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14 Pricing, Variety, and Inventory Decisions for Product
Lines of Substitutable Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .367
Bacel Maddah, Ebru K. Bish, and Brenda Munroe

15 Managing Perishable and Aging Inventories: Review and
Future Research Directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .393
Itir Z. Karaesmen, Alan Scheller-Wolf, and Borga Deniz

16 Optimization Models of Production Planning Problems . . . . . . . . . . . . . . . . .437
Hubert Missbauer and Reha Uzsoy

17 Aggregate Modeling of Manufacturing Systems . . . . . . . . . . . . . . . . . . . . . . . . . .509
Erjen Lefeber and Dieter Armbruster

18 Robust Stability Analysis of Decentralized Supply Chains . . . . . . . . . . . . . .537
Yanfeng Ouyang and Carlos Daganzo

19 Simulation in Production Planning: An Overview with
Emphasis on Recent Developments in Cycle Time
Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .565
Bruce E. Ankenman, Jennifer M. Bekki, John Fowler,
Gerald T. Mackulak, Barry L. Nelson, and Feng Yang

20 Simulation-Optimization in Support of Tactical and
Strategic Enterprise Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .593
Juan Camilo Zapata, Joesph Pekny, and Gintaras V. Reklaitis

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .629

Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .643



Acknowledgements

The process by which these volumes came to fruition has been a long one, and we
are grateful to many different people for their support, advice and contributions.
First among these are the contributing authors – without them, there would be no
book, and we are deeply grateful to them for bearing with our repeated requests
for materials and revisions while providing the high-quality contributions worthy of
these volumes. The many reviewers who gave their time and effort to help improve
the chapters are also gratefully acknowledged.

Thanks are also due to Professor F. Hillier, the Editor of this Series, for support-
ing the project, and to Gary Folven, under whose guidance the project took shape,
and who sustained us through the first 4 years until his well-deserved retirement. His
many contributions to operations research over a long and distinguished publishing
career will stand for a long time. Neil Levine and Matthew Amboy of Springer saw
the volumes through production, nudging the editorial team when necessary and ex-
hibiting resourcefulness and patience above and beyond the call of duty. Thanks are
also due to Carrie Brooks of North Carolina State University for preparing the list
of authors for indexing at very short notice.

An undertaking of this magnitude and duration would simply not be possible
without a collegial, mutually supporting editorial team. It has been a privilege to
work together on this project; we have all learnt from each other and from the au-
thors who have contributed, and are grateful to have had this opportunity to work
with some of the best in our field.

Finally, we would like to thank our families, who have had to put up with late
nights and grumpy mornings over the duration of the project, and without whose
support and understanding our lives would be much poorer in many ways.

vii





Contributors

Bruce E. Ankenman Department of Industrial Engineering and Management
Sciences, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA,
ankenman@northwestern.edu

Dieter Armbruster Department of Mathematics, Arizona State University,
Tempe, AZ 85287-1804, USA, armbruster@asu.edu

Tolga Aydinliyim Decision Sciences Department, Charles H. Lundquist
College of Business 1208, University of Oregon Eugene, OR 97403-1208, USA,
tolga@uoregon.edu

Jennifer M. Bekki Department of Engineering, Arizona State University at the
Polytechnic Campus, 7231 E. Sonoran Arroyo Mall, Room 230, Mesa, AZ 85212,
USA, jennifer.bekki@asu.edu

Ebru K. Bish Grado Department of Industrial and Systems Engineering (0118),
250 Durham Hall, Virginia Tech, Blacksburg, VA 24061, USA, ebru@vt.edu

Robert C. Carlson Management Science and Engineering Department, Stanford
University, Stanford, CA 94305-4026, USA

Carlos Daganzo Department of Civil and Environmental Engineering, Institute of
Transportation Studies, University of California, Berkeley, CA 94720, USA

Borga Deniz The Joseph W. Luter, III School of Business Christopher Newport
University Newport News, VA 23606, USA, borga.deniz@cnu.edu

Laura Dionne Intel Corporation, Hillsboro, OR, USA

Salah E. Elmaghraby North Carolina State University, Raleigh, NC 27695-7906,
USA, elmaghra@eos.ncsu.edu

Feryal Erhun Department of Management Science and Engineering, Stanford
University Stanford, CA 94305-4026, USA, ferhun@stanford.edu

John Fowler Department of Industrial Engineering, Arizona State University, PO
Box 875906, Tempe AZ 85287-5906, USA, john.fowler@asu.edu

Stephen C. Graves MIT, 77 Massachusetts Avenue, E62-579, Cambridge MA
02139-4307, USA, sgraves@mit.edu

ix



x Contributors

Aliza Heching IBM Research Division, T. J. Watson Research Center, 1101
Kitchawan Road, Yorktown Heights, NY 10598, USA, ahechi@us.ibm.com

Jonathan R. M. Hosking IBM Research Division, T. J. Watson Research Center,
1101 Kitchawan Road, Yorktown Heights, NY 10598, USA,
hosking@watson.ibm.com

Itir Z. Karaesmen Kogod School of Business, American University, 4400
Massachusetts Avenue NW, Washington DC 20016, ikaraesme@american.edu

Karl G. Kempf Intel Corporation, 5000 W. Chandler Blvd., MS CH3-10,
Chandler, Arizona 85226, USA, karl.g.kempf@intel.com

Pinar Keskinocak School of Industrial and Systems Engineering, Georgia
Institute of Technology Atlanta, GA 30332-0205, USA, pinar@isye.gatech.edu

Alan King IBM Research Division, T. J. Watson Research Center, 1101 Kitchawan
Road, Yorktown Heights, NY 10598, USA, kingaj@us.ibm.com

Erjen Lefeber Department of Mechanical Engineering, Eindhoven University of
Technology, PO Box 513, Eindhoven, The Netherlands, A.A.J.Lefeber@tue.nl

Gerald T. Mackulak Department of Industrial Engineering, Arizona State
University, PO Box 875906, Tempe AZ 85287-5906, USA, mackulak@asu.edu

Bacel Maddah Engineering Management Program, American University of
Beirut, Beirut 1107 2020, Lebanon, bacel.maddah@aub.edu.lb

Kenneth N. McKay Department of Management Sciences, University of
Waterloo, Waterloo, ON, Canada, kmckay@uwaterloo.ca

Hubert Missbauer Department of Information Systems, Production and Logistics
Management, University of Innsbruck, Universitätstrasse 1,5 Innsbruck A-6020,
Austria, hubert.missbauer@uibk.ac.at

Brenda Munroe Hannaford Bros., 145 Pleasant Hill Rd, Scarborough, ME 04074,
USA, BMunroe@hannaford.com

Barry L. Nelson Department of Industrial Engineering & Management Sciences,
Northwestern University, 2145 Sheridan Road, Room C250, Evanston, IL
60208-3119, USA, nelsonb@northwestern.edu

Yanfeng Ouyang Department of Civil and Environmental Engineering, University
of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, yfouyang@illinois.edu

Irfan M. Ovacik Intel Corporation, 6505 W. Chandler Blvd., Chandler, AZ
85226, USA, irfan.m.ovacik@intel.com
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Chapter 1
Preface

Karl G. Kempf, Pinar Keskinocak, and Reha Uzsoy

1.1 Overview of the Problem

Production planning has been an integral part of industry since the beginnings of
craft production. Basic quantitative research in this area is at least 50 years old
(Modigliani and Hohn 1955). However, it is widely recognized that there are signif-
icant gaps between the research problems addressed, the state of industrial practice,
and the needs of the industrial community. It is our experience that production plan-
ning is viewed as a narrow function at the interface of production and sales, and the
basic modeling and solution approaches associated with this view have remained
largely unchanged for several decades.

We first discuss the traditional, narrow view of production planning as the allo-
cation of production capacity to different products and customers to optimize some
measure of the firm’s financial performance. This view has been widely studied
in the academic and practice literatures. To place the traditional view of produc-
tion planning in context, we present a set of realistic production planning problems
that are minimal in the sense that the removal of any particular feature significantly
reduces the fidelity of the problem to industrial practice. We discuss some basic
approaches to these problems taken in industry, relate them to the quantitative re-
search to date and conclude that a complete, general, and repeatable solution to this
minimal but realistic problem set does not yet exist.

Having made a case that even the traditional, narrowly defined production
planning problem has not yet been well solved, we suggest that a variety of
economic and technological trends, such as the globalization of supply chains
and the accessibility of real-time data, have significantly altered the environment
within which production planning now takes place. To illustrate the possibilities,
we present brief discussions of three axes along which we feel the scope of this
function in the firm has been expanded in recent years: (a) looking upstream,
explicit consideration of subcontractors’ and suppliers’ capabilities and risk profiles,

K.G. Kempf (�)
Intel Corporation, 5000 W. Chandler Blvd., MS CH3-10, Chandler, Arizona 85226, USA
e-mail: karl.g.kempf@intel.com
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2 K.G. Kempf et al.

(b) looking downstream, active integration of demand management with production
planning, and (c) looking internally, the role and structure of production planning
models in an environment with multiple interacting organizations with different in-
centives and objectives.

1.2 Realistic Production Planning Problems

The traditional view of production planning as espoused in both the academic and
practice literatures since the late nineteenth century has focused on the efficient
and effective use of production resources to further the firm’s financial goals. This
involves the allocation of capacity to products in support of customer satisfaction
and the firm’s profitability.

To illustrate the core decision complexity of the production planning challenge as
it exists in practice, we will use a concrete instance of a simple manufacturing sys-
tem. On the one hand, from a modeling perspective, the instance can be completely
described by a handful of entities and parameters. It is minimal in the sense that re-
moving any entity from the structure or making simplifying assumptions diminishes
the mapping of the sample problem to reality. On the other hand, from a production
planning perspective, it contains much of the decision complexity managed on a
daily basis by practicing production planners. Of course, any number of additional
entities and complicating features can be included, some of which we will discuss
later. But the core decision complexity of production planning as encountered in
industrial practice lies in this simple example.

On the supply side of the problem (bottom of Fig. 1.1), there is one existing
factory with equipment and a production process in place. The equipment set is
composed of two machines, one that batches (i.e., Ma processes a number of parts

Process Step Sa
cycle time (product Pa) = 2
cycle time (product Pb) = 3

Process Step Sb
cycle time (product Pa) = 1
cycle time (product Pb) = 1

Final Inspection Step
cycle time (product Pa) = 0
cycle time (product Pb) = 0

Machine Ma (setup time = 0)
batch size (product Pa) = 3
batch size (product Pb) = 2

Machine Mb (batch size = 1)
setup time (Pa to Pb) = 1
setup time (Pb to Pa) = 1

Product Available
for Customers 

Modify Tentative Order

change
product

change
quantity

change
date

cancel

Place Confirmed
Order (Pa and Pb)

Material Release Confirmed Order Accepted

Place Tentative
Order (Pa and Pb)

Fig. 1.1 Demand and supply in the realistic minimal problem set
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simultaneously) and one that processes one part at a time (Mb). The production
process has only one route with two strictly ordered processing steps (Sa before
Sb). Ma is qualified to run only Sa, and Mb to run only Sb. Two products can be
manufactured in the factory (Pa and Pb) on the full production route (Sa, Sb).

Machine Ma batches three items of product Pa with a processing time of 2 units.
Machine Mb runs one item of product Pa at a time with a cycle time of 1 units. At
steady state achieving maximum throughput while producing only product Pa, the
average output of the factory will be one item every 1 time unit. The utilization
of machine Ma will be roughly 67%, while the utilization of machine Mb will
approach 100%.

Machine Ma processes batches consisting of two items of product Pb with a pro-
cessing time of 3 units. Machine Mb runs one item of product Pb at a time with a
cycle time of 1 units. At steady state, achieving maximum throughput while produc-
ing only product Pb, the average output of the factory will be one item every 1.5
time unit. The utilization of machine Ma will approach 100%, while the utilization
of machine Mb will be roughly 67%.

Machine Mb can be setup to run in two configurations, one required for running
product Pa and the other required for running product Pb. It takes 1 time unit to
change setups.

Factory throughput time (TPT) is deterministic and distributed. In the case of
production dedicated to Pa, from the release of raw material to Sa through the com-
pletion of Sb, TPT would exhibit a uniform distribution with 1/3 of the items exiting
the factory at each of 3, 4, and 5 time units. In the case of dedicated Pb production,
1/2 of the items would exit at each of 4 and 5 time units. Mean TPT when focused
on producing Pa is 4 time units and 41=2 time units when focused on Pb (or worse in
both cases depending on setup changes incurred). The factory throughput rises with
rising factory work in process inventory (WIP) until the maximum throughput of
the constraining machine is reached. Beyond this point, if release of raw materials
continues, throughput remains constant with increasing WIP and factory TPT.

Finally, an inspection is performed after the completion of step Sb before the
product leaves the factory that requires negligible time and capacity to perform. This
inspection will reject a random number of units drawn from a uniform distribution
spanning from 1 to 5 for every 100 instances of either product Pa or Pb produced.

Full data are available on past system performance. There are no other constraints
on the system: there is an adequate supply of raw materials, machines are available
100% of the time, there is adequate WIP storage inside the factory, and so on. How-
ever, any planning algorithm for this system will be required to manage the limited
capacity including throughput and TPT nonlinearity with load, the dependence of
throughput, TPT, batching and setup changes on product mix, and the stochasticity
of product yield.

On the demand side of the problem (top of Fig. 1.1), there are two existing cus-
tomers (Ca and Cb), each ordering both products Pa and Pb. An order consists of
product name: desired delivery quantity: desired delivery date. Product substitu-
tions and partial delivery quantities are not acceptable. However, the customer is
willing to allow a tolerance around the delivery date prenegotiated as an earliest and
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latest acceptable. The delivery will not be accepted if it arrives before the earliest
acceptable time and the order will be automatically cancelled if it has not been filled
by the latest acceptable time.

At any given point in time, there are a variety of data available for production
planning purposes.

(a) Forecasted or tentative orders due in the future placed as an indication of what
the customer might order. These orders can be cancelled or changed in product,
quantity, and due date until order confirmation at the discretion of the customer.

(b) Confirmed orders due currently or in the future that cannot be changed or can-
celled except for late delivery.

(c) A historical record of the dates that tentative orders were placed, changed, can-
celled, confirmed and that confirmed orders were delivered or automatically
cancelled due to tardiness.

Note that the demand from either customer for each product may change over time
in unpredictable ways. Any planning algorithm will be required to manage these
nonstationary, uncertain demand signals.

This is an ongoing supply-demand system and so a production plan must be gen-
erated repeatedly on a regular basis many periods into the future. The decisions that
can be made by the customers in each time interval include:

D1) Placing a tentative order,
D2) Changing a tentative order including cancellation, and
D3) Confirming a tentative order.

The decisions that must be made by the producer in every time interval include:

S1) What tentative orders to accept on confirmation,
S2) How much material to release into the factory, and
S3) What orders to fill with products exiting the factory.

The goal of the production planning system is to maximize profits. There is a cost
per unit to manufacture (different for Pa and Pb), and a selling price per unit that
has been prenegotiated (different for Pa and Pb). Transportation costs are assumed
to be included in the selling price.

In the example presented thus far, all of the supply side parameters have been
specified, but none of the demand side parameters are given. This allows the speci-
fication of a rich set of subspaces based on the relationship between the supply and
demand parameters (assuming both customers are ordering both products).

Subspace 1: There is a set of production planning problems in a subspace defined
by the value of the mean demand with respect to mean supply.

1. If the mean demand is less than the mean supply, the supplier is more focused on
decision S2. Given extra supply capacity, deciding which tentative orders to ac-
cept (S1) becomes simpler, as does deciding what to do when production material
exits the factory (S3).
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2. If the mean demand is greater than the mean supply, the problem for the supplier
becomes more difficult. All orders cannot be taken because of capacity limits
(S1). Given a heavily loaded factory, nonlinearities in throughput and TPT be-
come more important, stressing effective management of material release into
the factory (S2), and matching factory output to orders becomes more of a chal-
lenge (S3).

3. If the mean demand is approximately equal to the mean supply averaged over
many periods, but may be randomly less or greater than the mean supply in
individual periods, the material release decision (S2) for the supplier involves
“build-ahead” to use excess capacity in low-demand periods to manufacture
products to (hopefully) cover orders in high-demand periods.

Subspace 2: There is a set of production planning problems in a subspace defined by
the value of the mean of the demand lead time (when the tentative order is confirmed
relative to the requested due date) with respect to the mean of the supply lead time
(when the items exit the factory relative to when the raw materials to produce them
was released into the factory).

1. If the mean of the demand lead time is greater than the mean of the supply lead
time, the supplier is more focused on decision S2. Given extra supply lead time,
deciding which tentative orders to accept (S1) becomes simpler, as does deciding
what to do when production material exits the factory (S3).

2. If the mean of the demand lead time is less than the mean of the supply lead time,
the producer must consider the interaction and integration of decisions S1, S2,
and S3, since the material needed to fill tentative orders will have to be released
into the manufacturing facility before there is a confirmed demand signal.

Other features of the demand parameterization can make the production planning
problem easier or harder to formulate and/or solve through their impact on the in-
herent uncertainty that must be managed. Zero tolerance for delivery timing makes
the problem more difficult in every time period. This means that the factory must
make the right amount of product at the right time (or risk holding inventory) in
spite of the nonlinearity and stochasticity in the production system. As these toler-
ances loosen, it becomes easier to accommodate these supply planning difficulties.
Increased frequency and/or increased magnitude of placing and/or changing tenta-
tive orders makes the problem harder over time. Solving at any particular point in
time is not impacted, but solving from period to period with a set of tentative orders
that is changing frequently in large steps means that the resulting plan may contain
large changes from period to period causing undesirable thrash in the factory.

Clearly a great deal of our ability to plan production in the system above depends
on the amount, timing and quality of information we have available. For the sake
of simplicity, we shall follow the majority of the literature in assuming that the
firm involved in this minimal example has complete access to all its internal data
for planning purposes and that its operations are governed by a single well-defined
objective, in this case maximizing profits. These assumptions are all questionable
in practice. Few firms own their entire supply chain, and competing objectives are
common even among different divisions of the same firm. We will return to these
issues later.
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The realistic minimal problems outlined above combine two fundamental aspects
that render the production planning problem both difficult and interesting. The first
of these is the presence of limited capacity with nonnegligible TPT. The effect of this
constraint is that the system cannot respond to demands instantaneously resulting in
significant production lead times. Limited capacity leads to a number of nonlin-
ear relationships between critical system variables such as utilization and lead time
(e.g., Hopp and Spearman 2001), and its allocation between competing products or
customers is a significant source of complexity. While a firm may eliminate these
difficulties by maintaining significant levels of excess capacity, this is generally not
an economical proposition, especially in capital-intensive industries.

The second aspect of the minimal problem is the prevalence of uncertainty. His-
torically, uncertainty due to supply side considerations generally originates within
the firm and is thus at least in theory amenable to analysis and improvement by the
firm’s personnel. Uncertainties associated with the demand side tend to originate
outside the firm and are often associated with factors such as the general economic
climate and the actions of competitors about which the firm often has limited infor-
mation and control. We will discuss these two aspects separately in the following
sections.

1.3 Quantitative Research in Production Planning

The realistic minimal problems described above provide an interesting lens through
which to view the extensive body of literature on quantitative models developed
to support some aspect of production planning. Several such streams of litera-
ture have developed, often largely independent of each other and increasingly
specialized around the particular mathematical tools they require, such as mathemat-
ical programming, queuing, stochastic inventory theory, or dynamic programming.
In general, each stream of literature has developed its own set of broadly accepted
assumptions and problem formulations that are often divergent to some degree from
industrial reality even in the form of the realistic minimal problems above.

Consider the extensive literature on mathematical programming models for pro-
duction planning (e.g., Johnson and Montgomery 1974; Hax and Candea 1984;
Hackman and Leachman 1989; Voss and Woodruff 2003). This body of research
generally takes a completely deterministic view of demand and ignores the nonlin-
earities due to congestion in the production process. The basic problem formulation
focuses on the supply side issues of assigning work to resources in discrete planning
periods that has not substantially changed since the first papers in this area in the
1950s (Modigliani and Hohn 1955). The prevalent representation of a production
facility includes a fixed lead time with an aggregate capacity limit over the basic
planning period of interest.

It should be noted that there are relatively few references on production plan-
ning problems in the leading management science journals in the last few years and
many of these are focused not only on formulations but also on solution techniques
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(for example, the application of cutting plane techniques to lot sizing problems).
With a few exceptions, these models take the perspective of a centralized planning
department with full access to all relevant internal information and complete con-
trol of all production capacity of interest. There is little explicit consideration of the
stochastic aspects of demand in the production plan, although some models con-
sider stochastic process yields in some detail. Despite broad recognition that most
production systems are governed by the dynamics of queuing, there has been very
little effort to apply the extensive body of insights derived from the queuing liter-
ature to optimization models of production planning problems. Relationships with
partners outside the firm, such as suppliers or subcontractors, are represented at best
as hard constraints on the amount of material available or the amount of produc-
tion that can be subcontracted. The techniques of stochastic programming (Birge
and Louveaux 1997), which have received extensive application in areas such as en-
ergy planning and financial services, have not been applied to production planning
problems to any comparable extent.

While there is an extensive literature on forecasting, examples of research link-
ing forecasting to production planning are again relatively few (e.g., Graves et al.
1998; Heath and Jackson 1994; Kaminsky and Swaminathan 2001) although they
are more common in the inventory literature (e.g., Eppen and Martin 1988). The vast
majority of the forecasting literature treats the problem of demand forecasting as an
exercise in econometrics or time series analysis with no consideration of any supply
side issues or what will be done with the forecast once it has been obtained. In the
area of facility location models, the vast majority of models focus on the tradeoff
between transportation costs and the fixed costs of facility location, ignoring oper-
ational aspects such as lead times and the ensuing safety stock requirements that
define a significant portion of the operating cost of the supply chain.

The extensive body of literature that has developed around the management of
inventories (e.g., Hadley and Whitin 1963; Zipkin 1997) appears at first glance to
bring together the demand and supply aspects of the problem that have been consid-
ered separately in the work mentioned above. However, this body of work also has
its set of accepted assumptions that limit its applicability to our difficult minimal
problem set. The vast majority of stochastic inventory models view the inventory
system independently of the manufacturing system from which it is replenished,
generally representing this system by a replenishment lead time that is usually
either a known constant or random with a time-stationary probability distribution.
The nonlinear relationships between workload and lead time in a capacitated
manufacturing system are generally not considered, although there are some
notable exceptions (e.g., Zipkin 1986; Liu et al. 2004). The emphasis is heavily
on infinite-horizon models and performance measures that are defined as long-run
steady-state expectations. In recent years, the advent of supply chain management
has led to the extension of the basic models to incorporate some microeconomic
aspects, such as multiple independent actors, information asymmetries between
supply chain participants or models of customer behavior, but these are generally
highly stylized models of small systems that limit their practical value.
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Deterministic inventory models (e.g., Kimms 1997; Bahl et al. 1987; Elmaghraby
1978) are generally direct lineal descendants of the economic lot sizing model of
(Harris 1915) focusing on the tradeoff between fixed setup costs and inventory
holding costs in the presence of deterministic demand and, at best, very limiting
assumptions on capacity. Much of this work has been driven by applications in ma-
terial requirements planning (MRP) systems (Orlicky 1975; Vollmann et al. 2005),
but it is important to note that MRP is one particular solution to a limited aspect of
production planning and does not by any means define the problem in full.

Inventories have become such a prevalent part of the production landscape that
the problem of production or supply chain management is often presented as an
inventory management problem. We would argue that while inventories represent
a widespread solution to the problem of economically matching supply to demand
in the face of limited production capacity and supply and demand uncertainties,
they should not be confused with the problem itself. In recent years, a number of
alternative means of managing uncertainties and limited capacity, such as creative
contractual arrangements with customers and suppliers, use of financial instruments
such as options, and active demand management through mechanisms such as dy-
namic pricing, have begun to be considered. These constitute a major expansion of
the scope of the production planning problem and will be discussed more exten-
sively below.

In general, we conclude that the existing body of quantitative models addresses
at best only a subset of even our realistic minimal problem, failing to provide an in-
tegrated solution that considers the basic aspects of limited capacity and widespread
uncertainty in a generalizable, scalable manner.

1.4 Industrial Approaches to Production Planning

In contrast to the relatively recent contributions to the academic literature on quanti-
tative decision support models, industry has a long history of working to address the
effects of limited capacity and widespread uncertainty that are encountered daily.
On the supply side, these take the form of improving the production process
to increase capacity and reduce the variability of the production process. On the
demand side, a variety of approaches have been pursued to try to obtain better de-
mand forecasts and employ them effectively.

Ever since the beginning of industrial production firms have recognized the im-
portance of understanding and effectively managing their shop-floor operations.
Early examples of this approach were often based on the application of scien-
tific principles for better understanding of the core manufacturing processes. The
work at companies such as the Carnegie Steel Corporation and Standard Oil in
the second half of the nineteenth century culminated in the scientific management
movement led by Frederick Taylor and his colleagues, most prominently in the ma-
chining industries (Kanigel 1997). The theme of these efforts, mostly undertaken
by engineers, is a focus on data-driven continuous improvement involving extensive
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data collection on operations and its evaluation and monitoring. The basic idea is to
understand the nature of both the capacity of the production process and the uncer-
tainties inherent in the environment by measuring them, identifying opportunities
to improve them where possible, and developing strategies to manage the system in
the face of the uncertainty and capacity limitations that are either not economical
or not possible to remove. The direct descendants of these early efforts today are
the Just in Time/Lean Manufacturing approaches (e.g., Liker 2004), the Six Sigma
movement (e.g., Pande et al. 2000), and Theory of Constraints (Goldratt and Fox
1986). Each has a focus on detailed understanding of shop-floor operations and sys-
tematic processes for continuous improvement, manifested as kaizen in JIT/Lean
Manufacturing, the Define–Measure–Analyze–Implement–Control (DMAIC) cycle
in Six Sigma, and the Identify–Exploit–Elevate–Repeat cycle in Theory of Con-
straints.

The prevalent approach to managing the effects of widespread uncertainty and
limited capacity is the use of inventories. When different parts of the production
system operate with different lead times, it is often desirable to hold inventory be-
tween the two stages so that the production and replenishment processes of each
segment can be planned and managed independently. For example, a seller holds
inventory in a make to stock or retail environment where the replenishment lead
time is longer than the lead time acceptable to the customer. Similarly, a firm can
build inventories to meet demand during peak periods where demand is predicted to
exceed capacity.

This use of inventory to manage the effects of uncertainty and limited capacity
is not applied only to the deployment of inventories within the factory, although
it probably originated there. A great deal of effort in supply chain management is
aimed at determining the appropriate location and quantity of inventories at different
points in the supply chain, such as raw materials, semifinished goods, and finished
goods inventories in the distribution system.

It is probably safe to say that in most firms, production organizations are rel-
atively passive observers of demand uncertainty. They can observe it and try to
prepare for it, but they cannot affect it. The business of altering demand, presumably
in a manner favorable to the firm, is generally the domain of the sales organization
in the short term and the marketing organization in the long term. The vast majority
of conventional production planning efforts try to quantify demand uncertainty as
well as possible, and then manage its effects mainly through the use of safety stocks
at strategic points in the system.

1.5 Planning in the Expanding Supply Chain

As discussed above, the basic problem of production planning involves, at a mini-
mum, the coordination of production through a capacitated manufacturing facility
in the face of uncertain demand for multiple products. External agents such as
customers and suppliers are represented largely by exogenous inputs typified by
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demand forecasts. We now consider broader supply chain planning problems that
we believe illustrate the expanded scope of the planning activity in today’s global
supply chains.

The minimal problem we discussed earlier involved a single production facility,
and the subproblems dealt with cases where the limited capacity of this factory was
related to the volume of demand (subspace 1) and where the supply lead time was
related to the demand lead time (subspace 2). In either case, an agonizing situa-
tion for a production planner is to be constrained by the company’s manufacturing
capacity (the one thing directly under the planner’s control). In industrial practice,
there are other firms that can potentially manufacture products Pa and Pb. While it is
not the responsibility of production planners to deal with these other firms directly,
when there is not sufficient capacity to meet demand, temporary or permanent out-
sourcing is a possibility. The production planner plays a vital role in these decisions
including which products to outsource to whom in what volumes for what periods
of time. The planner brings a detailed knowledge of capacitated stochastic manu-
facturing facilities that will be necessary to understand what commitments the other
firm can make. A rudimentary understanding of contracting including options is vi-
tal for the production planner to play this role. However, for most products, finding
an adequate capacity subcontractor is not possible from a tactical perspective and is
left for discussion in the next section on proactive risk management. The best the
planner can do is consult with the sales and marketing organization for a clear pri-
oritization among products and customers to maximize revenue, while minimizing
damage to the company’s reputation and relationships.

The example problem assumed that there is always an adequate supply of raw
materials. This luxury is not often afforded to industrial production planners. Mate-
rial suppliers also have capacity restrictions and sell to a variety of customers. When
materials cannot be acquired to support a production plan, the production planner
must be included in replanning considering the availability of materials, a deep un-
derstanding of the needs of the firm, and a broad understanding of manufacturing
physics including the material supplier’s factory. It could be that some materials are
more constraining than others or that rearrangement of the sequencing of orders to
the material supplier can remedy the problem. Another possibility that the produc-
tion planner can explore is revising the production plan to match the delivery of
materials while minimizing the impact on satisfying the demand for the company’s
products. Once again, a rudimentary understanding of contracting including options
is vital for the production planner to play this role.

In the initial problem, production planners received a demand signal that they had
very little control over. In industrial practice, planners should be involved in decision
making on capacity allocation with the sales and marketing personnel who are di-
rectly engaged with the customers. Idle capacity and unused inventory are incurring
cost but not contributing to revenue, while unmet demand is a missed opportunity for
revenue. Poor collaboration between planners and marketers can result in all three
of these conditions simultaneously. When demand is the constraint, the production
planner can again be in a precarious position. Since many factories are measured on
equipment utilization, and no factory manager wants an idle factory, there will be the
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risk of building extra product. This will add manufacturing and inventory holding
costs to build products that have at least a possibility of being scrapped. Working
with sales and marketing to find ways to stimulate demand through pricing moves
and special offers becomes part of the production planner’s task. Care must be taken
in these efforts and production planning expertise must be included to be sure that
the effect that the sales and marketing team envisions is actually possible for the
manufacturing team to execute in a timely fashion. For example, special sales and
marketing activities such as price promotions intended to influence demand that can-
not be supported by manufacturing will not only fail but might harm the reputation
of the company. A basic understanding of the market allows the production planner
to be more creative in using the firm’s manufacturing capability to minimize cost
and maximize revenue.

Potentially the worst situation for a production planner is a constraint that
moves between capacity and materials and demand periodically over time. Proac-
tively managing these possibilities is far preferable to attempting to manage
them dynamically. Consider the initial example problem extended to include one
capacity subcontractor, one material vendor, the possibility to influence demand,
and a suite of financial instruments with which to manage these extensions. As
with the initial problem, this extended problem includes interesting and tactically
important subspaces.

1.5.1 Supply Side: Inventory vs. Other Proactive Supply
Management Techniques

In this expanded view of production planning, the planner is the primary agent to
allocate the resources of the company to satisfy demand and the consultative agent
to support acquiring materials and extra capacity. It is certainly possible to stockpile
raw materials and outfit factories with extra capacity to mitigate the risk of these
items constraining demand satisfaction. However, there are alternative techniques
that may be more effective at mitigating risk as well as less financially burdensome.

On the topic of material acquisition, an array of financial instruments and tech-
niques may be required to manage risk over different time periods. Looking a few
weeks into the future, it may be necessary to resort to the spot market to manage ma-
terial shortages or to divest materials that are surplus to requirements (although the
more specialized the materials the less useful this mechanism becomes). Whether
our firm is the seller or the buyer, grounding in modern auction theory is essential
for this activity. Looking a little farther into the future, where inventory is still a part
of the solution, various types of contacts can be employed. Assuming that histori-
cal practice was fixed price procurement contracts including materials to be held as
safety stocks and/or consigned inventory held at the company’s site but owned by
the supplier until used, options contracts can provide useful augmentation. Where
applicable, options can reduce the amount of safety stock needed wherever it is
located and whomever is its owner. The interesting challenges are negotiating
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whether the option is for a quantity at standard lead time or for a quantity with a
reduced lead time and of course the option and strike prices. The production planner
is a consultant to these negotiations given knowledge of the actual needs of the com-
pany including the demand the company is trying to satisfy into the future as well
as having practical insight into the nonlinear stochastic manufacturing engine of the
supplier. Since the supplier operates a factory with all of the difficulties described
above, a default penalty might be a useful addition to the terms and conditions.

When considering capacity subcontracting, a different set of issues are encoun-
tered. The most obvious is the potential lack of a broad spot market. For another
company to make your product to be sold into the market under your name, there
have to be a number of preparatory activities. At least the subcontractor has to par-
ticipate in some kind of qualification activity to assure capability and quality. Once
this is accomplished, however, a mixture of conventional contracts and options is
feasible. In pursuing options, the interesting negotiations are again exactly what the
option is for in terms of quantities and lead times and how much the option is worth.
Penalties are a topic of concern again since the subcontractor is operating a nonlin-
ear and stochastic factory. A new concern arises here since the subcontractor may
purchase materials from the same vendor as our company. Uncoordinated options
written with the materials vendor and the capacity subcontractor may lead to an
unsatisfiable situation. In any case, the production planner serves as a consultant
in these negotiations and grounding in modern options theory is essential for this
activity. Equally important is communication and collaboration between production
planners and purchasing agents.

1.5.2 Demand Side: Forecasting vs. Other Proactive Demand
Management Techniques

As discussed previously, much of the conventional view of production planning
takes a somewhat passive view of demand as an exogenous process, where the
best we can hope for is to predict it with better accuracy. Forecasting demand is
a complex process that requires a carefully selected and analyzed subset from the
abundance of information available today, including past and current demand data,
“tentative” orders, the size of the customer base, seasonality of demand, the effects
of product life-cycle, price and promotions, information about competitors, informa-
tion about industry trends and new products, nonprice attributes such as warranties,
service guarantees, etc., and other external factors such as economic trends and in-
dicators. Rapid developments in information technology are making it possible to
collect, organize and mine this type of data in a manner that was unimaginable even
a few years ago.

