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Germany

J. Samet A. Tsiatis
Department of Epidemiology Department of Statistics
School of Public Health North Carolina State University
Johns Hopkins University Raleigh, NC 27695
615 Wolfe Street USA
Baltimore, MD 21205-2103
USA

Library of Congress Cataloging-in-Publication Data
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Preface

Prefaces are not for those who are in a rush. If you can find a moment for a casual 

conversation, then I will share with you my reasons for writing this book.  

 The multiple analysis (or multiple hypothesis testing, or simultaneous test-

ing) issue is the problem of interpreting several (and, often times, many) statistical 

tests within a single research effort. Many of you who are interested in clinical trials 

do not know why the concept of multiple analyses is an issue. Alternatively, you 

may already recognize the difficulty that it presents, but you may view the problem 

as just one more on a growing list of statistical burdens that you as an investigator 

must bear in order to have your research results accepted. I know that you also do 

not have the time or the patience to sit still for a complicated mathematical discus-

sion of this topic. While I may not have met you, you have been foremost in my 

mind while I was writing this book. 

 This is a book written for clinical investigators at all levels and research 

groups within the pharmaceutical industry, as well as medical students, public 

health students, healthcare researchers, physician-scientists, and regulators at the 

local, state, and federal levels who must grapple with the multiple analysis issue in 

clinical trials. Multiple testing has become a serious matter in clinical trial interpre-

tation. Journal readers, editors, peer–reviewers, pharmaceutical companies, federal 

Food and Drug Administration advisory committee panels, and sometimes even ju-

ries struggle with the multiple analysis dilemma. These considerations can appear 

in several different guises. Two common examples are (1) the interpretation of sec-

ondary endpoint analyses, and (2) the evaluation of subgroup results in a clinical 

trial. Each of us may have a personal philosophy that governs our view of this is-

sue—however, we must carefully measure and recalibrate that view with a well- 

reasoned and defendable yardstick. This text can serve as a useful metric. 

 As I have lectured and attended lectures on the principles of statistical 

analysis in clinical trials, the non-statistical audience has consistently and persis-

tently asked questions concerning the “correct use” of multiple analyses. The 

questions that are frequently raised are “How should multiple analyses be carried 

out?” or “How should a reader interpret the multiple analyses executed by others?” 

Not only have I found that these questions are ubiquitous they are inescapable! 

And I have also discovered that, just like discussions involving p-value interpreta-

tion, the questions from these audiences are typically sharper and more directed 

than the answers that they receive from the speakers.  

 That is not to say that the statistical literature has been mute on the topic. 

By my count, there are over 300 manuscripts that have appeared in the peer-
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reviewed literature on multiple analyses. Many of these are elegant mathematical 

treatises. In addition, there are several books on multiple analyses. One was written 

in 1981 by R. Miller.1  Peter Westfall has also been prolific in the area of multiple 

analyses in general, and has advocated re-sampling procedures to resolve this di-

lemma in particular.2 Fine textbooks that they are, it must be admitted that they can 

be difficult for healthcare researchers with weaker statistical backgrounds to under-

stand. Nevertheless, these physicians and healthcare scientists are often burdened 

with the task of evaluating research results produced from a multiple analysis set-

ting. 

 This text was written in order to engage the worker in a discussion of the 

multiple analysis issue in clinical trials at his or her level. Only a short prior expo-

sure to statistical hypothesis testing is required to follow the discussions in this text. 

If you do not know much about statistics but must grapple with this multiple analy-

sis issue, then I am willing to play in your ballpark. 

 A large number of footnotes and several appendices have been included in 

this text. This additional material (with an occasional anecdote or two mixed in) is 

intended to be supplemental and not required information. I have included this ma-

terial in recognition of the fact that readers will have heterogeneous backgrounds 

with consequent different needs from this book. The unsophisticated reader will 

have elementary definitions and explanations close at hand in the footnotes. At the 

other extreme, the appendices provide in-depth discussion and mathematical treat-

ment of the assertions in the body of the text from which a more advanced audience 

may derive benefit. Both the footnotes and the appendices are available to all, but 

not all need partake of them. Use them as you like.   

 I have to confess that there is some unavoidable overlap between this text-

book and a prior text of mine, Statistical Reasoning in Medicine: The Intuitive P- 
Value Primer. While the prior book discussed p-values in general (describing how 

audiences should respond to them in clinical research), there are two chapters in 

that earlier text that deal with the multiple endpoint topic that is a subset of the mul-

tiple analysis problem. These same issues are discussed in this book, primarily in 

Chapter 4. However, the development in the textbook that you now hold is more 

leisurely, is less technical, and has many more examples. 

 I have also tried to keep in mind that a little levity every now and then is 

not such a bad thing. Therefore, you will find an occasional anecdote or aphorism 

to remind us that, the more serious our undertaking is, the more important is the 

need for a sense of humor.   

Lemuel A. Moyé, M.D., Ph.D. 

University of Texas School of Public Health 

 Houston, Texas, USA 

June 2003

                                                          
1Miller, R.G. (1981). Simultaneous statistical inference, 2nd ed. New York, Springer. 
2 Dr. Westfall’s latest text is Multiple Comparisons and Multiple Tests, published by SAS 

Publishing, December 2000. 
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Introduction

Multiple analyses in clinical trials comprise the execution and interpretation of nu-

merous statistical hypotheses within a single clinical experiment. These analyses 

appear in many forms. More prevalent among them are the evaluation of the effect 

of therapy on multiple endpoints, the assessment of a subgroup analysis, and the  

evaluation of a dose–response relationship. Both the research and medical commu-

nities are frequently exposed to the results of these analyses. Common forums for 

their dissemination are the presentation of clinical trial results at meetings; the ap-

pearance of these results in the peer-reviewed, scientific literature; and discussions 

before regulatory agencies that are considering the approval of a new intervention. 

Unfortunately, the result of these analyses is commonly confusion and not illumina-

tion. 

 It is not surprising that the motivation for producing this panoply of analy-

ses is benevolent. By carrying out these multiple hypothesis tests, the physician-

scientist may only be indulging her own curiosity or that of her inquisitive co-

investigators. On the other hand, she may be dutifully satisfying the demands for 

additional analyses from her research team leader or from her department chairper-

son. Peremptory demands for more analyses are generated from journal reviewers 

and editors, and of course, additional queries often originate from the analysts who 

work for regulatory agencies.1 Whatever the driving force for these analyses is, the 

use of a single clinical trial to address multiple scientific questions proceeds at an 

accelerating pace. Yet the physician-scientist, while well versed in clinical science 

and highly motivated to carry out clinical research, is often unprepared for the in-

terpretive complexities presented by the multiple analysis problem.  

 The multiple analysis issue in clinical trials can appear in many forms. For 

example, the investigators of a clinical trial can carry out one hypothesis test for 

each of several endpoints in the study, with little regard to whether the endpoint 

was created in the design phase of the study or much later during the study’s execu-

tion or final analysis phase. Another example is the evaluation of each therapy’s 

effect in a clinical trial that has a control group and several different therapy groups. 

Finally, the examination of a randomly allocated intervention’s effect in not just the 

entire research cohort but in selected subgroups of that cohort constitutes a common 

illustration of the multiple analysis issue.  

 Actually, the circumstances of multiple analyses in clinical trials are more 

complicated than the previous examples suggest because, in reality, these analyses 

occur not in isolation but in complex mixtures. For example, a clinical trial may re-

port the effect of therapy on several different endpoints and then proceed to report 

                                                          
1 Since regulatory agencies frequently get the dataset of a clinical trial, they are free to carry 

out their own analyses and to confront the investigator with the results.



Multiple Analyses in Clinical Trials: xxi 

subgroup findings for the effect of therapy on a completely different endpoint. 

Some of these hypothesis tests were designed before the study was executed, while 

others were merely “targets of opportunity” that the investigators noticed as the 

clinical trial evaluation proceeded to the end; some of these analyses have small p-

values, while others do not.  

 The development of complex and rapid statistical evaluation systems drive 

the multiple analysis issue deeper into the heart of the clinical trial, sometimes to 

the study’s detriment. Findings from contemporary clinical trials, based on imma-

ture multiple endpoint analyses, have produced confusion in the medical 

community.2 In addition, other clinical trial results that focused on the evaluation of 

subgroup results have led to findings that are difficult to integrate into the current 

body of scientific knowledge. Multiple statistical analyses create a complex and 

confusing research environment in which to draw appropriate conclusions.  

 This complex and germane issue has not been ignored in the statistical lit-

erature. There are many fine statistical textbooks and technical articles that address 

the multiple analysis issue in clinical experiments. However, they are often written 

of at a level of mathematical complexity that the physician-scientist does not under-

stand. Thus, the investigator, with both expertise and insight into his clinical trial’s 

scientific question, may not find the body of available mathematical material very 

helpful to him. Without understanding the derivation of the multiple analyses prin-

ciples, the principles themselves are reduced merely to additional, arbitrary, and 

perhaps capricious rules that the investigator must follow in the analysis of his data. 

Produced in a vacuum of understanding, the link between these principles and the 

investigator is incompletely forged. Remaining weak, this link is easily broken in 

the tempestuous environment in which clinical research is conducted.  

 The thesis of this book is that the philosophy and methodology of multiple 

analyses in clinical trials are within the grasp of all clinical investigators, and that 

these scientists will understand and absorb these principles without a heavy invest-

ment in mathematics. Multiple Analyses in Clinical Trials: Fundamentals for 

Investigators introduces solutions to the multiple analysis issue (including multiple 

endpoints, combined endpoints, and subgroup evaluations) that are embedded in the 

bedrock of sound biostatistical and epidemiologic principles. While the issue of 

multiple testing has often been addressed in arcane, detached, technical language, 

this text will help clinical investigators surmount the learning curve of multiple 

analysis procedures and understand the key issues when designing their own work 

or reviewing the research of others. 

 The book is aimed at healthcare researchers interested in designing and 

analyzing clinical research. Basic backgrounds in health care and in statistics (e.g., 

an introduction to probability and hypothesis testing) are required. Multiple Analy-
ses in Clinical Trials: Fundamentals for Investigators is written for advanced 

medical students, clinical investigators at all levels, research groups within the 

pharmaceutical industry, regulators at the local, state, and federal levels, and junior 

biostatisticians. While occasional mathematical developments will be required, they 

will by and large be relegated to a collection of appendices so as to not interrupt the 

                                                          
2 Specific examples are provided in  Chapter 2.  
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flow of the chapter’s discussion. Current examples from the medical literature will 

be used to demonstrate both good and bad implementation of design principles. 

 One of the most useful devices to gain a perspective for choosing the best 

methodological philosophy for clinical trial analyses is to look back for a moment 

to see how we have arrived at our current “state of the science.” The Prologue is a  

discussion of the roles of biostatistics and epidemiology in clinical research. Since 

epidemiology and biostatistics have the same common goal when applied to health-

care (i.e., to elucidate the true nature of the risk factor–disease relationship), some 

of their joint history (with both their strengths and their weaknesses) are reviewed 

as a preamble to consideration of their individual contributions to clinical trial prin-

ciples. The investigator is reminded that she is in the position to choose the best of 

both of these disciplines as she develops her own methodological philosophy.  

 In order to understand multiple analyses, the reader must understand the 

paradigm of the clinical trial; Chapter 1 provides a quick review of the important 

principles in clinical trial design and execution. This review will help to ensure that 

we are all using the same terminology to address clinical trial analysis issues.  

 Chapter 2 discusses in great detail the need for the prospective planning of 

statistical analyses in clinical trials. Through a series of examples, this chapter 

demonstrates the difficulties with drawing conclusions from data-driven analyses 

(i.e., analyses that are not planned before the experiment, but are motivated by the 

observed trends that are contained in the incoming data stream); it then develops the 

critical reasoning that underlies the essential need to have the analysis plan 

provided in detail before the experiment is carried out. With Chapter 1’s review and 

Chapter 2’s principles absorbed, Chapter 3 examines the reasons why multiple 

analyses in clinical trials are so popular and the difficulties with their interpretation.  

 Chapters 4 to 6 each discuss a separate dilemma in the application of mul-

tiple analyses to clinical trials and provide solutions. Chapter 4 covers the issue of 

multiple analyses and multiple endpoints. Chapters 5 and 6 focus on multiple end-

points in clinical trials when the statistical hypothesis tests are dependent.3

 Chapters 7 to 13 apply the principles and theories developed in the first six 

chapters to current multiple analysis issues in clinical trials. Chapters 7 and 8 con-

centrate on multiple analyses when the endpoints of the clinical endpoints are put 

together into a single composite endpoint (e.g., fatal coronary artery disease + non-

fatal myocardial infarction). Chapters 9 to 11 focus on the issue of subgroup 

analyses in clinical trials, and Chapter 12 examines the analysis of clinical trials 

when there are several treatment groups in addition to the control group. This text 

culminates with Chapter 13 where combinations of different tools for multiple 

analyses are forged into constructive combinations that provide clear result inter-

pretations in complicated clinical trial settings. At this point it is my hope that the 

reader will be able to assemble useful and interpretable analyses for very complex 

clinical trials.  

Multiple Analyses in Clinical Trials: Fundamentals for Investigators is an 

essentially nonmathematical discussion of the problems posed by the execution of 

multiple analyses in clinical trials, concentrating on the rationale for the analyses, 

                                                          
3

Two statistical hypothesis tests are dependent when knowledge of a type I error occurring 

on one of the tests provides information about the occurrence of a type I error on the other.  
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the difficulties posed by their interpretation, and useful solutions. With its problem 

sets, it would make a useful textbook for a one-semester course that covers the 

analysis principles of clinical trials. This course would cover the content of Chap-

ters 1, 2, 3, 4, 5, 7, 9, 10, and 12.  A course that requires a more extensive 

background in clinical trials for its students would cover Chapters 2 to 13. 



1

Prologue

Blossoms on a Healthy Plant 

In this prologue, the role of biostatistics and epidemiology in clinical trial design 

and interpretation will be presented. Although each of these fields has provided an 

important core component of the foundation of experimental methodology, the phi-
losophies of these disciplines have been criticized. Several arguments against these 

disciplines’ approaches are summarized here in order to provide a balanced per-
spective on their influence in clinical experiments. Advice is offered to the clinical 

investigator who attempts to integrate the principles of epidemiology and biostatis-

tics into the design and interpretation of clinical experiments. Finally, a brief 
review is provided of the important fundamentals of clinical trial design and analy-

sis that will be required for our subsequent discussions of the multiple analysis 

issue.

Although it is easy to understand why a physician who reviews a detailed report of 

a clinical trial’s results might consider that research effort as primarily a biostatisti-

cal exercise, the embedded mathematics are really the culmination of diverse, 

concentrated nonmathematical efforts. Like the flower that blossoms upon a healthy 

plant, interpretable biostatistical analyses in clinical trials require a robust support-

ing structure. The rigorous design and execution of the clinical trial is that 

framework.  

 Once the investigators choose the scientific question they wish to answer, 

many other decisions must be made that have a direct bearing on the interpretation 

of the experiment. The choices about the number and characteristics of patients to 

be included, the use of a randomization tool to allocate the therapy of interest, the 

duration of time over which patients are to be followed, the dosage or duration of 

the intervention, options for multiple analyses, and many more decisions all are re-

quired in order for the final mathematical evaluations to be both interpretable and 

informative. Since the thinking process used to guide these choices is firmly rooted 

in the tenets of epidemiology and biostatistics, one cannot understand the important 

aspects of clinical trials without a working knowledge of the principles that guide 

each of these areas. We therefore begin with a brief review of the core values of 

each field and the complicated interactions that these disciplines have had.  

Epidemiology and Biostatistics 
Epidemiology and biostatistics have a complex history and interrelationship. Unfor-

tunately, these two disciplines are often presented as taking adversarial perspectives 

on important scientific questions. In fact, each of these fields of study attempts to 

answer the same question in health care—what caused the event of interest? If the 

event is the appearance of a disease, both disciplines are interested in identifying 
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the cause of that disease. If the event is a cure or remission of the disease, then 

these two fields focus on what may have produced the favorable outcome. However, 

historical controversies involving both biostatistics and epidemiology can make it 

appear that they are in conflict, acting much like two people riding in the same car, 

going to the same destination, but fighting each other for control of the steering 

wheel. These controversies are based on the tools each of them chooses to use.  

Association and Causation 
Does a risk factor cause a disease? Sometimes the relationship between the risk fac-

tor and the disease is merely coincidental. Other times, the risk factor is present in 

many patients with the disease, but the supposed risk factor does not cause the dis-

ease. The question of causality can be a complicated one, and the distinction 

between a relationship based on association and one based on causation is critical. 

Associative exposure–disease relationships are linked by the joint occurrence of the 

risk factor and the disease. The risk factor in the “association” circumstance does 

not cause the disease; the risk factor and the disease just happen to occur together, 

appearing jointly.  

 However, a causal relationship is much different. A risk factor causes a 

disease if that risk factor excites the production of the disease. There is a clear di-

rectionality in the risk factor–disease causal connection that is absent in a 

serendipitous risk factor–disease relationship. The time sequence embedded in the 

causal relationship is that (1) the disease is absent, (2) the risk factor is introduced, 

and (3) the risk factor working in ways known and unknown produces the disease.  

 We are surrounded by relationships that are associative, but not causative. 

For example, it is common knowledge that the risk of drowning is greatest in the 

summer months, but we do not say that the summer season itself causes drowning. 

Smoking is more prevalent in teenagers than in younger children, but we do not say 

that being a teenager causes smoking. However, we do say that cigarette smoking 

causes lung cancer. A heart attack can occur in a patient who has hypertension, dia-

betes mellitus, elevated lipid levels, and who has recently stop smoking. Was it the 

cessation of smoking that caused the heart attack? A young woman who smoked 

cigarettes and took birth control pills suffered a stroke after exposure to a cold 

medicine. What actually caused the stroke? In 1981 there was great concern that 

coffee drinking caused pancreatic cancer. While an initial report discovered that 

coffee drinkers had a greater risk of cancer [1], a subsequent reviewing body of sci-

entists ascertained that there was insufficient evidence to determine that coffee 

drinking actually excited the production of cancer [2], [3]. 

 This problem is complicated by the fact that in research we do not have the 

opportunity to examine the entire universe of patients who have the risk factor or 

the entire population of patients who get the disease. Instead, the researcher studies 

only a sample of these patients. Since the findings of one sample can differ from the 

findings of another,1 how is the researcher to determine whether the findings in her 

sample are due to this sample-to-sample variability that reflects only the play of 

chance and not a real relationship?  

                                                          
1 The variability from one sample to another in research results is called sampling error.
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 This issue complicates the research effort that seeks to identify the true na-

ture of a risk factor–disease relationship, making the effort a two-step process. First, 

the investigator must determine whether the findings from the sample are due to the 

random aggregation of events on the one hand or reflect a true relationship between 

the risk factor and the disease in the population on the other. Second, the researcher 

must then deduce whether the relationship identified in the research sample is 

causal or merely associative.  

 The classification of a relationship as associative or causal can be a public 

health urgency. However, this classification can also be a complex, time consuming 

task, since multiple risk factors and diseases can congregate. This complex coexis-

tence can make it difficult to separate the causal risk factors from the associative 

ones. Both epidemiologists and biostatisticians are called upon to help disentangle 

the risk factor–disease connection, and have historically emphasized the use of dif-

ferent research tools (Figure 1).  

Careful observation

and deductive reasoning

Mathematical modeling of 

systematic and random

effects

Epidemiologist Biostatistician

Figure 1. The tools of epidemiology versus the tools of biostatistics.

The Central Core of Epidemiology 
The classic epidemiologist is an expert observer. He relies on careful observation 

and deductive reasoning in the investigation of a risk factor–disease relationship, 

using research tools to choose the optimal vantage point to view this relationship 

unfolding before him in the population. Often limited by logistics and ethics, the 

research effort to identify a cause for a particular disease many times precludes the 

execution of an experimental study (in which the researcher has control of the risk 

factor assignment). Instead, the research must be observational, a circumstance in 
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which the epidemiologist has no control of who is exposed to the risk factor. How-

ever, if the epidemiologist gives careful consideration to the execution of the 

observational study, this research tool can illuminate a risk factor–disease relation-

ships with powerful explanatory light.  

 If the disease is new, a host of risk factors must be excluded. The identifi-

cation of the bacteria Legionella pneumophilia as a cause of an outbreak of a new 

and unrecognized pneumonia at a veterans’ meeting in Philadelphia is a fine exam-

ple [4]. Yet another example is the identification of the mosquito-borne West Nile 

Virus as responsible in 1999 for an outbreak of serious morbidity (and, rarely, mor-

tality) in New York City. The tools commonly used by epidemiologists are 

described elsewhere [5], but include case control studies, cross-sectional studies, 

historical cohorts, and prospective cohorts.  

 Recognizing the limitations of these studies, epidemiologists pay particular 

attention to the types of systematic influences that can inappropriately shift the ob-

served strength of the risk factor–disease connection by either underestimating or 

overestimating the strength of that relationship.2 In addition, epidemiologists must 

also focus critical attention on the influences beyond their control that may block 

their ability to claim that the difference in the rate of occurrence of the disease is 

due to a difference in exposure to the risk factor. This attribution of effect is a criti-

cal piece of information provided by well-designed and conducted observational 

research. If some factor blocks this attribution of effect we say that the relationship 

between the exposure and the disease is confounded by or confused by the factor. If 

(1) the play of chance, (2) the presence of bias, and (3) confounding are determined 

to be unlikely explanations of the findings, we can then carefully conclude that a 

valid association exists between the exposure and the disease that may be causal.  

 The most important lesson one can take from this process is that the de-

termination of causality is a “thinking person’s business.” There is no substitute for 

clear observation, deliberative thought, and careful deductive reasoning in consid-

eration of the true nature of a risk factor–disease relationship. The occurrence of a 

statistical association alone does not imply causality. Epidemiologists often link sta-

tistical analysis with careful research planning, observation, and deductive 

reasoning, to allow a clear examination of the nature of the relationship between 

exposure and disease.  

Scurvy 
The impact of clear-thinking epidemiologists on society has been felt for over four 

hundred years. The beginning of modern epidemiology is traced often to the work 

of John Graunt and William Petty on developing a rudimentary life table analysis 

[6].  

 The powerful combination of deductive reasoning and experimental design 

was further demonstrated by James Lind. In the eighteenth century, one of the sin-

gle greatest impediments to the discovery and exploration of new lands in the 

Western Hemisphere was the ravage of scurvy. The impact of this disease was 

commonly felt on long sailing voyages to the New World from Europe during 

                                                          
2 These systematic influences are known as biases.
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which time passengers and crew became vitamin C deprived. The illness, often be-

ginning with bleeding gums, developed into a dreaded and irreversible constellation 

of symptoms. The worst cases lead to severe pain produced by any physical move-

ment as the body began to swell. The skin would split, producing deep, bleeding 

gashes. Finally the neck would swell to the point that eating and drinking were im-

possible. Most of these patients slipped into irreversible coma and subsequently 

died. Over 75% of passengers and crew aboard these sailing ships were afflicted to 

some degree with scurvy,3 a disease that at the time had neither an identifiable 

cause nor cure. 

 James Lind, on the HMS Salisbury in 1747, observed the ravages of this 

disease from close range. He decided to conduct an experiment to test the possible 

effect of several proposed treatments for the illness, in the hope of identifying its 

cure. Lind chose ten seamen who had nothing in common except that they served 

on the same ship at the same time and all were debilitated by scurvy. He divided 

them into five groups of two,4 and gave each of the groups of sailors a different 

treatment. The first two sailors were provided rations of sea water. The second two 

were given oil of vitriol (sulfuric acid) to drink. Patients five and six were adminis-

tered vinegar. The fourth group was provided “bigness of nutmeg,” and the last two 

were given rations of lemons and oranges. The two sailors who improved were the 

two who received the citrus fruit. Upon their recovery, they were ordered to care for 

the remaining eight seamen in the experiment until these others died from the 

scurvy (or the ineffective therapy). The treatment effect size was dramatic so dra-

matic that the use of mathematics was not required to demonstrate it.5 However, it 

took the British Admiralty 50 years to finally permit ships to sail with fresh fruits 

and vegetables, a policy which marked the beginning of the end of scurvy as a seri-

ous disease on long sea voyages.  

Cholera
Another classic example of epidemiologic deductive reasoning was demonstrated 

by John Snow in his investigation of cholera from 1830 to 1850. In nineteenth cen-

tury London, severe gastroenteritis rose to dangerous levels among the local 

population. Although there were several suspected causes for the episodic outbreaks, 

one possible cause was believed to be in the water. However, it seemed impossible 

to demonstrate due to the haphazard organization of London communities that wa-

ter was a likely source for the disease. Every household required it, but not every 

household harbored ill family members.  

 Homes were provided with water service by competing water companies. 

These companies had different sources for the water they pumped. John Snow made 

                                                          
3 This situation was exacerbated by the fact that sailing ships, having no reliable way to 

compute the longitude and therefore their own position, were often lost at sea, drifting aim-

lessly for weeks.  
4 Note that Lind decided to have more than one patient per group. He apparently  recognized 

that a positive finding in a single patient may not be enough evidence to demonstrate the ef-

fect of therapy because of sailor-to-sailor variability.  
5 This story is somewhat complicated by the fact that James Lind concluded at first that it 

was not citrus fruit, but exposure to sea air that produced these two sailors’ improvement.  
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two striking observations about a particular community containing pockets of peo-

ple with severe acute gastroenteritis. His first observation was that, in this single 

neighborhood, there were two competing water companies. The Southwark and 

Vauxhall water company pumped water from the contaminated Thames river—the 

Lambeth company originally pumped water from the Thames, but later changed its 

water source to the uncontaminated Thames Ditton. Snow’s second observation was 

that home owners in this neighborhood selected, seemingly at random, one of the 

two competing water supply companies. This random selection meant that charac-

teristics of households would be equally distributed between the two companies. 

Thus, the two features of (1) two companies pumping water, one from a contami-

nated water source, the second from a relatively clean source, and (2) the selection 

of these companies at random by a neighborhood’s dwellings created a near-perfect 

“natural experiment” within which Snow could observe the relationship between 

exposure to contaminated water and cholera rates. Again, careful observation and 

deductive reasoning, in concert with a strong relationship between the exposure and 

the disease obviated any requirement for complex mathematical analysis. 

Causality and Common Sense  
The efforts to understand and articulate the arguments that should be used to iden-

tify or debunk a risk factor–disease relationship have continuously evolved over the 

past four hundred years. In 1965, Hill [7] described the nine criteria used to con-

struct a causality argument in health care. These nine rules or tenets are remarkably 

and refreshingly devoid of complex mathematical arguments. They rely instead on 

a  natural, honest intuition and common sense for the inquiry into the true nature of 

a risk factor–disease relationship. The nine criteria of Bradford Hill are: (1) strength 

of association, (2) consistency, (3) specificity, (4) temporality, (5) biologic gradient, 

(6) biologic plausibility, (7) biologic coherence, (8) experimental evidence, and (9) 

analogy.6

 The method for investigating a risk factor–disease relationship that Hill 

proposed makes good sense to this day. Some of these questions can be character-

ized as evaluating the direct strength of the evidence for a causal relationship 

between the risk factor and the disease. For example, we would expect that if the 

risk factor causes the disease, then the disease occurs more frequently when the risk 

factor is present then when it is not. We would also expect that a greater exposure 

to the risk factor produce a greater extent of disease.  

 Other questions asked by Hill explore the “believability” of the relation-

ship. Some of these are: Is there a discernible mechanism by which the risk factor 

produces the disease? Have other investigations also shown this relationship? Are 

there other such relationships whose demonstration helps to understand the current 

risk factor–disease relationship? The best research efforts are designed to address 

many of the Hill causality tenets, thereby helping to build (or demolish) a causality 

argument. 

                                                          
6 These are each defined in Appendix A. 
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Biostatisticians and Sampling Error 
The biostatistician, in general, has a different emphasis from that of the epidemi-

ologist. Since research in healthcare often begins with the selection of a sample 

from a large population or universe of patients, statisticians have emphasized the 

effect this sampling process can have on the results of the research effort. The idea 

that different samples, selected from the same population, can produce different 

conclusions has motivated biostatisticians to focus on first identifying sources of 

variability and then measuring and comparing the magnitude of variability from 

each source. Biostatisticians concentrate on quantifying the likelihood that the re-

search results were produced merely as a product of sample-to-sample variability as 

opposed to the results being a reflection of the risk factor–disease relationship in the 

population. Thus, while epidemiologists focus on systematic influences that can af-

fect the study results, biostatisticians concentrate on the possible random influences. 

This has led to great reliance on the use of sophisticated mathematical modeling by 

biostatisticians in their attempts to separate the random influences from the system-

atic influences which are embedded in the risk factor–disease relationship. Logistic 

regression analysis, Cox proportional hazard modeling, and adaptic Bayes proce-

dures are all tools that help to separate sampling error variability or “noise” 

produced by the sample from the true population “signal” of an effect that may be 

embedded in the sample.  

 Statistics evolved from demography, as the early European tax collectors 

of four hundred years ago concocted imaginative ways to estimate the population 

size. These counting tools evolved into surveys of increasing complexity. Concerns 

about sampling variability, coincident with the development of strategies to win 

very popular games of chance, accelerated the development of probability laws. 

The mathematicians, Gauss, DeMoivre, Bayes, and Laplace (among others) devel-

oped mathematical tools to compute probabilities based on the nature of the design 

of the experiment itself. These probabilists carefully considered the experiment 

(e.g., rolling a fair sided die) and then computed the probabilities of the different 

possible experimental results. By this process, they developed a new branch of 

mathematics probability. Unlike the experiments of James Lind and John Snow, 

games of chance needed mathematics to help predict results.  

Cooperation Between the Disciplines 
This difference in emphasis between these two fields can appear to be profound. 

However, two forces bring epidemiology and biostatistics together. The first is that 

they each must use the data. Thus, they both have a major interest in collecting data 

of the highest quality under clearly delineated rules. Second, experienced scientists 

in each of these fields recognize that in order to provide the clearest answer to the 

scientific question “Does exposure A cause disease B?” they must borrow from the 

perspective and tools from the others discipline (Figure 2).  



8 Prologue: Blossums on a Healthy Plant 

Clear 

Observation

Data

Figure 2. The use of epidemiology and biostatistics in reality.

Statistical 

Modeling

Deductive

Reasoning

This means that the skilled epidemiologist recognizes the important information 

that mathematical modeling can provide in helping to resolve the degree to which 

sampling error might explain the data. Also, the wise biostatistician realizes that, 

unless there is considerable attention provided to the research design and execution, 

the data from that effort will have no scientific value, and her mathematics will be 

devoid of useful information. These scientists therefore have much in common.  

 In addition, epidemiology and biostatistics have a common acceptance of 

experimental design principles. Several of these principles were identified by 

Young [8] and Johnson [9], early eighteenth-century experimental agrarians. With-

out the benefit of advanced mathematical tools, these workers enunciated important 

principles of research upon which epidemiologists and biostatisticians agreed. One 

principle was that the active research effort must be preceded by careful study and 

review of the state of the science that had been developed thus far. The second was 

to acknowledge that poorly designed and poorly executed research leads to incor-

rect conclusions that may not be recognized at the time as being incorrect. These 

false conclusions, Young suggested, when accepted by the community would pro-

duce a succession of misguided research efforts with unproductive results. This 

would continue until the false summaries could be correctly identified and extir-

pated from the knowledge base. These researchers also pointed out the importance 

of measuring the study endpoint with great attention to detail, since its accurate 

identification increases the research result’s precision. Both epidemiology and bio-

statistics have accepted and absorbed these principles into their core philosophies. 
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 Finally, both epidemiologists and biostatisticians have faced historically 

tight, cultural circumscription of their abilities to generalize their own work. Statis-

ticians in general were not allowed to draw conclusions from the results of their 

early survey data because of the political volatility of these evaluations. While all 

agreed that the complete collection and correct tabulation of data were well within 

the statistician’s purview, the idea of drawing conclusions from that data was left to 

the nineteenth-century religious and cultural leaders. Statisticians were called prac-

titioners of “political arithmetic.” 

 Despite this limitation, these epidemiologists and biostatisticians have 

worked well together in the past. A fine illustration of this cooperative effort was 

the study of smallpox. Smallpox was one of the great scourges of the sixteenth and 

seventeenth centuries. Initially identified in China, this disease spread westward 

over the trade routes, through the Middle East and Turkey, into Europe (and finally, 

by ship, across to the New World).7 The disease easily spread from one individual 

to another by inhalation. Death occurred after the second week of exposure due to 

pneumonia and subsequent cardiovascular collapse [10]. Those who survived often 

were hideously scarred for life, a result that was particularly unfortunate in children.  

 However, from the east there came a persistent rumor of a strange proce-

dure that could offer protection from smallpox. Individuals, it was said, could be 

protected from smallpox if they would inhale the flaked scales of an infected indi-

vidual’s scabbed skin. The Chinese were known to try to protect themselves in this 

fashion. The Greeks and Turks attempted protection by first sticking a needle that 

had previously been pushed into a smallpox pustule of an infected individual, and 

then pricking their own skin in three different places. This early process was termed 

variolation.

  The protective process was refined by taking the pus not of an individual 

infected by smallpox or variola but from a cow who was afflicted with cowpox, or 

vaccinia. This inoculation procedure was now renamed vaccination. But how could 

vaccination be demonstrated to work? The joint work of the cleric Cotton Mather, 

the probabilist Daniel Bernoulli, and the investigator Edward Jenner demonstrated 

the effectiveness of this vaccine to skeptical officials in a tempestuous environment. 

In this effort, the probabilists and biostatisticians computed the expected number of 

deaths, while the epidemiologists counted the observed number of deaths. The 

comparison of these two estimates provided information about whether vaccination 

produced fewer “observed cases” than the “expected number of cases,” this latter 

computation being based on the probabilists’ theories.  

 Bernoulli presented his results to the French Royal Academy of Sciences 

in Paris during a meeting in 1760. At this meeting, he displayed results that he be-

lieved demonstrated that variolation would reduce the death rate and increase the 

population of France. The demonstration of the effectiveness of vaccination to re-

duce smallpox mortality rates was among the first known collaborations between 

men of mathematics and men with epidemiologic skills for the scientific demonstra-

tion of treatment effectiveness.  

                                                          
7 This is taken from Ed Gehan’s and Noreen Lemak’s fine depiction in Statistics in Medical 

Research. Developments in Clinical Trials, published in 1994 by Plenum Publishing Com-

pany. 
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 Thus, epidemiology and biostatistics, with their common aims, common 

principles, and joint efforts against common adversaries grew in importance and 

interdependence in the nineteenth century. However, the joint efforts were soon to 

be overturned by a controversy that for much of the twentieth century drove a 

wedge between them.  

The Eye of the Beholder 
Many workers ascribe the schism between biostatistics and epidemiology to the rise 

of significance testing, attributed to Ronald Fisher, the agrarian statistician [11], 

[12]. Certainly, there were important eruptions in the literature over the issue of 

significance testing, controversies that extend to the present day [13], [14], [15], 

[16], [17]. Statisticians came to embrace the notion of the null hypothesis, type I 

and type II errors, and test statistics many epidemiologists came to abhor them. 

However, the problem between these two fields is deeper, older, and broader than 

suggested by a 1930s dispute over the use of test statistics and p-values. 

Controversy 1: Biased by Nature? 
Recall that carefully crafted research design followed by detailed observation and 

deductive, disciplined conclusions are the central pillars of epidemiology. As we 

saw in the case of John Snow’s assessment of gastroenteritis, it was actually 

possible for a discerning epidemiologist to observe an “experiment in nature.” 

However, these skills were indirectly assaulted by the findings of early twentieth 

twentieth-century physics. Out of this seething cauldron of theoretical and physical 

investigation spilled new ideas that were to change not just the human appreciation 

of physics, but also scientific understanding of how we view our surroundings.  

 At the end of the nineteenth century, physics experiments that delved into 

the property of matter and light were making observations that were correct but 

inexplicable by the clockwork accuracy and precision of Newtonian physics. As 

physicists struggled to understand them, a far-reaching explanation was suggested 

by the physicists George Fitzgerald and Hendrik Lorentz.8 These scientists postu-

lated that our measure of physical dimension was not absolute, but asserted that as 

an object moved its length decreased.9 This explanation led to the additional con-

clusions that if the length of an object becomes smaller as its speed accelerates, so 

that object’s volume must also decrease.  

 Thus, the physical world appeared as it did only because of the position 

and movement of its observer, a finding that ran against the grain of common sense. 

August Föppl, in his Introduction of Maxwell’s Theory of Electricity, stated that 

“there is a deep-going revision of that conception of a space that has been im-

pressed upon human thinking in its previous period of development.”  

                                                          
8 This discussion of physics is from Ronald Clark, Einstein: The Life and Times. 1984, New 

York. Avon Books, Inc.  
9 The Lorentz–Fitzgerald transformation suggested that the length of an object that is moving 

in one dimension will have its length in that direction decreased by the amount 
2 21 v c ,

where v is the velocity of the object and c the speed of light.  
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 Albert Einstein, in 1905, described what came to be known as the Special 

Law of Relativity, wherein he determined the changes in physical reality at rates of 

movement close to that of the speed of light. At these high speeds, termed relativis-

tic speeds, not only are length, area, and volume smaller, but mass is greater and 

time moves more slowly. In Einstein’s General Law of Relativity, published during 

World War I, the current understanding of the fabric of space itself was demolished. 

Space could no longer be seen as an empty stage on which objects moved and per-

formed. Instead, space had its own properties, properties that changed when mass 

was present. In the absence of mass, space can appear alien. Geometry is no longer 

Euclidean. Parallel lines do not exist. The angles of a triangle no longer have a sum 

of 180 degrees and perpendiculars to the same line converge. 

 Certainly, these findings had a major effect on the developing field of 

physics, itself newly armed with instrumentation that allowed it to probe atoms and 

look further into the heavens. However, the veracity of these new laws also had a 

profound impact on all observation-based science. According to physics, physical 

findings and measurements could no longer be trusted. Concepts easily understood 

and taken for granted for centuries were found to be inconstant—merely a function 

of the observation point of the viewer. Two observers could watch an event and 

have different perceptions, both of which were correct. The stationary person could 

see two lights flash at once a second observer moving rapidly would observe that 

one light appeared before the other. Both are entirely accurate and neither is wrong. 

The difference in these observations resides in the characteristics of the observation 

point.  

 Of course, it had been long appreciated that human senses were “relative.” 

The phrase “one man’s meat is another man’s poison” spoke to the variability of 

taste. The fact that animals (like bats) respond to auditory signals to which humans 

are insensitive is an example of the “relativity” of hearing. However, the mass-, 

time-, and space-altering findings of physics were an entirely different affair. The 

absolute immutability of space and time had been accepted and confirmed by centu-

ries of observational evidence. Now it was shown that the conventional belief, 

deduced from careful observation observations that had been confirmed and recon-

firmed over the centuries was misleading.  

 The ability of science to measure the real world had not changed, but the 

scientific community’s absolute confidence in that ability was shaken. The new 

laws declared that all the systems of measurement used in science were parochial, 

unsuited to describe nature as a whole. Scientists awakened to the sad reality that 

they did not see the results of their experiments clearly, but through spectacles fit-

ted over their eyes by their physical viewpoint. This was a major setback to any 

field that placed its full trust in the power of observation. Epidemiologists had de-

veloped principles that would allow the most objective view of a risk factor– 

disease relationship. They had developed and catalogued an entire system of biases 

to be recognized, and hopefully prevented. If competing researchers had different 

research designs and drew disparate conclusions, the best view was accepted to be 

the one whose point of view was influenced by the least bias. However, this new 

law from physics suggested that not only did both views contain bias, but that each 

view, from the position of the observer, could be perceived as correct. It seemed 
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that the platform epidemiologists had been painstakingly and carefully constructing, 

and from which they would gain an objective view of an exposure–disease relation-

ship that could never be completed. Objective observation was proven to be 

impossible, and the proof of this counterintuitive finding resided in impenetrable 

mathematics. 

The Supremacy of Mathematics?  
The General Law of Relativity dictated that laws are the same for all observers, ir-

respective of their relative positions, undoing some of the philosophical damage 

done by the previous Special Law. However, this general law introduced its own set 

of complexities in some astronomical observations.  

 Astronomers had lived with the unexplained observation that Mercury’s 

perihelion (or point at which its elliptical orbit came closest to the sun) was not 

constant as Newtonian mechanics predicted, but steadily advanced and withdrew.10

The General Law of Relativity (Einstein’s second law) suggested that it was not the 

orbit of Mercury that was perturbed, but rather its position was mistakenly ob-

served; a mistake that occurred because the mass of the sun was bending light. The 

proof of this second law provided additional difficulties for the observational scien-

tist’s approach to scientific questions.  

 Astronomers had been observing solar eclipses for generations. Now Ein-

stein suggested that specific observations made during these eclipses would reveal 

what had been hiding in plain view from astronomical observers that light was be-

ing bent when passing through the gravitational field of the sun. In 1919, a 

scientific exhibition found what Einstein had predicted would be identified. Essen-

tially, based only on his equations, Einstein told astronomers (who had been taking 

their own observations for years) what to look for, where to find it, and how much 

of it they would find. These observational scientists found what Einstein said they 

would find, when they looked where his equations said to look.  

 While Einstein’s general law was being digested by the public, scientists 

were considering this remarkable demonstration of the power of mathematics. In 

this circumstance, observation of nature did not lead to a general rule. It was 

mathematics that dictated where the observers should look. Apparently, mathemati-

cal law could predict what would happen (in fact, could find what had been hiding 

in plain view) that the observers never knew to look for. The directionality of the 

observation-to-deductive conclusion process was reversed. It was now possible for 

astute, sensitive mathematicians to teach us about the real world. Observations, 

having been revealed as flawed, biased, and limited, should perhaps be relegated to 

a smaller role in a scientific world in which mathematics would reign supreme.  

 Not only epidemiologists, but the traditional probabilists were threatened 

by this inexorably progressing ratiocination. The findings of the Russian mathema-

tician Kolmogorov demonstrated that all of probability, with its rich history of 

observations based on natural phenomena, stock market predictions, and games of 

chance, was only a subarea of the larger mathematical field of real analysis. Kol-

                                                          
10 This is a very slow process. Mercury completes one cycle, approaching and then with-

drawing from the sun once every three million years.  
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mogorov, without the benefit of games of chance or other observational devices the 

early probabilists of the sixteenth-century had used, derived all of the laws of prob-

ability from mathematical and functional analysis. In addition, these prodigious 

mathematical efforts produced new laws of probability that were not available to 

the observational scientist.11 Advanced mathematical analysis, functional analysis, 

and the complicated area of measure theory now jointly subsumed probability, re-

ducing the latter to a mere application. Once again mathematics seemed to be 

driving out, pushing aside, and supplanting observation-based research. 

Hammer Blows 
These findings in the first three decades of the twentieth century, stating that (1) all 

observations are inherently biased; and (2) events in nature can be predicted from 

cloistered mathematical work, struck the foundations of epidemiology like hammer 

blows. Epidemiology, already bruised by this philosophical assault, now had to deal 

with the reverse logic of significance testing proposed by the statistician Ronald 

Fisher. This new, upside-down paradigm of statistical significance denied the scien-

tist the ability to prove the hypothesis he believed was correct. Fisher substituted, 

the tepid alternative of disproving a hypothesis the scientist did not believe. Fisher’s 

significance testing appeared to be just the type of indecipherable, mathematical, 

reverse logic that had already shaken the foundations of early twentieth-century 

epidemiology. The reaction to Fisher by epidemiologists and other scientists was 

understandably vehement and severe as in 

What used to be called judgment is now called prejudice, and what 

used to be called prejudice is now called a null hypothesis … it is 

dangerous nonsense ...  [18]  

   

 Over time, epidemiologists have successfully defended their time-tested 

methodologic perspective. Of course, the flaw in all of these criticisms of the use of 

observation as a foundation method of epidemiology, lies in the difficulty in trans-

lating findings useful in one field (physics) to that of another (life sciences). While 

the findings of the relativity laws are in general true, they are most useful in physics. 

The theoretical physicist may be correct in asserting that every observer is biased 

and that there is no absolute truth about the nature and magnitude of the risk factor–

disease relationship. However, this does not imply that all platforms are equally bi-

ased. Epidemiologists never stopped striving to find the most objective position 

possible. Certainly, if bias cannot be removed it should be minimized. The fact that 

bias may not be excluded completely does not excuse its unnecessary inclusion.  

 Second, while mathematicians are capable of predicting results in physics, 

they have not been able to predict disease in any important or useful fashion. No 

mathematical models warned obstetricians or their pregnant patients of the impend-

                                                          
11 An example of this is the strengthening of the law of large numbers, first identified in the 

seventeenth century and usefully applied for over 300 years. We now know that this familiar 

law is merely a weak law and describe it as the weak law of large numbers. The strong law of 

large numbers has been deduced from advanced mathematical analysis.  
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ing thalidomide–birth defect link [19]. Similarly, mathematical models did not pre-

dict the birth defects that mercury poisoning produced in Japan [20]. While physics 

often studies processes that are regular, in which mathematics can reign supreme, 

real life and its disease processes, on the other hand, have proven to be painful, 

messy, and chaotic affairs.12 The substantial role of epidemiology is incontroverti-

ble in the development of the most important new healthcare research tool of the 

twentieth century the clinical trial. The time-tested tools of epidemiology continue 

to prove their utility in the present day.  

The Rise and Decline of Significance Testing 
The previous section pointed out some of the problems epidemiology faced during 

the early twenthieth-century and how this discipline has surmounted those prob-

lems. Later in the twentieth century, biostatistics faced its own set of difficulties. At 

the current time, the outcome is less than certain.  

 Biostatistics fulfills two roles as it guides the investigator’s examination of 

the relationship between the presence of the risk factor and the occurrence of the 

disease. The first is estimation. In order to learn what the odds ratio13 of an expo-

sure to a disease is in the population, the investigators must follow the proper 

procedures to obtain an estimate of the odds ratio based on the data in their sample. 

Estimation theory provides the correct formulas these investigators should imple-

ment so that they might obtain an accurate and precise measure of these parameters. 

The second role of biostatistics is to help the investigators infer what may be ob-

served in the population based on the estimate he or she obtained from the sample. 

This step of inference, i.e., of extending sample estimates to a larger population, 

can be difficult, primarily due to the presence of sampling error.  

 The p-value is the accepted measure of the statistical significance of a re-

search finding. It is the probability of a particular type of sampling error. Consider 

the statistical hypothesis test that is carried out in a clinical trial to assess the effect 

of therapy on a prospectively defined endpoint. Then, specifically, the p-value is the 

probability that the test statistic in the research sample was produced from a popula-

tion of patients in which there is no real effect of the therapy at all.  

 For example, a researcher, studying the effect of an intervention she sus-

pects will postpone mortality in a large population of patients with heart failure, 

will use statistical principles to compute the difference in the cumulative mortality 

rates between the control group and the group of patients who received the experi-

mental therapy. She will then compute the test statistic and the p-value for that test 

statistic. When used correctly, this p-value will assess the probability that there is 

no beneficial effect of therapy on the cumulative mortality rate in the large popula-

tion of patients, but that this population has produced, through chance alone, a 

                                                          
12 It is possible that inclusion of some global climate phenomena can quite possibly reveal 

patterns in the development of outbreaks of bubonic plague and hanta virus infections.  
13 An odds ratio is a measure of association between the exposure and the clinical event of 

interest. 
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sample that falsely suggested that this beneficial effect may be present. 14  The 

smaller the p-value, the more confident the investigator can be that the effect she 

has seen in her sample is due not to sampling error, but is instead a true reflection 

of a population effect. If the experiment was designed and executed well with (1) 

no systematic bias that distorts the measure of the effectiveness of therapy and (2) 

no confounding factors that make it difficult to attribute the effect on mortality to 

the experimental therapy, then the research finding may reflect a population truth.  

 The development of significance testing is due to the work of Fisher. As 

he worked through the design and analyses of agricultural experiments in the 1920s, 

he concluded that one had to consider the likelihood that findings from the research 

sample were just due to the random play of chance. However, he also stated that if 

the probability was greater than 0.05 that a population that had no positive findings 

would produce a sample with positive findings, the research findings should be 

considered to be due to the random, meaningless aggregation of events.  

 It was this latter concept that was completely absorbed by the medical re-

search community. No one could have anticipated that “significance testing” would 

become so firmly rooted among healthcare researchers. Its preeminence is all the 

more astonishing since the 0.05 threshold set by Fisher was completely arbitrary, 

with no theory identifying this level as an appropriate threshold for non-agrarian, 

scientific disciplines. It cannot be overemphasized that there is no deep, mathe-

matical theory that points to 0.05 as the optimum type I error level—only tradition.  

The underlying motivations for the wholesale embrace of hypothesis test-

ing and the p-value have been discussed by Goodman [21]. His work reveals that, 

shortly after the development of the p-value, complicated sociologic and scientific 

groups consisting of government regulators, journal editors, medical researchers, 

and medical academicians discovered that they shared the common desire for an 

objective measure of a research effort’s results. Their interactions led to the identi-

fication of the p-value as an easily computed mathematical entity that seemed 

devoid of investigator subjectivity. A more thorough discussion of this complex 

process is available [22]. 

 The technique of significance testing itself was to undergo a refinement 

into its present form. At its inception, reporting the results of statistical hypothesis 

testing was somewhat less exact. For example, if it was decided during the design 

phase of the experiment that the maximum value of the type I error rate was 0.05, 

the final results were reported as only p < 0.05—the exact value was not computed. 

However, as the use of significance testing grew, the belief that this estimate of the 

level of significance should be sharpened was encouraged. Also, the availability of 

more extensive tabulations of probabilities eased the computation for the exact 

value of this quantity. Thus, it became the custom to report the exact p-value (p = 
0.021) and not just the inequality (p < 0.05). This is how p-values are currently re-

ported.  

                                                          
14 A type I error is when a universe of patients in whom there is no treatment effect produces 

a sample which contains (just through the play of chance) a treatment effect. A type II error 

is when a population in which there is a treatment effect produces a sample which contains 

no treatment effect, again just by chance alone. 
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 The threshold significance level (type I error probability level) was util-

ized by Neyman and Pearson as a flexible criterion that should be determined in 

connection with the type II error level. It is interesting to note that Fisher was op-

posed to the interpretation of the type I error rate as a rejection rate. Instead, he 

emphasized the significance reflected by the actual p-value, i.e., the smaller the p-

value, the greater the strength of evidence that the relationship identified in the 

sample is not due to chance alone [23]. 

 It is not tragic that the use of p-values accelerated; however, it is unfortu-

nate that they began to take on a new, inappropriate meaning in the medical 

research community. Medical research journals, that first were willing to merely 

accept p-values, soon began to require them. Designed to be a measure only of 

sampling error, the p-value became the ultimate research product distillate, the con-

densate that remained after the compression of the entire research effort into a 

single number. This situation degenerated when p-values stampeded over the well-

established epidemiologic Hill tenets of causality as reflected in the following 

statement:  

Since the study found a statistically significant relative risk … the 

causal relationship was considered established. [24] 

 Many workers have substituted the 0.05 judgment for their own thought-

ful, critical review of a research effort. In some studies, highly statistically 

significant effects (i.e., small p-values) are produced from small, inconsequential 

effect sizes. In others, p-values themselves were meaningless regardless of their 

size since the assumptions on which they had been computed were violated.15 Fi-

nally, there is the paradox that statistical significance may not indicate true biologic 

significance.  

 Many scientists resist the rigidity of the 0.05 p-value threshold, and it was 

perhaps inevitable that there would be a backlash to the wholesale reliance on them. 

The common abuse of significance testing has driven some of its critics to conclude 

that significance testing is synonymous with thoughtless decisions, and some scien-

tific journals have reacted with increasing vehemence against their use. In 1987, for 

example, a dispute in the literature broke out when the prestigious and well-

respected American Journal of Public Health solicited an editorial wherein it was 

suggested point blank that significance testing be purged from articles submitted for 

review and publication. The ensuing debate was intense [25], [26], [27], [28], [ 29]. 

Poole [30] pointed out that the mechanical, reflexive acceptance of p-values at the 

0.05 level (or any other arbitrary decision rule) is the nonscientific, easy way out of 

critical discussion in science.  

 This distillation effort to reduce a complex research endeavor down to one 

number is perhaps at the root of the inappropriate role of significance testing. The 

super-condensation of the results of a research effort down to the p-value may be 

due to the fact that the p-value is itself constructed from several components. Sam-

ple size, effect size, and effect size variability are important pieces of the p-value 

and are included directly into the p-value’s formulation. However, in reality, what 

                                                          
15 This is discussed in greater detail in Chapter 2. 
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is produced is not a balanced measure of these important contributory components, 

but only a measure of the role of sampling error as a possible explanation for the 

results observed in the research sample. Thus, p-values are deficient by themselves 

in reflecting the results of a research effort, and must be supplemented with addi-

tional information (sample size, effect size, and effect size precision) in order for 

the study to receive a fair and balanced interpretation. These three measures (sam-

ple size, effect size, and effect size precision) are all important perspectives that the 

investigator must jointly consider with the p-value when interpreting research ef-

forts.  

 Of course, if we are interested only in the size, accuracy, and precision16 of 

an effect with no need to make a single decision about the likelihood of that effect 

occurring in the population, then we do not require a p-value. Other tools, such as 

confidence intervals, can be employed for this work, and it is to these types of tools 

some workers (particularly in epidemiology) have turned. However if we are faced 

with a dichotomous decision “Does the therapy work or not?” p-values serve very 

well when produced from a well-designed, well-executed research effort. This 

proper implementation precludes their use as tools for thought evasion but, more 

importantly, protects their function as an appropriate reflection of the community 

and regulatory standard for type I error rate consideration [31]. 

Advice to the Physician–Scientist 
In the twentieth century, both epidemiology and biostatistics struggled with the cor-

rect role of mathematics in their respective fields. Against epidemiology, the 

criticism was leveled that the tried and true approach of direct observation would 

eventually be overshadowed by the use of complicated mathematical structures. On 

the other hand, the unjustified, blanket use of (and blind trust placed in) p-values, 

elevating their interpretation above other reliable evaluators of research results has 

troubled many scientists. The researcher may feel trapped between the pressures of 

epidemiology, with its emphasis on observation and deductive reasoning on the one 

hand, and biostatistics, with its emphasis on sampling error and mathematical mod-

eling, on the other. The fact that some research journals refuse to accept 

manuscripts without p-values, while other prestigious journals refuse to accept re-

search results accompanied by p-values deepens the conundrum.  

 Choosing one philosophy over the other is clearly inferior both perspec-

tives considered jointly will lead to the most correct interpretation of a study. This 

suggests that we need not choose only one philosophy, but instead that we synthe-

size the best elements from both.  

 How can this be achieved? Consider first that in sample-based research, 

sampling error is an important issue and must be discerned we can rely on biosta-

tistics for this. However, the interpretability of the experiment is enhanced and 

extended if the Hill tenets are embedded in the experiment’s design (such as the ex-

amination of a dose–response relationship). In addition, the experiment must be 

well-designed, and executed according to its design (concordantly executed). Fi-

                                                          
16 Accuracy is a measure of how close the estimate is to the true population value. Precision 

is how close the estimates are to each other.  
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nally, the concordant clinical trial’s evaluation must be based on the joint consid-

eration of the effect size estimate and that estimate’s precision, magnitude of the 

confidence interval width, the p-value (and, when appropriate, the power). Once we 

are sure that the findings of a research effort (designed with epidemiologic princi-

ples in mind) are not due to random chance, we can then use the tools of 

epidemiology to determine whether the findings from the study reflect merely an 

association, or may in fact be causative (Figure 3). 

Rigorous Design

Disciplined Execution

Design-Anchored Analysis

Figure 3. A well reasoned, well conducted clinical trial has the greatest chance 

of avoiding spurious results and producing a useful product.

Clear Results
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Chapter 1 

Fundamentals of Clinical Trial Design 

In this chapter, a brief review is provided of the important fundamentals of clinical 
trial design and analysis that will be required for our subsequent discussions of the 

multiple analysis issue. The random selection of subjects from the population and 

the random allocation of therapy is covered. A discussion of the need to blind both 
patients and investigators to a patient’s therapy assignment and the need for a Data 

and Safety Monitoring Committee is followed by a brief review of interim monitor-
ing procedures that have become so popular in clinical trials. Finally, the effect of 

sampling errors in clinical trials is developed. Type I and type II errors are defined 

and the purpose of the sample size computation is reviewed.  

1.1 The Definition of a Clinical Trial
The concept of clinical experimentation is not new; experiments have been carried 

out on humans for hundreds of years.1 However, this tool was invigorated in the 

twentieth century through the persistent, patient work of a single epidemiologist

Sir Austin Bradford Hill. Early in the twentieth century, clinical research was re-

stricted, by and large, to case reports and case series (Appendix A). However, in the 

1940s, randomization procedures directly applicable to the conduct of healthcare 

research became available [1]. It was at this time that Hill combined an indispensa-

ble feature of laboratory experiments, the control group, with a tool that had been 

largely exploited in non-medical and agricultural research the random assignment 

of the intervention. The joint incorporation of these features into a clinical experi-

ment, produced the first randomized clinical trial [2]. The implementation of this 

randomization device has both improved the interpretability and increased the con-

troversy of modern clinical experimentation.  

 The modern clinical trial is an investigational tool that creates a unique re-

search environment. Within it, the simple demonstration of a clinically and 

statistically significant strength of association between the randomly allocated in-

tervention and the prospectively defined primary endpoint implies that there is a 

causal relationship between the two. This is a very special situation, and can only 

be successfully constructed with, (1) a clear statement of the clinical question, (2) a 

simultaneous focus on epidemiologic and biostatistical principles, and (3) disci-

plined research execution. Commonly, a clinical trial is an experiment in health 

care in which an intervention believed to be of benefit to a population is adminis-

tered in a well-defined fashion so that patients in one group (designated the active 

                                                          
1

The work of James Lind on the HMS Salisbury described in the Prologue is an example of a 

clinical experiment. 
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group) will receive the intervention while patients in a second group (called the 

control group) do not. In some circumstances the control group receives only pla-

cebo therapy. In situations when it is unethical to withhold therapy, the patients in 

the control group will receive a competing active therapy. 

 The advantages of clinical trials have been well established, and informa-

tion about their goals and interpretations have entered the lay press [3]. Clinical 

trials can be of all sizes. In the early phases of a drug development program, a clini-

cal trial may contain no more than 50 patients. Sometimes, however, clinical trials 

are immense, recruiting tens of thousands of subjects. Often these patients are fol-

lowed for many years, during which time information concerning the benefits and 

adverse effects of the intervention is collected.  

 There are several comprehensive references that discuss in detail the 

methodology of clinical trials, most notably [4], [5], and [6]. This chapter provides 

a brief overview of the salient issues in clinical trials, serving as a preamble for the 

discussion of multiple analyses that is the main subject of this text.  

1.2 Principles of Randomization
Randomization is a hallmark of modern experimental design. It received consider-

able attention from Fisher’s early research work in agriculture. However, its use in 

clinical trials did not start until Hill’s developmental work. Although its propriety in 

clinical experiments is still debated, randomization has had a major impact on the 

development of clinical trials.  

 In clinical trials, there are typically two levels of randomization that may 

be used. The first is the random selection of subjects from the population. The sec-

ond is the random allocation of the experimental intervention. Each of these two 

levels of randomization has a different goal.  

1.2.1 Random Selection of Subjects from the 
Population

The random selection of subjects from the larger population is not a chaotic or hap-

hazard process. Despite the use of the word “random” the incorporation of this 

procedure within a clinical trial is well planned and organized. In the idealized 

clinical trial setting, the goal of the simple random sampling plan is to ensure that 

every subject in the population has the same, constant probability of being selected 

for the research sample. However, this worthy goal is seldom if ever achieved.  

 The simple random sampling mechanism is the best way to ensure that the 

research sample represents the population at large, and that some findings in the 

sample can be generalized to the population from which the sample was obtained.2

There have been several adaptations of the simple random sampling plan that deal 

with unique and special circumstances (e.g., when there is a concern on the part of 

the investigators that patients with a certain characteristic of interest will be under-

represented). However, these alterations must be considered very carefully, because 

                                                          
2
 We will have much more to say about this generalization process in Chapter 2.  
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deviations from the simple random sampling schema run the risk of generating a 

research sample that is not representative of the population. 

 In addition, the random selection of subjects from the population creates in 

the sample the property of statistical independence. Statistical independence is the 

characteristic that permits the multiplication of probabilities that is so useful in the 

construction of both parameter estimators and test statistics.  

1.2.2 Random Allocation of Therapy 
In addition, a second level of randomization is critical in clinical trials. This is the 

random allocation of therapy. As opposed to the random selection of subjects from 

the population (a process that produced the research sample), the random allocation 

of therapy occurs within the research sample itself. The simplist application of this 

device requires that each subject in the sample has the same probability of receiving 

the intervention. This procedure is intended to effectively decouple the use of the 

intervention from any patient characteristics. This decoupling in turn allows the ef-

fect seen between the active and control groups at the end of the clinical trial to be 

attributed to the use of the intervention. 

 This point requires further elaboration. Two important features that lead to 

the successful interpretation of a positive clinical trial are (1) the identification of an 

effect at the conclusion of the study, and (2) the attribution of that effect to the ther-

apy that the trial was designed to evaluate. For example, consider a clinical trial that 

is designed to determine the effect of a therapy to reduce the total mortality rate 

among patients who have suffered a stroke. All patients who are recruited into the 

study receive state of the art therapy for their stroke. In addition, some patients re-

ceived the active therapy while other patients receive an inactive placebo. The 

investigators follow these patients to the end of the study, carefully counting deaths, 

and, at the study’s conclusion, identify a clinically and statistically different reduc-

tion in the total mortality rate observed in the active group. These researchers have 

completed one part of their mission they have identified an effect. They now must 

persuasively argue that the effect is due to the therapy the study was designed to 

assess.

 How can the investigators be sure that the effect observed in their trial is 

due to the therapy? The only way we have to ensure this is that the two groups must 

resemble each other in every way and facet except the therapy (control therapy ver-

sus intervention therapy). This is what the random allocation of therapy 

accomplishes. By creating the environment in which the only difference between 

patients who receive the intervention and those who did not is the intervention it-

self, the attribution of the reduction in the total mortality to the intervention is clear.  

 However, the random allocation of therapy also strengthens the interpreta-

tion of a clinical trial when the difference in event rates between the two groups is 

small. In the previous example of a clinical trial that has a control and intervention 

group and is designed to measure the effect of the intervention on the cumulative 

total mortality rate, assume now that the difference between the mortality rates for 

the two groups is disappointingly small. However, this finding may not imply that 

the therapy was ineffective. For example, if in the absence of randomization, pa-

tients in the active group had a greater severity of disease and consequent poorer 
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prognosis than did patients in the control group, then the positive effect of therapy 

could be overshadowed by the harmful effect of the severity of illness.  

 The random allocation of therapy all but assures us that characteristics that 

influence mortality have the same distribution in each of the two groups of patients 

and will have no more influence in one group than in the other. Since the influences 

of these characteristics are balanced, they would not blur our view of the effect of 

the randomly allocated therapy.  

 It is difficult to overestimate the importance of the random allocation of 

therapy. Use of this tool not only protects the experiment from the influences of 

factors known to affect the outcome, but also protects against unidentified influ-

ences. This is because the random assignment of therapy does not depend on any 

characteristic of the individuals. When randomization fails to correct for a variable 

(such as age), there are techniques that are available that can adjust the analysis for 

differences produced by the different distribution of age in each of the arms of the 

trial. However, in randomized experiments, adjusted results will rarely differ mark-

edly from unadjusted results.3 The random allocation of therapy is a design feature 

that, when embedded in an experiment, leads to the clearest attribution of that ther-

apy’s effect [7]. 

 Large clinical trials attempt to take advantage of both of these levels of 

randomization. Undoubtedly, the researchers conducting the experiments have little 

difficulty incorporating the random allocation of the experimental intervention into 

their study. Proven randomization algorithms are required to be in place at the be-

ginning of the trial, assuring the investigators that every patient who is accepted 

into the research sample must have their treatment randomly allocated. In addition, 

once researchers randomize patients, examinations of baseline characteristics in 

each of the randomized groups are thoroughly reviewed, ensuring that demographic 

characteristics, morbidity characteristics, and results of laboratory assays are dis-

tributed equally across the two groups. These procedures and safeguards ensure that 

the treatment groups are the same with respect to all other characteristics, traits, and 

measures.

 Unlike the random allocation of therapy, the random selection of subjects 

from the population in these randomized clinical trials is generally not achieved. It 

is true that large clinical experiments randomize patients from many different clini-

cal centers. These centers represent different regions of a country, different 

countries on a continent, and sometimes different continents. This widespread re-

cruitment effort is an attempt to be as inclusive as possible, and the investigators 

hope that this recruitment process results in an acceptable approximation of this 

random selection mechanism. However, it must be admitted that this selection 

mechanism is not random. 

 One impediment to the random selection of subjects from the population in 

these large clinical studies is the use of exclusion criteria. Patients who are intoler-

ant of the intervention cannot be included in the study. A patient who is already in 

one other study cannot be accepted into another trial. Subjects who have life-

                                                          
3

See the Glidel example in Chapter 2 for an informative counterexample.
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threatening illnesses are often excluded as well.4 Patients who are unlikely to be 

able to follow the compliance criteria of the experiment (patients who cannot take 

the intervention consistently or patients who refuse to adhere to a tight schedule of 

follow-up visits) are commonly prohibited from the study. These exclusion criteria 

may be necessary for the successful execution of the trial, but each new exclusion 

criterion weakens the argument that simple random sampling generated the research 

sample.5 Thus, although large clinical trials are successful at randomly allocating 

therapy, they are not so successful in the random selection of subjects from the 

population [8]. 

1.2.3 Stratified Randomization 
Although the random allocation of an intervention in a clinical trial should produce 

the same distribution of patient characteristics in each of the two treatment groups 

(e.g., the same percentage of males in the active and control groups) the desired 

equal distribution is not ensured. If an imbalance in the use of the therapy occurs on 

the characteristic of interest, the investigators may not be able to gain a fair ap-

praisal of the drug’s efficacy in patients with that trait since, for example, the drug 

may have been used in more patients with the characteristic than in those without 

the characteristic.  

 In order to guarantee that the use of therapy is balanced on a trait of great 

interest to the investigators, the trial designers can alter the randomization proce-

dure requiring that it now balance the distribution of the drug within each of the 

levels (or strata) of the patient trait of interest. As an illustration, consider a clinical 

trial whose goal is to assess the effect of a calcium channel blocking agent on the 

cumulative incidence rate of congestive heart failure (CHF). There are two types of 

heart failure in which the investigators are interested: ischemic CHF and non-

ischemic CHF. In this setting, stratified randomization is the process that ensures 

that there are equal numbers of patients assigned to the calcium channel blocking 

agent as there are to placebo within the stratum of patients who have ischemic car-

diomyopathy, and similarly for those patients with nonischemic cardiomyopathy. 

The equal distribution of patients in these two strata allows a balanced examination 

of the effect of the calcium channel blocker within each of the two heart failure 

strata.

1.3 The Use of Blinding 
As we stated in the previous section, the motivation for the use of the random allo-

cation of therapy in a clinical trial is to ensure that the only difference between 
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An unfortunate patient who has terminal pancreatic cancer with less than 1 year to live is 

unlikely to be randomized to a 5-year trial assessing the role of cholesterol reduction therapy 

in reducing the number of heart attacks, even if the patient has met all other criteria for the 

trial.  
5 Nonrandomized, observational studies can sometimes do a better job than their counterpart 

clinical trials in randomly selecting subjects from the population. However, these observa-

tional studies are rarely able to randomly allocate exposure in their attempt to assess the 

relationship between exposure and disease.  
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subjects who receive the intervention to be studied and those who do not is the ther-

apy itself. Thus, at the time of therapy assignment (commonly referred to as the 

baseline), the distribution of all patient characteristics (e.g., demographics, lifestyle, 

previous medical history, and physical examination findings) are the same between 

the two groups; the two groups of patients are equivalent except for the therapy ex-

posure. 

 Unfortunately, beginning a clinical trial with equivalent patient groups 

does not guarantee that the trial will end with this equivalence property intact. If the 

investigators are to be assured that any difference that is seen between the active 

group and the control group at the end of the trial can be ascribed to the randomly 

allocated therapy, the two groups of patients must not only have equivalent charac-

teristics at the baseline; the patients must also have equivalent experiences during 

the study.  

 Ensuring this equivalent post-randomization experience can be difficult to 

accomplish, especially when the patient and/or the physician know the identity of 

the medication that the patient is taking. Therefore a sequence of procedures has 

been developed that increases the likelihood that patients will have equivalent ex-

periences during the course of the clinical trial. These procedures are called masks, 

or blinds. Clinical trials are most commonly either single-blinded, or double-

blinded. 

1.3.1 Single-Blinded Trials 
If a patient knows that she is on placebo therapy, she may believe that her condition 

is more likely to deteriorate than to improve. This patient may adjust other medica-

tion she is taking based on her belief in the ineffectiveness of the study medication. 

This idea that her condition is worsening can color her reports to the trial investiga-

tors about her health, leading her to provide relatively negative quality of life 

reports and self-assessments. If this conviction takes root in the majority of patients 

on inactive therapy, the investigators might conclude that the placebo experience is 

less satisfactory than it actually is.  

 On the other hand, patients who know that they were assigned to active 

therapy may be inclined to believe the therapy is helping them (after all, why would 

the physicians test this medication if there wasn’t some feeling among experts in 

the medical community that the medication would be beneficial?). These patients 

believe that they are on a positive therapy, and that they will have a resultant posi-

tive experience. This belief has its own invigorating effect; if the compound is 

indeed beneficial, then the actual benefit can be amplified by the patient’s convic-

tion that she is improving. If the compound is actually not effective at all (i.e., just 

like placebo), then this positive belief system can produce its own salubrious effect; 

an effect that would be mistakenly attributed to the ineffective product. 

 The influence of these belief systems is strong; if left unchecked, their 

presence will blur the investigator’s view of the therapy’s true effect. In order to 

counterbalance the influence of these belief systems, investigators instituted single-

blind trials in which patients were not informed of their therapy assignment. In 

these single-blind studies, patients do not know whether they are on active therapy 

or placebo therapy.  
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 It is important to understand that the institution of the single-blind does not 

keep the individual patient from guessing the identity of their therapy. The single-

blind therefore does not block the ignition of the belief system, nor does it stop the 

generation of its effects within the patient (positive effects if the patient believes 

that they are on active therapy, negative effects if the patient believes that they are 

on placebo therapy) the single-blind procedure distributes these effects. Without 

knowing the therapy on which they are placed, the patient’s ability to guess the 

therapy identity is dispersed throughout both treatment groups. The effect of the 

belief system, rather than being concentrated in one treatment group, is randomly 

distributed throughout the entire recruited cohort.   

1.3.2 Double-Blind Studies 
In the previous section, the difficulties produced by the knowledge that a patient 

has about the identity of their assigned study medication in a clinical trial were de-

scribed. However, physician knowledge of the medication that the patient is taking 

can also skew the objective evaluation of the effect of the therapy. Physicians 

commonly agree to be a participant in these studies because they have feelings 

(sometimes strong feelings) about the effect of the compound that is being studied. 

These strong feelings can influence the way a physician treats a patient during the 

course of the study. Such motivations may govern the efforts of physicians to (1) 

insist that the patient be compliant with their medication, and (2) express to the pa-

tient the importance of returning for all of the scheduled follow-up visits that the 

clinical trial requires.  

 In addition, doctors may choose to use other concomitant medications 

much more aggressively in patients who do not receive active therapy. At the end of 

the follow-up period, these physicians may seek out adverse outcomes more thor-

oughly from patients who are randomized to the treatment group of the trial that 

they believe is ineffective and/or produces more side-effects. Each of these maneu-

vers can adversely affect the assessment of the therapy’s influence. In order to 

distribute these effects randomly among the physicians who treat patients in the 

study, these physicians are blocked from knowing the medication that their patient 

is taking. Studies in which neither the physician nor the patient know the effect of 

the therapy are known as double-blind trials. 

 Double-blind studies can be difficult to sustain because of the known ef-

fects of the medication that are not mimicked by placebo therapy. In a study 

designed to assess the effect of the angiotensin converting enzyme inhibitor (ACE-

i) captopril on reducing the total mortality rate in patients who have CHF [9], pa-

tients were randomized to receive either captopril therapy or placebo therapy. After 

randomization, patients were to be followed for approximately 3 years. However, 

during the follow-up period physicians involved in treating these patients noted that 

many of them developed a dry cough unrelated to smoking, seasonal allergic rhini-

tis, or any other obvious etiology. This so-called “captopril cough” not only 

threatened to unbind the identity of the study medication to the physician, but 

threatened to undermine study compliance with the medication since patients were 

starting to resist taking the drug. This issue was addressed by permitting physicians 

to decrease the administered dose of study medication in patients who were com-
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plaining of cough, temporarily alleviating the troublesome cough, with the hope 

that they could reinstitute the higher dose at a later time.  

 If the blinding is to work, the investigators must sometimes go to great 

lengths to ensure that the identity of the therapy cannot be deduced by its physical 

appearance. As an illustration of this experience, consider the Treatment of Lead in 

Children (TLC) trial [10]. This clinical trial recruited children who had been identi-

fied as having moderately elevated blood lead levels. The TLC trial instituted the 

following interventions. First, the houses of each of these children was subjected to 

a complete lead abatement action6. In addition, half of the children were given pla-

cebo therapy, and the second half were provided succimer, a lead chelating agent. 

The clinical hypothesis was that the combination of reduced environmental lead ex-

posure and succimer would have a more beneficial effect on a child’s cognitive 

development than just environmental changes alone.  

 TLC was designed to blind the identity of the therapy. Thus, the appear-

ances of the placebo and active therapy pills were identical, as were the bottles in 

which the pills were delivered. However, the nauseating sulfur-enriched odor ema-

nating from some of the bottles permitted an immediate and correct identification of 

the identity of the active drug, effectively unbinding the therapy assignment. The 

investigators labored over what to do about this problem since the odor-induced 

unbinding would block an objective assessment of the effect of therapy. They 

solved this problem by asking the workers that bottled the study drug to place in the 

bottom of each bottle a tiny fabric strip that had been exposed to the odiferous sul-

fur compound. Now, when the bottles were opened in clinic, they would each emit 

the same odor. They would all reek together!  

1.3.3 Arthroscopy and the Art of the Double-Blind  
A fine example of (1) the need to maintain that a double-blind in a clinical trial and 

(2) the lengths to which investigators must go to preserve the double-blind property 

of a clinical trial is the evaluation of the use of arthroscopic surgery as a tool for 

relieving the pain and disability associated with osteoarthritis of the knee.  

 Osteoarthritis of the knee is the result of the chronic strain, weight and 

stresses placed on this joint from its continual use into and through middle age. 

Early in life, the knee joint is an example of mechanical efficiency. The distal 

femoral and proximal tibial surfaces approach each other but do not actually touch, 

separated by a synovial cavity, itself lined by smooth cartilage and filled with clear 

synovial fluid. The anterior surface of the joint is protected by the knee cap, the un-

derside of which is lined with cartilage as well. In this environment, the articular 

surfaces continually glide past each other as the joint flexes and extends. Bone to 

bone contact is prevented by the presence of the synovial cavity, which acts as a 

separating buffer zone. The tibial surface therefore sweeps smoothly and easily un-

der the femur.  

                                                          
6

This program consisted of home repainting, replacing old carpets with new carpets, com-

plete home cleaning, and any other environmental changes known to reduce lead exposure in 

the home’s interior.
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 These mechanics are disrupted by injury and continued use of the joint. 

Over the course of time, the cartilage, which is consistently and continually worn 

down by daily joint use, is no longer able to generate new and fully functional carti-

lage in smooth sheets, but instead produces poorly formed, rough and irregular 

cartilage. Pieces of cartilage can separate from the synovial membrane. This sepa-

rated wedge of cartilage can leave sensitive bone uncovered while the cartilage 

fragment itself floats freely within the synovial cavity. Exposed bone can produce 

an inflammatory response that, rather than protecting the joint, causes more damage 

as additional cartilage is dissolved by the release of caustic and lytic enzymes onto 

the articular surface. Irregularities can develop in the bone underlying the cartilage 

as well, and new bone growths (called spurs or osteophytes) can push their way into 

the joint space, squeezing the synovial cavity and reducing the volume of space 

through which the end of the bone moves. The cumulative result of this process is 

to convert what was an efficient, functional, buffered joint cavity into an irregular, 

sharply contoured, debris-filled pseudo-space in which bone movement is re-

stricted, jerky, and irregular. The result is painful swelling and immobility.  

 To relieve this discomfort, patients commonly resorted to surgery. Under 

arthroscopic examination, surgeons will perform lavage, which is the removal of 

unattached macroscopic fragments of cartilage and visualized crystals. In addition, 

the articular surface will be smoothed, inflamed cartilage is removed, and bone 

spurs are filed down. This is known as dèbridement. The goal of lavage and 

dèbridement is to attempt to reproduce a healthier joint, and thereby provide greater 

use of the knee without the limiting pain and discomfort.  

  Historical and anecdotal evidence suggested that lavage and dèbridement 

produced a favorable outcome for the osteoarthritic knee. In order to accurately 

measure this benefit, several randomized clinical trials were carried out. In these 

studies, patients randomized to the active group received the arthroscopic surgery, 

while those in the control group did not. In these studies, patients who received the 

dèbridement/lavage procedure reported a greater improvement in pain than patients 

who were in the control group. However, in these studies, it was impossible to sepa-

rate the effect of the lavage and dèbridement from the influence of the belief that 

surgery (regardless of what was done during the surgery) would produce an im-

provement.  

 In order to address this issue, Moseley et al. [11] carried out a randomized, 

double-blind, controlled clinical trial on 180 patients who suffer from osteoarthritis 

of the knee. In order to be recruited into the study, patients had to have at least 

moderate knee pain despite maximal medical management for at least 6 months, 

and could not have undergone knee arthroscopy during the previous 2 years. Pa-

tients who met all of the entry criteria of this clinical trial were randomly assigned 

to undergo either arthroscopic lavage and dèbridement, arthroscopic lavage alone, 

or a placebo procedure. This placebo procedure included a short active intravenous 

tranquilizer, an opioid, and spontaneous respiration of oxygen-enriched air. Then a 

standard arthroscopic dèbridement procedure was simulated. Three 1-cm incisions 

were made in the skin. The surgeon requested instruments and manipulated the 

knee as though actual arthroscopic surgery was being executed, to the point were 

saline was harmlessly splashed in a container to simulate the sound of lavage. The 
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patient was kept in the operating room for the standard time and remained in the 

hospital for the night of the procedure. Post operative care was provided by person-

nel who were blinded to the therapy assignment.  

 To assess the effectiveness of this sham surgery in maintaining the blind of 

the trial, patients were asked if they had experienced the actual surgery or the sham 

surgery. Patients in the placebo group were no more likely than patients in the 

dèbridement/lavage and lavage group to correctly identify the procedure that they 

had undergone, a finding that demonstrated the impact of the blinding procedure.  

 The primary endpoint of the study was pain assessment at 24 months post 

surgery. At the conclusion of the trial, the investigators discovered that pain relief 

was effectively the same between the three groups. Furthermore, at no point during 

the follow-up period did either the dèbridement/lavage or the lavage group have 

significantly greater pain relief than those patients who underwent the sham sur-

gery. While there have been several criticisms of this trial, even the critics say that, 

despite their current popularity, this study has demonstrated that lavage and 

dèbridement are not very effective for the treatment of most patients with os-

teoarthritis of the knee [12].  

1.4 Interim Monitoring of Clinical Trials 
While the effective use of double-blind clinical trial methodology, in concert with 

the random allocation of therapy, addresses the important issue of attribution of ef-

fect in a clinical trial, the implementation of the double-blind technique produces a 

new problem for the execution of the study. When the investigators design a clini-

cal trial, they first carry out an evaluation of how long it will take them to execute 

the study. This plan is based on the rate at which they expect to see endpoint events. 

For example, the investigators may choose to do the final analysis on the cumula-

tive mortality rate at 5 years, anticipating that it will take that long for the effect of 

therapy on the total mortality rate to emerge in a convincing way. The investigators 

also appropriately agree to forego the final analyses until the end of the trial. By 

waiting until the end of the study, the investigators appropriately choose to ignore 

the random eddies in the data generated by the play of chance that occur as the trial 

proceeds. These transient trends, appearing and disappearing as the follow-up time 

progresses, are best set aside since they portray only the random aggregation of data 

and are not representative of the population at large.  

1.4.1 The Need for Trial Monitoring 
This is a well-conceived execution plan, but this procedure is based on the assump-

tion that patients must be followed for 5 years before the beneficial therapy effect is 

persuasively demonstrated. If the trial produces an unanticipated and overwhelm-

ingly beneficial effect as early as 1 year into the study, then the investigators would 

not know of this early effect until the study has ended after 5 years of follow-up. In 

this scenario, the trial will have been continued for 4 unnecessary years because the 

investigators, being “blind” to therapy, would also be “blind” to the effect of ther-

apy. Thus, their dedication to continuing the trial to the end, in concert with the 
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incorporation of the double-blind property, places the investigators in precisely the 

wrong position to observe this early beneficial effect.  

 In order to permit the observation of the effect of therapy that may appear 

early in the trial, while at the same time ensuring the double-blind property remains 

intact, the trial investigators often create a Data Safety and Monitoring Board 

(DSMB). This is a relatively small collection of august scientists who have particu-

lar expertise in the clinical question the trial is addressing. This distinguished group 

of scientists commonly includes clinicians, clinical researchers, methodologists 

(biostatisticians or epidemiologists), and sometimes, an ethicist. The charge of this 

group is to review all of the data in an unblinded fashion7 and to determine if either 

an early therapeutic triumph or early therapeutic catastrophe has occurred.  

 The mandate of the DSMB has expanded in recent years to review not just 

the effect of therapy but to examine other barometers of the trial’s status as well. It 

is not uncommon now for DSMBs to review the progress of patient recruitment, to 

be notified of protocol violations, and to ensure that the statistical and epidemi-

ologic assumptions that underlie the sample size computation are correct. This 

group then makes recommendations to the investigators and the sponsors of the 

study concerning the clinical trial’s status. It is the responsibility of this group to 

ensure that the trial is executed according to its protocol and to be on the alert for 

early signs of therapeutic benefit or harm. 

 To aid in this review, methodologists have developed statistical monitor-

ing rules that provide an assessment of the early effect of therapy, while 

simultaneously incorporating the considerable variability associated with the esti-

mate of this early therapy effect. This monitoring rule is a device which is generally 

established before the trial begins recruiting patients. This guideline specifies how 

large the test statistic will be allowed to become before the trial is stopped. For this 

reason, these rules are commonly referred to as stopping rules. However, there are 

many other considerations that the DSMB must evaluate before the clinical trial is 

discontinued prematurely. In addition to the magnitude of the test statistic, the mer-

its of the treatment, the availability of alternative treatments, the seriousness of the 

condition being treated, the clinical importance of the observed difference, and the 

consistency of the results with the findings of other researchers must all be as-

sessed. Based on careful review of all these considerations, the DSMB will make a 

recommendation (either continuation or early termination) regarding the safe con-

duct of the study. Thus the statistical criteria for the early termination of a study are 

best referred to as monitoring guidelines.

1.4.2 Test Statistic Trajectories 
Statisticians have developed monitoring guidelines that assist DSMBs in deciding 

whether a clinical trial should be continued or prematurely terminated. These guide-

lines are commonly classified into two groups. The first group falls under the rubric 

of group sequential procedures; the second and newer method is termed condi-

                                                          
7 Sometimes even the DSMB is blinded to the identity of the  therapy effects. In this “triple-

blind study,” the DSMB sees the results categorized not as active versus control group find-

ings but, instead, as “Group A” and “Group B.”  
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tional power. Both are easy to conceptualize but can involve some difficult compu-

tations. However, since we are simply concerned with the underlying motivations 

and basic concepts of these useful tools, we will be sure not to lose ourselves in the 

mathematics.  

 Let’s begin our examination of the concept of monitoring rules with an 

elementary consideration of the behavior of the test statistic over the course of a 

clinical trial. Consider, for example, a clinical trial that is designed to test the effect 

of a therapy that the investigators believe will reduce the cumulative mortality rate 

in patients with diabetes mellitus. Patients are recruited into the study and then ran-

domized to receive either the control group therapy or the active agent. An equal 

number of patients are randomized into each group. Appropriately, the test statistic 

that is designed to be computed at the end of the trial will compare the total mortal-

ity rate of the patients randomized to the active therapy to that of the patients who 

are randomized to control group therapy. Suppose, however, that you have a unique 

vantage point; you are in a position to compute the test statistic every single day of 

the trial, plotting its value as a function of time.  

 What would this plot look like? At the beginning of the study, when no 

follow-up time has accrued, and there have been no deaths among the small number 

of randomized participants, the value of the test statistic is zero. However, as more 

patients are recruited into the study, they accrue follow-up time, experience the ef-

fects and consequences of their disease, suffer inevitable morbidity and, ultimately, 

death. As they die and these deaths are reported to you, the test statistic immedi-

ately begins to register the effect of these events. If the total mortality rate is lower 

in the active group, the test statistic will be positive. Alternatively, the test statistic 

becomes negative when there are more deaths in the active group than there are in 

the control group. Thus the test statistic will begin to move away from zero. How-

ever, deaths in this sample are not very predictable; in fact, they occur randomly 

during the follow-up period, and they will commonly cluster. If there has been a 

recent sequence of deaths in the placebo group, the test statistic will inch its way 

upward. If a recent cluster of deaths occurred among patients in the active group, 

the test statistic will decrease, perhaps becoming negative. Thus, the test statistic 

will wander, with upward movements followed by downward excursions (Figure 

1.1).  



1.4 Interim Monitoring of Clinical Trials 33 

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
0

0
.01

0
.02

0
.03

0
.04

0
.05

0
.06

0
.07

Time

Figure 1.1. Starting to track the random movement of a test statistic 

over time in a clinical trial.  
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 Imagine the response of the investigators to this preliminary information 

portrayed in Figure 1.1. These scientists might have difficulty restraining their en-

thusiasm for the salubrious effect of the active therapy upon the very early 

evaluation of the test statistic as it crept upward. However, their zeal rapidly evapo-

rates as the test statistic follows its early increase with a prompt reversal and slide 

to negative values, responding to a spate of deaths that occur in the treatment group. 

This decline is followed by an upsurge in the test statistic, an increase attributable 

to more deaths among those patients who were randomized to the control group.  

  This unpredictable movement of the test statistic is one of the causes of 

the conundrum a DSMB faces during its deliberations concerning whether a trial 

should be permitted to continue or be terminated prematurely. Since the excursions 

of the test statistic are unpredictable, the possibility always exists that its future ex-

cursions would reveal that the DSMB drew a wrong and premature conclusion. For 

example, consider the circumstance of a DSMB asked to make a decision to prema-

turely halt a clinical trial based on the observed test statistic thus far (Figure 1.2). At 

the point in time that the DSMB is deliberating (time t1) the test statistic appears to 

reach its zenith, with the evidence suggesting that there is not only a beneficial ef-

fect of therapy, but an effect that suggests that the trial should end early (Figure 

1.2). 



34 1. Fundamentals of Clinical Trial Design 

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

0
.01

0
.02

0
.03

0
.04

0
.05

0
.06

0
.07

0
.08

0
.09 0
.1

0
.11

0
.12

0
.13

0
.14

0
.15

0
.16

0
.17

0
.18

0
.19 0
.2

0
.21

0
.22

0
.23

0
.24

0
.25

0
.26

0
.27

0
.28

0
.29 0
.3

0
.31

0
.32

0
.33

0
.34

0
.35

0
.36

0
.37

0
.38

0
.39 0
.4

0
.41

0
.42

0
.43

0
.44

0
.45

0
.46

0
.47

0
.48

0
.49 0
.5

0
.51

0
.52

0
.53

0
.54

0
.55

0
.56

0
.57

0
.58

0
.59 0
.6

0
.61

0
.62

0
.63

0
.64

0
.65

0
.66

0
.67

0
.68

0
.69 0
.7

0
.71

0
.72

0
.73

0
.74

0
.75

0
.76

0
.77

0
.78

0
.79 0
.8

0
.81

0
.82

0
.83

0
.84

0
.85

0
.86

0
.87

0
.88

0
.89 0
.9

0
.91

0
.92

0
.93

0
.94

0
.95

0
.96

0
.97

0
.98

0
.99

1

Time

Figure 1.2. The random movement of a test statistic over time in a 

clinical trial with no treatment effect.
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 However, when we add the subsequent test statistic excursions (excursions 

that would not have been observable if the DSMB had decided to terminate the trial 

at time t1), the value of the test statistic at time t1 which appeared to be so sugges-

tive is seen to be merely one random occurrence that was never repeated (Figure 

1.3). In fact, if the experiment had been allowed to proceed to its planned end, the 

conclusion would have been that there is no beneficial effect of therapy on the total 

mortality rate at all.  

 If there is no long-term effect of the active therapy, then there will be no 

long-term reduction (or increase) in the active group event rate. In this situation, the 

only influence on the test statistic is the random occurrence of deaths which occur 

unevenly but at equal rates in each of the two groups, excursions that can be all of 

misleading. Therefore, excursions of the test statistic above zero are matched by 

movement of the test statistic below zero. Thus, although at any given time the test 

statistic may appear to be different from zero, if one were to observe the test statis-

tic’s excursion over the course of the trial, it would be seen that the excursions 

above zero are as likely as excursions below zero. It would be easy to identify a 

time point at which the test statistic is positive, suggesting a beneficial effect of 

therapy. However, it is equally easy to choose a point in time during which the test 

statistic is negative, suggesting a harmful effect of therapy. 
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Figure 1.3. The random movement of a test statistic over time in a 

clinical trial with no treatment effect. 
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 There are other possible scenarios that are worthy of consideration as well. 

If the therapy has a beneficial effect, it will reduce the number of deaths in the ac-

tive group, an impact that will drive the test statistic in the positive direction. If we 

were to plot the trajectory of the test statistic over time in this circumstance, the test 

statistic will climb to a point above zero. However, the random occurrence of 

events in the trial will not allow this test statistic’s path to be a smooth one. There 

will also be periods of time during which the test statistic will decrease due to the 

random aggregation of events, e.g., the unpredictable occurrence of a cluster of 

deaths of patients randomized to the treatment group. In this case, we say that the 

test statistic, while still continuing its up-and-down oscillations, will drift upward 

away from zero. The force and direction of the drift are commensurate with the 

treatment effect (Figure 1.4).  
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Figure 1.4. The random movement of a test statistic over time in a

clinical trial with a positive treatment effect. 
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 If, on the other hand, increased mortality is the result of therapy, the test 

statistic will move below zero and, for the most part, remain below zero (Figure 

1.5).  
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Figure 1.5. The random movement of a test statistic over time in a 

clinical trial with a harmful treatment effect.
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These illustrations suggest that the monitoring process will involve an analysis of 

the movement that a test statistic undergoes over time. Classical biostatistics are of 

little use in this sophisticated evaluation, and as clinical trial methodology has ex-

panded to consider this problem, it has borrowed from the deeper regions of 

probability theory to assemble a discipline that we may call “test statistic trajectory 

analysis.”

1.4.3 Group Sequential Procedures 
The first very useful set of stopping rules statisticians have developed are called 

group sequential procedures. Consider a clinical trial that assigns patients to one of 

two treatments over time. The investigators prospectively agree to monitor the test 

statistic as the trial progresses. The relevant question for the investigators is how 

large should the test statistic be in order to justify an early trial termination. The 

group sequential procedures will tell the investigators, if they choose to stop the 

trial at some time t, before the trial ends, how likely they will be to make a type I 

error. The specific steps are as follows: 

Step 1:  Calculate the test statistic at this point in the study 

Step 2:  If the test statistic is too large, then stop the trial in favor of treatment 1. If 

the test statistic is too small, then stop the trial in favor of the other treat-

ment. 

Step 3:  If the test statistic is not in these regions, continue the trial until the next 

testing period. 

Thus, group sequential procedures construct a boundary for the test statistic at each 

monitoring point in the clinical trial for the investigators. If the test statistic at any 

of these points is larger than the boundary at that point in time, we say that the 

monitoring rule suggests the trial should be stopped. Group sequential procedures 

are a mixture of trajectory analysis (they compute the likelihood that the test statis-

tic would have followed the path it did if there was no treatment effect), and 

classical statistics (the answer is in terms of type I error rates).  

 Rules such as those of Lans–DeMets are very popular group sequential 

procedures [13], [14]. These guidelines are easy to implement and quite intuitive. 

Consideration of the problem posed by stopping a clinical trial early suggests that if 

the trial is to be stopped very early the evidence for benefit (or harm) must be 

overwhelming. We would therefore expect the boundary for the test statistic to be 

far from zero early in the trial and to get smaller as the trial progresses. Group se-

quential procedures produce boundary points in such a way that the overall  error 

rate of the trial is maintained below the maximum level (e.g., 0.05) that the investi-

gators set.  

 As an example of the implementation of a group sequential procedure, 

consider a controlled clinical trial which is designed to evaluate the effect of ther-

apy on the total mortality endpoint event rate. The study will have two arms, a 

control arm and a therapy arm. The experiment will be double-blinded and will 

have a DSMB in place. This DSMB decides that it will monitor the effect of ther-

apy during the course of the study by evaluating the test statistic at each of five 
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interim points. In order to assist in this effort, and recognizing that these multiple 

evaluations will have to be disciplined by the presence of prospective guidelines for 

the test statistic’s evaluation, the DSMB chooses to be guided by a group sequential 

procedure (Table 1.1). 

Table 1.1. Type I error at each of five monitoring points during

a clinical trial using a group sequential procedure rule.

Monitoring Type I 
point error

allocation

1 0.0001

2 0.0010

3 0.0060

4 0.0160

5 0.0320

The total type I error expended is 0.05.

Table 1.1 provides the type I error rate threshold that will be used to assess each of 

the five interim evaluations of the effect of therapy on the total mortality rate. For 

example, in order to stop the trial early, the results of the first test statistic must 

produce a p-value of less than 0.0001. For every succeeding analysis, as the quan-

tity of information about the effect of therapy increases, the type I error rate 

allocation increases. The final evaluation at the conclusion of the trial permits a 

type I error rate allocation of 0.032. This is less than the traditional level of 0.05 

because, rather than allocate a type I error rate of 0.05 level for one and only one 

evaluation at the end of the clinical trial, the group sequential procedure allocates 

the error rate over the trial’s duration. Thus the total alpha error rate expended over 

the course of the trial is 0.05.  

 While the group sequential rule answers an important question, it does not 

answer other related questions the DSMB commonly asks. Examples of these fre-

quently asked questions are, if the trial is stopped now in favor of the treatment, 

how likely is it that, if the trial were allowed to continue, the test statistic at the end 

of the study would lead to the rejection of the null hypothesis? What is the likeli-

hood the trial goes to completion (i.e., the monitoring rule never crosses the 

boundary) if there is no treatment difference? If the DMSB does not stop the trial 

now, and there is a treatment effect, how likely is it that the monitoring rule will 

suggest the trial be stopped at the next monitoring point? We can begin to answer 

these questions, but in order to do so, we must add to the path analysis component 

of our methods. This is what stochastic curtailment does. 
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1.4.4 Stochastic Curtailment 
We noted in the previous section that group sequential procedures assess the prob-

ability that the path the test statistic has taken is a likely one under the null 

hypothesis. This is a statement about the past performance of the test statistic. Sto-

chastic curtailment (commonly referred to as conditional power) assesses possible 

future paths of the test statistic. Stochastic curtailment can be a very illuminating 

concept [15], [16]. One of the greatest concerns a DSMB has when it considers 

stopping a clinical trial early is what would have happened if the trial was allowed 

to continue. Would their decision to end the trial prematurely be confirmed by the 

test statistic’s location at the end of the trial? This path evaluation is of course based 

on assumptions about the treatment effect. If the investigators assume that no addi-

tional treatment effect will be seen for the rest of the trial, then certain test statistic 

paths become highly probable. This is termed conditional power under the null 

hypothesis. If, on the other hand, the investigators assume that an additional 

treatment effect will be seen for the remainder of the study, other test statistic paths 

become more likely. These procedures have also become valuable in the interim 

monitoring of clinical trials.  

 Both group sequential procedures and conditional power procedures take 

different approaches to assess the current position of the test statistic. To illustrate 

this perspective, imagine that we are standing at our monitoring point with the test 

statistic in hand. We can either look backward over the path the test statistic has 

traversed, or turn and look forward to inspect its possible future paths. The direction 

we look to for a decision determines the type of monitoring rule that we will use 

(Figure 1.6). The group sequential procedure would have us look backward over the 

terrain the test statistic has crossed, and ask How likely is it that we would have 

taken this path if there is no treatment difference? The conditional power approach 

is invoked if we instead look forward and ask How likely is it that, if we continue to 

follow this path, the test statistic will wind up in the critical region at the end of the 

trial and we will reject the null hypothesis?  

1.5 Intention to Treat Analyses 
The intention to treat analysis is the generally accepted standard by which clinical 

trials are evaluated. In an intent to treat analysis, the data for each patient is in-

cluded in the group to which that patient was randomized regardless of that 

patient’s post-randomization experience. In this context, if a patient was random-

ized to the control group, and then had a defibrillator implanted, then that patient’s 

data will be included with the control group, even though that patient will have the 

experience of a patient who has received a defibrillator. Thus, the patient is ana-

lyzed as he was intended to be treated. This style of evaluation is very conservative, 

tending to underestimate effect sizes. However, its value lies in its immunity to 

post-randomization influences that can influence the effect of the therapy. Alterna-

tive approaches to this analysis and their associated problems will be considered in 

Chapter 9 when we discuss subgroup analysis.
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Figure 1.6.  The perspective of each of the group sequential 

procedures and stochastic curtailment procedures in monitoring 

clinical trial results. 
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1.6 Measures of Effect
A clinical trial is designed to measure the effect of the intervention it tests. This ef-

fect consists of the comparison of the response in the active group to the response in 

the control group. Outcome variables are typically of two types; continuous or di-

chotomous. Continuous outcome variables can attain any value in a particular 

range. Two examples of continuous outcome measures are blood pressure and left 

ventricular ejection fractions (LVEFs). A dichotomous endpoint variable can be de-

fined as an endpoint that exists in only one of a small number of states. The 

definitive dichotomous endpoint is of course mortality: the patient is either dead or 

alive. Another example is the occurrence of a stroke (either the stroke did or did not 

occur).

 How the effect is measured depends on whether the outcome is continuous 

or discrete. If the outcome is a continuous one, then the effect size can be measured 

as a change in the continuous variable. Thus, a clinical trial designed to measure the 

effect of a left ventricular assist device might compare the change in cardiac output 

from baseline to the end of the study in the active group to the analogous change 

seen in patients randomized to the placebo group. This is a measure that is fairly 

easy to compute, understand, and analyze.  

 The situation is somewhat more complicated for dichotomous endpoints. 

In these circumstances, the change is not continuous, but abrupt, e.g., an alive pa-

tient dies. Instead, epidemiologists commonly use the relative risk to measure the 

effect of the therapy. The relative risk is the ratio of the cumulative incidence rate 

of the event in the therapy group to the cumulative incidence rate of the placebo 

group. This can be approximated by computing the proportion of patients who have 
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an event in each of the treatment and control groups. A fine, in-depth discussion of 

these principles appears in Piantadosi [6, Chapter 6]. 

1.7 The Goal of Statistical Hypothesis Testing 
Scientific hypothesis testing focuses on the discovery of a relationship in nature. 

That relationship may be identified by changing factors either one at a time or 

jointly to amplify the desired effect. In healthcare research, this scenario requires 

treating some individuals in the standard fashion these individuals function as the 

control group. There will be differences among these patients in the control group 

simply because the individuals differ one from the other. A second set of similar 

patients (the experimental group) is treated differently from the control group but in 

a way to produce the desired effect. The clinical hypothesis is that there is a greater 

difference in results between the experimental and control groups than within these 

groups.  

 Another way to say this is that, since the measurement of differences be-

tween subjects is the assessment of variability, then the analysis of the experiment’s 

results is simply the comparison of the variability in the results of those patients 

treated differently to the variability of those who are treated the same. Those indi-

viduals who were treated identically will produce not identical but separate results 

among themselves because of the inherent and natural differences between them. 

This is random variability. The comparison of those patients treated differently with 

those treated the same will reveal a second source of variability that produced by 

the treatment. The treatment, if effective, generates a new and different separation 

among the patient results since the findings of those patients receiving treatment are 

different from those who do not. This new source of variability is called systematic 

variability because it was deliberately introduced by the investigators (Figure 1.7). 

 Test statistics are constructed to identify, measure, and compare these two 

sources of variability. Most test statistics are ratios as portrayed in (1.1). The nu-

merator containing the variability due to both the random changes plus the 

systematic changes. The denominator contains only the random variability. 

            systematic changes random changes
test statistic

random changes
                (1.1) 

If this ratio is large, we conclude that there is more variability produced by the sys-

tematic component, then there is random, background variability. Furthermore, if 

the experiment was well-designed and executed, we then attribute this excess vari-

ability to the treatment. By converting the test statistic to a p-value, the sampling 

error component is added. 
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Random Variability

Random + Systematic Variability

Figure 1.7. Comparison of random variability with random + systematic 

variability.

Treatment

Effect

1.8 Sampling Error and Significance Testing  
Sample-based research is the study of a sample obtained from a population. Differ-

ent samples, obtained from the same population, contain different individuals with 

different experiences and therefore contain different results. Sampling error is sim-

ply this sample-to-sample variability. The symbol , representing the type I error  is 

the specific sample error that allows a population to generate a sample which con-

tains a spurious relationship that is not seen in the population.  

 Clinical trial investigators recognize that there are many reasons why the 

positive findings of clinical experiment may be misleading. For example, they may 

have selected a population of patients in whom the therapy works but the inclusion 

and exclusion criteria of the study were too restrictive. The dose of the medication 

chosen may be effective, but it produces too many side effects. The blinding of the 

procedure may have been ineffective, leading to a more diligent search for end-

points among the subjects randomized to placebo therapy. These are all problems 

with the execution of the trial. They can be anticipated and the trial designed to re-

move them as obstacles to the trial’s success. However, there is one problem that, 

no matter how well the clinical trial is designed, cannot be removed as the generator 

of false positive results chance alone. This is an  error.  

 If an  (or type I) error occurs, then there is no effect of the therapy in the 

population, but the population produced a sample in which, through just chance 
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alone, the therapy produced an effect. There is no question that the therapy worked 

in the sample; however, the sample results are not a reflection of the population ef-

fect, but instead were generated by the random aggregation of subjects selected for 

the sample.  

 The occurrence of a type I error is solely a property of the sampling proc-

ess. Since sampling is necessary for the research effort, the investigators understand 

that they cannot remove this possible explanation of these results. They instead de-

cide to measure the possible influence of sampling error. Investigators set the 

error level at the beginning of the study, and compute a sample size based on the 

maximum acceptable type I error rate, as well as on other parameters. At the con-

clusion of the experiment, the investigators compute the p-value for the result of the 

study. The p-value is the measure of the type I error rate at the end of the study and 

is based on the actual research results. If the p-value is less than the  error rate that 

was prospectively identified, then researchers conclude that it is very unlikely that 

chance alone produced the findings of the study, and that the results of the study (be 

they clinically significant or clinically neglible) are truly reflective of what would 

occur in the larger population from which the sample was obtained.  

 Therefore, if (1) the systematic explanations for a spurious research find-

ing are removed from the experiment by exceptional planning and good clinical 

trial execution, (2) the probability of a false finding just by chance alone is reduced 

to a small level (i.e., the p-value is less than the prospectively set  error rate), and 

(3) the maginitude of the findings are clinically important, then the medical and 

regulatory communities are assured that, to a reasonable degree of certainty, the 

positive results of the trial represent a true population finding.8

1.9 Statistical Power 
Statistical power, like p-values, is a phenomenon of sampling error. The circum-

stance in which statistical power is relevant in the interpretation of a clinical trial is 

when the trial results are not positive, but null; no treatment effect is seen. Of 

course, there are many systematic explanations for a null finding (the wrong expo-

sure level to the active intervention is but one of many possible circumstance). 

However, another possible explanation is sampling error. In this circumstance, the 

therapy is effective in the population. However, the population produced a sample 

by chance alone in which the therapy was ineffective. This is a type II or beta error. 

Power is defined as one minus the type II error. High statistical power translates 

into a low type II error rate. 

 Since the researcher does not know during the design phase of the study 

whether the results will be positive or null, she must plan for each possibility. Thus, 

she should design the study so that the type I error rate will be low (customarily no 

higher than 0.05) and that the power of the experiment will be high (typically, at 

least 80%). Each of these considerations are part of the sample size computation.  

                                                          
8

We will have much more to say about the interpretation of p-values in Chapter 2.  
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1.10 Sample Size Computations 
Good clinical trials, regardless of their size, are characterized by careful planning, 

controlled execution, and disciplined analysis. An important component of the de-

sign of a clinical trial is the sample size calculation. The sample size computation is 

the mathematical calculation that determines how many patients the trial should re-

cruit. It is based on clinical concerns, epidemiologic determinations of event rates, 

and biostatistical considerations about the role sampling error may play in produc-

ing the trial’s results.  

 It can be said that the sample size computation is the forge upon which the 

clinical trial design is hammered. Since the sample size computation requires a 

clear set of assumptions about the primary scientific question to be addressed by the 

study, the expected experience of the control group, the anticipated benefit for the 

patients randomized to the intervention group, and concerns about type I and type II 

errors, clearly the investigators and quantitative methodologists (i.e., the epidemi-

ologists and biostatisticians) must be involved and agree on the estimates of these 

quantities.  

 However, the sample size computation, although composed only of 

mathematics, must also reflect the administrative and financial settings in which the 

trial will be executed. These important logistical considerations, not explicitly in-

cluded in the arithmetic of the sample size calculation, must nevertheless receive 

primary attention. The availability of patients may be a question. Alternatively, in 

the case where a new medication has been developed at great cost, the small num-

ber of available doses may preclude recruiting many patients. The financial cost of 

the trial, and the availability of enough investigators, project managers, and skilled 

laboratories for executing the protocol also may limit the size of the study.  

 These latter, nonmathematical considerations must be factored into the fi-

nal sample size determination in order for the experiment to be executable. They 

are blended into the plans for the clinical trial in general, and the sample size in par-

ticular through several mechanisms during the design phase of the study. Among 

these mechanisms are (1) re-examination and alteration of the population from 

which the research sample will be recruited, (2) re-formulation of the primary end-

point of the study, and (3) changing the duration of time over which patients will be 

followed. Each of these maneuvers is acceptable when considered and finalized 

during the design phase of the study. For this appropriate mixture of epidemiology, 

biostatistics, clinical science, and administration to occur, the dialogue between all 

involved parties should be frank, honest, and collegial. This robust research design 

with its recomputed sample size will be consistent with epidemiologic, logistical, 

and financial considerations, making the trial both scientifically rigorous and execu-

table.  

1.11 Analysis
The initial description of hypothesis testing by Fisher limited an experiment to a 

single test of statistical significance on the primary research question of the trial. 

The application of this rule to a modern clinical trial would require that, at the end 

of this Herculean effort in which thousands (and, sometimes tens of thousands) of 
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patients are followed for years, the final analysis of the many different outcome va-

raibles would distill down to a single effect size measurement and p-value.  

 This ultra-reductionist approach is of course easily criticized as being inef-

ficient. Instead, investigators now execute clinical trials with both multiple 

treatment arms (e.g., one arm for each dose of therapy and a control arm) and mul-

tiple endpoints (e.g., total mortality rate, total hospitalization rate, and quality of 

life). Also, the effect of therapy can be assessed in the overall cohort or in a sub-

cohort (or subgroup). The creation of these intricate clinical experiments with their 

complex analyses has created a new host of complications in clinical trial design 

and interpretation. The focus of this book is on approaches and techniques to ad-

dress these topics of multiple analyses. 

References
                                                          

1.  Yoshioka, A. (1998). Use of randomisation in the Medical Research Council’s 

clinical trial of stroptomycin in pulmonary tuberculosis in the 1940s. British 
Medical Journal 317:1220–1223. 

2.  Medical Research Council Streptomycin in Tuberculosis Trials Committee 

(1948). British Medical Journal ii:769–782.  

3.  Brody, J.E. (2002). Ferreting for facts in the realm of clinical trials. The New 

York Times Science Section. October 15, p. D7.  

4.  Friedman, L., Furberg, C., Demets, D. (1996). Fundamentals of Clinical Trials.

3rd Edition. New York, Springer. 

5.  Meinert, C.L. (1986). Clinical Trials Design, Conduct, and Analysis, New 

York, Oxford University Press.  

6. Piantadosi, S. (1997). Clinical Trials: A Methodologic Perspective. New York, 

John Wiley.  

7.  Berger, V.W., Exner, D.V. (1999). Detecting selection bias in randomized 

clinical trials. Controlled Clinical Trials 20:319–327. 

8.  Berger, V.W. (2000). Pros and cons of permutation tests in clinical trials. Sta-

tistics in Medicine 19:1319–1328.   

9.   Pfeffer, M.A., Braunwald, E., Moyé, L.A. et al (1992). Effect of Captopril on 

mortality and morbidity in patients with left ventricular dysfunction after myo-

cardial infarction–results of the Survival and Ventricular Enlargement Trial.  

New England Journal of Medicine 327:669–677. 

10.  Treatment of Lead-Exposed Children Trial Group (1998). The treatment of 

lead–exposed children (TLC) trial: design and recruitment for a study of the ef-

fect of oral chelation on growth and development in toddlers. Paediatric and 

Perinatal Eepidemiology 12:313–333. 

11.  Moseley, J.B., O’Malley, K., Petersen, N.H., Menke, T.J., Brody, B.A., 

Kuykendall, K.H., Hollingsworth, J.C., Ashton, C.M., Wray, N.P. (2002). A 

controlled trial of arthroscopic surgery for osteoarthitis of the knee. New Eng-
land Journal of Medicine 347:81–8.   

12.  Felson, D.T., Buckwalter, J. (2002). Dèbridement and lavage for osteoarthritis 

of the knee. Editorial. New England Journal of Medicine 347:132–133. 



46 1. Fundamentals of Clinical Trial Design 

                                                                                                                               

13. Lan, K.K.G., DeMets, D.L. (1983). Discrete sequential boundaries for clinical 

trials. Biometrika 70:659–663. 

14. DeMets, D., Lan, G. (1984). An overview of sequential methods and their ap-

plication in clinical trials. Communications in Statistics 13:2315–38.  

15.  Lan, K.K.G. Wittes J (1988). The B-value: A tool for monitoring data. Biomet-

rics 44:579–685. 

16.  Davis, B.R., Hardy, R.T. (1990). Upper Bounds for type I and type II error 

rates in conditional power calculations. Communications in Statistics 19:3571–

3584.  



47

Chapter 2 

Multiple Analyses and the                
Random Experiment

1

This chapter describes the difficulty of interpreting clinical trial results when the 

prospective analysis plan of that trial has been altered. After providing four exam-

ples of problematic trial results that had their findings reversed, the necessity of a 
fixed research protocol is derived from key principles. Investigators generally wish 

to extend the results from their research sample to the larger population; however, 
this delicate extension is complicated by the presence of sampling error. No compu-

tational or statistical tools can remove sampling error—the best that researchers 

can do is to provide the medical and regulatory communities with a measure of the 
distorting effect that sampling error produces. Researchers accomplish this by pro-

viding an estimate of how likely it is that the population produced a misleading 

sample for them to study. However, these estimators are easily damaged and, when 
damaged, provide misleading assessments. The tools and techniques developed in 

this chapter to avoid untrustworthy estimation will be the basis of our subsequent 

work on interpretation of multiple analyses in clinical trials. 

