found the energy–
momentum–stress density for a conservative medium, we shall find it not difficult
to introduce dissipative mechanisms either again phenomenologically or, if that is
insufficient, by the use of distribution functions and all the paraphernalia of the
Boltzmann and other types of transport equations.

We use the notation in Chap. 1 and thereafter, but we add two new elements, an
orthonormal triad field na

l defined throughout the medium and satisfying
everywhere

na � nb ¼ dab; na � u ¼ 0; ul ¼ o

os
xlðn; sÞ;

and a scalar field w0 equal at each point to the proper energy density at that point,
i.e., the density of total energy (rest mass as well as internal energy) as viewed in
the local rest frame defined by the na

l at that point. We do not impose any addi-
tional conditions on the na

l, e.g., Fermi–Walker transport, beyond their orthonor-
mality and orthogonality to ul.

B. DeWitt, Bryce DeWitt’s Lectures on Gravitation,
Edited by Steven M. Christensen, Lecture Notes in Physics, 826,
DOI: 10.1007/978-3-540-36911-0_10, � Springer-Verlag Berlin Heidelberg 2011
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We shall assume that the dynamical behavior of the medium is determined
solely by its proper energy density and its internal stresses. The stresses, which
will be analyzed purely phenomenologically, will be described presently. First,
however, we devote attention to w0. This density is defined in a local Cartesian rest
frame of the medium. It will be convenient to re-express it also relative to the
arbitrary curvilinear coordinates xl of spacetime, as well as in the internal coor-
dinate system provided by the labels ni.

The transformations between the local Cartesian rest frame and the (in general
curvilinear) frame of the ni are described by the transformation coefficients

Aai � nalxl
;i

and their inverses

A�1i
a ¼ ni

;lnl
a :

We note that

AaiAaj ¼ nalxl
;inamx

m
;j ¼ Plmx

l
;ix

m
;j ¼ cij;

where Plm projects orthoognally to ul. Hence that1

detðAaiÞ ¼ c1=2; where c ¼ detðcijÞ:

The proper energy density in the n coordinate system is therefore

wn ¼ detðAaiÞw0 ¼ c1=2w0:

Problem 33 Prove that Aa
-1i (:n,l

i na
l) is both a left and a right inverse of Aai

(:nalx,i
l). Prove also the following identities:

A�1i
a A�1j

a ¼ cij; cijA
�1i
a A�1j

b ¼ dab; cijAaiAbj ¼ dab;

where cij is the contravariant proper metric tensor, inverse to cij.

Solution 33 We have

A�1i
a Aaj ¼ ni

;lnl
anamx

m
;j ¼ ni

;lðdl
m þ ulumÞxm

;j ¼ di
j;

AaiA
�1i
b ¼ nalxl

;in
i
;mn

m
b ¼ nalðdl

m � _xls;mÞnm
b ¼ dab:

Furthermore,

cikA�1k
a A�1j

a ¼ AbiAbkA�1k
a A�1j

a ¼ AaiA
�1j
a ¼ d j

i ;

cijA
�1i
a A�1j

b ¼ AciAcjA
�1i
a A�1j

b ¼ dcadcb ¼ dab;
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cijAaiAbj ¼ A�1i
c A�1j

c AaiAbj ¼ dcadcb ¼ dab;

as required.
Let us also note that the matrices, formed from components of ul, na

l satisfy

�ul

nl
a

� �tr
um

nm
a

� �

¼ ð�ulum þ nl
anm

aÞ ¼ ðglmÞ;

from which it may be inferred that

� det
ul

nl
a

� �� �2

¼ detðglmÞ ¼ �g�1;

and hence, assuming ul, n1
l, n2

l, n3
l to have, respectively, the same relative ori-

entation as positive displacements along the x0, x1, x2, x3 axes,

det
ul

nl
a

� �

¼ g�1=2:

From this and the fact that

�ul

nal

� �tr

¼ ul

nl
a

� ��1

; det
�ul

nal

� �

¼ g1=2;

it follows, by the theory of minors, that

eabcnalnbmncr ¼ �1eslmrg1=2us;

and hence,

eijkc
1=2 ¼ eijkdetðAabÞ ¼ eabcAaiAbjAck

¼ eabcnalnbmncrxl
;ix

m
;jx

r
;k

¼ �1eslmrg1=2usxl
;ix

m
;jx

r
;k

¼ eijkg1=2 oðxÞ
oðs; nÞ :

This last relation enables us to write

wn ¼ c1=2w0 ¼
oðxÞ

oðs; nÞw;

where w is the proper energy density of the medium relative to the coordinates xl:

w � g1=2w0:

w0 is a scalar under both transformations of the n (relabelling) and transformations
of the xl, whereas wn is a scalar under transformations of the xl but transforms as a
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density of unit weight under transformations of the n. The quantity w is a scalar
under transformations of the n but transforms as a density of unit weight under
transformations of the xl.

We now ask: How does the proper energy density vary with time? If the
medium is conservative, which means that energy does not flow around by dis-
sipative mechanisms, w0 can vary only as a result of the action of forces on the
component parts of the medium. These forces can be described phenomenologi-
cally by means of a stress tensor. Suppose for a moment that the coordinates xl

have been chosen to be canonical at a certain point x, oriented in such a way that

ul

nl
a

� �

becomes the unit matrix at x, and adjusted in the neighbourhood of x so that the
derivatives of the metric tensor vanish at x. Then the coordinates xl may be
regarded as an extension of the local Cartesian (Minkowskian) frame (which
strictly speaking has mathematical existence only in the tangent space) to a small
neighborhood of x. Let dRa be a directed surface element in this frame. Then, from
simple continuity arguments, the material on the side of dRa away from the
direction in which dRa points must exert on the material on the opposite side a
force that depends linearly on dRa,:

dFa ¼ tabdRb:

The coefficients tab of the linear dependence are called the components of the
stress tensor in the local Cartesian rest frame.

The force dFa is a contact force and, as such, must respect the law of action and
reaction. This means that the material on the side of dRa toward which dRa points
must exert a force -dFa across dRa. As a consequence the total force experienced
by a small volume V of the medium, as a result of the action of the surrounding
medium, is given by

Fa ¼ �
Z

R

dFa ¼ �
Z

R

tabdRb ¼ �
Z

V

tab;bd3x;

where R is the surface of V. Here, V is assumed to contain the point x and the
derivative in the final integrand is taken with respect to the extended local coor-
dinates. Because V is otherwise arbitrary, it is evident that the internal stresses
which the tensor tab describes give rise to a net force density in the immediate
vicinity of x given by

fa ¼ �tab;b:

Suppose the origin of the coordinates xl is taken at the point x. Then, lowering the
spatial indices on the xl, we may express the torque, about x, exerted on V by the
surrounding medium in the form
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Ta ¼ �
Z

R

eabcxbdFc ¼ �eabc

Z

R

xbtcddRd

¼ �eabc

Z

V

ðxbtcdÞ;dd3x ¼ T I
a þ T II

a ;

where

T I
a ¼ eabc

Z

V

xbfcd3x; T II
a ¼ eabc

Z

V

tbcd3x:

Ta
I , whose value depends on the location of the origin, is what one would expect to

get for the torque using the force density fa. Ta
II, whose value is independent of the

location of the origin, is an unexpected residual. We can argue that this residual
must vanish, as follows. In the limit V ? 0, it may be expressed simply as

T II
a ¼ Veabctbc:

On the other hand, the moment of inertia of V is of the order

I�w0V5=3:

The residual torque therefore imparts a contribution to the angular acceleration of
V given by

_wII
a ¼

T II
a

I
�V�2=3w�1

0 eabctbc;

which becomes infinite as V ? 0. But this is absurd. We must therefore conclude
that

eabctbc ¼ 0;

or, alternatively,

tab � tba ¼ ðdacdbd � daddbcÞtcd ¼ eabeeecdtcd ¼ 0:

That is, the stress tensor is necessarily symmetric.
The symmetry of the stress tensor may be illustrated in the particularly simple

case of a gas at equilibrium, where we obviously have

tab ¼ pdab;

p being the pressure. We note that p, like w0, is a scalar.
The stress tensor, like the energy density, can be expressed not only in the local

Cartesian rest frame, but also in the n coordinate system and in the general system
of spacetime coordinates xl. When viewed in an arbitrary coordinate system,
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however, it is conveniently regarded as a tensor density, known as the stress
density. The relevant definitions are then

tij ¼ c1=2A�1i
a A�1j

b tab; tlm ¼ g1=2nl
anm

btab:

We note that

tlmum ¼ 0:

Problem 34 Show that

tij ¼ oðxÞ
oðs; nÞ n

i
;ln

j
;mt

lm; tlm ¼ oðs; nÞ
oðxÞ Pl

rPm
sx

r
;ix

s
;jt

ij:

Solution 34 We have

tij ¼ c1=2A�1i
a A�1j

b tab ¼ c1=2ni
;lnl

an
j
;mn

m
btab

¼ c1=2g�1=2ni
;ln

j
;mt

lm ¼ oðxÞ
oðs; nÞ n

i
;ln

j
;mt

lm;

tab ¼ c�1=2AaiAbjt
ij ¼ c�1=2nalxl

;inbmx
m
;jt

ij;

whence

tlm ¼ g1=2nl
anm

btab ¼ g1=2nl
anm

bc
�1=2narxr

;inbsx
s
;jt

ij

¼ oðs; nÞ
oðxÞ Pl

rPm
sx

r
;ix

s
;jt

ij;

as required.
Consider now three nonparallel infinitesimal displacements din

j that are fixed in
the medium and have the same orientation as the vectors na

l. Relative to the local
Cartesian rest frame, these become

dixa ¼ Aajdin
j;

and they define an infinitesimal parallelipiped whose volume is

dV ¼ detðdixaÞ ¼ detðAakÞdetðdin
jÞ ¼ c1=2detðdin

jÞ:

The surface elements of the three pairs of opposite faces of this parallelipiped are
�diRa, where

diRa ¼
1
2
eijkeabcdjxbdkxc

¼ 1
2
eijkeabcAbmAcndjn

mdkn
n

¼ 1
2
c1=2eijkelmnA�1l

adjn
mdkn

n:
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The forces exerted on these faces by the surrounding medium are �diFa, where

diFa ¼ �tabdiRb ¼ �
1
2
c1=2eijkelmnA�1l

b tabdjn
mdkn

n

¼ � 1
2
eijkelmnAart

rldjn
mdkn

n:

During an increment ds of proper time, the faces of the parallelipiped will suffer
displacements relative to its center given by

� 1
2

d
ds

dixa

� �

ds ¼ � 1
2

_Aajdin
jds:

The rate of change of the energy density wn with proper time may be computed by
taking into account the work done by the forces �diFa on the faces of the par-
allelipiped as a result of these displacements:

_wndetðdin
jÞ ¼ d

ds
wndetðdin

jÞ
� �

¼ d
ds
ðw0dVÞ

¼ d
ds

dixa

� �

diFa ¼ _Aasdin
sdiFa

¼ � 1
2
eijkelmn

_AasAart
rldin

sdjn
mdkn

n:

Factoring out the determinant, we get

_wn ¼ � _AalAart
rl ¼ � 1

2
ð _AaiAaj þ Aai

_AajÞtij

¼ � 1
2

_cijt
ij ¼ � 1

2
oðxÞ

oðs; nÞ _cijn
i
;ln

j
;mt

lm (see Problem 34)

¼ � 1
2

oðxÞ
oðs; nÞ rlmt

lm ¼ � oðxÞ
oðs; nÞ ul;mt

lm;

ð10:1Þ

where rlm is the rate-of-strain tensor [see (2.1) on p. 23]. However,

_wn ¼
o

os
oðxÞ

oðs; nÞw
� �

¼ oðxÞ
oðs; nÞ

os
oxl

o2xl

os2
þ oni

oxl

o2xl

onios

� �

wþ w;l _xl

� �

¼ oðxÞ
oðs; nÞ w

o

oxl
_xlð Þ þ w;l _xl

� �

¼ oðxÞ
oðs; nÞ ðwulÞ;l:

ð10:2Þ

Hence, finally,

ðwulÞ;l þ ul;mt
lm ¼ 0;
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or, alternatively,

�ulðwulum þ tlmÞ;m ¼ 0:

Having accounted for the energy balance in the medium, we have now to account
for the momentum balance. This is much easier. Consider again the parallelipiped
of volume dV . Its four-momentum is

pl ¼ w0uldV :

In the local (instantaneous) rest frame of the parallelipiped, the time rate of change
of this momentum is equal to

nal _pl ¼ w0nal _uldV ¼ w0aadV;

where the dot denotes the covariant proper time derivative and the aa are the rest-
frame components of the absolute acceleration of dV . This change of momentum
can only be caused by the forces of stress which are

Fa ¼ �g�1=2naltlm
;m dV :

Equating Fa and nal _pl, we get

0 ¼ nalðw _ul þ tlm
;m Þ

¼ nalðwul
;mu

m þ tlm
;m Þ

¼ nalðwulum þ tlmÞ;m;

where orthogonality of nal and ul has been used. This may be combined with the
energy balance equation to yield finally

Tlm
;m ¼ 0;

where Tlm is the energy–momentum–stress density:

Tlm ¼ wulum þ tlm:

It will be observed that this agrees completely with the result previously obtained
for a gas at equilibrium [see (8.5) on p. 104] if we identify ul with ul and
remember that for a gas at equilibrium we have

tlm ¼ g1=2Plmp:

It is instructive to examine Tlm in canonical coordinates in the case of flat
spacetime in which one has the strictly conserved quantities

Pl ¼
Z

R

TlmdRm:

Separating Pl into its energy and momentum components and choosing for R the
hypersurface x0 = constant, we have
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P0 ¼
Z

T00d3x; Pi ¼
Z

Ti0d3x:

These expressions, together with the differential identities

T00
;0 þ T0i

;i ¼ 0; Ti0
;0 þ Tij

;j ¼ 0;

allow one to make the identifications

• T00 = energy density,
• Ti0 = T0i = momentum density = energy flux density,
• Tij = momentum flux density, in complete agreement with our analysis of the

more primitive case of the point particle (see p. 99).

In the case of the conservative medium we have (remembering that g1/2 = 1 in
canonical coordinates)

T00 ¼ w0u0u0 þ vivjt
ij
x ; Ti0 ¼ w0u0ui þ tijvj;

in which we have used repeatedly

tl0 ¼ tli
x vi; vi ¼

ui

u0
;

which follows from the constraint tlmum = 0. The first terms on the right-hand sides
of these equations are easy to understand. Because of Lorentz contraction the
proper energy density, i.e., the total energy density of the medium in the local
Cartesian rest frame becomes w0u0 in an arbitrary Lorentz frame, and these terms
evidently give the contributions to the densities of energy and momentum arising
from the bulk motion of the matter. The remaining terms, however, are curious
residuals arising from the internal stresses.

That the residuals are by no means unimportant and are, in fact, essential may
be illustrated by the amusing example given in the following problem.

Problem 35 A battery B, an electric motor M, a paddle wheel W, and a tank
containing a viscous liquid L are all mounted on a platform P that is supported,

Fig. 10.1 The Battery Cart
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through wheels with frictionless bearings, by a smooth table T at rest in the labo-
ratory. The chemical energy of the battery drives the motor which, through a moving
belt, turns the paddle wheel which stirs up and hence heats the viscous liquid. The
platform is initially at rest in the laboratory. When the motor is turned on, energy
leaves the battery and reappears in the form of heat in the liquid. Because of con-
servation of momentum, the center of energy of the device must remain motionless in
the laboratory, and hence the platform must shift to the left. It is not possible to
account for the energy transport by the mass motion of the belt, because as much mass
is transported in one direction as the other. A term tijvj is needed for this purpose.

We may suppose the upper portion of the belt to be under tension and the lower
portion to be experiencing no stresses. If the x1 axis is taken in the direction of the
belt then effectively the only nonvanishing component of tij in the upper portion of
the belt will be t11. Moreover, this component will be negative because the stress is
one of tension. Other portions of the device are also under stress. For example, the
region of the platform between the motor and the paddle wheel is under com-
pression. This may be described by a single positive component t11 of tij.

Determine the route by which energy is transported from one end of the device
to the other as seen in three different reference frames.

• The frame in which the platform is at rest.
• The laboratory frame in which the table is at rest.
• The frame in which the upper portion of the belt is at rest. Is the route Lorentz

invariant?

Solution 35
• Energy flows to the right along the upper portion of the belt.
• Energy flows to the right along the upper portion of the belt and to the left, at a

lesser rate, through the platform.
• Energy flows to the right through the platform. The route depends on the frame

of reference.

10.1 The Elastic Medium

In the case of an elastic medium the proper energy density wn is assumed to be a
function solely of the proper metric cij, i.e., to depend only on the local defor-
mations of the medium. The rest mass contained in a proper volume element d3n is
evidently wnd

3n, and an action functional can be introduced for the medium by
obvious extension of the action functional (5.1) for a free particle on p. 63:

S ¼ �
Z

dk
Z

d3nwnð� _x2Þ1=2:

Here, xl are functions of the ni and a parameter k that is to be set equal to proper
time after variations have been performed. The dot denotes covariant differenti-
ation with respect to k. From the fact that
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_wn ¼
own

ocij
_cij;

we may infer that the stress tensor density in the n coordinate system is given by
[see (10.1) on p. 117]

tij ¼ �2
own

ocij
: ð10:3Þ

Now we recall that

cij ¼ Plmx
l
;ix

m
;j; Plm ¼ glm þ ulum; ul ¼ ð� _x2Þ�1=2 _xl:

Hence, variation of the action will require some care to perform. Let us proceed
systematically, using the covariant variation technique introduced on p. 64. First
varying the dynamical variables of the medium, i.e., the xl, we have

dul ¼ ð� _x2Þ�3=2gmr _xmd _xr _xl þ ð� _x2Þ�1=2d _xl

¼ ð� _x2Þ�1=2Pl
m

D
Dk

dxm ¼ Pl
mdxm

;rur;

dPlm ¼ uldum þ umdul ¼ ðulPmr þ umPlrÞdxr
;su

s;

dwn ¼ �
1
2

tijdcij ¼ �
1
2

tij dPlmx
l
;ix

m
;j þ 2Plmx

l
;idxm

;j

� 	

¼ �ulusPrmx
l
;ix

m
;jt

ijdxr
;s � Pmlxl

;ix
r
;jt

ijdxm
;r

¼ �Pl
rPm

sx
r
;ix

s
;jt

ijdxl;m

¼ � oðxÞ
oðk; nÞ t

lmdxl;m (see Problem 34);

where we have used

dxm
;j ¼ dxm

;j þ Cm
rsx

r
;jdxs

¼ ðdxm
;r þ Cm

srdxsÞxr
;j

¼ dxm
;rxr

;j;

and where

dxl ¼ glmdxm;

dð� _x2Þ1=2 ¼ �ð� _x2Þ�1=2glm _xmd _xl ¼ �ul
D

Dk
dxl

¼ �ð� _x2Þ1=2ulumdxl;m:
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On the other hand, if we vary the metric tensor we get

dul ¼ 1
2
ð� _x2Þ�3=2 _xl _xm _xrdgmr ¼

1
2

ulumurdgmr;

dul ¼ umdglm þ
1
2

ulumurdgmr;

dPlm ¼ dglm þ ulurdgmr þ umu
rdglr þ ulumu

rusdgrs

¼ Pr
lPs

mdgrs;

dwn ¼ �
1
2

tijPl
rPm

sx
r
;ix

s
;jdglm ¼ �

1
2

oðxÞ
oðk; nÞ t

lmdglm;

dð� _x2Þ1=2 ¼ � 1
2
ð� _x2Þ�1=2 _xl _xmdglm ¼ �

1
2
ð� _x2Þ1=2ulumdglm:

Under combined variation of the xl and the metric tensor, we therefore find

dS ¼
Z

dk
Z

d3n wnð� _x2Þ1=2ulum þ oðxÞ
oðk; nÞ t

lm

� �

dxl;m þ
1
2
dglm

� �

�!
k!s

Z

Tlmslmd
4x;

where

Tlm ¼ 2
dS

dglmðxÞ
¼ wulum þ tlm;

slm ¼
1
2
ðdxl;m þ dxm;l þ dglmÞ:

slm is known as the invariant strain tensor. It vanishes for any combined change in
the xl and glm that corresponds merely to an infinitesimal coordinate
transformation.

We see that the energy–momentum–stress density has exactly the form that our
phenomenological analysis found for it. Moreover, in this case the dynamical
equations are identical with the divergence condition on Tlm,:

0 ¼ dS

dxlðk; nÞ�!k!s
� oðxÞ

oðs; nÞ T
m
l;m:

10.2 The Viscous Thermally Conducting Gas

In a local Cartesian rest frame the energy–momentum–stress density of a con-
servative medium takes the block form

122 10 Phenomenological Description of a Conservative Continuous Medium



ðTlmÞ ¼ w0 0
0 tab

� �

:

In the case of a gas at equilibrium the form is actually diagonal:

ðTlmÞ ¼ w0 0
0 pdab

� �

:

This latter form is often used even for gases that are not at equilibrium. This
corresponds to assuming that no matter how the state of the gas changes, locally at
any point the gas always adjusts instantaneously to the equilibrium conditions
appropriate to the proper particle number density q0 and proper energy density w0

at that point. Such instantaneous changes follow adiabatic curves and are revers-
ible. The local entropy per particle at any point remains constant, and even though
the temperature may vary from point to point, no energy transport by thermal
conduction is allowed.

This approximation is adequate for the description of acoustic waves in a gas
that is otherwise at equilibrium, but it fails in the presence of shock waves. Real
gases are both thermally conducting and viscous. The viscosity alters the simple
stress tensor pdab and the thermal conduction produces an energy flux qa even in
the local rest frame, so that the energy–momentum–stress density takes the general
form

ðTlmÞ ¼ w0 qb

qa tab

� �

;

or, in a general frame,

Tlm ¼ wulum þ ulqm þ umql þ tlm;

u � g ¼ 0; ultlm ¼ 0:

(We have dropped the bars over the ul that we had previously placed there in the
case of gases to denote the mean four-velocity of the component particles.)

It is not difficult to decide on phenomenological expressions for ql and tlm.
T;l ? ul;mu

m T vanishes at equilibrium, so any departure from zero for this quantity
must indicate a non-equilibrium situation, so we take

ql ¼ �kg1=2PlmðT;m þ um;rurTÞ; k� 0;

where k is the thermal diffusion coefficient of the gas. It may depend on q0 and w0.
For tlm, we choose

tlm ¼ g1=2 p� 1
2
lBr

� �

Plm � lS rlm � 1
3

rPlm

� �� �

; lB� 0; lS� 0;
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where lB and lS are respectively the coefficients of bulk and shear viscosity, and

r ¼ rl
l ¼ Plmrlm ¼ 2Plmul;m ¼ 2ul

;l;

rlm being the rate-of-strain tensor. lB and lS may also depend on p0 and w0.
Here, p and T are to be understood as the pressure and temperature the gas

would have at any point if it were in a state of equilibrium appropriate to the values
of q0 and w0 at that point. That is, p and T are to be taken as given by the
equilibrium equation of state of the gas. A corresponding entropy per particle, s,
may then be defined by the differential identity

ds ¼ deþ pdq�1
0

T
;

where e is the proper energy per particle:

e ¼ w0

q0
¼ w

q
; q ¼ g1=2q0:

Evidently this phenomenological description of the gas will fail if the distribution
function of the gas departs too markedly from an instantaneous equilibrium
distribution.

Problem 36 [Taken from C. Eckart, Phys. Rev. 58, 919 (1940).] The dynamical
behavior of the viscous thermally conducting gas is completely determined by the
divergence condition Tlm

;m ¼ 0 together with the equilibrium equation of state and
the equations that express the dependence (if any) of k, lB, and lS on q0 and w0. It
is worth checking, however, that the result is consistent with the elementary
principles of thermodynamics. Consider a small element of the gas contained in a
volume V in the local rest frame. If there were no heat flow out through the surface
R of V, the entropy contained in V would be expected to increase as a result of
irreversible processes. Heat flow, however, can reduce the entropy, at least when
the flow is low, because of the term de/T in the expression for ds. If we choose the
coordinates xl to match the local rest frame as closely as possible in V (glm,r = 0),
we therefore expect the following mathematical statement to hold:

d
dx0

Z

V

q0sd3x ¼ �
Z

R

T�1qidRi þ
entropy increase due

to irreversible processes
;

or, equivalently,
Z

V

ðqsul þ T�1qlÞ;ld3x� 0:

The final integrand being a covariant quantity, and the volume being arbitrary, we
should have in any coordinate system

ðqsul þ T�1qlÞ;l� 0:
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Derive this inequality from the entropy equation together with the divergence
conditions

Tlm
;m ¼ 0; ðqulÞ;l ¼ 0:

Hint: first prove the following:

ðwulÞ;l þ ql
;l þ qlul;mu

m þ 1
2

tlmrlm ¼ 0;

ðwulÞ;l ¼ qe;lul; ðq�1Þ;lul ¼ q�1ul
;l: ð10:4Þ

Solution 36 We have

qe;lul ¼ ðqeulÞ;l ¼ ðwulÞ;l;

0 ¼ ulTlm
;m ¼ ulðwulum þ ulqm þ umql þ tlmÞ;m

¼ �ðwumÞ;m � qm
;m þ ulumql

;m þ ultlm
;m

¼ �ðwulÞ;l � ql
;l � qlul;mu

m � 1
2

tlmrlm;

ðq�1Þ;lul ¼ �q�2q;lul ¼ q�1ul
;l;

Tðqsul þ T�1qlÞ;l ¼ Tqs;lul þ TðT�1qlÞ;l
¼ qe;lul þ qpðq�1

0 Þ;lul þ TðT�1qlÞ;l
¼ ðwulÞ;l þ g1=2pul

;l þ TðT�1qlÞ;l

¼ �ql
;l � qlul;mu

m � 1
2

tlmrlm þ
1
2

g1=2pr þ TðT�1qlÞ;l
¼ �T�1qlðT;l þ ul;mu

mTÞ

þ 1
2

g1=2rlm
1
2
lBrPlm þ lS rlm � 1

3
Plmr

� �� �

¼ kg1=2T�1PlmðT;l þ ul;rurTÞðT;m þ um;su
sTÞ þ 1

4
lBg1=2r2

þ 1
2
lSg1=2 rlm �

1
3

Plmr

� �

rlm � 1
3

Plmr

� �

� 0:
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Chapter 11
Solubility of the Einstein and Matter
Equations

One of the essential conditions that must be satisfied by any system of dynamical
equations is that they give rise to a well-posed initial value problem. There must be
precisely enough equations to determine uniquely the full physical evolution of the
system, once initial conditions have been specified. We now examine this problem
for the Einstein and matter equations.

We consider the matter equations first, confining our attention to the cases in
which they are either identical with or fully equivalent to the divergence equations
T;m

lm = 0. In the case of the elastic medium these equations must yield a set of
world lines given by the functions xl(n, k). These functions are not unique in a
given physical situation, however, because the parameter k is arbitrary. The action
functional in the elastic medium is invariant under the group of diffeomorphisms
of the one-dimensional k-manifold. This corresponds to the fact that the functions
xl(n, k) do not really represent four degrees of freedom per component particle,
but only three. Choose a space-like hypersurface R. Once one specifies the point of
intersection of each world line with R (three pieces of information per particle) and
its normalized tangent vector ul at that point (three more pieces of information per
particle), the whole future history of the medium should be determined by the
dynamical equations. Six pieces of information for each set of values for the labels
ni corresponds to three degrees of freedom per particle. The dynamical equations
T;m

lm = 0, however, are four equations per particle, and therefore the motion of the
medium appears to be underdetermined.

In this case appearances are deceiving. The four equations T;m
lm = 0 are actually

not independent. They are connected by the identity

�ulTlm
;m � �ulðwulum þ tlmÞ;m � ðwulÞ;l þ ul;mt

lm

� oðs; nÞ
oðxÞ _wn þ

1
2

tij _cij

� �

� 0;

B. DeWitt, Bryce DeWitt’s Lectures on Gravitation,
Edited by Steven M. Christensen, Lecture Notes in Physics, 826,
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where we have used (10.1) and (10.2) to go from the first to second lines, and the
last line follows from the definition (10.3) of tij. In this case the motion of the
particles determines how cij varies with time, and wn and tij are at all times
completely determined by cij. Therefore, the dynamical equations lead to a well-
posed initial value problem, and the motion is completely determined.

The same is also true for gases. The motion of gases can also be described in
terms of four functions xl(n, k). Here, again the number of degrees of freedom per
world line (really a mean flow line in this case) is only three because of the
arbitrariness of the parameter k. In the case of the viscous thermally conducting
gas, however, the equations T;m

lm = 0 do not satisfy an identity and are actually
independent. This does not mean that the motion is overdetermined. The equation
ulT;m

lm = 0 is needed in order to establish the time rate of change of the proper
energy density w. Then wn is no longer determined simply by cij but depends on
heat flow and the state of motion of neighboring parts of the gas. And wn, or w, is
needed, together with q, to determine p and T (through the equilibrium equation of
state) and hence, together with rlm, the stress tensor density tlm. Only if the gas is
viscousless and non-conducting, adjusting instantaneously to the equilibrium
equation-of-state conditions, does ul T;m

lm vanish identically. In this case the flow is
isentropic and, once the entropy per particle has been set as a function of the ni, it
remains constant. wn, which can be expressed in terms of q0 and the entropy
through the equation of state, then depends only on the cij (on c1/2 really), and an
action functional can be introduced which yields the equations T;m

lm = 0 from a
variational principle, just as for the elastic medium.

It will be noted that the dynamical equations satisfy an identity in precisely
those cases in which an action functional can be introduced that is invariant under
the actions of an infinite dimensional group (the diffeomorphism group of the
k-manifold in the above examples). This is no accident but is an illustration of a
general rule. Other examples are the free particle ðm€za ¼ 0Þ for which the identity
is mgab _za€zb � 0; the electromagnetic field (Maxwell’s equations, see Chap. 14) for
which the identity is Flm

;ml � 0; and the gravitational field for which the identity is
the contracted Bianchi identity. We now study the last of these examples.

The metric tensor glm has ten components. Because the diffeomorphism group
of spacetime is an invariance group for the theory, the particular values glm assume
in a given physical situation result partly from the accident of choosing a coor-
dinate system. The specification of a diffeomorphism requires four functions over
spacetime, and therefore only six of the glm can be determined by the Einstein
equations. It is often convenient to choose these six to be the ‘spatial’ components
gij and to fix g00 and g0i in advance as certain functions, or even functionals, of the
gij and their ‘time’ derivatives gij,0 on each hypersurface x0 = constant. It is
always possible to fix g00 and g0i in this way, as these four components merely
determine the physical spacing between two hypersurfaces x0 = t and x0 = t ? dt,
and the manner in which the coordinate mesh in each hypersurface distorts as one
passes from such hypersurface to the next. That the six gij are not then overde-
termined by the ten Einstein equations is due to the existence of the contracted
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Bianchi identity, which actually consists of four equations. Of the ten Einstein
equations only six are really independent. These may be taken to be the equations

dSG

dgij
þ 1

2
Tij ¼ 0:

The remaining Einstein equations are not, however, to be dropped from sight and
disposed of just like that. It turns out that they impose constraints on the initial
data gij and gij,0 on the initial hypersurface x0 = constant. This is most easily seen
by combining the contracted Bianchi identity with the matter equations and
rewriting the combination in the form

dSG

dgl0
þ 1

2
Tl0

� �

;0

¼ � dSG

dgli
þ 1

2
Tli

� �

;i

�Cl
mr

dSG

dgmr
þ 1

2
Tmr

� �

:

The right-hand side of this equation contains no third ‘time’ derivatives of the gij.
Neither does it contain any second time derivatives of g00 or the g0i, as may be
checked by referring to (4.2) and noting that, because of its symmetries, the
Riemann tensor itself contains no second time derivatives of g00 or the g0i.
Therefore, even if g00 and g0i are replaced by functionals of the gij and gij,0, the
right-hand side of this equation still contains no third time derivatives of the gij.

1

The same must be true of the left-hand side. From this it follows that the four
Einstein equations

dSG

dgl0
þ 1

2
Tl0 ¼ 0

contain no second time derivatives of the gij but are constraints on the initial data.
Suppose these constraints are satisfied on one hypersurface x0 = constant. Will

the six other Einstein equations ensure that they remain satisfied on all the other
hypersurfaces x0 = constant? The answer is yes, as may be seen by noting that
when the six dynamical equations are satisfied, the combination of the Bianchi
identity and matter equations reduces to

dSG

dgl0
þ 1

2
Tl0

� �

;0

¼ �dl
0

dSG

dgi0
þ 1

2
Ti0

� �

;i

�2Cl
i0

dSG

dgi0
þ 1

2
Ti0

� �

� Cl
00

dSG

dg00
þ 1

2
T00

� �

;

so that the derivative of the left-hand side vanishes for all time.

Problem 37 In electromagnetic theory, one of Maxwell’s equations is a con-
straint: F;l

0l - j0 = 0. It is shown that the other Maxwell equations F;l
il - ji = 0
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together with the identity ðFlm
;m � jlÞ;l � 0 ensure that the constraint, when once

imposed, holds forever.

Solution 37 We have

ðF0m
;m � j0Þ;0 � �ðFim

;m � jiÞ;i � Cl
mlðFmr

;r � jmÞ
¼ �Cl

0lðF0m
;m � j0Þ;

as claimed.
We are now in a position to determine the number of physically distinct degrees

of freedom possessed by the gravitational field. Because of the constraints, it is
possible freely to specify only 8 independent combinations of the 12 initial data
functions gij and gij,0. Not all of these eight combinations are physical, however.
For example, we can carry out a transformation of coordinates in the initial
hypersurface. If g00 and g0i are defined in terms of the gij and gij,0 in a covariant
way, so that g00 is a scalar and g0i are the components of a covariant vector under
such a transformation, then the geometry of the resulting spacetime (which is the
only aspect of the gravitational field that is physical) will remain completely
unchanged and so will the succeeding hypersurfaces x0 = constant. This means
that at most five independent combinations of the initial data are physical.

Actually, there are only four. To see this suppose for example that spacetime is
asymptotically flat. Then it is possible to give some absolute significance to the
canonical coordinate systems at infinity because of the Poincaré group of isometric
motions that holds sway there. But even if we choose one of these systems, we can
extend the hypersurfaces x0 = constant into the nonflat region in many different
ways. To each of these ways corresponds a different set of initial data. The mathe-
matical expert on initial data problems accepts these as distinct, but we as physicists
know better. The same conclusion also holds if 3-space is compact so that the
‘universe’ is finite. In this case there is no preferred coordinate system at infinity to
which to tie the hypersurfaces x0 = constant. Furthermore, it makes no sense to
speak of displacing the whole history of the gravitational field forward in time,
thereby getting a physically distinct field, the way one can in the case of nongravi-
tational fields in flat spacetime. Two universes having the same overall spacetime
geometry are identical. One cannot be said to ‘lie to the future’ of the other. This
means that the choice of initial hypersurface itself has no physical significance.

The freedom to choose the initial hypersurface and the freedom to select the
coordinate system in this hypersurface together dispose of four freely specifiable
functions, thus leaving only four independent combinations of the initial data that
can affect the physical situation. The existence of these four indicates that the
gravitational field has only two physically distinct degrees of freedom per point of
3-space. These two will make their appearance later in the form of the two
independent states of polarization permitted to plane gravitational waves.

It is to be noted that the very existence of these degrees of freedom implies that
the Einsteinian gravitational field is a dynamical entity in its own right, capable of
propagating in the absence of sources. The gravitational field of Newton has no
such freedom.
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11.1 The Cosmological Constant

The term in k in the gravitational action functional SG gives rise to a term—
8pGkg1/2glm on the right-hand side of Einstein’s equations (8.4), which adds to the
matter ‘source term’ 8pGTlm. When k[ 0, this term corresponds to a medium
having a proper energy density k and a negative pressure -k. When k\ 0, the
pressure is positive but the energy density is negative. In either case it corresponds
to a medium with unusual properties!

Because Einstein’s theory with k = 0 describes very well the gravitational
dynamics of the solar system, the galaxy, and even clusters of galaxies, the term in
k can play a role only at the cosmological level. For this reason the k term is
known as the cosmological term, and k itself is known as the cosmological con-
stant. Moreover an upper bound can be placed on k, which is roughly equal to the
mean density of presently observed matter in the universe:

k.10�26 kg/m3:

Because this density is so small and because we shall not be concerned with
cosmological problems in these lectures, we shall from now on set k = 0.
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Chapter 12
Energy, Momentum and Stress
in the Gravitational Field

12.1 Condensed Notation

In discussing the general theory of gravitation (and, indeed, other field theories as
well), it is convenient on many occasions to employ a highly condensed notation.
In brief, we shall replace the symbol glm(x) by the symbol ui and denote functional
differentiation by a comma, so that the Einstein and matter dynamical equations
take the forms

SG;i þ SM;i ¼ 0

SM;A ¼ 0

)

:

Here, the index i may be thought of as standing for the sextuplet l, m, x0,
x1, x2, x3, and the symbol u may be regarded as a replacement for g.

This notation, with u replacing g, brings to mind the notation introduced to
discuss realizations of continuous groups. The analogy is deliberate. The infini-
tesimal coordinate transformation law

dglm ¼ �dnl;m � dnm;l ¼ �
Z

ðdlr0;m þ dmr0;lÞdnr0d4x0

yields a realization (a matrix representation, in fact) of the diffeomorphism group
and is a special case of

dui ¼ Ui
adna ðsee Problem 14Þ:

Here the index a may be understood as standing for the quintuplet

r; x00; x01; x02; x03;

and the symbol Ui
a as representing the bitensor density �ðdlr0;m þ dmr0;lÞ:
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With this notation, the coordinate invariance of the gravitational action func-
tional may be expressed in the form

0 � dSG � SG;idui � SG;iU
i
adna;

with summation or integration over repeated indices. Because Dna is arbitrary, it
follows that

SG;iU
i
a � 0:

This is just the contracted Bianchi identity. In a similar manner, we may write the
divergence condition satisfied by the energy–momentum–stress density:

TiU
i
a ¼ 0 when SM;A ¼ 0;

where

Ti � 2SM;i:

12.2 Variation of the Action

Suppose, we have a solution of Einstein’s empty space equations SG,i = 0 (for
example, flat spacetime). Let us denote this solution by ui

B in some coordinate
system. Suppose, we introduce into the empty spacetime described by this solution
a material system described by an action functional SM. The introduction of the
material system will cause the spacetime geometry to change. The new metric
tensor may be expressed (in some coordinate system) in the form

ui ¼ ui
B þ /i;

where the field /i measures the deviation from the background field ui
B induced by

the introduction of the material system. The field /i, together with the dynamical
variables UA of the material system, satisfies the dynamical equations

SG;i½uB þ /� þ SM;i½U;uB þ /� ¼ 0

SM;A½U;uB þ /� ¼ 0

)

:

We now note that if we subtract from the first equation the equation satisfied by the
background field, namely

SG;i½uB� ¼ 0;

the resulting pair of equations may be expressed in the form

d�S

d/i ¼ 0;
d�S

duA
¼ 0;
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where �S is a new action functional given by

�S½uB;/;U � �SG½uB;/� þ SM½U;uB þ /�;

�SG½uB;/� � SG½uB þ /� � SG½uB� � SG;i½uB�/i:

The significance of the new action functional is that, using it, one may formally
regard /i as being just an ordinary field like any other, and it (together with the
material system) may be regarded as evolving in the presence of an externally
imposed gravitational field ui

B: This may be seen in several ways. Firstly, a formal
Taylor expansion of �S yields

�S½uB;/;U ¼
1
2

SG;ij½uB�/i/j þ 1
3!

SG;ijk½uB�/i/j/k þ � � �

� � � þ SM½uB;USM;i½uB;U�/i þ � � �:

The first term in the expansion is just the action functional for a field that prop-
agates freely in the background ui

B, satisfying the linear field equations
SG;ij½uB�/j ¼ 0: The remaining terms describe the coupling of this field to itself
and to the material system.

Secondly, if we define

T i � 2
d�SG

dui
B

� 2 SG;i½uB þ /� � SG;i½uB� � SG;ij½uB�/j� �

;

we may rewrite the field equations for /i in the form

SG;ij½uB�/j ¼ � 1
2
ðTi þ T iÞ; Ti � 2

dSM

d/i � 2
dSM

dui
B

; ð12:1Þ

which illustrates a feedback principle for the gravitational field: The gravitational
field partly produces itself. The quantity T i may be regarded as the energy–
momentum–stress density carried by the field /i. It, together with the energy–
momentum–stress density Ti of the material system, serves as a source for the field
/i.

It is not hard to show that the total energy–momentum–stress density, Ti þ T i;

has vanishing covariant divergence relative to the background field ui
B when the

dynamical equations d�S=D/i ¼ 0 and d�S=dUA ¼ 0 are satisfied. For this purpose,
we have only to show that the action functional �S is coordinate independent and
then use arguments identical to those employed in showing that Ti (or Tlm) by itself
has vanishing covariant divergence relative to the total field ui: The demonstration
depends on the adoption of the following coordinate transformation laws:

dui
B ¼ Ui

a½uB�dna; dui ¼ Ui
a½u�dna ¼ Ui

a½uB þ /�dna;

D/i ¼ Dui � Dui
B ¼ Ui

a;j/
jDna:
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The final expression above follows from the fact that the metric tensor transforms
linearly under the diffeomorphism group. We note that the tritensor density Ui

a;j is
metric independent.