While most forecasting efforts in the past have assumed the existence of ade-
quate historical data, this assumption is increasingly questionable in today’s rapidly
changing markets. In our expanded view of the production planning problem in the
supply chain, it is important to realize that our demand may depend on the recent
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actions of other actors several degrees removed from us in the supply chain. In
the case of complex products or services, a customer may place an order after
some discussions and negotiations with the sales force, and possibly after testing
the product for some time. Such “tentative” orders may be very useful in forecast-
ing demand, in particular, if the company also keeps information about how long
it takes for the customer to place an order after the initial discussions start, what
percentage of these orders are eventually confirmed, with what kind of modifica-
tions, at the individual customer level. However, tentative orders can sometimes
lead to overly optimistic forecasts. For example, in 2001 Solectron’s big customers,
including Cisco, Ericsson, and Lucent were expecting explosive growth for wire-
less phones and networking gear. Basing its own projections on these expectations,
Solectron ordered materials from its suppliers, and when the demand did not realize,
ended up with $4.7 billion in inventory.

Since the final price a customer pays for a product impacts the customer’s de-
cision of purchasing, it is important to have information about prices, promotions,
and other incentives offered to customers, even if the firm does not directly control
such incentives. For manufacturers who do not sell directly to the end consumers of
their products, an added challenge in planning and forecasting is the “middleman”
between the manufacturer and its end customers. For example, auto manufactur-
ers sell their products through dealers, consumer package goods manufacturers sell
through retailers, and the demand observed by electronics contract manufacturers is
dictated by the demand of their customers’ customers. In such cases, the manufac-
turer usually receives the sales information about end customers with a significant
delay or sometimes not at all. The demand of a product might depend on the other
complement and substitute products (and their attributes such as price and qual-
ity) available in the market. Are new products coming to the market soon that will
impact the sales of this product? These questions suggest the need for all-around
awareness of what is happening in the larger supply chain. That requires immense
amounts of data to maintain and techniques of analysis on large data sets that are
the focus of research efforts. There is also a strong need to identify information that
can help predict the demand for new products more accurately, and allowing for
idiosyncrasies of the data collection method, such as arises in the retail sector when
no record is kept of lost sales, rendering the tracking of demand (as distinct from
sales) difficult.

Moving beyond the use of information on pricing, promotions, and other en-
vironmental factors to develop better demand forecasts, at the next level of de-
mand management, companies not only try to respond to demand, but also to
influence it in a manner favorable to them. For example, telephone sales person-
nel can steer customers towards available configurations. This moves beyond the
functional/distributed approach where sales and production operate largely indepen-
dently, requiring regular communication and coordination between the production
planner and the sales and marketing functions.

Probably the most important tool used by companies to influence demand is
pricing. For most manufacturers, pricing decisions are currently done in a reactive
rather than a proactive way. That is, most manufacturers currently turn to discounts
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and promotions to generate additional demand for absorbing excess inventory.
For example, manufacturers can offer dealers up to 30 days of free credit and
encourage them to sell below list prices if they are overstocked. Similarly, customer-
class oriented promotional pricing such as cash-back and various financing plans are
additional tools used by manufacturers to influence demand. For the most effective
use of pricing and promotions, it is again essential to have collaboration between
the manufacturing organization and the sales and marketing organization since the
careless use of promotions without considering their impact on the supply side can
lead to increased costs of labor, materials, capacity, and transportation, reducing the
overall profitability of the firm.

1.5.3 Centralized vs. Distributed Planning Environments

While it would be ideal from a systems point of view to manage all these expanded
activities in a coordinated manner between purchasing, production planning, sales,
and marketing, such an integrated approach is seldom the case in either research or
practice. Even in cases where the firm owns significant portions of its supply chain,
different segments are likely to be assigned to different organizations. The managers
of these organizations are given different forms of financial and other incentives to
ensure that their actions support the overall success of the firm. In the narrow, con-
ventional view of the production planning problem this is not as much of an issue.
The management of the particular unit for whom the planning is being done for-
mulates the characteristics of a good plan (explicitly or implicitly) and plans evolve
to reflect these characteristics. However, when multiple organizational units are in-
volved, a solution to the planning problem will necessarily involve negotiations and
compromises between the different players. Setting the incentives is a major chal-
lenge, as attested by the extensive body of management literature on performance
measurement both in the supply chain and in the firm. In any case, execution of the
resulting plan requires interaction from several different organizational units and
functional areas, and as such is necessarily distributed.

We can conjecture a number of reasons for this situation. In all but the smallest
firms, these different activities require different skill sets that are often difficult to
find in the same individual. As manufacturing technology has become more com-
plex, for instance, it has become more difficult for an engineer or manager to have
a working knowledge of the entire firm’s manufacturing operations. This progres-
sive specialization was also very much in line with the reductionist approach of the
scientific management philosophy that was influential in the latter part of the nine-
teenth century when the modern industrial enterprise had its origins (e.g., Chandler
1980). This led quite early on to the organization of firms into specialized functional
groups each of which considered one particular aspect of the firm’s operations, such
as production, procurement, or marketing. By necessity, each of these functional
groups developed its own performance measures, such as minimizing costs or max-
imizing revenues. This lead to a distributed decision making environment within
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the firm including a mechanism to coordinate decisions through incentives offered
to each group. For example, production operations are generally viewed as a cost
center, while demand-related functions such as sales and marketing are considered
as profit centers.

A number of quantitative models addressing these issues have begun to emerge
in recent years. In the research community, some use the tools of economics such as
game theory and principal-agent theory to explore the effects of information sharing
and different types of collaboration on the behavior and performance of the supply
chain. Many of these models explore very simple, stylized systems with the aim
of obtaining insight into how to incentivize different parties to obtain behavior ap-
proximating that of the centralized system. Some researchers have explored using
the tools of mathematical programming and price-based decomposition approaches
that seek to coordinate the behavior of a number of decision entities by setting prices
for internal transactions. A number of others have explored these issues computa-
tionally using tools such as system dynamics and agent-based models. In industry,
there is a strong movement towards the development of collaborative supply chain
planning tools, although the precise nature of these appears to be in flux. Several
industry-specific efforts aimed at structuring the interactions between members of
the supply chain have arisen in a number of industrial sectors, such as Collaborative
Planning, Forecasting and Replenishment in the consumer goods sector and Quick
Response in the textile sector.

The role of the planning model, whatever mathematical form it takes, is likely to
be quite different in this collaborative environment than in a centralized one. Rather
than being prescriptive in nature, its main function may be to facilitate negotiations,
providing all parties with a better view of the consequences of their decisions and
those of others. Individual models and planners must now have an idea of how the
other stakeholders in the system with whom they interact are incentivized, a clear
understanding of how the costs and revenues of their organization are affected by the
decisions of others, and how external parties are likely to behave in various circum-
stances. An understanding of contracts and financial options enters the picture here
as well as the need to maintain relationships and sharing information with multiple
parties without breaching confidentiality requirements. An example of such an alter-
native view of the problem is that taken by researchers in the artificial intelligence
community (e.g., Zweben and Fox 1994) who have viewed problems of produc-
tion scheduling and planning as requiring the identification of a solution satisfying
a set of constraints, generally resulting from the needs of different individuals or
groups, rather than as an optimization problem with a single, well-defined objective
function.

It is interesting to contrast these ideas with the nature of current Enterprise Re-
source Planning (ERP) systems whose domain spans wide areas of the firm, at least
from a data management perspective. The results of this functional focus are clearly
manifested in the assumptions made by these modeling efforts. Several of these
are pervasive, especially the modeling of exogenous information in relatively sim-
ple ways such as point estimates for demand forecasts, fixed replenishment lead
times independent of order quantities in inventory models, and access to all relevant



16 K.G. Kempf et al.

information for the planning problem under consideration. Note that these are, upon
reflection, quite consistent with the functional view of the world. Demand is beyond
our control, so the best we can do is try to predict it. Inventories in the distribu-
tion channel belong to the distribution organization, not the production organization
so production quotes a fixed lead time for replenishments. The scope of the plan-
ning decision is functional, so the functional group has access to all information
arising within its own organization, but must either estimate or make simplifying
assumptions about the ill-understood exogenous parameters, providing complete in-
formation about a very narrow segment of the problem space under the control of
this particular functional group.

1.6 Production Planning in Industrial Practice:
Data and Scalability

Our discussion until now has used the basic and expanded realistic problems pre-
sented above to discuss the state of the research literature, outline the essential
characteristics of the production planning problem and suggest the need for an ex-
pansion of its scope relative to the conventional definition of the problem to achieve
its potential. However, no-one would pretend that these realistic minimal problems
are complete reflections of industrial practice. It is worthwhile, therefore, explor-
ing how industrial problems differ from the somewhat stylized problems we have
presented until now.

One of the most important dimensions of difference is the sheer size of the prob-
lems. While we have presented minimal problems with two products, two capacity
types and two customers, industrial problems will routinely involve dozens of capac-
ity types distributed over tens of geographic locations around the globe producing
hundreds (if not thousands) of products for thousands (if not millions) of customers.
One implication of this is that the scalability of any solution procedure proposed for
the problem, or even a part of the problem, is crucial to its being implementable.

An important corollary is that the extraction, organization, and maintenance of
the data to support planning models on this scale is a very significant effort in its
own right, often dwarfing the actual modeling and solution methodology in its com-
plexity. Since no planning solution of any kind is ever implemented in a vacuum, it
must be integrated into a business process that fits the organization in which it will
be used, interface with existing information systems and other business processes,
and be intelligible to its users.

Another aspect of industrial practice is the emphasis placed by the firm on differ-
ent aspects of the production planning problem will vary significantly from industry
to industry. For example, for companies in the aerospace and automotive indus-
tries that make a complex product with hundreds of subsystems manufactured by
other firms, the effective management of suppliers is the crux of their production
planning. For firms in capital intensive industries such as semiconductor manufac-
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turing, managing the factory to maintain high output and reliable cycle times at
high utilization is essential to success. For fashion apparel companies, early testing
of markets with small batches of a variety of styles and colors is crucial for refining
demand forecasts.

Evolving corporate information systems render possible the collection of vast
amounts of data to support these activities, but these data must be supported by
planning models and processes that exploit them to their best advantage. It is inter-
esting to note that in contrast to production planning, ERP systems at the majority
of large corporations are specifically intended to be implemented across organiza-
tional groups within the firm, and increasingly with key suppliers and customers.
However, in many of these systems, the basic planning technology is based on the
MRP paradigm developed more than 50 years ago, whose ability to manage even
our realistic minimal problem effectively is highly limited. Indeed, the lack of ef-
fective production planning tools in at least the first generation of these systems led
to the emergence of an entire software sector of “bolt-on” Advanced Planning and
Scheduling solutions, which used the ERP system for transactional data and exe-
cution, but used their own algorithms to provide improved planning capability over
and above that inherent in the ERP system. Developments in this area have generally
been driven exclusively by advances in information technology, most importantly
relational databases, client–server computing and the Internet. The systems tend to
be developed, deployed, and managed by Information Technology personnel, who
have their own set of priorities (e.g., ease of maintaining a homogeneous platform as
opposed to homegrown systems tailored to the firm’s peculiar planning needs) and
often lack an understanding of the firm’s supply chain and production operations.

There remains today a large segment of the industrial community in which pro-
duction planning is viewed essentially as a software problem that can be resolved
by applying faster computers and better data collection. However, there is growing
evidence in industry today that our ability to collect, transmit, and organize data on
supply chain operations is outstripping our ability to use it to more efficiently and
effectively plan and run our supply chains. A better understanding of the expanded
production planning problem is essential to developing a “science base,” a general-
izable, extendable body of knowledge, to support this aspect of the firm’s activities.

1.7 Motivation for this Volume

Over 50 years ago, Simon and Holt (1954) stated in the introduction to their survey
paper on control of inventories and production rates:

The problem of discovering appropriate decision rules is greatly complicated by the fact
that decisions: : : need to be made at several stages in a procurement-manufacturing-
warehousing-selling sequence. In even a relatively simple situation we might have the
following stages: (a) procurement of raw materials and purchased parts, (b) raw material
inventory, (c) parts manufacture, (d) semi-finished inventory, (e) finished-goods assembly,
(f) finished-goods inventory, (g) shipment to district warehouses, (h) warehouse inventory,
(i) sales to customers.
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They then summarize research in ordering, production rate, and scheduling decision
making considering static and dynamic cases with and without uncertainty and in-
clude a brief discussion of forecasting. Towards the end of their description of the
then state-of-the-art they conclude:

It should be clear from this summary that substantial progress has been made in several
directions in devising procedures for making rational decisions about production and inven-
tory control. : : : Ideally, one would like to think that some combination of these approaches
would handle simultaneously all classes of decisions including scheduling. They would em-
brace the interactions in the many-commodity case, and include the interactions in a whole
series of ‘cascades’. What would appear to be needed is some kind of ‘dynamic nonlinear
programming with built-in forecasting.’

Our purpose in this essay has been to make a case that two important concepts
persist from the Simon and Holt survey. On the one hand, the same core problem
is still faced by production planners on a daily basis. On the other hand, while
substantial progress has been made, there still exist significant gaps between the
needs of industrial practice and the decision support tools provided by the existing
body of quantitative research addressing production planning. We began by outlin-
ing a conventional, narrow view of the production planning function and presenting
some historical perspective on why this view of the problem has prevailed. We have
outlined a set of minimal but difficult problems of this type, characterized by the
prevalence of uncertainty in both supply and demand as well as nonlinear behavior
of the supply process due to limited production capacity and nonnegligible TPTs.
Examining the major streams of existing literature suggests that a complete, scalable
solution to even this difficult minimal set of problems is currently not available. The
existing literature has separated into a number of increasingly independent streams,
largely based on the mathematical tools they employ, and each of these is capable
of addressing at best a subset of even the difficult minimal problem. In industrial
practice, the deployment of inventories at different locations in the factory and the
supply chain has been the prevalent approach to dealing with this problem, to the
extent that the overall problem is perceived as an inventory management problem
by a broad section of both the industrial and practitioner communities.

While this finding would be disturbing enough by itself, we believe it comes at a
time when the scope of the production planning problem that industry needs solved
is expanding in response to the growing recognition of the need to consider the
broader supply chain to maintain an ongoing competitive advantage. This suggests
our expanded problem set, where the scope of the original problem is expanded to
include management of capacity subcontracting and material supply through con-
tracts and other financial instruments; management of demand through tools such as
dynamic pricing; and the recognition that in the vast majority of industrial environ-
ments the production planning process will take place among a number of different
organizational entities with different constraints and objectives, leading to a dis-
tributed view of the problem in contrast to the prevalent centralized, prescriptive
approach of most models.

Along with this expansion of the scope of the problem, reflected in the scope
of the decisions it involves, is the realization that the scale of industrial problems
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requiring solution is so large as to constitute a significant challenge in its own right.
To be viable in practice, a solution technology must be scalable across global sup-
ply chains with highly diverse product portfolios, multiple production locations
involving capacity of different types, as well as many different customers. While
developments in computing and information technology are increasingly converg-
ing to provide data on all aspects of supply chain operation, this rapid increase in
the scale of the problem poses significant challenges to designing algorithms that
can be used in effective solutions.

Our objectives in these volumes have been twofold: to assemble a clear picture
of the state of the art in production planning, defined broadly, and how we got to
it, and then to suggest directions for future work in this field that will be required
to bring decision support technologies, again broadly defined, to a level where they
can contribute to effective solution of industrial problems. Rather than emphasizing
focused contributions of an analytical nature to a specific aspect of the problem, we
include chapters that suggest promising directions for future work, presenting suffi-
cient analysis, mathematical or computational, to support the case for the proposed
direction.
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Chapter 2
The Historical Foundations of Manufacturing
Planning and Control Systems

Kenneth N. McKay

2.1 Introduction

Before probing the history of manufacturing control systems, we have to ask a
question. What is a manufacturing planning and control system? In theory, there is a
simple answer – it is a system of “things” that work together to control what is done
where, by who, using what set of resources (machines, tools, and materials), at what
time, and in what quantity. Controlling also implies setting expectations or knowing
what the expectations are, measuring the realized manufacturing performance and
outcomes, knowing what is where, what has been done, providing feedback, and
making necessary corrections so that the expectations and goals can be met, or at
least be better met in the future. So, what are the elements of a manufacturing plan-
ning and control system?

First, these systems include, or at a minimum are influenced by, the harsh, physi-
cal reality of the plant–machine layout (functional or process), machine and tooling
capability, inventory locations, space around machines, and material movement
options. The physical or technological aspects provide potential options for, and
constraints on, what can and cannot be physically done in the plant, and thus pro-
vide a form of physical manufacturing control. Flexibility can exist in the physical
components and can range from different fixtures to physically altering machines
(combining or separating). Exploiting any potential flexibility in the physical sys-
tem may have associated costs, lead-time issues, and risks.

Second, superimposed over the physical reality are the logical components –
policies and procedures. The policies and procedures, if at all accurate, can never
overstate or violate the physical reality and usually act as constraints on the physical
flexibility. For example, if the floor loading will support 10,000 kg/m2, a logical pol-
icy allowing inventory to exceed 10,000 is nonsensical. However, a policy restricting
the inventory to 8,000 kg might make a good inventory control policy independent
of any economic order quantity. Policies and procedures may also be influenced by
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outside forces. For example, governmental rulings regarding health and safety might
also constrain the degrees of freedom. The set of applicable policies and procedures
used by a firm form the procedural manufacturing control. Depending on the na-
ture of the issues they address, some policies and procedures have latent elasticity
and thus constitute relatively soft constraints which can be negotiated based on the
business context.

Third, between the procedural and physical manufacturing levels, there are the
actual tools and instruments used for control – manufacturing control technology.
This includes monitoring and informing techniques for knowing what has happened,
where things are, the status of work orders, as well as activation and notification
techniques for indicating when work should start, how much should be produced,
or where inventory should be moved to. For example, barcode readers and sensors
can determine the production results at a machine, and a Kanban card or signal can
indicate that production can start on a particular item. The manufacturing control
technology also includes the logic and analysis behind all of the production control
process for determining what is needed when and what is the best way of doing it.
Included in this subcategory is the MRP logic, planning, scheduling and dispatching
tasks, and so forth.

To summarize, a manufacturing planning and control system will combine the
following elements:

� Physical manufacturing control
� Procedural manufacturing control
� Manufacturing control technology – monitoring and informing, activation and

notification, and logic and analysis

While it is possible to think of these elements as being reasonably independent,
they become interrelated and interdependent during manufacturing execution. For
example, in the 1920s a form of mechanical scheduling using conveyor systems
as a controlling mechanism was described (Coes 1928). Everything was moved by
conveyor – if there was something on the incoming conveyor and your machine
was not blocked by the outgoing conveyor, you performed your task. If you were
starved or blocked, you did no work. This controlled the total inventory in the plant
and forced machines and operators to an idle status. There was no inventory outside
the conveyor system. This is very similar to the effects of Kanban and illustrates a
combination of the physical, procedural, and technology components.

If all three elements are appropriately matched to the manufacturing situation,
it is likely that manufacturing will be efficient and effective. If one or more of the
components is significantly inappropriate to the context, then manufacturing is more
likely to be chaotic and definitely not efficient or effective. For example, expecting
a job shop to respond effectively and efficiently to a Kanban pull from multiple as-
sembly areas without adequate bins and quantities to cover the variable lead time
that will result is an example of a mismatch. Another mismatch arises when inven-
tory control techniques such as order point are used when the majority of work is
composed of dependent demand and the demand is highly variable. This also does
not work well. Thus, a goal of manufacturing system design is to know what form of
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manufacturing planning and control is suitable for a given level of quality, volume,
speed of manufacturing, and mix. The design challenge is compounded by the fact
that requirements will undoubtedly change over time – the three axes represented
by the procedural, physical, and control elements must be periodically reviewed to
ensure that balance is retained. A common example of requirements evolving over
time is an increase in product variety with a decrease in volume for each product
type. Depending on the magnitude of each change, the situation may flip from a
high volume, low mix situation to a low volume, high mix situation, which might
warrant layout changes accompanied by changes to manufacturing control.

As we review the history of manufacturing planning and control systems, these
elements and their interplay will be used to anchor the discussion. Section 2.2 will
provide a brief history of manufacturing planning and control systems prior to the
start of the twentieth century. Section 2.3 will focus on the early systemization and
developments during the first three decades 1900–1930. Section 2.4 will look at the
situation in the 1950s, 1960s, and early 1970s. In this chapter, we will not focus on
the physical shop floor execution systems that sense and track the actual production,
but on the logical controls using this information.

2.2 Pre-1900

Before 1900, there were isolated examples of relatively large-scale, systemized
manufacturing concerns which involved various types of manufacturing control.
For example, Lane (1934) describes the fifteenth century Venetian Arsenal. The
arsenal had a moving assembly line for the rapid completion of galleys. In the early
1700s, the Lombe brothers constructed a large-scale silk mill in Derby (Cooke-
Taylor 1891) and by the end of the 1700s, Boulton and Watt had collaborated at the
famous Soho Manufactory (Doty 1998, Immer 1954). The Portsmouth Block Mill
of the early 1800s (Wilkins 1999) and the American armouries of the same time
period (Smith 1977) also introduced manufacturing control innovations. In each
of these examples, high volumes of products were manufactured with little logical
manufacturing control per se; the majority of control was imposed by the layout
and physical nature of the plant. There was little competition and in the case of
the military units, the focus was on basic production and not on the efficiency and
effectiveness of the manufacturing process. Lombe and Boulton/Watt also had
business structures similar to that of a monopoly and while manufacturing was
controlled, extreme levels of transactional analysis was not needed. By the
1830s, the concepts of quantity and economic production were being discussed
(Babbage 1832).

Starting in the mid-1800s, manufacturing activity expanded rapidly (Hounshell
1984) and by the late 1800s manufacturers were looking for ways of reducing the
chaos. The American Society of Mechanical Engineers (ASME) started to publish a
number of papers and discussions of manufacturing management and techniques
in the late 1800s. As the most thorough and thoughtful treatise on the matter,
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Lewis (1896) might be the first manufacturing management text. Lewis provides
a very thorough discussion and mapping of a factory’s decision making and in-
formation flow, details the cost accounting, and describes how manufacturing was
orchestrated from order taking to shipping. While others such as Taylor (Kanigel
1997) focused on a subset of manufacturing management, Lewis described the
whole organization. This was a British publication, and no equivalent North Amer-
ican publication appeared for at least two decades. We have been unable to find a
reference to Lewis’ work in any of the early Industrial Engineering texts. Generally,
any systematic form of control and organization was an exception and as noted by
Emerson (1909), the general state of manufacturing was mass confusion and the
first order of business was to systemize and bring some order to the process. The
systemization of manufacturing would prove to be challenge.

2.3 1900–1930

During these three decades, the manufacturing sector saw the mass systemization
of production and associated activities (McKay 2003). There were many articles
and publications written during this period covering an immense range of topics
(Cannon 1920). Subjects included what individual operators were doing and how
to supervise them (Taylor 1903, 1911), incentive schemes (Gantt 1910), how to or-
ganize resources in functional and process arrangements (Diemer 1910, Kimball
1913), mass production and continuous improvement (Ford 1926), focused factory
organizations (Robb 1910), economic analysis of inventory (Erlenkotter 1989), sup-
ply chain management and hand-to-mouth inventory (Nash 1928, Alford 1934),
statistical process control (Shewhart 1931), and reconfigurable production lines
(Barnes 1931, Koepke 1941). As noted by Alford (1934), the majority of man-
ufacturing activity was relatively basic and did not require or use many of these
ideas. There were, however, occasional exceptions. The idea of just-in-time inven-
tory (hand-to-mouth) was widely used in the 1920s. For example, Nash (1928) had
daily turns of inventory at his automotive assembly plant and there were many exam-
ples of lean supply chains and controlled inventory. Throughout industry there were
many assembly lines and material handling devices deployed, but there was little
evidence of large numbers of companies actually using statistical process control,
economic analysis of inventory, or other algorithmic types of procedural or logistical
manufacturing control. Knoeppel and Seybold (1937) pointed out that in general
the prescriptions, tools, and concepts created by the early Industrial Engineers were
rarely used.

It appears that the majority of manufacturing management effort was focused on
tracking and basic control. Almost a century later, this reasoning still appears to be
the primary reason for firms implementing ERP systems and this will be discussed
in later sections. Even in the early 1900s, the physical and control technology was
rudimentary and was composed of the typical functional, product and process flows
combined with basic book-keeping. There were many self-help style publications
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on how to codify parts, organize tools, and have smoother flow of goods through a
factory. These were still popular topics in the early 1930s even though they started
to be discussed in the early 1900s. One of the most common topics throughout this
era was that of tracking and planning boards. Gantt’s 1919 work is perhaps the best
known of the graphical display methods, but there were others such as Knoeppel
(1915, 1920) who was a consultant like Gantt and proposed a variety of ways to
present, plan, and track work through factories. In this period, many mechanical
planning boards and production control tools were developed to help plan, track,
and predict factory operations (Simons and Dutton 1940). There were also many
card and filing systems created to account for and to track production, some using
IBM’s punched cards (Simons and Dutton 1940).

In terms of procedural or logistical control, very little of a mathematical nature
can be found before mid-century. There was the work on economic order quan-
tity (Erlenkotter 1989) which was adopted by some portion of industry, but it is
hard to ascertain how popular the method was or who actually benefited from it.
Other mathematical techniques were applied to quality control, especially sampling
(Robertson 1928a, b), and control limits (Shewhart 1931). Based on descriptions
found in American Statistical Association (1950), it would appear that statistical
tools such as sampling methods were used extensively in the World War II produc-
tion effort but not before. This is supported by the minimal reference to SQC/SPC
in popular texts of the time (e.g., Koepke 1941). There was substantial work on
forecasting, of course (White 1926), but this was not really of an operational na-
ture as it focused on the longer term. For actual planning and scheduling, very little
mathematical analysis was proposed to help with sequencing decisions. This is not
in itself surprising since the manual effort to mathematically analyze any reason-
ably realistic industrial scheduling problem would have been prohibitive. Knoeppel
(1915) recommended using a numerical ratio to determine the best time to start
a subsequent operation when overlapping tasks, which is the only example of a
scheduling or dispatching heuristic that can be found from this era. Note that this
dealt with the operations within a job and not really sequencing multiple operations
on the same machine. There is no solid evidence that anyone used his suggestion. In
texts dedicated to routing and scheduling (e.g., Younger 1930), there is no mention
of advanced reasoning beyond that of looking at overlapping operations for better
sequencing and the body of the texts are focused on creating departments, system-
izing paperwork, setting up basic plans, and tracking. The only other “advanced”
algorithmic suggestion found in the literature related to work flow through a factory.
Knoeppel (1920) suggested that work should be pulled through factories using an
approach not unlike MRP and this message was still appearing in 1940 publications
(Simons and Dutton 1940).
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2.4 The 1950s, 1960s, and early 1970s

In the era before the wide-spread use of computerized MRP, a factory with even a
modest amount of product variety and process complexity found that they had a very
difficult planning and scheduling task. Koepke (1941) describes one factory using
approximately thirty people to generate a 2-week plan. It took them 2 weeks with
overtime to prepare the next 2-week plan. The amount of paperwork and manual
effort was just daunting. It is little wonder that the majority of manufacturing used
statistical, order point or quantity reordering schemes which were independent of
actual orders or demand even as late as the early 1970s (Orlicky 1975). As Orlicky
comments, given the information systems they had, it was the best they could do.
Orlicky estimated that there were approximately 150 firms using MRP-type systems
by 1970 and that this number would grow to 700 by 1975. Part of this increase was
expected by Orlicky because of the MRP Crusade mounted by APICS in the early
1970s. This slow evolution from the first business computer usage for inventory
management and control in the early 1960s to this awareness in the early 1970s was
considered a major development.

The elements of MRP are now well known. There are bills of material, time-
phasing concepts, calculating component item demand, lot sizing, estimation of
coverage, priority control, and load projections. A key concept in MRP was clearly
distinguishing dependent demand based on end item forecasts and orders from in-
dependent demand such as that arising from component sales and service parts.
Plossl (1973) identifies an article by Orlicky in 1965 that describes the independent
and dependent demand principle as being the breakthrough development. Hopp and
Spearman (2001) provide a very good description of how MRP works and the sub-
sequent migration to MRP II. In MRP II, the integrated computer system pulled
together the additional functions of “demand management, forecasting, capacity
planning, master production scheduling, rough-cut capacity planning, dispatching,
and input/output control” (Hopp and Spearman 2001).

Interestingly, the basics of an integrated MRP were described and actually imple-
mented in the early part of the twentieth century (Knoeppel 1915) and the number
of clerical staff required can only be imagined. This early MRP system had almost
all the key features of the later computerized systems: bill of material, routings,
backward loading of work with lead times from shipping (or required) dates, finite
capacity loading and analysis and daily updates, and was also used to provide
availability information to sales. Unfortunately, the issues later commented upon
by Orlicky became the reality for the people who recognized the benefits arising
from a more integrated planning approach. To do any systemized and thorough
manufacturing control process required a great deal of dedication and effort. This
might be the reason why no other integrated MRP-type systems with a short hori-
zon can be found in the literature for the next 50 years – examples or concepts.
Knoeppel’s factory example and system description appears as an anomaly.

How were the 1970s reached? The first computer was sold for business pur-
poses in approximately 1954 (Orlicky 1969) and the traditional areas were pay-roll,
sales analysis, accounting, and cost analysis (Reinfeld 1959). Reinfeld points out
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that the adoption of computers into production control was very slow with only a
few companies doing it (e.g., large aircraft companies, General Electric, and a few
others) and that the majority of applications were mostly listing and posting. Com-
puters were still very expensive in this period and it is not surprising that few were
used and that production control was performed with little black books and what
could be found in the head of the foreman (Reinfeld 1959). Even by 1973, Plossl
(1973) was estimating that less than 1% of the computer base was being used for
manufacturing and he speculated that there were two main reasons: first, suitable
applications did not exist that would actually do the job, and second, production and
inventory control personnel did not see the need for such a system in the first place.

Before continuing the MRP discussion, it is useful to step back and consider the
general order point approach and what was happening. The statistical order quantity
or order point was being used for almost every type of manufacturing by 1970. This
was not always the case. Plossl (1973) describes a version of material requirements
planning that had been done quarterly in many firms (e.g., tool building, ship build-
ing, aircraft, locomotives, and other heavy products). Unfortunately, “As product
models proliferated and as the product complexity increased, however, it became in-
creasingly difficult to develop a practical, workable production schedule for finished
products far enough in advance, explode all of the bills of material, net out avail-
able stocks, and trigger replenishment orders. The work of making the calculations
and record comparisons was too time-consuming, the technique was impractical for
products of even moderate complexity without the use of a computer.” (Plossl 1973,
p. 69). This led to over reliance on the independent demand techniques. We of course
know that independent demand techniques can and do work quite well in the right
situation. Manufacturers in the 1920s (McKay 2003) and Japanese firms later in the
century figured this out. If you can stabilize the forecast for a reasonable period
of time (e.g., 6 weeks ˙ 10%) and balance your production capacity accordingly,
you can use very simple production control methods, the most famous being Kan-
bans. The Just-In-Time approach is, in essence, an independent demand order point
system. Unfortunately, this does not work well in many other situations.

Plossl’s comment is interesting in that the 1950s started off as a very sim-
ple production environment. The Anglo-American Council on Productivity 1949)
noted the few models and minimal options provided by American manufacturers
and the British writers compared this to the proliferation of parts and high-mix
facing the British counterparts. Koepke (1941) describes a variety of different
master schedules, each depending on the type of situation. For example, in mass
production where almost everything was dedicated and connected by moving con-
veyors, chains, and other mechanical devices, the master schedule was considered
the schedule for the final part as everything else just flowed together and did not
need to be scheduled, At the start of the second half of the century, the situation
was relatively simple for the large manufacturers operating in a mass production
mode. For projects or intermittent production, Koepke described master schedules
that synchronized components and sub-assemblies using a bill of material and there
were other master schedules as well. The focus on safety-stock between final as-
sembly and the customer, and the general dismissal of upstream uncertainty fits the
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idea of dedicated lines with low variety operating at high volumes. Simple order
points would suffice for materials and small parts in mass production settings and
the quarterly ordering method described above by Plossl would satisfy the project-
oriented production. If a functional approach, and not a product layout, was used for
mass production the result might have been different. If the mix was low, resource
conflict almost non-existent, and there was not much re-entry, the functional layout
would behave like a virtual flow line and not require sophisticated planning. How-
ever, the functional layout would not have been a difficult physical control concept
to plan and orchestrate for mass production when high-mix existed and resource and
material conflicts arose.

By the 1970s, production was no longer simple. There were many models, many
options, and manufacturing was getting messy. It was no longer possible to have
dedicated and duplicated equipment for each end product, and it appears that many
firms adopted a functional factory style. Automotive plants were the exception as
they continued to use drag-chains and main assembly lines. Functionally organized
factories found that the order point approach was not successful at controlling in-
ventory (avoiding stock outs or minimizing inventory throughout the plant). If the
existing functional layout and basic manufacturing execution control was to be re-
tained, the basic MRP approach was the perceived answer.

The various assumptions and difficulties associated with the traditional MRP ap-
proaches are eloquently explained in Hopp and Spearman (2001). The key issue
relates to the way that lead time is used independent of the plant status. Because
of this assumption, MRP can model and plan a dedicated, automated line with high
reliability – the bottlenecks cannot float, work cannot enter or exit the line, and ev-
erything is predictable (within limits). The large, drag-chain automotive assembly
lines once common in the industry are examples where MRP was relatively suc-
cessful. If you have a job shop, or free-flowing virtual assembly lines with highly
variable loading, MRP cannot estimate when anything will be used or produced.
Another assumption is that the model of the process and product is static and sta-
ble over the planning horizon. There are usually some records and some fields in
MRP which have effective date controls, but the majority of the production model
is static and if the factory is rapidly or constantly changing, the model is inaccurate.
An inaccurate model results in infeasible planning and expectations. MRP systems
can also exhibit nervousness and sensitivity to changes in the forecast or production
results. The generated plan can ask for different quantities and dates every time it is
created. This is not a problem on a resource that can react quickly. However, if there
are infrastructure issues (e.g., the resources needed to set up the machine, additional
helpers, etc.) or supply issues (e.g., cannot easily change the schedule at a steel mill)
the nervousness can be annoying. Ongoing nervousness can also result in increased
errors and problems as the plant tries to do what the plan asks for.

In its approach to inventories, MRP is reactive – it will try to maintain certain
levels of finished goods, work-in-process, and raw. MRP logic does not typically
include strategic use of inventory that will allow the level to go below the level
specified. For example, it might make sense to make more of one product and less
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of another during a short horizon because of situational factors and then recover to
the desired levels a bit later. This type of reasoning and commonsense is absent. The
final limitation of MRP we will note is that of inventory bank health. By this, we
mean the degree to which the right parts are in the bank in the right quantities to
minimize conflicts on machines and to space out (e.g., cycle) production. If there
is a significant disturbance in the factory that upsets this balance, how does the
factory recover to the desired levels of inventory for each part that avoids conflict?
Often the human is expected to review the plans each day and make the necessary
adjustments – increasing the quantity of one part, decreasing the quantity of another,
locking in dates etc. MRP does not have the tools or the ability to determine whether
the inventory is not in balance and how to recover, and it is not possible to do it
manually in a realistic industrial environment.