How would you react if you overheard the following conversation between two 

close friends:

… and as you know I went to see my physician the other day, but you 

may not know what it is that he told me. Or, rather, it’s not what he told 

me, but how he decided to treat my stomach cramping and burning that 

I told you about.  

  His office was easy to find in a well-kept building, with a 

nice outer foyer. I didn’t even have to wait very long to see him! After I 

filled out a brief form, his nurse ushered me in to meet this physician 

for the first time. He was distinquished looking, and when he asked me 

what my problem was, he spoke in a firm, even voice. Even though I 

typically do not like doctors, I was becoming more comfortable in spite 

of myself.  

  Anyway, he listened patiently to me while I described my 

problem to him. After his examination, he told me that he thought I had 

gastro … something. When he started to speak in English again, he de-

scribed this problem as a kind of chronic indigestion. The physician 

then excused himself to make a phone call. Five minutes later, he re-

                                                          
1 Dr. Anita Deswal was instrumental in describing the results of several of the clinical trials 

that are discussed in this chapter. 
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turned with a prescription for me. I asked him who he had called, and 

he said “oh … just a colleague who I consult with.” 

I was pleased with this first encounter in fact I was feeling 

so good that when I paid my bill, I joked with the receptionist about the 

fact that I got to receive the advice of two doctors for the price of one; 

however, she immediately retorted “The doctor doesn’t call another 

doctor he calls a fortuneteller!” 

What! I just couldn’t believe this. This doctor appeared to 

be so genuine. I had to find out what was going on. After some detec-

tive work, I found the address of this fortune teller and slipped into her 

waiting room, after first calling my doctor and telling him that I had 

gotten worse while taking his medicine. Sure enough, the phone rang 

and the fortuneteller, while polishing off some ice cream, mentioned 

my name on the phone. She repeated out loud his request for a therapy 

suggestion and seemed to consider it very carefully. However, I almost 

gasped out loud when, to my horror, she whipped out a pair of dice, 

threw them across the table, counted the result, and made a decision 

based on the count. My therapy was not just in the hands of a fortune-

teller, but a gambling one at that! Can you believe it?  

Wait … wait … there’s more. I returned the next day to see 

this doctor, and, I don’t mind telling you that I had to really work to 

control my anger. The nerve of this guy! But he was remarkable he

listened to my explanation of the new symptoms I had, did another 

brief exam, and then provided a treatment recommendation for me that 

was the same recommendation that I overheard the soothsayer give to 

him. Yet, what threw me was that he provided this new recommenda-

tion with his usual persuasive combination of tact, firmness, and 

prestige. He actually felt that the medication that he was prescribing 

was the best that science could offer; he honestly believed that I would 

feel better upon taking it. There was no way that I could shake his as-

surance in his … his information source. I just took the prescription, 

paid the bill, and left the office, shaken and diminished by the experi-

ence. I trust my physician because … well, because I guess I have to. 

What else can I do?  

No doubt the first advice we would give this patient would be to find a new doctor! 

This advise is based on the concept that good physicians do not prescribe therapy 

randomly. Yet, although we don’t use soothsayers, we will see that there are other 

mechanisms that, while more insidious, are just as effective in injecting randomness 

into treatment protocols. We will also provide some easy ways to identify this mis-

leading variability and determine how to judge research efforts that have been 

affected by its presence. As a preamble, we will introduce a forum at which contro-

versial research findings and treatment protocols are debated. 
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2.1 Introduction
When opposing statisticians duel, innocent bystanders get hit in the 
crossfire.

Committee member, FDA Oncology Drugs Advisory Committee,  

December 6, 2001. 

In the drive to educate patients about the current epidemics of hypertension, diabe-

tes mellitus, CHF, cancer, and stroke (to name just a few), the public has been 

conditioned to expect (and perhaps demand) solutions to these public health threats. 

The scourge of AIDS and the recent occurrence of bioterrorist acts have only ampli-

fied this demand. These calls are heeded by teams of research scientists who labor 

to develop medications and other interventions to rid us of these diseases and their 

consequences. The implications of these workers’ research results have been, and 

will continue to be, enormous. 

 However, research results must be evaluated carefully before we accept 

their conclusions and implications. This review process takes place at several lev-

els. The results and implications of healthcare research activities are the main topic 

of discussion during scientific meetings that are held at local, national, and interna-

tional levels. In addition, research results are scrutinized by journal reviewers and 

editors during the peer-review process. Upon publication, these results are available 

for general discussion by the medical community.  

 Another collection of useful discussions focused on medical research is 

regularly held at public meetings2 sponsored by the federal Food and Drug Admini-

stration (FDA). While most discussions at the FDA concerning the results and 

implications of a healthcare research study are internal and private, public discus-

sion takes place at regularly scheduled and pre-announced advisory committee 

meetings. FDA advisory committees are composed of scientists who work neither 

for the drug companies nor the FDA.3 On some occasions, these meetings review 

recent experience with a new class of healthcare interventions. At other times, the 

advisory committee will be convened to discuss a controversial topic. During these 

discussions, independent scientists, FDA officials, representatives of the pharma-

ceutical industry, private physicians, and patient advocacy groups each provide an 

indispensable perspective on the issue.   

 Advisory committee meetings serve as crossroads where the requirement 

to satisfy the needs of a waiting medical community, the dicta of good science, and 

the desirability of favorable economic incentives can collide dramatically and pub-

licly.

                                                          
2 These meetings, although open to the public, are primarily attended by representatives of 

the pharmaceutical industry. Their schedule and agenda are often posted on the FDA web-

site.  
3  Although complete conflict of interest disclosures are required of advisory committee 

members, their ties with the pharmaceutical industry have been the source of attention by 

outside advocacy groups, e.g., Public Citizen. 
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2.1.1 Advisory Committee Discussions 
Consider one of the discussions that took place at the May 1996 FDA Cardiovascu-

lar and Renal Drugs Advisory Committee meeting. Researchers had carried out a 

randomized, controlled clinical trial that was designed to demonstrate a medica-

tion’s ability to increase the exercise tolerance of patients who suffer from CHF [1]. 

At the conclusion of the body of experiments, the researchers did not identify any 

important change in exercise tolerance that could be attributed to the randomly al-

located medication. However, another examination of these results revealed a 

striking reduction in mortality.  

 When the FDA reviewed the data, they confirmed these researchers’ find-

ings: the intervention did in fact reduce the cumulative death rate in the research 

sample. However, to the consternation of the clinical trial investigators and the 

sponsor, the advisory panel decided not to recommend regulatory approval for the 

intervention as a proven treatment to reduce mortality in patients suffering from 

CHF. The panel reasoned that since the findings were for an endpoint (total mortal-

ity) that was not a prospectively announced goal of the investigators, the findings 

must be seen as exploratory and not generalizable to the CHF population at large. 

The arguments leading to this decision were heated [2], and spilled over into the 

peer-reviewed literature. This resulted in a letter to the editor [3] and its rejoinder 

[4], and was followed by manuscripts in the peer-reviewed literature. These manu-

scripts described the general discussions at the FDA advisory committee meetings 

[5] and specifically the arguments for [6] and against [7] the approval of the com-

pound carvedilol.4

 To many people, the advisory committee’s finding was both counterintui-

tive and counterproductive. Certainly, all would agree that saving the lives of 

patients is a worthy (in fact, the most worthy) healthcare goal, and any drug that 

achieves this goal cannot easily be brushed aside by either regulators or healthcare 

providers. If, in fact, the drug prevents death, then why should it matter whether the 

decision to evaluate this effect occurred before, during, or after the study was exe-

cuted? After all, lives saved are lives saved. Nevertheless, there are important 

reasons why this controversial research result must be discarded. The purpose of 

this chapter is to explain in nonmathematical language the critical necessity of a 

prospectively planned analysis, an analysis plan that was missing in this unfortunate 

example.  

2.2 Prevalent Perceptions 
A prospective analysis plan is a plan that identifies the important details of the ex-

periment’s design execution and analysis before the research commences. There are 

many guides written for clinical scientists concerning the correct design, execution, 

and analysis of research programs. In addition to statements and guidelines issued 

by government and regulatory agencies [8], there are texts that described the com-

plexity of this work in detail [9], [10], [11]. An important principle enunciated by 

each of these sources is that of the a priori research plan.  

                                                          
4 This compound was approved for another indication 1 year later.  
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 Of course, it is self-evident that some aspects of the research plan (e.g., the 

nature of the intervention to be evaluated) must be identified prospectively. How-

ever, prospective analysis plans require a great deal more detail than this. The 

inclusion and exclusion criteria that determine the characteristics of the patients to 

be randomized (and the population to which the study results can be generalized) 

must be elaborated. The schedule for follow-up visits, and the activities to be car-

ried out during those follow-up visits must be itemized in detail. The duration of 

follow-up must be clear. The requirements for laboratory assessments (and who 

will carry out those assessments) should be articulated. Finally, the analysis plan for 

the dataset that is collected must be completely specified. Both the analysis vari-

ables (the endpoints) and the analysis procedure must be elaborated in detail.  

 The motivation for this last level of prespecification is unfortunately not 

always clear and, in fact, its requirement can appear to be a contradiction to the re-

ality of clinical trial execution. After all, wise and seasoned investigators recognize 

that the experience of their clinical trial can be unpredictable, since there are many 

influences that can perturb its execution. For example, despite the best efforts of its 

investigators, a clinical trial may not be able to meet its recruitment goal, thereby 

providing an inadequate number of patients to estimate the effect of therapy with 

sufficient precision. Technology (e.g., DNA genotyping) that is capable of illumi-

nating new relationships may not be accessible during the trial’s design phase, 

becoming available only during the second half of the study’s execution. A com-

panion clinical trial that is studying a related intervention with a similar goal may 

provide an insight or analysis that the medical or regulatory community would like 

to see tested in the current study. Certainly these important events cannot be pro-

spectively anticipated and planned.  

 Occasionally, a clinical trial produces a surprise. In some circumstances, 

the beneficial effect of the intervention that the investigators anticipated never ma-

terializes [12]. In other trials, a modest result that the trial was designed to identify 

is overshadowed by an unanticipated, stupendous finding from other analyses [13], 

[14]. Sometimes the analysis that produced the stupendous finding was planned into 

the trial’s rulebook or protocol during the design phase of the trial, other times it 

was not.  

2.3 Calling Your Shot 
Oftentimes, the advice from clinical trial methodologists is that these surprise find-

ings do not carry persuasive weight primarily because they were not planned 

prospectively [15]. However, to many researchers, this requirement of “calling your 

shot,” i.e., of identifying prospectively what analyses will have persuasive influ-

ence, seems much ado about nothing. After all, the data are, in the end, the data. To 

these critics, allowing the data to decide the result of the experiment can appear to 

be the fairest, least prejudicial evaluation of the message they contain.  

 This policy of “let the data decide” also relieves the investigator from the 

responsibility of choosing arbitrary rules during the planning stage of the experi-

ment, rules that subsequently may be demonstrated by the data to be the “wrong 

choices.” In fact, from the investigator’s perspective, it can appear to be far better 

for her to preserve some flexibility in her experiment’s interpretation by saying lit-
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tle during the design of the experiment about either the endpoint selection or the 

analysis procedures. She then could allow the data she collects to choose the best 

analysis and endpoint as long as these selections are consistent with the goals of the 

experiment.  

 This “let the data decide” point of view may appear to be bolstered by the 

observation that researchers by and large understand and appreciate the importance 

of choosing the research sample with great care. Intelligent, well developed meth-

odologies are required to choose the optimum sample size [16], [17], [18], [19], 

[20]. The sampling mechanism the process by which patients are selected from 

the population requires careful attention to detail. Well-tested mechanisms by 

which patients are randomized to receive the intervention or the control therapy are 

put into place in order to avoid systematic biases that can produce destabilizing im-

balances. In fact, the fundamental motivation for the execution of the simple 

random sampling mechanism is to produce a sample that is representative of the 

population [21]. This effort can be an onerous, time consuming, and expensive 

process, but investigators have learned that it can pay off handsomely by producing 

a sample that “looks like” the population at large.  

 It is therefore understandable why many investigators are convinced that, 

after winning the expensive and hard fought battle to obtain a representative sam-

ple, they have earned the right to report many of their sample’s findings with 

impunity. To investigators, withholding belief in a surprise finding’s validity can 

seem like denying credit to Christopher Columbus for discovering the New World, 

since his discovery was, after all, “not part of his protocol.”  

 However, the “let the data decide” philosophy often leads to false conclu-

sions, and the experiences of several recent clinical trials have provided useful 

insight into the hazards of this approach. In each of these settings, a clinical trial 

that produces an unplanned and surprise result was followed by a second trial that 

attempted to confirm the first finding. We will review four examples that have re-

cently appeared in the peer-reviewed literature, recalling the comment by Minna 

Antrim, 

Experience is a good teacher, but she sends in terrific bills …

2.3.1 Vesnarinone 
Patients with CHF are unable to maintain adequate blood flow through their circu-

latory system because of the weakened and inadequate pumping strength of their 

heart. Positive inotropic agents increase the pumping ability of the heart, and these 

compounds held out initial promise for improving the treatment of CHF. One such 

positive inotropic drug was vesnarinone.  

 To study the effectiveness of this compound, patients were recruited into a 

clinical trial that was designed with three treatment arms. The first arm consisted of 

control therapy, in which patients with CHF were to receive the best therapy known 

to be effective in improving outcomes of CHF (known as conventional therapy for 

CHF) plus a placebo [22]. In the second arm of the trial, patients were to receive, in 

addition to conventional therapy for CHF, a daily 60-mg dose of vesnarinone. The 

third treatment arm of this trial consisted of conventional therapy for CHF plus a 
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daily 120-mg dose of vesnarinone. The prospectively stated, primary outcome 

measure for this clinical trial was the combined endpoint of all-cause mortality and 

major cardiovascular morbidity.5 In addition to the primary endpoint, a secondary 

endpoint of all-cause mortality was chosen. Because of the relatively small number 

of events, the investigators did not anticipate that they would be able to demonstrate 

a beneficial effect of vesnarinone on the cumulative total mortality rate. The study 

was originally designed to randomize 150 patients to each of the three treatment 

arms, and to follow them for 6 months. 

 During the trial, the 120-mg treatment arm was discontinued because of 

the observation of an excess number of deaths occurring in patients exposed to this 

high dose of drug. At the trial’s conclusion, the results of the 60 -mg vesnarinone 

treatment arm that remained in the trial were compared to those of the placebo 

group. The administration of 60-mg vesnarinone was associated with a 50% risk 

reduction in all-cause mortality and major cardiovascular morbidity (95% confi-

dence interval (CI) was 20% to 69% reduction; p = 0.003). Thus, the finding for the 

primary endpoint was achieved. The investigators then turned their attention to an 

evaluation of the effect of vesnarinone on total mortality. There were only 46 

deaths that occurred in this trial, 13 deaths in the vesnarinone group and 33 in the 

placebo group. However, this translated into a 62% reduction in all-cause mortality 

(95% CI 28 to 80; p = 0.002).  

 The investigators presented the results of this study before the FDA Car-

diovascular and Renal Drug Advisory Committee, positing that this study 

demonstrated the effectiveness of vesnarinone in reducing the total mortality rate of 

patients with CHF. This meeting, beginning in the morning, lasted through the din-

ner hour and into the evening. The review of the data from this trial was punctuated 

by sharp verbal exchanges between the FDA data reviewers and both the investiga-

tors and the pharmaceutical sponsor. The investigators and sponsors argued 

passionately, but ultimately unpersuasively for the approval of vesnarinone. How-

ever, the combination of a small sample size, confusion about endpoint definitions, 

and concerns for the occurrence of neutropenia persuaded the FDA to request a 

second, confirmatory study of the mortality effect of vesnarinone.  

 The Vesnarinone Trial provided the second evaluation of vesnarinone 

[23]. In that study, 3833 patients with CHF New York Heart Association (NYHA) 

functional class III or IV and LVEF < 30 % were randomized to receive either (1) 

conventional therapy plus placebo, (2) conventional therapy plus 60-mg of vesnari-

none, or (3) conventional therapy plus 30-mg of vesnarinone. The primary endpoint 

of this study was all-cause mortality, and the goal of the study was to compare the 

experience of patients who received  the 30-mg and 60-mg vesnarinone doses to the 

placebo experience. The maximum follow-up period was 70 weeks, and it was an-

ticipated that 232 deaths would be required to demonstrate the beneficial effect of 

vesnarinone on all-cause mortality. In this confirmatory study, however, the mortal-

                                                          
5 A combined endpoint is used to decrease the required sample size of a trial. By examining 

the occurrence of either a death or cardiovascular morbidity (essentially giving a cardiovas-

cular event, e.g., a heart attack the same weight as a death in the analysis) more endpoint 

events occur and therefore fewer patients are required to obtain an adequate sample size. 

This topic is discussed in Chapter 7. 
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ity rate was observed to be higher in the patients randomized to 30-mg of vesnari-

none (21%) and in those randomized to 60-mg of vesnarinone (22%), than in the 

placebo group (18.9%). The first trial, which demonstrated a mortality benefit for 

the 60-mg vesnarinone dose, had its findings reversed by the second trial that dem-

onstrated a mortality hazard for this same dose. The investigators stated, 

“Examination of the patient populations in the two trials reveals no differences that 

could reasonably account for the opposite response to the daily administration of 

60-mg of vesnarinone.”  

2.3.2 Losartan
The use of ACE-i therapy has increased dramatically since the 1980s. First ap-

proved as a treatment for hypertension, their use expanded into the treatment of 

other cardiovascular diseases, specifically the treatment of CHF. However, these 

effective medications also were associated with undesirable adverse events. Among 

the most common of these were cough, angioedema, and hypotension. As a re-

sponse to this undesirable profile, angiotensin II type I receptor blockers were 

developed. It was hoped that this newer class of agents would be safer than the 

original ACE inhibitors while continuing to confer a survival benefit for patients 

with CHF. In order to compare the relative safety of angiotensin II type I receptor 

blockers to that of ACE inhibitors, the Evaluation of Losartan in the Elderly Study 

(ELITE) I [13] was designed. ELITE I’s goal was to compare the effectiveness of 

the angiotensin II type I receptor blocker losartan to the ACE inhibitor captopril in 

a randomized, double-blind clinical trial. The primary endpoint of this study was a 

prospectively designed safety measure; the frequency of an increase in serum 

creatinine by 0.3 mg/dl or more above baseline.  

 This double-blind study randomized 722 patients and followed them in a 

double-blind fashion for 48 weeks. Just prior to the end of the study, an additional 

endpoint was added. This measure was the composite endpoint of death and/or ad-

mission for heart failure. At the conclusion of ELITE I, the investigators 

determined that the increase in serum creatinine was the same in the two treatment 

arms (10.5% in each group; risk reduction 2%; 95% CI: –51 to 36; p = 0.63). How-

ever, the findings for the new composite endpoint were tantalizing. Death and/or 

heart failure admission occurred in 33 of the losartan-treated participants, while 49 

events occurred in the captopril group. This translated into a risk reduction of 32% ; 

95% CI –0.04 to 0.55; p = 0.075) and suggested that there was a benefit attributable 

to losartan. The investigators, emboldened by these findings, deconstructed the 

composite endpoint and discovered that 17 deaths occurred in the losartan group 

and 32 deaths in the captopril group, a result that produced a risk reduction of 46% 

(95% CI 5 to 69; p = 0.035). These finding received the principle emphasis in the 

discussion section of the manuscript, minimizing the role of the primary safety end-

point of serum creatinine increase. And, although the need to repeat the trial was 

mentioned in the abstract, the balance of the discussion focused on the reduced 

mortality rate of losartan. According to the authors, “This study demonstrated that 

losartan reduced mortality compared with captopril; whether the apparent mortality 

advantage for losartan over captopril holds true for other ACE inhibitors requires 
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further study.” Others even went so far as to attempt to explain the mechanism for 

the reduction in sudden death observed in ELITE 1 [24], [25].  

 To the investigators’ credit, ELITE II [26] was executed to confirm the 

superiority of losartan over captopril in improving survival in patients with heart 

failure. The primary endpoint in ELITE II was total mortality, an endpoint that re-

quired 3152 patients. This was almost five times the number of patients recruited 

for the ELITE I study. These patients were followed for 18 months, almost twice as 

long as the duration of follow-up in ELITE I. At the conclusion of ELITE II, the 

cumulative all-cause mortality rate was not significantly different between the 

losartan and captopril groups (280 deaths in the losartan group versus 250 deaths in 

the captopril group, 17.7% versus 15.9%; hazard ratio 1.13 (95% CI: 0.95 to 1.35, p
= 0.16). In fact, there was a trend to excess mortality in the losartan group. Thus, 

losartan did not confer a mortality benefit in the elderly with CHF when compared 

to captopril as suggested by ELITE I. The investigators conceded “More likely, the 

superiority of losartan to captopril in reducing mortality, mainly due to decreasing 

sudden cardiac death, seen in ELITE should be taken as a chance finding.” 

2.3.3 Amlodipine  
In the 1980s, the use of calcium channel blocking agents in patients with CHF was 

problematic. Initial studies suggested that patients with CHF experienced increased 

morbidity and mortality associated with these agents [27]. However, additional de-

velopmental work on this class of medications proceeded. In the early 1990s, new 

calcium channel blocking agents appeared. The early data for these compounds 

suggested that their use may produce improvements in patients with CHF. To for-

mally evaluate this possibility, the Prospective Randomized Amlodipine Survival 

Evaluation (PRAISE) [14] trial was designed. PRAISE’s long-term objective was 

the assessment of the channel blocker amlodipine’s effect on morbidity and mortal-

ity in patients with advanced heart failure. The primary measurement in PRAISE 

was the composite endpoint of all-cause mortality and/or hospitalization.6 The pro-

tocol also stipulated that there would be analyses in the following subgroups of 

patients; sex, ejection fraction, NYHA class, serum sodium concentration, angina 

pectoris, and hypertension.  

 PRAISE began recruiting patients in March 1992. Patients with CHF 

(NYHA functional class IIIb/IV and LVEF < 30%) were randomized to receive ei-

ther amlodipine or placebo therapy. The investigators suspected that the effect of 

amlodipine might depend on the cause of the patient’s CHF, so they stratified ran-

domization into two groups, patients with ischemic cardiomyopathy and patients 

who had nonischemic cardiomyopathy.7 By the end of the recruiting period, the 

PRAISE investigators randomized 1153 patients and, by the end of the study, these 

patients had been followed for a maximum of 33 months. 

                                                          
6

Hospitalization was defined as receiving in-hospital care for at least 24 hours for either 

acute pulmonary edema, severe hypoperfusion, acute myocardial infarction, or sustained 

hemodynamically destabilizing ventricular tachycardia or fibrillation. 
7

Stratified randomization is an adaptation of the random allocation to therapy process, and 

was discussed in Chapter 1.  
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  At the conclusion of PRAISE, the investigators determined that in the 

overall cohort there was no significant difference in the occurrence of the primary 

endpoint between the amlodipine and placebo groups (39% versus 42%, 9% reduc-

tion; [95% CI –24 to 10], p = 0.31). The secondary endpoint of all-cause mortality 

also was not significantly different between the amlodipine and placebo groups for 

the overall cohort (33% versus 38%, 16% reduction [95% CI: –31 to 2], p = 0.07).  

 The evaluation then turned to the etiology-specific CHF strata. PRAISE 

recruited 732 patients with an ischemic cause for their CHF and 421 patients with a 

nonischemic cause. The analysis of the effect of therapy in these strata revealed that 

treatment with amlodipine reduced the frequency of primary and secondary end-

points in patients with nonischemic dilated cardiomyopathy (58 fatal or nonfatal 

events in the amlodipine group and 78 in the placebo group, 31% risk reduction 

[95% CI 2 to 51% reduction], p = 0.04). Further evaluation of these events revealed 

that there were only 45 deaths in the amlodipine group and 74 deaths in the placebo 

group, representing a 46% reduction in the mortality risk in the amlodipine group 

(95% CI 21 to 63% reduction, p < 0.001). Among the patients with ischemic heart 

disease, treatment with amlodipine did not affect the combined risk of morbidity 

and mortality or the risk of mortality from any cause. Again, the findings for a sec-

ondary endpoint overshadowed the primary endpoint’s results 

 A second trial PRAISE-2 [28] was then conducted to verify the beneficial 

effect on mortality seen in the subgroup analysis of patients with heart failure of 

nonischemic etiology in PRAISE-1. This trial, while focusing only on patients with 

heart failure of nonischemic origin, was similar in design to PRAISE-1. The 

PRAISE-2 investigators randomized 1650 patients to either amlodipine or placebo, 

following them for up to 4 years. However, the results of PRAISE-2 were quite dif-

ferent from PRAISE-1. Unlike the first study, there was no difference in mortality 

between the two groups (33.7% in the amlodipine arm and 31.7% in the placebo 

arm; odds ratio 1.09, p = 0.28) in PRAISE-2. Thus, the marked mortality benefit 

seen in the subgroup analysis in PRAISE-1 for amlodipine was not confirmed in 

PRAISE-2.  

2.3.4 Carvedilol 
As a fourth and final example of how surprising results from nonprimary endpoints 

or other measures can plunge an expensive experiment into controversy, consider 

the findings of the US Carvedilol program [1]. Up until the 1980s, the usefulness of 

beta adrenergic receptor antagonists (beta-blockers) in CHF had been intensely de-

bated, with published research efforts yielding inconsistent findings. Although 

initial studies suggested some positive effect [ 29 ], results from each of the 

Metoprolol in Dilated Cardiomyopathy Study [30] and the Cardiac Insufficiency 

with Bisoprolol Study [31] did not demonstrate a survival benefit.  

 In this uncertain environment, private industry developed carvedilol as a 

nonselective beta and  blocker that was believed to be effective in patients with 

CHF. The US Carvedilol program was designed to test the effect of carvedilol in 

patients with heart failure. The core of this program consisted of four prospectively 

designed, double-blind clinical trials in which 1094 patients were selected for one 

of four protocols, then randomized to a treatment arm or placebo in the selected 
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protocol. There were 398 total patients randomized to placebo and 696 to 

carvedilol.  

 Each of these protocols had its own primary endpoint. Three of the four 

prospectively stipulated that the change in exercise tolerance over time was their 

primary endpoint. In none of these three clinical trials did carvedilol demonstrate a 

statistically significant, beneficial effect. The fourth protocol had as its primary 

endpoint a measure of quality of life, for which carvedilol did produce a benefit that 

was statistically significant. However, while the studies were ongoing, it was ob-

served that across all four protocols 31 patients died in the placebo group and 22 

patients died in the active group, resulting in a relative risk8 of 0.65 and a p-value 

less than 0.001. The program was terminated, and the investigators posited that, 

since total mortality was an objective of the carvedilol program, then the beneficial 

effect of carvedilol on total mortality should compel the FDA to approve the drug 

as effective in reducing the incidence of total mortality in patients suffering from 

CHF.

 In May 1996, the results of this research effort were published in the New
England Journal of Medicine [1], and brought before the Cardiovascular and Renal 

Drugs Advisory Committee of the FDA. Although the article describing the results 

of the trial stated that patients were stratified into one of four treatment protocols [1, 

p. 1350], it did not state the fact that each of these protocols had its own prospec-

tively identified primary endpoint and that total mortality was not a primary or a 

secondary endpoint for any of the trials.9 This discovery produced a host of prob-

lems for the experiment’s interpretation, and the advisory committee voted not to 

approve the drug for use in the CHF population. The interpretation of this discor-

dant program was both complex and contentious [2]. In February 1997, these same 

investigators presented the results to the same committee, this time to successfully 

apply for a claim that carvedilol reduced the incidence of the combined endpoint of 

morbidity and mortality in patients with CHF. Much discussion and debate have 

occurred over the quality of the New England Journal of Medicine article and the 

discussions that took place at these meetings [5], [6], [7].  

 CAPRICORN (Carvedilol Post-Infarct Survival Control in LV Dysfunc-

tion) [32] was a subsequent study designed to clarify the relationship between 

carvedilol and total mortality. This study recruited 1959 patients from 17 countries 

and 163 centers worldwide. However, just as in the US Carvedilol program, this 

study was plagued with unfortunate endpoint difficulties. The first primary endpoint 

of CAPRICORN was all-cause mortality. However, the investigators decided to 

                                                          
8 The relative risk is based on a Cox proportional hazards model, a detail that should not dis-

tract from the discussion. 
9 The investigators stated prospectively that p-values less than 0.05 would be considered sig-

nificant. Direct interrogation at the meeting revealed that the finding for the prospectively 

defined primary endpoint in three of the four trials was p > 0.05. The fourth study had as its 

primary endpoint hospitalization for heart failure; the statistical analysis for this primary 

endpoint was p < 0.05. Each of these four studies had secondary endpoints that assessed con-

gestive heart failure morbidity, some of which had p-values less than 0.05, others not. As 

pointed out by Fisher [2], total mortality was not an endpoint of any of the four studies in the 

program.
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make several changes to the analysis plan of this study during the execution and 

analysis of the trial. The first change was to replace the analysis plan with its single 

primary endpoint with a new plan that contained multiple primary endpoints. The 

new, additional endpoint was a composite or combined endpoint of all-cause mor-

tality and cardiovascular hospitalization.10 In addition, the type I error level was 

reallocated so that the new composite endpoint had to have a p-value less than 

0.045 and the all-cause mortality endpoint must have a p-value of less than 0.005 in 

order to be considered statistically significant.11

 Despite these mid-trial changes, the effect of carvedilol failed to reach the 

threshold of significance for either of these endpoints. For the new primary com-

posite endpoint, carvedilol use was associated with a relative risk of 0.92 [95% CI 

0.80 to 1.07], and for total mortality the relative risk was 0.77 [95% CI 0.60 to 

0.98], p = 0.03. Thus the findings from the US Carvedilol program were (at least 

from the sponsor’s point of view) positive for a mortality benefit, but from 

CAPRICORN with its tortured analysis, the result was not positive, creating a sub-

stantial discrepancy.  

 COPERNICUS (CarvedilOl ProspEctive RaNdomIzed CUmulative Sur-

vival Trial) [33] was an international study designed to look at the effect of 

carvedilol on total mortality in patients with advanced heart failure. This study was 

conducted in over 300 medical centers in 21 countries and enrolled over 2,200 pa-

tients with advanced heart failure who had symptoms at rest or on minimal 

exertion, but required neither intensive care nor intravenous treatments to support 

heart function. Patients were evaluated for up to 29 months. In COPERNICUS, pa-

tients treated with carvedilol showed a significantly lower mortality rate compared 

to those treated with placebo (11.4% versus 18.5%, respectively; 35% reduction in 

total mortality). The severity of heart failure was worse in the patients randomized 

in COPERNICUS than those in either the US Carvedilol program or CAPRICORN, 

so the results were not directly comparable. Even so, the 35% reduction in mortality 

observed in COPERNICUS was only half the reduction in total mortality seen in 

the US Carvedilol program, and completely different from the results of 

CAPRICORN. Which finding is correct? 

2.3.5 Experimental Inconsistencies 
In each of these four clinical examples, multiple, prospectively designed, random-

ized, controlled clinical trials were executed. In the last example, six such trials 

were carried out (four in the US Carvedilol program plus CAPRICORN, and 

COPERNICUS). For each of these four examples, the initial trials, carefully de-

signed, executed, and analyzed at great expense, identified a finding that the 

investigators claimed was positive. In each of these studies, the investigators, rec-

                                                          
10

In the original analysis plan, only patients who died were considered to have met the pri-

mary endpoint. In the new plan, surviving patients could also be counted as a primary 

endpoint occurrence if they were hospitalized. 
11 The CAPRICORN investigators essentially constructed two coprimary endpoints post hoc. 

This process will be discussed in detail in Chapter 4.
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ognizing the fragility of the findings from these initial studies, argued for a second 

(and in the case of carvedilol, a third) confirmatory study. Fortunately, they were 

persuasive in these arguments and the follow-up studies were executed. However, 

the findings from the follow-up studies reversed the findings from the first studies. 

In each case we are faced with the same question? How can a collection of expen-

sive, well-designed, clinical studies focusing on the same issue lead to such 

discrepant conclusions? 

 The answer to this question must be considered carefully because it has 

potentially explosive consequences. Most clinical trials do not have follow-up stud-

ies executed to confirm their findings clinical trial results are often accepted at 

face value. If the first major clinical trial findings for each of vesnarinone, losartan, 

amlodipine, and carvedilol were overturned when a second study became available, 

then perhaps we should take the result of any clinical trial with great caution, 

interpreting its results as being only suggetive of the effect of the drug, rather than 

as confirmation. This would represent a poor return on the millions of dollars and 

hundreds of thousands of person hours invested in these endeavors. 

 However, we do not have to let the situation devolve to that unsatisfactory 

state of affairs. Lets first ask if there were features of the design, execution and/or 

analysis of the findings of our four examples that could have predicted the possibil-

ity of these disparate conclusions.  

2.4 Samples as Reflections 
The four examples provided in the previous section, and in fact the overwhelming 

majority of clinical trials in general, rely on the interpretation of results obtained 

from a sample of patients taken from a much larger population.  

 It is clearly impossible for us as researchers to do what we would like to 

do study every subject in the entire population. Instead, the researcher selects a 

sample from that population to investigate. Great effort and expense are exerted to 

build this sample, and the investigator commonly intends to rely on the entire sam-

ple findings. The sample is replete with information and, since the sample was 

carefully selected, all of this information is used to depict the population. However, 

no matter how random the sample is, it remains, in the end, only a sample. To many 

investigators, the sample becomes the population; they believe that every result in 

the sample reflects a true finding about the population from which the sample was 

obtained. This is a dangerous trap. It is critical for the disciplined investigator to 

accept that no matter how carefully they were obtained, representative samples are 

not populations they are only the imperfect reflections of populations. For some 

views of the population, the reflection is a useful and reliable one. For others, the 

reflection is distorted and misleading. 

 Imagine for a moment that the population is a complicated, intricately de-

tailed landscape. This landscape has near objects and far objects that are worthy of 

very careful observation. The investigator–observer must view this landscape 

through a lens. However, it is impossible to grind the lens so that every object can 

be viewed with the same sharp detail. If the lens is ground to view near objects, it 

does not allow a sharp view of items in the distance. If it is ground for the visualiza-
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tion of distant objects, than the observer cannot see the near ones clearly. Thus, if 

the investigator–observer attempts to use the same lens for viewing everything, 

some objects will be blurred, and the investigator will be misled about their appear-

ance. A research sample recruited for a clinical trial is a lens that is ground during 

the design phase of the study. Although the research-lens allows the investigator to 

see much of the population landscape, it does not permit a clear view of everything. 

 The limitations of random samples are hidden in plain view all around us. 

As an example, consider the process by which predictions are made based on early 

election returns for the mayor of a major US city. On the day of the election, while 

the polling stations are open, a random sample of voters is taken and these voters 

are then asked a series of questions about their demographics and their voting pref-

erence. When the polls close, these “exit poll results” are announced through the 

media (and most recently, the internet), providing predictions of the election results. 

This exercise (barring extremely close contests) represents the success of random 

sampling. The voting patterns of the individuals in this sample can often be general-

ized  to the larger population of voters with great reliability.  

 However, we would be remiss if we did not notice that, while these same 

polls have historically been very reliable for predicting election results, they are un-

reliable when put to additional uses. For example, would it be constructive for exit 

pollsters, after collecting information about the annual income of these voters, to 

proclaim that there is a crisis of poverty in the city because a greater proportion of 

the sample voters made less money than the pollsters anticipated? The attempt to 

generalize this type of data would be useless12 because the sample was not con-

structed to have its results extended beyond the voting population. In this case, the 

sampling lens was ground for a view of the voting patterns of the electorate, not for 

a view of income distribution in the city.  

 In samples, information is collected about a great many items. However, 

not every finding in the sample is truly representative of a finding in the population. 

The absence of this one-to-one relationship between the findings in the sample and 

the findings in the population means that the sample, however random, is still an 

incomplete rendition of the population. The random samples on which clinical trial 

reuslts are based commonly contain meaningless factoids that are not generalizable 

to the greater population of patients. One of our tasks will be to differentiate the 

useful representative sample information from the empty sample facts that apply 

only to the sample and not to the population. 

2.5  Representative Samples That Mislead? 
Why aren’t random samples more representative? In order to begin to understand 

this, recall that (in health care) research samples, although obtained at great ex-

pense, are often miniscule when compared in magnitude to populations (Figure 

2.1).  

                                                          
12 The appropriate use of these data would be to categorize voting patterns by income cate-

gory. 
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Figure 2.1.  One small sample from a large population

Population

Sample

 Consider, for example, a clinical research program that goes to great effort 

and expense to identify 300 patients with type II diabetes, randomly allocating these 

patients to either a new pharmacologic intervention or to control therapy. Despite 

the great effort that is invested into this enterprise, it must be acknowledged that 

most of the patients with type II diabetes in the United States will not be included in 

this sample. Since there are 14.5 million patients with type II diabetes in the United 

States [34], the research sample contains only 0.00207 % of the total number of 

diabetics. Put another way, 99.99793% of type II diabetics are specifically not in-

cluded in the sample. The aggregation of these 300 patients in the sample is merely 

by chance alone.13 To what extent can the random selection14 of these 300 patients 

be representative of 14.5 million patients? Certainly there will be some nugget of 

truth about the population of patients with diabetes mellitus contained in this 300 

patient sample, but this 300 patient sample will contain many other findings as well. 

For example, this small sample will certainly generate demographic factoids (e.g., 

the distribution of age, distribution of gender, ethnicity proportions), findings con-

cerning the presence of risk factors for cardiovascular disease (prevalence of 

tobacco use, serum lipid levels, obesity, exercise levels, alcohol consumption), facts 

concerning comorbidity (prevalence of myocardial infarction, hypertension), and 

                                                          
13 This aggregation is by chance alone if every patient in the diabetic population has the same 

chance of being selected for the research. As discussed in Chapter 1, this would be an ideal 

set of circumstances.  
14 If the 300 patients were not chosen completely at random from the population of diabetic 

patients, the findings from that sample are even less likely to represent the population.



62 2. Multiple Analyses and the Random Experiment 

facts about the use of therapy for the control of type II diabetes (diet, exercise, insu-

lin, thiazolindienediones, sulfonamides, biguanides, etc.) to name just a few 

categories. The list of facts this sample can generate is endless. Certainly, while 

some of this information may be reflective of the population findings, some (if not 

most) of these facts are representative of nothing but the random aggregation of pa-

tients.  

 This interpretative dilemma is somewhat complicated by the multiplicity 

of samples the diabetic population can produce. It is easily computed that  

14,500,000/300 or almost 50,000 different, completely nonoverlapping, independ-

ent, random samples of the same size can be obtained from this same population15

(Figure 2.2). Since each of these samples will contain different patients, with differ-

ent life experiences, and different data, they will commonly produce different 

answers to the same questions. It is this sample-to-sample variability that consti-

tutes “sampling error”. Although it may be reasonable to conclude that each sample 

contains a kernel of truth that accurately portrays the population, how can we iden-

tify this kernal that is worthy of generalization to the population among all of the 

different facts that this sample generates?  

Figure 2.2. There are many possible samples from a large population.

Population

 The process whereby the results from a single sample are extended to the 

much larger population is a fragile process, a process with which sampling error is 

tightly intertwined. Although sampling error cannot be separated or removed from 

this process, we can estimate the extent to which it is responsible for the sample’s 

                                                          
15 The number of overlapping samples is the combinatoric of a much larger number.
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results. We can answer the question “How likely is it that the findings from my 

sample are due wholly to sampling error?”  

 Most times, the researcher has the opportunity to collect one and only one 

sample. In order to increase the accuracy of that sample’s ability to answer the sci-

entific question of interest, the research designer crafts and molds the research 

sample so that it accurately measures the characteristics of the population which are 

the researcher’s primary focus. Experienced research designers focus on a small 

number of questions so that they can “grind the research sample lens” to focus on 

the tightly circumscribed areas of interest.  

 By focusing on this small number of questions, investigators are able to 

perform important tasks. They can choose the sample so that it contains patients 

who have the characteristics they wish to study. If the question is “Does patient 

education about diabetes mellitus improve control of glycosylated hemoglobin lev-

els (HbA1c)?” the sample can be chosen so that the distribution of HbA1c levels in 

the sample closely mirrors that of the population. The investigators can ensure that 

there is a broad range of educational backgrounds within their sample of patients. 

The trial designers can recruit enough patients so that they can address the scientific 

question with adequate control of the type I and type II statistical error levels.  

 Focusing at this level of sample construction increases the sample’s 

“population accuracy” for the examination of the relationship between education 

and HbA1c. However, it does not guarantee that the sample will be able to address 

other issues involving diabetes mellitus. The sample will be useful for the question 

it was designed to address, but not much else.  

2.6 Estimators 
Unfortunately, careful selection of the sample to address the scientific question of 

interest does not prevent random sampling error from generating the sample’s an-

swers. In order to measure the role of sampling error accurately, the investigator 

turns to the quantitative procedures supplied by the disciplines of epidemiology and 

biostatistics. These two fields have provided the computations that convert the 

sample’s information (the data) into the best, unbiased estimates of the interven-

tion’s effect size (e.g., mean effect, odds ratio, or relative risk) and effect size 

variability. The researcher relies on the accuracy of these estimators. 

 It is important to note that these estimators do not remove sampling error. 

Instead, they channel sampling error into the effect size estimates and the variability 

of these estimates. For example, if a researcher in a clinical trial estimates the rela-

tive risk of therapy attributable to the randomly allocated intervention, the 

investigator will also have a standard error for this relative risk. The standard error 

measures the degree to which the relative risk will vary from sample to sample (i.e., 

sampling variability).  

 If the researcher also is interested in inference (i.e., statistical hypothesis 

testing), then statistical procedures will channel sampling error into p-values (the 

likelihood that there is no effect in the population, but the population has produced 

a sample in which there is an effect due to chance alone) and power (the likelihood 

that there is an important effect of therapy in the population, but the population has 

produced a sample due to chance alone in which no effect of therapy is observed). 
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Thus, when used correctly, epidemiologic and statistical methodology will appro-

priately recognize and transmit sampling error into familiar quantities with which 

research efforts have useful experience in interpreting. Unfortunately, these estima-

tors are commonly corrupted. 

2.7 Random Experiments 
As pointed out in the previous section, sampling error is appropriately passed 

through the data collection and research execution to estimators. The measures used 

to accomplish this are very effective, but rely on a core assumption: only the data 

can be subject to the random influence of sampling error. This may seem like the 

only possible state of affairs at first glance. After all, what else could be random in 

the experiment? In fact, the protocol itself could be random.  

2.7.1 What Is a Random Protocol? 
The idea of a random protocol may appear to be far fetched. After all, experiments 

are often planned in great detail. However, protocols don’t become random during 

the clinical trial’s design, but instead are transformed to randomness during the ex-

periment’s execution. Specifically, the protocol becomes random when researchers 

examine their data and make protocol changes based on their observations.  

 A common setting for random research is when the analysis for a prospec-

tively identified primary endpoint is overturned because the randomly allocated 

therapy did not produce the desired effect on the primary endpoint. In this case, the 

null findings for the preannounced primary endpoint are replaced by a positive 

therapy effect for another endpoint. Sometimes that other endpoint is prespecified 

by the investigators; sometimes it is not.  

 In fact, overturning the principle analysis of the clinical trial is the thread 

that links each of the four examples provided earlier in this chapter. For the first 

vesnarinone study, the null finding for the primary combined endpoint was replaced 

by the finding for the secondary endpoint of total mortality. In the ELITE-1 trial, 

the null findings for creatinine levels were supplanted by the findings for total mor-

tality. In PRAISE-1, the finding for the entire cohort (the prospectively designed 

analysis) was supplanted by the findings for the subgroups based on the etiology of 

the CHF. Finally, in the situation involving carvedilol, the investigators attempted 

to replace the null findings for three of the four experiments in the US Carvedilol 

program with the findings from a post hoc combined analysis of total mortality.  

 In each of these four cases, the investigators reacted to this unanticipated 

change by moving the focus away from the principle analysis of the study to the 

new trend seen in the data. Since the data contain sampling variability, the sampling 

variability most likely produced the data stream that led to the change in the objec-

tive. After all, a different sample from the same population could produce a 

different data stream that would reveal different trends, and lead to different mid-

trial endpoint selections by the investigators. This is the hallmark of the random 

protocol. By letting the data decide the analysis, the analysis, and the experiment, 

becomes random. 
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2.7.2 Crippled Estimators in Random Experiments
Unfortunately, our commonly used estimators do not work well in this random en-

vironment. The usual estimators whereof we scientists avail ourselves are designed 

to handle a single source of variability. Specifically, that variability is sampling 

variability (i.e., that the data in one sample will differ from that in another sample 

in measuring a predetermined endpoint). These estimators cannot handle the situa-

tion in which a different sample with different data would lead to a different 

endpoint choice. In the environment of random research, our otherwise accurate es-

timators now function irregularly, returning aberrant estimates of what they were 

designed to measure.  

 Of course, in research, the data always contribute to the endpoint. How-

ever, in the aberrant examples provided earlier in this chapter, the data did not just 

contribute to the endpoint—they actually chose the endpoint. Since the data are 

random, the endpoint selection process has become random, and this new source of 

variation wrecks the standard computations of relative risks, standard deviations, 

confidence intervals, and type I and type II error levels. These quantities are still 

computed to be sure, but their computations can not be interpreted, nor can they be 

trusted. No longer anchored to its protocol, the research has become discordant and 

unsystematic.  

 Drawing conclusions from these estimators is like applying cosmetics us-

ing a distorted, blurred mirror. Since the reflection is not a true one, the result is 

unsatisfactory and, ultimately, the exercise must be repeated.  

   

2.7.3 Untrustworthy 
This last point is worthy of elaboration. The difficulty with the estimators’ compu-

tations in the random experiment is not one of sloppy calculations. To the contrary, 

great effort is expended on these computations, using modern computing facilities 

and procedures. However, because the research is no longer protocol-tethered, the 

computations are uninterpretable, and cannot be corrected.  

 As an example, consider a medical resident working in an emergency 

room whose next patient is a young woman who has a tender abdomen. After his 

evaluation of her, he orders a white blood cell count with differential as part of his 

clinical workup. The patient’s blood is drawn and sent to the laboratory, where the 

laboratory technician makes a technical mistake with the preparation of the sample. 

The mistake, which makes it impossible to visualize many of the leukocytes, is sub-

tle but has major implications. Not recognizing his error, the technician proceeds 

with the white cell count and differential, returning the result to the unsuspecting 

resident. The resident, assuming the white count that he has been given is accurate, 

attempts to integrate these results into his information about the patient. Since the 

blood count is wrong, not only is it unhelpful, but it can direct him away from the 

correct diagnosis.  

 Continuing with this analogy, if the resident were to learn that the white 

blood cell count was inaccurate, what could he do to correct it? In fact, he does not 

know how to adjust it; there is no known factor that he can add to or multiply the 
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reported white count by in order to obtain the true white blood cell total and differ-

ential. He only knows the count is wrong, and that he does not know how to make it 

right. Therefore, his only alternative is to repeat it. 

 This is the situation that the medical community is confronted with when it 

attempts to interpret random research. The estimators of relative risk, standard er-

ror, p-values, and confidence intervals have been corrupted by the random protocol 

that now governs their implementation. Since the estimators are incorrect and un-

correctable, we cannot integrate them into our fund of knowledge, and they must 

unfortunately be discarded. The experiment must be repeated.  

 The random research paradigms of the vesnarinone, losartan, amlodipine, 

and carvedilol examples identified in the previous section require very difficult, ob-

tuse estimators for correct analysis (Appendix B). The correct analysis is difficult to 

interpret, but this problematic analysis is nevertheless the one that should be used. 

The fact that the correct estimators are tough to use and interpret is merely an ex-

pression that the paradigm of randomness is difficult. The problem is not the 

estimators the problem is the paradigm.  

 The only protection against this dilemma is the prospective specification 

of the endpoints and the execution of the study in accordance with this protocol. By 

doing so, the protocol is fixed, and the sampling error contained in the data is iso-

lated from the research procedures and analysis plans. This isolation ensures that 

the statistical procedures applied to the data provide accurate estimates of effect 

size, standard errors, confidence intervals, and p-values. The fixed, prospective pro-

tocol anchors the researcher, keeping her protocol from drifting with the data. This 

is the central motivation for the tenet “First say what you will do then do what 

you said” in research. 

2.8 Collecting the Entire Population 
When the sample size equals the population, the situation is quite different, and the 

concern for random research vanishes. Recall that the root of the difficulty in ran-

dom research is how to handle sampling error. Therefore, this dilemma is resolved 

if the researcher can study every subject in the population, and there is no sampling 

error. In fact, there is no “estimation” since the population parameters are directly 

measured.

 As an example [35], consider a laboratory researcher who is interested in 

characterizing the measure of abnormal glucose metabolism in diabetic patients 

admitted to a community hospital during July and August 2002. There are two pos-

sible candidates for the research endpoint HbA1c or fasting blood glucose levels. 

In this circumstance, there is no requirement for choosing only one prospectively. 

Here, the sample is the population, and the issues of sample extension and general-

izing results are not germane. The investigator chooses and studies every member 

of her population. For her, she does not estimate parameters she simply measures 

them. There is no need for standard errors, and no need for inference testing, be-

cause sampling error was not involved in the selection of the subjects. There is 

freedom in choosing (and re-choosing) the endpoint here. 
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  However, this endpoint selection liberty gained by studying the entire 

population is counterbalanced by the generalizability restriction the results of this 

two-month evaluation apply only to this hospital for only the time frame during 

which the measurements were made. They cannot be applied to other community 

hospitals, and should not be applied to the same hospital for different time frames. 

 The distinction between analyzing a sample and analyzing a population is 

critical. In population research, every result applies to the population (since the en-

tire population was included in the analysis), while only a small number of results 

from sample-based research can be extended to the population at large. Most medi-

cal research is executed on samples derived from much larger populations. 

However, researchers should not first select their sample, and then treat the analysis 

as though the sample was the population. They should instead be consistent, recall-

ing that extending results from their small research sample to the large population is 

a delicate process. 

2.9 Regulatory Example 
Discussions that occurred at the FDA in 2001 demonstrate the applicability of is-

sues that were developed in this chapter. 

 Glidel is a medication combining two antitumor compounds (BCNU and 

carmustine) into a wafer that is placed in the tumor cavity of patients who have just 

had the brain tumor glioblastoma multiforme (GBM) surgically extracted. It was 

approved by the FDA in 1996 for use as an adjunct to surgery to prolong survival in 

patients with recurrent GBM for whom surgical resection is indicated.  

 The sponsor submitted a supplemental SNDA16 presenting results from a 

multi-center, randomized, placebo-controlled trial in a newly diagnosed population 

of patients with malignant glioma. The endpoint of this trial was survival.  

 The study was stratified by center and, therefore, indirectly stratified by 

country. The protocol for this study indicated that an unadjusted log rank test statis-

tic would be used to analyze the survival data. The results of the trial demonstrated 

that the median survival for patients taking Glidel was 13.9 months (95% CI 12.1 to 

15.3) when compared to 11.6 months for the placebo group (95% CI 10.2 to 12.6). 

The relative risk was 0.77 and the p-value for the log rank test was 0.08, higher than 

the prospective level of 0.05 that the company had set.  

 However, upon conclusion of the study, an independent statistician was 

called in by the sponsor to analyze the data. In the alternative analysis, the therapy 

effect was stratified by center, producing a p-value of 0.07; an additional analysis, 

now stratifying by country, revealed a p-value of 0.03. The sponsor argued that 

since the study was stratified by center (and that this perhaps indicated some strati-

fication at the country level) the appropriate analysis should be the country 

stratified log rank analysis [36.]. What is the correct conclusion? 

                                                          
16

A new drug application (NDA) is the compendium of material composed of thousands of 

pages describing the safety and efficacy of the compound that the companies sponsoring the 

drug submit to the FDA for the regulatory agency’s review. A supplemental new drug appli-

cation (SNDA) is the supporting data for a new indication for the drug that has already been 

approved.
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 The advisory committee to whom these data were presented debated their 

correct interpretation for an afternoon and delivered a split decision to the FDA. 

The pharmaceutical sponsor argued that since the trial was designed to stratify pa-

tients by center (and indirectly by country) the positive country-stratified analysis 

should be accepted. However, committee members argued that the prospective 

analysis plan in place at the study’s inception required that the unadjusted log rank 

test should be used. In the end, a 7-6 vote that the trial was not adequate and that 

the intervention should not be approved was presented to the FDA.  

2.10 Additional Comments
Here are some final comments for investigators to consider as they review the pub-

lished work of others. 

2.10.1 Don’t Rush to Judgment 
There are other explanations for the disparate findings of the four collections of 

clinical trials that we have reviewed. Factors such as the clinical impression of the 

benefit of therapy, the needs of the population at risk, changing standards of care 

for this population over time, the spectrum of adverse effects produced by the ther-

apy, and the cost of the intervention must all be jointly considered as we work to 

interpret the results of a research effort. 

 If patient characteristics are substantially different from trial to trial, and 

the effect of the intervention depends on these characteristics (e.g., comorbidity), 

then the two trials can come to different conclusions about the effect of the inter-

vention. Another factor to consider in attempting to explain differences between the 

findings of two clinical trials that examine the effect of therapy for CHF is the time- 

dependent nature of CHF interventions. Treatment patterns for CHF are not static 

over time, but dynamic. Since the therapy commonly used in patients changes over 

time, the effect of the intervention being testing can either be reduced or amplified 

by the background therapy with which the intervention is concomitantly used. 

Clinical trials instigated in the twenty-first century are carried out in patients who 

commonly are taking a combination of digitalis, diuretic, ACE-i therapy as well as 

beta blockers. This was not the background therapy of ten years ago. Temporal 

changes in ongoing therapy for heart failure can make an important difference in 

the identification of a therapy effect.  

 Carefully considering these factors, both one at a time and then jointly, is 

an indispensable evaluation process and should not be avoided. However, by even 

attempting to view these effects in order to draw conclusions about the relationship 

between the intervention and clinical endpoints of heart failure, we are assuming 

that sampling error has been controlled enough for us to interpret results in different 

trials with different population bases. Therefore, we should suspend this clinical 

judgment until we are satisfied that the underlying methodology of the research is 

sound. The insistence of the correct research methodology is the bedrock upon 

which clinical interpretation of the research must rest.  
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2.10.2 Random Research in Extremis 
Data dredging is random research in extremis. This search for a significant finding 

in the research may be well motivated; the dredgers are driven by the notion that if 

they work hard enough, long enough, and dig deep enough they will turn up some-

thing “significant.” However, while it is possible to discover a jewel in this strip- 

mining operation, it is also more likely that for every rare jewel identified, there 

will be many false alarms, fakes, and shams [11], [37]. It takes tremendous effort to 

sort out all of these findings. In his book Experimental Agriculture (1849), James 

Johnson stated that a badly conceived experiment not only wastes time and money, 

but also leads to (1) the adoption of incorrect results into standard books, (2) the 

loss of money in practice, and (3) the neglect of further research along more appro-

priate lines. This is the legacy of random research [38].  

 It is not enough to design the research well. Believing that well-designed 

research can overcome subsequent protocol violations is like believing that a well-

prepared, well-stocked kitchen will produce a good meal in spite the presence of an 

inept chef. Both a well-stocked kitchen and a skilled chef are necessary. One alone 

is not sufficient.  

2.10.3 Requirements of Investigators and Readers 
Any review of the experience of the vesnarinone, losartan, amlodipine, and 

carvedilol trials must acknowledge the effort of the investigators in all of these 

studies. Had they not appreciated the weak methodologic support for the findings 

from the first study for each drug, no additional confirmatory data would have been 

collected, and the heart failure community would have been left with the findings of 

the first vesnarinone study, ELITE-1 and PRAISE-1, and the US Carvedilol pro-

gram as the final research effort for these interventions. We should be encouraged 

that the CHF community was willing to invest precious resources into the execution 

of additional studies in order to obtain the correct results.  

 Finally, the readers of the medical literature must develop a new skill of 

discrimination. Keeping in mind that the role of the investigator is not as an “ex-

plorer” or “searcher” who stumbles upon an unexpected finding but as a 

“researcher,” who confirms an a priori hypothesis with scientific rigor, readers of 

the peer-reviewed medical research literature must separate prospectively planned 

from random analyses. Manuscripts submitted to journals for publication must be 

rewritten and resubmitted if they do not allow the readers to make these critical dis-

tinctions. Confirmatory analyses are those for which there is a prospective 

specification of an analysis plan in complete detail, including type I error level allo-

cations, leaving nothing in the analysis plan to be determined later by the data. This 

is the best way to ensure that the estimators the investigators have provided are 

trustworthy. Data-driven protocol deviations, that are the hallmarks of random re-

search, are alarm bells for type I and type II error level aberrations, and can serve 

only to produce preliminary, exploratory evaluations. 
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2.11 Conclusions 
Clinical trial interpretation requires judgment; the balancing effort in which we all 

engage as we weigh a study’s strengths against its weaknesses remains a central 

one. However, just as justice cannot prevail in the absence of the rule of law, cau-

sality determinations in clinical trials require the rule of methodology. The first rule 

that validates the estimators of the effect of the clinical trial’s intervention is the 

presence of a prospective, fixed analysis plan. Allowing data-driven analyses to de-

termine a clinical trial’s results, however well intentioned, strikes at the heart of the 

medical community’s ability to generalize results from the research sample to the 

population at large. Random research, like our physician’s gambling fortune teller, 

misdirects. It misdirects without malice, and misdirects with assurance; however in 

the end, misdirection is midirection. It holds a great potential for harm, and must be 

resolutely resisted.  

Problems
For each of Problems 1 to 7, answer each of the following three questions: 

A)   Is this research result concordant or discordant? 

B)   Is this result of the research either hypothesis testing (confirmatory) or 

hypothesis generating (exploratory)? 

C)  Are the effect measures and p-values for these reported results of this 

experiment all interpretable, or uninterpretable? 

1.   A multicenter clinical trial is designed to evaluate the effect of exposure to a 

randomly allocated intervention on the occurrence of sudden cardiac death. 

The protocol for the study is carefully written, with the prospective primary 

analysis plan. However, the therapy is determined to have side-effects, and 

many patients who are randomized to the active group are unable or refuse to 

continue to take their therapy. When the analysis is carried out with each pa-

tient assigned to the randomized treatment group, the effect of the therapy is 

neither clinically nor statistically significant. However, when the investigators 

analyze the data by dividing patients into those who have stayed on their medi-

cation versus those who do not take active therapy (either by assignment or by 

choice), the results demonstrate a clinically important reduction in the cumula-

tive incidence of the primary endpoint, p < 0.025. The researchers report the 

“as treated” analysis, and claim that the study is positive.  

2.    A clinical trial is designed to evaluate the effect of cholesterol-reducing therapy 

on the occurrence of heart attacks. According to the protocol, the hypothesis 

test is a one-tailed test for benefit at the 0.025 level. The z-score at the conclu-

sion of the experiment is 1.72 The researchers conclude that since this z-score 

is greater than 1.645, the experiment is positive. 

3.   A randomized, double-blind clinical trial is designed to look at the effect of 

therapy on total mortality in patients who have heart failure. The endpoint for 

this prospectively designed trial is total mortality and the prospectively de-

clared maximum type I error is 0.05 (two-tailed). However, during the course 
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of the trial, the investigators believe that the death rate observed in the study 

will not produce enough deaths to have adequate power for the prospectively 

identified hypothesis test. They therefore change the endpoint to the combined 

endpoint of either death or survival and worsening of CHF. At the trial’s con-

clusion, the number of deaths is observed, after all, to be sufficient for a 

hypothesis test on total mortality. The investigators report the total mortality 

result, p = 0.019.  

4.   A randomized, double-blind clinical trial is carried out to determine if the ad-

ministration of a drug known to reduce the occurrence of dangerous heart 

rhythms will reduce mortality. The prospectively designed hypothesis test is 

one tailed, and the investigators have a critical region which, if the test statistic 

is greater than 1.96, the research will conclude that at the 0.025 significance 

level, the drug is beneficial. At the conclusion of the study, the test statistic is   

-2.0. The investigators conclude that the drug is dangerous.  

5.    A clinical trial is executed to determine the effect of diet pills on weight loss. 

According to the prospectively written protocol, the investigators will declare 

the study is positive if both the mean reduction in weight for patients in the ac-

tive group is 5 pounds greater than the mean reduction in the control group and 

the p-value associated with this difference is less than 0.05. The trial reveals 

that the active group lost 4.5 pounds more than was lost in the trial with a p-

value of 0.045. The investigators declare that the study was positive. 

6.   A drug company is anxious to demonstrate that their new medication, when 

given intravenously to patients who are undergoing a cardiac procedure to 

widen their narrowed coronary arteries, reduces mortality. They execute a 

clinical trial for which the prospectively determined primary endpoint is a re-

duction in the 3-month mortality rate, at 0.05 significance level (two sided). 

The researchers determine that the p-value for the 3-month reduction in mortal-

ity is 0.06 (two sided), but the p-value for the 6-month reduction in mortality is 

0.04 (two sided). The researches declare that the study is positive.  

7.    A researcher carries out a clinical trial to assess the effect of inhalation therapy 

on stress reduction. This prospectively planned study is designed to demon-

strate that inhalation therapy reduces a quantitative measure of stress by 30%,  

with a p-value of < 0.05 (two tailed). At the conclusion of the study, the re-

searcher finds the reduction in stress to be 26% with a p-value 0.06. He notes, 

however, that the reduction in stress is 55% (p = 0.039) for patients greater 

than 60 years old, a subcohort that made up 40% of the recruited sample. He 

declares the study is positive. 
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Chapter 3 

The Lure and Complexity of
Multiple Analyses 

This chapter presents the motivations for, and consequences of, executing multiple 
statistical analyses in clinical trials. Logistical efficiency, the desire to build a 

causal argument, and the need to explore and develop unanticipated results, are 
appropriate and powerful factors that motivate the inclusion of multiple analyses in 

these randomized studies. However, their incorporation may produce results which 

can be difficult to integrate with the idea of controlling the type I error rate. The 
need to minimize the type I error rate in a clinical trial is developed, followed by an 

elementary introduction to one of the most useful tools for controlling type I error 

rates—the Bonferroni inequality. Alternative methods of controlling the type I error 
rate are then briefly discussed. The chapter ends by combining (1) the motivation 

for the prospective plan of an experiment and (2) the need to control the type I er-

ror rate into a framework to guide the design of a clinical trial. This final 
integration (Table 3.3) describes the three ways in which multiple analyses in clini-

cal trials are carried out, and the implications for each of their interpretations. This 

result will be the basis for the development of the multiple analysis tools to which 
the rest of the book is devoted. 

3.1 Definition of Multiple Analyses 
By multiple analyses, we mean the collection of statistical hypothesis tests which 

are executed at the conclusion of a clinical trial. The term collection is deliberately 

broad, encompassing all of the evaluations that investigators understandably feel 

compelled to conduct upon the experiment’s conclusion. The following are exam-

ples of multiple analyses in clinical trials:  

Example 1: A clinical trial is designed to compare the effects of three dif-

ferent doses (D1, D2, and D3) of an intervention to each other and to control 

therapy on a prospectively chosen endpoint. This setting requires several 

different pairwise evaluations. Three of them involve the control group (D1

versus placebo, D2 versus placebo, and D3 versus placebo) and three require 

inter-level comparisons (D1 versus D2, D1 versus D3, and D2 versus D3). 

Thus, there are six comparisons to be assessed, each leading to a hypothesis 

test. If there were four doses of the intervention to be evaluated, there would 

be ten comparisons to assess.  
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Example 2: A clinical trial is designed to compare the effect of a single dose 

of an intervention to that of a control group for a prospectively defined end-

point. This comparison is to include not just the entire cohort of research 

subjects, but also a comparison within males, within females, within differ-

ent race/ethnicity groups, and within country. Although these additional 

analyses are traditionally described as subgroup analysis, they fall under our 

broad rubric of multiple analyses.  

Example 3: A clinical trial is designed to compare a single dose intervention 

against placebo for efficacy. The trial has a primary endpoint of total mor-

tality, but in addition, has included prospectively defined analyses for the 

secondary endpoints of (1) cardiovascular death, (2) fatal and nonfatal MI, 

(3) fatal and nonfatal stroke, (4) the cumulative incidence of hospitalization, 

(5) unstable angina, and (6) revascularization. Each of these secondary end-

points produces a comparison of the effect of the single dose intervention 

versus placebo.  

Example 4: A clinical trial is designed to compare the effect of a medication 

given immediately after a coronary artery procedure (e.g., coronary artery 

angioplasty or coronary artery bypass surgery) to placebo. The endpoint for 

the study is the cumulative mortality rate. The comparison of the mortality 

rate is to take place at 3 months, 6 months, and 1 year after the procedure. 

At each of these three time points, the cumulative mortality rate of the 

intervention group is to be compared to that of the control group.  

 In reality, these four examples occur not in isolation, but in complicated 

combinations. For example, a clinical trial may compare the effect of a single dose 

intervention to a control group on several different endpoints and in several sub-

groups. Some of the endpoints may have been prespecified in the protocol, while 

others were not considered until the trial was completed. Likewise, some of the 

subgroups may have been prespecified, while others were not. This tangle of analy-

ses typically accompanies the execution of a clinical trial as the researchers 

thoroughly analyze their data. The purpose of this chapter is to (1) review the moti-

vation for multiple analyses, (2) describe the commonly used statistical procedures 

used to address the multiple analysis issues in clinical trials, and (3) settle on a class 

of procedures that has the advantage of being easy to understand while simultane-

ously preserving a comprehensible measure of community protection.  

3.2 Why Do Multiple Analyses? 
Multiple analyses are a natural byproduct of the complexity of clinical experiments. 

While investigators describe their motivations to carry out more than one analysis 

in several ways, there are three primary reasons for the execution of multiple statis-

tical hypothesis tests. They are (1) to provide logistical efficiency, (2) to strengthen 

the causal argument, and (3) to explore new ideas and establish new relationships 

between risk (or beneficial) factors and disease. We will briefly discuss each of 

these in turn.  
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3.2.1 Logistical Efficiency  
One of the motivations that generates multiple analyses is the drive of both the in-

vestigator and the sponsor1 for efficiency. They are each interested in discovering 

an answer to the scientific question which motivated the trial, but they also require 

that the experiment should be competently run and analyzed. This translates into 

ensuring that the clinical trial be as productive as possible, and generate a full return 

of results to justify the commitment of the logistical and financial resources re-

quired for the experiment’s execution.  

 Consider a controlled clinical trial which involves randomizing patients to 

either the intervention group or the control group, and follows those patients until 

either the patient dies or the predetermined duration of follow-up has elapsed. The 

investigators plan only one analysis which assesses the relationship between the use 

of the therapy and the cumulative incidence of total mortality. For this simple clini-

cal trial with one endpoint and a single analysis, substantial financial, logistical, 

material, and personnel resources will be consumed. However, once this price has 

been paid, additional subject measurements can be obtained for a relatively small 

additional cost.  

 For example, if the original endpoint was total mortality, what would the 

additional cost be of collecting the supplementary data that would allow a determi-

nation of the cause of death, necessary to create an additional endpoint of cause-

specific mortality? The only additional information required for this new endpoint 

would be the collection of hospital records, death certificates, eyewitness accounts, 

and a committee to determine and adjudicate the cause of each death. In general, as 

the investigators add to the number of endpoints, the total cost of the study will in-

crease, but the cost per endpoint or marginal cost will decrease. 

 There is certainly a supplementary cost for collecting this additional in-

formation, but the marginal cost is small compared to the original cost of the trial. 

Thus, the number of endpoints in the study has doubled but the cost of the experi-

ment has increased by a relatively small amount. The addition of a third endpoint 

(i.e., total hospitalization) produces yet another increase in the cost of the experi-

ment (a discharge summary will be required for each hospitalized patient), but 

again the cost of the original experiment is not substantially increased. Thus, one 

can triple the number of endpoints and increase the number of statistical analyses 

(and perhaps increase the likelihood of a positive result on at least one),2 without 

tripling the cost of the experiment, certainly a cost efficient exercise.  

3.2.2 Epidemiologic Strength 
An additional motivation for conducting multiple analyses in clinical trials can be 

found in epidemiology. As discussed in Chapter 1, epidemiologists use a combina-

                                                          
1

The sponsor of the trial is the organization which funds the study. It could be a government 

funded study, underwritten by institutes, e.g., the National Eye Institute, or  the National In-

stitute of Environmental Health Services. Alternatively, the clinical trial could be funded by 

a private pharmaceutical company.  
2 We will have much more to say about this concept later. 
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tion of careful observation and deductive reasoning to determine whether a relation-

ship between an exposure and a disease is causal, an evaluation that is guided by 

the use of the Hill tenets.3 Clinical trial designers can implement these investigative 

tools to cement the causal link between the intervention and patient improvement, 

but this requires multiple analyses.  

 For example, one of the causality criteria that is useful in proving that a 

medication produces a reduction in mortality is the demonstration of a dose–

response relationship. If the clinical trial revealed that an increase in the dose of the 

randomly allocated intervention produced a further benefit, then the causal nature 

of the intervention–mortality rate relationship is more secure. This investigation 

could be prospectively embedded into the design of the trial. Elucidating that there 

is a dose–response relationship requires that (1) the trial have a control group and at 

least two intervention groups (one receiving intervention dose D1, and the second 

requiring intervention dose D2, where D1 is less than D2,) and (2) that the beneficial 

effect of D2 exceeds the beneficial effect of D1. Thus, there are potentially three 

separate analyses to complete this dose–response evaluation (D1 versus control, D2

versus control, and D2 versus D1). This approach has been formally addressed in the 

literature [1]. 

  Another example of an epidemiologic motivation for the execution of 

multiple analyses is the elucidation of a biologic mechanism. Identifying the physi-

ologic path by which the clinical trial’s intervention produces the reduction in 

morbidity and mortality adds strength to the treatment–benefit causality argument. 

For example, when HMG-CoA reductase inhibitors (i.e., the “statins”) and their ef-

fects on cardiovascular disease were first being studied, it was proposed that their 

effect on the occurrence of atherosclerotic cardiovascular morbidity was mediated 

by reductions in low-density lipoprotein (LDL) cholesterol levels. Thus, when these 

compounds were evaluated for their ability to reduce clinical endpoints of interest 

(e.g., fatal and nonfatal myocardial infarction), the investigators often first demon-

strated that this reduction in long-term morbid and mortal events was preceded by a 

sustained reduction in the LDL cholesterol levels. Although the endpoint of each of 

these trials was not the change in LDL cholesterol levels, the investigators correctly 

deduced that they should demonstrate that there was a reduction in LDL cholesterol 

levels before the reduction in clinical morbidity and mortality produced by the in-

tervention was accepted and understood. This was a tack followed by major clinical 

trials investigating cholesterol-lowering therapy for patients without a history of 

atherosclerotic disease [2], or patients with a history of this disease (secondary pre-

vention) in the United States [3], Europe [4], and Australia [5].  

 Additionally, a causality argument can also be strengthened by the demon-

stration that several related endpoints, whose occurrence is generated by the same 

underlying pathophysiology, are simultaneously affected by the intervention. Thus, 

continuing with the HMG-CoA reductase inhibitor example, the effect of the ther-

apy to reduce not just the cumulative incidence rate of fatal and nonfatal myocardial 

infarctions, but also the incidence of (1) fatal and nonfatal strokes, (2) unstable an-

gina, and (3) coronary revascularizations provides additional evidence for the 

causal link between the medication and clinical outcomes of atherosclerotic disease. 

                                                          
3 These nine tenets are listed in Appendix A. 
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Each additional endpoint requires its own evaluation of the effect of therapy and an 

additional statistical hypothesis test (to provide some assurance that the finding in 

the sample is not likely to be due to the play of chance). 

 Finally, subgroup evaluations have also been an important force in produc-

ing multiple analyses in clinical trials. Customarily, the motivation for subgroup 

analyses is the desire to demonstrate that the response to the medication being 

evaluated in the clinical trial is uniform and homogenous across ages, gender, eth-

nicity, and classes of patients who are linked by similar comorbidity. Traditionally, 

heterogeneity of therapy effect across subgroups in clinical trials has caused con-

cern. The presence of an effect in a sizable subgroup of patients when all other 

subgroups of patients receive no real benefit of therapy permits speculation that 

there may be an important treatment effect modification that is subgroup related.4

Alternatively, profound heterogeneity of effect across several subgroups raises the 

issue that the finding of the different levels of therapy benefit across the subgroups 

was just due to the play of chance and not really indicative of a benefit that would 

be expected in the entire population. 

  Recently, subgroup analysis has been spurred by the demonstration of 

heterogeneity in populations. The increased interest in the role of genetics in medi-

ating the effect of a medication, and the interest expressed by the FDA in 

specifically evaluating the potential differential effect of medications across both 

gender and race [6] have ignited the interest among clinical trial designers to dem-

onstrate not subgroup homogeneity but heterogeneity. These evaluations would 

require even more analyses. 

3.2.3 The Need to Explore 
There is a critical difference between confirmatory research and exploratory re-

search. Confirmatory research executes a protocol that was designed to answer a 

prospectively asked scientific question. Exploratory research is the evaluation of a 

dataset for new and interesting relationships that were not anticipated. In Chapter 2, 

we pointed out that these should be segregated. However, there is room in a clinical 

trial for both.  

 Investigators want to cover new ground, and enjoy the exploration process. 

Exploratory analyses can evaluate the effect of the therapy in subgroups, the effect 

of the therapy on different endpoints, and the effect of different doses of the medi-

cation. Although we will have much to say about the correct place for exploratory 

analyses in clinical trials, that review must begin with the acknowledgment that ex-

ploratory analyses are a sustained, driving force behind many of the statistical 

analyses carried out in clinical trials.  

                                                          
4

This was the circumstance of the findings in PRAISE–1 in which a reduction in the cumu-

lative total mortality rate was seen in patients with nonischemic cardiomyopathy, but not in 

patients with ischemic cardiomyopathy (Chapter 2).
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3.3 Hypothesis Testing in Multiple Analyses 
These well-motivated concerns for efficiency, good epidemiologic evidence neces-

sary to solidify the causal relationship between the intervention and the observed 

effect, and the need to explore together demand that multiple analyses remain a 

common occurrence in clinical trials. The continued incorporation of multiple 

analyses in clinical experiments has led to an increased interest in issues surround-

ing their use. Since each of these analyses involves a statistical hypothesis test, and 

each hypothesis test produces a p-value, a relevant question is how should these p-

values be interpreted?  

 Some have argued in articles [7] and editorials [8] that these additional p-

values should be ignored. Others have argued that they should be interpreted as 

though the value of 0.05 is the cutoff point for statistical significance, regardless of 

how many p-values have been produced by the study. This is called using “nominal 

significance testing” or “marginal significance.” Others have debated whether in-

vestigators should be able to analyze all of the data, and then choose the results they 

want to disseminate [9], [10], [11].  

  The discussion in Chapter 2 forces us to reject the results of the investiga-

tor who, after inspecting the magnitudes of each of the p-values, makes an after the 

fact, or post hoc choice, from among them. This “wait and see what analysis is 

positive” approach violates the underlying critical assumption of the p-value con-

struction (i.e., that the data with its embedded sampling error should not choose 

either the endpoint or the analysis). This violation invalidates the p-value.  

3.3.1 Nominal P-Values 
The nominal approach to multiple p-value analysis must now be considered. The 

tack of interpreting each of several p-values from a single experiment, one at a time, 

based on whether they are greater or less than the traditional threshold of 0.05 may 

seem like a natural alternative to the post hoc decision structure that we just re-

jected. In fact, the nominal p-value approach is very alluring at first glance. The 

rule to use nominal p-values is easily stated prospectively at the beginning of the 

trial, and is easy to apply at that trial’s end.  

 However, the consequences of this approach must be given careful atten-

tion. Consider, for example, two analyses from a randomized clinical trial designed 

to measure the effect of therapy of an intervention in patients with atherosclerotic 

cardiovascular disease. Let us assume in this hypothetical example that the research 

was well-designed with two endpoints in mind: (1) the cumulative total mortality 

rate and (2) the cumulative incidence of fatal/nonfatal strokes. We will also assume 

that the analysis has been carried out concordantly (i.e., according to the experi-

ment’s prospectively written protocol). The first analysis reveals that the 

intervention reduces the cumulative incidence rate of total mortality by a clinically 

meaningful magnitude, producing a p-value of 0.045. The second analysis reveals 

that the intervention reduces the cumulative incidence of fatal and nonfatal stroke in 

a clinically meaningful way, again with a p-value of 0.045. The investigators have 

clearly met the clinical, statistical, and traditional threshold of results with p-values 

of less than 0.05. Should each of these be accepted nominally, i.e., should the inves-
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tigator conclude that the study produced evidence that the intervention (when used 

in the population from which the research sample was obtained) will reduce total 

mortality and will also reduce the fatal and nonfatal stroke rate?5

3.3.2 The Error of Interest: Familywise Error 6

To evaluate this important question, recall that the p-value for the effect of an inter-

vention on an endpoint measures the probability that the population in which the 

intervention has no effect generated a sample that, just by the play of chance and 

the random aggregation of events, shows a positive effect of the intervention. The 

occurrence of this error is a reasonable event to be concerned about when there is 

only one endpoint. However, with two endpoints, the event of interest is more com-

plicated, and the nominal interpretation of p-values is unsatisfactory.  

 In this specific example in which there are two analyses, one on the effect 

of the intervention on the total mortality rate and the second on the intervention’s 

impact of the fatal and nonfatal stroke rate, a type I error means that the population 

has produced by chance alone a sample that either (1) gives a false and misleading 

signal that the intervention reduced the cumulative total mortality incidence rate, 

(2) gives a false and misleading signal that the intervention reduced the fatal and 

nonfatal stroke rate, or (3) gives a false and misleading signal suggesting that the 

intervention reduced both the cumulative mortality rate and the fatal and nonfatal 

stroke rate. There are three errors of which we must now keep track when there are 

two endpoint analyses, and the misleading events of interest can occur in combina-

tion. Therefore, a more complicated measure of type I error rate is required. This 

complex measure of type I error rate might be described as an overall research ,

but has previously been termed the familywise (type I) error probability (or error 

level),7 or FWER [12], [13] and will be designated as .

 There is a critical difference between the standard type I error level for a 

single endpoint and . The type I error probability for a single, individual endpoint 

focuses on the occurrence of a misleading positive result for a single analysis. This 

is the single test error level, or test-specific error level. The familywise error level 

focuses on the occurrence of at least one type I error in the entire collection of 

analyses. Thus,  incorporates the test-specific type I error levels for each of the 

analyses taken one at a time, and in addition, considers the combinations of type I 

errors when the statistical hypothesis tests are considered jointly. In the preceding 

example where there were two endpoints, total mortality and fatal/nonfatal stroke, 

the occurrence of a familywise error is a measure of the likelihood that we have 

                                                          
5 Recall from Chapter 2 that the p-value should not be considered as a stand-alone integrated 

measure of strength of evidence. The research can only be accurately interpreted if the sam-

ple size, relative risk, the standard error of the relative risk, the confidence interval, and the 

p-value are jointly interpreted. However, since the focus of this chapter is not the evaluation 

of the magnitude of benefit but the multiplicity of type I error, these other factors will be 

deemphasized for the sake of clarity in this discussion. 
6 The terms error probability, error rate, and error levels will be used interchangeably. 
7 This is sometimes called the familywise error rate computed under the complete null hy-

pothesis.
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drawn the wrong positive conclusion about the benefit of therapy for total mortality 

alone, fatal/nonfatal stroke alone, or have made an error about both.  

3.3.3 Initial Computations for 
The familywise error level can be easily computed if we assume that the result of 

one hypothesis test provides no information about the result of the other hypothesis 

test.8 Recall that the probability of a type I error for the hypothesis test examining 

the effect of therapy on the cumulative incidence of the total mortality rate is 0.045, 

and that the same rate has been chosen for the stroke endpoint. First, compute the 

probability that there is no type I error for the total mortality rate effect and no type 

I error for the fatal/nonfatal stroke rate effect using the  error levels for each as fol-

lows: 

P[no type I error for the total mortality effect and no type I error for the fa-

tal/nonfatal stroke rate effect]  

= P[no type I error for total mortality effect] * P [no type I error for the fa-

tal/nonfatal stroke rate effect] 

=(1 – P[a type I error occurred for the total mortality effect]) *(1 – P [ no 

type I error occurred for the fatal/nonfatal stroke rate]) 

= (1 – 0.045)(1 – 0.045) = (0.955)2 = 0.9120. 

Thus, 0.9120 is the probability that there is no false signal from the sample about 

the beneficial effect of the intervention on each of the total mortality rate and the 

fatal/nonfatal stroke rate. This situation is the best of all possible worlds. The 

familywise error level in which we are interested is the reverse of this, i.e., that 

there is at a type I error for either the total mortality finding, the fatal/nonfatal 

stroke finding, or both. Thus, we easily compute  as 

=  1 - 0.9120  =  0.088.                                        (3.1) 

This value of 0.088 is greater than 0.045 (the test-specific p-value for each of the 

two analyses) and presents the results of this experiment in a very different light. 

By accepting a less than one in twenty chance of a type I error for either the effect 

of the intervention on either (1) the cumulative mortality rate or (2) the cumulative 

incidence rate for fatal/nonfatal strokes, we accept almost a one in ten chance of 

falsely concluding that the intervention will be effective in the population when it is 

not. Recognition of this error level inflation is the heart of the problem with accept-

ing nominal significance for multiple analyses. For any realistic collection of single 

                                                          
8

The performance of this computation when the result of a hypothesis test for one endpoint 

provides information about the result of another hypothesis test is the specific subject of 

Chapters 5–6. 
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test error levels, the greater the number of endpoints, the larger the familywise error 

level  becomes (Table 3.1)  

Table 3.1. Relationship between the test specific alpha and the

familywise error rate.

Test specific alpha

0.05 0.025 0.01 0.001

1 0.050 0.025 0.010 0.001

2 0.098 0.049 0.020 0.002

Number of 3 0.143 0.073 0.030 0.003

tests 4 0.185 0.096 0.039 0.004

5 0.226 0.119 0.049 0.005

6 0.265 0.141 0.059 0.006

7 0.302 0.162 0.068 0.007

8 0.337 0.183 0.077 0.008

9 0.370 0.204 0.086 0.009

10 0.401 0.224 0.096 0.010

Table 3.1 provides the familywise error level as a function of the number of hy-

pothesis tests for different values of the test-specific . For example, if two analyses 

each have an  level value of 0.05,  = 0.098. The entries in Table 3.1 demonstrate 

that the familywise error level increases with the number of statistical hypothesis 

tests.

 However, Table 3.1 can be used in another manner. Note that if a re-

searcher wishes to keep  at less than 0.05, the number of analyses whose results 

can be controlled (i.e., the number of analyses that can be carried out and still keep 

the familywise error level  0.05) depends on the significance level at which the 

individual analyses are to be evaluated. For example, if each of the individual 

analyses is to be judged at the 0.05 level (i.e., the p-value resulting from the analy-

ses must be less than 0.05 in order to claim the result is statistically significant), 

then only one analysis can be controlled, since the familywise error level for two 

analyses exceeds the 0.05 threshold. The researcher can control the familywise er-

ror level for two analyses if each is judged at the 0.025 level. If each test is 

evaluated at the 0.01 level, then five independent hypothesis tests can be carried out.  

 Note the last column of Table 3.1 in which each test is judged at the 0.001 

level. In this case, the familywise error rate  can be kept below the 0.05 level, 

when as many as 50 analyses are evaluated. This is the key to an important criti-

cism of a popular approach to the evaluation of multiple hypothesis tests to be 

discussed later in this chapter.  
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3.3.4 FDA and Strength of Evidence 
The type of computation that we completed in the previous section is not the only 

interesting calculation involving type I errors that the investigators of clinical trials 

face. As another example of this style of reasoning, consider the conundrum that the 

FDA faces as it attempts to judge the type I error rates across different bodies of 

evidence.  

 As it considers whether a new compound is to be approved, most of the 

FDA’s effort is its review of the new drug application (NDA). The new drug appli-

cation is the tremendous volume of scientific information compiled by the sponsor. 

This corpus represents all of the relevent evidence that the sponsor believes sup-

ports its claim that the compound is safe, effective, and should be approved by the 

FDA. It consists of thousands of pages of data that describe in great detail the com-

pound’s mechanism of action, bioavailability, metabolism, excretion, clinical 

efficacy, and adverse event occurrences.9 The NDAs have at their epicenter, the 

findings of randomized controlled clinical trials. Since the strongest and most inter-

pretable evidence for the benefits and hazards or the compound reside in these trials, 

these studies are commonly referred to as pivotal clinical trials.

 In this example, the FDA receives an NDA from each of two sponsors. 

Each sponsor believes their product is safe and effective for the treatment of CHF. 

We will assume that the quality of data in the two NDAs is equivalent and meets 

the FDA’s standards. However, the number of pivotal trials in the two NDA’s is 

different. In NDA 1, the evidence that the medication is safe and effective is con-

tained in two well-designed, well-executed pivotal clinical trials. In NDA 2, this 

evidence is expressed in only one pivotal trial. Each of the pivotal trials is well-

designed and concordantly executed with a prospectively declared, persuasive, pri-

mary endpoint. Is NDA 1 with its two compelling studies more persuasive than 

NDA 2 that contains only one pivotal trial? 

 Our intuition tells us that the strength of evidence for benefit in NDA 1 

with its two pivotal studies is greater than that presented in the second NDA which 

included only one pivotal study. This concept has been quantified by the following 

argument. Recall that the type I error is the probability that the population (in which 

the compound is not effective) produces a sample that, just through chance alone, 

demonstrates an effect. While this event can certainly occur, it is less likely to occur 

in two independent studies; that would require that the population produce not just 

one, but two aberrant samples.  

 Suppose that the investigators in each of the two pivotal studies in NDA 1 

wrongly conclude that there is a positive effect of the compound in each of the two 

studies based on sampling error; this is the same as saying that a type I error has 

occurred for each of these trials. Assume that these two studies are independent of 

each other,10 and each is carried out at the prospectively set 0.05 type I error rate. In 

                                                          
9

These NDAs used to be delivered to the FDA’s offices in Rockville, Maryland, in trucks. 

They are now delivered on small sets of compact discs (CDs). 
10 This means that there is nothing about the design or the execution of the two studies that 

links them in such a way that the results of the first study predict the results of the second 

study.   
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this setting, the probability of “two type I errors” is (0.05)(0.05) = 0.0025. Some 

have argued that, if an NDA is to be approved based on the findings of one rather 

than two pivotal trials, then the strength of evidence presented by the one pivotal 

study must match that strength that is created by two pivotal studies. Therefore, if a 

single pivotal study is to have the same strength of evidence as two pivotal clinical 

trials, than that single trial, to be equally persuasive as two studies, should be car-

ried out with a prospectively set  error level of 0.0025. 

 This finding is not a standard for the prospectively set type I error level for 

a single pivotal study. However, this calculation is commonly used to impress upon 

the sponsor the importance of retaining tight control on the type I error rate for its 

single pivotal trial.   

3.4 Is Tight Control of the FWER Necessary? 
The previous section focused on the problems which arise from the application of 

nominal statistical testing to multiple analyses carried out in clinical trials. However, 

the simple computations presented there demonstrate that it is too difficult to keep 

the familywise error level for even a moderate number of statistical hypothesis tests 

at an acceptably low level unless the test-specific  levels are exceedingly small. 

This conclusion excludes the nominal significance testing approach as a useful pro-

cedure to draw reliable conclusions about the population based on the research 

sample in a clinical trial.  

 The rejection of this nominal testing approach will come as a disappoint-

ment to many. This is because (1) p-values are so easily generated, one for each 

hypothesis; (2) the 0.05 level of statistical significance applied to each test is both 

traditional, standard, and requires no additional computations; and (3) the prospec-

tive statement that each of the many hypothesis tests to be carried out in the clinical 

trial will be judged nominally avoids the random research paradigm that we so 

heavily criticized in Chapter 2. Thus, the application of nominal testing at the 0.05 

level is an easy analysis plan to execute, requiring very little new judgment, while 

simultaneously avoiding the difficulty of letting the results dictate the decision rule. 

In fact, the only difficulty with nominal testing in multiple analyses is that the 

familywise error level becomes very large very fast for test-specific  rates at 0.05. 

In light of the three advantages of the nominal testing approach mentioned in this 

paragraph, it is reasonable to explore just how lethal the criticism of uncontrolled 

type I error growth really is. In fact, why be concerned about accumulating type I 

error at all?  

 This has been a question to which several responses have been clearly ex-

pressed in the statistical and epidemiologic literature. Nester [7] has argued that 

hypothesis testing is an innovation which serves no good useful purpose. He sug-

gests that it is (1) their ready availability and (2) the expectation of the statistical 

and medical community for the widespread use of tests of significance that stam-

pedes modern-day researchers to require that hypothesis testing be the central 

feature of their clinical trial analysis. This of course is a general criticism of the use 

of hypothesis tests in any form, suggesting perhaps that hypothesis tests have been 

incorrectly applied for so many years that their correct use at this late date may 

serve only to satisfy a moribund tradition.  
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 Others have criticized the tight control of type I error levels on different 

grounds. Examination of Table 3.1 reveals that the greater the number of analyses 

carried out, the larger the familywise error level becomes. A corollary to this obser-

vation is that in order to control , the researcher should keep the test-specific 

level for each individual test low. An immediate consequence of this strategy is that 

results accompanied by merely intermediate levels of statistical significance will be 

ignored since their p-values will exceed the very small test-specific  levels re-

quired to keep  low. This is a major criticism of type I error control argued by 

Rothman [8]. The core of this contention is that tight control of type I error rates 

leads the investigator to inappropriately miss potential positive effects.  

 Pocock and Farewell [14] also described the problems confronting medical 

researchers who try to control the familywise error rate in a multiple statistical 

analysis setting. They presented an illustration in which an investigator is con-

fronted with a study in which there are 34 related response variables recorded to 

characterize the treatment effect of an intervention on peripheral muscular and 

nerve function in patients with diabetes mellitus. The investigator had no a priori 

reason to examine this constellation of variables in any single specific manner, but 

desires to carry out a statistical hypothesis test for the effect of therapy on each one. 

The application of Table 3.1 to this example leads to the conclusion that, in order to 

keep the familywise error level at the 0.05 level, the significance level used to judge 

each of these tests (i.e., the test level significance levels for each test) would need to 

be very small.11

 Yet another example provided by the same author considers the evaluation 

of a therapy that holds promise for the treatment of arthritis. As with the previous 

illustration, arthritis is a disease for which there are multiple outcome measures and 

no clear a priori choice as to which endpoint is the best endpoint among multiple 

measures of disease progression. Thus, in this circumstance where there is genuine 

interest in the treatment effect but no a priori reason to select one endpoint over the 

other, Pocock and Farewell suggest that each be interpreted nominally, i.e., their 

significance is accepted or rejected based on nominal testing at the 0.05 level of 

significance.  

 Thus, not only does it appear that the control of type I error rate blocks the 

use of the nominal testing procedure, but in addition type I error rate control leads 

to insensitive result interpretation. These are important criticisms which any propo-

nent of  error rate control must address.  

3.5 Community Protection 
The fundamental reason for controlling type I error rates in clinical trials is that the 

type I error is the probability of a mistaken research conclusion for the treatment of 

a disease, a mistake which has both critical and ethical implications for both the 

population of patients to be treated and for the medical community. While sample-

based research cannot remove the possibility of this mistake, the magnitude of this 

                                                          
11 More specifically, the type I error level for each test would be approximately 0.05/34 = 

0.0015. The simple mathematics of this computation will be developed in Section 3.7.  
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error rate must be accurately measured and discussed, so that the effectiveness of a 

therapy can be appropriately balanced against that therapy’s risks.12

 It is easy for the lay community to focus on the potential efficacy of new 

interventions for serious diseases [15]. However, it is a truism in medicine that all 

medications have risks. In a clinical trial, this truism is the foundation of the obser-

vation that all interventions have adverse effects13 associated with them. These 

adverse effects range from troublesome symptoms (e.g., occasional dry mouth) to 

serious problems (e.g., fatigue, blurred vision, palpitations, vomiting, and diarrhea) 

to life-threatening injuries (e.g., toxic megacolon, primary pulmonary hypertension, 

acute liver failure, and birth defects). Many times these adverse events occur so fre-

quently that clinical trials can identify them and can, therefore, accurately predict 

their occurrence in the population at large. It is important to acknowledge that re-

gardless of whether the drug is effective or not, the population will have to bear 

adverse events. 

  In addition to the occurrence of specific, anticipated adverse events, there 

are circumstances in which serious adverse events occur in large populations with-

out warning. This can happen when the clinical studies (completed before 

regulatory approval of the compound was granted) were not able to discern the oc-

currence of these adverse events because the studies contained too few patients.  

 Consider the following illustration: The background rate of acute liver 

failure leading to liver transplant or death is on the order of 1 case per 1,000,000 

patients per year in the United States. Assume that a new drug being evaluated in a 

pre-FDA approval clinical trial increases this incidence by tenfold, to 1 case per 

100,000 patients exposed per year, representing a ten fold increase in risk. The 

magnitude of this intervention’s effect on the annual incidence of acute liver failure 

is a critical piece of information that both the private physician and the patient re-

quire as they jointly consider whether the risk of this drug is worth its benefits.  

 However, an important consequence of this tenfold increase in acute liver 

failure is that (on average) 100,000 patients would need to be exposed to this drug 

in order to be expected to see one case of acute liver failure per year. This is a large 

number of subjects, far larger than the number of patients required in the clinical 

trials in which the safety and efficacy of the drug are demonstrated. Thus, the large 

increase in the rate of acute liver failure produced by the intervention, representing 

an adverse effect of public health importance, would be invisible in small clinical 

trials which recruit and follow less than 1000 patients for 6 months. If this drug 

were approved and released for general dispersal through the population for which 

the drug is indicated, patients would unknowingly be exposed to a devastating, un-

predicted adverse event. The fact that a clinical trial, not designed to detect an 

adverse effect, does not find the adverse effect is characterized by the saying “ab-

                                                          
12 We are setting aside the kinds of errors in clinical trial design that would produce a repro-

ducible, nonrandom bias. An example of such a bias would be to choose a dose of 

medication to test in a clinical trial that is too small to be effective. 
13 According to the FDA, an adverse effect is defined as an undesirable side effect, reasona-

bly believed to be associated with the drug. It is important to note that the FDA does not 

require that the drug be shown to cause the adverse effect only the association between the 

two needs to be demonstrated.
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sence of evidence is not evidence of absence” [16]. This summarizes the point that 

the absence of evidence within the clinical trial that the drug is associated with a 

serious adverse event is not evidence that the compound has no serious side effect.14

 Thus, we expect adverse events to appear in the population regardless of 

whether the intervention demonstrates benefit or not. Some (perhaps the majority) 

of these adverse events are predictable. Others may not be. In addition, the financial 

costs of these interventions are not inconsiderable and must be weighed in the 

global risk–benefit assessment. Therefore, regardless of whether the medication is 

effective, the compound is assured to impose an adverse event and a finan-

cial/administrative burden on the patients who receive it. The occurrences of these 

events represent the risk side of the risk–benefit equation.  

 The use of the intervention is justified only by the expectation that its 

benefits outweigh these health and financial costs. If the clinical trial which bears 

the burden of demonstrating the effectiveness of the compound is positive, then the 

research sample has demonstrated that the desired and anticipated benefit of the 

compound has been observed. But how likely is it that the population will see the 

same magnitude of benefit demonstrated by the clinical trial? This is the issue that 

type I error examines. A type I error is defined to mean that, even though a positive 

finding was seen in the sample, there will be no positive effect seen in the popula-

tion.15 Thus, even though the trial was positive, and the investigators drew the 

understandable conclusion that the compound was effective, the type I error’s oc-

currence directs that this observation of benefit is not true therapy effectiveness. It 

is instead merely the random, unpredictable, and irreproducible aggregation of 

events. The patient community, when exposed to this medication is guaranteed to 

experience the adverse event burden and the financial burden of the therapy; the 

occurrence of a type I error ensures the community will see no beneficial effect.16

 Recall that the possibility of a type I error cannot be expunged from an ex-

periment. It is intrinsic to the process of carrying out research on a sample. The 

situation is even more complicated when there are multiple analyses carried out in a 

clinical trial. Consider our first example in which a clinical trial demonstrated that 

the effect of a therapy was shown to be positive for each of (1) total mortality (p = 

0.045) and (2) fatal/nonfatal stroke (p = 0.045). The p-value for each of these is ac-

ceptably low, however the probability that in the population at least one of these 

beneficial effects will not take place is 0.088. This means that there is an almost 1 

in 10 chance that the population will receive either (1) no beneficial effect on the 

cumulative total mortality rate or (2) no beneficial reduction in the fatal/nonfatal 

stroke incidence rate or (3) no beneficial reduction in both. It is this familywise er-

ror level of 0.088 that must be compared to the risk of the medication because the 

                                                          
14 The statistical power computation for this example appears in Appendix D. 
15

A type I error in this context means that a population in which the intervention has no 

beneficial effect produced a sample that, due just to the play of chance, demonstrated that the 

intervention was effective. 
16 A possible argument that a type I error may be helpful (e.g., an investigational agent that is 

less expensive and safer than the standard of care is mistakenly found to be more effective 

than the currently used agent) would be evaluated in a noninferiority trial, which is beyond 

the scope of this text.  
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familywise error level most accurately measures the likelihood of a type I error for 

all of the claimed benefits of the intervention. By not keeping track of (and ulti-

mately controlling) , we turn a blind eye to the likelihood that the therapy will not 

have the beneficial effects that were suggested in the sample-based research effort, 

thereby exposing patients to only harm.  

 The consequence of a type I error for efficacy in a clinical trial that is de-

signed to measure the true risk–benefit balance of a randomly allocated intervention 

is the reverse of the Hippocratic Oath, succinctly summarized as “first do no 

harm”.17 In clinical trials, type I errors represent ethical issues as much as they do 

statistical concerns, and, in these studies which are commonly the justification for 

the use of interventions in large populations, the familywise error level must be 

controlled within acceptable limits. 

3.6 Efficacy and Drug Labels 
It may be surprising, but the notion of multiple analyses and type I error control can 

be embedded in the drug labels that are assembled in the Physician’s Desk Refer-

ence (PDR). The label or package insert provided for each prescription drug in the 

United States is the description of the compound that both the FDA and the spon-

soring pharmaceutical company have agreed provides for the safe and effective use 

of the drug in patients. This agreement often occurs after months of negotiations 

between the FDA and the pharmaceutical company. The final form of the label is 

based on the understanding between the two parties that (1) it is the sponsor that 

owns the label, (2) the FDA sets minimal standards for the label to which the spon-

sor must adhere, and (3) the sponsor can exceed these standards if it desires.  

 Since the wording of the label is critical, there are strict rules describing its 

organization and contents. These rules are delineated in the Code of Federal Regu-

lations. The label itself is divided into several components; among the most 

prominent are the following sections: description, indications, contraindications, 

warnings, adverse events, and precautions. The portion of the label of interest to us 

here is the indication section. It is the indication section of the label that describes 

the benefits of the drug that the FDA and the sponsor reasonably believed would 

occur in those patients who use the drug as directed (Appendix C). The code of fed-

eral regulations devoted to the indications section of the drug label describes the 

source of the information that substantiates the claim for benefit.  

(2) All indications shall be supported by substantial evidence of effec-

tiveness based on adequate and well-controlled studies as defined in 
Sec. 314.126(b) of this chapter unless the requirement is waived under 

Sec. 201.58 or Sec. 314.126(b) of this chapter.  

                                                          
17 This problem is exacerbated by the inability to measure type I error accurately. As demon-

strated by the vesnarinone, losartan, amlodipine, and carvedilol examples provided in 

Chapter 2, the inability to measure the type I error rate accurately because of experimental 

discordance led to conclusions which were not reproduced in subsequent experiments.  
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Thus, the source of the information about benefits from a drug should be from ade-

quate and well controlled clinical trials. The definition of an adequate and well-

controlled clinical trial is provided in another regulation (available in Appendix C). 

The salient point here is that these adequate and well-controlled clinical trials 

should provide substantial evidence for the claimed benefit of the drug. It is impor-

tant to note that no statistical criteria are listed in these regulations for the 

determination of whether a clinical trial provides efficacy for a compound or not. 

However, a guidance issued to industry by the FDA provides instruction:  

4. Multiplicity Adjustments 

If the trial contains multiple tests of significance for any reason (e.g., 
three or more treatment arms, multiple primary endpoints, interim data 

analysis, model fitting, subgroup analyses) the analysis plan should in-
clude an adjustment to avoid inflation of the type I error rate. A 

particular adjustment approach should be specified in the protocol before 

examination of the data.  

Source: Draft Guidance. Developing Antimicrobial drugs—general 

considerations for clinical trials.  

 http://www.fda.gov/cder/guidance/2580dft.pdf 

Thus, the FDA, although not mandated by law or regulation to require that type I 

error rate be reduced, is sufficiently concerned about the damaging effects of type I 

error rate inflation to suggest that it be closely monitored and controlled.  

3.7 The Bonferroni Inequality 
The previous section’s discussion provides important motivation to control the type 

I error level in clinical trial hypothesis testing. One of the most important, easily 

used methods to accomplish this prospective control over type I error rate is 

through the use of the Bonferroni procedure [17]. This procedure is developed here.  

 Assume in a clinical trial that there are K analyses, each analysis consist-

ing of a hypothesis test. Assume also that each hypothesis test is to be carried out 

with a prospectively defined type I error probability of ; this is the test-specific 

type I error level or the test-specific  level. We will also make the simplifying as-

sumption that the result of each of the hypothesis tests is independent of the others. 

This last assumption allows us to multiply type I error rates for the statistical hy-

pothesis tests when we consider their possible joint results.  

 Our goal in this evaluation is to compute easily the familywise type I error 

level, . This is simply the probability that there is a least one type I error among 

each of the K statistical hypothesis tests. In probability theory, the occurrence of at 

least one event is defined as the union of events.  

 An exact computation for the familywise type I error rate is readily avail-

able. Let  be the test-specific  error probability for each of K tests. Note that the 

type I error rate is the same for each hypothesis test. We need to find the probability 

that there is not a single type I error among these K statistical hypothesis tests. Un-
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der our assumption of independence, this probability is simply the product of the 

probabilities that there is no type I error for each of the K statistical tests. Write 

                          
1

1 1 1 ... 1 1 .
K

j

                        (3.2) 

Therefore , the probability of the occurrence of at least one type I error, is one mi-

nus the probability of no type I error among any of the K tests, or   

                    
1

1 1 1 1 .
K

K

j

                                (3.3) 

Finding the value of  exactly requires some computation. Bonferroni simplified 

this using Boole’s inequality which states that the probability of  the occurrence of 

at least one of a collection of events is less than or equal to the sum of the probabili-

ties of these events. This is all that we need to know to write 

1

[ ] .
K

i

i

P at least one type I error                      (3.4) 

If each of the test-specific type I error levels is the same value , (3.4) reduces to  

.K                                                  (3.5) 

 The degree to which this approximation is accurate is worthy of a brief ex-

amination (Table 3.2). For each of four different test-specific type I error levels, a 

comparison of the exact computation for the familywise error level and the Bon-

ferroni approximation is provided. For each combination of type I error level and 

number of multiple analyses, the Bonferroni approximation is always at least as 

large as the exact computation as provided in (3.3). The correspondence between 

the Bonferroni and the exact FWER is closest when the type I error for each indi-

vidual test is low.18 A greater divergence between the two measures is seen as the 

type I error rate for each individual test increases to 0.05.  

Equation (3.5) of course can be rewritten as  

,
K

                                                (3.6) 

expressing the fact that a reasonable approximation for the  level for each of K hy-

pothesis test can be computed by dividing the familywise error level by the number 

of statistical hypothesis tests to be carried out. This is the most common method of 

applying the Bonferroni approach.  

                                                          
18

This is because the higher powers of  ( 2, 3,..., K) become very small when  itself is 

small. When these powers of  are negligible, (3.3) more closely resembles (3.5).
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Table 3.2. Relationship between the exact familywise error rate and Bonferroni approximation.

Number of

multiple

analyses Exact Bonferroni Exact Bonferroni Exact Bonferroni Exact Bonferroni

2 0.0100 0.0100 0.0199 0.0200 0.0591 0.0600 0.0975 0.1000

3 0.0149 0.0150 0.0297 0.0300 0.0873 0.0900 0.1426 0.1500

4 0.0199 0.0200 0.0394 0.0400 0.1147 0.1200 0.1855 0.2000

5 0.0248 0.0250 0.0490 0.0500 0.1413 0.1500 0.2262 0.2500

6 0.0296 0.0300 0.0585 0.0600 0.1670 0.1800 0.2649 0.3000

7 0.0345 0.0350 0.0679 0.0700 0.1920 0.2100 0.3017 0.3500

8 0.0393 0.0400 0.0773 0.0800 0.2163 0.2400 0.3366 0.4000

9 0.0441 0.0450 0.0865 0.0900 0.2398 0.2700 0.3698 0.4500

10 0.0489 0.0500 0.0956 0.1000 0.2626 0.3000 0.4013 0.5000

Type I = 0.005* Type I = 0.01 Type I = 0.03 Type I = 0.05

 As an example, consider an investigator who wishes to carry out a clinical 

trial to test the effect of a new medication on each of three endpoints. The trial has 

three different treatment arms: intervention dose 1, intervention dose 2, and pla-

cebo. Each of the three treatment comparisons must be made against each of the 

three endpoints, producing a total of nine analyses to be executed. The Bonferroni 

adjustment for multiple analysis testing provided in (3.6) demonstrates that if the 

familywise type I error rate is to be maintained at the 0.05 level, then each hypothe-

sis test will need to be evaluated at the 0.05/9 = 0.0056 level of significance.  

 There have been two major criticisms of the application of this Bonferroni 

correction for multiplicity. The first (as we saw earlier in this chapter) is the small 

test-specific type I error level required in order to ensure control over the family-

wise error level for a large number of analyses. This resultant small test-specific 

type I error level is the genesis of the argument that the application of this proce-

dure leads to the inappropriate disregard of promising, positive findings in the data.  

 This criticism returns us to the argument made by Pocock and Farewell 

[14] suggesting that nominal testing should be permitted when there are many dif-

ferent hypothesis tests to be examined. The specific example provided by these 

workers was a study that had 34 different endpoints to measure neuropathy in 

diabetic patients, each of which was to be treated as a primary outcome. To keep 

the familywise type I error rate at 0.05, the Bonferroni correction requires that  each 

test-specific  level should be set at 0.05/34 = 0.0015. This is a very conservative 

estimate, demanding that each test provide overwhelming strength of evidence to 

demonstrate benefit. Pocock and Farewell contend that one should not divide the 

total 0.05 type I error rate among these endpoints.  

 However, to let this argument devolve into a debate between no control 

versus strict control of the familywise error level is to miss the point the root of 

the problem here is the large number of these neuromyographic “endpoints” with 

no justification for the choice of any single one of them. There is no information 

denoting which of these 34 measures (or small subset of these measures) would 

provide the most promising and revealing effect of the intervention. As a preamble 

to any multiple analysis in this example, effort must be exerted to choose the most 

useful and most informative of these myographic measures. This work may take 
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months or even years to accomplish, but it must be completed. Without it, the re-

searchers run the unacceptable risk of finding a beneficial therapy “effect” for an 

endpoint that in the long run holds no importance for the medical or regulatory 

communities. It would be best if investigators did not short-circuit the learning 

process by reporting results for several endpoint measures that are of unproven 

clinical importance. Endpoints should be chosen for their value to patients and the 

medical community, not merely because they can be measured.  

 A second criticism of the classic Bonferroni approximation is that the Bon-

ferroni computation makes a critical assumption that the statistical hypothesis tests 

are independent of each other. If among the K multiple analyses, the findings of one 

hypothesis test provides useful information about the findings for another hypothe-

sis test, then the Bonferroni computation produces a type I error rate threshold for 

each hypothesis test which is too low, providing an estimate of the test  level 

which is too conservative. This will be explored and a solution provided in Chap-

ters 5 and 6. 

3.8 Who Was Bonferroni? 
It seems only fair to stop and say a few words about the Italian mathematician 

whose recognition of an application of Boole’s inequality has risen to prominence 

in clinical research. His full name was Carlo Emilio Bonferroni, and he was born on 

January 28, 1892, in Bergamo, Italy.19 After studying the piano at the Conservatory 

in Torino, and completing a tour of duty in the Italian army engineers corps during 

World War I, he studied mathematics and became an assistant professor at the Poly-

technic in Torino. 

 The primary field of applications for Bonferroni’s mathematics was fi-

nances. He accepted the chair of financial mathematics in 1923 at the Economics 

Institute in Bari, transferring to Firenze where he remained until his death on Au-

gust 18, 1960. During his tenure at Firenze, he wrote one article in each of 1935 

[18] and 1936 [19] in which he established some inequalities helpful to him as he 

developed statistical estimates useful in municipal and national financial computa-

tions. This work contained the genesis of the idea that led to the inequality that now 

bears his name. 

 The use of Bonferroni’s inequality comes from two papers by Dunn. The 

first [20] is a manuscript in which she considers confidence intervals for k means 

and mentions a Bonferroni inequality. Two years later, she considers a subset of m

statistical hypotheses tests among k means, describing the method of comparison as 

“so simple and so general that I am sure it must have been used before this” [21]. 

The most common form of the usage of Boole’s inequality is termed the Bonferroni 

method or the Bonferroni adjustment. Bonferroni also worked out a more general 

                                                          
19 The source of this material is a lecture given by Michael E. Dewey from the Trent Institute 

for Health Services Research, University of Nottingham. The lecture may be found at 

http://www.nottingham.ac.uk.~mhzmd/bonf.html. 
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form of testing for simultaneous inference, as well as an adaptation for confidence 

intervals which has never become popular.20

3.9 Alternative Approaches  
The area of multiple testing in clinical trials has been one of fervent activity in the 

statistical research literature. Before we proceed, we should take a moment to ex-

plore some alternative strategies in multiple statistical analyses, including the 

identification of procedures which may serve to improve the Bonferroni adjustment.  

3.9.1 Sequentially Rejective Procedures 
One of the many criticisms of the Bonferroni approximation is that it is too conser-

vative. This conservatism leads to an unacceptably high possibility of missing a 

clinically important finding. An important segment of the statistical literature has 

focused on this weakness and has identified more powerful procedures. Two useful 

reviews of these procedures are those of Zhang et al. [22] and White [23]. While the 

statistical tools described in these articles often have the analysis of variance as 

their developmental base, it has been proposed that they can be useful in clinical 

trials as well.

 One of these well-developed procedures compares successively larger p-

values with increasing  threshold levels. These devices have been termed sequen-
tially rejective procedures, and, in general, are easy to apply. Assume that there are 

K statistical null hypotheses to be carried out in a clinical trial and each statistical 

hypothesis generates a p-value. Let p1 be the p-value for the first hypothesis test 

H0,1, p2 be the p-value for the second hypothesis test H0,2, concluding with pk as the 

p-value for the Kth and last hypothesis test H0,K. These p-values must first be ranked 

from the smallest to largest. We will denote p [1] is the smallest of the K p-values, 

p[2] is the next largest p-value … out to p [K] which is the maximum p-value of the K

p-values from the clinical trial.  