SM is already invariant under the above transformations, so we have only to
analyze �SG: Using the contracted Bianchi identity, we find that �SG suffers the
change

d�SG½uB;/� � SG;i½uB þ /�Ui
a½uB þ /�dna � SG;i½uB�Ui

a½uB�dna

� SG;ij½uB�Uj
a½uB�/idna � SG;j½uB�Uj

a;i/
idna

� �
d SG;j½uB�Uj

a½uB�
� �

dui
B

/idna � 0:

That is, it suffers no change. We, therefore, have immediately

ðTi þ T iÞUi
a½uB� ¼ 0 when

d�S

d/i ¼ 0 and
d�S

dUA ¼ 0:

It should be pointed out that this result is actually required for consistency. This
may be seen by functionally differentiating the contracted Bianchi identity

SG;j½uB�Uj
a½uB� � 0:

We have

SG;ij½uB�Uj
a½uB� þ SG;j½uB�Uj

a;i � 0; ð12:2Þ

which reduces to

SG;ij½uB�Uj
a½uB� ¼ 0;

by virtue of the equation SG;j½uB� ¼ 0 satisfied by the background field. Therefore
if ðTi þ T iÞUi

a½uB� did not already vanish by virtue of the dynamical equations, it
would be forced to vanish by virtue of the equation

SG;ij½uB�/j ¼ 1
2
ðTi þ T iÞ

alone.
In calling ðTi þ T iÞUi

a½uB� a covariant divergence, we are assuming that both Ti

and T i are contravariant tensor densities. We already know that Ti transforms as a
contravariant tensor density under the infinitesimal coordinate transformation laws
above. To show that T i is a contravariant tensor density, we have only to show that
it transforms similarly to Ti. Let dUA be the change suffered by the matter
dynamical variables under the infinitesimal coordinate transformation. Then,
because of the coordinate invariance of SM , we have

0 � dSM � SM;AdUA þ SM;iU
i
a½uB þ /�dna:
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Now dUA is metric independent. Therefore, functional differentiation of this
identity yields

0 � SM;iAdUA þ SM;ijU
j
a½uB þ /�dna þ SM;jU

j
a;idna;

hence
dTi � 2dSM;i � 2SM;iAdUA þ 2SM;ijU

j
a½uB þ /�dna

� �SM;jU
j
a;idna � �TjU

j
a;idna:

Similarly,

dT i � 2d SG;i½uB þ /� � SG;i½uB� � SG;ij½uB�/j� �

� 2 SG;ij½uB þ /�U j
a½uB þ /� � SG;ij½uB�U j

a½uB�
n

2� SG;ijk½uB�U
j
a½uB�/k � SG;ij½uB�U

j
a;k/

k
o

dna

� 2 �SG;j½uB þ /�U j
a;i þ SG;j½uB�U

j
a;i þ SG;jk½uB�U

j
a;i/

k
n o

dna

� �T jU
j
a;idna;

where we have used (12.2) to reach the penultimate line. This proves the above
claim that T i transforms in the same way as Ti.

However, it is not convenient in practice to adopt the above coordinate trans-
formation laws. This is because there is no unique way of splitting a given metric
ui into a background metric ui

B and a remainder /i, even when the background
geometry is chosen a priori. The background metric can still be chosen in any one
of its infinity of equivalent presentations under the diffeomorphism group. Thus
one cannot pretend that the field /i is well defined as a covariant tensor. In practice
one must arbitrarily choose a particular form for ui

B, hold it fixed, and place the
entire burden of coordinate transformation onto /i so that it transforms according
to

d/i ¼ dui ¼ Ui
a½u�dna ¼ Ui

a½uB� þ Ui
a;j/

j
� �

dna:

Tlm continues to transform like a covariant tensor density under this transformation
because SM depends on /i only through the sum ui

B þ /i: But the energy–
momentum–stress density T lm of the gravitational field no longer has a simple
transformation law. Only under the isometry group of the background geometry,
generated by Killing vectors dna (if any) satisfying

Ui
a½uB�dna ¼ 0;

does it transform like a contravariant tensor density. For this reason T lm is often
called a pseudo-tensor density.

Because T lm does not transform like a tensor density under general coordinate
transformations it is impossible to assign a definite location to the energy,
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momentum and stress in the gravitational field. Nevertheless, if 3-space is infinite
and /i vanishes sufficiently rapidly at infinity, there is an absolutely conserved
quantity, namely

Z

R

nlðTlm þ T lmÞdRm ðR spacelikeÞ;

associated with every Killing vector nl that the background geometry possesses,
which is well defined and independent of the choice of coordinate system despite
the non-tensorial character of T lm: For consider any two distinct coordinate sys-
tems in the neighborhood of the spacelike hypersurface R: These may be extended
into the future in such a way that they ultimately merge and become identical
there. Because R itself may be displaced to this future region without altering the
value of the integral, and because the integrals in the two coordinate systems are
obviously identical there, it follows that they were always identical.

12.3 Asymptotic Stationary Gravitational Fields
in the Full Nonlinear Theory

Suppose, we introduce into a flat empty spacetime a finite material system. The
spacetime will then be only asymptotically flat and will depart more or less
strongly from flatness near the material system, depending on its density. Such a
combined system is conveniently described by choosing the Minkowski metric glm

as a background metric ui
B: The deviation /i of the true metric from Minkowskian

is then simply the field hlm introduced in (6.1), and the gravitational field equations
take the form

� 1
2

llm r
;r � llr m

; r � lmr l
; r þ glmlrs

;rs

� �

¼ 8pGðTlm þ T lmÞ: ð12:3Þ

It will be convenient in what follows to choose units in which

G ¼ 1:

These equations may then be reexpressed in the form

1
16p

Hlrms ¼ Tlm þ T lm;

where

Hlrms � �ðllmgrs þ lrsglm � llsgrm � lrmglsÞ:

Hlrms has the same algebraic symmetries as the curvature tensor. In view of its
antisymmetry in m and s, it follows that

Hlrms
;rsm � 0;
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which is consistent with the conservation law

ðTlm þ T lmÞ;m ¼ 0:

This conservation law, which holds when the dynamical equations are satisfied,
allows one to introduce the following absolutely conserved quantities:

Pl ¼
Z

R

ðTlm þ T lmÞdRm;

Jlm ¼
Z

R

xlðTmr þ T mrÞ � xmðTlr þ T lrÞ½ �dRr:

These are respectively the total energy–momentum 4-vector and total angular
momentum tensor of the combined matter–gravitational field system. Choosing R
to be the hypersurface x0 = t and making use of the gravitational field equations,
we may reexpress these quantities in the forms

Pl ¼
Z

ðTl0 þ T l0Þd3x

¼ 1
16p

Z

Hlr0s
;rsd

3x ¼ 1
16p

Z

Hlr0i
;rid

3x

¼ lim
S!1

1
16p

Z

S
Hlr0i

;rd2Si;

Jlm ¼
Z

xlðTm0 þ T m0Þ � xmðTl0 þ T l0Þ
� 	

d3x

¼ 1
16p

Z

xlHmr0s
;rs � xmHlr0s

;rs

� �

d3x

¼ 1
16p

Z

xlHmr0s
;r

� �

;s
� xmHlr0s

;r

� �

;s
�Hmr0l

;r þ Hlr0m
;r


 �

d3x

¼ 1
16p

Z

xlHmr0i
;r

� �

;i
� xmHlr0i

;r

� �

;i




�Hmi0l
;i þ Hli0m

;i � Hm00l
;0 þ Hl00m

;0

i

d3x

¼ lim
S!1

1
16p

Z

S
xlHmr0i

;r � xmHlr0i
;r þ Hli0m � Hmi0l

� �

d2Si;

where S is a 2-surface homologous to a sphere and the instruction limS!1 means
that S is to be expanded to infinity in all directions.

The presentation of Pl and Jlm as surface integrals at infinity makes it partic-
ularly easy to relate them to the asymptotical structure of the gravitational field.
We shall in fact see that if the asymptotic field is stationary (in a certain Lorentz
frame), it is completely determined by Pl and Jlm. A stationary asymptotic field
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(no gravitational waves) is a weak field. In the asymptotic region, we may assume
the coordinate system to be quasi-canonical and, in fact, quasi-stationary. We shall
then restrict our coordinate transformations to those that preserve the quasi-
stationary character of the coordinates.

We shall also assume that the field hlm vanishes at infinity at least as fast as 1/r,
where r � jxj: T lm then vanishes at least as fast as 1/r4, for its dominant terms in
the asymptotic region have forms like hrshlm

r;s, and hrs;
lhrs;m: This asymptotic

behavior, together with the finiteness of the material system, is entirely consistent
with (12.3). In fact, it will be obvious later that no other assumption about
asymptotic behavior would be consistent both with this equation and with the
(assumed) finiteness of Pl and Jlm.

Because Tlm vanishes outside a finite region and T lm vanishes so rapidly at
infinity, the field in the asymptotic region effectively satisfies the equation

0 ¼ llm r
;r � llr m

; r � lmr l
; r þ glmlrs

;rs

¼ llmi
;i � llim

;i � lmi l
; i þ glmlij ;ij;

the final form following from the stationarity of the asymptotic field. We now ask
whether we can simplify this equation by imposing the supplementary condition

lli
;i ¼ 0, without violating the assumptions made thus far. Schematically (dropping

indices), we have the asymptotic behavior

l� M

r
;

where M is some constant. In order to impose the supplementary condition we
must carry out a gauge transformation (coordinate transformation) where the
gauge parameter nl satisfies an equation of the form [see (6.4)]

r2n ¼ r � l:

This implies

n�M ln
r

M
:

If we now choose r so big that both M/r and ðM=rÞ lnðr=MÞ may be neglected in
comparison with unity, then the quantities

lrn� M

r

� 
2

; nrl� M

r

� 
2

ln
r

M

may be neglected in comparison with l and rn, and the gauge transformation may
indeed by carried out consistently with asymptotic fall-off of order 1/r or faster.
This defines the asymptotic region.

With the supplementary condition imposed (remember that coordinate trans-
formations leave Pl and Jlm unaffected), we have only to solve the simple equation
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r2llm ¼ 0:

The general solution of this equation, which has the required asymptotic behavior,
is

llm ¼
Alm

r
þ Blmixi

r3
þ Oðr�3Þ;

where Alm and Blmi are arbitrary constants. Some of the arbitrariness of these
constants is removed by the supplementary condition. We have

0 ¼ lli;i ¼ �
Alix̂i

r2
þ Blii � 3Blijx̂ix̂j

r3
þ Oðr�4Þ;

where x̂i � xi=r; from which it may be inferred that

Ali ¼ 0; Blij ¼ Bldij þ Clij;

where the Bl and Clij are certain constants, with the latter satisfying

Clij ¼ �Clji:

By combining the antisymmetry of Cijk in j and k with the symmetry of Bijk in i
and j, we can reexpress Bijk completely in terms of Bi. We have

Bidjk þ Cijk ¼ Bjdik þ Cjik;

or

Cijk � Cjik ¼ Bjdik � Bidjk; Ckji � Cjki ¼ Bjdki � Bkdji;

Ckij � Cikj ¼ Bidkj � Bkdij:

Adding these last three equations and dividing by 2, we find

Cijk ¼ Bjdik � Bkdij;

and hence,

Bijk ¼ Bidjk þ Bjdik � Bkdij:

The asymptotic field now takes the form

l00 ¼
A00

r
þ B00ixi

r3
þ Oðr�3Þ; l0i ¼

B0xi þ C0ijxj

r3
þ Oðr�3Þ;

lij ¼
Bixj þ Bjxi � dijBkxk

r3
þ Oðr�3Þ:

This may be simplified by carrying out an additional gauge transformation with the
gauge parameters given by
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nl ¼ �
Bl

r
;

in the appropriate region. These parameters satisfy

r2nl ¼ 0 ðin the asymptotic regionÞ;

and hence the gauge transformation leaves the supplementary condition intact. In
the new gauge, we have [see (6.3)]

�l00 ¼ l00 � ni;i ¼
A00

r
þ

�B00ixi

r3
þ Oðr�3Þ; �B00i ¼ B00i � Bi;

�l0i ¼ l0i � n0;i ¼ l0i �
B0xi

r3
¼ C0ijxj

r3
þ Oðr�3Þ;

�lij ¼ lij � ni;j � nj;i þ dijnk;k

¼ lij �
Bixj þ Bjxi � dijBkxk

r3
¼ Oðr�3Þ:

From now on, we assume this transformation already to have been carried out so
that we may drop the bars.

We are now ready to compute Pl and Jlm. Because Hlrms
;rs vanishes in the

asymptotic region, it does not matter what shapes the surface S assumes as it
expands to infinity. For simplicity, we may assume it to be a sphere and write

d2Si ¼ x̂ir2d2X;

where d2X is the element of solid angle subtended at the origin. We then have

P0 ¼ lim
S!1

1
16p

Z

S
H0i0j

;id
2Sj

¼ � lim
S!1

1
16p

Z

S
l00gij þ lijg00 � l0jg0i � l0ig0j
� �

;i
d2Sj

¼ A00

16p

Z

S

xj

r3
d2Sj ¼

A00

16p

Z

4p
d2X ¼ 1

4
A00;

Pi ¼ lim
S!1

1
16p

Z

S
Hij0k

;jd
2Sk

¼ � lim
S!1

1
16p

Z

S
li0gjk þ ljkgi0 � likgj0 � lj0gik
� �

;j
d2Sk

¼ 0:

In terms of the total rest mass (or rest energy)

M ¼ ð�P2Þ1=2
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of the matter–gravitational field system, we have

A00 ¼ 4M:

We note that the total 3-momentum vanishes, as befits a system that gives rise to a
stationary asymptotic field. If the 3-momentum did not vanish, the asymptotic field
would not be stationary.

The vanishing of Pi implies the vanishing of the total orbital angular momen-
tum so that the spatial components of Jij are just the components of the total spin
angular momentum:

Sij ¼ Jij

¼ lim
S!1

1
16p

Z

S
xiHjk0l

;k � xjHik0l
;k þ Hil0j � Hjl0i

� �

d2Sl

¼ � lim
S!1

1
16p

Z

S
xi lj0gkl þ lklgj0 � ljlgk0 � lk0gjl
� �

;k

h

� xj li0gkl þ lklgi0 � lilgk0 � lk0gil
� �

;k

þ li0glj þ lljgi0 � lijgl0 � ll0gij

�lj0gli þ lligj0 � ljigl0 � ll0gji
	

d2Sl

¼ 1
16p

Z

4p
x̂iC0jk dkl � 3x̂kx̂l

� �

x̂l � x̂jC0ik dkl � 3x̂kx̂l
� �

x̂l
�

þC0ikx̂k x̂j � C0jkx̂kx̂i
	

d2X

¼ 3
16p

Z

4p
C0ikx̂kx̂j � C0jkx̂kx̂i
� �

d2X

¼ 1
4
ðC0ij � C0jiÞ ¼

1
2

C0ij:

ð12:4Þ

As for the temporal components of Jlm, we have

J0i ¼ lim
S!1

1
16p

Z

S
tHij0k

;j � xiH0j0k
;j þ H0k0i � Hik00

� �

d2Sk

¼ lim
S!1

1
16p

Z

S
xi l00gjk þ ljkg00 � l0kgj0 � lj0g0k
� �

;j

h

� l00gki þ lkig00 � l0igk0 � lk0g0i
� �	

d2Sk

¼ lim
r!1

1
16p

Z

4p
x̂i �A00rx̂k þ �B00k � 3�B00jx̂

jx̂k
� �

x̂k
�

�A00rx̂i � �B00jx̂
jx̂i
	

d2X

¼ � 3
16p

Z

4p

�B00jx̂
jx̂id2X ¼ � 1

4
�B00i:

ð12:5Þ
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According to (9.1),

J0i ¼ tPi � Xi
EP0 ¼ �XiP0 ¼ �MXi;

where Xi is the center of energy of the matter–gravitational field system in the rest
frame (covariant center of energy). We may therefore make the identification

�B00i ¼ 4MXi;

and we have finally

l00 ¼ 4M
r þ

4MXixi

r3 þ Oðr�3Þ
l0i ¼ 2Sijxj

r3 þ Oðr�3Þ
lij ¼ Oðr�3Þ

9

>

=

>

;

in the asymptotic region:

No particularly useful purpose is served by retaining the term in Xi above. This
term arises from the fact that the origin of coordinates has not been placed at the
center of energy.1 It may be removed by carrying out the coordinate shift

�xl ¼ xl þ nl;

where

n0 ¼ 0 and ni ¼ �Xi:

We then have

�Pl ¼ Pl; �Jij ¼ Jij þ niPj � njPi ¼ Jij;

�J0i ¼ J0i þ n0Pi � niP0 ¼ J0i þMXi ¼ 0;

�l00 ¼ l00 � l00;ln
l þ Oðr�3Þ

¼ l00 þ l00;iX
i þ Oðr�3Þ

¼ l00 �
4MXixi

r3
þ Oðr�3Þ ¼ 4M

r
þ Oðr�3Þ;

�l0i ¼ l0i � l0i;ln
l þ Oðr�4Þ ¼ 2Sijxj

r3
þ Oðr�3Þ;

�lij ¼ lij � lij;ln
l þ Oðr�5Þ ¼ Oðr�3Þ:

We shall henceforth assume this transformation already to have been carried out
and drop the bars.

1 If the source of the gravitational field is so dense that topological anomalies occur in the strong
field region, the coordinate origin may not physically exist. The shift transformation is
nevertheless valid.
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It is now necessary to point out a slight inconsistency in the above derivations.
In order to relate the asymptotic field to the total spin angular momentum it was
necessary to retain not only terms of order 1/r but also terms of order 1/r2. Now the
dominant spherically symmetric (monopole) term 4M/r in l00 gives rise to terms in
T lm that fall off asymptotically like 1/r4. When these terms are used as sources in
the full nonlinear field equations (12.3), they give rise to corrections of order 1/r2

in the asymptotic fields, i.e., to terms falling off at the same rate as terms that have
been retained. To be sure, these terms are of order (M/r)2 in magnitude and hence
are typically very much smaller than the terms that have been retained. However,
we need to check whether they can affect the values that have been obtained for Pl

and Jlm, or, conversely, whether nonlinear corrections have to be introduced into
the coefficients of the dominant asymptotic terms of llm when they are expressed in
terms of Pl and Jlm (actually M and Sij).

Because the monopole term 4M/r is spherically symmetric, a coordinate system
may be chosen in which the nonlinear corrections dllm induced by this term are
themselves spherically symmetric (no preferred directions). Explicitly,

Dl00 ¼
W

r2
; Dl0i ¼ X

xi

r3
; Dlij ¼ Y

dij

r2
þ Z

xixj

r4
;

for some constants W, X, Y, Z. Being of order 1/r2, these terms are readily seen to
have no effect on Pl. Their effect on Sij is determined by referring to (12.4).
Noting that Dl0i;i ¼ 0; we have

DSij ¼ � lim
S!1

1
16p

Z

S
xiDlj0;l � xjDli0

;l þ Dli0glj � Dlj0gli
� �

d2Sl:

Noting also that Dli0
;ll ¼ 0; and hence

xiDlj0
;l � xjDli0

;l þ Dli0glj � Dlj0gli
� �

;l

¼ Dlj0;i � Dli0;j þ Dli0;j � Dlj0
;i ¼ 0;

we see that it does not matter how S is chosen in the computation of DSij: Choosing
a sphere, we find

DSij ¼ � X

16p

Z

4p

x̂i djl � 3x̂jx̂l
� �

� x̂j dil � 3x̂ix̂l
� �

þ x̂idjl � x̂jdil

� 	

x̂ld2X

¼ 0:

In the case of J0i, we have from (12.5),

DJ0i ¼ lim
S!1

1
16p

Z

S
xiDl00

;k � xiDljk
;j � Dl00gki þ Dlki

� �

d2Sk:
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Here it does matter how S is chosen, for we have

xiDl00
;k � xiDljk

;j � Dl00gki þ Dlki
� �

;k
¼ Dl00

;i þ xiDl00
;kk � Dlji;j � xiDljk;jk � Dl00

;i

þ Dlki
;k

¼ xiðDl00
;kk � Dljk

;jkÞ;

which is not generally equal to zero. The reason for the sensitivity of DJ0i to the
choice of S may be understood by remembering that J0i gives the location of
the center of energy of the matter–gravitational field system. DJ0i comes from the
asymptotic contribution to the integral �

R

xiT 00d3x: Asymptotically, T 00 is
spherically symmetric, and hence one would say that the asymptotic contribution
vanishes by symmetry. However, if one remembers that T 00 falls off asymptoti-
cally like 1/r4, one sees that this is really an improper integral (logarithmically
divergent). In order to make it well defined, one must specify precisely how its
boundary is to tend to infinity. The symmetry argument is, of course, valid here.
One should integrate over the region inside a sphere and then let the radius of the
sphere tend to infinity.2 This is equivalent to choosing the surface S above to be a
sphere. With this choice and the replacement d2Sk ¼ r2x̂kd2X; one readily finds
that every term in the integrand for DJ0i contains an odd number of unit vector
components x̂i; and hence that

DJ0i ¼ 0;

by symmetry. The correction terms arising from the nonlinearity of the full field
equations are therefore seen to have no effect on Pl and Jlm. This does not mean
that the gravitational field itself makes no contribution to these quantities. Indeed,
in regions of strong curvature, T lm can be even more important than Tlm. It means
only that the asymptotic part of the field makes no contribution. The asymptotic
field merely registers the imprint of Pl and Jlm.

Summing up, we have the following theorem: For every asymptotically sta-
tionary gravitational field a coordinate system can be introduced in which the field
takes the canonical asymptotic form

l00�
4M

r
þW

r2
þ Oðr�3Þ; l0i�

2Sijxj

r3
þ X

xi

r3
þ Oðr�3Þ;

lij� Y
dij

r2
þ Z

xixj

r4
þ Oðr�3Þ;

where M is the total mass energy (gravitational as well as material) of the source,
Sij is the total spin angular momentum, and W, X, Y, Z are constants of order M2.

2 It does not matter where the sphere is centered. Provided only its center is held fixed while its
radius tends to infinity, the final result will be invariant under displacements of the sphere.
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Conversely, if a coordinate system is found in which the field takes the canonical
asymptotic form one may immediately identify the total mass and spin of the
source from the pertinent coefficients.

Computing

l ¼ lll ¼ �l00 þ lii� �
4M

r
�W � 3Y � Z

r2
þ Oðr�3Þ;

and remembering that

glm ¼ glm 1� 1
2

l

� 


þ llm;

we find for the canonical asymptotic form of the metric tensor the expressions

g00� � 1þ 2M

r
þ

�W

r2
þ Oðr�3Þ; g0i�

2Sijxj

r3
þ �X

xi

r3
þ Oðr�3Þ;

gij� 1þ 2M

r

� 


dij þ �Y
dij

r2
þ �Z

xixj

r4
þ Oðr�3Þ;

where

�W ¼ 1
2
ðW þ 3Y þ ZÞ; �X ¼ X; �Y ¼ 1

2
ðW � Y þ ZÞ; �Z ¼ Z:

The asymptotic form for the metric tensor of a uniformly moving source may be
obtained from this by a Lorentz transformation.

Some concluding remarks are in order concerning the above results. We note
first of all that the dominant (monopole) terms in the asymptotic metric are
identical to those we previously calculated for a point particle in the weak field
approximation. We have therefore justified the point particle idealization. Indeed,
the justification goes farther than this. With a Minkowskian background metric, the
center of energy of the combined matter–gravitational field system moves in a
straight line. At a great distance from the material source, the dimensions of the
source dwindle to insignificance and this line effectively marks the location of the
source, i.e., it becomes the world line of the source. Now imagine that we have
many such sources, all at large distances from one another. Collectively, they
produce a background field that is no longer flat. Nevertheless, coordinate patches
can be introduced around each source, which, near their outer edges, are canonical
to high accuracy. Each patch may be regarded as marking the domain of a local flat
background geometry. Each source moves in a straight line relative to a canonical
coordinate system laid down in this local background. This implies that each
source moves along a geodesic in the global background field produced collec-
tively by all the other sources. For the geodesic is the only invariantly defined
curve that has the appearance of a straight line ðd2za=ds2 ¼ 0Þ in each locally
canonical coordinate system ðCa

bc ¼ 0Þ that is laid down along its length. Thus the
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point particle idealization is justified even to the extent of describing correctly the
dynamical behavior of the sources. One must only take care to separate the ‘self-
field’ of each source from the background geometry. Although such a separation
cannot be unique close to the source, it is well defined asymptotically.

Suppose, finally, that the whole collection of sources is bounded and that even
the global geometry ultimately becomes flat at great distances from the ensemble.
Then a flat background can be introduced for the ensemble and a total energy,
momentum and angular momentum defined. These quantities, which include
contributions from the global curvature will be conserved if the motion of the
sources is so slow that the global asymptotic field is quasi-stationary. We shall see
later that these quantities will be conserved even if some of the sources are moving
at high velocity, provided only that their mutual interactions are so weak that the
acceleration of each is small relative to a coordinate system that is quasi-canonical
in the field of all the other sources. If, on the other hand, the accelerations become
appreciable (in some level of approximation) then gravitational radiation must be
taken into account, and there will be a net outflow of energy, momentum and
angular momentum from the ensemble, as we shall see.

12.4 Newtonian Approximation

It is of interest to compare the contributions which T lm and Tlm each make to the
total energy when the conditions for the validity of the Newtonian approximation
hold, namely, when the size R of each source is very much greater than its so-
called gravitational radius GM:

R� GM:

Under these conditions, the maximum value that T 00 can assume (in quasi-
canonical coordinates) is, apart from factors of 1/16p, etc., of order

T 00� 1
G
ðrhÞ2� GM2

R4
:

T00, on the other hand, will be of order

T00� M

R3
:

Therefore,

T 00

T00
� GM

R
� 1;

and T 00 is seen to be negligible compared to T00. This is true even though T 00 is
distributed in space around the source whereas T00 is confined to the material

148 12 Energy, Momentum and Stress



source itself. For the total contribution to P0 from T 00 is of order GM2/R, while
that from T00 is, of course, of order M.

It is also of interest to compare T00 with the other components of the energy–
momentum–stress density. In the mean rest frame of the source the components T0i

typically arise from rotation and are of order

T0i� vT00;

where v is the ‘rim’ rotation velocity. But the maximum value that v can attain
without the source flying apart is, for astronomical objects,

v� GM

R

� 
1=2

� 1:

Therefore, T0i�T00: As for the components Tij, these typically arise from internal
pressure, which is of order

p� GM2

R4
� M

R3
:

Therefore the Tij too are negligible compared to T00, and T00 is seen to dominate
everything in the Newtonian approximation. This provides yet one more justifi-
cation for the point particle idealization used in the weak field analysis, in which
T00 was the only surviving component of Tlm [see (8.3)].
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Chapter 13
Measurement of Asymptotic Fields

The asymptotic field of a quasi-stationary source registers the imprint of the total
mass and total spin angular momentum of the combined matter—gravitational
field system. These quantities can therefore be determined by experiments carried
out in the asymptotic region without ever going near the source. The total mass
may be determined simply by examining the Keplerian orbits of test bodies and
comparing their size with their periods, in the familiar manner of celestial
mechanics.1 In this chapter, we shall indicate how to measure (in principle) the
spin angular momentum of the source by observations of the behavior of gyro-
scopes in the asymptotic region.

We shall see latter (Appendix A) that the spin angular momentum 4-vector Sl

of a gyroscope is Fermi–Walker transported along the gyroscope’s world line. This
means it satisfies the equations (see Problem 9 in Chap. 2 and Footnote 1 in
Chap. 5)

_Sl ¼ ðS � _uÞul; S � u ¼ 0;

where ul is the gyroscope’s velocity 4-vector (u2 = - 1) and the dot denotes
covariant differentiation with respect to the proper time. In Problem 9 in Chap. 2,
it was found that the vector Sl precesses in the case of flat spacetime when _ul 6¼ 0:
This precession is known as Thomas precession. In a curved spacetime we shall
see that there is a precession even when _ul ¼ 0:

In order to compute this precession, it is convenient to introduce a tetrad field el
a

satisfying

gabea
leb

m ¼ glm; ea
leb

m glm ¼ gab:

In the local canonical frame provided by the tetrad el
a, the components of Sl are

given by

1 The location of the center of energy relative to the asymptotic Cartesian coordinates is given by
the focus of the Keplerian ellipses.
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Sa ¼ ea
lSl:

These components satisfy the differential equation

_Sa ¼ _ea
lSl þ ea

l
_Sl

¼ ea
l;mS

lum þ ea
lðS � _uÞul

¼ ea
l;me

l
bem

cS
buc þ ðS � _uÞua

:

In order to describe precession, we need to relate Sa to a pure 3-vector. This we can
do by carrying out a boost from the local tetrad frame to the local rest frame of the
gyroscope. The boost transformation coefficients are those given in Problem 9 in
Chap. 2:

ðLa
bÞ ¼

c �cv
�cv 1þ ðc� 1Þv̂v̂

� �

; ðL�1a
b Þ ¼

c cv
cv 1þ ðc� 1Þv̂v̂

� �

;

where

ðuaÞ ¼ ðc; cvÞ; v̂ ¼ v

jvj; c ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p :

Defining

S
a ¼ La

bSb; ua ¼ La
bub;

we then have

S
0
; ðuaÞ ¼ ð1; 0; 0; 0Þ;

and

_S
a ¼ _La

bSb þ La
b

_Sb

¼ _La
bL�1b

c S
c þ La

beb
l;me

l
c em

dL�1c
e S

e
ud þ ðS � _uÞua

:

Taking only the spatial components of this equation and making use of the results
of Problem 9 in Chap. 2 as well as of the fact that

Li
ag

ab ¼ gicL�1b
c ¼ L�1b

i ;

we find

_S
i ¼ �XijS

j
;

where

Xij ¼ �ðc� 1Þ v̂i
_̂vj � v̂j

_̂vi

� �

� eal;me
l
bem

cL
�1a
i L�1b

j uc:
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The first term on the right of this last equation may be rewritten in a form that
distinguishes between contributions coming from the curvature of spacetime and
contributions coming from the absolute acceleration of the gyroscope. We first
write

vi ¼ c�1ui; _vi ¼ c�1 _ui � c�2 _cui;

and remember that v2c2 = c2 - 1. This allows us to express the first term in the
form

� 1
cþ 1

ðui _uj � uj _uiÞ:

We next compute

_ua ¼ _ea
lul þ ea

l _ul

¼ ea
l;mu

lum þ aa

¼ ea
l;me

l
bem

cu
buc þ aa

;

where the aa are the components of the absolute acceleration in the local tetrad
frame. The first term of Xij then becomes

� c
cþ 1

ðviaj � vjaiÞ �
c

cþ 1
ðviejl;m � vjeil;mÞel

bem
cu

buc:

Some authors regard only the first of these two terms as giving rise to the
Thomas precession, while others regard both as giving rise to it. That is, there is
disagreement as to precisely what should be called the Thomas precession in
general relativity. The first group of authors likes to regard gravitational forces
as special, because these forces do not contribute to ai. The second group likes to
regard the (coordinate) accelerations produced by gravitational forces as no
different from the accelerations produced by any other forces. Locally, of course,
there is no way of distinguishing the contributions to the precession arising from
the two kinds of forces, because all of the quantities appearing in the above
expressions depend on an arbitrary choice of tetrad field. However, in a closed
orbit in a stationary field there is a cumulative precession over each period,
which is physically well defined and which can be split in a physically well-
defined way into a part arising from absolute acceleration and a remainder
determined by spacetime geometry.

Collecting the above results we now have

Xij ¼ �
c

cþ 1
ðviaj � vjaiÞ � eal;me

l
bem

cu
cMab

ij ;

13 Measurement of Asymptotic Fields 153



where (using eal;m eb
l = - ebl;m ea

l)

Mab
ij ¼

c
2ðcþ 1Þðvid

a
j ub � vjd

a
i ub � vid

b
j ua þ vjd

b
i uaÞ

þ 1
2
ðL�1a

i L�1b
j � L�1a

j L�1b
i Þ

:

Explicitly, component by component, we find

M00
ij ¼ 0;

M0k
ij ¼ �

c2

2ðcþ 1Þvidjk þ
1
2
cvi djk þ ðc� 1Þv̂jv̂k

� �

� ði$ jÞ

¼ c
2ðcþ 1Þðvidjk � vjdikÞ

;

Mkl
ij ¼

c2

2ðcþ 1Þðvidjkvl � vidjlvkÞ

þ 1
2

dik þ ðc� 1Þv̂iv̂k½ � djl þ ðc� 1Þv̂jv̂l

� �

� ði$ jÞ

¼ 1
2
ðdikdjl � djkdilÞ

;

using

� c2

cþ 1
þ c� 1

v2
¼ 0:

Hence finally,

Xij ¼ �
c

cþ 1
ðviaj � vjaiÞ �

c
cþ 1

ðvje
l
j � vje

l
i Þe0l;me

m
aua

� eil;me
l
j em

aua
:

Suppose now that the gravitational field is weak and that the coordinate system
is quasi-canonical so that glm = glm ? hlm, where |hlm| � 1. Then in the weak
field approximation, there is a natural choice for the tetrad field, namely

eal ¼ gal þ
1
2

hal þ Oðh2Þ:

We then have
eal;m ¼ eal;m � Cr

lmear

¼ 1
2

hal;m �
1
2
ðhal;m þ ham;l � hlm;aÞ þ O h

oh

ox

� �

¼ 1
2
ðhlm;a � ham;lÞ þ O h

oh

ox

� �

;
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and, dropping terms of order hoh=ox;

Xij ¼ �
c

cþ 1
ðviaj � vjaiÞ

� c2

2ðcþ 1Þ viðhj0;0 � h00;jÞ � vjðhi0;0 � h00;iÞþ vivkðhjk;0 � h0k;jÞ� vjvkðhik;0 � h0k;iÞ
� �

� 1
2
c hj0;i � hi0;j þ vkðhjk;i � hik;jÞ
� �

:

In the special case of slow motion relative to a quasi-stationary coordinate system
in a quasi-stationary gravitational field, this expression reduces to

Xij ¼ �
1
2

vi aj �
1
2

h00;j

� �

� vj ai �
1
2

h00;i

� �	 


� 1
2

vkðhjk;i � hik;jÞ �
1
2
ðhj0;i � hi0;jÞ

;

in which no distinction need be made between the 3-velocity vi relative to the
tetrad frame and the coordinate 3-velocity. (This assumes that ai is not much
greater than h00,i in order of magnitude.)

It will be observed that the Lense–Thirring field makes its appearance in the
third (last) term of the final expression. When a Lense–Thirring field is present, the
gyroscope will precess even when it is at rest. It will also be observed that the first
and third terms are invariant under gauge transformations that preserve the quasi-
stationary character of the coordinate system (see p. 72). The second term, how-
ever, is not. Under a gauge transformation it, and therefore Xij, suffers the change

DXij ¼
1
2

vkðnj;i � ni;jÞ;k:

This change is not physical but arises simply from the fact that the gauge trans-
formation induces a change in the ‘natural’ tetrad field. The precession is being
defined relative to the new local tetrad frames! Remembering that vk ¼ _xk (no
distinction now between s and t), we see that

DXij ¼
1
2

d
dt
ðnj;i � ni;jÞ

and, hence over a closed orbit, DXij produces no cumulative effect:
I

DXijdt ¼ 0:

Let us now apply these results to a gyroscope moving in the asymptotic field of
a quasi-stationary source. Referring to p. 146, we have

h00 ¼
2M

r
; h0i ¼

2SM
ij xj

r3
; hij ¼

2M

r
dij;
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where M is the mass and Sij
M is the spin angular momentum tensor of the source.

Therefore,

h00;i ¼ �2M
x̂i

r2
; hij;k ¼ �2Mdij

x̂k

r2
;

h0i;j ¼
2
r3

SM
ij � 3SM

ik x̂kx̂j

� �

; x̂i ¼
xi

r
;

whence

Xij ¼ �
1
2
ðviaj � vjaiÞ �

3
2

M

r2
ðvix̂j � vjx̂iÞ

þ 1
r3

2SM
ij � 3SM

ik x̂kx̂j þ 3SM
jk x̂kx̂i

� �

:

Defining

Xi ¼
1
2
eijkXjk; SM

i ¼
1
2
eijkSM

jk ;

and noting that

�3eijkSM
jl x̂lx̂k ¼ �3eijkejlmSM

m x̂lx̂k

¼ 3ðdildkm � dimdklÞSM
m x̂lx̂k

¼ 3x̂ix̂jS
M
j � 3SM

i

;

we find that we may write the gyroscope precession equation in the form

dS

dt
¼ X� S;

where, in standard units with the constants G and c restored, the gyroscope pre-
cession frequency X is given by

X ¼ � 1
2c2

v� a� 3
2

GM

c2r2
v� x̂� G

c2r3
ð1� 3x̂x̂Þ � SM:

Assuming that a and M are known, we see finally that an observation of X yields a
determination of SM.

It will be observed that the contribution to X arising from SM causes the
gyroscope axis to turn in the same direction as the source, i.e., X parallel to SM, in
polar regions (x̂ parallel or antiparallel to SM) and in the opposite direction in
equatorial regions (x̂ perpendicular to SM). This effect has an analog in hydro-
dynamics. Consider a rotating solid sphere immersed in a viscous fluid. As it
rotates, the sphere will drag the fluid along with it. At various points in the fluid,
one may imagine little rods, free to rotate about a central pivot but otherwise held
fast. Near the poles, the fluid will rotate the rods in the same direction as the sphere
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rotates. But near the equator, because the fluid is dragged more rapidly at small
radii than at large, the end of a rod closest to the sphere experiences a stronger
dragging force than the end farthest from the sphere. Consequently the rod rotates
in a direction opposite to that of the sphere. We may therefore say that a rotating
source of gravitation affects its surroundings as if it were dragging some kind of a
medium along with it.

Problem 38 In the case of the earth the asymptotic field region begins already at
the earth’s surface. Moreover the contribution of the gravitational field to M and
SM is negligible, so that M may be regarded as simply the mechanical mass of the
earth, and SM may be expressed as Ix where I is the earth’s mechanical moment of
inertia and x is its rotational angular frequency vector. Suppose the gyroscope is at
rest on the surface of the earth at a latitude a. Using

I ¼ 0:334MR2;

where R is the radius of the earth and the factor 0.334 has been determined from
geological and astronomical studies, obtain an expression for the average hXi of
the precession frequency over one sidereal day (86 164 s) in terms of G, c, M, R,
x and a. Using the values

G ¼ 6:67� 10�11 kg�1m3s�2; M ¼ 5:98� 1024 kg; R ¼ 6:38� 106 m;

find the magnitude of hXi at the equator. Express your answer in seconds of arc per
year.

Now suppose the gyroscope is in circular orbit about the earth. Let r be the
radius of the orbit and n the unit vector perpendicular to the orbit. Obtain an
expression for hXi (orbital average) in terms of G, c, M, I, R, x and n. Show that
when the orbit is polar the contribution to hXi from the orbital motion is at right
angles to that arising from the Lense–Thirring field produced by SM. Compute the
magnitudes of these two contributions for the case in which the orbit is at an
altitude of 500 km above the earth’s surface.