Taking all this into account, it is sufficient to say that MRP was not the answer to
all manufacturing situations and was unwisely applied to a number of situations. The
MRP and MRP II approach has always relied upon a number of assumptions and
unless they are satisfied, grossly infeasible schedules and plans will result. There
are assumptions about the type of manufacturing system being applied to, and there
are assumptions about how the MRP system is actually used. If there are too many
resource conflicts and manufacturing execution is highly variable, the amount of
manual intervention to resolve exceptions and conflicts is immense. Since sustained
attention to such issues has proven to be difficult for almost all firms, MRP- and
MRP II-based systems (e.g., ERP systems) have remained problematic whenever
the manufacturing environment is less than ideal. The efforts to combine advanced
planning systems with MRP logic is an attempt at bridging some of the gap and
associated difficulties. By including finite modeling, more feasible schedules can be
attained and if things go well, the results will be better than guessing.

2.5 Conclusion

It has become a historical and sometimes hysterical truth – if the various compo-
nents of manufacturing planning and control are well matched to the environment,
things will go well, and if they do not make sense, chaos and mayhem will dominate
the milieu. Use MRP type concepts in a situation either not suitable or without the
discipline and matching philosophy, and you will get what others have got before
you. Use Just-In-Time concepts incorrectly and you are unlikely to get the Toyota
halo-effect. As the mix and volumes change in products, so must the manufacturing
system. This includes the physical, logical, and technological. Historically, it can be
seen that the basic ideas for good production control were known and advocated in
the early 1900s, but the technology required for effective, sustainable implementa-
tion did not then exist.

In the second half of the twentieth century, manufacturing was focused on what
they could do with the information systems they had and this rapidly changed
when computer-based systems became widespread. This change coincided with the
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problem changing from one of simple mass production to that of complex mass
production and more functional layouts. Once MRP-based systems started to be
popular in the early 1970s, manufacturing was then focused on MRP as the solution
for all manufacturing problems and became momentarily blinded to other concepts.
Periods became locked in, inventory checked in and out of stores, and expediting
and chaos became routine. The models and varieties continued to increase and then
competition appeared that make simpler products with very few options. This com-
petition was able to flow material through factories, with many inventory turns a
year and without complicated planning and scheduling. Toyota was able to do in the
later stages of the twentieth century what the North American manufacturers once
were capable of doing. Nash and others might have been amused.
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Chapter 3
Advanced Planning and Scheduling Systems:
The Quest to Leverage ERP for Better Planning

Irfan M. Ovacik

3.1 Introduction

In this chapter, we focus on advanced planning and scheduling (APS) systems: their
emergence as a replacement of materials requirements planning (MRP) systems
and their eventual evolution into supply chain management (SCM) systems. This
chapter provides a view from a software application provider’s perspective and is
based on the author’s 10C years of experience in various roles in one of the soft-
ware application providers. As it represents one point of view, it is not meant to
be comprehensive, nor to include all activities and developments that took place in
academia or in industry in the time period covered by this chapter.

The 1990s began with a number of relatively large software companies dominat-
ing the production planning software market with solutions based on MRP. These
companies typically competed with internal, home-grown planning systems, also
based on MRP logic, which had been established a few decades before. Also present
in the market were a number of small, agile companies who competed with their
larger counterparts by exploiting the weaknesses of MRP, and carving themselves a
slice of the market under the umbrella of the term APS.

After the emergence of APS solutions, the planning software industry went
through a significant transformation, its initial growth fueled by a series of
technology-enabled innovations. This growth continued as software companies
first exploited the fears around Y2K, and then rode the Internet wave. With the burst
of the Internet bubble, the market started shrinking as businesses shied away from
new technology investments and software companies focused on survival by cutting
their research and development budgets. As the overall state of the economy im-
proved, companies started investing in off-shore custom development projects and
integrating the supply chain solutions in which they had already invested, instead of
continuing to invest in new software solutions.
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Interestingly enough, after a decade and a half of turmoil, the market is now
dominated by a number of large software companies providing a set of dull solu-
tions. Also present are a number of small, agile companies who are flourishing by
focusing on niches they have carved for themselves by exploiting the gaps in the
solutions provided by the larger companies. While the future remains mostly
unknown for the planning software companies, it appears that history has once
again proved to repeat itself.

3.2 How It All Started

The previous chapter by McKay provides an excellent overview of the historical
foundation of planning systems leading up to the establishment of MRP as the key
component of the planning processes in almost all major manufacturing companies.

As MRP was implemented across a large number of companies, the assump-
tions it makes, such as fixed leads time and infinite capacity, were well documented.
These are discussed in more detail in Hopp and Spearman’s book Factory Physics
(McGraw-Hill 1996). In the early 1990s, a number of software companies started
to distinguish their solutions by exploiting the documented weaknesses of MRP
solutions, using advanced algorithms leveraging new hardware and software tech-
nologies to develop production planning solutions. Most of the emerging companies
focused on developing algorithms that addressed the factory planning problem of
satisfying demand subject to the material and factory constraints. These solutions
led to the emergence of the term APS, which broadly classified this new genera-
tion of planning solutions. While the established companies burdened themselves
by supporting legacy mainframe solutions, the newly emerging companies took ad-
vantage of UNIX and advances in graphical user interface (GUI) technologies to
develop sleek applications providing better quality solutions much faster than MRP.
The new technologies allowed factory planning to become a daily activity where
plans could be generated in a matter of hours and minutes instead of waiting for an
MRP to run that could only run on a weekend when all resources could be dedicated
to it. Reduced planning cycle times enabled factories to work with more timely in-
formation and react to changes in demand much more effectively while reducing
finished goods and work in process inventories.

These technology advances that allowed fast planning cycles and enabled sleek
GUIs came at a time when the physicist Eliyahu Goldratt introduced business man-
agement to his concept of the Theory of Constraints, a body of knowledge on the
effective management of (mainly business) organizations. Goldratt’s ideas were dis-
seminated through his book The Goal: A Process of Ongoing Improvement (North
River Press, May 1992), which received wide industry acceptance. Emerging soft-
ware companies used these ideas in combination with the advances in technology to
create solutions that addressed the known deficiencies of MRP while carving out a
significant market share for themselves.
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The algorithms made extensive use of in-memory object models that allowed
representation of a rich set of factory and material constraints in the same model, as
well as their interactions including pegging of material and manufacturing orders to
customer demand. This characteristic allowed the propagation of decisions made in
the factory both upstream, to understand their impact on purchasing requirements,
and downstream, to understand their impact on demand satisfaction.

Material and capacity constraints were considered simultaneously (or at least
in the same model), which allowed planners to understand how material purchas-
ing decisions impacted factory loading, and how factory loading impacted material
purchasing decisions. For example, if an order was pushed out due to a capacity
constraint, then purchasing requirements due to that order were either pushed out
or the material released for an order that needed it earlier. Using the same mecha-
nisms, it was also possible to minimize WIP inventory and use material effectively
by making sure that manufacturing was planned only when all incoming assembly
materials were available. If production was delayed due to a single item not being
available out of many within an assembly operation, then timing of purchasing re-
quirements or the upstream production for the other items could be synchronized
with the new schedules, minimizing inventory on the factory floor. This was a criti-
cal capability for electronics original equipment manufacturers (OEMs), where the
majority of cost is tied to the materials that are assembled into the end product. It
was also critical for producers of large products (e.g., furniture and heavy machin-
ery) where there is usually not enough room on the factory floor for a lot of WIP.
The same principle also benefited companies which took orders for a combinations
of products that all need to come out of various manufacturing lines simultaneously
for loading into trucks.

Only a few of the companies who led the way in the earlier days of advanced
production planning systems remain in their original form. Intellection was founded
by Sanjiv Sidhu, then a researcher at Texas Instruments, and Ken Sharma, a former
colleague of Goldratt. They were joined by Cyrus Hadavi who had been working on
developing planning systems at Siemens. Intellection later became i2 Technologies.
After 2 years, Hadavi left i2 and founded Paragon, which later became Adexa. An-
other key player in the market was Red Pepper Software, founded by former NASA
scientists. Red Pepper’s solution evolved from the ground processing scheduling
system developed for NASA to refurbish space shuttles between missions and
was based on artificial intelligence techniques. Red Pepper was later acquired by
Peoplesoft (1997) which was later acquired by Oracle (2004). Also in the market
was Numetrix, based in Toronto, which focused on the consumer packaged goods
(CPG) industry. Numetrix was later acquired by JD Edwards (1999) which, in turn,
eventually was bought by Peoplesoft (2003).
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3.3 Growth Phase

The companies providing advanced planning solutions saw considerable growth
in parallel with technology advancements. Technology allowed the companies to
model larger systems and to develop more complex algorithms. As the factory plan-
ning space was addressed by a number of software providers, the natural extension
was to start considering the larger problem of matching supply and demand across
the entire enterprise. This led to the emergence of the terms supply chain planning
(SCP) and SCM, as well as the consolidation of a wide range of efforts in production
planning and scheduling, logistics, and inventory control under one term. This con-
solidation of terms also allowed a number of other software vendors who had been
providing transportation planning, distribution planning, and logistics solutions to
enter the SCM market. Soon, through the power of marketing, it became very hard to
distinguish between the truly innovative solutions and the solutions that repackaged
existing solutions under a new marketing message.

The SCM market was defined by a number of leading solution providers and
a number of early adopters who invested in these solutions with the vision that
SCM would make them better competitors in their respective markets. The grand
vision of a seamless planning process across the entire supply chain is still the holy
grail of enterprise planning. It encompasses the entire enterprise, all of its divisions
(purchasing, manufacturing, distribution, and sales) and all planning horizons (from
short-term scheduling of production, distribution, and transportation, all the way to
the long-term design of the supply chain).

This vision requires that short-term decisions are made using very granular,
detailed models and fast, agile algorithms that are able to react to last minute
changes in the system. Longer-term decisions are made with more aggregated
models to mitigate the risks around uncertainty and the accuracy of available in-
formation. As time moves forward, information becomes more accurate and more
information becomes available. As a result, more aggregate decisions seamlessly
roll forward to become more detailed decisions.

The planning algorithms rely on a combination of exact methods and powerful
search algorithms that provide near-optimal results. This ensures that longer-term
decisions that often require more investment (such as capacity expansions) are op-
timal and provide good guidance to the shorter term, more detailed decisions. As
the vision calls for a seamless planning process across the enterprise, it also rec-
ognizes the need to extend beyond the four walls of the enterprise and include
partners through the use of intelligent request-promise mechanisms. The idea al-
lows a particular enterprise to extend the planning process to the entire supply chain
by collaborating with its customers and suppliers, enabling the entire supply chain to
operate with more information and, more importantly, with better information. Col-
laboration with customers provides up-to-date information on the demand forecast,
ensuring the company is planning the right products at the right time and in the right
quantities to meet customers’ needs. Similarly, collaboration with suppliers allows
the company to send the latest and most accurate demand signal to the suppliers
while making sure that requested quantities are within each supplier’s capabilities.
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Unfortunately, realizing this grand vision became elusive as providers started
building the solutions and early adopters started implementing them. Both parties
ran into a number of problems:

� Availability of powerful hardware enough to handle the computation require-
ments of such a solution.

� Availability of both heuristic and exact algorithms to optimize across the entire
enterprise.

� Magnitude of the organizational changes needed to adopt the business processes
implied by these solutions.

� Availability of enterprise data to support such a solution.

All these problems led both the solution vendors and adopters to take a more prac-
tical look at the problem, while the marketing message continued to push the grand
vision. As optimizing the entire supply chain in a single, complete, seamless model
proved to be elusive, the vendors retreated to familiar methods for solving large
complex problems. The problem of optimizing the supply chain was decomposed
into a hierarchical set of problems where a long-term aggregate plan across the
company provided guidance to a set of mid-range master plans, typically for each
division or product line. The master plans, in turn, fed the short-term production
scheduling and distribution/transportation planning functions.

The decomposition of the larger planning problem into smaller components
helped those solution providers who had been in business for a while, but were late
to the SCM market. Since most of these companies had solutions on hand for one
or more of the components of the bigger problem and the associated customer base,
it became a matter of adopting the marketing message and expanding the solution
footprint by building new components and integrating them with the older pieces.

The decomposition also allowed the vendors to tailor solutions to the needs of
specific industries. For example, for manufacturing-intensive companies, the master
production scheduling (master planning) component allowed supply and demand
matching across divisions and factories, whereas production scheduling focused on
short-term manufacturing facility planning. In distribution-intensive companies, on
the other hand, master planning focused on distributing the planned production to
the distribution network in order to best meet the forecasted demand, with trans-
portation planning and scheduling handling the short-term detailed planning needs.

The master planning problem worked with more aggregate data to mitigate the
risk of inaccuracies in data. This negated the need to model detailed constraints
such as lot sizing and setups. As a result, the master planning problem lent itself
to exact methods such as linear programming with proven and scaleable algorithms
and guaranteed optimality. This was all the better since it was important for the
higher level planning processes to come up with solutions as close to optimal as
possible in order to provide the right guidance to the other processes that used master
planning results as a starting point.

The factory planning problem required the modeling of a number of constraints
that were discrete and nonlinear. The algorithms developed were heuristically based
on the theory of constraints and had the goal of producing plans that were considered
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good and feasible, but not necessarily optimal. These algorithms addressed the
known deficiencies of MRP and allowed the planners to consider quantity-
dependent lead times, take into account material and resource constraints, and
coordinate assemblies based on material and resource availability.

The latter half of the 1990s brought expansion of the market as solution
providers, some old and some new, some large and some small, focused on com-
ponents of the SCP problem. The adoption rate of these solutions accelerated as
the new planning systems already addressed Y2K issues and many companies
opted to buy new systems instead of trying to reengineer legacy systems to be Y2K
compliant.

3.4 Stagnation Phase

During the “growth phase” while the companies offering SCP solutions were doing
well, so were the larger enterprise resource planning (ERP) companies such as SAP,
Peoplesoft, and Oracle who were riding the tails of the Y2K wave. The success of
the SCP vendors did not go unnoticed when they started getting larger and larger
chunks of the total investment dollars in deals involving SCP and ERP solutions.
Therefore, the ERP companies who already had MRP modules (but whose main
competency up to that point was building solutions around transaction management
systems such as order management, purchasing, and human resources) entered the
advanced planning world either through acquiring smaller companies already in the
market or by launching their own development efforts. The entry of ERP companies
into the advanced planning market was one of the key contributors leading to the
“stagnation phase” covered in this section.

The bursting of the Internet bubble and the subsequent economic downturn had
a profound effect on the advanced planning solutions market. Customers’ atten-
tion turned toward reducing costs rather than new investments in technology and
software, and hence to getting the most out of already existing investments. These
decisions put a considerable financial burden on solution providers who had invested
heavily in research and development during the boom days and relied heavily on
new revenue to survive. The result was a major consolidation in the market space
where smaller companies either went out of business or were acquired by the larger
ERP companies. The ERP companies took advantage of changes in the market by
pushing their “integrated” solutions with the premise that solutions from a single
company would reduce the integration effort and cost. As the market shrunk, ERP
companies leveraged their installed bases to increase their market share. Advanced
planning became one of the many solutions that the ERP vendors offered. These
companies did not have the accumulated knowledge needed to enhance the current
planning solutions, nor did they have the motivation to do so since planning was just
one more “add-in” as opposed to the primary driver for new deals. As a result, the
research and development investment, and therefore the innovation, that went into
planning solutions dwindled to a bare minimum.
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Another change that occurred around this time was the association of selection
and implementation of planning systems with the information technology (IT) or
information systems (IS) departments. In the earlier days of advanced planning sys-
tems, the selection was primarily done by the business units themselves, often led
by people who had a good understanding of the company’s business and planning
processes and appreciated the benefits of implementing advanced planning systems
in order to be able to reduce planning cycle times, reduce inventories, and improve
customer satisfaction.

There were a number of factors that contributed to the rise of the IT/IS de-
partments as the key decision makers for the selection of planning systems. IT/IS
departments had been growing in size and influence as the personal computer be-
came an integral part of daily life and software became available to replace the
paper-based, manual business processes which were the standard of the preceding
20 years. As year 2000 approached and companies invested heavily in new infor-
mation systems to replace older systems, their influence expanded and, naturally,
IT/IS departments took a bigger role in the selection of any software – including the
planning solutions.

As mentioned in the previous section, there were a number of practical prob-
lems related to the availability of hardware and software to realize the concept of
a seamless, integrated SCM process. The result was a set of smaller components
that were linked to each other through a hierarchy. From a technical perspective,
this also meant that all these components had to be integrated with each other, as
well as the enterprise transaction systems (ERP or legacy) to get the necessary data.
This often was not a trivial activity, requiring complex transformations and in most
cases requiring companies to build new systems to stage the data coming from ERP
and legacy systems and to maintain data that did not exist elsewhere in the enter-
prise. The efforts required for integration increased to the level where the cost to
build systems to house and move data among the components of the overall system
became a major component of the cost of implementing the planning systems. All
these integration activities fell into the domain of the IT/IS departments.

Another factor that led to the increase of IT/IS influence was the general hype
about the benefits of Internet technologies which made the implementation of plan-
ning systems orders of magnitude more complex than in the earlier days of APS, as
they now required increasing numbers of technical resources. In the earlier days, a
particular factory planning software could be shipped in four files: One executable
for the engine, one executable for the GUI, and one text file each for the configura-
tion of the engine and UI. Building a factory model using real data took as little as
a week and was mainly constrained by the efficiency of the one or two technical re-
sources who extracted the data from the legacy systems. There was no need for any
additional software, and the only hardware needed was a UNIX box. In the new era
of database servers, application servers, Web servers, middleware and Web-based
user interfaces, the same effort required a number of people with different skills,
a number of middleware and other supporting software systems, and weeks, some-
times months, to just set up the environment for the planning system. Naturally, all
this hardware, software, and resources were within the domain of IT/IS departments.
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While it seems natural for the IT/IS departments to influence the selection of
planning systems, it is also easy to see how the same influence eventually led to the
“stagnation phase” that we cover in this section.

Traditionally, IT departments had been the primary customers of the ERP com-
panies whose value offering often revolved around cost of ownership. As the ERP
companies expanded their offerings to planning, their primary contact remained the
IT departments and their value offering remained the same. Thus planning systems
became just one more software solution that was to be put in place to automate
existing processes and reduce cost of ownership. The real value of advanced plan-
ning systems in terms of reducing of planning cycle times, reducing inventories,
and improving responsiveness to customer needs was forgotten or conveniently
ignored. As the focus shifted to the cost of ownership, even the traditional SCM
companies shifted their messages and investment strategies. Realizing that compa-
nies were spending a large portion of their budgets on building custom solutions
to provide the data needed by the planning solutions, the solution providers shifted
their investments to building tools for master data management (MDM) and product
information management (PIM) systems. All of this came at the expense of planning
solutions which received little or no share of the available research investments.

The other impact of IT influence and focus on cost of ownership was on the
technology used to deliver planning solutions. The perceived benefits of Web-based
systems in terms of cost of ownership through central control led the IT departments
to put a lot of pressure on solution vendors to convert their solutions to the new tech-
nology. Supporting the new Web-based technology became a prerequisite to entry
into new markets. As a result, solution vendors directed valuable research and devel-
opment funds into converting their architectures from client–server technologies to
three-tier Web technologies. These investments came at the expense of any innova-
tion in planning processes and planning algorithms. During this time, two important
considerations were forgotten: (1) the difference between planning and transaction
management and (2) the needs of planners who required a lot more analysis and a
lot less forms. Unfortunately, the new technologies were much better at supporting
the latter than the former.

Another blow to the traditional SCM companies was the emergence of off-shore
development centers that offered their resources at a fraction of the cost of United
States- or Europe-based companies. Suddenly, at least on paper, it became cost effi-
cient to develop custom planning systems that included low-cost integration services
instead of having to buy packaged software and investing a lot of time and effort
into configuring and integrating it to the enterprise systems. Missing from the pic-
ture were the millions of hours of intellectual property embedded in the packaged
software.

Also absent was the valuable learning from the past implementations. Buyers of
planning solutions had traditionally been the actual business users who understood
the benefits of using advanced methods for running their factories. This gave the so-
lution providers the opportunity to work directly with the end users, allowing them
to configure the planning solutions to meet the business requirements. This also
allowed the providers to learn from the interactions and build their learning into
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future releases of their software. Solutions that were implemented with business
buy-in and involvement were often extremely successful since the business owned
the solution. With the emergence of IT as the key decision maker in investment deci-
sions, this direct connection between solution providers and the business users was
largely lost. The IT departments took on the responsibility of understanding business
needs, translating them into requirements (and often interpreting them), and inter-
acting with the solution providers to select the “best” solutions. Similarly during
deployment, IT departments continued to act as intermediary between the solution
providers and business users, often changing the message to accommodate the goals
and objectives of the IT departments. Naturally, this led to a lot of supply chain im-
plementations that were declared successful by the IT departments, but were soon
abandoned by the end users who did not feel like they owned the solutions.

All the factors above resulted in the reduction of investment by both solution
vendors and their customers on the core of their planning systems. As the focus
shifted into other areas, innovation slowed down to a trickle and stagnation was
the result. But this was just part of it. Another result of the stagnation phase was the
reemergence of spreadsheet applications as the primary medium for planning. In the
next section, we look at the spreadsheet phenomenon and its impact on planning.

3.5 The Spreadsheet Phenomenon

Any discussion of the evolution of advanced planning solutions would not be com-
plete without understanding the impact of spreadsheet applications, specifically
Microsoft Excel which has become the de facto standard in industry when it comes
to planning. Today, every organization makes use of Excel in one form or the other,
some running their entire organizations with it, and most using it as a stealth backup
to cover the deficiencies of “official” enterprise planning systems.

The emergence of Excel as the primary planning tool across a very wide range
of industries and planning functions can be viewed as a reaction to the increased
influence of IT organizations in the selection and implementation of planning appli-
cations although the use of spreadsheets for planning goes as far back as the early
days of spreadsheets.

The author’s earliest experience goes back 1986 when the spreadsheet was used
to assist the master production planning process for a major appliance manufacturer
in Turkey. The spreadsheet was used to replace the hand calculations and hand-built
tables used in creating the master plan. Another example is from the mid-1990s
where a division of a major United States-based electronics OEM was using around
200 Excel worksheets that were connected to each other with an elaborate logic to
support master production scheduling activities. The planning involved painstak-
ingly preparing the data in each spreadsheet, then activating the calculations which
sometimes took as long as 2 days to complete. Since planning required a number
of iterations and sometimes creation of new spreadsheets to work around the tool’s
limitations, the monthly planning cycle sometime took as long as 5 weeks.
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The success of Excel as a planning tool actually has a very obvious explanation.
One only has to look at what planners do; interestingly, this is something that solu-
tion providers and IT department have overlooked for years. Their focus is usually
on how to create an “optimal” plan, and not on what planners do with that plan. Also
often overlooked is the fact that the plan is with respect to a model that is an abstrac-
tion of the real system being planned and the data is with respect to a snapshot of
the system that may be hours or days old.

The planners’ primary task is to analyze the plans, identify issues, and look for
ways to resolve the problems. Some of these problems may be due to the infeasi-
bility of the plan with respect to the real world, or they may be real problems that
need to be resolved to meet business goals. This process requires the planner to
understand the current situation, develop potential alternatives, and understand the
impact of these alternatives on the rest of the system. The analysis often requires
dealing with a lot of data – filtering, transforming, comparing it to get to results –
all functions that can be done very intuitively and quickly using a spreadsheet.

As a result, even if an enterprise system or other planning application is used to
create the initial plan, the accepted best practice has become to first extract the plans
from the enterprise systems into Excel, perform the necessary analysis, and then
feed the information back into the enterprise systems (often manually). Note that
since the plans are already captured in the spreadsheets, and since the spreadsheets
used often have all the necessary constructs for analysis and replanning, it be-
comes easy to abandon the IT-supported planning systems and go back to all Excel
solutions.

The planners’ need to access a lot of data for analysis was also overlooked dur-
ing the emergence of Web-based applications. The ability to deliver applications
through a browser was a great innovation from an IT perspective because it allowed
control of applications and data from a central location which could be distributed
to large communities of users through the use of a browser without having to install
anything on the user’s computer. This worked really well for applications such as
purchasing and human resources where transactions are the key components and
these transactions can be delivered to the users one at a time, using screens similar
to the paper forms that were used before.

Unfortunately, what worked for purchasing or human resources did not work so
well for planning. Planners needed access to a lot of data and the ability to analyze
that data, and the Web-based architectures were not designed to serve that purpose.
One option was to serve up the data in small quantities and do all the filtering and
manipulation on the server. This meant that, at any time, the planner had access
to only a subset of the data needed and had to rely on multiple trips between the
server and the browser to get anything done. This did not work very well since a lot
of time was spent negotiating the network traffic and the server which was shared
among many users. The other option was to serve up the necessary data all at once,
and provide the analysis capability within the browser. This also did not work since
the browser technology could never match the capabilities provided by Excel. Later
on, the browser just became a tool to bring the data to the user, so that it could
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be transferred into Excel. As Excel later acquired the capability to directly access
databases, it became just as easy to get the data directly into Excel, eliminating the
browser all together.

Recently, a number of solution providers have started adopting Excel as the front
end to the planning applications instead of developing their own. The data and plans
still reside in an enterprise system which can be centrally controlled, but the users
interact with the data only through Excel. This seems like a good compromise as it
gives the IT departments the control that they need over data and applications and
the users the analysis capability that they need to do their jobs successfully.

All in all, Excel still continues to be a primary planning medium for a lot of
planning processes even if the initial plans are created by IT-supported enterprise
applications. As of this time, there does not seem to be a good alternative provided
either by the application vendors or the IT departments.

3.6 Future

Interestingly enough, the current market for planning solutions looks pretty similar
to the market in the earlier days of the advanced planning systems. Back then, the
market was dominated by a few companies proving solution based on MRP logic,
where as the smaller, more agile companies were presenting solutions based on new
ideas and exploiting the weaknesses of the larger companies. Today a number of
ERP companies, such as SAP and Oracle, dominate the planning solution market
with fairly pedestrian solutions. While only few of the early pioneers of advanced
planning solutions (such as Adexa) still survive, there are a number of small compa-
nies who are doing very well by focusing on specific planning problems. Examples
are Servigistics for service parts planning and Optiant for inventory optimization.
Unfortunately, due to the close relationships of the ERP companies with the IT de-
partments, barriers to entry are very high – much higher than back in the early 1990s
when advanced planning solutions were just emerging. So the ability of these small
companies to survive depends on being able to reach the real users of the planning
solutions and on being able to distinguish their solutions from those of the larger
companies.





Chapter 4
The Transition to Sustainable Product
Development and Manufacturing

Robert C. Carlson and Dariush Rafinejad

4.1 Introduction

In this chapter, we provide an overview of the state-of-the-art in sustainable product
development and manufacturing and of the challenges in ubiquitous adoption of
sustainable development practices in business. Environmental and business sustain-
ability are examined in a holistic framework underscoring their interdependence on
both spatial and temporal scales. We review the evolutionary rise in sustainability
awareness including the development of methodologies for the assessment and de-
velopment of sustainable products/manufacturing.

The major global corporations and manufacturers such as IBM, HP, 3M, Toyota,
Shell, Nestle, Monsanto, GE, and others have gone through multiple evolution-
ary phases in their outlooks toward environmental sustainability. These and other
companies have generally evolved through stages of no concern, to pollution con-
trol, to pollution prevention, and to resource efficiency maximization in lockstep
with governmental regulations. And in all these stages, firms have sought op-
portunities for product differentiation/branding, tried to influence governmental
regulations, developed relationships with environmentalists, worked with their sup-
pliers, and adopted environmental and social responsibility metrics for internal audit
and marketing purposes. However, the adoption of sustainable development as an
imperative strategic vision is often lacking in the industrial enterprises (World Watch
Institute 2006–2007).

According to the UN Commission led by Gro Harlem Brundtland in 1987, sus-
tainable development is “development that meets the needs of the present without
compromising the ability of future generations to meet their own needs.” This defini-
tion has led to much discussion in the fields of (ecological) economics, public policy,
and environmental ethics. The prevalent interpretation of (economic) sustainability
in business is growing (or at least nondiminishing) economic output (that is gen-
erally measured in terms of gross national product or GNP). This interpretation of
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sustainability is referred to as weak sustainability. On the other hand, sustainability
that is interpreted as nondiminishing life opportunities is branded as strong sus-
tainability. In the latter, human focus is extended beyond economic (manufactured)
capital to ecological and social capital, and development is considered as human
development in quality of life. An extension of strong sustainability is coined “deep
economy” where humans, as integral part of the environment, seek development in
harmony with nature. An excellent overview of the concepts of weak and strong
sustainability is provided by Ayres et al. (1998).

In this chapter, we primarily focus on issues that relate to firm-level business sus-
tainability. The definition of business sustainability (and corresponding strategies
and practices of a firm for sustainable product development and manufacturing) is
strongly related to and must be congruent with the above sustainable development
concepts, which encompass the macroeconomic context within which the firm oper-
ates. In other words, an enterprise can sustain achievement of its business objectives,
if its operation is aligned with the broader sustainable development framework. Sim-
ilarly, sustainable products and manufacturing practices are aligned with and serve
the broader societal sustainable development goals. These ideas are explored in an
associated paper by the authors (Carlson and Rafinejad 2010).

The initiatives for minimizing environmental impact beyond pollution control
are frequently referred to as environmentally sustainable development by industry
leaders. Minimizing environmental damage, although a prerequisite for sustainable
development, merely slows down the environmental degradation process. Further-
more, the initiatives of individual firms are inherently competitive and un-integrated
and hence insufficient in addressing the environmental sustainability issues, which
are often interrelated and have global impact.

While weighing the impact of economic development on natural and human
capitals are (critically) necessary, the resulting impact assessment and mitigation
measures are not sufficient conditions for a sustainable economy.

Most academic and popular literature tend to state the looming sustainability
problem, emphasize the need for the so-called triple bottom line objectives (prof-
itable growth, environmental friendliness, and social responsibility) and propose
initiatives that would mitigate environmental harm caused by human economic ac-
tivities. In spite of the broad recognition of the need for sustainable products and
manufacturing, progress in fulfilling this need is grossly inadequate. There is a gen-
eral belief that the development of commercially successful “sustainable products”
faces an insurmountable challenge in the current economic context.

In spite of humankind’s fantastic technological ingenuity and accomplishments,
the current economic system has not been a panacea and has led us to severely
undesirable consequences. We are “trapped” within the confines of material pos-
session, although it is merely the satisfaction of the most fundamental human need
for survival and is at the bottom of the hierarchy of needs for the actualization of
human potential. We have forsaken the pursuit of esthetics, art, spirituality, commu-
nity bonding, the relationship to people/nature and hence happiness and have framed
them as “monetized” commodities. We have failed to achieve a minimal degree of
equity among the majority of humanity, even in the satisfaction of the basic needs
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of food, shelter, and health. And lastly, our current mode of economic activities has
led us to the brink of environmental and resource calamity (e.g., global warming)
that could result in the irreversible loss of humanity’s collective accomplishments.

Perhaps we need to examine critically our unquestioned assumptions of the fol-
lowing: growth as the overarching objective of business, the win-lose approach
toward nature, survival-of-the-fittest as the desirable (and unavoidable) mechanism
for development, the focus on short-term gains, globalization for exploitation of re-
sources (of the earth and labor) without globalization of equity, detachment from
local and community issues, and consolidation/centralization for the control of re-
sources in a zero-sum game.

Sustainable product development and manufacturing might require a new eco-
nomic model that supports the sustainable growth of human development (vs.
sustained growth of shareholder value). A new economic structure that fundamen-
tally changes the “basis of competition,” shifts the concept of “development” away
from raw materialism, and changes “purchasing power” as the sole indicator of suc-
cess, happiness, and self-actualization. The United Nations (UN) has developed the
Human Development Index (HDI) as a representative metric to integrate the impact
of economic, human, and natural capitals on the standard of living. HDI is calculated
from the three factors of life expectancy (health), adult literacy (education/skills),
and gross domestic product (GDP) per capita at purchasing power parity (PPP).

There is an urgent need for research in multiple areas, including the following:
the development and implementation of a sustainable economic framework in which
sustainable products and manufacturing could flourish and become the norm in
industrial activities; development of methodologies to characterize sustainable eco-
nomic activities, products and manufacturing through measurable indicators, and
the education of the business (and societal) leaders of tomorrow.

In what follows, we shall examine the causal factors underlying the current
heightened concerns for environmental and business sustainability and review
methodologies for assessing products and manufacturing and the best practices for
sustainable product development and manufacturing.

4.2 Driving Forces that Threaten Business Sustainability
in the Twenty-First Century

The rapid economic development of the twenty-first century has resulted in a signif-
icant impact on the natural resources both in the depletion of nonrenewable energy
and material resources and in exceeding the earth’s capacity to absorb and reprocess
the life cycle effluents of human-made products (including the end-of-life disposal).
Nature’s endowments of resources and reprocessing services that are often referred
to as its sources and sinks establish the critical input and output fluxes of economic
activities and their depletion jeopardize business sustainability.

Depletion of petroleum reserves and global warming to a perilous state are only
two of the major manifestations of the adverse impact of human economic activities
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on the sources and sinks of the earth. It is important to note that oil consumption
(and hence the depletion of the reserves) and global warming (caused in a large part
by the carbon dioxide generated from oil consumption) are strongly interrelated.
Similarly, many other impacts on the earth’s sources and sinks are interrelated and
reinforce each other through positive-feedback loops.

Former US Vice-President Al Gore’s well-publicized film, “The Inconvenient
Truth” presents a convincing argument for rapidly accelerating global warming and
urges an immediate and drastic action by all countries of the world, particularly by
the highly industrialized economies who contribute the most to CO2 generation. The
recognition of global warming as a threat to human civilization and call for urgent
action for reduction in CO2 generation (up to 80% by 2050) have been underscored
through numerous publications by international organizations and governments (see
Notes 4–6).

The interactions among the stock of nonrenewable sources, processes of the nat-
ural sinks (for regeneration of renewable resources and other reprocessing services;
see Note 7) and human economic activities occur in local, global, and temporal
dimensions. For example, global warming is caused by green house gases (GHG)
irrespective of where on earth they are generated. Also the dangerous level of CO2

in the earth atmosphere is reached by a time-integrated accumulation of CO2 from
human activities beyond the earth’s reprocessing capability (through the photosyn-
thesis process in trees). The examples of local and short-term effects of human
activities include deforestation, defacing of the landscape by strip-mining and air,
water, and land pollution. Such strong interdependence calls for ecosystem level
thinking in product development and manufacturing where product life cycle and
manufacturing closed loop interactions with the environment are integrated into de-
sign decisions.