 Once the p-values have been ranked, several evaluation procedures are 

available to draw a conclusion based on their values. One device proposed by 

Simes [24] compares the jth smallest p-value, p[j] to j/K. The procedure is as fol-

lows: 

(1) Rank order the K p-values such that p [1] p [2] p [3]  … p [K] 

(2) Compare the smallest p-value, p[1] to the threshold .K If p[1] ,K

then reject the null hypothesis for which p[1] is the p-value. 

(3) Compare p [2] to 2 K . If p[2] 2 ,K then reject the null hypothesis for 

which p [2] is the p-value. 

                                                          
20 As an aside, it is interesting to note that Dr. Bonferroni, as a professor was so concerned 

about the cost of higher education for his impoverished students that he produced by hand a 

copy of his textbook for each one.  
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(4) Compare p [3] to 3 .K  If p [2] 3 ,K  then reject the null hypothesis for 

which p [3] is the p-value. 

(5) Continue on, finally comparing p [K] to . . If p [K] ,  then reject the null 

hypothesis for which p [K] is the p-value. 

The procedure ceases at the first step for which the null hypothesis is not rejected. 

Thus, as j increases, p-values that are increasing are compared to significance levels 

which are themselves increasing. If the tests are independent one from another, then 

the familywise error level  is preserved. This procedure is more powerful than the 

Bonferroni procedure.  

 Holm [25] developed a similar procedure. Again, successively larger p-

values are compared with increasing  threshold levels. Holm’s procedure consists 

of the following steps: 

(1) Rank order the K p-values such that p [1] p [2] p [3]  … p [K]

(2) Compare the smallest p-value, p[1] to the threshold .K  If p[1] ,K

then reject the null hypothesis for which p [1] is the p-value. 

(3) Compare p [2] to 1K . If p [2] ( 1),K then reject the null hypothesis 

for which p [2] is the p-value. 

(4) Compare p [3] to 2 .K  If p[2] 2 ,K  then reject the null hy-

pothesis for which p [3] is the p-value. 

(5) Continue on,  

If at any point in the testing procedure the null hypothesis is not rejected, then all 

hypothesis testing ceases and the subsequent larger p-values are all judged to reflect 

statistical insignificance. Holm’s procedure has been generalized to multiple hy-

pothesis testing situations where each of the  have different weights. In addition, 

both Hommel [26] and Shaffer [27] have refined these tools. Sequentially rejective 

devices are in general more powerful than the Bonferroni procedure [23].21 It has 

been suggested that because these methods are easy to apply and less conservative 

then the classic Bonferroni procedure, they are preferable for hypothesis testing in 

which familywise error rate control is critical [22]. 

3.9.2 Who Chooses the  Level Threshold? 
These sequential rejective procedures are theoretically sound and mathematically 

reasonable. However, other criteria must be weighed before we choose to adopt 

them (or any other statistical computation) as useful procedures to carry out in a 

clinical trial. One of these other criteria is an assessment of whether the evaluation 

                                                          
21 More powerful in this context means that for the same  level, effect size, standard errors, 

and sample size, these procedures are more likely to reject the null hypothesis and produce a 

positive result.  



96 3. The Lure and Complexity of Multiple Analyses 

process involved in selecting the thresholds of significance is consistent with good 

clinical trial decisions.  

 As we review the sequential rejective procedures as outlined above, we see 

that the first step required by all of them is the rank ordering of the K p-values ob-

tained from the statistical hypothesis tests. In the sequential rejective procedures, 

the first p-value tested must be the smallest p-value. This means that the investiga-

tor does not choose the order of hypothesis testing, nor does she choose the 

threshold of significance for each of the hypothesis tests. Since the data determine 

the magnitude of the p-values, and therefore the rank ordering of the p-values, then 

the data determine the order of hypotheses to be tested. We must also recognize that, 

as the significance level threshold varies from endpoint to endpoint, the link be-

tween the endpoint and the significance threshold is not set by the investigator but, 

again, is set by the data.  

 This latter point is of critical concern to us. An advantage of the sequen-

tially rejective procedure is that, when prospectively identified, the analysis plan is 

fixed. There is no doubt about how the analysis will be carried out at the end of the 

study, nor is there any doubt about the choice of the type I error probability thresh-

olds when sequentially rejective evaluations are prospectively set in place. However, 

the type I error level thresholds are set automatically. There is no place for prospec-

tive input by the investigators, the medical, or the regulatory community for the 

selection of  error rate thresholds that are a standard of community and regulatory 

protection.  

 Consider, for example, an investigator who is interested in testing the ef-

fect of a new therapy on reducing the consequences of diabetes mellitus in a clinical 

trial. He has chosen to focus on two analyses for which he has adequate statistical 

power. The first is to measure the effect of therapy on reducing the cumulative inci-

dence of total mortality. His second endpoint is a new measure of evolving kidney 

disease. Certainly, epidemiologic considerations, effect size magnitudes, and the 

variability of these effect sizes are important measures to evaluate when consider-

ing the study’s findings. However, p-values will also play a role in the assessment 

of this concordantly executed study. What  level thresholds should be prospec-

tively set by the investigators for each of the two endpoint analyses? 

 The medical and regulatory community must ultimately be persuaded of 

the endpoint’s relevance as a measure of disease if the community is to accept the 

result of the study. Assume that the investigators wish to control the familywise er-

ror level at 0.05. A Bonferroni adjustment would set the level at 0.025 here. Is this 

appropriate? The second endpoint is new. Since this endpoint’s implications are un-

tested and uncertain, it will require a stronger level of evidence for the beneficial 

effect of this intervention. The newer the endpoint, the less experience the judging 

scientific community has with its interpretation. Therefore, in order for the finding 

of a beneficial effect to be persuasive, the magnitude of the benefit must be large. 

Only in the presence of a strong sign of benefit will a new endpoint form the basis 

of an argument that the clinical trial’s intervention has produced a result worthy of 

acceptance.  

 In this example, total mortality is the most persuasive of the two endpoints 

to the medical and regulatory community. The medical community is willing to ac-
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cept a higher threshold of type I error rate for total mortality (at least up to the 0.05 

level) because it has a greater understanding of the implications for the diabetic 

community if the cumulative incidence rate of total mortality is reduced. The inves-

tigators, therefore, will require a larger p-value and a consequent smaller effect size 

for the effect of this intervention on the total mortality rate. On the other hand, the 

investigators will require a larger effect size and a smaller p-value for the efficacy 

of therapy on the newer endpoint. They may even reject the Bonferroni adjustment 

and choose a different split for the type I error probability assignment (e.g., evalu-

ate the effect of therapy for the total mortality endpoint at 0.045, and the new 

endpoint with an  of 0.05).22

 The point is that the investigators have an important contribution to make 

in deciding the  error probability threshold for the statistical hypothesis tests. Their 

input in this matter is both appropriate and necessary in clinical trial planning. 

However, a sequentially rejective procedure as described above ignores these con-

cerns, leaving the investigator out of the a priori decisions about the significance 

levels against which each of these two endpoints will be tested. Effectively, using a 

sequentially rejective procedure removes the determination of community-based 

protection levels from the investigators and places it in the hands of the data set.  

 In a clinical trial, the choice of an  level threshold is not solely a statisti-

cal decision, but a clinical decision as well. This clinical decision is based on (1) the 

persuasive power of the endpoint to the medical and regulatory community, (2) the 

anticipated effectiveness of the intervention, (3) the medical community’s experi-

ence with the intervention, and (4) the likelihood of the occurrence of unpleasant if 

not dangerous adverse effects. If there are to be different  thresholds for each of 

the multiple endpoints as the sequential rejective procedures demand, then those 

levels should be set by the investigators and not by the data. At first glance, it is 

possible to envision that the sequentially rejective procedures might be attractive in 

the post hoc setting of a clinical trial. In this circumstance, non-prospectively stated 

analyses have led to a collection of p-values to which no a priori thought has been 

given for their interpretation. It is possible that this collection of p-values could be 

subjected to any of the previously mentioned sequentially rejective procedures to 

produce some adjustment in statistical testing. However, as we have pointed out in 

Chapter 2, post hoc analyses are generally unreliable in clinical trials not because 

of multiple testing issues, but because the data, having driven the analysis, produce 

untrustworthy estimators. Fine as these sequentially rejective procedures are, they 

do not repair the damage done by a data-driven analysis.  

 There is no question that the sequentially rejective procedures generally 

have more statistical power than the Bonferroni approach. However, while maxi-

mum statistical power is a useful and good criterion for developing a statistical test, 

it is not the only good criterion governing its use in a clinical trial. After all, in a 

given hypothesis test, a one tailed 0.05 level test is more powerful for testing for 

benefit than is a two-sided test, ceteris parabus; and there have been advocates of 

the use of the one-tailed testing in clinical trials [28], [29], most recently by Knott-

nerus [30 ]. Yet, in spite of this well-known fact, the medical and regulatory 

                                                          
22 This  error probability division will be discussed in detail in Chapter 4. 
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community continue to correctly reject the principle of one tailed testing in clinical 

trials. This is because the concern for ethics and the possibility of doing harm is 

more pressing than the need to produce increased statistical power from a statistical 

hypothesis test [31], [32].  

 The fact that the sequentially rejective procedures lock the investigator 

into an analysis procedure is not bad; the problem is that the investigator is locked 

out of choosing the details of this plan. Therefore, while sequentially rejective pro-

cedures might be useful in statistics in general, the fact that they take control of 

hypothesis testing away from the investigator will severely limit their utility for us 

here.  

3.9.3 Resampling P-Values 
One important new alternative to multiple comparisons is the use of the resampling 

tool. This approach has been developed by Westfall et al. [33], [34], [35] and has 

figured prominently in the methodologic literature evaluating the multiple analysis 

issue. These workers focus on the smallest p-value obtained from a collection of 

hypothesis tests, using the resampling concept as their assessment tool.  

 Resampling is the process by which smaller samples of data are randomly 

selected from the research data set this essentially treats the research data sample 

as a “population” from which samples are obtained. Resampling is allowed to take 

place thousands of times, each time generating a new “subsample” and a new p-

value from that subsample. Combining all of these p-values from these subsamples 

produces, in the end, a distibution of p-values. The adjusted p-value measures how 

extreme a given p-value is, relative to the probability distribution of the most ex-

treme p-value. This is a reasonable perspective,23 and the use of these adjusted p-

values has been suggested as a test statistic [36].  

 We certainly should bow to the reality of the situation; the “natural” reac-

tion of an investigator who, when faced with a long list of p-values, is to scan the 

list of p-values for the smallest one, concentrating on the hypothesis test that pro-

duced the minimum p-value. The resampling frame captures the degree of surprise 

one should have when evaluating this smallest p-value. It does so by comparing its 

magnitude to its average value (i.e., averaged over all of the smaller datasets ob-

tained in the resampling process). As with the sequentially rejective procedures, the 

investigator does not take part in choosing the order of hypothesis testing. We will 

therefore not use it as a basis for our further discussion of multiple analyses.  

 The Bonferroni adjustment for multiple hypothesis testing has been avail-

able for more than 50 years. Miller [37] undertook a review of the use of this 

procedure. At the time of his review, 25 years ago, he identified over 255 manu-

scripts covering the topics of multiple analysis in general and the use of the 

Bonferroni procedure in particular. He concluded from this effort that the Bon-

ferroni procedure has held up quite nicely. Others have evaluated the performance 

                                                          
23 In fact, these issues have been discussed in a textbook (Westfall, P.H., and Young, S.S. 

(1993). Resampling–Based Multiple Testing: Examples and Methods of P-Value 

Adjustments. A procedure in SAS/STAT software PROC MUTLTEST, that performs these 

analyses has been available now for almost 10 years. 
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of the Bonferroni procedure; as examples, consider [38], [39], [40]. However, we 

will follow the advice of Simes [41]. Although several methods have been devel-

oped for multiple statistical inference, the Bonferroni procedure is still valuable, 

being simple to use, requiring no complicated assumptions about the probability 

distribution of the sample data, and allowing individual alternative hypotheses to be 

identified. For these reasons, when the hypothesis tests are independent from each 

other, this simple device will be the tool by which we construct multiple analyses. 

However, we will insist that the investigator be incorporated into the prospective 

choices for the test-specific  error levels. 

3.10 Conclusions 
As complicated as they are now, clinical trials are likely to become more complex 

in the future. In fact, the drive for logistical efficiency together with the sound de-

sire to satisfy epidemiologic requirements for solid causality arguments all but 

ensures the increased intricacy of these experimental designs. However, as pointed 

out in Chapter 2, this complexity must be prospectively embedded into the research 

design.  

 After completing Chapters 2 and 3, we may clearly describe the challenges 

and difficulties of using multiple analyses in clinical trials (Table 3.3). If the analy-

ses are post hoc evaluations, with no prior planning, then the estimators of effect 

from these assessments are untrustworthy. Any hypothesis testing based on these 

estimators is also unreliable, and the analyses results are best viewed as exploratory. 

This was the result of Chapter 2. In these circumstances, the results of hypothesis 

tests might best be reported as z scores, with no p-values, since the ability to extend 

the findings of an exploratory analysis to the population from which the sample was 

derived is impaired.  

 If the analysis is planned prospectively and the experiment is executed 

concordantly (i.e., is executed according to the protocol), then the estimators de-

rived from the analysis are trustworthy. However, with the execution of each 

hypothesis test in a multiple analysis plan, there is further inflation of the type I er-

ror rate, and with each inflation there is erosion of the persuasive force of the 

research effort. Thus, prospective identification of hypothesis testing in clinical tri-

als with subsequent concordant execution is not enough to produce useful positive 

results it is necessary, but not sufficient.  

 The key to producing useful results from multiple analyses in a clinical 

trial environment is not just prospective planning, but the prospective inoculation of 

the trial with familywise error level protection. Embedding familywise error level 

control a priori into a clinical trial program avoids both the random research para-

digm and type I error inflation. This strategy provides results in a multiple analysis 

setting that can be balanced against the risk of the therapy. Procedures for how to 

implement this will be the topic of Chapter 4.  
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Table 3.3 Consequences of Alternative Multiple Analyses Strategies

Strategy Consequences

Analysis plan is based on incoming data Untrustworthy estimates of effect

(Random research) size, standard errors, confidence intervals

and p  values

Prospective choice of analyses but Trustworthy estimates are obtained but

no a priori alpha allocation type I error inflation and degradation

of risk-benefit assessment

Prospective choice of analyses with Trustworthy estimates are obtained with

a priori alpha allocation good familywise error rate control

and realistic risk-benefit appraisal

Problems
1. A physician is interested in estimating the prevalence of hypertension in his 

clinic for a 1 year period. He has his staff count the number of patients who 

visit his clinic for the year, and also count the number of those patients who are 

diagnosed with hypertension. He would like to know if the prevalence of hy-

pertension at his clinic is 20%. Why is the computation of a test statistic and a 

type I error rate irrelevant here? 

2. A researcher in gynecology would like to study the effect of a new medication 

for the treatment of carcinoma in situ. If the medication is successful, it will re-

duce the spread of cervical cancer within the uterus. Not knowing which 

measurement is best, the researcher measures twelve different estimates of the 

ability of the cancer to spread, intending to carry out twelve hypothesis tests. 

The goal of this research is to generalize its results to the population of patients 

who have cervical cancer, but no effort is made to control the familywise error 

rate. If testing for each of the twelve results is to occur at the 0.05 level, show 

that the probability of drawing at least one wrong conclusion about the popula-

tion based on these twelve hypothesis tests is 0.46. 

3.   Compare the probability of making at least one type I error to the Bonferroni 

approximation when the test-specific type I error rate is 0.10 for seven inde-

pendent statistical hypothesis tests. Make the same comparison for a test-

specific type I error of 0.05 and, finally, for a test-specific type I error of 0.01. 

What would you conclude about the accuracy of the Bonferroni approximation 

and the exact computation of the familywise error rate as a function of the test-

specific error rate? 

4.  From an investigator’s point of view, what is the fundamental difference be-

tween controlling the familywise error rate in a clinical trial using the 

sequentially rejective procedures/resampled p-values versus a Bonferroni type 

rule?  
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5.  How does the risk–benefit assessment of a new therapy studied in a clinical 

trial degrade when there is no control of the familywise error level?  

6.  Explain in words how the sequential rejective procedures conserve the family-

wise error rate .
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Chapter 4 

Multiple Analyses and        
Multiple Endpoints 

Multiple analyses in clinical trials comprise the execution and interpretation of 
numerous statistical hypothesis tests within a single research effort. This definition 

of multiple hypothesis testing encompasses combinations of analyses involving mul-
tiple endpoints, comparisons of endpoint findings among multiple treatment arms, 

and subgroup analyses. However, our study of multiple analyses will not begin by 

first considering these complex combinations of analyses, but will instead focus on 
one of the most commonly occurring multiple analyses circumstances in clinical 

trials multiple endpoints. This chapter’s goal is to provide a paced development 

for how one chooses and analyzes multiple endpoints in a two-armed (control and 
treatment group) clinical trial. The only mathematical tool we will use is an under-

standable adaptation of the Bonferroni multiple comparison procedure, an 

adaptation which is both easy to compute and interpret.  

4.1 Introduction 
In Chapter 3, we acknowledged the inevitability of multiple analyses in clinical tri-

als. Since additional endpoints can be added to the design of a clinical trial 

relatively cheaply, the inclusion of these additional endpoints can be cost effective. 

In addition, epidemiologic requirements for building the tightest causal link be-

tween the clinical trial’s intervention and that trial’s endpoints serve as powerful 

motivators for the inclusion of multiple analyses. These carefully considered, pro-

spectively designed evaluations may provide, for example, information about the 

relationship between the dose of a medication and its effect on the disease, or 

evaluate the mechanism by which the clinical trial’s intervention produces its im-

pact on disease reduction. The cost of carrying out these analyses is commonly 

small compared to the overall cost of the clinical trial.  

However, we have also observed that increasing the number of hypothesis 

tests also increases the overall type I error level. In clinical trials, measuring the 

type I error level is a community obligation of the trial’s investigators; the type I 

error level measures the likelihood that an intervention, known to produce an ad-

verse event and a financial burden, will have no beneficial effect on the population 

from which the sample was derived. Thus the type I error level is an essential com-

ponent in the risk–benefit evaluation of the intervention and must be both 

accurately measured and tightly controlled. While the prospective design and con-

cordant execution of a clinical trial ensures that the estimate of the type I error level 
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at the experiment’s conclusion is trustworthy, this research environment does not 

guarantee that the type I error level will be low.  

We must also acknowledge that it is standard for supportive analyses to be 

executed in clinical trials. Such epidemiologic elaborations, e.g., an examination of 

the dose–response relationship or the evaluation of subgroup analyses, play an im-

portant role in elucidating the nature of the relationship between the intervention 

and the disease. These analyses must therefore figure prominently in any multiple 

analysis structure that we provide for the design and evaluation of clinical trials.  

In this chapter, we will develop the requisite skills to control and manage 

type I error rates when there are multiple endpoints in a two-armed clinical trial. In 

doing so we will adhere to the familywise error level ( ) as the primary tool to 

manage type I error level control. 

4.2 Important Assumptions 
 Since effective type I error level management can only occur when the estimates 

for  error rates are both accurate and trustworthy, we will assume that trials for 

which these management skills are developed in this chapter are prospectively de-

signed and concordantly executed. This permits us to steer clear of the problems 

presented by the random research paradigm.1 In addition, we will assume that, in 

this chapter, the clinical trial endpoints are independent of each other.  

Finally, although the focus of this chapter is type I error levels, this em-

phasis should not be interpreted as denying the time-tested advice that experimental 

interpretation is an exercise involving the joint consideration of effect sizes, stan-

dard errors, and confidence intervals. P-values are necessary components of this 

evaluation, but they are not the sole component. They do not measure effect size, 

nor do they convey the extent of study discordance. A small p-value does not, in 

and of itself, mean that the sample size was adequate, that the effect size is clini-

cally meaningful, or that there has been a clear attribution of effect to the clinical 

trial’s intervention. These other factors must themselves be individually considered 

by a careful, critical review of the research effort. This inclusive effort provides the 

clearest interpretation of the implications of the research sample findings for the 

population from which the sample was obtained.  

4.3 Clinical Trial Result Descriptors 
In order to continue our development we will need some unambiguous terminology 

to categorize the results of clinical trials. It is customary to classify clinical trials on 

the basis of their results, e.g., positive trials or negative trials. Here we will elabo-

rate upon and clarify these useful descriptors.  

4.3.1 Positive and Negative Trials
Assume that investigators are carrying out a prospectively designed, concordantly 

executed clinical trial in order to demonstrate the effect of a randomly allocated in-

                                                          
1

The difficulties of random research are examined in Chapter 2.



4.3 Clinical Trial Result Descriptors                                                      107

tervention on the clinical consequences of a disease or condition. For ease of dis-

cussion, we will also assume that the clinical trial has only one prospectively 

designed endpoint that requires a hypothesis test. Define the hypothesis test result 

as positive if the hypothesis test rejects the null hypothesis in the favor of benefit. 

Since the clinical trial had only one hypothesis test, and that hypothesis test result 

was positive, the clinical trial is described as positive. This definition is consistent 

with the customary terminology now generally in use, and we will use it in this text. 

 The commonly used descriptor for a negative statistical hypothesis test 

can be somewhat confusing, requiring us to make a simple adjustment. Typically, a 

negative hypothesis test result is defined as a hypothesis test which did not reject 

the null hypothesis and therefore did not find that the clinical trial’s intervention 

produced the desired benefit for the population being studied. However, this termi-

nology can cause confusion since it is possible for a hypothesis test result to 

demonstrate a truly harmful finding.2 The hypothesis test that demonstrated not 

benefit but harm must also have a descriptor. We will define a negative hypothesis 

test result as a hypothesis test result that has demonstrated that the intervention pro-

duced harm. Thus, a positive trial demonstrates that the intervention produced the 

desired benefit, and a negative trial demonstrates the trial produced a harmful re-

sult. However, some additional comments are required concerning hypothesis test 

results that do not reject the null hypothesis.  

4.3.2 Null Results Versus Uninformative Results 
Just as the interpretation of hypothesis tests results that are positive if there is no 

consideration of the type I error can be confusing, the evaluation of hypothesis test 

results that do not reject the null hypothesis can be complex as well. In this latter 

circumstance, there should be adequate consideration given to the occurrence of a 

type II error. A type II error occurs when the population in which the intervention 

produces an effect generates a research sample that, through chance alone, displays 

no intervention effect. Therefore, when the research sample finding does not reject 

the null hypothesis, it becomes important to consider how likely it is that this find-

ing could have been produced by chance alone. If there is inadequate power (i.e., a 

high type II error rate), then the result of the trial is uninformative.  

The correct interpretation of a statistical hypothesis test that does not reject 

the null hypothesis depends on the size of the type II error rate. For example, con-

sider a study that is required to recruit 3868 patients in order to demonstrate with 

90% power and an  error level of 0.05 that an intervention reduces total mortality 

by 20% from a cumulative mortality rate of 0.20.3 Unfortunately, during the execu-

tion of their clinical trial, the investigators are only able to recruit 2500 of the 

required 3868 patients. At the conclusion of the study, the investigators find that the 

                                                          
2 An example of a negative trial is the CAST study (Preliminary Report: Effect of encainide 

and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial 

infarction. 1989. New England Journal of Medicine 321:406–412). CAST demonstrated the 

harmful effects of arrhythmia treatment in patients who had suffered a heart attack.  
3 An elementary discussion of sample size and power computations is provided in Appendix 

D.
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relative risk of the clinical trial’s intervention for the cumulative mortality event 

rate is 0.85, representing a 15% reduction in the total mortality rate produced by the 

intervention. However, the investigators cannot reach a definite conclusion about 

the effect of therapy. This is because their inability to recruit the remaining 1368 

patients has dramatically reduced the power of the hypothesis test from 90% to 

49%, (or alternatively, increased the type II error rate from 10% to 51%). Stated 

another way, although it was unlikely that a population in which the intervention 

was effective for mortality would produce a sample of 3868 patients in which the 

intervention was ineffective, it is very likely that the same population would pro-

duce a sample of 2500 patients in which the intervention was not effective. In this 

case, although the investigators were unable to reject the null hypothesis of no ef-

fect, the low power level requires them to restrict their comments about this finding 

to only that the study was uninformative on the mortality issue.  

The use of the term uninformative is consistent with the commonly used 

admonition at the FDA “Absence of evidence is not evidence of absence” [1]. In the 

circumstances of the preceding clinical trial, this aphorism may be interpreted as the 

“absence of evidence (of a beneficial effect of the intervention in the research sam-

ple) is not evidence of absence (of a beneficial effect of the intervention in the 

population).” The absence of evidence of the effect in the sample is only evidence 

of absence of the effect in the population at large in the high-power environment of 

a well-designed and concordantly executed clinical trial.  

Occasionally, a hypothesis test result will not reject the null hypothesis, 

but there will be adequate power. This result we will describe as a “null” finding.4

Thus, we see that clinical trials whose results are based on statistical hypothesis 

tests can have those results classified as either positive, negative, null, or unin-

formative (Figure 4.1). 

4.4 The Strategy for Multiple Endpoint Analysis 
Assume that in a clinical trial with two treatment arms (intervention and control) 

there are K prospectively declared endpoints. Assume also that the effect of the in-

tervention will be evaluated by a hypothesis test for each of these endpoints. Let 

each of these hypothesis tests be independent from each other and carried out with 

the same prospectively defined, test-specific type I error level of . The investiga-

tors require a strategy that allows them to draw useful conclusions about the type I 

error level from this collection of hypothesis test using , the familywise type I er-

ror probability. Recall from Chapter 3 that the familywise error level, which is the 

probability that there is at least one type I error among the K independent hypothe-

sis tests, is computed as 

1 1 .
K

(4.1)

                                                          
4 A null finding, since it occurs in the presence of adequate power has been described as a 

finding that demonstrates that neither therapeutic intervention nor therapeutic calamity has 

occurred.  
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Figure 4.1. The correct interpretation of primary endpoint hypothesis

tests from a clinical trial.
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For example, in the circumstance where there are ten hypothesis tests to be exe-

cuted, each at the test-specific  level of 0.05, we may compute 

10 10
1 1 1 1 0.05 1 0.95 0.401.

K
             (4.2) 

Thus, the probability that there is at least one type I error among the 10 independent 

hypothesis tests is 0.401. Alternatively, one could use the Bonferroni inequality to 

compute 

K                                                     (4.3) 

and therefore calculate the upper bound for the familywise type I error rate from ten 

hypothesis tests as  10(0.05) = 0.50. Finally, one can fix the familywise error 

level  = 0.05 and compute the value of the test-specific  level by solving (4.1) to 

find 
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1

1

1 1 ,

1 1 ,

1 1 ,

1 1 ,

K

K

K

K

                                          (4.4) 

and insert the value of  = 0.05 into the last line of (4.4) to find 

1 10 1 10 0.101 1 1 1 0.05 1 (0.95) 0.0051.            (4.5) 

Similarly,  (4.3) could be used to compute  

,
K

                                                (4.6) 

finding that, if the familywise error level is be no greater than 0.05, then the test-

specific  level should be less than 0.05/10 or less than 0.005.  

However, whether one computes the test-specific  exactly from expres-

sion (4.4) or approximately from (4.6), the  level at which each hypothesis test 

must be evaluated become prohibitively small as the number of analyses increase. 

These error rates threaten to make the concept of familywise type I error probability 

management unworkable and impractical for many clinical trial circumstances in 

which the endpoints are considered independently of each other. Thus, if the 

familywise type I error probability computations are to be useful, we must deal di-

rectly with the issue of its rapid inflation in response to the increased number of 

multiple analyses. We will use two helpful tactics in producing constructive control 

of familywise error levels triage (discussed in Section 4.5) and uneven error rate 

allocation (presented in Section 4.9). 

4.5 Tactic 1: Triage the Endpoints 
An important part of any useful strategy to limit the familywise error level for the 

investigators of a clinical trial must center on control of the number of endpoints. It 

is critical to understand that endpoint control does not mean endpoint reduction. 

Endpoint control means the deliberate, prospective selection of that small number 

of endpoints on which the benefit of the clinical trial’s intervention will be judged 

from among the many endpoints the investigators will measure. Thus, control here 

does not mean reducing the number of endpoint evaluations and endpoint hypothe-

ses tests to be executed, but does require that the investigators prospectively decide 

on the few endpoints that will form the basis of the declarative statement at the 

trial’s end about the worth of the intervention (positive, negative, null, or unin-

formative). 
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4.5.1 The Process of Endpoint Triage 
This strategy of endpoint control permits the investigators the freedom to com-

pletely evaluate and analyze all of their endpoints measures measurements that 

have been designed and collected at great expense. As stated in Chapter 3, there are 

compelling logistical, financial, and epidemiologic reasons for this task to be com-

pleted. However, carrying out this understandably large collection of endpoint 

evaluations must be reconciled with the requirement of familywise type I error level 

control. Investigators can accomplish the reconciliation; however, that effort re-

quires careful, detailed planning among the investigators as well as a full series of 

discussions within the research community and, if appropriate, the regulatory 

agency.

The goal of these early discussions is for the investigators to choose the 

endpoint measures that they believe will provide a comprehensive view of the ef-

fect of the therapy to be tested in the clinical trial. This evaluation will commonly 

generate a large number of endpoints. In fact, it will produce as many endpoints as 

the investigators believe are necessary to shed light on the nature of the relationship 

between the intervention and the disease. During this early stage of the research de-

sign, the investigators should also acknowledge that there will be a collection of 

post hoc endpoint analyses at the end of the trial. They may not be able to identify 

these evaluations yet, but the investigators can easily anticipate that some will be 

necessary.5

Once this exhaustive process of endpoint identification has concluded, the  

investigators should then choose the small number of endpoints for which a type I 

error rate will be allocated. It is over this final subset of endpoints that the family-

wise error level will be controlled. Therefore, the effect of therapy on this small 

number of signature endpoints will ultimately determine if the clinical trial is 

judged as positive, negative, null, or uninformative.

4.5.2 An Example of the Endpoint Triage Process 
Consider the following illustration: Investigators are interested in designing a clini-

cal trial in order to assess the effect of a new oral therapy to reduce the clinical 

complications of type II diabetes mellitus. In this trial, patients will be randomized 

to receive conventional therapy for diabetes mellitus, or conventional therapy plus 

the new medication. Since diabetes mellitus is a disease which ultimately affects 

every organ system in the body, there is a large number of potential endpoints from 

which the investigators can choose. A series of discussions among the investigators 

and other endocrinologists produced the following list of endpoints: total mortality, 

cardiovascular mortality, total hospitalizations, fatal and nonfatal myocardial in-

farction, fatal and nonfatal stroke, end-stage renal disease, microalbuminuria, non-

traumatic amputations, retinopathy, blindness, plasma HbA1c levels, plasma glu-

cose levels, plasma insulin levels, three measures of quality of life, and 34 

electromyographic measures of peripheral neuropathy. The investigators are inter-

                                                          
5

These post hoc endpoints will have to be interpreted very carefully—the appropriate 

evaluation will be provided later in this chapter. 
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ested in measuring each of these endpoints in the study. However, they also under-

stand that with 50 endpoints, the test-specific  for any of these endpoints will be 

approximately /50 = 0.05/50 = 0.001. The investigators believe they will not 

be able to achieve the required minimum sample size for this test-specific  level of 

0.001 using the effect sizes they believe the intervention will produce for these pro-

spectively identified endpoints.  

The trial designers recognize the importance of reducing the familywise 

error level, and begin the process of choosing from these 50 endpoints a small 

number of selected endpoints. These signature endpoints are chosen to demonstrate 

in the clearest manner the effect of therapy on the clinical consequences of diabetes 

mellitus. The investigators believe that, if the intervention produces a benefit 

among these signature endpoints, the investigators will be able to make a very per-

suasive argument to the medical and regulatory communities that this new 

medication is an effective treatment for type II diabetes mellitus. They settle on five 

primary endpoints: total mortality, total hospitalizations, microalbuminuria, reduc-

tion in HbA1c, and one measure of quality of life. It is important to note that each 

of the original 50 endpoints will be measured and reported, but only the 5 primary 

endpoints will have a prospective allocation of an  error rate. If  is to be 0.05, 

then assuming that there will be an equal test-specific  rate that will be prospec-

tively allocated for each of these five endpoints reveals that  

1 5 0.20
1 1 1 1 0.05 0.0102.

Alternatively the upper bound on the test-specific  could have been computed 

as 5 0.05 5 0.01.  In any event, this is a level of type I error rate for which 

the investigators are confident they will be able to recruit sufficient numbers of pa-

tients to test each of the five statistical hypotheses.  

4.5.3 Other Motivations for Triaging Endpoints 
There are, of course, other reasons to reduce the number of endpoints in a clinical 

trial that are not quite so mathematical. Allocating a collection of type I error rates 

across each of 50 endpoints is possible. However, this decision requires that each 

endpoint be obtained and evaluated with the same high quality that is worthy of a 

primary endpoint and that this standard be consistently maintained throughout the 

trial. This goal is worthy—after all, any endpoint worth measuring is worth measur-

ing correctly—but this may be a practical impossibility in a world of resource 

constraints. Serum measures should be evaluated by laboratories that have both an 

excellent tradition of quality and a fine research track record. If total mortality is an 

endpoint, then death certificates will be required, as well as the verification that 

every patient for whom there is no death certificate is alive.6 This can be an expen-

sive and time-consuming effort. If, for example, the cumulative incidence of total 

                                                          
6 Since patients who have no death certificate may nevertheless be dead, it is imperative to 

confirm that patients without death certificates are in fact alive.  
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 hospitalizations is to be an endpoint, then discharge summaries will be required of 

each patient who was hospitalized (with the coincident verification that the absence 

of a discharge summary actually means the patient was not hospitalized). Again, 

this can be a resource-intensive and a financially draining activity.  

The limited resources available to a clinical trial require that these re-

sources be deployed selectively to be effective. The selection of a smaller number 

of signature endpoints allows the trial to focus its resources on the collection of this 

manageable number of endpoints with consistent attention to detail. 

4.5.4 Endpoint Triaging and Labeling Indications 
The notion of choosing carefully from among a collection of possible endpoints is a 

lesson that the pharmaceutical industry has understood and embedded into their 

clinical trial programs. In order to gain approval of its product by the FDA, the 

pharmaceutical company sponsoring the intervention must demonstrate that use of 

the product produces a favorable risk–benefit balance. This risk–benefit evaluation 

is a complex calculation that includes many components: however, one essential 

requirement is that the data must clearly demonstrate the benefits of the compound. 

Clinical trials that contain the balance of the information about the risk and benefits 

of the compound (known as pivotal clinical trials) are commonly the main source of 

these data. If the medication is determined to provide a favorable risk–benefit bal-

ance for an endpoint, the drug company may win permission to disseminate 

information about the compound’s ability to favorably affect that endpoint’s meas-

ure. This is one type of “indication” for the compound.  

As pointed out in Chapter 3, there are federal regulations and guidelines 

that govern the criteria to be met by the sponsor in gaining a new indication for the 

therapy in question. Thus, pivotal clinical trials, although permitting the measure of 

many endpoints are, nevertheless, designed to focus attention on a small number of 

key endpoints. Each endpoint for which an a priori  error probability has been al-

located is a candidate for consideration as a potential indication for the use of the 

drug. Since the sponsor’s resource investment in the compound is considerable, and 

the financial investment can run into tens of millions of dollars, the selection of 

these endpoints is made very carefully.  

4.6 Endpoint Descriptors 
The previous section described a process of dividing all of the endpoints of a clini-

cal trial into two groups of endpoints: (1) prospectively selected endpoints and (2) 

post hoc, exploratory, or data-driven endpoints (Figure 4.2). The prospectively cho-

sen endpoints are selected during the design phase of the trial, and are themselves 

divided between endpoints that will accumulate type I error rate and those that will 

not. The endpoints for which type I error rates will be accrued are termed the pri-
mary endpoints. The remaining prospectively selected endpoints are secondary 

endpoints. Finally, the  exploratory endpoints are selected during the execution and 

analysis of the trial. Each of these endpoint classes (primary, secondary, and ex-

ploratory) has an important role to play in the interpretation of the results of a study.  
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4.6.1 Primary Endpoints 
Primary endpoints are the primary focus of the study. Being prospectively chosen, 

statistical estimates of the effect of the clinical trial’s intervention on these primary 

endpoints (along with that effect’s standard error, confidence intervals and p-

values) are trustworthy. In addition, since type I error is prospectively allocated to 

these primary endpoints, these tools permit an evaluation of the likelihood that the 

effect produced by the clinical trial’s intervention would not be seen by the 

population, an evaluation that can be directly integrated into the risk–benefit as-

sessment of the compound being studied. In a very real sense, the clinical trial’s 

primary endpoints represent the axis around which the trial’s logistical machinery 

revolves. The findings for the primary endpoints of the study will determine 

whether the study is positive, negative, null, or uninformative, thereby serving as 

the ruler against which the trial’s results will be measured. The analyses of these 

primary endpoints are often described as confirmatory analyses, because the analy-

ses confirm the answer to the scientific question which generated the clinical trial.  

Figure 4.2. Description and purpose of endpoints in a clinical trial.
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This definition allows us to consider as a candidate primary endpoint an 

endpoint for which an  error probability is allocated prospectively, but for which 

there will be inadequate power as a primary endpoint. A circumstance in which this 

could occur is when a rare endpoint may have an  error rate allocated prospec-

tively, but the required sample size of the study to examine the effect of the 

intervention on this endpoint may be prohibitively large. A priori  error probability

allocation in this circumstance provides the environment in which the effect of 
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therapy for this endpoint could be considered positive (or negative). However, if the 

null hypothesis is not rejected for this analysis, the conclusion can only be that the 

analysis is uninformative. We will provide specific examples of this strategy later in 

this chapter.

4.6.2 Secondary Endpoints 
The endpoints of the clinical trial that were prospectively selected during the trial’s 

design phase, but had no a priori  allocated to them, are termed secondary end-
points. These endpoints, being prospectively selected, produce trustworthy 

estimators of effect size, standard error, confidence intervals, and p-values, all of 

which measure the effect of the clinical trial’s intervention. However, drawing con-

firmatory conclusions about the effectiveness of the intervention being studied by 

the clinical trial, based on the results of secondary endpoints in general, cannot be 

permitted, since conclusions based on these secondary endpoints will increase the 

familywise error level above acceptable levels.  

The role of analyses carried out on secondary endpoints is to provide sup-

port for the conclusions drawn from the trial’s primary endpoints. Secondary 

endpoints can provide important information about the nature of the biologic 

mechanism of action of the compound that is being studied in the clinical trial. If 

they are endpoints that are related to the primary endpoint, they can add additional 

persuasive force to the argument for the beneficial effect of therapy, a force that is 

bolstered by the reliability of their effect size estimates. Typically, there are more 

secondary endpoints than primary endpoints. Again, p-values are of limited value 

with secondary endpoints since their interpretation produces unacceptable increases 

in .

An example of the useful role that secondary endpoints can play is pro-

vided by one of the major trials that evaluated the effect of blood pressure control 

of the incidence of stroke.  While the control of chronic elevations in diastolic blood 

pressure (DBP) was a significant and well accepted public health activity in the 

1980s, the beneficial consequences of isolated elevations in systolic blood pressure 

(SBP), a finding of greater prevalence in the elderly, had yet to be rigorously evalu-

ated. To investigate the risks and benefits of reducing isolated SBP elevations in 

this population, the Systolic Hypertension in the Elderly Program (SHEP) was initi-

ated [2]. This was a prospective, randomized, double-blind, placebo controlled 

clinical trial that was designed to examine the effect of reducing SBP elevations in 

the elderly. SHEP recruited 4736 subjects who were at least 60 years old to either 

active antihypertensive control or placebo therapy. The primary endpoint of SHEP 

was prospectively specified as total (fatal and nonfatal) stroke. The  error level 

that was allocated to the primary endpoints was 0.05 (two-sided). Prospectively de-

fined secondary outcomes were (1) sudden cardiac death, (2) rapid cardiac death, 

(3) fatal myocardial infarction, (4) nonfatal myocardial infarction, (5) left ventricu-

lar failure, (6) other cardiovascular death, (7) transient ischemic attack, (8) coronary 

artery therapeutic procedures, and (9) renal dysfunction. 

 The results of the study were positive (Table 4.1) [2]. The SHEP clinical 

trial produced a reduction in the primary endpoint of the study (total stroke) as a 

consequence of antihypertensive therapy. Thus, SHEP is considered to be a positive 
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trial. Its secondary endpoints are, in general, supportive of the finding for the 

primary endpoint, suggesting that the effect of therapy may be a global effect on the 

reduction of major atherosclerotic cardiovascular disease.  

Table 4.1. Results of the Systolic Hypertension in the Elderly Program.

Endpoints Active Group Placebo Group Relative P Value

(2375 patients (2371 patients risk lower upper

events events bound bound

Primary endpoint

Total stroke 103 159 0.64 0.50 0.82 0.0003

Secondary endpoints

Sudden cardiac death 23 23 1.00 0.56 1.78

Rapid cardiac death 21 24 0.87 0.48 1.56

Nonfatal myocardial infarction 50 74 0.67 0.47 0.96

Left ventricular failure 48 102 0.46 0.33 0.65

Other cardiovascular disease 21 25 0.87 0.49 1.55

Transient ischemic attack 62 82 0.75 0.54 1.04

Coronary artery procedures 30 47 0.63 0.40 1.00

Renal dysfunction 7 11

Segregation of primary endpoint from secondary endpoints. 

95% confidence interval

4.6.3 Exploratory Endpoints  
By their very nature, nonprospectively defined, exploratory endpoints can simulta-

neously be the most exciting yet the most problematic analyses in clinical trials. 

Our examination of the difficulties inherent in random research7 revealed that the 

analyses of these endpoints, endpoints that were chosen not during the design phase 

of the study but that arose from the examination of the data while the research is 

under way or upon its conclusion, will produce estimates of effect size, standard 

error, confidence intervals, and p-values that are unreliable and untrustworthy. Thus, 

upon the conclusion of these exploratory evaluations, the investigators will not 

know the true measure of the effect of the clinical trial’s intervention on these ex-

ploratory endpoints in the population.  

However, these chronic difficulties with exploratory endpoints should not 

be construed to mean that they have no useful role to play in clinical trials or that 

the results of these analyses should not be reported. Quite the contrary they are an  

important research tool, and their inclusion in research can serve a very useful func-

tion. Much like the first step out onto uncharted terrain, exploratory analyses often 

provide a preliminary examination of what may become a promising line of re-

                                                          
7 Chapter 2 explored the difficulties involved in attempting to generalize results from the re-

search sample to the population at large when the results were not prospectively chosen but 

instead were produced from the research data stream.  
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search. Thus, these analyses can prove to be the first data-based view of future in-

vestigations.

It cannot be denied that sometimes unforeseen, curious, and unanticipated 

findings will occur during a clinical trial’s execution. One example is when the 

Data Safety and Monitoring Board’s8 review of an ongoing study reveals that the 

therapy being evaluated in the clinical trial may be having an unforeseen effect.9

Another example is when investigators in clinical trial A report a relationship be-

tween the intervention and an endpoint. Investigators in clinical trial B testing the 

same intervention as in trial A, had also measured the endpoint reported in trial A, 

but made no prospective plans for its analysis. However, based on the findings from 

clinical trial A, they now feel compelled to carry out the evaluation that was con-

ducted in trial B.  

Circumstances such as these create an understandable demand from the 

medical community (and often from regulatory agencies) that the clinical trial re-

port its nonprospectively planned analysis. Certainly, no clinical trial wishes to be 

accused of withholding, hiding, or refusing to carry out analyses requested by the 

medical community. In these cases, exploratory endpoints may reveal a surprise 

finding that, when fully and properly developed in future clinical trials, can lead to 

important conclusions. On the other hand, it must be admitted that the exploratory 

result generating the excitement may be due to sampling error. The untrustworthy 

estimates of effect sizes, confidence intervals, standard errors, and p-values pro-

duced by exploratory analyses preclude our ability to distinguish between these two 

possibilities. Therefore, the result must be repeated. The exploratory analyses repre-

sent “search,” not “research.”  

There are other difficulties with these post hoc endpoints. With no pro-

spective plan and prior discussion of the exploratory endpoint, the clinical trial may 

not have recruited sufficient numbers of patients to reduce the standard error of the 

estimate of the intervention’s effect for this endpoint (i.e., the estimate of the effect 

may not be precise). In addition, there may be insufficient financial resources avail-

able in the trial to permit the best possible measurement of the endpoint. An 

example would be a decision made during the course of a clinical trial to identify 

the number of silent, asymptomatic heart attacks which occur annually in the re-

cruited population. This new activity requires that electrocardiograms be obtained, 

transported, interpreted, and archived on a yearly basis for each randomized patient. 

Without a budget allocated for this effort, it can be impossible for the clinical trial’s 

administrators to put together the funds for the comprehensive execution of this  

new, midtrial effort. The result is an incomplete dataset and an unreliable analysis. 

We have discussed at length the inability to extend the results of an ex-

ploratory endpoint’s analysis from the sample to the population. Setting this aside 

for a moment, sometimes the inclusion of a post hoc endpoint can make it difficult 

to understand the implications of the exploratory endpoint’s analysis within the trial 

itself. Consider the following illustration: 

                                                          
8

The Data Safety and Monitoring Board (DSMB) was briefly discussed in Chapter 1.   
9

Minoxidil, a preparation used to help attenuate baldness was originally used as an anti-

hypertensive agent.  
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Example: A clinical trial is designed to evaluate a medication as an ef-

fective tool for weight loss. Overweight patients are recruited into the 

study with the understanding that they will have their weights measured 

initially and then be placed on either the placebo therapy or the active 

medication for three months. After three months, all patients will have 

their weights measured again. The investigators plan to measure the 

baseline–to–three month weight change in the active group, make the 

same measurement in the placebo group and then compare the two dif-

ferences. This comparison of the change in weight between the active 

and placebo groups is the prospectively designed primary endpoint. 

The experiment proceeds. 

Toward the conclusion of the study, the investigators learn of the 

possibility that the medication could raise pulmonary blood pressures, 

and wish to use their study to investigate this occurrence. The investi-

gators therefore add the echocardiographic endpoint of increased 

pulmonary artery pressure to their study and, even though the trial is 

almost over, proceed to obtain echocardiograms on the patients in the 

clinical trial.

It is understandable why the investigators added the echocardiographic 

endpoint to their study. During the course of the trial, the concern for elevated pul-

monary artery pressures raised a new safety issue about the active medication 

currently being evaluated in the clinical trial. By measuring whether trial partici-

pants who were on the active medication had a greater likelihood of experiencing 

increased pulmonary artery pressures, the investigators hoped to (1) obtain useful 

information about a potential risk of this drug, thereby providing an essential new 

insight into the risk–benefit assessment of the study medication, and (2) give impor-

tant clinical information directly to each individual patient in the study about their 

health status. At the beginning of the study, these patients signed informed consent 

statements that mentioned nothing about the possibility of experiencing pulmonary 

artery pressure elevation. They now need to know whether they have been injured 

by a drug they volunteered to take.  

However, there remain two fundamental difficulties raised by the inclusion 

of this endpoint which cloud its scientific interpretation. The first is that some pa-

tients who were recruited into the study may have had longstanding pulmonary 

artery pressure elevations. Since these elevations occurred before the trial began, it 

would be wrong to attribute the elevated pulmonary pressures of these patients to 

the weight loss medication being studied in the trial. However, obtaining an echo-

cardiogram late in the trial does not enable the investigators to distinguish elevated 

pressures which first occurred during the course of the trial from elevated pulmo-

nary pressures that occurred before the trial’s initiation. The best tool to identify the 

critical timing of the occurrence of elevated pulmonary pressures would have been 

a baseline echocardiogram. This early measurement would have permitted the in-

vestigators to exclude those patients from the study who had pre-existing elevated 

pressures, leaving the study free to measure only new occurrences of elevated pul-

monary pressures. However, this useful tool could only have been implemented if 
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the decision to obtain echocardiograms had been made before the trial began. Thus, 

the decision to measure the echocardiographic endpoint post hoc ensured that it 

would be difficult to correctly attribute any finding of excess pulmonary pressure to 

the randomized group which received the active medication.  

A second difficulty posed by the exploratory echocardiographic endpoint 

is that, in order to have an accurate depiction of the finding in the sample, patients 

would need to agree to return at the end of the study for the diagnostic echocardio-

gram. However, the patients in this trial did not consent to join the study to have 

echocardiograms carried out only to get their weights remeasured. In addition, 

there is the additional, sad consideration that, if the medication is dangerous, pa-

tients may be too sick to return for the echocardiogram. Thus, if a sizable fraction 

of the participants either refuse to return or are unable to return for their evaluation, 

then the investigators cannot be sure of the actual findings in the research sample. 

The desire to measure the medication’s effect on pulmonary pressure was 

laudable and the data was necessary to arrange the appropriate care for the trial par-

ticipants. However, its scientific contribution is ambiguous. The post hoc decision 

to incorporate the echocardiographic endpoint into the trial all but ensured that the 

exploratory endpoint’s analysis would not provide an accurate assessment of the 

effect of the therapy on pulmonary pressure.  

Investigators want to explore, perhaps need to explore, and nothing that we 

have said here will stop them from exploring. However, investigators must disci-

pline themselves in the explorative process. The evaluation of exploratory 

endpoints in clinical trials can be exciting. However, the practical difficulties with 

their measurement, and the theoretical obstacles to their clear interpretation, limits 

exploratory endpoints to hypothesis generation and not hypothesis confirmation. 

4.6.4 Choose Wisely 
It is important to recognize that the use of this triage system does not prohibit the 

investigators from measuring multiple endpoints. In fact, investigators should be 

encouraged to measure as many endpoints as required to build the tightest causal 

link between the clinical trial intervention being evaluated and the disease process 

that intervention will affect. These investigators, having made the investment in 

time to understand the disease process, having committed the intellectual energy in 

appreciating the direct and indirect effects of the clinical trial’s intervention, and 

having gained important experience with the persuasive power of the candidate 

endpoints, have earned the right to bring this unique combination of talents to the 

endpoint selection process. However, these investigators must organize the end-

points in a way that permits overall conservation of the familywise error level.  

4.6.5 Planning Well to Learn Well 
Prodigious work and effort awaits the clinical trialist as she prepares to design her 

research. It can take her a long time to clearly articulate the study question that the 

clinical trial will address. Weeks more will be invested in identifying and absorbing 

the pertinent medical literature. She must also find the fellow investigators and 

health workers necessary to share the burden of the trial’s execution. There remains 



120 4. Multiple Analyses and Multiple Endpoints 

the inescapable task of finding funding for the study. Finally, her team must prepare 

for the arduous task of recruiting and following patients in the study. We have fur-

ther increased this burden’s weight by now forcing her to go through a prolonged 

examination of all of the potential endpoints of the study, a process requiring the 

complete immersion in the endpoint triaging system outlined in this chapter.

Many new investigators do not understand how deep (or cold) these waters 

can be when they first take the plunge into clinical trial research. Investigators 

whose fundamental interest and drive is in generating new knowledge about the 

disease (and its treatment) often become impatient with time-consuming planning 

meetings and costly pilot studies. After all, they just want to do the experiment and 

gain the knowledge. The realization of the labor involved is often a numbing 

shock.10

However, the product of this planned effort can be remarkable. In 1998, I 

was asked to participate in the Nobel Laureate Lectureship at McMurry University 

in Abilene, Texas. This university-sponsored activity featured the 1986 Nobel Lau-

reate for Physiology and Medicine, Dr. Stanley Cohen of the Vanderbilt University 

School of Medicine. I, along with another invited guest, was asked to give one of 

two introductory or “warm-up” lectures as a preamble to Dr. Cohen’s talk that 

would itself be the main event of the afternoon. Before these lectures began, we two 

introductory speakers and Dr. Cohen found ourselves together engaged in idle ban-

ter. Now, the question on both my mind and that of the other introductory speaker 

was just what distinguished Dr. Cohen from his competitive colleagues. What was 

special about Dr. Cohen’s research ideas and philosophy that led to his winning the 

Nobel Prize? One of us marshaled the courage to ask him. 

Dr. Cohen’s response was memorable for its honesty, frankness and hu-

mility. From the mid-1960s up to the present, he said, research in biochemistry and 

physiology had undergone revolutionary changes. Technological advances now 

permitted the automation of physiologic experiments, and the newly developed ca-

pacity to computerize research analysis meant that studies, that before would have 

taken days to carry out, now could be executed in hours.  

These new abilities produced an interesting change in the way many 

physiologists approached their research. In prior years, when experiments required 

a good deal of time to execute, these research efforts were designed slowly and 

carefully. With the need for slow execution pushed aside by technical advances, the 

scientists no longer felt bound by the requirement for time-consuming research de-

sign. They could now execute experiments one after the other in rapid fire 

succession.  

Dr. Cohen, however, chose a different strategy. Rather than quickly exe-

cute a quickly executable experiment, he would instead invest much of his time and 

best effort into preexperimental thought, with attention focused on each of the pos-

sible outcomes of the experiment. Specifically, he would carefully consider the 

implication of every possible result of the experiment, mentally working to convert 

                                                          
10 One young investigator, having just completed the monumental task of participating in the 

design, execution, and analysis of an industry-sponsored clinical trial, when asked about his 

willingness to help with another exclaimed, “The government hasn’t printed enough money 

to persuade me to do that again!” 
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each result to a new piece of knowledge gained about the underlying physiology. If 

he could not in his own mind link each possible experimental result to new, reliable 

information to be added to the physiology corpus of knowledge, he would redesign 

the experiment so that this linkage was achievable. Dr. Cohen would go through 

this mental–experimental design process for days (sometimes for weeks) complet-

ing these linkages and matches. Only when he was sure that each possible 

experimental result would teach him something that was both new and worth know-

ing would he proceed with the experiment’s execution. This was, in Dr. Cohen’s 

view, the only noteworthy distinction between the character of his Nobel Prize– 

winning work and those of his competitors. After listening to and absorbing his 

self- effacing answer, it was then time for us to give our talks. 

 Clinical investigators want to learn; they know they must execute the ex-

periment for the ultimate learning to take place. Methodologists not only endorse 

the drive of researches to learn—we share it. We only add that the best learning fol-

lows the best planning.  

4.7 Mapping Out the Manuscript
The use of the system described above defines a hierarchy of clinical trial endpoints 

that can easily be ranked in terms of their persuasive power: Primary  Secondary 

 Exploratory. It is essential that this plan be fully described in the clinical trial’s 

protocol. The protocol is the book of rules which governs the conduct of the trial. In 

it, the specification of each endpoint’s ascertainment, verification, and analysis is 

laid out in great detail.11 A well-written protocol serves as an indispensable anchor 

for the study, keeping the trial analyses from being cast adrift in the eddies of the 

clinical trial’s incoming data stream. In addition, the protocol provides a guide for 

two important clinical trial publications.  

4.7.1 The Design Manuscript
Occasionally, the clinical trial’s investigators will choose to publish the protocol of 

their study. This choice offers several important advantages. The first is that 

appearance of the protocol in the peer-reviewed medical literature broadcasts to the 

research and the medical community that a trial is being conducted to answer a 

scientific question. In addition, important facts concerning the design of the trial 

that are of interest to other researchers in this field can be addressed in great detail. 

Assumptions underlying the sample size computation, aspects of the inclusion and 

exclusion criteria, and endpoint determinations are carefully described. In effect, a 

design manuscript is a message to the medical community from the investigators 

                                                          
11 Of course, in general, post hoc exploratory endpoints are not defined in the prospectively 

written protocol. However, in some cases, the protocol may discuss an analysis even though 

neither the endpoints of the analysis nor the details for the analysis are known during the de-

sign phase of the trial. An example is the decision to store blood drawn in a clinical trial from 

each study participant at baseline for future genetic analyses whose details are not developed 

sufficiently while the protocol is being written. While these analyses are ultimately explora-

tory, they must (1) be discussed in the protocol and (2) be disclosed in the patient consent 

form.



122 4. Multiple Analyses and Multiple Endpoints 

that says “Here is the research question we wish to address. This is how we have 

decided to address it. Here are the rules of our trial. Be sure to hold us to them.”12

Examples of design manuscripts are [3] and [4] in hypertension, [5] and [6] in the 

therapy for CHF, [7] in cancer therapy, and [8] in the treatment of hyperlipidemia, 

just to name a few.  

Design manuscripts can be particularly useful for clinical trials evaluating 

disputed areas of medicine, arenas where strong, vocal, and influential forces have 

long made known their points of view before the trial was conceived. At its conclu-

sion, an expertly designed, well-conducted, and concordantly executed clinical trial 

will be criticized by some because that trial’s results don’t conform with the critics’ 

preconceived ideas. This level of criticism increases in direct proportion to the con-

troversial nature of the scientific question the clinical trial was designed to answer. 

Much of this criticism, being essentially nonscientific in nature, cannot be avoided. 

However, one particularly sharp but easily anticipated criticism is that the clinical 

trial’s investigators tuned and adjusted their analyses to the incoming data stream, 

thereby ensuring that the investigators’ own preconceived biases and notions would 

be validated by the clinical trial’s results.  

The publication of a design manuscript can blunt these criticisms precisely 

because the design manuscript will lay out the plan of analysis publicly before the 

data are collected and any analyses are attempted. In this desirable circumstance, 

the investigators are only required to execute their prospective analysis plan, 

thereby demonstrating to the medical community that the analysis plan, published 

before the study ended, matches the analyses published at the trial’s conclusion.  

4.7.2 Laying Out the Manuscripts 
Delineating the prospective primary and secondary endpoints, while simultaneously 

acknowledging the need and limitations of exploratory analyses, are processes that 

will bear much good fruit for the diligent investigator. One example of this plan-

ning’s satisfying product is that the description of these endpoints actually sets the 

stage for the layout of the clinical trial’s main manuscript.  

This main manuscript (often referred to as the “final manuscript”13 is the 

focal point toward which the various logistical, statistical, and clinical work in the 

trial converges. This final manuscript describes the final results of the study; spe-

cifically, it details the findings of the primary analyses of the trial. The final 

manuscript is often the best platform from which the results of the trial can be 

broadcast. Therefore, it is no surprise that clinical trialists work hard to have this 

                                                          
12 Design manuscripts have the additional advantages of (1) engaging the clinical trial inves-

tigators in the publishing process, an activity that can help to improve morale in a long trial, 

and (2) conserving space in the final manuscript that is published when the clinical trial has 

been completed by describing the trial’s methodology in complete detail in the earlier ap-

pearing design manuscript.
13

This “final” manuscript is the manuscript that reports the clinical trial’s results for the pri-

mary endpoints of the study. This is the only thing final about this paper. There are many 

manuscripts which appear after the final manuscript, e.g., manuscripts that describe in detail 

findings from the clinical trial for secondary endpoints, subgroup analyses, exploratory 

analyses, and other subsidiary findings. 
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summary manuscript accepted in the most prestigious and highly respected clinical 

journals.  

The groundwork for this important paper is laid during the design phase of 

the trial. It may seem somewhat premature to map out the final manuscript during 

this early planning phase of the study. After all, the clinical trial now being de-

signed may not be concluded for several years, and much can happen (and 

commonly does) during that period of time. However, limiting the impact of un-

foreseeable events that may plague the study’s execution is one of the primary 

reasons for the time-consuming, careful, and thoughtful development of the ex-

perimental plan. The design, execution, and analysis phases of a well-designed 

clinical experiment are so tightly linked, with the design embedding itself into and 

guiding the execution of the study, that the designers of the trial can see the skele-

ton of the final manuscript well before the study execution begins.  

The motivation for executing the clinical trial is clearly known to the trial 

planners while they design the study. These experimentalists know the scientific 

question the study will address because they must repeatedly reexamine this ques-

tion as they tailor the study’s design to answer it. Both the motivation for this 

question and the question itself comprise the introduction section of the final manu-

script. Since the designers constantly refer to this information during the planning 

phase of the clinical trial, these workers can easily complete most of this first, im-

portant section of the final manuscript during the design phase of the study.  

The methods section of the final manuscript can probably not be written in 

its entirety during the design phase of the study, but certain of its fundamental sec-

tions can be completed. In addition to other points, the methods section should 

answer the following questions: What was the process of patient selection for the 

trial? What are the inclusion criteria patients must have to enter the study? What are 

the demographic and comorbidity criteria that will exclude patients from the trial? 

How should the investigators decide what therapeutic interventions the patient 

should receive? Since these issues must be addressed during the design phase of the 

study, the answers to these questions have been identified, collected, and entered 

into the trial’s protocol during this planning stage and are now available for inclu-

sion into the methods section of a final manuscript draft.  

In addition, the choices for the primary endpoints and the secondary end-

points of the study are completed during the experiment’s planning phase. Once 

these endpoints have been selected and triaged, the trial epidemiologists and biosta-

tisticians will quickly identify what analysis tools they require in order to evaluate 

the effect of the trial’s intervention on them. These statements are also available to 

the trial designers, and can be entered into a preliminary draft of the methods sec-

tion of the final manuscript.  

One of the most important sections of the final manuscript is the results 

section. Although one might think this is one of the last sections of the manuscript 

to be written, critical components of it can be outlined during the design phase of 

the study. Since the endpoints and the endpoint analyses have been chosen prospec-

tively, the trial designers are cognizant of both the format for the analyses and the 

clearest way to present the data. In fact, table shells can be mocked up, requiring 

only the data to complete them.  
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By thinking the study methodology issues out carefully and in detail dur-

ing the clinical trial’s design phase, it is easy to incorporate their resolution into a 

preliminary draft of the final manuscript. The idea is to tightly bind the design of 

the study to the final analysis, not just on paper, but within the thought processes of 

the investigators. This tight link between the analysis plan (developed during the 

clinical trial’s design phase) and the analysis itself (carried out at the conclusion of 

the study) will require concordant trial execution, thereby producing interpretable 

results.

4.8 Multiple Primary Endpoint Interpretations
The evaluation of hypothesis tests and significance testing as initially developed by 

Jersey Neyman and Egdon Pearson, was straightforward. One merely computed the 

test statistic that was calculated from the data of the experiment and compared the 

resulting p-value to the  level that had been prospectively determined from the ex-

periment. Unfortunately, the interpretation of these p-values has become more 

complex when multiple analyses are poorly planned.14 The goal of this section is to 

demonstrate the ease of clinical trial interpretation when the appropriate prospective 

foundation for multiple analyses in clinical trials has been laid.  

Consider the work of the investigator during the design phase of her study. 

She has completed the endpoint triage system, and has prospectively determined the

K primary endpoints for which significance testing will be executed. The study is 

initially designed to have a familywise error level of ; this rate is dispersed among 

the K primary endpoints with the jth endpoint having test-specific j such that ei-

ther
1

1 1
K

jj
 or, using Boole’s inequality,

1

K

jj
. At the 

conclusion of the study, the investigator produces a p-value for each of these hy-

pothesis tests. Let pj be the p-value which is computed for the jth primary endpoint, j

= 1, 2, 3,…, K. Then, just as a familywise error level  is computed during the de-

sign phase of the trial the observed familywise error level at the conclusion of the 

trial, or posterior familywise error level, E is computed based on the K different p-

values produced, either as  

1

1 1 min ,
K

j j

j

p (4.7)

or, using Boole’s inequality,  

1

min , .
K

j j

j

E p (4.8)

We need to be able to link comparisons of the a priori and posterior familywise er-

ror levels to the individual p-values of the K primary endpoints. The study is 

positive (or negative)15 when the posterior familywise error level E is less than the a

                                                          
14

See Chapter 2 and Moyé, L.A. (2000). Statistical Reasoning in Medicine. The Intuitive P-

Value Primer. New York. Springer.
15

These comments assume that the clinical trial has been concordantly executed.
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priori familywise error level , or E < . An alternative formulation is that the study 

is positive when

1 1

1 1 min , 1 1 ,
K K

j j j

j j

p (4.9) 

where min(a, b) is the minimum of the numbers a and b. The application of Boole’s 

inequality to each side of the inequality (4.9) leads to the declaration that a concor-

dantly executed clinical trial is positive if  

1 1

min , .
K K

j j j

j j

p                                 (4.10) 

Inequalities (4.9) and (4.10) are satisfied when, for at least one of the K primary 

endpoints, pj < j. Thus, the familywise error level is conserved when the p-value

for at least one of the primary endpoints is less than its prospectively specified type 

I error level. This inequality has important consequences, allowing investigators to 

broaden the circumstances under which clinical trials are judged to be positive (or 

negative).  

 If for each of the K primary endpoints, the p-value is less than the pre-

specified  error rate, then the minimum function is not necessary and we may 

write
1 1

.
K K

j jj j
p However, if the p-value for at least one of the test statis-

tics is greater than its  level, that analysis is judged as null (or uninformative, 

depending on the power) and the type I error rate that accrues is the  level, not the 

p-value.  

Example: A clinical trial investigator is interested in demonstrating the 

effectiveness of a therapy in reducing the effect of early senile demen-

tia on cognition. After much discussion, she settles on three primary 

endpoints (1) Boston Naming Task, (2) Digit Symbol Substitution, and 

(3) quality of life. She decides to allocate the type I error rate equally to 

each of these endpoints. Setting the prospective familywise  level  = 

0.05 and using Boole’s inequality, she settles on j = 0.05/3 = 0.0167. 

At the conclusion of the concordantly executed experiment, she reports 

the results (Table 4.2). 
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Table 4.2. Primary endpoint findings for

cognition study

Endpoints Prospective P  Value

alpha

Boston naming task 0.0167 0.044

Digit symbol substitution 0.0167 0.100

Quality of life 0.0167 0.001

The positive finding for the quality-of-life 

primary endpoint makes this study positive.

For each of the Boston Naming Task and the Digit Symbol Substitu-

tion, the p-value is greater than prospective  allocation. However, for 

the quality of life component, the p-value is less than the prospective 

type I error rate allocated for that endpoint. By the criteria of this sec-

tion this study is positive. We know from the design phase of the study, 

 = 0.05. We may now compute the posterior familywise error level E
as

1

min ,

min(0.0167, 0.044) min(0.0167, 0.100)

min(0.0167, 0.001)

0.0167 0.0167 0.0010) 0.0344.

K

j j

j

E p

(4.11)

Thus, E < , and the study is positive.  

The approach outlined in this section is a very effective procedure to both control 

the familywise error level and allow for the possibility that a trial can be considered 

to be positive on more than one endpoint. The literature has provided additional ex-

amples [9], [10].  

4.9 Tactic 2: Differential  Allocation 
Sections 4.5 to 4.7 discussed in detail the first of two tactics to be employed in con-

trolling the familywise error level  in clinical trials where there are multiple 

endpoints to be analyzed. This first tactic required the investigators to first visualize 

the endpoints which would be of great value in answering the scientific question 

that was the primary motivation for the trial. These predefined endpoints will be 

specified in the clinical trial’s protocol or rulebook. This prospective affirmation 

requires that the investigators commit themselves to the task of measuring these 

endpoints with great accuracy and attention to detail. These predesignated end-
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points will themselves be prospectively classified as either primary endpoints or 

secondary endpoints. Primary endpoints will have type I error rate allocated pro-

spectively to each one. The secondary endpoints provide support for the primary 

endpoints’ findings in the clinical trial. Additional, nonprospectively defined ex-

ploratory endpoints are only remotely supportive of the findings of the primary 

endpoints, and serve mainly to raise new questions to be addressed in future re-

search efforts.  

This triaging system reduces the number of endpoints prospectively identi-

fied in the clinical trial to the small number of primary endpoints on which the trial 

will be judged as positive, negative, null, or uninformative. The second tactic that 

will now be developed focuses on the allocation of type I error rate probability 

among the small number of primary endpoints. For this discussion, we will con-

tinue to assume that the primary endpoints are independent one from the other.  

 After selecting the K primary endpoints for which the  error level is to be 

prospectively allocated, the only tool that we have developed thus far, to allocate a 

type I error level across these endpoints is that of equal allocation. Recall that, un-

der this assumption, the familywise error level  may be written as  

1 1 .
K

                                   (4.12) 

                    

Alternatively, we have involved the following result from Boole’s inequality 

K                                              (4.13) 

or

.
K

                                            (4.14) 

We will now explore the possibilities provided by the unequal  rate allocation. 

4.9.1 Differential  Rate Allocation 
There is no mathematical or statistical theory embedded in biology, pathophysiol-

ogy, or therapeutics which requires that the test-specific  be equal across all K
primary endpoints in a clinical trial. Consider the consequences of allowing each of 

the K primary endpoints in a clinical trial to have its own prospectively allocated 

error level. Under this rubric, 1 is prospectively allocated for the first primary end-

point, 2 is prospectively allocated for the second endpoint, 3 for the third 

endpoint, proceeding to K for the Kth primary endpoint. Then we may write , the 

probability of a familywise error level as 

1 2 3

1

1 1 1 1 1

1 1 .

K

K

j

j

       (4.15) 
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Example: If in a clinical trial there are three primary endpoints, with test-

specific  levels of 1 = 0.02, 2 = 0.01, and 3 = 0.005, then the family-

wise error level may be computed exactly as  

1 (1 0.02)(1 0.01)(1 0.005) 0.0345. (4.16) 

Boole’s equality may be evoked successfully within this paradigm of differential 

allocation as

1 2 3

1

K

K j

j

(4.17) 

We may apply this result to the previous example. This reveals that an upper bound 

for  is 0.02 + 0.01 + 0.005 = 0.035. 

As discussed in Chapter 3, both (4.12) and (4.13) have been commonly 

used since the 1960s as the basis for the adjustment of hypothesis testing results for 

multiple analyses and multiple endpoints. However, the criticisms raised by [11] 

and [12] remain valid to this day. The unavoidable result of spreading  the type I 

error rate equally across several endpoints is the production of test-specific type I 

errors that are often too small to be useful. In the context of judging the merits of a 

new medication, type I errors levels that are too low offer a particular danger. Con-

sideration of the benefit component in the risk–benefit evaluation of the clinical 

trial’s intervention requires a realistic measure of the likelihood that the population 

will not see the advantages offered by the clinical trial’s intervention. Small test-

specific p-value thresholds that block a positive conclusion in the face of a clini-

cally relevant effect size can prove to be just as much of a disservice to the medical 

community in their risk–benefit calculation as the absence of any p-value require-

ment at all.  

This threat of inappropriately small test-specific  error rate thresholds 

continues to be an obstacle to a clinical trial’s ability to contribute to the fund of 

knowledge about disease and its treatment, even if investigators follow tactic one 

and reduce the number of endpoints for which statistical hypothesis tests will be 

carried out. As an illustration, if in a clinical trial, the application of the first tactic 

produces 5 of 15 prospectively defined endpoints as primary endpoints (for conven-

ience we number these primary endpoints as 1 to 5), then from (4.14) we see that 

each of these endpoints will be assessed at the 0.05 5 0.01K  error level. 

Thus, the test-specific  level rates will be 1 = 2 = 3 = 4 = 5 = 0.01. Since sam-

ple sizes increase as the type I error level decreases (assuming everything else about 

the comparison, e.g., event rates, type II error levels, etc., remain constant), then the 

sample size required to be able to carry out the statistical hypothesis test for an 

error rate of 0.01 may be prohibitive for the investigators.16

                                                          
16

 Simple sample size computation examples and results are provided in Appendix D.
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However, as an alternative, consider the possibility of 1 = 0.03, 2 = 0.01, 

and 3 = 4 = 5 = 0.0033. In this situation, there are three separate  levels. Since 

1 + 2 + 3 + 4 + 5 = 0.0499, this test-specific  allocation conserves the family-

wise error level. Once we designate different  level thresholds for each endpoint, 

we introduce a distinction between the trial’s primary endpoints. The specific dif-

ferential allocation of  introduced in this paragraph permits a greater risk of a type 

I error for primary endpoint 1, less risk of a type I error for primary endpoint 2, and 

even a smaller type I error level for primary endpoints 3 to 5. As (4.15) and (4.17) 

demonstrate, there is no mathematical obstacle to this alternative allocation of .

However, once the choice of an unequal allocation is made, the inequity of the allo-

cation must be justified. This justification is a necessary step, and in my view, a 

worthwhile exercise in which investigators and statisticians should jointly engage.  

The statistical literature does provide the suggestion for allocating  dif-

ferentially across several endpoints. For example, Cook and Farewell [13] had 

suggested that the test-specific  be constructed based on the use of arbitrary 

weights. The underlying mathematics are briefly described as follows: let there be

K primary endpoints, and the familywise error level is to be controlled at  level  . 

Let wj be the weight for the jth primary endpoint. Then we assign j, the test-specific 

 for the jth endpoint as  

1

.
j

j K

j

J

w

w

(4.18)

Example: Let a prospectively designed clinical trial have five prospec-

tively defined endpoints. Let  = 0.05, and the test-specific endpoints 

have the weights w1 = 2, w2 = 1, w3 = 1, w4 = 3, w5 = 6. 

Then
5

1
2 1 1 3 6 13.jj

w  Begin the test-specific type I error 

rate computation 

1
2 (0.05) 0.00769.

13

Analogously, find that 2 = 3 = 0.00385, 4 = 0.01154, 5 = 0.02308. A 

quick check reveals that
1

0.050
K

jj
, thereby preserving the 

familywise error level.  

This is a useful procedure but its implementation begs the question of how to 

choose the weights for the test-specific  error levels. Formal mathematical argu-

ments to optimize the choice of the test-specific  error levels should be shunned in 

favor of developing the clinicians’ a priori intuitions for the choice of these weights. 

This intuition should be built upon (1) a foundation of understanding of the disease 

process, (2) the relative persuasive power of the endpoints to convince the medical 

community of the effect of therapy, and (3) the need to keep the sample size of the 

trial small enough for the study to be executable.  
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Clinicians should be involved in the decision to allocate the type I error 

rate across the primary endpoints of the study because  allocation is a community 

protection device. As discussed in Chapter 3, the type I error probability in clinical 

trials makes an important contribution to the assessment of benefit in the eventual 

risk–benefit evaluation at the trial’s conclusion. This is clearly the realm of the phy-

sician.

4.9.2 Clinical Decisions in Allocating 
Decisions concerning the allocation of test-specific  level rates for the K primary 

endpoints in a clinical trial are decisions about the statistical assumptions governing 

the hypothesis test for the endpoints at the conclusion of the study. The ability of 

the hypothesis test to permit conclusions about the effect of the intervention on a 

primary endpoint must take into account the sample size of the trial, the cumulative 

control group event rate of the study, the expected efficacy of the clinical trials in-

tervention on reducing the endpoint’s event rate, and the statistical power.  

Thus, the decision to allocate type I error levels for primary endpoints are 

not made in a vacuum, but will have important implications for the sample size of 

the study. Since multiple primary endpoints are involved in this process, several 

different sample size computations must be simultaneously assessed. This will in-

volve consideration of the control group event rate, the expected efficacy of the 

intervention being studied, and the statistical power of the evaluation for each of the 

primary endpoints.17

One useful strategy to follow in allocating  differentially across the pro-

spectively specified primary endpoints of a clinical study is to first have the 

investigators carefully consider the clinical/epidemiologic determinants of the sam-

ple size formulation, i.e., the control group event rate and the proposed efficacy of 

the clinical trial intervention. Investigators should choose measures of event rates 

which are both accurate and allow for enough events to occur in the research sam-

ple, since the greater the cumulative control group event rate, the smaller the 

sample size, and the more flexibility there is in choosing a test-specific  of a rea-

sonable level. Investigators should also carefully select efficacy levels. Advice for 

this can be found in several sources, notably [10], [14], [15], Although it is com-

monly assumed that efficacy levels should be the same across endpoints, this is not 

the only justifiable assumption. 

After the endpoint control group event rates have been carefully selected, 

and the efficacy levels chosen, the investigator along with his statisticians and epi-

demiologists should examine different test-specific  error levels in combination 

with different power assumptions to provide the best control of the familywise error 

level and appropriate power for the hypothesis test. The remainder of this chapter is 

devoted to developing the skill to choose the relative levels of  error rates, and the 

skill in interpreting the results. In developing this concept and the process by which 

type I error levels are allocated prospectively, we will go through several different 

design scenarios for a single clinical trial’s coprimary endpoints until we discover 

the correct combination of design parameters and statistical errors that allows us to 

                                                          
17

A brief primer on sample size computations is provided in Appendix D. 
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consistently work within the principles of prospective design and confirmatory sta-

tistical hypothesis testing, all the while remaining relevant to the waiting medical 

and regulatory communities.  

4.9.3 Example 1: Different Community Standards  
As stated earlier, clinical investigators should be involved in the a priori  error 

level allocation decisions in a clinical trial. This is because the type I error level is 

an important consideration in determining the benefit patients will receive from the 

randomly allocated intervention. The likelihood that the intervention may not be 

effective in the patient population (which is measured by the type I error rate) is an 

important ingredient in the risk–benefit evaluation of the intervention when 

weighed by regulatory agencies in particular and the medical community in general.  

 However, it must also be acknowledged that some endpoints are more per-

suasive than others. An endpoint can be so influential that the medical community 

is willing to accept an increased risk of a type I error (keeping in mind that the 

magnitude of the effect size and its standard error must also be jointly considered in 

drawing a conclusion about the therapy’s effect). Other less persuasive endpoints 

require a smaller type I error level before the result of the study is accepted.  

 Consider the following situation. An investigator is interested in conduct-

ing a clinical trial to determine the effectiveness of a medication for the treatment 

of patients with moderate to severe CHF. She thinks she will be able to recruit 4500 

patients for this study. During the design phase of the study, numerous discussions 

take place concerning the endpoints to be measured in this clinical trial. Upon com-

pletion of the endpoint triage process, she settles on two primary endpoints, (1) the 

combined endpoint of total mortality or hospitalization for CHF and (2) the increase 

in patient activity level. 

 In this clinical trial, the total mortality/hospitalization primary endpoint 

will be rigorously collected. Relevant information for all deaths will be amassed. 

For each patient who is hospitalized during the course of the study, hospitalization 

records will be obtained and reviewed by a team of specialists in the treatment of 

CHF. These specialists will review this information to determine if the principal 

reason for the hospitalization episode was CHF.  

It is expected that most of the patients who are recruited into the study and 

followed until the study’s completion will not present paperwork describing a hos-

pitalization during the course of the trial. In these circumstances, the clinical trial 

investigators will contact the patients to assure themselves that in fact no hospitali-

zation took place that the investigators may have missed. This additional step will 

avoid undercounting the number of patients who were hospitalized for CHF during 

the study. These determined efforts by the trial investigators will produce a precise 

estimate of the incidence rate18 of CHF hospitalizations during the course of the 

trial.

                                                          
18

The incidence rate is the number of new cases of the event of interest for a specified time 

period divided by the number of patients at risk of having the event. This is distinguished 

from the prevalence rate, a quantity  that integrates both the new cases (incident cases) with 

the old cases (background cases). In the example being discussed, the prevalence measure of 
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The second primary endpoint relies on the patient’s own measurement of 

their self-perceived change in activity level over the course of the study. Patients at 

the beginning of the trial will first measure their own activity level using a specially 

developed questionnaire, then measure it again at the study’s conclusion when the 

patient’s exposure to the study medication (active or placebo) is completed. The 

investigator believes changes in activity level are very important to patients with 

CHF, and that this measure of change as assessed by the questionnaire’s metric is 

an important tool for estimating the effectiveness of the therapy from the patient’s 

perspective.  

After initial discussions about endpoint event rates in the control group 

and the effectiveness of the intervention being studied in the clinical trial, the inves-

tigators are able to compute an initial estimate of the sample size required (Table 

4.3). This reflects no attempt to control the familywise error level. The computa-

tions for sample sizes for each of the endpoints in this table merely mark the 

starting point for the computations that will reflect alterations in the test-specific 

levels. The trial designers have determined that the cumulative event rate for the 

combined endpoint of total mortality/CHF hospitalization in the control group is 

25%, and that the reduction that they believe will be the minimum reduction that 

justifies the use of the therapy in the population of patients with CHF is 20%. The 

investigators then divide type I error levels equally between the two primary end-

points (Table 4.4).  

Table 4.3. Alpha allocation, Example 1: First design scenario.

Endpoints Cumulative Efficacy Alpha Power Sample 

control group (two-tailed) size

event rate

Total mortality or CHF hosp 0.25 0.20 0.05 0.90 2921

Activity level increase 0.20 0.20 0.05 0.90 3867

With no concern for the family wise error rate, the maximum sample size is less than 3900.

Their first attempt at this allocating the type I error is based on a simple 

Bonferroni computation. With K = 2 endpoints, the type I  to be prospectively al-

located to the two analyses is 0.025. This allocation will increase the sample size 

for each of the statistical hypothesis tests, assuming that there is no simultaneous 

change in the cumulative control group event rate, or the efficacy. At this point in 

the sample size computations and from this point forward, the event rates and hy-

pothesized effectiveness of the intervention are fixed. All remaining changes in the 

sample size parameters are based on the statistical error rates.  

                                                                                                                               

CHF hospitalizations would include those patients in the study who were hospitalized during 

the study (new hospitalization) plus those who had been hospitalized in the past for heart 

failure before the study. Incidence cases are the more relevant to measure in a clinical trial 

because only the occurrence of incident cases would be influenced by the study intervention.
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Table 4.4. Alpha allocation, Example 1: Second design scenario.

Endpoints Cumulative Efficacy Alpha Power Sample 

control group (two-tailed) Size

event rate

Total mortality or CHF hosp 0.25 0.20 0.025 0.90 3450

Activity level increase 0.20 0.20 0.025 0.90 4567

The result of the equal apportionment of alpha error rates across the two primary 

endpoints of the clinical trial.

The notion that the test-specific type I error should be equal between the 

two endpoints must now be addressed. There are important differences between 

these two primary endpoints. The second primary endpoint that measures the 

change in activity over time for patients with CHF, while informative, may be less 

widely accepted. Its implications are less clear, and it may not be measured very 

precisely. Thus, the medical community may require a smaller type I error level 

(everything else being equal) before they are persuaded that the medication has a 

beneficial effect on this less dominant primary endpoint.  

 We should note that the smaller type I error probability for the activity 

level endpoint is not useful in and of itself; it is useful only for what it implies. 

With everything else about the design of the study being the same, a smaller type I 

error probability indicates a greater effect size. It is this larger magnitude of effect 

that the medical and regulatory community require from this new endpoint. The less 

experience that these communities have with the endpoint, the greater the effect of 

the randomly allocated therapy on that endpoint must be in order to carry important 

persuasive weight. The smaller p-value is just a reflection of this observation. 

To the contrary, the total mortality/hospitalization for CHF endpoint has 

been established as an influential endpoint by regulatory agencies. It is easy to un-

derstand. Even though the criteria for hospitalization may be regional, there is no 

doubt that a hospitalization for CHF is serious and something to be avoided. In ad-

dition, the investigators will go to great lengths to assure that the CHF 

hospitalization endpoint will be measured accurately, working patiently and dili-

gently to ensure that both overcounts or undercounts are avoided. The traditional 

upper bound for a primary endpoint in clinical trials is 0.0519 and the medical com-

munity would not require a lower level as an upper bound for acceptable type I 

error level. The investigators therefore chose to allocate a greater type I error level 

to this combined endpoint (Table 4.5).  

                                                          
19

See the discussion in Chapter 1.  
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Table 4.5. Alpha allocation, Example 1: Third design scenario.

Endpoints Cumulative Efficacy Alpha Power Sample 

control group (two -tailed) Size

event rate

Total mortality or CHF hosp 0.25 0.20 0.03 0.90 3312

Activity level increase 0.20 0.20 0.02 0.90 4790

First attempt at differentially allocating type I error.

Continuing this development, the investigators consider allocating an even greater 

type I error level to hospitalization for CHF (Table 4.6). 

Table 4.6. Alpha allocation, Example 1: Fourth design scenario.

Endpoints Cumulative Efficacy Alpha Power Sample 

control group (two-tailed) Size

event rate

Total mortality or CHF hosp 0.25 0.20 0.04 0.90 3093

Activity level increase 0.20 0.20 0.01 0.90 5476

The community is willing to bear a greater type I error for the hospitalization primary

endpoint than for the exercise tolerance primary endpoint.

This further reduction in the  error level for the increased activity primary 

endpoint has increased the sample size for its hypothesis test to more than the 4500 

subjects the investigator believes she will be able to recruit for the clinical trial. 

However, since the minimum power for the primary endpoints is 80%, she chooses 

to reduce the power for this second primary endpoint (Table 4.7). 

Table 4.7. Alpha allocation, Example 1: Fifth design scenario.

Endpoints Cumulative Efficacy Alpha Power Sample 

control group (two-tailed) Size

event rate

Total mortality or CHF hosp 0.25 0.20 0.04 0.90 3093

Activity level increase 0.20 0.20 0.01 0.80 4298

A prospective decrease in power to 80% for the exercise tolerance endpoint keeps the 

power at an acceptable level but reduces the sample size to less than 4500.



4.9 Tactic 2: Differential  Allocation                                                      135

At this point, each of the design criteria for these two analyses have been 

satisfied. The endpoints will be interpreted at their own test-specific  levels, con-

serving the familywise error level at no more than 0.04 + 0.01 = 0.05. In addition, 

the sample sizes for each of the evaluations allow a statistical test for each primary 

endpoint with adequate power. The trial will be considered positive if the interven-

tion has a statistically significant effect on either the combined endpoint or the 

measurement of activity level.  

4.9.4 Example 2: The Underpowered Environment 
One easily anticipated scenario for the allocation of type I error levels among 

several different primary endpoints is the situation in which one of those primary 

endpoints retains much clinical interest but suffers from a statistical power shortage. 

Managing familywise error levels in this setting is especially useful since it can 

produce not only confirmatory statistical hypothesis testing for the highly powered 

primary endpoints but, in addition, also ensure that a surprisingly strong effect of 

the intervention for the underpowered endpoint can be interpreted in a confirmatory 

and not exploratory light. 

In this example, a clinical trial investigator is interested in carrying out a 

clinical trial to demonstrate the effect of a new “superaspirin” on patients who are 

at risk of having a future myocardial infarction (MI). The known risks of this medi-

cation (rash, diarrhea, ulcers, rare neutropenia) are well known to the regulatory and 

medical community. The benefits of this drug have not yet been assessed. The in-

vestigators wish to recruit patients into the study who are at risk of future ischemic 

cardiovascular disease, anticipating that they will be able to recruit 4000 patients 

for this study. The inclusion criteria for the study are patients who have a docu-

mented history of either (1) a prior MI, (2) a prior stroke, (3) peripheral vascular 

disease, (4) diabetes, or (5) hypertension.20

 After completing the endpoint triaging process, the investigator settles on 

two primary endpoints for this clinical trial: (1) fatal and nonfatal MI and (2) total 

mortality. The familywise error level for the study  = 0.05. Since these are each 

primary endpoints, the investigator must now allocate an  error probability to each 

one. He begins with a preliminary examination of the sample sizes required for 

each (Table 4.8). For this preliminary evaluation, the two-sided type I error rate al-

location for each hypothesis test is at the 0.05 level, and the power is set at 80%. 

The investigator recognizes that Table 4.8 does not preserve the familywise error 

level  at 0.05; he just wants to begin the evaluation of the implications of  alloca-

tion for each of the two primary endpoints. He is comfortable with the choice of 

25% efficacy for each of the endpoints. The required sample size for the fa-

                                                          
20 Choosing patients with a risk factor for future ischemic cardiac disease will produce a co-

hort with a relatively higher rate of endpoint occurrence than would be seen from a cohort of 

patients with no risk factor for ischemic disease. This higher cumulative incidence endpoint 

rate will decrease the required sample size and the cost of the study (Appendix D). A criti-

cism of this useful approach is that if the study is positive and the superaspirin is approved 

by the FDA, the indication for the drug will most likely not include the large target popula-

tion of all adult patients regardless of the presence of ischemic disease, but the smaller 

population of those with a documented risk factor for future ischemic cardiovascular disease.



136 4. Multiple Analyses and Multiple Endpoints 

tal/nonfatal MI component is 4004, while that for the second co-primary endpoint 

of total mortality is 14,262. This large difference in the sample sizes is due to the 

difference in the cumulative event rates of the two primary endpoints.21 The re-

quired sample for the fatal/nonfatal endpoint is one that the investigator believes 

can be achieved. However the sample size required for the total mortality endpoint 

greatly exceeds his ability to recruit patients.  

Table 4.8. Alpha allocation, Example 2: First design scenario.

Endpoints Cumulative Efficacy Alpha Power Sample 

control group (two-tailed) size

event rate

Fatal/nonfatal MI 0.10 0.25 0.05 0.80 4004

Total mortality 0.03 0.25 0.05 0.80 14,262

Substantially more patients are required for the total mortality endpoint then for the 

fatal/nonfatal MI endpoint even without conservation of family wise error rate.

If the investigator were to allocate  based on (4.14) each of two endpoints 

would have a type-specific error level of 0.05/2 = 0.025. Computing the required 

sample for size for each of the two primary endpoints can be recomputed using this 

 error level (Table 4.9). 

Table 4.9. Alpha allocation, Example 2: Second design scenario.

Endpoints Cumulative Efficacy Alpha Power Sample 

control group (two-tailed) Size

event rate

Fatal/nonfatal MI 0.10 0.25 0.025 0.80 4848

Total mortality 0.03 0.25 0.025 0.80 17,271

Even allocation, of the type I error.

From Table 4.9,  is preserved at the 0.05 level. However, the sample size 

for the fatal/nonfatal MI has increased from 4004 to 4878, a sample size that the 

investigator cannot achieve. The sample size for total mortality has increased to 

17271 when the -specific error level decreased from 0.05 in Table 4.8 to 0.025 in 

Table 4.9.  

 From Tables 4.8 and 4.9, the investigator sees that either nominal testing 

or  conservation allows him to carry out a hypothesis test with adequate power for 

                                                          
21

Since the cumulative mortality rate is low for this trial, deaths will occur infrequently. 

Therefore, more patients will be required to get sufficient events in order to keep the type I 

error level at the 0.05 level.
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the fatal/nonfatal MI endpoint. However, the total mortality endpoint is completely 

underpowered for either a test-specific  of 0.05 or one of 0.025. The investigator 

desires to be able to test each of the primary endpoints with sufficient power but 

clearly has no real opportunity in either scenario to have appropriate power for the 

total mortality endpoint. Allocating  equally for each of two endpoints allows him 

to test neither with appropriate power with the attainable sample of 4000.  

 The investigator can retain the ability to have an adequate sample size to 

carry out a hypothesis test for the fatal/nonfatal MI component however, and still 

retain some ability to execute a hypothesis test for total mortality as demonstrated 

in the next computation (Table 4.10). In this case, the  error level is allocated un-

equally with the preponderance of the 0.05 rate assigned to the fatal/nonfatal MI 

component, and only 0.005 assigned to the total mortality endpoint. The sample 

size required for the fatal/nonfatal MI primary endpoint is 4132, close to the 4000 

patients that the investigator believes can be recruited for the study. With this com-

putation, the investigator acknowledges that he has no opportunity to carry out an 

appropriately powered evaluation of the total mortality endpoint (Table 4.10).  

Table 4.10. Alpha allocation, Example 2: Third design scenario.

Endpoints Cumulative Efficacy Alpha Power Sample 

control group (two-tailed) Size

event rate

Fatal/nonfatal MI 0.10 0.25 0.045 0.80 4132

Total mortality 0.03 0.25 0.005 0.80 24,187

Evaluation of the total mortality component will be underpowered if 4132 patients will be 

recruited into this study

The medical community would be satisfied with an  specific error prob-

ability of 0.05 or less for the fatal/nonfatal MI component. In its view, this level of 

 error is sufficient to provide evidence of benefit of the intervention for this clini-

cal consequence.  

However, several comments must be made about the total mortality 

evaluation. First, it will clearly be underpowered if it is based on the assumptions 

from Table 4.10. Under this setting, if the hypothesis test for total mortality was 

carried out but did not fall in the critical region (i.e., the test was neither positive 

nor negative), then the finding cannot be considered null, but uninformative—the 

clinical trial did not exclude the possibility that in the population of patients (from 

which the sample of 4000 patients was obtained) there may be an effect on mortal-

ity, but through the play of chance a sample was provided that did not provide 

evidence of an effect on total mortality.22 The hypothesis test on total mortality only 

contributes to the fund of knowledge about the benefit of the medication if the find-

ing is positive.23

                                                          
22

This would be a beta, or type II error.
23

The hypothesis test for total mortality would also be confirmatory if it was negative, indi-

cating harm.
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However, the possibility of a positive finding must also be examined care-

fully. According to Table 4.10, the finding for the total mortality endpoint would 

only be considered positive if the p-value at the study’s conclusion for the hypothe-

sis test for total mortality is less than 0.005. This might at first glance appear to be 

an exceedingly high threshold for a positive finding. However, this low p-value is 

not unreasonable for this particular clinical trial setting. Although of the two pri-

mary endpoints, the total mortality endpoint is the most persuasive, this persuasive 

power is sapped by a tepid beneficial mortality effect in this relatively small sam-

ple. The risk reduction for total mortality must itself be overwhelming in this 

relatively small sample size. If the investigator’s prediction for the occurrence of 

mortal events is accurate, and the trial were to recruit 14,362 patients (from Table 

4.8), then we could approximate the number of deaths to occur in the trial as 

0.03(14,362) = 430 deaths. This is a substantial number of deaths, and the regula-

tory and medical communities have demonstrated that conclusions based on this 

large number of deaths is sufficient evidence on which to base a confirmatory con-

clusion for total mortality.  

However, if instead of 14,362 patients, only 4000 patients are randomized, 

then the expected number of deaths would be (0.03)(4,000) = 120 deaths. This is 

not many deaths at all on which to base a finding for total mortality. Stated another 

way, the total mortality risk reduction produced by the medication would have to be 

huge for the regulatory and medical community to draw a confirmatory conclusion 

from the positive total mortality hypothesis test based on only 120 deaths. This is 

the message the investigators convey by choosing an -specific level of 0.005.  

Taken to another level, the investigators can allocate all but a negligible 

fraction of  error level on the fatal/nonfatal MI endpoint (Table 4.11). Here, the 

overwhelming portion of type I error rate is allocated to the fatal/nonfatal MI pri-

mary endpoint, with only 0.001 allocated for the total mortality endpoint. This 

keeps the sample size of the study in the achievable range, with adequate power for 

the fatal/nonfatal MI evaluation, but inadequate power for the total mortality end-

point.  

Table 4.11. Alpha allocation, Example 2: Fourth design scenario.

Endpoints Cumulative Efficacy Alpha Power Sample 

control group (two-tailed) Size

event rate

Fatal/nonfatal MI 0.10 0.25 0.049 0.80 4028

Total mortality 0.03 0.25 0.001 0.80 31,020

Familywise error rate control retains the smaller sample size for fatal/nonfatal

MI and will conceed the low power evaluation for the total mortality endpoint. 

A reasonable question to ask at this point is, if the total mortality endpoint 

is so dramatically underpowered (using the results from Appendix D, the power for 

the total mortality endpoint is only 4%!) what is the advantage of even declaring the 

total mortality endpoint as a primary endpoint? Why not instead leave it as secon-
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dary or even exploratory? The advantage is based in the investigator’s belief that 

the medication may in fact demonstrate a benefit for total mortality that would be 

strong enough to make its presence known even with the small sample size. If the 

hypothesis test for total mortality were to be strongly positive but total mortality 

was a secondary or exploratory endpoint, the study could not be considered positive 

since no  was allocated prospectively.24 However, prospectively declaring total 

mortality a primary endpoint and allocating a type I error level to its hypothesis test, 

permits the study to be considered positive when such an overwhelming total mor-

tality benefit is observed. Allocating a small percentage of  to a persuasive but 

underpowered endpoint preserves the ability to draw a confirmatory, positive con-

clusion about the finding, an ability which is lost if no  is allocated prospectively.  

4.9.5 Example 3: Efficacy Reconsideration 
In the previous example there were only two primary endpoints to consider. How-

ever, the following, more complex clinical question involves the treatment of 

isolated systolic hypertension. The purpose of this clinical trial is to examine the 

effect of antihypertensive medications in patients with borderline elevations in sys-

tolic blood pressures but with diastolic blood pressure less than 90 mm Hg. The 

investigators have considerable resources for this study, and believe that they can 

recruit 15,000 patients and follow them for seven years. However, the candidate 

patients for this trial will be relatively risk free with few patients having a history of 

cigarette smoking, diabetes, prior MI or prior stroke. Thus, the event rates for these 

patients will be relatively low, prolonging the duration of patient follow-up.  

 In the design phase of this study, the investigators have many candidate 

endpoints for the study distributed among biochemical markers, clinical endpoints, 

and endpoints which measure changes in cognition. These clinical trialists inten-

sively labor to settle on a small number of primary endpoints, but can agree in the 

end to no less than five primary endpoints. They are (1) fatal and nonfatal stroke, 

(2) fatal and nonfatal myocardial infarction (MI), (3) CHF, (4) coronary artery dis-

ease (CAD) death, and (5) total mortality. The major interest is in fatal/nonfatal 

stroke, but important attention will be focused on the remaining four primary end-

points as well. The daunting task before these investigators is to allocate type I error 

among these endpoints, taking advantage of other aspects of these endpoints that 

would make a 15,000 patient trial justifiable.  

Each of these endpoints is important, and the investigators are anxious to 

be able to make confirmatory statements about the effect of isolated systolic blood 

pressure control for each of them. To begin the process, these investigators collect 

event rate information and perform some initial sample size computations making 

no initial attempt to control the familywise error level  (Table 4.12). The relatively 

low event rates for these endpoints have produced some fairly large sample sizes. 

The calculation for CAD death is particularly worrisome, since its preliminary 

sample size is over 22,000 patients without any adjustment yet for the familywise 

error level.  

                                                          
24

See the discussion in Chapter 2.



140 4. Multiple Analyses and Multiple Endpoints 

Table 4.12. Alpha allocation, Example 3: First design scenario.

Endpoints Cumulative Efficacy Alpha Power Sample 

control group (two -tailed) Size

event rate

Fatal/nonfatal stroke 0.090 0.20 0.05 0.90 9649

Fatal/nonfatal MI 0.100 0.20 0.05 0.90 8598

CHF 0.080 0.20 0.05 0.90 10,963

CHD death 0.040 0.20 0.05 0.90 22,789

Total mortality 0.060 0.20 0.05 0.90 14,905

A first examination of the sample sizes for each endpoint without conservation of familywise

error rate.

The investigators approach the ultimate  level adjustments in two phases. The first 

phase focuses on the clinical assumptions contained in Table 4.12 which will sup-

port the statistical hypothesis tests to be carried out at the trial’s conclusions. There 

is no way of course to adjust the cumulative control group event rates once the 

population for which the research sample is to be obtained has been chosen. How-

ever, the examination of efficacy levels across these five primary endpoints does 

bear some examination during the design phase of the study.  

A common assumption in carrying out sample size computations and 

comparisons across candidate endpoints during the design phase of the trial is that 

efficacy levels are equal for each of the endpoints. However, there is no theoretical 

justification for the assumption of efficacy uniformity. In this particular scenario, an 

argument can be made that the efficacy levels for CAD death and total mortality 

should be higher. The low cumulative control group event rate for each of these two 

mortal endpoints is very low, implying that few deaths are expected during the 

course of the trial. This small number of deaths suggests that if the trial is to dem-

onstrate persuasive findings for the effect of antihypertensive therapy on a small 

number of endpoints, these findings must reflect a particularly potent reduction in 

the cumulative incidence of these endpoints. With this as justification, the investi-

gators prospectively choose an efficacy level of 25% for each of the relatively rare 

mortal primary endpoints, recomputing their sample size (Table 4.13).25

                                                          
25

The decision to change efficacy levels during the design phase of the trial should not be 

taken lightly. This concept is discussed in detail in Chapter 11. 
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Table 4.13. Alpha allocation, Example 3: Second design scenario.

Endpoints Cumulative Efficacy Alpha Power Sample 

control group (two -tailed) Size

event rate

Fatal/nonfatal stroke 0.090 0.20 0.05 0.90 9649

Fatal/nonfatal MI 0.100 0.20 0.05 0.90 8598

CHF 0.080 0.20 0.05 0.90 10,963

CHD death 0.040 0.25 0.05 0.90 14,190

Total mortality 0.060 0.25 0.05 0.90 9,285

Decrease in CHD Death and total mortality endpoints by increasing efficacy from 20%

to 25%.

 The investigators are now ready to control the familywise error level for 

the five primary endpoints of this study. The investigators choose to place a greater  

type I error rate on the fatal/nonfatal stroke endpoint, as this has been the single 

primary endpoint of a previous study evaluating the effect of therapy on isolated 

systolic hypertension in the past  [2]. The investigators also wish to place as much 

additional test-specific  error level on the statistical hypothesis test for the total 

mortality primary endpoint. Allocating a type I error level in this fashion has a 

predictable and dramatic effect on the sample sizes for each of the primary 

endpoints. Leaving all other considerations the same, decreasing the type I error 

level will increase the sample sizes for each of the primary endpoints, inflating the 

sample size to profound levels for some of them (Table 4.14). However, sample 

sizes for the fatal/nonfatal stroke primary endpoint, fatal/nonfatal MI endpoint, and 

the total mortality endpoint, although larger, are still within the 15,000 patient 

sample size which is the sample size the investigators will be able to recruit. 

However, sample sizes for the remaining three primary endpoints exceed this cap.  

Table 4.14. Alpha allocation, Example 3: Third design scenario.

Endpoints Cumulative Efficacy Alpha Power Sample 

control group (two -tailed) Size

event rate

Fatal/nonfatal stroke 0.090 0.20 0.0250 0.90 11,954

Fatal/nonfatal MI 0.100 0.20 0.0050 0.90 13,678

CHF 0.080 0.20 0.0050 0.90 17,440

CHD death 0.040 0.25 0.0050 0.90 22,573

Total mortality 0.060 0.25 0.0100 0.90 13,147

Increase in sample size by conserving the familywise error rate.

 One last additional prospective procedure that can be used to provide an 

acceptable sample size for each of these five primary endpoints is an adjustment in 

the power. The minimal acceptable power in clinical trials is 80%. Since this is a 

minimum, and the investigators desire the maximum power possible, only the 
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power for each of CHF, CAD death, and total mortality are each reduced (Table 

4.15).  

Table 4.15. Alpha allocation, Example 3: Fourth design scenario.

Endpoints Cumulative Efficacy Alpha Power Sample 

control group (two -tailed) Size

event rate

Fatal/nonfatal stroke 0.090 0.20 0.0250 0.90 11,954

Fatal/nonfatal MI 0.100 0.20 0.0050 0.90 13,678

CHF 0.080 0.20 0.0050 0.80 13,887

CHD death 0.040 0.25 0.0050 0.80 17,974

Total mortality 0.060 0.25 0.0100 0.80 10,318

Final reduction in sample sizes by selectively decreasing the power.

 We are now at the conclusion of this process. Each of these endpoints is 

evaluated in such a fashion that the familywise error level is preserved. For four of 

these endpoints, there is adequate power for a sample size of 15,000. For the CAD 

death endpoint, power is reduced.26 In doing so, the contribution of each of the 

primary endpoints was considered. The type I error level for the three endpoints

fatal/nonfatal MI, CHF, and CAD death are each low (0.005 level). However, since 

the investigators insisted on five endpoints, this low level on some of the five 

endpoints was required. The investigators also insisted on increasing the efficacy 

for CAD death and total mortality to 25%, being motivated by the low cumulative 

control group event rate for each of these mortal endpoints.  

 The proposed solution in Table 4.15 is not the only solution. As an 

alternative, the investigators could have chosen the strategy of decreasing the power 

for the fatal/nonfatal MI component, permitting a smaller fatal/nonfatal MI test-

specific  error level. This maneuver would permit a greater  level error level for 

the CAD mortality endpoint, thereby increasing the power to the 80% level for this 

mortal endpoint. The point of these exercises is to demonstrate that the use of 

design parameters of the experiment can be implemented to allow confirmatory 

hypothesis tests of several different primary endpoints. There may be many 

prospective paths to this goal. Arguments have been voiced to increase the 

familywise error level in clinical trials as well [16]. 

 One undeniable observation in this scenario is that these five endpoints are 

not independent, and that information about the result of one hypothesis test will 

provide new information about another hypothesis test. If taken into account, these 

hypothesis test dependencies could produce a substantial reduction in the family-

wise error level expended. The implications of these dependencies is the topic of 

Chapter 5.  

                                                          
26 The actual power for the CAD death endpoint with the cumulative endpoint event rate, 

efficacy , and in Table 4.9 for a sample size of 15,000 is 70%. 
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4.9.6 Example 4: Multiple Endpoints
The idea of allocating  differentially across a selection of primary endpoints can at 

first appear to be an unwarranted burden. However, it must be recognized that in-

vestigators, by taking the more customary tack of choosing a single primary 

endpoint on which the entire type I error level is to be placed, have the burden of 

choosing the single best endpoint on which they will pin all of their hopes for a 

successful study. This is a very difficult decision; however, the a priori design of an 

experiment requires precisely this level of prospective thought. Unfortunately, even 

when the best efforts of clinical scientists lead to the prospective selection of a 

clinical trial’s sole primary endpoint, the investigators can still get it wrong in the 

end. Consider the circumstance of the Assessment of Treatment with Lisinopril and 

Survival (ATLAS) trial [17].  

One of the therapies for the treatment of CHF is the use of ACE-i therapy. 

These therapies had been demonstrated to reduce the incidence of total mortality in 

randomized controlled clinical trials [18], [19]. However, while these clinical trials 

studied ACE inhibitor therapy at relatively high doses, practicing physicians have 

chosen to use ACE inhibitor therapy at lower doses for their patients. No clinical 

trial had ever tested the wisdom of this approach. The ATLAS trial was designed to 

test the efficacy of low-dose ACE inhibitor therapy (Lisinopril) when compared to 

high-dose Lisinopril therapy. Patients with either NYHA class II–IV heart failure 

and LVEFs of less than 30% despite treatment with diuretics for more than two 

months were eligible for the study.  

 There are many candidate endpoints to measure in patients with heart fail-

ure. Possible variables include a plethora of echocardiographic measures, cost 

effectiveness measures, quality of life measures, clinical measures of morbidity, 

and mortality. The investigators were accomplished physician-scientists who were 

skilled in the treatment of heart failure, and worked diligently to settle on the end-

points of the study. These researchers chose the cumulative incidence of all-cause 

mortality as the primary endpoint of ATLAS. In addition the ATLAS investigators 

chose four secondary endpoints: (1) cardiovascular mortality, (2) cardiovascular 

hospitalization, (3) all-cause mortality combined with cardiovascular hospitaliza-

tion, and (4) cardiovascular mortality combined with cardiovascular hospitalization.  

The trial commenced in October 1992, and recruited 3164 patients who 

were randomly assigned to either the low-dose or the high-dose therapy. An inde-

pendent DSMB was constituted at the start of the study to periodically examine the 

interim results of the trial. This board was authorized to suggest that the trial be 

prematurely terminated if the treatment effect demonstrated either greater than an-

ticipated benefit or hazard in the two treatment arms. However, during the course of 

the trial, the Steering Committee reopened the issue of endpoint selection for 

ATLAS. This committee chose to make a midcourse change in the endpoints se-

lected for the trial, by adding a single endpoint; all-cause mortality and all-cause 

hospitalization.27 However, a midtrial examination of the data suggested that the 

cumulative mortality rate was lower than anticipated. The steering committee now 

                                                          
27

A patient is considered to have met this endpoint if they either (1) die or (2) survive and 

are hospitalized.
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considered changing the primary endpoint, replacing the prospectively specified 

primary endpoint of cumulative total mortality with the new all-cause mortality/all-

cause hospitalization combined endpoint. However, they instead chose to designate 

this new endpoint as a special secondary endpoint, one that would receive priority 

over prospectively selected secondary endpoints. These discussions point out the 

difficulty of choosing the “best” single primary endpoint.  

With this change in endpoints, ATLAS proceeded until its conclusion, at 

which time the results of the study were announced. ATLAS reported a null finding 

for the primary endpoint of the study (Table 4.16).  The finding for the primary 

endpoint of total mortality was null. There was no (nominal) statistical significance 

for the secondary endpoint of cardiovascular mortality. However, the findings for 

the prospectively defined secondary endpoint of total mortality/cardiovascular hos-

pitalization and for the a priori secondary endpoint cardiovascular 

mortality/cardiovascular hospitalization was nominally positive. The added end-

point of all-cause mortality/all-cause hospitalization had a nominal p-value of 

0.002. 

How should this trial be interpreted? From a strictly  error level point of 

view, ATLAS is null. This is because a type I error rate was allocated only to the 

single primary endpoint of total mortality and the p-value for the effect of therapy 

exceeds the prospectively allocated 0.05  error level. If one argues, alternatively, 

that the study should be considered positive for the added endpoint of all-cause 

mortality and all-cause hospitalization, then how could we unambiguously compute 

the type I error rate for this beneficial effect? 

Table 4.16. Results of the ATLAS study.

Endpoints Prospective Alpha Risk P  value

allocation, reduction

Primary endpoint

Total mortality 0.05 8% 0.128

Secondary endpoints

Cardiovascular mortality 10% 0.073

Cardiovascular hosp. 16% 0.050

Total mortality / CV hosp* 8% 0.036

CV mortality / CV hosp. 9% 0.027

Added endpoint

All-cause mort / all-cause hosp. 12% 0.002

*CV=Cardiovascular: Hosp = Hospitalization

A priori distibution of alpha across the prospectively specifid endpoints could 

have been useful.
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There is no question about the strong finding of the effect of therapy for 

this added endpoint in the sample. The important question is can this finding be 

generalized to the population from which the sample was obtained? It is not as sim-

ple as reporting  p = 0.002, a reasonable strategy only if the endpoint and its  level 

had been chosen prospectively.28 If we instead invoke (4.10), we would see that E = 

0.05 + 0.002 which is greater than 0.05.  

The unfortunate fact is that the investigators gained nothing by adding this 

endpoint to ATLAS during the course of the trial—it might as well have been 

added as exploratory endpoint at the end of the study, requiring confirmation from a 

later trial. This trial is a null trial despite even the findings for the prospectively 

specified secondary endpoints because all of the prospective type I error rate were 

placed in the single primary endpoint of total mortality.  

 Of course it is easy to look back over the course of ATLAS and envision 

an  allocation scheme that would have produced a clearly positive trial; such a ret-

rospective glance is helpful to no one. However, one only need appreciate the 

struggle the ATLAS investigators had in choosing their endpoints to appreciate the 

difficulty in the traditional  allocation process of one primary endpoint/  alloca-

tion decision. The angst in ATLAS was caused by the perceived failure to choose 

the correct single primary endpoint prospectively. This task was itself exceedingly 

difficult to accomplish in ATLAS since each of the candidate endpoints were re-

lated to one another. The ATLAS investigators did the best job they could, even 

going to the extraordinary lengths of adding a mid trial “priority endpoint” only to 

have their results as null at the conclusion of the trial. If  had been allocated across 

several primary endpoints prospectively, there may very well have been concern 

about the  allocation midway through the ATLAS program as well. However, the 

investigators would have had some assurance that they did not have to put all of 

their  “eggs” into a single “basket.” Making a decision as to what apportionment 

of  should be allocated to each endpoint is easier than having to decide which im-

portant endpoints to ignore in the  allocation.   

4.10 Multiple Analyses 
Although the discussion in this chapter has thus far focused on an investigator who 

must choose from a selection of endpoints, the selection process in reality is more 

complex. Investigators who design clinical trials are engaged not just in a multiple 

endpoint selection process but are actually choosing from among multiple analyses. 