Solution 38 We have

a ¼ GM

R2
x̂; X ¼ �2GM

c2R2
v� x̂� GI

c2R3
ð1� 3x̂x̂Þ � x;

v ¼ Rx� x̂~; v� x̂ ¼ Rðx� x̂Þ � x̂ ¼ �Rð1� x̂x̂Þ � x;

X ¼ 2GM

c2R
ð1� x̂x̂Þ � x� 0:334GM

c2R
ð1� 3x̂x̂Þ � x

¼ GM

c2R
ð1:671� 1:00x̂x̂Þ � x

;

whence

hXi ¼ GM

c2R
ð1:67� 1:00 sin2 aÞx
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Now,

jxj ¼ 2p
86164

s�1 ¼ 7:30� 10�5 rad s�1;

and

1 arcsec yr�1 ¼ 2p
360� 3600� 3:16� 107

¼ 1:54� 10�13 rad s�1:

At the equator (a = 0), we have

jhXij ¼ 1:67GM

c2R
jxj

¼ 1:67� 6:67� 10�11 � 5:98� 1024

9� 1016 � 6:38� 106
� 7:30� 10�5

¼ 8:47� 10�14 rad s�1

¼ 8:47� 10�14

1:54� 10�13
¼ 0:550 arcsec yr�1

In orbit we, have a = 0 and

v2

r
¼ GM

r2
; jvj ¼ GM

r

� �1=2

; v� x̂ ¼ � GM

r

� �1=2

n;

X ¼ 3
2
ðGMÞ3=2

r5=2
n� GI

c2r3
ð1� 3x̂x̂Þ � x; hx̂x̂i ¼ 1

2
ð1� nnÞ;

so that

hXi ¼ 3
2
ðGMÞ3=2

c2r5=2
nþ GI

2c2r3
ð1� 3nnÞ � x

In polar orbit we have n � x ¼ 0 and this reduces to

hXi ¼ hXorbi þ hXLTi

where

hXorbi ¼ 3
2
ðGMÞ3=2

c2r5=2
n; hXLTi ¼ GI

2c2r3
x

Now,

GM ¼ 6:67� 10�11 � 5:98� 1024 ¼ 3:99� 1014 m3 s�2;

ðGMÞ3=2 ¼ 7:97� 1021 m9=2 s�3;
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r ¼ 6:38� 106 þ 0:50� 106 ¼ 6:88� 106 m;

r5=2 ¼ 1:24� 1017 m5=2;

I ¼ 0:334MR2 ¼ 0:334� 5:98� 1024 � ð6:38Þ2 � 1012 ¼ 8:13� 1037 kg m2:

Therefore,

hXorbi










 ¼ 3
2

7:97� 1021

9� 1016 � 1:24� 1017
¼ 1:07� 10�12 rad s�1

¼ 1:07� 10�12

1:54� 10�13
¼ 6:96 arcsec yr�1

and

hXLTi










 ¼ 6:67� 10�11 � 8:13� 1037

2� 9� 1016 � ð6:88Þ3 � 1018
� 7:30� 10�5

¼ 6:76� 10�15 rad s�1

¼ 5:95� 10�15

1:54� 10�13
¼ 0:439 arcsec yr�1
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Chapter 14
The Electromagnetic Field

The action functional for the free electromagnetic field in a curved spacetime is a
straightforward generalization of that in canonical coordinates in a flat spacetime:

SE ¼ �
1

16p

Z

g1=2FlmF
lmd4x;

Flm � Am;l � Al;m ¼ Am;l � Cr
mlAr � Al;m þ Cr

lmAr

¼ Am;l � Al;m:

In a locally canonical coordinate system, one may make the usual identifications

ðAlÞ ¼ ð�/;AÞ;

Ei ¼ Fi0 ¼ A0;i � Ai;0; E ¼ �r/� A;0;

Hi ¼
1
2
eijkFjk ¼ eijkAk;j; H ¼ r� A;

where / is the scalar potential, A is the 3-vector potential, E is the electric field
vector, and H is the magnetic field vector. We note that the electromagnetic field
tensor satisfies the covariant generalization of a familiar identity:

Flm;r þ Fmr;l þ Fr;lm ¼ Am;lr � Al;mr þ Ar;ml � Am;rl þ Al;rm � Ar;lm

¼ AsðRs
mlr þ Rs

lrm þ Rs
rmlÞ ¼ 0:

The electromagnetic field tensor, and hence the action functional itself, is
invariant under gauge transformations:

Al ¼ Al þ n;l ¼ Al þ n;l ðn is a scalarÞ:

Denoting by dSE the change induced in SE by an infinitesimal gauge transfor-
mation generated by an infinitesimal gauge parameter dn; we may write

B. DeWitt, Bryce DeWitt’s Lectures on Gravitation,
Edited by Steven M. Christensen, Lecture Notes in Physics, 826,
DOI: 10.1007/978-3-540-36911-0_14, � Springer-Verlag Berlin Heidelberg 2011
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0 � dSE �
Z

dSE

dAl
dAld4x �

Z

dSE

dAl
dn;ld4x

��
Z

dSE

dAl

� �

;l

dnd4x:

Because of the arbitrariness of dn; this implies

dSE

dAl

� �

;l

� 0:

But under a general variation dAl; we have

dSE ¼ �
1

8p

Z

g1=2FlmðdAm;l � dAl;mÞd4x

¼ � 1
4p

Z

g1=2Flm
;m dAld4x;

whence
dSE

dAl
� � 1

4p
g1=2Flm

;m

� � 1
4p
ðg1=2FlmÞ;m

� � 1
4p
ðg1=2FlmÞ;m þ Cl

rmg
1=2Frm

h i

� � 1
4p
ðg1=2FlmÞ;m:

The above differential identity may now be verified directly. Because dSE=dAl is a
vector density, we have

dSE

dAl

� �

;l

� dSE

dAl

� �

;l

� � 1
4p
ðg1=2FlmÞ;ml � 0:

Alternatively,

Flm
;ml �

1
2
ðFlm

;ml � Flm
;lmÞ

¼ 1
2
ðFrmRl

rml þ FlrRm
rmlÞ

¼ 1
2
ðFrmRrm � FlrRrlÞ � 0:

The electromagnetic energy–momentum–stress density is readily computed by
first writing SE in the form

SE � �
1

16p

Z

g1=2glrgmsFlmFrsd
4x;
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and remembering that Flm is metric independent when its indices are downstairs.
Using dglm ¼ �glrgmsdgrs, we find

Tlm
E � 2

dSE

dglm
� 1

4p
g1=2 Fl

rFmr � 1
4

glmFrsF
rs

� �

:

The combined action functional for the electromagnetic and gravitational fields
in the presence of charged matter is given by

S � SG½glm� þ SE½glm;Al� þ SM½glm;Al;U
A�;

where SM is the action functional for the material system and the UA are the matter
dynamical variables. (Here we are treating the electromagnetic field separately
from the material system.) Note that SM is a functional of the glm and the Al as well
as of the UA. In quantum field theory the UA are the components of a complex
tensor (or spinor) field u whose coupling to the electromagnetic field is determined
by the principle of minimal coupling (akin to the strong equivalence principle):
Every ordinary derivative u,l appearing in the matter field Lagrangian when no
electromagnetic field is present, is replaced by the combination u,l - i eAlu,
where e is the unit charge of the matter field quanta (typically, the charge on the
electron). Because ordinary derivatives become covariant derivatives when a
gravitational field is present, this means that in general relativity matter field
derivatives occur only in the combination

Dlu; where Dl ¼
o

oxl
þ Gm

rC
r
ml � ieAl:

Dl may be regarded as a kind of generalization of the covariant derivative. It is
invariant under electromagnetic gauge transformations provided the matter field is
understood as gauge transforming according to the law

u ¼ eienu:

In the non-quantal description of bulk matter, the coupling to the electromag-
netic field is usually described by an explicit coupling term in the matter action
functional SM. For example, the action functional for a point particle bearing a
charge e becomes

SM � �m

Z

ð�_z2Þ1=2dkþ e

Z

Aa _zadk;

where the new second term is the electromagnetic coupling term. It is always
important to check that the coupling term is gauge invariant. For the point particle
we have

dSM � e

Z

dn;a _zadk � e

Z

d
dk

dnðzÞdk � 0;

in which it is assumed that dn has compact support.
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The dynamical equations for the combined gravitational–electromagnetic–
charged matter system are

0 ¼ dS

dglm
� 1

16pG
�g1=2 Rlm � 1

2
glmR

� �

þ 8pGðTlm
E þ Tlm

M Þ
� �

;

0 ¼ dS

dAl
� 1

4p
ð�g1=2Flm

;m þ 4pjlÞ (Maxwell’s equations);

0 ¼ dS

dUA �
dSM

dUA;

where

Tlm
M � 2

dSM

dglm
; jl � dSM

dAl
;

and jl is the charge current density. Because of the dynamical equations them-
selves, we have the following covariant divergence laws:

ðTlm
E þ Tlm

M Þ;m ¼ 0; jl;l ¼ 0:

The former, which assures consistency with the contracted Bianchi identity, has
already been proved (see Chap. 9). The latter, which assures consistency with the
identity F;ml

lm : 0, can be proved analogously. Let dUA be the change (if any)
induced in the UA by an infinitesimal gauge transformation dn: Then because of
the gauge invariance of SM, we have

0 � dSM �
Z

dSM

dAl
dn;ld4xþ dSM

dUAdUA ¼ �
Z

jl;ldnd4x:

The arbitrariness of dn leads at once to j;l
l = 0. If the UA are unaffected by gauge

transformations then the covariant divergence of jl vanishes ibecause dentically
whether the dynamical equations are satisfied or not. The point particle provides an
example of this. In this case we have

jl ¼ e

Z

dl
a _zadk;

and

jl;l ¼ e

Z

dl
a;l _zadk ¼ �e

Z

d;aðx; zÞ_zadk

¼ �e

Z

d
dk

dðx; zÞdk ¼ 0;

the final integral vanishing because the world line of the particle is constrained to
be timelike, and hence z(k) ultimately becomes infinitely remote from any
spacetime point x.
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Because the covariant divergence of a vector density is the same as the ordinary
divergence, the condition j;l

l = 0, unlike ðTlm
E þ Tlm

M Þ;m ¼ 0, is a true conservation
law. The conserved quantity in this case is the total charge Q:

Q ¼
Z

R
jldRl:

In the case of the point particle, we may evaluate this integral by choosing R to be
a hypersurface x0 = constant:

Q ¼ e

Z

R
dRl

Z

dkdl
a _za ¼ e

Z

d3x

Z

dkdðx; zÞ_z0

¼ e

Z

d3x

Z

dz0dðx; zÞ ¼ e:

Problem 39 In the case of the point particle, show that the divergence law

ðTlm
E þ Tlm

M Þ;m ¼ 0;

when combined with Maxwell’s equations g1/2F;m
lm = 4p jl, implies the equations

of motion m€za ¼ eFa
b _zb:

Solution 39 We have

0 ¼ ðTlm
E þ Tlm

M Þ;m

¼ 1
4p

g1=2 Fl
rFmr � 1

4
glmFrsF

rs

� �

þ m

Z

dlm
ab _za _zbds

� �

;m

¼ 1
8p

g1=2ðFl
r;m þ Fl

ml;r þ Fl
rm;ÞFmr þ 1

4p
g1=2Fl

rFmr
;m

þ m

Z

dlm
ab;m _za _zbds

¼ �Fl
r jr � m

Z

dl
a;b _za _zbds

¼ �eFl
m

Z

dm
a _zads� m

Z

_za D
Ds

dl
ads

¼
Z

dl
að�eFa

b _zb þ m€zaÞds;

whence

m€za ¼ eFa
b _zb:
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14.1 Electromagnetic Waves

In studying special solutions of Maxwell’s equations it is convenient to impose the
so-called Lorentz supplementary condition on the vector potential:

Al
;l ¼ 0:

If this condition does not already hold it can be made to hold by carrying out the
gauge transformation

Al ¼ Al þ n;l;

where the gauge parameter n is a solution of the inhomogeneous curved spacetime
wave equation

nl
;l ¼ �Al

;l:

Solutions of this equation can be found with the aid of appropriate biscalar Green’s
functions. From now on we shall assume the gauge transformation already to have
been carried out and drop the bar over the Al.

In this section we shall study solutions of Maxwell’s equations in the absence of
charged matter (SM = 0). When the supplementary condition holds these equa-
tions take the form

0 ¼ �Flm
;m ¼ �Aml

;m þ Alm
;m

¼ Alm
;m � ArRml

rm ¼ Alm
;m � Rl

m Am:

We seek a solution of these equations in the so-called eikonal approximation. This
approximation is based on an expansion of the form

Al ¼ A
0

l þ A
2

l þ � � �
� �

cos /þ A
1

l þ A
3

l þ � � �
� �

sin /:

The solution is assumed to be that of a locally plane monochromatic wave having a
propagation vector kl at any point equal to the gradient of the so-called eikonal
function / at that point:

kl ¼ /;l:

The coefficients A
n

l are assumed to vary slowly compared to /, and their mag-

nitudes are assumed to decrease in such a way that none of the products klA
n

m are

bigger in order of magnitude than the biggest of the derivatives A
n�1

l;m. Moreover,
the components of the curvature tensor are assumed to be of the second order in
smallness compared to the products klkm.
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Substituting the expansion into the supplementary condition and into Maxwell’s
equations and setting terms of like order independently equal to zero, we obtain the
following equations:

�Al
0

kl ¼ 0;

Al
1

kl þ A
0
l
;l ¼ 0;

�A
2
lkl þ A

1
l
;l ¼ 0;

A
3
lkl þ A

2
l
;l ¼ 0;

and so on, together with

�Al
0

k2 ¼ 0;

�Al
1

k2 � 2A
0

l
;mk

m � Al
0

km
;m ¼ 0;

�Al
2

k2 þ 2A
1

l
;mk

m þ Al
1

km
;m þ A

0
l
;m

m � Rl
m Am

0
¼ 0;

�Al
3

k2 � 2A
2

l
;mk

m � Al
2

km
;m þ A

1
l
;m

m � Rl
m Am

1
¼ 0;

and so on. We have immediately

k2 ¼ 0;

and hence,

kmkm;l ¼ 0;

which, together with the solution

kl;m ¼ km;l

that follows from kl being the gradient of a scalar, implies

kl;mk
m ¼ 0:

That is, the lines orthogonal to the wave fronts / = constant are null geodesics.
These lines are the rays of geometrical optics, and we see that light (electro-
magnetic radiation) really does travel with the velocity of light!

If we now define

a2 � A
0

lAl
0
; el � f

0

l; f
n

l � a�1A
n

l;

we then have

e2 ¼ 1; k � e ¼ 0; k � f
n
¼ ð�1Þna�1ða f l

n�1
Þ;l; n� 1;

ða2klÞ;l ¼ 0; 2a;lkl þ akl
;l ¼ 0; el

;mk
m ¼ 0;
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f l
m

n
km ¼ 1

2
ð�1Þn a�1ða f l

n�1
Þm;m � Rl

m f m
n�1

� �

; n� 1:

The eikonal approximation consists in writing

Al � a el cos /;

and in recognizing a as the amplitude and el as the polarization vector of the wave.
The equation ða2klÞ;l ¼ 0 is a conservation law for the wave, and the equation
e;m
l km = 0 says that the wave is linearly polarized with the polarization vector being

transported in a parallel fashion along the null rays orthogonal to the wave fronts.

The coefficient vectors f l
n

represent small corrections to the eikonal approxima-
tion. They may all (including el) be chosen tangent to some initial spacelike
hypersurface, with components satisfying the initial constraints

k � f
n
¼ ð�1Þna�1ða f l

n�1
Þ;l:

Their values elsewhere may then be obtained by integrating each of the equations

for f
n
l
;mk

m (in succession) along the null rays. The integration automatically pre-
serves the constraint equations, as may be verified by the following computation:

0 ¼ ðk � A
n
Þ;mkm � ðk � A

n
Þ;mkm

¼ ð�1Þn A
n�1

l
;lmk

m þ 1
2

k � A
n
km

;m �
1
2
ð�1Þnkl Al

;m
m

n�1
� Rl

m Am
n�1

� �

¼ ð�1Þn A
n�1

l
;mlkm þ ð�1Þn Ar

n�1
Rl

rlmk
m þ 1

2
ð�1Þn A

n�1
l
;lkm

;m

� 1
2
ð�1Þn kl A

n�1
l
;m

� �m

;

þ1
2
ð�1Þnkm

l; A
n�1

l
;m þ

1
2
ð�1ÞnklRl

m Am
n�1

¼ ð�1Þn A
n�1

l
;mk

m

� �

;l

�1
2
ð�1Þn A

n�1
l
;mk

m
;l �

1
2
ð�1ÞnklRl

m Am
n�1

þ 1
2
ð�1Þn A

n�1
l
;lkm

;m �
1
2
ð�1Þn k � A

n�1
� �m

;m

þ1
2
ð�1Þn km;l Al

n�1
� �m

;

¼ �1
2
ð�1Þn Al

n�1
km

;m

� �

;l

�1
2

Al
;m

n�2
m � Rl

m Am
n�2

� �

;l

�1
2
ð�1ÞnklRl

m Am
n�1

þ 1
2
ð�1Þn A

n�1
l
;lkm

;m þ
1
2

Al
;lm

n�2
m þ 1

2
ð�1Þnkm

m;l Al
n�1

¼ �1
2
ð�1Þn Al

n�1
krRm

rml �
1
2

Al
;ml

n�2
m � 1

2
A

n�2
r
;mR

lm
rl �

1
2

A
n�2

l
;rRrm

ml

þ 1
2

Rl
m Am

n�2
� �

;l

�1
2
ð�1ÞnklRl

m Am
n�1
þ 1

2
A

n�2
l
;ml

m þ 1
2

A
n�2

rRl
rlm

� �m

;

¼ 0:
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The coefficients f l
n

in the eikonal expansion for a given wave are not uniquely
determined, for we may always carry out a gauge transformation of the form

Al ¼ Al þ n;l;

where the gauge parameter n satisfies the homogeneous wave equation

nl
;l ¼ 0:

If we write an eikonal expansion for n,

n ¼ aða0þ a
2 þ � � �Þ sin /� aða1 þ a

3þ � � �Þ cos /;

we find that the coefficients a
n

must satisfy

a
0
;lkl ¼ 0; a

n
;lkl ¼ 1

2
ð�1Þna�1 a a

n�1
� �l

;l
; n� 1;

and that the coefficients f
n

l suffer the gauge transformations

el ¼ el þ a
0
kl; f

n

l ¼ f
n

l þ a
n
kl � ð�1Þna�1 a a

n�1
� �

;l
; n� 1:

These transformations of course leave the relations satisfied by the f l
n

unchanged:

e2 ¼ 1; k � e ¼ 0;

k � f
n
� ð�1Þna�1 a f l

n�1
 !

;l

¼ k � f
n
� ð�1Þna�1 a a

n�1
� �

;l
kl � ð�1Þna�1 a f l

n�1
� �

;l

¼ �ð�1Þna�1 a a
n�1

kl � ð�1Þn�1 a a
n�2

� �l

;

� �

;l

¼ �ð�1Þn 2 a
n�1

;lkl � ð�1Þn�1a�1 a a
n�2

� �l

;l

� �

¼ 0;

f
n
l
;mkm � 1

2
ð�1Þn a�1 a f l

n�1
 !m

;m

�Rl
m f m

n�1

2

4

3

5f
n
l
;mk

m þ a
n
kl

� �

;m
km � ð�1Þn a�1 a a

n�1
� �l

;

� �

;m

km

� 1
2
ð�1Þn a�1 a f l

n�1
þ a a

n�1
kl � ð�1Þn�1 a a

n�2
� �l

;

� �m

;m

(

�Rl
m f m

n�1
þ a

n�1
km � ð�1Þn�1a�1 a a

n�2
� �m

;

� ��
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¼ 1
2
ð�1Þna�1 a a

n�1
� �m

;m
kl�1

2
ð�1Þna�1 a a

n�1
� �l

;
km

;m

�ð�1Þna�1 a a
n�1

� �

;m
km

� �l

;

þð�1Þna�1 a a
n�1

� �

;m
kml

;

�1
2
ð�1Þna�1 a a

n�1
� �m

;m
kl�ð�1Þna�1 a a

n�1
� �

;m
klm

;

�1
2
ð�1Þn a

n�1
klm

;m �
1
2

a�1 a a
n�2

� �m

;m

þ1
2
ð�1ÞnRl

m a
n�1

km�ð�1Þn�1a�1 a a
n�2

� �m

;

� �

¼�1
2
ð�1Þna�1 a a

n�1
� �l

;
km

;mþ
1
2
ð�1Þna�1 a a

n�1
km

;m

� �l

;

þ1
2

a�1 a a
n�2

� �ml

;m
�1

2
ð�1Þn a

n�1
klm
m; �

1
2

a�1 a a
n�2

� �ml

;m

�1
2

a�1 a a
n�2

� �

;r
Rrlm

m þ
1
2
ð�1ÞnRl

m a
n�1

km�ð�1Þn�1a�1 a a
n�2

� �m

;

� �

¼ 1
2
ð�1Þn a

n�1
krRml

rmþ
1
2
ð�1ÞnRl

m a
n�1

km¼ 0:

Now suppose the wave sweeps over a test particle of charge e and mass
m. Suppose further that the wave is very weak so that we may treat the disturbance
dna in the particle coordinates, produced by the wave, as an infinitesimal. In the
absence of the wave, the particle follows a geodesic:

D
Dk

�_z2
	 
�1=2

_za
h i

¼ 0:

The equation for dna is therefore

eFa
b _zb ¼ md

D
Dk

�_z2
	 
�1=2

_za
h i

¼ md
D
Dk

�_z2
	 
�1=2

_za
h i

�!
k!s

m€ga � mRa
bcdubucgd;

(see Chap. 5), where ua (¼ _za) is the 4-velocity the particle would have in the
absence of the wave and

ga ¼ Pa
bdzb:

Now the Maxwell field that appears in this equation has the form

Fab ¼ Ab;a � Aa;b

¼ � aðkaeb � kbeaÞ þ � � �
� �

sin /

þ ðaebÞ;a � ðaeaÞ;b þ aðka f
1

b � kb f
1

aÞ þ � � �
� �

cos /:
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It is convenient to use the gauge flexibility and choose the polarization vector so
that it is perpendicular to the undisturbed 4-velocity:

e � u ¼ 0:

If this equation is not already satisfied we have only to carry out a gauge trans-

formation with a gauge parameter n whose coefficient a
0
, in its eikonal expansion,

is given along the world line of the particle by

a
0 ¼ �e � u

k � u:

The equation for ga then becomes

€ga ¼ ea

m
eaðk � uÞ sin /þ Ra

bcdubucgd þ � � � :

If we assume that there is no appreciable gravitational radiation present, so that the
term in the curvature tensor varies slowly compared to sin /; and if we remember
that a, ea, and k�u also vary slowly compared to sin /; then we may write
effectively

€ga ¼ ea

m

D
Ds
ðea cos /Þ ¼ �e

m

D2

Ds2

a ea

k � u sin /

� �

;

which has the solution

ga ¼ �ea

m

ea

k � u sin /:

Along the (undisturbed) world line of the particle, sin / oscillates with angular
frequency

x ¼ �k � u:

The electromagnetic wave is seen to cause the test particle to oscillate with this
same frequency about its undisturbed position. The amplitude of the oscillation is
ea/mx.

Waves of nearly monochromatic electromagnetic radiation need not be linearly
polarized. It is possible to superpose two waves that have the same eikonal
function but are 90� out of phase, obtaining

Al ¼ aIðeIl þ � � �Þ cos /� aIIðeIIl þ � � �Þ sin /:

If aI ¼ aII and the unit vectors eI
l and eII

l are orthogonal, forming a right handed
system with el

III � w�1Plmkm (kl assumed pointing to the future), then this wave is
circularly polarized with a right handed helicity. If aI ¼ �aII; the wave is circu-
larly polarized with a left handed helicity. The motion of a test particle in such a
field is given by
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ga ¼ e

mx
aIe

a
I sin /þ aIIe

a
II cos /

	 


:

14.2 Energy, Momentum, and Angular Momentum
in Electromagnetic Waves

The energy–momentum–stress density in an electromagnetic wave is easily
obtained in the eikonal approximation. For a linearly polarized wave, we have

Flm ¼ �aðklem � kmelÞ sin /;

Fl
rFmr ¼ a2ðkler � krelÞðkmer � kremÞ sin2 /

¼ a2klkm sin2 /;

and

FrsF
rs ¼ 0;

so that

Tlm ¼ g1=2a2

4p
klkm sin2 /:

This approximation rigorously satisfies the divergence law T;m
lm = 0, as may

immediately be verified by using the relations k2 = 0, k;m
lkm = 0 and ða2kmÞ;m ¼ 0:

It is also frequently useful to introduce the mean value of Tlm averaged over a
wavelength:

hTlmi ¼ g1=2a2

8p
klkm:

It too satisfies the divergence law:

hTlmi;m ¼ 0:

In order to discuss angular momentum in the wave, it is necessary to include the
next term in the eikonal expansion of Flm. For simplicity we confine the analysis to
the case of a wave packet in flat spacetime for which the propagation vector is
constant, i.e., kl;m = 0. In canonical coordinates the following equations then hold:

k2 ¼ 0; kl;m ¼ 0; a;lkl ¼ 0;

f
1
l
;mk

m ¼ �1
2

a�1ðaelÞm;m; k � f
1
¼ �a�1ðaelÞ;l;

el
;mk

m ¼ 0; k � e ¼ 0:
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If we specialize to the case of a circularly polarized wave for which the polari-
zation vectors eI

l and eII
l are both orthogonal and constant, we then have

e l
I;II;m ¼ 0; k � eI;II ¼ 0; k � f

1

I;II ¼ �a�1a;lel
I;II;

f
1

l
I;II;mk

m ¼ �1
2

a�1am
;me

l
I;II:

If the helicity of the packet is right handed (aI ¼ aII ¼ a), the electromagnetic field
tensor takes the form

Flm ¼ �a ðkleIm � kmeIlÞ sin /þ ðkleIIm � kmeIIlÞ cos /
� �

þ a;leIm � a;meIl þ a klf
1

Im � kmf
1

Il

� �� �

cos /

� a;leIIm � a;meIIl þ a klf
1

IIm � kmf
1

IIl

� �� �

sin /;

and we have

Fl
rFmr ¼ a2ðkleIr � krel

I Þðkmer
I � krem

I Þ sin2 /

þ a2ðkleIr � krel
I Þðkmer

II � krem
IIÞ sin / cos /

þ a2ðkleIIr � krel
IIÞðkmer

I � krem
I Þ sin / cos /

þ a2ðkleIIr � krel
IIÞðkmer

II � krem
IIÞ cos2 /

� aðkleIr � krel
I Þ am

; e
r
I � ar

; em
I þ a km f

1
r
I � krf

1
m
I

� �� �

sin / cos /

þ aðkleIr � krel
I Þ am

; e
r
II � ar

; em
II þ a km f

1
r
II � kr f

1
m
II

� �� �

sin2 /

� aðkleIIr � krel
IIÞ am

; e
r
I � ar

; em
I þ a km f

1
r
I � kr f

1
m
I

� �� �

cos2 /

þ aðkleIIr � krel
IIÞ am

; e
r
II � ar

; em
II þ a km f

1
r
II � kr f

1
m
II

� �� �

sin / cos /

þ
four more terms like the last four

but with the indices l and m interchanged

¼ a2klkm

þ a �klam
; � kmal

; þ klem
I er

I a;r þ kmel
I er

I a;r

h

� 2klkmðeI � f
1

IÞa� kmel
I er

I a;r � klem
I er

I a;r

þ klam
; þ kmal

; � klem
IIe

r
IIa;r � kmel

IIe
r
IIa;r

þ2klkmðeII � f
1

IIÞaþ kmel
IIe

r
IIa;r þ klem

IIe
r
IIa;r

�

sin / cos /
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þ a �klem
IIe

r
I a;r � kmel

IIe
r
I a;r þ 2klkmðeI � f

1

IIÞaþ kmel
I er

IIa;r þ klem
I er

IIa;r

� �

sin2 /

þ a klem
I e

r
IIa;r þ kmel

I er
IIa;r � 2klkmðeII � f

1

IÞa� kmel
IIe

r
I a;r � klem

IIe
r
I a;r

� �

cos2 /:

In the present case, with constant kl and eI,II
l in flat spacetime, it is possible to

choose f
1
l
I;II so that

eI � f
1

I ¼ eII � f
1

II; eI � f
1

II ¼ eII � f
1

I ¼ 0:

The above expansion then reduces to

Fl
rFmr ¼ a2klkm þ aklðem

I er
II � em

IIe
r
I Þa;r þ akmðel

I er
II � el

IIe
r
I Þa;r:

This yields

FrsF
rs ¼ 0;

and1

Tlm ¼ a2

4p
klkm þ 1

8p
klðem

I e
r
II � em

IIe
r
I Þ þ kmðel

I er
II � el

IIe
r
I Þ

� �

ða2Þ;r: ð14:1Þ

To compute the energy, momentum, and angular momentum, it is convenient to
choose a gauge in which eI

0 = 0 = eII
0 in the coordinate system one is working in.

Then, choosing R to be a hypersurface x0 = constant, we find

Pl ¼
Z

R
TlmdRm

¼ kl
Z

xa2

4p
d3xþ x

8p
ðel

I ei
II � el

IIe
i
IÞ
Z

ða2Þ;id3x

¼ N�hkl;

where x = k0 and

N � 1
4p�h

Z

xa2d3x ¼ 1
4p�h

Z

R
a2kldRl:

1 Note that this energy–momentum–stress density satisfies the conservation law

Tlm
;m ¼

1
8p

klðem
I er

II � em
IIe

r
I Þða2Þ;mr ¼ 0:
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N is the number of coherent photons out of which, in the quantum theory, the
electromagnetic wave is built. This number is conserved in the eikonal approxi-
mation because of the divergence law ða2klÞ;l ¼ 0:

The angular momentum tensor is computed in a similar fashion:

Jlm ¼
Z

R
ðxlTmr � xmTlrÞdRr

¼
Z

xa2

4p
ðxlkm � xmklÞd3x

þ
Z

x
8p

xlðem
I e

i
II � em

IIe
i
IÞ � xmðel

I ei
II � el

IIe
i
IÞ

� �

ða2Þ;id3x

¼ Xl
EPm � Xm

EPl þ N�hðel
I em

II � el
IIe

m
I Þ;

where XE
l is the center of energy:

Xl
E ¼ ðP0Þ�1

Z

xlT00d3x ¼ 1
4pN�h

Z

xlxa2d3x:

Because Pl is a null vector in the present case, it is not possible to pass to a mean
rest frame of the radiation in which to define a spin component of the angular
momentum. We adopt instead an alternative procedure. We define the 4-vector

Kl � 1
2

1elmrsPmJrs;

which is both gauge invariant and independent of the location of the origin of
coordinates. We note that

K � P ¼ 0;

and because det(glm) = - 1,

K2 ¼ �1
4

1elmrs �1elqjkPmJrsP
qJjk

¼ �1
4

dm
qd

r
jd

s
k þ dm

jd
r
kd

s
q þ dm

kd
r
qd

s
j

�

�dm
qd

r
kd

s
j þ dm

kd
r
jd

s
q � dm

jd
r
qd

s
k

�

PmJrsP
qJjk

¼ PlJlrPmJmr ¼ ðP � XEÞ2P2 ¼ 0:

That is, Kl is a null vector orthogonal to Pl. Because Pl is itself a null vector this
implies that Kl is parallel to Pl:

Kl ¼ SPl:

The constant of proportionality S is defined to be the spin angular momentum of
the field. It is easily computed by setting l = 0:
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N�hxS ¼ P0S ¼ K0 ¼ 1
2
eijkPiJjk

¼ N�heijkPieIjeIIk ¼ ðN�hÞ2xeijk k̂ieIjeIIk;

where k̂i ¼ ki=jkj: Assuming that eI; eII, k̂ (in that order) form a right handed
orthonormal system (like the coordinates), we have

S ¼ N�h:

Another way of computing S, and one that gives the rationale for calling it the
spin angular momentum, is to introduce at any instant (x0 = constant) a coordinate
system with origin at the center of energy (XE

i = 0) and then to compute the
angular momentum 3-vector

Ji ¼
1
2
eijkJjk:

It is easy to see that one gets Ji ¼ Sk̂i: Because the center of energy is at the origin,
this angular momentum is pure spin. It is seen to be parallel to the propagation
vector. The magnitude N�h found for S may be interpreted as indicating that the
N photons that make up the wave all have spin angular momentum �h and that all
the spins are pointing in the same direction. When the wave has right handed
(positive) helicity, the spins all point parallel to the propagation vector. When the
wave has left handed (negative) helicity, S is equal to �N�h, and the spins all point
antiparallel to the propagation vector. In a linearly polarized wave, half the pho-

tons have their spins parallel to k̂ and the other half have their spins antiparallel to

k̂; and S is zero. The spins of massless quanta can only be found in the parallel and
antiparallel configurations.
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Chapter 15
Gravitational Waves

Consider a region of spacetime free of matter in which Einstein’s empty space
equations hold:

0 ¼ dSG

dglm
� � 1

16p
g1=2 Rlm � 1

2
glmR

� �

ðG ¼ 1Þ:

Suppose the curvature tensor in this region is separable into two components, a
slowly varying component and a rapidly varying component. Stated more pre-
cisely, suppose there exists a family of coordinate patches in which the compo-
nents of the curvature may be expressed as the sum of two terms, one that is slowly
varying and has magnitude of order 1=R2 and one that varies rapidly over dis-
tances of order k� R: Then we may say that we have a situation in which
gravitational waves of wavelengths *k are propagating in a smooth background
geometry having a curvature characterized by the length R; which may be called a
mean radius of curvature. We may express the separation between background and
waves by writing the full metric tensor, which we shall denote by gtot

lm ; as the sum
of two terms, a tensor glm representing the background geometry and a tensor hlm

representing the waves:

gtot
lm ¼ glm þ hlm:

We have seen that in the completely general theory such a separation has no
physical meaning. Even when spacetime is asymptotically flat, it generally has
only a global meaning. Here, however, because of the existence of the special
coordinate systems (special family of patches) in which the curvature separates
into two parts, we shall find that the corresponding separation of the metric has
quasi-local physical meaning. We shall consider two kinds of coordinate trans-
formations. Under the first, both glm and hlm transform like tensors. But in order to
remain within the family of special coordinate systems, the transformation coef-
ficients oxl=oxm must be smooth functions varying appreciably only over distances

B. DeWitt, Bryce DeWitt’s Lectures on Gravitation,
Edited by Steven M. Christensen, Lecture Notes in Physics, 826,
DOI: 10.1007/978-3-540-36911-0_15, � Springer-Verlag Berlin Heidelberg 2011
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much greater than k. Moreover, they must nowhere correspond to a boost1 that
Doppler shifts the wavelengths of any of the gravitational waves to magnitudes
large compared to k.

Under the second kind of coordinate transformation, the transformation coef-
ficients oxl=oxm may vary rapidly, but in this case the glm are held fixed and the full
burden of the transformation is placed on hlm. In order to remain within the family
of special coordinate systems, transformations of this kind, which may be called
gauge transformations, must involve displacement of the coordinate mesh through
distances of order much smaller than k. This will prove to be the basic reason why
it makes good physical sense to speak of the distribution of energy, momentum,
and stress carried by gravitational waves, and to assign to each contribution to the
total energy, momentum, and stress a location in a region having dimensions d of
the order of a few k.

In order to simplify the problem of analyzing gravitational waves, we shall
assume that they are weak enough so that we may neglect their interaction with
each other and apply the superposition principle as a valid approximation.
Explicitly, we assume that in any one of the special coordinate systems that is
locally canonical in the background geometry, we have

hlm� a; where a� 1:

It is then appropriate to expand Einstein’s equations about the background
geometry:

0 ¼ dSG½gtot�
dgtot

lm
¼ dSG½g�

dglm
þ d

dSG½g�
dglm

þ 1
2
d2 dSG½g�

dglm
þ � � �

� �

dgab¼hab

;

where

d
dSG

dglm
�
Z

d2SG

dglmdga0b0
dga0b0d

4x0;

d2 dSG

dglm
�
Z

d4x0
Z

d4x00
d3SG

dglmdga0b0dgc00d00
dga0b0dgc00d00 ;

and so on.
Our first (and most tedious) task is to compute these first and second variations

of the Einstein equations. The first variation is readily calculated with the aid of
the results assembled in Chap. 8. We find

1 We shall see that gravitational waves propagate with the speed of light.
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16pd
dSG

dglm
¼�d g1=2 glrgms�1

2
glmgrs

� �

Rrs

� �

¼g1=2 �1
2

Rlm�1
2

glmR

� �

gabþglaRbmþgmaRlb�1
2

glagbmR�1
2

glmRab

� �

ab

þ 1
2

g1=2 �glagmbgcdðdgac;bdþdgbc;ad�dgab;cd�dgcd;abÞ
�

þglmgabgcdðdgac;bd�dgab;cdÞ
�

:

Before beginning the computation of the second variation, let us make more
precise the nature of the splitting of the total metric in glm and hlm, and the kind of
approximation scheme we are envisaging. We shall require that

gtot
lm

D E

¼ glm; hhlmi ¼ 0;

where the angle brackets denote the following averaging process. Choose one of
the special coordinate systems. Make it as canonical as possible (relative to the
background geometry) in as big a region as possible around the point x at which
the average is desired. The domain of effective canonicity will have dimensions
much larger than k, for significant departures from canonicity will occur only over
distances of order R: Let f(x - x0) be a smooth non-negative function of the
coordinate differences xl - x

0l, which vanishes for |xl - x
0l| [ d, where d is of

the order of a few k, and that satisfies the normalization condition
Z

f ðxÞd4x ¼ 1

in these coordinates. Then for any tensor field /, we define its average at x by

h/ðxÞi ¼
Z

f ðx� x0Þ/ðx0Þd4x0:

Once having defined the average in this nearly canonical coordinate system, we
then treat the average as a tensor of the same type, in transforming to any other
coordinate system.

As covariant derivatives become ordinary derivatives in the domain of effective
canonicity (about x) of the above coordinate system, we have

h/ðxÞi;l ¼ h/ðxÞi;l ¼
Z

o

oxl
f ðx� x0Þ/ðx0Þd4x0 ¼ �

Z

o

ox0l
f ðx� x0Þ

� �

/ðx0Þd4x0

¼
Z

f ðx� x0Þ/;l0 ðx0Þd4x0 ¼
Z

f ðx� x0Þ/;l0 ðx0Þd4x0

¼ h/;lðxÞi þ Oðd=R2Þh/ðxÞi;

where covariant differentiation is to be understood in this section as defined with
the background metric. We also have of=oxl� f=d and hence
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h/;li�
1
d
h/i:

This has the consequence that

h/;lwi� � h/w;li þ 0
1
d
h/wi

� �

;

where / and w are any two tensor fields. Finally, we note that

g1=2
tot /

D E

¼ g1=2h/i; gtot
lm/

D E

¼ glmh/i;

Rtot
lmrs/

D E

¼ Rlmrsh/i;

and so on.
To discuss the approximation scheme of this section, it will be convenient to

employ the condensed notation introduced in Chap. 12. For glm
tot, glm, and hlm, we

shall write ui
tot, ui, and /i, respectively:

ui
tot ¼ ui þ /i; ui

tot

� 	

¼ ui; h/ii ¼ 0:

Einstein’s equations take the form

0 ¼ SG;i½uþ /� ¼ SG;i þ SG;ij/
j þ 1

2
SG;ijk/

j/k þ 1
3!

SG;ijkl/
j/k/l þ � � � ;

in which the functional derivative coefficients in the expansion are to be under-
stood as evaluated with the background metric. The term SG,ij/

j is just the first
variation that we computed in present chapter, evaluated with dgab ¼ hab: Using
the averaging rules obtained above, one readily sees that

hSG;ij/
ji ¼ SG;ijh/ ji ¼ 0:

Therefore, performing the averaging operation on Einstein’s equations, we find

SG;i ¼ �
1
2
hSG;ijk/

j/ki � 1
3!
hSG;ijkl/

j/k/li þ � � � :

The first term on the right-hand side of this equation is the average of the second
variation. We shall see currently that the second variation contains terms of the
form hrs;

l h;
rsm, hrs h;

rslm, etc. Hence this term is of the order a2=k2. The next term is
of order a3=k2, and so on.

Subtracting Einstein’s equation from its average, we get

SG;ij/
j ¼ � 1

2
SG;ijk/

j/k � hSG;ijk/
j/ki


 �

� 1
3!

SG;ijkl/
j/k/l � hSG;ijkl/

j/k/li

 �

� � � � :
ð15:1Þ
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The first term on the right of this equation is of order a2/k2, the second is of order
a3/k2, and so on. These terms describe the interaction of the gravitational waves
with each other. Our present approximation, based on a�1, is to neglect these
terms and write simply the homogeneous equation

SG;ij/
j ¼ 0:

This equation is derivable from an action functional of the form

SGW½u;/� ¼
1
2

SG;ij½u�/i/ j;

and it describes the gravitational waves as freely propagating in the background
geometry without acting on each other. The waves do act on the background
geometry, however, through the equation for SG, i[/]. In the same spirit of
approximation, we shall keep only the first term on the right of this equation. It
then may be written in the form

SG;i ¼ �
1
2

TGW
i

� 	

; ð15:2Þ

where Ti
GW is the energy–momentum–stress density of the waves:

TGW
i ¼ 2

dSGW

dui
¼ SG;ijk/

j/k: ð15:3Þ

Notice that it is only the average of this density that serves as a source for the
background field.