The depletion of nonrenewable resources is not limited to petroleum. The exam-
ple in Fig. 4.1 shows the concentration of copper (Cu) in remaining mines declining
by almost eightfold in the twentieth century. As resources are depleted, the cost of
extracting and processing raw material increases as does the extent of associated en-
vironmental damage (larger area and the earth’s mass must be disturbed for a given

Fig. 4.1 Change in copper
concentration in remaining
mines (Manahan 1999;
Graedel and Allenby 2003)
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Fig. 4.2 Raw material price
vs. concentration in the
source (Manahan 1999; Allen
and Behmanesh 1994; Ayers
and Ayers 1996)
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Fig. 4.3 Interdependence of energy efficiency and water efficiency (Manahan 1999)

gain in raw material). The cost (price) of raw material used in industry generally
correlates with the fraction of the material in the source, as shown in Fig. 4.2 for
nitrogen, copper, and platinum. While increasing extraction cost of nonrenewable
resources could make alternative environmentally friendly resources viable (e.g.,
fossil fuels vs. solar energy), it might also encourage more destructive extraction
practices (e.g., oil exploration vs. tar sands).

Another example of interdependence among various factors of economic activi-
ties on resources and sinks of the earth is shown in Fig. 4.3. This chart depicts water
consumption level in the second half of the twentieth century in various sectors
of the US economy. The overall consumption increased dramatically from 1950 to
1980 and decreased over the following 15 years as a result of improvement in energy
efficiency in various sectors.

The World Wide Fund for Nature (WWF) provides semiannual data on the eco-
logical footprint of more than 150 nations in its Living Planet Report. Ecological
footprint is defined as the land area required for providing the resources and ab-
sorbing the emissions in support of human production and consumption activities
(Wackernagel et al. 2002). Wackernagel et al. show that human ecological footprint
exceeded the earth’s carrying capacity in the 1980s.
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The impact of human economic activities on the ecological footprint can be
estimated according to the following formula (Hart 1997):

I D P � A � T;

where I is the impact (the ecological footprint) of any population upon the earth’s
sources and sinks, P is population, A is affluence (proportional to consumption),
and T is technology that supports the affluence (the degree by which it increases
the footprint). According to this model, “sustainability means constant or declining
impact .I / or ecological footprint”. Hart (1997) argues that A must increase tenfold
(for the majority of the world) to stabilize the population at the ten billion level
and (sustainability) technology must improve 16-fold to stabilize I . Meeting these
challenges offer a great business opportunity. For further discussion on the IPAT
equation, see Chertow (2000) and Graedel and Allenby (2003).

4.2.1 Impact of Human Consumption on the Environment

In the following paragraphs, a few recent examples – many from China – are cited
to underscore the staggering impact of human consumption on the earth’s sources
and sinks. It is important to note that the present impact is primarily caused by only
30% of human population who have achieved a reasonable living standard and per
capita GDP of more than US$5,000 per year (see Note 15).

Battery recycling: Deleterious substances in a single button cell battery can pollute
600 m3 of water and one deteriorated D-sized battery may render 1 km2 of soil use-
less. Heavy metals leaked from discarded batteries on the land contaminate not only
the soil but the underground water supplies as well (see Note 16).

Each year more than 70 billion button cell batteries alone are consumed in China,
with a total weight exceeding 1.4 million tons. In the Guangdong province, 200,000
tons of general batteries are disposed annually. If they are recycled, they could be
turned into 100,000 tons of lead, 23,000 tons of zinc, 1,000 tons of nickel, with a
total value of US$180 million (according to Chen Hongyu, dean of the environment
department at South China Normal University).

The average European household uses 21 batteries a year, according to EU
figures (see Note 17). In 2002, that added up to more than 158,000 metric tons
of batteries. For industrial use, Europe went through 190,000 metric tons of lead
acid batteries.

A new law approved by the EU Parliament requires distributors to take used
batteries back at no charge. Battery producers and distributors will foot most of
the bill for implementing the recycling program mandated by the law, including
educating the public where to turn in the batteries. The EU Commission estimates
the program to cost industry between 200 and 400 million euro. The law will also
ban some portable cadmium batteries and prohibit dumping in landfills or burning
of automotive and industrial batteries. By 2012, a quarter of all batteries sold must
be collected at end-of-life (EOL). By 2016, the target will rise to 45%.
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Washing jeans can be costly to the earth: Washing, tumble drying, and ironing
jeans can be costly, to the earth, concluded a study commissioned by France’s en-
vironment agency on the ecological impact of a pair of denims (see Note 18). An
average pair of jeans is made with 600 g of denim, lined with 38 g of polyester,
with six rivets, and a button, is worn 1 day a week for 4 years, washed every third
time in a high-energy machine at 40 ıC, and, in a singularly French twist, ironed
before wear. The study by the research firm Bio Intelligence Service, looked at the
jeans’ life cycle, from material production to daily wear. It concluded that machine
washing, tumble drying, and ironing were responsible for 47% of the eco damage
the jeans caused – 240 kW of energy a year. Dry cleaning, furthermore, was “an
environmental disaster.”

Extrapolating the data to the USA and assuming that 50 million jeans are worn
by Americans, the energy usage would amount to 12 billion kW whose production
would result in eight million tons of CO2 emission into the atmosphere.

Toxic chemicals harming arctic animals: Toxic chemicals are harming Arctic an-
imals including polar bears, beluga whales, seals, and seabirds, the environmental
group World Wild Fund (WWF) in Switzerland said in a June, 2006 report (see
Note 19).

The report said pollutants such as flame retardants, pesticides and fluorinated
chemicals made Arctic wildlife vulnerable to health problems including immune
suppression and hormone disturbances. The chemical contamination of the Arctic
threatened the survival of many of the regions’ animal species, who also faced pos-
sible habitat and food supply loss due to climate change.

“The bodies of some belugas from the St. Lawrence estuary in Canada are so
contaminated that their carcasses are treated as toxic waste,” said the WWF. The
Arctic is far from industrial centers but many long-lasting chemicals get swept north
by winds and ocean currents and build to damage levels in fatty tissues of creatures
in the region.

WWF appealed for the “urgent and significant strengthening” of European Union
(EU) legislation designed to protect people and the environment from the adverse
effects of chemicals found in paint, detergents, cars, and computers. The bill, known
by the acronym REACH, has drawn criticism from the USA and other countries who
say its provisions hurt trade and would be difficult to implement.

Weihe River in china faces long-term cleanup: Just 15 years ago, fishing boats used
to ply the Weihe River but now locals call this section of the River the “sewer”
(see Note 20). “If it did not rain the water was red and it stunk,” said 53-year-
old grandmother Lao Wong, a villager in Qishan County in northwestern China’s
Shaanxi Province. The Weihe River is one of the most polluted in China and a mas-
sive cleanup has been underway the past couple of years by the central government.

The shrinking river has left fishing boats rotting on high ground, and the wide
banks, which used to be a submerged fish habitat, are now planted with vegetables.
The human waste and factory discharge dumped into the Small Weihe River joins
more pollution in the 800-km long Weihe River, which finally meets up with the
Yellow River before spilling into the Bohai Sea.
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The Shaanxi environmental protection bureau says in 2004 more than 600 million
tons of waste was discharged into the Weihe River (from hundreds of paper mills
along the river among other sources). The water quality of nine of 13 sections of the
Weihe was found to be below class V, meaning it is undesirable even for irrigation,
said Tian Xijun, vice director of environmental pollution control department of the
State environmental protection agency (EPA).

The Shaanxi government has ordered all paper mills with an annual production
capacity of <20;000 tons to close by the end of this year. Major pollutants have been
cut from 600 in 2001 to 149. In the next 5 years, Shaanxi plans to build a sewage
and waste treatment plant in each county along the river basin.

Environmental damage to the Chinese economy: “The World Bank says the envi-
ronmental damage costs us about 7% of our GDP. The highest figure I have seen is
18%. That wipes out our economic growth. The growth we have is inflated – it is
not sustainable”, says Mr. Xue Ye, executive director of Friends of Nature in Beijing
(see Note 21).

China’s e-waste capital chokes on old computers (see Note 22): “Guiyu, China is
a modern day gold rush town. Workers sift through piles of broken old computer
parts in acrid smelling shacks, smelting down parts with crude equipment to extract
valuable metals such as gold and copper.”

According to a 2005 UN report, up to 50 million metric tons of e-waste is gen-
erated annually, as people upgrade laptops and PCs and throw out old models. The
China Quality News estimates that about 72% of that e-waste is smuggled into China
by sea. Much ends up in Guiyu, a rough town on the southern Chinese coast, not far
from Hong Kong. E-waste is not supposed to be exported without the consent of the
importing country. To bypass it, e-waste is labeled as “used PCs” or “mixed metals”
according to Greenpeace and smuggled in from Hong Kong.

During the disposal process, workers, including women and sometimes children,
are exposed to a toxic cocktail of chemicals and are injured by exploding computer
parts or burns from the furnaces. There is little regard for safety – no masks, little
ventilation, and few signs of government officials enforcing what safety rules do
exist in China. State media estimated almost nine of ten people in Guiyu suffered
from problems with their skin, nervous, respiratory, or digestive systems.

After the useful metals are taken out, leftover parts are often dumped into landfills
or rivers or simply burnt. Piles of old computers even block the traffic in some parts
of Guiyu. Reporters and green activists are not welcome.

The state-run newspaper the People’s Daily said last year that Guiyu’s more than
5,500 e-waste businesses employed over 30,000 people. This business is estimated
to be worth one billion yuan (US$130.9 million) in Guiyu alone. Yet many of the
workers, who come from all parts of China, are paid as little as three US dollars
a day.

Even small things make a difference (Meadows et al. 2004): The invention in 1976
of the pop-up opener on the aluminum soda cans meant that the tab stayed with the
can, therefore passing back through the recycling process, rather than being thrown
away. Around the year 2000, Americans used 105 billion aluminum cans per year, of
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which some 55% were recycled. The recycling of those tiny tabs saved 16,000 tons
of aluminum and around 200 million kW of electricity per year. It also prevented
136,000 tons of CO2 emission.

Copper cables: 2000 lb. of copper (Cu) cable can be replaced by 65 lb. of fiber op-
tic cable. Cu production generates toxic heavy metal wastes such as arsenic and
requires destruction of large land areas by strip mining. The fiber production con-
sumes only 5% of the energy required for the copper (Billatos and Basaly 1997).

Development of biodegradable plastics: According to an EPA projection, 25.7 mil-
lion tons of plastic waste per year will be generated in the USA by 2010 (9% by
weight and 20% by volume of all landfill wastes). Many plastics take hundreds of
years to decompose. Biodegradable plastic is a preferred alternative and usually
refers to the combination of 6% cornstarch with plastic polymers. Cornstarch is the
bonding material and disintegrates, leaving a fine polymer dust (Billatos and Basaly
1997). Biodegradable plastics are unsuitable for food and retail packaging and they
are currently only used for grocery bags. There is also a class of photodegradable
plastics that decompose when exposed to sunlight.

4.2.2 Factors Driving Utilization and Scarcity of (Nonrenewable)
Natural Resources

The accumulated human consumption over time has depleted many nonrenewable
resources to an alarmingly low level and has rendered the long held implicit as-
sumption of the inexhaustibility of earth’s resources void. Such is also true about the
assumption that environmental sink and reprocessing capacity of nature are insen-
sitive to human economic activities. Furthermore, global population and per capita
production and consumption are growing at an accelerated rate in regions of the
world that have not previously been significant players in the world market. The fac-
tor that perhaps has the highest impact on the depletion of nonrenewable resources
is the prevalent framework of economic activities over the centuries of industrial
development. These factors are further explored in the following sections.

4.2.2.1 Global Population Growth

Population growth is a function of fertility and mortality rates which in turn depends
(in a nonlinear fashion) on the populace standard of living and quality of life as
schematically shown in Fig. 4.4.

Table 4.1 lists the mortality, fertility, and population growth rates for selected
countries illustrating the trend in Fig. 4.4. Cohen (1995) observes a historical pattern
in demographic transition and population growth that corresponds to the population
growth trend in Fig. 4.4. Cohen reports that a population undergoes an idealized
demographic transition in four stages: (1) high birth and death rates; (2) high
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Fig. 4.4 Trend in population
growth rate as a function
human development index
(HDI)
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Table 4.1 Population mortality, fertility, and growth rate vs. economic development

Countries and GDP Mortality rate Fertility rate

Population growth
rate (fertility
minus mortality)

Poor Countries (Africa),
GDP < US$1,000

High (poor hygiene
and medical
care); Swazi-
land D 3.0%

High (economic
needs); Swazi-
land D 2.7%

Low; Swaziland
D �0:3%

Developing Country: China,
GDP D US$4,000

Moderate to low;
China D 0.7%

Low (legal
mandate);
China D 1.3%

Moderate to low;
China D 0.6%

Developing Countries;
GDP< US$10,000

Moderate to low
Niger D 2%,
Brazil D 0.6%

High (economic
needs);
Niger D 4.9%,
Brazil D 1.6

Moderate to high;
Niger D 2.9%,
Brazil D 1%

Developed Countries,
GDP > US$30,000

Low; Italy D 1%,
Japan D 0.9%

Low Italy D 0.9%,
Japan D 0.8%

Low; Italy D 0.01%,
Japan D �0:1%

Source: US Central Intelligence Agency, 2007

birth rate and low death rate; (3) lower birth rate and low death rate; and (4) low
birth and death rates. The countries listed in Table 4.1 follow similar demographic
transitions.

As more countries develop their economies and a larger segment of the world
population enjoys higher HDI, population growth will accelerate in the near future.
The world population grew by 4.3 billion during the twentieth century and is esti-
mated to grow by more than 3 billion (to the total of nine billion) in just the first
half of the twenty-first century (see Note 15). The emerging growth in HDI, GDP,
and consumption for an increasingly larger population means an even more arduous
strain on the natural sources and sinks.

4.2.2.2 Accelerated Growth of GDP and Standard of Living Globally

Ubiquitous growth of GDP at PPP across the globe, particularly in the densely
populated developing countries such as China and India, is increasing the rate of
depletion of nonrenewable resources. Even renewable resources are being con-
sumed at a significantly higher rate than nature is capable of replenishing (e.g., the
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deforestation of the Amazon, the near extinction of beluga sturgeon in the Caspian
Sea, the drying-out of two-thirds of the Aral Sea in Central Asia). Nevertheless,
these changes have not yet reached the threshold of immediate impact on the global
industry that would necessitate a strategic inflection. Hence in the development of
new products, sustainability provisions and attributes (such as reusability, recycla-
bility, and efficiency in manufacturing), beyond the mandatory requirements, are
usually treated as low priorities compared to the requirements for function and time-
to-market.

How would the state of the world economy (i.e., availability and price of re-
sources, economics of sustainability, and resource-value efficiency) look if the
whole world were developed to the current level of the US, EU, and Japan? In other
words, if the GDP per capita of 6 billion people were US$40,000, how would the
sustainability factors be weighed in the new product development process? Would
the basis of comparative advantage shift radically?

One answer is offered by Wackernagel and Rees (1995) who noted that “: : :

Current appropriations of natural resources and services already exceed earth’s
long-term carrying capacity: : : If everyone on earth enjoyed the same ecological
standards as North Americans, we would require three earths to satisfy aggregate
material demands, using prevailing technology: : : To accommodate sustainably the
anticipated increase in population and economic output of the next four decades, we
would need six to twelve additional planets.” This assessment implies that the immi-
nent rise of China, India, and Brazil requires a fundamental and radical shift away
from the current economic model and practices to the economics of sustainability,
if a major conflict over the resources and sinks is to be averted.

4.2.2.3 Prevalent Economic Framework

The third and perhaps the most important factor influencing utilization and scarcity
of natural resources is our economic framework.

Human economic activities are aimed at improving quality of life, which starts
with satisfying the existential needs including physiological (food, water, and shel-
ter) and safety/security. Transcending these basic needs, Maslow in his theory of
hierarchy of needs (Maslow 1970), conceived three higher levels including the needs
for belonging/love, esteem, and self actualization which become motivators of hu-
man behavior once the most basic needs are satisfied.

The basic needs are primarily satisfied by consumption of goods which directly
contribute to material wealth generation through industrial production. The higher
level needs, however, can be satisfied through significantly less material-intensive
means. Community, socialization, creativity, art, spirituality, esthetics, and nature
have been instrumental in fulfilling the needs of belonging and love and creating the
opportunity for realization of one’s potential and self actualization.

In the modern capitalist economic system, the desire for maximization of profit
has led to the inescapable requirement for continuous growth in economic activities
of production and consumption. In other words, the GDP and GNP have to grow
continuously. In order to achieve this objective when the basic needs of consumers
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in the society have been satisfied, marketers have cleverly created ingenious
associations between the consumers’ higher level needs (in Maslow’s model) and
material consumption. For example, consumption of an expensive facial cream is
positioned not as mere application of a chemical compound to enhance skin health
but as a means of enhancing self-esteem and self-expression. The consumption of
multiple vitamin pills a day is positioned as essential for feeling good and enjoying
life. Material wealth has increasingly become the sole metric of success and social
status. Preventive methods of solving health and social ills (e.g., heart ailment or
crime) have given way to corrective means which contribute to more production
and consumption. Furthermore, investment in technology and product development
tends to be focused on the needs of affluent consumers who have the purchasing
power. This leads to a rise in inequity and a widening gap between the haves and
have-nots and to over production and consumption by affluent societies, while the
basic needs of the societies with unattractive demand conditions (low-purchasing
power) are left unmet (electricity, clean water, cure for AIDS.)

In our prevalent economic system, per capita GDP has become the most impor-
tant indicator of the living standard (purchasing power) and the quality of life (HDI
and happiness) of a nation. Consumption level is synonymous with economic health
and social wellbeing, and it is tracked diligently by economists and governments.
Two-thirds of all economic activities in the USA is in the consumer sector – which
amounted to US$2 trillion per quarter in 2003 (see Note 28).

Another key feature of the prevailing economic paradigm is how natural re-
sources and societal commonwealth (the common property) are treated. The value
of a “common” property (e.g., air, fresh water, oil, minerals, and most of the ecosys-
tem services) is determined by the cost of access to the resource rather than its
contributed value in comparison with alternate means. Only the creation and depre-
ciation of private and corporate wealth are accounted for in the economic models
and the commonwealth is left out of business decision metrics. In other words, nat-
ural resources and sinks, which have been available at relatively low cost, are not
treated as assets and more importantly they are assumed to be boundless.

These assumptions about and the treatment of common goods encourage: de-
velopment of products that have a short life, disposal instead of repair, and reuse
of products, focus on short-term market needs (vs. long-term consequences) and
steady accumulation of waste and unused possessions. Furthermore, as mentioned
above, only products and technologies will be developed, which fulfill the needs of
consumers in the regions with attractive market potential.

While many consumer products are made in low-cost regions, they are predomi-
nantly consumed in the developed countries where labor cost is higher. As a result,
manufacturing processes that use low virgin material/extraction cost (from unde-
veloped regions) and deploy low-cost manufacturing labor (also from “low-cost
regions”) make the cost-of-goods-sold (COGS) of new products low in comparison
with the cost of (local) maintenance/repair, refurbishment, and recycling in devel-
oped regions.

Operational strategies and supply chain decisions are often cost based and
aimed at circumventing compliance to environmental regulations, which are viewed
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as tactical necessities rather than strategic opportunities. For example, General
Motors Corporation developed its electric car only to raise the average fuel effi-
ciency of its aggregate product line in compliance with US-EPA standards. The
company decided to discontinue the product line later in spite of its enthusias-
tic acceptance by a few thousand early adopters who had leased the car (see
Note 29).

The above behavior has resulted in excessive utilization of (nonrenewable) natu-
ral resources and the looming scarcity that could threaten business sustainability on
a broad scale.

4.2.3 The Case for Sustainable Product/Process Design
and Manufacturing

Development, production and delivery of products, and services are central to most
business enterprises. Hence sustainable product design and manufacturing is inte-
gral to the core strategy of a corporation that adopts sustainability as its principle
operational imperative. In other words, the case for sustainable products and pro-
cesses is also the case for sustainable business strategy which can be supported
through the following arguments.

Social and environmental responsibility: More than ever before, large multinational
corporations feel the need for integrating social and environmental responsibility
into their espoused core strategy. They express support for the overarching goal of
sustainability to achieve economic prosperity, while protecting the natural systems
of the planet and to ensure a high quality of life for current and future generations
across the globe. The drivers for the current trend include changing preferences of
customers and investors, government regulations, and the pressure that corporations
feel from the media and nongovernmental (advocacy) organizations (NGOs). More
than 30 years ago, the famed economist Milton Friedman offered a counter argument
absolving corporations of social responsibility beyond legal compliance (Friedman
1970). Friedman argued that social welfare is the business of governments who
safeguard the commons through enactment of laws and regulations. This minimalist
view is workable if governments were not subjugated to corporations and assumed
ownership of the commonwealth and the responsibility for its protection.

Maximizing resource-value chain efficiency for short-term business benefits through
reduction of operating cost: Improving energy efficiency, reducing manufactur-
ing waste, and other resource efficiency measures translate directly to reduction
in operating cost and increased profitability. At the same time, these efficiency im-
provement measures are good for the environment and for reduction in the depletion
of nonrenewable resources.

Business opportunities in meeting the market demand/preference for sustainable
products and services: The Prius hybrid car is a good example in this category.
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Toyota Motor Corporation envisioned the basis of competitive advantage in the
future to be fuel efficiency and invested in the hybrid technology against the con-
ventional marketing wisdom in early to mid-1990s.

Entrepreneurial business opportunities in environmental protection which has been
referred to as “enviro-capitalism” (Anderson and Leal 1997) and as “doing well
by doing good”: For example, entrepreneurial opportunities might arise in promot-
ing tourism through environmental protection, in turning byproducts (waste) of one
industrial process into marketable products in another sector and thereby reducing
the damage to the environment, and in real estate development and improvement of
property value through environmental revitalization and enhanced esthetics.

Sustained business leadership for long-term shareholder value growth: The mo-
tivation in this category is to circumvent medium to long-term threat of resource
scarcity and environmental management cost, and the resulting jeopardy to business
sustainability. There are several counter arguments against this motivation: First,
one firm (no matter how large) can only have a limited impact on the global scale,
and the long-term measures can only be effective if adopted by all producers. Sec-
ond, voluntary strategies might be self-discriminatory in the fiercely competitive
global landscape. And third, the overarching business objective of sustained growth
in return-on-equity is achieved through growth in market opportunity and maxi-
mization of people/capital productivity, i.e., maximization of output per unit of labor
cost and the deployed capital (see Note 32). This objective encourages continuous:
(a) growth in production and corresponding consumption, (b) reduction in worker
value (lower wages/benefits and longer working hours), and (c) increased produc-
tion output capability (through automation, economy of scale, and centralization of
production), all of which tend to be counter to sustainable utilization of resources.
In other words, the goal for continuous business growth appears irreconcilable with
the environmental and resource sustainability objective.

Our fantastic technological advancement and material wealth generation have
also resulted in excessive individualism, alienation, and breakdown of interdepen-
dence. In many affluent societies, material possession is abundant but people feel
insecure of the future and frightened as being “on their own” without a social sup-
port network from neighbors, communities, and the society as a whole.

As we will discuss later, the apparent dichotomy between business and en-
vironmental sustainability might be reconciled with a change in the underlying
conceptual frameworks. For example, an alternative to the business strategy of
“sustained shareholder value growth” might be sustained stakeholder value growth
where stakeholders are shareholders, employees, and the communities and envi-
ronment where the firm’s economic activities take place across the entire supply
chain. In this revised strategic viewpoint, value is also redefined and takes a broader
meaning beyond the mere financial metrics. The revised definition of value might
be quality of life. While the definition of “quality of life” is appropriately vague
and subjective, it has many universally shared dimensions such as: physical need
satisfaction, security, happiness, liberty, equity, opportunity, and community.

In the remainder of this chapter, our discussion is focused on product/process
development and operational strategies that serve business sustainability within the
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current economic framework. However, the proposed concepts and methodologies
are not in conflict with the evolutionary process of transition to a new economic
framework where strong sustainability is materialized.

4.2.4 Incentives for Sustainable Product/Process Development

Table 4.2 presents prevailing incentives which drive firms to develop sustainable
products and processes and to adopt sustainable manufacturing practices in to-
day’s economic framework. The relative weight that is assigned to these incentives
in managerial tradeoff analysis and decision making is also listed in the table.
While the Table 4.2 incentives are rooted in the factors in Sect. 4.2.3, they are
constrained by the overarching business objective of shareholder value growth.
Furthermore, sustaining the growth over short-term reporting periods forms the

Table 4.2 Driving factors in strategy for sustainable product development and manufacturing

Driver
Weight High, Medium,
Low

Laws and government regulations (local, national,
international, and global treaties); Risk avoidance

M–H (see the following section
on prioritizing compliance)

Operating cost benefits of efficiency in the resource value chain
for reducing the operating cost, COGS, and
cost-of-ownership (COO). Note that COGS and COO can
be reduced through: (a) Product and process design and (b)
outsourcing of operational processes (manufacturing, HR,
IT, and financial transactions) to low-cost regions

L–M

Marketing L–M

1. Users’ preference for eco-friendly products (varies by
socio-cultural factors) (see Note 33)

2. Competitive differentiation through: (a) Lower COO by
reducing consumption of resources (e.g., energy efficient
appliances, hybrid vehicles) and (b) Aesthetics value
(through designs that minimize material content)

3. Pricing flexibility through lower cost base: Manufacturing
waste reduction and efficiency in energy and water use

4. Branding Social responsibility and eco-friendly growth
embedded in the firm’s mission statement and espoused
strategy; also referred to as “Triple Bottom Line Strategy”
(see Note 34)

Entrepreneurial opportunities in fulfilling market needs where
business opportunity intersects environmental
protection/improvement:

M–H (if aligned with the firm’s
business strategy)

� Products that reduce resource utilization and improve operating
cost; e.g., energy-saving devices such as motion-sensing light
switches (see Note 35)
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basis for prioritization of the drivers in Table 4.2. Hence, in product development,
time-to-market, and competitive differentiators in the functional attributes of a prod-
uct are commonly treated as high priority and trump other considerations in the
design.

4.2.5 Prioritizing Compliance to Laws and Government
Regulations in Product and Process Design Decisions

As noted in Table 4.2, compliance to government regulations might be treated as
medium-to-high priority in product development strategy. Different regulations im-
pact different stages of a product life cycle (manufacturing, use, and end-of-life),
and deciding how to weigh-in the requirements for compliance in design depends
on the firm’s operational choices and marketing strategy. Firms can optimize their
strategy for where the product is manufactured, where it is marketed (used), and
where it is disposed according to the environmental requirements of the location.
For example, if the firm decided to manufacture the product in a region that has
less-stringent regulations than where the product would be marketed for use, it can
design the product according to the less-stringent environmental requirements. Sim-
ilarly, the firm’s obligations and strategy in disposing of the product at its end-of-life
can be optimized. That is why so many electronic products end up in China at the
end of their use in North America and the EU.

In the regions where environmental regulations are stringent and cause a signif-
icant increase in COGS, the firm might decide not to comply with regulations and
to forego the market opportunity if it did not produce an attractive return on in-
vestment. For example, a stringent restriction on the use of hazardous materials in
products (including lead and cadmium) was enacted in the EU as of July 2006 (see
Note 36). A manufacturer of photovoltaic solar modules that uses cadmium might
decide not to market the product in the EU rather than embarking on a major R&D
effort to find a substitute for cadmium.

Another consideration is compliance to international treaty regulations under
auspices of the UN or regional trade agreements. These regulations usually become
enforceable on the local and national level only if they were adopted by the host
country where the product is manufactured, used, or disposed of. For example, the
Kyoto protocol for GHG emission is not adopted by the USA and does not impact
the products manufactured in the USA.

Table 4.3 is a matrix of governmental regulation class vs. life cycle phases of a
product. This table illustrates the relative impact of regulations on various stages of a
product life cycle. The numbers in Table 4.3 are illustrative examples in comparing
the impact of regulations on design and manufacturing strategy depending where
the product is made, marketed, and disposed of.

Note that in Table 4.3 example (as in the other examples discussed above), the
firm’s strategy for sustainable design is constrained by shareholder value growth
and short-term return on investment optimization. The long-term factors such
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Table 4.3 Product strategy matrix in compliance to government regulations

Class of laws and
regulations

Product life cycle phase
Make Use Dispose

Local 2 3 5 4 4 1
Shanghai Malaysia Germany California California Xian

National 1 3 5 3 3 2
China Malaysia EU USA USA China

Global Treaty 3 3 5 1 1 3
Guideline (if
adopted as local
or national laws);
e.g., Kyoto GHG
protocol

China Malaysia EU USA USA China

The numbers in the table represent the impact of regulations on Design/Manufacturing Practices:
1 D minimal, 5 D strong

Table 4.4 Potential adverse and favorable impacts of design for sustainability

Potential adverse impacts of design for
sustainability

Potential favorable impacts of design for
sustainability

(a) Limits designer’s choice and compromises
product performance.

(a) Improves efficiency and reduces cost of
product manufacturing, installation, after
sale service.

(b) Lengthens the development cycle time and
delays time-to-market.

(b) Reduces cost of consumables in use hence
improving competitive differentiation.

(c) Increases cost of goods sold and lowers
product profitability.

(d) Increases cost of product development
project.

as minimizing utilization of nonrenewable resources and environmental impacts
beyond compliance to regulations are assumed to be low priority and only of public
relation value.

4.2.6 Potential Impact of Sustainability Requirements
on Product/Process Development

Sustainability requirements constrain product design and manufacturing in many
respects and while some constraints might create an opportunity for operational
efficiency improvement and cost reduction, many are perceived as undesirable lim-
itations on speed to market and cause for increase in the product’s manufacturing
cost. Table 4.4 lists potential adverse and favorable impacts of sustainability require-
ments on commercialization success of a product. Note that the discussion in this
section is focused on sustainability requirements which are above and beyond those
imposed by mandatory laws and government regulations. The latter are not sources
of competitive differentiation except in the way that the supplier implements them
in design and manufacturing similar to all other product requirements.
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The benefits that are not listed above, as we discussed earlier, are resource
availability and environmental benefits which impact long-term business sustain-
ability and are often beyond the life cycle horizon of a product and do not impact
its commercialization success. Because of this tension between the short- and
long-term considerations, farsighted firms are increasingly faced with an ethical
challenge. Should sustainability requirements be subordinated to imperative short-
term business results?

4.3 Product and Process Assessment

Product and manufacturing sustainability requires vigilance and proactive action
throughout the product and process life cycle. Defining sustainability metrics, set-
ting product and process targets, and executing appropriate action plans are imper-
atives of sustainable development. Mindfulness (knowledge) of environmental sus-
tainability factors plus creativity and product innovation can significantly enhance
sustainability of products and processes without adverse impact on business results.

Many of management actions to increase operational efficiency for profitabil-
ity and competitive advantage also help environmental sustainability, including
short cycle time, short time-to-market, lean manufacturing, low materials and
manufacturing-labor costs, high inventory turns, low installation cost, coordination
within the supply chain, and low cost-of-ownership. Through proactive identifi-
cation of sustainability metrics, assessment of their impact and setting targets,
firms can articulate the firm’s contribution to sustainability for marketing promo-
tion, increase workforce/management awareness and sensitivity to sustainability
issues, identify further opportunities for sustainability improvement in products,
services, manufacturing, operations, and the supply chain, and implement targeted
and high-impact sustainability improvement action plans.

Sustainability can be assessed in several dimensions including: (a) performance
of individual products and manufacturing processes; (b) overall corporate (or busi-
ness unit) performance aggregating all products, processes, and the enterprise
operation; and (c) the quality (maturity) of the firm’s strategy and business processes
pertaining to leadership in sustainability.

The following sections present the sustainability metrics in each of the above
categories. These metrics are intended not only to assess a firm’s sustainability
performance but also to drive its operational strategies through the desired values
that are specified for the metrics as design and process requirements. The proposed
metrics are based on authors’ experience and on the best practices at leading man-
ufacturers and are not intended to be exhaustive of all product and process types.
Nevertheless, the concepts can readily be adjusted to new situations.

We start with the metrics measuring the overall sustainability performance of a
firm (or a business unit). Metrics for assessing sustainability of suppliers are dis-
cussed next as firms should assume full ownership of sustainability across their
global supply chain. We will then present the sustainability metrics for products,
manufacturing processes, and distribution channels.
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4.3.1 Overall Corporate and Business Unit Level Metrics

The following is a list of metrics that measure a firm’s overall sustainability
performance. Many corporations, particularly large multinationals, have adopted
these metrics (to some extent) and publish annual reports based on an internal audit
of progress against annual improvement targets.

1. ISO 14001 certification for having an Environmental Management System
Standard.

2. Fines and penalties for lack of compliance to external regulatory requirements
(number of violations, dollar value of fines per year, and percent change from
prior years).

3. Percent of products ranked stellar in energy efficiency according to the US EPA
Energy Star Tag and EU Energy Label.

4. Compliance to the leading global sustainability standards and regulations for
products, manufacturing, and transportation, including:

(a) Percent of products in the corporate portfolio which comply with EU direc-
tives, RoHS, WEEE, and EuP.

(b) Compliance with Chemical Ban List (Montreal and Kyoto protocols)
(c) Compliance with hazardous material transportation regulations (local,

national, international)
(d) EU directive on End-of-Life Vehicles (ELVs)
(e) Japan’s Law on Recycling of ELVs.
(f) Rating according to the EU Ecolabel.

5. Recycled material use in manufacturing of products in units of kilogram per
unit of product or revenue, and percent change from prior year.

6. Landfill use rate by end-of-life (EOL) products: in percent of EOL products
disposed in landfills (kg/y).

7. Total gaseous, liquid, and solid discharge into the air, water, and land (vs. the
zero-emission goal) from production, enterprise operation and use/EOL dis-
posal of all products.

8. Investment in sustainability, associated cost savings, and the saving to invest-
ment ratio. For example in 2006, IBM reported the saving/investment ratio of 2
over a 7-year period.

9. Innovation and investment in disruptive technology for sustainability includ-
ing annual budget and the number of patents filed. For example, investment in
products and technologies that substitutes for nonrenewable materials and en-
ergy sources at reduced cost.

10. Cost-of-Sustainability (COS) as defined in Sect. 4.3.1.1
11. Education: training employees, suppliers, distributors, subsuppliers, and dis-

seminating best known practices. Workforce education is further discussed
below.

12. Promotion: Sustainability Innovation Award (SIA) to employees includ-
ing sustainability-kaizen in product design, manufacturing, and enterprise
operation.
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13. Societal outreach (community, government, NGOs) and stakeholder engagement
encompassing the firm’s global supply chain and served markets.