Multiple analyses are composed of not only endpoint choices but of classes of dif-

ferent and alternative examinations of the same endpoint. It is the multiple analysis 

issue that appears commonly in clinical trials (Figure 4.3).  

                                                          
28

While it might be argued that the new endpoints of all-cause mortality and all-cause hospi-

talization were not added to the trial after looking at the data for this endpoint, the data was 

examined and demonstrated that the total mortality cumulative event rate was low. If the in-

vestigators had not examined the data, they, in all likelihood, would not have added the new 

endpoint in the middle of the trial.
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Multiple

treatment 

arms
Multiple endpoints

Subgroup evaluations Alternative statistical 

procedures

Figure 4.3.  Different types of multiple analytic scenarios in clinical trials. 

Multiple analyses in clinical trials 

For example, a clinical trial may have chosen one endpoint total 

mortality. However, the clinical trial may have more than two arms, such as a 

control arm and two treatment group arms. In this case, the evaluation of total 

mortality will include its cumulative incidence rate comparisons between the 

control group and each of two active groups. In this situation, there is one endpoint, 

but two analyses. As a second example, a clinical trial with a control group and a 

treatment group may have only one prospectively chosen endpoint. However the 

investigators may wish to compare the effect of the intervention on that endpoint 

not just in the entire research cohort, but also in a subcohort or subgroup of special 

interest, e.g., in women. Again, a clinical trial with only one endpoint has produced 

two different analyses. Finally, in the Glidel example discussed in Chapter 229, the 

issue taken up by the advisory committee was not the concern of which endpoint to 

consider as primary. The topic was which analysis of that endpoint would be 

accepted, the adjusted analysis or the unadjusted analysis.  

4.10.1 Example
One of the consequences of a heart attack that patients commonly face is left ven-

tricular remodeling. Ventricular remodeling is the process by which the left 

ventricle of the heart becomes distorted, misshapen, and dilated because of damage 

to the cardiac muscle. Nitrate therapy had been known to prevent left ventricular 

dilation. This change in the heart’s architecture can lead to left ventricular dysfunc-

tion. In the early 1990s, attention focused on the use of a transdermal nitroglycerin 

                                                          
29 Pages 65–66. 
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delivery system to provide nitrate therapy in a continuous drug delivery system. 

The NitroDur trial was designed to investigate the effects of intermittent, transder-

mal nitroglycerin patch therapy on left ventricular remodeling [20]. The study was a 

prospective, randomized double-blind placebo controlled multi-center trial, with a 

single placebo group and three active treatment groups. The three treatment groups 

delivered nitrate therapy by patch for six months in three doses: 0.4, 0.8, and 1.6 

mg/hr respectively.  

 The endpoints of this study were complex, reflecting the investigators’ in-

terests in the global effects of this therapeutic intervention. The primary endpoint of 

the study was end systolic volume index. The secondary endpoints included end-

diastolic volume index and LVEF. In addition, the NitroDur investigators wished to 

measure mean exercise time at three months of follow-up, as well as a combined 

endpoint that included recurrent MI, development of unstable angina, or the devel-

opment of heart failure requiring revascularization. Each of these endpoints would 

be measured in each of the three treatment groups and the control group.  

 In addition to these endpoint-treatment comparison combinations, a special 

dose response analysis was to be performed for the radionuclide angiographic vol-

ume measures (y) of each of the end systolic volume and the end diastolic volume. 

The mathematical model that was prospectively chosen was  

2

0 1 2 ,y X X                                         (4.19) 

where X represents the dose of nitroglycerin delivered in mg/hr. For each of the two 

volume endpoints, two analyses were to be performed: (1) an analysis that included 

patients in each of the three treatment arms and the placebo group, and (2) an 

analysis with the placebo group removed. Several subgroup analyses were prospec-

tively specified, namely (1) the evaluation of the effect of therapy in patients with 

>40% versus <40% ejection fraction, (2) patients taking or not taking ACE-i ther-

apy, (3) patients on or off beta blocker therapy at baseline, and (4) patients with an 

anterior infarction versus patients with an inferior infarction.  

 Finally, the investigators were interested in determining whether the effect 

of transdermal nitroglycerin on left ventricular volume measurements was transient 

or sustained after the therapy’s discontinuation. Therefore, they intended to meas-

ure end systolic volume, both at the conclusion of the study when nitroglycerin 

patch therapy was discontinued, as well as 2 weeks post nitroglycerin discontinua-

tion. This final post therapy measurement, when compared to the last volume 

measurements while the patient was on therapy, would provide an evaluation of the 

sustainability of the nitroglycerin-induced effect on end systolic volume.  

Thus, in NitroDur the issue of multiple analyses was not limited solely to 

multiple endpoints, but focused equally on alternative analyses of these endpoints, 

comparisons across multiple treatment arms, and subgroup analyses.  

In reality, clinical trial investigators do not choose just primary, secondary, 

or exploratory endpoints, but instead chose primary, secondary, or exploratory 

analyses. The discussion from this point forward will focus on not just multiple 

endpoints in clinical trials, but multiple analyses. 
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4.11 Theory Versus Reality 
The philosophy of the prospective selection of endpoints with the differential allo-

cation of type I error rates, in concert with concordant trial execution, is a useful, if 

not indispensable, theoretical assembly. Its product is an interconnected, cohesive 

experimental unit that guides the conduct of the clinical trial’s analysis. In doing so, 

it also guides the conduct of the trial. However, the executability of this theory is 

commonly threatened by the exigencies of reality. 

 Consider the following example30 of a clinical trial that is designed to 

evaluate the effect of a novel intervention in patients with symptomatic coronary 

CAD. In a randomized, prospective, double-blind clinical trial format, the clinical 

trial investigators plan to assess the effect of injections of a new compound on the 

heart’s ability to utilize oxygen in patients with ischemic cardiac disease. Eligible 

patients are to be selected from a population of patients who suffer from symptoms 

of angina pectoris despite the optimal use of antianginal medication, but who are 

not eligible for immediate percutaneous transluminal coronary angioplasty (PTCA) 

or coronary artery bypass surgery (CABG).  

 Once selected, patients will be randomized to receive either placebo infu-

sion, low-dose infusion, or high-dose infusion of the intervention, with an equal 

number of patients being randomized to each of the 3 groups. These patients will 

then be followed for at least 12 months, and will have clinic visits at 12 weeks and 

12 months. After 12 months of follow-up, the patients will be contacted by tele-

phone to assess the occurrence of significant adverse events every 6 months until 

the last patient randomized completes their 12 month visit. Thereafter, patients will 

be contacted to update their clinical status every year for up to 5 years. 

  The analysis of this clinical trial was prospectively described in detail. 

The investigators designed two primary analyses, for which an  level was assigned 

to each a priori. The first of these primary analyses is an assessment of the patient’s 

quality of life. Each patient completes a quality of life measure at baseline, and then 

at 12 weeks post randomization. The change in quality of life is to be measured for 

each patient; from these changes, a mean change in quality of life will be computed 

for each of the three therapy groups which will then be compared to each other. The 

total type I error rate to be expended upon these comparisons is prospectively set at 

0.035. This analysis we will designate as  primary endpoint P1.

The second primary analysis of this clinical trial was designed to compare 

the percent of patients who had a 20% increase in their quality of life from baseline 

across the three randomized groups. This analysis will be described as primary end-

point P2. A prospectively set  error level of 0.015 was allocated for this 

comparison.  

Additionally, in a secondary analysis, the investigators prospectively 

specified an evaluation of the incidence of the composite endpoint of coronary 

events/all-cause mortality. The incidence of this clinical endpoint was to be com-

pared across the three treatment groups. The criterion for statistical significance for 

                                                          
30The author served as a paid consultant to the sponsor in this example. He has altered some 

of the facts (the nature of the intervention, endpoints) to maintain confidentiality.
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this endpoint was set at 0.05 (nominal significance), as its role was to be only sup-

portive. We will refer to this evaluation as the clinical endpoint analysis.  

This protocol was given to the FDA to review. However, the review was 

not completed until after the trial was well under way. In that review, the FDA 

stated that it was not very comfortable with the second primary endpoint P2. It rec-

ommended that the sponsor change the type I error rate allocation from 0.035 for P1

and 0.015 to P2 to 0.05 for P1; analysis P2 would be reduced to a secondary analy-

sis. In addition, the FDA recommended that the clinical analysis should have its 

status raised from that of a secondary endpoint. While the FDA did not specifically 

state that the type I error rate for the clinical endpoint analysis should be chosen so 

that the familywise error rate was conserved, it did suggest that the sample size of 

the trial should be increased in order to provide more clinical events in the study.   

The investigators are faced with a dilemma here. They want to comply 

with the FDA’s requests, given that the FDA will be the final arbiter of whether the 

investigators’ efforts will result in an intervention that will receive approval. In all 

fairness, the FDA was only trying to be helpful and to provide the best guidance it 

could to the investigators; nevertheless, the FDA’s recommendations were received 

after the trial had started. Effectively, the FDA was asking the investigators to do 

precisely what so many clinical trial investigators have been criticized for doing

changing the endpoint analysis after the trial was under way.  

There are several issues that had to be addressed as the investigators care-

fully considered this delicate matter. One was the issue of timing. As we pointed 

out in Chapter 2, there are critical problems that arise when the incoming data 

stream is allowed to determine the endpoint analysis. But is that the case here? Is 

the study badly damaged if an endpoint is changed for an administrative reason 

early in the trial?  

The first of two concerns that arise when considering an endpoint change 

for administrative reasons is logistical. The final selection of endpoints for a trial is 

not the end but the beginning of an intensely demanding process. Sample size esti-

mates for the trial are based on the characteristics of the primary endpoints that are 

finally selected. Decisions have to be made about the quantity and quality of infor-

mation to be collected, so that the investigators can satisfactorily document that an 

endpoint has occurred. Sometimes, expensive equipment must be purchased and 

calibrated, and the training session initiated to in order to provide assurance to the 

medical community that the endpoint was measured uniformly under a commonly 

occurring set of conditions. Human, logistical, and financial resources must be sup-

plied for this effort. If a decision is made to change the endpoint very early in the 

trial, investigators can divert resources to its measurement. The investigators’  

flexibility is a direct consequence of the fact that these resources have not yet been 

expended. However, the later in the trial that the endpoint event changes are made, 

the less resilience the investigators have, and the more logistically problematic the 

new endpoint’s implementation becomes. 

The second problem is perceptual. The investigators, support staff, DSMB, 

and  sponsor of a clinical trial are united in their desire for the trial to persuade the 

medical and regulatory community of the benefit–risk ratio of the clinical trial’s 

intervention. These workers understand that, while it is common for amendments to 
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be added to the protocol that guides the conduct of the trial, nonprospectively 

planned changes in the analysis plans must be avoided. Such serious perturbations 

raise the suspicions in the medical community about the propriety of the study’s 

conduct. The greater the number of these perturbations, the greater the concern 

about the interpretability of the trial’s results. The medical community understand 

both the temptation that can sometimes drive investigators to change endpoints 

based on incoming data and the resulting confusion that surrounds the trial’s inter-

pretation; the motivations for administrative endpoint changes are somewhat more 

difficult to discern by an outsider who is not intimately familiar with the intricate 

intratrial decision apparatus. Thus, a change in the analysis plan is viewed by out-

siders as an important change that occurred presumably because of the appearance 

of an interesting new pattern in the trial’s data stream regardless of whether this is 

the case or not.  

In addition, the later in the trial the endpoint change is made, the greater 

this perception can become. This is because the longer the trial runs, the greater the 

trial’s experience and the larger its repository of endpoint information. Since, in 

general, large datasets are more persuasive than smaller ones, endpoint changes that 

occur late in the trial, when they can be logistically difficult to achieve, engender 

the perception that they must have been propelled by powerful findings in a large 

and convincing dataset. Thus, the later the endpoint change is made the deeper the 

perception can be that the endpoint change is being driven by the incoming data 

(Figure 4.4). Thus, while an endpoint change after the trial commences may seem 

to be administratively justified, its convincing power is transmitted through a prism 

of perception. In the world of perceptions, it is not enough to be right one must 

also appear to be right. It is difficult for a late endpoint change to appear to be right.  
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Figure 4.4.  Interpretability difficulties increase with late endpoint changes

 Another option to be considered would be to start the study again. While 

this maneuver would remove the concern about the late endpoint change (since the 

new study would incorporate the regulatory recommendations prospectively) other 

obstacles instantly emerge. New patients must be found to replace those subjects 

who had already been randomized. Also, much of the financial commitment to the 

first study could not be recouped. If the study had just started (with only 1% of the 

total number of patients randomized), these concerns would be minor.      

Returning to our initial example, when the FDA provided their advice, ap-

proximately one-third of the total number of patients required for the trial had been 

recruited, and 15% of the total required cohort had been followed for at least 3 

months. Thus, 15% of patients  had or were preparing to have both of the two pri-

mary endpoints measured. In fact, the FDA has received information concerning the 

execution of the trial before they offered their advice. However, the data that the 

FDA had reviewed had only been safety data and not data that revealed any patterns 

of effectiveness. This close examination reveals that the FDA recommendation was 

not based on an evaluation of any efficacy data, i.e., the data were not driving the 

decision. Therefore, since the data from the trial are not being used to make the 

endpoint change, one could technically argue that the analysis plan could be altered 

without converting the planned confirmatory analysis of the primary endpoints to 

an exploratory one.  

 However, such a decision would be tightly nuanced at best. Certainly any 

endpoint change made after the trial had commenced should be viewed with suspi-

cion by the medical community even if the FDA approved (or authorized) the 

change. In addition, while an administrative change in the endpoint may appear to 

be commendable by the current FDA reviewers, future FDA analysts may have a 
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different point of view, and a future FDA advisory committee convened to evaluate 

the trial’s final results may look askance at the proposed endpoint change. Both the 

US Carvedilol program and the CAPRICORN31 trial serve as useful counterexam-

ples to the argument that an adjustment in the endpoint selection and type I error 

levels is justified and leads to an interpretable result.  

The sponsor decided that it would not accept the FDA’s suggestions and 

that it should instead stay with its own prospectively delineated plan. Very careful, 

prudent decisions about the trial’s endpoints were correctly and prospectively de-

cided; these would be undone by midtrial alterations. The clinical trial was studying 

a complicated and new intervention and should not be clouded with a new analysis 

plan that would produce a murky interpretation.  

Problems
1. Why does a clinical trial typically have more secondary endpoints than primary 

endpoints, and more exploratory analyses than primary endpoints or secondary 

endpoints? 

2. Why does the prospective allocation of type I error rate to a secondary end-

point in such a manner that  is conserved convert the secondary endpoint to a 

primary endpoint? 

3. Why does the absence of a prospective allocation of type I error allocation to a 

primary endpoint that is prospectively defined convert the primary endpoint to 

a secondary endpoint? 

4. Are there any circumstances in which  the could be allowed to exceed the 0.05 

level? 

5. A clinical trial is designed with two primary endpoints. The test-specific type I 

error rate for the first primary endpoint P1 is 0.045. Demonstrate that, if the 

for the entire study is 0.05, then the remaining type I error rate for the second 

primary endpoint P2 is 0.0052. 

6. How does the assumption of independence directly effect the distribution of a 

type I error rate among the K different primary endpoints in a clinical trial? 

7. A clinical trial is designed to have four primary endpoints. Without using the 

Bonferroni inequality, devise two different  allocation schemes that conserves 

the familywise error rate at the 0.05 level but provide different test-specific 

type I error rates. 

8. A clinical trialist is troubled by the fact that analyses that are not prospectively 

determined will produce p-values that are uninterpretable. He suggests the fol-

lowing plan. During the design phase of the trial, the familywise error rate is 

divided into a component for the primary endpoints p, and a component for 

the exploratory analyses, x such that the familywise error rate is conserved. 

The type I error x is distributed among three exploratory analyses to be identi-

fied at the trial’s conclusion. Does this approach produce confirmatory 

interpretations for the three exploratory analyses? 

                                                          
31

These were discussed at length in Chapter 2.  
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Chapter 5 

Introduction to Multiple Dependent 
Analyses I 

This is the first of two consecutive chapters that develop the concept of multiple hy-

potheses testing in a clinical trial when the primary analyses are related to each 
other. In this chapter, the problem of allocating a type I error level across a collec-

tion of dependent hypothesis tests within a clinical trial is developed from first 
principles. The concept of a dependency parameter is introduced, and examples are 

provided from the medical literature concerning the prospective development of 

dependent hypothesis tests. Realistic scenarios are presented that allocate  error 
levels in this circumstance. Guidelines and cautions are provided in estimating the 

degree of dependence between the hypothesis tests; concerns about the presence of 

too much dependence (hyperdependence) is addressed. Chapter 6 continues this 
development, and Appendix E provides several more advanced results of this ap-

proach to the problem of multiple dependent statistical analyses. 1

5.1 Rationale for Dependent Testing
While there are several important, almost irresistible benefits that occur from taking 

advantage of the natural relationships between statistical hypothesis tests that are 

prospectively embedded into clinical trials, several traps are present as well. We 

will need to carefully examine this concept of dependence before we can fully and 

safely implement dependent hypothesis testing in clinical trials.  

5.1.1 Review
Chapter 4 developed the principle of  allocation among a subset of endpoint analy-

ses in a clinical trial. A series of endpoint selection steps was offered to guide the 

investigator who must choose from many different candidate endpoints during the 

design phase of a clinical trial. Throughout that process, we have insisted that in-

vestigators should be permitted “the desire of their hearts”; they should be allowed 

to measure all of the endpoints that they believe to be relevant and wish to evaluate. 

This includes the acknowledgment that the investigator will encounter new end-

points during the course of the execution and the analysis of the clinical trial. There 

are only two considerations that should discipline and restrain the investigator in 

this endpoint collection process. The first is that the endpoint should add to the sci-

entific strength of the study. The second consideration is one of logistical 

                                                          
1 Silvia Maberti was very helpful in her review of the content of this chapter.
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constraints. The clinical trial must be able to measure the endpoint with sufficient 

quality so that the evaluation can be firmly fitted between the twin pillars of accu-

racy and precision. 

 After choosing these endpoints, we then required the investigators to triage 

the endpoints into prospectively determined categories of primary, secondary, and 

exploratory endpoints. The exploratory or hypothesis-generating endpoints serve 

not to answer questions but to raise them for evaluation in future research efforts. 

Secondary endpoints are determined prospectively and play a supportive role. The 

primary endpoints are endpoints for which  allocation rates are prospectively set. 

The principle results of the clinical trial will be based on the findings from these 

primary endpoints. The balance of Chapter 4 provided examples of how type I 

rates should be allocated differentially among the primary endpoints of the study to 

conserve the familywise error level, .

5.2 The Notion of Dependent Analyses 
Each of the examples of the distribution of type I error levels among analyses in 

clinical trials in Chapter 4 has provided an allocation under the assumption that the 

hypothesis tests for each of the prospectively selected primary endpoints were inde-

pendent.2 However, in many circumstances these analyses are related to each other. 

This is a concept that will require some discussion.  

5.2.1 The Nature of Relationships  
Most of us have a general understanding of the concepts of dependence versus in-

dependence. However, although these two properties are somewhat intuitive, we 

need to elaborate on their fundamental characteristics. The descriptors “independ-

ence” or “dependence” are properties of a relationship. We don’t ask if the 

occurrence of a cerebrovascular accident was “independent.” We do ask if the oc-

currence of the stroke was related to (i.e., dependent) or independent of the 

patient’s prior use of crack cocaine. The property of independence/dependence de-

scribes the state of the relationship between events.3

 Specifically, at its most fundamental level, independence describes a rela-

tionship between two events that is characterized by the fact that the occurrence of 

one of these events provides no information about the occurrence of the other. An 

observer who notes the occurrence of one event learns nothing about the occurrence 

of the second event if the two events are independent. Consider the thought process 

of a doctor who is examining a patient who may or may not be suffering from lum-

bar nerve root compression. During his examination, the doctor may notice the 

patient’s eye color. However, the observation that the patient’s eyes are brown does 

not influence the likelihood that the patient has sustained a nerve root compression 

                                                          
2 It was the independence assumption that permitted us to write  = 1 – (1 – )K in Chapters 

three and four.  
3 Even when words and expressions such as sovereign, autonomous, self-determination, or 

self-rule are used to describe independence, there is a relationship implied, e.g., sovereign 

from what? 
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injury. Eye color is uninformative about the occurrence of the nerve root injury, and 

knowledge of the patient’s eye color does not affect one way or the other the doc-

tor’s assessment of the patient’s chances of suffering from a nerve root 

compression. We say that the two events of eye color and the appearance of com-

pression of the nerve root are independent of one another.  

 Dependent relationships are quite a bit more complicated. When two 

events are dependent, the observer can gain useful knowledge about the possibility 

that the second event occurred by knowing the first event’s occurrence status. De-

pendent relationships can be very informative—however, the observer must 

understand the nature of the dependency. Specifically, she must know how to apply 

her knowledge of the first event’s occurrence to update, re-evaluate, and thereby 

improve her assessment of the likelihood of the occurrence of the second event.  

 Dependencies between relationships can very rapidly become complicated 

because they can include more than just two events. For example, whether a pas-

senger in a taxi arrives at his destination on time can depend on whether the taxi 

driver knows the route. We can say that the likelihood of an on-time arrival depends 

on (or is conditional on) whether the taxi driver knows the way to the destination. 

However, if the taxi driver does not know the way, the chance of the taxi’s on-time 

arrival can depend on whether the passenger knows the route. Therefore, a more 

realistic assessment of the likelihood that the passenger arrives on time depends on 

both the taxi driver’s knowledge and the knowledge of the passenger. As the num-

ber of events that are “conditioned on” increases, the evaluation of the probability 

of the occurrence of the event of interest improves; however, the complexity of the 

assessment also increases.4

 While clinicians in their day-to-day practice may not formally think of 

events as being dependent, we nevertheless learn to link events in helpful ways. For 

example, a patient admitted to an emergency room complaining of chest pain will 

undergo a diagnostic evaluation that will provide information about the likelihood 

that the patient has suffered an MI. This information includes a complete history of 

the symptoms of the chest pain (e.g., Where is the pain located? Is the discomfort a 

pressure sensation? Is there associated pain in the jaw or the arms? Was there 

sweating with the discomfort? Was there any nausea or vomiting associated with 

the episode?) This is followed by a complete medical and family history, leading to 

a thorough physical exam and evaluation of the patient’s blood assays and electro-

cardiogram.  

 Each of these procedures is designed to reveal useful information about the 

cause of the patient’s chest pain and, based on these evaluations, the treating physi-

cian will come to a conclusion and make treatment recommendations. If the 

diagnostic workup of the patient reveals her to be a 20-year-old female whose chest 

pain (associated with contusions, soft tissue pain and swelling) occurred shortly af-

ter falling from a horse onto a fence, then the likelihood that the cause of the chest 

pain is a heart attack is dramatically reduced. Of course, substernal crushing chest 

                                                          
4

Of course, traffic density, the presence of construction detours, and local weather condi-

tions can all affect the probability that the taxi arrives at the desired time as well. 

Consideration of these events also increases the complexity of the assessment of the taxi’s 

arrival.
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pressure–pain in a 59-year-old obese male with a long history of cigarette smoking 

and hyperlipidemia who has sustained a heart attack in the past and who currently 

has ST-T segment elevations on his electrocardiogram is a set of circumstances that 

is easily recognized as being highly predictive of a heart attack. In each case, the 

events that the patient experienced before and during the emergency room visit 

were not independent of whether the patient was experiencing a heart attack. In 

fact, these events were evaluated precisely because they shed important light on the 

likelihood of a heart attack.5 The dependence between the diagnostic findings and 

the assessment of the likelihood of a heart attack was used to advantage by permit-

ting the findings of the diagnostic testing to change the emergency room doctor’s 

assessment of the likelihood that the patient was having an MI.  

 Thus, when planned carefully, the relationships between dependent events 

can help the observer to draw appropriate conclusions about events of interest not 

yet observed. We will evaluate the utility of this concept of dependence to help us 

in planning and carrying out multiple analyses in clinical trials.  

5.2.2 Endpoint Coincidence and Correlation 
The preceding review of the general concepts of independence and dependence has 

placed us in the position to discuss these properties within the context of statistical 

hypothesis testing. Just as the emergency room physician in the preceding section 

took advantage of the dependent relationship between his diagnostic tests and the 

likelihood that a patient was experiencing an MI, we will now take advantage of the 

relationship between statistical hypothesis tests of primary endpoints (i.e., primary 

analyses) in clinical trials to compute a priori  levels.  

 Let’s first set up a very simple paradigm as an instructive aid. Let’s as-

sume that an investigator is in the design phase of his clinical trial, and he has 

settled on two and only two primary endpoints, P1 and P2. The statistical hypothesis 

test for P1 that will test the effect of the randomly allocated intervention on P1 is H1.

H1 is assigned an a priori type I error level 1. Analogously, the statistical hypothe-

sis test for the effect of the intervention on the endpoint P2 is H2, and the type I 

error level for hypothesis test H2 is 2. We developed this paradigm in Chapter 4. 

 What does “independent hypothesis testing” mean in this circumstance? 

Specifically, independence means that execution of hypothesis test H1 neither edu-

cates us about nor predicts for us the result of H2. It would be useful to examine the 

nature of the relationship between H1 and H2 in terms of the type I error rate, since 

ultimately this is the error whose level we seek to control. In the end, we hope to 

learn the likelihood that we will commit a type I error in drawing conclusions from 

both H1 and H2 since this is the information that we need to control the familywise 

error level .

If this is the investigator’s goal, then, specifically, independence tells us 

that knowledge about the commission of a type I error for hypothesis test H1 reveals 

                                                          
5 On the other hand, part of the diagnostic workup of a patient with a possible MI does not 

include interrogating the patient about their rate of fingernail growth. Rapid fingernail 

growth provides no useful information about the occurrence of a heart attack, and we say that 

rapid fingernail growth and the occurrence of an MI are independent events.     
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nothing about the occurrence of a type I error for hypothesis test H2—it does not 

inform us one way or the other about the commission of a type I error for the sec-

ond hypothesis test. Before any hypothesis test proceeds, the best estimate of the 

likelihood of a type I error for H2 is 2. If H1 and H2 are truly independent, then af-

ter the evaluation of the hypothesis test for the primary endpoint P1, our best 

estimate for the type I error level for the execution of H2 remains 2.

 How would the result be different? Consider the following demonstration. 

Allow P1 and P2 to be the primary endpoints from a clinical trial evaluating the ef-

fect of a therapy in patients with coronary artery disease. Let P1 be the cumulative 

incidence of total mortality and P2 be the cumulative incidence of death due to a 

CAD death.6 In this hypothetical clinical trial, the entry criteria for the study are 

such that only patients with advanced coronary artery disease are recruited for the 

study. Thus, in this circumstance, the overwhelming majority of deaths that occur in 

the study will be from CAD death. Let’s say that 99% of the deaths in the trial are 

from fatal MI. 

  Our intuition tells us that the effect of therapy for each of these endpoints 

is going to be very similar. If the therapy produces an important reduction in the 

cumulative total mortality rate in the research sample, by necessity it must reduce 

the CAD death rate. Assume that the study demonstrates a 15% reduction in each of 

these two primary endpoints. If a type I error occurred for the total mortality event 

rate hypothesis, then the population that experiences no beneficial effect of the 

therapy on the cumulative incidence rate of total mortality produced a sample that 

demonstrated a 15% reduction in the total mortality rate. But if the therapy does not 

produce a reduction in total mortality in this population of patients in whom a death 

by and large means a CAD death, then the therapy will not produce a beneficial ef-

fect on the CAD death rate in this population either. In addition, if the research 

sample demonstrated a 15% reduction in total mortality, by necessity it must pro-

duce a similar effect for CAD death since, essentially, a death in this sample means 

a CAD death.  

 Thus, the joint occurrence of these two endpoints in the same patients im-

plies that a type I error for the effect of therapy on the cumulative total mortality 

incidence rate H1 all but guarantees a type I error for the hypothesis test for CAD 

death. The  error level for the CAD death endpoint has already been included in 

the  error level for the total mortality endpoint; it need not be counted again. By 

counting it twice, either through direct computation,  = 1 – (1 – 1)(1 – 2), or by 

using upper bound of the Bonferroni approximation, 1 + 2, we overestimate 

the familywise type I error rate.  

If we want to avoid double counting the type I error levels, then we should 

be able to adjust the value of 2 given that we know both 1 and the degree of de-

pendence between a type I error for H1 and a type I error for H2. If we know the 

level of dependence between H1 and H2, this will be an easy calculation for us to 

complete.  

 Continuing, if we are to incorporate this notion of dependency between 

statistical hypothesis tests into clinical trial analyses, we need to determine pre-

                                                          
6

These deaths would be primarily fatal MI and sudden death.
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cisely what features of the hypothetical trial described above led to the overestima-

tion of the familywise error level. One characteristic of the trial that induced 

dependency was that the two primary endpoints (total mortality and CAD death) 

frequently occurred in the same patients. Recall that these endpoints are dichoto-

mous endpoints (i.e., they either occur or not do not occur). We will call 

dichotomous endpoints that occur in the same patient coincident endpoints. In the 

previous illustration, the sample of patients was chosen such that patients who died 

during the clinical trial died of coronary artery disease, making death and CAD 

death coincident. Continuous endpoints (e.g., blood pressure) that occur in the pre-

dictable patterns in patients are called correlated endpoints. Since mixing 

dichotomous and continuous endpoints can be very problematic in their interpreta-

tion ([1], [2]), we will avoid this situation in our first treatment of dependent 

endpoints.  

 An example of a clinical trial with primary correlated endpoints is a study 

that is conducted to compare two blood pressure reducing therapies in patients for 

whom both the diastolic blood pressures (DBP) and the systolic blood pressures 

(SBP) are elevated. In this setting, allow P1 to be the difference between the change 

in DBP over the follow-up period of the study between the two therapy groups. 

This analysis will address hypothesis H1 with type I error rate 1. Endpoint P2 will 

be the analagous examination of SBP for hypothesis test H2 and type I error rate 2.

In this circumstance, it is difficult to envision that the therapy would act differently 

on DBP than on SBP. Here, we might again expect a type I error for hypothesis H1

to suggest that a type I error would also occur for hypothesis test H2. This example 

suggests that a reasonable measure of the overlap in the  error events for the statis-

tical hypotheses H1 and H2 would be measured by the correlation between DBP and 

SBP.

  These first examinations seem to suggest that we simply need associated 

endpoints to be either coincident or correlated in order to conserve type I error lev-

els for their hypothesis tests. Implementing correlation in this fashion as a tool in 

this endeavor has been suggested in the literature [3]. However, the use of the cor-

relation between two endpoints as the only tool to gauge the degree of dependency 

between the two hypothesis tests presumes that the randomly allocated therapy will 

have the same effect on each endpoint. There are vexsome counter-examples to this 

idea.

One illustration of nonuniform treatment effects for separate but related 

endpoints is the joint consideration of exercise tolerance and total mortality in pa-

tients with CHF. It is very reasonable and plausible to assume that patients with 

CHF have a reduced ability to adequately perfuse skeletal muscle. As the disease 

progresses, the patient’s ability to perfuse continues to fail, to the point where the 

patient becomes less and less active, is reduced to a bed rest existence, and finally 

dies. Clearly, the pathophysiology of CHF links the inability to exercise to the pos-

sibility of a death from CHF. Populations of patients characterized by diminished 

exercise tolerance would be expected to have a greater proportion of deaths due to 

CHF. We might then expect that if exercise tolerance and total mortality were two 

primary endpoints in a clinical trial, then these endpoints would be related. How-

ever, the effect of therapy on these two endpoints has been seen to be disparate 
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within the same research sample. Holding aside the difficulty in generalizing the 

results of the US Carvedilol program,7 its research sample demonstrated that al-

though therapy reduced total mortality in the research sample of patients, it 

paradoxically and consistently failed to produce a benefit in the exercise tolerance 

endpoint.  

 In this circumstance of suspected paradoxical therapy effects, if one were 

designing a trial with exercise and total mortality as the prospectively defined pri-

mary endpoints of the study, then one could not use the correlation between the 

endpoints as the measure of type I error overlap between H1, the hypothesis test for 

exercise tolerance and H2, the hypothesis test for total mortality. This is because a 

population in which the intervention has no effect on exercise tolerance may dem-

onstrate an effect of the intervention on the total mortality rate. Thus the occurrence 

of a type I error for the effect of the intervention on exercise tolerance may not be 

predictive of a type I error occurring for the effect of therapy on total mortality, de-

spite the association between the two endpoints. Therefore, if endpoint correlation 

or coincidence is to be the measure of endpoint dependence, then that measure must 

be sharply discounted when the randomized intervention has a history of paradoxi-

cal effects (Figure 5.1).  
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Figure 5.1. The strongest hypothesis testing dependence is when the

endpoints are correlated and the treatment effect is the same for each

of the endpoints.

The paradoxical effect of therapy on correlated endpoints has been seen in 

diseases other than CHF. In the late 1960s, the University Group Diabetes Program 

(UGDP) [4] evaluated the effects of phenformin, then a new medication to improve 

                                                          
7

The US Carvedilol program was presented in Chapter 2.
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the blood sugar control of type II diabetes. Elevated blood sugar levels had been 

linked to increased cumulative mortality rates in patients with type II diabetes. In 

the UGDP study, the randomized therapy did produce the expected reduction in 

blood glucose. However, the effect of the therapy was paradoxical because phen-

formin use was associated with an increase in the total mortality rate. The 

medication simultaneously produced a beneficial effect for blood glucose reduction, 

but a harmful effect on total mortality. The issue remains controversial to this day. 

Designing a study with the primary analysis of (1) the effect of the intervention on 

blood glucose reduction and (2) the effect of the therapy on the cumulative total 

mortality rate is reasonable. However, using the association between blood glucose 

level and cumulative total mortality rate as the sole gauge of statistical hypothesis 

testing dependency is not. 

 One final, shocking example of the difficulty posed by relying on endpoint 

correlation as the measure of dependency, is the paradoxical effect of therapy in the 

Cardiac Arrhythmia Suppression Trial (CAST) [5]. In the middle of the twentieth-

century, cardiologists began to understand that there was a gradient among heart 

arrhythmias. Some of these dysrhythmias, such as premature atrial contractions and 

premature ventricular contractions, were in and of themselves benign. Others, such 

as ventricular tachycardia and ventricular fibrillation, were dangerous. Ventricular 

fibrillation, in which vigorous, coordinated ventricular contractions were reduced to 

uncoordinated ventricular muscle movement led to immediate death. It was ob-

served that, in patients who had suffered an MI, the occurrence of the mild 

arrhythmias preceded the more severe arrhythmias and subsequent death. It was 

therefore assumed that treating the mild arrhythmias would prevent postinfarction 

death. CAST was designed to test this hypothesis. 

 During the course of the study, the investigators demonstrated that the 

randomized antiarrhythmic therapies reduced the occurrence of the arrhythmia they 

were designed to eliminate. However, the findings for mortality were quite differ-

ent. Before the trial could complete recruitment, several therapy arms had to be 

discontinued prematurely. Out of the 730 patients randomized to the active therapy, 

56 died. Of the 725 patients randomized to placebo therapy, there were 22 deaths. 

In a trial designed to demonstrate only the benefit of antiarrhythmic therapy, this 

therapy was discovered to be more likely to kill patients. Thus, although the rela-

tionship between ventricular arrhythmia and total mortality in these post-MI 

patients was well documented, the therapy produced paradoxical results, producing 

“benefit” by reducing arrhythmias, but producing harm in the other related meas-

ure—mortality. 

5.2.3 Surrogate Endpoint Definition 
At the heart of this difficulty is the concept of the surrogate endpoint. A surrogate 

endpoint is an intermediate endpoint that is itself associated with more important 

clinical events. For example, weight reduction in the morbidly obese is a surrogate 

endpoint for total mortality. It might naturally be assumed that the correlation be-

tween the surrogate endpoint and the outcome measure can automatically be used 

as the sole criteria for building statistical hypothesis test dependency into the analy-

sis for the primary endpoints. The difficulty with this use of endpoint association is 
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that it by no means guaranteed that the therapeutic effect of a randomized therapy 

on a surrogate endpoint will directly translate into a therapeutic effect on the final 

clinical endpoint of severe morbidity or mortality. UDGP and CAST are examples 

of clinical trial programs where the beneficial effect of therapy on the surrogate 

endpoint was translated into a harmful effect for the endpoint of total mortality.  

 Taking advantage of dependency between these endpoints is a procedure 

which holds promise for the conservation of type I error rates in these increasingly 

complicated clinical trial designs and analyses. However, hypothesis testing de-

pendency will be more than a function of the correlation between the endpoints. We 

must have evidence that the therapy will work by the same or related mechanism 

for each of the endpoints. If this remains an issue in the design phase of the trial, 

then our ability to use dependence must be adjusted, and perhaps deemphasized. 

Understanding this principle will permit us to discount without ignoring the asso-

ciation between primary endpoints as we build in a more realistic measure of 

dependency between the associated statistical hypothesis tests.  

5.3 Literature Review 
Of the tremendous volume of literature written on the multiple analyses issue in 

clinical trials, much of it focuses on the need to take into account dependency 

among study endpoints. This has been a subfield of the multiple analyses issue and 

has evolved considerably. We will briefly survey that field here. Let us first return 

to our accustomed paradigm, in which there are K prospectively defined primary 

endpoints, with test-specific  error levels 1, 2, 3, …, K. Under the assumption 

of independence, then we know that if  is the familywise error level then  

1

1 1
K

k

k

.                                             (5.1) 

If we assume that k =  for k = 1…K then  (5.1) reduces to 1 1 .
K

We can 

solve this equation easily for ,
1

1 1 K ,                                                (5.2) 

an expression we have important experience with from Chapters 3 and 4.  

5.3.1 Tukey’s Procedure and Related Ad Hoc 
Computations

An adjustment that became popular for taking dependency between hypothesis tests 

into account was that recommended by Tukey [6]. He suggested that an adjustment 

for dependence between hypothesis tests may be simply computed by calculating 

the test-specific type I error probability as , where  
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1

1 1 .K                                                      (5.3) 

This computation produces larger values of the type I error rate than that produced 

from the Bonferroni procedure (Table 5.1).  

Table 5.1. Comparison of test-specfic  levels.

Independence Dependence

K assumption Tukey adjustment

1 0.050 0.050

2 0.025 0.036

3 0.017 0.029

4 0.013 0.025

5 0.010 0.023

6 0.009 0.021

7 0.007 0.019

8 0.006 0.018

9 0.006 0.017

10 0.005 0.016

There is a greater alpha error rate available under

the Tukey computation for dependence ( = 0.05).

This is our first exposure to a direct computation of test-specific  error 

levels under the assumption of dependent hypothesis testing, and it permits a direct 

comparison of the test-specific  error levels between the independence and de-

pendence assumptions. Note that the test-specific  under the assumption of 

dependence is larger than that under the independence assumption for all K > 1. As 

an illustration, for five primary endpoints (K = 5) the independence assumption 

leads to a test-specific  level of 0.010, while the Tukey dependence computation, 

by taking a measure of dependency into account, produces  = 0.023. There is more 

than twice the test-specific  error level available under the independence assump-

tion. This difference in test-specific  levels widens to more than a threefold 

increase for K = 10. The increase in test-specific  error level under the dependence 

assumption satisfies our intuition developed in previous sections, where we said 

that dependence between the hypothesis tests should allow us to increase the test-

specific  error level, since the familywise error level will be much less than the 

sum of the test-specific  error levels.  

  Having satisfied our intuition about the test-specific  error levels under 

the dependent hypothesis-testing scenario, we can’t help but notice some limitations 

of (5.3). One limitation is that the test-specific  is computed under the assumption 

that the test-specific  level is the same for each of the K primary hypothesis tests. 

This is a step backward from our work in Chapter 4, in which we justified the use 

of unequal allocations of the type I error rate among the K prospectively identified 
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hypothesis tests. In addition, it is difficult to see the degree of dependency between 

the endpoints from an examination of formula (5.3). Consider two hypothetical 

clinical trials, each examining the effect of a randomly allocated intervention. Each 

of these two trials has three prospectively chosen primary endpoints, but no primary 

endpoint is common to the two trials. For the first trial, the simultaneous circum-

stances of high endpoint correlation among the three primary endpoints and a 

history of treatment homogeneity8 suggest that the level of dependency between the 

endpoints is high (Figure 5.2). The second trial has three prospectively determined 

primary endpoints, but the endpoints are not as highly correlated as in the first trial, 

and, in addition, there is a more heterogeneous effect of the therapy across the end-

points. Based on the discussion in the previous section, the measure of dependence 

across the three hypothesis tests should be smaller in the second trial than in the 

first trial. However, (5.3) does not permit different levels of dependency, so it is 

unclear which trial should use this equation to compute the test-specific  for its 

individual primary endpoint hypothesis tests. It is hard to know the level of depend-

ency embedded in Tukey’s equation, and therefore it is a challenge to know when 

to use it.

The work of Dubey [7] and of O’Brien [8] have provided other related 

procedures for computing the test-specific  levels when the statistical hypothesis 

tests are correlated. If there are K hypothesis tests to be evaluated, each for a sepa-

rate endpoint, then the calculation they suggest for the test-specific  level, , is

   

     
1

1 1 km                                               (5.4) 
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                                   (5.5) 

where r.k is the average of the correlation coefficients reflecting the association be-

tween the K endpoints to be evaluated. An advantage of this method over Tukey’s 

is that the actual correlations are built into the computation.9 However, in simula-

tion analyses, Sankoh [9] points out that the Tukey procedure still works best when 

there are large numbers of highly correlated endpoints. Sankoh also noted that the 

procedure suggested by Dubey and O’Brien required additional adjustment at all 

correlation levels despite its specific inclusion of endpoint correlation. Finally, we 

note in passing that there is no consideration of therapy heterogenity, the topic of 

the previous section. 

There is other relevant literature on this issue. Hochberg and Westfall dis-

cuss an important subset of multiplicity problems in biostatistics in general [10]. 

James uses multinomial probabilities when dealing with the issue of multiple end-

                                                          
8

Treatment homogeneity is the observation that the effect of the randomly allocated inter-

vention will be the same across the endpoints.
9

Treatment homogeneity, however, is not considered in these calculations. This concept will 

be addressed later in this chapter. 
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points in clinical trials [11]. Neuhauser discusses an interesting application of mul-

tiple clinical endpoint evaluation in a trial studying patients with asthma [12]. 

Reitmeir and Wasmer discuss one-sided hypothesis testing and multiple endpoints  

[13], and Westfall, Ho, and Prillaman engage in a deeper discussion of multiple un-

ion-intersection tools in the evaluation of multiple endpoints in clinical trials [14]. 

Closed testing is discussed by Zhang [15]. Weighted -partitioning methods are 

available for the Sime’s test as well [16]. These procedures, while appropriate and 

useful, are not the focus of this text. We will turn instead to the development of a 

procedure that can (1) be easily implemented by nonstatisticans, and (2) provide the 

physician–investigator with good control of the level of inter-statistical hypothesis 

dependence as well as prospective control of the familywise error level for depend-

ent hypothesis testing in clinical trials.  

5.4 Hypothesis Test Dependency: Notation
In this section we will develop some notational devices that will be useful in the 

development of a constructive incorporation of dependency among several statisti-

cal hypothesis tests in a clinical trial. Let’s return to our by now familiar paradigm 

of a clinical trial in which there are K primary hypothesis tests H1, H2, H3, … HK.

Let Hj denote the jth hypothesis test. For each of these K hypothesis tests we have 

the prospectively specified type I error levels 1, 2, 3, … K. Now, let’s define Tj,

for  j = 1, 2, 3, …, K as a variable that captures whether a type I error has occurred 

for the jth hypothesis test. We will let each of the Tj’s take on only one of two possi-

ble values, 0 or 1. For example, consider the first hypothesis test. Let T1 = 0 if no 

type I error occurred for this first hypothesis test, and we will assign T1 the value 1 

if a type I error has occurred. We will proceed in this fashion for each of the re-

maining K – 1 prospectively identified hypothesis tests. Thus, we have K pairs, (H1,

T1), (H2, T2), (H3, T3), …, (HK, TK), where Hj identifies the statistical hypothesis test 

and Tj denotes whether a type I error has occurred for that test. From this develop-

ment, we already know the probability that Tj will be one; this is simply the 

probability of a type I error on the jth hypothesis test, or j, i.e., P [Tj  =  1] = j.

We can now expand this concept to the familywise error level. Using our 

usual notation of  as the familywise error level, let T  denote whether a familywise 

type I error level will occur, an event that we recall means that there is at least one 

type I error among the K prospectively defined primary analyses. That event will be 

denoted by T = 0. Continuing then, we may write that P [T = 0] is the probability 

that there were no type I errors among the K hypothesis tests, and analogously, that 

P [T = 1] is the probability that there was at least one type I error among these K
endpoints. Thus  = P [T = 1]. 

We only need to add one notational device. Let the symbol  connect 

events that can occur together. Then the event A B simply means “the joint occur-

rence of event A and event B.”

We can now proceed. We know that no familywise error occurs if there is 

not a single type I error among each of the K prospectively defined primary end-

points, or  
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1 2 30 0 0 0 .... 0 .KP T P T T T T              (5.6)   

We may therefore easily write  

1 2 3

1

1 1 0 0 0 ... 0

1 0 .

K
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j

j

P T P T T T T

P T
 (5.7) 

This is the fundamental equation that produced the results in Section 3.3. The last 

line of (5.7) now becomes the focus of our attention. When the individual hypothe-

ses are independent of one another, then the expression  

1

0
K

j

j

P T

is simply the product of the probabilities or 

1 11

0 0 1 .
K K K

j j j

j jj

P T P T                     (5.8) 

However, if the K prospectively specified hypothesis tests are dependent, then the 

evaluation of the expression 
1

0
K

jj
P T will become much more complicated to 

evaluate. We will proceed with our evaluation of this in stages. The first evaluation 

will be the simplest paradigm of all to assess, i.e., independence. We will develop 

and sharpen our intuition as we move from the familiar situation of independence 

between statistical hypothesis tests to the more complex settings in which the hy-

pothesis tests are dependent.  

5.5 The Independence Scenario
We will begin with the simplest scenario. Consider a clinical trial that is designed to 

have two and only two primary analyses. Using the notion developed thus far in this 

chapter, we can denote these hypothesis tests as H1 and H2 and, furthermore, iden-

tify the corresponding variables that reflect whether a type I error has occurred as T1

and T2, where as before P[T1 = 1] = 1, and P[T2 = 1] = 2. We can without any loss 

of generality order these two tests prospectively such that the  associated with the 

first hypothesis test is greater than or equal to that of the second hypothesis test, or 

1 2 (we will see that this ordering will make no difference in our conclusions, 

nor will it require us to carry out the hypothesis tests in any particular order). In this 

situation, there are four possible events involving the occurrence of a type I error, 

namely,  
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{T1 = 0 T2 = 0}, 

{T1 = 0 T2 = 1}, 

{T1 = 1 T2 = 0}, 

{T1 = 1 T2 = 1}. 

Assuming the hypothesis tests are independent of each other, we can calculate the 

probabilities of each of these events (Table 5.2). 

               

Table 5.2. Probability table for joint type I error rates:

Independence assumption.

T 1 = 0 T 1 = 1 Total

T 2 = 0 (1 – 2)(1 – 1) 1(1 – 2) 1 – 2

T 2 = 1 2(1 – 1) 1 2 2

Total 1 – 1 1 1

To compute the probability of each of these joint events involving T1 and 

T2 under the independence assumption, we merely multiply the probabilities of the 

event involving T1 and T2. For example, to compute the probability that T1 = 1 and 

T2 = 0 we compute 

                1 2 1 2 1 2[ 1 0] [ 1] [ 0] 1 .P T T P T P T                       (5.9) 

In order to calculate  where  = P [T   = 1], we only need to consider the joint 

event of P [T1 = 0 T2 = 0] = (1 – 1)(1 – 2 ) and find  

1 2

1

1 0

1 1 1 .

P T

P T                                   (5.10) 

This expected result relates the familywise error probability  to the test-specific 

error rates 1 and 2 in the familiar setting of independence that we discussed in 

Chapter 4. 

We can use this scenario of independence to compute some probabilities 

that will be very helpful as we consider the scenario of statistical hypothesis test 

dependence. We begin by asking what is the probability that there is no type I error 

committed on hypothesis test H2 given that there is no type I error for hypothesis 

test H1? This is the measure of dependence that gets to the heart of the matter, 

since, if there is dependence, we would specifically want to know how to update 

our estimate of the probability of type I error for the second hypothesis test given 
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the result of the first hypothesis test. Recall that the conditional probability of no 

type I error on H2 given that there has been no type I error for hypothesis test H1

can be written as P [T2 = 0|T1 = 0] and is defined (using the basic definition of con-

ditional probability) as  

                         1 2
2 1

1

[ 0 0]
0 | 0 .

0

P T T
P T T

P T
                        (5.11) 

Thus, the conditional probability can be computed if we know the joint probability 

1 2[ 0 0]P T T and the test-specific  error level for the first primary hypothesis 

test. Note however that we can also rewrite (5.11) as 

1 2 2 1 1[ 0 0] 0 | 0 0P T T P T T P T                      (5.12) 

essentially formulating the joint probability of the event {T1 = 0} and {T2 = 0} as a 

function of the conditional probability. This will be a very useful equation for us as 

we develop the notion of dependency in hypothesis testing, since the key to com-

puting the probability of a familywise error P [T = 0] is the computation of the joint 

probability P [T1 = 0 T2 = 0]. This calculation is easy in the independence sce-

nario. Our intuition tells us that, in the case of independence, knowledge of whether 

a type I error has occurred on the first hypothesis test should tell us nothing about 

the occurrence of a type I error on the second hypothesis test H2.

These computations confirm this intuition. Without knowing anything 

about the occurrence of a type I error for H1, we know that the probability of no 

type I error on hypothesis test H2 is simply 1 – 2. To compute this probability us-

ing knowledge of H1 we see 

1 21 2
2 1 2

1 1

1 1[ 0 0]
0 | 0 1

0 1

P T T
P T T

P T
           (5.13) 

and the “update” has, as anticipated, provided no useful information.  

We will see that the presence of dependence complicates the identification 

of the joint probability P [T1 = 0 T2 = 0]. Fortunately, (5.12) tells us that we can 

rewrite the joint probability P [T1 = 0 T2 = 0] as a function of the conditional 

probability P [ T2 = 0|T1 = 0]. It will be easier for us to supply this conditional prob-

ability under the circumstances of dependence than it will be to supply the joint 

probability. Equation (5.12) tells us how to convert this conditional probability into 

the necessary joint probability, and thereby permits the computation of P [T1 = 0 

T2 = 0], and then the calculation of P [T  = 1], the familywise error level.  

5.6 Demonstration of Perfect Dependence 
The situation that we examined in Section 5.5 was the state of independence be-

tween two prospectively specified statistical hypothesis tests within a clinical trial. 

From that examination, we developed the principle of assessing the conditional 



170 5. Introduction to Multiple Dependent Analyses I 

probability of a type I error on the second hypothesis test given that a type I error 

occurs on the first hypothesis test, or P [T2 = 0|T1 = 0]. We will now examine the 

opposite extreme that of perfect dependence using the conditional probability as 

our principle evaluation tool.  

We have already discussed the meaning of hypothesis testing dependence 

in Section 5.2. Perfect dependence denotes that state between two statistical hy-

pothesis tests in which the occurrence of a type I error for H1 automatically 

produces a type I error for statistical hypothesis test H2. In this situation, the two 

tests are so intertwined that knowledge that a type I error occurred for the first hy-

pothesis test guarantees that a type I error will occur for the second hypothesis test. 

This is the opposite extreme of the independence setting. 

An example of perfect dependence would be the illustration provided in 

Section 5.2.2 pushed to the extreme. In that original scenario, we had a hypothetical 

clinical trial in which there were two prospectively identified primary analyses. The 

first analysis tested the effect of the randomly allocated therapy on the total mortal-

ity rate, and the second evaluated the effect of this therapy on the cumulative 

incidence rate of CAD death. The population from which this research sample was 

obtained was one in which the overwhelming majority of patients in the trial died a 

CAD death. If we push this example to its extreme, then every single patient in the 

study who dies must have that death caused by CAD. Thus, patients who died in 

this study would be counted in both of these two primary analyses. We will also 

assume that the therapy will affect the event rates of each of these in the same man-

ner. This combination of perfect endpoint coincidence and therapeutic homogeneity 

represents perfect dependence.  

We will now evaluate the implications of this trial design on the family-

wise error level , beginning with the conditional probability P [T2 = 0|T1 = 0]. 

When we assumed that the two tests were independent in the previous section, we 

saw that the conditional probability P [T2 = 0|T1 = 0] = P [T2 = 0] = 1 – 2. In this 

new setting, what would the probability of a type I error for H2 be, given we know 

that no type I error occurred for first hypothesis test H1? Perfect dependence dic-

tates that this conditional probability should be one, or  

2 10 | 0 1.P T T                                                (5.14) 

In order to see how the value of this conditional probability helps us to 

compute the familywise error level , recall the last comments in Section 5.5. 

There, we said that, given knowledge of the conditional probability P [T2 = 0|T1 =

0], we could compute the joint probability P [T1 = 0 T2 = 0]. This is precisely the 

quantity we need to calculate the familywise error level  = 1 –P [T1 = 0 T2 = 0]. 

We begin this process by computing  

    
1 2 2 1 1

1 1

0 0 0 | 0 0

(1) 1 1 .

P T T P T T P T
                   (5.15) 
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Just as we computed the joint probabilities for the events {T1 = 0} and {T2 = 0} for 

the independence scenario of Section 5.5, we may compute an analogous table for 

the perfect dependence scenario (Table 5.3). Since we know what the sum of each 

row and column must be, it is easy to complete this table from knowledge of P [T1

= 0 T2 = 0]. 

                  

Table 5.3.  Probability table for joint type I error rates:

Dependence assumption.

T 1 = 0 T 1 = 1 Total

T 2 = 0 1 – 1 1 – 2 1 –- 2

T 2 = 1 0 2 2

Total 1 – 1 1 1

Recalling that 1 21 0 0P T T  and using the result of (5.15), we easily com-

pute that  

1 2 1 11 0 0 1 1 .P T T                 (5.16) 

Note that the familywise error level for this problem  is the same as the prospec-

tively set a type I error rate for H1, namely 1. We have demonstrated that in the 

state of perfect dependence between two statistical hypothesis tests, setting 1 and 

then choosing 2 = 1 leads to a value of  1 – (1 – 1)(1 – 2), but simply  = 

1. This also satisfies our intuition. Thus, in this setting of complete dependence, 

one can maintain  at its desired level by simply choosing 2 1 = . Since the oc-

currence of a type I error on the first statistical hypothesis test implies that a type I 

error has occurred on the second hypothesis test, the joint occurrence is reflected by 

the one occurrence.  

5.7 Scenario Contrasts 
We had two purposes in mind when we examined the impact of different degrees of 

dependence between statistical hypothesis tests on prospectively allocated  error 

levels. The first purpose was to develop additional notation that would be useful as 

we quantitate the degree of dependence. Our evaluation allowed us to settle on the 

conditional probability, P [T2 = 0|T1 = 0] as the quantity that contains within it the 

measure of dependence between the two hypothesis tests.  

 Our second purpose was to explore the extremes of the dependence prop-

erty and its effects on the relationship between the familywise error level, , and the 

test-specific  rates 1 and 2. Since dependent hypothesis testing can be a useful 

design feature, we need to know how dramatic the savings (at least in theory) in the 

type I error levels of the hypothesis tests can become. In this evaluation, we demon-
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strated that, in the setting of perfect dependence between two hypothesis tests H1

and H2 (with test-specific  rates 1 and 2 such that 1 2), the probability of at 

least one type I error is substantially less than in the case of independence. In the 

case of independence,  is as large as 1 - (1 - 1) (1 - 2). In the setting of perfect 

dependence it is as small as 1. We can therefore bound or trap  between these ex-

tremes, writing 

1 1 21 1 1 .                                   (5.17) 

A specific example would be useful to crystallize the difference in the 

error levels under these two assumptions. Consider the case of a clinical trial in 

which there are two prospectively defined primary hypothesis tests H1 and H2 with 

associated test-specific  error levels 1 and 2. Choose 1 = 2 = 0.05. In the famil-

iar case of independence, we have demonstrated that  = 1 – (0.95)(0.95) = 0.0975. 

However, under the assumption of perfect dependence  = 0.05.  

This difference in the value of  has important implications for the design 

of the clinical trial. As we saw in Chapter 3, in order to control the familywise error 

level, , at a level less than 0.05, then each of 1 and 2 must have a value less than 

0.05. For example, using the Bonferroni approximation, each test-specific  error 

probability could be set at 0.025. However, in the case of perfect dependence, limit-

ing  to a value  0.05 requires only that 1  0.05 and that 2 1. In fact, we can 

set 1 = 2 = 0.05 and keep  = 0.05. Since there is complete overlap in the occur-

rence of type I error for H1 and H2, we do not use additional type I error for the 

second hypothesis test. In a sense, the second hypothesis test “comes for free,” a 

result that seems intuitive if we recall that in this example of extreme dependence, 

type I error for hypothesis test 1 ensures that a type I error will occur for hypothesis 

test 2.

We are not suggesting here that the circumstance of perfect dependence is 

a goal toward which investigators should work as they design clinical trials. 

Clearly, in the scenario where there is complete overlap in the occurrence of type I 

errors between two hypothesis tests H1 and H2, H2 would not be executed at all 

since it provides no useful new information about the effect of therapy. In that study, 

the execution of the statistical hypothesis test on total mortality provides all of the 

useful information about the effect of therapy on the two primary endpoints. In real-

ity, there would be only one primary endpoint, total mortality. However, spending 

time evaluating the properties of the perfect dependence scenario reveals the maxi-

mum savings in 2 that dependent statistical testing can produce. We will discuss 

the potential implications of “hyperdependence” for labeling indications at the 

regulatory level later in this chapter.

5.8 Creation of the Dependency Parameter
The previous section developed the range of the familywise error level as the level 

of dependence between the statistical hypothesis tests increased. Our goal in this 

section is to construct a quantitative measure D that will measure the degree of de-

pendence between the statistical hypothesis tests. If we can construct D
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appropriately, then knowledge of D would allow us to compute  from the values of 

the test-specific  levels 1 and 2, or, alternatively, compute 2 from knowledge of 

 and 1.

 Recall from the previous section that in the circumstance of the design of a 

clinical trial in which there are two prospectively determined primary analyses H1

and H2 with test-specific  error levels 1 and 2, respectively, we were able to de-

termine the full range of values of , i.e.,  1  1 – (1 – 1)(1 – 2). However, 

this is not the only quantity that can be so bounded. We can also compute a range of 

values within which the conditional probability, P [T2 = |T1 = 0] should fall. We saw 

that the value of this conditional probability was 1 – 2 in the independence sce-

nario; in the scenario of perfect dependence, P [T2 = 0|T1 = 0] = 1. Since these two 

extremes reflect the full range of dependence, we can write 

1 2 11 0 | 0 1.P T T                                (5.18) 

If, for example we assume that 1 has the value of 0.05, then inequality (5.18) re-

veals10 that 0.95 P [T2 = 0|T1 = 0]  1. If the strength of the dependence between 

the two statistical hypothesis tests lies between the extremes of independence and 

full dependence, then the conditional probability P [T2 = 0|T1 = 0] will assume a 

value that falls within this interval denoted by  [1 – 1, 1]. We will now develop a 

measure, termed D, that will reflect this level of dependence. We would like D to 

have a minimum of zero and a maximum of one. The instance when D is zero 

should correspond to the condition of independence between the statistical hypothe-

sis tests, and identify the situation in which P [T2 = 0|T1 = 0] = 1 – 2. Analogously, 

D = 1 will denote perfect dependence, i.e.,  the case in which the conditional prob-

ability of interest P [T2 = 0|T1 = 0] attains its maximum value of one. We can then 

extend the inequality reflected in (5.18) as follows: 

1 2 1

2

1 0 | 0 1,

0 1.

P T T

D
                                (5.19) 

If we are to choose a value of D that will have the aforementioned properties, then 

we can write D in terms of the conditional probability 

2 1

2

1 0 | 0
1 .

P T T
D                                    (5.20) 

To see if (5.20) meets our criteria, assume first that the statistical hypothesis tests 

for the two prospectively defined primary analyses H1 and H2 are independent. In 

                                                          
10

Note that this range for the conditional probability is not very broad. The upper bound on 

this probability can of course be no greater than one. Because we insist on a small type I er-

ror probability (0.05), the lower bound is also quite high, at 0.95. 
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this case P [T2 = 0|T1 = 0] = 1 – 2 and D becomes 0. When H1 and H2 are perfectly 

dependent, then (5.20) produces D = 1.  

 In general, we will not use (5.20) to compute D. Our ultimate goal is to 

supply the value of D, and then write the familywise error level in terms of D. To 

do that, we will first need to write the conditional probability that a type I error does 

not occur on the second statistical hypothesis test H2 given that there is no type I 

error on the first hypothesis test H1 as a function of D. This task follows easily from 

(5.20): 

2

2 1 2 2

2

2

0 | 0 1 1 (1 )

1 1 .

P T T D

D
                    (5.21) 

We may now proceed by expressing P [T2 = 0 T1 = 0] in terms of this dependence 

parameter D.

2 1 2 1 1

2

2 1

0 0 0 | 0 0

1 1 1 .

P T T P T T P T

D
      (5.22) 

Thus, the familywise error level for the two statistical hypothesis tests H1 and H2

may be written as

2 1

2

2 1

1 0 0

1 1 1 1 .

P T T

D
                       (5.23) 

Therefore, the familywise error is formulated in terms involving the test-specific 

error rates 1, 2 and the dependency parameter D  where 1 2.

Equation (5.23) may be rewritten to reflect more clearly the relationship 

between the familywise error level  and the dependency parameter D. Write (5.23) 

as

2

2 1

2

1 1 2

2

1 2 1 2

2

1 2 1 2 1 2

1 1 1 1

1 1 1 1

1 1 1

1 .

D

D

D

D

                        (5.24) 

Thus,
2

1 2 1 2 1 21 .D                             (5.25) 

Now recall, that under the assumption of independence between the statistical hy-

pothesis tests H1 and H2,  = 1 – (1 – 1)(1 – 2). If we denote the familywise error 

under the independence assumption as I, then we can write 
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1 2

1 2 1 2

1 2 1 2

1 1 1

1 1

,

I

                                  (5.26) 

we note that the last line in expression (5.26) is contained in (5.25). If we now de-

note the familywise error under the assumption of dependence as D, we may now 

substitute the last line of expression (5.26) into (5.25) to compute 

2

1 21 .D I D                                     (5.27) 

Constructing D as we have, we see that the familywise error level decreases as D

increases. When D is equal to 0, H1 and H2 are independent and D = I. When D is 

one and the state of perfect dependence between the statistical hypothesis tests H1

and H2 exists, then D = 1. The relationship between , the familywise error level 

and D can be easily illustrated (Figure 5.2). 
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Figure 5.2. For any combination of 1 and 2, increasing hypothesis 

test dependence D reduces the family wise error rate .

1 20.040; 0.010

1 20.030; 0.020

1 20.025; 0.025

1 2
0.049; 0.001

 Figure 5.2 demonstrates that, as the dependency parameter D increases, the 

familywise error level  decreases, which is the result our intuition led us to expect. 

The reduction in  demonstrated in this figure is a function of the test-specific type I 

error levels 1 and 2. This is because the familywise error level expended must be 

at least 1, the amount allocated for H1. The smaller the value of 1, the greater the 

difference between  and 1, and the greater the potential decrease in  that can be 

achieved by increasing the dependency parameter D. A discussion of how to select 

D is provided in Section 5.12. 
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5.9 Solving for 2 as a Function of D 
The previous section provided a computation for , the familywise error level as a 

function of 1 and 2 in a clinical trial with two prospectively chosen primary end-

points. The procedure that was followed there was to (1) choose 1 and 2 such that 

1 2 , (2) select D, and then (3) compute 

2

1 2 1 2 1 21 .D                               (5.28) 

However, during the design phase of the trial, as the investigators work to select the 

appropriate levels of the test-specific  error levels for the study, they will first fix 

, and then choose 1 and D, moving on to compute the acceptable range of 2. This 

is easily accomplished. We need only solve (5.28) for 2.

2

1 2 1 2 1 2

2

1 2 1 2 1 2

2

1 2 1 1 2

2

1 2 1

1 ,

1 ,

1 1 ,

1 1 .

D

D

D

D

                            (5.29) 

Solving for D, we find that 

1
2 2

1

.
1 1 D

                                         (5.30) 

There is one caveat we need to add. Recall that in our development of D we ordered 

the statistical hypothesis tests so that 1 2. This can be incorporated into our for-

mulation as follows. If we let the function min(a, b) be equal to a when a b or 

equal to b when a > b, then we may write 

   1
2 1 2

1

min , .
1 1 D

                            (5.31) 

This is an equation that we will return to repeatedly when we wish to prospectively 

incorporate dependent hypothesis testing into clinical trial analysis plans.  

It would be useful to check this computation when D = 0. We know from 

Chapter 3 that, in this setting of independence between statistical hypothesis tests 

H1 and H2, we can directly compute 

1 21 1 1 .                                        (5.32) 

Therefore, we can find 2 in terms of  and 1 as
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1 2

1 2

2

1

1 1 1 ,

1 1 1 ,

1
1 ,

1

                                       (5.33) 

and thus, 

1
2

1 1

1
1 .

1 1
                                      (5.34) 

This is the computation that results from the direct computation of 2 in the setting 

of independence. What is the result from (5.31) when D is zero? This is easily seen 

by rewriting (5.31) as follows: 

2

1

1 1

1 1 1

1

1

1
1

1

1 1 1 1

1 1 1

.
1

                               (5.35) 

 (5.34) is produced from (5.31) by setting D = 0. Thus, the result from (5.31) repro-

duces the  error level for H2 in the setting of independence.11

5.10 Example 1: Implantable Cardiac Devices 
The purpose of this chapter’s preceding efforts was to develop a parameter D that

reflected the degree of dependence between two prospectively specified statistical 

hypotheses, H1 and H2. The measure D would then be used to compute the test-

specific  levels 2 from 1 and , allowing for conservation of the familywise error 

level. We will now show how this procedure can be implemented in the design of a 

clinical trial with the following illustration.  

A group of investigators are interested in designing a clinical trial to detect 

the effect of an implantable ventricular defibrillating device in patients who have 

CHF. The clinical hypothesis is that this electromechanical device will detect 

whether the heart has shifted its rhythm to a destabilizing (and perhaps fatal) ven-

tricular tachycardia or ventricular fibrillation. When this shift has been detected, the 

device will automatically provide an electric shock to the heart, converting the de-

stabilizing rhythm to a more stable (hopefully sinus) rhythm.  

                                                          
11

We can match the result for perfect dependence as well. When D = 1, the denominator of  

1
2 2

11 1 D
becomes zero, implying that 2 is infinite. However, the minimum 

function in equation (5.31) chooses 2 = 1, the result we demonstrated in Section 5.6.
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The clinical trial will have two groups of patients, all of whom will receive 

standard medical care for their chronic CHF. There are 1000 patients available for 

this study. In addition, these patients will be randomly selected to have either the 

defibrillator device implanted or to receive standard antiarrhythmic therapy for their 

arrhythmias. Since both the physician and the patient will know whether the patient 

has received a defibrillator, this clinical trial cannot be blinded. For this reason, 

along with the investigators’ desire to build the most convincing case possible for 

the benefit of this defibrillation therapy, they choose two persuasive primary end-

points: (1) total mortality incidence rate and (2) total hospitalization incidence rate. 

Each of these endpoints can be determined unambiguously and should not have 

their ascertainment influenced by the knowledge of the treatment group to which 

the patient was assigned. With this information, the sample size computation begins 

(Table 5.4). As was our practice in Chapter 4, the first computations do not attempt 

to adjust for the familywise error level. 

Table 5.4. Alpha allocation, Example 1: First Design Scenario.

Primary Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

Total mortality 0.20 0.35 0.05 0.90 1171

Total hospitalizations 0.35 0.45 0.05 0.90 324

The expected high efficacy keeps the sample sizes for the two primary endpoints low.

Patients in this clinical trial will be followed for 15 months. The lower 

control group event rate for total mortality, in addition to the somewhat lower effi-

cacy, produces a minimum sample size for the analysis of the effect of the 

intervention on the total mortality rate that is greater than that of the total hospitali-

zation primary endpoint.12 The investigators then divide the  error level between 

the two endpoints, so that the familywise error level is conserved at 0.05.  

The decision as to how to divide the type I error was a difficult one. More 

type I error was allocated to the total mortality endpoint because it was the most 

persuasive of the two endpoints. Therefore, everything else being equal, the medi-

cal community was more willing to accept the smaller effect size associated with 

the larger p-value as a positive finding.  

                                                          
12

Appendix D provides a brief primer on sample size computations.  
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Table 5.5.  Alpha allocation, Example 1: Second Design Scenario.

Primary Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

Total mortality 0.20 0.35 0.035 0.90 1281

Total hospitalizations 0.35 0.45 0.015 0.90 426

Differential alpha allocation, has increased the sample sizes.

 Now the investigators are ready to come to grips with the issue of depend-

ence between the two statistical hypothesis tests. In this population of subjects with 

CHF, most patients who will be hospitalized during the course of the clinical trial 

will be hospitalized for CHF. In addition, most patients who die will have heart 

failure as the cause of death. Furthermore, those who die from heart failure will 

have been hospitalized for heart failure in all likelihood. While this does not mean 

that all patients who are hospitalized for heart failure will die of CHF, it does imply 

some coincidence between these two primary endpoints. This association, in turn 

suggests that the measure of dependence between the two statistical tests for the ef-

fect of the intervention on these primary endpoints will be great.  

However, this point of view must be moderated by concern for the homo-

geneity of the treatment effect. As discussed in Section 5.4, one of the criteria for 

strong dependence between two statistical hypothesis tests must be that the inter-

vention has the same effect on each of them. In the case of the implanted 

defibrillator, this homogeneity of effect remains an open question. Patients who 

have had the device implanted often have to return to the hospital to have the device 

recalibrated. In the commonly used intent to treat analysis,13 these hospitalizations 

would be accumulated and counted as primary endpoints in the treatment group. 

While there is no suggested increase in the risk of death due to this calibration pro-

cedure, there is an attenuating effect on the intervention–hospitalization relationship. 

Specifically, the reduction in hospitalizations produced by the beneficial effect of 

the implanted defibrillator on heart rhythms would be overshadowed by the short-

term increase in hospitalizations due to the calibration. This suggests that we need 

to attenuate our estimate of dependence. D was chosen as 0.40.14 The test-specific 

error level was recomputed using (5.31) (Table 5.6). 

1
2 1 2

1

min ,
1 1 D

                                                          
13

This was covered in Chapter 1. 
14 A discussion of how to choose the value of D is covered in Section 5.12. 
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Table 5.6 follows the format of Tables 5.4 and 5.5 with the exception of 

one change. That alteration is the addition of the line that provides the measure of 

dependence. The primary analyses are listed so that the dependence measure is re-

flected in the test-specific type I error level below it. Thus, in Table 5.5, 1 = 0.035,

D = 0.40, and 2 is 0.019, reflecting a 27% increase over the initial estimate of 2 of 

0.015. Of course, larger choices for D would lead to larger increase in . For exam-

ple, selecting D = 0.70 produces 2 = 0.30. However, the recognition of potential 

therapy effect heterogeneity requires moderation of the selection for D.

Table 5.6.  Alpha allocation, Example 1: Third Design Scenario.

Primary Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

Total mortality 0.20 0.35 0.035 0.90 1281

D  = 0.40

Total hospitalizations 0.35 0.45 0.019 0.90 408

The prospectively set alpha level for total hospitalizations has increased from

0.015 to 0.019.

Reducing the power to 80% for the total mortality endpoint results in the 

final sample size computation for the study (Table 5.7). 

Table 5.7.  Alpha allocation, Example 1: Fourth Design Scenario.

Primary Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

Total mortality 0.20 0.35 0.035 0.80 970

D  = 0.40

Total hospitalizations 0.35 0.45 0.019 0.90 408

The sample size for each analysis is less than 1000. 

One important feature in our derivation is that we chose the “first” hy-

pothesis test as the one for which the prospectively selected type I error level is the 

greatest. It is important to note that this ordering of the hypothesis tests such that 1

2 does not imply that the hypothesis tests themselves must be executed in any 

order. Once the  level probabilities have been selected, the order in which the hy-

pothesis tests for these two primary endpoints are executed does not affect the 

conclusions of the study.  
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Finally, it would be informative to examine the relationship between 2,

1, and D for a familywise error level of 0.05. This evaluation will mirror the use of 

the measure of dependency between statistical hypothesis tests derived in this chap-

ter. The investigator first chooses the level of 1, and D. From this, the investigator 

then computes the test-specific probability for the second hypothesis test, 2.

For each level of 1 there is a value of D beyond which there can be no ad-

ditional savings in the type I error level 2 for statistical hypothesis H2 This is the 

perfect dependence threshold. As 1 decreases, this threshold decreases as well, fi-

nally reaching 0.60 for 1 = 0.030.  

Table 5.8. Dependency relationships: 2 as a function of D  and  1*

1

D 0.049 0.045 0.040 0.035 0.030

0.00 0.0011 0.0052 0.0104 0.0155 0.0206

0.05 0.0011 0.0052 0.0104 0.0156 0.0207

0.10 0.0011 0.0053 0.0105 0.0157 0.0208

0.15 0.0011 0.0054 0.0107 0.0159 0.0211

0.20 0.0011 0.0055 0.0109 0.0162 0.0215

0.25 0.0011 0.0056 0.0111 0.0166 0.0220

0.30 0.0012 0.0058 0.0114 0.0171 0.0227

0.35 0.0012 0.0060 0.0119 0.0177 0.0235

0.40 0.0013 0.0062 0.0124 0.0185 0.0245

0.45 0.0013 0.0066 0.0131 0.0195 0.0259

0.50 0.0014 0.0070 0.0139 0.0207 0.0275

0.55 0.0015 0.0075 0.0149 0.0223 0.0296

0.60 0.0016 0.0082 0.0163 0.0243 0.0300

0.65 0.0018 0.0091 0.0180 0.0269 0.0300

0.70 0.0021 0.0103 0.0204 0.0305 0.0300

0.75 0.0024 0.0120 0.0238 0.0350 0.0300

0.80 0.0029 0.0145 0.0289 0.0350 0.0300

0.85 0.0038 0.0189 0.0375 0.0350 0.0300

0.90 0.0055 0.0276 0.0400 0.0350 0.0300

0.95 0.0108 0.0450 0.0400 0.0350 0.0300

0.99 0.0490 0.0450 0.0400 0.0350 0.0300

* Familywise error is 0.05.

5.11 Example 2: The CURE Trial 
The illustration in the previous section presented how the incorporation of depend-

ency between two prospectively declared statistical endpoints in a clinical trial 

could be embedded into its design. A second example of this type of effort is that of 

the CURE trial [17]. CURE (Clopidogrel in Unstable Angina to Prevent Recurrent 

Events) examined the role of thienopyridine derivatives in preventing death and 

cardiovascular events in patients with unstable angina pectoris or acute coronary 
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syndrome. Before this study, there was no evidence available that supported the no-

tion that this type of anticoagulation therapy would produce a long-term benefit for 

patients who were in immediate danger of having a heart attack. To test the benefit 

of these thienopyridine derivatives, a clinical trial was designed to examine the ef-

fect of the oral anticoagulation agent clopidogrel when compared to standard care 

for patients at risk of acute coronary syndrome.  

 CURE was a randomized, double-blind, placebo-controlled trial with two 

arms. Patients who had been hospitalized with acute coronary syndromes within 24 

hours of their symptoms but who did not demonstrate evidence of ST segment ele-

vation on their electrocardiograms were recruited. All of these patients received the 

standard care for this condition including the administration of aspirin. In addition, 

patients randomized to the active arm of the study received clopidogrel, while pa-

tients in the control group arm received placebo therapy.  

 The investigators prospectively designed this study for the analysis of two 

primary endpoints. The first primary endpoint was a combination of death from 

cardiovascular causes, nonfatal MI or stroke.15 Thus, a patient reaches this first 

primary endpoint if they (1) die from a cardiovascular cause, or (2) die from a non-

cardiovascular death but have a nonfatal MI or a stroke, or (3) survive but have an 

MI or a stroke. The second primary endpoint consisted of the first primary endpoint 

or refractory ischemia.16 Thus, a patient meets the criteria for this second prospec-

tively defined primary endpoint if (1) they meet the criteria for the first, or (2) they 

do not meet the criteria for the first primary endpoint, but they have refractory 

ischemia. Secondary outcomes included severe ischemia, heart failure, and the need 

for revascularization.  

The idea of dependency between the two primary endpoints is an admissi-

ble one. However, the level of dependence requires some discussion. Certainly, if 

there are very few patients with recurrent ischemia, then the second primary end-

point is the same as the first one and we would expect strong dependence. However 

if there are many patients who have recurrent ischemia, knowledge of a type I error 

for the first primary endpoint will provide less information about the probability of 

a type I error for the second primary endpoint, and the measure of dependency is 

reduced.17

The CURE investigators provided the information to reproduce the sample 

size computations (Table 5.9). While the investigators do not tell us the degree of 

dependency between these two primary endpoint analyses, they do state that “parti-

                                                          
15

The analysis and interpretation of combined endpoints is the topic of Chapter 6.  
16 Refractory ischemia was defined as recurrent chest pain lasting more than 5 minutes with 

new ischemic electrocardiographic changes while the patient was receiving “optimal” medi-

cal therapy. 
17 For example, there could be a strong beneficial effect of therapy for the first primary end-

point. However, a large number of patients with recurrent ischemia and the absence of a 

beneficial effect of this therapy on recurrent ischemia could produce a different finding for 

this second primary endpoint. The occurrence of a type I error for the first primary endpoint 

would shed no light on the probability of the type I error for the second primary endpoint in 

this circumstance. 
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tioning the  maintains an overall level of 0.05 after adjustment for the overlap be-

tween the two sets of outcomes.”  

 The sample size analysis follows (Table 5.9)18. However we can use Table 

5.7 to see the level of dependency that corresponds to the CURE investigator’s cor-

rection for dependency between the two hypothesis tests. Table 5.7 demonstrates 

that 1 = 0.45 and 2 = 0.010 corresponds to a value of D of between 0.65 and 0.70. 

Thus, the CURE investigators assume a moderate level of dependency between the 

two primary endpoints for their study design.19

Table 5.9. CURE primary analysis design

Primary Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

CV death/MI/Stroke 0.10 0.169 0.045 0.90 12568

CV Death/MI/Sroke/Ischemia 0.14 0.164 0.010 0.90 12630

Differential type I error rate allocation and an adjustment for overlap.

An alternative analysis plan has also been provided in the literature [18].  

5.12 Example 3: Paroxysmal Atrial Fibrillation 
As a final example of an application of the methodology developed in this chapter 

for building hypothesis test dependency between two statistical tests, consider the 

design of the following study to help reverse paroxysmal atrial fibrillation (PAF). 

Recognizing the difficulties presented by standard pharmacologic antiarrhythmic 

therapy and DC cardioversion (shock therapy) to treat this difficult arrhythmia, a 

group of investigators has developed a novel intervention. Specifically, these inves-

tigators have acquired the ability to deliver a dose of medication through a catheter 

directly onto the nidus of the aberrant electrical pathway in the heart, stopping the 

arrhythmia. They would like to design a clinical trial to test this therapeutic innova-

tion.

 In this study, patients with PAF will be randomized to either the control or 

the active treatment group. The control group will receive standard therapy for their 

fibrillation. The treatment group will receive standard therapy and, at the time of 

randomization, have a catheter threaded into their heart and have medication deliv-

ered. These active group patients will receive the medication only once. The 

                                                          
18

The size of CURE was increased from 9000 to 12,500 patients because of a lower than 

expected placebo event rate.
19

The results of CURE were positive. There was a 20% reduction in the cumulative inci-

dence rate of the primary endpoint with a p-value of < 0.001. Clopidogrel reduced the 

cumulative incidence of the second primary endpoint by 14% with a p-value of  <  0.001.
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investigators would be able to recruit between five and six hundred patients, and all 

patients will be followed for 1 year.  

 The investigators struggled with the selection of a primary endpoint. The 

cumulative total mortality rate for these patients was too small to be able to detect 

with any degree of reliability, and the investigators were not sure at all sure that the 

catheter-delivered intervention would even save lives. However, they did believe 

that the medication would reduce atrial fibrillation (AF). After these discussions, 

the investigators settled on two endpoints. The first endpoint was the recurrence of 

AF. In addition, they decided to include a second primary endpoint that would be 

described as “AF load.” This second primary endpoint would measure the burden 

that AF places on the patients. This endpoint would include (1) total number of 

hospitalizations the patient experienced, (2) total number of days spent in the hospi-

tal, and (3) total number of shocks. By reducing the incidence of PAF, the 

investigators believed the active therapy would reduce these three measures of 

morbidity that patients with PAF experience. After these decisions, initial sample 

size estimates for each of the two primary analyses were obtained (Table 5.10). 

Table 5.10.  Atrial fibrillation study: First design scenario.

Primary Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

PAF* Recurrence 0.60 0.350 0.050 0.90 228

AF Burden 0.45 0.300 0.050 0.90 534

*PAF is paroxysmal atril fibrillation; AF is atrial fibrillation.

The high PAF rate in combination with the efficacy of 35% has helped to 

keep the sample size for the PAF recurrence rate small. However, even without 

controlling the familywise error level (which assuming independence is 1 – (0.95)2

= 0.098), the required sample size for the AF burden endpoint exceeds 500.  

The investigators next control the familywise  rate by distributing the 

type I error level asymmetrically between the two endpoints and, by doing so, ini-

tially make the sample size situation worse for the AF burden endpoint (Table 

5.11). 
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Table 5.11.  Atrial fibrillation study: Second design scenario.

Primary Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

PAF* Recurrence 0.60 0.350 0.040 0.90 241

AF Burden 0.45 0.300 0.010 0.90 756

*PAF is paroxysmal atril fibrillation; AF is atrial fibrillation.

The sample size has increased for each of the two primary endpoints, but 

the increase is most remarkable for the AF burden analysis, driving the sample size 

to well above the maximum of 600. There are of course alternative allocations of 

the  error level. For example, one could reverse the type I error allocation, placing 

most of the  error level on the hypothesis test that examines the effect of the inter-

vention on the PAF burden (Table 5.12)  In this table, the reversal of the  error 

level allocation from Table 5.11 solves the sample size problem of this clinical trial 

at once. By providing a higher  error level for the AF burden primary endpoint 

analysis, the sample size required for this evaluation is 540 while, at the same time, 

the required number of patients for the PAF recurrence primary endpoint remains 

below 500. These results meet the goal of keeping the sample size for the trial be-

tween 500–600 patients. 

Table 5.12.  Atrial fibrillation study: Third design scenario.

Primary Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

PAF* Recurrence 0.60 0.350 0.002 0.90 414

AF Burden 0.45 0.300 0.048 0.90 540

*PAF is paroxysmal atril fibrillation; AF is atrial fibrillation.

  However, this solution should be rejected because it flies in the face of the 

principle that type I error level allocation is a community protection procedure. 

First, consider the role of the AF burden analysis. AF burden is certainly a prospec-

tively chosen primary endpoint for this clinical trial, but it is a relatively weak one. 

Its three multiple components could be differentially influenced by therapy (the first 

component was total number of hospitalizations, the second was the total number of 
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days hospitalized, and the third was the total number of shocks)20. It is reasonable to 

expect that the medical community will require greater evidence of benefit (as 

measured by a larger effect size and a smaller p-value) for this new endpoint an

endpoint with which the community has limited experience in interpreting. They 

need to be sure that if the study is positive for this endpoint, this positive benefit is 

not just the product of sampling error. The medical community will require an 

level well below 0.05 to provide an additional margin of comfort that the research 

findings are not just due to the random play of chance. This comfort margin is not 

provided in Table 5.12. 

The more persuasive of the two primary analyses for this clinical trial to 

the medical community is the PAF recurrence. Its presence in a patient will be 

measured accurately, and the pathophysiology of PAF recurrence is directly linked 

to the effect of the medication. The medical community would be satisfied that the 

therapy effectively reduced the PAF recurrence rate at an  level of 0.05 and should 

not be required to discard the therapy because the hypothesis test did not meet the 

superrigorous threshold of 0.002. Just as for the AF burden analysis, the  error 

level for the PAF endpoint was not chosen with community protection in mind. The 

0.002 level was chosen because it was the residual; only 0.002 was remaining after 

0.048 had been devoted to “shoehorning” the AF burden analysis into the 500-600 

sample size restraint.  

 Returning them to Table 5.12, the investigators determine a moderate level 

of dependence between the two primary endpoints to conserve  error level (Table 

5.13). 

Table 5.13.  Atrial fibrillation study: Fourth design scenario.

Primary Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

PAF* Recurrence 0.60 0.35 0.040 0.90 241

D = 0.70

AF Burden 0.45 0.30 0.020 0.90 659

*PAF is paroxysmal atril fibrillation; AF is atrial fibrillation.

Finally, adjustments in the power are made, keeping the power for each of the two 

prospectively declared analyses above the 80% minimum. We must be clear about 

the observation that Table 5.14 does not provide the only solution for this particular 

clinical trial with two primary endpoints. Other type I error allocation arguments 

are equally admissible. The central point here is that investigators can develop the 

necessary experience to allocate  levels prospectively and differentially, even in 

the presence of dependency between statistical hypothesis tests.  

                                                          
20

For example, there may be many patients in this study who are hospitalized but not hospi-

talized for PAF. The therapy having no influence on the occurrence of these hospitalizations 

will be viewed as less effective in reducing total hospitalizations.
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Table 5.14.  Atrial fibrillation study: Fifth design scenario.

Primary Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

PAF* Recurrence 0.60 0.35 0.040 0.95 296

D = 0.70

AF Burden 0.45 0.30 0.020 0.80 508

*PAF is paroxysmal atril fibrillation; AF is atrial fibrillation.

5.13 Choosing the Dependency Parameter 
One of the foundations of this chapter is the use of the dependency parameter D in

making prospective determinations about the type I error allocation levels in clini-

cal trials. Beginning in Section 5.8, the computations for  error levels have been 

predicated on the investigators knowing the parameter of D. For example, in the 

circumstance where there are two prospectively specified primary analyses in a 

clinical trial, once D has been identified, we can compute either the familywise er-

ror level  once we have chosen 1 and 2, or we can compute 2 given  and 1.

However, how do we select D?

5.13.1 Overestimation of Dependency Parameter 
Certainly, the choice of D is critical and its overestimation of D will not conserve 

the familywise error level. For example, consider the circumstance of a clinical trial 

with two prospectively determined primary analyses. The investigators in this study 

choose a familywise error level of 0.05, and then decide that the test-specific type I 

error 1 is 0.04 for the first primary analysis. If the investigators assume that the 

dependency parameter for the two statistical hypothesis tests is 0.70, then (5.31) 

produces 

1
2 1 2

1

min , .
1 1 D

                            (5.31) 

This is all of the information that the investigators need in order to compute the 

test-specific type I error level, 2 given the familywise error level , the test-specific 

error level 1 and the dependency parameter D. This calculation follows:  



188 5. Introduction to Multiple Dependent Analyses I 

         

2 2

0.05 0.04
min 0.04 ,

1 0.04 1 0.70

0.01
min 0.04 ,

0.96 0.51

min 0.04 , 0.020 0.020.

                    (5.36) 

However, if in reality D was not 0.70 but instead was 0.20 then we would find that 

the test-specific  error level for the second primary analysis was 

2 2

0.05 0.04
min 0.04 ,

1 0.04 1 0.20

0.01
min 0.04 ,

0.96 0.96

min 0.04 , 0.011 0.011.

                        (5.37) 

Thus, the  specific error level depends on D. Another way to state this is that the 

familywise error level is not well conserved when the value of D is overestimated. 

For example, we know that we can compute  given that we have the values of 1,

2, and D from (5.23) as 2

2 11 1 1 1D . Now if the investigators de-

cide to let 1 = 0.04 and, assuming D = 0.70, computed 2 = 0.02, when in fact D 

was not 0.70 but was instead 0.02, then the true familywise error level  would be 

not 0.05 but instead  

2

2 1

2

1 1 1 1

1 1 0.02 1 0.20 1 0.04

1 1 0.02 0.96 1 0.04

1 0.9808 0.96 0.058,

D

                           (5.38) 

and we see that the familywise error level has not been conserved at 0.05. There-

fore, any use of the dependency parameter requires vigilance against its 

overestimation, a topic that we now will address. 

5.13.2 Guides to Choosing the Dependency         
Parameter

The development in the preceding section leads us to the conclusion that the most 

accurate specification of D is critical. However, this may seem like a daunting task, 

especially to investigators who have no experience in making any selection of D at

all. Fortunately, it does not take long to gain useful intuition into choosing a realis-

tic value for the required dependency parameter.  
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D, like  and the statistical power must be chosen prospectively, during the 

design phase of the trial. To select D, one should first understand the relationship 

between the primary analyses. Specifically, the two important questions whose an-

swers will provide a range of values for D are (1) how closely coincident are the 

endpoints and (2) how homogeneous is the treatment effect for each of these end-

points?  

This first question focuses on how coincident the analyses are. Perfect co-

incidence occurs when the contribution a patient makes to each of the endpoints is 

exactly the same. As a starting point, it is worthwhile for the investigators to work 

through the exercise developed earlier in Section 5.6 when we considered the ap-

pearance of perfect dependence. Consider the case of a clinical trial where there are 

two primary analyses in which each analysis evaluates the effect of therapy on a 

different, prospectively specified endpoint (e.g., the first primary endpoint is total 

mortality, and the second primary endpoint is fatal CAD death). If the inclusion and 

exclusion criteria for this trial were so restrictive that the two primary endpoints 

measured occurred in the same patients, then there would be perfect dependence 

and D = 1. How different are the inclusion and exclusion criteria in the actual trial 

from their counterparts in this hypothetical one? How much non-CAD mortality 

will there be? The smaller the degree of coincidence, the smaller the level of de-

pendence between the hypothesis tests for the two primary endpoints. In this case, 

the investigators might start by approximating the coincidence as the proportion of 

all deaths in the trial that are CAD deaths.  

The conclusion of this discussion should initiate a new conversation about 

the homogeneity of the therapy effect for the two endpoints. Is there evidence that 

the effect of the therapy will be different for the different primary analyses? Return-

ing to the illustration of the previous example, there will almost certainly be 

heterogeneity of effect. Medications designed to reduce CAD death rate by and 

large will have little effect on deaths due to cancer, automobile accidents, emphy-

sema, or other causes of non-CAD death. Thus, a useful starting approximation for 

the value of D would be to further reduce it in the presence of therapy heterogene-

ity. A useful formulation of this relationship is  

1 1 (1 ) ,D c c h                                     (5.39) 

            

where c is the coincidence level and h measures therapy homogeneity. In this cir-

cumstance, h = 1 denotes perfect therapy homogeneity, i.e., the therapy has the 

same effect in each of the analyses. Expression (5.39) was developed to demon-

strate the different effect of the homogeneity of therapy and coincidence of 

subjects. When there is perfect heterogeneity, h = 1, and the dependency parameter 

is the measure of coincidence. However, when the therapy has a heterogeneous ef-

fect, the lack of homogeneity reduces the dependency parameter. In the example of 

the previous paragraph, if the proportion of deaths believed to be CAD death is 

equal to 0.75, and there is no effect of therapy in the patients who die a non-CAD 

death, then c = 0.75, h = 0 and  

20.75 1 1 0.75 1 0 (0.75) 0.56.D                   (5.40) 
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Thus, (5.39) demonstrates a relationship in which the degree of dependence is dis-

counted by the absence of complete heterogeneity of therapy. This formulation 

permits a straightforward evaluation of the relationship between the dependency 

parameter D, and each of the determining factors coincidence (c ) and homogeneity 

of therapy effect (h) (Figure 5.4).  

There are some additional comments that we can make in the interest of 

being conservative in estimating D. Clearly overestimating D is to be avoided. The 

greatest impact on overestimating the dependency parameter D on the familywise 

error rate  is the assumption of strong dependence between the statistical tests for 

the primary analyses. Assume, for illustrative purposes, that in a clinical trial there 

are two prospectively planned primary analyses and 1 = 0.04. If the investigators 

assume a dependence level of D = 0.90 when D in reality is 0.50, then  will not be 

0.05 but, instead,  = 0.069, representing a moderate level of  error level inflation.

However, if in this same scenario the investigators assumed that D = 0.50 when D 

was in reality 0.10, then  = 0.051. This represents a much smaller increase in the 

familywise error level. Thus, if there is any doubt about the range of D, D should 

not be chosen to be at high levels (i.e.,  0.70–1.00) but instead at moderate levels 

(0.30 - 0.70), since overestimation of D in these middle ranges will produce less 

inflation above the prespecified level. For the rest of this text, a conservative ap-

proach will be taken for the selection of the dependence parameter. 

Finally, if investigators, after considerable debate remain divided over how 

to choose the dependency parameter D, then there is no acceptable alternative to 

choosing D = 0, returning them to the more conservative Bonferroni approximation.   
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Figure 5.3. Relationship between the dependency parameter, D and the two factors

(1) coincidence (c), and (2) homogeneity of therapy effect (h).

   

5.14 Hyperdependent Analyses 
The foregoing discussions concerning the role of dependency between statistical 

hypothesis testing have perhaps further motivated clinical trial investigators to rec-

ognize the value of formally adjusting for analysis dependency during the design 

phase of their study. However, the implications of endpoint dependency go further 

than merely being able to observe the relationship between primary analyses al-

ready chosen for a research effort. Indeed, much as the discerning epidemiologist 

can see and take advantage of an “experiment in nature,”21 the perspicacious inves-

tigator envisions that the careful incorporation of inclusion and exclusion criteria 

can affect the level of primary analysis dependence. 

5.14.1 Hyperdependence as a Disadvantage  
As an illustration of the use of this tool, consider the task of two investigators (In-

vestigator 1 and Investigator (2) who are each designing their own trial to examine 

the effect of an intervention for the treatment of CHF. They are each interested in 

                                                          
21

Discussed in Chapter 1, page 10.
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determining if the intervention will have an effect on important clinical measures of 

the consequences of this disease. Each investigator chooses the same primary 

analyses for their own study: (1) the effect of the intervention on the cumulative 

total mortality rate and (2) the effect of the intervention on the cumulative mortality 

rate from CHF. 

Investigator 1 chooses a population of patients who suffer from severe 

CHF. His inclusion and exclusion criteria will permit only the recruitment of the 

sickest patients with CHF, namely, those who have NYHA Class III–IV CHF. 

These patients must already be on maximal medical therapy for their heart failure, 

including diuretics, digitalis, ACE-i therapy, and -blockers. In this setting, patients 

who are recruited into the study are already critically if not terminally ill from their 

heart failure. It is very likely that when a patient dies in this study, they will die 

from CHF. Even those very few patients who do not die from CHF will, in all like-

lihood, have their terminal course influenced by the clinical problems produced by 

low cardiac output. In this trial, one can expect a relatively high degree of primary 

analysis dependence.  

The second investigator chooses a very different population. She chooses 

patients who have been diagnosed with CHF (as did Investigator I); however, she 

does not restrict her clinical trial to only the sickest of these patients. The inclusion 

and exclusion criteria of the trial she designed allows the recruitment of patients 

with class II heart failure and even some with class I CHF. These latter patients are 

active, and are at risk of dying from events such as a stroke, newly diagnosed can-

cer, autoimmune disease, and trauma, causes other than CHF. Also, the randomly 

assigned intervention in her trial is likely to have a smaller influence on patients 

who do not have severe CHF, suggesting some therapy heterogeneity. These factors 

combine to reduce the level of dependence between the primary analyses in this ex-

periment. 

In these examples, the degree to which the primary analyses were depend-

ent itself was related to the inclusion/exclusion criteria for the trials. As we have 

demonstrated in previous sections of this chapter, the greater the primary analysis 

dependence, the greater the conservation of the familywise error level . This 

purely mathematical argument would suggest that clinical trials that engender high 

levels of dependence among their prospectively planned primary analyses (as seen 

in the trial designed by Investigator (1) are preferred.  

 However, there is much more to good clinical trial design than  conserva-

tion. What has Investigator 1 gained by carrying out two statistical tests on 

mortality in patients with severe CHF? Because of the selection of the population 

for his clinical trial, an evaluation of the effect of the intervention on the cumulative 

incidence of mortality is effectively (in this example, almost precisely) an evalua-

tion of the intervention’s effect on mortality due to heart failure. Having carried out 

the assessment of the intervention-total mortality relationship, nothing new is 

learned about the effect of therapy on CHF-caused death. The conclusion from one 

evaluation serves as the conclusion from the other. The extreme dependence, or hy-

perdependence between the primary analyses of Investigator 1 makes them 

redundant one of them is unnecessary. Such hyperdependence reduces the contri-

bution the clinical trial makes to this body of knowledge about the effect of the 
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intervention. After all, the purpose of measuring multiple endpoints is to gain an 

appreciation of the length and breadth of the disease’s response to the randomly as-

signed intervention, not merely to measure the same disease consequences in 

different guises in the hopes of gaining dependence in hypothesis testing.  

  There are potential regulatory implications for the interpretation of a posi-

tive trial in the hyperdependence environment. Recall that it is the indication 

section of the label that describes the benefits of the drug that the FDA and the 

sponsor reasonably believed would occur in those patients who use the drug as di-

rected.22 Many times the sponsors of a new intervention express great interest in 

gaining as many approved indications for its use as possible. This is, in fact, one 

motivation for implementing a prospectively planned multiple primary analysis 

mechanism in the design of clinical trials. However, the relevant Code of Federal 

Regulations (CFR) requires that each indication “shall be supported by substantial 

evidence of effectiveness.” Hyperdependence among primary analyses would un-

dermine any claim that each of the primary analyses provides substantial evidence 

of effectiveness. It is therefore difficult to envision that the FDA would provide an 

indication for the positive findings among each of prospectively defined primary, 

but hyperdependent analyses produced from a clinical trial. 

While dependence between prospectively specified primary endpoints can 

be both produced and wielded to reduce familywise error levels in clinical trials, 

this tool must be used carefully. Hyperdependence can serve no good purpose and 

in fact can be counterproductive to expanding the information about the effect of 

the intervention studied in the clinical trial. Investigators will perhaps serve better if 

they design the primary analyses of their clinical trials so that these evaluations 

provide substantial information about the independent effects of therapy. This is 

provided when the degree of dependence is moderate. When the degree of depend-

ence is too great, the different measures of the intervention are not really so 

different at all.  

5.14.2 Hyperdependence as an Advantage 
The previous subsection outlined the disadvantages of the presence of hyperde-

pendence in the evaluation of several prospectively defined primary analyses in a 

clinical trial. There it was pointed out that, while the evaluation of the effect of a 

randomly allocated therapy on each of two closely related prospectively defined 

primary endpoints may produce two statistically significant results, these two 

evaluations will probably not produce two new indications for the intervention that 

was tested. This is because the endpoints themselves are so closely related.  

 However, there are circumstances where the investigators would be will-

ing to sacrifice one of the two possible indications. Such a situation might be when, 

during the design phase of a clinical trial, there is agreement among the investiga-

tors on the identity of the one endpoint that will be used as the primary analysis; 

however, the same investigators can reach no consensus on the analysis plan for 

this endpoint. The result of this situation may produce the same confusion that we 

saw in Chapter 2 when the assessment of the compound Glidel was considered be-

                                                          
22

The relevant code appears in Appendix C.
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fore an FDA advisory committee. Recall from Chapter 2 that the effect of Glidel on 

the cumulative total mortality rate in patients with glioblastoma was controversial, 

not because of the choice of the endpoint, but because of confusion surrounding the 

specific analysis of this primary endpoint. The prospectively chosen analysis was 

an evaluation that was unadjusted for the effect of country, and was not statistically 

significant. However, the country-adjusted analysis was significant.

During the design of a clinical trial in which patients undergo randomized 

stratification within clinical centers,23 there is often debate and discussion that is 

focused on which procedure (purely unadjusted analysis versus a center-adjusted 

analysis) is the most appropriate one to perform at the trial’s conclusion. The find-

ings of the clinical trial for Glidel can increase the anxiety level at these pre- 

clinical trial meetings in which analysis plans are discussed since, as was plainly 

demonstrated in the Glidel example, adjusted and unadjusted analyses can produce 

different and contrary conclusions. The situation can be tense, since the investiga-

tors often feel pressured to settle on one and only one analysis plan for the total 

mortality endpoint.  

Consider the following alternative scenario. During the design phase of the 

study, the investigators choose one and only one endpoint total mortality. How-

ever, the investigators also prospectively declare that they will execute two primary 

analyses for the effect of the randomly allocated intervention on the cumulative 

mortality rate of this endpoint. The first analysis is the unadjusted effect of the in-

tervention on the total mortality rate. The second analysis is a center-adjusted 

evaluation of the effect of therapy on this same endpoint.  

Each of these two analysis plans are announced prospectively, and type I 

error is allocated between them. Clearly, these analysis plans are dependent on each 

other. The endpoints are perfectly coincident. However, the effect of therapy may 

be different in the two analyses. If the joint consideration of coincident endpoints 

and heterogeneity of therapy produced a dependency parameter estimate of D =

0.70, one can compute test-specific  levels (Table 5.15).  

In this circumstance, a type I error is allocated to each of the unadjusted 

and adjusted analysis. Since only one indication for the therapy is sought, the inves-

tigators would be pleased if either the unadjusted or the adjusted analysis was 

statistically significant.  

                                                          
23

While simple randomization of the intervention in a clinical trial is most commonly carried 

out to assure that patients have the same probability of receiving the active versus the control 

therapy across the entire clinical trial, this procedure may produce imbalances within several 

clinical centers in a multicenter study. Randomized stratification within clinical center means 

that the randomization procedure is altered to ensure that patients are equally likely to re-

ceive active versus control therapy within each clinical center. This is discussed in Chapter 1. 
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Table 5.15.  Allocating type I error levels 

                     between two analyses one endpoint.

Primary Alpha

analyses (two-tailed)

Unadjusted analysis 0.040

D = 0.70

Adjusted analysis 0.020

The dividend of this redundant testing however does not come without a 

cost. The price the investigators will pay for this ability to carry out each of these 

analyses as a primary analysis is the larger sample size required when testing occurs 

at the 1 = 0.04 level versus 2 = 0.05 level. However, in the scenario provided in 

Table 5.14, the sample size penalty is small,24 if one permits the evaluation of the 

adjusted analysis to be underpowered.  

Problems
1. Why can we intellectually and internally grasp the nature of dependence easily 

and naturally yet the mathematics of dependency rapidly becomes compli-

cated? 

2. What is the precise implication of the statement that two prospectively defined 

endpoints of a clinical trial are dependent? 

3. What do we mean by the conservation of the familywise error rate? 

4. Explain exactly how dependency between two endpoints in a clinical trial can 

produce statistical hypothesis tests that are dependent and should improve 

familywise error rate conservation? 

5. How does the Bonferroni procedure overestimate the familywise error rate in 

the presence of dependent statistical hypothesis tests? 

6. What characteristics of statistical analyses in clinical trials produce dependent 

statistical hypothesis tests? 

7. What is the relationship between surrogate endpoints and dependent hypothesis 

testing? 

8. In what circumstance is the joint occurrence of two prospectively defined pri-

mary endpoints in a clinical trial not sufficient to conclude that there is 

substantial dependency between statistical evaluations of the effect of therapy 

on these endpoints.  

                                                          
24

Consider, for example, a clinical trial designed to detect the effect of an intervention on 

the cumulative total mortality rate. If the cumulative mortality rate in the control group of 

this trial is 30% then, in order to detect  a 20% reduction in total mortality with 80% power 

requires 1711 patients for a two sided  error level of 0.05, and 1828 patients for a two-sided 

0.04 evaluation. 
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9. Describe the advantages of using dependent hypothesis testing for the evalua-

tion of the effect of therapy on multiple primary endpoints in a well-designed, 

well executed clinical trial. 

10. What problems arise in the interpretation of clinical trials in which there is a 

great deal of dependency between the primary endpoints? What is the counter-

argument to the claim that a benefit can be asserted for each of the dependent 

primary endpoints in this study that produced small p-values? 

11. Describe one advantage and one disadvantage of Tukey’s procedure for inter-

preting results from dependent statistical hypothesis tests.

12. The computer is off line in a multi-floor treatment unit, and the resident physi-

cian has forgotten on which floor his patient has been admitted. There are four 

floors. The resident can only guess on which floor his patient is located. A 

wrong guess leads to a futile search of that floor for his patient, after which he 

will have to guess again. (A)Show that the probability that the resident chooses 

the correct floor on his first guess is ¼?  (B) Using conditional probability 

show that the probability that the residence chooses the correct floor after a 

growing sequence of incorrect guess increases? 

13. How does the assumption of independence between events simplify the compu-

tation of probabilities concerning the events joint occurrences, while 

dependence, although perhaps a more realistic assumption, complicate the 

computation.  

14. From Table 5.3, can you show why a critical assumption in the derivation of 

the dependency parameter is that 1 2?  Why is the minimum function re-

quired in  5.31 

15. In the situation where there are two hypothesis tests, what are the implication 

of defining D as  

2 1

2

1 0 | 0
1

P T T
D

        and not as the square root of this function, as defined in (5.19)? 

16. What problems arise in the estimation of the familywise error  when the de-

pendency parameter is overestimated? What are the safeguards that can be 

taken to avoid this overestimation?  
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Chapter 6 

Multiple Dependent Analyses II 

This chapter continues the development of multiple dependent analyses in clinical 

trials. It demonstrates in detail the formulations for the familywise type I error level 

when there are three dependent primary analyses, it then provides a general solu-
tion for the scenario of K dependent primary analyses. Several simplifications are 

available for the clinical investigator and are described in this chapter, the detailed 
derivations of which appear in Appendix E. If the reader is willing to accept the ar-

gument that the dependency parameter can be generalized to three or more primary 

endpoints, they may proceed directly to Chapters 7 to13. 

6.1 Three Multidependent Analyses 
Chapter 5’s discussion of prospectively planned multiple dependent analyses fo-

cused on the evaluation of two and only two statistical hypothesis tests. However, 

the reality of modern clinical trial design and execution is more complex. We have 

demonstrated (indeed, have encouraged) investigators in clinical trials to have more 

than one primary analysis in their studies. In fact, as we have developed the notion 

of dependence, it is easy for us now to envision examples of a clinical trial where 

there are three primary analyses, each of them related to the other. Such an example 

would be a clinical trial that prospectively declares that there are three primary 

analyses: total mortality, fatal and nonfatal myocardial infarction, and fatal and 

nonfatal stroke. Patients drawn from such a population are likely to experience two 

or sometimes (sadly) all three of these events. If we are to embed dependency be-

tween these hypothesis tests for these prospectively chosen endpoints into the 

analysis plan, we will need the tools to expand the consideration from the K = 2 

primary endpoint analyses case.  

 Fortunately, the case for K = 3 is a straightforward generalization of the 

consideration for two endpoints and we can carry forward the same nomenclature 

that we developed in Section 5.4. In our current situation, there are investigators 

who have three prospectively declared primary endpoints with corresponding statis-

tical hypothesis tests denoted by H1, H2, and H3. We define the variables T1, T2, and 

T3 that take on the value of one when a type I error has occurred, and zero when no 

type I error has occurred. Then, as before, we have P [T1 = 1] = 1, P [T2 = 1] = 2,

and P [T3 = 1] = 3. We will also assume that 1 2 3. We may write the ex-

periment wide type I error as  

1 2 31 0 0 0 .P T T T                                (6.1) 
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 Recall how we proceeded for the K = 2 case. We first wrote 

1 21 0 0 ,P T T                                           (6.2) 

then used conditional probability to write  

1 2 2 1 1[ 0 0] 0 | 0 0 .P T T P T T P T                (6.3) 

We then created a measure of dependency D, 

2 1

2

1 0 | 0
1 ,

P T T
D                               (6.4) 

allowing us to write  

2

2 1 2 2

2

2

0 | 0 1 1 (1 )

1 1 .

P T T D

D
                    (6.5) 

Then we calculated 

1 2

2 1 1

2

2 1

1 0 0

1 0 | 0 [ 0]

1 1 1 1 .

P T T

P T T P T

D

                                  (6.6) 

The process proceeds analogously for the case of K = 3. Just as we could identify 

the joint probability P [T1 = 0 T2 = 0] for the case of K = 2, we must now identify 

P [T1 = 0 T2 = 0 T3 = 0]. Begin with  

1 2 3

3 1 2

1 2

0 0 0
0 | 0 0 .

0 0

P T T T
P T T T

P T T
          (6.7) 

This conditional probability is the probability that there is no type I error for the 

third hypothesis test H3, given the results of the hypothesis tests H1 and H2. This 

means that

1 2 3 3 1 2 1 20 0 0 0 | 0 0 0 0 .P T T T P T T T P T T (6.8) 

Now we write the dependency measure 
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3 1 2

3|1,2

3

1 0 | 0 0
1 .

P T T T
D                           (6.9) 

We write D3|1,2 to denote the fact that it measures the dependence between H3 given 

knowledge of H1 and H2. We can therefore write the dependency measure between 

two statistical hypothesis tests H1 and H2 as D2|1 since that measure of dependency 

is the dependence measure for H2 given that we know H1 has occurred. We now 

solve  (6.9) for the conditional probability  

3|1,2

2

3 1 2 3 3

2

3 3|1,2

0 | 0 0 1 1 (1 )

1 1 .

P T T T D

D
            (6.10) 

We now insert the relationship expressed in (6.10) into (6.8) to find 

1 2 3

3 1 2 1 2

2

3 3|1,2 1 2

= 1 0 0 0  

= 1  0 | 0 0 0 0

1 1 1 0 0 .

P T T T

P T T T P T T

D P T T

                  (6.11) 

Finally, recalling that  

2

1 2 2 2|1 10 0 1 1 1P T T D (6.12) 

we write the familywise error level ,

2 2

3 3|1,2 2 2|1 1= 1 1 1 1 1 1 .D D                    (6.13) 

Note that  is a function of the three test-specific  levels 1, 2, 3 and the two de-

pendency measures D2|1 and D3|1,2.

 As was the case for two hypothesis tests, it will be useful for us to pro-

spectively compute the test-specific  level 3 for primary analysis 3 given the 

levels 1 and 2 for the other two hypothesis tests H1 and H2. Solving (6.13) for 3

reveals

2|1

2

1 2

3 2 2

3|1,2

1
1

1 1 1
min , .

1

D

D
                          (6.14) 

If the value for the dependency measure is the same across the three prospectively 

planned, primary analyses, then D2|1 = D3|1,2 = D, and (6.14) becomes  
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3

2

1 2

2 2 2

1 2

1 1 1 1
min , .

1 1 1 1

D

D D
                    (6.15) 

6.1.1 Example of Dependency Among Three    
Endpoints  

As an example of how dependency among three endpoints can be used to design a 

clinical trial, consider the work of investigators who would wish to examine the ef-

fect of an intervention designed to reduce the morbidity and mortality of patients 

who have ischemic heart disease. The trial designers wish to demonstrate the effect 

of this therapy in patients who are at relatively low risk of death, MI, or stroke. 