It may not be the only source. All we know is that SG,i, or more explicitly

g1=2 Rlm � 1
2

glmR

� �

;

is of order a2=k2 in the region of interest. The full Riemann tensor, which is of
order 1=R2 in magnitude, will register the effect of any sources located in other
regions. Hence we can only say that

a2

k2.
1

R2 :

Written in the form

a.
k
R � 1;

the inequality is, of course, compatible with our assumption about the smallness
of a:

Let us now return to the expression for the first variation computed in present
chapter. With dgab ¼ hab the terms involving the Ricci tensor in this expression
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are of order a3=k2. These are a factor of a smaller than terms we have already
thrown away on the right-hand side of (15.1). Therefore, they may be completely
ignored, and we find for Eq. 8.3) satisfied by the gravitational waves (see Chap. 8)

hr
lm;r þ h;lm � hr

l;mr � hr
m;lr þ glmðhrs

;rs � hr
;rÞ ¼ 0; ð15:4Þ

where

h ¼ hl
l;

indices on the hlm being raised and lowered by means of the background metric.
Multiplying this equation by glm, we find

hlm
;lm � hl

;l ¼ 0; ð15:5Þ

which allows the simplification

hr
lm;r þ h;lm � hr

l;mr � hr
m;lr ¼ 0:

When we vary the Ricci tensor terms appearing in the first variation, in the process
of computing the second variation, we obtain terms that, by virtue of the equations
for ui and /i, are of order a3=k2 and a4=k2 in magnitude. But the second variation
itself is of order a2=k2, and hence these terms may be thrown away. Most of the
terms that must be retained come from variations like dðdgab;cdÞ. This is readily
computed to be

dðdgab;cdÞ ¼ d½ðdgab;c � Ce
acdgeb � Ce

bcdgaeÞ;d � Cn
adðdgnb;c � Ce

ncdgeb � Ce
bcdgneÞ

� Cn
bdðdgan;c � Ce

acdgen � Ce
ncdgaeÞ � Cn

cdðdgab;n � Ce
andgeb

� Ce
bndgaeÞ�

¼ ð�dCe
acdgeb � dCe

bcdgaeÞ;d � dCn
addgnb;c � dCn

bddgan;c � dCn
cddgab;n:

Omitting terms that are of order a3=k2 by virtue of the gravitational wave equation,
we now find

Tlm
GW ¼ d2 dSG

dglm

� �

ab¼hab

¼ 1
16p

g1=2 1
2

hcdðhlm
c;md þ hml

c;d � hlm
;cd � hlm

cd;Þ
�

þ 1
4

glagmbgcd ðhe
a;b þ he

b;a � he
ab;Þhec þ ðhe

c;b þ he
b;c � he

cb;Þhea

h

þ ðhe
b;a þ he

a;b � he
ba;Þhec þ ðhe

c;a þ he
a;c � he

ca;Þheb

�ðhe
a;c þ he

c;a � he
ac;Þheb � ðhe

eb;c þ he
c;b � he

bc;Þhea

i

;d

þ 1
4

glagmbgcd �ðhe
c;a þ he

a;c � he
ca;Þhed � ðhe

d;a þ he
a;d � he

da;Þhec

h i

;b

� 1
4

glmgabgcd ðhe
a;b þ he

b;a � he
ab;Þhec þ ðhe

c;b þ he
b;c � he

cb;Þhea

h
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�ðhe
a;c þ he

c;a � he
ac;Þheb � ðhe

b;c þ he
c;b � he

bc;Þhea

i

;d

þ 1
4

glagmbgcd ðhe
a;d þ he

d;a � he
ad;Þhec;bþ ðhe

c;d þ he
d;c � he

cd;Þhae;b

h

þ ðhe
b;d þ he

d;b � he
bd;Þhac;e þ ðhe

b;d þ he
d;b � he

bd;Þhec;a þ ðhe
c;d þ he

d;c � he
cd;Þhbe;a

þ ðhe
a;d þ he

d;a � he
ad;Þhbc;e � ðhe

a;d þ he
d;a � he

ad;Þheb;c � ðhe
b;d þ he

d;b � he
bd;Þhae;c

� ðhe
c;d þ he

d;c � he
cd;Þhab;e � ðhe

c;b þ he
b;c � he

cb;Þhed;a � ðhe
d;b þ he

b;d � he
db;Þhce;a

� ðhe
a;b þ he

b;a � he
ab;Þhcd;e

i

� 1
4

glmgabgcd ðhe
a;d þ he

d;a � he
ad;Þhec;b

h

þ ðhe
c;d þ he

d;c � he
cd;Þhae;b þ ðhe

b;d þ he
d;b � he

bd;Þhac;e � ðhe
a;d þ he

d;a � he
ad;Þheb;c

� ðhe
b;d þ he

d;b � he
bd;Þhae;c � ðhe

c;d þ he
d;c � he

cd;Þhab;e

�


¼ 1
16p

g1=2 hrshlm
r;s þ hrshml

r;s � hrshlm
;rs � hrshlm

rs;

h

� glm 1
2

hrshq
rq;s �

1
4

hrsh;rs �
1
4

hrshq
rs;q

� �

þ hlm
r; h

rs
;s þ hml

r; h
rs
;s � hlm

;r hrs
;s

� 1
2

hrsl
; hm

rs; �
1
2

hlrm
; h;r �

1
2

hmrl
; h;r þ hlrs

; hm
s;r � hlrs

; hm
r;s þ

1
2

hlmr
; h;r

� glm hs
rs;h

rq
;q � hrs

;s h;r þ
1
2

hrsq
; hrq;s �

1
4

hrsq
; hrs;q þ

1
4

h;rhr
;

� ��

:

In the present approximation (which regard the gravitational waves as propa-
gating without interacting with each other), this energy–momentum–stress density
satisfies the usual divergence law

TGW
lm
;m
¼ 0:

The proof of this law is very tedious if one attempts to work directly with the
tensor components hlm, but it becomes very easy if one uses the compact notation.
From the wave equation SG,ij/

j = 0 and the identity

Ui
aSG;ijk � �SG;ikU

i
a;j � SG;jiU

i
a;k;

which follows from functionally differentiating the contracted Bianchi identity
(SG,iU

i
a: 0) twice, we get

TGW
i Ui

a � Ui
aSG;ijk/

j/k

� � SG;ikU
i
a;j þ SG;jiU

i
a;k

� �

/ j/k ¼ 0:

Because Ua
i is basically just a differential operator, we have also

hTGW
i iUi

a ¼ hTGW
i Ui

ai ¼ 0;
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or, in tensor notation,
hTlm

GWi;m ¼ 0;

which establishes the consistency of the equation

SG;i ¼ �
1
2
hTGW

i i

with the contracted Bianchi identity.
Although TGW

lm satisfies the divergence law, it is not gauge invariant, i.e., it is
not invariant under the class of coordinate transformations discussed, in which the
whole burden of transformation is placed on hlm. Its average, however, is nearly
gauge invariant, and it is of interest to examine semi-quantitatively just how
nearly. Let the coordinate transformation be expressed in the form

xl ¼ xl þ nl;

the coordinates xl belonging, of course, to the special class. Then, in order that the
coordinates xl also be members of the special class, the nl must be no bigger than
ak and their first derivatives must be no bigger than a. The gauge transformation
law for hlm then takes the formthe coordinates xl belonging, of course, to the
special class. Then, in order that the coordinates xl also be members of the special
class, the nl must be no bigger than ak and their first derivatives must be no bigger
than a. The gauge transformation law for hlm then takes the form

hlm ¼ hlm þ Dhlm; Dhlm ¼ �nl;m � nm;l þ Oða2Þ;

or, in the compact notation,
D/i ¼ Ui

a½u�n
a þ Oða2Þ:

Under this transformation, Ti
GW suffers the change

DTGW
i ¼ SG;ijkð2/ jD/k þ D/ jD/kÞ
¼ �ðSG;kjU

k
a;i þ SG;ikU

k
a;jÞn

að2/ j þ D/ jÞ þ 0ða3=k2Þ
¼ �SG;ikU

k
a;jn

að2/ j þ D/ jÞ þ SG;jU
j
b;kn

bUk
a;in

a þ 0ða3=k2Þ:

The second term in the final expression is of order a4=k2 and may be completely
neglected. The first term, on the other hand, is of the same order as Ti

GW itself,
namely a2=k2. Therefore, dropping all higher order terms we have effectively

DTGW
i ¼ �SG;ikU

k
a;jn

að2/ j þ D/ jÞ;

which shows that Ti
GW is not at all gauge invariant. The expression on the right-

hand side of this last equation, however, involves the second functional deriv-
ative SG,ij, which is effectively a second-order diffferential operator. Therefore,
making use of the averaging rules obtained, we find for the average of DTGW

i ,

hDTGW
i i ¼ �SG;ikhUk

a;jn
að2/ j þ D/ jÞi� 1

d2
hUk

a;jn
að2/ j þ D/ jÞi

¼ O
a2

d2

� �

� k2

d2
hTGW

i i:
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We see that the change in hTGW
i i caused by a gauge transformation is smaller than

hTi
GW i itself by the factor (k/d)2. It is this result that permits us to regard the

energy and momentum of a gravitational wave as localized within a region of size
d (by the averaging process). The error we make in doing this decreases inversely
as d2 with increasing d.

The approximate gauge invariance of hTi
GW i (or hTGW

lm i) allows us to make a
special choice of gauge.We begin by carrying out a gauge transformation for
which the gauge parameter xil satisfies the differential equation

ðnlm
; � nml

; Þ;m ¼ hlm
;m � hl

; :

Because of the wave equation h;lm
lm - h;l

ll = 0 [see (15.5)], both the left and right-
hand sides of this equation have vanishing covariant divergence, and hence the
equation is consistent. From its analogy to Maxwell’s equation, however, we know
that its solution is not unique. If nl is a solution, then so is

n
l ¼ nl þ Kl

; ;

for any K. We may get a particular solution by imposing the Lorentz condition
n;l

l = 0 on nl. Actually, this is not the most convenient condition for present
purposes. We shall choose instead

nl
;l ¼

1
2

h:

If this condition does not already hold, we can impose it by carrying out the

transformation n
l ¼ nl þ Kl

; with K chosen to be a solution of the inhomogeneous
wave equation

Kl
;l ¼

1
2

h� nl
;l:

With nl thus chosen,2 we find

h ¼ h� 2nl
;l ¼ 0

and

h
lm
;m ¼ hlm

;m � nlm
;m � nml

;m

¼ hlm
;m � nlm

;m � nml
;m � hl

; þ 2nml
;m

¼ hlm
;m � hl

; � ðn
lm
; � nml

; Þ;m þ 2nrRml
rm

¼ 0;

2 The resulting nl will be of order ak, as required, if hlm is of order a.
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to order a=k. From now on we assume this gauge transformation already to have
been carried out and drop the bars. Both TGW

lm and the wave equation then take on
considerably simpler forms. We find

0 ¼ hr
lm;r � hr

s Rs
lmr � hs

lRr
smr � hr

s Rs
mlr � hs

mR
r
slr ¼ hr

lm;r þ 2Rrs
lmhrs;

to order a=k2, and

Tlm
GW ¼

1
16p

g1=2 hrs hlm
r;s þ hml

r;s � hlm
;rs � hlm

rs;

� �h

� 1
2

hrsl
; hm

rs; þ hlrs
; hm

s;r � hlrs
; hm

r;s

þ glm 1
4

hrsq
; hrs;q �

1
2

hrsq
; hrq;s

� ��

;

ð15:6Þ

to order a2=k2. In obtaining the latter expression we have also dropped terms that
are of order a3=k2 by virtue of the wave equation. In the wave equation itself, we
have dropped the terms in the Ricci tensor (of order a3=k2) but have retained the
term in the Riemann tensor (of order a=R2) even though this term is small
compared to the remaining term (of order a=k2). The reason for doing this is that
the resulting equation is rigorous in the limit of a becoming infinitesimal (and hlm

satisfying h;m
lm = 0, h = 0) independently of the relative magnitudes of k and R.

15.1 Eikonal Approximation

The gravitational wave equation, like the electromagnetic wave equation, may be
solved in the eikonal approximation. To obtain a locally plane monochromatic
wave we make the Ansatz

hlm ¼ ðh
0

lm þ h
2

lm þ � � �Þ cos /þ ðh
1

lm þ h
3

lm þ � � �Þ sin /;

and then insert it into the supplementary conditions h;m
lm = 0, h = 0, and into the

wave equation, making assumptions about the coefficients h
n

lm analogous to those

made about the coefficients A
n

l in Chap. 14. We find

�h
0

lmk
m ¼ 0; h

n
l
l ¼ 0; 8n;

h
1

lmk
m þ h

0
m
lm; ¼ 0;

�h
2

lmk
m þ h

1
m
lm; ¼ 0;
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h
3

lmk
m þ h

2
m
lm; ¼ 0;

and so on, and

�h
0

lmk
2 ¼ 0;

�h
1

lmk
2 � 2h

0

lm;rkr � h
0

lmk
r
;r ¼ 0;

�h
2

lmk
2 þ 2h

1

lm;rkr þ h
1

lmk
r
;r þ h

0
r
lm;r þ 2Rrs

lmh
0

rs ¼ 0;

�h
3

lmk
2 � 2h

2

lm;rkr � h
2

lmk
r
;r þ h

1
r
lm;r þ 2Rrs

lmh
1

rs ¼ 0;

and so on, where, as before,

kl ¼ /;l:

Again we have

k2 ¼ 0; kmkm;l ¼ 0; kl;m ¼ km;l; kl;mk
m ¼ 0: ð15:7Þ

Defining

a2 � 1
2

h
0

lmh
0
lm; elm � f

0

lm; f
n

lm � a�1h
n

lm;

we have

1
2

elme
lm ¼ 1; el

l ¼ 0; f
n
l
l ¼ 0; 8n;

elmk
m ¼ 0; f

n

lmk
m ¼ ð�1Þna�1 a f

n�1

lm

� �m

;

; n� 1;

ða2klÞ;l ¼ 0; 2a;lkl þ akl
;l ¼ 0; elm;rkr ¼ 0; ð15:8Þ

f
n

lm;rkr ¼ 1
2
ð�1Þn a�1 a f

n�1

lm

� �r

;r

þ2Rrs
lm f

n�1

rs

" #

; n� 1:

elm is the polarization tensor of the wave. It is seen to be propagated in a parallel
fashion along the null geodesics that constitute the rays orthogonal to the wave
fronts. Consistency of the two equations involving kl satisfied by the coefficients

f
n

lm is verified by the following computation in which the Ricci tensor is, as usual,
treated as vanishing:
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0 ¼ h
n

lmk
m

� �

;r

kr � h
n

lmk
m

� �

;r

kr

¼ ð�1Þn h
n�1

m
lm;rkr þ 1

2
h
n

lmk
mkr

;r �
1
2
ð�1Þnkm h

n�1
r
lm;r þ 2Rrs

lm h
n�1

rs

� �

¼ ð�1Þn h
n�1

m
lm;rkr þ ð�1Þn h

n�1

smR
sm
lrkr þ ð�1Þn h

n�1

lsR
sm
mrkr þ 1

2
ð�1Þn h

n�1
m
lm;k

r
;r

� 1
2
ð�1Þn km h

n�1

lm;r

� �r

;

þ 1
2
ð�1Þnkmr

; h
n�1

lm;r � ð�1ÞnkmRrs
lm h

n�1

rs

¼ ð�1Þn h
n�1

lm;rkr

� �m

;

� 1
2
ð�1Þn h

n�1

lm;rkrm
; þ

1
2
ð�1Þn h

n�1
m
lm;k

r
;r

� 1
2
ð�1Þn km h

n�1

lm

� �r

;r

þ 1
2
ð�1Þn km

;r h
n�1

lm

� �r

;

¼ � 1
2
ð�1Þn h

n�1

lmk
r
;r

� �m

;

� 1
2

h
n�2

r
lm;r þ 2Rrs

lm h
n�2

rs

� �m

;

þ 1
2
ð�1Þn h

n�1
m
lm;k

r
;r

þ 1
2

h
n�2

mrr
lm;r þ

1
2
ð�1Þnkmr

r; h
n�1

lm

¼ � 1
2
ð�1ÞnksR

smr
r h

n�1

lm �
1
2

h
n�2

mr
lm;r �

1
2

h
n�2

sm;rRsrm
l �

1
2

h
n�2

ls;rRsrm
m �

1
2

h
n�2

lm;sR
srm
r

� Rrsm
lm; h

n�2

rs � Rrs
lm h

n�2
m
rs; þ

1
2

h
n�2

mr
lm;r þ

1
2

h
n�2

smR
sm
lr þ h

n�2

lsR
sm
mr

� �r

;

¼ 0:

The coefficients f
n

lm in the eikonal expansion for a given wave are not uniquely
determined, for we may always carry out a gauge transformation

hlm ¼ hlm � nl;m � nm;l;

where the gauge parameter nl satisfies the homogeneous wave equation

nm
l;m ¼ 0;

as well as the supplementary condition

nl
;l ¼ 0;

for such gauge transformations leave the conditions h;m
lm = 0 and h = 0 intact. If

we write an eikonal expansion for nl,

nl ¼ a a
0
l þ a

2
l þ � � �

� �

sin /� a a
1
l þ a

3
l þ � � �

� �

cos /;

we find that the coefficients a
n
l must satisfy

k � a0 ¼ 0; k � an ¼ ð�1Þna�1 a a
n�1l

� �

;l
; n� 1;
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a
0
l;mk

m ¼ 0; a
n
l;mk

m ¼ 1
2
ð�1Þna�1 a a

n�1
l

� �m

;m
; n� 1;

and that the coefficients f
n

lm suffer the gauge transformations

elm ¼ elm � a
0
lkm � a

0
mkl;

f
n

lm ¼ f
n

lm � a
n
lkm � a

n
mkl þ ð�1Þna�1 a a

n�1
l

� �

;m
þ a a

n�1
m

� �

;l

� �

:

These transformations of course leave the relations satisfied by the f
n

lm unchanged:

1
2

elme
lm ¼ 1

2
elme

lm � 2elma
0lkm þ a

02k2 þ ða0 � kÞ2 ¼ 1;

el
l ¼ el

l � 2a
0 � k ¼ 0;

f
n
l
l ¼ f

n
l
l � 2a

n � k þ 2ð�1Þna�1 a a
n�1

l

� �l

;
¼ 0;

elmk
m ¼ elmk

m � a
0
lk2 � kl a

0 � k
� �

¼ 0;

f
n

lmk
m � ð�1Þna�1 a f

n�1

lm

 !m

;

¼ f
n

lmk
m � a

n
lk2 � kl a

n � k
� �

þ ð�1Þna�1 a a
n�1

l

� �

;m
þ a a

n�1
m

� �

;l

� �

km

� ð�1Þna�1 a f
n�1

lm � a a
n�1

lkm � a a
n�1

mkl þ ð�1Þn�1 a a
n�2

l

� �

;m
þ a a

n�2
m

� �

;l

� �� 
m

;

¼ a
n�2

rRrm
ml ¼ 0;

elm;rkr ¼ ðelm � a
0
lkm � a

0
mklÞ;rkr ¼ 0;

f
n

lm;rkr � 1
2
ð�1Þn a�1 a f

n�1

lm

 !r

;r

þ2Rrs
lm f

n�1

rs

2

4

3

5

¼ f
n

lm;rkr � a
n
lkm þ a

n
mkl

� �

;r
kr þ ð�1Þn a�1 a a

n�1
l

� �

;m
þ a a

n�1
m

� �

;l

� �� 


;r

kr

� 1
2
ð�1Þna�1 a f

n�1

lm

� �r

;r

þ 1
2
ð�1Þna�1 a a

n�1
m þ a

n�1
mkl

� �h ir

;r
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þ 1
2

a�1 a a
n�2

l

� �

;m
þ a a

n�2
m

� �

;l

� �r

;r

�ð�1ÞnRrs
lm f

n�1

rs

þð�1ÞnRrs
lm a

n�1
s þ a

n�1
skr

� �

þRrs
lma
�1 a a

n�2
r

� �

;s
þ a a

n�2
s

� �

;r

� �

¼ 1
2
ð�1Þna�1 a a

n�1
l

� �

;m
þ a a

n�1
m

� �

;l

� �

kr
;rþð�1Þna�1 a a

n�1
l

� �

;rm
kr

þð�1Þn a
n�1

sR
s
lmrkrþð�1Þna�1 a a

n�1
m

� �

;rl
krþð�1Þna�1 a

n�1
sR

s
mlrkr

þð�1Þna�1 a a
n�1

l

� �

;r
kr
m;þð�1Þna�1 a a

n�1
m

� �

;r
kr
l;þ

1
2
ð�1Þn a

n�1
lkr

m;r

þ 1
2
ð�1Þn a

n�1
mk

r
l;rþ

1
2

a�1 a a
n�2

l

� �

;m
þ a a

n�2
m

� �

;l

� �r

;r

þð�1ÞnRrs
lm a

n�1
s þ a

n�1
skr

� �

þRrs
lma
�1 a a

n�2
r

� �

;s
þ a a

n�2
s

� �

;r

� �

¼ 1
2
ð�1Þna�1 a a

n�1
l

� �

;m
þ a a

n�1
m

� �

;l

� �

kr
;r

� 1
2
ð�1Þna�1 a a

n�1
lkr

;r

� �

;m
�1

2
a�1 a a

n�2
l

� �r

;rm
�1

2
ð�1Þna�1 a a

n�1
mk

r
;r

� �

;l

� 1
2

a�1 a a
n�2

m

� �r

;rl
þ1

2
ð�1Þn a

n�1
lkr

m;rþ
1
2
ð�1Þn a

n�1
mk

r
l;r

þ 1
2

a�1 a a
n�2

l

� �

;m
þ a a

n�2
m

� �

;l

� �r

;r

þRrs
lma
�1 a a

n�2
r

� �

;s
þ a a

n�2
s

� �

;r

� �

¼�1
2
ð�1Þn a

n�1
lksRr

srm�
1
2
ð�1Þn a

n�1
mksrlr� 1

2
a�1 a a

n�2
s

� �

;r
Rsr

lm

� 1
2

a�1 a a
n�1

l

� �

;s
Rsr

rmþ
1
2

a�1 a a
n�2

slmr
� �r

;
�1

2
a�1 a a

n�2
s

� �

;r
Rsr

ml

� 1
2

a�1 a a
n�1

m

� �

;s
Rsr

rlþ
1
2

a�1 a a
n�2

smlr
� �r

;
þRrs

lma
�1 a a

n�2
r

� �

;s
þ a a

n�2
s

� �

;r

� �

¼ 0:

Now suppose the wave sweeps over a pair of test particles initially at rest relative to
one another and separated by a small interval ga (� k) satisfying g�u = 0, where
u is the 4-velocity of either of the particles. Let us also suppose that 1=R2 � a=k2,
so that the contribution of the wave to the total Riemannian tensor is much greater
than that of the background geometry. [Note that this implies a2

.k2=R2 � a (see
present chapter), which is consistent with a� 1.] Then the wave dominates the
equation of geodesic deviation [see (5.3) in Chap. 5] which governs the behavior of
ga. Using the expression (8.2) for dRs

rlm given in Chap. 8, we find3

3 The quantity in the parentheses in this equation is gauge invariant to order a=k2. The ua are
4-velocities normalized to unity relative to glm

tot.
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D2ga

Ds2
tot

¼ � 1
2
ðha

c;bd þ ha
bd;c � ha

d;bc � ha
bc;d þ Rea

cdheb � Re
bcdha

e Þubucgd;

where D/Dstot denotes covariant proper time differentiation based on glm
tot. Keeping

only the dominant term of the eikonal expansion, i.e.,

hab ¼ aeab cos /; hab;cd ¼ �aeabkckd cos /;

and dropping the terms in the background Riemann tensor (of order a=R2), we
convert this equation to

D2ga

Ds2
tot

¼ 1
2

a ea
ckbkd þ ebdkakc � ea

dkbkc � ebck
akd

� �

ubucgd cos /:

A further simplification is achieved by carrying out a gauge transformation with a

gauge parameter of the form described on p. 189, whose coefficient a
0
l in its

eikonal expression is given, along the world line of the test particle pair,4 by

a
0
l ¼ ðk � uÞ�1elmu

m � 1
2
ðk � uÞ�2klumuremr:

The new polarization tensor then becomes

elm ¼ elm � ðk � uÞ�1klemrur � ðk � uÞ�1kmelrur þ ðk � uÞ�2klkmu
rusers;

and satisfies

el
l ¼ 0;

1
2

elme
lm ¼ 1;

elmk
m ¼ 0; elmu

m ¼ 0:

We shall assume this transformation already to have been carried out and drop the
bar. The equation of geodesic deviation then reduces to

D2ga

Ds2
tot

¼ � 1
2

aea
bg

bðk � uÞ2 cos /:

In order to integrate this equation we introduce a local rest frame for the test
particle pair, which is Fermi–Walker transported, relative to the total metric glm

tot

along the world line of the pair. Using parentheses around indices to denote
components relative to the local frame, we have

4 The coefficient a
0
l generally cannot be chosen in this way throughout all of spacetime unless

the background geometry is flat.
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d2gðaÞ

ds2
tot

¼ � 1
2

aeðaÞðbÞg
ðbÞk2

ð0Þ cos /;

which may be rewritten effectively in the form

d2gðaÞ

ds2
tot

¼ 1
2

d2

ds2
tot

aeðaÞðbÞg
ðbÞ cos /

h i

;

because the proper time derivatives of a; eðaÞðbÞ; g
ðbÞ , and k(0) are small compared to

k(0) a, k(0) e(b)
(a), k(0)g

(b), and k(0)
2 , respectively. The condition a� 1 now allows us

to write the following solution:

gðaÞðstotÞ ¼ dðaÞðbÞ þ
1
2

aeðaÞðbÞ cos /

� �

gðbÞð0Þ:

The motion of the test particle pair provides a simple characterization of the
polarization of a gravitational wave. Let us for simplicity drop the parentheses on
the indices above and replace stot by t, the local time. Then the motion in the local
frame is given by the formula

giðtÞ ¼ dij þ
1
2

aeij cos xt

� �

gjð0Þ; x ¼ �kð0Þ:

The temporal components of the polarization tensor eab vanish in this frame so that
it becomes effectively a 3-tensor eij. In fact, if the 3-axis is chosen in the direction

of k̂ð¼ k=xÞ; then it becomes effectively a 2-tensor because of the condition

eijk̂j ¼ 0:

The remaining conditions

eii ¼ 0;
1
2

eijeij ¼ 1

tell us, furthermore, that the 1-axis and 2-axis may be rotated into a position for
which eij takes the form

ðeijÞ ¼
1 0 0

0 �1 0

0 0 0

0

B

@

1

C

A

:

The relative motion of the two particles is seen to be at right angles to the direction
of propagation of the wave. Thus gravitational waves, like electromagnetic waves,
are transverse waves, i.e., their dominant action on test bodies is transverse to the
propagation direction. The relative motion of the test particles also depends on the
orientation of the vector gi. The effect of the relative orientation is best displayed
by replacing the pair of particles by a ring of particles forming, in the absence of
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the wave, a circle in the (1,2) plane. In the presence of the wave, the circle suffers
the sequence of distortions in time depicted in the Fig. 15.1.

We shall use a special symbol, namely, e+lm, for the polarization tensor char-
acterizing nearly monochromatic gravitational waves giving rise to test particle
motions having the above transverse orientation. This tensor may be decomposed
into products of unit vectors as follows:

eþlm ¼ eIleIm � eIIleIIm; ð15:9Þ

where, in the special local frame,

ðeIlÞ ¼ ð0; 1; 0; 0Þ; ðeIIlÞ ¼ ð0; 0; 1; 0Þ:

We note that the state of the wave remains invariant under a rotation about k̂
through 180�, whereas in the electromagnetic case a rotation through 360� is
required to return to the same state. Moreover, the negative field is obtained by a
rotation through only 90�, whereas in the electromagnetic case a rotation through
180� is required. How do we get to an orthogonal state of polarization? In the
electromagnetic case, the orthogonal state is obtained by rotation through 90�. In
analogy with the above results we expect that the orthogonal state is attained in the
gravitational case by rotating through only 45�. We introduce the new unit vectors

e0Il ¼
1
ffiffiffi

2
p ðeIl þ eIIlÞ; e0IIl ¼

1
ffiffiffi

2
p ð�eIl þ eIIlÞ; e0I � e0II ¼ 0;

and define

e	lm ¼ e0Ile0Im � e0IIle0IIm ¼
1
2
ðeIl þ eIIlÞðeIm þ eIImÞ �

1
2
ð�eIl þ eIIlÞð�eIm þ eIImÞ

¼ eIleIIm þ eImeIIl:

ð15:10Þ

We have

el
	l ¼ 0;

1
2

e	lme
lm
	 ¼ 1; e	lme

lm
þ ¼ 0;

Fig. 15.1 Effect of a gravitational wave on a ring of test particles
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which confirms the orthogonality of the rotated state. The existence of these two
polarization states corresponds to the two distinct degrees of freedom per point of
3-space that the gravitational field possesses (see Chap. 11).

The polarization tensor of an arbitrary wave may be expressed as a linear
combination of e+lm and e9lm:

elm ¼ eþlm cos aþ e	lm sin a;

ðeijÞ ¼
cos a sin a 0
sin a � cos a 0

0 0 0

0

@

1

A:

Actually this canonical form can be employed not merely along the world line of
the test particle pair, but throughout spacetime, with eIl and eIIl chosen to be the
orthonormal unit vectors introduced in Chap. 14 to describe the polarization of
electromagnetic waves. The proof is as follows. First choose a spacelike5 hyper-
surface R and introduce a set of tangent orthonormal triads throughout it, with the
third member of each triad pointing parallel to the projection of kl on R at that
point. eIl and eIIl may be chosen as the other two members of each triad. Next,
introduce a set of timelike unit vectors orthogonal to R and adjoin to them the
triads, to form a set of orthonormal tetrads throughout R. Finally, carry the tetrads
by parallel transport along the null geodesics generated by kl, thus defining a set of
local canonical frames throughout spacetime.

In each of the local frames eIl and eIIl will point in the direction of two of the
axes, and the propagation vector kl will take the form

ðklÞ ¼ ðx; 0; 0;xÞ:

The six conditions el
l = 0, elmk

m = 0, and elm elm = 2 then tell us that the most
general polarization tensor elm takes in each frame the form

ðelmÞ ¼

a b c �a
b cos a sin a �b
c sin a � cos a �c
�a �b �c a

0

B

B

@

1

C

C

A

;

ðelmÞ ¼

a �b �c a
�b cos a sin a �b
�c sin a � cos a �c
a �b �c a

0

B

B

@

1

C

C

A

;

so that there are 10 components, 6 conditions, and 4 independent parameters
a, b, c, and a. Moreover, by virtue of the conditions kl;mk

m = 0 and elm;rkr = 0
[see (15.7) and (15.8) in Sect. 15.1], the parameters a, b, c, a, and x will be

5 The words ‘spacelike’, ‘orthonormal’, ‘parallel transport’, etc., are all to be understood as
relative to the background geometry.
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constant along each geodesic generated by kl. Now carry out the gauge trans-

formation described in Sect. 15.1, with the coefficients a
0
l chosen to have, in each

local frame, the form

a
0
l

� �

¼ � 1
x

1
2

a; b; c;� 1
2

a

� �

:

Then a
0 � k ¼ 0; a

0
l;mkm ¼ 0; and

elm

 �

¼ elm � a
0
lkm � a

0
mkl

� �

¼ ðelmÞ þ
1
x

a=2

b

c

�a=2

0

B

B

B

B

@

1

C

C

C

C

A

ð�x; 0; 0;xÞ þ 1
x

�x

0

0

x

0

B

B

B

B

@

1

C

C

C

C

A

1
2

a; b; c;� 1
2

a

� �

¼ ðelmÞ þ

�a=2 0 0 a=2

�b 0 0 b

�c 0 0 c

a=2 0 0 �a=2

0

B

B

B

B

@

1

C

C

C

C

A

þ

�a=2 �b �c a=2

0 0 0 0

0 0 0 0

a=2 b c �a=2

0

B

B

B

B

@

1

C

C

C

C

A

¼

0 0 0 0

0 cos a sin a 0

0 sin a � cos a 0

0 0 0 0

0

B

B

B

B

@

1

C

C

C

C

A

;

as required.
From now on we shall assume that the polarization tensor has this canonical

form and drop the bar. We then write

elm ¼ eþlm cos aþ e	lm sin a;

where e+lm and e9lm are given in terms of eIl and eIIl by (15.9) and (15.10) in
Sect. 15.1, respectively. The conditions

eIl;mk
m ¼ 0; eIIl;mk

m ¼ 0;

insure that

eþlm;rkr ¼ 0; e	lm;rkr ¼ 0;

and the condition elm;rkr = 0 requires that a be constant along each geodesic
generated by kl, i.e.,

a;lkl ¼ 0:
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15.2 Lines-of-Force Representation and Circularly Polarized
Waves

Consider the ring of test particles introduced in Sect. 15.1. If this ring is centered
on the origin then the particle at position xi moves according to the law

€xi ¼ Fi;

where the force per unit mass Fi has the form

Fi ¼ �
1
2
x2aeijxj cos xt:

The magnitude of this force increases as the magnitude of x increases. Moreover, it
satisfies the divergence law

Fi;i ¼ �
1
2

x2aeii cos xt ¼ 0;

and hence the force field may be represented by a lines-of-force diagram, with the
density of lines proportional to the magnitude of F. The lines-of-force diagram
appropriate to the instant t = 0 for the state of polarization depicted in Fig. 15.1 is
shown in Fig. 15.2.

The density of lines increases as distance from the origin increases. The
direction of the field lines reverses after half a period (xt = p), and the field
vanishes at xt = p/2, 3p/2, etc. The lines-of-force diagram appropriate to the
orthogonal state of polarization (e9lm) is obtained from the above diagram by
rotation through 45�.

Waves of the type we have been considering up to now are all said to be
linearly polarized. On the other hand, elliptically polarized waves are also

Fig. 15.2 Lines-of-force
diagram at the instant t = 0
for the state of polarization
depicted in Fig. 15.1
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possible, just as they are in the electromagnetic case. These are obtained by
superposing two linearly polarized waves 90� out of phase:

hlm ¼ aIðeþlm þ � � �Þ cos /� aIIðe	lm þ � � �Þ sin /:

If aI ¼ aII, the wave is circularly polarized with right-handed helicity. If aI ¼ �aII,
the wave is circularly polarized with left-handed helicity. Figure 15.3 shows the
successive distortions of the test particle ring in the case of circular polarization with
right-handed helicity. It will be noted that each particle in the ring executes a small
circle once each period, and the ring pattern as a whole rotates through 180� in the
right-handed sense each period. If one uses a lines-of-force diagram to represent a
circularly polarized wave then the diagram must be rotated through 180� each period.

15.3 Energy, Momentum, and Angular Momentum
in Gravitational Waves

The energy–momentum–stress density TGW
lm is easily computed in the case of

nearly monochromatic gravitational waves. Keeping only the dominant terms in
the eikonal approximation, we have for a linearly polarized gravitational wave

hlm ¼ aelm cos /; hlm;r ¼ �aelmkr sin /; hlm;rs ¼ �aelmkrks cos /:

Inserting these expressions into the expression (15.6) for TGW
lm in present chapter,

and making use of the relations satisfied by the polarization tensor elm (see Sect.
15.1), we find that the only non-vanishing terms are those in hrs hrs;

lm and h;
rsl hrs;

m .
Reintroducing the gravitation constant, we, therefore, get

Tlm
GW ¼

1
16pG

g1=2 �hrshlm
rs; �

1
2

hrsl
; hm

rs;

� �

¼ g1=2a2

16pG
klkmð2 cos2 /� sin2 /Þ

¼ g1=2a2

16pG
klkmðcos2 /þ cos 2/Þ:

Fig. 15.3 Effect of a circularly polarized gravitational wave with right-handed helicity on a ring
of test particles. The wave is propagating out of the paper
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The average of this expression is given by

Tlm
GW

� 	

¼ g1=2a2

32pG
klkm:

Both TGW
lm and hTGW

lm i rigorously satisfy the divergence laws

Tlm
GW;m ¼ 0; Tlm

GW

� 	

;m¼ 0;

in this approximation, by virtue of the relations k2 = 0, k;m
l km = 0, and

ða2kmÞ;m ¼ 0.
In order to discuss the angular momentum in the wave, we shall confine our

attention, as in the electromagnetic case, to a nearly monochromatic plane cir-
cularly polarized wave propagating in a flat spacetime. Again it is necessary to
include the next higher terms in the eikonal expansion. For right-handed helicity
we have

hlm ¼ aðeþlm cos /� e	lm sin /Þ þ f
1

þlm sin /þ f
1

	lm cos /

� �

;

hlm;r ¼ �akrðeþlm sin /þ e	lm cos /Þ þ a;reþlm þ aaf
1

þlmkr

� �

cos /

� a;re	lm þ af
1

	lmkr

� �

sin /;

hlm;rs ¼ �akrksðeþlm cos /� e	lm sin /Þ

� ða;rks þ a;skrÞeþlm þ af
1

þlmkrks

� �

sin /

� ða;rks þ a;skrÞe	lm þ af
1

	lmkrks

� �

cos /:

Here kl and the polarization tensors are constants, and a and the f’s satisfy (see
Sect. 15.1)

a;lkl ¼ 0; f
1

þlmk
lkm ¼ 0; f

1

	lmk
lkm ¼ 0;

f
1

þlmk
m ¼ �a�1eþlma

m
; ; f

1

	lmk
m ¼ �a�1e	lma

m
; ;

f
1

þlm;rkr ¼ � 1
2

a�1ar
;reþlm; f

1

	lm;rkr ¼ � 1
2

a�1ar
;re	lm:

Evidently we may choose the f’s so as to satisfy

eþlmf
1
lm
þ ¼ e	lmf

1
lm
	 ; eþlmf

1
lm
	 ¼ e	lmf

1
lm
þ ¼ 0:
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We shall also assume the gauge to be chosen so that the polarization tensors have
their canonical forms in terms of the orthonormal (constant) vectors eIl and eIIl
[see (15.9) and (15.10)]. We then have the additional relations

el
þlrerm

þ ¼ ðe
l
I eIr � el

IIeIrÞðer
I em

I � er
IIe

m
IIÞ ¼ el

I em
I þ el

IIe
m
II;

el
	lrerm

	 ¼ ðeleIIr þ el
IIeIIrÞðer

I em
II þ er

IIe
m
I Þ ¼ el

I em
I þ el

IIe
m
II;

el
þlrerm

	 ¼ ðe
l
I eIr � el

IIeIIrÞðer
I em

II þ er
IIe

m
I Þ ¼ el

I em
II � el

IIe
m
I ;

el
	lreþrm

þ ¼ ðel
I eIIr þ el

IIeIrÞðer
I em

I � er
IIe

m
IIÞ ¼ �el

I em
II þ el

IIe
m
I :

We are now ready to compute the following quantities:

hrshlm
r;s ¼ �aðers

þ cos /� ers
	 sin /Þ am

; ks þ a;sk
m

� �

el
þr þ af

1
l
þrkmks

� �

sin /

� aðers
þ cos /� ers

	 sin /Þ am
; ks þ a;sk

m
� �

el
	r þ af

1
l
	rks

� �

cos /

� a2 f
1
rs
þ sin /þ f

1
rs
	 cos /

� �

kmksðel
þlrcos /� el

	rsin /Þ

¼ �aa;sk
mðel
þrers

þ sin / cos /� el
þrers

	 sin2 /þ el
	rers

þ cos2 /

� el
	rers

	 sin /cos /� el
þrers

þ sin /cos /� el
þrers

	 cos2 /þ el
	rers

þ sin2 /

þ el
	rers

	 sin /cos /Þ ¼ el
þrers

	 kmða2Þ;s;

hrshlm
;rs ¼ 0;

hrshlm
rs; ¼ �a2klkmðers

þ cos /� ers
	 sin /Þðeþrscos /� e	rssin /Þ

� aðers
þ cos /� ers

	 sin /Þ ðal
; km þ am

; k
lÞeþrs þ af

1

þrsk
lkm

� �

sin /

� aðers
þ cos /� ers

	 sin /Þ ðal
; km þ am

; k
lÞe	rs þ af

1

	rsk
m

� �

cos /

� a2 f
1
rs
þ sin /þ f

1
rs
	 cos /

� �

klkmðeþrscos /� e	rssin /Þ

¼ �2a2klkm � 2aðal
; km þ am

; k
lÞsin /cos /� 2a2ers

þ f
1

þrsk
lkmsin /cos /

þ 2aðal
; km þ am

; k
lÞsin /cos /þ 2a2ers

	 f
1

	rsk
lkmsin /cos / ¼ �2a2klkm;
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hrs;l
; hm

rs;

¼a2klkmðeþrs
þ sin/þers

	 cos/Þðeþrssin/þe	rscos/Þ

�aklðers
þ sin/þers

	 cos/Þ am
; eþrsþaf

1

þrsk
m

� �

cos/� am
; e	rsþaf

1

	rsk
m

� �

sin/

� �

�akm al
; ers
þ þaf

1þrs
þ kl

� �

cos/� al
; ers
	 þaf

1
rs
	 kl

� �

sin/

� �

	ðeþrssin/þe	rscos/Þ

¼2a2klkm;

hlr;s
; hm

s;r ¼ �aksðelr
þ sin /

þ elr
	 cos /Þ a;rem

þs þ af
1
m
þskr

� �

cos /� a;rem
	s þ af

1
m
	skr

� �

sin /

� �

� akr as
; e

lr
þ þ f

1
lr
þ ks

� �

cos /� as
; e

lr
	 þ f

1
lr
	 ks

� �

sin /

� �

	 ðem
þssin /

þ em
	scos /Þ

¼ 0;

hlr;s
; hm

r;s ¼ �aksðelr
þ sin /

þ elr
	 cos /Þ a;se

m
þr þ af

1
m
þrks

� �

cos /� a;se
m
	r þ af

1
m
	rks

� �

sin /

� �

� aks as
; e

lr
þ þ f

1
lr
þ ks

� �

cos /� as
; e

lr
	 þ f

1
lr
	 ks

� �

sin /

� �

	 ðem
þrsin /

þ em
	rcos /Þ

¼ 0;

hrsq
; hrq;s ¼ 0; hrsq

; hrs;q ¼ 0:

Inserting these results into the expression (15.6) for TGW
lm in current chapter, we

find

Tlm
GW ¼

1
16pG

el
þrers

	 kmða2Þ;s þ em
þrers

	 klða2Þ;s þ 2a2klkm � a2klkm
h i

¼ a2

16pG
klkm þ 1

16pG
klðem

I e
r
II � em

IIe
r
I Þ þ kmðel

I er
II � el

IIe
r
I Þ

� �

ða2Þ;r;

which may be compared with the analogous expression for a circularly polarized
electromagnetic wave given in (14.1) in Chap. 14. Proceeding exactly as in that
case, we find for the total energy–momentum vector and angular momentum
tensor