14. Sustainability score across the supply chain. Measure and aggregate the
above 13 metrics for all suppliers, including upstream/downstream logis-
tics/transportation and distributors to assess the firm’s total sustainability
impact.

15. Summarize firm’s performance in the above 14 categories in an Overall Score
Card showing the actual performance rating vs. target, in each category and the
company’s total ecological footprint.

As a result of assessment and monitoring of corporate sustainability metrics, some
corporations have come across entrepreneurial opportunities or innovative ideas for
reducing the firm’s ecological footprint. Dupont measures SVA (Shareholder Value
Add) per pound of production to maximize weight reduction in products (Holli-
day et al. 2002). To achieve the SVA goal, Dupont added service to its portfolio
of business offerings. In the carpet business for example, Dupont started offering
installation, maintenance, and end-of-life (EOL) service in addition to just selling
the carpets. It is not clear how strongly the SVA-per-pound metric correlates with
reducing the ecological footprint of carpet production and use. For example, the
installation service does not reduce environmental impact although it improves the
SVA/lb. There is, however, an opportunity for improving sustainability if the main-
tenance service increases carpet life and EOL service includes material recycling.

STMicrolectronics’ CEO, Pasquale Pistorio has set a company goal of “zero-
equivalent CO2 emission by 2010”. ST’s plan for achieving this goal is twofold: (a)
increase energy efficiency and use of renewable sources in production and (b) plant
35,000 ha of trees to compensate for CO2 emission that cannot be achieved through
efficiency enhancing actions. Planting trees to make up for CO2 emissions is not yet
regarded as a way of offsetting emissions, because the trees need to be maintained in
perpetuity (or at least for the lifetime of the greenhouse gas emissions, typically on
the order of 500 years or so). However, new carbon neutral standards are being de-
veloped including carbon neutral certification, and many firms are participating in
worldwide emission trading markets that provide economic incentives for achiev-
ing reductions in the emissions through a cap and trade mechanism. Furthermore,
trade associations such as the International Emissions Trading Association (IETA)
are established. IETA aims to promote an integrated view of the emissions trading
system; participate in the design and implementation of national and international
rules and guidelines; and provide information on emissions trading and greenhouse
gas market activity.

4.3.1.1 Cost-of-Sustainability

The concept for COS is modeled after cost-of-quality (COQ) proposed by Joseph
Juran in 1951. He defined COQ as unavoidable cost minus avoidable cost of quality,
where avoidable cost includes cost of rework of defects in manufacturing, cost of re-
pairing failures in the product warranty period, and cost of customer dissatisfaction.
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The unavoidable cost of quality is the cost of preventive measures including increase
in product cost of manufacturing because of design quality improvements and of
added manufacturing inspection and statistical process control.

We define COS for a product as:

COS D unavoidable cost � avoidable cost � opportunity cost;

where unavoidable cost is the incremental cost of design-for-sustainability
(DfS) C increase in product manufacturing cost caused by DfS constraints C cost
of being late to market due to incremental R&D; avoidable cost is the savings
through operational efficiency improvement (e.g., using less water and nonrenew-
able energy) C lowering product manufacturing cost by reduction in weight and
in use of (expensive) restricted materials C savings associated with reduction in
nonrenewable consumables (in the cost-of-consumables or COC), and opportunity
cost is the market share gain through sustainability differentiation C reduction in
ecological footprint of the product.

Note that the terms in the COS equation reflect only the cost associated with
actions which improve product sustainability beyond the satisfaction of market re-
quirements for competitive parity and compliance with environmental regulations.
COS might, however, depend on the cost-of-compliance (to regulations) because the
global regulatory landscape is nonhomogeneous. This situation often shifts product
development and manufacturing decisions away from the strategy for a sustainable
solution to a global sourcing strategy where managers opt to manufacture products
in “low-cost” regions with lax environmental restrictions.

In the fiercely competitive high-tech industries and particularly when a business
is on a steep growth curve, managers tend to focus on market share and revenue
growth strategies rather than on cost reduction. Therefore, minimizing the COS will
for the most part be a strategic priority if it delivers enhanced short-term customer
value. That is why, it is important to develop a life cycle business model for prod-
ucts, where resource value chain efficiency maximization and COS improvement
are integral parts of a product strategy from the onset and the benefits are passed on
to customers (in the form of lower initial price, lower COC, and improved life cycle
experience – ease of service, EOL takeback, and replacement.)

4.3.2 Supplier Metrics

Today’s globalized supply chain extends a product’s impact on environmental and
resource sustainability far beyond the operational control volume inside a firm.
Therefore, firms should assume full ownership of sustainability across their global
supply chain and the product life cycle, starting with the supplier selection process.
Contractual demand, information sharing (of best known methods), training, and au-
dit should be deployed across the supplier base to ensure a high level of product and
manufacturing sustainability on par with the firm’s operational strategy. The firm
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and its suppliers should monitor the following metrics and implement action plans
for achieving established targets.

1. Monitor the metrics listed in Sect. 4.3.1 for all suppliers, upstream/downstream
and assess the total sustainability impact of a product.

2. Environmental Product Declaration (EPD) (Michelsen et al. 2006) identifying
the impact of supplier’s embedded products.

3. Content declaration on supplier’s products and subassemblies.
4. Reduction in packaging material and solid waste disposal, as percent per year.
5. SMI (Sustainability Maturity Index) for the supplier.

4.3.3 Product Sustainability Metrics

The metrics in this section are aimed to drive product design. The desired value
set for each metric must be treated as a product design requirement in conjunction
with other customary requirements for product performance in satisfying customer
needs. Note that the following is not intended to be an exhaustive list and it must be
tailored to firm’s unique product characteristics.

1. Compliance to the requirements of ISO 14001 and other global environmental
regulations such as RoHS and WEEE.

2. Product energy efficiency and Ecolabel ratings; e.g., EPA Energy Star and EU
Ecolabel.

3. Product Sustainability Index (PSI) calculated as the aggregate numerical rating
of the product’s sustainability impact in manufacturing, transportation, use, and
end-of-life (EOL) as listed in items 4–7 below.

4. Manufacturing: fraction by weight or number of parts of the following classes of
material by design specification:

(a) Recycled material
(b) Restricted, scarce, or nonrenewable material
(c) Materials whose extraction and delivery are energy intensive
(d) Materials whose extraction and delivery have a significant environmental

impact
(e) Remanufactured parts

5. Transportation:

(a) Reusability and recyclability of the packaging material (see Note 39).
(b) Nonrenewable energy consumption and other environmental impacts of

transportation (perhaps the total distance traveled by a product to reach the
end use is a good indicator – the distance traveled from the manufacturing
plant to various distribution centers and finally to the consumer). Since the
energy consumption and environmental impacts are dependent on the mode
of transportation, appropriate weight factors must be applied to this metric.
US EPA has initiated the Smartway Transport Partnership program to im-
prove freight transport efficiency.



4 The Transition to Sustainable Product Development and Manufacturing 67

6. Product use

(a) Biodegradable and nonrenewable materials in the consumables (e.g., tires of
a car)

(b) Energy efficiency, percent
(c) Water efficiency, percent recycled, and retreated
(d) Climate control impact (e.g., product lifetime GHG emission in kg)

7. EOL manageability

(a) Product life
(b) Repairability
(c) Upgradability.

Note that EOL manageability is different than EOL management (in Sect. 4.3.5).
Manageability is a property of product design as it is reflected in the above met-
rics, while EOL management is a property of product life cycle management.

8. Recyclability

� Recyclable material content, percent (e.g., Toyota cars are 85% recyclable)
� Dissimilar material content that cannot be readily separated
� Reusability: percent of material/components used back in product manufac-

turing and used in another product

Graedel and Allenby (1998) rank products according to the choice of material,
energy use, and effluents into the environment over the product life cycle. They
propose the following “Environmentally Responsible Product Rating” system:

Environmentally responsible product rating; RERPT D
X

i

X

j

Mij;

where Mi;j is the .i; j / element of the assessment matrix in Table 4.5 and is
summed over all i and j entries. The integer value assigned to Mi;j ranges from 0
(for greatest impact) to 4 (for lowest impact), respectively. The range of RERPT is
from 0 to 100.

Table 4.5 The environmentally responsible product-assessment matrix

Environmental concern

Life stage
Materials
choice

Energy
use

Solid
residues

Liquid
residues

Gaseous
residues

Premanufacture
Product manufacture
Product delivery
Product use
Refurbishment,

recycling, disposal
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Note that in Table 4.5, entries in the left two columns and in the right three
columns represent the product impact on environmental “sources” and “sinks”,
respectively.

Several other researchers have also proposed metrics for assessing eco-efficiency
of products (Schmidheiny 1992; Henrik 2000; Frankl and Rubik 2000; Billatos and
Basaly 1997; Fabio Giudice et al. 2000) (Schmidheiny 1992; Henrik 2000; Frankl
and Rubik 2000; Billatos 1997; Giudice 2000). Manufacturing Science and Tech-
nology Center of Japan and Clean Japan Center have also developed metrics for
product eco-efficiency.

4.3.4 Process Sustainability Metrics

The metrics in this section are aimed to drive process design and operational prac-
tices at the factory and throughout the supply chain. The desired value that is set
for each metric must be treated as process design requirement and as operational
guideline in conjunction with other customary requirements for factory design, op-
erational plans, and process control. Note that the following is not intended to be an
exhaustive list and it must be tailored to firm’s product and process characteristics.

1. Energy efficiency:

(a) (Energy saving C renewable energy use)/total energy consumption; percent.
(b) Total energy use/sales.
(c) Energy consumption per unit of production; percent reduction per year.

2. Water efficiency:

(a) Water consumption reduction per year; percent
(b) Water consumption per unit of production; percent reduction per year

3. Climate change impact:
Total production of the following effluents (in kg per constant-dollar sales, and
percent reduction per year)

� PFC (perfluorocarbon) emission
� CO2 emission
� Other greenhouse gas (GHG) emission – Kyoto & non-Kyoto gases

4. Hazardous emissions:

� Volatile organic compound (VOC) emission
� TRI (toxic release inventory) chemical

5. Waste management:

(a) Overall Waste Generation Index (hazardous and nonhazardous); kg/sales;
kg/unit of production, percent reduction per year
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Table 4.6 The environmentally responsible process-assessment matrix

Environmental concern

Life stage
Materials
choice

Energy
use

Solid
residues

Liquid
residues

Gaseous
residues

Resource extraction
Process implementation

(process equipment)
Process operation
Complimentary process

implications
Refurbishment,

recycling, and
disposal (of process
equipment)

(b) Fraction of process byproducts and effluents in each of the following
categories; percent:

� Reduced
� Reused
� Recycled (e.g., 99% of scrap metal at Toyota car manufacturing plants is

recycled)
� Treated (chemical, physical)
� Disposed (incinerate, landfill, release to air or water)

6. Process equipment: in a life cycle assessment technique, the impact of pro-
cess equipment (that is often purchased from third party suppliers) must also
be considered.

Graedel and Allenby (1998) rank processes according to the choice of material,
energy use, and effluents into the environment similar to the methodology for assess-
ing a product. They propose the following “Environmentally Responsible Process
Rating” system:

Environmentally responsible process rating; RERPrR D
X

i

X

j

Mij;

where Mi;j is the .i; j / element of the assessment matrix in Table 4.6 and is
summed over all i and j entries. The integer value assigned to Mi;j ranges from 0
(for greatest impact) to 4 (for lowest impact), respectively. The range of RERPrR is
from 0 to 100.

Note that in Table 4.6 “process implementation” accounts for the environmen-
tal impact of process equipment which is often designed and manufactured by an
independent supplier.

4.3.5 End-of-Life Management Metrics

The EOL management metrics impact a firm’s product life cycle management
and the supply chain strategy. The desired values set for these metrics affect
the customary optimization tradeoffs such as collection and refurbishment rate of
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used products in servicing product warranty. In this category, the percent of prod-
ucts that are manufactured and sold is monitored for each of the following categories
at the end of product life (EOL).

1. Resold
2. Refurbished and reused
3. Recycled
4. Disposed in landfill
5. Incinerated
6. Ratio of the number of products recycled plus reused and resold to the number

of new products manufactured. For IBM PC/Workstations in 2003, this ratio was
37% in the USA and 17% worldwide.

4.3.6 Sustainability in Distribution, Logistics, and Sales

A Sustainability Management System (SMS) should be implemented at distribution,
logistics, and sales centers to include the firm’s performance metrics for:

1. ISO 14001 compliance
2. Energy and water efficiency
3. Recycling and reuse
4. Waste minimization
5. Disposal
6. Shipping methods (and hazardous material or HAZMAT compliance)
7. Logistics: metrics for transportation of products and for the distributors (ware-

housing, storage, value-added resellers, etc.) must be established. As mentioned
before, transportation metrics should discern sustainability impact of local vs.
distant manufacturing.

8. Information dissemination and training in SMS best practices

4.3.7 Sustainability at Service Centers

The SMS should be established at service centers to include performance met-
rics for:

1. ISO 14001 compliance
2. Compliance to regulations (HAZMAT)
3. Zero emissions (GHG, liquid discharge)
4. Energy and water efficiency
5. Use of remanufactured parts
6. Recycling and reuse
7. Disposal
8. Information dissemination and training in SMS best practices
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4.3.8 Assessment Audit and Reporting

The firm should perform periodic audits of its sustainability performance based on
the above metrics and report the results to its stakeholders. The following reports
and audits are recommended:

1. Corporate Sustainability Report to Stakeholders (annually)
2. Audit for compliance to external and internal requirements:

(a) Annual self assessment by every manufacturing, product business unit, and
R&D center.

(b) Annual assessment by Corporate Internal Audit Organization

i. Report to management
ii. Follow up for accountability and action status

(c) ISO 14001 audit (annual)

4.4 Best Practices in Product and Manufacturing Sustainability

The impact of a product on natural resources and the environment extends in both
space and time dimensions and the associated causal factors are interrelated. For
example, the factors influencing the environmental impact of a discharge from a
process might include: weight of pollutants, toxicity (short-term/long-term impacts
on humans, animals, and plants), impact regime (air, land, and water), interactive
nature of pollutants (changing to something else, having a long-life, upsetting the
ecological balance), localization, and transport (atmospheric transport, land seep-
age, sewer > sea > fish > human transport). Management and engineering decisions
at the product and process design stage profoundly impact the product’s sustainabil-
ity metrics throughout its life cycle and must be made from a global and holistic
systems viewpoint.

In our discussion, nonrenewable resources such as oil, coal, and elemental ma-
terials refer to the natural resources whose economic reproduction is not feasible in
the time scale of a human generation or an economic cycle. And environment refers
to the earth’s ecological systems whose balance impacts human life and in turn is
impacted by human economic activities.

In the following sections, we present a general guideline and qualitative speci-
fication for the development of sustainable products and processes, integrating the
practices of several leading global corporations such as IBM, Toyota, 3M, and Intel.
We will also discuss the life cycle analysis (LCA) methodology and considerations
for designing a “closed loop product/process cycle” for sustainability.
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4.4.1 Sustainable Product Design Guidelines

Schmidheiny posits that a sustainable product has the highest eco-efficiency defined
as the ratio of product value to its environmental impact (Schmidheiny 1992). The
following is a list of attributes that a sustainable product must possess and they
apply to the “whole product” including packaging and ancillary devices that make
the product useful to the end user: (i) Efficiently (see Note 42) incorporates envi-
ronmentally preferred materials and finishes. (ii) Requires minimal consumption of
resources in various stages of the product life cycle, including: manufacturing (en-
ergy, water, etc.), use (consumables), and end-of-life (land for disposal). (iii) Causes
minimal solid, liquid, and gaseous discharge into the air, water, and land in use and
in manufacturing. (iv) Has a long life. (v) Can be upgraded to extend the product life.
(vi) Has high reliability and maintainability with low cost of repair. (vii) At the end
of life, its components can be reused and its material-of-construction can separated
and recycled. Note that many of these attributes, such as long product life and low
consumable use, are contrary to the business model for many consumer products
which encourage short product life (with frequent technology/feature change – such
as in consumer electronics) and count on high consumable usage to compensate for
the low initial price (e.g., the computer printer and its cartridge or razor and razor
blade). Sustainable product development processes can succeed only if they are in
alignment with the firm’s business model.

During the product design process, tradeoff considerations to abide by the above
guidelines should take a holistic system view spanning the entire resource cycle
(including raw material extraction/processing, transportation, and delivery) and
the entire product life cycle (including manufacturing, logistics, use, and end-of-
life management). For example, designers should avoid specifying a material whose
extraction and delivery are energy intensive and have a significant environmental
impact through harmful discharges. The following examples highlight the need for
a holistic approach to sustainability.

� The Chinese government’s recent green push imposes a tax on disposable chop-
sticks (see Note 43). This regulation is designed to safeguard the 1.3 million
cubic meters of Chinese timber lost to chopstick production every year. Is the
washable (plastic or metal) chopstick a more sustainable solution? In order to
arrive at an optimal strategy, one must weigh the resource consumption and en-
vironmental impact of the two options.

� How superior is an electric car (in sustainability) to an efficient (hybrid) gasoline
combustion engine car if electricity for the electric car comes from a fossil fuel
power plant? Again, one must consider the entire resource cycle in comparing
the overall nonrenewable energy consumption and environmental impact of the
two options, as noted below:

1. Fossil fuel consumption tradeoff based on the overall well-to-wheel effi-
ciency:

(a) Electric car overall efficiency D combined efficiency of fossil fuel to
electric power conversion at a stationary power plant, electricity delivery,
and battery charge/discharge operation.
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(b) Hybrid combustion engine overall efficiency D combined efficiency of
fossil fuel to gasoline conversion, delivery, and combustion process in a
hybrid cycle.

2. Environmental tradeoff: impact on air quality and climate change as the result
of stationary source pollution (power plants) vs. distributed source pollution
(cars). If fuel for the hybrid gasoline car or electricity for the electric car was
from sources other than fossil fuel, the entire tradeoff study would change. For
example, the tradeoff might be between a biofuel hybrid car and an electric
car that is charged by electricity from a solar/wind power plant.

� In assessing alternate automobile design technologies, Toyota Motor Corpora-
tion considers energy efficiency and environmental impact of these technologies
over the entire resource cycle (see Note 44). Toyota defines “well-to-wheel” ef-
ficiency as the product of “well-to-tank” and “tank-to-wheel” efficiencies. For
a combustion-engine car, well-to-tank efficiency is the combined efficiency of
the cycle from extracting the fuel from the ground, refining it into usable fuel,
and getting it to the vehicle. The tank-to-wheel efficiency is the familiar term for
vehicle efficiency and is usually expressed as miles per gallon. Energy efficiency
of alternate vehicle designs is shown in Table 4.7.

A similar table can be constructed to compare the environmental impact of alter-
nate vehicle technologies in terms of “well-to-wheel” CO2 discharge, as shown in
Table 4.8.

� Intel’s power supplies had been inefficient because of the lack of an inte-
grated system design approach. Many desktop power supplies are only 50%
efficient during normal operating conditions. That is, half of the supplied en-
ergy is dissipated in heat. Power supplies are often designed to deliver op-
timal performance (maximum efficiency) at or close to full load. However,
most desktop systems operate at <50% of full load under normal operating

Table 4.7 Energy-efficiency tradeoff study of alternate vehicle technologies by Toyota

Alternate vehicle design
Well-to-tank
efficiency (%)

Tank-to-wheel
efficiency (%)

Overall,
well-to-wheel
efficiency (%)

Gasoline 79 16 18
Diesel 82 23 19
Hybrid (Gasoline) 79 37 29
Hydrogen fuel cell

(compressed H2)
58 38 22

Hydrogen fuel cell – hybrid
(compressed H2)

58 50 29

Hydrogen fuel cell target 70 60 42

Note that because of the low efficiency of hydrogen production and delivery (58%), the
overall efficiency of hydrogen fuel cells (22%) is not as high one expects (vs. hybrid or
even diesel)
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Table 4.8 Emission tradeoff of alternate vehicle technologies by Toyota

Alternate vehicle design
Well-to-tank Co2

emissiona
Tank-to-wheel
Co2 emissiona

Overall,
well-to-wheel
Co2 emissiona

Gasoline 15 85 100
Diesel 7 68 75
Hybrid (Gasoline) 5 39 44
Hydrogen fuel cell – hybrid

(compressed H2)
37 0 37

Hydrogen fuel cell with solar
energy

5 0 5

aRelative to gasoline D 100

conditions. Working with the Natural Resource Defense Council (NRDC), Intel
made changes to its power supply design guidelines to encourage the develop-
ment and adoption of more energy efficient power supplies (see Note 45). The
US EPA estimates that the environmental impacts of achieving the recommended
targets established in the design guideline would result in the following savings
in the USA alone: (a) Electricity savings of over 16 billion kilowatt hours per
year. (b) Reduced CO2 emissions of over 10 million tons annually. (c) Cost sav-
ings to the end user of US$1.25 billion annually. (d) Reduced cost of ownership
of a typical desktop PC of US$50 over 3 years.

4.4.2 Sustainable Manufacturing and Process Design Guidelines

A manufacturing operation that is at the “externally supportive” (see Note 46) stage
of maturity enables the corporation to lead in sustainability. The following is a list
of attributes in a sustainable process and manufacturing operation.

ı Minimal utilization of nonrenewable resources.
ı Zero use of restricted resources (e.g., RoHS materials).
ı Energy efficiency, defined as the ratio of energy needed to the energy consumed

and can be maximized through conservation and efficient equipment and pro-
cesses.

ı Use energy from a renewable source. For example, Google is powering its cam-
pus in Mountain View, California with solar energy and so does Macy’s at many
of its retail stores nationwide.

ı Maximize water utilization efficiency:

� Recycle the process water.
� Reduce water use through innovative process design.

ı Maximize material consumption efficiency, defined as the ratio of quan-
tity needed to quantity consumed, through process innovation and recycling.
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For example, an IC manufacturing process is generally quite inefficient; and in
many process steps, more than 80% of (largely toxic) chemicals are discharged
as effluents into the environment or captured in scrubbers for subsequent disposal
in landfills.

ı Zero discharge of pollutants in sold, liquid, and gaseous forms.

� As a high-priority subset of this requirement, manufacturing processes must
have zero toxic release inventory (TRI) including copper compounds, nitrate
compounds, xylene, etc.

� No climate change impact through zero emission of greenhouse gases and use
solvent-less processes.

ı Eliminate material waste – including hazardous and nonhazardous wastes. Waste
is primarily, the unused raw material from an inefficient process. The gener-
ally prescribed rule is the 3Rs of: reduce, reuse, and recycle (Jawahir 2007).
Recycling usually involves a treatment process. Disposal of nonbiodegradable
materials through incineration and landfill must be treated as the last resort.
In case of biodegradable materials, landfill approaches such as composting can
be beneficial and necessary for soil health. Similarly, combusting biomass waste
for generating process heat and energy can make these processes carbon neutral
or even carbon positive.

Increasingly, leading manufacturers are deploying sustainability guidelines in their
operation. For example, at Toyota’s car manufacturing plants, antichip paint is now
applied with a roller rather than a sprayer. This saves paint, reduces emissions, elim-
inates the need for plastic masking, and holds down cleaning costs. The redesigned
process has reduced wastes by 40%. Another ongoing project at Toyota is the devel-
opment of water-based paint instead of solvent-based paint.

The above process guidelines must be implemented through the full manufac-
turing cycle across the supply chain, from material extraction and delivery to the
final packaged product. Successful implementation of these guidelines in process
design requires domain expertise and managerial commitment to process sustain-
ability. Note that the above guidelines should be tailored to a manufacturer’s unique
process conditions.

4.4.3 Product Packaging and End-of-Life Management
Guidelines

ı Apply the principles of reduce, reuse, and recycle.
ı Design for “long”-life, reuse, repair, and end-of-life recycling.
ı Use recyclable and recycled content. For example, no PVC or plastic “peanuts”

should be used in packaging a product.

IBM has a packaging requirements manual that can be downloaded from the com-
pany website.
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4.4.4 Supply Chain Partnership for Sustainability

It is crucial to assume ownership of the product sustainability and to partner with
customers and suppliers for product/process design, packaging, logistics, distribu-
tion, reuse, and end-of-life recycling. The above guidelines for sustainable product
design and manufacturing should be implemented across the supply chain including
the supplies and subsuppliers. Sustainability considerations must be integral to con-
tractual, operational, and value-distribution issues in dealing with the supply chain.

4.4.5 Life Cycle Management and Closed Cycle Design

According to ISO 14040, LCA is a technique for assessing the environmental as-
pects and potential impacts associated with a product over its life cycle, by defining
goal and scope of LCA, compiling an inventory of inputs and outputs of a prod-
uct system, evaluating potential impacts, and interpreting the results in relation to
objectives of the study.

Klostermann (1998) describes the LCA methodology for identifying the en-
vironmental impact of a product and discuss mitigation options through various
examples. Economic feasibility of a sustainable design can be assessed by perform-
ing a total cost assessment (TCA) in parallel with the LCA.

United Nations Economic Development (UNED) organization has initiated a Life
Cycle Management (LCM) program to develop “concepts, techniques, and proce-
dures with the goal of creating sustainable development.” LCM includes the use of
tools such as LCA and TCA. UNED has also defined the concept of Life Cycle
Thinking (LCT), or Cradle-to-Grave thinking, as: “an approach where analysis is
done while considering the impacts of a product or process from its genesis through
to its disposal.”

The output of a product development process (PDP) is generally a spec-
ification for the product assembly, materials of construction, manufacturing
steps/flow/tolerances, and finally the user’s operation and maintenance instructions.
The input to the PDP is information about the necessary material, components, and
subassemblies which could be acquired as purchased parts or made-to-print for the
purpose of manufacturing the product according to the specifications. The tradi-
tional PDP optimizes the output of the process within the constraints of the input
to achieve the desired return on investment, time-to-market, and market-share goals
for the product. In other words, the traditional PDP adopts a very narrow view of the
PDP “system” and limits the consideration of the product impact to the interactions
with its immediate stakeholders upstream (suppliers) and downstream (users). The
LCM/LCA methodology, in contrast, takes a holistic view of the PDP system and
seeks to optimize the dynamic interactions of the product with all upstream and
downstream stakeholders including the natural resources and ecosystems sinks.

Figure 4.5 depicts the life cycle stages of a product with its manufacturing and
useful life by the users at the center. In the LCM methodology, all upstream and
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Extraction > Material Processing > Manufacturing > Use > End-Of-Life

Extraction > Material Processing > Manufacturing > Use > End-Of-Life

Nature,
Ecosystem

Nature,
Ecosystem

Recycle

Dispose/recycle to ecosystem

Other
cycles

Other
cycles

Other
cycles

Fig. 4.5 Closed loop product and process life cycle

downstream processes that are impacted by a product (as shown in Fig. 4.5) are
considered as integral stages of the product life cycle. Raw material extraction that
draws resources from the nature and its ecosystem and the subsequent material pro-
cessing steps precede manufacturing of the product. On the downstream side of its
useful life, the product interacts with nature as a sink for absorption and reprocess-
ing of its wastes.

In a closed loop LCM system, potential recycle- and reuse loops between various
stages of a product life cycle are included where material recovered from the product
at the end-of-life substitutes for virgin material in manufacturing. Furthermore, life
cycles of different products are linked where effluents from the manufacturing stage
of one product are fed into the manufacturing stage of another product; and simi-
larly, the end-of-life reused and recovered materials cross alternate product cycles
as shown in Fig. 4.5.

Examples of the closed loop approach are abundant in nature where waste from
one process becomes an input to another process. Whole sectors of ecosystems,
particularly in the soil, work to take nature’s waste materials apart, separate them
into usable pieces, and send them back into living creatures again (see Note 7).
Figure 4.6 illustrates an example of a closed cycle processing design by humans.
Figure 4.6 is the schematic of an ecosystem in Denmark demonstrating how by-
products and effluents of one system are creatively used as input to another system
(Manahan 1999; Ayers and Ayers 2002).

Applied sustainability LLC (ASLCC) created a new business based on “By-
Product Synergy (BPS)” by converting waste into saleable commodities (used in
other products; see Note 50). Applied sustainability brought diverse companies
together and identified BPS opportunities among them. ASLLC faced numerous
challenges, including a workable business model, ROI justification for clients, long-
term nature of the projects, and contractual/regulatory restrictions that led to their
demise. To succeed, the BPS concept requires cooperation and coordinated opera-
tional planning.
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Fig. 4.6 Schematic of industrial ecosystem in an industrial park in Kalunborg, Denmark

Another example of closed cycle processing can be found in Sweden. The city of
Vaxjo in Sweden is seeking a fossil fuel-free future, and it is almost halfway there
without having sacrificed lifestyle, comfort, or economic growth (see Note 51). “The
starting point on the way towards Vaxjo’s – and Sweden’s – success was the city
power plant. Today its giant smokestack towers over the pristine lakes, parks and
cycleways, barely emitting a puff of steam. Inside the plant there’s a huge furnace,
similar to those that burn coal. Woodchips, sawdust and other wood waste discarded
by local forestry industries are burning at extremely high temperatures to produce
electricity. Instead of the cooling water being dumped, as in most power stations, it
is pumped out to the city’s taps and into another network of insulated pipes, which
runs hot water through heaters in homes and offices. The water leaves the plant at
close to boiling point, travels as far as 10 kilometers and comes back warm to be
reheated, over and over. An enormous municipal hot water tank acts as a back-up,
so showers never go cold.”

In addition to identifying the recycling, reuse, and closed cycle opportunities,
LCA enables product development to minimize waste generation. Figure 4.7 illus-
trates multiplication of waste upstream of the product manufacturing cycle (Wenzel
et al. 2000). Producing 1 ton of consumer goods often requires processing 5 tons
of material in manufacturing and 20 tons of waste at the extraction stage of the
product life cycle. Therefore, reduction in consumption and design-for-long life and
repairability significantly reduce waste in the product life cycle.
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Fig. 4.7 Waste multiplies upstream of the product manufacturing cycle

It is important to note that often a formal and comprehensive LCA becomes quite
cumbersome and loses its utility as a design tool. LCA should be an element of Life
Cycle Thinking where eco-efficiency and sustainability are encouraged throughout
a product design and manufacturing process as Kaizen and are institutionalized as
organizational culture influencing strategic and tactical decision making. For exam-
ple, Intel has found sustainable manufacturing in developing countries challenging
because of cultural differences, lack of infrastructure (including procedures and en-
forcement), and a relative shortage of employees with relevant EHS experience.

Norm Thompson Outfitters (NTO), a consumer catalog company in Portland
Oregon set out to achieve “triple bottom line of sustainability” as being eco-
nomically viable, environmentally responsible, and socially active. Specifically the
company had the following two objectives: (1) no negative forestry impact by using
recycled paper for NTO catalogs and (2) no toxins in products (and associated pro-
cesses) merchandised by NTO. To achieve these objectives, NTO had to change the
behavior of its buyers and suppliers through education and the use of a scorecard
reward system. Marshall and Brown have analyzed the implementation of NTO’s
sustainability action plan by applying the system dynamics methodology (Marshall
and Brown 2003). Their paper comprises a list of proactive actions that the company
took in achieving its sustainability objectives.

4.5 Summary

In Sect. 4.2, we examined the obstacles that current economic models and activi-
ties place in the path of global sustainability. Developed and developing economies
present different barriers; and it is likely that changes required to overcome these
barriers will also differ. The examples cited show just how large the negative effects
have become. To this point, a “hands off” approach with regard to economic entities
has resulted in only limited success.

The need for product and process assessment was addressed in Sect. 4.3. As-
sessment cannot occur without metrics; and we suggested a comprehensive set of
metrics for the firm (or business unit), the product, the process, and all elements of
the supply chain. We also define a measure (equation) for determining the life cycle
cost of sustainability. Such a measure will be critical for managers deciding whether
to implement sustainability-enhancing recommendations.
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Even with all the obstacles documented in Sect. 4.2, several global firms have
implemented innovative approaches to overcoming these obstacles. In Sect. 4.4, sev-
eral such approaches are reviewed. Some have been extremely successful. It often
takes a LCA to convince managers to invest in sustainability. A holistic operational
strategy and an LCA-based production planning across the supply chain are critical
to sustainable product development and manufacturing.
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Chapter 5
Uncertainty and Production Planning

Stephen C. Graves

The intent of this chapter is to review and discuss how uncertainty is handled in
production planning. We describe and critique current practices and then prescribe
possible improvements to these practices. In particular, we argue that there are a set
of tactical decisions that are critical to the proper handling of uncertainty in produc-
tion planning. We observe that current planning systems do not provide adequate
decision support for these tactical decisions; we regard this shortcoming as an op-
portunity for new research and development, which could significantly improve the
practice of production planning.

This chapter is based primarily on personal observations of production planning
practices in a variety of industrial contexts. As such it is written more as an es-
say than as a scientific research article. We make no effort to review or survey
the research literature on production planning under uncertainty; we do provide a
commentary on the research literature, and identify a few points of entry for the
interested reader. We also cite a few illustrative references, albeit primarily from
our research. Similarly, our observations on practice are not the outcome of a care-
fully designed field study, but rather are derived from a potpourri of projects over
many years. Again, our intent is to provide a framework and a set of observations
on current practice and to provoke some new thinking on how we might do better.

We organize the chapter into five sections. In the first section, we briefly describe
and discuss major sources and types of uncertainty, how these uncertainties are
realized and how they affect the production plan.

In the second section, we comment on existing research in production planning as
it relates to the theme of this chapter. We note that much of the research literature is
based on deterministic models, and does not explicitly account for uncertainty. With
regard to the research that does include uncertainties, we discuss its applicability and
the challenges to its transfer to practice.
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In the third section, we introduce a stylized framework for describing current
production planning systems to provide a basis for the subsequent discussion and
critique of production planning under uncertainty.

In the fourth section, we make a series of observations on the generic treatment of
uncertainty in production planning in practice, and note that most systems for pro-
duction planning do not recognize or account for uncertainty. Yet these systems are
implemented in uncertain contexts; thus the planning organizations need to develop
coping strategies. We describe and critique the most common coping strategies.

In the final section, we identify a set of tactical decisions that we view as critical
for handling uncertainty in production planning. We describe how these tactics can
be incorporated into production planning systems as proactive countermeasures to
address various forms of uncertainty. We provide a perspective on the key trade-
offs in making these decisions and identify both examples of relevant work from
the research literature and opportunities for new research on developing effective
decision support for these tactics.

5.1 Types of Uncertainty

In this section, we identify and discuss the three major types of uncertainty that
arise in manufacturing contexts and that can affect a production plan. We contend
that the production plan needs to account in some ways for these uncertainties.
In subsequent sections, we discuss and critique the research literature and current
practice, and then will propose possible tactics for handling these uncertainties.