With extensive experience in the field of atherosclerotic cardiovascular disease, 

these scientists recognize that since the number of clinical events that can be related 

to ischemic cardiovascular disease will be small, they anticipate that many thou-

sands of patients will be required to complete this experiment.  

After extensive discussions, the trial designers decide to choose three pri-

mary endpoints for the study. They are (1) total mortality, (2) fatal and nonfatal MI, 

and (3) fatal and nonfatal stroke. They recognize that there will be dependence 

among the hypothesis tests for these three analyses and wish to design these de-

pendencies into their clinical trial. With this in mind they begin a sample size 

evaluation, computing the minimum sample size required for each of the three pro-

spectively chosen primary analyses with, at this early stage, no concern for the 

conservation of the familywise type I error level  (Table 6.1).  

Table 6.1. Alpha allocation for trial with three primary endpoints: First design scenario.

Primary Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

Total mortality 0.10 0.20 0.05 0.90 8595

Fatal/nonfatal MI 0.06 0.15 0.05 0.90 27,189

Fatal/nonfatal stroke 0.04 0.15 0.05 0.90 41,588

This initial examination of the required sample size confirms what the in-

vestigators expected. The combination of small event rates and relatively low 

efficacy produces sample sizes of between 8592 and 41,588. Partitioning type I er-

ror levels among the three endpoints increases the required sample sizes (Table 

6.2). 
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Table 6.2.  Alpha allocation for trial with three primary endpoints: Second design scenario.

Primary Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

Total mortality 0.10 0.20 0.03 0.90 9746

Fatal/nonfatal MI 0.06 0.15 0.01 0.90 38,502

Fatal/nonfatal stroke 0.04 0.15 0.01 0.90 58,893

The investigators are now interested in embedding the dependence be-

tween the statistical hypothesis tests. They have a population in which patients can 

have multiple morbidities. All of the available prior information suggests that the 

intervention will act homogeneously on each of these prospectively chosen end-

points. Using the subjective measures described in Chapter 5, the investigators 

choose for D2|1 the value of 0.65 (Table 6.3). 

Table 6.3.  Alpha allocation for trial with three primary endpoints: Third design scenario.

Primary Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

Total mortality 0.10 0.20 0.03 0.90 9746

D 2|1 = 0.65

Fatal/nonfatal MI 0.06 0.15 0.030 0.90 30,829

Fatal/nonfatal stroke 0.04 0.15 0.01 0.90 58,893

The exact computation for 2 the test-specific  level for the fatal and non-

fatal MI primary analysis, as computed from  

1
2 1 2

1

min , ,
1 1 D

                            (6.16)               

and from the expression that we derived in section 5.9. This expression has two 

components. The first component requires the calculation of 1
2

11 1 D
, pro-

ducing a candidate value 2 = 0.036. However, one of the conditions for the 

computation is that 1 2, so we start with the value of 2 = 1 = 0.30.  
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 However, there is one additional consideration that we must make. A value 

for the type I  error level for the fatal/nonfatal MI primary analysis of 0.03 is the 

maximum value of 2 permitted. If this value is actually selected, then the family-

wise error level  will be 0.05, with no available type I error level for the third 

primary analysis for the cumulative incidence of stroke. The investigators therefore 

reduce 2 from 0.03 to 0.02 and use (6.14) to compute 3 with D3|1,2 = 0.75. The 

value computed from the following component of this equation, 

2

1 2 2|1

2

3|1,2

1
1

1 1 1

1

D

D
                                    (6.17) 

provides a value of 3 = 0.021. However, since this computed level exceeds the 

value of 2, the value of 3 is set as 3 = 2 = 0.02 (Table 6.4).  

Table 6.4.  Alpha allocation for trial with three primary endpoints. Fourth design scenario.

Primary Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

Total mortality 0.10 0.20 0.03 0.90 9746

D 2|1 = 0.65

Fatal/nonfatal MI 0.06 0.15 0.020 0.90 33,683

D 3|1,2 = 0.75

Fatal/nonfatal stroke 0.04 0.15 0.021 0.90 51,013

Finally, power is adjusted to minimum values for the fatal/nonfatal stroke 

primary analysis (Table 6.5). Power is increased for the total mortality analysis, 

since more patients will be required for the evaluation of the effect of the interven-

tion on the cumulative incidence of fatal/nonfatal stroke permitting those same 

patients to contribute to the cumulative total mortality rate evaluation. 
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Table 6.5.  Alpha allocation for trial with three primary endpoints: Fifth design scenario.

Primary Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

Total mortality 0.10 0.20 0.03 0.95 11,905

D 2|1 = 0.65

Fatal/nonfatal MI 0.06 0.15 0.020 0.90 35,561

D 3|1,2 = 0.75

Fatal/nonfatal stroke 0.04 0.15 0.020 0.80 39,723

6.2 The Solution for Four Dependent Analyses 
The derivation for three prospectively identified, primary analyses in a clinical trial 

was provided in the previous section. This derivation developed in a straightfor-

ward manner because we were able to build on the intuition we gained from the 

analysis of the simplest of cases for dependency between statistical hypothesis tests 

in Chapter 5 (i.e., when there are two and only two dependent tests). Now that we 

have completed the solution for K = 3, it is possible for us to continue the evalua-

tions for the computation of the familywise error level  and the test-specific 

levels for the clinical trial’s primary analyses.  

For example, the same pattern of solution developed in Section 6.1 can be 

used as a blueprint for the construction of a solution for four dependent endpoints. 

In fact, these evaluations can be evaluated for successively larger values of K, the 

number of dependent primary analyses. However, the equations become more com-

plex as K increases. The derivations for these solutions are each provided in 

Appendix E. We simply report the final results here. 

If during the prospective design of a clinical trial, investigators decide on 

four primary analyses with levels of dependence D2|1, D3|1,2, and D4|1,2,3, and test-

specific  levels 1, 2, 3, and 4, the familywise error  is 

2 2 2

4 4|1,2,3 3 3|1,2 2 2|1 1= 1 1 1 1 1 1 1 1 .D D D         (6.18) 

If we let Dm be the minimum of the values of D2|1, D3|1.2, and D4|1,2,3, then a conser-

vative estimate for  is 

4
2

1

2

= 1 1 1 1 .j m

j

D                          (6.19) 

If  and 1 are known, then the solutions for the test-specific  levels 2, 3, and 4

are as follows: 
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1
2 1 2

1 2|1

min ,
1 1 D

                                                  (6.20) 

                      

2

1 2 2|1

3 2 2

3|1,2

1
1

1 1 1
min ,

1

D

D
                                   (6.21) 

2 2

1 2 2|1 3 3|1,2

4 3 2

4|1,2,3

1
1

1 1 1 1 1
min ,

1

D D

D
         (6.22) 

Let Dm be the minimum values of D2|1, D3|1.2, and D4|1,2,3, these estimates become 

1
2 1 2

1

min ,
1 1 mD

                                (6.23) 

2

1 2

3 2 2 2

1 2

1 1 1 1
min ,

1 1 1 1

m

m m

D

D D
                     (6.24) 

2 2 2

1 2 3

4 3 2 2 2

1 2 3

1 1 1 1 1 1 1
min ,

1 1 1 1 1 1

m m m

m m m

D D D

D D D
       (6.25) 

6.3 K Multidependent Analyses 
For the general circumstance of K dependent hypothesis tests, a general solution for 

the familywise error level K can be found (the proof is in Appendix  E). 

2

|1,2,3,..., 1

2

1 1 1 1
K

K k k k

k

D                     (6.26) 

and the computation of the test-specific  level for the kth hypothesis test is  
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1
2

1 |1,2,3,..., 1

2

1 2

|1,2,3,..., 1

1
1

1 1 1

min ,
1

k

j j j

j

k k

k k

D

D
               (6.27)      

If the level of dependency is the same across all hypothesis tests D, then (6.26) re-

duces to  

2

1

2

1 1 1 1 ,
K

k

k

D                               (6.28) 

and (6.27) becomes 

1
2

1

2

1 2

1
1

1 1 1

min , .
1

k

j

j

k k

D

D
                   (6.29) 

6.4 Conservative Dependence 
In Chapter 5, we discuss the problems that occurs by overestimating the depend-

ency parameter when constructing type I error levels for prospectively chosen 

primary analyses in a clinical trial. Another useful procedure to follow, to help 

avoid overestimating the dependence parameter, may be invoked when there are at 

least three dependent primary analyses. In Section 6.3, we generalized the concept 

of D to the case of K = 3 hypothesis tests. In this circumstance, there is not just one 

parameter D, but two, namely, D2|1 and D3|1,2. While the formulations of Section 6.3 

provided estimates for computing 2 and then 3, we had to specify the value of 

each of D2|1 and D3|1,2 to accomplish this. A conservative approach would be to 

compute each of D2|1 and D3|1,2 based on the guidelines previously provided in 

Chapter 5, and then choose a value Dm which is the minimum for each of these. If 

we define the min(a, b) equal to a when a b and equal to b when b < a, we then 

define 

2|1 3|1,2min , .mD D D                                         (6.30) 
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This provides not just a conservative estimate of the dependency between the pro-

spectively defined statistical hypothesis tests, but it also provides some formula 

simplification. Recall that in the case of three primary analyses, we wrote  

2

1 2 2|1

3 2 2

3|1,2

1
1

1 1 1
min , .

1

D

D
                           (6.31) 

Taking the conservative approach of using the minimum value Dm allows this ex-

pression to be written as  
2

1 2

3 2 2 2

1 2

1 1 1 1
min , .

1 1 1 1

m

m m

D

D D
               (6.32) 

Analogously the familywise error level , originally computed as  

2 2

3 3|1,2 2 2|1 1= 1 1 1 1 1 1D D              (6.33) 

can now be written as 
2 2

3 2 1= 1 1 1 1 1 1 .m mD D                    (6.34) 

In the circumstance of K hypothesis tests, there are degrees of dependence that vary 

across subsets of these hypothesis tests. Thus, D2|1 D3|1,2 D4|1,2,3 …

DK|1,2,3.,…,K–1. In this circumstance, although (6.28) and (6.29) can be used to com-

pute the familywise error level K, or to compute the test-specific  levels, these 

computations can be time consuming. However, one can make the following ad-

justment. Let Dm be the minimum of all of the measures of dependency, i.e., 

|1,2,3,..., 1

1,2,...

minm k k

k K

D D (6.35)

which means that (6.28) and (6.29) can be rewritten as  

2

1

2

1 1 1 1 .
K

k m

k

D                             (6.36) 

The use of Dm permits us to write k as
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1
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1 2

1
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1 1 1

min , .
1

k

j m

j

k k

m

D

D
                          (6.37) 

This calculation using the minimum value Dm has the advantage of being somewhat 

protective of overly optimistic estimates of the dependency parameter. Rather than 

have to estimate each of the dependency parameters, one need only identify the 

minimum value above which all of the dependency parameters may be found. Us-

ing the minimum value of the dependency parameters we will describe as working 

within the environment of conservative dependence.

6.5 Generalization of the Bonferroni Inequality 
Appendix E provides the derivation of other results that will be both useful and 

easy to implement. Simplifying some of the more complex results of the previous 

subsection will make the computations for the incorporation of type I error depend-

ency into prospectively planned primary analyses of clinical trials easier and 

perhaps more intuitive.  

Recall that  is the familywise error level for K primary analyses in a clini-

cal trial. As we have defined previously, let the test-specific  level for the jth 

primary analyses be j, and let Dj|1,2,3,…j–1 be the level of dependency between the jth

primary analyses and the previous j – 1 primary analyses. Finally we will, as before, 

let |1,2,3,..., 1

1,2,...

min .m k k

k K

D D  Then  

1

2

1 |1,2,3,..., 1

2

2

1

2

,

1 ,

1 .

K

j

j

K

k k k

k

K

m k

k

independence

D full dependence

D conservative dependence

    (6.38) 

Expression (6.38) tells us how to compute the familywise error probability under 

the assumption of independence and under the two different conditions for depend-

ence. These expressions are actually generalizations of the Bonferroni inequality. 

Full dependence assumes that all of the different levels of dependence are incorpo-

rated into the test-specific  levels. Conservative dependence uses only the 

minimum value of these levels of dependence.  

If we assume that all of the test-specific type I error levels are to be equal 

then expression (6.38) can be further simplified to  
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2

|1,2,3,... 1

1

2

,

1 ,

1 .

K

j j

j

m

K independence

D full dependence

K D conservative dependence

      (6.39) 

Finally, we can provide a basic rule for computing test-specific  levels if they are 

all to be the same. It is 

2

,

.
1

j

j

m

independence
K

conservative dependence
K D

               (6.40) 

These simplified computations for incorporating dependence into prospectively 

planned primary analyses will be utilized throughout the rest of this text.  

6.6 Subclass Dependence 
While dependence can be a useful tool to conserve the familywise error level for 

prospectively designed primary analyses in a clinical trial, the problem of comput-

ing appropriate values of the dependency parameters for each of the endpoints can 

be complicated. We know that if there are K prospectively defined primary analyses 

in a clinical trial, then there will be K – 1 dependency parameters D2|1, D3|1,2, D4|1,2,3,

…, DK|1,2,3,…,K–1 that require estimation. While it is possible to go down the list of 

the K primary analyses, first ranking them so that 1 2 3  … K, and then 

sequentially going through the thought process necessary to compute and defend 

each value Dj|1,2,3,…,j–1 for j = 2 to K, as we did in Chapter 5 for K = 2 and the earlier 

part of this chapter for K = 3, there is a more intuitive approach available. 

6.6.1 Solutions for Two Subclasses 
The process that is described in this section is the identification of primary analyses 

which are composed of dependent subclasses. The underlying idea is to group the K 
primary analyses into two or three groups or subclasses of analyses. Each primary 

analysis is categorized into only one subclass of analyses. What differentiates one 

subclass of analyses from another is that the primary analyses within one subclass 

of events all have the same dependency parameter. This process allows the investi-

gator to quickly bring his or her own clinical intuition to bear on the problem of 

identifying values for dependency parameters. For example, if there are K = 5 pri-

mary endpoints (1), (2), (3), (4), (5) and analyses (1) and (5) have the same level of 

dependency while analyses (2), (3), and (4) have a different level of dependency, 

then we may say that we have S = 2 subclasses of primary analyses; {(1) (5)} and 

{(2) (3) (4)}. The conservatism of this procedure is improved by categorizing the 

subclass dependence measure as the minimum dependence measure among the 
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events within that subclass. Thus, in the previous example, if in the second subclass 

{(2) (3) (4)}, D3|2 < D4|2,3 then compute the  to be allocated among the subclass as 

the minimum value of D in the second subclass or Dm(2) = D3|2.

No new concepts are required to compute type I error level allocations 

when dependent subclasses are used to categorize the prospectively planned pri-

mary analyses of clinical trials. We provide the computations necessary for the case 

of S = 2 subclasses of events. Consider a clinical trial that is designed to have five 

primary analyses. that have been divided into two subclasses {(2) (3) (4)} and {(1) 

(5)}. The first subclass has S1 = 3 primary analyses, and the second subclass S2 = 2 

primary analyses. Let Dm(1) be the minimum of D3|2 and D4|2,3, which are the two 

dependency parameters from the first subclass. Let D5|1 be the dependency parame-

ter reflecting the relationship between the two primary analyses in the second 

subclass. Assume that the two subclasses of hypothesis tests are independent of 

each other.  

We continue by denoting 1 as the familywise error level for the first sub-

class and 2 as the familywise error level for the second subclass. Since the 

subclasses are independent of each other, we can write 

1 21 1 1 ,                                        (6.41) 

or, more constructively, choose 1 and compute 2 as

2

1

1
1 .

1
                                           (6.42) 

Once the levels 1 and 2 are chosen, which are the familywise error levels for the 

two subclasses of primary analyses {(2) (3) (4)} and {(1) (5)}, respectively, we 

then simply apportion the type I error levels within the two subclasses. For the first 

subclass made up of the primary analyses (2), (3), and (4) we are required to com-

pute 2, 3, and 4 where 2 3 4 . Then we  

(1) Choose 2 < 1.

(2) Compute  

         1 2
3 2 2

2 (1)

min , .
1 1 mD

                       (6.43) 

(3) Compute  
2

2 3 (2) 1

4 3 2 2

2 3 (2) (2)

1 1 1 1
min ,

1 1 1 1

m

m m

D

D D
.                (6.44) 
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The process is easier for the second dependent subclass consisting of primary 

analyses (1) and (5), ordered such that 1 5.

(1) Choose 1 < 2.

(2) Compute  

2 1
5 1 2

1 5|1

min ,
1 1 D

                             (6.45) 

and since 2 11 1 1 , we can rewrite the second expression of the mini-

mum function in (6.45) as 

1

1 1 12 1 1

2 2 2

1 5|1 1 5|1 1 1 5|1

1
1

11
.

1 1 1 1 1 1 1D D D
                (6.46) 

6.6.2 Therapy for CHF 
As an example of the possible use of dependent subclasses of primary analyses 

within a clinical trial, consider the circumstance of a clinical trial that is designed to 

determine the effect of a randomized intervention in CHF. In this study, the investi-

gators will recruit only patients suffering from moderate CHF who meet the 

requirements of the NYHA classification system for class II or class III heart fail-

ure. Every patient recruited for the study will receive the standard level of care for 

heart failure (life style alteration, diuretics, digitalis, ACE-i therapy, and beta 

blocker therapy). In addition, patients who are randomized to the active group will 

receive the new intervention while patients in the control group will receive placebo 

therapy.  

 The investigators discussed thoroughly the choice of endpoints. They 

would like to choose primary analyses that are unambiguously measured and di-

rectly interpretable, such as the effect of therapy on the total mortality rate or the 

effect of therapy on the all-cause hospitalization rate. However, the physicians de-

signing the trial recognize that, despite their best efforts, the number of patients that 

they will recruit for their clinical trial will be too small to carry out an analysis on 

these important primary analyses with adequate power. However, the investigators 

would like to retain some ability to declare that their clinical trial is positive for a 

finding of important magnitude for these endpoints. These scientists declare that the 

analyses for the effect of the intervention on the cumulative mortality rate and the 

effect of the intervention on the cumulative hospitalization rate are primary analy-

ses and allocate type I error level to each of them.1 Since a smaller sample size is 

                                                          
1 As discussed in Chapter 4, this procedure will allow the investigators to say the study is 

positive if the p-value at the end of the concordantly executed trial is less than the type I error 

level allocated to it prospectively. However, since these analyses will be underpowered, the 
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required for the analyses that directly measure exercise tolerance, the investigators 

prospectively choose its measure as the primary analysis for the trial. Thus, the in-

vestigators settle on four primary analyses for this study (Table 6.5).  

Table 6.5. Prospective planned primary analyses.

Exercise Tolerance

The effect of therapy on the 6-minute walking distance

The effect of therapy on the 9-minute treadmill

Clinical Morbidity and Mortality

The effect of therapy on the cumulative total mortality rate

The effect of therapy on the cumulative total hospitalzation rate

The four prospectively defined primary analyses for these studies may be 

considered as two subclasses of endpoints. The first subclass consists of the two 

primary analyses that focus on the two measures of exercise tolerance (exercise 

subclass). The second subclass of analyses (clinical subclass) consists of the two 

primary analyses: (1) the effect of the intervention on the cumulative total mortality 

rate and (2) the effect of the intervention on the cumulative total hospitalization 

rate.

The familywise error for this clinical trial is set to the 0.05 level, a level 

that is to be allocated among the four primary analyses. The investigators begin by 

acknowledging that, after considering the twin conditions of endpoint coincidence 

and therapy homogeneity, the two subclasses of primary analyses are independent 

of each other.2 The investigators then partition the familywise error rate  by allo-

cating 1 = 0.04 to the exercise subclass and 2 = 0.01 to the clinical subclass. This 

division was justified because the analyses for the clinical subclass will be under-

powered, indicating that a paucity of events is expected for these analyses. This 

anticipated small number of events will require a substantial saving of lives, or a 

substantial reduction in the cumulative hospitalization rate to persuade the medical 

community that the therapy is efficacious for these primary analyses. The joint con-

sideration of large effect size and small p-value would be most persuasive (Table 

6.6). 

                                                                                                                               
absence of a positive finding cannot be interpreted as a null (or no effect) finding but as 

merely uninformative.  
2

This process was discussed in Chapter 5, Section 5.2.
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Table 6.6.  Alpha allocation example with four primary endpoints.

                   Two dependent subclasses: First design scenario.

Primary Type I Type I Dependency

analyses error level error level parameter

subclass analysis specific

Exercise Subclass 0.040

6-minute walk

9-minute treadmill

Clinical Subclass 0.010

Total mortality

Total hospitalizations

Initial assignment of familywise error levels for each of the two

subclasses.

The investigators then proceed by allocating a type I error within each of 

the two subclasses. If the investigators assume that there is no intra-subclass de-

pendence within each of the two primary analyses subclasses, this is easily 

accomplished. For example, the investigators allocate a type I error event rate of 

0.030 for the effect of the intervention on the 6 minute walk, leaving approximately 

0.040 – 0.030 = 0.010 for the maximum type I error level acceptable for the effect 

of the intervention on the 9-minute treadmill test. Analogously, the allocation of 3

= 0.008 for the effect of therapy on the cumulative mortality rate leaves a residual 

of 4 for the effect of therapy on the effect of the randomly allocated intervention 

on the cumulative total hospitalization rate (Table 6.7). This is the allocation as-

suming no intra-dependence subclasses. 

However, in this circumstance there will be dependency between the pri-

mary analyses within each of the two subclasses. This dependence can be used to 

conserve type I error within each of the exercises and clinical primary analyses sub-

classes. The investigators believe that there is strong dependence between each of 

the two exercise tolerance endpoints. Patients who perform well on the 6-minute 

walk will also tend to perform above average on the 9-minute treadmill test. Also, 

the investigators have every reason to suspect that the effect of therapy will be the 

same on each of these two endpoints; it would be extremely unlikely, and there is 

no prior evidence to suggest that the randomly allocated intervention would pro-

duce a benefit on the 6-minute walk and not on the 9-minute treadmill test. These 

considerations lead the investigators to settle on a high value of the dependency pa-

rameter between these two primary analyses within the exercise-dependent 

subclass; D = 0.90. This value of D can be used to compute the type I error level for 

the 9-minute treadmill test from expression (6.45). 
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1 1
2 2 2

1

min , ,
1 1 D

                                  (6.47) 

with 1 = 0.04, 1 = 0.030, this indicates that 2 = 0.03. 

Table 6.7.  Alpha allocation example with four primary endpoints.

                   Two dependent subclasses: Second design scenario.

Primary Type I Type I Dependency

analyses error level error level parameter

subclass analysis specific

Exercise Subclass 0.040

6-minute walk 0.030

9-minute treadmill 0.010

Clinical Subclass 0.010

Total mortality 0.008

Total hospitalizations 0.002

Assignment of test specific  levels assuming complete within

subclass and between subclass hypothesis test dependence.

  A similar analysis is provided for the clinical subclass of primary analyses. 

In this case, the investigators believe that 75% of patients who die in this clinical 

trial will be hospitalized, or c = 0.75. They expect a high degree of therapy homo-

geneity in the effect of therapy on those patients who die but are not hospitalized 

first, or h = 0.75. Thus, from (5.39) 

1 1 (1 )

0.75 1 1 0.75 1 0.75

0.75[1 (0.25)(0.25)]

0.75 0.9375 0.7031 0.70.

D c c h

                             (6.48) 

This computation leads to the calculation using (6.16) that the test-specific  level 

4 for the evaluation of the effect of the randomly assigned intervention on the cu-

mulative incidence rate of all-cause hospitalizations is 0.004 (Table 6.8). 
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Table 6.8.  Alpha allocation example with four primary endpoints

                   Two dependent subclasses: Third design scenario.

Primary Type I Type I Dependency

analyses error level error level parameter

subclass analysis specific

Exercise Subclass 0.040 0.90

6-minute walk 0.030

9-minute treadmill 0.030

Clinical Subclass 0.010 0.70

Total mortality 0.008

Total hospitalizations 0.004

Assignment of test-specific  levels assuming intrasubclass

dependence and intersubclasss independence.

A comparison of the  allocation between Table 6.7 and 6.8 reveals the in-

crease in the test-specific  levels for the effect of therapy on the 9-minute treadmill 

evaluation from 0.01 to 0.03. Analogously, there has been an increase in the test-
specific  level 4 for the evaluation of the effect of the randomly allocated inter-

vention on the cumulative incidence rate of total hospitalizations from 0.02 to 0.04. 

Note that the sum of the type I error rates for the 6-minute walk and 9-minute 
treadmill exceed the 0.04  probability for the exercise subclass. The same is the 

case for the sum of the  error rates for the analysis of the effect of therapy for the 

clinical endpoints. Because there is dependence between the analyses within the 
subclass, the test-specific  error rates can be larger than in the case of statistical 

independence.  

6.7 Conclusions 
The use of multiple statistical analyses in clinical trials, while providing the disci-

plined researcher with several opportunities to identify a positive effect of the 
randomly allocated intervention, also complicates that scientist’s work by requiring 

her to allocate a type I error rate across each of several primary analyses. Since the 

familywise error level for the entire trial is typically fixed at 0.05, the test-specific 
levels for each of a large number of hypothesis tests become small very quickly. In 

Chapter 4, we discussed the procedures that a researcher might utilize to control the 

familywise error rate. However, we must acknowledge that even by triaging the 
analyses, and then allocating  differentially among these primary analyses, the in-

vestigator commonly faces the difficulty that prospectively set  levels for some of 

these primary analyses will be very small.  
The recognition that some of these primary analyses will be dependent 

each other and that this dependence will lead to some type I error level conservation 
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has been the focus of much of the statistical literature devoted to the multiple analy-

ses issue. That body of literature was reviewed in Chapter 5. Clearly, there are 
several approaches one can take in incorporating dependence between endpoints. 

However, regardless of the selection the investigators make, the procedure they 

embed in the clinical trial’s analysis plan must be embedded prospectively.  
 Chapters 5 and 6 have provided what I hope is an intuitive procedure for 

the clinical investigators as they grapple with the notion of incorporating dependent 

hypothesis testing in their clinical trial designs. While Chapter 5 focused on the ba-
sic notion of statistical dependence between hypothesis testing and provided 

illustrations of its use in the circumstance of two prospectively specified primary 

analyses, Chapter 6 concentrated on the use of this dependency tool in more com-
plicated clinical trial designs. Clearly, the more complicated the dependency 

relationship between subsets of the primary analyses, the more complex the pro-
spective  allocation procedure can be. However the development provided in these 

two chapters demonstrates the flexibility of the notion of dependency. If there are 

many different multiple endpoints, the approach used in this chapter is both appli-
cable and straightforward.  

An important question is the response of the regulatory community to the 

notion of incorporating dependency in hypothesis tests. The FDA has shown itself 
to be open and receptive to this process. A case in point is the study of the use of 

integrilin as a post cardiac angioplasty therapy [1]. At the advisory committee meet-

ing that first discussed the approval of this product, the Cardiovascular and Renal 
Drugs Advisory Committee focused not on the use of dependency, but on whether 

the analysis plan that was prospectively identified was the one that ultimately gov-

erned the analyses that the sponsor defended. The sponsor’s choice to prospectively 
embed dependency between hypothesis tests was not the major methodological 

concern. If the use of dependency (1) is carefully considered, (2) avoids extremes, 

(3) is prospectively applied, and (4) steers clear of the hyper-dependence issues dis-
cussed in Chapter 5, then there will be minimal difficulty with its successful 

incorporation (using the tool developed in this textbook or others discussed in the 

statistical literature) into a clinical trial program on the trajectory for regulatory ap-
proval.  

At this point, we have developed both the nomenclature and the methodo-
logical tools that we need to carefully examine the most common settings in which 

multiple analyses are used in clinical trials. The use of combined endpoints, sub-

group analyses, and multiple treatment groups will be the focus of the next six 
chapters.  

Problems
1. Construct a table of joint probabilities for the joint occurrence of type I errors 

from K = 3 independent primary analyses in a prospectively designed clinical 

trial analogous to Table 5.2 which was constructed for the case of K = 2. 

2. A clinical trial is prospectively designed with three primary analyses. The 
familywise error rate is to be conserved at the 0.05 level. Assume that the first 

two primary analyses are independent of each other, with test-specific type I 

errors levels 1 = 0.025 and 2 = 0.015. The third primary analysis is dependent 
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on the first two, and has a test-specific  error level 3. Compute the range of 

values for 3 as D3|1,2 increases from 0 to 1.  
3. Consider a clinical trial with three prospectively defined primary analyses, with 

test-specific  levels 1, 2, and 3 respectively, and dependency parameters 

D2|1, and D3|1,2. Let 2(d) be the test-specific type I error that is computed 

as
2

1
1 2

1

( ) min ,
1 1

d
D

. Why must 2 be less than 2(d) in order 

for type I error to be distributed across the three primary analyses? 
4. Compute the test-specific type I errors rate for 4 for four prospectively defined 

primary analyses in a clinical trial for decreasing dependency levels. Assume 

1  is given,  D3|1,2 = D2|1
2: D4|1,2,3 = D3|1,2

2, where 2 = 2(d)/2 and 3 = 

3(d)/2 where  
2

1 2

3 2 2 2

1 2

1 1 1 1
( ) min ,

1 1 1 1

D
d

D D
.

5. Compute the test-specific type I errors rates 1, 2, 3, 4 for four prospectively 
defined primary analyses in a clinical trial for increasing dependency levels. 

D3|1,2 = D2|1
1/2: D4|1,2,3 = D3|1,2

1/2, where 2 is defined as in problem 3 and 3 is 
defined as in problem 4. 

6. Verify formula (6.27) for K = 3, 4, and 5. 

7. Verify formula (6.28)  for K = 3, 4, and 5. 
8. Show that in expression (6.38), the formula for full dependence reduces to the 

formula for conservative dependence when Dk|1,2,3…,k–1 = Dm for K = 1 to K 
when there are K prospectively defined primary endpoints.  

9. Why can the second and third expressions in (6.38) be referred to as generali-

zations of the Bonferroni inequality? 
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Chapter 7 

 Introduction to Composite Endpoints 

This chapter is the first of seven consecutive chapters that applies the multiple 

analyses methodology that we have developed thus far to specific, complex circum-

stances that commonly occur within modern clinical trials. Both this and the next 
chapter focus on the use of the composite or combined endpoint as a primary 

analysis variable. Composite or combined endpoints are defined as the combination 
of component (singleton) endpoints, each of which has clinical significance in its 

own right. In this chapter, the complications involved in the construction of the 

composite endpoint are discussed, and the issue of homogeneity versus heterogene-
ity of treatment effect is addressed.  

7.1 Introduction 
Composite or combined1 endpoints have been incorporated into the design of many 

clinical trials over the past 30 years. The use of these complicated endpoints has 

expanded both in scope and in complexity as investigators have become more ac-

customed to their features. A well-designed clinical trial that prospectively embeds 

a composite endpoint into its primary analysis plan is empowered to measure small 

effects. The use of the combined endpoint improves the resolving ability of the 

clinical trial, strengthening its capacity to pick out weaker signals of effect from the 

background noise of sampling error. If larger effect sizes are of interest, then a trial 

using a composite endpoint can gauge the effect of therapy using a smaller sample 

size (everything else being equal).  

 However, the entry of a composite endpoint into a clinical trial introduces 

that trial to complications in both endpoint construction and endpoint interpretation, 

complexities that can weaken the trial’s ability to reach reliable conclusions. In 

some circumstances, the combined endpoint can be exceedingly difficult to analyze 

in a straightforward, comprehensible manner. The components of the endpoint, if 

not carefully chosen, may produce a conglomerate endpoint that is off balance. The 

medical community’s resultant difficulty in understanding the meaning of this un-

equilibrated endpoint can cast a shadow over the effect of the clinical trial’s 

intervention. This can reduce what appeared as a stunningly successful demonstra-

tion of clinical and statistical efficacy to merely the demonstration of tepid and 

ultimately irrelevant effectiveness against an endpoint that in the end was seen to be 

of dubious clinical value.  

                                                          
1 The terms combined endpoint and composite endpoint are synonymous and will be used 

interchangeably. 
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7.2 Definitions and Motivations 
While our ultimate focus in this chapter will be on the complications that composite 

endpoints add to the problem of multiple statistical analyses in clinical trials, we 

will begin our discussion with an introductory overview of the combined endpoint, 

assessing its strengths and weaknesses.  

A combined or composite endpoint in a clinical trial is a clinically relevant 

endpoint that is constructed from combinations of other clinically relevant end-

points, termed component endpoints or singleton endpoints. Two examples of 

singleton endpoints are (1) the cumulative incidence of total mortality and (2) the 

cumulative incidence of total hospitalization. A patient experiences a combined 

endpoint based on these two singleton endpoints if they either die or are hospital-

ized. If a patient experiences either or both of these component events during the 

course of the clinical trial, then that patient is considered to have experienced the 

composite endpoint, commonly referred to total mortality/total hospitalization or 

total mortality + total hospitalization.  

7.3 Notation 
We can introduce some elementary notation to further clarify the constitution of the 

composite endpoint. Consider a composite endpoint that is composed of the two 

singleton endpoints A and B. Then as stated earlier, the composite endpoint occurs 

if either the event A or the event B has happened. We can denote this occurrence as 

A B where is called “union”. A B  (said as “A union B”) denotes the occur-

rence of either the event A, the event B, or both events. Simply put, A B means 

that at least A or B has occurred. If A denotes the occurrence of a death during the 

course of a trial and B denotes the occurrence of a hospitalization during the course 

of the trial, then A B accurately describes the combined event of at least a death 

or a hospitalization. Thus, the union event is precisely the combined endpoint. 

7.4 Motivations for Combined Endpoints 
There are theoretical and practical motivations that guide investigators as they con-

sider the use of a composite endpoint as a primary analysis variable in a clinical 

trial. Each of these motivations must be considered in turn so that we might gain 

some insight into how to prospectively construct a functional combined endpoint 

for such a study.  

 It is a truism that disease, and certainly chronic disease, manifests itself in 

different ways. As an example, consider CHF. CHF can produce death; CHF also 

increases the likelihood of hospitalization, as well as prolonging it. CHF impairs the 

patient’s ability to exercise, and reduces that patient’s quality of life. In addition, 

CHF is associated with chronic effects on measures of cardiac function including 

but not limited to LVEF, end systolic volume, end diastolic volume, stroke volume, 

cardiac output, and blood pressure. If the investigator wishes to attempt to measure 

the effect of an intervention in alleviating the signs and symptoms of CHF, which 

of these measures should she use?  
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As we saw in Chapter 4, the investigators who design a clinical trial at-

tempt to choose a measure of disease that the intervention will positively affect. 

However, considering the many possible signs and symptoms of CHF, this choice 

can seem to be an impossible one for investigators to make, even after following the 

analysis triage tactic reviewed in Chapter 4. Alternatively, by building a combined 

endpoint from several of the signs and symptoms of CHF outlined above, the inves-

tigators can simultaneously focus on several manifestations of the disease process. 

Thus, the use of the combined endpoint can represent an earnest attempt by the in-

vestigators to construct a “whole” of the disease’s varied effects that may be greater 

than the “sum” of the combined endpoint’s components.  

7.4.1 Epidemiologic Considerations 
Additionally, epidemiologic assessments of singleton endpoints reveal that the iso-

lated interpretation of a single component endpoint can be misleading. As an 

example, consider the correct interpretation of a clinical trial that is prospectively 

designed to examine the effect of an intervention on the occurrence of MIs. There is 

one prospectively identified primary analysis in this study, and that is the effect of 

therapy on the cumulative incidence rate of nonfatal MI. The experiment is concor-

dantly executed and, at its conclusion, the study demonstrates both a clinically 

significant and a statistically significant reduction in the nonfatal MI rate.  

 In this illustration, the randomly allocated intervention reduced the occur-

rence of nonfatal heart attacks. However, the intervention may not be as effective as 

it first appeared. By focusing solely on a nonfatal endpoint, the investigators might 

miss the possibility that the intervention may have produced a harmful effect on an-

other measure of this same disease one that was not captured by the primary 

analysis of the effect of therapy on nonfatal MI. For example, it is possible that the 

therapy reduced the incidence of nonfatal heart attacks by increasing the incidence 

of fatal heart attacks (Figure 7.1). That is, even though the number of nonfatal heart 

attacks was reduced in the active group of the clinical trial, the total number of 

heart attacks was increased in the active group, and the majority of these events 

were fatal heart attacks. Because the intervention’s influence on mortal events may 

be hidden if the principle analysis involves the measurement of only a morbidity 

endpoint, the morbidity endpoint can be combined with the mortality endpoint to 

provide a more complete depiction of the effect of therapy.  

7.4.2 Sample Size Concerns 
An additional motivation for the use of the composite endpoint is to insure that 

there is adequate power for the primary analyses of the study. Combining compo-

nent endpoints permits their endpoint rates to be accumulated, and this increased 

event rate can be translated into a reduction in the minimum number of patients re-

quired for the clinical trial.  

Recall from Appendix E that one of the critical factors included in the 

sample size formula is the control group endpoint event rate. The larger this rate is, 

the greater the number of endpoint events that will be accumulated in the study. 

Thus, if all other assumptions remain constant, we find that the greater the probabil-
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ity of an endpoint, the smaller the number of subjects that will be required to pro-

duce an adequate number of those endpoint events. It is this relationship that is 

taken advantage of in the construction of a composite endpoint. 

Nonfatal MI’s Fatal MI’s

Control group

experience

Active group

experience

Figure 7.1. The active group converts more nonfatal MI’s to fatal ones

and therefore produces the misleading result of fewer MIs.

Consider an investigator interested in studying the effect of a new therapy 

on CAD death. His preliminary data suggest that the annual event rate in the control 

group of the study for the population of patients he is planning to recruit is 0.015. 

The investigator will be able to follow these patients for 5 years. Thus, the 5 year 

cumulative incidence rate of CAD death is 0.073.2 The investigator believes that the 

randomly allocated intervention will reduce the cumulative event of CAD death by 

20%. A computation3 reveals that the required minimum number of patients re-

quired for this clinical trial, assuming 90% power and a two sided type I error 

probability of 0.05 is 12,132 patients, to be divided equally between the two groups 

(Table 7.1).  

                                                          
2

If the annual event rate is r, then the cumulative event rate over y years is 1 1
y

r  The 

reasoning behind this formula is that one first computes the probability of no events in y

years as 1
y

r  and then computes the probability of at least one event in y years, which 

is1 1
y

r .

3
The formula for this computation is provided in Appendix D. 
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Table 7.1. Sample Size computation as a function of the composite endpoint.

Primary Annual Event Cumulative Efficacy Alpha Power Sample 

analyses rate control group (two-tailed) size

event rate

CHD death 0.015 0.073 0.20 0.05 0.90 12132

CHD death + nonfatal MI 0.025 0.119 0.20 0.05 0.90 7092

CHD death + nonfatal MI + 0.040 0.185 0.20 0.05 0.90 4260

    unstable angina

Sample size decreases for combined event rates with larger annual event rates

This is a large sample size, and the investigator believes he will be unable 

to recruit and follow this number of patients for 5 years. However, if this investiga-

tor were to combine with CAD death the event of survival and nonfatal MI, then the 

cumulative event rate of this combined endpoint will include not just CAD death 

but also the cumulative event rate for the nonfatal MI component. The cumulative 

annual event rate is 0.025 for this combined analysis, leading to a cumulative 5-year 

event rate of 0.119 and a sample size of 7092.  

 The investigator can take the additional step and add yet another singleton 

endpoint to this combined endpoint to gain a further reduction in the sample size. If 

the investigator was to consider patients who survived the study and did not experi-

ence a nonfatal MI but did experience unstable angina pectoris during the course of 

the trial as a third component endpoint, then the annual event rate for this triple 

composite endpoint of CAD death + nonfatal MI + unstable angina increases to 

0.040. The 5-year cumulative incidence rate for this new composite endpoint is 

0.185, and the resultant sample size is 4260 patients. By choosing a combined end-

point, the investigator was able to decrease the sample size of the trial from 12,132 

to 4,260 solely by adding component endpoints to the composite endpoint. This re-

duction in the clinical trial’s sample size produces a clinical trial requiring fewer 

resources to execute.

 In the assembly of the composite endpoint, each singleton endpoint con-

tributes an event rate that is included in the event rate of the combined endpoint. 

Thus with each new component endpoint, the sample size will decrease because the 

event rate increases.  

7.4.3 Improved Resolving Power 
Another advantage of the well-considered use of a composite endpoint derives from 

the increase in the number of patients with events that the trial introduces. In the 

previous section we saw how the increase in the control group event rate in a clini-

cal trial decreases the sample size required for the study. One other perspective on 

this multifaceted sample size computation is that the larger event rate provides a 

more sensitive test of the effectiveness of the therapy.  

 As an illustration of this principle, consider an investigator interested in 

designing a clinical trial to detect the effect of an intervention for the treatment of 

heart failure. The intervention is relatively safe and is free (e.g., a change in life-

style). The investigator is interested in demonstrating that the effect of the randomly 
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allocated intervention in patients with heart failure will lead to a 10% to 12% reduc-

tion in heart failure clinical consequences. He chooses as the single primary 

analysis for this trial the effect of therapy on the cumulative incidence rate of CHF 

mortality. He anticipates being able to randomize no more than 4000 to 5000 pa-

tients for this study.  

 The investigator estimates an 18 month CHF mortality rate will be 15% in 

the control group. Assuming 80% power and a two sided type I error of 0.05, the 

original sample size for this research effort reveals that it will take 4066 patients to 

demonstrate a 20% reduction in the actively treated group. However, the investiga-

tor believes that in this population a 10% to 12% reduction is the minimal clinical 

threshold that is worth detecting. In order to be able to detect this low level of effi-

cacy with any statistical reliability, 11,731 patients must be recruited. However, if 

the investigator chooses to add to the CHF mortality the clinical event of CHF hos-

pitalization, the number of events experienced in the placebo group will increase. In 

fact, if the cumulative control group event rate for this new combined endpoint of 

CHF death/CHF hospitalization is 34%, a sample size of 4094 patients will identify 

a 12% reduction in events that is due to the therapy. The ability of a sample size of 

approximately 4100 patients to identify clinically significant but smaller levels of 

therapy efficacy has been improved with the use of the combined endpoint (Figure 

7.2). 

Figure 7.2.  The use of a combined endpoint increases the resolving ability 

of a clinical trial to examine smaller clinically significant effect sizes.

Can only identify large efficacy Focus in on smaller efficacy

Greater occurrence of

combined endpoint
Low occurrence of 

single endpoint

Diffuse focus
Narrow

focus

The two advantages of adding a composite endpoint are broadening the 

measure of the therapy’s effect on the disease and decreasing the required sample 

size or increasing the trial’s ability to detect smaller efficacy levels. However, these 
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advantages must be weighed against the problems with incorporating a combined 

endpoint into a clinical trial.  

7.5 Properties of Combined Endpoints 
We have just defined a combined endpoint. To appreciate the complications of em-

bedding a composite endpoint into the structure of a clinical trial, we must develop 

the properties of combined endpoints. These properties can be divided into (1) co-

herence, (2) endpoint equivalence, and (3) therapy homogeneity.  

7.6 Component Endpoint Coherence
There are many manifestations of chronic disease, and as we have pointed out, in-

vestigators who wish to study the effect of a therapy on the occurrence of that 

disease using a combined endpoint must choose the component endpoints from 

among these signs and symptoms. Some manifestations may measure common 

clinical and pathophysiologic correlates (e.g., fatal and nonfatal MI); others meas-

ure disparities (e.g., intraocular pressure and popliteal nerve conduction velocities 

in patients with diabetes mellitus). The component endpoints that make up the com-

bined endpoint must be coherent-they should measure the same underlying 

pathophysiologic process and be consistent with the best understanding of the 

causes of the disease the investigators wish to study. Consideration of coherence 

requires an examination of the degree to which different component endpoints may 

measure related pathology. A balance must be struck between coincidence and 

separation of the singleton endpoints.  

7.7 Coincidence 
Since the combined endpoint is “built up” from the contributions of at least two and 

many times several singleton endpoints, the clinical relevance of the composite 

endpoint derives from the clinical meaning of its component endpoints from which 

it was constructed. Each component endpoint must measure not just the same dis-

ease process, but the same underlying pathophysiology. When each component 

endpoint is measuring the progression of the same pathology, then the investigator 

can be assured that the component endpoint is measuring the process which is best 

understood to excite the production of the disease’s manifestations.  

However, the component endpoints should not be so closely related that a 

patient is likely to experience all of them. These types of component endpoints we 

will term coincident endpoints. If a patient experiences one of two coincident end-

points, they are likely to experience the other. In this situation, there is no real 

advantage in using the combined endpoint instead of one of its component end-

points. Constructing component endpoints that are too interrelated will make the 

combined endpoint redundant.  

 For example, consider a clinical trial will study the effect of a randomly 

allocated medication in patients with diabetes mellitus. In this trial, patients will 

undergo a baseline blood sugar evaluation, receive the study medication (active or 

placebo), and then be followed for 6 months, at which time a second blood sugar 
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evaluation will take place. The investigator could choose as the principle analysis 

the effect of the intervention on the combined endpoint of reduction in fasting blood 

glucose + reduction in HbA1c. There is no doubt that these two component end-

points measure the same underlying pathophysiology, i.e., the presence of glucose 

in the blood. A fasting blood glucose measurement reports the current level of 

blood sugar, a level that is transient and changes from day to day. The HbA1c level 

evaluation provides a more stable measure of blood sugar levels over approximately 

3 months.  

The randomly allocated therapy being evaluated in the trial is likely to re-

duce each of these measures of plasma glucose over the course of the study. At the 

conclusion of the study, patients who experience important reductions in their ele-

vated blood sugar are also likely to experience reductions in their HbA1c. Thus, 

patients who experience one component endpoint are likely to experience the other. 

The events of reduction in blood sugar and reduction in HbA1c, while measuring 

the same underlying pathophysiology (abnormalities in carbohydrate metabolism) 

are measuring “too much of the same thing.”  

Even though they should measure the same underlying pathophysiology, 

the component endpoints of a composite endpoint should be different enough that a 

patient can experience either of the component endpoints, not just both. We might 

express this formally as follows in the case of a combined endpoint that is con-

structed from two component endpoints A and B each of which have incidence rates 

(e.g., total mortality or total hospitalizations). Recall that we defined the composite 

endpoint as the occurrence of either A, B, or both and denoted that event as the un-

ion of component endpoint A and component endpoint B. We wrote the combined 

endpoint as A B .

Since the clinical trial will randomize a fixed number of subjects and fol-

low them for a prespecified period of time, measuring the new occurrence of 

events, the event rates the trial will measure are incidence rates. We can use the 

probability of the occurrence of the endpoints in the placebo group as a representa-

tion of the placebo group incidence rate. Thus, P A B  is the incidence rate of 

the composite endpoint over the course of the trial. From elementary probability, 

we can write 

,P A B P A P B P A B                          (7.1) 

where P[A] and P[B] are the component event incidence rates for the singleton end-

points A and B. P[A B] is the incidence of the joint occurrence of the two of the 

component endpoints A and B. Recall also from elementary probability that 

| .
P A B

P A B
P B

                                         (7.2) 

This can be written as P [A B] = P [A | B]P [B]. Substituting this result into  (7.1) 

reveals
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                        [ | ] [ ]

[ } [ ] 1 [ | ]

P A B P A P B P A B

P A P B P A B P B

P A P B P A B

                          (7.3) 

This last formulation directly links the probability of the occurrence of the 

combined endpoint to the probability of each of the component endpoints and the 

conditional probability of the occurrence of the component endpoint A given com-

ponent endpoint B has occurred. When the P [A | B] = 0, the composite endpoint 

event rate P A B reaches its maximum value, i.e., the sum of the incidences 

rates for component endpoints A and B. What type of events must A and B be in 

order for the P [ A | B ] = 0 and for the cumulative incidence rateP A B to

reach its maximum value?  

7.8 Mutual Exclusivity and Disparate Events 
In probability, when we consider the properties of events, a useful observation to 

make is whether the occurrence of one event excludes the occurrence of another 

event. We describe such joint events which cannot occur together (or for these pur-

poses, cannot occur in the same patient during the course of the trial) as mutually 

exclusive events. As an illustration of this property, consider a clinical trial in 

which patients who have died are categorized by their cause of death. In this exam-

ple let there be only two possible causes of death; cardiovascular death, or non-

cardiovascular death. If a patient is judged to have died a cardiovascular death, than 

that patient cannot have died a noncardiovascular death. We say that the event of 

dying from a cardiovascular event and the event of dying from a noncardiovascular 

death are mutually exclusive. The occurrence of one of these events excludes and 

makes impossible the occurrence of the other event.  

When component endpoints A and B are mutually exclusive, then their 

joint occurrence is impossible and P [A B] = 0. Thus, the probability that compo-

nent endpoint A has occurred, given that endpoint B has occurred is zero (i.e., P [A | 

B] = 0). This implies that [ ] [ ]P A B P A P B , When events are mutually ex-

clusive the cumulative event of the union of events is simply the sum of the 

cumulative incidence rate of the composite endpoints. Thus, when the component 

endpoints cannot occur in the same patient, the largest combined endpoint event 

rate is attained. Mutual exclusivity of component events directly translates into the 

smallest sample size for the trial.  

It is now easier to think through the problem with coincident component 

endpoints. If the component endpoints are very coincident, then the conditional 

probability P [A | B] is close to one, and the cumulative event rate for the combined 

endpoint is only marginally larger than the incidence rate for the component end-

point A. The larger the conditional probability P [A | B], the more coincident the 

component endpoints become. This in turn leads to a lower frequency of occurrence 

of the combined endpoint (i.e., smaller) P A B and a larger sample size for the 

clinical trial. 
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7.9 The Problem with Mutual Exclusivity 
The prior discussion suggests that the selection of mutually exclusive component 

endpoints would be advantageous in constructing a combined endpoint. However, 

the difficulty with the use of mutually exclusive singleton endpoints is that they can 

measure different characteristics of the same disease that physicians are unaccus-

tomed to linking together. This can produce serious problems in the interpretation 

of the results. Even though the choice of mutually exclusive component endpoints 

minimizes the required sample size for an evaluation of the effect of the interven-

tion on the combined endpoint, care should be taken to assure that the component 

endpoints are not too disparate.  

As an example of the problems that disparate component endpoints can 

produce, consider a clinical trial that will measure the effect of a randomly allo-

cated intervention on the signs and symptoms of diabetes mellitus. The combined 

endpoint for this trial is blood sugar levels > 300 mg/dl + the occurrence of periph-

eral neuropathy. This is a difficult composite endpoint to defend. There is no doubt 

that diabetes mellitus produces both elevations in blood glucose and peripheral neu-

ropathy. However, the two events are not closely linked. Changes in blood sugar 

can be acute, while the development of peripheral neuropathy is chronic, appearing 

after many years of exposure to the complex metabolic derangements produced by 

the disease. It is difficult to make clinical sense out of a combined measure of two 

manifestations of a disease that themselves are not very clearly linked together 

pathophysiologically. If the component endpoints become too disparate, it can be-

come very difficult to describe exactly what the combined endpoint is measuring 

that is of direct clinical relevance. Choosing component endpoints, several of which 

are likely to occur in the same patient, may not produce the combined endpoint that 

leads to the smallest sample size but it can make the trial’s results much easier to 

interpret. 

The occurrence of multiple component endpoints in the same patient dur-

ing the course of the trial, however, admits a possible problem with the use of 

combined endpoints that the trial planners must overcome. Since it is possible that a 

patient can experience each of the components of a combined endpoint, care must 

be taken to ensure that the patient is not considered to have reached the combined 

endpoint multiple times. Consider a clinical trial in which the prospectively defined 

primary analysis is the effect of therapy on the combined endpoint of total mortality 

+ hospitalization due to CHF. It is possible (perhaps even likely) that a patient who 

meets the inclusion/exclusion criteria of the study could experience a hospitaliza-

tion for CHF (perhaps experience multiple distinct hospitalizations for CHF) and 

then subsequently die. In the analysis of this endpoint, even though the patient has 

satisfied the criteria for the combined endpoint more than once, that patient can 

only be counted as having reached this endpoint once.4 Commonly, the prospective 

                                                          
4

This does not mean that in a randomized clinical trial in which patients are expected to be 

followed for 5 years, a patient who reaches one nonmortal component of the prospectively 

defined combined endpoint early in their follow-up should not be followed for the duration 

of the study. Post-event measurements, which include the occurrence of adverse events and 

the possible occurrence of secondary endpoints subsequent to the occurrence of the primary 
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determination is made that the first time the patient reaches the primary endpoint of 

the study, the patient is considered to have reached the endpoint. In our example, 

the patient who suffered multiple hospitalizations for CHF and subsequently died 

during the hospitalization is considered to have reached the primary endpoint upon 

the first hospitalization. 

7.10 Balancing the Separation 
Component endpoints in clinical trial are commonly not mutually exclusive; pa-

tients can experience combinations of the singleton endpoints which make up the 

component endpoint. However, the component endpoints of a composite endpoint 

should be contributory and coherent they must make sense. Each of the compo-

nents endpoints should measure the same underlying pathophysiology, but be 

different enough that they add a dimension to the measurement of the disease proc-

ess that has not been contributed by any other component endpoint.  

As an example of a combined endpoint whose component endpoints re-

flect a balance of distinct component endpoints, consider the design and results of 

the Cholesterol and Recurrent Event (CARE) trial [1]. CARE evaluated the effect 

of the HMG-CoA reductase inhibitor pravastatin on the reduction in morbidity and 

mortality in patients at risk of developing atherosclerotic disease. The CARE trial 

recruited 4159 patients with a history of recent MI and with low-density lipoprotein 

(LDL) cholesterol levels between 115 mg/dl and 174 mg/dl. These patients were 

randomized to either standard care or standard care plus pravastatin 40 mg once a 

day. The prospectively chosen primary endpoint that was the only primary analysis 

of this study was fatal CAD + nonfatal MI. Each of the two component endpoints of 

this composite endpoint is an important manifestation of the same atherosclerotic 

cardiovascular disease process. Each singleton endpoint is in its own right an im-

portant clinical manifestation of ischemic heart disease. 

 After randomization, patients were followed for a median duration of time 

of 5 years. During that time, the investigators worked to ensure that the investiga-

tors assigned to determine whether any of the singleton endpoints had been reached 

were blinded from knowing whether the patient had been assigned active therapy or 

placebo therapy. In CARE, this also meant that investigators were not to receive 

information about the patient’s plasma lipid levels. Treatment guidelines based on 

lipid levels were provided by the trial’s coordinating center to a matched patient. 

This matched patient received study medication in addition to mask any additional 

therapy required by a patient at the same clinical center in the opposite randomized 

group5. From the results of CARE [2] we can assess the degree to which the com-

ponent endpoints measure the same event (Table 7.2). 

                                                                                                                               
endpoint are two of many reasons why patients should continue to be followed until the end 

of the study. 
5

This required tremendous effort in the trial, but insulated the trial from the criticism that it 

was unblinded de facto.
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Table 7.2 Component Endpoint Frequency of 

Occurrence in CARE

Number Incidence

of events rate

Fatal CHD 215 0.052

Nonfatal MI 308 0.074

Joint Occurrence 37 0.009

In CARE, there were 215 patients who experienced the fatal CAD compo-

nent of the primary endpoint. The nonfatal MI component endpoint was observed in 

308 patients and 37 patients had both a nonfatal MI and a CAD death.  

We can utilize formula (7.2) to compute the probability that a patient has a 

CAD death given that they experienced a nonfatal MI as 0.009/0.074 = 0.12. If 

these two component endpoints were coincident, then there would have been many 

more patients who experienced both a nonfatal MI and a fatal CAD death. In 

CARE, even though the component endpoints measure the same underlying patho-

physiology, these singleton endpoints are not coincident.  

Perhaps a useful rule of thumb in determining whether there is sufficient 

difference in what the component endpoints are measuring is whether the compo-

nent endpoints require different documentation. Within the clinical trial mechanism, 

the occurrence of multiple events in the same trial participant often translates into 

the requirement of different and distinct documentation to confirm the occurrence 

of each of the singleton endpoints. In the example of a clinical trial for which the 

composite endpoint is total mortality + hospitalization for CHF, the documentation 

for the occurrence of total mortality is insufficient to document the occurrence of a 

hospitalization for CHF. Each of these two component endpoints requires its own 

standard of documentation. The total mortality singleton endpoint will require in-

formation such as a death certificate and perhaps eye witness accounts that describe 

the circumstances surrounding the patient’s death. Documentation of the occurrence 

of a hospitalization for CHF will at least require a hospital discharge summary. The 

difference in the type of documentation required by these two endpoints is a reflec-

tion of the distinctions between these morbid and mortal events. Thus, although the 

component endpoints of a combined endpoint should be coherent, i.e., they should 

be reflections of the same disease process, they require different documentation as a 

demonstration of their distinctive features. 

7.11 Component Endpoint Equivalence 
There is no doubt that component endpoints have been very useful in the design and 

analysis of clinical trials. However, the techniques and tools of analysis of these 

endpoints can be complex. In some circumstances, the complications induced by 

the analyses of these complicated endpoints can undermine and even negate any 

advantage the combined endpoint itself offered.  
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The component endpoints that make up the composite endpoint are typi-

cally of two types. One type is the endpoint measurement that is itself a number 

e.g., change in blood pressure. Since a patient’s blood-pressure change over time 

can assume any value (within a reasonable range) including fractions, this type of 

endpoints is defined as a continuous endpoint. Other examples of continuous end-

points are changes in LVEF and reductions in HbA1c levels. Other endpoint 

measures are not continuous. They either occur or they do not occur. The simplest 

and best example is death a patient either dies or survives. In this case there is no 

intermediate value. An endpoint such as death is described as a dichotomous or (0–

1) endpoint. While death is the clearest example of a dichotomous endpoint, other 

examples are hospitalization (a patient is either hospitalized or not), or the require-

ment of chemotherapy.6

Analysis tools for component endpoints which are either continuous or di-

chotomous are well described [3], [4]. However, analysis tools for combinations of 

these endpoints can be complex, and sometimes may not be generally accepted. 

Even in the simplest cases, the analysis of the composite endpoint may make some 

questionable assumptions. As an illustration, consider the circumstance of a clinical 

trial whose prospectively defined combined endpoint is assembled from two di-

chotomous component endpoints. The first component endpoint is death and the 

second component of this composite endpoint is hospitalization. The patient is con-

sidered to have met the criteria for the combined endpoint (said to have “reached” 

the combined endpoint) if they have either died during the course of the trial, or 

they survived the trial but were hospitalized during the study. In the case of a pa-

tient who is hospitalized and then dies during the clinical trial, only the first 

endpoint is counted. As described earlier, this analytic tool avoids the problem of 

counting a patient more than once if they have experienced multiple hospitaliza-

tions. 

While this analysis is useful, it makes the explicit assumption that each of 

the two components of this combined endpoint is analytically equivalent to the 

other. Whether a patient meets the hospitalization part of the endpoint or the mor-

tality part of the endpoint doesn’t matter as far as the analysis is concerned. But is a 

hospitalization the same as a death? Is this assumption of equivalence a true reflec-

tion of clinical reality? While one might possibly make the argument that a patient 

who is admitted to a hospital in stage four heart failure is close to death, an investi-

gator would not need to look very far to find someone who disagrees with the 

assumption that this complicated hospitalization is equivalent to death. Obviously, 

less sick patients can be hospitalized but survive to lead productive lives, a circum-

stance that is clearly not the clinical equivalent of death.  

 A similar debate might be sparked in the consideration of the equivalence 

assumption for patients who reach the prospectively defined composite endpoint of 

fatal or nonfatal MI. Since patients who suffer and survive heart attacks can live for 

years, be involved in gainful employment, participate in community activities, en-

                                                          
6 Sometimes a continuous endpoint is converted to a dichotomous endpoint prospectively. 

An example of this type of conversion would be  reduction in blood sugar, in which case the 

endpoint is not the magnitude of the reduction in blood sugar, but whether the blood sugar 

has been reduced by a prespecified amount, e.g., 25 mg/dl. 
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joy their families, and even be enrolled in subsequent clinical trials whose entry cri-

teria require a prior MI, is it reasonable to assume that MI and subsequent survival 

is equivalent to MI with immediate death?  

This equivalence can be a troubling assumption and can complicate ac-

ceptability of the combined endpoint. Of course, there are alternative algorithms 

that are available that would provide different “weights” for the occurrence of the 

various component endpoints of a combined endpoint. For example, one might as-

sume that for the combined endpoint of death + hospitalizations a death is three 

times as influential as a hospitalization. However, it is very difficult for investiga-

tors to reach a consensus on the correct weighting scheme to use, and any selection 

of weights that the investigators choose that is different from equal weighting for 

each of the components of the combined endpoint is difficult to defend. Unfortu-

nately, at this point there is no commonly accepted way out of this analytic enigma 

in clinical trials.  

The situation only worsens when continuous and dichotomous component 

endpoints are combined in the same composite endpoint. How would one construct 

an analysis tool for the combined endpoint that has two component endpoints: (1)  

death or (2) reduction by at least ten units in LVEF? Not only is there the equiva-

lence issue, but there is also the fact that, while the exact date of the patient’s death 

is known, the date when the patient first experienced a ten unit reduction in their 

ejection fraction after they were randomized is not known.7 Complicated analysis 

procedures that address this issue have been developed  [5]. However, as revealed 

at conversations held by the Cardiovascular and Renal Drugs Advisory Committee 

of the FDA, these endpoints can be difficult to understand, and their acceptance by 

the medical community is guarded at best [6].    

7.12 Therapy Homogeneity 
As pointed out in the previous section, an important trait of a combined endpoint is 

that each of its component endpoints should reflect an important clinical manifesta-

tion of the disease. However, the purpose of the selection of a combined endpoint is 

that it not only provides a persuasive depiction of disease morbidity and mortality, 

but that it also be a useful metric against which the effect of the clinical trial’s in-

tervention will be tested. Therefore, from the investigators’ point of view, it would 

be most useful if the composite endpoint is sensitive to the therapy that will be as-

sessed in the clinical study. This situation is most likely to occur if each of the 

component endpoints that make up the combined endpoint is itself responsive to the 

therapy to be tested in the clinical trial. The homogeneity of the therapy effect for 

each of the singleton endpoints permits a fairly straightforward assessment of the 

prediction of the effect of therapy on the combined endpoint; this is a necessary fea-

ture in the traditional sample size computation of the trial8. In addition, therapy 

                                                          
7 This could only be known if the patient had an ejection fraction measured each day of the 

trial.  
8A brief primer on sample size computations is provided in Appendix D, and an exploration 

of sample size computations in the presence of heterogeneity of singleton endpoints is pro-

vided in Appendix E.
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homogeneity helps to avoid interpretative difficulties when the medical community 

considers the intervention’s effect at the conclusion of the study. In addition, as re-

called from Chapters 5 and 6, the presence of therapy homogeneity can be exploited 

in allocating type I error among dependent statistical hypothesis tests.  

 As an example of a combined endpoint, whose component endpoints re-

flect consistent therapy homogeneity, we can return to the example of the CARE 

trial. Recall that CARE evaluated the effect of the HMG-CoA reductase inhibitor 

pravastatin on the reduction of morbidity and mortality in patients at risk of devel-

oping atherosclerotic disease. The primary analysis in CARE was the evaluation of 

the effect of pravastatin on the cumulative incidence rate of fatal CAD + nonfatal 

MI. As pointed out earlier in this chapter, each of the two component endpoints of 

this composite endpoint measures the same pathophysiology; however, the end-

points are distinct enough from each other to capture different manifestations of the 

same pathology.  

 For the prospectively defined analysis in CARE, patients were considered 

to have met the composite endpoint if they either (1) died from coronary artery dis-

ease or (2) survived the trial, but during the course of the trial, experienced a 

nonfatal myocardial infarction9. The effect of pravastatin was assessed at the con-

clusion of the trial (Table 7.3). 

Table 7.3. Effect of pravastatin on the combined endpoint  in CARE.

Endpoint Placebo Active Relative 95% CI p- value

(n  = 2078) (n  = 2081) Risk

n % n %

Combined endpoint

Fatal CHD + nonfatal MI 274 13.2 212 10.2 0.76 [0.64 - 0.91] 0.003

Component Endpoints

Fatal CHD 119 5.7 96 4.6 0.80 [0.61-1.05] 0.1

Nonfatal MI 173 8.3 135 6.5 0.77 [0.61-0.96] 0.02

Pravastatin therapy lowered the mean low-density lipoprotein (LDL) cho-

lesterol level by 32% and maintained average levels of LDL cholesterol of 97 to 98 

mg/dl throughout the 5 years of follow-up. During follow-up, the LDL cholesterol 

level was 28% lower in the pravastatin group than in the placebo group, the total 

cholesterol level was 20% lower and the high-density lipoprotein (HDL) cholesterol 

level was 5 % higher.  

                                                          
9

A patient could, of course, suffer both a nonfatal MI and subsequently die from CAD. In 

the analysis of a composite endpoint which is not continuous (e.g., blood pressure change, 

that can have a large number of values) but death, (that either occurs or does not, described 

as dichotomous), the time to the event is taken into account in the analysis. In this circum-

stance, when a patient experiences each of two dichotomous component endpoints, the 

patient is not counted twice. Instead, the earliest occurring of the two endpoints is the end-

point that is counted.
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CARE was a positive study. The frequency of the composite primary end-

point was 10.2% in the pravastatin group and 13.2% in the placebo group, 

reflecting a 24% reduction in risk. The use of pravastatin produced a relative risk of 

0.76, representing a 24% reduction in the incidence of the combined endpoint of 

fatal CAD + Nonfatal MI. Note, however, the degree to which pravastatin affected 

each of the two components of the composite endpoint. Pravastatin produced a rela-

tive risk of 0.80 for the fatal CAD component of the primary endpoint, and a 0.77 

relative risk for the nonfatal MI component of the endpoint. Not only was the com-

bined endpoint coherent, but it also demonstrated therapy homogeneity.  

7.13 Composite Endpoint Measurement Rules 
The previous sections of this chapter discussed the considerations that the investiga-

tors must give to the details of the composite endpoint’s construction. However, 

there are additional requirements that must be satisfied for the successful incorpora-

tion of a composite endpoint into a clinical trial. These additional requisites will 

now be reviewed. 

7.14 Prospective Identification 
As pointed out in the earlier chapters of this book, the incorporation of an endpoint 

into the primary analysis of a clinical trial must follow certain principles. These 

principles require the prospective identification of the endpoint and the plan for its 

analysis. The motivations for this rule have been discussed in detail in Chapters 2 to 

4. Although that discussion focused on a single endpoint (e.g., total mortality), the 

guiding concept also applies to the evaluation of the effect of a randomly allocated 

intervention in a clinical trial on a composite endpoint.  

As was the case for the single endpoint, the composite endpoint must be 

specified in great detail during the design phase of the trial. This description must 

include how each of the composite endpoint’s components will be ascertained. In 

addition, a committee of investigators is commonly chosen to determine whether a 

component endpoint has occurred. The procedures put in place to blind or mask 

these investigators from the identity of the randomly allocated therapy to which the 

patient was assigned should be elucidated. In addition, the analysis plan for the 

combined endpoint must also be detailed. Any weighting scheme that will be used 

in assessing the contribution each component endpoint makes to the combined end-

point must be determined a priori, and should be acceptable to the medical and 

regulatory community. If there are plans to submit the results of the clinical trial to 

a regulatory agency, then that agency should be completely and fully informed 

about the details of both the construction of the combined endpoints and its analysis 

before the experiment begins.  

The requirement of concordant trial execution is critical to the successful 

implementation of the composite endpoint in a study. Just as it is unacceptable to 

change the definition of the endpoints used in a study’s principle analyses, it is 

equally crucial to keep the constitution of the clinical trial’s combined endpoint 

fixed. Specifically, the component endpoints of a composite endpoint should be 

prospectively chosen and locked in. New component endpoints should not be added 
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nor should established components be removed. The same chaotic effects10 that can 

weaken and destroy the interpretation of a clinical trial, whose principle analyses 

involve a single endpoint,can also wreak havoc on the evaluation of a composite 

endpoint primary analysis. 

7.15 Combined Endpoint Ascertainment 
The accurate assessment of the component endpoint’s interpretation in a clinical 

trial is both critical and complicated. To understand this new complexity introduced 

by the use of a composite endpoint, first consider a clinical trial that has the effect 

of the intervention on the cumulative incidence of CAD death as its sole primary 

analysis. At the conclusion of the research, the study’s investigators must classify 

the experience of each of the randomized patient’s as one of (1) survival, (2) death 

due to a non-CAD cause, or (3) death due to CAD.  

In well-conducted clinical trials, specific documentation is collected to 

confirm that a patient reported by an investigator to have died is actually dead and, 

if they are dead, the cause of that death. These confirmatory steps are taken in order 

to ensure that living patients are not mistakenly assumed to have died. However, the 

investigators must also collect data confirming that a patient believed to be alive is 

in fact alive, a check that avoids the opposite mistake of assuming that a dead pa-

tient is actually living. While this last step is a straightforward matter for patients 

who have attended each visit, there is commonly a subset of patients who have 

missed several of the most recent visits and from whom no information has been 

collected. It is on these patients that intense activity is exerted to determine if they 

are either alive (as suspected) or have died.  

The situation is much more complicated when a composite endpoint is to 

be part of the primary analysis of a clinical trial. If, in the above illustration, the in-

vestigators chose as a primary endpoint not just CAD death, but CAD death + 

nonfatal MI, the investigators have an additional inspection to complete. Not only 

must they assure themselves of the vital status of each patient; they must also de-

termine whether an MI has occurred in all patients. Of course, specific 

documentation will be collected from patients who volunteer the information that 

they have suffered an MI. However not every patient who experiences a heart at-

tack reports the event to the investigators.11 Occasionally, in some patients, the MI 

may have produced no symptoms at all (silent MIs). Mistakenly assuming that these 

patients who have experienced an MI were infarct free would lead to an inaccurate 

count of the number of patients who had this event.  

The provision of assurance that patients who did not report a MI in fact did 

not experience an MI can be an expensive task. Investigators, after determining that 

a patient has survived the trial, must also ask that surviving patient if they suffered 

a heart attack during the course of the study that the patient did not previously re-

                                                          
10 These effects are described in Chapter 2.
11 For example, the MI and associated hospitalization might have occurred while the patient 

was on vacation and the patient was out of contact with the clinical trial’s investigator.  
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port.12 The determination of the occurrence of silent MIs can be especially prob-

lematic. Although many of these silent events can be identified by requiring every 

patient to undergo annual electrocardiograms, obtaining and interpreting these 

evaluations is expensive. Also, if a silent MI is found to have occurred, its exact 

date can be impossible to determine.  

As a final complication, consider the task awaiting investigators who have 

prospectively chosen the combined endpoint of CAD death/nonfatal MI/unstable 

angina pectoris. The evaluation of the unstable angina component, whose occur-

rence is commonly unrecognized and unreported, can add an overwhelming 

logistical burden onto the clinical trial apparatus. However, the study’s investiga-

tors must complete this onerous task. Recall that, in the analysis of the composite 

endpoint, the occurrence of unstable angina is just as critical as the occurrence of 

the other two components of the combined endpoint. If each of the component end-

points is important, then each must be measured with the same high standard of 

accuracy and precision. Clearly, the greater the number of component endpoints in 

the study, the more work the investigators must complete in order to assure both 

themselves, the medical community, and the regulatory community that they have 

an accurate count of the number of endpoints which have taken place during the 

course of the study. This is one additional problem of embedding a complicated 

composite endpoint into a clinical trial that has limited financial and logistical re-

sources.

7.16 Conclusions 
The implementation of composite endpoints in clinical trials holds both great prom-

ise and great danger. A carefully constructed combined endpoint can helpfully 

broaden the definition of a clinical endpoint when the disease being studied has dif-

ferent clinical consequences. This expansion commonly increases the incidence of 

the endpoint and this property can be used to either reduce the sample size of the 

trial or, if a larger sample size is maintained to increase the sensitivity of the ex-

periment to detect moderate levels of therapy effectiveness. However, if the 

combined endpoint is too broad it can become uninterpretable and ultimately mean-

ingless to the medical and regulatory communities. Thus, the combined endpoint 

should be both broad and simultaneously retain its interpretability. We have termed 

this property coherence. Additionally, there should be some experiential evidence 

or at least theoretical motivation justifying the expectation that the therapy to be 

studied in the trial will have the same effect on each of the component endpoints of 

the combined endpoint. This we have termed the homogeneity of therapy effect. 

 In the next chapter, we will review some examples of the use of composite 

endpoints in clinical trials and describe how the number of confirmatory evalua-

tions, that derive both from an evaluation of the effect of therapy for the composite 

endpoint and its components, may be expanded.  

                                                          
12 As we stated earlier in this chapter, the time to the first component event experienced is the 

critical measure used in the analysis of the effect of the intervention on the composite end-

point, thus MI ascertainment is also important for patients who died during the course of the 

study. 
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Problems
1. Briefly describe the advantages that the use of composite endpoints bring to a 

clinical trial? What are the problems that these complicated endpoints intro-

duce to the trial’s execution and interpretation? 

2. Why or why not should the singleton endpoints of prospectively defined pri-

mary endpoints be mutually exclusive? 

3. What is the epidemiologic difficulty with an endpoint that captures only nonfa-

tal clinical events? 

4. Can you explain, without using mathematics, why the sample size of a clinical 

trial decreases when the primary endpoint event rate on which the sample size 

is based increases? 

5. In a clinical trial designed to measure the effect of an anti-inflammatory drug 

on reducing the sequela of atherosclerotic cardiovascular disease, comment on 

the utility of the combined endpoint of fatal CAD death/automobile accidents. 

What would be the advantage of such an endpoint? What would be its interpre-

tative disadvantages? 

6. Discuss the weakness of the proposed combined endpoint of coronary artery 

bypass surgery/hospitalization from the perspective of coincident singleton 

endpoints. What does the coronary artery bypass surgery component add to the 

combined endpoint? Would you expect the probability of hospitalization given 

the patient is to have coronary artery bypass surgery to be close to one or close 

to zero? 

7. How does the notion of homogeneity of therapy effect among the singleton 

endpoints of a composite endpoint affect that combined endpoint’s interpret-

ability? 

8. Describe the impression that is introduced into the assessment of the impact of 

a randomly allocated therapy on a combined endpoint when different levels of 

quality assurance are implemented for the different singleton endpoints.   
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Chapter 8 

Multiple Analyses and      
Composite Endpoints 

In this chapter, we continue our discussion of the combined endpoint in clinical tri-

als. Examples of the use of combined endpoints are provided, and illustrations of 
both exemplary and somewhat questionable incorporations of these complex enti-

ties within clinical trials are provided. Finally, we focus on the uses of the two 
tools; (1) unequal allocation of type I error and (2) measures of dependency be-

tween statistical hypothesis tests in the analysis of combined endpoints. When these 

devices are prospectively implemented within a clinical trial, the concordant execu-
tion of that trial permits confirmatory assessments of the effect of a randomly 

allocated intervention on both the combined endpoint and each of its component 

endpoints. 

8.1 Examples of Composite Endpoint Use 
As we saw in the last chapter, the decision to incorporate a combined endpoint into 

a clinical trial can be difficult. Its inclusion into a study expands the measurement 

of the disease process that the randomly allocated therapy was designed to improve. 

This broadened measure decreases the sample size of the trial and thereby reduces 

the administrative and logistical burden of the study’s execution. Alternatively, use 

of a composite endpoint can enable the clinical trial to identify treatment effect 

sizes that may be modest but clinically significant. These smaller effect sizes may 

be too small to identify (with appropriate concern for type I and type II error rates) 

in a clinical trial in which a single endpoint was used as the primary analysis of the 

study, but can be successfully resolved through the use of a composite endpoint.  

However, these complex composite endpoints that are constructed from 

other endpoints bring their own share of new difficulties. As with single endpoints, 

combined endpoints must be prospectively defined in extensive detail, and the 

clinical trial that tests the effect of the intervention on the composite endpoint must 

be concordantly executed. The successfully implemented combined endpoint must 

be broad enough to measure different aspects of the disease’s manifestations, but 

should avoid a conglomeration of clinically disparate signs or symptoms of the dis-

ease process. There should be a knowledge base that supports the assumption that 

the randomly allocated therapy will be equally effective for each of the component 

endpoints. Finally, the use of a combined endpoint in a clinical trial requires that 

each of the combined endpoint’s component endpoints must be measured with 

equally high precision.  
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The following represent three examples of the incorporation of a combined 

endpoint into a clinical trial.  

8.2 Lipid Research Clinics 
One of the earliest examples of the prospective incorporation of a combined end-

point into a clinical trial was the Lipid Research Clinic (LRC) experience [1]. The 

LRC study was prospectively designed as a randomized, controlled clinical trial 

that focused on the benefits and costs of controlling serum cholesterol levels in pa-

tients at risk of developing CAD.  

As originally conceived, LRC was designed to evaluate the ability of the 

cholesterol-reducing agent, cholestyramine, to reduce the number of mortal events. 

Men between 35 and 60 years of age with total cholesterol levels greater than 265 

mg/dl would be randomized to receive either diet alone or diet plus cholestyramine 

for the management of their lipid levels. The initial design of this trial concentrated 

on the ability of cholestyramine to reduce the cumulative incidence rate of fatal 

CAD. However, the sample size requirement for this trial exceeded the number of 

patients that were available [2]. The investigators therefore chose to evaluate the 

effect of therapy on a combined endpoint; the cumulative incidence rate of the CAD 

death + nonfatal MI. This prospectively chosen analysis was the primary analysis 

for the study. The primary results of this study were reported as positive [3] (Table 

7.4).1

It is interesting to note the large number of events the nonfatal MI compo-

nent contributes to the combined endpoint; there are more than four times as many 

patients with nonfatal MIs as there are patients who died a CAD death. We can ex-

amine the degree of coincidence between the two singleton endpoints by (see Table 

7.4) computing the conditional probability of a CAD death given that a nonfatal MI 

has occurred. Let A be the component event of a fatal CAD death and B be the 

event of a nonfatal MI. From Table 7.4, there were 158 + 38 - 187 = 9 patients who 

had both a nonfatal MI and a CAD event (joint events) in the placebo group and 

130 + 30 - 155 = 5 joint events that were observed to have occurred in the active 

group.  

We have the information that we need to compute the probability of a 

CAD death given that a patient suffered a nonfatal MI. We first  compute the prob-

ability of the joint occurrence (i.e., the occurrence of both events in the same 

patient) of a fatal MI or a CAD death from Table 4 as 

9 5
0.0037.

1900 1906
P A B

Again, using data from Table 7.4, we can compute the probability of a 

nonfatal MI is 

158 130
0.076

1900 1906
.

                                                          
1 The interpretation of the LRC trial was not without controversy. See Moyé [2], p. 132–133. 
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These are the preliminary calculations that we need to compute the condi-

tional probability of a fatal CAD death given the occurrence of a fatal MI as 

0.0037
| 0.049.

0.076

P A B
P A B

P B

Patients who had a nonfatal MI in LRC were not very likely to have a CAD death.  

As reported by the LRC, the effect of cholestyramine therapy produced a 

24% reduction for the fatal component and 19% reduction in the nonfatal compo-

nent, representing a reasonable degree of therapy effect homogeneity.  

Table 8.1. Component Endpoint Frequency of Occurrence in 

The Lipid Research Clinic Study

N

Events Rate Events Rate

CHD death 38 0.020 30 0.016

Nonfatal MI 158 0.083 130 0.068

Combined 187 0.098 155 0.081

1900 1906

Placebo Active

LRC demonstrates fine prospective implementation of a combined end-

point in a clinical trial. The two singleton endpoints of CAD death and nonfatal MI 

were different manifestations of the same pathophysiology. The combined endpoint 

increased the placebo group event rate considerably above that of the component 

endpoint CAD death by (1) taking advantage of the relatively high event rate for the 

nonfatal MI component and (2) producing a low conditional probability of a CAD 

death given the occurrence of a nonfatal MI. Thus, the sample size of the trial based 

on the combined endpoint was considerably smaller than that for the component 

endpoints. Finally, the therapy effect was homogeneous across the two endpoints. 

The use of the composite endpoint carefully expanded the measure of atheroscle-

rotic disease from the original design, decreased the sample size of the trial, and 

maintained therapy effect homogeneity.   

8.3 UKPDS 
An example of a clinical trial with a more complicated combined endpoint is the 

United Kingdom Prospective Diabetes Study (UKPDS). This was a multicenter, 

prospective, randomized, intervention trial of 5102 patients with newly diagnosed 

type 2 (non-insulin-dependent) diabetes mellitus from 23 centers in England, 

Northern Ireland, and Scotland. The UKPDS investigators have published 57 

manuscripts describing various features of this study’s design, execution, and 



242                                                               8. Multiple Analyses and Composite Endpoints

analysis. However, we will concentrate here on the construction, alteration, and in-

terpretation of the combined endpoint of this trial.  

This study was designed to evaluate the impact of improved blood glucose 

control on the complications of diabetes mellitus with particular emphasis placed on 

reductions in morbidity and mortality [4]. Patients who had newly diagnosed type II 

diabetes mellitus were randomized to either diet for control of their hyperglycemia 

(control group), or to insulin and a sulfonylurea therapy (active group). The investi-

gators believed that the pharmacologic therapy employed in the active group would 

reduce blood glucose to near normal levels. Thus, the UKPDS was putting to the 

test the theory that reduction of blood sugar to near normal levels would reduce the 

incidence of long-term complications of diabetes mellitus. This important concept 

in the treatment of diabetes remained unanswered after the controversial conclu-

sions of the University Group Diabetes Program (UGDP) which found that there 

was no clinical benefit from the use of insulin or sulfonylurea/metformin therapy in 

patients with type II diabetes, and that tolbutamide was associated with an increase 

in cardiovascular mortality [5]. 

The protocol for this trial was written in 1976. Recruitment took place 

from 1977 to 1991. The study ended in 1997 at a cost of 23 million.  

The endpoint that the UKPDS investigators chose was quite complex (Ta-

ble 7.5). Diabetes mellitus increases the cumulative total mortality rate. It has been 

associated with an increase in the rate of MIs (both fatal and nonfatal), and strokes 

(fatal and nonfatal). In addition, diabetes mellitus increases the cumulative inci-

dence rate of renal failure, amputations, and blindness. The UKDPS investigators 

were interested in testing the effect of reductions in blood sugar to near normal lev-

els on the cumulative incidence rate of each of these major complications. 

However, many of these complications take years to develop, especially in a popu-

lation that consists of newly diagnosed diabetic patients.  

Even though the UKPDS investigators planned to follow the randomized 

cohort for many years [6], they suspected that this duration of follow-up would not 

be long enough to accrue enough events for any of the component endpoints to jus-

tify the use of that component endpoint as a primary analysis of the study. 

Therefore, in order to increase the number of events, the UKPDS investigators pro-

spectively combined many of the component endpoints, reflecting all of the major 

consequences of diabetes mellitus into a supercombined endpoint. The combined 

endpoint had fatal and nonfatal components that reflected the longterm cardiovas-

cular, renal, peripheral vascular, and ophthalmologic sequela of diabetes mellitus 

(Table 8.2). 
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Table 8.2. Prospectively chosen combined endpoint in UKPDS.

fatal and nonfatal complications of diabetes mellitus

Fatal Endpoints: Diabetes Related Deaths

Cardiac death

Stroke death

Renal death

Hyperglycemic/hypoglycemic death

Sudden death

Nonfatal Endpoints

Nonfatal MI

Angina pectoris

Major stroke

Minor limb complications

Blindness in one eye

Renal failure

When the UKPDS was started in 1977, the investigators believed that the 

improved blood glucose control might reduce the incidence of diabetes-related 

complications by 40% [7]. The original sample size computation revealed that 3600 

patients were required in order to detect this large an effect with 81% power and a 

two sided type I error rate of 0.01. This was, at the time, the single largest clinical 

trial that examined the effect of “tight control” of blood glucose on the long-term 

consequences of diabetes. According to the investigators “If intensive therapy for 

11 years is found to be either neutral or disadvantageous in effect, we would con-

clude that the potential degree of benefit may not be worth the effort of intensive 

therapy including the increased risk of hypoglycemia” [6, p. 443]. 

However, midway through the trial a change was made. In 1987, an in-

terim review of the data revealed that is was very unlikely that a 40% reduction in 

the cumulative incidence of the endpoints would be seen. The investigators were 

now interested in detecting at least a 20% reduction in the incidence of the com-

bined endpoint, for which they had adequate power  [4, Table 6]. Later, as the trial 

progressed, the investigators determined that a 15% reduction in the occurrence of 

the composite endpoints was more realistic. An additional sample size computation 

revealed that the randomization of 3867 patients would provide adequate power 

(81% power) to measure the effect of intensive therapy on the cumulative incidence 

rate of the composite endpoint.  

The results of UKPDS were reported in 1998 [7] (Table 8.3). This trial 

demonstrated a 12% reduction in the cumulative incidence rate of any diabe-

tes-related complication (95% CI 1% to 21%; p = 0.029). At first glance, these 

results are statistically significant, although there are major interpretative problems 

due to the discordant trial execution. We cannot help but notice that the demonstra-

tion of a 12% reduction in any complication of type II diabetes mellitus falls far 

short of the initial prospective determination of a 40% efficacy and, in fact, is even  
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Table 8.3. Results of United Kingdom Prospective Diabetes Study (UKPDS)

Active rx. Conv. rx. P -value Rel. risk 95% CI*

(n = 2729) (n = 1138)

Composite endpoints 963 238 0.029 0.88 [0.79 – 0.99]

Fatal endpoints 285 129 0.340 0.90 [0.73 – 1.11]

Fatal MI 207 90 0.630 0.94 [0.68 – 1.30]

Stroke deaths 43 15 0.600 1.17 [0.54 – 2.54]

Renal deaths 8 2 0.530 1.83 [0.21 – 12.49]

Glucose related** 1 1 0.523 0.420*** [0.03 – 6.66]

Sudden death 24 18 0.047 0.54 [0.24 – 1.21]

Death from PVD**** 2 3 0.120 0.26 [0.03 – 2.77]

Nonfatal endpoints

Nonfatal MI 197 101 0.067 0.79 [0.58 – 1.09]

Angina pectoris 177 72 0.910 1.02 [0.71 – 1.46]

Major stroke 114 44 0.720 1.07 [0.68 – 1.69]

Amputation 27 18 0.990 0.81 [0.28 – 1.33]

Blindness 78 38 0.390 0.84 [0.51 – 1.40]

Renal failure 16 9 0.450 0.76 [0.53 – 1.08]

Photocoagulation***** 207 117 0.003 0.71 [0.53 – 0.96]

*Confidence Interval

**Hypoglycemic or hyperglycemic death.

*** p- value and confidence interval were computed by the author from data. 

presented in the manuscript.

****Peripheral vascular disease.

****Retinal photocoagulation (not prospectively stated).

less than the 20% efficacy level and the 15% efficacy levels that were the newly 

stated design parameters of UKPDS in the middle of this study. 

Although the results of the United Kingdom Prospective Diabetes Study 

are controversial, our focus here will be on the construction of its combined end-

point. The assembly of this structure was complex, since it included aspects of 

cardiovascular disease (cardiac death, stroke, angina pectoris), renal disease (renal 

death and renal failure), peripheral vascular disease (amputation), death due to the 

extreme and unpredictable post-randomization fluctuations in blood sugar (hypo-

glycemic/hyperglycemic death), and ophthalmologic findings (blindness in one 

eye). This is a very diverse endpoint examining the effects of diabetes on multiple 

organ structures. However, in all fairness to the investigators, they hoped to demon-

strate that an active aggressive plan to maintain blood sugar levels as close as 

possible to normal would have a uniformly beneficial effect on each of these end-
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points. Thus, while this composite endpoint may seem very broad, it measures ex-

actly those manifestations of diabetes mellitus that the UKPDS investigations 

believed would be affected by therapy. 

However, it was not only the efficacy of the design parameter that was al-

lowed to change during the course of the trial; the constitution of the composite 

endpoint appears to have altered as well. The UKPDS design manuscript [4] that 

listed the components of the combined endpoint did not mention that retinal photo-

coagulation would be part of the UKPDS endpoint. However, at the conclusion of 

the study, we find that retinal coagulation was included as part of the combined 

endpoint.  

The inclusion of this new endpoint introduces a new complexity into the 

UKPDS result analysis. Unlike other component endpoints of death, or amputation, 

which can be directly interpreted by the medical community, the assessment of the 

effect of intensive therapy on photocoagulation can be problematic. Its occurrence 

is based on visits to physicians and eye doctors and referrals. While these effects 

would be expected to be nonpreferentially distributed across the two treatment 

groups, this distribution does not dismiss the concern for the addition of the photo-

coagulation endpoint. As we have pointed out in Chapter 2, changing clinical trial 

design parameters (e.g., efficacy measures and endpoints) after the trial has been 

initiated, introduces complexities that can make the results of that trial uninter-

pretable. What is to be gained by adding a photocoagulation measure to the UKPDS 

combined endpoint when the investigators already had a straightforward, easily in-

terpreted measure of ophthalmologic disease in UKPDS blindness? 

The addition of the photocoagulation endpoint to the composite endpoint 

of UKDPS is all the more remarkable because this component endpoint makes up 

207 117 963 438 23% of all the component endpoints used in the com-

bined endpoint. This non-prospectively defined, singleton endpoint contributes over 

20% of the total number of endpoint events that compose the composite endpoint of 

the UKPDS. In a very real sense, photocoagulation dominates the other component 

endpoints. Unfortunately, this most prevalent component of the combined endpoint 

is also its least persuasive.  

Equally remarkable is the observation that, of all the component endpoints 

in the UKPDS combined endpoint, only retinal photocoagulation is even nominally 

statistically significant. Each of the other component endpoints is consistent with no 

effect of intensive therapy. In fact, it is the finding for the effect of therapy on the 

photocoagulation component that produces the statistical significance of the com-

posite endpoint. These observations do not increase our confidence in the findings 

of the UKPDS. 

8.4 HOPE 
The final illustration of a clinical trial that integrated a composite endpoint into its 

primary analyses is the Heart Outcomes Prevention Evaluation (HOPE). By the mid 

1990s, ACE-i therapy had demonstrated its effectiveness as an important treatment 

not just for systemic hypertension but also for the treatment of CHF. The clinical 

trials SOLVD  [8], [9] and Survival and Left Ventricular Enlargement (SAVE)  
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[10] demonstrated that the administration of ACE-i therapy could reduce morbidity 

and prolong survival in patients who have left ventricular dysfunction and CHF. 

However, there was interest in testing the effectiveness of ACE-i inhibitor therapy 

in reducing morbidity and mortality caused by ischemic cardiovascular disease.  

The HOPE trial was designed to test the effectiveness of the ACE-i ther-

apy (ramipril and vitamin E) in reducing morbidity and mortality in patients who 

were at risk of developing ischemic cardiovascular disease [11]. HOPE was a ran-

domized, prospective, double-blind clinical trial. Patients who were recruited for 

this study were required to have either (1) evidence of cardiovascular disease 

(coronary artery disease, peripheral vascular disease, or a prior stroke), or (2) the 

presence of risk factors for the development of ischemic cardiovascular disease 

(diabetes mellitus plus at least one of the following: hypertension, cigarette smok-

ing, hyperlipidemia, or microalbuminuria). Patients were to be randomized to either 

(1) placebo therapy (2) vitamin E alone (3) ramipril alone, or (4) vitamin E + rami-

pril. This experimental design provided the investigators the flexibility that they 

needed to evaluate the effect of each of the two active compounds alone or in com-

bination.2

The primary analysis for the effect of ACE-i therapy in HOPE was the ef-

fect of ramipril on the composite endpoint of cardiovascular death + nonfatal MI + 

nonfatal stroke. The investigators believed that a clinically important and biologi-

cally plausible risk reduction would be 15% to 20% [11, p. 133]. For this they 

would need to recruit over 9000 patients and follow them for 3.5 years. However, it 

was also prospectively stated that the Data and Safety Monitoring Board was em-

powered to increase the duration of follow-up, which it chose to do, prolonging the 

follow-up period to 5 years.3

The results of HOPE were remarkable [12]. Ramipril produced a 22% re-

duction in the relative risk of the combined endpoint. In addition, the effect of 

therapy was homogeneous across each of the component endpoints from which the 

composite endpoint was constructed (Table 8.4). This uniformity of response to 

treatment demonstrated that ramipril’s effect was not just on one component of the 

composite endpoint, but instead, ramipril had a beneficial effect on each of the sin-

gleton measures of cardiovascular disease. Regardless of the prospectively defined 

manifestation of cardiovascular disease, ACE-i therapy reduced its cumulative inci-

dence. This is a very clear and very powerful message. 

                                                          
2 This style of design, where two separate treatments are provided individually and in combi-

nation with different patients in a completely randomized way is commonly referred to as a 

factorial design.
3 Making a decision based on data demonstrating the effectiveness of the therapy opens the 

door to the possibility that the data from this preliminary examination of the trial’s results 

determined the interim decision to continue follow-up, a process that is at the heart of ran-

dom research (Chapter 2). The HOPE investigators have assured the scientific community 

that this decision to prolong the study was made in the absence of  knowledge about the in-

terim results of the trial.
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Table 8.4.  Primary analyses of the HOPE trial.

Endpoint Placebo rx. Active rx. Rel risk 95% CI* p- value

(n  = 4652) (n  = 4645)

n % n %

Combined endpoint

MI**, stroke, or CV*** death 826 17.8 651 14 0.78 [0.70 – 0.86] <0.001

Component endpoints

CV death 377 8.1 282 6.1 0.74 [0.64 – 0.87] <0.001

MI 570 12.3 459 9.9 0.80 [0.70 – 0.90] <0.001

Stroke 236 4.9 156 3.4 0.68 [0.56 – 0.84] <0.001

*Confidence interval.

**MI.

***Cardiovascular.

The investigators designed HOPE to identify an effect of ramipril on the 

combined endpoint with a low type I error probability. Thus, given that ramipril 

was so effective, it comes as no surprise that the effect of the therapy produces a 

small p-value ( p < 0.001) for the composite endpoint. What is surprising is that the 

effect of ramipril resulted in large effect sizes and small p-values for not just the 

combined endpoints, but for the effect of therapy on each of the component end-

points as well. For the singleton endpoints (1) death from a cardiovascular cause, 

(2) nonfatal MI, and (3) stroke, the relative risks associated with therapy revealed at 

least a 20% reduction and the p-values are each < 0.001. Since one of the primary 

motivations for using a combined endpoint is to identify a clinically significant 

treatment effect when the event rates for the component endpoints will not yield 

statistical hypothesis tests of adequate power, one might wonder why the investiga-

tors did not choose the effect of therapy on a singleton endpoint (such as the 

cumulative incidence rate of cardiovascular death) as HOPE’s principle analysis. 

Although there might be several reasons, one of them is that the trial was initially 

designed to have a 3.5 year follow-up. In that duration of time, a smaller number of 

events would occur in the trial, most likely producing an underpowered environ-

ment for the hypothesis tests to evaluate the effect of therapy for each of the 

component endpoints. It is possible that if the data were truncated at 3 years, the 

findings for the component endpoints might not be so strong, By increasing the du-

ration of follow-up to 5 years, the additional observation period produced more 

events. Given the effectiveness of ACE-i therapy, this increased number of events 

decreased the standard error of the relative risk estimate and decreased the p-value.  

8.5 Principles of Combined Endpoint Use
Combined endpoints are useful and effective tools to evaluate the effect of therapy 

in a clinical trial when the evaluation of the effect of therapy on the occurrence of 

that event will be underpowered. The FDA has accepted the use of combined end-

points in clinical trials as a useful tool in the development of a clinical trial program 
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to evaluate the effect of an intervention. However, the implementation of these 

composite endpoints can be complicated. We have thus far established the follow-

ing principles for the use of combined endpoints: 

Principle 1. The endpoint must be clinically relevant to the medical and regula-

tory communities. (principle of clinical relevance.) 

Principle 2. Both the combined endpoint and each of its component endpoints 

must be prospectively specified in detail (principle of prospective 

deployment). 

Principle 3. Each component of the combined endpoint must be carefully cho-

sen to add coherence to the composite endpoint. The component 

endpoint that is under consideration must not be so similar to other 

components so that it adds nothing new to the mixture of singleton 

endpoints that will make up the combined endpoint, yet it should 

not be so dissimilar that it provides a measure which is customarily 

not clinically linked to the other component endpoints (principle of 
coherence).

Principle 4. The component endpoints that constitute the combined endpoint are 

commonly given the same weight in the statistical analysis of the 

clinical trial. Therefore, each of the component endpoints must be 

measured with the same scrupulous attention to detail. For each 

component endpoint, it is important to provide documentation not 

just that the endpoint occurred, but it is equally important to con-

firm the absence of the component endpoint (principle of precision).  

Principle 5.  The analysis of the effect of therapy on the composite endpoint 

should be accompanied by a tabulation of the effect of the therapy 

for each of the component endpoints, allowing the reader to deter-

mine if there has been any domination of the combined endpoint by 

any one of its components, or if the findings of the effect of therapy 

for component endpoints are not consistent (principle of full disclo-

sure).         

Careful attention to detail is required to incorporate a composite endpoint into a 

clinical trial’s primary analyses in accordance with these four enunciated principles. 

Although following these principles can simplify the interpretation of the combined 

endpoint, assembling a combined endpoint based on them does not guarantee that 

the familywise error rate  will be conserved. We will now turn our attention to this 

matter, which is at the heart of the multiple analysis issue that affects the interpreta-

tion of composite endpoints in clinical trials. To guide our work, we will make the 

assumption that the investigators approve of and accept each of these four princi-
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ples described above for the incorporation of the combined endpoint into their 

clinical trial. 

8.6  Allocation and Combined Endpoints
In this section, we provide useful guidelines for the use of composite endpoints in 

clinical trials, and then turn our attention to the allocation of type I error rates for 

the statistical hypothesis tests that evaluate the effect of therapy on these compli-

cated endpoints. 

8.6.1 Familywise Error Control Procedures 
In our development of the use of composite endpoints in clinical trials, the concern 

for the familywise error probability now becomes a dominating issue. This issue 

was central to the correct interpretation of the effect of a randomly allocated inter-

vention on a single endpoint in the clinical trial. In that circumstance, ethical 

concern focused on the possibility of misleading the medical community and the 

population at large about a promising beneficial therapy effect that was merely a 

spurious finding that appeared in the research sample just through the play of 

chance. We developed the concept of the familywise error rate, or the probability 

that at least one of the primary analyses that suggested a beneficial effect of therapy 

in a clinical trial was false (due to sampling error), and saw that the rate of this error 

increased with the number of statistical hypothesis tests that was executed.  

 Our approach in coming to grips with this issue has incorporated (1) rec-

ognition and acknowledgment of the investigators’ desire to use a single data base 

to address many scientific questions, and (2) the ethical requirement that we must 

control the familywise error probability below a bound that is acceptable to the 

medical community. In order to balance the acknowledgment of the motivation and 

the requirement of the error rate, investigators should (1) triage analyses into the 

categories of primary analyses, secondary analyses, and exploratory analyses and 

(2) allocate a type I error rate prospectively to each of the primary analyses. Proce-

dures were provided so that the computation of error rates could be completed in 

either the setting of hypothesis testing independence4 or dependence.5 These same 

procedures will be utilized here to allocate a type I error rate for primary analyses 

which include combined endpoints. 

8.6.2 Multiple Analyses and Composite Endpoint 
Distress

While the composite endpoint, as we have defined it in the previous chapter is con-

sidered and analyzed as though it was a single endpoint, its common and 

appropriate usage imbues it with features that must be addressed within a multiple 

analysis paradigm. This is because the composite endpoint is made up of compo-

nent endpoints that in and of themselves have special and particular meaning to the 

                                                          
4 Chapter 4. 
5 Chapters 5 and 6.
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medical community. In fact, commonly, it is the singleton endpoint’s low cumula-

tive event rate and not its medical relevance that preclude it from consideration as 

the endpoint for a primary analysis of a clinical trial. It is therefore no surprise that 

interest continues in the medical and regulatory communities for an examination of 

the effect of therapy on the singleton endpoints that constitute the composite end-

point (principle of full disclosure).  

 In addition, there are circumstances that can bedevil the interpretation of a 

clinical trial. These situations can be obviated by the formal incorporation of multi-

ple analysis procedures. Consider a clinical trial that intends to evaluate the effect 

of a new therapy on patients with nonischemic cardiomyopathy. Patients who are 

severely ill and debilitated from this condition are recruited for this trial, and then 

randomized to receive either standard therapy plus placebo (control group) or stan-

dard therapy plus the new treatment (active group).  

The trial designers plan on only one primary analysis; the effect of therapy 

on the occurrence of the composite endpoint of all-cause mortality + all-cause hos-

pitalization. The anticipated cumulative incidence rate for this composite endpoint 

in the control group is 35% and the investigators are interested in demonstrating a 

20% reduction in this rate attributable to the therapy. Assuming a two-sided type I 

error level of 0.05 and 90% power, the sample size goal for this study is 1842 pa-

tients, a goal that is achieved. The investigators report the results of the trial at its 

conclusion (Table 8.5). 

In this trial, the effect of the therapy on the prospectively specified primary 

endpoint of death + hospitalization is small. The relative risk is clinically insignifi-

cant, and the p-value of 0.09 is greater than the 0.05 threshold set in the design 

phase of the trial. However, the evaluation of the effect of therapy on the total mor-

tality component of the composite endpoint provides a striking finding. The relative 

risk for the effect of therapy on the cumulative mortality rate is quite small, and the 

associated p-value of 0.03 is difficult to ignore. Should this study be considered 

positive based on the finding for the total mortality component endpoint?  

Table 8.5. Results of ischemic cardiomyopathy trial.

Analyses Prespecified P- value Relative

type I error at  trial's risk

level conclusion

Death + hospitalization 0.05 0.09 0.91

Total hospitalization Not specified 0.15 0.99

Total mortality Not specified 0.03 0.60

The rules that we have provided thus far say the answer to this question 

should be no. The total mortality analysis had not been prespecified; we are giving 
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the total mortality analysis attention not because we prospectively said we would, 

but because the result is intriguing. However, counterarguments state that the inves-

tigators are obligated to report the total mortality analysis as they comply with the 

full disclosure principle for composite endpoint use in clinical trials. Shouldn’t 

these results that they are required to report be considered? In addition, there is 

clearly some dependence between the findings for the total mortality analysis and 

that of the combined endpoint, since the total mortality endpoint is a component of 

the composite endpoint. This dependency should lead to some  error level conser-

vation which is not reflected in Table 7.8.  

 This ambiguous set of circumstances could be avoided if the combinations 

of trial design precaution and innovation, used to develop multiple hypothesis test-

ing strategies for a singleton endpoint, could be applied in the combined endpoint 

analysis setting. It is appropriate for the investigators, who recognize that they must 

provide a complete endpoint assessment, to give consideration to the possibility of 

not just reporting the results for the component endpoints, but to actually draw con-

firmatory conclusions from these singleton endpoint analyses as well. This requires 

that the discussions of Chapters 2 to 6 be considered for the prospective identifica-

tion of primary analyses among the evaluations for (1) the combined endpoint and 

(2) the component endpoints. This will be the focus of the remainder of this chap-

ter.

8.7 Example 1: Design for a Heart Failure Trial 
Consider the example of investigators who are interested in determining the effect 

of therapy to reduce morbidity and mortality in patients with CHF. In this study, 

patients will be followed for 18 months. Specifically, the investigators for the study 

are interested in demonstrating the effectiveness of the randomly allocated medica-

tion on the reduction in (1) the rate of hospitalization for CHF and (2) the 

cumulative incidence rate of total mortality. The investigators’ attention is focused 

on an evaluation of the effect of therapy on a combined endpoint (death + 

hospitalization), but the trial scientists would also like to be able to make a 

confirmatory statement about the effect of the therapy on the two singleton 

endpoints (total mortality and total hospitalization) as well. These investigators 

anticipate that the event rate for total hospitalizations will be 30% over the course 

of the trial and that the cumulative event rate for total mortality will be 15%, 

producing a 40% cumulative event rate for the combined endpoint. With an 

expectation that patients randomized to the treatment group will experience a 20% 

reduction in the occurrence of hospitalizations, and a 25% reduction in total 

mortality,6 the investigators proceed with the first sample size computation7 (Table 

8.6).  

                                                          
6 The investigators actually anticipated that the randomly allocated medication would pro-

duce a 25% reduction in events; however, the medication quite likely would produce 

hospitalizations in some patients immediately after randomization. Recognition of this find-

ing leads to a reduction in the efficacy of the compound for both the total hospitalization 

singleton endpoint and the combined endpoint from 25% to 20%.  
7 Sample size computations are discussed in Appendix D.
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Table 8.6. Alpha allocation example for composite endpoint: First design scenario.

Primary Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

Death + hospitalization 0.40 0.20 0.050 0.90 1503

Total hospitalization 0.30 0.20 0.050 0.90 2291

Total mortality 0.15 0.25 0.050 0.90 3397

For this initial sample size computation, there is no attempt to control the 

familywise error probability and the power level is initially chosen as 90% for each 

of the three analyses. The required sample size for examination of the effect of 

therapy for the composite endpoint is substantially less than for the analysis of the 

therapy’s effect on either of the singleton endpoints because of the composite end-

point’s larger event rate. The largest possible event rate for this combined endpoint 

event is 0.45, which is the sum of the two events rates for total hospitalization and 

total mortality. However, since there are patients who will be hospitalized and sub-

sequently die, the cumulative event rate for the composite endpoint is less than the 

sum of the rates for the singleton endpoints8. This state of affairs does not provide 

the maximum cumulative composite endpoint event rate for the study. However, the 

fact that patient in this study are both hospitalized and die suggests that the disease 

process affects the occurrence of each of these. This increases our confidence that 

the combined endpoint is capturing different although not completely independent 

manifestations of the same disease process, i.e., that the prospectively chosen com-

posite endpoint is a coherent one.  

Table 8.6 provides sample sizes only for the single type I error rate of 

0.05. The investigators take the next step of adjusting the type I error rates for each 

of the three primary analyses to conserve the familywise error rate (Table 8.7).  

                                                          
8

In Section 7.3.1, we pointed out that the lower the probability of the occurrence of a single-

ton event given the occurrence of another singleton event, the greater the composite endpoint 

event rate will be. From Table 7.8, we can compute the conditional probability of a death 

given that the patient is hospitalized. If A is the event of hospitalization and B is the event of 

death, then we can first compute  0.40 [ ] [ ] [ ] [ ]P A B P A P B P A B . Since we 

know that P [A]=0.15 and P [B]=0.30, then we can find P [A B] = 0.30 + 0.15 –0.40 = 0.05. 

The probability of a death given hospitalization has occurred is 

then | 0.05 0.30 0.167.P B A P A B P A
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Table 8.7. Alpha allocation example for composite endpoint: Second design scenario.

Primary Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

Death + hospitalization 0.40 0.20 0.025 0.90 1775

Total hospitalization 0.30 0.20 0.010 0.90 3244

Total mortality 0.15 0.25 0.015 0.90 4460

Of course, the sample sizes for each of the three analyses have increased 

now that the test-specific  error rates have been reduced. However, the clear 

relationship between the composite endpoint and the component endpoints from 

which it is constructed makes it quite reasonable to expect that there will be 

dependency among these endpoints’ hypothesis tests. This recognition allows the 

investigators to apply the notation and tools of Chapters 5 and 6 to recompute the 

test-specific type I error rates.  

Specifically, in this setting, there are two dependency parameters that the 

investigators will need to estimate, identified as D2|1 (representing the occurrence of 

a type I error for the effect of therapy for the total hospitalization endpoint given the 

occurrence of a type I error in the examination of the effect of therapy on the com-

bined endpoint) and D3|1,2 (the occurrence of a type I error for the effect of the 

randomly allocated intervention given that a type I error has occurred on each of the 

examinations of the effect of therapy on the composite endpoint and total hospitali-

zations).  

Recall that in the consideration of hypothesis test dependency, the two fac-

tors that must be considered in estimating D2|1 and D3|1,2 are (1) coincidence, or the 

degree to which the combined endpoint and the singleton endpoints occur in the 

same patient; and (2) homogeneity of therapy effect. However, these two concepts 

are precisely those ideas that entered into our development of the concept of the 

composite endpoint, and we may take full advantage of that one-to-one correspon-

dence here. Turning our attention first to the estimation of the value of D2|1, recall 

from Chapter 5 that a useful starting approximation for the value of D2|1 is (5.39) 

and reproduced here.  

2|1 ( ) 1 1 (1 ) .e e eD e c c h                                       (8.1)               
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Remember that, in this formulation, ce
9 is the coincidence level (between zero and 

one) that measures the degree to which each of the endpoints occur in the same per-

son and, the quantity he measures the homogeneity of therapy effect (again, 

between zero and one). Examination of the event rates provided in Table 7.9 reveals 

that the preponderance of events that occur for the composite endpoint of death + 

hospitalization will be hospitalizations. This observation points to a large value of 

c, taken here as 0.80.  

The investigators anticipate that there will be a high level of homogeneity 

of therapy effect between the combined endpoint and the total hospitalization sin-

gleton endpoint, estimated by h = 0.90. They then compute D2|1 as

2|1( ) 0.80 1 1 0.80 (1 0.90 0.80[1 (0.20)(0.10)]

(0.80)(0.98) 0.78.

D e
        (8.2) 

An analogous computation can now be executed for D3|1,2. The coincidence between 

the occurrence of a death and the occurrence of a composite endpoint and a hospi-

talization is high, though not as high as the coincidence between the occurrence of a 

combined endpoint and hospitalization; the investigators estimate c = 0.65. How-

ever, homogeneity of therapy effect is estimated to very high (h = 0.90). Thus, the 

investigators compute 

3|1,2

3|1,2

( ) 1 1 (1 ) ,

( ) 0.65 1 1 0.65 (1 0.90 0.65[1 (0.35)(0.10)]

(0.65)(0.965) 0.63.

e e eD e c c h

D e           (8.3) 

The investigators choose to use the familywise error probability of 0.05. Using  

(5.31) they can compute the upper bound for 2, the test-specific  error rate for the 

effect of therapy on the cumulative incidence rate of hospitalization. Furthermore, 

using the values of 1, 2 and D2|1 the investigators can compute 3 from  (6.14), the 

investigators compute the type I error rates for each of the three principle analyses 

for their clinical trial (Table 8.8). The incorporation of the dependency parameter 

controls the familywise error rate at the 0.05 level even though the sum of the type I 

error levels for each of the three hypotheses is above 0.05. 

                                                          
9

We use the subscript e to denote the perspective of dependency between endpoints. In 

Chapter 11 we will discuss dependency from the perspective of subgroup analysis. 
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Table 8.8. Alpha allocation example for composite endpoint: Third design scenario.

Primary Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

Death + hospitalization 0.40 0.20 0.025 0.90 1775

D  = 0.78

Total hospitalization 0.30 0.20 0.025 0.90 2706

D  = 0.63

Total mortality 0.15 0.25 0.025 0.90 4013

The investigators next choose to reduce the sample sizes further by de-

creasing the power for the analysis of the effect of therapy on the cumulative 

incidence of each of the singleton endpoints from 90% to 80%, which is currently 

the standard minimum power level that divides null analyses from uninformative 

assessments10 (Table 8.9).  

Table 8.9. Alpha allocation example composite endpoint Fourth design scenario.