Pl ¼
Z

R

Tlm
GWdRm ¼ N�hkl;

Jlm ¼ Xl
EPm � Xm

EPl þ 2N�hðel
I em

II � el
IIe

m
I Þ:

200 15 Gravitational Waves



Here N is the number of coherent gravitons out of which, in the quantum theory,
the gravitational wave is built. It is given by

N ¼ 1
16pG�h

Z

R

a2kldRl ¼
1

16pG�h

Z

xa2d3x;

where x = k0. In the expression for Jlm, it is assumed that the gauge is chosen so
that eI

0 = 0 = eII
0 , and XE

l is the center of energy:

Xl
E ¼

1
16pGN�h

Z

xlxa2d3x:

When the origin of coordinates is shifted so that the world line of the center of

energy passes through it, we find Ji ¼ Sk̂i, with

S ¼ 2N�h:

Gravitons evidently have spin angular momentum 2�h, twice the value for photons.
Like photons, their spins can be oriented only parallel or antiparallel to the

propagation vector k̂:

15.4 Weak Radiation in Flat Spacetime

We consider the situation where

lim
x!1

hlmðxÞ ¼ 0;

and define

o

ox0

� ��1

hlmðxÞ �
1
2

Z

1

�1

x0 � x00

jx0 � x00j hlmðx00Þdx00:

Then

o

ox0

o

ox0

� ��1

hlmðxÞ ¼
Z

1

�1

dðx0 � x00Þhlmðx00Þdx00 ¼ hlmðx0Þ;

o

ox0

� ��1
o

ox0
hlmðxÞ ¼

1
2

Z

1

�1

x0 � x00

jx0 � x00j
o

ox00
hlmðx00Þdx00

¼ � 1
2

Z

1

�1

hlmðx00Þ
o

ox00
x0 � x00

jx0 � x00j dx00
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¼ 1
2

Z

1

�1

hlmðx00Þ
o

ox0

x0 � x00

jx0 � x00j dx00

¼ o

ox0

o

ox0

� ��1

hlmðxÞ ¼ hlmðxÞ:

Consequently,

o

ox0

o

ox0

� ��1

¼ o

ox0

� ��1
o

ox0
¼ 1:

Similarly,

o

oxl

o

ox0

� ��1

¼ o

ox0

� ��1
o

oxl
:

Now define

r�2hlmðxÞ � �
1

4p

Z

1
jx� x0j hlmðx0Þd3x0:

Then

r2r�2hlmðxÞ ¼ r�2r2hlmðxÞ ¼ hlmðxÞ;

so that

r2r�2 ¼ r�2r2 ¼ 1:

Also

r�2;
o

oxl

� �

¼ 0; r�2;
o

ox0

� ��1
" #

¼ 0;

o

ox0

� ��2
o

ox0

� �2

hlm ¼
o

ox0

� ��1
o

ox0

� ��1
o

ox0

o

ox0
hlm

¼ o

ox0

� ��1
o

ox0
hlm ¼ hlm;

noting that ohlm=ox0 ! 0 as x? ? because the operator affects only the depen-
dence on x0. Suppose the gauge has been chosen so that

h ¼ 0; hlm
;m ¼ 0; h2hlm ¼ 0;
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as described in current chapter. Then

r�2hlm ¼ r�2 o

ox0

� ��2
o

ox0

� �2

hlm

¼ r�2 o

ox0

� ��2

r2hlm

¼ r�2r2 o

ox0

� ��2

hlm

¼ o

ox0

� ��2

hlm;

using the fact that

lim
x!1

o

ox0

� ��2

hlm ¼ 0;

since the operator affects only the dependence on x0, to justify the last step.
We now make a gauge transformation

nl ¼
o

ox0

� ��1

h0l �
1
2

o

ox0

� ��2

h00;l; n0 ¼
1
2

o

ox0

� ��1

h00;

nl
l; ¼ 0; h2nl ¼ 0;

with

hTT
lm ¼ hlm � nl;m � nm;l;

whence

hTT ¼ 0; h2hTT
lm ¼ 0; hTTm

lm; ¼ 0;

hTT
0l ¼ h0l � n0;l � nl;0

¼ h0l �
1
2

o

ox0

� ��1

h00;l � h0l þ
1
2

o

ox0

� ��1

h00;l ¼ 0:

In an arbitrary gauge,

hlm ¼ hTT
lm � nl;m � nm;l;

with no restrictions on nl except that it should vanish at ?.
Consider the transverse 3-dimensional projection operator

Pij � dij �
o

oxi
r�2 o

ox j
:
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We have

o

ox j
Pij ¼ Pij

o

ox j
¼ 0; Pii ¼ 2; PikPkj ¼ Pij:

and the obvious theorem

hTT
ij ¼ PikPjlhkl:

Note that, in this form, the statement hTT = 0 is just one of the constraints on the
Cauchy initial value data for the linearized Einstein equations:

hTT ¼ Pijhij ¼ hii �r�2hij;ij ¼ r�2ðhii;jj � hij;ijÞ:

and the 00 field equation is [see (15.4)]

0 ¼ hl
00;l þ h;00 � 2hl

0;0l � ðhlm
;lm � hl

;lÞ
¼ �h00;00 þ h00;ii � h00;00 þ hii;00 þ 2h00;00 � 2h0i;0i � h00;00 þ 2h0i;0i � hij;ij

� hl
00;l þ hl

ii;l

¼ hii;jj � hij;ij:

15.5 Generation of Gravitational Waves

We have

gtot
lm ¼ glm þ hGW

lm ¼ gB
lm þ hlm þ hGW

lm ;

where hlm is smooth, or

ui
tot ¼ ui

B þ /i þ /i
GW:

From (15.2) and (15.3), we have

SG;i½u� ¼ �
1
2

TGW
i

� 	

¼ SG;ijk½u� /j
GW/k

GW

� 	

:

We include hTi
GWi with the matter. From Chap. 12, we get

SG;ij½uB�/ j ¼ � 1
2

Ti þ TGW
i

� 	

þ T i


 �

;

where

T i ¼ 2 SG;i½uB þ /� � SG;i½uB� � SG;ij½uB�/ j� �

¼ SG;ijk½uB�/ j/k þ � � �
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is smooth. If the source Ti is non-stationary, it will produce an outward flux
hTi

GWi and cause secular changes in /i and T i. We shall neglect these in a first
approximation. Then in a flat background with gauge l,m

lm = 0, we get (see
Chap. 12)

h2llm ¼ �16pðTlm þ T lmÞ; G ¼ 1:

This equation is rigorous if hlm
GW is included in T lm. We include hlm

GW with hlm for
the present and consider the secular changes later.

In the slow motion approximation, the velocity of moving matter is v � 1. In
any case,

v.
M

R

� �1=2

:

The frequency of the waves satisfies

x� v

R �
1
R ;

and the wavelength

k� 1
x
� R

v

 R:

Now

llm
� ðxÞ ¼ 4

Z T lm
totðt � jx� x0j; x0Þ
jx� x0j d3x0;

where

t ¼ x0; T lm
tot ¼ Tlm þ T lm; T lm

tot;m ¼ 0;

the last of these following from the dynamical equations. Hence,

llm
� ðxÞ ¼ 4

Z

e�x0 �r T lm
totðt � r; x0Þ

r
d3x0

ðr � jxjÞ ¼ 4Almðt � rÞ
r

� 4Bilmðt � rÞ
r

� �

;i

þ 1
2

4Cijlmðt � rÞ
r

� �

;ij

þ � � � ;

where

AlmðtÞ �
Z

T lm
totðt; x0Þd3x0; BilmðtÞ �

Z

x0iT lm
totðt; x0Þd3x0;

CijlmðtÞ �
Z

x0ix0jT lm
totðt; x0Þd3x0;
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and so on. This expansion is valid only asymptotically. We should check that the
gauge condition is still satisfied:

llm
�;mðxÞ ¼ ll0

�;0ðt; xÞ þ lli
�;iðt; xÞ

¼ 4 _Al0

r
þ 4

Ali � _Bil0

r

� �

;i

�4
Bilj � _Cijl0=2

r

� �

;ij

þ � � � ;

where everything is evaluated at t ± r. But Al0 = Pl. Hence, neglecting secular
changes inside the asymptotic region, we have _Al0 ¼ _Pl ¼ 0. Moreover,

Ali � _Bil0 ¼
Z

T li
tot � xiT l0

tot;0

� �

d3x ¼
Z

T li
tot þ xiT lj

tot;j

� �

d3x

¼
Z

T li
tot � di

ijT lj
tot

� �

d3x ¼ 0:

Discarding the surface integral corresponds to neglecting secular changes.
Furthermore,

Bilj þ Bjli � _Cijl0 ¼
Z

xiT lj
tot þ x jT li

tot � xix jT l0
tot;0

� �

d3x

¼
Z

xiT lj
tot þ x jT li

tot þ xix jT lk
tot;k

� �

d3x ¼ 0;

and so on. We have the useful identities

xiT 00
tot;0 þ xiT j0

tot


 �

;j¼ T
i0
tot;

1
2

xix jT 00
tot;00 þ xiT jk

tot þ x jT ik
tot


 �

;k�
1
2

xix jT kl
tot


 �

;kl

¼ 1
2

xix jT 00
tot;00 þ

1
2

xiT jk
tot þ x jT ik

tot


 �

;k
þ 1

2
xix jT k0

tot;0

� �

;k

¼ 1
2

xix jT 00
tot;00 þ T ij

tot þ
1
2

xix jT k0
tot;0k

¼ T ij
tot:

Now choose coordinates so that P0 = M, Pi = 0, Xi = 0, and define

Iij ¼
Z

xix jT 00
totd

3x:

Then

A00 ¼ M; A0i ¼ 0;

Aij ¼
Z

T ij
totd

3x ¼ 1
2

Z

xix jT 00
tot;00d3x ¼ 1

2
€Iij;
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Bi00 ¼
Z

xiT 00
totd

3x ¼ 0;

Bj0i ¼
Z

x jT 0i
totd

3x ¼
Z

x j xiT 00
tot;0 þ xiT k0

tot


 �

;k

h i

d3x

¼
Z

�xiT 0j
tot þ xix jT 00

tot;0

� �

d3x

¼ 1
2

Z

x jT 0i
tot � xiT 0j

tot þ xix jT 00
tot;0

� �

d3x

¼ � 1
2

Sij þ
1
2

_Iij;

Cij00 ¼ Iij:

Therefore,

l00
� ðxÞ ¼

4M

r
þ 2

Iijðt � rÞ
r

� �

;ij

þ � � � ;

l0i
�ðxÞ ¼

2Sij

r

� �

;j

�2
_Iijðt � rÞ

r

� �

;j

þ � � � ;

where the first term on the right-hand side of each of these, familiar from the quasi-
stationary case (see Chap. 12), changes only secularly, and

lij�ðxÞ ¼ 2
€Iijðt � rÞ

r
þ � � � :

Terminating the series here corresponds to neglecting retardation across the source
and working only to the quadrupole approximation. Furthermore,

l� ¼ �l00
� þ lii

� ¼ �
4M

r
� 2

Iijðt � rÞ
r

� �

;ij

þ2
€Iijðt � rÞ

r
þ � � � ;

h�lm ¼ l�lm �
1
2
glml�;

h�00 ¼
2M

r
þ Iijðt � rÞ

r

� �

;ij

þ
€Iiiðt � rÞ

r
þ � � � ;

h�0i ¼ �
2Sij

r

� �

;j

þ2
_Iijðt � rÞ

r

� �

;j

þ � � � ;

h�ij ¼
2M

r
dij þ dij

Iklðt � rÞ
r

� �

;kl

þ 2€Iijðt � rÞ � dij€Ikkðt � rÞ
r

þ � � � :
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Now

Iijðt � rÞ
r

� �

;j

¼ � Iijðt � rÞxj

r3
�

_Iijðt � rÞxj

r2
;

Iijðt � rÞ
r

� �

;jk

¼ � Iikðt � rÞ
r3

þ 3
Iijðt � rÞxjxk

r5
�

_Iikðt � rÞ
r2

� 3
_Iijðt � rÞxjxk

r4
þ

€Iijðt � rÞxjxk

r3
;

Iijðt � rÞ
r

� �

;ij

¼ 3xixjQijðt � rÞ
r5

� 3xixj
_Qijðt � rÞ
r4

þ xixj€Iijðt � rÞ
r3

;

where Qij is the energy quadrupole moment tensor

Qij � Iij �
1
3

dijIkk; Qii ¼ 0:

We make the gauge transformation

n�0 ¼
2
3

_Iiiðt � rÞ
r

; ni ¼ 0:

Then

h�00 ¼ h�00 � 2n�0;0

¼ 2M

r
þ

3xixjQ�ij
r5

�
3xixj

_Q�ij
r4

þ
xixj€I�ij

r3
þ

€I�ii
r
� 4

3

€I�ii
r
þ � � �

¼ 2M

r
þ

3xixjQ�ij
r5

�
3xixj

_Q�ij
r4

þ
xixj

€Q�ij
r3
þ � � �

¼ 2M

r
þ

Q�ij
r

 !

;ij

þ � � � ;

h�0i ¼ h�0i � n�0;i

¼ � 2Sij

r

� �

;j

�
2_I�ij xj

r3
�

2€I�ij xj

r2
þ 2

3

_I�jj xi

r3
� 2

3

€I�jj xi

r2
þ � � �

¼ � 2Sij

r

� �

;j

�
2 _Q�ij xj

r3
�

2€Q�ij xj

r2
þ � � �

¼ � 2Sij

r

� �

;j

þ2
_Q�ij
r

 !

;j

þ � � � ;
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h�ij ¼
2M

r
dij þ dij

3xkxlQ�kl

r5
� 3xkxl

_Q�kl

r4
þ xkxl€I�kl

r3

� �

� 1
3
dij

_I�kk

r
þ

2€I�ij � 2dij€I�kk=3

r
þ � � �

¼ 2M

r
dij þ dij

3xkxlQ�kl

r5
� 3xkxl

_Q�kl

r4
þ xkxl

€Q�kl

r3

� �

þ
2€Q�ij

r
þ � � �

¼ 2M

r
dij þ dij

Q�kl

r

� �

;kl

þ
2€Q�ij

r
þ � � � ;

where

Q�ij � Qijðt � rÞ; I�ij � Iijðt � rÞ:

Now

h2 f ðt � rÞ
r

¼ r2 � o2

ot2

� �

f ðt � rÞ
r

¼ r � � x

r3
f ðt � rÞ � x

r2
_f ðt � rÞ

h i

� 1
r

€f ðt � rÞ

¼ 4pdðxÞf ðt � rÞ þ 1
r2
ð�1� 3� 2Þ_f ðt � rÞ þ 1

r
€f ðt � rÞ � 1

r
€f ðt � rÞ

¼ 4pdðxÞf ðtÞ:

Hence,

h2 f ðt � rÞ
r
� f ðt þ rÞ

r

� �

¼ 0; h2ðn�l � nþl Þ ¼ 0; h2hrad
lm ¼ 0;

where hlm
rad is the free radiation part of the asymptotic field defined by

hrad
lm � h�lm � hþlm:

Note that hrad
= 0. If the source of gravitational waves remains non-stationary for

only a finite amount of time and if we assume retarded boundary conditions, then
at large distances from the source and at times t*r, we have

h�lm ¼ hrad
lm þ Oð1=rÞ;

with the O(1/r) terms being stationary. More generally,

h�lm ¼ hSW
lm þ

1
2

hrad
lm ;

where hlm
SW is the standing wave ‘potential’ given by

hSW
lm �

1
2

h�lm þ hþlm

� �

:
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Now

hTT
ij ¼ PikPjlh

rad
kl ¼ hrad

ij �r�2hrad
ik;kj �r�2hrad

jk;ki þr�4hrad
kl;klij

¼ hrad
ij �

o

ot

� ��2

hrad
ik;kj �

o

ot

� ��2

hrad
jk;ki þ

o

ot

� ��4

hrad
kl;klij ¼ dij

Q�kl � Qþkl

r

� �

;kl

þ 2
€Q�ij � €Qþij

r
� o

ot

� ��2 Q�kl � Qþkl

r

� �

;klij

�2
Q�ik � Qþik

r

� �

;kj

� o

ot

� ��2 Q�kl � Qþkl

r

� �

;klij

�2
Q�jk � Qþjk

r

 !

;ki

þ o

ot

� ��4 Q�kl � Qþkl

r

� �

;klmmij

þ 2
o

ot

� ��2 Q�kl � Qþkl

r

� �

;klij

þ � � �

¼ dij
xkxl ð€Q�kl � €QþklÞ

r3
þ 3xkxlð _Q�kl þ _QþklÞ

r4
þ � � �

� �

þ 2
€Q�ij � €Qþij

r
þ o

ot

� ��2 xkxlð€Q�kl � €QþklÞ
r3

þ 3xkxlð _Q�kl þ _QþklÞ
r4

þ � � �
� �

;ij

� 2
ð€Q�ik � €QþikÞxkxj

r3
�

_Q�ij þ _Qþij
r2

þ 3ð _Q�ik þ _QþikÞxkxj

r4
þ � � �

" #

� 2
ð€Q�jk � €QþjkÞxkxi

r3
�

_Q�ij þ _Qþij
r2

þ
3ð _Q�jk þ _QþjkÞxkxi

r4
þ � � �

" #

þ � � �

¼ 1
r
½2ð€Q�ij � €Qþij Þ � 2x̂ix̂kð€Q�kj � €QþkjÞ � 2x̂jx̂kð€Q�ki � €QþkiÞ þ dijx̂kx̂lð€Q�kl � €QþklÞ

þ x̂ix̂jx̂kx̂lð€Q�kl � €QþklÞ� þ
1
r2
½4ð _Q�ij þ _Qþij Þ � 8x̂ix̂kð _Q�kj þ _QþkjÞ

� 8x̂jx̂kð _Q�ki þ _QþkiÞ þ 2dijx̂kx̂lð _Q�kl þ _QþklÞ þ 10x̂ix̂jx̂kx̂lð _Q�kl þ _QþklÞ� þ � � � ;

in which we keep terms to order 1/r2, and x̂ � x=r. We also have

hTT
ij;a ¼

x̂a

r
½�2ðvQ�ij þ vQþij Þ þ 2x̂ix̂kð vQ�kj þ vQþkjÞ þ 2x̂jx̂kðvQ�ki þ vQþkiÞ � dijx̂kx̂lðvQ�kl

þ vQþklÞ � x̂ix̂jx̂kx̂lðvQ�kl þ vQþklÞ� þ
x̂a

r2
½�6ð€Q�ij � €Qþij Þ þ 14x̂ix̂kð€Q�kj � €QþkjÞ

þ 14x̂jx̂kð€Q�ki � €QþkiÞ � 5dijx̂kx̂lð€Q�kl � €QþklÞ � 15x̂ix̂jx̂kx̂lð€Q�kl � €QþklÞ�

þ 1
r2
½�2diaxkð€Q�kj � €QþkjÞ � 2djaxkð€Q�ki � €QþkiÞ þ 2dijxkð€Q�ka � €QþkaÞ

� 2x̂ið€Q�ja � €QþjaÞ � 2x̂jð€Q�ia � €QþiaÞ þ diax̂jx̂kx̂lð€Q�kl � €QþklÞ þ djax̂ix̂kx̂lð€Q�kl

� €QþklÞ þ 2xixjxkð€Q�ka � €QþkaÞ� þ � � � ;
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hTT
ij x̂j ¼ O

1
r2

� �

; hTT
ij;kx̂j ¼ O

1
r2

� �

:

Asymptotically, hlm
TT should be separated into a smooth part and a gravitational

wave remainder that may be regarded as contributing to TGW
lm . The terms that we

have retained above constitute effectively this wave part; the unwritten terms may
be lumped with the smooth part. (They drop off more rapidly with r and are
negligible at infinity.) Now (see current chapter)

T0a
GW ¼

1
16p

�ðhTT
ij hTT

ai;0Þ;j þ hTT
ij hTT

ij;a0 þ
1
2

hTT
ij;0hTT

ij;a

� �

;

Tab
GW ¼

1
16p

hTT
ij ðhTT

ai;bjþ hTT
bi;aj� hTT

ab;ij� hTT
ij;abÞ �

1
2

hTT
ij;ahij;bþ hTT

ai;jh
TT
bj;i� hTTl

ai; hTT
bi;l

�

þ dab
1
4

hl
ij;h

TT
ij;l�

1
2

hTT
ij;khTT

ik;j

� ��

¼ 1
16p

�

ðhTT
ij hTT

ai;bÞ;j þ ðhTT
ij hTT

bi;aÞ;j�ðhTT
ij hTT

ab Þ;ij:

� 1
2
ðhTT

ij hTT
ij Þ;abþ

1
2

hTT
ij;ahTT

ij;b þ ðhTT
ai hbjÞ;ij þ

1
2
ðhTT

ai hTT
bi Þ;00�

1
2
ðhTT

ai hbiÞ;jj:

þ dab �
1
8
ðhTT

ij hTT
ij Þ;00þ

1
8
ðhTT

ij hijÞ;kk �
1
2
ðhTT

ij hikÞ;jk
� �


:

Now

ðhTT
ij hTT

ai;0Þ;j �!t� r!1

o

ot
O

1
r2

� �

þ O
1
r3

� �

;

and

hTT
ij hTT

ij;a0 �!t� r!1

x̂a

r2
½�4€Q�:{Q� þ 8x̂�€Q��{Q��x̂þ 2x̂�€Q��x̂x̂�{Q��x̂þ 4x̂�€Q��{Q��x̂

� 4x̂�€Q��{Q��x̂� 4x̂�€Q��x̂x̂�{Q��x̂þ 2x̂�€Q��x̂x̂�{Q��x̂� 2x̂�€Q��x̂x̂�{Q��x̂
þ 4x̂�€Q��{Q��x̂� 4x̂�€Q��x̂x̂�{Q��x̂� 4x̂�€Q��{Q��x̂þ 2x̂�€Q��x̂x̂�{Q��x̂
� 2x̂�€Q��x̂x̂�{Q��x̂þ 4x̂�€Q��x̂x̂�{Q��x̂� 3x̂�€Q��x̂x̂�{Q��x̂þ x̂�€Q��x̂x̂�{Q��x̂
� 2x̂�€Q��x̂x̂�{Q��x̂þ 4x̂�€Q��x̂x̂�{Q��x̂� x̂�€Q��x̂x̂�{Q��x̂þ x̂�€Q��x̂x̂�{Q��x̂�

þ O
1
r3

� �

¼ x̂a

r2
�4€Q�:{Q� þ 8x̂�€Q��{Q��x̂� 2x̂�€Q��x̂x̂�{Q��x̂
� �

þ O
1
r3

� �

;

1
2

hTT
ij;0hTT

ij;a �!t� r!1

x̂a

r2
�2 vQ�: vQ� þ 4x̂�vQ��vQ��x̂� ðx̂�vQ��x̂Þ2
h i

þ O
1
r3

� �

:

Averaging TGW
lm in spacetime over a few wavelengths is equivalent to averaging the

products of differentiated Q’s over a few periods if the source motion is quasi-
periodic, or over a total orbit if the source is an unbounded system (collision).
Moreover,
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€Q�{Q�
� 	

¼ � vQ� vQ�
� 	

;

and so on. Hence,

T0a
GW

� 	

�!
t� r!1

x̂a

16pr2
2 vQ�: vQ� � 4x̂�vQ��vQ��x̂þ ðx̂� vQ��x̂Þ2
D E

þ O
1
r3

� �

:

We also have

hTT
ij hTT

ai;b �!t� r!1

x̂b

r2
�4€Q�ji

vQ�iaþ 4€Q�ji
vQ�ik x̂kx̂aþ 4€Q�ji x̂i

vQ�akx̂k � 2€Q�jax̂kx̂l
vQ�kl

h

� 2€Q�ji x̂ix̂ax̂kx̂l
vQ�kl þ 4x̂jx̂k

€Q�ki
vQ�ia� 4x̂jx̂k

€Q�ki
vQ�il x̂lx̂a� 4x̂jx̂k

€Q�ki x̂ix̂l
vQ�la

þ 2x̂jx̂k
€Q�kax̂ix̂l

vQ�il þ 2x̂jx̂k
€Q�ki x̂ix̂ax̂lx̂m

vQ�lm � 2x̂kx̂l
€Q�kl

vQ�jaþ 2x̂kx̂l
€Q�kl

vQ�ji x̂ix̂a

þ 2x̂kx̂l
€Q�kl x̂jx̂i

vQ�ia � djax̂kx̂l
€Q�kl x̂mx̂n

vQ�mn � x̂jx̂ax̂kx̂l
€Q�kl x̂mx̂n

vQ�mn� þO
1
r3

� �

¼ x̂b

r2
�4€Q�ji

vQ�iaþ 4€Q�ji
vQ�ik x̂kx̂a þ 4€Q�ji x̂i

vQ�akx̂k � 2€Q�ji x̂ix̂ax̂kx̂l
vQ�kl þ 4x̂jx̂k

€Q�ki
vQ�ia

h

� 2x̂kx̂l
€Q�kl x̂jx̂i

vQ�ia þ 2x̂jx̂i
€Q�iax̂kx̂l

vQ�kl þ 2x̂kx̂l
€Q�kl

vQ�ji x̂ix̂a� þ
o

ot
O

1
r2

� �

þO
1
r3

� �

;

hTT
ij hTT

ai;b

� �

;j
�!

t� r!1

1
r3
½�4€Q�bi

vQ�ia þ 4€Q�bi
vQ�ij x̂jx̂a þ 4€Q�bix̂ix̂j

vQ�ja � 2€Q�bix̂ix̂ax̂kx̂l
vQ�kl

þ 4x̂bx̂i
€Q�ij

vQ�ja � 2x̂kx̂l
€Q�kl x̂bx̂i

vQ�ia þ 2x̂bx̂i
€Q�iax̂kx̂l

vQ�kl þ 2x̂kx̂l
€Q�kl

vQ�bix̂ix̂a

þ 12x̂bx̂j
€Q�ji

vQ�ia � 20x̂bx̂j
€Q�ji

vQ�ik x̂kx̂a � 20x̂bx̂j
€Q�ji x̂i

vQ�akx̂k þ 14x̂bx̂j
€Q�ji x̂ix̂ax̂kx̂l

vQ�kl

� 20x̂bx̂k
€Q�ki

vQ�ia þ 14x̂kx̂l
€Q�kl x̂bx̂i

vQ�ia � 14x̂bx̂i
€Q�iax̂kx̂l

vQ�kl � 14x̂bx̂kx̂l
€Q�kl x̂j

vQ�ji x̂ix̂a

þ 4x̂ax̂b
€Q�ij

vQ�ij þ 4x̂b
€Q�ai

vQ�ik x̂k þ 4x̂bx̂i
€Q�ij

vQ�ja � 2x̂b
€Q�aix̂ix̂kx̂l

vQ�kl

� 4x̂bx̂ax̂i
€Q�ij

vQ�jk x̂k þ 12x̂bx̂k
€Q�ki

vQ�ia þ 4x̂bx̂j
€Q�ji

vQ�ia � 4x̂bx̂k
€Q�kj x̂jx̂i

vQ�ia

� 6x̂bx̂kx̂l
€Q�kl x̂i

vQ�ia � 2x̂bx̂kx̂l
€Q�kl x̂j

vQ�ja þ 6x̂bx̂i
€Q�iax̂k x̂l

vQ�kl þ 2x̂bx̂j
€Q�jax̂kx̂l

vQ�kl

þ 4x̂bx̂i
€Q�iax̂kx̂l

vQ�kl þ 4x̂bx̂k
€Q�kj

vQ�ji x̂ix̂a þ 2x̂bx̂kx̂l
€Q�kl x̂i

vQ�ia� þ
o

ot
O

1
r2

� �

þ o2

ot2
O

1
r2

� �

þ o

ot
O

1
r3

� �

þ O
1
r4

� �

;

hTT
ij hTT

ai;b

� �

;j
þ hTT

ij hTT
bi;a

� �

;j

� �

�!
t� r!1

1
r3

D

8x̂ax̂i
€Q�ij

vQ�jb þ 8x̂bx̂i
€Q�ij

vQ�ja

þ 12x̂a
€Q�bix̂ix̂jx̂k

vQ�jk þ 12x̂b
€Q�aix̂ix̂jx̂k

vQ�jk

E

þ O
1
r4

� �

;

hTT
ij hTT

ab �!t� r!1
O

1
r2

� �

;
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hTT
ij hTT

ab

� �

;i
�!

t� r!1

o

ot
O

1
r2

� �

þ O
1
r3

� �

;

hTT
ij hTT

ab

� �

;ij
�!

t� r!1

o2

ot2
O

1
r2

� �

þ o

ot
O

1
r3

� �

þ O
1
r4

� �

;

hTT
ij hTT

ab

� �

;ij

� �

�!
t� r!1

O
1
r4

� �

;

hTT
ij hTT

ij

� �

;ab

� �

�!
t� r!1

O
1
r4

� �

;

1
2

hTT
ij;ahTT

ij;b �!t� r!1

x̂ax̂b

2r2
4 vQ�: vQ� � 8x̂�vQ�� vQ�� x̂þ 2ðx̂� vQ�� x̂Þ2
h i

þ 1
2r3
½8x̂a

vQ�bi
€Q�ij x̂j þ 8x̂ax̂i

vQ�ij €Q�jb � 4x̂a
vQ�bix̂i x̂jx̂k

€Q�jk � 4x̂ax̂ix̂j
vQ�ij x̂k

€Q�ka

� 4x̂ax̂bx̂�vQ�� €Q~�� x̂� 4x̂a
vQ�bix̂ix̂kx̂l

€Q�kl þ 4x̂ax̂kx̂l
vQ�kl x̂i

€Q�ib � 4x̂ax̂i
vQ�ij €Q�jb

� 4x̂ax̂kx̂l
vQ�kl x̂i

€Q�ib þ 2x̂ax̂bx̂ix̂j
vQ�ij x̂kx̂l

€Q�kl þ 2x̂ax̂i
vQ�ibx̂kx̂l

€Q�kl þ 4x̂ax̂kx̂l
vQ�kl x̂i

€Q�ib

� 4x̂ax̂i
vQ�ibx̂kx̂l

€Q�kl � 4x̂ax̂bx̂� vQ��vQ�� x̂þ 4x̂ax̂kx̂l
vQ�kl x̂i

€Q�ib � 4x̂ax̂kx̂l
vQ�kl x̂i

€Q�ib

� 4x̂ax̂i
vQ�ij €Q�jb þ 2x̂ax̂i

vQ�ibx̂kx̂l
€Q�kl þ 2x̂ax̂bx̂ix̂j

vQ�ij x̂kx̂l
€Q�kl þ 4x̂ax̂kx̂l

vQ�kl x̂i
€Q�ib

þ 4x̂ax̂kx̂l
vQ�kl x̂i

€Q�ib � 6x̂ax̂kx̂l
vQ�kl x̂i

€Q�ib þ 4x̂ax̂kx̂l
vQ�kl x̂i

€Q�ib

� 2x̂ax̂bx̂ix̂j
vQ�ij x̂kx̂l

€Q�kl � 2x̂ax̂kx̂l
vQ�kl x̂i

€Q�ib þ 4x̂ax̂bx̂ix̂j
vQ�ij x̂kx̂l

€Q�kl

� 2x̂ax̂kx̂l
vQ�kl x̂i

€Q�ib þ 4x̂ax̂kx̂l
vQ�kl x̂i

€Q�ib � 2x̂ax̂bx̂ix̂j
vQ�ij x̂kx̂l

€Q�kl

� 2x̂ax̂kx̂l
vQ�kl x̂i

€Q�ib þ same terms with a and b interchanged� þ o

ot
O

1
r3

� �

þ O
1
r4

� �

;

1
2

hTT
ij;ahTT

ij;b

D E

�!
t� r!1

x̂ax̂b

r2
2 vQ�: vQ��4x̂�vQ��vQ�� x̂þ ðx̂� vQ�� x̂Þ2
D E

þ 1
r3

D

4x̂ax̂i
€Q�ij

vQ�jb

þ 4x̂bx̂i
€Q�ij

vQ�ja þ 6x̂a
€Q�bix̂ix̂jx̂k

vQ�jk þ 6x̂b
€Q�aix̂ix̂jx̂k

vQ�jk

E

þ 0
1
r4

� �

;

hTT
ai hTT

bj

� �

;ij

� �

�!
t� r!1

O
1
r4

� �

; hTT
ai hTT

bi


 �

;00

D E

�!
t� r!1

0;

hTT
ai hTT

bi


 �

;jj

D E

�!
t� r!1

O
1
r4

� �

;
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Tab
GW

� 	

�!
t� r!1

x̂ax̂b

16pr2
2 vQ�: vQ��4x̂� vQ��vQ�� x̂þðx̂�vQ�� x̂Þ2
D E

þ 1
16pr3

D

12x̂ax̂i
€Q�ij

vQ�jb

þ 12x̂bx̂i
€Q�ij

vQ�ja þ 18x̂a
€Q�bix̂ix̂jx̂k

vQ�jk þ 18x̂b
€Q�aix̂ix̂jx̂k

vQ�jk

E

þ 0
1
r4

� �

:

Secular changes in Pl and Jij are given by

dPl

dt
¼
Z

V

T l0
tot;0d3x ¼ �

Z

V

T li
tot;id

3x ¼ �
Z

S

T li
totd

2Si;

dSij

dt
¼
Z

V

xiT j0
tot � x jT i0

tot


 �

;0d3x ¼ �
Z

V

xiT jk
tot;k � x jT ik

tot;k

� �

d3x

¼ �
Z

V

xiT jk
tot


 �

;k
�T ji

tot � x jT ik
tot


 �

;k
þT ij

tot

h i

d3x ¼ �
Z

S

xiT jk
tot � x jT ik

tot


 �

d2Sk;

1
4p

Z

4p

x̂ix̂jd
2X ¼ 1

3
dij;

1
4p

Z

4p

x̂id
2X ¼ 0;

1
4p

Z

4p

x̂ix̂jx̂k x̂ld
2X ¼ 1

15
ðdijdkl þ dikdjl þ dildjkÞ;

dM
dt

� �

¼ �
Z

S

Toi
GW

� 	

d2Si

¼ � 1
16p

Z

4p

2 vQ�: vQ� � 4x̂�vQ��vQ��x̂þ x̂� vQ��x̂x̂� vQ��x̂
� 	

d2X

¼ � 1
4

2� 4
3
þ 2

15

� �

vQ�: vQ�
� 	

¼ � 1
5

vQ�: vQ�
� 	

;

dPi

dt

� �

¼ �
Z

S

Tij
GW

� 	

d2Sj ¼ 0;

which tells us that quadrupole gravitational radiation cannot be used as a pro-
pellant, i.e., we must go to octupole terms, and
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dSij

dt

� �

¼ �
Z

S

xihTjk
GWi � x jhTik

GWi
� �

d2Sk

¼ � 1
16p

Z

4p

D

12x̂ix̂k
€Q�kl

vQ�lj � 12x̂jx̂k
€Q�kl

vQ�li þ 18x̂i
€Q�jk x̂kx̂lx̂m

vQ�lm

� 18x̂j
€Q�ik x̂kx̂lx̂m

vQ�lm

E

d2X

¼ � 1
4

4€Q�ik
vQ�kj � 4€Q�jk

vQ�ki þ
36
15

€Q�jk
vQ�ki �

36
15

€Q�ik
vQ�kj

� �

¼ � 4
5

€Q�ik
vQ�jk

D E

;

dSi

dt

� �

¼ 1
2

eijk
dSjk

dt

� �

¼ � 2
5
eijk

€Q�jl
vQ�kl

D E

:

The expansions leading to the above results are essentially expansions in powers of
R=r and k/r, useful in the radiation zone ðr 
 k
 RÞ: In the near zone ðk

r 
 RÞ; an expansion in r/k is more useful (see current chapter):

h�00 ¼
2M

r
þ 3xixj

r5
Qij � r _Qij þ

1
2

r2 €Qij �
1
6

r3 vQij þ
1

24
r4{Qij �

1
120

r5 €vQij þ � � �
� �

þ 3xixj

r5
�r _Qij � r2 €Qij �

1
2

r3 vQij �
1
6

r4{Qij �
1

24
r5 €vQij þ � � �

� �

þ xixj

r5
r2 €Qij � r3 vQij þ

1
2

r4{Qij �
1
6

r5 €vQij þ � � �
� �

þ � � � ;

h�0i ¼
2Sijx̂j

r2
� 2xj

r3
_Qij � r €Qij þ

1
2

r2 vQij �
1
6

r3{Qij þ
1

24
r4 €vQij þ � � �

� �

þ 2xj

r3
�r €Qij þ r2 vQij �

1
2

r3{Qij þ
1
6

r4 €vQij þ � � �
� �

þ � � � ;

h�ij ¼
2M

r
dij

þ dij
3xkxl

r5
Qkl � r _Qkl þ

1
2

r2 €Qkl �
1
6

r3 vQkl þ
1

24
r4{Qkl �

1
120

r5 €vQkl þ � � �
� �

þ dij
3xkxl

r5
�r _Qkl � r2 €Qkl �

1
2

r3 vQkl �
1
6

r4{Qkl �
1

24
r5 €vQkl þ � � �

� �

þ dij
xkxl

r5
r2 €Qkl � r3 vQkl þ

1
2

r4{Qkl �
1
6

r5 €vQkl þ � � �
� �

þ 2
r

€Qij � r vQij þ
1
2

r2{Qij �
1
6

r3 €vQij þ � � �
� �

þ � � � ;

hSW
00 ¼

2M

r
þ 3x̂ix̂jQij

r3
� 1

2
x̂ix̂j

€Qij

r
þ 1

8
rx̂ix̂j

{Qij þ � � � ;

where only the first two terms are significant in the near zone,
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hSW
0i ¼

2Sijx̂j

r2
� 2 _Qijx̂j

r2
þ vQijx̂j þ

1
4

r2 €vQijx̂j þ � � � ;

where only the first term is significant in the near zone,

hSW
ij ¼ dij

2M

r
þ 3x̂kx̂lQkl

r3
� 1

2
x̂kx̂l

€Qkl

r
þ 1

8
rx̂kx̂l

{Qkl þ � � �
� �

þ 2
r

€Qij þ r{Qij þ � � � ;

where only the first two terms are significant in the near zone, and finally,

hrad
00 ¼ �

2
15

xixj
€vQij þ � � � ; hrad

0i ¼ �
4
3

{Qijxj þ � � � ;

hrad
ij ¼ �4 vQij �

2
3

r2 €vQij �
2

15
dijxkxl

€vQkl þ � � � :

The parameters M, Sij, Qij may (in principle) be determined by observing orbits in
the near zone but still in the Newtonian region. Quasi-stationarity makes the orbit
equations reduce effectively to

d2zi

dt2
¼ 1

2
hSW

00;i;

as can be seen from Chap. 6. There is no need to know the details of T lm
tot:

We make the gauge transformation

n0 ¼
1
3

xixj
{Qij þ � � � ; ni ¼ �2 vQijxj �

1
5

r2 €vQijxj þ � � � ;

with h2nl ¼ 0. Then

hrad
00 ¼ hrad

00 � 2n0;0 ¼ �
4
5

xixj
€vQij þ Oðr4Þ;

hrad
0i ¼ hrad

0i � n0;i � ni;0 ¼ Oðr3Þ;

hrad
ij ¼ hrad

ij � ni;j � nj;i

¼ � 4
15

r2 €vQij þ
2

15
xixk

€vQkj þ
2

15
xjxk

€vQki �
2

15
dijxkxl

€vQkl þ Oðr4Þ;

h�lm ¼ h�lm � nl;m � nm;l ¼ hSW
lm þ

1
2

hrad
lm :

Now suppose the source is Newtonian ðR 
 MÞ: Then the above expression for
hrad

lm may be used even inside the source. The appropriate expression for hlm
SW in this

region, of course, will no longer take the form of a multipole expansion, but will be
that corresponding to the weak Newtonian field produced by the given mass
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distribution at any instant. In the absence of the component hrad
lm =2, the dynamics of

the source would be precisely that of Newtonian physics, and the energy and
angular momentum of the source would be conserved. The component hrad

lm =2
accounts for the actual loss of energy and angular momentum by radiation. It
describes the radiation reaction. It introduces a slight additional force per unit
mass given by (see Chap. 6)

Fi ¼ �
1
4

2hrad
i0;0 � hrad

00;i

� �

¼ � 2
5

€vQijxj þ Oðr3Þ ðslow motionÞ:

Let mn and xn be the mass and position of the nth particle of which the source is
composed. Then the rates of change of energy, momentum, and angular
momentum caused by this radiation reaction force are

dM
dt
¼
X

n

mnFni _xni ¼ �
2
5

X

n

mn _xnixnj
€vQij ¼ �

1
5

_Q:
€vQ;

dPi

dt
¼
X

n

mnFni ¼ �
2
5

X

n

mnxnj
€vQij ¼ 0;

because the origin is at the center of mass, and

dSi

dt
¼ eijk

X

n

mnxnjFnk ¼ �
2
5
eijk

X

n

mnxnj
€vQklxnl

¼ � 2
5
eijk

X

n

mn xnjxnl �
1
3
djlr

2
n

� �

€vQkl ¼ �
2
5

eijkQjl
€vQkl:

Taking averages over periods or orbits, we get

dM
dt

� �

¼ � 1
5

_Q:
€vQ

D E

¼ � 1
5

vQ: vQ
� 	

;
dPi

dt

� �

¼ 0;

dSi

dt

� �

¼ � 2
5

eijk Qjl
€vQkl

D E

¼ � 2
5
eijk

€Qjl
vQkl

� 	

;

in agreement with the results obtained by integrating fluxes in present chapter.
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Appendix A
Spinning Bodies

A.1: Nonrelativistic Spinning Body in an Impressed
Electromagnetic Field

Mass of nth componentparticle mn

Charge of nth component particle en

Position of center of mass x

Position of nth componentparticle xþ xn
X

n

mnxn ¼ 0

Total mass m ¼
X

n

mn

Total charge e ¼
X

n

en

Moment of inertia tensor I ¼
X

n

mn x2
n1� xnxn

� �

Charge moment tensor D ¼
X

n

en x2
n1� xnxn

� �

Electric dipole moment f ¼
X

n

enxn

Magnetic dipole moment l ¼ 1
2

X

n

enxn � _xn

Electric quadrupole moment tensor

Q ¼
X

n

en xnxn �
1
3

x2
n1

� �

¼ �Dþ 1
3

1 trD
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Electromagnetic potential vector ðAlÞ ¼ ð�/;AÞ
Electromagnetic field tensor lm ¼ Am;l � Al;m

Electric field E ¼ ðF�0Þ ¼ �r/� A;0

Magnetic field Ha ¼
1
2
eabcFbc ¼ eabcAc;b

H ¼ r� A;ab¼ eabcHc

where dots denote the time derivative and commas denote differentiation with
respect to spacetime coordinates (xl) = (t, x).