5.1.1 Uncertainty in Demand Forecast

This is usually the largest single source of uncertainty. All production plans rely on
a demand forecast or a demand plan as an input. A demand forecast extends over
a multiperiod planning horizon and represents the firm’s best guess at the future
demand. The forecast is based on a combination of inputs, the specifics of which de-
pend on the context. These include a projection of historical demand data, as might
be done by a statistical forecasting package; advanced orders in contexts where at
least some of the production is make-to-order; a corporate demand plan for firms
that operate with a sales and operations planning (S&OP) process; any customer
forecasts that the customer is willing to share with the firm; and market intelligence,
often in the form of expert judgments.

As a firm gets more and better information about future demand, it updates the
forecast. Indeed, in most planning systems, there is a regular cycle in which the fore-
casts are moved forward and revised; for instance, at the start of each week, a new
forecast for demand over the next 13 weeks is released. The new forecast reflects
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information inferred from the observed demand since the last forecast update, any
changes to customer orders or forecasts, as well as any changes on the market
outlook.

Forecasts are never perfect, and the actual demand realization will differ from the
forecast, resulting in a forecast error. To address the uncertainty due to forecasts, we
need to characterize the forecast errors. Typically, we view the forecast errors as
random variables for which we will want to know (at least) the first two moments.
It is important to recognize here that the forecast for a particular product is usually a
vector of forecasts, which cover the planning horizon. That is, at any time t , for each
product we have a forecast for future time periods t C i , for i D 1; : : : ; H , where
H is the length of the planning horizon. Thus, we have H forecasts; for instance
with weekly time periods, we have a 1-week forecast, a 2-week forecast, and so on.
We then need to characterize the errors for each type of forecast, as each forecast
has a different impact on the production plan.

5.1.2 Uncertainty in External Supply Process

A second type of uncertainty is associated with the external supply process. A pro-
duction plan results in orders placed on outside suppliers and has expectations on
the fulfillment of these orders. That is, a plan might initiate an order for ten steel
plates of a certain dimension and grade, and then expect that these plates will arrive
and be available for processing according to a stated lead time of, say, 8 weeks.
Nevertheless, there can be uncertainty in the delivery date due to uncertainty and
capacity constraints in the supplier’s manufacturing and distribution processes; for
instance, the order might take 10 weeks to arrive due to a work stoppage or delays
attributable to the weather.

Furthermore, in many contexts, there can be uncertainty in the amount of the
delivery. For instance, a supplier might be permitted by contract to deliver ˙10%
of the amount ordered; in other contexts, the buyer might reject some portion of
the delivery due to quality considerations. To model this uncertainty, one needs to
characterize the uncertainty in the replenishment lead times and in the replenishment
quantities.

5.1.3 Uncertainty in Internal Supply Process

A production plan also needs to account for uncertainty in the internal supply pro-
cess, which is similar to the uncertainty in the external supply process. A production
plan results in work or job orders placed on the internal manufacturing, transporta-
tion, and supply processes. Furthermore, the production plan has expectations on
how these processes will perform. That is, a plan might set the number of wafer
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starts into a semiconductor fabrication (fab) facility with expectations on both the
yield from these wafers and the flow time or process duration for these wafers within
the fab. Again, there is uncertainty on both accounts. The actual flow or completion
time will deviate from the expectation depending upon the work-in-process (WIP)
in the shop, the equipment availability and the dispatch rules; the wafer yield is
inherently random and depends on numerous process factors and conditions. Again,
one needs to characterize the uncertainty in the flow or process lead times and in the
yield quantities for each process step.

5.2 Observations on Production Planning Research

In this section, I provide general comments on the operations research-based re-
search in production planning; I do not attempt a survey of the literature, but try to
provide relevant references for a few entry points into this vast literature.

5.2.1 Deterministic Models

The dominant thrust of the research literature has been the formulation of determin-
istic models for production planning, and the development of solution procedures,
both optimal and heuristic, for these models. The primary intent of these models
has been to specify the requirements for a feasible production plan and to capture
the key cost tradeoffs that depend on the production plan. Typically, a feasible pro-
duction plan is one that satisfies the given demand over the planning horizon with
no backorders or lost sales, abides by specified production recipes for each final
product, and does not violate any capacity constraints. The models attempt to op-
timize total costs, which often include: sourcing and production costs, including
setup-related costs; holding costs for pipeline inventory and cycle stock; costs for
adjusting production capacity, such as hiring and overtime costs; and logistics costs
for transportation and warehousing. For reviews of this research, we suggest Thomas
and McClain (1993), Shapiro (1993), and Graves (2002).

This literature is largely oblivious to uncertainty. Much like research on the
economic-order-quantity (EOQ) model, the contention is that the value of these
models is in optimizing critical cost tradeoffs, often in the context of tight con-
straints. The research perspective is that dealing with uncertainty is of secondary
importance to getting the tradeoffs right; furthermore, there is the assumption that
the uncertainties can be handled by other measures, which are independent of the
determination of the production plan. Nevertheless, there is also the recognition that
the deterministic assumptions are a shortcoming of this research, but are necessary
in order to keep the models tractable.



5 Uncertainty and Production Planning 87

5.2.2 Hierarchical Production Planning

Hax and Meal (1975) introduced hierarchical production planning (HPP) as a
framework for production planning and scheduling, motivated by the desire to create
an applicable structure for developing effective planning systems. A hierarchical ap-
proach partitions the production planning problem into a hierarchy of subproblems,
often corresponding to the organizational hierarchy of the planning organization.
In any planning period, the subproblems are solved sequentially, with solutions from
the upper-hierarchy subproblem(s) imposing constraints on the lower-hierarchy sub-
problem(s). The planning system implements only the solutions for the immediate
period and resolves the subproblems each period in a rolling horizon fashion.
See Bitran and Tirupati (1993) for a review of research literature on HPP, and
Fleischmann and Meyr (2003) for a review of HPP and advanced planning systems.

The literature identifies three advantages for HPP relative to the alternative of
solving a monolithic problem: it is computationally simpler; depending on the for-
mulation, it can have less onerous data requirements; and it has implementation
advantages to the extent that the subproblems are aligned with the hierarchy of
decision makers.

Within the research literature, the HPP approach has primarily been applied
to deterministic models for planning and scheduling problems. As such, it is subject
to the same criticisms raised in the prior subsection. Yet, the approach would seem to
have an advantage in the consideration of uncertainties, in that it might be possible
to tailor the lower-hierarchy subproblems to account for uncertainty, e.g., short-term
demand uncertainty. Indeed, there is some research along this premise: Bitran et al.
(1986), Lasserre and Merce (1990) and Gfrerer and Zapfel (1995). In each case,
the research attempts to develop within an HPP framework a deterministic aggre-
gate plan that is robust to item-level demand uncertainty; that is, as the item-level
demand uncertainty is realized, there is some assurance that the lower-hierarchy
subproblem can disaggregate the aggregate plan into a good detailed schedule. This
is an interesting line of research, but so far has been limited to fairly specific,
single-stage production contexts.

5.2.3 Production Planning with Quadratic Costs

One of the earliest production-planning modeling efforts was that of Holt,
Modigliani, Muth and Simon (HMMS) (Holt et al. 1960), who developed a
production-planning model for the Pittsburgh Paint Company. They assume a
single-aggregate product and have three sets of decision variables for production,
inventory, and work force level in each period. More notable are their assumptions
on the cost function, entailing four components. The regular payroll cost is a lin-
ear function of the workforce level. The second component is the hiring and layoff
costs, which are assumed to be a quadratic function in the change in work force from
one period to the next. The production cost is also modeled by a quadratic function.
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HMMS assume for a given workforce level that there is an ideal production target
and that the incremental cost of deviating from this target (representing either over-
time or idle time) is symmetric and quadratic around this target. Finally, they model
inventory and backorder costs in a similar way. The inventory and backorder cost is
a single quadratic function of the deviation between the inventory and an inventory
target that depends on the demand level.

With these cost assumptions, HMMS minimize the expected costs over a fixed
horizon, where the expectation is over the demand random variables. The analysis of
this optimization yields two key and noteworthy results. First, the optimal solution
can be characterized as a linear decision rule, whereby the aggregate production
rate in each period is a linear function of the future demand forecasts, as well as
the work force and inventory level in the prior period. Second, the optimal decision
rule is derived for the case of uncertain demand, but only depends on the mean of
the demand random variables. That is, we only need to know (or assume) that the
demand forecasts are unbiased in order to apply the linear decision rule. Both results
depend crucially on the assumptions of a quadratic objective function.

This research stands out from other production planning research in that it ex-
plicitly allows for uncertain demand, and it develops an easy-to-implement plan,
namely the linear production rule. However, this line of research has fallen out of
favor for a couple of reasons. One is discomfort with the assumptions on the cost
functions. A second reason is that the simplicity of the result depends on the restric-
tion to one aggregate product with a single capacity; the form of the production plan
gets more complex with more products or resource types.

5.2.4 Stochastic Programming

Over the past 10–15 years, there has been an increasing interest in explicitly adding
uncertainty to production planning models. Mula et al. (2006) provide an extensive
review of this research. A good portion of this research examines the applica-
bility of stochastic optimization, particularly stochastic programming methods, to
production planning models. Stochastic programming is notoriously computation
intensive for many problem contexts; production planning is no exception. Yet, with
the ever-increasing computational power and the improvements in our optimization
algorithms, there has been more exploration of the feasibility of using stochastic pro-
gramming for production planning. Escudero et al. (1993) show how to formulate
a multistage stochastic program for production planning and explore its compu-
tational implications. Graves et al. (1996) report on the application of two-stage
stochastic programming for the optimization of production and supply chain plan-
ning for the Monsanto Crop Protection business.

Although stochastic programming methodology has promise as a methodology
for capturing uncertainty, it also has significant limitations. In many contexts, it
remains computationally prohibitive when there are many periods in the planning
horizon and frequent replanning. Also, the resulting scenario-based production
plans can be difficult to communicate and hence difficult to implement.



5 Uncertainty and Production Planning 89

5.3 A Generic Framework for Production Planning

In this section, I present a highly simplified generic framework to describe current
production planning practices. My intent in introducing this framework is to create
a “straw man” on which to comment and present some observations about planning
practices. In the following section, I will use this framework to characterize and
critique how many planning systems address uncertainty.

Almost all text books that discuss production planning provide a framework that
lays out the various elements of a planning system (e.g., Hopp and Spearman 2007;
Nahmias 2008; Silver et al. 1998). In Fig. 5.1, I provide a stylized version, given my
intent as discussed above.

A planning system starts with a forecast of future demand over some forecast
horizon of length H periods. The long-term portion of this forecast is an input
into an aggregate planning module that assesses whether there is sufficient capacity
to satisfy the demand forecast. This is the aggregate production plan as it is usu-
ally done by using aggregate products and large time buckets, and must account
for the key capacity considerations within the manufacturing system and/or supply
chain. To the extent that there is a mismatch between the available capacity and the
long-term demand forecast, the module needs to examine and decide how to rectify
this gap.

In general, there are four common ways that this may be done. First, in contexts
with seasonal demand, one might develop an aggregate production plan that builds
inventory during the off season in anticipation of a seasonal demand peak. Second,
the mismatch might be addressed by adding to or augmenting current capacity, for

Demand Forecast

Aggregate Production Plan

Master Production Schedule

MRP Shop Floor Control

RM FGProduction

Planning or control module

Raw Material/Finished Goods
inventory
Physical production process

Information flow–input data 

Information flow–control decisions 

Physical product flow

Long-term Short-term

Fig. 5.1 Framework for classical production planning
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instance through overtime or subcontracting. Third, when it is not possible to build
anticipation inventory or add capacity, one would delay meeting demand. This is
usually done in terms of extending the backlog by quoting longer and longer de-
livery lead times to customers. Finally, there may be some downward revision of
the forecast so as to eliminate the gap between the firm’s supply capacity and the
anticipated demand; this might be an outcome from an S&OP process that equates
the forecast to a sales plan and then aligns the sales plan to the production plan. In
practice, a firm would rely on a mixture of these tactics in developing its aggregate
production plan.

The next step in Fig. 5.1 is to convert the forecast over the shorter term into a
detailed master production schedule (MPS), subject to the guidelines or constraints
from the aggregate production plan. The aggregate production plan determines, at a
gross level, how and when customer demand is met. Given the aggregate production
plan and the current finished goods (FG) inventory, the MPS determines the neces-
sary production output to meet the demand forecast over the short term. Relative to
the aggregate production plan, the MPS is at a much more detailed level, both in
terms of products and time periods. In some contexts, production lot or batch sizing
is done as part of the master scheduling, so as to account for economies of scale in
the production process. There is also sometimes additional processing to check the
feasibility of the master schedule relative to the available capacity.

To determine the inputs into the production system, we need to convert the MPS
into a plan for the raw materials (RM) and intermediate products. This is tradition-
ally done with the logic of materials requirement planning (MRP), based on a bill of
materials and process recipes for each final product (Vollman et al. 2004). The key
assumption is that we have planned lead times for each required activity to produce
the product; that is, for the procurement of each raw material, as well as for each
process and transportation step, we assume that the activity takes a known, deter-
ministic amount of time, termed the planned lead time. With this assumption, we can
readily translate the MPS into time-phased requirements for each of the raw mate-
rials, intermediate products, and subsystems required to produce each final product.
For the raw materials, these requirements trigger replenishment requests from out-
side suppliers. For the intermediate products and subsystems, these requirements
are input to the shop floor control system, which determines the work releases into
production and the job priorities throughout the production system. Again, these de-
cisions are based on and guided by the planned lead times for the process steps in
the production operation.

The MRP step might also account for lot sizing considerations, whereby a lot
sizing heuristic or algorithm is applied for each process step or component in the
product bill of material. In some planning systems, this step of the planning process
might consider some capacity constraints on production, usually by means of heuris-
tics such as a forward loading scheme. However, even in these cases, the system
must rely to some extent on planned lead times in order to coordinate the replen-
ishments for multiple components and subsystems whose requirements derive from
the demand for an assembly product or multiproduct order.
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5.4 Observations on Common Approaches
for Handling Uncertainty

In this section, I provide a series of observations on how uncertainty is addressed
in practice by many planning systems, where we will use the framework from the
prior section. Admittedly, these observations are largely anecdotal but are based on
a large set of industry-based projects and other interactions.

Most systems for production planning do not explicitly account for uncertainty: The
planning system operates as if its world were deterministic. That is, plans are created
based on assumptions that the forecast is perfect, the internal production processes
are perfect and the outside suppliers are perfect. The plans presume that the supply
and production processes perform exactly as prescribed by their planning parame-
ters and that customer demand occurs as predicted by the demand forecast.

Most implementations for production planning systems make no effort to recognize
the uncertainty in their environment: Indeed, in many planning systems that I have
observed, there is limited, if any, attempt to track and measure the uncertainty in
the demand forecast or the replenishment processes. For instance, we find that most
planning systems do not retain and measure forecast errors. Once a forecast has been
revised, we observe that the old forecast is written over by the new forecast, and the
old forecast is lost. As a consequence, there is no record from which to measure
the forecast errors. Similarly, we still find implementations of planning systems that
do not track the actual replenishment times from suppliers, although this is slowly
changing as lead-time performance becomes a more common metric in supply con-
tracts. The execution component of most planning systems now has the capability
to track the actual flow times within the production operations; however, again we
seldom see these data used to understand the uncertainty in these processes. On the
other hand, yield data do get recorded more routinely, and at least the statistics on
average yield seem to be more routinely used in the planning systems.

Even though these planning systems do not explicitly recognize or account for
uncertainty, they do operate in an uncertain world. The planning organization thus
develops various strategies and tactics for coping with this reality. We describe our
observations on the major tactics as follows.

Safety stocks: Most planning systems do allow the users to set safety stocks for
finished goods (FG) and for raw materials (RM), as depicted in Fig. 5.1. Safety
stocks for raw materials can protect against supplier uncertainty, both in lead times
and in yield. In a make-to-stock environment, it is possible to install a finished goods
safety stock that can buffer against uncertainty from the production processes as well
as uncertainty due to forecast errors.

Replanning: A second common practice is replanning. That is, at some regular
frequency, the planning system is rerun to create a new plan. Often the replan-
ning frequency corresponds to the frequency with which the demand forecast
gets updated; in other cases, replanning is done even more frequently in order to
capture the dynamics from the internal and external supply processes.
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This replanning might be done each week or month, even though the plan might
extend for 3–12 months into the future. The revised plan would account for the
changes in the demand forecast, as well as the realizations from both the exter-
nal supply and internal production processes. In this way, the system reacts to the
uncertainty as it occurs, by revising its plans and schedules based on the updated
information on demand and the supply processes.

Time fences and frozen schedules: One consequence of this replanning is that it
induces additional uncertainty in the form of schedule churn. That is, with each
forecast revision, we generate a new MPS, which then can result in new detailed
schedules for all raw materials, components, and subsystems. The due dates for
some replenishment orders and production jobs are accelerated, while others are
delayed. But a change in priority or due date in one revision might often be reversed
by the next revision in the next time period. This churn or schedule nervousness
leads to additional costs as changing priorities inevitably lead to inefficiencies in
any production operation, as lower priority work gets put aside in order to expedite
the higher priority work.

The schedule churn also leads to dissatisfaction and distrust of the planning sys-
tem. Indeed, we find that suppliers (both internal and external) will often develop
their own forecast of requirements, rather than accept and follow the requirements
schedule that gets passed to them; in effect, they “second guess” the requirements
schedule that is given to them. The suppliers know that the requirements schedule
from the customer’s planning system will keep changing, and they think they can do
a better job with their own forecast. Nevertheless, it is not at all clear whether this
second guessing helps or hurts.

One tactic to protect against the induced uncertainty from replanning is the freez-
ing of the MPS. A firm might decide that no changes are permitted for part of
the master schedule, say for the next 4 weeks. The frozen schedule provides some
stability in the short term, as any short-term changes in the demand forecast get ac-
cumulated and then deferred until beyond the frozen period. A related tactic is to
use time fences to establish varying limits on the amount of change permitted to the
MPS. For instance, a firm might set a time fence at week 4, 8, and 13, and then spec-
ify that the MPS is frozen within the first time fence of 4 weeks, but permitted to
change by at most (say) ˙10% for the weeks 5–8 and (say) ˙25% for the weeks 9–
13. Beyond the last time fence, there might be no restrictions on how much the MPS
could change. Again, this type of policy can help to mollify and dampen the dynam-
ics introduced by production replanning. However, these time fences and frozen
schedules act as a constraint on the replanning; thus, they necessarily limit the ef-
fectiveness of replanning as a tactic for handling and responding to uncertainties in
the demand forecast and in the supply and production replenishment processes.

Flexible capacity: In some contexts, firms maintain a capacity buffer to respond
to uncertainty. In effect, there is a reserve capability that permits the manufactur-
ing system to recover from supply disruptions and/or to respond to unanticipated
changes in demand volume or mix. A common example is overtime work, which
is employed on an as needed basis to handle contingencies. However, even though
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many firms will rely on flexible capacity as a way to cope with uncertainties, their
planning systems do not formally recognize or plan for any capacity buffer; that is,
there is no means within the planning system to record or track utilization of the
capacity buffer, let alone provide guidance on its size and deployment.

Backlog management: Another tactic for dealing with uncertainty is how a firm
manages its order backlog. In particular, a firm might vary the size of the backlog or
correspondingly vary the delivery or service times quoted to customers. Thus, the
backlog grows (falls) if demand is greater (lesser) than forecast and/or if the supply
process is slower (faster) than planned. This is only possible in contexts in which
the manufacturer has sufficient market power to do this.

Inflated planned lead times: The last tactic that I have observed is the use of planned
lead times to indirectly create additional safety stock throughout the production sys-
tem. As noted above, most planning systems rely extensively on planned lead times.
There are several good reasons for this to be the case.

� Planned lead times greatly simplify any complex planning problem by permitting
decomposition. The assignment of a planned lead time to each process step per-
mits the scheduling of a multistep serial production activity to be separated into
a series of single-step activities, whereby each process step has a specific time
window within which to accomplish its task. In effect, the planned lead times
convert the final due date for a multistep activity into intermediate due dates, one
for each process step.

� Planned lead times facilitate coordination whenever multiple components or sub-
systems need to be joined or assembled together into a final product or assembly.
As above, the planned lead times permit a decomposition by which we can es-
tablish intermediate due dates for each component or subsystem and then can
manage each replenishment process independently.

� Planned lead times often serve as a proxy for dealing with capacity constraints
(see Graves, 1986 for a discussion and analysis). Many planning systems do not
explicitly account for capacity constraints; instead, they rely on the planned lead
times to compensate for this oversight. The planned lead times are set to reflect
the impact of limited capacity. A constrained work center that is heavily loaded
will have a longer planned lead time than one with a lighter load. A highly uti-
lized work center requires more smoothing of its work arrivals in order to level
its load to match its capacity. A longer planned lead time results in a larger queue
at the work center, which permits more smoothing.

Yet, beyond these reasons, we also observe that firms use their planned lead times
as a way to create another buffer to protect against uncertainty. As noted earlier, the
planning systems use the planned lead times to determine work and order releases;
as a consequence, a planned lead time translates directly to a level of WIP. If a
work center has a planned lead time of 3 days, then we expect that it will have
3 days of WIP on average. (This follows from Little’s law, if we assume that the
actual realized lead time is on average equal to the planned lead time.) As noted
above, for capacity-constrained work centers, this level of WIP might be dictated
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by the need to smooth the work load through the work center. However, we often
observe that the WIP (and planned lead times) exceeds that which is needed for
work smoothing. In these cases, we find that the WIP is actually acting as a safety
stock for the production system; its purpose is to provide an additional buffer to
protect against uncertainties in demand and/or in the supply processes.

This WIP safety stock differs from the raw material (RM) and finished good
(FG) safety stocks in a couple of important ways. First, the RM and FG safety
stocks are established by setting their planning parameters in the planning system. In
contrast, there are no planning parameters to directly set a WIP safety stock; rather,
the WIP safety stock is a byproduct of the planned lead times, and as such is not the
result of any deliberate planning decisions. Second, the WIP safety stock typically
does not reside in a warehouse, but sits on the shop floor in the form of WIP. One
consequence of these two observations is that this buffer is usually under the radar
of the “inventory police” and is not recognized as a planned safety stock. Indeed, we
have seen operations eliminate their safety stocks and close their warehouses as part
of an inventory reduction initiative, only to have that inventory recur on the shop
floor in WIP, as the inherent uncertainties of demand and supply remain unchanged
and thus a (unrecognized) safety stock is still required.

The inflated lead times also result in a control phenomenon known as launch
and expedite. Based on a demand forecast, a firm releases work orders to initiate
production to meet the demand forecast; that is, the firm pushes or launches the work
into the shop based on the shop lead time. This creates a large WIP in various stages
of completion, depending on how inflated are the planned lead times. The actual
demand deviates from the forecast. As actual orders come in, the firm matches the
orders with the available WIP and pulls or expedites the work out of the shop to
meet the true demand. (see Sahney 2005 for a case study)

This type of operation is often subject to an unhealthy dynamic. A longer planned
lead time results in more work getting pushed into the shop, creating a larger WIP
safety stock. This is attractive to the planner as there is more work from which to
select to expedite to meet demand, once it has been realized. However, a longer
planned lead time results in more uncertainty in the demand forecast; with more
uncertainty, the shop needs even more safety stock, which results in pressure to
increase further the planned lead times. This can lead to a so-called vicious cycle.

In summary, we have argued in this section that most production-planning sys-
tems do not recognize or account for uncertainty. Plans are typically created based
on assumptions that the forecast is perfect, and the production and supply processes
are perfect. Yet these systems are implemented in uncertain contexts; as a result,
the planning organization needs to develop coping strategies. These coping strate-
gies take the form of rapid and regular replanning (subject to time fences and frozen
short-term schedules), with the resulting churn; explicit FG and RM safety stocks as
well as hidden safety stock in the form of WIP; and a mixture of fluctuating service
or delivery times along with flexible capacity. We find substantial inefficiency in the
deployment of these tactics. This is not surprising, as these responses are generally
reactive ad hoc measures. In the next section, we review the key tactics for dealing
with uncertainty and discuss how these might be explicitly incorporated into the
planning system.
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5.5 A Proactive Approach to Uncertainty
in Production Planning

In this section, I discuss possible counter measures and practices for handling un-
certainty. We take as given that the current practices and systems for production
planning are not likely to change radically in the immediate future. There is a huge
installed base of planning systems and the accompanying IT support systems; as
described above, these planning systems are largely oblivious to uncertainties. The
question here is what might help. What can be done to help these systems be more
proactive with respect to the uncertainties in their environments?

The first step is certainly to do more routine tracking and measurement of the
uncertainty, in whatever form it occurs. This includes the measurement of forecast
errors, lead-time variability, and yield variability. This by itself is not overly chal-
lenging, as it primarily entails keeping track of deviations from the norm or a target.
But to use this data in planning requires some characterization of each type of vari-
ability so as to be able to model its occurrence. For instance, should the random
deviations from a target yield be modeled as an additive or multiplicative process?
Are these yield deviations correlated over time? Alternatively, the yield process
might be better modeled by a Bernoulli process, for which there is some proba-
bility of having a yield bust, namely a zero yield. Systems are needed to not just
capture the data but also to help in building models to characterize the uncertainty.

Similarly, modeling the lead-time variability for the purposes of inventory plan-
ning can have some subtlety. Consider an example based on a project to size a
finished goods inventory for a semiconductor wafer fabrication facility (Johnson
2005). We measured the lead times for production lots in the facility and found the
coefficient of variation (ratio of standard deviation to mean) to be on the order of
0.20. Based on this, we made inventory recommendations, which were rejected by
the factory as being excessive.

Upon closer inspection, we saw why. There was substantial amount of
“order-crossing” within the wafer fab, as the production lots for the same prod-
uct were not consistently processed in a first-in, first-out sequence for a variety of
reasons. As a consequence, the completion order of the lots differed significantly
from the order in which the lots were released into the shop. But from the standpoint
of the finished goods inventory, the order of the output did not matter; what did mat-
ter was the cumulative output process, indicating how much had been completed by
any point in time.

Based on this observation, we redefined the lead times: we ordered the start
times and completion times for all of the production lots, from earliest to latest; we
then defined the nth lead time to be the difference between the nth completion time
and the nth start time. We found that the coefficient of variation was now less than
half of the original number. This resulted in a more reasonable inventory recom-
mendation. Muharremoglu and Yang (2010) have shown that ordering lead times in
this way is optimal for single-stage base-stock systems and near-optimal for serial
systems.
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We need also to understand the forecast evolution process so as to decide how
best to characterize and model it. That is, given a forecast at one point in time, how
should we think about the update process in the next time period? We know that with
new market information and advanced orders the forecast will change, but does the
forecast improve? How does a forecast change or evolve over a number of update
cycles? And ultimately, does the forecast improve and by how much, as it is updated
from period to period? Graves et al. (1986), Heath and Jackson (1994), and Gallego
and Özer (2001) provide some examples and approaches for the characterization of
the forecast evolution process.

Under the assumption that we can characterize the uncertainties, the second step
is to develop a more explicit consideration of the tactical decisions that provide
counter measures to the uncertainty. We identify and discus five categories of tac-
tical decisions. We contend that most planning systems address these decisions in
an ad hoc way and that there is a great opportunity to do better. Indeed, we think
the key to improving our existing planning systems is to devise more systematic,
proactive ways to find the right mix of tactics that match the uncertainty.

We will describe how these tactical decisions interface with the planning system
depicted in Fig. 5.1; for the most part, the connection is by means of setting planning
parameters. Also, as will be clear, the tactical decisions are highly interdependent
and their deployment will depend very much on the context.

Customer Service Times: One tactic is to decide the service or delivery times to
quote to customers, and how to adapt this in light of the uncertainty in demand
volume and mix. This tactical decision would be incorporated into the aggregate
production planning module in Fig. 5.1, as it is key to deciding how to match de-
mand and capacity.

Allowing the customer backlog to vary with demand permits more efficient uti-
lization of the production and supply system and/or less inventory buffers. However,
varying the customer service times can result in market-related costs, such as lost
sales; indeed, in some contexts, this option is not economically feasible. To set these
service times require an examination of these trade-offs. Whereas in theory this is
not difficult, this is not the case in practice. The trade-off requires an understanding
of the customer sensitivity to the service times, as well as the cost inefficiencies
from varying the production and supply processes.

MPS smoothing: A second tactical decision is how to convert the short-term fore-
cast into a detailed MPS in a way that is consistent with the aggregate production
plan and cognizant of the demand forecast uncertainty. There are two sets of ques-
tions to consider. First, should the MPS smooth the demand forecast and by how
much? Second, when the forecast changes, how should the MPS be updated to ac-
commodate these changes?

The MPS acts as a gatekeeper between the demand forecast process and the up-
stream production system and supply chain. The MPS determines how much of
the uncertainty in the forecast and in the forecast updates gets seen by the produc-
tion and supply system. Hence, a key tactical decision is to decide how wide this
gate should be. The more smoothing of the demand forecast by the MPS, the less
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uncertainty gets sent upstream. The same is true with the response by the MPS to
forecast updates; the revision to the MPS can dampen the forecast updates and re-
duce the schedule churn, and thus provides more stable signals to the production
and supply system.

There is a cost when the MPS buffers the uncertainty in this way. The replenish-
ment schedules for production and supply are, by design, less responsive to actual
changes in demand, and thus a larger finished good inventory is required to assure
some level of customer service. Again, we have a trade-off between the cost impact
from passing the forecast uncertainty to the production and supply system and the
cost of buffering the uncertainty with the MPS. We noted earlier that time fences and
freezing of the MPS are current practices for smoothing the MPS. However, these
approaches tend to be deployed in an ad hoc fashion, with limited consideration of
the trade-offs and the alternatives. I think there is an opportunity to develop decision
support tools for master scheduling, which would account for the uncertainty in the
demand forecast process and provide a more complete treatment of the trade-offs;
one example of such an approach is Graves et al. (1998).

Inventory buffers: An important tactical decision is where to position inventory
buffers within the production and supply system. The stylized model in Fig. 5.1
assumes an inventory buffer of raw material (RM) and of finished goods (FG), but
with no other buffers between them. This seems to be nonoptimal in many settings
that have any level of complexity. We noted earlier that some planning organiza-
tions circumvent this shortcoming in their planning systems by using inflated lead
times to create a WIP safety stock. In other cases, we suspect that excessive fin-
ished goods inventory and/or underutilized capacity is required for the systems to
function.

We contend that a better approach is to designate several inventory buffers, strate-
gically located across a production and supply system. These buffers could act as
decoupling buffers; that is, each buffer is sized to protect the upstream supply pro-
cesses from the noise or uncertainty in the downstream demand and to protect the
downstream supply processes from any uncertainty in the upstream replenishment
times or quantities. In effect, these buffers create a safety stock that allows the
downstream to operate independently from any hiccups in the upstream process
and vice versa.

Thus, the placement of these buffers can define relatively independent operating
units within the production and supply system. Depending on the context, this can
be an important consideration in deciding how many buffers and where to locate.
Beyond this, one would of course need to account for the inventory holding cost;
there is a cost for each buffer that depends on the size of the buffer and the value
of the contents. The buffer size depends on the magnitude of both the downstream
demand uncertainty and the variability in the upstream replenishment process over
its lead time. The value of the inventory depends on where it is in the process. Graves
and Willems (2000) provide one framework for determining the location and size of
these buffers. Schoenmeyr and Graves (2008) show how to extend the framework
and analyses to account for a forecast evolution process. This remains a fruitful area
for developing decision support tools for guiding these tactical decisions.
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Capacity buffers: In some contexts, it may be more economical to employ a
capacity buffer, rather than build an inventory buffer. For instance, in a make-to-
order assembly operation, it may not be feasible to have a finished goods inventory
buffer, due to all of the possible combinations that can be built. Instead, the daily
variability in demand might be handled by varying the production capacity. To do
this requires that there be some reserve capacity to respond to upswings in demand;
this reserve is often the capability to expand or lengthen the work day, by working
a longer shift.

A capacity buffer can be more flexible than an inventory buffer, as it can be used
to create multiple types of inventory. A capacity buffer can take several forms. One,
as noted above, is the ability of a production unit to expand or flex its capacity by
working longer hours. In a one- or two-shift operation, this might occur by extend-
ing the length of each eight-hour shift to (say) ten hours. Alternatively, in a 5-day
operation, there might be an option to work a sixth or seventh day. A second way
of creating a capacity buffer is by explicitly scheduling “idle” time on a work cen-
ter. That is, we reserve time in a schedule where the actual use of the time will be
decided later. In this way, we postpone the decision of what product will be pro-
duced until we have a better resolution of the demand or process uncertainties. A
capacity buffer might also take the form of an option. We might contract with a sup-
plier or contract manufacturer to reserve a certain amount of capacity, which can be
exercised at a later date at some exercise price.

One common context for a capacity buffer is when there is yield uncertainty in
a manufacturing process. Miller (1997) provides one example based on a project
examining the production planning practices for film manufacturing at Kodak. The
bottleneck operation is the film sensitizing operation, which at the time was subject
to significant process variability. A single capital-intensive machine performs the
film sensitizing operation for multiple-film products. The machine is highly utilized
and changeovers are expensive. The machine is operated with a cyclic schedule that
sequences through each type of film; the size of the batch run for each film is set to
meet its short-term requirements.

One element of the process variability was the occurrence of incident failures,
whereby there is a major discrepancy between the actual output of good film and
the planned output. Over the course of the year, there were about one incident fail-
ure per week, with 95% of the weeks having zero, one or two incident failures. As
all film types are vulnerable to these incident failures, using inventory buffers to
protect against this uncertainty was deemed unreasonable. Instead, Miller (1997)
implemented a capacity buffer that could be used for any film type; in each produc-
tion cycle, a certain amount of capacity was reserved at the end of the cycle. If there
were one or two incident failures during the cycle, then the reserve capacity would
be used to run a second batch of each of the affected films. If there were no incident
failures, then the reserve capacity would not be used and either the machine would
be idled or the next production cycle would be moved forward in time.

This example is indicative of how one might deploy a capacity buffer. However,
I am not aware of any systematic approach to thinking about this tactic, especially
for a complex multistage production system. In particular, one would want to
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identify which process steps are good candidates for a capacity buffer, and how
best to create and size these buffers. There is also the question of how to use ca-
pacity buffers in conjunction with inventory buffers: where and how should they
be positioned and for what types of uncertainties would each buffer be deployed.
This seems like a good opportunity for research and the development of decision
support tools.

Planned lead times: Planned lead times are critical planning parameters in current
planning systems. As discussed earlier, a planned lead time establishes the level
of WIP in a manufacturing process step or the pipeline stock in a supply step. This
inventory serves to dampen or absorb variability; in particular, it permits the smooth-
ing of time-varying requirements. The longer is the planned lead time, the more
smoothing is possible.