Primary Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

Death + hospitalization 0.40 0.20 0.025 0.90 1775

D  = 0.78

Total hospitalization 0.30 0.20 0.025 0.80 2072

D  = 0.63

Total mortality 0.15 0.25 0.025 0.80 3073

The result of this exercise is three analyses that demonstrate the medication’s 

effect on total mortality and hospitalization rates. If the investigators can randomize 

no more than 2072 patients for the study, then there would be two adequately pow-

ered confirmatory analyses: (1) the effect of therapy on the composite endpoint of 

death + hospitalization, and (2) the effect of therapy on the cumulative incidence 

rate of total hospitalization. The analyses for the medication’s efficacy as measured 

by total mortality could continue to be confirmatory; however, the low power for 

this evaluation (60% power for the effect of therapy on the total mortality endpoint) 

                                                          
10

Defined in Chapter 4, a null analysis for the effect of a randomly allocated intervention in 

a clinical trial allows the conclusion that the therapy has no meaningful effect. An unin-

formative analysis only allows one to say that the effect of therapy cannot meaningfully be 

evaluated.
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means that non-rejection of the null hypothesis is an inconclusive, uninformative 

result. However, if trial resources permit 3100 patients to be recruited for this study, 

then one can take advantage of the hypothesis dependency which naturally occurs 

between the three endpoints to obtain a full confirmatory analysis of the effect of 

therapy on the cumulative incidence rate of total mortality in this illustration. This 

action would reduce the required sample size for an adequately powered statistical 

evaluation of the effect of the randomly allocated intervention for each of the com-

ponent endpoints.  

8.8 Composite Endpoints: Diabetes Mellitus 
As a final consideration of the use of composite endpoints in clinical trials, we will 

return to the evaluation of therapy effectiveness in the treatment of diabetes melli-

tus. In this hypothetical trial, patients who have been newly diagnosed with this 

condition will be randomized to specific treatment and followed for many years to 

evaluate the effect of therapy in reducing the occurrence of long-term consequences 

of type II diabetes mellitus.  

This clinical trial will recruit adult patients who have been recently diag-

nosed with diabetes mellitus into one of two randomly assigned treatment arms 

(control therapy versus active therapy). Patients who are randomized to the control 

group will be placed on a strict diet and exercise program. The weight reduction 

program consists of (1) weight reduction, (2) reduction and control of total intake of 

fat, (3) reduction and control of saturated fat intake, and (4) increased intake of fi-

ber. This plan, in concert with a vigorous physical exercise routine, was found to be 

instrumental in reducing the development of type II diabetes mellitus [13]. In addi-

tion, the control group will be subject to the aggressive control of essential 

hypertension, treatment of dyslipidemic states with lipid reducing agents, and ciga-

rette smoking cessation. Patients who are randomized to active therapy will receive 

control group therapy plus the addition of agents that will reduce blood sugar lev-

els. The treating physician can choose from the sulfonylurea (either sulfonylurea or 

placebo), biguanides (or placebo), and/or thiazolindienediones (or placebo).  

The trial will be executed in a double-blind fashion with neither random-

ized patients nor treating physicians learning the identity of the pharmacologic 

therapy the patient is receiving for the treatment of their diabetes. Patients who are 

randomized to the control group will receive placebo compounds for the treatment 

of their blood sugars. To minimize the possibility that a patient’s blood sugar will 

rise to a level that would produce dangerous ketoacidosis, patients will have their 

HbA1c level measured on a regular and routine basis. Patients whose HbA1c levels 

rise get too high will be treated with open label therapy to reduce their blood sugar 

from these dangerous levels. To keep the blind in place, a matching patient in the 

opposite treatment group whose blood sugar is above the median value for the 

group to which they are randomized will also receive open label therapy (placebo 

therapy if the matching patient’s blood sugar is not too high).  

Diabetes mellitus is a complex disease that affects every major organ sys-

tem. In order to measure each of these manifestations, the investigators consider 

creating a composite endpoint that will measure the occurrence of each of the car-

diac, cerebrovascular, peripheral vascular, renal, ophthalmologic, and neurological 
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consequences of this disease. Such an endpoint, composed of these different disease 

manifestations, would produce a relatively large event rate. This large event rate 

could be used by the investigators to either decrease the sample size of the trial, or 

to increase the sensitivity of the study by detecting levels of efficacy which are 

clinically significant but beyond the resolving ability of clinical trials that recruit 

smaller numbers of subjects. However, this assumes that the therapy will be effec-

tive for reducing the occurrence of each of the component endpoints of this hyper 

composite endpoint. The trial designers feel that such an endpoint would be plagued 

with interpretative difficulty, especially if there is a heterogeneity of therapy effect 

across its many component endpoints. Lacking evidence that pharmacologic ther-

apy would be equally effective in reducing cardiovascular clinical endpoints on the 

one hand, and reducing renal, ophthalmologic, or neurological endpoints on the 

other, the investigators plot a different strategy; they rely on combined endpoints 

for the analysis plan, but assemble them differently (Table 8.10). 

Table 8.10. Alpha allocation example for diabetes trial: First design scenario.

Primary Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

Analysis Set A

Stroke and coronary artery disease 0.280 0.20 0.050 0.90 2516

Fatal/nonfatal MI 0.210 0.20 0.050 0.90 3642

Fatal/nonfatal stroke 0.100 0.20 0.050 0.90 8595

Analysis Set B

Other Morbidity/mortality 0.050 0.20 0.050 0.90 18,052

Fatal/nonfatal kidney disease 0.010 0.20 0.050 0.90 93,705

Blindness (one eye) 0.035 0.20 0.050 0.90 26,157

Amputation 0.015 0.20 0.050 0.90 62,183

No attempt has been made at this early stage in the computation to adjust the familywise 

error rate.

The trial designers are interested in determining the magnitude of the ef-

fect of the randomly allocated therapy on the many long-term manifestations of this 

disease. These scientists decide that the major effort of this research will be to iden-

tify the effect of pharmacologic interventions for diabetes mellitus on two sets of 

outcomes. The first outcome of interest (Analysis Set A) is the composite endpoint 

of the occurrence of stroke and coronary artery disease. However, this combined 

endpoint stroke + CAD is itself constructed from two composite endpoints: (1) fa-

tal/nonfatal MI, and (2) fatal/nonfatal stroke. The mechanism by which diabetes 

mellitus affects the atherosclerotic pathogenesis of these lesions suggests that these 

two manifestations of diabetes may both be influenced by the effect of therapy. 

Since a single patient can, but often will not suffer from both a MI and a stroke, the 

combined endpoint of fatal/nonfatal MI + fatal/nonfatal stroke measures different 
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manifestations of the same disease process. Also they believe that evidence sup-

porting the homogeneity of the therapy effect exists for this evaluation. 

As we have seen, the component endpoints of a combined endpoint are in 

and of themselves of clinical interest; that is clearly the case here. The investigators 

plan to make a confirmatory statement about each of the combined endpoints: (1) 

fatal/nonfatal MI and (2) fatal/nonfatal stroke. These two confirmatory statements 

would be in addition to their confirmatory statement about the effect of therapy on 

the cumulative incidence of stroke + CAD. This development reveals that, just as 

the fatal/nonfatal MI endpoint (as well as the fatal/nonfatal stroke endpoint) can 

serve as a useful combined endpoint, it can serve as a functional component end-

point of a larger and more complex composite endpoint as well.  

The second major focus of analysis for this trial is the occurrence of other 

morbidity and mortality as a consequence of diabetes mellitus (Analysis Set B). 

This is also a composite endpoint, constructed from a combination of an additional 

composite endpoint (fatal/nonfatal kidney disease) and the singleton endpoints: (1) 

blindness (one eye) and (2) amputation. These consequences of diabetes are debili-

tating; however these particular sequela occur with too low a cumulative incidence 

rate to have a beneficial effect of therapy identified with adequate power. 

As seen from Table 8.10, the sample sizes for this trial vary dramatically. 

The situation becomes much worse after a first attempt to control the familywise 

error rate for the trial at 0.05 (Table 8.11) The investigators are demanding many 

confirmatory analyses from this design and sample sizes indicate the price they may 

have to pay to achieve their goals. Essentially, type I error is divided between the 

two analysis sets. Analysis Set A, focusing on an evaluation of the effect of therapy 

on the occurrence of stroke and CAD will have an  error probability of 0.02. The 

effect of therapy on other morbidity/mortality measures for diabetes mellitus 

(Analysis Set B), will have an  error rate of 0.03. 

Within Analysis Set A, the entire  error probability is equally distributed 

across the stroke + CAD endpoint and its two component endpoints (each of which 

is a combined endpoint). This produces sample sizes from 3790 to 12,947. How-

ever, the distribution of type I error rate is carried out differently for Analysis Set B. 
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Table 8.11.  Alpha allocation example for diabetes trial: Second design scenario.

Primary Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

Analysis Set A 0.020

Stroke and coronary artery disease 0.280 0.20 0.007 0.90 3790

Fatal/nonfatal MI 0.210 0.20 0.007 0.90 5485

Fatal/nonfatal stroke 0.100 0.20 0.007 0.90 12,947

Analysis Set B 0.030

Other morbidity/mortality 0.050 0.20 0.030 0.90 20,468

Fatal/nonfatal kidney disease 0.010 0.20 0.001 0.90 186,424

Blindness (one eye) 0.035 0.20 0.001 0.90 52,040

Amputation 0.015 0.20 0.001 0.90 123,711

Preliminary adjustments in the type I error rates for all of the analyses.

 The major focus of the evaluation of the effect of therapy for this analysis 

set is the combined endpoint (other morbidity/mortality). While the investigators 

are interested in the identification of the effect of therapy for the component end-

points of this composite endpoint, they recognize that the number of endpoint 

events will be too small to provide a persuasive argument to the medical and regu-

latory communities for the effect of therapy at moderate  error rates (0.01 to 0.05), 

even if the power for Analysis Set B is reduced from 90% to 80% (Table 8.12). The 

investigators therefore place the overwhelming majority of the  error probability

on the combined endpoint (other morbidity/mortality) in Analysis Set B. This ac-

tion allows the investigators to still claim that the study is positive if the low type I 

error levels for the effect of therapy on either of fatal/nonfatal kidney disease, 

blindness, or amputation are not exceeded. If these  error levels are exceeded, the 

correct interpretation for the effect of therapy on these component endpoints will 

that the results are uninformative [11].  

The investigators now come to grips with the notion of dependency. They 

decide that (1) there is no demonstrated evidence that suggests that type I errors for 

the Analysis Set A will influence the likelihood of type I error occurrence for 

Analysis Set B, and (2) within Analysis Set B, there is no evidence of type I error 

dependency among the combined endpoints (denoted by other morbidity/mortality) 

and its component endpoints fatal/nonfatal kidney disease, blindness, or amputa-

tion. The notion of dependent subclasses, introduced in Chapter 6 may be brought 

to bear here. The only dependency they will embed in the analysis is within Analy-

sis Set A.

                                                          
11

The distinction between uninformative results and null results is defined in Chapter 4.
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Table 8.12. Alpha allocation example for diabetes trial: Third design scenario.

Primary Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

Analysis Set A 0.020

Stroke and coronary artery disease 0.280 0.20 0.007 0.90 3790

Fatal/nonfatal MI 0.210 0.20 0.007 0.90 5485

Fatal/nonfatal stroke 0.100 0.20 0.007 0.90 12,947

Analysis Set B 0.030

Other morbidity/mortality 0.050 0.20 0.030 0.80 15,583

Fatal/nonfatal kidney disease 0.010 0.20 0.001 0.80 152,274

Blindness (one eye) 0.035 0.20 0.001 0.80 42,507

Amputation 0.015 0.20 0.001 0.80 101,049

Reduction in power for Analyses Set B.

 Focusing on Analysis Set A, the trial designers recognize that the largest 

component of the stroke + CAD is its fatal/nonfatal MI component. The investiga-

tors also reason that there will be substantial homogeneity of therapy (h = (1) for 

these endpoints. They therefore compute using  (8.1) that D2|1 (the dependency pa-

rameter reflecting the relationship between the occurrence of a type I error for the 

stroke + CAD and the fatal/nonfatal MI component endpoint) = 0.75. A similar 

computation leads to D3|1,2 (expressing the relationship between the occurrence of a 

type I error for the hypothesis test evaluating the effect of therapy for the fa-

tal/nonfatal stroke component and a type I error for the effect of therapy on each of 

(1) stroke and CAD and (2) fatal/nonfatal MI) = 0.50. The result of this effort pro-

vides the sample sizes required for each analysis (Table 8.13). 

These computations reveal that with a sample size of 15,583 patients, the 

investigators will have adequate power to assess the effect of pharmacologic ther-

apy in patients with type II diabetes mellitus for several measures of the long-term 

consequences associated with this illness. Confirmatory statements will be available 

for the effect of therapy on stroke and CAD as a combined endpoint as well as for 

each of its component endpoints. In addition, this trial design permits a confirma-

tory evaluation of the effect of therapy on other measures of morbidity and 

mortality produced by diabetes mellitus which are not directly related to the occur-

rence of cerebrovascular accidents and MIs. Finally, it will be possible to make a 

confirmatory positive statement about the effect of therapy specifically for each of 

the endpoints: (1) fatal/nonfatal kidney disease, (2) blindness, and (3) amputations.  
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Table 8.13. Alpha allocation example for diabetes trial: Fourth design scenario.

Primary Cumulative Efficacy Alpha Power Sample 

analyses control group (two -tailed) Size

event rate

Analysis Set A 0.020

Stroke and Coronary Artery Disease 0.280 0.20 0.012 0.90 3446

D = 0.75

Fatal/Nonfatal MI 0.210 0.20 0.012 0.90 4988

D = 0.50

Fatal/Nonfatal Stroke 0.100 0.20 0.004 0.90 14255

Analysis Set B 0.030

Other Morbidity/Mortality 0.050 0.20 0.030 0.80 15583

Fatal/Nonfatal Kidney Disease 0.010 0.20 0.001 0.80 152274

Blindness (one eye) 0.035 0.20 0.001 0.80 42507

Amputation 0.015 0.20 0.001 0.80 101049

Dependency is now embedded for Analyses Set A.

8.9 “Soft” Components
As investigators work to assemble a combined endpoint, they must consider the 

persuasive ability of the final product. The more persuasive the individual compo-

nents of the endpoint, the more persuasive the effect of randomly allocated 

intervention effect on that endpoint will be. However, combined endpoints are 

commonly constructed from singleton endpoints that are persuasive and others 

which are not so persuasive.  

As an illustration, consider a clinical trial that will randomize patients who 

are at risk of ischemic cardiovascular disease to either standard therapy plus pla-

cebo (control group) or standard therapy plus an active compound. Patients will be 

followed for 2 years. The investigators believe that they will be able to randomize 

between 10,000 to 15,000 patients for this clinical trial. 

 After much discussion, the investigators have settled on a single primary 

analysis for the effect of therapy on the cumulative incidence rate of a combined 

endpoint. That composite endpoint has four components: (1) fatal/nonfatal MI, (2) 

fatal/nonfatal stroke, (3) revascularization, and (4) unstable angina. They have es-

timated the incidence rates of these four components and have computed initial 

sample size estimates for the composite endpoint (Table 8.14).  
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Table 8.14. Alpha allocation example composite endpoint:First design scenario.

Primary Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

Composite endpoint 0.20 0.20 0.05 0.90 3867

Fatal/nonfatal MI 0.04 0.20 0.05 0.90 22,780

Fatal/nonfatal stroke 0.04 0.20 0.05 0.90 22,780

Revascularization 0.08 0.20 0.05 0.90 10,959

Unstable angina 0.06 0.20 0.05 0.90 14,900

 The required sample for the composite endpoints is 3867, well within the 

range of the investigators to recruit subjects. However, an issue that the investiga-

tors will need to address, and one they can begin addressing in the design phase of 

the study is that the combined endpoint’s components appear to be divided between 

endpoints that are the easiest to measure unambiguously (hard endpoints) such as 

fatal/nonfatal MI and fatal/nonfatal stroke on the one hand, and the softer endpoints 

of revascularization and unstable angina. These latter two singleton endpoints are 

subject to either regional practice, changing definitions, or the willingness of a pa-

tient to accurately report symptoms. A review of the endpoint event rates in Table 

8.14 reveals that these softer endpoints will comprise most of the component end-

points that occur. This may reduce the ability of the trial to convince the medical 

and regulatory community of the benefit of the therapy.  

The findings of the effect of therapy in this trial will be supported if a con-

firmatory analysis could be executed on the MI and stroke components of the 

composite endpoint. In order to investigate this possibility, the trial designers create 

a second composite endpoint constructed from the fatal/nonfatal MI component and 

the fatal/nonfatal stroke component of the first composite endpoint (Table 8.15)  In 

addition to the inclusion of the hard endpoint composite, there has been a reassign-

ment of the type I error rate during the design phase of this study. The type I error 

probability for the composite endpoint has been reduced to 0.01, and the hard end-

point composite will be assessed at the trial’s conclusion at the 0.04 level. The 

sample size for this evaluation is 13,390 patients. Although this is well within the 

investigators ability to recruit patients, this patient’s requirement can be reduced by 

decreasing the power of the hard endpoint composite to 80% (Table 8.16).  

The trial will have two principle analyses, each of which will be the effect 

of therapy on a combined endpoint. The role of the soft endpoints has been effec-

tively reduced to that of prospectively defined secondary endpoints, and the effect 

of therapy on each of them will be reported in accordance with the expectation of 

the medical and regulatory communities as outlined in the principle of full disclo-

sure.  
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Table 8.15. Alpha allocation example composite endpoint: Second design scenario.

Primary Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

Composite endpoint 0.20 0.20 0.01 0.90 5476

Hard endpoint composite 0.07 0.20 0.04 0.90 13,390

Fatal/nonfatal MI 0.04 0.20 0.05 0.90 22,780

Fatal/nonfatal stroke 0.04 0.20 0.05 0.90 22,780

Revascularization 0.08 0.20 0.05 0.90 10,959

Unstable angina 0.06 0.20 0.05 0.90 14,900

Table 8.16. Alpha allocation example composite endpoint: Third design scenario.

Primary Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

Composite Endpoint 0.20 0.20 0.01 0.90 5476

Hard Endpoint Composite 0.07 0.20 0.04 0.80 10,091

Fatal/Nonfatal MI 0.04 0.20 0.05 0.90 22,780

Fatal/nonfatal stroke 0.04 0.20 0.05 0.90 22,780

Revascularization 0.08 0.20 0.05 0.90 10,959

Unstable angina 0.06 0.20 0.05 0.90 14,900

8.10 Conclusions 
The principles of concordant trial design apply equally to the use of combined end-

points in clinical trials. Both the composite endpoints and its components should be 

identified prospectively and remain unchanged during the course of the clinical 

trial. The disciplined trial execution will produce interpretable estimates of effect 

sizes, confidence intervals, and p-values at the study’s conclusion.  

Finally, although composite endpoints are constructed to be of interest to 

the medical and regulatory communities, interest remains in the effect of therapy on 

their component endpoints. The application of the principles of differential  alloca-

tion discussed in Chapter 4, and the procedures for allocating type I error during the 

dependent hypothesis testing in chapters five and six permit the design of clinical 
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trials that can provide confirmatory statements not solely about the effect of therapy 

on the composite endpoint, but also the therapy effect on several if not each of the 

composite endpoint’s components. These tools can be extended to allow the design 

of clinical trials whose prospectively defined primary analysis consists of the effect 

of therapy not just on a composite endpoint, but, in addition, on component end-

points that are themselves composite endpoints. A combination of research 

discipline and imagination can produce clinical trial designs that are both innova-

tive and conform to the established dictums of prospectively designed research.  

Problems
1. What are five useful principles that govern the use of a composite endpoint in a 

clinical trial? 

2. A clinical trial has a composite endpoint composed of two singleton endpoints. 

If a type I error rate is be prospectively applied to the composite endpoint, must 

type I error rates be prospectively announced for each of the singleton end-

points? If not, what is the best interpretation of the results of the trial if the 

effect of therapy on one of the singleton endpoints produces a p-value less than 

0.05 but the effect of therapy on the composite endpoint is slightly greater than 

0.05. 

3. What arguments can be developed to support the notion of using dependent 

hypothesis testing procedures when there is a prospective desire among the in-

vestigators of a clinical trial to carry out hypothesis testing for the composite 

endpoint and its component endpoints as well? 

4. In general, is it easier to support an argument for therapy homogeneity among 

the singleton endpoints of a composite endpoint than among individual end-

points not combined into a composite endpoint? 

5. Consider a clinical trial that will assess the effect of therapy on the component

endpoint and each of its two composite endpoints. In the presence of substan-

tial coincidence and homogeneity of therapy, why is there greater type I error 

conservation when the test-specific  error rate for the composite endpoint hy-

pothesis test is close to 0.05? 

6. A clinical trial will test the effect of therapy on each of a composite endpoint 

and its two singleton endpoints. Can you think of a circumstance in which it 

may be best to assign the maximum test-specific error rate to one of the single-

ton endpoints and not the composite endpoint? Can the framework used in 

chapters seven and eight be applied in this analyses scenario?  
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Chapter 9 

Introduction to Subgroup Analyses 

This is the first of three chapters that discusses the role and interpretation of sub-
group analyses in clinical trials. Subgroup analysis in a clinical trial is the 

evaluation of the effect of the randomly allocated intervention within only a fraction 

of the patients in the entire research cohort. This chapter provides some general 
background on the issue of subgroup evaluation, and discusses some of the inter-

pretative difficulties that occur during the assessment of the effect of therapy within 
subgroups.  

9.1 Introduction 
A subgroup analyses in a clinical trial is the evaluation of the effect of the randomly 

allocated intervention within a fraction of the recruited subjects. The analysis of 

subgroups is a popular, necessary, and controversial component of the complete 

evaluation of a controlled clinical trial. Indeed, it is difficult to find a manuscript 

that reports the results of a clinical trial that does not report findings within selected 

subgroups. 

Subgroup analyses as currently utilized in clinical trials are tantalizing and 

controversial. There may be no better maxim for guiding the interpretation of sub-

group analyses in this setting than “Look, but don’t touch,” As described in the 

beginning of Chapter 3, the results from subgroup assessments have traditionally 

been used to augment the persuasive power of a clinical trial’s overall results by 

demonstrating the uniform effect of the therapy in patients with different demo-

graphic and risk factor profiles. This uniformity leads to the development of easily 

understood and implemented rules to guide the use of therapy1. Some clinical trials 

report these results both in the manuscript announcing the trial’s overall results  [1], 

[2], [3], [4] and separately [5], [6], [7]. Such subgroup analyses potentially provide 

new information about an unanticipated benefit (or hazard) of the clinical trial’s 

randomly allocated intervention. 

However useful and provocative these results can be, it is well established 

that subgroup analyses are often misleading [8], [9], [10], [11]. Assmann et al. [12] 

has demonstrated how commonly subgroup analyses are misused, while others 

point out the dangers of accepting subgroup analyses as confirmatory [13]. For ex-

ample, the amlodipine controversy that was discussed in Chapter 2 [14], [15] was 

based on a subgroup analysis. Nevertheless, the medical community continues to be 

tantalized by spectacular subgroup findings from clinical trials. A recent example is 

the subgroup analysis-based suggestion that medication efficacy is a function of 

                                                          
1

The finding that a particular lipid lowering drug works better in women than in men can 

complicate the already complex decisions that practitioners must make as the number of 

available compounds increase.
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race; this has appeared in both peer-reviewed journals [16, 17] and the lay press  

[18].  

In this chapter, we will review the definitions, concepts, and limitations of 

subgroup utilization in clinical trials.  

9.2 Definitions and Basic Concepts 
While the concept of subgroup analysess is straightforward, the terminology can 

sometimes be confusing. We will therefore devote some effort to defining and clas-

sifying subgroup analyses.  

9.2.1 Subgroups Versus Subgroup Strata 
A subgroup is the description of patient based characteristic, e.g., gender, that can 

be subdivided into categories. These different categories are described as strata, one 

stratum level for each category. For example, if an investigator is interested in cre-

ating a gender subgroup, patients are classified according to their sexual 

characteristics; the resultant gender subgroup consists of two strata—male and fe-

male.  

The classic subgroup analysis itself is an evaluation of the effect of ther-

apy within each of the subgroup strata. In this example of a gender-based subgroup, 

the subgroup analysis consists of an evaluation of the effect of therapy for males 

and an evaluation of the effect of therapy for females. Thus each stratum analysis 

produces an effect size with its standard error, a confidence interval, and a p-value.  

The characteristics that form the basis of these subsets are chosen by the 

investigators. However, over time, a commonly evaluated set of subgroup evalua-

tions has emerged. Although there are differences from one medical subspecialty to 

another, the most common of these subgroups are based on demographic criteria 

e.g., gender, ethnicity, and age. Frequently used sociologic determinants are marital 

status, education, and acculturation.2 In addition, there are subgroups that are based 

on lifestyle choices. Some examples of these are alcohol use, tobacco use, dietary 

intake, and exercise. Of course findings from medical histories (e.g., history of can-

cer, history of CHF, history of endocrine disorders) and physical examination (e.g., 

body mass index or DBP) are among commonly appearing subgroups in clinical 

trials as well.

The definition of a subgroup can be more complicated than a first glance 

would suggest. Consider the marriage status subgroup. One might think that this is 

easy to define. Is the patient married or not? Phrased this way, this suggests that the 

marriage subgroup should have two strata. However, the choices can be much more 

complex than this. The patient could be married now, or have been married in the 

past and is single now. The patient could be separated, divorced, or remarried. 

These alternative classifications can either be useful, or merely distractions depend-

ing on the purpose for which the evaluation will take place. For example, in some 

research which is not primarily sociologic, these additional classifications may be 

                                                          
2

Acculturation is the degree to which a community composed primarily of immigrants ac-

cepts with approval and is involved in the activities of the surrounding society.  
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unnecessary. However, in other research efforts, the intricate differentiation of mar-

riage history details is very important. Thus, one must know how the subgroup 

analysis will be used so that the most useful strata membership criteria can be de-

veloped. Once each of the subgroup strata have been identified, the clinical trial 

workers will know what data to collect that will be the most useful.3

9.3 Interpretation Difficulties 
The illustrations of the previous sections have demonstrated that there are many 

possible ways to subgroup patients. However, we must keep in mind that, in a col-

lection of subgroup analyses, it is the same patients who are being stratified in 

different ways. This observation can complicate the interpretation of a subgroup 

evaluation.

For example, consider a randomized, controlled clinical trial which is in its 

analysis phase. At this time, all of its patients are classified by gender, grouping pa-

tients into male and female sub-cohorts. Once the stratum membership assignment 

is finished, the effect of the randomly allocated intervention is assessed in each of 

the two gender strata. It is seen that the effect of therapy appears to depend on gen-

der, with males experiencing a different effect than females.  

When completed, these same patients are then reaggregated based not on 

gender, but on age. Subjects are placed into one of the following three age strata: 

(1) less than 40 years of age, (2) between 40 and 60 years of age, and (3) greater 

than 60 years of age. When the subgroup analysis is carried out for the age strata, it 

appears that the effect of therapy is the same in each of the age groups.  

The results from these two subgroup analyses essentially demonstrate that 

the same patients when characterized one way (by gender) provide a different result 

than when characterized another way (by age). Was it really gender that modified 

the effect of therapy or was it the chance collection of patients that made it appear 

that gender was an influence? Since we can expect that the effect of treatment 

within a subgroup stratum depends on the patients within that stratum, then the 

value of the subgroup analysis must be tightly linked to the ability to demonstrate 

that it is the stratum characteristic that is producing the interesting effect and not 

just the random aggregation and reaggregation of patients.  

9.4 Random Subgroups 
Investigators work to identify subgroup classifications that are meaningful. When 

examination of the therapy effect within a subgroup appears, it is only natural for 

the investigator to believe the rationale for the choice of the subgroup was justified. 

Furthermore, the scientist may think that the stratum specific therapy effect is due 

to some effect-mediation ability produced by the subgroup trait. However, the very 

fact that patients are classified and divided can induce a subgroup effect.  

 Consider the following simple experiment. A courtroom chosen at random 

has a capacity of seating 60 observers. These 60 seats are divided by a central aisle, 

with 30 seats on each of the left-hand and right-hand side of the courtroom. Sixty 

                                                          
3 Another subgroup that has grown in complexity is that for race/ethnicity.
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people seat themselves as they choose, distributing themselves in an unrestricted 

manner among the seats on each side of the courtroom. When all are seated, we 

measure the height of each person, finding that the average height is exactly 67 

inches. Does that mean that the average height of those seated on the left-hand side 

of the courtroom will be 67 inches? No. The average height of those seated on the 

left-hand side of the courtroom will be either less than 67 inches or greater than 67 

inches, but it will not be exactly 67 inches (because the average is based on only 

thirty of the sixty people). If the average height on the left-hand side of the court-

room is less than 67 inches, then those seated on the right-hand side will have an 

average height greater than 67 inches4. Is it fair to conclude that those who sit on 

the right- hand side of the courtroom are in general taller than those who sit on the 

left-hand side?  

The simple, random aggregation and subaggregation of the observations 

has induced a subgroup effect that is based only on the play of chance. This random 

subgroup effect appears in all subgroup analyses, and we will have to integrate it 

into our interpretation of any subgroup effect that we see. Some interesting findings 

of random subgroup analyses are available [19]. These occurrences help to justify 

the admonition that the best descriptor of the effect in a subgroup is the finding that 

is observed in the overall cohort.  

As an illustration, consider the result of a hypothetical clinical trial in 

which the investigators report that the randomly allocated intervention produced a 

20% reduction in the prospectively defined endpoint of total mortality. The initial 

reaction to the demonstration of a beneficial effect of therapy in a well-designed, 

well executed clinical trial is naturally to assume that the effect of therapy is ho-

mogenous. Our first response is to therefore believe that all collections of patients 

in the active group were beneficiaries of this 20% benefit, and that the beneficial 

effect of therapy provides protection is broadly distributed (Figure 9.1)  

F ig u r e  9 .1 .  H o m o g e n o u s  th e r a p y  e f f e c t  w h e n  

v ie w e d  f r o m  in  a  p o p u la t io n .  
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4
If the average height of all in the courtroom is 67 inches, and the average height on the left 

side is less than 67 inches, then the average height on the right hand side must be greater than 

67 inches
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This treatment effect uniformity may in fact be the truth in the population 

at large. However, the examination of the same therapy effect within different sub-

groups of the clinical trial sample reveals a mosaic of treatment effect magnitudes 

(Figure 9.2).  

Figure 9.2. Population homogenous treatment effects when viewed from a

sample. Each bar is the effect of the therapy in a different subgroup.
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At first glance, it appears that the uniform mortality benefit has been re-

placed by a much more heterogeneous response. However, in reality, the 20% 

benefit has been well disguised by the presence of background clutter that is pro-

duced by sampling error. The uniform 20% reduction in the total mortality effect is 

still there; the population from which the research sample was derived still experi-

enced a 20% reduction in mortality. However, when that uniform effect is viewed 

through the prism of a small sample, the uniform effect is distorted. The subgroups 

appear to define different levels of responses. However, all that is happening is that 

the random selection mechanism causes individuals, whose responses are similar, to 

cluster together by chance alone. It is this random variability that produces the dif-

ferences seen in subgroups that are commonly described as a subgroup effect.  

9.5 Stratified Randomization 
Another difficulty in the interpretation of subgroup analyses is that the patient clas-

sification process can undo one of the most important features of a clinical trial

the ability to attribute differences in endpoints observed at the end of the study to 

the randomly allocated intervention. The absence of this key feature complicates 

the interpretation of the subgroup analysis.  

Consider a clinical trial that has a control group and a treatment group. 

Recall from Chapter 1 that the random allocation of therapy plays a pivotal role in 
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clarifying the analysis of the trial’s results. It accomplished this by requiring that 

each patient that is recruited by the trial will have their therapy assigned based on 

factors other than any of that patient’s traits. Frequently, this means that each pa-

tient has the same probability of receiving the active intervention as the next 

patient.5 This feature distributes patients between the control and active group in 

such a way that the only difference between the two groups is that one group re-

ceived active therapy and the other received control group therapy. There are not 

likely to be any important demographic, sociologic, or risk factor differences be-

tween the two groups. Therefore differences between endpoint rates that occur at 

the end of the trial can be attributed to the only difference between the two groups

the use of randomly allocated therapy.  

The circumstances are altered when subgroups are analyzed. Unfortu-

nately, membership in the subgroup stratum of interest may be very low, and 

randomization may not have had a real opportunity to balance patient distribution in 

this stratum.6 Thus, the effect of therapy within that particular subgroup stratum 

may be confounded, i.e., confused and intertwined with other characteristics that 

are different between the treatment groups. In this circumstance, it can be impossi-

ble to persuasively attribute any differences between the treatment groups to the 

therapy within this one stratum.   

As an illustration, consider an investigator who is interested in demonstrat-

ing the effect of a therapy to reduce the cumulative mortality rate in patients who 

have CHF. The clinical trial will have two groups (control and treatment groups) 

and will randomly allocate therapy to the recruited patients. The investigator, wish-

ing to generalize the results of her clinical trial to the widest possible universe of 

patients with CHF, randomizes patients regardless of their NYHA class.7 Patients 

must have heart failure, but admission to the clinical trial does not depend on the 

patient’s degree of heart failure.  

In addition, this investigator is also interested in examining the effect of 

therapy in patients with similar levels of heart failure. This investigator plans to 

carry out an NYHA subgroup analysis at the trial’s end, evaluating the effect of the 

drug in each of the four strata, with a special emphasis on the effect of therapy in 

patients with the most severe heart failure (NYHA class IV). She therefore assigns 

each patient an NHYA class score when they are randomly allocated to their 

blinded therapy assignment at the beginning of the study.  

                                                          
5

Adaptations of this procedure are carried out to ensure that if 100 patients are randomized 

to a clinical trial with a control arm and a single intervention arm, 50 are randomized to each 

group. Also, randomized block procedures, which ensure that close to an equal number of 

patients are recruited in each arm of the clinical trial, modify the probability of therapy as-

signment slightly. However, even in this case, therapy is not assigned based on a patient’s 

characteristic.   
6

The importance of prospectively declared scientific questions will be addressed later in 

these discussions. 
7 The NHYA nomenclature groups patients with heart failure into one of four classes based 

on the severity of their symptoms. There are four classes, and  patients with the worst symp-

tomatology are grouped into the higher classes. Class I patients are subjects whose heart 

failure does not produce limitations in the patient’s lifestyle, and patients who are classified 

into NYHA class IV are subjects whose  heart failure symptoms occur at rest.
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The investigator recruits 3500 patients for her study. However, upon com-

pletion of recruitment, she sees that, as might be expected, very few patients with 

NYHA class IV heart failure were randomized (Table 9.1). 

Table 9.1  Recruiment of CHF patients

                  into NYHA* strata by treatment group.

NYHA class

Control Active Total

I 450 450 900

II 625 625 1250

III 628 622 1250

IV 60 40 100

*New York Heart Association.

Therapy group

These results portend the difficulty this investigator will have as she at-

tempts to interpret her subgroup analysis. There are far fewer patients in the NYHA 

class IV category than in the other three groups of patients. The number of patients 

classified as NYHA class IV actually represent the denominators for the cumulative 

mortality rate computations within this stratum. These small numbers will produce 

relatively coarse estimates of the cumulative mortality event rate. Although this 

problem may be counterbalanced somewhat by the relatively high death rate among 

these very ill class IV patients, the estimates of the cumulative mortality rate will 

remain fairly imprecise due to the small number of patients in this subgroup stra-

tum.  

An additional problem is that, with only 100 patients in the NYHA class 

IV stratum, it is unlikely that all patient characteristics will be equally allocated 

across the two treatment groups. It can be fascinating to observe how quickly the 

random allocation of therapy provides an equal distribution of patients across 

treatment groups. However, the large number of demographic, sociologic, risk fac-

tor and baseline medical history/physical examination variables makes it difficult to 

expect that randomly allocating therapy among 100 patients will balance each of 

these potential influences.8 Thus, setting the imprecision of the cumulative mortal-

ity rate estimates aside for the moment, there will be difficulties in attributing any 

difference in the mortality rates between the control and active groups to the ther-

apy since many other factors will be different between these patients.  

The failure here was that there were not enough patients recruited into the 

NYHA IV stratum for the random allocation of therapy to become effective. With 

                                                          
8

Although regression analysis may assist in taking these imbalances into account, the num-

ber of independent variables that can be placed into a regression model with only 100 

observations (at most 12 variables) is very small compared to the large number of character-

istics whose influence should be balanced. 
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more patients, the randomization mechanism would have produced a fair balance of 

patient characteristics across the two treatment groups. Of course, knowledgeable 

investigators anticipate the distribution of patients across the subgroup and the re-

sultant small number of patients within some of the subgroup’s strata. What these 

investigators will sometimes do is to actually force the random allocation therapy to 

work. That is, they adjust the randomization algorithm so that there are an equal 

number of patients allocated to each of the control and active groups of the trial 

within the subgroup stratum. This randomization within the strata, or stratified ran-
domization ensures that even though there is a small number of patients within the 

stratum, the allocation of therapy will be more effectively balanced. While not 

compensating for the imprecise mortality rate estimates stemming from the small 

number of patients recruited into the stratum, this adaptation does substantially im-

prove the balance of baseline characteristics between the treatment groups, 

strengthening the ability to ascribe differences in the mortality rate to the randomly 

allocated therapy.  

9.6 Proper Versus Improper Subgroups 
A critical preliminary task that clearly must be completed before a subgroup analy-

sis proceeds is the classification of each patient into a subgroup stratum. This is the 

process by which the subgroup membership for each patient in the study is deter-

mined. Although membership determination may appear to be a trivial task, there 

are circumstances in which this classification is problematic. These concerns re-

volve around the timing of the subgroup membership determination.  

There are two important possibilities for determination of the timing of 

subgroup membership. The first is the classification of patients into the correct sub-

group stratum when the patients are randomized. The second choice is to classify 

patients into subgroup strata at some time during the execution of the trial. While 

each has advantages, the determination of subgroup membership at the beginning of 

the study is preferred.  

 Determining subgroup membership at the beginning of the trial requires 

that, not only must the subgroup be defined at the beginning of the study, but also 

subgroup strata membership should be defined prospectively as well. This is a 

straightforward procedure to apply to the gender subgroup with its two strata. How-

ever, for other subgroups of clinical interest, the process can be complex. As an 

illustration, consider the design of a clinical trial that will assess the ability of an 

antihypertensive therapy that has already been established as an effective blood 

pressure reducing agent to reduce the cumulative incidence rate of strokes in pa-

tients with systolic hypertension. Patients will be recruited and randomized to either 

control therapy or control therapy plus the antihypertensive medication (active 

group) and followed for a prespecified time. 

In addition to the evaluation of the effect of therapy on the cumulative 

stroke incidence rate, the investigators are interested in examining the degree to 

which the therapy’s influence on the stroke rate is related to SBP (SBP). In order to 

carry this out effectively, the trial designers will need to determine subgroup mem-

bership for each patient, i.e., they must fix the number of strata the SBP subgroup 

will contain and then decide exactly what SBPs should be contained in each stra-



9.6 Proper Versus Improper Subgroups 275

tum. Before the execution of the study, they decide on two strata: (1) SBP  140 mg 

Hg and (2) SBP > 140 mmHg.  

Patients who are recruited into this study have their blood pressure meas-

ured at baseline and are then placed into one and only one of these strata. If the 

investigators are concerned about the possibility of confounding the effect of treat-

ment with other baseline variables within any of the two SPB strata, they can 

determine each patient’s treatment group based on a stratified randomization proce-

dure. This is easily accomplished, since the baseline SBP is in hand at the time the 

therapy allocation is carried out. The product of all of these considerations and ac-

tions is the basis of a clear depiction of whether the effect of the blood pressure 

medication on the cumulative incidence of stroke is related to the baseline SBP 

(Figure 9.3).9

Baseline SBP

= 140

Active group

Control group

Control group

Active group

Baseline SBP

> 140

Figure 9.3. Proper subgroup definition provides relatively unconfounded

effect of therapy within each subgroup stratum.

However, this is not the only way that the investigators could choose to 

examine the influence of SBP on the effect of therapy to reduce the cumulative 

stroke incidence rate. As an alternative, the investigators can prospectively decide 

to classify patients into one of the two subgroup strata based on each patient’s last 

SBP measurement (which occurs either just before a stroke if the patient experi-

ences this endpoint or is the patient’s last blood pressure measurement if they 

complete the study without experiencing a stroke).  

This evaluation is much different, for two reasons. A patient’s blood pres-

sure is likely to fluctuate as the patient’s measurement is influenced by events that 

                                                          
9

Type I and type II error considerations will have to be factored into the analysis, a proce-

dure that will be discussed later in this chapter.
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occur over the course of the trial. Since membership in the SBP subgroup stratum is 

based on follow-up blood pressure, then as the SBP of the patient changes over 

time, so too can strata membership (Figure 9.4). Thus, the spurious effect induced 

by the random aggregation of patients just by chance alone, (discussed earlier in 

this chapter) will be compounded by random subgroup membership as patients 

change their SBP during the course of the trial. 

Second, and perhaps more importantly, it will be difficult to sort out the 

effect of SBP on the randomly allocated therapy’s influence on the cumulative 

stroke incidence rate, since therapy has already influenced the SBP. As an example, 

for patients in the active group, the last SBP is obtained after the patient has in gen-

eral had substantial and prolonged exposure to the therapy. Since the medication is 

already known to reduce SBP, subgroup strata membership will to a great degree be 

determined by whether the patient has been randomized to either the active or the 

control group. 

120

125

130

135

140

145

150

155

1 2 3 4 5 6 7 8 9 10

S
y
s
to

lic
 B

lo
o

d
 P

re
s
s
u

re

Figure 9.4. As the patient’s SBP changes over time, the patient moves 

back and forth from one SBP stratum (<= 140 mm Hg) to the other

(140 mm Hg).

To see this more clearly, we go through the following thought process. Pa-

tients assigned to the control group will not receive the active medication and are 

therefore not very likely to see an important decrease in their blood pressure.10

                                                          
10

Patients in the placebo group may see a slight reduction in SBP for two reasons. The first 

is that they may go on to active therapy without the study knowing it (e.g., visiting their pri-

vate physician and that doctor chooses to put them on a blood-pressure-reducing 

medication). The second reason is regression to the mean. This simply means that a patient 

who usually had SBPs  < 140 before they were enrolled into the clinical trial had an SBP 
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These patients are more likely to have higher SBPs during the course of the trial, 

and therefore reside in the greater than then 140 mm Hg subgroup stratum. On the 

other hand, patients who are randomized to the active group and take their medica-

tion will have a greater reduction in their SBP. Since subgroup stratum membership 

is based on the last SBP, patients who receive active therapy will be more likely to 

populate this lower SBP subgroup stratum. 

 Therefore, there will be a predictably large imbalance in the allocation of 

therapy in each of these groups. The lower subgroup stratum is more likely to be 

populated by patients randomized to the active group, and the upper subgroup stra-

tum will have a preponderance of patients from the control group. The ability to 

evaluate the effect of therapy within each of these subgroup stratum will be im-

paired (Figure 9.5). 

SBP = 140

Control Group

Active Group

SBP > 140

Figure 9.5. The improper definition of subgroups leads to an imbalance in the 

use of therapy within each stratum, making the within stratum effect of therapy

assessment problematic.

In our first example in this section, we acknowledged that there were many 

factors that influence baseline SBP. Race, gender, family history, prior treatment 

are but a few of them. However, the randomly assigned intervention did not influ-

ence baseline SBP. It is the absence of any relationship between the randomly 

allocated therapy and the baseline SBP that allows a clear examination of the effect 

of SBP on the relationship between the intervention and stroke. A subgroup whose 

strata membership criteria are based on baseline characteristics of the patient is 

called a proper subgroup [20]. Improper subgroups are those whose strata member-

ship can only be determined after the patient has been randomized. Membership 

                                                                                                                               
greater than 140 at the time they were enrolled in the study, then “regressed to” their normal 

SBP  values for the duration of the trial.
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based on follow-up data is influenced by the randomly allocated therapy and the 

interpretation is complicated. 

The issue becomes even more paradoxical if the investigators wish to 

evaluate the relationship between SBP and stroke rate (as opposed to the effect of 

therapy on the stroke rate). When the subgroup definition is proper, allocation of 

therapy is balanced within each of the two subgroup strata; each of the subgroup 

strata will contain approximately equal numbers of patients assigned to the active 

and control groups. The effect of therapy is the same in each of the two subgroup 

strata, regardless of whether the therapy reduces the stroke rate or not. Thus, the 

relationship between SBP and the cumulative stroke rate can be clearly observed 

without having to factor in the effect of the therapy.11

However, when the SBP subgroup is improperly defined, patients in the 

control group are more likely to be in the SBP > 140 mm Hg subgroup stratum, 

while the predominant patients in the SBP  140 mm Hg are more likely to be ac-

tive group patients. If the therapy reduces the cumulative stroke incidence rate, 

there will be a lower stroke rate in the lower SBP strata than in the SBP > 140 mm 

Hg stratum, and it will appear that lower SBPs are associated with lower stroke 

rates. However, this relationship is driven by the effect of therapy, and not the SBP 

level. Thus the relationship between SBP and the cumulative incidence of stroke is 

confounded (or bound up) with the effect of therapy. 

There are circumstances in which this type of analysis is nevertheless car-

ried out. If the investigators are interested in an evaluation of the effect of lower 

blood pressure on the incidence of stroke, regardless of how the blood pressure was 

lowered, then analysis procedures are available.12 However these evaluations are 

exceedingly complicated and the results must be interpreted with great caution. 

Similar evaluations have examined the relationship between lipid lowering and 

atherosclerotic morbidity and mortality  [21], [22], [23].  

Finally, we will hold aside the issue of the analysis of a proper subgroup 

defined post hoc. In that circumstance, the subgroup criteria using baseline vari-

ables is defined at the end of the study. Since the subgroup analysis was planned 

after the data were examined, the analysis is data driven and only exploratory.  

9.7 “Intention-to-Treat” Versus “As Treated”  
Consider a clinical trial in which patients are randomized to receive an intervention 

to reduce the total mortality rate from chronic cirrhosis of the liver. At the inception 

of the study, patients are randomized to receive either control group therapy or the 

intervention. At the conclusion of the study, the investigators will compare the cu-

mulative mortality rates of patients in each of the two treatment groups. However, 

at the end of the study, how will the investigators decide what patients should be 

considered active group patients and which patients should be counted as in the 

control group? The commonly used approach is to assign treatment group member-

                                                          
11

We are setting aside the possibility that the therapy may be effective in one subgroup 

strata, but not another until a later chapter. 
12 Cox hazard analysis with time dependent covariates has been one useful tool in this regard.
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ship simply as the group to which the patient was randomized. This is the “intention 

to treat” principle.  

The “intention-to-treat” principle of analysis is the standard analysis pro-

cedure for the evaluation of clinical trial results. Undoubtedly, this analysis tends to 

be a conservative one, since not every patient is treated as they were “intended.” 

For example, some patients randomized to the active group may not take their 

medication. These patients, although randomized to the active group, will have the 

control group experience and produce endpoints at rates similar to that of the con-

trol group. However, they would be included in the active group since they were 

randomized to and “intended to be treated” like active group patients. The inclusion 

of these patients in the active group for analysis purposes tends to make the active 

group experience look more like the control group experience, increasing the over-

all active group event rate.13

Similarly, patients who are randomized to the control group may neverthe-

less be exposed to active group medication (e.g., from their personal physician who 

is not an investigator in the study). These patients will experience event rates simi-

lar to the rates of the active group, but since they are considered as part of the 

control group, the inclusion of these patients will produce an event rate for the con-

trol group that is closer to that of the active group. Thus the control group rate will 

approach that of the active group, while the cumulative event rate in the active 

group will be closer to that of the control group (described in the previous para-

graph). This effect of these combined rate alterations reduces the magnitude of the 

treatment effect, thereby diminishing the power of the clinical trial.14

An alternative analysis to the “intent to treat” principle is one that analyzes 

the endpoint results using an “as-treated” analysis. In this case, although patients 

are still randomized to receive either placebo or active therapy, they are classified 

for analysis purposes based on whether they actually took their medication or not. 

Since this is determined after the patient was randomized to the medication, and the 

effect (both perceived beneficial effects, and adverse effects) of the medication may 

determine whether the patient takes the medication, the “as-treated” evaluation is a 

confounded analysis. A clearly detailed examination of this issue is available [24].  

9.8 Example 1: Diabetes Mellitus in SAVE
As an illustration of a subgroup analysis, consider the Survival and Ventricular 

Enlargement (SAVE) clinical trial  [25]. SAVE was designed to test the effect of 

the ACE-i therapy captopril on preventing morbidity and mortality in patients with 

left ventricular dysfunction. This trial recruited 2231 patients, randomizing them to 

                                                          
13

There are occasional complications in an “intention-to-treat” analysis. In some cases, a 

patient is tested and randomized, but then, subsequent to the randomization the test result 

reveals that the patient is not eligible for the trial for a prospectively stated reason. In this 

case, there was no “intent” to randomize this patient when the test result was known, and the 

patient is removed from the study. 
14

The effect of the magnitude of the treatment effect on the power of a study for fixed sam-

ple size is discussed in Appendix D.
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receive either standard medical therapy plus placebo treatment or standard medical 

therapy plus captopril. Patients were followed for an average of 3 years.  

SAVE was a positive trial, demonstrating that captopril therapy produced a 

19% reduction in the total mortality rate  [26]. However, there was interest in the 

effect of therapy in patients with diabetes mellitus. The primary motivation for this 

interest began with the recognition that diabetes mellitus is a risk factor for serious 

morbidity and that the presence of diabetes mellitus increases the likelihood of 

death in patients with left ventricular dysfunction. Thus the effect of captopril was 

assessed on the cumulative total mortality rate of patients with diabetes mellitus. 

The presence of diabetes mellitus was determined by medical history at the time the 

patient was randomized in the trial (i.e., at baseline). In the diabetes mellitus sub-

group, there are two strata: (1) patients with diabetes mellitus and (2) patients 

without diabetes mellitus. The actual subgroup analysis is the effect of therapy on 

each of these strata  [27] (Table 9.2). 

Table 9.2. Effect of captopril in diabetic subgroup in SAVE.

Control Active Relative Confidence interval P- value

inc. rate* inc.rate risk LB† UB‡

Total cohort 0.246 0.204 19 3 32 0.019

(n  = 2231)

Nondiabetic 0.222 0.181 20 2 35 0.036

(n  = 1739)

Diabetic 0.328 0.292 12 -21 36 0.385

(n  = 492)

* Incidence rate † lower bound ‡ upper bound.

From Table 9.2 we learn several facts about the presence of diabetes in the SAVE 

cohort and the effect of therapy within the subgroup strata. Of the 2231 patients 

randomized to SAVE, 492 or 492/2231= 22% were diabetic. Also we can observe 

that the cumulative total mortality rate among diabetic patients (32.8%) was greater 

than for nondiabetic subjects (22.2%) in the trial, reflecting the anticipated in-

creased mortality rate among patients with diabetes mellitus.  

 However, Table 9.2 suggests several other observations. In SAVE, capto-

pril therapy reduced the total mortality rate by 20% (p = 0.036). However, in the 

diabetic stratum, captopril reduced the cumulative mortality effect by only 12% (p

= 0.385). A first examination of these results suggests that captopril is effective in 

non-diabetic patients, but that its effects are just like placebo therapy in patients 

with diabetes mellitus. Is this an appropriate conclusion? 

 As we answer this question, there are several methodologic issues we must 

address. Clearly, the effect of captopril in nondiabetic patients was greater than its 
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effect in diabetic patients in the 2231 patients recruited to SAVE. However, our fo-

cus is on the more important issue of what this means for the captopril effect in the 

larger population of patients from which SAVE’s research sample was selected. Is 

it appropriate to generalize these results?  

First, recall from the previous section that just the random reclassification 

of patients will induce differences in subgroup strata findings by chance alone. 

Even if there was no difference in the effect of captopril between diabetic and non-

diabetic patients, we might expect to see a “subgroup effect” just through the ran-

dom aggregation of patients in the two subgroup strata. 

 Second, the number of patients in the two strata is quite different, with 

there being many more non-diabetic patients then diabetic patients. The effect size 

for the non-diabetic patient stratum (20%) is very close to that of the overall cohort 

(19%). One would imagine that if there were 2200 nondiabetic patients, the relative 

risk (and p-value) of the effect of captopril in the nondiabetic cohort would even 

more closely match the findings in the total cohort. The reverse would be antici-

pated for the subgroup strata made up of a smaller number of patients. The results 

in the smaller cohort will demonstrate wider variability (as demonstrated here by 

the extremely wide confidence interval for the effect of therapy in the diabetic stra-

tum), and therefore less reliability15.

Finally, we have said nothing about how this analysis of the diabetic sub-

group fits into the a priori analysis plan in SAVE. The absence of a prospective 

analysis plan for this subgroup makes us less trustful of the estimators of effect size, 

confidence intervals, and p-values. They are useful for exploratory and not confir-

matory purposes.  

Consideration of each of these points in turn weakens the persuasive 

power of this diabetes subgroup analysis. The best conclusion that we can draw 

from this subgroup evaluation is that the combination of the random play of chance, 

differences in stratum sizes, and estimator untrustworthiness (produced by the lack 

of a prospective plan of analysis) produced the differences in the findings in the 

subgroup strata. If we believe that the SAVE sample is representative of the popula-

tion at large with left ventricular dysfunction, then the effect of captopril in the 

overall diabetic and nondiabetic patients in the population is the same as that in the 

total cohort of SAVE patients. This may be a difficult conclusion to accept based on 

the wide disparity in the treatment effect seen for the two subgroup strata within 

SAVE, but is the most accurate conclusion that can be applied to the millions of 

patients with heart failure who were not recruited into SAVE.  

9.9 Subgroup Result Depiction 
As discussed earlier in this chapter the evaluation of the effect of therapy within 

subgroups in clinical trials is a common expectation of the medical and regulatory 

community. However, the display and description of these expected analyses can be 

complicated and the task of providing an accurate portrayal of these complex re-

sults, within a manuscript that appears in the peer-reviewed journals with severe 

                                                          
15

Another way to say this is that there is inadequate power for the evaluation of the effect of 

therapy in the diabetic stratum.
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word limits, can be challenging. As an alternative to the tabular presentation of 

subgroup analyses results, an innovative way to show the results of subgroup analy-

ses was developed by Sir Richard Peto. These adaptations, colloquially described as 

“Petograms,” depict the results of the findings for individual subgroup strata within 

a clinical trial. 

 As an example, consider the results of the Cholesterol and Recurrent 

Events (CARE) clinical trial. This clinical trial was carried out to evaluate the effect 

of the HMG-Co reductase inhibitor pravastatin on atherosclerotic disease morbidity 

and mortality. CARE recruited 4159 patients with a recent, previous MI, and ran-

domized them to receive standard care (control therapy) or standard care + 

pravastatin (active therapy). The primary endpoint for this study was fatal CHD + 

nonfatal MI. The effect of therapy within several subgroup strata was assessed us-

ing the post hoc endpoint fatal CAD + nonfatal MI + revascularization.16

 The results of several of the subgroup analyses are displayed in Figure 9.6. 

The x-axis depicts the risk reduction for the expanded endpoint in CARE (a positive 

risk reduction indicates benefit). The y-axis has no quantitative meaning, but simply 

serves as a convenient dimension in which we can “stack” the subgroup strata one 

on top of the other.  

Each subgroup strata produces an analysis of the effect of therapy on the 

expanded endpoint in CARE. Each analysis consists of a ball or diamond with a 

line running through it. The ball is the location of the effect size (a diamond is used 

to show the effect of therapy in the entire cohort). The size of the ball is propor-

tional to the number of patients in the subgroup stratum, and the location and length 

of the line going through the ball reflects the confidence interval. Thus, one can 

quickly and easily gain a sense of the effect size, the precision of the effect size (as 

portrayed by the width of the confidence interval), and the number of patients in 

which the analysis was carried out.  

There is no inclusion of the p-value in this evaluation. This is not a serious 

omission if we keep in mind that the majority of subgroup analyses are exploratory. 

The absence of both a prospective analysis plan and alpha allocation renders the p-

values worthless.  

 In the next chapter we discuss the problems that subgroup analyses have 

produced for the medical and regulatory communities.

                                                          
16 Because of the small number of primary endpoint events in the study, the subgroup strata 

of interest would have contained too few events to provide a precise estimate of the effect of 

therapy within each of the subgroups of interest. It was therefore decided to use an expanded 

endpoint that included patients who survived the study, did not have a heart attack during the 

course of the trial, but did undergo coronary revascularization. An alternative approach to 

this exploratory evaluation will be provided in Chapter 11.  
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Figure 9.6.  “Petogram” of subgroup analyses in CARE as measured 

by risk reduction. 
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Problems

1. What are the interpretative problems associated with subgroup analyses? 

2. Why do subgroup analyses remain in demand by the medical and regulatory 

communities? 

3. How does an aggregation effect all but guarantee that therapy effect heteroge-

neity will emerge in the subgroup analysis of a clinical trial. 

4. A company has carried out a small clinical trial to learn about the effect of a 

new medication on the frequency and severity of headaches. In a relatively 

small, phase II study , the sponsor, using a  non-prospective, exploratory analy-

sis, determined that the medication was beneficial in men and not in women. 

They then conducted a follow-up, phase III study in women only, and, through 

another nonprospectively specified analysis, determined that the medication 

produced a benefit in women who believed that their headaches were non-

stress related.  How would you respond to their argument that they have identi-

fied a therapy that is beneficial only in women with non-stress related 

headaches? 

5. A sponsor is interested in testing for the effect of an intervention that has a 

substantial side-effect profile that will produce a large number of patients who 

will discontinue therapy and withdraw from the active group. However, if the 

patients choose to stay on their active therapy, the sponsor believes that the pa-

tients will see a modest benefit that can be accrued to the therapy. The 

company therefore designs the clinical trial for which the primary analysis will 

be an “as-treated analysis,” assigning patients who were originally randomized 
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to the therapy group based not on randomization, but on whether they could 

stay on the medication. The intention-to-treat analysis will be carried out, but 

will be considered a secondary analysis, with a nominal 0.05  error expendi-

ture. The sponsor believes this approach protects them from the criticism that 

the study is positive based on an as-treated analysis that was carried out only 

because the intention to treat analysis was negative. What is your response to 

the company’s solicitation of your opinion? 

6. A group of investigators wish to carry out a clinical trial in which there will be 

two primary analyses. The first primary analysis is an intention-to-treat analy-

sis. The second primary analysis will be an “as-treated” analysis. To conserve 

the familywise error, an  error rate of 0.045 is assigned to the intention to treat 

analysis, and 0.005 is assigned to the as-treated analysis (for the sake of con-

servatism, the investigators do not embed a dependency parameter into their 

analysis plans). With this design, the investigators will be able to claim that the 

study is positive based on the “as-treated” analysis. When asked, they state that 

the threshold of 0.005 was chosen so that there would be no doubt about the ef-

fect of the therapy in the “as-treated” analysis. Comment on the advisability of 

this approach.   
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Chapter 10 

Subgroups II: Effect Domination and 
Controversy

This second of three consecutive chapters that discusses subgroup analyses covers 
the rules that govern subgroup analyses interpretation. A distinction is drawn be-

tween a subgroup analysis that compares the effect of a randomly allocated 

intervention in a clinical trial across subgroup strata on the one hand, and the 
analysis which only seeks to confirm the efficacy of therapy within a single sub-

group stratum on the other. Finally three controversial uses of subgroup analyses 
are provided.  

10.1 Effect Domination Principle 
We have stated in the previous chapter that, in the absence of confirmatory sub-

group evaluations, the best estimate of the effect of randomly allocated therapy 

within a subgroup strata is the effect of that therapy on the overall cohort. We will 

call this the principle of effect domination  the effect of therapy averaged over all 

randomized patients dominates the effect seen in the individual subgroup strata.  

The effect domination principle was the basis of our decision to overturn 

the results of several of the subgroup evaluations that were provided in the previous 

chapter. Although there are many clinical trials designed to provide confirmatory 

evaluations of their primary analyses, there are far fewer confirmatory evaluations 

that occur in the assessments of subgroups. Therefore, the effect domination princi-

ple is much more frequently required in the interpretation of the results of clinical 

trials.

Since subgroup analyses have and will, in all likelihood, continue to en-

gender the interest of the medical community, it is logical to ask why there aren’t 

more confirmatory analyses involving subgroup evaluations. This is an especially 

interesting question since there are clear circumstances in which subgroup evalua-

tions can produce confirmatory results of the therapy effect within (or across) 

subgroup strata. When executed, these confirmatory results stand on their own, 

separate and apart from the result of the effect of therapy in the overall cohort. The 

criteria for these evaluations were clearly characterized by Yusuf et al.  [1] and are 

coincident with our development of confirmatory analyses in this text.  

The first of these criteria for the development of confirmatory analyses in 

clinical trials is that the subgroup analysis must be prospectively designed and 

proper. This structure is required so that (1) the therapy effect size estimators that 

the subgroup analysis produces are trustworthy; and (2) that the effect of therapy to 

be evaluated in a subgroup is not confounded by (i.e., bound up with) post-
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randomization events as discussed in the previous chapter. In general, there has 

been no difficulty with meeting this requirement of confirmatory subgroup analy-

ses. Many clinical trials make statements in their protocols describing the plans of 

investigators to evaluate the effect of therapy within their subgroups of interest. 

These subgroups are, by and large, proper subgroups, e.g., demographic traits, or 

the presence of risk characteristics at baseline.  

However, the final requirement for a confirmatory subgroup analysis is the 

prospective allocation of type I and type II error rates. This last criterion has proved 

to be especially vexing because of the severe sample size constraints this places on 

subgroup analyses. As we have pointed out earlier, the allocation of type I error 

rates for confirmatory testing must be such that the FWER, , is conserved. This 

requires that statistical testing at the level of subgroup analyses will be governed by 

test-specific  error rates that are generally less than 0.05.  

The difficulty of executing subgroup analyses in the presence of FWER 

control and adequate statistical power is not difficult to understand. In fact, re-

sources are generally strained to the breaking point for the analysis of the effect of 

therapy in the overall cohort. This overall analysis is typically carried out with the 

minimum acceptable power (80%) because of either financial constraints or patient 

recruitment difficulties. By definition, subgroup analyses (and certainly within-

stratum subgroup analyses) will involve a smaller number of patients; it is a daunt-

ing task to prospectively allocate type I and type II error rates at acceptable levels in 

a smaller number of patients, although the methodology for the accurate computa-

tion of sample size is available [2]. Thus, the growth of the use of subgroups as 

confirmatory tools has, to some extent, been stunted by the difficulty of construct-

ing a prospective clinical trial with an embedded, prospectively defined proper 

subgroup for which tight statistical control is provided for type I and type II statisti-

cal errors. 

10.2 Assessment of Subgroup Effects 
The evaluation of subgroup effects in clinical trials focuses on the effect of the ran-

domly allocated therapy on the subgroup of interest. However this assessment can 

be carried out in two complementary manners. The first is the determination of a 

differential effect of therapy across subgroup strata. The second is the evaluation of 

the effect of therapy within a single subgroup stratum. Each approach, when pro-

spectively planned and concordantly executed, can supplement the information 

provided by the evaluation of the main effect of a clinical trial.  

10.2.1 Effect Modification and Interaction
Analyses 

We commonly think of the effect of the randomly allocated intervention in a clini-

cal trial as an effect across the entire research cohort. The determination that the 

magnitude of the effect depends upon the subgroup stratum can be provocative, 

valuable, and the basis of a new indication for the use of the therapy. The examina-

tion of a dataset for this effect, while complicated, has become a routine part of the 
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evaluation of the randomly allocated therapy’s influence in a clinical trial. The find-

ing of both clinical and statistical significance for this analysis suggests that the 

effect of therapy is different for one subgroup stratum than for another.  

This type of subgroup effect is commonly referred to as a treatment by 

subgroup interaction; a notable product of this analysis is the p-value for interac-

tion. Typically, the analysis result is described as identifying how the subgroup 

strata interacts with the therapy to alter the occurrence of the endpoint, and the 

evaluation is called an interaction analysis. Alternatively, this approach is de-

scribed as effect modification, i.e., it examines the degree to which the subgroup 

stratum modifies the effect of treatment on the endpoint of interest. Either descrip-

tor is well accepted and serves as an appropriate characterization of the process and 

interpretation when the analysis is prospectively defined and executed according to 

its protocol.  

Statistically significant effect modification analyses in clinical trials are 

not common, primarily because the analyses are underpowered. We should not be 

surprised that this is the case, since the subgroup analyses involve an evaluation of 

an effect difference between smaller subsets of patients within the research cohort. 

Everything else being equal, the smaller sample sizes reduce the statistical power of 

the hypothesis tests. Therefore the occurrence of a statistically significant effect 

size can be particularly noteworthy.  

An example of such a finding occurred in the Cholesterol and Recurrent 

Events (CARE) clinical trial described in the previous chapter. In that study, an ex-

ploratory examination of the effect of the HMG-CoA reductase inhibitor pravastatin 

was assessed in the gender subgroup. The relevant analysis was the effect of 

pravastatin on the cumulative incidence rate of the post hoc composite endpoint of 

CAD death + nonfatal MI + coronary revascularization [7]. There were 4159 

patients recruited in the CARE study; of these, 576 (13.8%) were women and 3,583 

(86.2%) were men. During the course of the trial the effect of the randomly allo-

cated intervention pravastatin on lipids appeared to be the same in women and men, 

producing equivalent reductions in total cholesterol (20% in women, 19% in men), 

low density lipid (LDL) cholesterol (28% in women, 28% in men), and triglyc-

erides (13% in women, and 14% in men). There were equivalent elevations in high-

density lipoprotein (HDL) cholesterol (4% in women, 5% in men).  

However, the subgroup analysis revealed an apparent difference in the ef-

fect of pravastatin therapy on the expanded endpoint in men and women (Table 

10.1). Men in CARE experienced a relative risk of 0.761 on pravastatin therapy, 

while women who were randomly chosen to receive pravastatin therapy experi-

enced a 0.545 relative risk. The p-value that assesses the difference in the effect for 

men and women was 0.05. Within CARE, the effect of therapy appeared to be 

modified by gender; women being the greater beneficiary of this effect than men. 

However, the post hoc nature of the analysis provides only hypothesis generating 

status to these results. 
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Table 10.1. Interaction effect in CARE for expanded endpoint*

gender modification of therapy effect

Gender Rel. Interaction

strata risk p -value

Males 0.761

Females 0.545

0.050

*CHD disease death + nonfatal MI + coronary revascularization.

10.2.2 Within-Stratum Effects 
The comparison of the effect of therapy across subgroup strata can be a very power-

ful elucidation of the randomly allocated therapy’s effect heterogeneity. However, 

the interpretation of this analysis can be problematic, since it is often under-

powered. In a competitive environment in which only cost effective clinical trials 

are funded, it is difficult to gather sufficient financial resources to design and exe-

cute a clinical trial, one of whose primary missions is to examine a treatment by 

subgroup strata interaction.  

In addition, the evaluation of a subgroup mediated effect modification may 

not directly address the question the investigators have raised about the subgroup. 

This is because the investigators’ interest may not be in the entire subgroup, but 

only in selected subgroup strata. Specifically, the investigators may not ask whether 

the effect of therapy is the same across subgroups, but instead ask whether there is 

an explicit effect of the intervention in the prospectively defined subgroup stratum 

of interest. This is a different question than the question which is best answered by 

an interaction analysis. 

Under what circumstances will the investigator be interested in a therapy 

effect in only one subgroup stratum? One situation would be if the stratum is com-

posed of patients who have a very different prognosis from that of other patients. 

While investigators may be most interested in the effect of a new intervention on 

breast cancer, they may be particularly interested in the effect of the therapy in pa-

tients with an advanced stage of the disease. This interest does not require the 

investigators to ask whether the effect of therapy in patients with less advanced 

breast cancer is different from that of patients with advanced breast cancer; they 

wish to know only whether the therapy has been shown to have explicit efficacy in 

patients with advanced breast cancer.  

Similarly, a new therapy for the treatment of CHF may hold promise for 

reducing mortality in all patients with CHF, but the investigator is motivated to 
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demonstrate the effect of this therapy in patients with CHF whose etiology is non-

ischemic. She is not interested in comparing or contrasting the efficacy of the 

intervention between ischemic versus nonischemic etiologies of CHF. She is in-

stead focused on two questions: (1) Is the therapy effective in the entire cohort and 

(2) Is the therapy effective in the subcohort with CHF-nonischemic etiology? 

Is it possible that the therapy could be effective in the entire cohort but not 

the sub cohort of interest? Yes. Consider the possibility that the therapy in fact is 

effective for patients with CHF-ischemic etiology but ineffective for patients with a 

nonischemic etiology for their CHF. Let the research sample primarily contain pa-

tients with CHF-ischemic etiology with only a small number of patients who have a 

nonischemic etiology for their heart failure. Since the research sample mostly con-

tains patients who will respond to the therapy, the result of the concordantly 

executed clinical trial will be positive (barring an effect that is driven by sampling 

error). The investigator will then argue that, since the trial is positive, this positive 

finding will apply to the CHF-nonischemic subgroup as well. Essentially, the con-

clusion about the nonischemic subcohort is based primarily on the findings of 

patients who are not in that subcohort at all. This is the consequence of the effect 

domination principle, in which the findings in the overall cohort devolve on each of 

the subgroup strata. In this example, the principle produces the wrong conclusion; 

nevertheless, it is the best conclusion available in the absence of a confirmatory 

subgroup analysis. In order to avoid this possibility, the investigator is interested in 

reaching a confirmatory conclusion. 

As another illustration of a circumstance in which prospectively specified, 

stratum-specific subgroup analyses can make an important contribution, consider 

the situation in which the adverse event profile of a therapy that is being studied in 

a controlled clinical trial is known to be different between women and men. As an 

illustration, consider a cholesterol-reducing drug that produces breast cancer in 

women. In this circumstance, the risk-benefit profile of this drug is different for 

women than it is for men. Since women will be exposed to a greater risk with this 

therapy, it is reasonable to require investigators to produce a statistically valid dem-

onstration of efficacy in women. The investigators are not disinterested in an effect 

in men but the relatively low risk of the drug in men allows the investigators to be 

satisfied with deducing the effect of the therapy in men from the effect of therapy in 

the overall cohort. It is the greater adverse event risk in women that requires an ex-

plicit demonstration of efficacy in them.  

Perhaps the most useful product of this dialogue is that there are different 

questions that can be asked of subgroups. Some of these questions can be addressed 

by a heterogeneity of effect evaluation and an interaction analysis, but there are 

others which are addressed by the direct demonstration of efficacy in a single sub-

group stratum. We will return to this issue in the next chapter. 

10.3 Problematic Subgroup Analyses 
At this point, it is clear that subgroup analyses (much like multiple statistical analy-

ses) in clinical trials are both prevalent and unreliable. Retrospectively considered, 

sometimes only casually planned, the conclusions concerning subgroup analysis, 

while descriptive of the findings in the sample, often do not reveal the truth about 
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the relationship in the larger population. Recent discussions in the literature con-

cerning the wide variation in results by clinical center in the BHAT trial  [3], [4], 

[5] are an illustration of the difficulty in interpreting subgroup assessments. Indeed, 

the literature  [6], [7], [8], [9], [10] recommends that, as currently incorporated in 

clinical trials, subgroup analyses interpretations are exploratory; they can suggest, 

but do not confirm, a modification of the randomly allocated therapy’s effect in the 

population at large.  

We will next review three current and provocative subgroup analyses in 

clinical trials. In each case, the controversial nature of the clinical question was al-

lowed to overturn the correct use of subgroup methodology.  

10.4 The MERIT Trial
Carvedilol1 was not the only beta-blocker that was investigated for its effects in pa-

tients with CHF. The evaluation of other medications in this same class accelerated 

in the 1990s, and researchers identified metoprolol CR/XL as a promising com-

pound whose initial results justified a full-scale clinical trial.2

The Metoprolol CR/XL Randomized Intervention Trial in CHF (MERIT-

HF) was designed to evaluate the effect of metoprolol XL in patients with de-

creased  LVEF and symptoms of heart failure. The protocol of this study was 

published [11], providing details of it’s a priori planned analysis. MERIT-HF was a 

prospectively designed, randomized, clinical trial. Patients with NYHA class II–IV 

heart failure of at least 3 months duration and LVEFs  40% were recruited from 

both the USA and Europe. Subjects who met all inclusion and exclusion criteria 

were placed on optimal medical therapy for their CHF. This therapy included the 

use of diuretics, and ACE-i therapy.) If the ACE-i could not be tolerated, hydra-

lazine or an angiotensin II receptor antagonist was substituted. Patients were then 

randomly selected to receive either metoprolol CR/XL or placebo therapy. This 

random allocation was prospectively planned so that the effect of therapy would be 

balanced for the analyses of the following subgroups; investigational site, age, sex, 

ethnic origin, cause of heart failure, previous acute MI, (and in patients with previ-

ous MI, the time since the last MI), diabetes mellitus, ejection fraction and NYHA 

functional class. The target dose of the therapy was 200 mg daily. Follow-up visits 

were required every 3 months. 

 The investigators in MERIT-HF had prospectively planned two primary 

analyses and differentially allocated the type I error rate between them. The first 

primary analysis was the effect of metoprolol on the total mortality rate; the test-

specific  error rate for this evaluation was 0.04. A prospectively specified  error 

of 0.01 was chosen to evaluate the effect of therapy on the combined endpoint of 

total mortality + total hospitalizations.  

Although the protocol stated that the effect of therapy on total mortality 

would be assessed in the prospectively defined subgroups listed above, no attempt 

was made to control the type I error allocation for these assessments. Thus, these 

                                                          
1

Discussed in Chapter 1.
2

The author was a paid consultant for the sponsor during the evaluation of the FDA’s inter-

pretation of the  MERIT-HF clinical trial. 
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subgroup evaluations were to be secondary analyses, providing only supportive 

evidence for the two primary analyses. The sample size goal was 3200 patients 

(1600 subjects per group), and the trial was monitored by an independent DSMB. 

The results of the study were published in 1999 [12]. The MERIT-HF in-

vestigators enrolled 3991 patients from 313 clinical sites in 13 European countries 

and the United States. In the metoprolol CR/XL group, 145 patients died (7.2%); 

217 patient died in the placebo group (11.0%). This produced a relative risk = 0.66, 

and a 95% confidence interval 0.53-0.81. The p-value for this finding was p < 

0.001. These results led the DSMB to stop the trial prematurely based on prospec-

tively defined stopping criteria.3

 Additional findings in MERIT-HF added strength to the hypothesis that 

metoprolol CR/XL produced a beneficial effect on total mortality. Cardiovascular 

mortality, sudden death, and death from worsening heart failure were all reduced in 

the active group. Subgroup analysis  [12, Figure 5] revealed the beneficial effect of 

metoprolol CR/XL on total mortality was homogeneous within each of the prospec-

tively identified subgroup analyses. Editorial comments appearing in the literature 

[13], while acknowledging that beta-blocker therapy was reported to be associated 

with a diminished quality of life within the first few weeks of therapy, affirmed that 

MERIT-HF provided overwhelming evidence of benefit of -blocker therapy in 

heart failure. By the definitions adopted in this text, MERIT-HF was a positive trial. 

 The Metoprolol for CHF New Drug Application (NDA) was submitted by 

the sponsor to the FDA for review after the conclusion of the MERIT-HF study. 

The sponsor requested that metoprolol CR/XL be approved for use as a medication 

that reduced total mortality for patients with CHF. Both the overall results and the 

subgroup findings of the MERIT-HF trial were reproduced by the FDA’s review 

team. However, during their review of the NDA, the FDA executed an additional 

analysis that had been neither prospectively planned nor carried out by the MERIT-

HF investigators. (Table 10.2). 

Table 10.2. Effect of metoprolol CR-XL by country.

95% CI

Country Relative Lower Upper

risk bound bound

USA 1.05 0.71 1.56

All others 0.55 0.43 0.70

Interaction p- value = 0.003

                                                          
3

A description of  early termination procedures in clinical trials is provided in Chapter 1. 
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The FDA created a new subgroup with two strata: (1) patients randomized 

in the United States, and (2) patients randomized from other countries. The within-

strata analyses revealed that metoprolol was less effective in reducing total mortal-

ity in the United States than it was in other countries.  

The sponsor was informed of the results of this analysis and expressed 

concerns about attempts to draw conclusions from this evaluation. In response to 

the Sponsor’s concern, the FDA reviewer stated that the United States patient popu-

lation analysis was carried out mainly to check the internal consistency of the 

overall trial result. The FDA did not require that there be a statistically significant 

reduction in the total mortality rate in the United States patients, but insisted that it 

is at least necessary for the United States mortality outcome not to contradict the 

mortality findings in the overall cohort. The review also stated that  

 …if the mortality endpoint is the most important among all endpoints, the 

US sub-population should be the most important subgroup in a multina-

tional trial because the goal of the NDA submission is to gain approval for 

marketing in the drug in the US. The efficacy outcome in this population 

must be evaluated carefully as part of the evaluation of totality of the evi-

dence and possible extrapolation of the efficacy evidence from foreign 

population to US population.4

There was no prospective statement about this concern by the FDA during the ini-

tial development of the MERIT-HF protocol. Nevertheless, this concern was 

echoed by other voices within the agency, e.g., 

Because of demographic differences or differences in concomitant care, a 

treatment might be beneficial overall but neutral or detrimental in some 

subpopulations. In particular, even though studies in United States patients 

were not required for approval, evidence that a treatment is non-beneficial 

in United States patients (or even in some identifiable subpopulation 

among United States patients) must not be ignored. The observed mortality 

among United States patients receiving metoprolol was 105% of that seen 

in those receiving placebo. 

How should this finding be interpreted? The finding of adverse United 

States mortality effects could of course be attributable to chance, but it 

could alternatively be a genuine finding, the result of US-European differ-

ences in demographics or concomitant therapy”. 5

On this basis, the FDA did not provide the new indication for total mortality that 

the sponsor requested. 

The analysis that produced this controversy is clearly post hoc and cannot 

be confirmatory. It is equally clear that the FDA was well aware of the numerous 

                                                          
4

Statistical Review and Evaluation (Amendment I), NDA 19,962. May 30, 2000.
5

Internal FDA memo, May 16, 2000.
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problems created by relying on post hoc analyses in general, and on non-

prospectively defined subgroup analyses in particular. Certainly, these argument 

would have been effectively wielded against the sponsor if the results of MERIT-

HF were null, but the sponsor was to argue that metoprolol CR/XL should be ap-

proved on the basis of a beneficial finding in an unplanned analysis of United States 

patients.  

The sponsor argued in vain that this post hoc, underpowered comparison 

of the U.S. subgroup against all of the other countries combined was neither logical 

nor a valid comparison. The non-US countries did not represent a homogenous 

group regarding social, economic, or standard of care characteristics. The Sponsor 

also pointed out that there was no evidence that beta-blocker therapy interacted 

with any of these characteristics. Other analysis findings cast doubt on the excess 

mortality finding in the US. An examination of the additional endpoints in the 

MERIT-HF study failed to provide any support for the suggested lower effect on 

total mortality in the United States subgroup. In fact, the results for the composite 

endpoint of total mortality and all-cause hospitalizations, as well as the results for 

sudden death, in the United States subgroup support the overall study findings of 

compelling benefit in the treatment of heart failure. Nevertheless, the FDA remain 

unmoved. After much additional discussion, Metoprolol extended release formula-

tion was approved for the treatment of CHF, but was not given a total mortality 

indication.  

10.5 Ethnicity and ACE-i therapy
A current issue in cardiology is the possibility that the treatment of CHF might be 

tailored to the race of the individual. An exploration of this concept has produced a 

collection of analyses which have appeared in the peer-reviewed literature.  

One of the first evaluations of this issue was a retrospective examination 

of two clinical trials in heart failure  [14]. This analysis reviewed and contrasted the 

experience of African-American and Caucasian patients with CHF, demonstrating  

differences in CHF etiology, neurohumoral stimulation, and response to pharma-

cological agents in these patient groups with CHF. The evaluations were based on 

the comparisons between 180 African-American male patients and 450 Caucasian 

male patients in V-HeFT 1 and a second comparison of 215 African-American and 

574 Caucasian male patients in V-HeFT II.  

An assessment of demographic characteristics revealed that African-

Americans had a lower incidence of CHD, a higher incidence of previously diag-

nosed hypertension, and a greater cardiothoracic ratio than Caucasians. 

Neurohumoral differences included lower plasma norepinephrine levels in African-

Americans and reduced plasma renin activity in African-Americans with a history 

of hypertension. The authors also identified a trend toward lower mortality of Afri-

can-American patients being treated with hydralazine plus isosorbide dinitrate, 

while Caucasian patients who were treated with the ACE-i had a reduced cumula-

tive mortality rate. These findings suggested that there might be a biologic 

mechanism underlying racial differences in the response to therapy. However, the 

investigators clearly stated that these evaluations were post hoc, analyses that re-

quired confirmation in well-controlled, clinical trials.  
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To continue the investigation of this interesting concept, the SOLVD in-

vestigators provided an analysis of this issue from two clinical trials. The SOLVD 

clinical trials evaluated the effect of the ACE-i enalapril on the occurrence of mor-

bidity and mortality in patients with left ventricular dysfunction [15] and in patients 

with frank CHF [16]. These two pivotal clinical trials were among those that led to 

the recommendation that all patients with CHF be treated with ACE-i  therapy as 

tolerated. The post hoc examination of these SOLVD studies for the influence of 

race, demonstrated that African-American patients with a history of CHF had a 

worse outcome then Caucasian patients, with African-American patients being 

more likely to die from any cause, and 37 % more likely to die from any cause or be 

hospitalized for heat failure [17]. 

The investigators now wished to compare the effect of enalapril in Afri-

can-Americans to that of Caucasians using a post hoc analysis structure. In these 

two studies 800 participants classified themselves as African-American, and 5719 

patients were Caucasian. However, there was the problem of attribution of effect, 

i.e., any differences in event rates between the races might not be ascribed to race, 

but instead attributed to other differences between these patients. In an attempt to 

minimize this problem, African-American and Caucasian patients were matched 

according to which of the two SOLVD trials they were randomized. They were also 

matched on the basis of baseline LVEF, therapy group, gender and age. As many as 

4 Caucasian patients were matched to one African-American patient. However, de-

spite these attempts to match patients, African-American patients were younger and 

less well educated than Caucasian patients.  

The investigators found that event rates were higher among African-

American patients than Caucasian patients (12.2 deaths per 100 person years versus 

9.7 deaths per 100 person years). The effect of enalapril did not reduce deaths from 

any cause in either African-American or Caucasian patients. However, while enala-

pril reduced the hospitalization rate for CHF for Caucasian patients, its use had no 

effect on the reduction of the hospitalization rate in African-American patients. The 

authors concluded that enalapril therapy is associated with a significant reduction in 

the risk of hospitalization for heart failure in Caucasian patients with left ventricular 

dysfunction but that enalapril produced no significant alteration in this outcome 

among similar African-American patients.  

Yancy et al. examined the effect of race on the response of patients to 

carvedilol in patients with chronic CHF [17]. The effect of carvedilol therapy on 

patients with CHF was identified in the United States Carvedilol program6 In this 

trial, there were 217 African-American patients and 877 non-African-American pa-

tients. As anticipated, the African-American patients were less likely to have CAD 

and more likely to have hypertension then non-African-American participants. 

Also, as anticipated, African-American patients had a higher mortality rate than 

non-African-American patients (8.9% versus 7.5%) and also a greater hospitaliza-

tion rate (31.5% versus 25.3 %).  

The investigators reported that carvedilol lowered the risk of death from 

any cause by 68% in non-African-Americans and by 56% in African-Americans. In 

                                                          
6

This collection of clinical trials was discussed in Chapter 2.
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addition carvedilol reduced the risk of death from any cause or hospitalization by 

49% in non-African-American and 43% in African-Americans, and reduced the risk 

of progression of heart failure by 51% in non-African-American and 54% in Afri-

can-Americans. None of the statistical comparisons of these rates between African-

Americans reached nominal significance.  

Taken at face value, these results appear to suggest that African-American 

patients who suffer from CHF might be better treated with the beta blocker 

carvedilol than with the ACE-i enalapril. This concept has engendered discussion in 

the medical literature. In his review of these results, Swartz [18] clearly enunciates 

the difficulties in the identification of race and the attendant problems of tailoring 

therapy based on a demographic characteristic which is currently so imprecisely 

determined. Wood [19] stated that racial differences in the response to drugs not 

only have practical importance for each of the choice of and dose of drugs but 

should also alert physicians to the important underlying genetic determinants of the 

drug response.  

However, before we delve into these more enticing issues, we must first 

ask a more fundamental question. Are these analyses statistically reliable? Do they 

provide a clear and accurate depiction of the effect of each of enalapril and 

carvedilol on African-American patients? CHF, whose lethality is race-

independent, is particularly acute and tragic in African-American patients with its 

earlier onset and more rapid production of morbidity and mortality. The suggestion 

that CHF therapy can be used differently in African-American patients than in Cau-

casian patients suggests that the need to optimize therapy for CHF should 

adumbrate treatment practices that are based on the assumption that patients should 

be treated the same regardless of race, since people, despite differences in skin 

color, are more alike than they are different.  

Do the data in these two evaluations support overturning this well estab-

lished principle of non-race-based treatment? Without the confirmatory hypothesis 

testing procedures in place for subgroup evaluations, the best interpretative guide in 

this matter is that of Yusuf [20], i.e., the most reliable estimate of the effect of a 

therapy within a subgroup strata in the effect of therapy in the overall cohort. Is 

there any reason for us to negate this natural conclusion in either of the two forego-

ing analyses? In the case of the race–therapy assessment from SOLVD, the racial 

statistical evaluation was entirely post hoc. No prospective plan guided the combi-

nation of the two SOLVD studies, nor was there an a priori plan in place to 

determine how this assessment should take place. This is specifically not the envi-

ronment in which to draw confirmatory conclusions about the effect of therapy in 

African-American patients. Thus, we must void the SOLVD racial subgroup analy-

ses and replace them by the findings of the overall SOLVD results.  

We may never know why African-American patients taking enalapril in 

SOLVD did not experience a reduction in their hospitalization rate, (just like we 

will in all likelihood never know why hypertensive men with baseline ECG abnor-

malities did worse on antihypertensive therapy in the classic MRFIT study [20] a

finding which threatened to reverse the treatment of hypertension in the early 

1980’s [19]). These are the spurious outcomes that occur from unplanned subgroup 

analyses. However, the task is to identify the most reliable therapy for the millions 
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of African-American patients with CHF who were not recruited into SOLVD. The 

clearest, time tested, most accurate answer SOLVD offers is its overall finding of 

enalapril benefit, identified in the analysis of the entire cohort.  

Turning now to the study involving carvedilol, we see that, as was the case 

with SOLVD, the assessment of a race mediated therapy effect in the United States 

Carvedilol program as presented by Yancy et al. was a post hoc analysis. In addi-

tion, that study did not produce the effect of carvedilol (stratified by race) on the 

prospectively defined endpoints of the United States Carvedilol program but instead 

used substituted endpoints. This is again not a research plan that permits us to draw 

confirmatory conclusions. Thus, invoking the best interpretative methodology for 

subgroup analyses in clinical trials leads us to apply the effect of carvedilol on all 

patients in the United States Carvedilol program to the subset stratum of African-

American patients, i.e., that there is no race mediated effect of therapy in the United 

States Carvedilol program. This is precisely what Yancy’s result reveals. In fact, in 

each of the reported evaluations carried out by Yancy et al., carvedilol had the same 

effect in African-Americans as it did in non-African-Americans.  

The effect of carvedilol in African-Americans is the same as the effect in 

the entire cohort. However, we must now ask what that overall effect was. In 

SOLVD the primary analysis of the effect of enalapril on the entire cohort was pro-

spectively written into the protocol and its results were easy to interpret. However, 

major criticism has been leveled at the US Carvedilol program7. Thus, to identify 

the effect of carvedilol in African-American patients with CHF, use of correct 

methodologic principles requires us to apply the findings of carvedilol seen in the 

overall cohort. However, that effect cannot be identified because of the US 

Carvedilol’s program weak analytic methodology.  

The medical community’s attraction to subgroup analysis is in direct pro-

portion to the healthcare provider’s need to treat special subgroup strata that are at 

unusual risk. Unfortunately, the reliability of the traditional subgroup analyses in 

clinical trials does not increase with this acutely felt need in the medical commu-

nity, rendering it particularly vulnerable to misleading subgroup evaluations. 

Therefore we must be particularly disciplined in the rigorous application of meth-

odologic standards in controversial settings. 

10.6 The NETT Study 
As a final example of a controversial use of subgroup results, we consider the find-

ings of the National Emphysema Treatment Trial (NETT) Research Group [21]. 

The treatment of emphysema has been problematic. Lung-volume-reduction sur-

gery (LVRS), or the process by which 20 to 35 % of the emphysematous lung is 

removed is a controversial tool in the treatment of this chronic disease. The surgery 

mortality rate is from 4 to 17 %, but commonly, lung function, exercise capacity, 

and the quality of life can improve in the overwhelming majority of patients who 

have completed the surgery. NETT is a federally funded clinical trial to assess the 

effect of LVRS when compared to conventional medical therapy.  

                                                          
7

See the discussion in Chapter 2 on the US Carvedilol program.  



10.6 The NETT Study 299 

 The purpose of this study was to compare the survival rates and exercise 

capacity of patients who receive LVRS to those patients who receive medical ther-

apy. However, an additional goal of NETT was to identify selection criteria for 

LVRS. The NETT investigators were prospectively interested in carrying out sub-

group analyses for the purpose of identifying subgroup strata that either particularly 

benefit from or do worse as a result of LVRS surgery.  

The DSMB for this study was charged with monitoring the safety of the 

patients who were recruited and followed in the NETT. However, they had one ad-

ditional, prospectively proscribed role; to periodically review subgroups of patients 

who may benefit from or be harmed by the procedure. These subgroups were pro-

spectively defined based on age, forced expiratory volume at 1 second (FEV1), 

arterial CO2, residual lung volume, as well as carbon monoxide diffusing capacity, 

maximal work capacity, quality of life, race or ethnic group, and sex. Subgroup data 

were reviewed every 3 months. 

 Recruitment began in 1998 and 3.5 years later, 1022 patients had been 

randomized to either LVRS or medical therapy in 17 clinical centers. There were no 

deaths in the first 30 days after randomization in the medical group, while the 30 

day mortality rate postsurgery was 16%. When the analysis focused on survivors, 

patients recruited to the surgery group sustained an increase in exercise capacity. 

However, statistically significant subgroup findings were observed for each of two 

subgroups (Table 10.3). 

Table 10.3. Subgroup analysis in NETT trial.

Subgroup Surgical Medical Risk

therapy therapy ratio p -value

deaths (patients) deaths (patients)

FEV1 =  20%* 23 (46) 5 (48) 5.96 (2.2 – 20.1 <0.001**

 + homogeneous

emphysema

FEV1 = 20% 22 (44) 8 (43) 2.98 (1.3 – 7.7) 0.001**

and DLCO < 20%*

* Percents are of the predicted value.

** Computed by the author.

For each of these high-risk subgroups (FEV1  20% of predicted plus ho-

mogeneous emphysema, and FEV1  20% of predicted and DLCO < 20% of 

predicted), surgery was associated with an elevated risk of mortality. The NETT 

investigators concluded that they had identified groups of patients who were at 

high-risk for fatal consequences of LVRS and that these findings have clear impor-

tance for the selection of patients for this procedure. They advocated caution in the 

use of this procedure in these patients who were likely to derive little benefit from 

it.
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 The interpretation of these subgroup findings is somewhat more complex 

than in previous examples, primarily because in the case of NETT, the subgroup 

evaluations were prospectively stated and provided in detail before the trial was 

carried out. In fact, one of the principle aims of this clinical trial was to identify the 

effect of therapy in high-risk subgroups. Deliberative consideration went into the 

review of subgroup definitions during the design phase of the trial, and the DSMB 

was prospectively charged with the interim monitoring of the subgroup findings. 

Thus, the subgroup analyses in NETT are protected from the charge that they were 

the product of data-based, random research. The estimates of mortality rates, rela-

tive risks, and their associated confidence intervals are accurate depictions of the 

relative effects of surgical versus medical surgery in these patients with chronic 

disease.

 While the prospective choice of these analyses allows us to accept these 

estimators as trustworthy, we then must ask the question about the conservation of 

the familywise error probability. If there were no a priori statements about the mag-

nitude of the type I error rates, ordinarily we would conclude that accepting the 

findings of the NETT investigators would inflate the type I error beyond any rea-

sonable upper bound. However, the small p-values for each of these estimates 

allays any fears about  error rate inflation. Thus the NETT subgroup analyses are 

proper and meet with currently accepted methodology, and their findings should be 

accepted as confirmatory.  

10.7  The Difficulties Continue 
This chapter demonstrates some of the contemporary difficulties that subgroup 

analyses create. Yet another force that exerts traction on both investigators and 

regulators for subgroup interpretation is the lay press. Consider, as an example, an 

editorial appearing in the Wall Street Journal that purported to have identified an 

unnecessary obstruction put in place by the FDA slow rapid drug approval  [22].  

The editorial reported that, in the search to identify vaccines that would be 

active against cancer, investigators believed that they had identified a substance that 

would be active against prostate cancer. In a placebo-controlled clinical trial, the 

active medication was randomly allocated to patients who had late-stage prostatic 

cancer. At the end of the study, the final analysis that included all of the random-

ized patients was of reduced statistical significance. However, in those patients with 

Gleason scores (measures of the degree to which the tumor spreads), of seven or 

less, the medication was seen to be effective. The FDA appropriately chose not to 

grant approval of the compound based on this post hoc analysis. The regulatory 

agency instead required that a new study that would prospectively target patients 

with lower Gleason scores should be commissioned and completed. The editorial 

criticized this decision, and  asked “why not allow companies to cull the relevant 

data from existing studies when a certain subgroup is clearly of help?”  

Unfortunately, these calls for directed action that are based on misdirected 

and misleading subgroup analysis are not harmless. The genuine, heartfelt desire to 

come to the aid of ailing people must be tempered with disciplined research strategy 

and execution. In the absence of this strength, the research effort produces interven-
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tions that have been shown many times not to help our patients in need, but to harm 

them.    

Problems

1. Describe the role of the effect domination principle in the interpretation of sub-

group analyses in clinical trials. 

2. Recall from Chapter 4 that the role of a prospectively planned secondary analy-

sis in clinical trials is solely supportive. With this as a background, and 

considering the implications of the effect domination principle, under what cir-

cumstances can a subgroup analysis be used as a secondary analysis in a 

clinical trial? 

3. Provide several reasons why confirmatory subgroup analyses are not seen more 

frequently in clinical trials.  

4. What is the common difficulty that confronts investigators who wish to pro-

spectively allocate type I and type II error rates at acceptably low levels for 

subgroup analyses in clinical trials?  

5. How are subgroups used to measure a modification of effect in a clinical trial? 

6. What is the difference between the use of subgroup analyses to evaluate the 

presence of an effect modification and the use of subgroups to identify a stra-

tum specific effect in a clinical trial?   
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Chapter 11 

Subgroups III: Confirmatory Analyses 

In this last chapter on subgroup analyses, procedures are described that allow sub-

group evaluations to be viewed as confirmatory analyses. While we have clearly 

delineated the investigators’ responsibility to prospectively design the analyses for 
a clinical trial, we now expand that role to encompass a detailed evaluation of the 

analysis of the effect of therapy within the subgroup strata of interest. The investi-
gator is empowered to make determinations of (1) endpoints, (2) endpoint event 

rates, (3) efficacy levels, and (4) the precision of the endpoint measurement for the 

analysis of the effect of therapy within the subgroup stratum of interest. These de-
terminations should be made with the same careful attention to detail required for 

the analysis of the effect of therapy in the entire cohort.  

11.1 Introduction 
Some of the most intriguing analyses in clinical trials have been the evaluation of 

the effect of therapy within subgroups. Unfortunately, many of these analyses have 

been misleading. For the reasons that have been delineated in Chapters 9 and 10, 

the typical subgroup analyses in clinical trials are best interpreted as exploratory, 

and the most accurate estimate of the effect of therapy within a subgroup is the ef-

fect of therapy in the overall cohort.  

The twin requirements of (1) the detailed, prospective delineation of sub-

group membership criteria, and (2) the protection of type I and type II error levels 

together increases the challenge of carrying out a confirmatory subgroup analyses 

within a clinical trial. We will develop confirmatory subgroup evaluations in which 

the focus of the investigators is on the prospective identification of an effect of 

therapy within a single subgroup stratum, as opposed to the interaction examina-

tion. The methodology proposed for evaluating the effect of the study intervention 

within a subgroup stratum is not a strategy which would supplant interaction test-

ing. It addresses instead a different question—Is there an explicit effect of the 

intervention in the prospectively defined subgroup stratum of interest?  

As we have seen, not all important subgroup evaluations need to be of the 

interactive type.1  The subgroup evaluation controversy in MERIT was focused 

solely on the presence or absence of an effect of the therapy within the U.S. popula-

tion stratum. As an additional illustration, recall that the National Emphysema 

Treatment Trial (NETT) investigators were interested in identifying individual sub-

group strata that were at particular risk for adverse outcomes following surgery. 

                                                          
1 Effect modification, or interaction subgroup analyses are discussed in Chapter 10, Section 

10.2.1. 
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While each of two subgroup evaluations might be assessed indirectly in an interac-

tive analysis, there is no methodological impediment to their direct examination. 

As an additional example, it is not uncommon for an investigator to have a 

specific, prospective interest in a subcohort that is sicker than that of the overall co-

hort. These patients with greater morbidity often require multiple concomitant 

medications. Ill patients are hospitalized more frequently, and have a greater death 

rate. The explicit demonstration of efficacy in this sicker subcohort could make 

among the most dramatic differences in these ill patients’ prognoses. Thus, while 

there is certainly an interest in the effect of therapy in the overall cohort, the ex-

plicit demonstration of efficacy in this sicker subcohort is also of great prospective 

importance to the investigator. In this circumstance, the scientific question is not 

whether there is a greater effect of therapy in the sicker fraction of patients than in 

the rest of the research cohort that is a question that requires an interaction evalua-

tion. The question here is much simpler. Does the therapy work in the sicker 

subgroup stratum?  

11.2 Focus on Stratum-Specific Effects
Why isn’t the principle of effect domination articulated in Chapter 10 sufficient for 

the interpretation of a therapy’s effect within a subgroup stratum? This principle 

that the effect of a therapy in a subgroup is best measured by the effect of that ther-

apy in the entire clinical trial cohort is very useful, but must be viewed in the end as 

a limited statement, the limit being imposed by the inability to make a confirmatory 

statement about the therapy’s effect within the subgroup. The medical community 

is comfortable which specific, detailed, and reliable data about a treatment effect 

within a subgroup. It is less certain of the interpretation of a subgroup that must 

first be translated down from the overall cohort efficacy to the subgroup of interest.  

A particular example of the importance of the direct demonstration of effi-

cacy within a subgroup stratum, is the issue of a therapy effect in extremely low or 

extremely high strata levels. The medical and regulatory communities commonly 

have an interest in the effect of therapy at these stratum extremes in their desire to 

construct (and understand) treatment guidelines. For example, consider the clinical 

question raised in 1996 as the result of four clinical trials that considered the reduc-

tion in patients’ low-density lipoprotein (LDL) cholesterol  [1], [2], [21], [22].  In 

each of these trials, patients were admitted to the study with a wide range of LDL 

cholesterol levels. The central question addressed by each of these studies was the 

effect of therapy on the reduction of clinical events. However, an issue that was 

also of interest was whether there was a lower range of cholesterol levels within (or 

below) which there was no beneficial effect of therapy. Each of the trials carried out 

a subgroup analysis, and the attention of the medical community focused on the re-

sponse of patients in the lower stratum of LDL cholesterol. Although the 

community was in general satisfied with the application of the effect domination 

principle in this example (i.e., that modern lipid reduction strategies would save 

lives of patients with “average” LDL cholesterol levels), it nevertheless retained a 

particular interest in the findings within this subcohort with the lowest LDL choles-

terol measures. A confirmatory analysis within the stratum of low baseline LDL 

cholesterol levels would have provided important information in this regard.  
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11.3 Confirmatory Analyses Requisites 
The tasks outlined here will be more than merely prospectively identifying the sub-

group stratum in which our interest resides and then “trust to luck” that the 

investigators will identify a therapeutic effect. To the contrary, targeting this sub-

group stratum will require the investigators to give careful consideration to each of 

the design parameters of the subgroup analysis. We will outline the construction of 

confirmatory subgroup analyses along the lines of Moyé and Deswal [2]. Specifi-

cally, the trial designers must deliberate on the choice of the endpoint, the stratum 

specific control group event rate for that endpoint, a defensible efficacy, and the 

type I and type II errors rates. In addition, the notion of dependent hypothesis test-

ing will be incorporated in this development.  

The central idea here is that the investigator should design the subgroup 

analysis with the same attention to detail that is required for the design of the analy-

sis of the effect of the randomly allocated intervention in the entire research cohort. 

The result will be a confirmatory evaluation of the effect of the randomly allocated 

intervention of the clinical trial in both the entire cohort and within a pretargeted 

subgroup stratum that conserves the familywise error probability . Put another 

way, two confirmatory analysis plans will be deployed at the beginning of the clini-

cal trial. The first is the plan for the evaluation of the effect of therapy in the entire 

cohort of the controlled clinical trial. The second is the confirmatory plan for the 

evaluation of the intervention within the subgroup stratum. Each plan is predicated 

on its own defensible assumptions for statistical error rate, endpoint choice, end-

point event rate, and intervention efficacy. 

As we did for Chapters 4–8, in this development we will assume that a 

randomized, controlled clinical trial, to study an intervention’s effectiveness, is the 

vehicle in which the subgroup will be analyzed. We will also assume that the sub-

group stratum in which efficacy is to be examined has been announced 

prospectively and that the subgroup is a proper subgroup. We will, in addition, as-

sume that the prospectively planned clinical trial is executed concordantly (i.e., the 

experiment is executed according to its protocol). Thus, in this environment, the 

estimates the trial provides of the effectiveness of the intervention are trustworthy 

and need only have appropriately low levels of type I and type II error, in order to 

produce a confirmatory evaluation of the intervention’s effect in the subgroup.  

11.4 Incorporating Subgroup Dependency 
Just as we recognized that the execution of prospectively defined analyses for a 

combined endpoint and its component endpoints was a research environment in 

which dependency between statistical hypothesis tests was very likely, we can eas-

ily see that this same concept of dependency can be applied to a collection of well-

designed hypothesis tests carried out in both an entire cohort of patients as well as 

in a subgroup of them.  

Recall from Chapter 5 that we developed two characteristics of dependent 

statistical hypothesis testing; coincidence and homogeneity of therapy effect. The 
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degree to which each of these are present determines the magnitude of the depend-

ence between the hypothesis tests. In fact, a relationship was expressed between the 

dependency parameter D, the coincidence c and homogeneity of therapy h repro-

duced here. 

1 1 (1 )D c c h                                    (11.1) 

            

where c is the coincidence level 0 c  1 and h, 0 h  1 measures the therapy 

homogeneity. Here, h = 1 denotes perfect therapy homogeneity, i.e., the therapy has 

the same effect on each of the analyses.  

Recall that in Chapter 7 we described coincidence as a characteristic be-

tween endpoints. Specifically, it was defined as the degree to which the combined 

endpoint and a component endpoint occurred in the same person. For our evaluation 

in the paradigm of subgroup evaluations, coincidence will be a property of the sub-

group stratum, i.e., we will define coincidence as the degree to which the same 

patient appears in each analysis. More precisely, coincidence will be the proportion 

of patients in the entire cohort that are included in the subgroup stratum of interest. 

 The following illustrations motivate this definition. Consider a clinical 

trial that randomly allocates an intervention or placebo therapy to 1100 patients. 

After a prespecified period of time, the investigators will measure the effect of the 

therapy on one endpoint, the total mortality rate. The investigators prospectively 

plan to evaluate the randomly allocated therapy on the cumulative incidence of total 

mortality using two analyses: (1) the entire cohort and (2) patients  60 years of 

age. Assume for the moment that the effect of therapy in the overall cohort is the 

same as the effect of therapy in patients who are 60 years old and older. If 1050 of 

these 1100 patients are at least 60 years of age, there is an overwhelming overlap 

between the two prospectively designed statistical analyses that is entirely due to 

the fact that the great majority of the patients who are included in the analysis of the 

entire cohort are included in the age subgroup stratum analysis. Recall that our no-

tion of dependency was based on the commission of a type I error. If a type I error 

occurs in the analysis for the effect of therapy in the overall cohort of 1100 patients, 

then it is extremely likely to occur in the analysis of 1050 of the same patients. The 

level of dependence between the statistical analysis of the effect of therapy in the 

entire cohort and the analysis of the effect of therapy in the subgroup strata is very 

high in this case. The smaller the proportion of patients who are at least 60 years of 

age, the greater the difference in the set of patients analyzed in the entire cohort and 

the patients analyzed in the overall cohort and, consequently, the lower the depend-

ence between the hypothesis tests. We will refer to cs as the coincidence property of 

subgroups. 

Similarly, hs will reflect the degree to which the effect of therapy in the 

subgroup (or collection of subgroups) is the same as the effect of therapy in the 

overall cohort. Thus, we may rewrite (11.1) as 

1 1 (1 )s s s sD c c h                                        (11.2) 
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and apply all of the developments of Chapters 5 and 6 and Appendix E to the con-

servation of the familywise error probability  in the context of subgroup analyses. 

It is useful to examine the relationship between the dependency parameter and both 

the coincidence parameter cs and the homogeneity parameter hs (Figure 11.2) 

For a fixed value of the homogeneity of therapy estimate hs, the depend-

ency parameter increases with increasing coincidence. Also, larger values of the 

therapy homogeneity parameter are associated with greater hypothesis test depend-

ency.

11.4.1 Therapy Homogeneity in Subgroup        
Evaluations

The value of hs must be selected with special care in subgroup analyses. Selecting 

hs = 1 is equivalent to an assumption that the effect of therapy will be the same in 

the subcohort and the entire cohort. Since the purpose of the evaluation of the effect 

of therapy in the subcohort is to obtain a separate assessment of the therapy’s effect, 

it would be incorrect to embed a presumed answer to this question within the de-

pendence parameter. However, to choose a value of hs = 0 is equally inappropriate, 

since the subcohort findings are included in the overall cohort; this observation 

alone will produce some homogeneity of therapy effect. A reasonable choice in this 

circumstance is simply to let hs = cs.
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Thus, the homogeneity of therapy effect is governed by the degree to 

which the subcohort and the entire cohort contain the same patients. In this circum-

stance

2

2

1 1 1

1 1 1

1 1

2

s s s s

s s s

s s

s s

D c c h

c c c

c c

c c

                                         (11.3) 

where cs is the fraction of the overall cohort that is included in the subgroup stratum 

of interest.  

As a very simple example of this concept, consider the design of a placebo 

controlled clinical trial in which patients with ischemic cardiovascular disease are 

recruited and then randomly selected to receive either a new antiplatelet agent or 

placebo therapy to reduce the incidence of CAD death. The investigators have the 

resources available to recruit 7000 patients for this study. They plan to use 2 years 

to recruit this cohort and then to follow the last patient who is recruited for 4 years. 

The investigators have prospectively chosen one endpoint—CAD death. The inclu-

sion and exclusion criteria of this trial are such that the investigators anticipate that 

the 4 year cumulative incidence rate of CAD death is 15%.  

 In this example, the trial designers have two principle analyses they wish 

to compute at the trial’s conclusion. The first analysis is the effect of the randomly 

allocated intervention on the cumulative incidence of CAD death in the entire co-

hort. The second analysis is the effect of the therapy on CAD death in men. The 

investigators choose an efficacy level of 20% for each of the two primary analyses. 

They also begin with the assumption that each of the hypothesis tests should be 

executed with 90% statistical power. Having made these initial assumptions, the 

investigators then proceed with a sample size computation for each of the two pri-

mary analyses (Table 11.1). 

   
Table 11.1. Sample size computation with one subgroup: Scenario 1.

Primary Cohort Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

CHD death Total 0.150 0.20 0.050 0.90 5444

CHD death Men 0.150 0.20 0.050 0.90 5444

 With no difference in the design parameters for each analysis, of course, 

the sample size computations for each of the primary analyses will be the same. 

Even though the total sample size for the trial is 5444, much less than the maximum 
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of 7000 patients available for the study, the fact that  is not conserved in Table 

11.1 precludes the researchers from selecting the sample size produced in this table 

as the goal sample size of the trial.  

The investigators then proceed to apportion the  error probability. This 

increases the sample size requirements since the type I error rates for each of the 

two hypothesis test are each less than 0.05 (Table 11.2).  

Table 11.2.  Sample size computation with one subgroup: Scenario 2.

Primary Cohort Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

CHD death Total 0.150 0.20 0.030 0.90 6172

CHD death Men 0.150 0.20 0.020 0.90 6744

The investigators now incorporate the notion of dependency into the de-

sign of these analyses. They first estimate that 85% of the total number of patients 

recruited for this study will be men (cs = 0.85). A simple computation based on 
2 2s s sD c c  reveals Ds = 0.83. The investigators next prospectively set the 

FWER  = 0.05, and the test-specific  error rate for the hypothesis test on the en-

tire cohort as 1 = 0.03. From the formula introduced in Chapter 5 for the 

computation of 2, the test-specific  error probability for the subcohort of men, 

given  and 1.

1
2 1 2

1

min , .
1 1 D

                             (11.4) 

they compute 2 = 0.03 and next recompute the sample sizes based on these consid-

erations (Table 11.3).  

Table 11.3.  Sample size computation with one subgroup: Scenario 3.

Primary Cohort Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

CHD death Total 0.150 0.20 0.030 0.92 6622

D= 0.83

CHD death Men 0.150 0.20 0.030 0.85 5326
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Note also that the investigators reduced the power of the analysis involv-

ing only men from 90% to 85%. For the analysis of the effect of therapy in the male 

subcohort, 5326 men are required. Since 85% of the recruited sample will be men, 

the total sample size of the study will be 6172/0.85 = 6266 patients, a number that 

does not exceed the 7000 maximum number of participants.  

The investigators of this trial are now in a position to carry out a confirma-

tory analysis of the effect of the randomly allocated intervention in each of the total 

cohort and the male subcohort. This was produced through the incorporation of a 

conservative estimate of the level of dependence between the two statistical hy-

potheses, in addition to the differential allocation of the type I error probability.   

11.5 Subgroup Stratum-Specific Endpoints 
The procedure outlined in the previous section permitted a confirmatory evaluation 

of the effect of therapy within a subgroup stratum. This goal was achieved solely on 

the manipulation of the statistical criteria of the two prospectively defined hypothe-

sis tests. Although these adjustments during the design phase of the trial are 

legitimate and represent devices that we will use repeatedly, they are not the only 

tools at our disposal. We will now turn to an examination of the clinical assump-

tions under which a statistical hypothesis test is evaluated, with particular focus on 

how they might be controlled to achieve confirmatory hypothesis tests within a 

subcohort. 

Heretofore, we have carefully examined the role of endpoints in clinical 

trials. In Chapter 3, we discussed the logistical reasons as well as the epidemiologic 

rationale for their incorporation within a single clinical trial. In Chapter 4, the 

methodology for assessing the effect of therapy based on their occurrence was de-

veloped. However, a relatively unexplored aspect of the inclusion of multiple 

endpoint evaluations in clinical trials is the consideration of a stratum specific end-

point. In its simplest case, this means that the analysis of the effect of therapy in the 

overall cohort will be on a different endpoint than the analysis for the therapy effect 

in the subcohort. If the endpoint for the effect of therapy on the overall cohort has a 

greater incidence rate, the statistical power for the subgroup analysis will increase.