The impressed electromagnetic field will be assumed to satisfy Maxwell’s
empty-space field equations in the region occupied by the spinning body:

Flm
;m ¼ 0; Flm;r þ Fmr;l þ Frl;m ¼ 0;

where

Flm ¼ glrgmsFrs; ðglmÞ ¼ ðglmÞ ¼ diagð�1; 1; 1; 1Þ;

so that

r � E ¼ 0; r�H þ _E ¼ 0;
r� E� _H ¼ 0; r �H ¼ 0:

The Lagrangian is

L0 ¼ 1
2

X

n

mnð _xþ _xnÞ2 �
X

n

en/ðt; xþ xnÞ þ
X

n

enAðt; xþ xnÞ � ð _xþ _xnÞ

¼ 1
2

m _x2 þ 1
2

X

n

mn _x2
n � e/�

X

n

enxn � r/� 1
2

X

n

enxn � rr/ � xn � � � �

þ eA � _xþ
X

n

en _xn � Aþ
X

n

enxn � rA� _xþ
X

n

enxn � rA � _xn þ � � �

¼ Lþ d
dt

X

n

enxn � Aþ
1
2

enxn � rA � xn þ � � �
 !

;

where all fields are evaluated at the center of mass and time t, and

L ¼ 1
2

m _x2 � e/þ eA � _xþ 1
2

X

n

mn _x2
n �

X

n

enxn � ðr/þ A;0Þ

� 1
2

X

n

enxn � rðr/þ A;0Þ � xn þ
X

n

en xn � rA � _x� _x � rA � xnð Þ

þ 1
2

X

n

en xn � rA � _xn � _xn � rA � xnð Þ þ � � �

¼ 1
2

m _x2 � e/þ eA � _xþ 1
2

X

n

mn _x2
n þ f � Eþ 1

2
Q : rE

þ f � ð _x�HÞ þ l �H þ � � � :

220 Appendix A: Spinning Bodies



Consider now a rigid body. Its orientation is specified by three parameters qi,
e.g., the Euler angles. The spin angular velocity vector x is given by

_qi ¼ Ri
axa;

where

Ri
a;jR

j
b � Ri

b;jR
j
a ¼ eabcRi

c; _xn ¼ x� xn;

with the comma denoting differentiation with respect to the qi. Also

eabcxbxnc ¼ _xna ¼ xna;i _q
i ¼ xna;iR

i
bxb;

whence

xna;iR
i
b ¼ eabcxnc:

The conjugate momenta are

p ¼ oL

o _x
¼ m _xþ eAþH � fþ � � � ;

pi ¼
oL

o _qi
¼
X

n

mn _xnaxna;i þ
1
2

X

n

eneabcxnaxnb;iHc þ � � � :

The spin angular momentum is

Sa ¼ piR
i
a

¼
X

n

mn _xnbxnb;iR
i
i
a
þ 1

2

X

n

enebcdxnbxnc;iR
i
aHd þ � � �

¼
X

n

mnebcdxcxndebaexne þ
1
2

X

n

enebcdxnbecaexneHd þ � � �

¼
X

n

mnðdcadde � dceddaÞxcxndxne

þ 1
2

X

n

enðddadbe � ddedbaÞxnbxneHd þ � � �

¼ Iacxc þ
1
2

DadHd þ � � � ;

or

S ¼ I � xþ 1
2

D �H þ � � � :

The Poisson brackets for the spin angular momentum are

ðSa; SbÞ ¼ ðpiR
i
a; pjR

j
bÞ ¼ piR

i
a;jR

j
b � pjR

j
b;iR

i
a

¼ eabcpiR
i
c ¼ eabcSc:
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Assuming that I has an inverse, so that

x ¼ I�1 � S� 1
2

D �H
� �

þ � � � ;

the Hamiltonian is

H ¼ p � _xþ pi _q
i � L

¼ m _x2 þ eA � _xþ _x � ðH � fÞ þ
X

n

mn _x2
n þ l �H þ � � � � L

¼ 1
2

m _x2 þ e/þ 1
2

X

n

mn _x2
n � f � E� 1

2
Q : rEþ � � � ;

with

_x ¼ 1
m
ðp� eA�H � fÞ þ � � � ;

_x2
n ¼ ðx� xnÞ2 ¼ x � xn � ðx� xnÞ½ � ¼ x � xx2

n � xnðx � xnÞ
� �

¼ x � ðx2
n1� xnxnÞ � x;

1
2

X

n

mn _x2
n ¼

1
2
x � I � x;

so that

H ¼ 1
2m
ðp� eA�H � fÞ2 þ e/þ 1

2
S� 1

2
H � D

� �

� I�1 � S� 1
2

D �H
� �

� f � E� 1
2

Q : rEþ � � � :

Now

ðSa; xnbÞ ¼ ðpiR
i
a; xnbÞ ¼ �xnb;iR

i
a ¼ eabcxnc;

and therefore
ðSa; fbÞ ¼ eabcfc; ðSa;DbcÞ ¼ eabdDdc þ eacdDbd;

ðSa; I
�1
bc Þ ¼ eabdI�1

dc þ eacdI�1
bd ; ðSa;QbcÞ ¼ eabdQdc þ eacdQbd ;

and so on. Hence

_Sa ¼ ðSa;HÞ

¼ � _xbebcdHceadefe þ
1
2
xbDbceacdHd � eabcfcEb

� 1
2
ðeabdQdc þ eacdQbdÞEc;b þ � � �

¼ ðdbadce � dbedcaÞ _xbHcfe þ eacdlcHd þ eacbfcEb � � � �

¼ _xaHbfb � Ha _xbfb þ eabcðlbHc þ fbEcÞ �
1
2
ðeabdQdc þ eacdQbdÞEc;b þ � � � ;
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or

_S ¼ l�H þ f� ðEþ _x�HÞ � 1
2
r� ðE � QÞ þ 1

2
ðQ � rÞ � Eþ � � � ;

in which we have used

l ¼ 1
2

X

n

enxn � _xn ¼
1
2

X

n

enxn � ðx� xnÞ

¼ 1
2

X

n

en x _x2
n � xnðxn � xÞ

� �

¼ 1
2

D � x:

In the case of spherical symmetry,

I ¼ I1; D ¼ D1; f ¼ 0; Q ¼ 0;

l ¼ 1
2

Dx; S ¼ Ixþ 1
2

DH þ � � � ;

H ¼ 1
2m
ðp� eAÞ2 þ e/þ 1

2
I�1 S� 1

2
DH

� �2

þ � � � :

Ignoring terms indicated by ... up to now,

_S ¼ l�H ¼ 1
2

Dx�H ¼ 1
2

DI�1 S� 1
2

DH

� �

�H ¼ 1
2

DI�1S�H;

d
dt

S2 ¼ 2S � _S ¼ DI�1S � ðS�HÞ ¼ 0;

H ¼ 1
2m
ðp� eAÞ2 þ e/þ 1

2
I�1S2 � 1

2
DI�1S �H þ 1

8
I�1D2H2:

The third term on the right hand side is a constant, inert term that affects neither
the orbital nor the spin dynamics. The last term affects only the orbital dynamics.

We now make the transition to a spinning particle, i.e., e! 0, where e is the
radius of the body. We have the finite quantities S, l; v, m = mc + mp,
e = ec + ep, where

mc ¼ central mass; mp ¼ peripheral mass;
ec ¼ central charge; ep ¼ peripheral charge;

v ¼ mean rotation velocity:

Now

v�xe; x� v

e
�!1; I�mpe

2; D� epe
2;

l� epve; ep� l
ve �! �1; D� l

ve �! 0;

S�mpve; mp� S
ve �!1; I� S

ve �! 0;
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mc �! �1; ec �! �1; I�1S2� vS

e
�mpv2 �!1;

DI�1S� l; I�1D2�l2

vS
e �! 0:

Writing DI-1 = ge/m, we have

l ¼ ge

2m
S;

and the limiting Hamiltonian becomes

H ¼ 1
2m
ðp� eAÞ2 þ e/þ 1

2
I�1S2 � ge

2m
S �H:

A.2: Relativistic Spinning Body in Impressed Electromagnetic
and Gravitational Fields

The metric is glm and we use the notation

A � B ¼ glmA
lBm; A2 ¼ A � A;

Al ¼ glmA
m; Al ¼ glmAm; glrgrm ¼ dm

l;

Cl
mr ¼ glsCmrs; Cmrs ¼

1
2
ðgms;r þ grs;m � gmr;sÞ;

Rl
mrs ¼ Cl

mr;s � Cl
ms;r þ Cq

mrC
l
qs � Cq

msC
l
qr;

Rlmrs ¼ �Rmlrs ¼ Rrslm; Rlmrs þ Rlrsm þ Rlsmr ¼ 0;

Rlm ¼ Rr
lmr; R ¼ Rl

l:

Covariant differentiation is given by

Al
�m ¼ Al

;m þ Cl
mrAr; Al�m ¼ Al;m � Cr

lmAr;

and so on. The metric satisfies glm�r = 0. Then

Al
�mr � Al

�rm ¼ ðAl
�mÞ;r þ Cl

rsA
s
�m � Cs

mrAl
�s � ðm$ rÞ

¼ Al
;mr þ Cl

ms;rAs þ Cl
msA

s
;r

þ Cl
rsA

s
;m þ Cl

rsC
s
mqAq � ðm$ rÞ

¼ Rl
smrAs:

We also have

Rlmrs�q þ Rlmsq�r þ Rlmqr�s ¼ 0:
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The world line of the center of energy is xl(s), with

_xl ¼ d
ds

xl:

Covariant differentiation with respect to s is given by

_Al ¼ D
Ds

Al ¼ d
ds

Al þ Cl
mrAm _xr;

_Al ¼
D
Ds

Al ¼
d
ds

Al � Cm
lrAm _xr;

and so on. If Al is a field then _Al ¼ Al
�m _xm: For example,

_glm ¼ 0;

and

€xl ¼ D
Ds

_xl; vx l ¼ D
Ds

€xl;

and so on.
In a local rest frame ea

l(s), such that

ea � eb ¼ dab; ea � _x ¼ 0;

we define the rest frame projection tensor

Plm ¼ el
aem

a ¼ glm þ ð� _x2Þ�1 _xl _xm;

and the frame rotation tensor

Xab ¼ ð� _x2Þ�1=2 _ea � eb ¼ �Xab;

whence

_el
a ¼ ð� _x2Þ1=2Xabel

b þ ð� _x2Þ�1ðea � €xÞ _xl:

When Xab = 0, the vectors ea
l are generated by Fermi–Walker transport.

However, Fermi–Walker transport is non-integrable, i.e., it depends globally on
the world line and not merely locally. In order to have a local dependence, e.g.,
vectors ea

l propagated by Fermi–Walker transport along preselected paths and then
boosted, we must allow Xab = 0.

A variation of the orbit is denoted by dxlðsÞ: Covariant variations are given by

dAl ¼ dAl þ Cl
mrAmdxr; dAl ¼ dAl � Cm

lrAmdxr;

and so on. If Al is a field, then dAl ¼ Al
�mdxm: For example,

dglm ¼ 0; d _xl ¼ d _xl þ Cl
mr _xmdxr ¼ D

Ds
dxl:
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Covariant variation and covariant differentiation with respect to s are not
generally commutative:

d _Al � D
Ds

dAl ¼ d _Al þ Cl
mr

_Amdxr � d
ds

dAl � Cl
mrdAm _xr

¼ d
ds

dAl þ d Cl
mrAm _xr

� �

þ Cl
mr

d
ds

Am þ Cm
qkAq _xk

� �

dxr

� d
ds

dAl � d
ds

Cl
mrAmdxr

� �

� Cl
mr dAm þ Cm

qkAqdxk
� 	

_xr

¼ Cl
mr;s � Cl

ms;r þ Cq
mrC

l
qs � Cq

msC
l
qr

� 	

Am _xrdxs

¼ Rl
mrsA

m _xrdxs:

Now

d _x2 ¼ 2 _x � d _x; del
a ¼ dkabel

b þ ð� _x2Þ�1ðea � d _xÞ _xl;

for some antisymmetric dkab: Also

D
Ds

del
a ¼ d _kabel

b þ dkab _el
b þ 2ð� _x2Þ�2ð _x � €xÞðea � d _xÞ _xl

þ ð� _x2Þ�1ð _ea � d _xÞ _xl þ ð� _x2Þ�1 ea �
D
Ds

d _x

� �

_xl

þ ð� _x2Þ�1ðea � d _xÞ€xl

¼ d _kabel
b þ ð� _x2Þ1=2

dkabXbcel
c þ ð� _x2Þ�1

dkabðeb � €xÞ _xl

þ 2ð� _x2Þ�2ð _x � €xÞðea � d _xÞ _xl þ ð� _x2Þ�1=2Xabðeb � d _xÞ _xl

þ ð� _x2Þ�2ðea � €xÞð _x � d _xÞ _xl þ ð� _x2Þ�1 ea �
D
Ds

d _x

� �

_xl

þ ð� _x2Þ�1ðea � d _xÞ€xl;

d _el
a ¼ �ð� _x2Þ�1=2ð _x � d _xÞXabel

b þ ð� _x2Þ1=2
dXabel

b

þ ð� _x2Þ1=2Xabdkbcel
c þ ð� _x2Þ�1=2Xabðeb � d _xÞ _xl

þ 2ð� _x2Þ�2ð _x � d _xÞðea � €xÞ _xl þ ð� _x2Þ�1
dkabðeb � €xÞ _xl

þ ð� _x2Þ�2ðea � d _xÞð _x � €xÞ _xl þ ð� _x2Þ�1 ea �
D
Ds

d _x

� �

_xl

þ ð� _x2Þ�1Rqmrse
q
a _xm _xrdxs _xl þ ð� _x2Þ�1ðea � €xÞd _xl;

0 ¼ D
Ds

del
a � d _el

a þ Rl
mrse

m
a _xrdxs

¼ d _kab � ð� _x2Þ1=2ðXacdkcb � XbcdkcaÞ
h

þð� _x2Þ�1=2Xabð _x � d _xÞ � ð� _x2Þ1=2
dXab

i

el
b

þ ð� _x2Þ�1Pl
m€xmðea � d _xÞ � ð� _x2Þ�1Pl

m ðea � €xÞd _xm þ PlqRqmrse
m
a _xrdxs;
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whence

0 ¼ d _kab � ð� _x2Þ1=2ðXacdkcb � XbcdkcaÞ þ ð� _x2Þ�1=2Xabð _x � d _xÞ
� ð� _x2Þ1=2

dXab � ð� _x2Þ�1€x � ðeaeb � ebeaÞ � d _x

� el
aem

bRlmrs _xrdxs:

We now introduce the biscalar of geodetic interval r(z, x). We associate indices
from the first part of the Greek alphabet with z and those from the middle of the
alphabet with x. It is defined by the requirements

r ¼ 1
2
r�lr

l
� ¼

1
2
r�ar

a
� ¼ �

1
2

s2;

lim
z!x

r�l ¼ 0; lim
z!x

r�a ¼ 0;

and it has the properties

r�l ¼ r�lsr
s
� ¼ r�lar

a
� ;

r�lm ¼ r�lsmr
s
� þ r�lsr

s
�m ¼ r�lmar

a
� þ r�lar

a
�m;

lim
z!x

r�lm ¼ glm; lim
z!x

r�ab ¼ gab; lim
z!x

r�la ¼ �gla;

r�lmr ¼ r�lsmrr
s
� þ r�lsmr

s
�r þ r�lsrr

s
�m þ r�lsr

s
�mr;

0 ¼ lim
z!x
ð�r�lmr þ r�lrm þ r�lmr þ r�mlrÞ ¼ 2 lim

z!x
r�lmr:

We may expand

r�lm ¼ glm þ Almrr
r
� þ

1
2

Almrsr
r
� r

s
� þ � � � ;

where Almr, Almrs, etc., are ordinary one-point tensors. We have

r�lmr ¼ Alms�rr
s
� þ Almsr

s
�r þ � � � ;

0 ¼ lim
z!x

r�lmr ¼ Almr:

Therefore

r�lm ¼ glm þ Oðs2Þ:

We also have

r�lma ¼ r�lsmar
s
� þ r�lsmr

s
�a þ r�lsar

s
�m þ r�lsr

s
�ma;

0 ¼ lim
z!x
ð�r�lma þ r�lma þ r�mlaÞ ¼ lim

z!x
r�lma:

Therefore,

r�lar
a
�m ¼ r�lm � r�lmar

a
� ¼ glm þ Oðs2Þ:
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The world line of the nth component particle is denoted by zn
l(s). It is

determined by

�r�l znðsÞ; xðsÞð Þ ¼ xnaðsÞealðsÞ;

�r�la _za
n ¼ r�lm _xm þ _xnaeal þ xna _eal;

�_z2
n ¼ � _x2 � _xna _xna � 2xnað _ea � _xÞ � 2xna _xnbð _ea � ebÞ þ Oðs2Þ
¼ � _x2 � _xna _xna þ 2xnaðea � €xÞ � 2ð� _x2Þ1=2xna _xnbXab þ Oðs2Þ:

The rotation velocity relative to the Fermi–Walker transported frame is

vna ¼ ð� _x2Þ�1=2 _xna � Xabxnb;

and

�_z2
n ¼ _x2 � ð� _x2Þv2

n þ 2xnaðea � €xÞ þ Oðs2Þ

¼ ð� _x2Þð1� v2
nÞ 1þ 2ð� _x2Þ�1ð1� v2

nÞ
�1xnaðea � €xÞ

h i

þ Oðs2Þ;

ð�_z2
nÞ

1=2 ¼ ð� _x2Þ1=2ð1� v2
nÞ

1=2 þ ð� _x2Þ�1=2ð1� v2
nÞ
�1=2xnaðea � €xÞ þ Oðs2Þ:

The electromagnetic vector potential is Al. We try to expand AaðznÞ_za
n in powers

of xna and _xna :

Aa _za
n ¼ A � _xþ Bna _xna þ Cnaxna þ Dnabxna _xnb þ Oðs2Þ:

Now

�r�la
oza

n

oxna
¼ eal; �r�la

o_za
n

o _xna
¼ eal:

Also, since -r�la differs from gla only by a quantity of order s2,

�r�la
o_za

n

oxna
¼ _eal þ OðsÞ:

Therefore,

Bna ¼ Aa
o_za

n

o _xna

� �

xn¼0

¼ A � ea;

Cna þ Dnab _xnb ¼ Aa�b
ozb

n

oxna
_za
n þ Aa

o_za
n

oxna

� �

xn¼0

¼ Al�me
m
að _xl þ _xnbel

bÞ þ A � _ea;

whence

Aa _za
n ¼ A � _xþ ðA � eaÞ _xna þ ðA � _eaÞxna þ Al�m _xlem

axna

þ Al�me
m
ael

bxna _xnb þ Oðs2Þ:
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The action is

W ¼
Z

Lds;

with Lagrangian

L0 ¼ �
X

n

mnð�_z2
nÞ

1=2 þ
X

n

enAa _za
n

¼ �ð� _x2Þ1=2
X

n

mnð1� v2
nÞ

1=2 þ ð� _x2Þ�1=2
X

n

mnð1� v2
nÞ
�1=2xnaðea � €xÞ

þ eA � _xþ A �
X

n

enðea _xna þ _eaxnaÞ þ Al�m _xlem
a

X

n

enxna

þ Al�me
m
ael

b

X

n

enxna _xnb þ Oðs2Þ

¼ Lþ d
ds
ðA � eaÞ

X

n

enxna þ
1
2

Al�me
m
ael

b

X

n

enxnaxnb þ Oðs2Þ
" #

;

where

L ¼ �ð� _x2Þ1=2
X

n

mnð1� v2
nÞ

1=2 þ ð� _x2Þ�1=2
X

n

mnð1� v2
nÞ
�1=2xnaðea � €xÞ

þ eA � _xþ ð� _x2Þ1=2ðfaEa þ laHaÞ þ Oðs2Þ;

the symbols e, fa, la, Ea, and Ha being defined as follows:

Total charge e ¼
X

n

en

Electric dipole moment fa ¼
X

n

enxna

Magnetic dipole moment la ¼
1
2
eabc

X

n

enxnbvnc

Electric field in local rest frame Ea ¼ ð� _x2Þ�1=2em
aFml _xl

Magnetic field in local rest frame Ha ¼
1
2
eabcFbcwithFab ¼ el

aem
bFlm

Note that the term f � ð _x�HÞ that appears in the Lagrangian in the
nonrelativistic case is missing here. This is because the Ea are already the
components of the electric field in the instantaneous rest frame of the center of
energy of the body.

We shall now make four assumptions:

1. Nonrelativistic rotation: vn
2 	 1. Although this assumption does not relieve us

from the ultimate necessity of including the rotational energy in the total rest
mass of the body, it does allow us to ignore the internal energy associated with
strains produced in the body by centrifugal forces and special relativistic
contraction effects. (These energies are of order s2vn

2 and vn
4, respectively.)
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2. Formal or quasi-rigidity: xna,iR
i
b = eabcxnc. Then

_qi ¼ ð� _x2Þ1=2Ri
axa; _xnað� _x2Þ1=2eabcxbxnc;

vna ¼ eabcðxb þ XbÞxnc; Xa ¼ 1
2eabcXbc:

3. Inversion symmetry. By this we mean that for every component particle,
located at xn say, there is another particle located at -xn (relative to the center
of energy) that has the same mass and charge. An immediate consequence of
this assumption is fa = 0. Also, since vn

2 is an even function of the xn (by the
quasi-rigidity assumption), we have

X

n

mnð1� v2
nÞ
�1=2xna ¼ 0;

so that the center of energy xl(s) is indeed located at the origin of local
coordinates. Note that inversion symmetry is much less restrictive than
spherical symmetry. Indeed, although we shall later make the spherical
symmetry assumption in the present nonrelativistic case, the appropriate
generalization of the spherical asymmetry assumption to the case of relativistic
rotation would require the energies mn(1 - vn

2)-1/2 rather than the rest masses
mn themselves to be spherically symmetrically distributed, an assumption that
would be rather ad hoc and hard to justify.

4. Smallness. By this we mean that the body is sufficiently small that the strains
(and associated internal energy) produced in the body by the curvature of
spacetime and by the gradients of the electromagnetic field may be neglected.
This will justify our neglecting terms of order s2 in the Lagrangian, and we shall
henceforth no longer indicate these terms.

We note that when all the above assumptions are valid, the departure from true
rigidity of the formally rigid body is negligible.

The Lagrangian now takes the form

L ¼ �m0ð� _x2Þ1=2 þ 1
2
ð� _x2Þ1=2

X

n

mnv2
n þ eA � _xþ ð� _x2Þ1=2laHa;

where

m0 ¼
X

n

mn:

In calculating the dynamical equations for the internal (spin) motion of the
body, we may set the parameter s equal to proper time so that

� _x2 ¼ 1:

The internal motion is then described by the Lagrangian

Ls ¼
1
2

X

n

mnv2
n þ

1
2
eabcHa

X

n

enxnbvnc;
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where

vna ¼ xna;i _q
i þ eabcXbxnc ¼ eabcðxb þ XbÞxnc:

The conjugate momenta are

pi ¼
oLs

o _qi
¼
X

n

mnvnaxna;i þ
1
2
eabcHa

X

n

enxnbxnc;i:

The components of the spin angular momentum in the local rest frame are

Sa ¼ piR
i
a

¼
X

n

mnebcdðxc þ XcÞxndebaexne þ
1
2
ebcdHb

X

n

enxncedaexne

¼ Iabðxb þ XbÞ þ
1
2

DabHb;

where the moment of inertia tensor Iab and charge moment tensor Dab are as
defined on p. 219.

Introducing a three-vector dyadic notation, we may write

xþ X ¼ I�1 � S� 1
2
D �H

� �

;

and the Hamiltonian for the internal motion may be expressed in the form

Hs ¼ pi _q
i � Ls

¼ 1
2

X

n

mnv2
n � eabc

X

n

mnvnaXbxnc �
1
2
eabcecdeHaXd

X

n

enxnbxne

¼ 1
2
ðxþ XÞ � I � ðxþ XÞ � X � I � ðxþ XÞ � 1

2
X � D �H

¼ 1
2

S� 1
2

H � D
� �

� I�1 � S� 1
2

D �H
� �

� X � S� 1
2
D �H

� �

� 1
2
X � D �H

¼ 1
2

S� 1
2

H � D
� �

� I�1 � S� 1
2

D �H
� �

� X � S;

_Sa ¼ ðSa;HsÞ

¼ 1
2
ðxb þ XbÞDbceacdHd þ eabcXcSb

¼ eabcðlbHc � XbScÞ ¼ Fablb þ XabSb;

or
_S ¼ l�H � X� S:

The spin angular momentum four-vector is

Sl ¼ Sael
a ; S � _x ¼ 0; Sa ¼ S � ea:

Appendix A: Spinning Bodies 231



The magnetic dipole moment four-vector is

ll ¼ lael
a ; l � _x ¼ 0; la ¼ l � ea:

Then

_Sl ¼ _Sael
a þ Sa _el

a

¼ el
aðFablb þ XabSbÞ þ Sa Xabel

b þ ðea � €xÞ _xl
� �

¼ el
aem

aer
bFmrlb þ ðS � €xÞ _xl

¼ PlmFmrl
r � ð _S � _xÞ _xl;

or

Pl
m ð _Sm � Fm

rl
rÞ ¼ 0:

The spin angular momentum tensor is

Slm ¼ Sabel
aem

b; Sab ¼ eabcSc; Slm _xm ¼ 0:

The magnetic dipole moment tensor is

llm ¼ label
aem

b; lab ¼ eabclc; llm _xm ¼ 0:

Since

_xkeklmrer
c ¼ g�1=2ealebmeabc; g ¼ � detðglmÞ;

we may also write

Slm ¼ g1=2 _xkeklmrSr; Sl ¼ 1
2g

1=2 _xkeklmrSmr;

llm ¼ g1=2 _xkeklmrlr; ll ¼ 1
2g

1=2 _xkeklmrlmr;

Now, using

SaXb ¼
1
4
eacdebef ScdXef

¼ 1
4
ðdabdceddf þ daedcf ddb þ daf dcbdde

� dabdcf dde � daf dceddb � daedcbddf ÞScdXef

¼ 1
2
dabScdXcd þ XacScb;

whence

SaXb � SbXa ¼ XacScb � XbcSca;
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we find

_Sab ¼ eabc
_Sc ¼ eabcecdeðldHe þ SdXeÞ

¼ laHb � lbHa þ SaXb � SbXa

¼ Faclcb � Fbclca þ XacScb � XbcSca;

and hence

_Slm ¼ _Sabel
aem

b þ Sab _el
aem

b þ Sabel
a _em

b

¼ ðFaclcb � Fbclca þ XacScb � XbcScaÞel
aem

b

þ Sab Xacel
c þ ðea � €xÞ _xl

� �

em
b þ el

a Xbcem
c þ ðeb � €xÞ _xm

� �
 �

¼ PlrFrsl
sm � PmrFrsl

sl � _xl _xr _Sm
r þ _xm _xr _Sl

r;

or

Pl
rPm

sð _Srs � Fr
qlqs þ Fs

ql
qrÞ ¼ 0:

Alternative expressions are

Sab ¼ eabcSc ¼ eabc ecde

X

n

mnxndvne þ
1
2

Fde

X

n

enxndeecf xnf

 !

(see p. 231)

¼
X

n

mnðxnavnb � xnbvnaÞ þ
1
2

Fac

X

n

enxncxnb �
1
2

Fbc

X

n

enxncxna

and

lab ¼ eabclc ¼
1
2

X

n

enðxnavnb � xnbvnaÞ:

The rotational kinetic energy is

K ¼ 1
2

X

n

mnv2
n ¼ Hs þ X � S:

Hence,

_K ¼ _Hs þ _X � Sþ X � _S

¼ �oLs

os
þ _X � Sþ X � ðl�H � X� SÞ

¼ �
X

n

mnvn � ð _X� xnÞ �
1
2

_Fablab �
1
2

H �
X

n

enxn � ð _X� xnÞ

þ _X � Sþ XablaHb (see p. 231)

¼ �1
2
lab

d
ds
ðel

aem
bFlmÞ þ XabFaclcb
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¼ �labXacFcb � labðea � €xÞ _xlFlme
m
b �

1
2
llm _Flm þ XabFaclcb

¼ €xlllmF
m
r _xr � 1

2
llm _Flm: ðA:1Þ

In calculating the dynamical equations for the orbital motion of the spinning
body, we may set s equal to the proper time only after performing the orbit
variation dxlðsÞ. We make use of the following relations:

dð� _x2Þ1=2 ¼ � _x � d _x; dð� _x2Þ�1=2 ¼ _x � d _x;

del
a ¼ dkabel

b þ _xlðea � d _xÞ (see p. 226);

dXab ¼ d _kab � ðXacdkcb � XbcdkcaÞ þ Xabð _x � d _xÞ
� €x � ðeaeb � ebeaÞ � d _x� el

aem
bRlmrs _xrdxs (see p. 227);

dvna ¼ ðvna þ XabxnbÞð _x � d _xÞ � dXabxnb (see p. 228)

¼ vnað _x � d _xÞ � d _kab � ðXacdkcb � XbcdkcaÞ
h

�€x � ðeaeb � ebeaÞ � d _x� el
aem

bRlmrs _xrdxs
�

xnb;

dðlaHaÞ ¼
1
2
d Flme

l
aem

b

X

n

enxnavnb

 !

¼ 1
2

Flm�rl
lmdxr þ dkacFcblab � _xlFlml

m
rd _xr þ laHað _x � d _xÞ

� 1
2

Fab d _kbc � ðXbddkdc � XcddkdbÞ � €x � ðebec � ecebÞ � d _x
h

�el
bem

cRlmrs _xrdxs
�

X

n

enxnaxnc;

dL ¼ m0ð _x � d _xÞ � 1
2

X

n

mnv2
nð _x � d _xÞ þ

X

n

mnv2
nð _x � d _xÞ

þ d _kab � ðXacdkcb � XbcdkcaÞ � €x � ðeaeb � ebeaÞ � d _x
h

�el
aem

bRlmrs _xrdxs
�

X

n

mnxnavnb

þ eAm�l _xmdxl þ eA � d _x� laHað _x � d _xÞ þ 1
2

Flm�rl
lmdxr

þ dkacFcblab � _xlFlml
m
rd _xr þ laHað _x � d _xÞ

� 1
2

Fab d _kbc � ðXbddkdc � XcddkdbÞ � €x � ðebec � ecebÞ � d _x
h

�el
bem

cRlmrs _xrdxs
�

X

n

enxnaxnc
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¼ ðm0 þ KÞð _x � d _xÞ þ 1
2

Sabd _kab þ XbcdkcaSab � €xmSmld _xl

þ 1
2

Rlmrs _xmSrsdxl þ eAm�l _xmdxl þ eA � d _xþ 1
2
lmrFmr�ldxl

þ dkacFcblab � llmF
m
r _xrd _xl

¼ d
ds
ðm0 þ KÞð _x � dxÞ þ 1

2
Sabdkab þ Slm€x

mdxl þ eA � dx� llmF
m
r _xrdxl

� 


þ � D
Ds
ðm0 þ KÞglm _xm þ Slm€x

m � llmF
m
r _xr

� �

þ 1
2

Rlmrs _xmSrs

�

þ eFlm _xm þ 1
2
lmrFmr�lgdxl:

The action principle dW ¼ 0 yields the dynamical equations

D
Ds
ðm0 þ KÞ _xl þ Sl

m€xm � llmFmr _xr
� �

¼ 1
2

Rl
mrs _xmSrs þ eFl

m _xm þ 1
2
lmrFl

rm�: ðA:2Þ

As a test for consistency, multiplication of the equation by glm _xm should yield an
identity which holds independently of the equation itself:

� D
Ds
ðm0 þ KÞglm _xm þ Slm€x

m � llmF
m
r _xr

� �

þ 1
2

Rlmrs _xmSrs þ eFlm _xm þ 1
2
lmrFmr�l

� �

_xl

¼ _K � _xl _Slm€x
m þ _xl _llmF

m
r _xr þ 1

2
lmr _Fmr ¼ 0;

by (A.1) on p. 234.
In the limit of a spherically symmetric point particle, we have

llm ¼
ge

2m
Slm;

K ¼ 1
2

I�1S2 � ge

2m
S �H ¼ 1

2
I�1S2 � ge

4m
SlmFlm;

d
ds

1
2

I�1S2

� �

¼ 0;

_K ¼ �ge

2m
ðPlrFrsl

sm þ _xl€xrSm
rÞFlm �

ge

4m
Slm _Flm

¼ €xrlrmF
m
l _xl � 1

2
llm _Flm;

and the dynamical equations take the form

m€xl þ D
Ds

Sl
m€xm � ge

4m
SmrFmr _xl � ge

2m
SlmFmr _xr

� 	

¼ 1
2

Rl
mrs _xmSrs þ eFl

m _xm þ ge

4m
SmrFl

mr�;
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where

m ¼ m0 þ
1
2

I�1S2;

in which the second term on the right hand side is the spin energy. We note that the
compensating central mass mc, although again negatively infinite, differs from its
nonrelativistic value only by a fraction of order v2 (see p. 223).

We now consider conservation laws. Suppose the geometry of spacetime admits
an isometry generated by a Killing vector nl,

nl�m þ nm�l ¼ 0:

Suppose furthermore that the Lie derivative LnFlm of the electromagnetic field
tensor vanishes, i.e.,

0 ¼ �Flm;rn
r � Frmn

r
;l � Flrn

r
;m

¼ �Flm�rn
r � Frmn

r
�l � Flrn

r
�m

¼ �ðAm�l � Al�mÞ�rn
r � ðAm�r � Ar�mÞnr

�l � ðAr�l � Al�rÞnr
�m

¼ �ðAm�rn
r þ Arn

r
�mÞ�l þ ðAl�rn

r þ Arn
r
�lÞ�m

þ ð�Rs
lrm þ Rs

mrl þ Rs
mlsrÞAsn

r

¼ �ðAm�rn
r þ Arn

r
�mÞ�l þ ðAl�rn

r þ Arn
r
�lÞ�m;

which implies

Al�mn
m þ Amn

m
�l ¼ B�l;

for some B. (This assumes that spacetime is connected.) Then any orbit xl(s),
whether or not it satisfies the dynamical equations, will encounter precisely the
same physical environment after it has been displaced by an amount

dxlðsÞ ¼ nl xðsÞð Þ

as it encountered before. The Lagrangian itself, in fact, will be left invariant under
such a displacement provided the vector potential Al and the local frame vectors ea

l

are properly chosen. Specifically, the vector potential must be chosen so as to
satisfy LnAl ¼ 0, and the local frame vectors must be defined in terms of a field ea

l

that has vanishing Lie derivative. That is

Al�mn
m þ Amn

m
�l ¼ 0

and

el
aðsÞ ¼ el

a xðsÞð Þ;

where

el
a�mn

m � em
an

l
�m ¼ 0 8a:
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The required vector potential may be obtained from the earlier one by carrying
out the gauge transformation

Al ¼ Al þ K�l;

where K is a solution of the equation

K�ln
l ¼ �B;

and the field ea
l may be obtained by Lie displacement from a set of local frames

(determined only up to an arbitrary rotation) assigned to an arbitrary two-
parameter congruence of orbits. The local frames appropriate to the congruence
obtained by Lie displacing any other two-parameter congruence of orbits may be
obtained from these by local boosts.

Under the displacement dxlðsÞ ¼ nl xðsÞð Þ; we now have

dkabel
b þ _xlðea � _nÞ ¼ el

a�mn
m ¼ em

an
l
�m;

whence
dkab ¼ em

ael
bnl�m:

Also
dL ¼ 0:

For an orbit which satisfies the dynamical equations, the latter relation reduces
(see p. 235) to the statement that the quantity

ðm0 þ KÞð _x � nÞ þ 1
2

Slmnm�l þ Slm€x
mnl þ eA � dx� llmF

m
r _xrnl

is a constant of the motion. This statement may also be verified directly as follows:

d
ds
ðm0 þ KÞ _x � nþ 1

2
Slmnm�l þ Slm€x

mnl þ eA � n� llmF
m
r _xrnl

� 


¼ 1
2

Rl
mrs _xmSrs þ eFl

m _xm þ 1
2
lmrFl

mr�

� �

nl þ ðm0 þ KÞ _x � _n

þ ðPlrFrsl
sm þ _xl€xrSm

rÞnm�l þ
1
2

Slmnm�lr _xr þ Sl
m€xmnl�r _xr

þ eAl�m _xmnl þ eAln
l
�m _xm � nl�sl

lmFmr _xr _xs

¼ 1
2

SlmRlmsr _xrns � lmrFsrn
s
�m þ Fl

s l
smnm�l þ _xl _xrFrsl

smnm�l

� 1
2

Slmnr�ml _xr þ 1
2

SlmRlrms _xrns � nl�sl
lmFmr _xr _xs

¼ 0:

In the case of a flat empty spacetime, we introduce Minkowski coordinates, and
the general solution of Killing’s equation becomes

nl ¼ el þ elmx
m; elm ¼ �eml;
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The dynamical equations reduce to

_Slm ¼ _xl€xrSm
r � _xm€xrSl

r;

d
ds
ðm _xl þ Sl

m€xmÞ ¼ 0; m ¼ m0 þ K; _K ¼ 0;

and the conserved quantity takes the form

m _xlðel þ elmx
mÞ þ 1

2
Slmeml þ Sl

r€xrðel þ elmx
mÞ ¼ elPl � 1

2
elmJ

lm;

where Pl and Jlm are the energy–momentum four-vector and the total angular
momentum tensor, respectively:

Pl ¼ m _xl þ Sl
m€xm; Jlm ¼ xlPm � xmPl þ Slm:

The remarkable fact will be noted that the momentum of a relativistic spinning
particle is not generally parallel to its velocity.