Typically, the planned lead times are set in correspondence to the actual lead
times. Sometimes they are set to equal the average or median observed lead time. In
other instances, we have seen the planned lead times set “conservatively” so as to
cover the actual lead time with high probability; for instance, the planned lead time
might be set to match the 80th percentile for the actual lead times.

There does not seem to be a standard practice for setting these parameters. Fur-
thermore, I question the validity of setting a planned lead time based on observations
of the actual lead time, as there should be a strong interdependence between the
planned and actual lead times. If the planned lead time sets the WIP at a work cen-
ter, then Little’s law would say that the actual lead time should equal the planned
lead time on average. That is, if the planned lead time at a work center were 3 days,
then the planning system pushes work to the work center to create 3-days of WIP.
If the work center is staffed according to its work load, then it will process roughly
1 day of work each day. One then expects the actual lead time to match, at least on
average, the planned lead time. Indeed, we find that the planned lead times can often
become self-fulfilling prophecies.

We regard the determination of the planned lead times to be a critical tactical
decision as these parameters dictate the local tactics for dealing with uncertainty
within a series of process steps. At each process step, a longer planned lead time
translates into using more WIP for damping the effects from demand and process
uncertainty; in contrast, a shorter planned lead time requires more flexible capacity
as the means to handle the uncertainty. We think there is a great opportunity for
developing decision support to help planners in understanding the trade-offs and in
setting these parameters in a more scientific way. Hollywood (2000) and Teo (2006)
provide model developments of one line of approach to finding the planned lead
times, based on the framework from Graves (1986). However, this work requires
assumptions that might not apply to every setting. We expect that there would be
great value to practice from a more concerted effort on this problem domain.

An alternative approach is to replace the planned lead times with load-dependent
lead times. This would entail a significant modification to current planning systems;
yet this could result in a more accurate formulation of the planning problem. One
challenge here is to model the relationship between the work load at a production
step and its lead time, capturing the congestion effects, and supply uncertainties.
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Another challenge is then to incorporate this relationship into a planning model.
Asmundsson et al. (2006) and Ravindran et al. (2008) provide viable approaches to
these challenges and establish this as a promising avenue for future research and
development.

In summary, we have identified five tactical decisions for handling uncertainty
in the context of production planning. We have discussed each of these in terms
of the trade-offs and considerations and pointed out opportunities for developing
more explicit approaches for making these decisions. We contend that getting these
decisions right presents a huge opportunity for improvement to the current practice
of production planning.
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Chapter 6
Demand Forecasting Problems in Production
Planning

Jonathan R.M. Hosking

6.1 Introduction

A recent survey of 247 senior finance executives (CFO Research Services, 2003)
found that “accurately forecasting demand” was the most commonly occurring
problem in their companies’ supply chain management. Forecasting is recognized as
a hard problem. “It is difficult to predict, especially the future,” according to a quo-
tation attributed to Niels Bohr (among many others). To forecast demand, a quantity
that can be difficult to measure and even to define, is particularly challenging, even
in the simplest case of forecasting demand for a single product. Yet demand fore-
casts are essential for production planning. Any manager who makes a decision to
produce a particular quantity of a product is using, explicitly or implicitly, a forecast
of the demand for the product.

The general problem that we consider here is common in large industrial enter-
prises. To make production planning decisions, demand forecasts are required for
both individual products and groups of products, perhaps hundreds or thousands of
products in all. Demand forecasts are principally derived from data on product sales,
in units of products or as revenue amounts, which are typically available in weekly
or monthly time buckets (though other time granularities are possible). Forecasts
are required some time in advance of the time period whose demand is being fore-
cast: this “lead time” may vary from a few days to a few months or even years. The
shorter lead times are relevant for setting manufacturing schedules or planning sales
efforts; longer lead times for planning product lifecycles and making decisions to
close production facilities or open new ones. Forecasts are made or revised within a
planning cycle that involves regular meetings of executives or operations managers
with responsibilities for production and marketing. The planning cycle attempts to
reach consensus estimates of future demand, taking into account all relevant infor-
mation: extrapolations of historical demand and sales; historical effects of pricing
and promotion actions, and prospects of future such actions; introductions of new
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products and phasing out of old products; identification of product and customer
groups with perceived changes in level of demand; production capacity and supply
constraints; and any other relevant data or judgements. As part of this cycle, fore-
casts must be updated at regular intervals, typically weekly or monthly. Forecasts
may be made as single (point) values or as ranges of plausible values, depending on
the requirements of subsequent stages of the production planning process.

Within this general forecasting process many problems can arise. The following
sections each describe a class of problems that may need to be considered. The
problems can be classified into three main groups.

First there are basic questions of definition. What is demand, the elusive quantity
that we are trying to forecast? What forecasts are needed to support the production
planning process? How should we measure the accuracy of the forecasts, and the
overall success of the entire forecasting system?

Some fundamental problems arise from the nature of the demand data itself. The
data structure, often a hierarchy reflecting the relations between different products,
must be accounted for when making forecasts. Demand or sales data may have
particular features that make forecasting difficult, such as intermittent demand or
short product lifecycles.

Additional information beyond the raw demand data is often available, and an-
other class of problems concerns how to make effective use of it. What are the effects
of sales campaigns and price changes? Can the behavior of individual customers be
modeled and used to improve forecasts? Are outside influences, such as the overall
health of the economy, relevant, and can knowledge of them be used to improve
forecasts?

Finally, we shall briefly consider how the nature of the overall production plan-
ning process may itself reflect the accuracy with which demand forecasts can be
made.

6.2 Definition of Demand

Demand can be a difficult concept to define. A customer’s buying decision is influ-
enced by the practical suitability, aesthetic attractiveness, price of a product relative
to its competitors, and the product’s availability. In some markets fashion can also
play a role, with a product’s current popularity serving either to increase or to reduce
future demand.

In practice, an appropriate proxy for demand must be found in data that can
be reliably measured and regularly reported. Unit sales data are usually available,
and certainly have a close relation to demand. But sales can underestimate demand
when supply is constrained, and need to be interpreted together with the price at
which the product was sold. Forecasting demand by extrapolating past sales also
fails to account for changes in demand caused by the actions of competitors, such
as the introduction, upgrading or withdrawal of a competitive product. Considerable
caution is therefore required when treating sales as a proxy for demand.
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Customer orders are available for some types of products, and can overcome
some of the supply-related issues that affect sales data. If an order is made with a
request for delivery in January but the product was not be delivered until March, it is
reasonable to assert that the demand occurred in January, rather than on the March
date that would be inferred from the sales data.

In some industries data on how long a product is offered for sale can be used as
a proxy for demand. In automotive sales, for example, the number of days that a
vehicle spends on the dealer’s lot before being sold is arguably an indicator of the
strength of demand for that vehicle’s particular configuration (model type, engine
size, and attached options).

A further question is whether demand can be treated simply as an observed quan-
tity, or whether the producer’s own actions need to be allowed for. Most forecasting
algorithms treat the quantity being forecast as a natural phenomenon that evolves
independently of outside influences. Demand, in contrast, is something that produc-
ers actively try to influence, for example by changing prices or by advertising. The
effects of these actions are often poorly understood in quantitative terms. Allowing
for them in an objective forecasting procedure is therefore problematical, but can
be very necessary: sales promotions, and customers’ expectations of future sales
promotions, can have a major impact on the pattern of demand for a product.

Forecasts based on extrapolation of past behavior require a measure of demand
that is uniform over time, after allowing for outside influences such as sales promo-
tions, other price changes, and the actions of competitors. At least four approaches
can be used. First, observed demand, or a simple proxy for it such as sales, can
be forecast in isolation, with outside influences regarded as part of a “business as
usual” environment that will be similar in the future. This approach can be effective
if outside interventions are small or follow a regular pattern, but is vulnerable to the
occurrence of large infrequent events, which can exert undue influence on the fore-
casts. Second, the forecaster may try to estimate some kind of “baseline” demand
from which external influences have been removed, for example, peaks attributed
to sales campaigns have been smoothed away. This may not be straightforward to
do, and the concept of “baseline demand” may not be meaningful in an environ-
ment in which demand is actively managed. Third, industry experts might be able to
specify the direction of future sales. This can be incorporated into a formal system
such as the “rule-based forecasting” of Collopy and Armstrong (1992). Finally, the
forecaster can use a model that explicitly models the effects of interventions. This
requires that the effects be well understood, that the timing and nature of future in-
terventions can be predicted, and that the models of their effects will remain valid
through the forecasting horizon.

6.3 Requirements for the Forecasts

Forecasts are made to support business decisions and may be used for many
purposes. Major uses include production scheduling, planning the ordering of
parts from suppliers, inventory management, marketing, and plant and equipment
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decisions. Each of these applications places different requirements on the forecasts,
in terms of the level of accuracy, degree of detail, and lead time that may be needed.
Devising a forecasting system that can satisfy all these requirements is challenging.
Yet the alternative of having forecasts made independently by each business unit for
its own purposes is likely to be worse, risking duplication of effort, inconsistency,
and inefficiency.

What kind of forecasts should be provided? A single number, or point forecast,
is still probably the most common kind of forecast. An interval forecast provides
more information, in the form of upper and lower bounds on the likely future values
of the quantity being forecast. To be useful in quantitative analyses, these bounds
should have formal probability interpretations, as values that will be exceeded with
specified probability. For example, the upper and lower bounds might correspond to
exceedance probabilities of 25% and 75%, or 10% and 90%. The interval between
the bounds is then a prediction interval for the quantity being forecast (the differ-
ence between prediction intervals and other statistical intervals such as confidence
intervals is discussed by Vardeman (1992) and Hahn and Meeker (1991, Sect.2.3).
More generally, forecasts can be made for several exceedance probabilities. For ex-
ample, exceedance probabilities of 10%, 50%, and 90%, corresponding respectively
to optimistic, typical, and pessimistic outlooks, may adequately summarize the fore-
caster’s knowledge. Finally, a predictive distribution is a complete specification of
the forecaster’s overall belief. It takes the form of a probability distribution that
specifies for each level of demand the probability that it will reached; it can also be
regarded as specifying a set of forecasts for every exceedance probability between
0 and 1. Figure 6.1 illustrates a point forecast, an interval forecast, and a predictive
distribution in a particular forecasting situation.

As inputs to human decisions, point and interval forecasts may be as much in-
formation as can be understood and effectively used. In more automated systems,
use of predictive distributions provides the most information and enables the most
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Fig. 6.1 Point and interval forecasts, and a predictive distribution, in a particular forecasting situa-
tion. For the predictive distribution, the width of the shaded area at any value y on the vertical axis
is proportional to the forecast probability that demand will be in a narrow interval containing y
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efficient decisions. But predictive distributions bring additional issues. It seems
reasonable to require that forecast accuracy should be measured in such a way that
a forecaster who seeks to achieve maximal accuracy must give an honest represen-
tation of his or her belief: in other words, the accuracy measure must be a “proper
scoring rule,” as discussed by Gneiting and Raftery (2007). Specifying predictive
distributions for multiple forecasts simultaneously brings further problems of com-
putational effort. For n products one must forecast not just n demands but also the
1
2
n.n � 1/ correlations between them. To reduce the problem to a manageable size,

simplification of the correlation structure may be essential. Graphical models such
as Markov networks can be used for this purpose (Gebhardt et al. 2003).

A further consideration is whether a single forecast is adequate; the possibility
of qualitatively different alternative future states may be entertained (the price of
oil jumps, a large customer is gained or lost, etc.) with separate forecasts provided
for each alternative. It may be important to subdivide the possible patterns of future
events in this fashion, particularly if some scenarios can affect demand for many
products simultaneously.

In general forecasts are needed at a range of lead times. Recall that lead time
is the length of the interval between the time at which the forecast is made and
the end of the time period for which demand is being forecast. When the range
is wide, which is the typical case, further problems arise. It may be necessary to
use fundamentally different approaches for forecasting at different lead times. As
a simple example, extrapolation of a linear trend may be adequate for a short-term
forecast, but its suitability for long-term forecasting requires an assessment of how
long the trend might continue. Separate forecasts may be made for short- and long-
range forecasting, with the overall forecast being a weighted combination of the two
where the short-term (long-term) forecast is given more weight at short (long) lead
times (Armstrong et al. 2001).

An important factor when making business decisions is the stability of forecasts
over time. Changes to a production schedule can be disruptive, and it is undesir-
able to have these changes driven by fluctuations in forecasts that reflect no more
than random noise. There may therefore be a need to control fluctuations in fore-
casts, particularly the variation in forecasts for a fixed target time point in the future
as the lead time decreases. The pattern of such fluctuations can often be modeled
by the “martingale model of forecast evolution” (Heath and Jackson 1994); Toktay
and Wein (2001) used this approach to derive a production policy that minimizes
inventory-holding and back-order costs. This is particularly a problem with point
forecasts. If interval forecasts or predictive distributions are provided and are prop-
erly calibrated, the fluctuations between successive forecasts can be compared with
the width of the interval forecast or the dispersion of the predictive distribution to
give an indication of the business significance of the fluctuations.
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6.4 Complex Data Structures

Demand forecasts are typically required for many products simultaneously.
Demands for different products can be correlated, and the correlation can be
positive (similar products have similar demand patterns) or negative (substitution of
nearly interchangeable products). A key question is whether to forecast demand for
separate products independently, or to allow for dependence.

In a large organization, products are typically arranged in a hierarchy. The hier-
archy may be based on the nature of the product (e.g., materials, technology used),
the purpose of the product (e.g., intended customer set), marketing considerations
(e.g., customers classified by industry group), or administrative considerations (e.g.,
management responsibilities). Several hierarchies may be active simultaneously,

As an example, Heching et al. (2004) describe a system for forecasting demand
for IBM semiconductor products. In this application the products are arranged in a
hierarchy with each node in the hierarchy corresponding to the business responsibil-
ity of a manager or executive. Products are also grouped into families by technology
or by the purpose for which the products are intended: there are several dozen of
these product families. Forecasts are provided within a set of hierarchies, one for
each product family. In each hierarchy, the top level is the product family, intermedi-
ate levels correspond to the business line managers’ responsibilities, the penultimate
level contains the individual products (part numbers), and the lowest level corre-
sponds to combinations of part number and customer. A typical hierarchy has 8
levels and 500 nodes.

Forecasts may be required at several levels of the hierarchy. There is usually a
requirement that forecasts at different levels be consistent. For point forecasts this
means that the forecast at a parent node of the hierarchy must be equal to the sum
of the forecasts at its child nodes. For predictive distributions the requirement is
that the distributions of forecast demand for any combination of products must be
mutually consistent.

Consistency can be achieved by making forecasts at the lowest level of the hierar-
chy and aggregating them to higher levels (the “bottom-up” approach). The author’s
experience is that directly forecasting demand at some higher level of the hierar-
chy typically gives, at that level, more accurate forecasts than those obtained from
aggregating low-level forecasts; however, some researchers have reached the oppo-
site conclusion (Armstrong 2006). Whether direct or aggregated forecasts are more
accurate is likely to depend on the pattern of variation within the data. Forecasts
made directly at high levels of aggregation are likely to be more accurate when the
patterns in the data that can be used as the basis for forecasting are more apparent
at higher levels of aggregation, for example, variation over time is smaller and sea-
sonal variations are more regular. In addition, the effects of external influences such
as the overall strength of the economy may be more easily modeled at higher lev-
els of aggregation. When this is required, forecasts are most naturally made at high
levels of aggregation and must be disaggregated to give forecasts at lower levels of
the hierarchy (the “top-down” approach). In another approach, forecasts are made
independently at different levels of the hierarchy and are then modified to achieve
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consistency, for example, by multiplying all of the forecasts at a lower level of the
hierarchy to make their sum equal to the forecast at a higher level. The choice of
the best level or levels at which to make the forecasts, and of an appropriate method
of imposing consistency on the forecasts, are difficult issues for which few general
guidelines exist. One possibility is to make forecasts at different levels, aggregate
or disaggregate them to the level of interest, and combine them using the methods
discussed in Sect. 6.6.

Hierarchies can be dynamic: new products or technologies are introduced, old
products are retired, products are moved from one branch of the hierarchy to another,
and customers merge or spin off. Through all of these activities, forecasts must be
consistent over time. This can be a problem, particularly for forecasts at higher levels
of aggregation, where the meaning of the higher-level data can change over time. It
may be necessary to restate historical data in terms of a new alignment of products,
in order to achieve consistency of forecasts.

6.5 Measurement of Forecast Quality

The aim of a forecasting system is to provide accurate forecasts, but deciding on
how to measure accuracy, or judging whether one forecasting method is better than
another, is already a difficult problem. Many forecast accuracy measures have been
proposed. Surveys have been given by Armstrong (1985, Chap. 13), Armstrong and
Collopy (1992), and Hyndman and Koehler (2006).

For a simple case consider a set of point forecasts Fi , i D 1; : : : ; n, and the
corresponding actual values Ai , i D 1; : : : ; n. Commonly used measures of forecast
accuracy include the mean absolute error (MAE),

MAE D n�1

nX

iD1

jFi � Ai j ; (6.1)

and the mean absolute relative error (MARE),

MARE D n�1

nX

iD1

jFi � Ai j=Ai ; (6.2)

often expressed as a percentage and called the mean absolute percentage error
(MAPE). These measures can be problematical in practice. Forecast errors tend to
be larger for products whose overall level of demand is large, and when combining
data for a range of products the MAE value is often dominated by contributions
from a few high-volume products. In extreme cases use of MAE as the accuracy
criterion can imply that the best approach to forecasting is to concentrate on making
accurate forecasts for the highest-volume products and set the demand forecasts to
zero for all other products. This is a counterintuitive conclusion that is unlikely to
be popular with production managers or successful in practice.
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MARE, in contrast, gives high weight to the forecast performance for
low-volume products, and can be unduly influenced by poor forecasts of products
with minimal economic significance. Because of its asymmetry – a high forecast
when the actual is low is more heavily penalized than a low forecast when the actual
is high – a policy of minimizing MARE can lead to systematic underforecasting.

More elaborate accuracy measures can be useful. A symmetrized form of MARE,

SMARE D n�1

nX

iD1

L.F; A/ (6.3)

where

L.F; A/ D
(

0 if F D A D 0,

jF � Aj=f 1
2
.A C F /g otherwise,

(6.4)

aims to correct the different weighting given to high and low forecast errors by MAE
and MARE. SMARE, called the adjusted MAPE by Armstrong (1985), gives equal
weight to underforecasting and overforecasting by the same factor – for example,
the penalty is the same for a forecast that is half the actual value and one that is
twice the actual value – and has an upper bound on the contribution from any single
forecast. Heching et al. (2004) found that SMARE worked well in practice in a
complex demand forecasting problem with hierarchical data. However, explaining
SMARE, or any other accuracy measure that involves nonlinear transformations, to
nontechnical executives can be a challenge.

The foregoing measures assess forecasting accuracy for a single data series.
Other measures may be more useful when comparing different forecasting meth-
ods across multiple data series with the aim of choosing an overall “best” method.
Here it can be important to allow for the different degrees of difficulty in forecasting
the different series. The relative absolute error

RAE D jF � Aj = jF B � Aj
measures the accuracy of a forecast F compared with a baseline forecast F B that
might for example be a random-walk forecast (forecast for all lead times is the
most recent observed value). RAE is a positive quantity, with values less than 1
indicating that forecast F is more accurate than the baseline forecast. Because RAE
can take extreme values, it is often appropriate to truncate or “Winsorize” its values,
replacing values larger than some value C (say C D 10 or C D 100) by C itself and
values smaller than 1=C by 1=C (e.g., Armstrong et al. 2001, p. 471). To combine
RAE values across different series, it is appropriate to use the geometric mean of
the Winsorized RAE values,

GMRAE D
� MY

mD1

RAEm

�1=M

;

where RAEm is the Winsorized RAE of the mth series, m D 1; : : : ; M .
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Forecast accuracy measures for interval forecasts or predictive distributions have
not been much studied. In principle, given a loss function L.F; A/ for specific values
F and A of forecast and actual demand respectively, a loss measure for a predictive
distribution is given by the expected value of L.F; A/ over the distribution of F .
This and other approaches are discussed in the survey of scoring rules by Gneiting
and Raftery (2007).

The choice of forecast accuracy measure is affected by the use to which the
forecast is put (as in Sect. 6.3). The accuracy measure may need to accommodate
multiple objectives. Choice of an accuracy measure may also be affected by the
nature of the product. For example, one would expect to use different criteria for
perishable as opposed to long-lived products, reflecting the speed at which the value
of unsold product depreciates.

Further issues arise when forecasting is considered as part of the business pro-
cess. Forecasts may become self-realizing: once a demand forecast has been shown
to high-level executives, it may become a sales target and a performance criterion
for managers, and the firm will do whatever it takes to meet the forecast, even by
shrinking or eliminating profit margins. By evaluating forecast performance as part
of a model of the business, the forecast accuracy measure can be chosen explicitly
to reflect business objectives. This approach has been used to choose from among
competing forecast methods so as to maximize profitability (Price and Sharp 1986)
or to minimize inventory costs for a given service level (Gardner 1990).

Forecasts are typically made sequentially, and the importance of the patterns of
successive forecast errors should not be overlooked. Table 6.1 gives an example,
showing actual demand for a product in 2 consecutive months, and two sets of fore-
casts. Suppose that in two consecutive periods the actual demands for a product are
10 and 50 units. Forecast A has the correct overall amount of demand, but places
most of it in the wrong time period. Forecast B has lower MAE, but underestimates
the total demand. Which forecast is more useful may well depend on the business
requirements (e.g., whether items produced in one month can be profitably kept in
inventory for sale in a later month) or on the market environment (e.g., whether de-
mand that is unsatisfied in one month will still be present the following month or
whether consumers will have bought a competitor’s product instead).

Although ideally the forecast accuracy measure should be attuned to the busi-
ness requirements, it can be difficult to establish exactly what is required of a good
forecast. Perhaps the best approach is, so far as is possible, to set up the forecast as
an unbiased estimate of actual demand and let other stages of the decision-making
procedure account for business considerations such as whether overforecasting is
more costly than underforecasting or vice versa. There is still the issue of spreading

Table 6.1 Illustrative
example of sequential
forecast errors. Which
forecast is more accurate?

January February

Actual demand 10 50
Forecast A 50 10
Forecast B 10 10
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awareness throughout the business process of what the forecasts can and cannot be
expected to do. Acknowledgement of the limitations of the accuracy of the fore-
casts, by provision of interval forecasts or predictive distributions, should be helpful
in this respect.

6.6 Combining Multiple Forecasts

For demand of any product or group of products over some time period, several fore-
casts may be available. These may include automatic forecasts made by different
methods (exponential smoothing, time series models, and regression on explana-
tory variables), forecasts that use different assumptions (no trend, linear trend, and
damped trend), judgemental forecasts by different people, etc. When a single over-
all forecast is needed, the question arises of how best to combine the individual
forecasts.

One possibility is to select the best forecast method based on its historical perfor-
mance according to some criterion, such as GMRAE defined in Section 6.5, and use
this as the final forecast. Alternatively, forecasts can be combined, typically by tak-
ing a weighted average of the individual forecasts. This approach is popular and has
been surveyed by Clemen (1989) and Armstrong (2001, pp. 417–435). Armstrong
(2001, p.428) summarized 30 studies of forecast combination and found that com-
bining forecasts reduced the forecast error in each case, by an average of 12.5%.
Even a simple average of all of the forecasts often performs better than the best
individual forecast. When there is good evidence that one method has been more
accurate than another in the past it is better to give it more weight. Schmittlein et al.
(1990) quantify this effect in some simple cases (forecast errors with identical nor-
mal distributions in each time period), showing for example that weights estimated
from the accuracy of ten historical forecasts are better than using equal weights
when the forecast accuracies differ by more than 20%.

6.7 Irregularities in Historical Sales Data

Demand forecasts often based on extrapolation of historical sales data. But sales are
a censored version of demand: observed sales are the smaller of demand and supply.
This is clearly a problem for the production of demand forecasts, and its resolution
to some extent depends on what happens to unsatisfied demand. There are several
possibilities: it may be transferred to competing products, either the producer’s own
or a competitor’s; it may be carried over, as a whole or in part, to next time period;
or it may vanish entirely. In each case the requirements that this lays on demand
forecasts, and the consequent requirements on production planning, are not well
understood.
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One possible response to the censored-demand problem is to set the level of
supply in such a way as to obtain information about unmet demand. Demand fore-
casting and supply setting then become combined in a dynamic decision-making
problem. Ding et al. (2002) showed that when demand is censored the optimal in-
ventory level is larger than would be the case if demand were known even when
it cannot be met, and explain this as the cost of acquiring information about the
distribution of demand. Tan and Karabati (2004) derived a policy for updating the
optimal inventory level as observations of censored demand arrive sequentially.

Even without censoring, data issues may make forecasting difficult. Simple fore-
casting methods are based on extrapolation of historical data, and require some
regularity in the data. Some of the problems encountered in time series of sales
or estimated demand include high variability, intermittent demand, short product
lifecycles, and irregularities in trend or seasonality. Figure 6.2 gives some typical ex-
amples from a demand forecasting project in the semiconductor industry (Heching
et al. 2004). These problems are particularly acute for products with few customers,
for which demand may be dependent on the customers’ particular buying patterns.

6 12 18 24

6 12 18 24 6 12 18 24

6 12 18 24 6 12 18 24

6 12 18 24

6 12 18 24 6 12 18 24

Fig. 6.2 Monthly demand for some typical IBM semiconductor products
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6.8 Interventions in the Sales Process

As noted in Sect. 6.2, most forecasting algorithms treat the quantity being forecast as
a natural phenomenon that evolves independently of outside influences. Producers,
however, actively try to influence demand for their products, and allowing for these
influences is another problem in demand forecasting.

The basic problem is irregularity in the time series of demand resulting from
nonuniformity of marketing effort. Specific sources of nonuniformity include sales
campaigns, other price changes, and attempts to achieve sales targets (corporate or
individual) by designated dates. Supply constraints could be considered here too.
Ideally, these effects should be removed from historical data and allowed for when
making forecasts. Blattberg and Levin (1987) developed a regression-based model
of the effectiveness and profitability of trade promotions, incorporating reactions of
both retailers and consumers to temporary price reductions offered by producers to
retailers.

Dynamic effects are also important. The effect of a temporary price reduction of
10% will have a different effect on demand if it is a one-time event as opposed to
one in a regular sequence of promotions. Kopalle et al. (1999) describe a model of
the dynamic effect of discounting on sales, which can be used to estimate the effects
of past promotions and to optimize future promotions.

6.9 Forecasting Customer Behavior

Demand for a product reflects the intentions of the product’s potential purchasers,
and understanding their behavior offers, at least in principle, opportunities for im-
proving demand forecasts.

When the identity of the customer for each sale is known, information on cus-
tomer behavior can potentially be used for demand forecasting. This information
can be particularly valuable if a few customers account for majority of sales. General
information about a customer’s behavior may include the customer’s ordering pat-
terns: for example, the customer may place orders at regular intervals, causing
seasonality in demand for particular products. Specific information is often available
through marketing channels, when members of the sales force are in direct contact
with the customer and may be able to assess, at least subjectively, the likelihood
that the customer will make a particular purchase. How reliable these estimates are,
and how they can be effectively introduced into an otherwise objective forecasting
procedure, are challenging questions.

The spread of the internet has made large-scale data on customer purchasing
intentions and histories much easier to obtain. Retail locations can now collect de-
tails of customer purchases, for example, as part of customer loyalty programs, and
this information may potentially be available to producers. Some information may
be directly obtained by producers from customer visits to their web sites. In the
automotive industry, for example, producers can obtain information about vehicle
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configurations inquired about by web site visitors, and estimates are available of the
customer’s propensity to buy, based on the sequence of web page downloads. How
best to make use of this kind of information to predict future demand is still an open
question.

6.10 Use of External Information

Demand for a product can be influenced by many things other than the product itself
and the producer’s actions. Some of these include the general state of the econ-
omy, the actions, observed or anticipated, of customers, and the actions, observed
or anticipated, of competitors. In some cases, data can be obtained that measures,
directly or indirectly, these external influences. These data sources are potentially
useful for demand forecasting, but making effective use of them is rarely straight-
forward. Many sources may be potentially available. Their relevance and reliability
must be judged. Qualitative judgements about external data must be converted into
quantitative changes in forecasts.

As an example, a common belief is that demand for products is affected by the
strength of the overall economy, or of particular industries, or of particular cus-
tomers. Making use of this information can be difficult in practice. The ideal is to
find a leading indicator, such that changes in the indicator translate into changes in
demand at some future time that is useful for forecasting. Otherwise, even if a rela-
tionship between an external indicator and demand can be found, there is the need to
forecast the indicator itself in order to obtain forecasts of demand. Another problem
can be nonstationarity in the relationships: for example, a relationship between an
economic variable and demand for a product may have a markedly different pattern
when the economy is in a period of recession rather than growth.

6.11 Concluding Remarks

We have seen that many problems arise in demand forecasting. Some of these are
well known, but still difficult to deal with; others are frequently encountered in prac-
tice but are rarely considered in the academic literature, even in such established
texts as Makridakis et al. (1998) and Armstrong (2001). Issues that in the author’s
opinion fall in this latter category are controlling fluctuations in forecasts, allow-
ing for timing effects in accuracy measurement, and allowing for the censoring of
demand by available supply.

Finally, we note that there are circumstances in which demand forecasting can
be reduced in importance. This can be advantageous when forecast accuracy is hard
to achieve. One case is when the producer can actively manage demand. When the
producer’s actions, by controlling supply, changing prices, and changing the level of
marketing, have a measurable and well-understood effect on demand, the problem
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of demand can be as much one of control as of forecasting. Another case arises when
considering how the accuracy with which demand can be forecast can affect other
parts of the production planning system. If demand cannot be forecast accurately, an
effective response is to design a production planning process that is robust to inac-
curate demand forecasts. Aviv and Federgruen (2001) recommend delayed product
differentiation and quick response as production strategies when demand forecasts
are inaccurate. Reduction in manufacturing lead times, just-in-time manufacturing,
and the use of configure-to-order rather than build-to-plan production schedules can
also reduce the dependence on accurate demand forecasts. To achieve a sufficiently
robust production-planning environment may be the most effective way of dealing
with demand forecasting problems.
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Chapter 7
Production Capacity: Its Bases, Functions
and Measurement

Salah E. Elmaghraby

7.1 What is “Capacity”?

The word “capacity” invokes in the minds of most people the notion of “capability” –
this is what people usually understand when one states that “the capacity of the
school bus is 40 students” or “the capacity of the water dam is 2.5 million cubic
meters”. Matters become more fuzzy when the discussion relates to productive
entities, mainly because now “capability” is intertwined with “performance” to the
point where the two become one and the same in the minds of many. In fact, concern
with the productive “capacity” of a worker in a factory created the whole field of
Motion and Time study with its own vocabulary of time standards, normal output,
allowances, levelling, and rating. Clearly, the concern here is not only so much
with what a worker is capable of doing, but also with what the worker’s output
should be. “Capacity in the sense of capability” is transformed into “capacity in
the sense of output”. For a lucid historical perspective and critical evaluation of the
very fundamentals of this important field of industrial engineering, you are directed
to the illuminating monograph of Davidson (1956).

The same subtle metamorphosis of the meaning of capacity can be observed in
many books, papers, and conference proceedings by distinguished researchers in
the field of production. For instance, a recent (2005) survey by Pah1 et al. (2005)
of the literature on the relationship between “lead time” and the “work-in-process”
(WIP) ahead of a facility; Fig. 7.1 is presented, which is a direct quotation from
a paper by Karmarkar (1989). Observe that the vertical axis is labeled “capacity”
while in reality it measures productivity. This can be easily gleaned from the fact
that at very low WIP the productivity is also low, and rises steadily until the sys-
tem is saturated (i.e., as the WIP grows without bounds). Evidently, the capacity
of the facility, in the sense of its capability, is the same throughout the range
of the WIP independently of its value and is represented by the horizontal line
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Fig. 7.1 Diverse forms of clearing functions (Karmarkar, Srinivasan et al.)

labeled “maximum capacity” – it is productivity that varies with WIP. The same
misinterpretation of the notion of “capacity” permeates almost all the references
cited by Pah1 et al. that treat capacity or its related topics.

The confusion relative to the concept of capacity is the more perplexing because
of its ubiquitous presence of in all operations research/industrial engineer-
ing/production engineering treatises on production or operations planning and
control; see, as a small sample, the books by (arranged chronologically): Nahmias
(2006), Stevenson (2005), Chase and Aquilano (1985), Manipaz (1984), Buffa
(1983), Dilworth (1979), Johnson, Newell and Vergin (1974), and Johnson and
Montgomery (1974). Consulting any one of these books or any of the hundreds of
published papers on the subject, reveals elaborate models on “capacity planning”
under a variety of assumptions on the demand pattern, the cost factors, the reliability
of the facility, the length of the planning horizon, the probability distribution of any
of its parameters and so forth. All researchers in the field attempt to construct a
verbal description of capacity, a daunting undertaking in itself, in order to be able to
use the “value” secured into the various mathematical models that are constructed
for the purpose of planning and control. The paper by Elmaghraby (1991) gives
direct quotations from three of the books cited above which result in the following
crop of “capacities” mentioned in just these three books: “true capacity”, “time
dimension of capacity”, “design capacity”, “theoretical maximum capacity”, “ef-
fective capacity”, “actual capacity”, and “potential capacity”. Undoubtedly, the
list would be longer if more books were quoted. The message conveyed by this
collection of “capacities” is that there is indeed need to define what is meant by
capacity, as a prerequisite for its measurement. As it turns out, the understanding of
what is meant by “capacity” and the determination of its value are no minor feats.

Capacity is too vital an element of the production system to be ignored. Produc-
tive capacity, which has long been relegated to the obvious with little thought to its
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meaning or its measurement, is in need of careful study since a great deal depends
on its proper understanding and correct measurement as detailed in the next section.
There is no escape from a serious attempt at clarifying what it is that we are talking
about, and at measuring it. As was stated by Elmaghraby (1991) “what is really im-
portant is not exactitude in an absolute sense, but rather agreement on entities that
are measurable, and a demonstration of the operational utility of these measures”.
It is the objective of this chapter to do just that.

This brief review of the “state of the art” at the time of this writing would be
incomplete without mention of two reports that postdate the paper by Elmaghraby
(1991) cited above. The comments made in the previous two paragraphs are equally
applicable to these reports.

The first is a paper by Patterson et al. (2002) in which they introduce the concept
of “protective capacity”, defined as “a given amount of extra capacity at noncon-
straints above the system constraint’s capacity, used to protect against statistical
fluctuations.” In their research, they conducted a full factorial experiment with a
simulation model to explore issues associated with the quantity and location of pro-
cessing variance in a five-station manufacturing cell.