This new multiple endpoint strategy is one that can empower the subgroup 

analysis and the trial itself, but if a steady hand is not at the helm, the trial can be 

piloted into hazardous and dangerous waters. Clearly, the two different endpoints 

must be chosen with great care, with concentrated attention on the interpretation of 

these joint analyses. The publication of a design manuscript to educate the research 

community would be a very worthwhile activity in this case. Of course, the regula-

tory community, when appropriate, should be a full participant in the development 

of the analysis plan.  

Some will cogently argue that it is difficult enough to interpret the effect 

of therapy within a traditional subgroup analysis without the introduction of the in-

fluence of a different endpoint. Equally clear is the observation that the wanton, 

undisciplined choice of an endpoint for the subgroup stratum analysis will com-

pletely undermine the confirmatory hypothesis test on which it is based. However, 

if the endpoint can be prospectively, carefully, and sensitively selected, the subco-
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hort analysis will strengthen and not weaken the overall research endeavor, and the 

worthless arguments can be defeated.  

11.5.1 Choosing the Subcohort Endpoints 
The choice of the endpoint for the overall cohort and that of the subcohort analysis 

remains a delicate matter. Consider a clinical trial that is designed to have a confir-

matory analysis for the effect of the randomly allocated intervention on each of the 

entire research cohort and a prospectively defined, proper subcohort. What we re-

quire are two endpoints that measure the same disease process. The endpoint to be 

evaluated within the subcohort should have a greater incidence rate, since this 

analysis will contain the fewest patients.  

This is analogous to the situation in which we developed the underlying 

theory for the construction of a combined endpoint from several component end-

points.2 Our examination of this issue then revealed that, in choosing endpoints that 

measured the same underlying pathophysiology, we were most concerned about 

two characteristics: (1) coincidence and (2) homogeneity of therapy effect. If the 

component endpoints commonly occurred in the same patients, and all available 

evidence suggested that the randomly allocated therapy would be effective for each 

of these endpoints, then the combined endpoint that is assembled from these com-

ponent endpoints would be a useful reflection of the effect of therapy on the disease 

process of interest. 

This line of reasoning suggests that we might use the theory from Chapters 

7 and 8 to develop a combined endpoint from component endpoints, and then apply 

these endpoints to two prospectively developed analyses. The first of these analyses 

would be the effect of therapy in the entire cohort on one of the component end-

points; the second would be the effect of therapy in the smaller subcohort on the 

more frequently occurring combined endpoint. The notion of dependency and dif-

ferential allocation of type I error would also be brought to bear in this 

circumstance to conserve the FWER.  

11.5.2 Example 
The following illustrates this principle: consider the design of a controlled clinical 

trial whose goal is to assess the effect of a randomly allocated medication on the 

occurrence of atherosclerotic cardiovascular disease in patients with isolated sys-

tolic hypertension (ISH) where ISH is defined as DBP < 90 mm Hg and SBP (SBP) 

greater than 140 mm Hg. Patients will be selected and then randomized to receive 

either control therapy or active medication to control their elevated SBP. The inves-

tigators are, of course, interested in demonstrating the effect of therapy in all 

randomized participants. The endpoint in which they have the greatest interest is the 

cumulative incidence rate of fatal/nonfatal stroke However, the investigators also 

have a particular interest in examining the effect of therapy in patients who have 

borderline ISH, which is defined in this clinical trials as patients whose SBP is be-

                                                          
2

These topics were discussed in Chapters seven and eight..
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tween 140 mm Hg and 150 mm Hg. These investigators are interested in executing 

a confirmatory analysis in this subcohort.  

However, upon first examination of this complex issue during the design 

phase of the trial, this goal appears unreachable. The investigators believe that re-

sources will not be available to carry out their planned evaluation. Since the trial 

provides scarcely enough power (80%) for the analysis of the effect of therapy in 

the entire cohort, there will be inadequate power available to assess the effect of 

therapy within any of the subgroup strata for the occurrence of fatal/nonfatal stroke. 

The investigators, retaining their prospective wish to carry out a confirmatory sub-

group analysis, therefore clearly state in the protocol during the design phase of the 

study that they are interested in examining the effect of the trial’s intervention in 

this low ISH subgroup stratum. The first evaluation of sample size assumes that the 

analysis of the effect of therapy in the SBP subcohort will be the same as that of the 

entire cohort. The investigators determine that the minimum effectiveness of the 

intervention worth detecting is a 20% reduction in the incidence of the endpoint. 

For this first evaluation, no attempt is made to control the familywise error prob-

ability (Table 11.4). 

Table 11.4.  Sample size computation with one subgroup: Scenario 1.

Primary Cohort Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

Fatal/nonfatal stroke Total 0.070 0.20 0.050 0.90 12,649

Fatal/nonfatal stroke SBP subcohort 0.050 0.20 0.050 0.90 18,053

This first examination provides an initial impression of the sample sizes 

required for each of the two analyses. It is somewhat surprising that the required 

number of patients is greater (rather than the same) for the analysis of therapy in the 

SBP subcohort when compared to the required number of participants for the over-

all cohort. However, an examination of the cumulative event rate of fatal/nonfatal 

stroke in the two analysis groups answers this question. Since the SBP subcohort is 

defined as 140 mm Hg < SBP  150 mm Hg, which is at the lower end of SBPs for 

patients recruited to this study, the event rate experienced by these patients is lower 

than for the overall cohort as a whole. Thus, not only is the number of patients to be 

included in the subcohort analysis smaller, we see that the control group event rate 

is lower as well. This is a combination of influences that only serves to lengthen the 

odds against the execution of a confirmatory analysis in the SBP subcohort. 

 In fact, it is precisely this issue of endpoint event rates that the investiga-

tors first tackle. During this phase in the design of the experiment, the investigators 

replace the primary endpoint of fatal/nonfatal stroke in the SBP cohort with the 

endpoint of fatal/nonfatal stroke + fatal/nonfatal MI. The choice of this composite 

endpoint is a reasonable one. The two component endpoints of this combined end-

point (fatal/nonfatal stroke and fatal/nonfatal MI) are both produced by the same 

underlying pathophysiologic mechanism and commonly occur in the same patients. 
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In addition, the effect of antihypertensive therapy is anticipated to produce an im-

portant clinical reduction in the cumulative incidence of each of these evaluations. 

Thus, the new endpoint satisfies the two requirements of an effective and useful 

combined endpoint. In addition, and most importantly in this scenario, the greater 

incidence rate of this combined endpoint produces a substantial reduction in sample 

size for the evaluation of therapy in the SBP subcohort (Table 11.5).   

Table 11.5. Sample size computation with one subgroup: Scenario 2.

Primary Cohort Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

Fatal/nonfatal stroke Total 0.070 0.20 0.050 0.90 12,649

Combined endpoint* SBP subcohort 0.135 0.20 0.050 0.90 6144

*Fatal/nonfatal stroke + fatal/nonfatal MI.

The investigators now set out to control the FWER, . They begin with an asym-

metrical allocation of the type I error rate for each of the two analyses, providing 

most of the type I error rate for the effect of therapy in the overall cohort, with only 

0.015 allocated for the primary analysis in the SPB subcohort (Table 11.6).  

Table 11.6.  Sample size computation with one subgroup: Scenario 3.

Primary Cohort Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

Fatal/nonfatal stroke Total 0.070 0.20 0.035 0.90 13,833

Combined endpoint* SBP subcohort 0.135 0.20 0.015 0.90 8065

*Fatal/nonfatal stroke + fatal/nonfatal myocardial infarction.

The reduction of the test-specific  level for each of the two primary 

analyses has predictably increased the required sample size of the clinical trial. 

However, this computation does not take dependence between the statistical hy-

pothesis tests into account.  

This issue of dependence between these two statistical hypothesis tests is a 

consideration that must be carefully deliberated because of the complexity of the 

circumstances. There are two separate factors that must be addressed in this situa-

tion. The first is the dependence between the two statistical hypothesis tests; a 

dependence that is based on the fact that the analyses of one contains a fraction of 

the patients in the other. The second issue is that the endpoints are related. Never-

theless, this consideration comes down to two factors, coincidence and 

homogeneity of therapy effect.  

In Chapter 7, coincidence was measured as the degree to which the com-

ponent endpoint appeared in the combined endpoint. In those situations, the same 

patients were evaluated for each of these endpoints, i.e.,  each analysis was carried 
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out on the same cohort, but the endpoints that were evaluated were related but dif-

ferent. We expressed this concept in the dependency measure as 

1 1 1 .e e e eD c c h  (11.5) 

However, the situation is somewhat different in the present circumstance because 

only a fraction of the patients are evaluated for the effect of therapy in the subco-

hort as will be analyzed in the initial cohort. We stated earlier in this chapter that 

when there are two statistical hypothesis tests in which the endpoints are the same, 

but the cohorts overlap, we can express the dependency parameter as  

2 2 .s s sD c c                                          (11.6) 

In our current situation, we have two statistical hypothesis tests in which (1) the co-

horts are not identical, but merely overlap, and (2) the endpoints are similar but not 

identical in the two analyses. The combination of these factors does not increase, 

but decreases the degree of dependence between the two statistical evaluations. We 

now express this concept as follows. In a clinical trial that is testing the effect of a 

randomly allocated intervention in which a primary analysis is to be carried out on 

a subcohort that uses a combined endpoint and a second primary analysis is to be 

carried out on the entire cohort using a component endpoint, then the dependency 

parameter between the two statistical hypotheses may be computed as    

.e sD D D                                               (11.7) 

In the case of the SBP trial, assume the therapy effect is homogenous for the com-

bined endpoint of fatal/nonfatal stroke + fatal/nonfatal MI and the component 

endpoint of fatal/nonfatal stroke. The investigators anticipate that 40% of patients 

who meet the criteria for a fatal/nonfatal stroke + fatal/nonfatal MI will have the 

fatal/nonfatal stroke. From 1 1 1e e e eD c c h we can compute De = 0.40.  

In addition, the investigators anticipate that 50% of all patients recruited 

into the study will meet the SBP criteria for the subcohort, or Ds = 0.375. Thus D = 

(0.40)(0.375) = 0.15. The result of this final computation is incorporated into the 

sample size computation3 and can be incorporated into the sample size computation 

(Table 11.7).  

                                                          
3

The details of this incorporation are described in chapter 5, section 5.9. 
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Table 11.7.  Sample size computation with one subgroup: Scenario 4.

Primary Cohort Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

Fatal/nonfatal stroke Total 0.070 0.20 0.035 0.90 13,833

D = 0.15

Combined endpoint* SBP subcohort 0.135 0.20 0.016 0.90 7974

*Fatal/nonfatal stroke + fatal/nonfatal MI.

In order to meet the investigators’ concern that no more than 60% of the patients 

recruited will be in the SBP subgroup stratum of interest, the decrease the power of 

the combined endpoint evaluation in the SBP subcohort from 90% to 85% (Table 

11.8). If the trial is designed using the computations and underlying thought process 

as contained in Table 11.8, the investigators will be able to carry out two confirma-

tory evaluations: (1)the effect of therapy in the entire cohort; and (2) the effect of 

therapy within the SBP subcohort.  

Table 11.8.  Sample size computation with one subgroup: Scenario 5.

Primary Cohort Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

Fatal/Nonfatal stroke Total 0.070 0.20 0.035 0.90 13,833

D = 0.15

Combined endpoint* SBP subcohort 0.135 0.20 0.016 0.85 6950

*Fatal/nonfatal stroke + fatal/nonfatal MI.

The conclusion from this study should be straightforward, eased by the 

care taken in the choice of the combined and singleton endpoints for the two analy-

ses. Since each of the two endpoints is a clinically accepted manifestation of 

atherosclerotic cardiovascular disease exacerbated by chronic hypertension, the 

conclusion of the effect of the therapy in either the overall cohort or the SBP sub-

cohort will be unambiguous. Even if there was no evidence of an effect of therapy 

in the overall cohort, the identification of an effect of therapy in the reduction of 

atherosclerotic disease as measured by fatal/nonfatal stroke + fatal/nonfatal MI in 

the subcohort would represent a strong, confirmatory finding. 

 However, this second confirmatory evaluation does not come cheaply. The 

number of patients in the confirmatory subcohort is considerable. Also, there is the 

additional burden represented by the requirement of one more endpoint determina-

tion. In the initial trial design, when there was only one endpoint; every patient who 

was believed to have experienced a stroke during the course of the study had to be 

carefully evaluated in order to decide if that patient’s event met the prospectively 

determined definition of a stroke for the trial. We now add to that considerable ef-

fort the additional task of assessing patients for the occurrence of a fatal or nonfatal 
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MI. Defined criteria for this new evaluation must be in place prospectively, and the 

logistics of the evaluation of these additional events must be embedded into the 

clinical trial’s logistical mechanism.4 This new workload can be a substantial drain 

on the trial’s resources. 

11.5.3 Dependency Parameter’s Minimal Impact  
In the previous example, there were a series of design decisions that led to the con-

firmatory subgroup evaluation. Of the various prospective adjustments made by the 

investigators to the sample size computations, including the implementation of a 

combined endpoint event rate in the subcohort, the differential allocation of the 

error rate, the inclusion of the measure of dependence, and the adjustment of the 

statistical power, certainly the least influential procedure was the use of depend-

ence. A comparison of  error rates in Tables 11.6 and 11.7 for the evaluation of the 

effect of therapy on the SBP subcohort reveals that the test-specific  error rate for 

the SBP cohort before dependence between the statistical hypotheses was invoked 

was 0.015; after dependence was invoked, it only increased to 0.016—certainly a 

minimal (if not negligible) impact. While this effect did not negate the impact of the 

choice of the combined endpoint for the SBP subcohort analysis, its role in promot-

ing the confirmatory evaluation was minimal. 

The reason for this minimal dependence effect is that the combined impact 

of using both (1) a different endpoint for each of the two hypothesis tests and (2) 

non-identical cohorts between the two confirmatory analyses produced a great re-

duction in the dependence parameter. In the next section we will discuss a 

procedure in which this dramatic discounting does not take place. However the 

point of the current exercise is that, with careful consideration, managing two sepa-

rate endpoints (one for the overall cohort and a second for the subgroup stratum of 

interest) poses no conceptual, interpretative, or insurmountable logistical difficulty 

in a clinical trial.  

11.6 Differential Event Rate 
One of the difficulties in designing a clinical trial that will produce a confirmatory 

hypothesis test for the effect of therapy is the paucity of endpoint events. It is there-

fore useful to choose an endpoint whose incidence rate is so large that enough 

endpoint events are produced in an achievable sample size. In the previous section, 

we produced this rate by choosing a composite endpoint for the subcohort evalua-

tion. However, this step may not be necessary in some settings. There are 

commonly occurring clinical trial situations in which the event rate for the subco-

hort of interest is greater than the event rate for the same endpoint in the overall 

research cohort.  

 In the previous section, we observed the reverse of this phenomenon. In 

the design of a clinical trial which examined the effect of a randomly allocated in-

tervention on the occurrence of clinically significant atherosclerotic cardiovascular 

                                                          
4

This additional burden may be lightened by the likelihood that measurement of the cumula-

tive incidence rate of fatal/nonfatal MI was considered as a secondary endpoint.
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disease, the SBP subcohort, in which the investigators had a prospectively stated 

interest was defined as patients whose SBP was between 140 mm Hg. and 150 mm 

Hg. Since this SBP level is in the lower range of SBPs for patients who had isolated 

systolic hypertension, the event rates for atherosclerotic disease were lower in the 

subcohort, making it even more difficult to execute a confirmatory evaluation of the 

effect of therapy in this group of patients. If the investigators had chosen a subco-

hort of patients with greater elevations in SBP, the event rate for fatal/nonfatal 

stroke would have been higher. Nevertheless, the investigators chose not to focus 

on this higher range of blood pressure because they had no special, prospective in-

terest in it apart from their interest in the overall cohort.  

 However, there are other clinical trial circumstances in which there is pro-

spective interest in a higher risk subcohort. Certainly the recent appearance of the 

concern of a different effect of therapy in African-American versus non-African-

American patients is a setting in which the differential rate of events might be em-

bedded into the experimental design. In fact there has been increasing regulatory 

pressure to evaluate the effect of therapy in ethnic and gender minority groups in 

general.  

The first difficulty in carrying out accurate evaluations of the effect of a 

therapy within a randomized clinical trial in ethnic and gender minorities is the rela-

tive inability of these trials to successfully recruit patients from these populations. 

To help rectify this situation, the FDA has drafted regulations that provide guidance 

to the pharmaceutical industry concerning the appropriate representations of ethnic 

minorities and women in clinical trials. Specifically, Section 115(b) of the Food and 

Drug Modernization Act of 1997 (FDAMA) required the agency to “review and 

develop guidance, as appropriate, on the inclusion of women and minorities” [3]. 

According to its preamble, the Rule is intended to alert sponsors as early as possible 

to demographic deficiencies in enrollment that could lead to avoidable deficiencies 

that appear later in the subsequent New Drug Application (NDA) submission.  

The FDA has taken additional steps to encourage ethnic minority recruit-

ment in clinical trials. The Demographic Rule (February 11, 1998, Final Rule, 

investigational new drug (IND) applications and new drug applications (NDA)) re-

quires private sponsors of clinical trials that are to be submitted to the FDA to, 

among other things, tabulate in their annual reports the numbers of subjects enrolled 

in clinical studies for drug and biological products according to age, group, gender, 

and race. This increased regulatory oversight of the inclusion of gender and ethnic 

minority in clinical trial reflects a sense of the poor recruitment of these underrepre-

sented patient populations in research programs. This emphasis has led in part to 

increased recruitment of minority populations in both privately sponsored [17] and 

publicly sponsored [4] clinical trials. In fact, a trial involving solely African-

American patients is currently under way [5], [6]. 

The second issue is of course the interpretative difficulties that are inherent 

in the traditional interpretation of subgroup analyses, for which we now develop an 

alternative. This development will follow that of Moyé and Powell [7]. 
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11.6.1 Event Rate Differences 
Subgroup cohorts of interest can have event rates that are anticipated to be different 

than the event rates in the overall cohort. These acknowledged differences can be 

embedded into a clinical trial design, producing a confirmatory subcohort evalua-

tion.

One example of this different experience is in CHF in African-Americans. 

There is no question that atherosclerotic event rates are greater in African-

Americans than others. 5 African-Americans are more likely to have such contribu-

tory risk factors as hypertension, diabetes and left ventricular hypertrophy than 

Caucasians. This amplifies the already increased prevalence of CHF among Afri-

can-Americans. While 4.8 million Americans have CHF [8], CHF is more prevalent 

in African-Americans then in non-African-Americans. A recent examination of the 

age-adjusted prevalence of heart failure in patients who are twenty years of age or 

older revealed that CHF occurred more commonly in African-American patients, 

even after stratifying by gender. In addition, hospitalization for CHF is more com-

mon among African-Americans [9, 10, 11]. Finally CHF is believed to be more 

rapidly progressive in African-Americans then non-African-Americans, [12] with 

symptoms of CHF developing at an earlier age in African-American patients.  

This has been observed in clinical trials as well. The Survival and Ven-

tricular Enlargement Study  [SAVE] [5] evaluated the effect of the ACE-i captopril 

in patients with left ventricular dysfunction but without symptoms of CHF. In an 

examination of the placebo group, 28.1% of non-Caucasian patients died during the 

course of the trial versus 24.3% of Caucasian patients. In that same trial, 48.3% of 

non-Caucasian patients died of a death that was believed to be of cardiovascular 

etiology, or had CHF that required either ACE-i therapy or hospitalization, or suf-

fered a recurrent MI. Caucasian patients experienced this event 39.2% of the time. 

If the investigator has a prospective interest in examining the effect of 

therapy in a subcohort whose endpoint event incidence rate is greater than that of 

the overall cohort, this difference in the event rate can be incorporated in the re-

search design to help produce a confirmatory analysis in the evaluation of the effect 

of therapy in the subcohort. We will demonstrate the utility of this approach 

through an illustration of the design of a clinical trial. In this study, the investigators 

are interested in evaluating the effect of therapy to reduce morbidity and mortality 

in patients who have been diagnosed with CHF. The investigators will recruit pa-

tients with CHF, randomly allocating them to receive either the active intervention 

or the control group therapy. The trial’s designers are interested in assessing the ef-

fect of the intervention on the cumulative total mortality rate; this will be one of the 

primary analyses of the study. However, in addition to this first evaluation, the in-

vestigators have a strong, prospectively declared interest in determining if there is 

an effect of the intervention in African-American patients with CHF. As a first 

evaluation of the requirements of the design of this complicated clinical trial, the 

trial designers examine the sample size requirement for this study (Table 11.9).  

                                                          
5

This information on the ethnic prevalence of atherosclerotic disease was contributed by Dr. 

Anita Deswal.
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Table 11.9.  Sample size computation with one subgroup: Scenario 1.

Primary Cohort Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

Total mortality Total 0.150 0.20 0.050 0.90 5444

Total mortality African-American 0.150 0.20 0.050 0.90 5444

The anticipated cumulative mortality rate for the placebo group in this clinical trail 

is 15%, and the investigators are interested in demonstrating that the intervention 

produces a 20% reduction in this event rate. The statistical hypothesis test is that 

under the null hypothesis, the cumulative mortality rates are equal, and under the 

alternative hypothesis, these rates are not equal. At this preliminary stage of the de-

sign of the clinical study, there is no attempt yet to control the FWER, and the 

statistical power is assumed to be 90%. With no difference in the design parameters 

of this study for the evaluation of the effect of therapy in either the total cohort or in 

the African-American subcohort, the required sample sizes are of course the same. 

 However, the investigators understand that the cumulative mortality rate 

for African-Americans will be substantially greater than the anticipated death rate 

in the overall cohort. A fair depiction of this circumstances for African-American 

patients with CHF requires that the trial designers use the best, most accurate esti-

mate of the event rate in these patients, just as they will use the best estimate of the 

total mortality rate for the overall cohort. Thus the investigators assume that while 

the overall research cohort will experience a 15% cumulative mortality rate over the 

course of the trial, African-American patients will experience a 25% cumulative 

incidence rate of this endpoint. The incorporation of this assumption into the sam-

ple size calculation for the effect of the randomly allocated intervention produces a 

substantial reduction in the required sample size for the evaluation of the effect of 

therapy in this cohort (Table 11.10). 

Table 11.10.  Sample size computation with one subgroup: Scenario 2.

Primary Cohort Cumulative Efficacy Alpha Power Sample 

analyses Control Group (two-tailed) size

Event Rate

Total mortality Total 0.150 0.20 0.050 0.90 5444

Total mortality African-American 0.250 0.20 0.050 0.90 2922

The next stage of the analysis development for this clinical trial is for the 

investigators to begin a prospective conservation of the type I error rate. The overall 

FWER of 0.05 is divided between the two primary analyses (Table 11.11). From a 

strict sample size consideration, the allocation of the FWER appears to be a step 

backward. For the overall cohort, controlling the familywise error level increases 

the sample size from 5444 to 6172, an increase of 13%. Decreasing the test-specific 
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 error probability from 0.050 to 0.020 increases the sample size for the analysis of 

the effect of therapy in the African-American cohort by 24%, from 2922 to 3620. 

The larger sample sizes certainly increase the cost of the experiment; however, this 

is a necessary step if the investigators are to be empowered to execute confirmatory 

statistical hypothesis tests.  

The impact of dependency between the two statistical hypothesis tests is 

now considered. The investigators anticipate that approximately one-half of the en-

tire cohort will be African-American. This produces cs = 0.50. As pointed out 

earlier, the selection of the measure of therapy homogeneity must be carried out 

carefully. If the investigators choose hs = 1, then they are assuming that the effect of 

therapy will be the same in each of the African-American subcohort and the entire 

cohort. 

Table 11.11.  Sample size computation with one subgroup: Scenario 3.

Primary Cohort Cumulative Efficacy Alpha Power Sample 

Analyses control group (two-tailed) size

event rate

Total mortality Total 0.150 0.20 0.030 0.90 6172

Total mortality African-American 0.250 0.20 0.020 0.90 3620

Since the purpose of the evaluation of the effect of therapy in the ethnic subcohort 

is to assess the heterogeneity of therapy, it would be misleading to assume the ho-

mogeneity of therapy was great merely to induce an artificially high dependence 

measure. However, to choose a value of hs = 0 is equally inappropriate, since Afri-

can-Americans make up both the subcohort of interest and approximately 50 % of 

the overall cohort. We will proceed with the simplifying assumption that hs = cs,

permitting the following computation for the dependency parameter Ds:
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2

0.50 2 0.50

0.50 2 0.50 0.375.

s s sD c c

                                  (11.8) 

The sample size for the effect of therapy in the African-American subcohort can 

now be computed incorporating the notion of statistical hypothesis test dependency 

(Table 11.12). 
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Table 11.12. Sample size computation with one subgroup: Scenario 4.

Primary Cohort Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

Total mortality Total 0.150 0.20 0.030 0.90 6172

D = 0.375

Total mortality African-American 0.250 0.20 0.024 0.90 3482

A further reduction in the minimum required sample size for the African-

American subcohort can be achieved by reducing the power for this analysis from 

90% to 80% (Table 11.13). 

Table 11.13.  Sample size computation with one subgroup: Scenario 5.

Primary Cohort Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

Total mortality Total 0.150 0.20 0.030 0.90 6172

D = 0.375

Total mortality African-American 0.250 0.20 0.024 0.80 2671

However, the sample sizes produced in Table 11.13 reveal that the ratio of 

African-American to the entire subcohort is not 50% but 2671/6172 = 43%. This is 

contrary to the assumption that the investigators made earlier in the sample size 

computation when they assumed cs = 0.50. To correct this, Ds should be computed 

again with cs = 0.43. This will produce from  (8.11) Ds = 0.29 and the final sample 

sizes can be calculated (Table 11.14). 

Table 11.14.  Sample size computation with one subgroup : Scenario 5

Primary Cohort Cumulative Efficacy Alpha Power Sample 

analyses control group (two-tailed) size

event rate

Total mortality Total 0.150 0.20 0.030 0.90 6172

D = 0.29

Total mortality African-American 0.250 0.20 0.023 0.80 2713

The concordant execution of the clinical trial with the design parameters as 

provided in Table 11.14 would lead to confirmatory analyses for the effect of the 

randomly allocated intervention on total mortality for each of the entire research 

cohort and the African-American subcohort.  
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11.7 Differential Efficacy 
In the previous section, the investigators reduced the required minimum sample size 

of the analysis of the effect of therapy in the African-American subcohort by recog-

nition of the observation that African-American patients with CHF experience a 

greater total mortality rate than others. It is important to note that the investigators 

did not “make up” this greater event rate—they merely recognized that a greater 

rate existed and made use of this fact. However, one design parameter that investi-

gators do have complete control over is the efficacy of the study. The investigators 

choose this measure of effect size, being guided by the twin concerns of research 

community standard and resource constraints, for the execution of the clinical trial. 

In this section we will focus on efficacy selection.  

11.7.1 The Relationship Between Efficacy and 
Sample Size 

The effect size is the expected difference in the endpoint event rates between the 

control and active groups in the clinical trial. Clinical trial designers commonly 

confront the relationship between the effect size and sample size, on the one hand, 

and the relationship between effect size and community standard on the other. Each 

of these relationships must be understood if investigators are to wield this potent 

efficacy tool effectively without sacrificing the research design they seek to 

strengthen.  

Efficacy is the measure of effect that is derived from the clinical trial. If 

the primary analysis in the clinical trial is the effect of therapy on a dichotomous 

endpoint, e.g., total mortality, then the efficacy of the therapy is commonly defined 

as the % reduction in the event rate produced by the therapy. For example, if the 

cumulative total mortality rate is 15% in the control group, and 12% in the active 

group of the clinical trial, then the efficacy is 0.15 0.12 0.15 0.20  or 20%. If 

the sample was collected with strict adherence to the inclusion and exclusion crite-

ria of the study, and the clinical trial was executed concordantly, then this 20% 

reduction seen in the primary analysis will be an accurate measure of what could be 

anticipated in the population.6 The strength of the finding is further enhanced by the 

observation that the efficacy produced in the sample is very unlikely to be due to 

chance alone.  

Thus, in order to make the most persuasive argument to the medical and 

regulatory communities, the effect size must be both clinically meaningful and sta-

tistically significant.7 A clinically meaningful but statistically insignificant finding 

would be, for example, a 30% reduction in total mortality attributable to the therapy 

                                                          
6 Different samples from the same population will produce different estimates of the effect 

size. While this random, sample-to-sample variability can be measured by the standard de-

viation of the effect size, it is more commonly reflected in the 95% confidence interval for 

the effect size. 
7 This assumes, as we will assume throughout the chapter, that the clinical trial was concor-

dantly executed.
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but producing a p-value of 0.35. Another example would be a large reduction in to-

tal mortality associated with a p-value of < 0.05 produced in an exploratory 

analysis. In neither case should the medical or regulatory community be persuaded 

that the effect size in the population of thousands (and sometimes, millions) of pa-

tients who were not included in the sample will be close to that seen in the sample. 

On the other hand, a statistically significant, but clinically insignificant effect size 

(e.g., the demonstration that an anti-lipid therapy reduces LDL cholesterol by 1 

mg/dl in the average patient; p = 0.03) is a finding demonstrating that, while it is 

likely that the population will see this effect in the sample, the effect is negligible 

and not worth the cost of (or adverse event experience produced by) the medica-

tion8. In a well-designed study, the clinical significance and statistical significance 

of the primary analyses will match.  

It is clear that the magnitude of the efficacy or effect size has an impact on 

the sample size required for the clinical trial. Consider a clinical trial that is being 

designed to assess the effect of a randomly allocated intervention on the total mor-

tality incidence rate. The investigators are interested in detecting a reduction in the 

total mortality rate from the control group mortality rate of 15%. The  error prob-

ability for this study will be 0.05, and the power is 90%. Using the formula derived 

in Appendix D, and substituting the type I error rate, the type II error rate, and the 

control group event rate into this formulation9, we find that the total number of pa-

tients required for the trial can be written as a function of the sample size, i.e. 

1 238
98 21N

e e
                                     (11.9) 

and we can plot the required sample size as a function of the efficacy e (Figure 

11.2).  

Not only does the sample size decrease with increasing efficacy, but the 

decrease is dramatic.10 This relationship has important consequences for sample 

size design and so must be considered carefully. As the sample size of the trial in-

creases, so too does the clinical trial’s ability to precisely detect smaller differences 

between the event rates of the treatment and control group. The only treatment ef-

fects that small clinical trials can identify (everything else being equal) are large 

effects; these experiments with smaller samples are in general unable to capture dif-

ferences in the event rates between the two groups in clinical trials that exist in the 

population. We might think of the relationship between effect size and sample size 

as one of magnification. Just as the ability to distinguish between small features of 

objects increases with the magnifying ability of a microscope, so too does the abil-

ity to discern small differences between the control group and treatment group 

event experiences increase with the sample size of the trial. The resolving ability of 

the clinical trial increases for larger sample sizes.  

                                                          
8

Or, as someone once said ”a difference, to be a difference, must make a difference.” 
9

This calculation is provided in detail at the end of this chapter.
10

Technically, the sample size decreases not linearly, but quadratically. It decreases with the 

square of the efficacy.
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Figure 11.2. Reduction in the sample size as the efficacy of the

Intervention increases.
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Thus, just as it is best to first determine the correct level of magnification 

before one chooses the microscope lens to use, the investigator must first determine 

the size of the treatment effect in the population that they would like their sample to 

detect before they choose the sample size for the trial. They must choose the sample 

size carefully. Choosing a sample size that is too big is not only wasteful,11 but it 

expends needless effort to identify insignificantly small clinical effects with great 

but ultimately unhelpful precision. Choosing a sample size for the clinical trial that 

is too small, on the other hand, denies the investigators the required precision to 

identify efficacy levels of clinical interest (Figure 11.3).  

11.7.2 Choosing an Efficacy Level 
This development is the rationale for the selection of efficacy determination. The 

investigations should first identify the efficacy level of clinical interest and then 

choose the sample size that allows this efficacy level to be identified with statistical 

significance, where the statistical error levels are chosen in accordance with accept-

able a priori type I and type II error probabilities.  

This approach of first determining the efficacy level that is of clinical in-

terest begs the question of exactly how should this choice should be made. We 

should first begin with some notation. We will describe the efficacy level that is 

                                                          
11

Wasteful not just in time and money, but in the inconvenience and inadvertent harm that is 

done to patients who volunteer their time to contribute to the scientific process.
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chosen by the investigators for their clinical trial (i.e., the efficacy on which the 

trial’s sample size is based) as the design efficacy. The typical advice that is given 

to investigators is that the design efficacy should be the minimum effect of the in-

tervention that would justify its use in the population. This smallest efficacy of 

clinical significance we will define as the minimum clinical efficacy.

The larger sample size

Efficacies

Smaller

sample 

size

Figure 11.3.  The larger sample has the resolving power to detect the

smaller efficacy.

One of the rationales for this selection procedure is the concern that if an 

efficacy level that is larger than the minimum clinical efficacy is chosen, the sample 

size based on this larger efficacy level will be smaller. This smaller sample size will 

potentially fail to capture a smaller but clinically significant efficacy level that ap-

pears in the population (we will discuss this concept in some detail later in this 

chapter).  

This observation has important implications for subgroup analyses. As we 

stated earlier in this chapter, the sample size constraints for the evaluation of the 

effect of therapy within a subgroup are profound. This observation, taken together 

with the discussion of the previous paragraph suggests that, everything else being 

equal, the effect of therapy within a subcohort that will be identifiable will not be a 

small effect but a large effect. To the degree that this large effect is greater than the 

minimum clinical efficacy, the evaluation of the effect of therapy within the sub-

group cohort may be impaired. However, as we will soon see, the minimum clinical 

efficacy, much like the control group event rate, can vary from subgroup cohort to 

subgroup cohort.  
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In a profession whose professional creed is “First, do no harm,” the clini-

cal trial investigators are obligated to first assess the possible problems the therapy 

can cause in patients who choose to volunteer for their study. These problems in-

clude financial hardship as well as the occurrence of undesirable side-effects 

reasonably believed to be associated with new intervention. In addition, the current 

standard of care of the disease for which the medication may be indicated must also 

be considered. The minimum clinical efficacy is identified after a joint assessment 

of this standard of care, medication cost, and adverse event profile has been com-

pleted. Once these have been carefully evaluated, the minimum clinical efficacy is 

chosen as the efficacy level that balances these three factors.  

It is no coincidence that this decision process mirrors the deliberation that 

the practicing physician undertakes with her patient as the two of them carefully 

consider the use of a new medication for the treatment of the patient’s condition. 

Each of them have the right to make an independent assessment of the value that 

medication may offer for the patient. That value is measured by assessing the qual-

ity of the disease treatment the patient has experienced thus far, the financial burden 

of that medication and the adverse events that patient is likely to experience. 

Against this is weighed the potential benefit that the use of the medication offers for 

the patient. The conclusion of this evaluation determines whether the medication 

should be used by the patient.  

Consider, for example, that the intervention is a medication that is pro-

posed to treat a disease for which there are already a panoply of medications. The 

combination of the available therapies that are already in use are beneficial, well 

understood, relatively safe, and inexpensive. In this situation where the standard of 

care is “acceptable,” then the new medication must demonstrate substantial efficacy 

in order to justify its use in this clinical environment in which practitioners are 

comfortable with the risk–benefit balance that has already been created by the es-

tablished medications. If, in addition, the medication that is being proposed is costly 

and/or has a new and serious adverse event profile, the efficacy threshold for the 

medication must be even higher in order to preserve the risk–benefit balance . 

On the other hand, consider a clinical trial that is evaluating a medication 

for the treatment of a condition that has a poorly tolerated standard of care (an ex-

ample would be acquired immuno-deficiency syndrome). Assume that the new 

medication that the investigators wish to evaluate in a controlled clinical trial has a 

low frequency of adverse events, and that these adverse events are easily recog-

nized and treated. Let us also assume that the financial cost of this medication is 

small. In this case, the demonstration of overwhelming efficacy by this medication 

would not be required by the medical community to justify the use of this com-

pound in patients. A risk–benefit assessment would suggest that the demonstration 

of moderate efficacy by this therapy would be all that was required to offset the low 

risk and cost associated with its use. This does not imply that a larger effect size is 

undesirable; clearly the greater the effect size, the greater the attractiveness of the 

intervention. However, smaller effect sizes would lead to the use of this medication 

as well.

Thus, the minimum clinical efficacy is the resultant sense of the medical 

and regulatory communities about the effectiveness level of the medication that is 
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required to offset both the adverse events and the cost of the medication while si-

multaneously considering the current standard of care for the disease. The more 

dangerous and more costly the medication, the greater the minimum clinical effi-

cacy must be.12

11.7.3 Matching Clinical and Statistical              
Significance

Ideally, the clinical significance of the effect of a medication and the statistical sig-

nificance of that medication should coincide in a clinical trial. Surprisingly, this is 

not often the case when the clinical trial is being designed.  

It will be useful to examine the relationship between efficacy and the abil-

ity of the clinical trial to detect the effect of interest we may most directly do this 

by examining how the p-value of the difference between the control and treatment 

groups is related to the efficacy of the study. Consider a clinical trial that is de-

signed to execute one primary analysis; the effect of the randomly allocated 

intervention on the cumulative incidence of the total mortality rate. The total mor-

tality rate in the placebo group is 20%. After considerable discussion, the 

investigators choose a minimum clinical efficacy of 15%. In this study, the investi-

gators prospectively choose a two-sided type I error rate of 0.05 and a power of 

90%. The required sample size of the trial based on these event rates is 7040. If the 

event rate in the placebo group is accurate, then it is actually possible for us to 

graph the p-value of the result versus the efficacy of the trial (Figure 11.4). 
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12

This assumes that the scientists have some reliable information about the safety profile of 

the intervention to be tested in the study. 
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Of course, the investigators expect that if they were to identify in their 

sample an efficacy of 15% (which is the efficacy that they expected), and if the trial 

was concordantly executed, then they would find a statistically significant differ-

ence between the total mortality rates of the treatment and control groups. 

However, Figure 8.4 reveals that in this clinical trial that was designed to discern an 

efficacy of 15%  small efficacies become statistically significant as well. For exam-

ple, an efficacy of 12.5% produced a p-value of 0.007, and an efficacy as small as 

10% produces a p-value of 0.033. If the investigators had chosen the 15% efficacy 

level because if was the minimum efficacy level that would justify the use of the 

medication, then it appears that efficacies which do not justify the use of the medi-

cation would also be statistically significant in their clinical trial. 

In a very real sense, this demonstration that statistical significance corre-

sponds with clinical insignificance reveals an inefficiency in trial design. Some 

improvement might be offered by redesigning the study so that the region of clini-

cal significance overlaps with the region for which statistical significance is 

identified. Consider an alternative approach to the plan of this study in which this 

clinical trial was prospectively designed to detect an efficacy of not 15% but 20%. 

One immediate consequence is that the size of the study has now decreased from 

7040 to 3875. This change reduces the ability of the investigators to detect small 

levels of benefit that will be produced by the therapy. However, recall that the 

minimum clinical efficacy of the medication is 15%; the detection of efficacy levels 

smaller than this minimum are of no clinical importance and need not be identified 

with statistical significance. The efficacy levels that are statistically significant with 

this smaller sample size are levels of from 20% down to 15% (Figure 11.5). If a 

15% efficacy level is clinically relevant, then certainly a 20% level of benefit is 

clinically important as well. But, more importantly, the range of statistically signifi-

cant efficacies more closely matches those levels of effectiveness that are clinically 

relevant and justify the use of the intervention.  

One of the important design goals of a clinical trial is to establish a range 

of efficacies which are both clinically and statistically significant while maintaining 

control of the type I and type II statistical error levels. It is this feature that we plan 

to take advantage of in the confirmatory evaluation of subcohorts.  

11.7.4 Example 
As an example of the use of differential efficacy, consider the following clinical 

trial design. Investigators are interested in demonstrating the effect of a medication 

which has antiplatelet activity in patients with essential hypertension. The investi-

gators plan to recruit patients with essential hypertension, and then randomly assign 

them to one of two arms; the control arm or the active medication arm. Patients 

who are randomized to the control arm will receive instruction on adjustment of 

their lifestyle (including exercise, diet and sodium chloride control, smoking cessa-

tion, and stress management). They will then have their essential hypertension 

managed using a standard antihypertensive regimen e.g., [4]. These control group 

subjects will also receive a placebo pill that they must take each day. 
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Patients who are randomized to the active treatment arm receive control 

group therapy plus, instead of the placebo, the antiplatelet agent which they must 

take every day for the duration of the trial. The trial designers believe that they will 

be able to recruit up to 5000 patients for this trial.  

 The primary endpoint of this study will be the combined endpoint of fatal 

and nonfatal stroke. However, the antiplatelet agent is known to be associated with 

a different constellation of adverse events in elderly patients (including but not lim-

ited to, bleeding). The investigators have a prospective interest in demonstrating 

that the benefits of antiplatelet therapy justifies its use in this higher risk subcohort. 

Thus they prospectively design two primary analyses in this study: (1) the effect of 

the antiplatelet agent on the cumulative incidence rate of fatal/nonfatal stroke in the 

entire cohort, and (2) the effect of the antiplatelet agent on the fatal/nonfatal stroke 

rate in the elderly cohort.  

The investigators have assumed a control group cumulative event rate of 

15%. The cumulative incidence rate of fatal/nonfatal stroke is estimated to be 12%, 

somewhat lower in the elderly. This difference is a reflection of the fact that the dis-

tribution of the causes of death is different among the elderly than it is in the entire 

subcohort. An initial examination of the efficacy issue in the total cohort leads the 

investigators to the assessment that the minimum clinical efficacy is 20%. For their 

first evaluation, the trial designers assume that the minimum clinical efficacy is the 

same for the elderly subcohort. Thus, this initial examination produces a larger 

sample size for the subset of patients who are elderly (Table 11.15).   
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Table 11.15.  Sample size computation with one subgroup: Scenario 1.

Primary Cohort Cumulative Efficacy Alpha Power Sample 

Analyses Control Group (two -tailed) size

Event Rate

Fatal/Nonfatal stroke Total 0.150 0.20 0.050 0.90 5444

Fatal/Nonfatal stroke Elderly 0.120 0.20 0.050 0.90 7020

 The investigators next consider the issue of the efficacy level in the elderly 

subcohort. In this vulnerable population, the medication produces more adverse 

events in older patients. Thus the level of benefit produced by this medication must 

be greater for this subcohort of elderly patients in order to offset the increased risk 

associated with the use of the medication in the older population. The investigators 

begin with the intention of increasing the efficacy level for the evaluation of the ef-

fect of therapy in the elderly cohort. The demonstration of 30% efficacy, in their 

view, would balance the increased risk of therapy in this group of patients.  

The consequences of this change must be evaluated very carefully. An in-

crease in the efficacy level among the elderly from 20% to 30% will decrease the 

required sample size of therapy evaluation in this subcohort from 7020 to 2960, as-

suming the type I error remains at 0.05 and the power is 90%. This change, 

however, does not imply that efficacy levels less than 30% will not be statistically 

significant. Continuing to focus our attention of the elderly subcohort, if the sample 

size of the subcohort analysis is 2960 patients (1480 patients randomized to each 

group), and the event rate in the control group is an accurate reflection of the popu-

lation event rate, then statistical significance is retained for efficacy levels down to 

20%. Thus, the investigator statement that they wish to identify an efficacy level of 

30% is really a statement that they desire to demonstrate that the efficacy is greater 

than 20% with statistical significance. Therefore, designing the subcohort evalua-

tion of the effect of therapy for a 30% efficacy level decreases the sample size for 

the elderly subcohort analysis while simultaneously aligning the range of statisti-

cally significant levels of effectiveness with the clinical significant range. This 

efficacy range of greater than 20% justifies the use of the anitplatelet agents in this 

subcohort that is known to be more vulnerable to side-effects of the medication 

(Table 11.16). 

The investigators now turn to allocating the type I error rate between the 

two subcohorts in order to conserve the FWER at 0.05. They allocate the majority 

of the type I error probability to the analysis of the effect of the antiplatelet inter-

vention on the cumulative incidence rate of fatal/nonfatal stroke. The balance of the 

 error rate is allocated to the analysis of the therapy’s effect on the same endpoint 

in the smaller elderly subcohort (Table 11.17). 
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Table 11.16.  Sample size computation with one subgroup: Scenario 2.

Primary Cohort Cumulative Efficacy Alpha Power Sample 

Analyses Control Group (two -tailed) size

Event Rate

Fatal/Nonfatal stroke Total 0.150 0.20 0.050 0.90 5444

Fatal/Nonfatal stroke Elderly 0.120 0.30 0.050 0.90 2961

Table 11.17.  Sample size computation with one subgroup: Scenario 3.

Primary Cohort Cumulative Efficacy Alpha Power Sample 

Analyses Control Group (two -tailed) size

Event Rate

Fatal/Nonfatal stroke Total 0.150 0.20 0.035 0.90 5954

Fatal/Nonfatal stroke Elderly 0.120 0.30 0.015 0.90 3887

Consideration of hypothesis test dependency can now be embedded into 

this developing analysis structure. Recall that in subgroup analyses, we recom-

mended that the homogeneity of the therapy measure and the coincidence measure 

should be identical and equal to the proportion of the total cohort that comprises the 

elderly subcohort. This is approximately 50%. Thus, the dependency parameter is 
2 2s s sD c c = 0.375 which produces a small reduction in the sample size re-

quired for the analysis in the elderly subcohort (Table 11.18). 

Table 11.18.  Sample size computation with one subgroup: Scenario 4.

Primary Cohort Cumulative Efficacy Alpha Power Sample 

Analyses Control Group (two -tailed) size

Event Rate

Fatal/Nonfatal stroke Total 0.150 0.20 0.035 0.90 5954

D= 0.375

Fatal/Nonfatal stroke Elderly 0.120 0.30 0.018 0.90 3744

Finally, the power is reduced to the minimum acceptable power for each of 

the analyses, producing a further sample size reduction (Table 11.19).  
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Table 11.19.  Sample size computation with one subgroup: Scenario 5.

Primary Cohort Cumulative Efficacy Alpha Power Sample 

Analyses Control Group (two -tailed) size

Event Rate

Fatal/Nonfatal stroke Total 0.150 0.20 0.035 0.80 4509

D= 0.375

Fatal/Nonfatal stroke Elderly 0.120 0.30 0.018 0.80 2895

11.8 The Differential Use of Event Precision 
One final technique that will be developed in this chapter to embed a subcohort 

confirmatory analysis into a clinical trial is the use of a different standard of preci-

sion.

11.8.1 Sample Sizes for Continuous Endpoints
Thus far in this chapter we have focused on the evaluation of the effect of therapy 

on a dichotomous endpoint. However, it is certainly acceptable and permissible to 

have an endpoint that is not just measured in a 0–1 fashion but is instead measured 

over a continuous scale (e.g., LVEF). The evaluation of the effect of the randomly 

allocated intervention on the change in blood pressure, for example, or the change 

in urine output are common examples of the use of the continuous endpoint.  

The sample size computation that is required to identify the effect of ther-

apy to produce a change in a continuous endpoint is different (and actually simpler) 

than that for the dichotomous endpoint that was derived in Appendix E. Consider a 

clinical trial that has as its clinical hypothesis that the effect of the randomly allo-

cated therapy will change the prospectively defined continuous outcome by dt units, 

and that the expected change in the control group is dc units, where dt dc. In this 

case, the efficacy of the therapy may be written as  = dt – dc. If the hypothesis test 

is to be carried out with a two-sided type I error rate of  and a power of 1– , then 

the required sample size (total number of subjects in the active group plus the total 

number of subjects in the placebo group is  

22

1 / 2

2

4
,

D Z Z
N  (11.10) 

where Zc is the cth percentile value from the standard normal distribution. We will 

focus on the variability of the difference in the continuous measure from baseline to 

the end of the study, D, commonly referred to as the standard deviation of the dif-

ference. Inspection of formula (11.10) reveals that the sample size increases as the 

standard deviation increases. This is intuitive since the larger the standard devia-

tion, the greater the variability of the continuous measure that is due to sampling 
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error. Since more observations are required for greater precision, more patients are 

required to offset the large sampling error.  

11.8.2 Cohort-Dependent Precision  
The tact that we will take in this section is to design the subcohort evaluation so 

that the standard deviation of the difference, D is smaller in the subcohort than in 

the overall cohort. This might be most easily done by taking the measurement dif-

ferently in the subcohort of interest, with an instrument that has more precision. 

Thus, two instruments would be used in this trial to measure the endpoint. The first 

instrument of acceptable but average precision would be used in subjects who are 

not part of the subcohort of interest. The second would be measured in subjects who 

are part of the cohort.13 This design could be costly, since no doubt the more precise 

measurement would be more expensive. 

 As an example, consider a clinical trial that is designed to evaluate the ef-

fect of a new oral hypoglycemic agent on HbA1c levels in patients with type II 

diabetes mellitus. Patients for this study have been previously diagnosed with type 

II diabetes mellitus and have HbA1c levels between 9% and 12% at baseline. These 

patients are randomized to either the control group or the active therapy group. Pa-

tients who are randomized into the control group receive instructions on 

appropriate, sustainable measures of exercise and diet control. In addition to their 

current therapy for plasma glucose control, they receive a placebo pill. Patients in 

the active group receive the same therapy as the control group, but, the placebo pill 

is replaced with the new oral hypoglycemic therapy.  

 The endpoint for this study is the change in HbA1c level. It is anticipated 

that, although there will be a decrease in the HbA1c in the control group, the reduc-

tion in HbA1c that the active therapy group experiences should be greater. The 

investigators believe that they must demonstrate that there is at least a 1% greater 

decrease in the HbA1c in the active group when compared to the change in the con-

trol group. In addition, the investigators are particularly interested in the 

experiences of patients who are already on exogenous insulin to control their diabe-

tes mellitus, and a major goal of this trial is the demonstration of the effect of the 

new oral hypoglycemic agents in these patients who require insulin therapy. Thus, 

there are two primary analyses for this trial. In order of importance, they are the ef-

fect of therapy on the change in HbA1c on insulin dependent type II diabetic 

patients and, secondly, the effect of therapy on HbA1c levels in patients with type 

II diabetes mellitus regardless of their background therapy. The initial evaluation of 

sample size is carried out with a two-sided  error rate of 0.05, power of 90% (Ta-

ble 11.20).  

                                                          
13

This design demonstrates the logistical necessity of prospective specification of the pa-

tients who are members of the subcohort. Without being able to identify the subgroup status 

of these patients at the time of randomization, it would be impossible to know to whom to 

give the more precise measurement.
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Table 11.20 Diabetes study with a single subcohort: Scenario 1.

Primary Cohort Standard Delta Alpha Power Sample 

Analyses deviation of (two -tailed) size

the difference

Change in HbA1c Insulin Rx 1.70 1.00 0.050 0.90 121

Change in HbA1c Total cohort 1.70 1.00 0.050 0.90 121

The standard deviation of the change in HbA1c for each group is estimated as 1.70, 

producing a sample size of 121 patients for each of the analyses. However the in-

vestigators recognize that most patients with type II diabetes mellitus do not require 

exogenous insulin therapy and these patients may be somewhat more difficult to 

find. They therefore invest in a new mechanism to measure HbA1c. This new de-

vice permits a more accurate determination of this level, decreasing D from 1.70 to 

1.25. This is a more expensive HbA1c evaluation, but it will reduce the required 

number of patients who need insulin for management of their diabetes mellitus for 

the trial (Table 11.21). 

Table 11.21 Diabetes study with a single subcohort: Scenario 2.

Primary Cohort Standard Delta Alpha Power Sample 

Analyses deviation of (two -tailed) size

the difference

Change in HbA1c Insulin Rx 1.25 1.00 0.050 0.90 66

Change in HbA1c Total cohort 1.70 1.00 0.050 0.90 121

The investigators now proceed to manage the FWER for the trial. They 

choose to allocate type I error rates such that the assessment of the effect of the 

therapy in the insulin-dependent patients retains the preponderance of the type I er-

ror rate. The  error rate for the subcohort evaluation is set at 0.04, with 0.01 

remaining for assessment of the effect of therapy in the total cohort (Table 11.22). 

Table 11.22  Diabetes study with a single subcohort: Scenario 3.

Primary Cohort Standard Delta Alpha Power Sample 

Analyses deviation of (two -tailed) size

the difference

Change in HbA1c Insulin Rx 1.25 1.00 0.040 0.90 70

Change in HbA1c Total cohort 1.70 1.00 0.010 0.90 172

By dividing the type I error in this fashion, the investigators are able to 

keep the required number of patients requiring insulin therapy low. In essence they 
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are willing to recruit more non-insulin requiring type II diabetic patients because 

these patients not requiring insulin are easier to recruit.  

 An adjustment for dependence produces D = 0.375 and a small decrease in 

the number of required patients for the study (Table 11.23). 

Table 11.23  Diabetes study with a single subcohort: Scenario 4.

Primary Cohort Standard Delta Alpha Power Sample 

Analyses deviation of (two -tailed) size

the difference

Change in HbA1c Insulin Rx 1.25 1.00 0.040 0.90 70

D = 0.375

Change in HbA1c Total cohort 1.70 1.00 0.012 0.90 166

Finally, the sample size for the study is reduced by decreasing the power 

for the evaluation of the effect of therapy in the overall cohort from 90% to 80% 

(Table 11.24),  

Table 11.24  Diabetes study with a single subcohort: Scenario 5.

Primary Cohort Standard Delta Alpha Power Sample 

Analyses deviation of (two -tailed) size

the difference

Change in HbA1c Insulin Rx 1.25 1.00 0.040 0.90 70

D = 0.375

Change in HbA1c Total cohort 1.70 1.00 0.012 0.80 130

Thus, the investigators have designed a study that keeps the required num-

ber of insulin-dependent type II diabetic patients small, but preserves the 

confirmatory analysis within this subcohort. This was accomplished by the investi-

gators’ choice to invest financial resources into an improved measure of the 

endpoint of the study, reducing the standard deviation of this endpoint, and reduc-

ing the required sample size for the subcohort of interest. 

11.9 Conclusions 
Subgroup analyses are most likely here to stay in the evaluation of clinical trials. As 

long as physicians focus on the treatment of individual patients with their unique 

and distinguishing characteristics, they will attempt to use those characteristics to 

aid them in the prediction of a therapy effect. This effort should not be belittled, for 

it is an honest attempt to reduce the number of unknowns in the prediction of an 

individual patient’s response to treatment. This understandable need will continue 

to stoke the subgroup analysis fire.  

It is also more likely than not that the majority of subgroup analyses will 

continue to be carried out as either secondary evaluations in clinical trials or ex-
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ploratory evaluations. Thus the guidelines put forward by Yusuf will continue to be 

predominant for these evaluations—the best estimate of the effect of a therapy 

within a subgroup in such an analysis is the effect of the therapy that was seen in 

the overall cohort. These subgroup evaluations can suggest but not confirm the an-

swers to questions about the risks and benefits of a randomly allocated therapy 

within a clinical trial.

 This chapter has outlined tools and procedures by which subgroup evalua-

tions may be confirmatory. The techniques that were advanced are consistent with 

our overall theme of the primacy of prospective design and the importance of con-

trolling the FWER. Their product is the invigorated ability of a clinical trial to 

provide confirmatory analyses not just for the effect of therapy in the overall cohort 

of a clinical trial, but for the effect of therapy within the subgroup stratum of inter-

est as well.

However, these procedures do not come for free, and this chapter has not 

provided an easy or casual solution to the subgroup analysis issue in clinical trials. 

The illustrations provided here do not impair the requirement for the disciplined 

nature of confirmatory subgroup analysis; instead, they amplify it. The planned 

subgroup evaluations must be considered very carefully. There must be a biologi-

cally plausible rationale that leads the investigators to focus on the response of the 

subgroup stratum to the clinical trial’s intervention. The investigators must give 

careful consideration the initial type I error allocations, and they must think through 

the possible implications of the trial’s findings.  

As demonstrated in the examples of this chapter, the size of the subgroup 

is commonly on the order of 40% to 60% of the total cohort sample size for the 

confirmatory analyses to be executed successfully. In some cases, the size of the 

overall trial must be adjusted. These procedures certainly cannot be carried out for 

every subgroup of interest in the study. After careful study, one or perhaps two 

subgroups can have confirmatory analyses prospectively embedded in the trial. The 

remaining subgroup analyses can be traditionally executed and interpreted in an ex-

ploratory light. Also interpretation of trial results must jointly consider 

prospectively planning the manner of trial execution (concordant or discordant), 

effect size with its standard error, confidence intervals, and p-values. The focus of 

this manuscript is on the p-value component, but this focus does not detract from 

the primacy of the joint interpretation. 

  In addition, we must remember that many subgroups can be misinter-

preted because subgroup membership may merely be a surrogate for another less 

obvious factor that determines efficacy. The investigator must consider this possible 

explanation for her subgroup specific effect in her interpretation of the analysis.  

Finally, serious deliberation must be given to the importance of the subco-

hort evaluation. The choice of an endpoint that is different from that used to assess 

the effect of therapy in the overall cohort must be addressed. In addition, any dis-

tinction between the efficacy level required in the subgroup stratum of interest must 

be carefully justified to a sometimes skeptical medical and regulatory community. 

Finally, the increased cost of the trial in human, logistical, and financial resources 

are considerable. Confirmatory subgroup analyses, like well-designed clinical trials, 

should not be undertaken likely.  
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Problems
1. What are the requirements for a confirmatory subgroup analysis in a clinical 

trial? 

2. How can the use of two separate endpoints in a clinical trial, one for the analy-

sis of the effect of therapy in the overall cohort, and the second for the 

evaluation of the effect of therapy in the prospectively specified subgroup stra-

tum of interest, be justified? 

3. Why is the incorporation of dependency argument have less of an impact in 

assigning type I error levels a priori to subgroup analyses than in other circum-

stances (e.g., combined endpoints)? 

4. Why is the overall measure of dependency  between two hypothesis tests, one 

that uses a singleton endpoint of a combined endpoint for gauging the effect of 

therapy in the overall cohort and the second that evaluates the effect of therapy 

in the combined cohort, reduced and not increased by the use of the combined 

endpoint? 

5. A clinical trial is being designed to test the effect of an intervention on the oc-

currence of a clinical event. Assume that the intervention will produce a 25% 

reduction in the occurrence of the primary endpoint. Also assume that the type 

I error for this evaluation is 0.05 (two sided) and the power is 80%. Let there 

be two candidate primary endpoints for the trial. The first candidate, C1 has a 

cumulative endpoint event rate of  10%. The second candidate endpoint C2 oc-

curs with a 20% cumulative event rate.  Show that there is a 45% reduction in 

the sample size for the entire two armed trial if the cumulative event of the 

primary endpoint is C2 and not C1. What are the implications for the construc-

tion of a confirmatory analysis for the subgroup analysis based on one as 

opposed to the other of these two primary endpoint candidates. 

6. Why is the use of an efficacy level choice to reduce the sample size of a clini-

cal trial been historically disparaged? 

7. In the setting of a clinical trial, what is the difference between minimum clini-

cal efficacy, and minimum statistical efficacy? What difficulties occur in 

clinical trial interpretation when the ranges of these two values do not substan-

tially overlap? 

8. What is cohort-dependent precision? What are the financial implications of a 

clinical trial that incorporates this procedure? 

9. Why might it be important for the investigators in a clinical trial, who choose 

to carry out a confirmatory subgroup analysis, to first publish a preceding de-

sign manuscript in which they lay out the details of their research plans? 

Note
The purpose here is to briefly demonstrate that the sample size formula can be writ-

ten as a function of the control group event rate and the efficacy. Assume that a 
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randomized, controlled clinical trial is being executed to test the effect of a medica-

tion to reduce the total mortality rate. Then recall from Appendix D that we saw  
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where 

N = number of placebo patients + number of active group patients 

 = Type I error rate 

 = Type II error rate 

Zc = the cth percentile from the standard normal probability distribution 

Pc =cumulative primary endpoint event rate in the placebo group  

Pt = cumulative primary endpoint event rate in the active group.   

Our goal is to rewrite  (8.14) in terms of the efficacy. Recall from section 8.7.6 that 

we wrote efficacy as  
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Then 1t cp e p , c t cp p p e  and we can rewrite  (8.14) as 
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and we only need to provide further simplification to a portion of the numerator of  

(8.16), namely 1 1 1 1c c c cp p e p e p . This is
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Substituting the last line of expression (8.17) into the numerator of  (8.16) reveals 
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If we now assume that  = 0.05 for a two-sided hypothesis test (i.e., Z1- /2 = 1.96), 

90% power (i.e., Z  = -1.28) and the control group event rate is 15% (i.e., pc = 0.15) 

we may reexpress  (8.18) as 
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and further simplification reveals 
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Chapter 12 

Multiple Analyses and        
Multiple Treatment Arms 

This chapter elaborates upon the ability of investigators to draw confirmatory con-

clusions from a clinical trial that consists of a control group and multiple treatment 
arms. After a review of the literature, a combination of the differntial apportion-

ment of the type I error rates and the use of dependent hypothesis testing will be 
applied to the multiple testing issue that naturally arises from the mutliple treat-

ment arm scenario. No new mathematical tools are developed, and several 

examples of clinical trials under design are provided to demonstrate the applicabil-
ity of the procedures that we have developed in this book. 

12.1 Introduction and Assumptions 
Thus far in this text, we have focused on a clinical trial that has two arms; a control 

arm and a single treatment arm. The incorporation of additional treatment arms 

within clinical trials provides a new opportunity to the clinical trial designers. As 

reviewed in Chapter 3, both the clinical trial investigators and the trial’s sponsor 

require efficient experimental design. In a clinical trial with a control group and a 

single treatment group, this drive for efficiency can produce multiple primary 

analyses with multiple, prospectively defined primary endpoints. In addition, as de-

veloped in Chapters 8 to 11, this efficiency can be improved by the execution of 

multiple confirmatory analyses from among various, prospectively defined sub-

group cohorts.  

The inclusion of a second treatment group can enhance the productivity of 

the clinical trial by providing supplemental information about a different character-

istic of the active therapy. As an example, the second treatment arm might be a 

different dose of the therapy; this approach would shed light on the dose-response 

relationship between the randomly allocated intervention and the prospectively de-

fined endpoint. Alternatively, the additional treatment arm could be the 

combination of the new therapy with another agent, illustrating the degree to which 

the two compounds interact.  

However, with the inclusion of added treatment arms comes the responsi-

bility for the effective evaluation of the resulting data. A central thesis of our 

discussions thus far has been that the investigators’ intellectual discipline must in-

crease with the number of possible analyses. This rigor serves these scientists well 

as they work to determine the small number of confirmatory analyses on which the 

conclusions of their trial will rest. In this chapter, we will use the tools developed 
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thus far in this text to develop confirmatory analyses from clinical trials with multi-

ple treatment arms.  

In order to maintain our focus on the application of multiple testing to the 

unique characteristics of clinical trials with multiple treatment arms, we will con-

tinue with the same assumptions that have been the foundation of our discussions in 

the second half of this book, i.e., that the trial is well-designed in each of its other 

aspects and that it is concordantly executed. Under these circumstances, the effect 

size, effect size estimates, confidence intervals and p-values derived from the pri-

mary analyses are trustworthy and provide useful information that can be applied to 

the population from which the research sample was obtained.  

12.2 Literature Review 
There have been many discussions in the literature of the appropriate analysis of 

clinical trials that have multiple treatment arms. Before we begin our development, 

a brief survey of the available methods is in order.  

One commonly occurring scenario in which multiple testing arises from 

clinical experiments that have several treatment arms is what statisticians refer to as 

the “analysis of variance.” In this setting, there are K treatment groups to be evalu-

ated; each of these groups represents a treatment group to which patients are 

randomly allocated. If the primary endpoint in this scenario is a continuous one 

(e.g., change in DBP from baseline to the end of the study), then a question that is 

commonly asked is, “Which of these treatment groups have effect sizes that are dif-

ferent from the control group?” The analysis of variance procedure addresses this 

question by first asking if there are any significantly different effects among any of 

these K results. This question is answered by a single statistical test. If that hy-

pothesis test does not reject the null hypothesis, then work ceases. However, if the 

null hypothesis is rejected, then the question of which of the K treatments that were 

evaluated are statistically different from one another must next be addressed.  

One useful testing procedure that may be implemented in this setting is the 

Student-Neuman-Keuls (SNK) test [1]. It is a very straightforward procedure to 

execute. If there are K treatment groups in a clinical trial, the worker must first rank  

the effect sizes from smallest to largest. After this has been accomplished, the in-

vestigator compares the largest mean to the smallest mean using a simple t test with 

a percentile value from a specially produced table1. If there is a significant differ-

ence between these two means, the investigator then compares the next largest 

mean with the next smallest. This process continues until there are no significant 

differences. Tukey has provided an adaptation of this procedure [2], which appears 

in standard textbooks [3]. His result is similar to that from the SNK test; the only 

difference is that the critical value to be used to judge significance between the 

means is different.  

The presence of a control group, and the need to compare the results of 

each of the intervention groups to those of the control group, is one of the features 

that often distinguishes the analysis of a prospectively defined, continuous outcome 

variable in a clinical study from the analysis of variance. Dunnett’s test  [4], [5] can 

                                                          
1

Such a table can be found in  [1], pp. 587–590.
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be very helpful in this setting. Dunnett’s test is similar to the SNK test in that its 

basis is a t statistic. Simply, if there are K treatments and a single control group, and 

each treatment result is to be tested against the control group result, then there are K

hypothesis tests to be carried out. Dunnett computed the appropriate percentile 

value of the t distribution to use in carrying out these hypothesis tests [6]. One ma-

jor advantage of the Dunnett procedure is that it permits the investigator to 

determine which specific comparisons are to be made. Thus the investigator can 

choose the exact comparisons she wants to make, following the triage procedures 

that were outlined in Chapter 4. A fine example of the use of the Dunnett procedure 

in a clinical trial setting is the AntiHypertensive and Lipid Lowering Heart Attack 

Trial (ALLHAT) [7]. Cheung and Holland have extended the results of Dunnett to 

include an evaluation of all comparisons between the multiple treatment groups in 

the trial [8]. 

There has been additional work on the evaluation of the multiple testing 

problem in research efforts with more than one treatment group. Ping–Yu and 

Dahlberg [9] adapt the SNK approach to derive sample size estimates for clinical 

trials with multiple treatment arms in the setting in which the investigator wishes to 

identify the “best” treatment, i.e., the treatment which produces a result which is the 

furthest (among the K treatments studied) from the control group result. Alternative 

statistical testing procedures in the clinical trial setting in which there are multiple 

treatment arms have been explored, but the best results are often obtained by mak-

ing assumptions that may not be defensible for a clinical trial2. The performance of 

these procedures is frequently inferior to the Bonferroni based test [10], but the 

evaluation can be complex [11], [12]. 

If the investigator is not interested in carrying out formal statistical infer-

ence, but is instead focused on the generation of confidence intervals for the results 

of each of the K  treatment groups, then [13], [14] demonstrate the computations 

required to generate these multiple confidence intervals. Two stage procedures, in 

which the investigators carry out two sets of randomizations have been studied as 

well [15]. The orthogonal contrast test of Mukerjee et al. can be useful if one pre-

sumes no treatment arm is worse than the control group [16]. 

When the treatment involves different doses, one is commonly interested 

in identifying the lowest dose that produces an effect, and researchers have ex-

plored procedures to identity the optimal test [17], [18], [19]. In addition, interim 

monitoring approaches for clinical trials with multiple endpoints have been sug-

gested as well [20].  

12.3 Treatment Versus Treatment 
One of the simplest and common motivations for investigators to prospectively in-

clude multiple treatment arms within their clinical trial is the situation in which the 

primary analyses of the study will: (1) compare the effect of therapy of each of the 

treatment arms to the effect seen in the placebo or control group arm; and (2) the 

effect of therapy in at least some of the treatment arms will be compared to each 

                                                          
2

One such assumption is that the results of the multiple endpoints of a clinical trial follow a 

multivariate normal probability distribution.   
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other. The tools that we have developed thus far in this text will serve us well in the 

design of this study.  

Consider the following illustration: a clinical trial is being designed to 

study the ability of several treatments to reduce the clinical consequences of 

chronic mild elevations in DBP. The purpose of this study is to evaluate the effect 

of two new pharmacologic therapies on the long-term treatment of this disorder. 

Each of these new therapies (therapy A and therapy B) has been convincingly dem-

onstrated to reduce blood pressure effectively; however these blood pressure 

reduction studies were of short duration (approximately six months of follow-up 

time), that precluded the precise estimation of the effects of these therapies on 

atherosclerotic events. Therapy A has a moderate ability to reduce blood pressure, 

and its use is associated with a well-understood adverse event profile. The blood 

pressure lowering capability of therapy B is superior to that of therapy A; however, 

the use of therapy B has been associated with a rare, adverse event, anasarca.  

The control group for this study will consist of patients who are random-

ized to diuretic therapy, a well-accepted standard for the control of blood pressure. 

The only primary endpoint of the study will be the cumulative incidence rate of 

cardiovascular disease, defined as the combined endpoint of fatal cardiovascular 

death, nonfatal MI, or nonfatal stroke3. All patients will be followed until the end of 

the study and the average follow-up time for the trial is anticipated to be 5 years.  

Patients who have DBPs between 90 and 100 mm Hg will therefore be 

randomized to one of three groups; control group therapy, therapy A, or therapy B. 

Every recruited patient will begin an educational program to learn of the important 

role of each of a balanced diet, a regular exercise program, smoking cessation, and 

stress reduction in controlling essential hypertension. This message will be empha-

sized both during the follow-up period and during regularly scheduled counseling 

sessions. Each patient’s randomized therapy will be titrated so that their DBP is 

maintained below 85 mm Hg. The investigators believe that this treatment goal will 

be easily accomplished for each of the medications, obviating the requirement for 

alternate therapy.  

 The investigators now focus on the statistical hypothesis tests that they 

wish to carry out. They decide that they must compare each of the two new thera-

pies to the control group, and then compare the results of therapy A to those of 

therapy B. This involves three different hypothesis tests over which the FWER 

must be controlled.  

The investigators also recognize that the three statistical hypothesis tests 

that they wish to carry out involve overlapping sets of patients (e.g., the control 

group is used in two of the evaluations) and the endpoint is the same for each of the 

evaluations. This suggests that embedding hypothesis test dependency into their 

clinical trial analysis plan may be a useful procedure. In addition, these scientists 

will keep in mind that there may be some justification for modifying the efficacy 

threshold for at least one of these hypothesis tests.  

                                                          
3

Many secondary endpoint analyses will also be executed in accordance with our definition 

of these in Chapter 4 and in agreement with the principles of composite endpoint analysis 

that were described in Chapter 7.  



12.3 Treatment Versus Treatment 345 

 To begin consideration of the analysis plan for this study, the investigators 

begin with a simple calculation of the sample size that would be required for each 

of the three analyses (Table 12.1).  

Table 12.1.  Alpha allocation example with composite endpoint: First design scenario.

Primary Cumulative Efficacy Alpha Power Sample 

analyses comparitor group (two-tailed) size

event rate

A versus control 0.080 0.20 0.05 0.95 13,553

B versus control 0.080 0.20 0.05 0.95 13,553

A versus B 0.064 0.20 0.05 0.95 17,208

Even though the clinical trial will have three groups, each sample size is 

based on a two-group analysis, since these two group analyses correspond to the 

prospectively asked scientific questions. The investigators believe that the cumula-

tive event rate for the prospectively defined, combined, primary endpoint of this 

trial will be 0.080. The cumulative event rate used in the third primary analysis of 

therapy A versus B. is lower since the comparator group in this evaluation is not the 

control group, but is therapy A. Since the investigators believe that patients in ther-

apy group A will experience 1 - 0.20 = 80% of the events as those patients recruited 

to the control group, the event rate for the comparator group in the therapy A versus 

therapy B evaluation is (0.80)(0.08) = 0.064.4 This lower event rate is the reason for 

the increased sample size requirement for the therapy A versus therapy B compari-

son. No attempt has been made to control the FWER yet in this early phase of the 

analysis plan development. 

 In this first computation, the investigators have assumed that the efficacy 

of therapy is assumed to be 20% for each of these three primary analyses. However, 

this assumption requires close examination. Recall that the adverse event burden for 

therapy B, including the rare but serious event of anasarca, is greater than that of 

therapy A. Thus, patients who are to be exposed to the possibility of this serious 

side-effect for therapy B should be the beneficiaries of greater efficacy in order to 

balance the risk-benefit assessment for this therapy. Therefore, an argument that the 

efficacy threshold for the evaluation of the effect of therapy B versus the control 

group is greater than that for the evaluation of therapy A versus the control group is 

admissible. Similar consideration might be given to the therapy A versus therapy B 

comparison. However, this evaluation is already planned to demonstrate a 20% re-

                                                          
4

Of course if therapy A does not decrease the cumulative event rate, the patients randomized 

to therapy A will experience more events, and the resultant sample size for the therapy A 

versus therapy B evaluation will be lower, all other things being equal. However, it is per-

haps safer to make the conservative assumption that the cumulative event rate in the therapy 

A group will be smaller than that of the control group sample size calculations. 
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duction in the cumulative risk of fatal and nonfatal cardiovascular disease below 

that produced by therapy A, an intervention that itself is believed to be effective. 

Thus, the comparison of the effect of therapy for treatment A and B already reflects 

the concept that a greater benefit must be produced by therapy B to offset the 

greater risk associated with its use (Table 12.2). 

Table 12.2. Alpha allocation example with composite endpoint: Second design scenario.

Primary Cumulative Efficacy Alpha Power Sample 

analyses comparitor group (two-tailed) size

event rate

A versus control 0.080 0.20 0.05 0.95 13,553

B versus control 0.080 0.25 0.05 0.95 8447

A versus B 0.064 0.20 0.05 0.95 17,208

The investigators next allocate the type I error rate in such a way as to control the 

FWER (Table 12.3). These trial designers are less willing to run the risk of the oc-

currence of a misleading finding of superiority of therapy B to therapy A in the 

therapy A versus B comparison, a decision that reduces the maximum acceptable 

type I error in this evaluation.   

Table 12.3. Alpha allocation example with composite endpoint: Third design scenario.

Primary Cumulative Efficacy Alpha Power Sample 

analyses comparitor group (two-tailed) size

event rate

A versus control 0.080 0.20 0.020 0.95 16,449

B versus control 0.080 0.25 0.020 0.95 10,251

A versus B 0.064 0.20 0.010 0.95 23,590

The investigators now grapple with the notion of dependent statistical hy-

pothesis testing. Recall from Chapter 5 that we could compute the test-specific 

level 2 for a second statistical hypothesis test, given the familywise error , the 

test-specific  error rate for the first hypothesis test 1, and the dependency parame-

ter D using  
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2

1

1 2

1

min , .
1 1 D

                            (12.1) 

Analogously, from Chapter 6, we could compute 3, the test-specific  error rate for 

a third statistical hypothesis test as 

              . 

2

1 2 3|1,2

3 2 2

3|1,2

1
1

1 1 1
min , ,

1

D

D
                    (12.2) 

where D2|1 is the dependency measure between the first and second hypothesis test, 

and D3|1,2 is the measure of dependency for the third statistical hypothesis test, given 

the occurrence of the first two. Recall also that a useful formulation for the depend-

ence parameter D was   

1 1 (1 ) ,D c c h                                     (12.3) 

            

where c is the estimate of coincidence, and h is the estimate of therapy homogene-

ity.5 Therapy homogeneity in this circumstance is a measure of the degree to which 

the effect of therapy is known to be the same for each of the three hypothesis tests. 

One could understandably argue that since the mechanism of action of the drugs 

(i.e., the reduction in blood pressure) is believed to reduce mortality and morbidity 

by the same mechanism, there is substantial homogeneity of therapy effect, suggest-

ing a larger value of h. However since the control group itself represents an active 

modality for reducing blood pressure, any effect of therapy A or therapy B on the 

primary endpoint of the study above and beyond that produced by the control group 

would be mediated by either (1) the unique manner by which each of the agents re-

duces blood pressure or (2) by some other mechanism separate and apart from 

blood pressure reduction. Thus an assumption about therapy effect homogeneity is 

tightly linked to the clinical hypothesis to be tested. After pondering these consid-

erations, the investigators, choose to take the most conservative tack of assuming 

no homogeneity of effect, or h = 0. Thus,  (12.3) reduces to  

2 .D c                                                  (12.4) 

Proceeding, in order to compute D2|1, the investigators must know the degree to 

which the cohorts involved in each of the two hypothesis tests: (1) control therapy 

                                                          
5

This formulation is also discussed in Chapter 5.
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versus therapy A; and (2) control therapy versus therapy B overlap. Let nc be the 

number of control group patients, nA be the number of patients randomized to 

treatment A and nB be the number of patients randomized to treatment B. Then we 

will estimate c2|1 as
2|1

C

C A

n
c

n n
. Analogously, we can compute c3|1,2 the measure 

of coincidence that appears in the formulation for D3|1,2 as

3|1,2

A B

A B C

n n
c

n n n
                                       (12.5) 

For the moment, we will assume that an equal number of patient have been random-

ized to the three groups. Thus c2|1 = 0.50 and we can compute 2

2|1 2|1 0.25D c .

Analogously, from  (12.5), c3|1,2 = 0.667 and 2

3|1,2 3|1,2 0.44D c . In a further effort 

to embed conservatism into this evaluation, the investigators let D2|1 = D3|1,2 = Dm = 

min (D2|1, D3|1,2) = 0.25. Recall from Chapter 6 that in this case 

      
3

2

1 2

2 2 2

1 2

1 1 1 1
min ,

1 1 1 1

m

m m

D

D D
  .                (12.6) 

The results of (12.1) and (12.6) are embedded in the next sample size estimate (Ta-

ble 12.4). 

Table 12.4. Alpha allocation example with composite endpoint: Fourth design scenario.

Primary Cumulative Efficacy Alpha Power Sample 

analyses comparitor group (two-tailed) size

event rate

A versus control 0.080 0.20 0.020 0.95 16,449

D m = 0.25

B versus control 0.080 0.25 0.020 0.95 10,251

A versus B 0.064 0.20 0.012 0.95 22,860

Finally, the trial designers reduce the power to the minimum required for the ther-

apy A versus therapy B comparison. 
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Table 12.5. Alpha allocation example with composite endpoint: Fifth design scenario.

Primary Cumulative Efficacy Alpha Power Sample 

analyses comparitor group (two-tailed) size

event rate

A versus control 0.080 0.20 0.020 0.95 16,449

D m = 0.25

B versus control 0.080 0.25 0.020 0.95 10,251

A versus B 0.064 0.20 0.012 0.80 14,875

The recruitment of 24,000 subjects (approximately 8,000 into each of the control 

group, therapy A group, and therapy B group) is sufficient to meet the requirements 

of the investigators in the theapy A versus control and the therapy  A versus therapy 

B comparisons. Fewer patients are required for the therapy B versus control statisti-

cal hypothesis test.  

 A less conservative approach that the investigators could take would be for 

them to assume a nonzero value for the homogeneity of therapy effect. If the inves-

tigators assumed that the homogeneity of therapy effect variable h = 0.50, then they 

would calculate that D2|1 = 0.50 [1 – (1 – 0.50)(1 – 0.50)] = 0.375. Analogously, 

they would compute D3|1 = 0.67 [1 – (1 – 0.50)(1 – 0.50)] = 0.502, and Dm = 0.375, 

the minimum of these two quantities. Table 12.5 could then be recomputed from 

this alternative set of assumptions (Table 12.6). 

Table 12.6. Alpha allocation example with composite endpoint: Alternative design scenario

Primary Cumulative Efficacy Alpha Power Sample 

analyses comparitor group (two-tailed) size

event rate

A versus control 0.080 0.20 0.020 0.95 16,449

D m = 0.38

B versus control 0.080 0.25 0.020 0.95 10,251

A versus B 0.064 0.20 0.014 0.80 14,496

The effect of the assumption of a homogeneity effect has been to increase 

the prospectively set  error level for the therapy A versus therapy B comparison 

from 0.012 to 0.014, decreasing the required number of patients for therapy A ver-

sus therapy B. evaluation from 14,875 to 14,496.  
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12.4 Dose–Response Effects 
Another important research consideration that investigators face in the design and 

analysis of clinical trials is the desire to obtain information concerning the relation-

ship between the intervention dose (or intervention duration) and the effect of the 

therapy on the prospectively stated primary endpoint. This information can be used 

to support the argument that the randomly allocated therapy is causally related to 

the disease endpoint.6 If the clinical trial is being presented within the context of an 

application to the FDA for consideration of product approval, the FDA may require 

that this dose–response information be obtained within a pivotal clinical study. This 

request is likely to occur if these regulatory officials believe that sufficient biologic 

gradient data is not available in earlier phase II studies. An example of a pivotal 

study which focused on measuring the relationship between dose of therapy and the 

response to therapy is the NitroDur trial [21] discussed in Chapter 4. 

While data concerning the dose-response relationship between the ran-

domly allocated intervention and the prospectively delineated endpoint in a clinical 

trial can be critical, this need generates a new difficulty for the study designers. We 

will demonstrate this difficulty by example. Assume that investigators design a 

clinical trial that consists of a placebo group and three intervention group arms. 

This trial has a single prospectively designed clinical endpoint total mortality. 

Each of the three treatment groups in this clinical trial expose the patient to a differ-

ent, randomly allocated dose of the intervention.  

In this trial, the effect of therapy can be evaluated by comparing the results 

of each of the three treatment group arms to that of the placebo group. Each of these 

evaluations would assess whether that dose of the intervention substantially and 

significantly reduces the cumulative incidence of the total mortality rate when com-

pared to placebo therapy. Within the regulatory setting, it is quite possible that these 

assessments would serve as the basis for an indication for the use of the interven-

tion at the effective doses. These three evaluations would be followed by a 

comparison of each of the three active therapy arms to each other in a pairwise 

fashion. This latter set of evaluations is the analysis that examines the degree to 

which increasing doses of the medication produces a greater therapy effect.  

The difficulty with this approach is the requirement of as many as six dif-

ferent statistical tests. Unfortunately, the burden of controlling the familywise error 

for these six evaluations while maintaining reasonable test-specific type I error rates 

can be overwhelming.  

One approach that can reduce some of the statistical testing required in this 

setting is to replace the last three pairwise active therapy dose comparisons with a 

single analysis that evaluates the dose-response relationship. There are well-

established statistical procedures that permit this evaluation one such commonly 

accepted procedure is regression analysis. Regression analysis is an analytical tool 

that can be easily incorporated into our evaluation plan for multiple comparisons. 

The use of regression analysis would reduce the number of required hypothesis 

tests from six to four. 
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The usefulness of establishing the dose–response relationship is discussed in Appendix A.
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 Consider the situation of investigators who wish to design a clinical trial 

that will evaluate the effect of five different doses of a medication when compared 

to placebo therapy. The purpose of this investigation is to demonstrate that the ther-

apy produces a reduction in C reactive protein (CRP) levels. After it has been 

established that each patient has met the clinical trial’s inclusion and exclusion cri-

teria, patients will be randomly allocated to placebo therapy or one of the five doses 

of the active therapy, and followed for 6 months.  

 We can identify the doses of active therapy as T1, T2, T3, T4, T5 and associ-

ate the treatment group assigned to a given dose by the dose itself (i.e., group T1 is 

the group that was randomly assigned to active therapy dose T1). In addition, we 

will identify that group of patients randomly assigned to receive placebo therapy as 

group P. In this circumstance, there are 15 possible statistical pairwisehypothesis 

tests that the investigators could actually carry out in this research effort, a number 

that precludes any realistic attempt to control the familywise error level in the proc-

ess of producing confirmatory hypothesis tests all of them. The investigators 

therefore proceed by prospectively identifying a small number of hypothesis tests in 

which they have the greatest interest.  

Recalling that the purpose of this experiment is to identify specific, active 

therapy doses that are effective in reducing the CRP concentration, the scientists 

first focus on two pairwise comparisons. The first is T1 versus C. This comparison 

establishes whether the lowest dose of the medication produces a CRP concentra-

tion that is substantially and significantly different from that of the placebo group. 

If therapy T1 is not effective, then a useful lower bound on the dose-response curve 

has been located. On the other hand, if T1 does reduce the CRP concentration, then 

perhaps a nonhomeopathic starting dose for the compound has been identified. 

The second pairwise comparison of interest is a comparison of the change 

in CRP level observed in those patients taking the greatest dose of therapy to pla-

cebo; T5 versus C. One might reasonably anticipate that there will be more adverse 

events associated with this highest therapy dose—clear evidence of efficacy should 

be demonstrated in order to establish a risk–benefit balance that would justify this 

degree of exposure. On the other hand, the identification of no therapy benefit 

would provide an important new perspective about the overall effectiveness of ther-

apy7.

However as useful as these two evaluations are, they do not directly ad-

dress the biologic gradient (dose–response) issue. The investigators therefore 

prospectively decide to carry out regression analysis to quantify the relationship be-

tween the dose of the medication and the CRP concentration. The independent 

variable of interest in this regression model is the dose of therapy, of which there 

are six (including the control group). The dependent variable is the change in CRP 

concentration (follow-up CRP concentration – baseline concentration).  
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A circumstance in which a low dose of an agent would produce a benefit that is not seen 

with a higher dose of an agent is the use of insulin therapy in a patient with newly diagnosed 

type I diabetes. Clearly, low to moderate levels of insulin would reduce the likelihood of 

death by preventing diabetic ketoacidosis or nonketotic hyperosmolar coma, but higher doses 

of insulin would produce profound hypoglycemia and resultant death.  
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The investigators are therefore poised to carry out three confirmatory sta-

tistical hypothesis tests. The first two of these tests identify the effect of therapy at 

each of its lowest and highest dosages when compared to the control group8. The 

final hypothesis test formally evaluates the dose-response relationship between 

therapy dose and CRP level.  

The investigators are now poised to assess the test-specific type I error 

levels for each of these confirmatory tests. As an initial evaluation, these investiga-

tors choose to allocate type I error for each of the three confirmatory statistical 

hypothesis tests they envision that they will carry out (Table 12.7). In this assess-

ment, the investigators choose to allocate the majority of the type I error rate to the 

comparison of the effect of the lowest dose of the randomly allocated therapy to the 

control group. The smallest type I error level is allocated to the evaluation of the 

presence of a linear trend. However, the investigators can modify these initial  al-

location rates in the design phase of the trial by considering the issue of statistical 

hypothesis test dependency.  

Recall from Chapters 5 and 6 that we can reduce the test-specific  error 

rates for different hypothesis tests by taking into account the degree to which the 

occurrence of a type I error in one hypothesis test provides information about 

Table 12.7. Alpha allocation with dose response focus: 

                    First design scenario.

Primary Alpha

analyses (two-tailed)

T1 versus C 0.030

T5 versus  C 0.015

Linear trend 0.005

the occurrence of a type I error for an additional statistical hypothesis test. These 

computations were based on the dependency parameter D, which itself was formu-

lated from a consideration of the degree to which (1) the subjects and endpoints 

were the same in each of the hypothesis tests and (2) therapy homogeneity or the 

evidence that the medication would produce the same effect in each of the different 

analyses. Thus far in this chapter, that relationship has focused on the degree to 

which the same subjects have been used in each hypothesis test. However, in the 

current situation in which we are evaluating different doses of the same medication, 

it is appropriate to consider the impact of the homogeneity of therapy factor in the 

computation of the measure of dependency. This is because the same therapy is be-

ing evaluated against the same endpoint.  
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Since they do not directly gauge the degree to which one active dose’s effect is greater than 

that of another active dose, the two comparisons T1 versus C and T5 versus C do not in and of 

themselves provide direct evidence of a dose-response relationship. 
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We will first consider the measure of dependence between the statistical 

hypothesis tests T1 versus C and T5 versus C. Again, we will use the formulation 

            1 1 (1 )D c c h                                         (12.7) 

from Chapter 5. The parameter c measures the degree of coincidence between the 

two hypothesis tests. We can estimate this by the % of observations in the T1 versus 

C comparison that are also used in the T5 versus C evaluation. Let nc be the number 

of observations in the control group, and let ni be the number of subjects random-

ized to the ith treatment group, i = 1 to 5. Then we will define
1

C

C

n
c

n n
. If we 

assume for the moment that equal numbers of patients are recruited to each of the 

six arms of this study, then c = 0.50. Assume also that h = 0.50. Then, using  (12.7) 

we find that D = 0.50 [1– (1 – 0.50)(1 – 0.50)] = 0.375. Incorporating this into Ta-

ble 12.7 provides a revised estimate of the test-specific  error rate for the T5 versus 

C. comparison (Table 12.8).  The use of  (12.1) reveals that 2 = 0.024. Thus, if the 

investigators were planning to carry out only two hypothesis tests, setting 1 =

0.030 and 2 = 0.024 would completely exhaust the FWER of 0.05, leaving no type 

I error level for the evaluation of the effect of therapy for the linear trend. 

Table 12.8. Alpha allocation with dose response focus: 

                   Second design scenario.

Primary Alpha

analyses (two-tailed)

T1 versus C 0.030

D m = 0.375

T5 versus  C 0.024

Linear trend ?

Thus, the clinical trial designers must make one more conservatory ad-

justment; they can either reduce the type I error for the T1 versus C comparison, or 

they can reduce the  error rate for the T5 versus C comparison. Recall that in the 

computation of these FWERs, the first hypothesis test for which a test-specific 

error is chosen is the statistical test that has the maximum  error rate assigned. 

(i.e., 1 2 3)
9
. The investigators choose to reduce the type I error rate for the 

                                                          
9

This does not imply that the statistical tests must be evaluated in any specific order at the 

end of the trial. They may evaluated in any sequence the investigators choose as long as the 

type I error rates have been prospectively assigned.
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evaluation of the effect of T5 versus C on the CRP concentration, thereby freeing up 

some of the type I error rate for the linear trend analysis (Table 12.9). 

Table 12.9. Alpha allocation with dose response focus: 

                   Third design scenario.

Primary Alpha

analyses (two-tailed)

T1 versus C 0.030

D 2|1 = 0.375

T5 versus  C 0.020

Linear Trend 0.004

It now remains to attempt to conserve additional type I error for the linear trend 

analysis. We begin with a computation of the dependency parameter in this circum-

stance. The measure of coincidence c may be written as  

1 5

1 2 3 4 5

0.50C

C

n n n
c

n n n n n n
.                            (12.8) 

We will use an estimate of therapy homogeneity of 0.75. Then we may compute D 

as D = 0.50 [1– (1 – 0.50)(1 – 0.75)] = 0.438 = D3|1,2 . Inserting this value of the de-

pendency parameter into (12.2) allows the investigators generate a new type I error 

level for the linear effect statistical evaluation (Table 12.10). 

Table 12.10. Alpha allocation with dose response focus: 

                     Fourth design scenario.

Primary Alpha

analyses (two-tailed)

T1 versus C 0.030

D 2|1 = 0.375

T5 versus  C 0.020

D 3|1,2 = 0.475

Linear trend 0.005
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However, additional conservation of the type I error rate can be achieved 

by the unequal apportionment of sample size. Since an important component of the 

calculation of the test-specific type I error rate is the dependency parameter, and the 

dependency parameter is a function of the number of patients allotted to the differ-

ent therapy groups in the clinical trial, the group sizes can have an important effect 

on the type I error allocations through the dependency parameter.  

There is also an additional motivation for the use of unequal sample sizes. 

The investigators’ interest in the examination of the possibility of a linear trend be-

tween CRP levels and therapy dose will require them to carry out straight line 

regression. In this regression, the dependent variable will be the CRP levels and the 

independent variable will be the therapy dose. In this regression analysis, each pa-

tient contributes their CRP level and the therapy dose to which they were randomly 

assigned. The focus of the investigators’ attention in this regression analysis is on 

the estimate of the slope of this line, since the magnitude of the slope is a direct re-

flection of the strength of association between the randomly allocated therapy dose 

and the change in CRP concentration. Thus, the investigators will require the most 

precise estimate of this slope available. This desire translates into designing this 

clinical trial so that the variance of the slope estimate is as small as possible. A 

standard result from regression analysis is that the estimate of the slope may be 

written as

2

2

1

,
n

i

i

x x

                                                 (12.9) 

where the expression 
2

1

n

ii
x x  is the measure of the variability of the ran-

domly assigned therapy doses in the entire trial. The task commonly facing 

statisticians is to minimize this type of variability. However, in this circumstance, 

the goal is not to minimize 
2

1

n

ii
x x  but to minimize  (12.9) a task that re-

quires maximizing the expression 
2

1

n

ii
x x . This quantity is maximized by 

choosing the randomized doses in the trial so that they are as widely separated as 

possible. Mathematically, the minimum value of the variance of the slope estimate 

is achieved by randomly allocating the therapy in this trial such that half of the pa-

tients receive the minimum dose ( i.e., the control therapy) and the other half 

receive the maximum therapy (T5). The investigators cannot go to this extreme, but 

they do choose to do a partial optimization by placing more patients on doses T1

and T5. For example, let 90% of the subjects be randomly assigned to either the 

control group, active group therapy dose T1, or active dose therapy T5, with the re-

maining number of patients allocated to therapy doses T2, T3, and T4.. Then, if c = 

0.90, then one can compute D = 0.90 [1 – (1 – 0.90)(1 – 0.75)] = 0.878 = D3|1,2  Ta-

ble 12.11). 
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Table 12.11. Alpha allocation with dose response focus: 

                     Fifth design scenario.

Primary Alpha

analyses (two-tailed)

.

T1 versus C 0.030

D 2|1 = 0.375

T5 versus  C 0.020

D 3|1,2 = 0.878

Linear trend 0.015

An alternative scenario would be along the following lines, in which the 

type I error rate was reduced for the T5 versus C statistical hypothesis test (Table 

12.12). 

Table 12.12. Alpha with dose response focus: 

                     Sixth design scenario.

Primary Alpha

analyses (two–tailed)

T1 versus C 0.035

D 2|1 = 0.375

T5 versus  C 0.015

D 3|1,2 = 0.878

Linear trend 0.012

12.5 Conclusions 
While the prospective design of multiple treatment group clinical trials has broad-

ened the utility and efficiency of clinical trials, this expansion has come with the 

additional need to tightly control the FWER. To some extent the burden these  er-

ror concerns place upon investigators has stunted the development of these multiple 

treatment arm trials. Developments in the literature reveal the importance of bring-

ing modern  error conservation tools to bear in the clinical trial with multiple 
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treatment arms. The developments offered in the second half of this chapter have 

been an attempt to add to these procedures.  

 However, the importance of any of these statistical tools pales in compari-

son to the need for investigator knowledge, initiative, and imagination. It is 

unfortunately all to easy for the weight of fiscal and administrative restrictions to 

rain down on the scientist, washing away any spark of clinical design initiative with 

a cold shower of regulatory and financial reality. It is useful to keep in mind that the 

notion of a clinical trial, with the random allocation of patients to different therapy 

groups was itself considered a flight of undisciplined fancy 60 years ago. The 

imaginative scientist, treasuring her own ability to think anew, with vigor and inno-

vation, will be fully able to adapt the tools reviewed and developed in this book to 

carry out the successful execution of a multiple armed clinical trial. Knowledge, 

ethics-based innovation, and a tight tether to reality remain the only requisites.  
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Chapter 13 

Combining Multiple Analyses  

In this penultimate chapter, the tools that we have utilized and developed thus far 
will be combined into constructive arrangements. Specifically, we will show how 

the use of (1) differential  allocation, (2) combined endpoints, (3) prospective re-
quirements of different levels of efficacy, and (4) confirmatory subgroup analyses 

can be prospectively blended into effective combinations that may be brought to 

bear in some unique and challenging clinical trial situations. 

13.1 Introduction 
In the study of multiple analysis issues in clinical trials, we have developed several 

different tools to control the familywise error level, while simultaneously allowing 

the investigator to carry out all of the analyses they wish to execute in their experi-

ment. These tools work best when they are set upon the foundation of a 

comprehensive knowledge of (1) the disease process being studied and (2) an un-

derstanding of the potential benefits and adverse events associated with the 

intervention. The development of this pretrial compendium culminates in the pro-

spective construction of the questions which the clinical trial will address.  

However, the development of each of the multiple analyses implements in 

this text has been carried out in relative isolation. In these illustrative, but artificial, 

environments we have had the opportunity to observe the isolated effect of a par-

ticular multiple analysis device (e.g., the use of combined endpoint analysis) on the 

FWER of a clinical trial’s analysis plan. However, as pointed out in Chapter 4, real 

clinical trial questions are multifaceted, requiring not just one tool, but a combina-

tion of multiple analysis instruments that permit the prospectively asked questions 

to be addressed. Therefore, the most effective use of these procedures is when we 

can wield them in innovative combinations.  

Therefore, having completed the isolated development of our panoply of 

multiple analysis tools, we now focus on the combination of the use of these im-

plements in interesting and rather unique clinical trial environments. No new 

mathematics will be required for, or will be developed in, this penultimate chapter, 

and there will be no in-depth analysis of the statistical calculations. Our focus will 

be on (1) developing the vision to recognize when a clinical trial designer is in a 

multiple analysis environment, or when a multiple analysis environment can be use-

fully created and (2) the application of the tools that we have developed thus far in 

informative combinations.  
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13.2 Creating a Multiple Analysis Environment 
How could clinical trial designers not see when they are actually working within a 

multiple analysis environment? While this circumstance may be difficult to initially 

envision, the situation is an all-to-common occurrence. Specifically, nonrecognition 

takes place when investigators struggle to choose between two or more analyses 

under the false belief that they must settle on one and only one. Selecting one of 

these two analyses may be the common choice, but it can be inferior to incorporat-

ing both analyses.  

 Consider the following scenario: clinical investigators have developed a 

device that they believe will reduce the morbidity of patients who are in chronic 

atrial fibrillation (CAF). This intervention consists of destroying (a procedure de-

scribed as ablation) the electrical pathways in the heart that are causing the aberrant 

cardiac rhythm. The ablation procedure requires a brief hospital stay, after which 

the patient is discharged to resume their normal activities. Patients with CAF will 

be admitted to this study and randomly allocated to receive the ablation therapy or 

standard therapy. All of the randomized patients will be followed for 1 year.  

 Since the death rate of patients with AF in this study is anticipated to be 

low, the investigators do not expect that there will be many patient deaths in the 

study. Consequently, these scientists do not anticipate that they will be in a position 

to measure the effect of the ablation therapy on the death rate. Physicians recognize 

that the major source of morbidity for these patients is their frequent need for hospi-

talization to control their arrhythmia. The investigators therefore settle upon two 

endpoints to measure the effect of the ablation therapy: (1) time to first hospitaliza-

tion and (2) proportion of patients with more than four hospitalizations, defined 

here as AF burden.  

 The design of this clinical trial would appear to require no particularly in-

ventive analytic approach, and the investigators begin with a brief outline of an 

analysis plan (Table 13.1). 

Table 13.1. Preliminary design for ablation study.  

Primary Cumulative Efficacy Alpha Power Sample 

analyses control group (two–tailed) size

experience

Time to hospitalization

D

AF burden

Table 13.1 is the shell of a design plan with which we have become comfortable in 

this text. The investigators would need to decide on the cumulative control group 

experience, the anticipated efficacy of therapy, the dependency parameter, the test-

specific type I error rate, and the power of the study.  
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The new difficulty this study represents is that the ablation therapy is an-

ticipated to increase the hospitalization rate in the initial postrandomization phase 

of the study for patients who undergo this procedure. This is because the ablation 

itself causes some initial, minor injury to cardiac tissue that increases the frequency 

of aberrant rhythms. This increase in dysrhythmic frequency produces an initially 

greater rate of hospitalization, and an increase in AF burden. The clinical trial de-

signers expect that as this acute injury resolves, the episodes of chronic AF will 

decrease causing an amelioration of the hospitalization rate and the AF burden. 

Thus, they expect that this initial worsening of the patient’s condition produced by 

ablation therapy will lead to a long-term improvement.  

 This post randomization, intervention-induced, short-term deterioration of 

the patient’s condition will have an important impact on the magnitude of the effect 

of the ablation therapy in this study. If the investigators could ignore the initial, 

harmful, short term effect of the therapy (anticipated to be limited to the first two 

weeks of the study) they believe the resulting analysis would demonstrate the ad-

vantage of the therapy.  

Recognition of this two-phase effect of the randomly allocated interven-

tion produces important discussion concerning the analysis plan. A post hoc 

analysis that ignores the first two weeks of follow-up in determining the effect of 

ablation therapy would be an inferior strategy since the non-prospective nature of 

this type of evaluation generates untrustworthy estimators of effect sizes, standard 

errors, confidence intervals and p-values1. An a priori evaluation of the experience 

of patients that sets aside the patients’ first 2 week experiences, while producing 

trustworthy estimators, would be appropriately criticized for ignoring events that 

many would argue should be included if the medical community is to gain a full 

and complete appreciation of the risks and benefits produced by the ablation ther-

apy.

 Rather than choose one and only one confirmatory analysis from these two 

alternatives, the investigators choose both. They decide to evaluate the effect of 

therapy for each of (1) the recurrence of hospitalization and (2) AF burden, and 

then plan to carry out two analyses on each endpoint. The first evaluation (de-

scribed as the full analysis) examines the effect of therapy using the complete 

follow-up period, including the first 2 weeks after randomization. The investigators 

then prospectively plan a censored analysis, censoring (or removing from consid-

eration) any hospitalization event that occurs in the first two weeks of the post 

randomization period (Table 13.2).  

The investigators have identified four confirmatory analyses that they will 

execute at the conclusion of the ablation trial. Two of them evaluate the effect of 

ablation therapy on the cumulative hospitalization rate; the remaining two statistical 

hypothesis tests examine the role of this therapy in reducing the AF burden.  

                                                          
1

The concept of untrustworthy estimators is discussed in Chapter 2.  
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Table 13.2.  Preliminary design for ablation study.

Primary Cumulative Efficacy Alpha Power Sample 

analyses control group (two–tailed) size

experience

Evaluation of cumulative hospitalization rate 0.035

Cum hosp rate: Full 0.500 0.25 0.025 0.90 769

D = 0.50

Cum hosp rate: Censored 0.450 0.30 0.014 0.90 714

D = 0.70

Evaluation of AF burden 0.030

AF burden: Full 0.150 0.50 0.020 0.80 703

D = 0.80

AF burden: Censored 0.100 0.60 0.020 0.80 716

The role of dependency suffuses these four confirmatory evaluations. 

Since the same patients are involved in each of these two sets of analyses, and the 

endpoints are so closely related (in general, the greater the cumulative hospitaliza-

tion rate, the greater the AF burden), high levels of dependency between the 

statistical hypothesis tests are justified. There is dependence between the evalua-

tions of the effect of therapy on the cumulative hospitalization rate and the AF 

burden. There is also dependency within the two evaluations of the effect of therapy 

on the cumulative hospitalization rate and the AF burden analyses.  

Note that the event rates and efficacies used in these analyses are a func-

tion of the analysis procedure (full or censored). In general, the censored analyses 

in this example involve lower event rates (since two weeks of follow-up are ex-

cluded). However, these same evaluations involve higher efficacy levels since the 

investigators anticipate greater effectiveness of the therapy when the first two 

weeks are excluded from evaluation.  

 In this circumstance, the investigators will be able to assess the effect of 

their therapy in its optimum period of effectiveness, while simultaneously address-

ing concerns of the medical and regulatory community about the difficulties 

imposed in the interpretation of the censored analysis. This is achieved by trans-

forming the analysis issue from accepting only one hypothesis test as confirmatory 

into executing multiple confirmatory analyses while maintaining familywise type I 

error rate control.  

It is easily anticipated that a regulatory agency would balk at giving multi-

ple indications for an intervention when the confirmatory analyses are so tightly 

intertwined. However, it is important to note that the investigators and the clinical 

trial’s sponsor are not interested in gaining multiple indications from the regulatory 

community for use of the ablation tool. The proposed analysis as it appears in Table 
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13.2 provides a full, prospectively designed evaluation of the intervention’s effi-

cacy in two relevant scenarios. Those who evaluate the results of the trial will have 

the opportunity to examine the effectiveness of the intervention using a metric that 

is less favorable to the therapy but more generally accepted (full analysis), while 

still being able to assess the therapy’s effect in a less used but more favorable set-

ting (censored analysis).  

An alternative analysis has been presented [1]. 

13.3 Composite Endpoints Within Subgroups 
A common justification for a clinical trial is to provide useful treatment guidelines 

that physicians may follow. While the investigators may be interested in a global 

effect of the randomly allocated intervention on the entire research cohort, there is 

particular interest in the response to therapy for patients who are in a predefined 

special subcohort.  

A fine example of the need for this type of analysis is the evaluation of the 

role of cholesterol therapy in reducing the occurrence of atherosclerotic cardiovas-

cular disease. In the mid-1990s, several studies demonstrated the impact of the 

HMG-CoA reductase inhibitors (commonly and colloquially known as the “stat-

ins”) on both serum low-density lipid (LDL) cholesterol level reduction and the 

reduction in the occurrence of atherosclerotic cardiovascular disease. These studies, 

carried out in Scotland [2], Scandinavia [3], the United States [4], and Australia [5] 

all demonstrated the effectiveness of this new class of agents in reducing the inci-

dence of clinical atherosclerotic disease. An important question that none of these 

studies was designed to address, however, was whether there was an important re-

duction in the incidence of clinical atherosclerotic disease in the patients whose 

baseline level of LDL cholesterol was the lowest. The answer to this question could 

have a direct impact on treatment guidelines for patients who may falsely believe 

that, because their risk of atherosclerotic disease is lower than that of patients with 

higher levels of LDL cholesterol levels, their risk is too low to require therapy.   

 Investigators interested in pursuing this avenue of research for their par-

ticular LDL cholesterol reducing agent then have two questions that they need to 

address. The first question is the overall effect of therapy in the entire recruited co-

hort of patients (global analysis). The second investigation requires an evaluation of 

the effect of therapy within that subcohort of patients whose LDL cholesterol levels 

are the lowest. This subcohort, prospectively defined and identified based on an ex-

amination of baseline variables constitutes a proper subgroup.2

 The investigators recognize the importance of familywise type I error con-

trol, and see the difficulty in carrying out a confirmatory subgroup analysis, 

because of the relatively smaller number of patients that are available for the sub-

group analysis. They will therefore use two prospectively defined endpoints for 

these evaluations. The first endpoint, which will be the measurement used to assess 

the global effect of therapy is fatal CAD consisting primarily of patients who have a 

fatal MI.

                                                          
2

As defined by Salim Yusuf and discussed in Chapter 9 of this text.  
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The endpoint for the subgroup evaluations will be related to, but different 

from, the endpoint for the primary analysis. The effect of therapy in the low LDL 

subgroup will be measured against the combined endpoint of fatal/nonfatal MI and 

fatal/nonfatal stroke. The greater cumulative incidence rate will permit a confirma-

tory analysis in this small subgroup.  

Before they begin with the sample size, the investigators also choose to in-

crease the required efficacy level for the evaluation of the effect of therapy for the 

subgroup analysis. This is because these patients in the subcohort of lower LDL 

levels are at lower risk of having an atherosclerotic event ceteris parabus. Exposing 

them to a new therapy places these relatively low-risk patients at a new risk for ad-

verse events. The investigators believe that this risk can only be justified if the 

patients derive a greater efficacy from the compound. They therefore increase the 

efficacy for the lower LDL subgroup from 15% to 20% and complete their compu-

tation (Table 13.3). The event rate for the composite endpoint used in the lower 

LDL subgroup analysis is the reason that the event rate is greater than the event rate 

for the component endpoint that will be utilized for the global analysis. The power 

for each of the these two evaluations, although different from each other, is ade-

quate.  

.

Table 13.3.  Design for cholesterol reduction trial.

                      Scenario 1

Primary Cumulative Efficacy Alpha Power Sample 

analyses control group (two–tailed) size

experience

Global analysis 0.120 0.15 0.035 0.90 13,988

D = 0.15

Low LDL subgroup 0.250 0.20 0.016 0.80 2941

The lower level of statistical hypothesis testing dependence implemented 

here is consistent with the arguments made in Chapter 11. Recall that the level of 

dependency is tightly linked to the degree of “overlap” between the statistical hy-

pothesis tests under consideration. This overlap is measured by the proportion of 

the same patients that are used in each of the hypothesis tests, and the degree to 

which the endpoints used in the analyses measure the same pathophysiology. For 

the hypothesis tests in the current illustration, the proportion of patients used in the 

subcohort is a minority of patients that are evaluated in the entire cohort. In addi-

tion, the endpoint analysis variable for the global analysis is only one of four 

components of the combined endpoint. These observations along with the omni-

present need for conservatism in these considerations suggest that the level of 

dependency between the two statistical hypothesis tests should be low.  

 However, another methodologically acceptable design provides a different 

organization. If the investigators are required to keep the sample size for the low 
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LDL subcohort to less than 2500 patients, then the analysis design as detailed in 

Table 13.3 would not be acceptable. Alternative decisions about the type I error al-

location provides a different collection of sample size computations (Table 13.4). 

Table 13.4.  Design for cholesterol reduction trial.

                      Scenario 2

Primary Cumulative Efficacy Alpha Power Sample 

analyses control group (two–tailed) size

experience

Low LDL subgroup 0.250 0.20 0.040 0.80 2331

D = 0.15

Global analysis 0.120 0.15 0.011 0.80 14,033

In this scenario, the test-specific type I error for the lower LDL subgroup 

has increased from 0.016 in Table 13.3 to 0.040, decreasing the required sample 

size for this subgroup from 2941 to 2331. However, the FWER  remains well con-

trolled. This control is produced by decreasing the type I error level that will be 

used in the global analysis and thereby increasing its sample size. If patients in the 

lower LDL subgroup are truly difficult to recruit, then the scenario presented in Ta-

ble 13.4 requires the investigators to recruit fewer of these hard to find patients and, 

consequently, more of the patients with higher LDL cholesterol levels. These latter 

patients require less work to recruit.  

 The differential efficacy assumption is a lingering concern for some scien-

tists as they review these two designs outlined in Tables 13.3 and 13.4 for this 

clinical trial that evaluates the effect of therapy in reducing the occurrence of 

atherosclerotic disease. Unfortunately, but realistically, the utilization of greater ef-

ficacy has been commonly seen as a maneuver that sacrifices clinical reality for an 

achievable sample size. Viewed as a “back door” approach to reducing the required 

sample size of the analysis, it is a procedure that is commonly and understandably 

disparaged.  

However, in this case, the requirement for increased therapy efficacy in the 

lower LDL subgroup is defensible. Assume that 1165 patients who are members of 

the lower LDL subgroup are recruited to each of the active group and the control 

group. If the event rate estimates in this trial are correct, then the investigators 

would expect 25% or 291 patients to have experienced the analysis endpoint in the 

control group. If the LDL cholesterol-reducing therapy produces a 20% reduction in 

the prospectively defined analysis endpoint, then 233 patients in the active group 

would experience the endpoint. The criticism that requiring 20% efficacy prevents 

the investigators from identifying lower, clinically significant levels of efficacy as 

statistically significant reductions is blunted by the observation that, if as many as 

251 patients die in the active group, reducing the efficacy to 14%, the p-value for 
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this evaluation would be 0.050, a level at the prospectively declared maximum type 

I error level for this analysis. This level of efficacy is greater than the 15% efficacy 

that the investigators hope to identify in the evaluation of the entire cohort in the 

global analysis. Thus the careful choice of an efficacy level for the effect of therapy 

in the lower LDL subgroup retains sensitivity to clinical significant efficacy levels 

while simultaneously being responsive to the requirement that patients who are at 

lesser risk of cardiovascular morbidity due to their lower LDL levels receive a 

greater benefit from therapy to offset the anticipated occurrence of adverse events.  