We note also that the dynamical equations are of the third differential order.
This has the consequence that the particle can undergo non-uniform motion even
in the absence of external fields. Suppose we pass to a Lorentz frame in which the
particle comes to rest at some moment. Let us orient the spatial axes so that at that
moment the only nonvanishing components of the spin angular momentum tensor
are S12 = - S21. Then, since

_Sl
m€xm ¼ _xl€xrSrm€x

m � ð€x � _xÞ€xrSl
r ¼ 0;

m€xl þ Sl
m
vxm ¼ 0;

it follows that the acceleration can have nonvanishing components in the (1,2)
plane. We may therefore study the motion in this plane, but instead of adopting a
frame in which the particle comes momentarily to rest, we choose a frame in
which the three-momentum vanishes. It is then not difficult to see that the motion
must have the periodic form

x1 ¼ a cos xx0; v1 ¼
dx1

dx0
¼ �ax sin xx0;

x2 ¼ a sin xx0; v2 ¼
dx2

dx0
¼ ax cos xx0;

x3 ¼ 0; v3 ¼ 0;

v2 ¼ a2x2; ds ¼ ð1� v2Þ1=2dx0 ¼ ð1� a2x2Þ1=2dx0;

x0 ¼ s

ð1� a2x2Þ1=2
; xx0 ¼ xs; x ¼ x

ð1� a2x2Þ1=2
;
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_x0 ¼ ð1� a2x2Þ�1=2; €x0 ¼ 0;
x1 ¼ a cos xs; _x1 ¼ �ax sin xs; €x1 ¼ �ax2 cos xs;
x2 ¼ a sin xs; _x2 ¼ ax cos xs; €x2 ¼ �ax2 sin xs;

x3 ¼ 0; _x3 ¼ 0; €x3 ¼ 0:

We set

S12 ¼ nS; S23 ¼ 0 ¼ S31;

where S is the magnitude of the spin angular momentum. From the conditions

0 ¼ S01 _x1 þ S02 _x2 þ S03 _x3;

0 ¼ S10 _x0 þ S12 _x2 þ S13 _x3 ¼ _x0ðS10 þ nSax cos xx0Þ;
0 ¼ S20 _x0 þ S21 _x1 þ S23 _x3 ¼ _x0ðS20 þ nSax sin xx0Þ;
0 ¼ S30 _x0 þ S31 _x1 þ S32 _x2 ¼ _x0S30;

it follows that

S10 ¼ �nSax cos xx0; S20 ¼ �nSax sin xx0; S30 ¼ 0:

But since

S2 ¼ 1
2

SlmS
lm ¼ ðS12Þ2 � ðS10Þ2 � ðS20Þ2 ¼ n2S2ð1� a2x2Þ;

we find

n ¼ ð1� a2x2Þ�1=2;

S01 ¼ Sax cos xs; S02 ¼ Sax sin xs; S03 ¼ 0:

Finally, the vanishing momentum condition yields

0 ¼ m _x1 þ S1
0€x0 þ S1

2€x2 þ S1
3€x

3 ¼ �max sin xs� nSax2 sin xs;

0 ¼ m _x2 þ S2
0€x0 þ S2

1€x1 þ S2
3€x

3 ¼ max cos xsþ nSax2 cos xs;

0 ¼ m _x3 þ S3
0€x0 þ S3

1€x1 þ S3
2€x

2 ¼ 0;

whence

x
1� a2x2

¼ nx ¼ �m

S
;

showing that the orbital motion must be retrograde to the spin and yielding the
following relation between amplitude and frequency:

Sx
m
þ 1 ¼ a2x2; a ¼ 1

jxj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Sjxj
m

r

; n ¼
ffiffiffiffiffiffiffiffiffi

m

Sjxj

r

:
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The magnitude of the frequency can vary from 0 to m/S, the amplitude varying
accordingly from ? to 0.

We thus see that there is a one-parameter family of allowed circular motions in
flat empty space. In Lorentz frames in which the three-momentum is nonvanishing,
these motions become spiral or cycloidal.

The energy, total angular momentum and absolute acceleration for the above
motion are readily found:

P0 ¼ m _x0 þ S0
1€x1 þ S0

2€x
2 þ S0

3€x
3

¼ mnþ Sa2x3 ¼ mnþ n3Sa2x3

¼ m
m

Sjxj

� �1=2

� m

Sjxj

� �3=2

Sjxj 1� Sjxj
m

� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffi

mSjxj
p

;

J12 ¼ x1P2 � x2P1 þ S12 ¼ S12 ¼ nS ¼
ffiffiffiffiffiffiffi

mS

jxj

s

;

J23 ¼ x2P3 � x3P2 þ S23 ¼ 0; J31 ¼ x3P1 � x1P3 þ S31 ¼ 0;

J01 ¼ x0P1 � x1P0 þ S01 ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffi

mSjxj
p

cos xsþ Snax cos xs ¼ 0;

J02 ¼ x0P2 � x2P0 þ S02 ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffi

mSjxj
p

sin xsþ Snax sin xs ¼ 0;

J03 ¼ x0P3 � x3P0 þ S03 ¼ 0;

€x2 ¼ �ð€x0Þ2 þ ð€x1Þ2 þ ð€x2Þ2 þ ð€x3Þ2 ¼ a2x4

¼ n4a2x4 ¼ m2

S2x2

1
x2

1� Sjxj
m

� �

x4 ¼ m2

S2
1� Sjxj

m

� �

;

ð€x2Þ1=2 ¼ m

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Sjxj
m

r

;

The following table is instructive:

v |x| a P0 J12 ð€x2Þ1=2

0 m/S 0 m S 0
1 0 ? 0 ? m/S

We observe the surprising and non-intuitive fact that the faster the particle
circulates the smaller is the total energy, and the greater is the total angular
momentum even though the circulation is retrograde to the spin.

A particle that is initially at rest will generally find itself executing this sort of
Zitterbewegung after a field has acted upon it. Within the framework of the point
particle limit, this result must be regarded as an anomaly. We may ask, however,
how big the effect is in the case of a macroscopic spinning body. In this case we do
not have a compensating central mass and the spin angular momentum is mev (see
p. 223 for the notation). Let f be the fractional loss of rest mass (defined by the
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squared four-momentum) that the body would be computed as suffering if
idealized as a point particle. For the kinds of forces envisaged in macroscopic
situations we shall have f 	 1.

In the frame in which the final three-momentum vanishes we have

ð1� fÞm ¼ P0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

mSjxj
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2evjxj
p

;

whence

evjxj ¼ 1� 2f;

a ¼ 1
jxj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Sjxj
m

r

¼ ev
1� 2f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� mevjxj
m

r

¼ ev
ffiffiffiffiffi

2f
p

	 e;

J12 ¼
ffiffiffiffiffiffiffi

mS

jxj

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2ev
1� 2f

ev

s

¼ ð1þ fÞS; ajxj ¼
ffiffiffiffiffi

2f
p

	 1;

ð€x2Þ1=2 ¼ m

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Sjxj
m

r

¼ m

mev

ffiffiffiffiffi

2f
p

¼
ffiffiffiffiffi

2f
p

ev
;

jxj
xrot

¼ 1� 2f
ev

e
v
¼ 1

v2

 1;

where xrot is the angular velocity of rotation of the body. The radius of the
Zitterbewegung circle is seen to be very small compared to the radius of the body,
and the Zitterbewegung frequency is seen to be much greater than the rotation
frequency of the body. The effect is therefore macroscopically unobservable. That
it must, in fact, be spurious may be seen by remembering that a real rigid rotating
body is an elastic medium and that the dynamical equations of an elastic medium
are of only the second differential order even in relativity theory. The anomalous
Zitterbewegung will be replaced by elastic internal vibrations arising from both
relativistic effects and the fact that the field (gravitational and electric) is not
generally uniform over the body and hence cannot be represented completely
accurately by only one or two terms of a power series expansion.

A.3: Charge Current Density. Variation of Four-Vector
Potential

Setting s equal to the proper time after the variation, we have

dL ¼ e _xldAl þ
1
2
llmdFlm ¼ e _xldAl � llmdAl�m;

ja � dW

dAaðzÞ
�
Z

ðeda
l _xl � da

l�ml
lmÞds;
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where

da
l � da

ld z; xðsÞð Þ; da
l�a � �d�l z; xðsÞð Þ;

with d(z, x(s)) treated as a density of unit weight at z and a scalar at x, so that

ja�a �
Z

�ed�l z; xðsÞð Þ _xl þ d�lm z; xðsÞð Þllm
� �

ds

� �e

Z

d
ds

d z; xðsÞð Þds � 0:

A.4: Energy–Momentum–Stress Density. Variation
of Metric Tensor

Once again, setting s equal to the proper time after all variations, we have

del
a ¼ dqabel

b �
1
2
ðglm � _xl _xmÞer

adgmr;

for some antisymmetric dqab: We check that

dea � eb þ ea � deb ¼ �el
aem

bdglm

_x � dea ¼ � _xlem
adglm

which are consistent with ea�eb = dab and _x � ea ¼ 0. Now

dCl
mr ¼

1
2
d glsðgms;r þ grs;m � gmr;sÞ
� �

¼ �1
2

glqgskdgqkðgms;r þ grs;m � gmr;sÞ þ
1
2

glsðdgms;r þ dgrs;m � dgmr;sÞ

¼ �glqCk
mrdgqk þ

1
2

glsðdgms�r þ dgrs�m � dgmr�sÞ

þ 1
2

gls Cq
mrdgqs þ Cq

srdgmq þ Cq
rmdgqs þ Cq

smdgrq
�

�Cq
msdgqr � Cq

rsdgmq
�

¼ 1
2

glsðdgms�r þ dgrs�m � dgmr�sÞ:

Variation of the metric and covariant differentiation with respect to s are not
generally commutative:

d _Al � D
Ds

dAl ¼ d
d
ds

Al þ Cl
mrAm _xr

� �

� d
ds

dAl � Cl
mr _xrdAm

¼ dCl
mrAm _xr;
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D
Ds

del
a ¼ d _qabel

b þ dqab _el
b þ

1
2
€xl _xmer

adgmr þ
1
2

_xl€xmer
adgmr

� 1
2
ðglm � _xl _xmÞ _er

adgmr �
1
2
ðglm � _xl _xmÞer

a

D
Ds

dgmr

¼ d _qabel
b þ dqabXbcel

c þ dqabðeb � €xÞ _xl

þ 1
2
€xl _xmer

adgmr þ
1
2

_xl€xmer
adgmr

� 1
2
ðglm � _xl _xmÞ Xaber

bdgmr þ ðea � €xÞ _xrdgmr þ er
adgmr�s _xs

� �

;

d _el
a ¼ �

1
2
Xabel

b _xm _xrdgmr þ dXabel
b þ Xabdel

b

þ 1
2
ðea � €xÞ _xl _xm _xrdgmr þ ðdea � €xÞ _xl þ _xlem

a€xrdgmr þ ðea � d€xÞ _xl

¼ �1
2
Xabel

b _xm _xrdgmr þ dXabel
b þ Xabdqbcel

c

� 1
2
ðglm � _xl _xmÞXaber

bdgmr þ ðea � €xÞ _xl _xm _xrdgmr

þ dqabðeb � €xÞ _xl þ 1
2

_xl€xmer
adgmr þ _xl _xm _xreasdCs

mr;

0 ¼ D
Ds

del
a � d _el

a þ em
a _xrdCl

mr

¼ d _qab � ðXacdqcb � XbcdqcaÞ þ
1
2
Xab _xm _xrdgmr � dXab

� 


el
b

þ 1
2
€xl _xmer

adgmr �
1
2

Plmðea � €xÞ _xrdgmr þ
1
2

Plmer
a _xsðdgms�r � dgrs�mÞ;

since
� 1

2
ðglm � _xl _xmÞer

a _xsdgmr�s � _xl _xmear _xsdCr
ms þ er

a _xsdCl
rs

¼ 1
2

glmer
a _xsð�dgmr�s þ dgrm�s þ dgsm�r � dgrs�mÞ

þ 1
2

_xl _xmer
a _xsðdgmr�s � dgmr�s � dgsr�m þ dgms�rÞ:

From this it follows that

0 ¼ d _qab � ðXacdqcb � XbcdqcaÞ þ
1
2
Xab _xm _xrdgmr � dXab

þ 1
2

_xl em
aðeb � €xÞ � em

bðea � €xÞ
� �

dglm �
1
2

_xl em
aer

b � em
ber

a

� �

dglm�r;

dvna ¼
1
2

_xna _xl _xmdglm � dXabxnb

¼ 1
2
ðvna þ XabxnbÞ _xl _xmdglm � d _qabxnb þ ðXacdqcb � XbcdqcaÞxnb
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� 1
2
Xabxnb _xl _xmdglm �

1
2

_xl em
aðeb � €xÞ � em

bðea � €xÞ
� �

xnbdglm

þ 1
2

_xl em
aer

b � em
ber

a

� �

xnbdglm�r;

dla ¼
1
2
eabc

X

n

enxnb
1
2

vnc _xl _xmdglm � d _qcdxnd þ ðXcedqed � XdedqecÞxnd

�

� 1
2

_xl em
cðed � €xÞ � em

dðec � €xÞ
� �

xnddglm

þ 1
2

_xl em
cer

d � em
der

c

� �

xnbdglm�r




;

dL ¼ 1
2
ðm0 � KÞ _xl _xmdglm

þ
X

n

mnvna
1
2

vna _xl _xmdglm � d _qabxnb þ ðXacdqcb � XbcdqcaÞxnb

�

� 1
2

_xl em
aðeb � €xÞ � em

bðea � €xÞ
� �

xnbdglm

þ 1
2

_xl em
aer

b � em
ber

a

� �

xnbdglm�r




� 1
4
labFab _xl _xmdglm þ lab dqacel

c �
1
2
ðglr � _xl _xrÞes

adgrs

� 


em
bFlm

þ 1
2

Fab

X

n

enxna
1
2

vnb _xl _xmdglm � d _qbcxnc þ ðXbddqdc � XcddqdbÞxnc

�

� 1
2

_xl em
bðec � €xÞ � em

cðeb � €xÞ
� �

xncdglm

þ1
2

_xl em
ber

c � em
cer

b

� �

xncdglm�r




¼ 1
2
ðm0 þ KÞ _xl _xmdglm þ

1
2

Sabd _qab þ XacScbdqab þ Faclcbdqab

� 1
2

_xl€xrSm
rdglm �

1
2

_xlSmrdglm�r �
1
2
ðglr � _xl _xrÞlsmFlmdgrs

¼ 1
2
ðm0 þ KÞ _xl _xmdglm þ

1
2

d
ds
ðSabdqabÞ þ

1
2

_xlSm
r€xrdglm

� 1
2

_xlSmrdglm�r þ
1
2
lmrFrsðgsl � _xs _xlÞdglm;

where we have used the relations on p. 229. We may choose the proper time
interval in the action integral W = $Lds so that dqab vanishes at the endpoints
when dglm has compact support. Then introducing

dab
lm ¼

1
2

da
ld

b
m þ da

md
b
l

� 	

d z; xðsÞð Þ;
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we have

Tab � 2
dW

dgabðzÞ

¼
Z

ðm0 þ KÞdab
lm _xl _xm þ dab

lm _xlSm
r€xr � dab

lm�r _xlSmr
h

þdab
lml

mrFrsðgsl � _xs _xlÞ
i

ds:

Finally, let us consider conservation of energy–momentum. Let gab, Aa and the
dynamical variables suffer an infinitesimal coordinate transformation dxlðsÞ, dqi,

dgab ¼ �gab;cdnc � gcbdnc
;a � gacdnc

;b ¼ �dna�b � dnb�a;

dAa ¼ �Aa;bdnb � Abdnb
;a ¼ �Aa�bdnb � Abdnb

�a:

Because of the coordinate invariance of the action, we have

0 ¼ dW ¼
Z

dW

dgab
dgab þ

dW

dAb
dAb

� �

d4zþ
Z

dW

dxl
dxl þ dW

dqi
dqi

� �

ds

¼
Z

�Tabdna�b � jbðAb�adna þ Aadna
�bÞ

h i

d4z

¼
Z

Tab
�b � Fa

bjb
� 	

dnad4z;

where the penultimate line follows by virtue of the dynamical equations and the
last by virtue of the charge conservation law j� b

b = 0. Since dna is arbitrary, we
must have

Tab
�b ¼ Fa

bjb:

Let us now check this. Making use of the identity

dab
lm�b ¼ �

1
2
ðda

l�m þ da
m�lÞ;

we find

Tab
�b � Fa

bjb ¼
Z

�ðm0 þ KÞda
l�m _xl _xm � 1

2
ðda

l�m þ da
m�lÞ _xlSm

r€xr

�

þ 1
2
ðda

l�mr þ da
m�lrÞ _xlSmr � 1

2
ðda

l�m þ da
m�lÞlmrFrsðgsl � _xs _xlÞ

�eFa
bd

b
l _xl þ eFa

bd
b
l�ml

lm
i

ds

¼
Z

da
l

D
Ds
ðm0 þ KÞ _xl½ � � 1

2
da

l�m _xlSm
r€xr þ 1

2
da

l
D
Ds
ðSl

m€xmÞ
�

þ 1
4

Rs
mrld

a
s _xlSmr þ 1

2
Rs

lrmd
a
s _xlSmr
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� 1
2
da

l�mðPlrFrsl
sm � PmrFrsl

sl � _xlSm
r€xr þ _xmSl

r€xrÞ

� 1
2
ðda

l�m þ da
m�lÞlmrFl

r þ
1
2
da

l�ml
mrFrs _xs _xl

�1
2
da

l
D
Ds
ðllmFmr _xrÞ � eda

lFl
m _xm þ ðda

rFr
lÞ�mllm

�

ds

¼
Z

da
l

D
Ds
ðm0 þ KÞ _xl þ Sl

m€xm � llmFmr _xr
� �

�

�1
2

Rl
mrs _xmSrs � eFl

m _xm � 1
2
lmrFl

mr�

�

ds

¼ 0;

by virtue of the dynamical equations (A.2) on p. 235.
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Appendix B
Weak Field Gravitational Wave

Rlmrs ¼ �
1
2
ðhlr;ms þ hms;lr � hls;mr � hmr;lsÞ;

hRlmrs ¼ Rq
lmrs;q ¼ �Rq

lmsq;r � Rq
lmqr;s

¼ Rq
msq;rl þ Rq

lsq;rm þ Rq
mqr;sl þ Rq

lqr;sm

¼ Rlr;ms þ Rms;lr � Rls;mr � Rmr;ls

¼ 0

in empty space because Rlm = 0 in empty space.
A plane gravitational wave is given by

Rlmrs ¼ almrse
ip�x þ c:c:; p2 ¼ 0;

where the amplitude almrs satisfies

almrs ¼ �almsr ¼ arslm; almrs þ alrsm þ alsmr ¼ 0;

almrspq þ almsqpr þ almqrps ¼ 0:

We introduce three vectors e1, e2 and n satisfying

ea � eb ¼ dab; ea � n ¼ 0; n2 ¼ �1; ea � p ¼ 0:

Define

p � pþ 2ðn � pÞn:

Then

n � p ¼ �n � p; p � p ¼ 2ðn � pÞ2;

p2 ¼ 4ðn � pÞ2 � 4ðn � pÞ2 ¼ 0; ea � p ¼ 0:
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Let Tlm be any antisymmetric tensor satisfying

Tlmpr þ Tmrpl þ Trlpm ¼ 0:

Tlm must have the form

Tlm ¼ alpm � ampl;

for some al. It suffices to choose al in the form

al ¼ aaeal þ apl;

whence

Tlm ¼ aaðealpm � eamplÞ þ aðplpm � pmplÞ:

It is clear similarly that almrs must have the form

almrs ¼ Aabðealpm � eamplÞðebrps � ebsprÞ þ Baðealpm � eamplÞðprps � psprÞ
þ Baðearps � easprÞðplpm � pmplÞ þ Cðplpm � pmplÞðprps � psprÞ;

with Aab = - Aba, in which we have used the algebraic symmetries

almrs ¼ �almsr ¼ arslm:

But we also have

0 ¼ almrs þ alrsm þ alsmr

¼ Aab ðealpm � eamplÞðebrps � ebsprÞ þ ðealpr � earplÞðebspm � ebmpsÞ
�

þðealps � easplÞðebmpr � ebrpmÞ
�

þ Ba ðealpm � eamplÞðprps � psprÞ þ ðealpr � earplÞðpspm � pmpsÞ
�

þðealps � easplÞðpmpr � prpmÞ
�

þ Ba ðplpm � pmplÞðearps � easprÞ þ ðplpr � prplÞðeaspm � eampsÞ
�

þðplps � psplÞðeampr � earpmÞ
�

þ C ðplpm � pmplÞðprps � psprÞ þ ðplpr � prplÞðpspm � pmpsÞ
�

þðplps � psplÞðpmpr � prpmÞ
�

¼ 0:

Finally, using Rlm = 0 (empty space), we have

0 ¼ ar
lrm

¼ Aabðealpr � earplÞðebmp
r � er

bpmÞ þ Baðealpr � earplÞðpmp
r � prpmÞ

þ Baðeamp
r � er

apmÞðplpr � prplÞ þ Cðplpr � prplÞðpmp
r � prpmÞ

¼ Aaaplpm þ ðp � pÞBaðealpm þ eamplÞ � ðp � pÞCðplpm þ pmplÞ;
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which implies

Ba ¼ 0; C ¼ 0; Aaa ¼ 0;

whence, writing

Aþ � A11 ¼ �A22; A� � A12 ¼ A21;

we have

almrs ¼ Hlrpmps þ Hmsplpr � Hlspmpr � Hmrplps;

where

Hlm ¼ Aþðe1le1m � e2le2mÞ þ A�ðe1le2m þ e1me2lÞ:

The equation of geodesic deviation in the rest frame of a particle pair, with
n = (1, 0, 0, 0) in this frame, is

d2gi

dt2
¼ �Ri0j0gj ¼ � Hijp0p0eip�x þ c:c:

� �

gj

¼ �2 Aþðe1ie1j � e2ie2jÞ þ A�ðe1ie2j þ e2ie1jÞ
� �

x2 cos xtgj;

setting the particle pair at the origin and writing x0 = t. For |A+|, |A9|	1, we
have (with t = 0 when _gi ¼ 0)

giðtÞ ¼ dij þ 2 Aþðe1ie1j � e2ie2jÞ þ A�ðe1ie2j þ e2ie1jÞ
� �

cos xt

 �

gjð0Þ:
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Appendix C
Stationary Spherically (or
Rotationally) Symmetric Metric

The metric is given by

ds2 ¼ �FðrÞdt2 þ 2EðrÞx � dxdt þ DðrÞðx � dxÞ2 þ CðrÞdx2;

where r = (x�x)1/2, t = x0. Note that

dr ¼ r�1x � dx;

whence
x � dx ¼ rdr:

Introducing spherical coordinates r, h, /, where

x1 ¼ r sin h cos /; x2 ¼ r sin h sin /; x3 ¼ r cos /;

we get

ds2 ¼ �Fdt2 þ 2rEdrdt þ r2Ddr2 þ Cðdr2 þ r2dh2 þ r2 sin2 hd/2Þ:

Let

t0 ¼ t �
Z

rE

F
dr:

Then

dt0 ¼ dt � rE

F
dr; Fdt02 ¼ Fdt2 � 2rEdrdt þ r2E2

F
dr2;

and

ds2 ¼ �Fdt02 þ Gdr2 þ Cðdr2 þ r2dh2 þ r2 sin2 hd/2Þ;

where

G ¼ r2 Dþ E2

F

� �

:
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Let r0 = C1/2r. Then

dr0 ¼ C1=2dr þ 1
2

rC�1=2C0dr;

or

dr ¼ C�1=2 1þ 1
2

r
C0

C

� ��1

dr0;

and

ds2 ¼ �Fdt02 þ GC�1 1þ 1
2

r
C0

C

� ��2

dr02 þ 1þ 1
2

r
C0

C

� ��2

dr02

þ r02ðdh2 þ sin2 hd/2Þ
¼ �Fdt02 þ Adr02 þ r02ðdh2 þ sin2 hd/2Þ;

where

A ¼ 1þ G

C

� �

1þ 1
2

r
C0

C

� ��2

:

We now drop the primes and write

ds2 ¼ �e2Udt2 þ e2Kdr2 þ r2ðdh2 þ sin2 hd/2Þ;

where

U ¼ 1
2

ln F; K ¼ 1
2

ln A:

C.1: Introducing an Orthonormal Frame Field {ea}
and Its Dual {ea}

We have

g�1 ¼ gabea � eb; g ¼ gabea � eb ¼ glmdxl � dxm:

In the present case,

g ¼ �e2Udt � dt þ e2Kdr � dr þ r2ðdh� dhþ sin2 hd/� d/Þ
¼ �et � et þ er � er þ eh � eh þ e/ � e/;

where

et ¼ eUdt; er ¼ eKdr; eh ¼ rdh; e/ ¼ r sin hd/;

det ¼ eUU0dr ^ dt ¼ e�KU0er ^ et;
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der ¼ eKK0dr ^ dr ¼ 0; deh ¼ dr ^ dh ¼ r�1e�Ker ^ eh;

de/ ¼ sin hdr ^ d/þ r cos hdh ^ d/ ¼ r�1e�Ker ^ e/ þ r�1 cot heh ^ e/:

From the equation

dea ¼ �xa
b ^ eb

and the antisymmetry of the connection one-form xab, we may infer that the
nonvanishing components of xa

b are

xt
r ¼ e�KU0et ¼ eU�KU0dt;

xr
t ¼ e�KU0et ¼ eU�KU0dt;

xr
h ¼ �r�1e�Keh ¼ �e�Kdh;

xr
/ ¼ �r�1e�Ke/ ¼ �e�K sin hd/;

xh
r ¼ r�1e�Keh ¼ e�Kdh;

xh
/ ¼ �r�1 cot he/ ¼ � cos hd/;

x/
r ¼ r�1e�Ke/ ¼ e�K sin hd/;

x/
h ¼ r�1 cot he/ ¼ cos hd/:

C.2: Computing the Curvature Tensor

The curvature two-form is

Xa
b ¼ dxa

b þ xa
e ^ xe

b:

Hence,

Xt
r ¼ dxt

r ¼ eU�K U00 þ U0ðU0 � K0Þ½ �dr ^ dt

¼ e�2K U00 þ U0ðU0 � K0Þ½ �er ^ et;

Xt
h ¼ xt

r ^ xr
h ¼ �r�1e�2KU0et ^ eh;

Xt
/ ¼ xt

r ^ xr
/ ¼ �r�1e�2KU0et ^ e/;

Xr
h ¼ dxr

h þ xr
/ ^ x/

h ¼ e�KK0dr ^ dh ¼ r�1e�2KK0er ^ eh;

Xr
/ ¼ dxr

/ þ xr
h ^ xh

/

¼ e�KK0 sin hdr ^ d/� e�K cos hdh ^ d/þ e�K cos hdh ^ d/

¼ r�1e�2KK0er ^ e/;

Xh
/ ¼ dxh

/ þ xh
r ^ xr

/ ¼ sin hdh ^ d/� e�2K sin hdh ^ d/

¼ r�2 1� e�2K
� �

eh ^ e/:
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From the equation

Xa
b ¼

1
2

Ra
bcdec ^ ed;

we may infer that the nonvanishing components of the curvature tensor are

Rtrtr ¼ e�2K U00 þ U0ðU0 � K0Þ½ �; Rthth ¼ r�1e�2KU0;

Rt/t/ ¼ r�1e�2KU0; Rrhrh ¼ r�1e�2KK0;

Rr/r/ ¼ r�1e�2KK0; Rh/h/ ¼ r�2 1� e�2K
� �

;

together with the components obtained from these by using the antisymmetry of
Rabcd in its first pair of indices and in its last pair.

The nonvanishing components of the Ricci tensor

Rab ¼ gcdRacbd

are

Rtt ¼ Rtrtr þ Rthth þ Rt/t/ ¼ e�2K U00 þ U0ðU0 � K0Þ þ 2r�1U0
� �

;

Rrr ¼ �Rrtrt þ Rrhrh þ Rr/r/ ¼ e�2K �U00 � U0ðU0 � K0Þ þ 2r�1K0
� �

;

Rhh ¼ �Rhtht þ Rhrhr þ Rh/h/ ¼ r�1e�2K �U0 þ K0 þ r�1 e2K � 1
� �� �

;

R// ¼ �R/t/t þ R/r/r þ R/h/h ¼ r�1e�2K �U0 þ K0 þ r�1 e2K � 1
� �� �

:

C.3: Vacuum Solution

In this case, Rab = 0, whence

U0 þ K0 ¼ 0:

The boundary condition is

lim
r!1

U ¼ 0 ¼ lim
r!1

K:

Hence,

U ¼ �K;

and we then have

2K0 þ r�1 e2K � 1
� �

¼ 0;

so that

2e�2KK0

1� e�2K
¼ �1

r
;

d
dr

ln 1� e�2K
� �

¼ �1
r
:
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Therefore

ln 1� e�2K
� �

¼ � ln r þ const.;

and

1� e�2K ¼ C

r
; e�2K ¼ e2U ¼ 1� C

r
; U ¼ 1

2
ln 1� C

r

� �

:

We check as follows:

U0 ¼ C

2
1=r2

1� C=r
¼ C

2
1

r2 � Cr
;

U00 ¼ �C

2
2r � C

ðr2 � CrÞ2
;

U00 þ U0ðU0 � K0Þ þ 2r�1U0 ¼ U00 þ 2U02 þ 2r�1U0

¼ �C

2
2r � C

ðr2 � CrÞ2
þ C2

2
1

ðr2 � CrÞ2
þ C

1
rðr2 � CrÞ

¼ C

rðr2 � CrÞ2
�r2 þ 1

2
Cr þ 1

2
Cr þ r2 � Cr

� �

¼ 0:

Now

ds2 ¼ � 1� C

r

� �

dt2 þ 1� C

r

� ��1

dr2 þ r2ðdh2 þ sin2 hd/2Þ:

The quantity h00 = C/r is -2 times Newton’s potential energy, i.e.,

h00 ¼
C

r
¼ 2MG

r
:

Hence, C = 2MG and

ds2 ¼ � 1� 2MG

r

� �

dt2 þ 1� 2MG

r

� ��1

dr2 þ r2ðdh2 þ sin2 hd/2Þ:

For a radially infalling photon,

0 ¼ glm
dxl

dt

dxm

dt
¼ � 1� 2MG

r

� �

þ 1� 2MG

r

� ��1 dr
dt

� �2

;

dr
dt
¼ � 1� 2MG

r

� �

:

The Eddington time coordinate is

t
 ¼ t þ 2MG ln
r

2MG
� 1

�

�

�

�

�

�
; dt
 ¼ dt þ dr

r
2MG� 1

;
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whence

dt


dr
¼ � 1

1� 2MG
r

þ 1
r

2MG� 1
¼
�1þ 2MG

r

1� 2MG
r

¼ �1;

and

ds2 ¼ � 1� 2MG

r

� �

dt
 � dr
r

2MG� 1

� �2

þ 1� 2MG

r

� ��1

dr2

þ r2ðdh2 þ sin2 hd/2Þ
ðC:1Þ

ds2 ¼ � 1� 2MG

r

� �

dt
2 þ 4MG

r
dt
dr

þ 1� 2MG

r

� ��1

1� 2MG

r

� �2
" #

dr2 þ r2ðdh2 þ sin2 hd/2Þ

¼ � 1� 2MG

r

� �

dt
2 þ 4MG

r
dt
dr þ 1þ 2MG

r

� �

dr2

þ r2ðdh2 þ sin2 hd/2Þ

¼ �dt
2 þ dr2 þ r2ðdh2 þ sin2 hd/2Þ þ 2MG

r
ðdt
 þ drÞ2:

ðC:2Þ

Returning to Cartesian coordinates, we have

ds2 ¼ �dt
2 þ dx2 þ 2MG

r
dt
 þ x�dx

r

� �2

; r ¼ ðx � xÞ1=2;

or

ds2 ¼ ðglm þ lllmÞdxldxm; dx0 ¼ dt
;

where

ðllÞ ¼
2MG

r

� �1=2

1;
x

r

� 	

; glmlllm ¼ 0:

C.4: Metrics of the Form glm 5 glm + ll lm, with glmll lm 5 0

Define ll:glmlm. Then glm = glm - lllm. This is proved by

glrgrm ¼ ðglr � lllrÞðgrm þ lrlmÞ ¼ dl
m þ lllm � lllm ¼ dl

m ;

since lrlr = 0. Note also that

glmlm ¼ ll; llll;m ¼ llll;m ¼ 0;
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d ln g ¼ glmdglm ¼ 2ðglm � lllmÞlldlm ¼ 2lmdlm ¼ 0;

whence

detðglmÞ ¼ �g ¼ �1; g ¼ 1; Cm
ml ¼ 0:

C.4.1: Ricci Tensor

The Ricci tensor is

Rlm ¼ Rr
lrm ¼ Cr

lm;r � Cr
lr;m þ Cr

rsC
s
ml � Cr

msC
s
rl

¼ Cr
lm;r � Cr

slC
s
rm:

All equations must hold equally well if we rescale ll and write

glm ¼ glm þ alllm; glm ¼ glm � alllm;

Equations must hold for arbitrary constant a. We have

Clmr ¼
1
2
a ðlllmÞ;r þ ðlllrÞ;m � ðlmlrÞ;l
h i

;

Cl
mr ¼

1
2
aðgls � alllsÞ ðlslmÞ;r þ ðlslrÞ;m � ðlmlrÞ;s

h i

¼ 1
2
a ðlllmÞ;r þ ðlllrÞ;m � glsðlmlrÞ;s
h i

þ 1
2
a2lllsðlmlrÞ;s;

Rlm ¼
1
2
a ðlrllÞ;mr þ ðlrlmÞ;lr � grsðlllmÞ;rs

h i

þ 1
2
a2ðlrlsÞ;rðlllmÞ;s þ

1
2
a2lrlsðlllmÞ;rs

� 1
2
a ðlrlsÞ;l þ ðlrllÞ;s � grqðlsllÞ;q
h i

þ 1
2
a2lrlqðlsllÞ;q

� �

� 1
2
a ðlslrÞ;m þ ðlslmÞ;r � gskðlrlmÞ;k
h i

þ 1
2
a2lslkðlrlmÞ;k

� �

¼ 1
2
a ðlrllÞ;mr þ ðlrlmÞ;lr � grsðlllmÞ;rs

h i

þ 1
2
a2 ðlrlsÞ;rðlllmÞ;s þ lrlsðlllmÞ;rs

h

� 1
2

lrls;lls;rlm þ
1
2

lr;llklr;klm �
1
2

lr;slllslr;m

� 1
2
ðlrllÞ;sðlslmÞ;r þ

1
2
gsklr;slllr;klm
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þ1
2

ls;qllls;ml
q þ 1

2
grqls;qllls;rlm �

1
2
ðlkllÞ;qðlqlmÞ;k




� 1
4
a3 lslklr;slllr;klm þ lrlqls;qllls;rlm
� 	

: ðC:3Þ

In empty spacetime, we have Rlm = 0, and since a is arbitrary the three terms
above must vanish separately. If ll = 0, the third term implies

a2 ¼ 0; where al ¼ lmll;m ¼ lmðll;m þ Cr
lml

lÞ ¼ lmll;m;

since lllmClm
r = 0. We also have a� l = 0, whence

al ¼ All for some scalar functionA:

Now

al ¼ glmam ¼ glmam ¼ lmll;m ¼ lmll;m:

Define B:l,l
l . Then the first term implies

hðlllmÞ ¼ ðAþ BÞll
� �

;mþ ðAþ BÞlm½ �;l;

where

h � glm o2

oxloxm
:

Contracting this equation with glm and dividing by 2, we get

ðAþ BÞll½ �;l¼ 0:

An alternative version of the uncontracted equation is

llhlm þ lmhll þ 2grsll;rlm;s ¼ llðAþ BÞ;m þ lmðAþ BÞ;l þ ðAþ BÞðll;m þ lm;lÞ:

Multiplication with ll and removal of a common factor lm yields

llhll ¼ llðAþ BÞ;l þ AðAþ BÞ
¼ llðAþ BÞ½ �;l�BðAþ BÞ þ AðAþ BÞ ¼ A2 � B2:

But

0 ¼ hðllllÞ ¼ 2ðllhll þ grsll;rll;sÞ;

whence

grsll;rll;s ¼ B2 � A2:
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We now prove that the term in a2 in the expression (C.3) automatically vanishes
when the terms in a and a3 do:

ðlrlsÞ;rðlllmÞ;s ¼ ðAþ BÞlsðlllmÞ;s ¼ 2AðAþ BÞlllm

lrlsll;rs ¼ lrðlsll;sÞ;r � lrls;rll;s ¼ lrðAllÞ;r � Alsll;s

¼ lrA;rll þ A2ll � A2ll ¼ lrA;rll;

lrlsðlllmÞ;rs ¼ lrlsðlllm;rs þ lmll;rs þ ll;rlm;s þ ll;slm;rÞ
¼ 2ðlrA;r þ A2Þlllm

ðlrllÞ;sðlslmÞ;r ¼ ðlllr;s þ lrll;sÞðlmls;r þ lslm;rÞ

¼ lllm ðlr;slsÞ;r � lr;srls
h i

þ Alllrlm;r þ Alml
sll;s þ A2lllm

¼ lllm ðAlrÞ;r � B;sl
s þ 3A2

h i

gsklr;slllr;klm ¼ lllmðB2 � A2Þ

Removing the factor a2lllm/2 from the term in a2, we now get

2AðAþ BÞ þ 2ðA;rlr þ A2Þ � ðAlrÞ;r þ B;rlr � 3A2 þ B2 � A2

¼ ðAlrÞ;r þ ðBlrÞ;r ¼ 0;

as claimed. From now on, we set a = 1.

C.4.2: Stationary Case

We assume that the ll are independent of the coordinate x0. Write ll ¼ lð1; kÞ:
Since ll is null, k is a unit three-vector, and the equation

hðlllmÞ ¼ ðAþ BÞll
� �

;mþ ðAþ BÞlm½ �;l

decomposes into

r2ðl2Þ ¼ 0; r2ðl2kiÞ ¼ ðAþ BÞl½ �;i; ðC:4Þ

r2ðl2kikjÞ ¼ ðAþ BÞlki½ �;jþ ðAþ BÞlkj

� �

;i
:

The first equation allows the second to be rewritten in the form

l2ki;kk þ 2ðl2Þ;kki;k ¼ ðAþ BÞl½ �;i:

This, together with the first equation, allows the third equation to be rewritten in
the form
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0 ¼ l2ki;kkkj þ l2kikj;kk þ 2l2ki;kki;k þ 2ðl2Þ;kkikj;k þ 2ðl2Þ;kki;kkj

� ðAþ BÞl½ �;jki � ðAþ BÞl½ �;ikj � ðAþ BÞlðki;j þ kj;iÞ
¼ 2l2ki;kki;k � ðAþ BÞlðki;j þ kj;iÞ;

or

M þMT � 1
8

MMT ¼ 0;

where

M � ðki;jÞ; p ¼ Aþ B

2l
ðassumingAþ B 6¼ 0Þ:

Since k2 ¼ 1; it follows that kjkj,i = 0, or MTk ¼ 0: From All = lmll,m, we also
have

Al ¼ lml;m ¼ lkil;i; whence kil;i ¼ A;

and

Alki ¼ lmðlkiÞ;m ¼ lkjðlkiÞ;j ¼ Alki þ l2kjki;j;

or
Mk ¼ 0;

assuming that l2 = 0. Evidently there exists an orthogonal matrix O such that

Ok ¼
1
0
0

0

@

1

A; OMOT ¼ diagð0;NÞ;

where N is a 2 9 2 matrix satisfying

N þ NT � 1
p

NNT ¼ 0:

Note that O1iki = 1 and O1iO1i = 1, whence it follows that

O1i ¼ ki:

Note also that

1� 1
p

N

� �

1� 1
p

NT

� �

¼ 1� 1
p

N þ NT � 1
p

NNT

� �

¼ 1;

which implies that 1 - N/p is a 2 9 2 orthogonal matrix and hence that

1� 1
p

N ¼ cos h � sin h
sin h cos h

� �

or
cos h � sin h
� sin h � cos h

� �

;
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for some h. Choosing the first possibility, we have

N ¼ p
1� cos h sin h
� sin h 1� cos h

� �

and

ki;j ¼ O�i

0 0 0

0 pð1� cos hÞ p sin h

0 �p sin h pð1� cos hÞ

0

B

@

1

C

A

O�j

¼ pð1� cos hÞðO2iO2j þ O3iO3jÞ þ p sin hðO2iO3j � O3iO2jÞ
¼ pð1� cos hÞðdij � O1iO1jÞ þ p sin heijkO1k

¼ aðdij � kikjÞ þ beijkkk;

where

a � pð1� cos hÞ; b � p sin h:

Now

r � k ¼ 2a; r� k ¼ �2bk;

and

r� ðr � kÞ ¼ rðr � kÞ � r2k;

whence

r2k ¼ rðr � kÞ � r� ðr � kÞ ¼ 2raþ 2r� ðbkÞ
¼ 2ra� 2k�rbþ 2br� k ¼ 2ra� 2k�rb� 4b2k:

But also

ki;jj ¼ a;jðdij � kikjÞ � aki;jkj � akikj;j þ eijkðbkkÞ;j;

or

r2k ¼ ra� kðk � raÞ � 2ða2 þ b2Þk� k�rb: ðC:5Þ

Subtracting one equation from the other, we get

0 ¼ raþ kðk � raÞ þ 2ða2 � b2Þk� k�rb;

whence

k � ra ¼ b2 � a2; ra ¼ ðb2 � a2Þkþ k�rb;

and (see below)

k�ra ¼ k� ðk�rbÞ ¼ kðk � rbÞ � rb ¼ �2abk�rb:
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Now

0 ¼ �1
2
r � ðr � kÞ ¼ r � ðbkÞ ¼ k � rbþ 2ab;

whence

k � rb ¼ �2ab; rb ¼ �2abk� k�ra:

Let c:a + ib. Then

k � rc ¼ k � ðraþ irbÞ ¼ b2 � a2 � 2iab ¼ �c2;

rc ¼ raþ irb ¼ ðb2 � a2 � iabÞkþ k� ðrb� iraÞ
¼ �c2k� ik�rc;

and finally,

r2c ¼ �ðc2kiÞ;i � ieijkðkjc;aÞ;i
¼ �2cðk � rcÞ � c2r � k� iðrcÞ � ðr � kÞ
¼ 2c3 � 2ac2 � 2ibc2 ¼ 2c2ðc� a� ibÞ ¼ 0;

ðrcÞ2 ¼ c4 � ðk�rcÞ2 ¼ c4 � eijkeimnkjc;kkmc;n

¼ c4 � ðrcÞ2 � ðk � rcÞ2 ¼ 1
2
ðc4 þ c4Þ ¼ c4:

Let x = 1/c. Then

rx ¼ �rc
c2
¼ kþ ik�rc

c2
¼ k� ik�rx;

k � rx ¼ � 1
c2

k � rc ¼ 1; ðrxÞ2 ¼ 1;

rx�rx
 ¼ ðk� ik�rxÞ � ðkþ ik�rx
Þ
¼ ikðk � rx
Þ � iðrx
Þk � k� iðrxÞk � kþ ikðk � rxÞ
þ kðrx
Þ � ðk�rxÞ
¼ �iðrxþrx
Þ þ k ðrx
Þ � ðk�rxÞ þ 2i½ �;

0 ¼ rx � ðrx�rx
Þ ¼ �i� iðrxÞ � ðrx
Þ þ ðrx
Þ � ðk�rxÞ þ 2i;

rx�rx
 ¼ �iðrxþrx
Þ þ ik 1þ ðrxÞ � ðrx
Þ½ �;

k ¼ rxþrx
 � irx�rx


1þrx � rx

:

Note that r2a = 0 and r2b = 0. Let l2 = fa. Then l2 and hence f will be
determined by the two equations in (C.4) on p. 259. The first of these equations
yields
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0 ¼ r2ðl2Þ ¼ ar2f þ 2ra � rf :

By noting that

a2 þ b2 ¼ p2ð1� 2 cos hþ cos2 hþ sin2 hÞ

¼ 2p2ð1� cos hÞ ¼ 2ap ¼ a
l
ðAþ BÞ;

whence

lðAþ BÞ ¼ l2

a
ða2 þ b2Þ ¼ f ða2 þ b2Þ;

we may rewrite the second equation of (C.4) in the form

0 ¼ r2ðl2kiÞ � ðAþ BÞl½ �;i
¼ r2ðf akiÞ � f ða2 þ b2Þ

� �

;i

¼ ðar2f þ 2ra � rf Þki þ 2ðf aÞ;jki;j þ f ar2ki � f ða2 þ b2Þ
� �

;i

¼ 2aðf aÞ;jðdij � kikjÞ þ 2bðf aÞ;jeijkkk þ f ar2ki � f ða2 þ b2Þ
� �

;i:

Using (C.5) for r2k on p. 261, we get

0 ¼ 2a2rf þ 2f ara� 2a2kðk � rf Þ � 2f akðk � raÞ � 2abk�rf

� 2f bk�raþ f ara� f akðk � raÞ � 2f aða2 þ b2Þk

� f ak�rb� ða2 þ b2Þrf � 2f ara� 2f brb

¼ ða2 � b2Þrf � 2a2kðk � rf Þ � 2abk�rf þ f ara� 3f aðb2 � a2Þk

þ 2f bð2abkþrbÞ � 2f aða2 þ b2Þk� f a ra� ðb2 � a2Þk
� �

� 2f brb

¼ ða2 � b2Þrf � 2a2kðk � rf Þ � 2abk�rf :

Whence, dotting and crossing with k;

0 ¼ �ða2 þ b2Þk � rf ; or k � rf ¼ 0;

0 ¼ 2abrf þ ða2 � b2Þk�rf :

Since

det a2 � b2 �2ab
2ab a2 � b2

� �

¼ ða2 � b2Þ2 þ 4a2b2 ¼ ða2 þ b2Þ2 6¼ 0;

it follows that

rf ¼ 0 and k�rf ¼ 0:

That is, f is a constant and l2 = const. 9 a.
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C.5: Kerr Metric

In this case,

c ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxþ iaÞ2
q ; x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxþ iaÞ2
q

� qþ ir;

q2 � r2 þ 2iqr ¼ x2 ¼ ðxþ iaÞ2 ¼ x2 � a2 þ 2ia � x:

We write

r ¼
ffiffiffiffiffi

x2
p

; a ¼
ffiffiffiffiffi

a2
p

:

Then

q2 � r2 ¼ r2 � a2; qr ¼ a � x;

q2 � ða � xÞ
2

q2
¼ r2 � a2; q4 � ðr2 � a2Þq2 � ða � xÞ2 ¼ 0;

q2 ¼ 1
2

r2 � a2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr2 � a2Þ2 þ 4ða � xÞ2
q

� 


¼ 1
2

r2 � a2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr2 þ a2Þ2 � 4ða� xÞ2
q

� 


;

r ¼ a � x
q
; c ¼ 1

x
¼ 1

qþ ir
¼ q� ir

q2 þ r2
;

q2 þ r2 ¼ q2 þ ða � xÞ
2

q2
¼ q4 þ ða � xÞ2

q2
;

a ¼ q
q2 þ r2

¼ q3

q4 þ ða � xÞ2
; b ¼ � r

q2 þ r2
¼ � qa � x

q4 þ ða � xÞ2
;

rx ¼ 1
x
ðxþ iaÞ; rx
 ¼ 1

x

ðx� iaÞ;

1þrx � rx
 ¼ 1þ ðxþ iaÞ � ðxþ iaÞ
xx


¼ 1þ r2 þ a2

q2 þ r2

¼ q2 þ r2 þ r2 þ a2

q2 þ r2
¼ q2 þ ðq2 � r2 þ a2Þ þ r2 þ a2

q2 þ r2

¼ 2ðq2 þ a2Þ
q2 þ r2

;
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rxþrx
 � irx�rx
 ¼ 1
x
þ 1

x


� �

xþ i
1
x
� 1

x


� �

a

� i
xx

ðxþ iaÞ � ðx� iaÞ

¼ 1
xx


ðxþ x
Þx� iðx� x
Þaþ 2a� x½ �

¼ 2
q2 þ r2

ðqxþ raþ a� xÞ

¼ 2q
q2 þ r2

xþ 1
q2

aða � xÞ þ 1
q

a� x

� 


;

k ¼ rxþrx
 � irx�rx


1þrx � rx

¼ q

q2 þ a2
xþ 1

q2
aða � xÞ þ 1

q
a� x

� 


:

Choose axes so that a ¼ ð0; 0; aÞ and x ¼ ðx; y; zÞ. Then

a � x ¼ az; a� x ¼ ð�ay; ax; 0Þ;

k ¼ q
q2 þ a2

x� ay

q
; yþ ax

q
; zþ a2z

q2

� �

¼ qx� ay

q2 þ a2
;
qyþ ax

q2 þ a2
;

z

q

� �

;

ðlldxlÞ2 ¼ l2ðdx0 þ k � dxÞ2

¼ Cq3

q4 þ a2z2
dx0 þ qx� ay

q2 þ a2
dxþ qyþ ax

q2 þ a2
dyþ z

q
dz

� �2

:

Setting x0 = t, we have finally, for the arc length,

ds2 ¼ glmdxldxm þ ðlldxlÞ2

¼ �dt2 þ dx2 þ 2GMq3

q4 þ a2z2
dt þ q

q2 þ a2
ðxdxþ ydyÞ

�

þ a

q2 þ a2
ðxdy� ydxÞ þ 1

q
zdz




;

where we have set C = 2GM so that the metric reduces to that of the Eddington
form (C.2) of the Schwarzschild metric on p. 256 when a = 0.

Alternative coordinates are t, q, h, / such that

cos h ¼ z

q
; ðqþ iaÞei/ sin h ¼ xþ iy;

dz ¼ dðq cos hÞ ¼ cos hdq� q sin hdh;
1
q

zdz ¼ cos2 hdq� q sin h cos hdh;

dz2 ¼ cos2 hdq2 þ q2 sin2 hdh2 � 2q sin h cos hdqdh;
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dx2þdy2¼ jdðxþ iyÞj2¼ d ðqþ iaÞei/ sinh
� �

�

�

�

�

2

¼ ei/ sinhdqþðqþ iaÞei/ coshdhþ iðqþ iaÞei/ sinhd/
�

�

�

�

2

¼ sinhcos/dqþðqcos/�asin/Þcoshdh�ðqsin/þacos/Þsinhd/j
þ i sinhsin/dqþðqsin/þacos/Þcoshdhþðqcos/�asin/Þsinhd/½ �j2

¼ sinhcos/dqþðqcos/�asin/Þcoshdh�ðqsin/þacos/Þsinhd/½ �2

þ sinhsin/dqþðqsin/þacos/Þcoshdhþðqcos/�asin/Þsinhd/½ �2

¼ sin2 hdq2þ2qsinhcoshdqdh�2asin2 hdqd/þq2 cos2 hdh2

�2aqsinhcoshdhd/þa2 cos2 hdh2þ2aqsinhcoshdhd/þq2 sin2 hd/2

þa2 sin2 hd/2;

dx2 ¼ dq2 þ ðq2 þ a2 cos2 hÞdh2 þ ðq2 þ a2Þ sin2 hd/2 � 2a sin2 hdqd/;

xdxþ ydy ¼ 1
2

djxþ iyj2 ¼ 1
2

d ðq2 þ a2Þ sin2 h
� �

¼ q sin2 hdqþ ðq2 þ a2Þ sin h cos hdh;

xdy� ydx ¼ Im ðx� iyÞdðxþ iyÞ½ �
¼ Im ðq� iaÞe�i/ sin h ei/ sin hdqþ ðqþ iaÞei/ cos hdh

�


þiðqþ iaÞei/ sin hd/
��

¼ Im ðq� iaÞ sin2 hdqþ ðq2 þ a2Þ sin h cos hdhþ iðq2 þ a2Þ sin2 hd/
� �

¼ �a sin2 hdqþ ðq2 þ a2Þ sin2 hd/;

ds2 ¼ �dt2 þ dq2 þ ðq2 þ a2 cos2 hÞdh2 þ ðq2 þ a2Þ sin2 hd/2 � 2a sin2 hdqd/

þ 2GMq
q2 þ a2 cos2 h

dt þ q2

q2 þ a2
sin2 hdqþ q sin h cos hdh� a2

q2 þ a2
sin2 hdq

�

þ a sin2 hd/þ cos2 hdq� q sin h cos hdh


2

¼ �dt2 þ dq2 þ ðq2 þ a2 cos2 hÞdh2 þ ðq2 þ a2Þ sin2 hd/2 � 2a sin2 hdqd/

þ 2GMq
q2 þ a2 cos2 h

dt þ q2 þ a2 cos 2h
q2 þ a2

dqþ a sin2 hd/

� �2

:

We introduce new variables t0 and /0 given by

t ¼ t0 þ
Z

2GMq
q2 þ a2 � 2GMq

dq;

/ ¼ /0 þ
Z

2a

q2 þ a2
� a

q2 þ a2 � 2GMq

� �

dq:
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Then

ds2 ¼ � dt0 þ 2GMq
q2 þ a2 � 2GMq

dq

� �2

þdq2 þ ðq2 þ a2 cos2 hÞdh2

þ ðq2 þ a2Þ sin2 h d/0 þ 2a

q2 þ a2
� a

q2 þ a2 � 2GMq

� �

dq

� 
2

� 2a sin2 hdq d/0 þ 2a

q2 þ a2
� a

q2 þ a2 � 2GMq

� �

dq

� 


þ 2GMq
q2 þ a2 cos2 h

dt0 þ 2GMq
q2 þ a2 � 2GMq

þ q2 � a2

q2 þ a2
sin2 hþ cos2 h

��

þ 2a2

q2 þ a2
sin2 h� a2

q2 þ a2 � 2GMq
sin2 h

�

dqþ a sin2 hd/0

2

:

Everything in the round brackets of the last two lines amounts to

q2 þ a2 cos2 h
q2 þ a2 � 2GMq

:

Hence,

ds2 ¼ � 1� 2GMq
q2 þ a2 cos2 h

� �

dt02 þ dq2

þ 2GMq
q2 þ a2 � 2GMq

� 2GMq
q2 þ a2 � 2GMq

�

þ 1
2GMq

4a2ðq2 þ a2 � 2GMqÞ
q2 þ a2

� 4a2

�

þ a2ðq2 þ a2Þ
q2 þ a2 � 2GMq

�4a2ðq2 þ a2 � 2GMqÞ
q2 þ a2

þ 2a2




sin2 h

þ q2 þ a2 cos2 h
q2 þ a2 � 2GMq

�

dq2

þ ðq2 þ a2 cos2 hÞdh2 þ q2 þ a2 þ 2a2GMq sin2 h
q2 þ a2 cos2 h

� �

sin2 hd/02

þ � 4GMq
q2 þ a2 � 2GMq

þ 4GMq
q2 þ a2 � 2GMq

� �

dt0dq

þ 2 2a� aðq2 þ a2Þ
q2 þ a2 � 2GMq

� aþ a
2GMq

q2 þ a2 � 2GMq

� 


sin2 hdqd/0

þ 4aGMq sin2 h
q2 þ a2 cos2 h

dt0d/0:
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The terms in curly brackets here amount to

� 2GMq
q2 þ a2 � 2GMq

þ 1
2GMq

�2a2ðq2 þ a2 � 2GMqÞ þ a2ðq2 þ a2Þ
q2 þ a2 � 2GMq

sin2 h

þ q2 þ a2 cos2 h
q2 þ a2 � 2GMq

¼ 1
2GMqðq2 þ a2 � 2GMqÞ
� �ð2GMqÞ2 � a2ðq2 þ a2 � 4GMqÞ sin2 hþ 2GMqðq2 þ a2 cos2 hÞ
h i

¼ 1
2GMqðq2 þ a2 � 2GMqÞ
� �ð2GMqÞ2 � a2ðq2 þ a2 � 2GMqÞ sin2 hþ 2GMqðq2 þ a2Þ
h i

¼ 1
2GMq

ð2GMq� a2 sin2 hÞ:

Also

1þ 2GMq� a2 sin2 h
q2 þ a2 � 2GMq

¼ q2 þ a2 cos2 h
q2 þ a2 � 2GMq

:

Hence,

ds2 ¼ � 1� 2GMq
q2 þ a2 cos2 h

� �

dt02 þ q2 þ a2 cos2 h
q2 þ a2 � 2GMq

dq2 þ ðq2 þ a2 cos2 hÞdh2

þ q2 þ a2 þ 2a2GMq sin2 h
q2 þ a2 cos2 h

� �

sin2 hd/02 þ 4aGMq sin2 h
q2 þ a2 cos2 h

dt0d/0:

A common alternative notation is

t0 �! t; q �! r; h �! h; /0 �! /; a �! �a;

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ a2 cos2 h
p

; D � r2 � 2GMr þ a2;

whence

ds2 ¼ � 1� 2GMr

q2

� �

dt2 þ q2

D
dr2 þ q2dh2

þ r2 þ a2 þ 2a2GMr sin2 h
q2

� �

sin2 hd/2 � 4aGMr sin2 h
q2

dtd/:

Note that

1
q2
ðD� a2 sin2 hÞ ¼ 1

r2 þ a2 cos2 h
ðr2 þ a2 cos2 h� 2GMrÞ ¼ 1� 2GMr

q2
;
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1
q2
ðr2þ a2Þ2� a2D sin2 h
h i

¼ 1
q2
ðr2þ a2Þ2� a2ðr2þ a2Þ sin2 hþ 2a2GMr sin2 h
h i

¼ r2þ a2þ 2a2GMr sin2 h
q2

;

1
q2

2aD� 2aðr2 þ a2Þ
� �

¼ �4aGMr

q2
:

Hence we may write ds2 in the alternative form

ds2 ¼ �D
q2
ðdt � a sin2 hd/Þ2 þ sin2 h

q2
ðr2 þ a2Þd/� adt
� �2þq2

D
dr2 þ q2dh2:

Choose a C 0. Independent Killing vector fields nt and n/ are

ðnl
t Þ ¼ ð1; 0; 0; 0Þ; ðnl

/Þ ¼ ð0; 0; 0; 1Þ;

with

nt � nt ¼ � 1� 2GMr

q2

� �

; n/ � n/ ¼ r2 þ a2 þ 2a2GMr sin2 h
q2

� �

sin2 h;

nt � n/ ¼ �
2aGMr sin2 h

q2
;

and

ðnt � n/Þ2� n2
t n

2
/ ¼

1
q4

4a2G2M2r2 sin4 h



þðq2� 2GMrÞ q2ðr2þ a2Þþ 2a2GMr sin2 h
� �

sin2 h
�

¼ sin2 h
q4

4a2G2M2r2 sin2 hþq4r2þq4a2� 2GMq2r3� 2GMq2a2r
�

þ2a2GMrq2 sin2 h� 4a2G2M2r2 sin2 h
�

¼ sin2 h
q2

q2r2þq2a2� 2GMrðr2þ a2 cos2 hÞ
� �

¼ ðr2� 2GMrþ a2Þ sin2 h¼Dsin2 h:
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Appendix D
Kerr Metric Subcalculations

q2 ¼ 1
2

r2 � a2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr2 � a2Þ2 þ 4ða � xÞ2
q

� 


¼ 1
2
ðr2 � a2Þ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4ða � xÞ2

ðr2 � a2Þ2

s

" #

¼ 1
2
ðr2 � a2Þ 2þ 2ða � xÞ2

ðr2 � a2Þ2
þ � � �

" #

¼ r2 � a2 þ ða � xÞ
2

r2 � a2
þ � � � ¼ r2 1� a2

r2
þ ða � xÞ

2

r4
þ � � �

" #

¼ r2 1þ O
a2

r2

� �� 


;

q ¼ r 1þ O
a2

r2

� �� 


;

q2 þ a2 ¼ r2 1þ ða � xÞ
2

r4
þ � � �

" #

¼ r2 1þ O
a2

r2

� �� 


;

q2 þ a2

q
¼ 1þ O

a2

r2

� �� 


;

q
q2 þ a2

¼ r
1
r

1þ O
a2

r2

� �� 


;

k ¼ q
q2 þ a2

xþ 1
q2

aða � xÞ � 1
q

a� x

� 


ða! �aÞ

¼ 1
r

x� a� r

r
þ O

a2

r

� �� 


;
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l2 ¼ 2Ma ¼ q3

q4 þ ða � xÞ2
;

q4 þ ða � xÞ2 ¼ r4 1þ O
a2

r2

� �� 


þ r4O
a2

r2

� �

¼ r4 1þ O
a2

r2

� �� 


;

q3

q4 þ ða � xÞ2
¼ 1

r
1þ O

a2

r2

� �� 


;

l2 ¼ 2M

r
1þ O

a2

r2

� �� 


;

l0 ¼ � 2M

r

� �1=2

1þ O
a2

r2

� �� 


;

li ¼ ð2MÞ1=2

r3=2
ðxi � eijkajx̂kÞ 1þ O

a2

r2

� �� 


;

l00 ¼ l0l0� 2M

r
;

l0i ¼ l0li� � 2M

r2
ðxi � eimnamx̂nÞ;

lij ¼ lilj� 2M

r3
ðxixj � xiejmnamx̂n � xjeimnamx̂nÞ;

H0i0j ¼ �ðl00gij þ lijg00 � l0jgi0 � li0g0jÞ
¼ �dijl

00 þ lij;

Hij0k ¼ �ðli0gjk þ ljkgi0 � likgj0 � lj0gikÞ
¼ �djkli0 þ diklj0;

P0 ¼ lim
S!1

1
16p

Z

S

H0i0j
;i d2Sj ¼ lim

S!1

1
16p

Z

S

�dijl
00 þ lij

� �

;i
d2Sj

¼ lim
S!1

1
16p

Z

S

�l00
;j þ lij

;i

� 	

d2Sj

¼ 2M

16p

Z

4p

� 1
r

� �

;j

þ 1
r3

xixj �
1
r4

ejmnamxixn �
1
r4

eimnamxjxn

� �

;i

" #

r2x̂jd
2X

¼ 2M

16p

Z

4p

x̂j � 3x̂ix̂ix̂j þ 3x̂j þ x̂j

� �

x̂jd
2X

¼ 4M

16p

Z

4p

d2X ¼ M;
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Pi ¼ lim
S!1

1
16p

Z

S

Hij0k
;j d2Sk ¼ lim

S!1

1
16p

Z

S

�djkli0 þ diklj0
� �

;j
d2Sk

¼ lim
S!1

1
16p

Z

S

�li0
;k þ diklj0;j

� 	

d2Sk

¼ 2M

16p

Z

4p

xi

r2

� 	

;k
�dik

xj

r2

� 	

;j

� 


r2x̂kd2X

¼ 2M

16p

Z

4p

dik � 2x̂ix̂k � 3dik þ 2dikx̂ix̂jx̂j

� �

x̂kd2X

¼ �4M

16p

Z

4p

x̂id
2X ¼ 0;

Sij ¼ Jij ¼ lim
S!1

1
16p

Z

S

xiHjk0l
;k � xjHik0l

;k þ Hil0j � Hjl0i
� 	

d2Sl

¼ lim
S!1

1
16p

Z

S

xið�dkll
j0 þ djll

k0Þ;k � xjð�dkll
i0 þ dill

k0Þ;k
h

�dljl
i0 þ dijl

l0 þ dlil
j0 � djil

l0
�

d2Sl

¼ 2M

16p

Z

4p

xi dkl
xj

r2
� ejmnam

xn

r3

� 	

� djl
xk

r2
� ekmnam

xn

r3

� 	h i

;k

�

� xj dkl
xi

r2
� eimnam

xn

r3

� 	

� dil
xk

r2
� ekmnam

xn

r3

� 	h i

;k

þ dlj
xi

r2
� eimnam

xn

r3

� 	

� dij
xl

r2
� elmnam

xn

r3

� 	

� dli
xj

r2
� ejmnam

xn

r3

� 	

þ dji
xl

r2
� elmnam

xn

r3

� 	

gr2x̂ld
2X

þ2x̂jx̂ix̂l þ 3x̂jdil � 2x̂jdil þ x̂idlj � x̂jdli

�

� ejmnamdkldnkx̂i þ 3ejmnamdklx̂nx̂kx̂i þ ekmnamdjldnkx̂i

� 3ekmnamdjlx̂nx̂k x̂i þ eimnamdkldnkx̂j � 3eimnamdklx̂nx̂kx̂j

� ekmnamdildnkx̂j þ 3ekmnamdilx̂nx̂kx̂j

�eimnamdljx̂n þ ejmnamdlix̂n

�

x̂ld
2X

¼ 2M

16p

Z

4p

ejmnamð�x̂nx̂i þ 3x̂nx̂i þ x̂nx̂iÞ
�

þeimnamðx̂nx̂j � 3x̂nx̂j � x̂nx̂jÞ
�

d2X

¼ 2M

16p

Z

4p

ðejmi � eimjÞamd2X ¼ Meijmam;
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S ¼ Ma;

h00 ¼
2M

r
þ � � � ; h0i ¼ 2M

xi

r2
þ 2Sij

xj

r3
þ � � � ;

hij ¼ 2M
xixj

r3
þ 2

Sikxkxj

r4
þ 2

Sjkxkxi

r4
þ � � � ðsince l ¼ 0Þ:

Let

n0 ¼ 2M ln r; ni ¼ �M
xi

r
� Sij

xj

r2
;

so that

n0;i ¼ 2M
xi

r2
; ni;j ¼ �M

dij

r
þM

xixj

r3
� Sij

r2
þ 2

Sikxkxj

r4
:

Then

h00 ¼ h00 ¼
2M

r
þ � � � ; h0i ¼ h0i � n0;i ¼ 2Sij

xj

r3
þ � � � ;

hij ¼ hij � ni;j � nj;i ¼ 2M
dij

r
þ � � � ;

h ¼ glmhlm ¼ �h00 þ hii ¼
4M

r
þ � � � ;

l00 ¼ h00 �
1
2
g00h ¼ h00 þ

1
2
h ¼ 4M

r
þ � � � ;

l0i ¼ h0i ¼ 2Sij
xj

r3
þ � � � ; lij ¼ hij �

1
2
dijh ¼ O

1
r3

� �

:
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Appendix E
Friedmann Cosmology

ds2 ¼ �dt2 þ a2ðtÞdX2;

g ¼ glmdxl � dxm ¼ gabea � eb ¼ �dt � dt þ a2ra � ra;

et ¼ dt; ea ¼ ara; dra ¼ eabcr
b ^ rc;

dea ¼ �1
2

ca
bce

b ^ ec ¼ �xa
b ^ eb;

xa
b ¼ Ca

bce
c ¼ 1

2
ð�ca

bc þ ca
bc þ ca

cbÞec;

dxa
b þ xa

e ^ xe
b ¼ Xa

b ¼
1
2

Ra
bcdec ^ ed;

det ¼ 0 ¼ xt
a ^ ea;

dea ¼ _adt ^ ra þ aeabcr
b ^ rc

¼ _a

a
et ^ ea þ 1

a
eabceb ^ ec ¼ �xa

t ^ et � xa
b ^ eb;

xa
t ¼

_a

a
ea þ vaet ¼ _ara ¼ Ca

tte
t þ Ca

tbeb;

xa
b ¼

1
a
eabcec þ waeb ¼ eabcr

c ¼ Ca
bte

t þ Ca
bcec;

xt
a ¼

_a

a
ea ¼ _ara ¼ Ct

ate
t þ Ct

abeb;
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Xt
a ¼ dxt

a þ xt
b ^ xb

a

¼ €adt ^ ra þ _aeabcr
b ^ rc þ _aebacr

b ^ ec

¼ €a

a
et ^ ea ¼ Rt

atbet ^ eb þ 1
2

Rt
abceb ^ ec;

Xa
b ¼ dxa

b þ xa
t ^ xt

b þ xa
c ^ xc

b

¼ eabcecder
d ^ re þ _a2ra ^ rb þ eacdecber

d ^ re

¼ ðdaddbe � daedbd � dabdde þ daeddbÞrd ^ re þ _a2ra ^ rb

¼ 1
a2
ð1þ _a2Þea ^ eb ¼ Ra

btcet ^ ec þ 1
2

Ra
bcdec ^ ed:

The nonvanishing components of the curvature tensor in the local orthonormal
frame are

Rt
atb ¼

€a

a
dab; Ra

bcd ¼
1
a2
ð1þ _a2Þðdacdbd � daddbcÞ;

and those obtained from these by the algebraic identities. The nonvanishing
components of the Ricci tensor are

Rtt ¼ Rtata ¼ �3
€a

a
;

Rab ¼ Rt
atb þ Rc

acb

¼ €a

a
dab þ

1
a2
ð1þ _a2Þðdccdab � dcbdacÞ ¼

€a

a
þ 2

a2
ð1þ _a2Þ

� 


dab:

The curvature scalar is

R ¼ �Rtt þ Raa ¼ 6
€a

a
þ 1

a2
ð1þ _a2Þ

� 


:

The nonvanishing components of the Einstein tensor are

Gtt ¼ Rtt þ
1
2

R ¼ 3
a2
ð1þ _a2Þ;

Gab ¼ Rab �
1
2

Rdab ¼ � 2
€a

a
þ 1

a2
ð1þ _a2Þ

� 


dab:

Let us check that the Einstein tensor satisfies the contracted Bianchi identity.
The nonvanishing connection components are

Ct
ab ¼

_a

a
dab; Ca

tb ¼
_a

a
dab; Ca

bc ¼
1
a
eabc;

so
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Gta
;a ¼ eaGta þ Ct

betaaGba þ Ca
baGtb

¼ etG
tt þ Ct

abGab þ Ca
taGtt

¼ d
dt

3
a2
ð1þ _a2Þ

� 


� 3
_a

a
2
€a

a
þ 1

a2
ð1þ _a2Þ

� 


þ 3
_a

a

3
a2
ð1þ _a2Þ ¼ 0;

Gaa
;a ¼ eaGaa þ Ca

baGba þ Ca
baGab

¼ ebGab þ Ca
bcGbc þ Cc

bcGab ¼ 0;

using the fact that ebGab vanishes by homogeneity and Cbc
a Gbc + Cbc

c Gab vanishes
by symmetry.

E.1: Cosmic Dust

The nonvanishing component of the stress–energy density is Ttt = q, the mass–
energy density. The equations of motion for cosmic dust are

Taa
;a ¼ 0;

which is automatically satisfied, and

0 ¼ Tta
;a ¼ etT

tt þ Ca
taTtt ¼ d

dt
þ 3

_a

a

� �

q:

This has solution

q ¼ a3
0

a3
q0:

Einstein’s equations for a cosmic dust are

Gtt ¼ 8pGTtt; Gab ¼ 8pGTab;

3
a2
ð1þ _a2Þ ¼ 8pG

a3
0

a3
q0 ¼

3A

a3
; A ¼ 8pG

3
a3

0q0;

so that A is 8pG/3 times the mass contained in a cube of side a0 at epoch t0. We
can in fact choose A = a0. Now

_a ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

A

a
� 1

r

; €a ¼
�1

2
A
a2 _a
ffiffiffiffiffiffiffiffiffiffiffi

A
a � 1

q ¼ �1
2

A

a2
;

2
€a

a
þ 1

a2
ð1þ _a2Þ ¼ �A

a3
þ A

a3
¼ 0:

Consequently, the equation Gab = 8pGTab = 0 is automatically satisfied.
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The equation

_a ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

A

a
� 1

r

has solution

t ¼ 1
2

Aðh� sin hÞ; a ¼ 1
2

Að1� cos hÞ;

as can be seen from

1 ¼ 1
2

Að1� cos hÞ _h ¼ a _h; cos h ¼ 1� 2a

A
;

sin h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cos2 h
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4a

A
� 4a2

A2

r

;

_a ¼ 1
2

A sin h _h ¼ A

2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4a

A
� 4a2

A2

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffi

A

a
� 1

r

;

as claimed.

E.2: Photon Gas

The stress–energy density for a photon gas has nonvanishing components

Ttt ¼ q; Tab ¼ pdab ¼
1
3
qdab:

Now

p ¼ 1
3
q;

so that

Ta
a ¼ 0:

The equation of motion for a photon gas is

0 ¼ Tta
;a ¼ etT

tt þ Ct
abTab þ Ca

taGtt ¼ d
dt
þ 4

_a

a

� �

q;

0 ¼ Taa
;a ¼ ebTab þ Ca

bcTbc þ Cc
bcTab;

the latter being automatically satisfied. This has solution
q ¼ a4

0

a4
q0:
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The Einstein equations for the photon gas are

Gtt ¼ 8pGTtt; Gab ¼ 8pGTab;

3
a2
ð1þ _a2Þ ¼ 8pG

a4
0

a4
q0 ¼

3A2

a4
; A2 ¼ 8pG

3
a4

0q0;

where the latter can be set equal to a0
2. Hence,

_a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2

a2
� 1

r

; €a ¼
�A2

a3 _a
ffiffiffiffiffiffiffiffiffiffiffiffi

A2

a2 � 1
q ¼ �A2

a3
;

�2
€a

a
� 1

a2
ð1þ _a2Þ � 8pG

3
q ¼ 2A2

a4
� A2

a4
� 8pG

3
a4

0

a4
q0 ¼ 0:

Therefore the equation Gab = 8pG Tab = 0 is automatically satisfied.
The equation

_a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2

a2
� 1

r

has the solution

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 � t2
p

; t ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 � a2
p

ðexpansion phaseÞ;

since one then has

_a ¼ � t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 � t2
p ¼ 1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 � a2
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2

a2
� 1

r

:

E.1. Find the connection one-form, the connection components and the
curvature tensor for the flat three-space cosmology, for which the metric tensor is
given by

ds2 ¼ �dt2 þ a2ðdx2 þ dy2 þ dz2Þ;

where a is a function of t, i.e.,

g ¼ glmdxl � dxm ¼ gabea � eb ¼ �dt � dt þ a2dxa � dxa;

et ¼ dt; ea ¼ adxa:

Find the Ricci tensor, the curvature scalar and the Einstein tensor, and obtain
the differential equations for a in the case in which this universe is filled with
cosmic dust.

If the age of this universe (from the Big Bang) is known to be t, what is the
current mass density in this universe as a function of t? This is known as the
critical mass density required to make three-space flat. If the mass density is
greater than the critical density, the universe will recollapse, otherwise it will not.
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E.1 We have

det ¼ 0 ¼ �xt
a ^ ea;

dea ¼ _adt ^ dxa ¼ _a

a
et ^ ea ¼ �xa

t ^ et � xa
b ^ eb;

xa
t ¼

_a

a
ea þ vaet ¼ _adxa ¼ Ca

tte
t þ Ca

tbeb;

xa
b ¼ xaeb ¼ 0 ¼ Ca

bte
t þ Ca

bcec;

xt
a ¼

_a

a
ea ¼ _adxa ¼ Ct

ate
t þ Ct

abeb;

Xt
a ¼ dxt

a þ xt
b ^ xb

a ¼ €adt ^ dxa

¼ €a

a
et ^ ea ¼ Rt

atbet ^ eb þ 1
2

Rt
abceb ^ ec;

Xa
b ¼ dxa

b þ xa
t ^ xt

b þ xa
c ^ xc

b ¼
_a2

a2
ea ^ eb

¼ Ra
btcet ^ ec þ 1

2
Ra

bcdec ^ ed:

The nonvanishing components of the curvature tensor are

Rt
atb ¼

€a

a
dab; Ra

bcd ¼
_a2

a2
ðdacdbd � daddbcÞ:

The nonvanishing components of the Ricci tensor are

Rtt ¼ Rtata ¼ �3
€a

a
; Rab ¼ Rt

atb þ Rc
acb ¼

€a

a
þ 2

_a2

a2

� �

dab:

The curvature scalar is

R ¼ �Rtt þ Raa ¼ 6
€a

a
þ _a2

a2

� �

:

The nonvanishing components of the Einstein tensor are

Gtt ¼ Rtt þ
1
2

R ¼ 3
_a2

a2
; Gab ¼ Rab �

1
2

Rdab ¼ � 2
€a

a
þ _a2

a2

� �

dab:

The nonvanishing connection components are

Ct
ab ¼

_a

a
dab; Ca

tb ¼
_a

a
dab:

The contracted Bianchi identity is easily checked.
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The equations of motion for a cosmic dust and a photon gas are the same as in
the Friedmann case. The Einstein equations for a cosmic dust are

3
_a2

a2
¼ 3

A

a3
; A ¼ 8pG

3
a3

0q0 ¼
8pG

3
a3q;

_a ¼
ffiffiffi

A

a

r

; a1=2 _a ¼ A1=2:

Let a = 0 when t = 0. Then

2
3

a3=2 ¼ A1=2t ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

8pGq
3

r

a3=2t;

or 1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

6pGq
p

t, or

q ¼ 1
6pGt2

:

If the age of the universe is known to be t, then 1/6pGt2 is the critical mass
density required to make three-space flat. If the mass density is greater than this
value then the universe will recollapse.
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Appendix F
Dynamical Equations and
Diffeomorphisms

SG½u� þ SM½u;U�; g �! u; l; m; x0; x1; x2; x3 �! i;

SG;i þ SM;i ¼ 0; SM;A ¼ 0:

Under diffeomorphisms,

dui ¼ Qi
a½u�dna; dUA ¼ QA

a ½u;U�dna ¼ QA
aBUBdna;

dglm ¼ Ldnglm ¼ �dnl;m � dnm;l ¼
Z

Qlmr0dnr0d4x0;

Qlmr0 ¼ �ðdlr0;m þ dmr0;lÞ; dlm0 ¼ glrd
r
m0 ¼ dlmdðx; x0Þ;

0 � dSG ¼ S;idui ¼ S;iQ
i
adna;

and therefore

S;iQ
i
a � 0:

Similarly,

SM;iQ
i
a þ SM;AQA

aBUB
� �

dna � 0;

whence

SM;iQ
i
a ¼ 0; when SM;A ¼ 0:

Defining

Ti � 2SM;i; Tlm ¼ 2
dSM

dglm
;

we have
TiQ

i
a ¼ 0; when SM;A ¼ 0:
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This can be rewritten

0 ¼
Z

Tm0r0Qm0r0ld4x0 ¼ �2
Z

Tm0r0dm0l;r0d
4x0

¼ 2
Z

Tm0r0
;r0 dm0ld4x0 ¼ 2Tr

l;r:

We now write ui as a sum

ui ¼ ui
B þ /i;

where uB is an empty space background field with

SG;i½uB� ¼ 0:

The dynamical equations are

SG;i½uB þ /� þ SM;i½uB þ /;U� ¼ 0; SM;A½uB þ /;U� ¼ 0:

Let

SG½uB;/� � SG½uB þ /� � SG½uB� � SG;i½uB�/i

¼ 1
2

SG;ij½uB�/i/j þ 1
6

SG;ijk½uB�/i/j/k þ � � � :

where

SG½uB;/� �SG½uB þ /� � SG½uB� � SG;i½uB�/i

¼ 1
2

SG;ij½uB�/i/j þ 1
6

SG;ijk½uB�/i/j/k þ � � � :

Define

T i �2
dSG

dui
B

¼ 2SG;i½uB þ /� � 2SG;i½uB� � 2SG;ij½uB�/j

¼ 2SG;ijk½uB�/j/k þ 1
3

SG;ijkl½ub�/j/k/l þ � � � ;

dS

d/i ¼
dSG

d/i þ
dSM

d/i ¼ SG;i½uB þ /� � SG;i½uB� þ SM;i½uB þ /;U�

¼ 0

¼ SG;ij½uB�/j þ 1
2
ðT i þ TiÞ;

or

SG;ij½uB�/j ¼ �1
2
ðT i þ TiÞ ¼ �

dS½uB;/;U�
dui

B

;
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Ti ¼ 2SM;i½uB þ /;U� ¼ 2
dSM

dui
B

¼ 2
dSM

d/i ;

dS

dUA ¼ SM;A½uB þ /;U� ¼ 0:

A possible diffeomorphism (coordinate transformation) law is

dui
B ¼ Qi

a½uB�dna; dui ¼ Qi
a½u�dna ¼ Qi

a½uB þ /�dna;

d/i ¼ dui � dui
B ¼ Qi

a;j/
jdna:

When the realization is linear, there are no more terms in the series on the right
hand side of the last equation. Now

dSG½uB;/� � SG;i½uB þ /�Qi
a½uB þ /�dna � SG;i½uB�Qi

a½uB�dna

� SG;ij½uB�/iQj
a½uB�dna � SG;j½uB�Q

j
a;i/

idna

� �dðSG;j½uB�Qj
a½uB�Þ

dui
B

/idna � 0;

dSM½uB þ /;U� � 0;

under the above transformations together with

dUA ¼ QA
aBUBdna:

Hence,

ðTi þ T iÞQi
a½uB� ¼ 0; when

dS

d/i ¼ 0 and
dS

dUA ¼ 0:

As a consistency check,

0 � SG;i½uB�Qi
a½uB�;

0 � SG;ij½uB�Qi
a½uB� þ SG;i½uB�Qi

a;j ¼ SG;ij½uB�Qi
a½uB�;

whence

0 ¼ Qi
a½uB�SG;ij½uB�/j ¼ �1

2
Qi

a½uB�ðT i þ TiÞ:

The transformations laws for Ti and T i are
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dTi � 2dSM;i½uB þ /;U�
� 2dSM;ij½uB þ /;U�Qj

a½uB þ /�dna þ SM;iA½uB þ /;U�QA
aBUBdna

� 2
d

d/i SM;j½uB þ /;U�Qj
a½uB þ /� þ SM;A½uB þ /;U�QA

aBUB

 �

dna

� 2SM;j½uB þ /;U�Qj
a;idna

� �TjQ
j
a;idna;

dT i � 2d SG;i½uB þ /� � SG;i½uB� � SG;ij½uB�/j

 �

� 2 SG;ij½uB þ /�Qj
a½uB þ /� � SG;ij½uB�Qj

a½uB�



�SG;ijk½uB�/jQk
a½uB� � SG;ij½uB�Q

j
a;k/

k
o

dna

� 2 �SG;j½uB þ /�Qj
a;i þ SG;j½uB�Q

j
a;i

n

� d

dui
B

SG;jk½uB�Qj
a½uB� þ SG;j½uB�Q

j
a;k½uB�

� 	

/k

þSG;jk½uB�Qj
a;i/

k
o

dna

� �T jQ
j
a;idna:

These transformations, however, are physically meaningless.
Practical diffeomorphism laws are

dui
B ¼ 0; d/i ¼ dui ¼ Qi

a½uB þ /�dna;

dUA ¼ QA
aBUBdna:

The transformation law for Ti remains the same, but for T i it becomes

dT i � 2d SG;i½uB þ /� � SG;i½uB� � SG;ij½uB�/j
 �

� 2 SG;ij½uB þ /�Qj
a½uB þ /� � SG;ij½uB� Qj

a½uB� þ Qj
a;k/

k
� 	n o

dna

� 2 �SG;j½uB þ /�Qj
a;i þ SG;j½uB�Qj

a;i � SG;ij½uB�Qj
a;k/

k
n o

dna

� �T jQ
j
a;idna � 2 SG;jk½uB�Q

j
a;i þ SG;ij½uB�Q

j
a;k

n o

/kdna

� �T jQ
j
a;idna þ 2SG;ijk½uB�/kQj

a½uB�dna;

in which we have used, in passing to the last line, the identity

SG;ijkQj
a þ SG;ijQ

j
a;k þ SG;jkQj

a;i � 0;

obtained from SG,jQa
j : 0 by functionally differentiating twice. In general, only if

Qj
a½uB�dna ¼ 0;
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i.e., if dna is a Killing vector field of the background field, does T i transform like a
contravariant tensor density. It is often called a pseudo-tensor density.

Because T lm does not transform like a tensor density, it is impossible to assign a
definite location to the energy, momentum and stress in the gravitational field.
Nevertheless, the integral

Z

R

nlðTlm þ T lmÞdRm;

with R a complete Cauchy hypersurface, is an absolutely conserved quantity for
every Killing vector field nl that the background geometry possesses. Moreover, it
is diffeomorphism invariant!
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