13.4 Majority Subgroups in Clinical Trials 
The previous example focused on the use of a confirmatory subgroup analyses 

when the subgroup of interest comprised a minority of the entire randomized co-

hort. However, multiple analysis procedures can be of importance when the 

subgroup of interest is the majority of the patients.  

Consider the following example. In the wake of the concern expressed by 

the FDA about the execution of international clinical trials that must also provide 

evidence of benefit in the subcohort of randomized United States patients3, a group 

of clinical trialists are interested in identifying the effect of therapy for patients who 

have CHF. They plan to recruit patients with NYHA class II/III heart failure and 

assign them to either the control group therapy or active group therapy. These pa-

tients will be followed for 2 years. There will be two prospectively declared 

endpoints for this study: (1) the cumulative total mortality rate and (2) the com-

bined endpoint of cumulative total mortality plus + cumulative hospitalization rate.4

In addition, the investigators require a set of confirmatory analyses for the effect of 

therapy in the United States population. There will therefore be four confirmatory 

evaluations in this study: 

(1) The effect of therapy on the cumulative total mortality rate in all re-

cruited patients, regardless of country (global cohort) 

(2) The effect of therapy on the cumulative combined endpoint of total 

hospitalizations/total mortality event rate in the global cohort. 

(3) The effect of therapy on the cumulative total mortality rate in only 

those patients recruited from the United States (United States cohort). 

(4) The effect of therapy on the cumulative combined endpoint of  total 

hospitalizations/total mortality rate in the United States cohort. 

 The investigators anticipate that, since the predominant regulatory need for 

their clinical trial is to meet the requirement of the US FDA, the majority of pa-

tients recruited for their study will be US patients. The trial designers are interested 

in demonstrating that therapy is effective for the reduction in the cumulative inci-

dence of both prospectively declared endpoints. While they desire the same 

                                                          
3

Reviewed in Chapter 10. 
4

As discussed in Chapter 7, the composite endpoint measures the first occurrence of either 

hospitalization or death. Thus, a patient who is hospitalized and subsequently dies is not 

counted as an endpoint twice.
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demonstration in the global endpoint evaluation, the investigators’ primary focus 

remains on the identified effect in US patients.  

 The investigators anticipate that the cumulative total mortality rate in the 

placebo group will be 15% in all patients regardless of country of randomization. A 

25% cumulative rate for the combined endpoint of total hospitalizations and mortal-

ity is anticipated in the United States while the same endpoint is expected to occur 

at a  lower rate in non US countries; the combination of these two rates will pro-

duce a global rate of 20%. 

 The dependency parameter will play a pivotal role in this research design. 

There are three dependency parameters that are required for this clinical trial’s 

analysis. The first parameter, Ds, measures the dependency between the analysis 

carried out in the United States versus that executed in the entire global cohort. The 

second measure of dependency is the level of dependency between the analysis for 

the effect of therapy on total mortality and the effect of therapy on the combined 

cumulative incidence of total hospitalizations and total mortality. Focusing on the 

Ds first, recall from chapter 11 that we can write this parameter in terms of the co-

incidence level cs and the therapy homogeneity parameter hs as

1 1 (1 ) .s s s sD c c h                                        (13.1) 

In chapter 11, we stated that hs, which measures the degree to which the therapy 

will have the same effect in each of the research cohorts, must be selected with 

great care. If we choose hs = 1, then we assume that the therapy’s effect is the same 

in the US cohort as it is in the global cohort. However since the purpose of the 

evaluation of the effect of therapy in the subcohort is to provide a separate estimate 

of the effect in the US cohort, it would be a mistake to embed a presumed answer to 

this question within the dependence parameter. However, to choose a value of hs = 

0 is equally inappropriate. A reasonable choice in this circumstance is simply to let 

hs = cs. Thus, the homogeneity of therapy effect is governed by the degree to which 

the subcohort and the entire cohort contain the same patients. In this circumstance 

we demonstrated, in Chapter 11 that a reasonable approach to the computation of Ds

is

2 2 ,s s sD c c                                          (13.2) 

where cs is the fraction of the overall cohort that is included in the subgroup stratum 

of interest. Since 85% of the entire cohort will be US patients, (13.2)  reveals that 

Ds = 0.75. 

The remaining two dependency parameters measure the degree to which 

the statistical test of the effect of therapy on the cumulative incidence of total mor-

tality is related to the effect of therapy on the combined endpoint of total 

hospitalization/total mortality within each of (1) the US cohort and (2) the global 

cohort. We will proceed in a straightforward manner, first estimating this depend-

ency parameter in the US cohort and then use the same procedure to estimate the 

required dependency for the analysis in all randomized patients. We again use  
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(13.1), rewritten here to reflect the fact that the difference between the analyses is 

not a difference in the analysis cohort (as in the previous paragraph) but a differ-

ence in the endpoints. This parameter we will call De, and write 

1 1 (1 ) .e e e eD c c h                                 (13.3) 

In this circumstance, ce is a measure of the degree to which the component endpoint 

total mortality occurs in the same patient. The coincidence between the occurrence 

of a death and the occurrence of the composite endpoint is high; the investigators 

estimate ce = 0.65. However, homogeneity of therapy effect is believed to be very 

high (he = 0.90). Thus, the investigators compute 

1 1 (1 )

0.65 1 1 0.65 (1 0.90 0.65[1 (0.35)(0.10)]

(0.65)(0.965) 0.63.

e e e e

e

D c c h

D           (13.4) 

This estimate of De is applied to the global cohort evaluation as well. The investiga-

tors are now ready to complete the statistical component of the analysis plan of 

their trial (Table 13.5).  

Table 13.5.  Preliminary design for the international study.

Primary Cumulative Efficacy Alpha Power Sample 

analyses control group (two–tailed) size

experience

U.S. population 0.045

Total mortality 0.150 0.20 0.030 0.90 6171

D e = 0.63

Combined endpoint 0.250 0.25 0.026 0.90 2148

D s = 0.75

Global population 0.012

Total mortality 0.150 0.20 0.010 0.90 7708

D e = 0.63

Combined endpoint 0.200 0.25 0.003 0.90 4097

The investigators control the familywise error level at 0.05, and allocate 

0.045 to the analysis within the US cohort and 0.012 to the global analysis. The in-

tra-cohort dependency parameter estimates De permit additional type I error rate 

conservation within the two research cohorts.  
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 An additional level of conservatism can be introduced by estimating the 

dependency parameter Dm as the minimum of Ds and De (Table 13.6). 

Table 13.6. Preliminary design for international study.

Conservative Analysis

Primary Cumulative Efficacy Alpha Power Sample 

analyses control group (two–tailed) size

experience

U.S. population 0.04

Total mortality 0.150 0.20 0.030 0.90 6171

D m = 0.63

Combined endpoint 0.250 0.25 0.017 0.90 2339

D m = 0.63

Global population 0.017

Total mortality 0.150 0.20 0.010 0.90 7708

D m = 0.63

Combined endpoint 0.200 0.25 0.010 0.90 3422

Finally, adjustments in power reduce the difference in sample sizes re-

quired for each of the within-cohort analyses (Table 13.7). 

Table 13.7. Preliminary design for the international study.

Conservative Analysis

Primary Cumulative Efficacy Alpha Power Sample 

analyses control group (two–tailed) size

experience

U.S. population 0.04

Total mortality 0.150 0.20 0.030 0.80 4698

D m = 0.63

Combined endpoint 0.250 0.25 0.017 0.99 3862

D m = 0.63

Global population 0.017

Total mortality 0.150 0.20 0.010 0.80 6050

D m = 0.63

Combined endpoint 0.200 0.25 0.010 0.99 5527
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13.5 Atherosclerotic Disease Trial Designs 
In Chapter 3, we saw that efficiency was a prime motivator for the scientist to in-

corporate multiple analyses within her clinical trial. The near prohibitive cost of 

clinical trials requires that as much information as possible be obtained from them 

to justify the trial’s expense. Unfortunately, this drive for efficiency can lead to 

confusion concerning which of the many trial results are confirmatory and which 

are exploratory. Use of the procedures that we have described in this text can in-

crease the confirmatory information that can be gained from a single trial without 

violating the tenets of good experimental methodology.  

As an illustration, consider the following design of a cardiology clinical 

trial. The investigators are interested in assessing the effectiveness of a new class of 

anti-inflammatory agents in reducing the risk of atherosclerotic disease. The inves-

tigators would like to learn if the use of this oral agent reduces the risk of 

atherosclerotic disease in the entire randomized cohort. However the investigators 

would like to delve deeper into the issue of risk modification. These clinical trial 

designers are interested in determining if the randomly allocated intervention will 

provide a benefit in patients who have different risks of developing atherosclerotic   

disease. They are not interested in whether the risk of disease modifies the effect of 

therapy;5 instead. they simply want to know if the randomly allocated therapy effec-

tively reduces atherosclerotic disease in low risk patients. Analogously, they seek 

the answer to the same question in patients who are at high risk of atherosclerotic 

disease. Finally, the trial designers are interested in evaluating the dose–response 

relationship that this randomly allocated therapy produces. The investigators envi-

sion that there will be three treatment arms in this clinical trial: control group 

therapy, dose T1 of the active intervention and dose T2 of the active intervention 

where dose 1 < dose 2.  

 Thus, the investigators are interested in addressing three issues: (1) the 

overall effect of therapy in reducing future atherosclerotic disease, (2) the effect of 

therapy in each of a low risk and a high risk subcohort and (3) an assessment of the 

dose–response relationship of the effect of therapy and its impact on atherosclerotic 

disease. The investigators plan to recruit patients who are at risk of clinical morbid-

ity and mortality from atherosclerotic disease, and randomly allocate them to one of 

three treatment arms: (1) placebo, (2) active intervention dose T1, or (3) active in-

tervention dose T2.

In order to carry out the analysis of the effect of the active intervention in 

patients who have different risks of future atherosclerosis, patients must undergo an 

assessment of this risk at baseline. Thus, while being screened for this study but be-

fore they are recruited and assigned a randomly allocated therapy, each patient will 

have his or her risk of atherosclerotic disease assessed. Age, history of a prior MI or 

stroke in either the subject or the subject’s parents will be obtained. The patient will 

be evaluated for the presence of hypertension, the presence of diabetes mellitus, and 

the presence of dyslipidemias. An assessment of the patient’s lifestyle, specifically, 

their body weight, alcohol consumption, exercise pattern, and history of cigarette 

                                                          
5

The evaluation of whether the patient’s risk of a disease modifies the effect of therapy 

would be an interaction analysis. This approach is discussed in Chapter 11. 
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smoking will be obtained. The measurement of all of these factors will be used to 

gauge the patient’s risk of future atherosclerotic disease, and patients will be cate-

gorized into one of three categories; low risk, moderate risk, and high risk. Only 

patients at low risk or patients at high risk of developing atherosclerotic disease will 

be recruited and randomized. The random allocation of therapy will be balanced 

within each of the low risk and high risk subcohorts. This last procedure will ensure 

that one-third of the patients get placebo therapy, one-third will receive dose 1, and 

one-third are randomized to dose 2 in each of the low-risk and high-risk subcohorts.  

As the investigators work to incorporate these several analyses within a 

single clinical trial, they ponder whether they should use more than one endpoint in 

this analysis plan. The criteria that they must use for the choice of these endpoints 

begin with the requirement that the endpoints must be prospectively selected and 

they must each be an irrefutable measure of clinical atherosclerotic cardiovascular 

disease. Although many different analyses will be conducted as the experiment’s 

conclusion, the confirmatory analyses that will specifically address the prospec-

tively asked questions will concentrate on the findings on these prospectively 

identified endpoints. The investigators decide that the effect of therapy in the entire 

cohort will be based on the cumulative incidence of CAD death (primarily, fatal 

MI). The investigators anticipate that this endpoint will occur with a cumulative in-

cidence rate of 12% in the placebo group over the course of the clinical trial.

The relatively low incidence rate of this endpoint makes it unsuitable for 

its use in the analysis of the effect of therapy in patients who are at either low risk 

or high risk of atherosclerotic disease. Although those at high risk of atherosclerotic 

disease would naturally be expected to have a greater rate of atherosclerotic mor-

bidity and mortality (an observation of which these investigators will take full 

advantage as they design this clinical experiment), the relatively fewer number of 

patients available in this subcohort will vitiate any advantage the greater event rate 

will provide. Of course the circumstance is more extreme for patients who are in the 

low-risk subcohort. The combination of a relatively small number of patients and 

low event rates would make a confirmatory analysis with adequate statistical power 

even more difficult to execute in this low-risk subcohort.

Therefore, as a response to these subcohort analysis difficulties, the inves-

tigators prospectively declare the composite endpoint of fatal CAD death and 

nonfatal MI as the endpoint for which the effect of therapy in each of the low risk 

and high risk subcohorts will be assessed. Since the nonfatal MI component of this 

composite endpoint is itself a clear expression of atherosclerotic disease progres-

sion, the component endpoints of this combined endpoint are coherent, making the 

final composite endpoint interpretable.6 Finally, the prospective declaration of this 

endpoint produces trustworthy estimators of effect size, their standard errors, confi-

dence intervals, and p-values.  

By choosing this combined endpoint, the investigators have substantially 

increased the logistical burden of the trial. The evaluation of the CAD endpoint re-

quired that the investigators review each death that occurred during the course of 

the trial and determine whether the death was a CAD death. For the evaluation of 

                                                          
6

The principles that underlie the construction of a combined endpoint are discussed in Chap-

ter 7.
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the new nonfatal MI component, the scientists must (1) agree upon a definition of 

an MI and (2) examine the hospital records of all patients, in order to learn if an MI 

occurred. Since some MIs occur in the absence of symptoms, the investigators may 

decide to obtain annual electrocardiograms on all randomized patients. In this situa-

tion, the investigators would use electrocardiographic findings to supplement their 

clinical definition of an MI. The administrative, financial, and logistical difficulties 

imposed by the addition of the nonfatal MI component to the endpoint analysis 

represents one of the prices the investigators must pay to gain a confirmatory analy-

sis within the two prospectively declared subcohorts of interest.  

The evaluation, of the dose–response relationship requires what the inves-

tigators believe is a fairly subtle gradation of therapy effect magnitude. Not only 

will the subcohorts be relatively small, but the efficacy levels will also be low, a 

combination that increases the difficulty of executing an adequately powered con-

firmatory analysis. Therefore, these planned evaluations require an endpoint whose 

incidence rate is even greater than that of the composite endpoint of fatal CAD 

death + nonfatal MI. The investigators therefore prospectively create a second 

combined endpoint of fatal CAD death + nonfatal MI + fatal/nonfatal stroke. The 

fatal/nonfatal stroke component adds a new component of atherosclerotic disease to 

the endpoint, a component that will demand additional work to collect during the 

course of the trial. With full recognition of this complexity, the investigators then 

proceed with the analysis plan for the study (Table 13.8). 

In this clinical trial which examines the effect of therapy on the occurrence 

of atherosclerotic cardiovascular disease, there are five statistical hypothesis tests. 

These five confirmatory hypothesis tests are divided into three classes that match 

the prospectively asked questions of the investigators: (1) the evaluation of the ef-

fect of therapy in the overall cohort, (2) the effect of therapy in each of the low risk 

and high risk subcohorts, and (3) the assessment of the dose–response relationship 

of the randomly allocated intervention. Type I error rates have been prospectively 

set for each of these classes of statistical hypothesis tests. For the effect of therapy 

in the overall cohort. the type I error rate is 0.025. The allocated type I error rate for 

the collection of hypothesis tests examining the effect of therapy for the low- and 

high-risk subcohorts is 0.020, the type I error rate for the dose–response evaluation 

is 0.008.  
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Table 13.8. Design for Cholesterol reduction trial: scenario 1.

Primary Cumulative Efficacy Alpha Power Sample 

Analyses control group (two–tailed) size

experience

Class 1

Total cohort 0.120 0.15 0.025 0.90 17,398

(CHD death)

D 1 = 0.25

Class 2

subgroups Available alpha 0.025

Combined endpoint 1* Allocated alpha 0.020

Low risk 0.200 0.20 0.012 0.95 7362

D s = 0.50

High risk 0.300 0.15 0.011 0.95 7948

D 2 = 0.30

Class 3

Dose response Available alpha 0.008

Combined endpoint 2** Allocated alpha 0.008

Dose 2 versus dose 1 0.350 0.12 0.005 0.90 8351

D dr = 0.50

Dose 1 versus placebo 0.350 0.12 0.004 0.90 8768

*CHD Death + nonfatal MI 

**CHD death + nonfatal MI + nonfatal stroke.

The determination of the effect of therapy in the total cohort is straight-

forward. The endpoint for this analysis is CAD death, which is expected to occur 

with a cumulative mortality rate of 0.120. The investigators believe that they must 

demonstrate a 15% reduction in the incidence of this event in order to persuade the 

medical and regulatory community of the therapy’s importance, and the power of 

this evaluation is to be 90%. The required sample size for this evaluation is 17,398 

patients. The investigators anticipate that there will be some dependence between 

the effect of therapy in the overall cohort and the evaluation of the effect of therapy 

in the low risk and high risk subcohorts. However, this degree of dependency (sig-

nified by D1 in Table 13.8) is very low for two reasons. First, the evaluation of the 

effect of therapy in the low- and high-risk subcohorts does not include all of the 

same patients as are included in the total cohort analysis. The second reason for the 

low level of dependency between the two statistical hypothesis tests is that the 

evaluation of the effect of therapy in the low-risk and high-risk subgroups uses a 

different endpoint (CAD death + nonfatal MI) than the CAD mortality endpoint 

used in the total cohort evaluation. As we saw in Chapter 11, the combination of 

these two influences serve as arguments to keep the level of dependency between 

the two classes of statistical hypothesis tests low.  

 The risk substrata assessments (Class 2 in Table 13.8) evaluate the effect 

of therapy in patients who are (1) at low risk and (2) at high risk of developing 
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atherosclerotic disease. Specifically, the cumulative event rate of combined end-

point 1 for low-risk patients on active therapy is compared to that endpoint’s event 

rate for low-risk patients assigned to placebo therapy. The analogous comparison is 

made for patients who are classified as being at high-risk. There are two points that 

we need to make about the utilization of the CAD death + nonfatal MI combined 

endpoint to be used in risk substrata analyses. The first is that the event rate in each 

of the low-risk and high-risk subcohort evaluations is greater than the event rate 

used in the analysis of the effect of therapy in the total cohort evaluation. This is 

anticipated since the event rate of the composite endpoint is greater than that of the 

component endpoint used in the class I analysis. The second point is that, within the 

subgroup analyses, the anticipated endpoint incidence rate of high-risk patients as-

signed to placebo therapy is greater than that of the low-risk, placebo-assigned 

patients. This is a natural consequence of the accurate assessment of the risk factors 

measured on each patient at baseline.  

However, we must also note that the efficacy required of the low-risk pa-

tients is greater than that designed into the evaluation of the effect of therapy in the 

high-risk patients. The occurrence of therapy-induced adverse events urged the in-

vestigators to require greater efficacy from the randomly allocated therapy. This 

decision is an affirmative attempt by the investigators to confirm that they will not 

focus on the measurement of an efficacy level that is too low and therefore does not 

provide an adequate counterbalance to the occurrence of adverse events in these 

patients.

A higher level of dependency (Ds) is incorporated to reflect the depend-

ency between the effect of therapy in the low-risk patients and the effect of therapy 

in the high-risk patients, primarily because the endpoint is the same between the 

two groups. Of the two evaluations, the evaluation of the effect of therapy for the 

low-risk group is assigned greater type I error than the effect of therapy within the 

high-risk substratum. Finally, power is high for each of the evaluations, increasing 

the likelihood that a finding of no therapy efficacy in either of the two evaluations 

in this concordantly executed trial accurately reflects the absence of efficacy in the 

population.

 The difference between the endpoints that are used for (1) the evaluation 

of the effect of therapy in the subgroup evaluations and (2) the dose response as-

sessments (which constitute the third class of confirmatory analyses in this clinical 

trial) require us to keep the measure of dependency (D2 = 0.30) low. Within class 3, 

there are two confirmatory statistical hypotheses that the investigators will carry 

out. The first is an evaluation of the ability of dose 2 to reduce the rate of athero-

sclerotic morbidity and mortality above and beyond the effect of the lower dose 1. 

The second hypothesis test compares the effect of dose 1 to placebo. The antici-

pated efficacies produced from these two hypothesis tests is realistically low; 12% 

for each test. As pointed out earlier, the investigators prospectively chose the com-

bined endpoint of CAD death + nonfatal MI + nonfatal stroke for the dose- 

response determinations since they require an endpoint whose relatively frequent 

occurrence offsets the combination of lower levels of efficacy and type I error rates.

 In this illustration, the combination of multiple analysis procedures per-

mits five confirmatory analyses for the effect of randomly allocated intervention in 
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this trial. If this trial is executed concordantly, then a finding that the study is posi-

tive for any of these five analyses permits the investigators to claim that the study is 

positive. Adequate statistical power is preserved for each of these analysis proce-

dures, permitting the investigators to affirm that hypothesis tests that do not lead to 

null hypothesis rejection represent strong evidence for the absence of efficacy (as 

opposed to the finding that the result is merely uninformative, a conclusion that 

would be forced upon the investigators if the analyses were underpowered.) The 

low-efficacy levels and type I error rates that are required for the evaluations of the 

dose–response relationships in this study are offset by the greater frequency of the 

event rate of the composite endpoint for that analysis, resulting in sample sizes that 

are achievable.  

 However, the penetrating ability of this clinical trial design to simultane-

ously provide confirmatory answers (as opposed to speculative hypothesis 

generation) to multiple prospectively identified questions comes at a cost. The in-

vestigators are required to identify not just all patients who report a CAD death, but 

those patients that have had an MI or a stroke. The burden of accurately classifying 

all patients with regard to these morbidity measures certainly and, perhaps pro-

foundly, increases the cost and difficulty of executing this study. At the conclusion 

of the study’s design, when the benefits and costs of carrying out the trial are 

weighed, the investigators will have to determine for themselves whether enough 

scientific fruit will be produced from the research tree that requires so much atten-

tion and care.  

13.6 Multiple Treatment Groups Revisited 
In Chapter 11, we focused on the use of multiple analysis procedures in the circum-

stance of multiple treatment group clinical trials. The following is one final 

example of the use of  these procedures in an innovative and unusual setting.  

Recent work has focused on the ability to improve upon the current state 

of the art for the management of CHF. This has involved the evaluation of the use 

of angiotensin receptor blockers (ARB) in addition and in replacement of ACE-i 

therapy. Clinical investigators are interested in the evaluation of the benefits of the 

combined use of an ARB and an ACE-i in reducing mortality from CHF. They are 

also interested in identifying any additional advantage that an ARB offers above 

and beyond that of ACE-i therapy. The prospectively declared primary endpoint for 

this study is the cumulative total mortality rate. There are to be three treatment 

groups in this clinical trial; (1) established therapy + ACE-I (ACE-i only), (2) es-

tablished therapy plus an ARB (ARB only) (3) established therapy + ACE-I + ARB 

(ACE-i/ARB).  

The investigators recognize that the use of ACE-i is the established ther-

apy for heart failure. One way this may be improved is to add ARB therapy to 

ACE-i therapy. An alternative would be to replace the ACE-i therapy with an ARB. 

However, since ARB therapy is already approved therapy for CHF, it is possible 

that the addition of ACE-i therapy may lead to an additional improvement in these 

patients’ survival. These three questions may be stated as follows: 
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Question 1:  Does the reduction in the total mortality rate observed in the ACE-

i/ARB treatment group exceed that produced by either ACE-i alone or 

ARB alone?  

Question 2:  Does the use of an ARB in any form (i.e., as a replacement for, or 

combined with captopril) confer a survival advantage over that af-

forded by captopril?) 

Question 3:  Does the mortality effect of the ARB exceed that of the ACE-i? 

An example of such an analysis plan would require that the type I error rate be 

prospectively allocated for each of the three analyses, and that each of these 

analyses should be adequately powered. The evaluation of Question 1 requires a 

comparison of the joint ACE-i/ARB group to the mortality effect that is observed in 

the ACE-i alone and ARB alone group when these latter two groups are combined. 

The answer to Question 2 requires a comparison of the combined effect of ACE-

i/ARB and the ARB alone group to the mortality experience of the ACE-i therapy 

group. Finally, the investigators wish to compare the mortality experience of the 

ARB group alone to the ACE-i group. Of course many other evaluations will be 

executed using a variety of combinations of treatment group comparisons and 

secondary endpoints. However the focus of the clinical trial is to identify 

confirmatory conclusions to Questions 1 through 3 (Table 13.9).  

Table 13.9. Design for angiotensin receptor blocker trial.

Primary Cumulative Efficacy Alpha Power Sample 

analyses control group (two–tailed) size

experience

Familywise error rate = 0.05

Analysis 1 Available alpha 0.300

Q1: Combined vs. individual use 0.210 0.15 0.030 0.95 10,526

Total cohort

D 1 = 0.44

Analysis 2 Available alpha 0.026

Q2: Any use of ARB versus ACE-i Allocated alpha 0.025

Total cohort 0.210 0.15 0.020 0.95 11,406

D 1 = 0.44

Analysis 3 Available alpha 0.006

Q3: Ind ARB vs. ind ACE-i Allocated alpha 0.006

ARB group and ACE-i group 0.210 0.15 0.006 0.95 12,155

 Patients will be followed for 3 years in this study. The investigators antici-

pate that the 3-year total mortality rate for patients in this trial will be 21%. The 

investigators choose an efficacy level of 15%. However, a different efficacy level 

selection will be made for Question 3. In this case, the investigators desire to dem-

onstrate that the effect of the ARB will be essentially equivalent to that of the ACE-
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i therapy. They therefore need to design this analysis so that the non-rejection of the 

null hypothesis is tantamount to equivalence of the two groups.   

Table 13.9 provides the plan for the execution of three confirmatory analy-

ses. The total sample size for this trial would be approximately 18,000, since 

Analysis 3 requires 12,155 patients, 6078 in each of the ARB-alone and ACE-i 

(alone) groups, and an additional 6078 patients would be recruited to the treatment 

group that is jointly exposed to the ARB and ACE-i. Analysis 1 will compare the 

total mortality rate for the joint therapy to the combined effect seen in the group ex-

posed to ARB alone, and the group exposed to the ACE-i alone. A type I error of 

0.03 is allocated for this evaluation. The dependency measure, D1, reflects the ob-

servation, that since the sample patients are used in analysis 2 as were used in 

analysis 1, there is some overlap in the type I error between the two tests. Using the 

dependence argument that we developed in Chapters 5 and 6, the available type I 

error level is 0.026 for the remaining two analysis Of this 0.026 type I error level 

selected, 0.025 is chosen as the type I error rate for the second evaluation. How-

ever, the continued dependence between the third analysis and the first two analysis 

produces additional type I error conservation, leaving 0.006 type I error available 

for the third analysis. Note that these are not hierarchal analyses. They do not have 

to be carried out in any specific order. Also, because the type I error was allocated 

prospectively and the familywise type I error rate was controlled, these are each 

confirmatory analyses. Thus, the study is positive if any of the three analyses are 

positive.

 An alternative analysis plan permits an expanded evaluation in Analysis I 

(Table 13.10). 

Table 13.10. Design for angiotensin receptor blocker trial.

Primary Cumulative Efficacy Alpha Power Sample 

analyses control group (two–tailed) size

experience

Analysis 1 Familywise error rate = 0.05

Q1: Combined vs. individual use Allocated alpha 0.030

Analysis 1A: Combined versus ARB 0.210 0.15 0.017 0.95 11,756

D 1 = 0.44

Analysis 1B: Combined versus ACE-i 0.210 0.15 0.016 0.95 11,833

D 1 = 0.44

Analysis 2 Available alpha 0.030

Q2: Any use of ARB versus ACE-i Allocated alpha 0.025

Total cohort 0.210 0.15 0.020 0.95 11,406

D 1 = 0.44

Analysis 3 Available alpha 0.006

Q3: Ind ARB versus. Ind ACE-i Allocated alpha 0.006

ARB  group and ACE-i group 0.210 0.15 0.006 0.95 12,155

In this setting, the evaluations of Analysis 1, which had comprised a single evalua-

tion, now require two evaluations. This leads to four confirmatory statistical 
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hypothesis tests. These tests will each have maximum type I error rates of 0.017, 

0.016, 0.020, and 0.006 respectively. Even though the sum of these error rates is 

greater than 0.05 (the sum is equal to 0.059), the FWER is conserved at 0.05 be-

cause of the overlap in the type I error events between these dependent statistical 

hypotheses. The sample size of the study has increased slightly to between 5500 

and 6000 subjects for each of the three treatment groups. 
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Chapter 14
Conclusions: The Two-Front War 

By describing useful research strategies in a fairly nonmathematical environment, it 

has been our goal to deepen the discernment and comprehension of physicians who 

are involved in clinical trials. We are cautiously optimistic that you as a clinical tri-

alist now understand the nature of the multiple analysis issue and are empowered to 

successfully create the research design and analysis environment necessary to ad-

dress the complicated problem of multiple analyses. Just as knowledge produces 

self-control and perseverance, it is our hope that superior understanding will reju-

venate intellectual discipline and consequently produce enhanced study designs. 

When designing a clinical trial, we as investigators commonly feel that we 

are fighting (or are caught in the middle of) a two-front war. On the one side is the 

requirement that the research effort should be productive, bearing a rich bounty of 

valuable results. In order to comply with the expectation that the investigator’s 

clinical trial should produce a satisfactory “return on investment,” the investigator 

genuinely desires to collect all of the information that is available and that can be 

collected on every patient in their research cohort. The natural tendency to use the 

clinical trial’s dataset to the fullest spawns many statistical hypothesis tests.  

We have also seen that epidemiologic timber can be added to fuel the fire 

that is driving the multiple testing engine. There are fundamentally sound motiva-

tions for the inclusion of dose–response analyses, the assessment of the effect of 

therapy on different but related endpoints, and the evaluations of possible therapy 

action mechanisms. Investigators who, after all, are in the business of research be-

cause of their natural, intensely felt desire to learn, want to supply good answers to 

these good questions.  

14.1 Compromise and Sampling Error 
However, this drive to carry out expansive, inquisitive analyses is blocked by statis-

tical concerns that make up the second front in the battle for the heart and mind of 

the investigator. The statistical concerns arise because we as investigators make a 

definite, though not formally recognized, compromise when we carry out research. 

We desire to study an entire population of patients in complete detail. For example, 

in a clinical trial studying a new heart failure therapy, we may wish to recruit all 

heart failure patients. However, logistical, financial, and ethical concerns preclude 

this effort. We therefore choose not to study the entire population of patients, but 

instead take a small sample from the large population. The process of drawing a 

sample helps on the one hand, but hurts on the other. The sample’s availability of-

fers the ability to carry out an executable research program on a relatively small 

number of subjects; however, the same process hurts by stealing from us the notion 
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that we as investigators can identify population effects with certainty. The same 

population can produce different samples, and since these samples contain different 

patients with different experiences, each sample’s results are different. Which sam-

ple is right? Sometimes the population produces, through the play of chance and the 

random aggregation of events, a sample that does not accurately reflect the therapy–

outcome relationship of the population, even though the sample was selected ran-

domly.  

We do not directly identify or measure this sampling error when we are 

examining a randomized participant, or entering that patient’s laboratoty results into 

a database, or computing a sample relative risk; we observe only the data. However, 

sampling error, like gravity, goes unseen but has powerful effects. The central con-

tribution of statistics to health research in general, and to controlled clinical trials in 

particular, is its guidance on research result interpretation in the presence of sam-

pling error. The successful application of statistics within clinical trials does not 

remove sampling error; sampling error is instead appropriately channeled into esti-

mates of effect size, standard errors, confidence intervals, p-values, and power. 

However, this sampling error segregation is only successful when the underlying 

assumptions on which these estimators are built have been satisfied [1].  

One of these critical assumptions is that the experiment must be executed 

concordantly (i.e., in accordance with its prospectively written protocol). The esti-

mators are reliable only if they are produced within a research environment in 

which the only source of variability is the sample-to-sample variability of the end-

point data. This assumption is violated when the clinical trial’s data choose the 

analysis plan, e.g., when there are mid-trial endpoint changes in response to a sur-

prise finding in the growing dataset, or in the case of data dredging. In these cases, 

the sample doesn’t just provide data for the endpoint, but exceeds this contribution 

by actually selecting the endpoint (e.g., choosing the only endpoint with a small p-

value). In this circumstance, our commonly used estimators are no longer valid; 

they have become newly distorted by this additional source of endpoint selection 

variability. If we give too much credence to what these disoriented estimators tell 

us, then we as investigators will lose our way [2].  

 The issue raised by multiple testing is one of propagation of type I error. 

Since there is a chance that a false answer is provided by the sample to the question 

the investigator has asked, the likelihood that at least one false answer is produced 

by our sample increases with the number of questions we ask, just as the probability 

of obtaining at least one head in a sequence of tosses of a coin grows as we con-

tinue to flip the coin. This error is critical in assessing the impact of an intervention 

that we study in a clinical trial on the population from which the clinical trial’s pa-

tients were obtained. Since the intervention will produce adverse events and most 

likely will have a financial cost associated with it, there must be some benefit that 

the intervention offers that will offset these disadvantages. The FWER,  is the like-

lihood of making at least one type I error among all of the hypothesis tests that the 

investigators carry out.  conveys to the investigators the likelihood that the therapy 

will not be effective in the population, i.e., that treated patients in that population 

will experience the adverse events of the medication, and pay the financial cost of 
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the therapy, but not retain its benefits. The FWER must be accurately measured and 

tightly controlled to ensure that its level is kept to a minimum. 

 Thus, investigators may seem to be in an intolerable position. As they de-

sign their clinical trial, these scientists are quite naturally motivated to answer all of 

the relevant issues that their dataset can address. However, they are simultaneously 

tightly bound by the compelling statistical arguments to abstain from this desire. 

Thirsting for answers to their scientific question, they may feel like the parched 

man who, when at last he comes upon the fresh mountain river, responds with 

amazement when he is given only a tiny cup to collect the water that he requires. 

What water is caught in the small statistical thimble, while refreshing, does not 

completely satisfy, and he watches in amazement and disappointment as the rest of 

the (data) stream flows by unused.  

14.2 The Handcuffs 
Investigators often feel as though the statistical concerns that are contained in the 

careful design of their clinical trial “puts the handcuffs” on them. My goal has been 

to demonstrate the wealth of design tools that are available to the trialists, providing 

some of the keys to release (or at least loosen) their shackles. A first principle in 

this process is that no team of investigators should be denied or discouraged from 

analyzing any component of the dataset that they desire. The unique combination of 

inquisitiveness, insight, and intuition that investigators possess should be encour-

aged, not repressed. However, it is best if these analysis plans are triaged so that the 

interpretation of the results are clear. There are two levels of triage: (1) planning, 

and (2) error control.  

 Is the analysis to be prospectively planned or data driven? The major ad-

vantages of prospectively planned analyses are that the estimates of effect size, 

confidence intervals, standard errors are trustworthy. Data-driven analyses are 

commonly carried out and are frequently useful, and these exploratory analyses are 

commonly our first data based view of future research paths. However, because the 

promulgated analyses are essentially chosen by the data (i.e., the investigator was 

not obligated to report the result of the analysis, but chose to report it because of the 

magnitude and direction of the finding) that is itself contaminated with sampling 

error, the results of such analyses can be misleading. Nonprospectively planned, 

exploratory results should be carried out and reported, but they must be clearly la-

beled as exploratory. They require confirmation before they can be integrated into 

the fund of knowledge of the medical community.  

 The second level of triage during the design phase of the clinical trial is 

carried out among the prospectively planned analyses, dividing them into primary 

analyses or secondary analyses. Primary analyses are those analyses on which the 

conclusions of the trial rest. Each of the primary analyses will have a prospectively 

set type I error level attached to it in such a way that the familywise error does not 

exceed the community accepted level (traditionally 0.05). The trial will be seen as 

positive, null (no finding of benefit or harm), and negative (harmful result) based on 

the results of the primary analyses. It is critical to note that a clinical trial can have 

more than one primary endpoint. If appropriately designed, the study can be judged 
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as positive, if any of those primary endpoints produces a p-value less than the test-

specific  level for that hypothesis test.  

Secondary endpoints do not control the familywise error, and each secon-

dary analysis is typically interpreted at nominal 0.05 levels. Secondary analyses, 

being prospectively designed, produce trustworthy estimates of effect sizes and p-

values. However, because secondary analyses do not control the familywise error, 

the risk to the population is too great for confirmatory conclusions to be based upon 

them. The role of secondary endpoints is to provide support for the primary end-

point findings, and not to serve as independent, confirmatory analyses. In the 

typical clinical trial, there are more exploratory analyses than there are prospec-

tively declared endpoints, and more secondary endpoints than there are primary 

endpoints (Figure (14.1) This is consistent with the statement that a small number 

of key questions should be addressed, accompanied by careful deliberation on the 

necessity and extent of adjustment for multiple comparisons [3].  

Figure 14.1. The role and relative number of analyses in a clinical trial.

Exploratory analyses

Secondary analyses

Primary

analyses

 Some would have us believe that innovative designs should permit analy-

sis tools, such as data mining or exploratory findings to be accepted as 

confirmatory. The foundation on which this book rests is that innovative designs are 

readily available when we stay tightly tethered to the principles of experimental de-

sign that have been in place for over two hundred years. The purpose of this text 

has not been to show investigators how to do statistical analyses—you as an inves-

tigator will in all likelihood not be doing your own analyses. The purpose has been 

to demonstrate how confirmatory analyses that address the question at hand may be 

obtained. The first and most fundamental component for this is clinical knowledge 

and research discipline. Statistical methodology cannot make up for critical short-

ages in these two areas.  
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Several tools are available to the investigator as they allocate type I error 

rates among the primary analyses of their clinical trial. Among the first is the un-

equal allocation of type I error levels. The Bonferroni procedure provides equal 

allocation of the  error among the several primary analyses. This typically pro-

duces type I error levels that are too small for some of the analyses, in turn 

generating a sample size that is beyond the attainable. Investigators can allocate 

type I error selectively among the different primary analyses. The only rules that 

they are obligated to follow are that the allocation be made prospectively and that 

the type I error levels be made to conserve the familywise error level .

 We have also explored the notion of hypothesis test dependency for the 

conservation of the type I error between the different primary analyses. The review 

of available procedures and the development of a new procedure in this text gives 

the investigator the opportunity to more efficiently allocate type I error levels 

among the K primary analyses which may be related to each other. Whichever tool 

the investigator uses, it must be prospectively designed and conservatively imple-

mented.  

 A formal examination of the use of combined endpoints reveals that these 

complicated implements are most effective when they (1) are clinically relevant, (2) 

are prospectively deployed, (3) are cohesive (i.e., the combined endpoint compo-

nents measure related but distinct aspects of the same disease process, (4) are each 

ascertained precisely and with superior quality, and (5) are each reported. The no-

tion of dependence between statistical hypothesis tests was especially useful here.  

 The application of these tools in turn demonstrated the utility of an alterna-

tive use of subgroup analyses. With the recognition that there are circumstances in 

which subgroup evaluations in controlled clinical trials need not be the evaluation 

of interactive effects, we found that the implements of (1) differential  allocation, 

and (2) the utility of combined endpoints were especially useful for the determina-

tion of whether a significant effect of therapy resided within a particular subcohort 

of interest. In this development, we engaged in a detailed evaluation of the role of 

efficacy of therapy in a clinical trial. The differential determination of efficacy is 

yet one more tool that the investigator can wield as she forges the design of her 

study. 

 It would be particularly useful to the disciplined investigator if the medical 

and regulatory community would revisit the notion of keeping the upper bound of 

the familywise error level at 0.05. All of the examples that we have explored in this 

book have been designed on the bedrock of the 0.05 boundary. However, as we saw 

in the Prologue, this “bedrock” is merely the loose stones of tradition. The 0.05 

familywise error level is inadequate to the task of producing a realistic cap on the 

error of making at least one mistake due to sampling error. If investigators are will-

ing to (1) triage their endpoints prospectively and (2) prospectively assign type I 

error to the primary analyses such that each test-specific  error is no greater than 

0.05, then a prospectively computed familywise error level greater than 0.05 (e.g., 

0.075 or 0.10) should be permissible. I have argued for this in the peer-reviewed 

literature [4 ], but have yet to discern any community movement to this idea.  

Finally, we must remember that clinical trial standards are not static but 

instead represent a fluid evolution of research principles and execution. An exami-
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nation of the clinical literature reveals that 200 years ago healthcare research was 

primarily, if not exclusively, case reports. This progressed to the appearance of the 

results of case series. The idea of a clinical trial with the use of randomization and a 

contemporaneous control group is relatively new, appearing only sixty years ago. 

During this process, mistakes have been made. A fair criticism of clinical trial 

methodology has been an over reliance on p-values. Unfortunately, confusion be-

tween confirmatory and exploratory analyses still reigns. Pocock [5] has correctly 

pointed out that concerns for multiplicity of type I error should be balanced. While 

we have not reached out destination, the development and maintenance of research 

discipline helps to ensure that we stay on the right path.  

References
                                                          

1.  Moyé, L.A. (2000) Statistical Reasoning in Medicine: The Intuitive P-value 
Primer. Spinger– Verlag.. 

2. Moyé, L.A. (2001) Random Research. Circulation.103:3150–3.

3.   Proschan, M.A, Waclawiw, M.A. (2000). Practical guidelines for multiplicity 

adjustment in clinical trials. Controlled Clinical Trials.21:527–539. 

4.  Moyé, L.A. (2000).  Calculus in Clinical Trials:Considerations and 

Commentary for the New Millenium.  Statististics in Medicine.19:767–779. 

5 .  Pocock, S.J.. (1997). Clinical Trials with multiple outcomes: a statistical per-

spective on their design, analysis, and interpretation. Controlled Clinical Trials

18;530–545. 



  385 

Appendix A 

 Case Reports and Causality  

A case report is simply a summary of the findings of an exposure–disease combina-

tion in a single patient and the communication of those findings to the medical 

community. Many times that communication contains insufficient information. In 

other circumstances, the data from this report can be voluminous and complex. This 

material can consist of a complete medical history comprising all symptoms and 

signs the patient had experienced, in addition to information both about the pa-

tient’s treatment and their ultimate disposition. A case series is a collection of case 

reports, linked together by a common thread (e.g., all of the patients were seen by 

the same doctor, or all patients were exposed to the same agent e.g., diet drugs).  

Case reports are somewhat paradoxical at the current stage of medical re-

search and practice. Although the findings from case reports are commonly 

criticized by researchers, who utilize sophisticated mathematics and design meth-

odology to examine exposure–disease relationships, carefully compiled case reports 

provide necessary observations from which clinicians and public health workers 

learn. Case reports remain the first data-based view of either a new disease or a po-

tential cure for an established disease. Despite substantial criticism, it is undeniable 

that case reports and case series are among the most time-tested, and useful tools 

epidemiologists have at their disposal to alert clinicians and the public to a possible 

health problem.  

For over 2000 years, the growth of medical knowledge has been fueled by 

the use and dissemination of case reports. Like fire, when used constructively, case 

reports are the fuel which has historically propelled medical progress. It is a device 

used first not by epidemiologists but by clinicians. This is not difficult to under-

stand. Medical practice at its heart has been a single concerned individual 

struggling to decide what was best for his patient. This was an immensely solitary, 

burdensome experience, requiring wrenching decisions about an individual’s care 

from an individual with incomplete knowledge. Often, regardless of the action the 

physician took their patient died. The one natural tool physicians had to distribute 

and thereby reduce the weight of the decision process was to share their experiences 

with one another. This shared experience is at the heart of the case report. A physi-

cian read (or listened to) the description of a patient with a particular combination 

of symptoms and signs from another physician, and learned that physician’s inter-

pretation of these findings and treatment of this patient. The physician then 

integrated this new external experience into his own fund of knowledge.  

A good case report is based on careful observation. From the earliest of 

times, the evolution of clinical medicine and epidemiology was based on careful 

observation. The heart of this approach is best captured by Celsus (circa A.D. 25) 

who stated that “Careful men noted what generally answered the better, and then 

began the same for their patients” [1]. 
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From that time on, and for the next 1800 years, through the Middle Ages, 

the Renaissance, the Industrial Revolution, and the Age of Discovery and Enlight-

enment, advances in clinical medicine occurred through the careful principle of 

observation and recording embodied in the case reporting systems. The discovery 

that gunshot wounds could be healed without the application of burning hot oil [2] 

demonstrated that case reports can uncover new information and overturn prior er-

roneous principles in medicine.  

It wasn’t until the nineteenth and twentieth centuries, after 1800 years of 

the evolution of case reports, that modern statistical and epidemiological tools 

evolved to the point of providing a new, more useful perspective to healthcare re-

search. However, even after the advent of these case control studies, new diseases, 

appearing in unusual settings, were successfully identified and their cause estab-

lished using the method of case reporting. Examples of the more spectacular uses of 

case report methods to establish the cause of disease would be:  

(1) An outbreak of a very rare form of bone cancer in young women watch-dial 

painters in the Chicago area in the 1930s. It was established that radium used 

to paint the watch dial was the cause [3].  

(2) From the 1930s to the 1960s, a chemical company dumped tons of mercury 

into Mina Mata Bay in Japan. Thousands of people living around the bay de-

veloped methyl mercury poisoning through the consumption of contaminated 

fish. The victims suffered from severe neurological damage, that later be-

came known as Mina Mata Disease. Symptoms of this disorder include 

tingling sensations, muscle weakness, unsteady gait, tunnel vision, slurred 

speech, hearing loss, and abnormal behavior such as sudden fits of laughter. 

The establishment that toxic fish ingestion was the cause of mercury poison-

ing in the Japanese fishing village of Mina Mata in the 1950s was established 

through the scientific examination of case reports [4]. 

(3) The use of case reports in establishing the cause of a disease was the findings 

of Lenz [5] that thalidomide ingestion by pregnant women causes the birth 

defects phecomelia and achondroplasia.  

(4) The demonstration that the acute, debilitating pneumonia inflicting a collec-

tion of veterans attending an American Legion convention in Philadelphia, 

Pennsylvania in 1976 was due to a heretofore unknown bacterium, Le-

gionella pneumophila. Although clinical trial methodology was well 

accepted as a research tool at this time, case report methodology accom-

plished the identification of the cause and cure of this disease. 

(5) The identification of the relationship between tick bites and Lyme disease. 

There are over 16,000 cases per year of Lyme disease, but its cause went 

unrecognized until the 1990s.  
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Case reports in combination with careful observation and deductive rea-

soning to this day continue to provide important insight into the cause of disease. A 

major reason they continue to be essential in the presence of more sophisticated re-

search techniques is because at their root, well-documented case reports use the best 

skills of epidemiology and clinical medicine—skilled observation and careful de-

ductive reasoning. In each of these circumstances, the use of case reports 

successively and accurately warned the medical community of an exposure that 

caused a debilitating disease or a birth defect. Even though modern epidemiological 

models were available, these advanced tools were unnecessary for a clear view of 

the exposure–disease relationships in the aforementioned circumstances. The argu-

ment that sophisticated epidemiological studies are always required to build a 

causal argument for disease is defeated by these forceful examples from history.  

The utility of case reports and case series has taken on a new sense of ur-

gency in the healthcare issues of today. Case reports are critical in quickly 

identifying the causes of disease. Today, citizens of New York City and the sur-

rounding environs are not asked to await the results of a large scale controlled 

clinical trial to provide conclusive evidence that the constellation of symptoms 

known as West Nile fever is caused by the West Nile virus, itself spread by a mos-

quito. The utilization of modern molecular techniques in concert with case 

reporting systems identified the link between the mosquito and the outbreak of dis-

ease in the northeastern United States. In Texas, the scientific community has not 

been required to wait for an epidemiological study to determine if the annual ap-

pearance of fever, malaise, convulsions, and coma are due to St. Louis encephalitis 

virus, spread by the mosquito. Careful, patient work by epidemiologists has cor-

rectly obviated a requirement for large epidemiological trials in these critical public 

health areas.  

A.1 Causality Tenets 
The fact that case reports are so useful in demonstrating the cause of a disease begs 

the question, What issues must be addressed in establishing that an exposure causes 

a disease? Essentially, efforts to understand and articulate the arguments necessary 

to construct a causality thesis have been long discussed and debated. In 1965, Hill 

[6] described the nine criteria for causality arguments in health care. These nine 

rules or tenets are remarkably and refreshingly devoid of complex mathematical 

arguments, relying instead on natural, honest intuition and common sense for the 

inquiry into the true nature of a risk factor–disease relationship. The questions Dr. 

Hill suggested should be asked make good sense. Are there many disease cases 

when the risk factor is present, and fewer disease cases when the risk factor is ab-

sent? Does a greater exposure to the risk factor produce a greater extent of disease? 

Other questions asked by Hill explore the “believability” of the relationship. Some 

of these are: Is there a discernible mechanism by which the risk factor produces the 

disease? Have other researchers also shown this relationship? Are there other such 

relationships whose demonstration helps us to understand the current risk factor– 

disease relationship? The nine precise Bradford Hill criteria are: (1) strength of as-

sociation, (2) consistency, (3) specificity, (4) temporality, (5) biologic gradient, (6) 
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biologic plausibility, (7) biologic coherence, (8) experimental evidence, (9) anal-

ogy. 

1. Strength of association 

This tenet requires that a greater percentage of patients who have been exposed to 

the risk factor develop the disease than patients unexposed to the risk factor. Al-

though this is commonly addressed by epidemiological studies that produce relative 

risks or odds ratios, we will see later that, in very clear circumstances, with defin-

able, predictable conditions, this can be satisfied with a case series.  

2. Consistency with other knowledge 

Consistency requires that the findings of one study be replicated in other studies. 

The persuasive argument for causality is much more clearly built on a collection of 

studies involving different patients and different protocols, each of which identify 

the same relationship between exposure to the risk factor and its consequent effect. 

There are numerous examples of collections of studies with different designs and 

patient populations, but that nevertheless successfully identify the same hazardous 

relationship between an exposure and disease. Identification of case series involv-

ing different series of patients in different countries and different cultures—yet each 

series producing the disease after the exposure would satisfy this criteria. Since re-

search findings become more convincing when they are replicated in different 

populations, different studies that examine the same exposure–disease relationship 

and find similar results add to the weight of causal inference.  

3. Specificity 

The specificity of a disease is directly related to the number of known causes of the 

disease. The greater the number of causes of a disease, the more nonspecific the 

disease is, and the more difficult it is to demonstrate a new causal agent is involved 

in the production of the disease. The presence of specificity is considered suppor-

tive but not necessary, and epidemiologists no longer require that the effect of 

exposure to an agent such as a drug be specific for a single disease. However, the 

more specific the disease, the more useful the appearance of a case series. We will 

explore this issue later in this appendix.  

4. Temporal relationship 

Exposure must occur before the disease develops for it to cause that disease. A 

temporal relationship must exist in order to convincingly demonstrate causation. 

Protopathic bias (drawing a conclusion about causation when the disease process 

precedes the risk factor in occurrence) can result without appropriate attention to 

the condition. This criterion can be clearly satisfied by a case report that accurately 

documents that the exposure occurred before the disease.  

5. Biologic gradient (dose response)  

This assumes that the more intense the exposure, the greater the risk of disease. 

However, a dose–response relationship is not necessary to infer causation.  
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6. Biologic plausibility 

There should be some basis in the scientific theory that supports the relationship 

between the supposed “cause” and the effect. However, observations have been 

made in epidemiological studies that were not considered biologically plausible at 

the time but subsequently were shown to be correct.  

7. Biologic coherence 

This implies that a cause–and–effect interpretation for an association does not con-

flict with what is known of the natural history and biology of the disease.  

8. Experimental evidence

This would include in vitro studies, laboratory experiments on animals as well as 

human experiments. Experimental evidence also includes the results of the removal 

of a harmful exposure. These are termed challenge–dechallenge–rechallenge ex-

periments 

9. Analogy 

This would include a similarity to some other known cause–effect association.  

It is important to note in the application of these tenets that satisfaction of 

all nine is not required to establish to the satisfaction of the medical community that 

a causative relationship exists between the exposure and the disease. Hill himself 

stated:

None of my nine viewpoints can bring indisputable evidence for or 

against the cause–and–effect hypothesis, and none can be required 

as a sine qua non.

The second, and somewhat surprising observation is that not a single one 

of these tenets requires that an epidemiological study (e.g., a case-control study) be 

executed to satisfy these tenets. It is even possible for a strength of association tenet 

to be satisfied by a well-chosen case series.1 Some of the tenets were designed with 

a case report in mind. For example, the tenet of experimentation was developed to 

be satisfied by a challenge–dechallenge–rechallenge experiment. 

There is no question that case reports can and indeed have been subject to 

criticism. In general, there are three main categories of criticisms of case reports. 

The first is that case reports and case series do not provide quantitative measures of 

the relationship between an exposure and a disease. While this is in general true, the 

historical examples of thalidmide exposure and birth defects, or toxic fish exposure 

and mercury poisoning demonstrate that, in selected instances, complicated mathe-

matics are not necessary to provide clear evidence of a relationship between 

exposure and disease.  

A second criticism of case reports is that they do not rule out other, com-

peting causes of disease. The implication of this criticism is that case reports, 
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If all of the disease occurs among the exposed, and the disease is simply not seen in the un-

exposed, a de facto infinite odds ratio is produced from the case series. 
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because they reflect a finding in one individual, cannot possibly be known to have 

its implications extended to a larger population. One cannot deny that the best 

minds in cardiology, epidemiology, and biostatistics believe that large, expensive 

clinical trials, despite the burden they place on healthcare resources, are required to 

evaluate the relationship between elevated cholesterol levels and MI’s. Why aren’t 

case reports sufficient for a causality argument in this setting?  

This is a very useful criticism and requires further evaluation. In fact, case 

reports lose their utility when the disease has many causes. We call a disease cause-

specific if it has one cause, and cause-nonspecific (or just nonspecific) if it has mul-

tiple causes. Examples of cause-specific diseases are (1) the occurrence of fetal 

phecomelia with maternal thalidomide ingestion, (2) malignant pleural meso-

thelioma and aspestos exposure and, (3) cinchonism that is unique to quinine 

exposure. In these circumstances, the identification of a disease that occurs only 

with the exposure defines the optimum utility of case reports. On the other hand, 

diseases such as atherosclerotic cardiovascular diseases have multiple contributing 

factors (genetics, obesity, cigarette smoking, diabetes, elevated lipid levels, and hy-

pertension) requiring different data than that supplied in case reports to identify a 

new causative agent.  

However, although it is clear that when a disease has many causes it can be 

difficult if not impossible to identify which cause was precisely the cause that ex-

cited the production of a disease in a given patient, one can often exclude other 

causes if there are only a few of them. Consider acute liver failure in the presence 

of diabetes. Acute liver failure does not occur as a well-known consequence of dia-

betes. If the common causes of acute liver failure can be removed as possibilities, 

the way is then open for establishing a new cause for the malady.  

A.2 Do Case Reports Prove Causality? 
A third and final criticism of case reports is the implication that by their very na-

ture, case reports are unscientific. Consider the following quote from the Texas 

Supreme Court in the Havner decision:  

The FDA has promulgated regulations that detail the requirements for 

clinical investigations of the safety and effectiveness of drugs. 21 C.F.R. 

§314.126 (1996). These regulations state that “isolated case reports, ran-

dom experience, and reports lacking the details which permit scientific 

evaluation will not be considered.” Id. §314.126(e). Courts should likewise 

reject such evidence because it is not scientifically reliable. 

This has led to the unfortunate interpretation that all case reports are not scientifi-

cally reliable. In fact, when case reports are isolated, random, and lacking in 

scientific detail, they make no useful contribution to our fund of knowledge about 

the risk-factor disease relationship. However, case reports can be clustered, spe-

cific, and provide great attention to detail, thereby imparting useful information 

about the relationship between a risk factor and a disease. A fine example of such a 

case report is that of Monahan [7], who provided a clear measurement of the effect 

of the two drugs, Seldane and Ketoconazole, and the occurrence of dangerous heart 
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rhythms. This case report was obtained in scientifically controlled conditions, clari-

fying the mechanism by which the Seldane–Ketoconazole relationship could cause 

sudden death. Yet another example of the value of a case series was the identifica-

tion of 24 patients in the upper Midwest United States by Heidi Connolly who had 

both exposure to the diet drug fenfluramine (fenphen) and heart value damage [8]. 

These case reports were not isolated but clustered2. Important detail was provided 

concerning the patients’ medical history and exposure to the drugs. The patients 

underwent special studies of their hearts (echocardiography). In five cases, the heart 

valves themselves were recovered after the patients had undergone surgery and 

these heart valves were examined in a methodological, objective fashion. There was 

nothing unscientific about the evaluation of the patients in the Connolly case series. 

Although this study was followed by epidemiological studies, the findings of Con-

nolly et al. and their implication that heart valve damage is caused by the 

fenfluramines have not been debunked.  

Yet another example of the contribution of a scientific case control study 

was that of Douglas et al. [9], who demonstrated, again, under controlled, scientific 

settings, that the diet drug fenfluramine would consistently increase blood pressure 

in the pulmonary circulation of patients. This suggested that fenfluramine could be 

the cause of primary pulmonary hypertension. This study was followed by the case 

series of Brenot [10]. Although some have argued that this was not sufficient evi-

dence for causality, the large epidemiological study that followed [11] validated the 

associations identified by the case report of Douglas or the case series of Brenot.  

It is important to note that case reports have added value when they appear 

in the peer-reviewed literature. This is a sign that the study’s methodology is con-

sistent with the standard research procedures accepted by the scientific community. 

These articles must be given a greater priority than publications in non-peer-

reviewed journals. Peer-reviewed journals also are superior to abstracts, that are 

themselves only brief, preliminary reports of non-peer-reviewed work. 

The clear message from advances in scientific methodology is that good 

practice can produce useful results regardless of the methodology employed. While 

it is true that case reports, when shoddily documented or slovenly interpreted, will 

produce little of value, the criticisms are not specifically crafted for case reports but 

applicable as well to large epidemiological studies and placebo-controlled random-

ized clinical trials. Each of these scientific tools of investigation must be wielded 

carefully to be effective. 

                                                          
2

Examples of important information provided by clustered case reports are those of Lyme 

disease and of the illness caused by the Hanta virus.  
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Appendix B 

Estimation in Random Research

B.1 Introduction 
The purpose of this appendix is to document the assertion made in Chapter 2 that 

the random research paradigm perturbs our commonly used estimators in clinical 

trials. In Chapter 2, the motivation for the prospective identification of a research 

plan was developed from its foundations. In that chapter, we saw that the principle 

reason for the prospective choice of the analysis plan of a clinical trial was to keep 

that plan from being shifted, twisted, or otherwise altered by post-randomization 

events. Fixing the analysis plan during the design phase of the trial anchors it, keep-

ing the plan unperturbed by the suggestions of trends presented by the incoming 

data stream. Central to this thesis is the acknowledgment that the urge to respond to 

incoming data can be irresistible: it is difficult for an inquisitive investigator to be 

unresponsive to the trends suggested by the incoming data.1

 Without the existence of a firm tether on the analysis plan, this plan will be 

caught up in the trends produced by sampling error in the incoming data. Since the 

trends produced by sampling error are indistinguishable from the systematic trends 

in the sample that reflect population findings, the investigator will be uncertain as 

to what she is responding a true effect or a spurious one. Like a feather caught up 

in the current of a stream, the analysis plan will be pushed, pulled, and twisted cha-

otically by random sampling error, in the end producing an unrecognizable and un-

generalizable result. Therefore, in a clinical trial that contains multiple analyses, the 

procedure that governs their interpretation must be specified a priori and must be 

rigorously designed if its results are to add to our corpus of knowledge about the 

disease under investigation.  

 As pointed out in Chapter 2, the estimators commonly used in statistics 

and epidemiology do not serve well when the analysis plan is chosen by the data. 

These estimators fail because they are constructed to function when the only vari-

ability is sampling variability not analysis plan variability. The purpose of this 

appendix is to demonstrate the effect of one aspect of analysis plan variabil-

ity endpoint selection variability on the estimator of an endpoint. In this 

demonstration, we will first identify the endpoint event rate in the circumstance of a 

fixed research paradigm (i.e., the endpoint was chosen prospectively and remained 

                                                          
1

The proper place for summarization of these exploratory analyses is in the exploratory por-

tion of the results section of the manuscript or presentation as discussed in Chapter 4.  
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unchanged), and then examine the event rate estimator in the random research para-

digm. This demonstration will reveal that the estimator to be used in the random 

research paradigm is different than that derived for the fixed research setting. Since 

the best estimator for a situation is the estimator derived for that situation, fixed es-

timators should be avoided in the random research setting. Therefore, if only fixed 

estimators are available, the random research environment should be avoided.  

B.2 Dichotomous Clinical Events 
Assume a clinical trial is carried out to measure the effect of an intervention on a 

clinical event of interest (e.g., mortality). The trial has two arms, a placebo arm and 

an active arm. In order to examine the effect of therapy in this study, the cumulative 

event rate has to be computed in each of the control arm and the active arm and 

then compared across the two arms. This demonstration will derive the cumulative 

event rate in the placebo group in the fixed research paradigm, and then derive it for 

each of two random research paradigms, pointing out where sampling error exerts 

its influence.  

B.2.1 Event Rate for the Fixed Research Paradigm 
In the fixed paradigm, the endpoint is chosen prospectively, and the choice is not 

influenced by the data. Assume that the prospective choice for the endpoint in this 

study was total mortality. In the placebo group assume that there are nc patients. 

Each of these patients nc patients can either survive the trial or die during the trial. 

Let i = 1, 2, …, nc index the nc patients. Then describe the survival experience of 

each patient by xi through the use of the following definition  

        
0 ,

1 .

th

i

th

i

x if the i patient survives the trial

x if the i patient dies during the trial
                       (B.1)               

This is a useful device. For example, the number of patients who have died in the 

placebo group is simply
1

cn

ii
x . What we desire is an estimate of pc, the cumula-

tive proportion of patients who died in the control group.  

 In order to proceed, we invoke one of the simplest probability distributions 

to use, the Bernoulli distribution. The probability that xi = 1, written as P [xi = 1] = 

pc. This can be written as 

1
[ ] 1 ii

xx

i c cP x p p  (B.2) 

From expression (B.2) we see that P[xi = 0] = 1 – pc, and the P[xi = 1] = pc. This is 

where sampling error enters our consideration. By the beginning of the trial, we 

have chosen the endpoint of total mortality. However, we do not know which pa-

tients in the research sample will die. In our sample, patients x1, x20, and x103 could 

die. In another sample, x1, x20, and x103 could have survived, but x11, x35, x56, and x190

will have died. This is the sample-to-sample variability: we do not know, and it is 
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impossible to predict, which patients will die in each sample. However, once we 

have chosen the endpoint, the probability distribution governing the occurrence of 

that clinical endpoint is the same from sample to sample: P[xi] = pc.

 This easy to use probability distribution nicely handles the straightforward 

value of xi for each individual. However in this trial, we must focus on not just a 

single one of the xi’s but all of them jointly. This is because it makes sense to use 

the maximum information available, or all nc patients in the control group, to esti-

mate pc. We do this by invoking the property of independence, i.e., knowledge of 

the death of one individual tells us nothing about whether another specific individ-

ual will survive the trial or not. For this we turn to the likelihood function  

1 2 3, , , , nL x x x x which can be written as 

1

1
1

2 3

1

1
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                       (B.3) 

and we write

1
1

1 2 3
, , , , 1 ,

nc
nc

i
c ii

i

x
n x

n c cL x x x x p p                        (B.4) 

Our job is to estimate pc using our collection of placebo data 
1 2 3
, , , , nx x x x . To 

accomplish this, we will maximize the likelihood function (B.4). The work pro-

ceeds smoothly if we first take the log of each side of (B.4) 

1
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L x x x x p p

x p n x p

            (B.5) 

We now take a derivative of each side of  (B.5) with respect to pc.
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We find the maximum by solving 
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for pc. Add the term 

1

1

cn

c i
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to each side of  (B.7), and cross multiply to find 
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and we find that the best estimator *

cp  of the probability of death pc based on our 

sample of data is 

* 1( )

cn

i

i

c

c

x

p f
n
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where * ( )cp f represents the estimator2 for pc under the fixed research paradigm.  

B.2.2 Event Rates in Random Research
How does the derivation presented above change in the random research paradigm? 

We will modify the derivation provided in the previous section, but this time, the 

primary endpoint will not be chosen prospectively. Therefore, our goal will be to 

find * ( ),cp r an estimator of the primary endpoint event rate under the random para-

digm. We will change the experiment in the previous section in the following 

manner. Rather than there being one primary endpoint that was prospectively de-

termined, let there be two endpoints (total mortality and stroke) competing to be the 

single primary endpoint. The investigator will choose one of these two endpoints as 

the primary endpoint based on the results of the study and compare the cumulative 

incidence rate of that endpoint across the two treatment groups. We will estimate 

the cumulative event rate in the placebo group under this random paradigm.  

 Beginning this development, we seen at once that we have an immediate 

departure from the derivation in the previous setting. In the fixed paradigm, we 

could define xi as denoting whether the ith patient died or not. However, in this 

study, we are not sure which endpoint we will use as the primary endpoint, death or 

stroke. This uncertainty represents a new source of variability not present in the 

fixed research paradigm. One clear way to handle this is do define a new quantity, 

reflecting this additional source of endpoint variability. Define  as the endpoint 

selection variable that we will allow to take only two values, one or zero. If total 

mortality is to be the selected endpoint, then  = 1. If stroke is to be the endpoint, 

then  = 0.  

 Once we know the value of  we can proceed with the estimator. If, for 

example, we know that  = 1, then the primary endpoint is total mortality and we 

can define our estimator as 

* 1

cn

i

i

c

c

x

p
n

.

However, if  = 0, then the primary endpoint of the study will be the occurrence of 

a stroke, and we will find 

* 1

cn

i

i

c

c

y

p
n

where yi is defined as yi = 1 if the ith patient had a stroke and yi = 0 if the ith patient 

had no stroke during the course of the trial.

                                                          
2

This is called the maximum likelihood estimator, since it is the estimator that maximizes the 

likelihood of the observed data set. It turns out that this estimator is also unbiased and has the 

lowest variance of any other unbiased estimator. 
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 The difficulty here is that, just as we do not know at the beginning of the 

clinical trial whether any particular patient will have an event during the course of 

the trial, we likewise do not know whether the total mortality endpoint or the stroke 

endpoint will be chosen as the primary endpoint of the study. In the fixed research 

paradigm, the number of primary endpoints was a function of sampling error. In 

this random paradigm the choice of the endpoint and the number of endpoints are 

both left to sampling error. One way for us to proceed is to admit that we don’t 

know whether  will take the value zero (stroke will be the primary endpoint) or the 

value one (total mortality endpoint will be the primary endpoint), and use probabil-

ity to reflect this uncertainly. Thus we can define P[  = 1] + P[  = 0] = 1. In 

addition, we know that when  = 1, a good estimator for pc is * 1

c

c

n

ii

c

x
p

n
, and 

when  = 0, a good estimator for pc is * 1

cn

ii
c

c

y
p

n
. Thus we can write * ( )cp r as 

1
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n
when  = 1 and 1
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n
 when  = 0. Thus 

* * *( ) | 0 0 | 1 1 .c c cp r p P p P                 (B.9) 

But we know * | 0cp : it is just the estimator of pc when the primary endpoint of 

the study is stroke. Similarly, * | 1cp is 1

cn

i

i

c

x

n
, the estimator of pc when the pri-

mary endpoint of the study is total mortality. Substituting these quantities into  

(B.9) reveals 
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                          (B.10) 
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This can be written as 
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Examine the difference between the two estimators * ( )cp f and * ( ).cp r  For the fixed 

paradigm when total mortality was prospective selected, the estimator for the pri-

mary endpoint * ( )cp f in the placebo group was simply the proportion of patients in 

the placebo group who died. In this random paradigm, this more complicated esti-

mator is the number of strokes plus a function of the difference between the number 

of deaths and the number of strokes divided by the total number of patients in that 

treatment group. We also must acknowledge at this point that we have no way to 

estimate P [  = 1], a necessary quantity for the computation of * ( )cp r . If we assume 

that we are just as likely at the end of the trial to choose total mortality as the pri-

mary endpoint as we would choose stroke as the primary endpoint,3 then  P[  = 1] = 

0.5 and the estimator under the random paradigm becomes 

1 1

* 1 2
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c c
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n n

i in
i i
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i

c

c

x y

y

p r
n

                             (B.12) 

We must keep in mind that as peculiar as (B.12) appears, it is the appropriate esti-

mator to use in the random research setting of this section. Thus, if at the end of this 

hypothetical clinical trial, there are 2200 patients randomized to the placebo group 

of the study, and 200 patients randomized to placebo therapy die, and 75 placebo 

patients have strokes, then * 200( ) 0.091
2200cp f , while  

                                                          
3

This may be a completely unreasonable assumption. It is difficult to foresee what the likeli-

hood is that, at the end of the trial, an analysis will demonstrate a mortality effect when the 

effect of therapy on the stroke endpoint is null. One of the  difficulties of this paradigm is 

choosing and justifying the value of P [  = 1]. 
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1 1

* 1 2
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75 62.52 0.063.
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In this setting, * ( )cp r is the preferred estimator, although its interpretation is ex-

tremely problematic. The random research estimator is a function of the difference 

between the number of patients who died in the study and the number of patients 

who suffered strokes. The clinical interpretation of this endpoint is very difficult, 

especially in light of the fact that a patient may have suffered a stroke and died. 

Note that * ( )cp r is only as accurate as our estimate of P[  = 1] and that, unless we 

know that P [  = 1] = 1, * *( ) ( ) 0.091c cp r p f .  Obviously, test stastistics and p-

values are also influenced by these considerations also.  

Table B.1.  Random research estimator of cumulative incidence.

the primary endpoint.

P[  = 1] Random estimator

of the primary endpoint

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

The estimator increases as the probability that the 

mortality endpoint is chosen as the primary endpoint increases.

0.034

0.040

0.045

0.051

0.080

0.085

0.091

0.057

0.063

0.068

0.074
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B.3 Hypothesis Testing 
When we move from estimation to hypothesis testing, the implications of fixed and 

random paradigms continue to diverge. In the fixed research paradigm, we obtain 

an estimate of the cumulative mortality rate in the treatment group *

tp  for the nt pa-

tients randomized to active therapy and construct the following test statistic to 

evaluate whether the population from which the sample was drawn contains differ-

ences in the mortality rates between those treated with control therapy and those 

treated with active group therapy.  

* *

* * * *1 1

c t

c c t t

c t

p p

p p p p

n n

 (B.14) 

The test statistic in (B.14) is covered in standard introductory statistical textbooks 

and is easy to compute and understand. Part of the reason for its ease of use is that it 

is easy to find the variance of *

cp ,
* *

* 1c c

c
c

p p
Var p

n
. However, the variance com-

putation is problematic for  

1 1 1*
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c c cn n n
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i i i

c

c

y x y P

p r
n

 which is the estimator derived under the random research paradigm. One reason for 

the difficulty is that deaths and strokes may not be independent of each other. The 

occurrence of a stroke may increase the likelihood of subsequent death, and of 

course, death precludes a following stroke. These relationships between the two 

endpoint complicates the interpretation of this endpoint. The test statistic for this 

random paradigm will be very difficult to construct, and more complex than that of 

the fixed research paradigm. Also, we continue to be bedeviled by the assessment 

of the P[ =1], a quantity that must be estimated in order to calculate * ( ).cp r  In all 

likelihood, this quantity may have a variance attached to it as well, further deepen-

ing the enigma of random analysis.4

 In this development, clearly the fixed paradigm with prospectively stated 

endpoints and analysis plan is preferred. Its estimators are easily constructed, intui-

tive, and lead to uncomplicated comparisons between the control and treatment 

groups in the clinical trial. However, if the random paradigm is to be employed es-

timators of event rates are complicated and difficult to interpret, and hypothesis 

                                                          
4

Those who work in the Bayesian field recognize this problem, and often respond by placing 

a probability distribution on the value of P[  = 1], e.g., a beta distribution. However, this ma-

neuver is little help to us here, since this probability distribution will have parameters that 

would themselves  require estimation and justification. Unfortunately, a deeper level of 

parameterization does not solve our problems, but instead pushes it further away.  
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testing can be burdensome. To best way to avoid these difficulties is to avoid the 

random paradigm.  
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 Relevant Code of Federal Regulations

The following are excerpts from the Code of Federal Regulations, providing the 

language from which guidelines are generated for private industry as they develop 

therapeutic agents and devices. Two provisions are provided:  

(1) Indications Section of the Label for Prescription Drugs, and  

(2) Adequate and Well-Controlled Trials. 

C.1 Indications for Prescritpion Drugs 
Subpart B–Labeling Requirements for Prescription Drugs and/or Insulin 

Sec. 201.57 Specific requirements on content and format of labeling for human pre-

scription drugs. 

(c) Indications and Usage.  

(1) Under this section heading, the labeling shall state that: 

(i)    The drug is indicated in the treatment, prevention, or diagnosis of a recog-

nized disease or condition, e.g.,, penicillin is indicated for the treatment of 

pneumonia due to susceptible pneumococci; and/or 

(ii)   The drug is indicated for the treatment, prevention, or diagnosis of an im-

portant manifestation of a disease or condition, e.g.,, chlorothiazide is 

indicated for the treatment of edema in patients with CHF; and/or 

(iii) The drug is indicated for the relief of symptoms associated with a disease 

or syndrome, e.g.,, chlorpheniramine is indicated for the symptomatic 

relief of nasal congestion in patients with vasomotor rhinitis; and/or 

(iv)  The drug, if used for a particular indication only in conjuction with a pri-

mary mode of therapy, e.g.,, diet, surgery, or some other drug, is an 

adjunct to the mode of therapy. 

(2) All indications shall be supported by substantial evidence of effectiveness based 

on adequate and well-controlled studies as defined in Sec. 314.126(b) of this chap-

ter unless the requirement is waived under Sec. 201.58 or Sec. 314.126(b) of this 

chapter. 

(3) This section of the labeling shall also contain the following additional informa-

tion: 



404 Appendix C: Relevent Code of Federal Regulations 

 (i)   If evidence is available to support the safety and effectiveness of the drug 

only in selected subgroups of the larger population with a disease, syn-

drome, or symptom under consideration, e.g.,, patients with mild disease 

or patients in a special age group, the labeling shall describe the available 

evidence and state the limitations of usefulness of the drug. The labeling 

shall also identify specific tests needed for selection or monitoring of the 

patients who need the drug, e.g.,, microbe susceptibility tests. Information 

on the approximate kind, degree, and duration of improvement to be an-

ticipated shall be stated if available and shall be based on substantial 

evidence derived from adequate and well-controlled studies as defined in 

Sec. 314.126(b) of this chapter unless the requirement is waived under 

Sec. 201.58 or Sec. 314.126(b) of this chapter. If the information is rele-

vant to the recommended intervals between doses, the usual duration of 

treatment, or any modification of dosage, it shall be stated in the ``Dosage 

and Administration'' section of the labeling and referenced in this section. 

 (ii)  If safety considerations are such that the drug should be reserved for cer-

tain situations, e.g.,, cases refractory to other drugs, this information shall 

be stated in this section. 

 (iii)  If there are specific conditions that should be met before the drug is used 

on a long-term basis, e.g.,, demonstration of responsiveness to the drug in 

a short-term trial, the labeling shall identify the conditions; or, if the indi-

cations for long-term use are different from those for short-term use, the 

labeling shall identify the specific indications for each use. 

 (iv)  If there is a common belief that the drug may be effective for a certain use 

or if there is a common use of the drug for a condition, but the preponder-

ance of evidence related to the use or condition shows that the drug is 

ineffective, the Food and Drug Administration may require that the label-

ing state that there is a lack of evidence that the drug is effective for that 

use or condition. 

 (v)  Any statements comparing the safety or effectiveness, either greater or 

less, of the drug with other agents for the same indication shall be sup-

ported by adequate and well-controlled studies as defined in Sec. 

314.126(b) of this chapter unless this requirement is waived under Sec. 

201.58 or Sec. 314.126(b) of this chapter. 

C.2  Adequate and Well-Controlled Trials 
TITLE 21--Food and Drugs 

Department of Health and Human Services 

Part 314--Applications for FDA Approval to Market of a New Drug 

Subpart D FDA Action on Applications and Abbreviated Applications 

Sec. 314.126 Adequate and well-controlled studies. 

(a)  The purpose of conducting clinical investigations of a drug is to distin-

guish the effect of a drug from other influences, such as spontaneous 
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change in the course of the disease, placebo effect, or biased observation. 

The characteristics described in paragraph (b) of this section have been 

developed over a period of years and are recognized by the scientific 

community as the essentials of an adequate and well-controlled clinical in-

vestigation. The Food and Drug Administration considers these 

characteristics in determining whether an investigation is adequate and 

well-controlled for purposes of Sction 505 of the act. Reports of adequate 

and well-controlled investigations provide the primary basis for determin-

ing whether there is “ubstantial evidence” to support the claims of 

effectiveness for new drugs. Therefore, the study report should provide 

sufficient details of study design, conduct, and analysis to allow critical 

evaluation and a determination of whether the characteristics of an ade-

quate and well-controlled study are present. 

(b) An adequate and well-controlled study has the following characteris-

tics:

(1) There is a clear statement of the objectives of the investigation and a 

summary of the proposed or actual methods of analysis in the protocol for the study 

and in the report of its results. In addition, the protocol should contain a description 

of the proposed methods of analysis, and the study report should contain a descrip-

tion of the methods of analysis ultimately used. If the protocol does not contain a 

description of the proposed methods of analysis, the study report should describe 

how the methods used were selected. 

(2) The study uses a design that permits a valid comparison with a control 

to provide a quantitative assessment of drug effect. The protocol for the study and 

report of results should describe the study design precisely; for example, duration of 

treatment periods, whether treatments are parallel, sequential, or crossover, and 

whether the sample size is predetermined or based upon some interim analysis.  

Generally, the following types of control are recognized: 

(i)  Placebo concurrent control. The test drug is compared with an inactive 

preparation designed to resemble the test drug as far as possible. A pla-

cebo-controlled study may include additional treatment groups, such as an 

active treatment control or a dose-comparison control, and usually in-

cludes randomization and blinding of patients or investigators, or both. 

(ii)  Dose-comparison concurrent control. At least two doses of the drug are 

compared. A dose-comparison study may include additional treatment 

groups, such as placebo control or active control. Dose-comparison trials 

usually include randomization and blinding of patients or investigators, or 

both. 

(iii)  No treatment concurrent control. Where objective measurements of effec-

tiveness are available and placebo effect is negligible, the test drug is 

compared with no treatment. No treatment concurrent control trials usually 

include randomization. 
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(iv)  Active treatment concurrent control. The test drug is compared with 

known effective therapy; for example, where the condition treated is such 

that administration of placebo or no treatment would be contrary to the in-

terest of the patient. An active treatment study may include additional 

treatment groups, however, such as a placebo control or a dose-

comparison control. Active treatment trials usually include randomization 

and blinding of patients or investigators, or both. If the intent of the trial is 

to show similarity of the test and control drugs,the report of the study 

should assess the ability of the study to have detected a difference between 

treatments. Similarity of test drug and active control can mean either that 

both drugs were effective or that neither was effective. The analysis of the 

study should explain why the drugs should be considered effective in the 

study, for example, by reference to results in previous placebo-controlled 

studies of the active control drug. 

(v)   Historical control. The results of treatment with the test drug are compared 

with experience historically derived from the adequately documented natu-

ral history of the disease or condition, or from the results of active 

treatment, in comparable patients or populations. Because historical con-

trol populations usually cannot be as well assessed with respect to 

pertinent variables as can concurrent control populations, historical control 

designs are usually reserved for special circumstances. Examples include 

studies of diseases with high and predictable mortality (certain malignan-

cies) and studies in which the effect of the drug is self-evident (general 

anesthetics, drug metabolism). 

(3) The method of selection of subjects provides adequate assurance that 

they have the disease or condition being studied, or evidence of susceptibility and 

exposure to the condition against which prophylaxis is directed. 

(4) The method of assigning patients to treatment and control groups mini-

mizes bias and is intended to assure comparability of the groups with respect to 

pertinent variables such as age, sex, severity of disease, duration of disease, and use 

of drugs or therapy other than the test drug. The protocol for the study and the re-

port of its results should describe how subjects were assigned to groups. Ordinarily, 

in a concurrently controlled study, assignment is by randomization, with or without 

stratification. 

(5) Adequate measures are taken to minimize bias on the part of the 

subjects, observers, and analysts of the data. The protocol and report of the study 

should describe the procedures used to accomplish this, such as blinding. 

(6) The methods of assessment of subjects' response are well-defined and 

reliable. The protocol for the study and the report of results should explain the vari-

ables measured, the methods of observation, and criteria used to assess response. 
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(7) There is an analysis of the results of the study adequate to assess the ef-

fects of the drug. The report of the study should describe the results and the analytic 

methods used to evaluate them, including any appropriate statistical methods. The 

analysis should assess, among other things, the comparability of test and control 

groups with respect to pertinent variables, and the effects of any interim data analy-

ses performed. 

(c) The Director of the Center for Drug Evaluation and Research may, on the Direc-

tor's own initiative or on the petition of an interested person, waive in whole or in 

part any of the criteria in paragraph (b) of this section with respect to a specific 

clinical investigation, either prior to the investigation or in the evaluation of a com-

pleted study. A petition for a waiver is required to set forth clearly and concisely 

the specific criteria from which waiver is sought, why the criteria are not reasona-

bly applicable to the particular clinical investigation, what alternative procedures, if 

any, are to be, or have been employed, and what results have been obtained. The 

petition is also required to state why the clinical investigations so conducted will 

yield, or have yielded, substantial evidence of effectiveness, notwithstanding non-

conformance with the criteria for which waiver is requested. 

(d) For an investigation to be considered adequate for approval of a new drug, it is 

required that the test drug be standardized as to identity, strength, quality, purity, 

and dosage form to give significance to the results of the investigation. 

(e) Uncontrolled studies or partially controlled studies are not acceptable as the sole 

basis for the approval of claims of effectiveness. Such studies carefully conducted 

and documented, may provide corroborative support of well-controlled studies re-

garding efficacy and may yield valuable data regarding safety of the test drug. Such 

studies will be considered on their merits in the light of the principles listed here, 

with the exception of the requirement for the comparison of the treated subjects 

with controls. Isolated case reports, random experience, and reports lacking the de-

tails which permit scientific evaluation will not be considered. 

(Collection of information requirements approved by the Office of 

Management and Budget under control number 0910-0001) 

 [50 FR 7493, Feb. 22, 1985, as amended at 50 FR 21238, May 23, 1985; 55 

FR 11580, Mar. 29, 1990; 64 FR 402, Jan. 5, 1999] 

Effective Date Note: At 64 FR 402, Jan. 5, 1999, Sec. 314.126 was amended in 

paragraph (a) by removing the word sections and adding in its place the word sec-

tion' and removing the words and 507 from the third sentence and by removing the 

words and antibiotics from the fourth sentence, effective May 20, 1999. 
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Appendix D 

Sample Size Primer 

The purpose of this appendix is to provide a brief discussion of the underlying 

principles in sample size computations for a clinical trial. In the process, one of the 

simplest and most useful formulas for the sample size formulations will be repro-

duced. These basic formulas are the source of the calculations in Chapters 4–9. First 

we will provide the solution, and proceed to a discussion which both motivates and 

derives the sample size and power formulas.  

D.1 General Discussion of Sample Size 
Assume that a clinical trial has been designed to measure the effect of a 

randomly allocated intervention on a prospectively defined primary endpoint. Let c

be the cumulative incidence rate of the primary endpoint in the control group and 

let t be the cumulative incidence rate of the primary endpoint in the treatment 

group. Then the statistical hypothesis for the primary endpoint in this clinical trial is  

0H : . : .c t a c tvs H (D.1) 

Let Za be the ath percentile from the standard normal distribution. The investigators 

have chosen an a priori test-specific type I error level , and the power of the statis-

tical hypothesis test is 1 - . The hypothesis test will be two-sided. Let pc be the 

cumulative incidence rate of the primary endpoint in the control group of the re-

search sample, and let pt be the cumulative incidence rate of the active group in the 

research sample. Then the trial size, or the sample size of the clinical trial,1 N may 

be written as  

2

1 / 2

2

2 1 1
.

c c t t

c t

p p p p Z Z
N

p p
                 (D.2) 

Analogously, the power of the study may be calculated as a function of N

                                                          
1 This is the total number of patients in the study (number of patients in the placebo group 

plus the number of patients in the control group). 
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1 / 21 (0,1) .
1 1

/ 2 / 2

c t

c c t t

p p
P N Z

p p p p

N N

               (D.3) 

There are many different treatises on sample size calculations in clinical trials. A 

representative group is [1], [2], [3], [4], [5]. Several of these sources discuss impor-

tant and useful nuances of the sample size computation which are useful in complex 

clinical trial design. The focus of the discussion here, however, will be on the most 

basic sample size computation, since that formula demonstrates most clearly the 

influence of the design parameters of the study (cumulative primary endpoint event 

rate in the control group, the anticipated effect of the intervention, the magnitude of 

the statistical errors, and test sidedness) on the resulting sample size.  

For these discussions, assume that patients are randomized to receive ei-

ther a new intervention or to receive control group therapy. In this example, there is 

one primary endpoint that occurs with a cumulative event rate c. In the interven-

tion group the cumulative event rate for the primary endpoint is t. The investigator 

does not know the value of c since he does not study every patient in the popula-

tion. He therefore selects a sample from the population and uses that sample to 

compute pc, which will serve as his estimate of c. If the clinical trial has been exe-

cuted concordantly, then pc is a good estimator of c; this means that the 

investigator can expect that pc will be close to the value of c. Analogously pt is the 

estimate from the investigator’s sample of the cumulative incidence of the endpoint 

in the population t. Thus, if the trial was executed according to its protocol (and 

not subject to the destabilizing influences of random research), then pc - pt can be 

expected to be an accurate estimate of c – t. If the null hypothesis is true then  

c – t will be zero and we would expect pc – pt to be small. If the alternative hy-

pothesis is correct, and the investigator’s intuition that the therapy being tested in 

the clinical trial will reduce the cumulative event rate of the primary endpoint is 

right, then c is much greater than t, and pc – pt , the best estimate of c t will be 

large as well. 

A key point in understanding the sample size formulation is the critical 

role played by the number of endpoint events produced by the sample. The research 

sample produces primary endpoints—the rate at which these endpoints are accumu-

lated is directly linked to the cumulative event rate in the control group. This 

cumulative event rate therefore plays a central role in the sample size calculations. 

If the primary endpoint of a clinical trial is total mortality, then recruiting 1000 pa-

tients into the study provides no useful information for the evaluation of the effect 

of therapy on total mortality if at the end of the study none of the 1000 recruited 

patients die. The more primary endpoint events which occur during the course of 

the trial, the greater the volume of germane data available to answer the scientific 

question of whether the occurrence of those endpoint events are influenced by the 

intervention being studied. Therefore, the larger the cumulative control group event 

rate is, the greater the number of primary endpoint event rates that will be gener-
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ated. The greater the rate at which primary endpoints are produced, the smaller the 

required sample size for the clinical trial will be, assuming that everything else (ef-

fect of therapy, test sidedness, magnitude of the statistical errors) is equal.2

A second measure which is critical in sample size considerations is the ef-

fectiveness of the therapy. This is often measured by the difference between the 

cumulative incidence rate of the primary endpoint in the population c and the cu-

mulative incidence of the primary event rate in the population if everyone in the 

population were to receive the treatment being studied in the clinical trial, t. This 

difference is commonly referred to as “delta” or  = c - t.
3 The greater the differ-

ence between c and t, then the fewer the number of patients required to obtain a 

reliable estimate of that difference.  

To understand this principle, it may be helpful to think of the two primary 

sources of variability involved in the estimation of the treatment effect in a clinical 

trial. The test statistic used to test the statistical hypothesis that c = t versus the 

alternative hypothesis that these events are not equal is  

.c t

c t

p p

Var p p
                                                    (D.4) 

The first source of this variability is systematic; it is induced by the intervention 

being studied by the clinical trial and is an estimate of . This variability is esti-

mated by pc – pt and resides in the numerator of  (D.4). This is the “signal”. The 

denominator of (D.4) is the second source of variability or the “noise”; it is an ex-

pression of the fact that, since the research is sample-based, estimates of pc – pt will 

vary from sample to sample. Since this sampling variability “noise” should not be 

confused with the systematic, intervention-induced “signal” measured by pc – pt,

this noise must be removed from the estimate of the therapy’s effect. Therefore us-

ing these characterizations, the greater the signal to noise ratio, the larger the 

expression in  (D.4) will be.  

The greater the signal–to–noise ratio as represented by (D.4), the easier it 

is to detect a genuine population effect of the intervention. If the magnitude of c - 

t is small in the population, then pc – pt is also likely to be small. In this circum-

stance where the magnitude of the signal is small, the noise must be coincidently 

reduced to detect the weak signal with precision. One useful tool the investigator 

has to reduce the background noise is to increase N, the sample size of the clinical 

trial. Part of the genius of choosing the reliable estimate pc – pt of c – t is that this 

estimate’s sampling variability decreases as the sample size increases.4

                                                          
2 Also known as the ceteris parabus assumption. 
3 Some times it is useful to refer to the percent reduction in events attributable to the therapy, 

otherwise known as the therapy’s efficacy. 
4 This indispensable property of the estimates of effect size can be lost if the experiment is 

not executed concordantly (see Chapter 2). 
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D.2 Derivation of Sample Size 
To compute the sample size for the clinical trial as outlined in this appen-

dix, note that the test statistic  

c t c t

c t

p p

Var p p
                                             (D.5) 

follows a normal distribution. Under the null hypothesis that c – t = 0 reduces to  

.c t

c t

p p

Var p p
                                               (D.6) 

One useful way to think of this test statistic 

c t

c t

p p

Var p p

is as a normed effect size. Under the null hypothesis, we expect this normed effect 

size to have a mean of zero and a variance of one. It will follow the normal or bell 

shaped distribution. Then, the null hypothesis will be rejected when5

1 / 2

c t

c t

p p
Z

Var p p
                            (D.7) 

or,  

1 / 2 .c t c tp p Z Var p p            (D.8) 

We now consider what should have if the alternative hypothesis was true. In this 

case, we start with the definition of statistical power.  

Power = Probability [the null hypothesis is rejected | the alternative hypothesis  

is true] 

                                                          
5 This is not the only circumstance under which the null hypothesis will be rejected. It will 

also be rejected when harm is caused by the intervention or when pt – pc is very much less 

than zero. However, in the sample size computation, attention is focused on the tail of the 

distribution in which the investigators are most interested.  
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The null hypothesis is rejected when the test statistic falls in the critical region or 

when 
1 / 2c t c tp p Z Var p p  . The alternative hypothesis is true if c t = 

 0. This allows us to write  

1 / 21 | .c t c t c tPower P p p Z Var p p   (D.9) 

We now standardize the argument in the probability statement of  (D.9) so that the 

quantity on the left follows a standard normal distribution. This requires subtracting 

the population mean effect under the alternative hypothesis (i.e., ) and dividing by 

the square root of the variance of pc - pt. These operations must be carried out on 

both sides of the inequality in the probability expression in  (D.9) as follows. 

1 / 2

1 / 2

1 / 2

1

(0,1) .

c tc t

c t c t

c t

c t c t

c t

Z Var p pp p
P

Var p p Var p p

p p
P Z

Var p p Var p p

P N Z
Var p p

   (D.10) 

By the definition of a percentile value from a probability distribution, we can now 

write

1 / 2
.

c t

Z Z
Var p p

   (D.11) 

We are now ready to conclude this computation, by solving for N, the size of the 

trial. The sample size is embedded in the variance term in the denominator of ex-

pression (D.11). 

1 1
.

c c t t

c t

c t

p p p p
Var p p

n n
                        (D.12) 

where nc is the number of patients to be recruited to the control group in the clinical 

trial and nt is the number of patients to be recruited to the active group. The sample 

size or trial size is the total number of patients required for the experiment = N = nc

+ nt. If we assume that the number of patients in the control group will equal the 
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number of patients in the treatment group, then nc = nt = n and N = 2n. Then (D.11) 

can be rewritten as  

1 / 2
.

1 1c c t t

Z Z
p p p p

n n

                      (D.13) 

We only need solve this equation for n:

2

1 / 2

2

1 1
.

c c t tp p p p Z Z
n  (D.14) 

The trial size N = 2n  may be written as 

2

1 / 2

2

2 1 1
.

c c t tp p p p Z Z
N  (D.15)  

To compute the power we only need to adapt the following equation from (D.10), 

1 / 21 (0,1)

c t

P N Z
Var p p

       (D.16) 

and rewrite the Var [pc - pt] to find 

1 / 21 (0,1) .
1 1

/ 2 / 2

c c t t

P N Z
p p p p

N N

           (D.17) 

D.3 Example 
If the experiment is designed for a two sided  of 0.05, 90 % power ( = 0.10), pc =

0.20, and  = 0.03, then pt = 0.17. The trial size can be computed from  

2

1 / 2

2

2 1 1
.

c c t t

c t

p p p p Z Z
N

p p
                 (D.18) 

Inserting the data from this example reveals 
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2

2

2 (0.20)(0.80) (0.17)(0.83) 1.96 ( 1.28)
7024

0.20 0.17
N   (D.19) 

or 3512 subjects per group. If only 2000 subjects per group can be identified, the 

power can be formulated from 

1 / 2(0,1)
1 1

/ 2 / 2

c c t t

Power P N Z
p p p p

N N

              (D.20) 

and including the data from this example  

0.03
(0,1) 1.96 0.69.

(0.20)(0.80) (0.17)(0.83)

2000 2000

Power P N      (D.21) 
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Appendix E 

Additional Dependent Hypothesis   
Testing Results 

In Chapter 5, we developed the idea of dependency between statistical analyses in 

clinical trials. The evaluation of the level of dependency was determined prospec-

tively by the investigators, and each of the statistical analyses would have a type I 

error allocated to them. Section 5.4 developed the principle of dependent hypothesis 

testing, and Sections 5.6 through 5.9 derived a measure of dependence between two 

statistical hypothesis tests in a clinical trial. Section 6.1 developed an analogous 

measure between three prospectively defined primary hypothesis tests. In section 

6.2 we provided some formulations that apply to more than three dependent statisti-

cal primary analyses. This appendix provides the derivations of the results 

described in Section 6.2 and 6.3. 

E.1 Derivation of Dependence for K = 4 
The evaluation when there are four dependent hypothesis tests is a direct generali-

zation of the consideration for K = 2 and K = 3. Continuing with the notation that 

we used in Chapter 5, we will assume here that there are four prospectively defined 

statistical hypothesis tests, H1, H2, H3 and H4. We define the variables T1, T2, T3,

and T4 ,each of which will take on the value of one when a type I error has oc-

curred, and, alternatively will become zero when no type I error has occurred. Then, 

as before, we have P[T1 = 1] = 1, P[T2 = 1] = 2, P[T3 = 1] = 3, and P[T4 = 1] = 4.

We will also assume that 1 2 3 4 without any loss of generality. We may 

write the experiment wide type I error as  

1 2 3 41 0 0 0 0P T T T T                 (E.1) 

This derivation proceeds analogously for the case of K = 3 presented in chapter 

five, and we will begin here as we began there with the identification of the rele-

vant, joint probability. In this circumstance, that probability involves the four 

variables T1, T2, T3, and T4 and is writen as P[T1=0 T2=0 T3=0 T4=0]. Start 

with the definition of conditional probability 

1 2 3 4

4 1 2 3

1 2 3

0 0 0 0
P[ 0 | 0 0 0]

0 0 0

P T T T T
T T T T

P T T T
  (E.2) 

This conditional probability is the probability that there is a type I error for the 

fourth hypothesis test H4, given that there is no type I error for each of the three hy-
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pothesis tests H1, H2, and H3. Solving equation (E.2) for the joint probability in-

volving four events reveals  

1 2 3 4

4 1 2 3 1 2 3

0 0 0 0

P[ 0 | 0 0 0] 0 0 0

P T T T T

T T T T P T T T
       (E.3) 

Now we write the dependency measure D4|1,2,3 as

4 1 2 3

4|1,2,3

4

1 0 | 0 0 0
1 .

P T T T T
D                   (E.4) 

D4|1,2,3 denotes the measurement of dependency between H4 given knowledge of H1,

H2, and H3. We now solve equation (E.4) for the conditional probability  

2

4 1 2 3 4 4|1,2,3 4

2

4 4|1,2,3

0 | 0 0 0 1 1 (1 )

1 1 .

P T T T T D

D
      (E.5) 

We now have an expression for the conditional probability involving the depend-

ence parameter. What remains is to take this expression denoted in (E.5) and 

substitute it into equation (E.1) using (E.2) to find 

1 2 3 4

4 1 2 3 1 2 3

2

4 4|1,2,3 1 2 3

= 1 -   0 0 0 0

= 1 - 0 | 0 0 0 0 0 0

1 1 1 0 0 0 .

P T T T T

P T T T T P T T T

D P T T T

     (E.6) 

Finally, recalling that from Section 6.2 that 

2 2

1 2 3 3 3|1,2 2 2|1 10 0 0 1 1 1 1 1P T T T D D (E.7) 

we write the familywise error level ,

2 2 2

4 4|1,2 3 3|1,2 2 2|1 1= 1 1 1 1 1 1 1 1D D D         (E.8) 

Note that  is a function of the four test-specific alpha levels 1, 2, 3, 4 and the 

three dependency measures D2|1, D3|1,2 and D4|1,2,3.

 As was the case for three hypothesis tests, it will be useful for us to pro-

spectively compute the test-specific alpha level 4 for the fourth primary analysis 

given the levels 1, 2, and 3 for the other three hypothesis tests H1, H2, and H3.

Solving (E.8) for 3 reveals  
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2 2

1 2 2|1 3 3|1,2

4 3 2

4|1,2,3

1
1

1 1 1 1 1
min , .

1

D D

D
               (E.9) 

If the value for the dependency measure is the same across the three prospectively 

planned, primary analyses, then D2|1 = D3|1,2 = D4|1,2,3 = D, and equation (E.9) be-

comes  
2 2

1 2 3

4 3 2 2 2

1 2 3

1 1 1 1 1 1
min ,

1 1 1 1 1 1

D D

D D D
   (E.10) 

E.2 Induction Arguments 
An induction argument can be used to verify the following formula. Let there be K
prospectively declared primary endpoints with the measure Dj|1,2,3,…,j-1, as the level 

of dependency for the jth primary analysis given first j–1 primary analyses for j = 1, 

2, 3, ..., K. In this circumstance, the FWER is  

2

|1,2,3,..., 1 1

2

1 1 1 1 .
K

K k k k

k

D                      (E.11) 

This result was proven for K= 2, 3, and 4.1 We must show that the assumption the 

assumption that equation (E.11) holds for K - 1 implies (E.11) is true for K.

Continuing with the notation from chapter five, allow Tj to be a random 

variable which takes on the value 0 when the jth primary hypothesis test does not 

produce a type I error and the value 1 when this test does produce a type I error, we 

can write  

1 2 3 4

1

1 0 0 0 0 ... 0

1 0 .

K K

K

j

j

P T T T T T

P T
      (E.12) 

Using conditional probability, we now write 

                                                          
1

The formulation does not apply for K = 1 because the paradigm of dependence requires at 

least two statistical hypothesis tests.  
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1
1

1
1

1

0

0 | 0 .

0

K

j
K

j

K j
K

j

j

j

P T

P T T
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                          (E.13) 

which can be reformulated as  

1 1

1 1 1

0 0 | 0 0 .
K K K

j K j j

j j j

P T P T T P T                  (E.14) 

Proceeding as we did for the case of K = 2, 3, and 4, we now define the dependency 

measure

1

1

|1,2,3,4,..., 1

1 0 | 0

1 .

K

K j

j

K K

K

P T T

D                       (E.15) 

letting DK|1,2,3,…,K-1 denote the measurement of dependency between hypothesis test 

HK given knowledge of H1, H2, H3….,HK–1. We now solve equation (E.15) for the 

conditional probability  

|1,2,3,..., 1

1
2

0

2

|1,2,3,4,..., 1

0 | 0 1 1 (1 )

1 1 .

K K

K

K j K K

j

K K K

P T T D

D

    (E.16) 

We now have the conditional probability computed in terms of K and the depend-

ency parameter. From equation (E.14), we can write 

1 1

1 1 1

1
2

|1,2,3,4,..., 1

1

0 0 | 0 0

1 1 0 .

K K K

j K j j

j j j

K

K K K j

j

P T P T T P T

D P T

(E.17) 

and we can write  
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K

j

j=1

K-1
2

|1,2,3,..., 1 j

j=1

= 1 - P T 0   

1 1 1 P T 0 .

K

K K KD

         (E.18) 

We now use the induction condition, 

1 1
2

1 |1,2,3,..., 1 1

20

1 0 1 1 1 1 .
K K

j K k k k

kj

P T D       (E.19) 

In order to see that  

1 1
2

|1,2,3,..., 1 1

20

0 1 1 1 ,
K K

j k k k

kj

P T D           (E.20)

we write the familywise error level K

K-1
2

|1,2,3,..., 1 j

j=1

1
2 2

|1,2,3,..., 1 |1,2,3,..., 1 1

2

= 1 1 1 P T 0

1 1 1 1 1 1 ,

K K K K

K

K K K k k k

k

D

D D

    (E.21) 

and the product can be combined from the last line of expression (E.21) to find 

2

|1,2,3,..., 1 1

2

= 1 1 1 1 .
K

K k k k

k

D                      (E.22) 

which is the desired result. To verify that 

|1,2,3,..., 1

1
2

1

2

1 2

|1,2,3,..., 1

1
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D
                (E.23) 
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we need only evaluate (E.22) 
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and solve for K
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|1,2,3,..., 1

|1,2,3,...

= 1 1 1 1 1 1 ,

1 = 1 1 1 1 1 ,

1
1 1

1 1

K

K K K K k k k

k

K

K K K K k k k

k

K
K K K

k k

D D

D D

D

D
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2

, 1 1
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1
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  (E.25) 

Continuing, 

2

|1,2,3,..., 1 1
2

|1,2,3,..., 1 1

2

1
2

|1,2,3,..., 1 1

2

2

|1,2,3,..., 1

1
1 1 ,

1 1 1

1
1

1 1 1

,
1

K
K K K K

k k k

k

K

K

k k k

k

K

K K

D

D

D

D

     (E.26) 

and we have the desired result. 
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E.3 Additional Recursive Relationships 
The relationships between k, the test-specific alpha level for the kth specific hy-

pothesis test and k the familywise type I error level after k primary analyses have 

been carried out can be easily deduced by noting the dependency between the two. 

We may write in the case of independent hypothesis tests that  

        1 11 1 1k k k                                (E.27) 

for k = 1 to K. This is easily verified. For k = 1, (E.27) becomes 

1 0 1

1

1

1 1 1

1 1 0 1                                   (E.28) 

since 0 = 0. 

For k =2, the evaluation becomes 

2 1 2

1 2

1 1 1

1 1 1 ,
                                  (E.29) 

the results from equations (E.28) and (E.29) are the anticipated reproductions of the 

familywise error level for the situation of one and two hypothesis tests, respec-

tively. In the case of dependence, we may write  

2

1 1 1|1,2,3...1 1 1 1 ,k k k k kD                (E.30) 

See that for k = 0 

2

1 0 1 1

1

1

1 1 1 1

1 (1)[1 (1 0)]

D

                         (E.31) 

and for k  = 1 

2

2 1 2 2|1

2

1 2 2|1

1 1 1 1

1 1 1 1 .

D

D
                          (E.32) 

We can also then easily find that in the case of independence (E.27) reveals that  
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1

1

1
1 ,

1

k

k

k

                                    (E.33) 

and, in the case of dependent hypothesis testing, working from (E.30) we can write  

1

1 2

1|1,2,3...

1
1

1
.

1

k

k

k

k kD
                                    (E.34) 

Of course, considerable simplification is afforded by assuming the test-specific al-

pha levels are the same and the level of dependence among all of the hypothesis 

tests is the same. In this circumstance, then (E.30) becomes 

2

1 1 1 1 1 .k k D                           (E.35) 

This is a first order, non-homogeneous difference equation which may be solved for 

k. Rewrite equation as (E.35) to see that  

       2 2

1 1 1 1k kD D                       (E.36) 

To solve this, we will use the generating function argument as presented in [1] and 

most recently in [2]. Define the generating function G(s) as

0

( ) ,k

k

k

G s s                                                 (E.37) 

where s is a positive real number in (0,1). For this generating function the coeffi-

cient of sk is precisely the value we seek. The goal then is to collapse the infinite 

number of equations provided in expression (E.36) into one equation that can be 

written as a function of G(s). We will then consolidate this equation, and solve it for 

G(s). Once G(s) is identified, it will be inverted to identify the specific values of k.

We begin this process by multiplying side of equation (E.36) by sk to find 

2 2

1 1 1 1k k k

k ks D s D s                  (E.38) 

Since this equation is true for k = 0 to infinity2 we can take the sum over this range 

from each side of equation (E.38) to find 

                                                          
2

We will just discard the solution for all values of k > K since we are only performing K hy-

pothesis tests.  
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2 2

1

0 0

2 2

0 0

2 2

0 0

1 1 1

1 1 1

1 1 1

k k

k k

k k

k k

k

k k

k k

k

k k

s D D s

D s D s

D s D s

            (E.39) 

We can further simplify the last line of expression (E.39) by recognizing that 

0

( ),k

k

k

s G s and that, for 0 < s < 1
0

1

1

k

k

s
s

. We can now write equation 

(E.39) as 

2

2

1

0

1
1 1 ( ).

1

k

k

k

D
s D G s

s
              (E.40) 

We now must evaluate 1

0

.k

k

k

s  Proceeding,  

1 1 1 1 0

1 1 0

0 0 1 0

1 1

0

( )

k k k k

k k k k

k k k k

k

k

k

s s s s s s s s

s s s G s

   (E.41) 

since 0 = 0. This allows us to write (E.40) as 

2

1 2
1

( ) 1 1 ( )
1

D
s G s D G s

s
               (E.42) 

Multiplying each side of this equation by s reveals 

2

2
1

( ) 1 1 ( ).
1

D s
G s D sG s

s
                 (E.43) 

Simplifying further 
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2

2

2
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1
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1

1
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1 1 1 1
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s
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s
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              (E.44) 

and we are now prepared for the inversion of the generating function G(s). 

Rewrite G(s) as  

2

2

1 1
( ) 1 .

1 1 1 1
G s D s

s D s
             (E.45) 

We seek the coefficient of sk. G(s), as written in equation (E.45) is composed of 

three expressions. The first expression, 21 D s , we can set aside for the mo-

ment since its inclusion in the solution will be as a scale factor and adjustment by 

one for the power of s. The second multiplicative factor in equation (E.45) can be 

written as 

                             
0

1
.

1

k

k

s
s

                                          (E.46) 

Analogously 

2

2
0

1
1 1 .

1 1 1

k
k

k

D s
D s

          (E.47) 

Then evaluating the last two expressions of the generating function reveals 

2

2
0 0

1 1
1 1 .

1 1 1 1

k
k k

k k

s D s
s D s

    (E.48) 
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When the right hand side of expression (E.48) is evaluated term by term, the coeffi-

cient of sk is 2

0

1 1
k j

j

D . It only remains to factor in the first expression , 

21 D s , from (E.45). The term 21 D  does not involve s and is simply a 

multiplicative constant. Any term involving s denotes that, if we want to find the 

coefficient of sk of G(s) we need to identify the coefficient of sk-1 from the product 

of

2

1 1

1 1 1 1s D s
.

Thus we find 

1
2 2

0

1 1 1
k j

k

j

D D                            (E.49) 

The following simplification is available, 

2 2
1

2

22
0

1 1 1 1 1 1
1 1 .

11 1 1

k k

k j

j

D D
D

DD
        (E.50) 

So

2
1

2 2

2
0

1 1 1
1 1 1 ,

1

k

k j

k

j

D
D D

D
           (E.51) 

and finally, 

2( ) 1 1 1 .
k

k D D                                    (E.52) 

If we let D = 0, the condition of independence between statistical hypothesis tests, 

then equation (E.52) simplifies to  

( 0) 1 1
k

k D                                         (E.53) 

 the expected result from Chapter 4.  

 It is useful to note the correspondence between equation (E.52) for k(D)

and k(D=0) from (E.53). Each of these equations expresses the familywise error 

level in terms of one minus the product of probabilities. Rewrite these equations as
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2

1

1

1 ( ) 0 1 1 .

1 ( 0) 0 1 .

K K

K j

j

K
K

K j

j

D P T D

D P T

                         (E.54) 

Then in each of the case of dependence and independence, the probability of a type 

I error is written as the simultaneous occurrence of independent events. In the case 

of independence between the statistical hypothesis tests, multiplying probabilities is 

the expected procedure that was first developed in Chapter 3, and we find that the 

probability for no type I errors among the K hypothesis tests is simply 1
K

.

However, we see that the probability of no type I error among the K primary end-

point analyses when there is dependence among the prospectively planned primary 

analyses setting can also be written as the product of probabilities, in this 

case 21 1
K

D . Writing the joint event of 
1

0
K

j

j

T  as the product of prob-

abilities tells us these events are independent. Thus, using the dependence 

parameter D as derived in Chapter 5, with the additional assumptions that 1) D is 

the same for all subgroups of dependent hypothesis testing and 2) the test-specific 

is the same for all K primary statistical evaluations, transforms the adjustment in 

level for dependence to simply one of multiplying the test-specific alpha by a com-

mon factor, that is 1 - D2.

This finding produces important formula simplification that will be very 

useful for us. A simple application of Boole’s inequality leads to  

2( ) 1 ,K D K D                                     (E.55) 

and a Bonferroni style adjustment produces 

2

( )
.

1

K D

K D
                                                (E.56) 

These simplifications can be generalized. Returning to (E.22). 

2

|1,2,3,..., 1 1

2

= 1 1 1 1 ,
K

K k k k

k

D                             (E.22) 

We now see   
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2

|1,2,3,..., 1 1

21

1 = 0 1 1 1 .
K K

K k k k k

kk

P T D                (E.57) 

and the probability of a joint event involving each of the Tj’s from j = 1 to K can be 

written as the product of probabilities. We may invoke Boole’s inequality to write 

2

1 |1,2,3,..., 1

2

( ) 1 .
K

K k k k

k

D D                                 (E.58) 

If we let Dj|1,2,3,…j-1 = D for all j = 2 to K, then (E.22) becomes 

2

1

2

= 1 1 1 1 .
K

K k

k

D                              (E.59) 

Under the assumption that D = 0 for all of the primary analyses, then equation 

17.56 becomes  

1

2

= 1 1 1
K

K k

k

                                 (E.60) 

a familiar result from Chapter 4. Finally, we may apply Boole’s inequality to equa-

tion (E.59) to see  

2 2

1 1

2 2

( ) 1 1
K K

K k k

k k

D D D                   (E.61) 

and find that when allocating the test-specific alpha levels for the second through 

the Kth primary analyses, then 

1

2
2

( )

1

K
K

k

k

D

D
                                     (E.62) 
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