The second is the final report on the Measurement and Improvement of Manu-
facturing Capacity project (MIMAC) issued by SEMATECH; Inc., and authored by
Fowler and Robinson (1995). There are several research documents on this project,
which was set up “to identify and measure the effects and interactions of the major
factors that cause the loss in semiconductor manufacturing capacity”. Interestingly
enough, and we quote,

“... (several among the industrial) participants in the study defined capacity in terms of
throughput, or the amount that a facility could produce in a given time. Sometimes the
definition was narrowed to refer to the maximum amount that the bottleneck or bottlenecks
could produce. Assumptions about equipment availability, line yield, setups, and product
mix were recommended as part of some definitions, as were assumptions on budget, quality,
operators, “hot lots”, lot sizes, and batch sizes. In a few cases, cycle time was cited as
important to the definition of capacity. For example, capacity “while achieving the cycle
time the customer asks for” was defined, as was the “output rate that will sustain and not
exceed that (given) cycle time.” The standard deviation of cycle time was also mentioned
occasionally as a parameter.”

Most importantly, the MIMAC Team later defined capacity as

“... the maximum output rate (or start rate) sustainable for a particular factory with a given
product mix and a constraint on the average cycle time. This capacity can be measured
by generating the characteristic curve of cycle time versus output rate (or start rate) for
the factory and by finding the output rate that corresponds to the specified cycle time con-
straint. The characteristic curve is obtained using either simulation or queuing models. And
it focused on understanding the impact of the factors on the capacity planning process.”

The authors also found the following 18 factors that influence the manufacturing
capacity, they are: tool dedication, batching, breakdowns, dispatching/sequencing,
end-of-shift effect, factory shutdown, hot lots, inspection/yield, operator cross-
training, lot sizes, mix, operator availability, order release/WIP limits, redundant
tools, rework, setup, and time bound sequences.
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7.2 The Uses of Capacity

A measure of capacity of a plant, or a shop in a plant, or a machine within a shop, is
required to perform any of the following functions: plant expansion or contraction
that may be accompanied with manpower hiring and layoff – alternatively, for de-
cisions related to investment in additional resources or divestment of existing ones,
commitment to delivery of products and the timing of such delivery (see the dis-
cussion of the relationship between capacity and lead time below), short-term job
scheduling/sequencing to meet any of several objectives, such as the minimization
of the makespan, make-or-buy decisions relative to assemblies and subassemblies,
the evaluation of suggestions on diversification or contraction of the products of-
fered by the firm, the identification of idle capacity and its causes to render available
to the decision makers the facts concerning suggested changes in resource utiliza-
tion, etc.

It is our contention that there is not one but four forms of capacity, which we label
as nominal, operational, planned (over a specified horizon), and utilized capacities.
The next section presents their definitions and the approaches to measure them.

7.3 Proposed Definition of Capacity

We suggest that there is not one but several capacities that are used in practice and
that it is high time to identify them individually for the various purposes of pro-
duction planning and control outlined above. The basic premise of our thesis is
simply the following. A production facility is installed with a given “nominal”
(or theoretical, or maximal) capacity. When a facility is run in day-by-day operation,
one does not achieve the rated nominal capacity since different factors enter into
play that inhibit maintaining the nominal output except for a very short time. A more
detailed discussion of some of these factors is offered below. Over a planning
horizon of 1 year, say, the facility must plan according to some realistic available
capacity that takes these factors into account. Assuming that the original facility was
correctly planned, its “available” capacity should be fully utilized in order to realize
the maximal return on the investment made. But when production is in fact realized,
the utilization of the productive facility may fall below the available capacity. This
underutilization may be intentional, in which case we speak of “planned” capacity.
On the other hand, underutilization may not be intentional because of the many rea-
sons detailed below. The difference between the available capacity and the “actual”
utilization represents idle capacity, which would have been utilized if the causes of
output decrement are eliminated. It is natural for the firm to wish to identify the idle
capacity and its causes to make available to the decision makers the facts concerning
future corrective actions and the degree of their impact on possible improvements.

In the following, we assume that the different capacities are defined relative to a
specific “workday” or “workweek”, which may vary from one enterprise to another
or within the same enterprise from “shop” to “shop” or from season to season.
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7.3.1 The Nominal Capacity

The nominal capacity is the productive capability assuming continuous availability
of process (or machine) and all its support facilities, such as labor, maintenance,
material, tools, jigs and fixtures, electric power, warehousing facilities, materials
handling and transportation, etc., when the process is devoted to the production of
a single “standard” product or the execution of a “standard” activity. Our nominal
capacity is alternatively labeled by others as “theoretical” or “maximal” capacities.
We prefer the label “nominal” because of its positive connotations that avoid the
stigma of either “theory” or “maximization”.

It is worth noting that there exist production facilities that produce only one
product – which is then the “standard” product referred to in the above definition –
such as electric power generators and water management systems, in which case
the nominal capacity is quite meaningful. Naturally, the problem arises when the
productive facility does not produce a single product or perform a single activity;
how does one then measure the process nominal capacity? This issue shall occupy
a good portion of our subsequent analysis.

The definition of nominal capacity insists on assuming perfect support activities.
This may not be palatable to some scholars in the field who prefer to exclude the
required maintenance and overhauls from the definition of the nominal capacity on
the basis that they consume time that is known to be not available for production
from the outset. We reject this argument because while the execution of these ac-
tivities is mandated from the outset, their timing is not. For instance, maintenance
is scheduled by some firms to be performed during the nonproductive periods such
as the second shift in one-shift operation shops or during the weekends in 5- or
6- days operations, and overhauls are scheduled during the annual shutdowns for
vacation. This is a managerial decision, taken after carefully weighing the pros and
cons (and the costs) of such actions. Consequently, if we are to have a base datum for
all firms in the same industry, the definition cannot provide a ready-made loophole
that allows one firm to gain an advantage over another by showing a more favorable
nominal capacity.

There is one other advantage to maintaining the definition of nominal capacity
to be the maximum attainable under the best of circumstances, namely, that now
the determination of the “operational” capacity, defined next, will assist the analyst
who is interested in the measurement of productivity to distinguish among firms (or
among shops within the same firm) more easily, consistently, and more rationally. In
other words, if two firms have exactly the same nominal capacity, but one plans its
maintenance activities during weekends and the other does not, then the operational
capacity of the latter will clearly be smaller than that of the former. Such cause of
discrepancy can then be more easily isolated, and its cost-to-benefit ratio is eval-
uated. If favorable, the management of the latter firm may be directed to improve
its performance by rescheduling its maintenance activities, if that is feasible. Such
comparison would not have been possible if the nominal capacities of the two firms
were reported to be different in the first place.
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7.3.2 The Operational Capacity

The operational capacity is the productive capability after subtracting from the
nominal capacity the anticipated and unavoidable loss in productivity due to the
age of the facility, the cumulative use of the facility, the required maintenance and
overhauls, the optimal change-over loss in capability as dictated by the product mix,
the standard reject allowance; etc., but still assuming that all support facilities men-
tioned in Sect. 7.3.1 are present. It is sometimes referred to by some authors as the
realizable or disposable capacity.

Several of these factors that detract from the nominal capacity are random in na-
ture and are often correlated. For instance, the required maintenance and overhauls
are functions of the “condition” of the facility which, in turn, is determined by the
age of the facility and its use – an old truck may be in excellent condition because it
has not been used a lot, and conversely, a not-so-old truck may be in poor condition
because it was used a lot in adverse environment. The same can be said about the re-
jects: they vary randomly from day to day with the same equipment and personnel,
and often from shift to shift with different personnel.

As will become amply clear as the discussion progresses, while the nominal
capacity may be stated as a single (crisp) number, it is often the case that the
operational capacity can be stated only as an interval with attached probability dis-
tribution. This will be exemplified later.

The determination of the operational capacity includes two elements that require
care in their determination. The first is relative to the “optimal setup (or change-
over) time between products” and the second is relative to the “standard rate of
rejects”. We discuss these two items in more detail.

The optimal setup time for the quantities actually produced in a period of time
(say a week) may be determined, or closely approximated, by a mathematical
programming model that takes the demands for the products and the storeroom ca-
pacity into account. The issue is not how it is done, which we leave to the operations
research experts on this problem, but why it should be done. The absence of a bench-
mark in the form of what setups should be for a particular production plan results in
the blind acceptance of the time lost in setups, no matter how large it is, as a legiti-
mate consequence of having to produce a mix of items. This is wrong and should not
be acceptable. In fact, when such a benchmark is available, then the performance of
the production scheduling function of the firm can be objectively evaluated. To seek
optimality in the setup times taking account all other factors of production, such as
inventory accumulation in both in-process and finished goods, is a prerequisite to
being able to judge the efficacy of the production planning function across shops or
across firms, or within the same shop or firm over time. It also helps in pinpointing
internal or external factors that impact adversely on the operational capacity, such
as the size of the warehouse or the efficacy of the materials handling system.

We now come to the issue of the “standard rate of rejects”. Why should it be taken
into account? Because “output” should be measured in terms of good product – the
churning out of inferior or unusable product is no “production” at all; it is waste and
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should not be counted as “production”. We propose to use the industry standard as
the datum, until the firm establishes its own standard that is lower than the industry
average. In other words, if the industry experiences an average rate of 0.5% reject
(or one in 200), then that should be the initial allowance in all resources used in the
determination of the operational capacity. Actually, the picture is more complicated
than that, which shall be illustrated in more detail in the examples cited below.

It is evident that some of the difference between the nominal and operational ca-
pacities is a measure of the idle capacity – in other words, capacity that should have
been used but was not. An example would be the time devoted to setup; a factor that
is amenable to managerial decision and rational analysis. But there are other factors
that contribute to idle capacity, which can be detected only through careful study of
that difference. Here are some possible causes for it: labor absenteeism, shortage of
equipment, shortage of raw material, electric current brownouts or blackouts; etc.
Each of these causes reflects poorly on the performance of some support activity
or on the industrial infrastructure available to the firm. Correction can be achieved
only after the diagnosis of the cause has been completed; hence the need for the
distinction between the nominal and operational capacities.

7.3.3 The Planned Capacity Utilization

The planned capacity utilization is the portion of the operational capacity that is
planned to be used over the planning horizon. The planned capacity utilization may
be less than the operational capacity for several reasons, not the least significant
of which is the lack of external demand for the product(s), or it may be more than
the nominal (i.e., realizable) capacity when it is deemed beneficial to exert some
“pressure” on the facility to excel – see the above discussion of the relation between
the WIP and the lead time and their impact on productivity.

One important reason for the presence of “over-planning” and “under-planning”
is that it is almost impossible to achieve perfectly balanced loads on all shops, or all
facilities in the same shop, simultaneously and at all time. This is due to the varied
processing requirements of the different products on the individual shops or ma-
chines. Consequently, “bottlenecks” shall exist, which shift among the facilities is
dependent on the product. This will become apparent in the examples discussed
below. If this is the nature of the products and the production facility, then the
planned capacity will necessarily leave some shops underutilized, while others are
fully loaded and possibly overloaded. Naturally, the underutilized resources cannot
be penalized for sitting idle – a point that escaped the “efficiency experts” of the 20s
and 30s, with concomitant labor strife and social unrest.
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7.3.4 The (Actual) Utilized Capacity

The actual utilized capacity is the capacity, in whatever measure it is done, actually
utilized in the realization of the products delivered over a given planning horizon.
Remember that even the best laid plans can go awry, and for several reasons, many
of which are beyond the control of either management or personnel. In the final
accounting, it may turn out that the utilized capacity is less – and sometimes much
less – than the planned capacity. Normally, the utilized capacity is less than the
planned capacity due to uncontrollable external causes – including acts of God –
which could not be foreseen or avoided. A short list of such causes include: labor
strike, material shortage, breakdown in the transportation system, etc.

Note that planned capacity refers to the future utilization of projected operational
(or available) capacity, while the actual capacity usage measures past utilization,
which may be more, or less, than what was planned. The difference between the
“plan” and the “actual” may serve to measure the accuracy of the firm’s forecast of
its sales and its productive capabilities. Alternatively, it may measure the effort of
the sales department in increasing the sales.

7.4 Capacity and Sales / Marketing

Consider the following scenario. A machine shop is composed of four sections, each
specializes in a particular operation. Although there is machinery in each section,
production is actually controlled by the availability of workers, not the machines.
The interesting aspect of this shop is that labor is easily trained in all operations
so that, for all practical purposes, the labor in the shop is available to work on any
section. The time of shifting labor from one section to another is minimal (of the
order of 5 min) and therefore negligible.

Suppose the question asked is: What is the shop capacity per week in hours? The
obvious response is: the number of people multiplied by the net available hours per
week, or h � W; where h is the net working hours per person per week and W is the
number of workers in the shop.

But suppose the question asked is: What is the shop capacity per week in weight
or in value? Now the answer is not so obvious because different products require
different times in the shop but have different weights and values. Analysis has
shifted from simple arithmetic to the statistical domain where the answer depends
on the distribution of the orders received. An unexpected consequence of this shift
in the mode of analysis is to raise the following question, which has little to do with
capacity but a lot to do with sales and marketing: suppose that a subset of the man-
ufacturing orders received exhibit a high ratio of value to (shop) load, can the shop
promote these products at the expense of the orders that ask for products with the re-
verse characteristics (low ratio of value to load)? Here, concern with capacity spills
over to concern with other disciplines of the enterprise, and the whole production
system and its support activities are intertwined as an indivisible entity.
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Orders Received Statistical Analysis
Nominal

Order # Time Weight Ibs/day ratio Range *1000 frequency

1 7006 4208 3634 0.601 2.0 -2.999 1

2 3953 4464 6832 1.129 3.0 - 3.999 3

3 6564 6210 5724 0.946 4.0 - 4.999 0

4 6070 6964 6941 1.147 5.0 - 5.999 5

5 2329 2269 5896 0.974 6.0 - 6.999 5

6 5171 6391 7478 1.236 7.0 - 7.999 2

7 11146 4916 2668 0.441 8.0 - 8.999 1

8 3591 6172 10399 1.719 9.0 - 9.999 0

9 2453 2899 7151 1.182 10 - 10.999 1

10 1822 3740 12417 2.052 11 - 11.999 0

11 8596 8331 5863 0.969 12 - 12.999 1

12 2745 6791 14967 2.474 13 - 13.999 0

13 5770 5903 6189 1.023 14 -14.999 1

14 2791 3068 6649 1.099

15 3526 3314 5687 0.940 Average = 6783

16 3943 2185 3353 0.554 Variance = 884573916

17 7190 9527 8016 1.325 Std. Dev. = 2974

18 8423 9265 6655 1.100 95% = 11675

19 12146 10810 5385 0.890 0.05% = 1891

20 10015 6209 3751 0.620

total time, 
min = 115251 min = 2668 0.441

nominal 
occupancy, 

days = 19.0497 max = 14967 2.474

Shop Nominal 
Capacity = 6050 min/day

days req'd to 
produced demand 

= 19.04968days

Fig. 7.2 A sample of orders received and their parameters (processing time and weight)

The point made here is best explained by an example.
The data shown in Fig. 7.2 is real-life data (scaled to respect privacy) from a

plant over a short period of a few days. The nominal shop capacity is 6,050 min/day.
Despite the paucity of the information available, intentionally made so to conserve
space, it is sufficient to illustrate the analysis to be conducted if more extensive data
were available.

The table on the left of Fig. 7.2, labeled “Orders Received”, lists the customer
orders in the sequence in which they were received. The second column gives
the standard total processing time for each order. The third column gives the
weight of the product, in lbs. The fourth column calculates the “nominal weight
per day” based on the shop nominal capacity in minutes and the order standard
time requirements. For instance, order #1 is characterized by long-processing time
(it occupies 7,006 min) but rather light weight (produces 4,208 lb). Hence the
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weight produced per day of this order based on the shop’s nominal capacity is
.4;208=7;006/�6;050 D 3;634 lb. In other words, if production is confined to orders
identical to this order the plant would produce 3,634 lb/day. However, if production
is confined to orders similar to #8, which is characterized by short-processing time
(it occupies only 3,591 min) and rather heavy weight (produces 6,172 lb), the daily
production would be 10,399 lb/day. The table on the right, labeled “Statistical Anal-
ysis”, gives the frequency of orders received in this period categorized into slots of
1,0001b, from 2,000 to 15,000 lb.

What is the nominal capacity of this plant in pounds?
Let us assume that the nominal capacity of 6,050 min/day is fully loaded, which

we know is not always possible because of the discrete nature of the units produced.
Still, the assumption can be forgiven for the sake of driving home the point we
wish to make. (A job may be partially “advanced” or “retarded” to fill the available
capacity.) The result of such manipulation is the production of 6,050 min each day,
with the result in pounds as shown in the production profile shown in Fig. 7.3, also
depicted graphically in Fig. 7.4. (The table is cut-off at day 19 because loading day
20 to the available capacity requires knowledge of the orders received in day 21,
which is not available.)

Day 1 2 3 4 5 6 7 8 9 10
Production/day, ton 3634 6448 6043 6594 7201 2677 3873 9399 6809 9821

Day 11 12 13 14 15 16 17 18 19
Production/day, ton 6352 6105 4938 7821 6655 5701 5385 4171 3422

Fig. 7.3 Production to fill nominal capacity
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Analysis of these (admittedly meager) data results in the following statistics:

Average production/wk D 5950 lb/day,
Std. Dev.D 1906 lb
minimum D 2677 lb/day
maximum D 9821 lb/day
mode D 6000�6499 and 6500�6999 lb/day
The 90% interval � Œ2815; 9085� :

When presented with this analysis management retorted that it always knew that
the plant can produce some 10,000 lb/day. In reality, such an output was (almost)
achieved only once in 20 days.

This illustration demonstrates two important insights. First, variability in the
product specifications vitiates the possibility of stating a single number as the
capacity of the plant; the answer has to be couched in probabilistic terms. Secondly,
management almost always remembers the most favorable result and sets it as the
standard, to the detriment of morale in the plant and the continued disappointment
of management.

Finally, this real-life situation exemplifies the point made earlier in this section.
Close scrutiny of the 20 orders received by the plant reveals that some of them
had a rather small ratio of weight to time. The minimum ratio is � 0:44 and the
maximum is � 2:47; or some 5.6 times as much. Put differently, if weight of the
product translates into profit to the firm, the plant would realize some five times
the profit if it can devote its time to the products that have the higher ratios. Can
the marketing/sales department realize such target? To repeat, at the risk of being
redundant, concern with capacity spilled over to concern with other activities of
the enterprise, and the whole production system and its support activities must be
viewed as an indivisible entity.

7.5 Capacity and Lead Time: A Vicious Circularity

There is little argument that available capacity determines the production lead time
(LT), where the latter is (narrowly) defined as the time between release of a produc-
tion order to the shop and the delivery of the finished product to the finished goods
inventory (FGI). In the words of Asmundsson et al. (2002),

“... lead times increase nonlinearly in both mean and variance as system utilization ap-
proaches 100%. Hence, deterministic production planning models have suffered from a
fundamental circularity. In order to plan production in the face of time-varying demands,
they often use fixed estimates of lead times in their planning calculations. However, the de-
cisions made by these models determine the amount of work released into the facility in a
given time period, which determines the utilization and, in turn, the lead times that will be
realized!”

It is interesting to note that studies of the variation in the lead time concentrated
on the relationship between the LT and the shop “load”, where the load, as well as
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the LT itself, are measured in units of time (hours, say); see the recent review article
by Pah1 et al. (2005) which is titled “Production Planning With Load-Dependent
Lead Times”.

Critical reading of the extensive literature on the subject quoted by these and
other authors reveals several references to “capacity” as a determining factor in
the study of both “load” and “lead time” – but little is said about what is meant by
capacity, how it was determined in the first place, how it is measured, or its influence
on either the “load” or the LT!

A fundamental law in queueing theory states that .WIP/ D �p; in which � is the
arrival rate of jobs, measured in units per unit time, and p is the average residence
time of a job including its own processing. This “law” should be intuitively appeal-
ing and may be reasoned as follows. In the “steady state” the input must equal the
output. The processing of a job consumes, on average, p time units. During that
time, the number of arrivals is �p; leaving the length of the queue intact at WIP.
Translated into our language, this law may be written as WIP D ( job arrival rate)
� (average job residence time). Where does capacity figure in this formulation?
It must reside in p, the residence time of a job; a larger capacity must reduce p

and thereby also reduce WIP for the same rate of job arrivals �; which implies a
reduction in the LT.

Consider the following simplified view of a plant that may be considered as
“one facility” – say a chocolate factory – which produces a variety of products,
each with its processing time pi ; i D 1; : : : ; N; assumed to be deterministically
known. The shop itself is continuously available (any maintenance or repair is done
off-production time). Assume that the production orders for all N products were re-
leased to the shop at the same time (now), and sequenced1 in the order 1; : : : ; N:

A new order, N C1; would have its LT equal to
PN

iD1 pi CpN C1 if it is released to
the shop immediately. Any delay in releasing the new job would just add to its LT.
In view of these considerations, it is not be difficult to see why the LT is intimately
related to the work in process (WIP), which is related to capacity. Clearly, if the
sum of the processing times ahead of job N C 1;

PN
iD1 pi ; is small, the job shall be

finished early and the opposite shall happen if
PN

iD1 pi is large. In the steady state,
the length of the WIP is more-or-less constant, which translates into an average LT
of LT D p � .WIP/ =2:

The above discussion assumes that the production facility, which is composed
of people and machines, is not “flustered” by the “load” ahead of it; i.e., the WIP.
In other words, an implicit assumption in the above analysis is that, on average, the
production facility outputs 1=p jobs per unit time, provided there are enough jobs in
the WIP to keep the facility “busy”. But empirical evidence shows that production
facilities are indeed “flustered” by the load as measured by the WIP ahead of them
and that such adverse effect on the productivity occurs well before they reach their
“nominal capacity”. They cease to produce at the rate 1=p but produce only at a

1 We are not concerned here with the methodology of sequencing the jobs, but take the sequence
as given.



7 Production Capacity: Its Bases, Functions and Measurement 131

fraction thereof. The interesting observation is that the fraction decreases as the
WIP increases! In other words, beyond a certain load, the productivity of the facility
decreases as a function of the load. This gave birth to the concept of “clearing
function”, first coined by Graves (1986). In the words of Asmundsson et al. (2003):

“The basic idea of clearing functions is to express the expected throughput of a capacitated
resource over a given period of time as a function of some measure of the system work-
load over that period, which, in turn, will define the average utilization of the production
resources over that period.”

To phrase this concept mathematically, let h .W / denote the throughput per unit
time when the WIP is W. Many functional forms have been proposed, some based
on stochastic arguments and some based on purely deterministic considerations.
As a sample of the former we quote Medhi’s (1991) result that is based purely on
queueing arguments and relates the expected length of the queue W (the WIP) to the
“utilization ratio” � (which is the ratio of the input rate to the output rate) and the
coefficients of variation (defined as the standard deviation divided by the mean) of
the arrival and production processes, denoted by �s and �a; respectively,

W D �2
a C �2

s

2

�2

1 � �
C �

D �2�2

1 � �
C �I where �2 D �2

a C �2
s

2
> 1: (7.1)

This expression can be inverted to yield � as a function of W,

� .W / D

�q
.W C 1/2 C 4W .�2 � 1/ � .W C 1/

�

2 .�2 � 1/

D
hp

W 2 C 2W .2�2 � 1/ C 1 � .W C 1/
i

2 .�2 � 1/
: (7.2)

At W D 0 the utilization is � .0/ D 0, as to be expected; and as W ! 1 the
utilization � .W / ! 1 (the denominator of �2�2=1 � � approaches 0). Figure 7.5
shows � as a function of W for two values of �: As expected, the larger � impacts
adversely on utilization.

The message conveyed by this analysis is the following. Assuming that the input
demand (i.e., arrival) is random with coefficient of variation �a and that the
production facility service time is also random with coefficient of variation �s;

then the full capacity of the production facility shall never be fully utilized for any
finite “load” (or WIP).

Depressing as this conclusion may be, it is the inevitable consequence of the ran-
dom variation in both the input and the output mechanisms. Increasing the capacity
of the production facility will succeed in increasing the volume of the output propor-
tionately; but it will not alter the fundamental relation between the two; the capacity
is never fully occupied.
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Turning now to the deterministic case in which output is a function of the “load”
as represented by the WIP, several researchers tried to emulate the stochastic behav-
ior by assuming a variety of functional relations. For instance, Karmarkar (1989)
and Srinivasan et al. (1988) proposed functions of the form

h .W / D k1W

k2 C W
(7.3)

h .W / D k1

�
1 � e�k2W

�
; (7.4)

where k1 is the “maximum capacity” (presumably equivalent to our nominal capac-
ity) and k2 is the estimate of the decay in productivity (the “clearing function”).
Both functions in (7.3) and (7.4) have value 0 at W D 0; and both approach k1 as
W ! 1; rising in a concave fashion between these two limits. Again, full utiliza-
tion of the available capacity is not achievable except for an infinitely large WIP.

It is thus seen that in these studies emphasis has gradually shifted from correcting
the clearing function proposed by Graves (1986), which assumes infinite capacity
(the straight line in Fig.7.1, labeled “proportional output”), to the development of
a production function that recognizes the finiteness of the production capacity and
gives the throughput h .W / as a function of the WIP W. This function was subse-
quently used by manys researchers ([see, e.g., Asmundsson et al. (2002)]) to develop
mathematical programs that purport to optimize the release of jobs to the production
facility in order to optimize its throughput. We shall not pursue this development any
further since it would take us far away from the main theme of this chapter.

Pending the availability of compelling empirical evidence to substantiate
the above conclusions, it may be unpalatable to many to accept the premise that
the capacity of a production facility is not fully utilized unless the WIP is choking
the production system, a highly unacceptable scenario for practical people. To such
people the following model may be more acceptable:

h .W / D k1W ae�bW ; a; b > 0; 0 � W � W < 1; (7.5)
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in which k1 still represents the “maximum capacity” and W is a finite upper
bound on the WIP. The advantage of such a model is that h .W / starts at 0
when W D 0; which stands to reason, but rises to a maximum (secured by dif-
ferentiation and equating the derivative to zero) equal to

Wopt D a

b
(7.6)

well before the WIP grows to infinity. At this value of WIP the throughput
hmax .a=b/ is

hmax

�a

b

�
D k1

�a

b

�a

e�a; (7.7)

which can be larger or smaller than k1 depending on the value of the parameters
a and b. For instance, for a D 0:05; b D 0:01; hmax .5/ D 1:031I but for a D
0:04; b D 0:05; hmax .0:8/ D 0:952: The performance of the production process
for these two sets of parameters is depicted in Fig. 7.5. The model of (7.7) with the
first set of the parameters a and b represents the case in which a “little pressure” on
the production facility, as manifested in the magnitude of the WIP, motivates it to
perform well – even to (slightly) exceed it “maximal capacity”.

7.6 In What Unit Should Capacity Be Measured?

A perennial question is: in what unit should one measure capacity (any of the four
capacities)? Our answer may appear evasive, but it is truthful: it depends on the
nature of the product. Sometimes it is best to measure capacity in terms of weight
(tons of steel produced per year); sometimes in terms of distance (thousands of kilo-
meters of road track); sometimes in terms of area or volume (floor space or storage
volume); and sometimes it is best to convert both capacity and output into a common
measure such as value (dollars) or time (hours). Often, when the product is more-
or-less uniform, it is meaningful to measure capacity in terms of units produced per
year. Since the product is frequently the same but with variations in size (small-to-
large refrigerators) or weight (light sheet metal to heavy sheets) or “optional parts”
(cars with varying musical systems), a measure in units typically refers to an “av-
erage” unit – which may not exist. An enterprise that manufactures different kinds
of custom-ordered scientific equipment may opt to measure its capacity in terms of
man-hours, while another in terms of dollar value.

In the final analysis, it is immaterial the units in which capacity and output are
measured; what is important is that they are in fact measured correctly in units that
are meaningful for decision making within the firm, and for meaningful comparative
analysis across the whole industry.
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7.7 Difficulties in Measuring Capacity

Granted that knowledge of the requisite capacity is vital for the design and initiation
of the productive activity before its existence, and knowledge of the current capacity
is mandatory for managing its healthy performance after it has been installed and
running; and granted that there are these different classes of capacity in the daily
operation of the facility, why is it so difficult to estimate them prior to the realization
of the facility or achieve their measurements after its installation?

The following analysis details the reasons for the difficulty and delineates the
pitfalls that will surely result in errors, minor or gross, intentional or otherwise, in
the firm’s estimation of the various capacities available to it, to the point of viti-
ating the utility of the data at all levels of management. The origin of these errors
resides in the very definitions of the various capacities. And avoiding the errors re-
quires more sophisticated analysis than the usual chatter on “averages” – one must
be willing, and capable, of dealing with statistical variation as a fact of life.

We shall list six reasons. The first five are technical in nature and therefore are
amenable to analytical rationalization. The sixth is only partially technical, being
anchored in the social and cultural environment of the firm. We hope that its inclu-
sion shall alert the managers of production systems to these aspects of the processes
under their purveyance, aspects which are typically ignored or glossed over by the
more technically oriented analysts.

In the following discussion, we shall use “capacity” to mean any of the four
capacities defined above. The reader is free to adapt the discussion to her/his
favorite one.

7.7.1 The Problem of Product Mix

The most prevalent reason for the inability to measure the capacity of a facility is
that it is clearly dependent on the product mix that happens to be produced in any
period or over any finite horizon. But capacity is usually defined externally (to the
firm) in terms of some hypothetical “standard” (or “average”) product which does
not exist, at least does not exist all the time nor does the firm even produce the same
mix of products period after period so that the said “standard” product is realized.
The capacity, so the argument goes, is not a fixed entity. Its measurement is like
aiming at a moving target; therefore it cannot be accurately determined!

We begin by explaining why the existence of a product mix plays havoc with the
measurement of capacity. The problem resides in the existence of a “bottleneck”
stage of production that depends on the product produced; change the product and
the bottleneck shifts from one facility (or machine) to another. In fact, if all prod-
ucts possess the same bottleneck operation, then the capacity is identical to that
operation’s capacity, which is relatively easy to measure. Consequently, when the
firm (or plant) is considered as a whole, one has several measures of capacity that
depend on the items produced in any period, say a week. And since the product
mix varies from week to week (or month to month or, in general, from period to
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period), one really has 50 product mixes per year (allowing for 2 weeks vacation),
and the determination of the capacity appears to be an insurmountable problem
which solution defies analysis!

The problem is a real one, and its resolution rests on the concepts of statistical
distribution of capacity. The concept is best illustrated by an example.

Consider a shop that produces three different items, call them A, B, C. For sim-
plicity of exposition, assume that in any week all items are produced, but at any
time one and only one product is produced by the firm and all shops are set up
to accommodate its production. Changing from the production of one product to
another involves considerable setup time, which will be the subject of the next sec-
tion. We shall use the nominal capacity as the vehicle of illustration; later sections
explain how the numbers can be changed to represent other capacities. The firm’s
production facilities are composed of four “shops”, which capacities are as given in
Table 7.1.

The meaning of these figures is as follows. Consider product A: the capacity of
shop 1 is 20 tons/week, of shop 2 is 15 tons/week; etc. The bottleneck capacity is
clearly the capacity of shop 2 of 15 tons/week. If the shop was devoted to the pro-
duction of product A alone, that would be the nominal amount that can be produced
in any week. It would also mean that shops 1, 3, 4 will be underutilized (i.e., will
have idle capacity) of, respectively, 5, 6, and 17 tons/week, which represent 25, 33 1

3
;

and 53.125% of the respective capacities. Similar comment can be made if the shop
was devoted to the production of product B or C alone.

What is the ideal product mix for this plant?
The last section of the table gives the answer to this question in the column “ideal

mix”. It is secured as the solution of the linear program (writing 1 for A, 2 for B,
and 3 for C):

LP:

max z D
3X

iD1

vi xi (7.8)

subject to :
3X

iD1

xi

ci;j

� 1; j D 1; : : : ; 4

xi � 0: (7.9)

Table 7.1 Nominal capacity (in tons/week)

Shop capacity Bottleneck

Product

Shop: 1 2 3 4 BNC� Shop� Ideal mix

A 20 15� 21 32 15 2 6.00
B 14 16 12� 21 12 3 4.66
C 32� 38 36 43 32 1 11.73

�Identifies the bottleneck shop
�Bottleneck capacity
�The identity of the bottleneck shop
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The objective function of this LP is to maximize the total value produced by the
plant in which 1 ton of product i generates vi units of value. The constraint set in
(7.9) limits the sum of the fractions of “load” in each shop to 1 (full capacity), where
ci;j is the nominal production capacity of shop j of product i. The inverse 1=ci;j

measures the fraction of capacity of shop j used by 1 ton of product i. For example,
in reference to Table 7.1, shop 1 can produce 20 tons of product A; hence 1 ton of
A would occupy 1=20 D 0:05 of the shop’s capacity. The fractions for products B
and C in shop 1 are 1=14 and 1=32I respectively. Hence, for shop 1 constraint (7.9)
would read:

1

20
x1 C 1

14
x2 C 1

32
x3 � 1: (7.10)

There are four equations of the genre of (7.10). If all the items are of equal value,
vi D v; then the solution of this LP is

x1 D 0 D x2; x3 D 32:

This solution would load shop 1 fully, but leave shops 2, 3, 4 greatly underutilized:

Shop Utilization(%)

1 100
2 84.21
3 88.89
4 74.42

Clearly such a solution is unacceptable (only product C is produced!). However,
knowing that shop 4 has excess capacity, we may insist that the other three shops be
fully utilized. This would result in the solution of three equations in three unknowns:

shop 1 :
1

20
x1 C 1

14
x2 C 1

32
x3 D 1

shop 2 :
1

15
x1 C 1

16
x2 C 1

38
x3 D 1

shop 3 :
1

21
x1 C 1

12
x2 C 1

36
x3 D 1

yielding,

x�
1 � 6:0; x�

2 � 4:66; x�
3 � 11:73 (7.11)

and z� � 22:39 tons. (7.12)

This is the vector that appears in the last column of Table 7.1 under “ideal mix”. The
interpretation of this result is that, ideally, the plant should produce (approximately)
6 tons of product A, 4.66 tons of product B, and 11.73 tons of product C each week
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in order to utilize the plant’s capacity in the first three shops fully. The fractional
occupancy of each product in each shop is shown in (7.13), from which is seen
that shops 1, 2, 3 are fully utilized but shop 4 is underutilized by some 32% of its
(nominal) capacity.

Shop 1 2 3 4

A 0.30 0.40 0.29 0.19
B 0.33 0.29 0.39 0.22
C 0.37 0.31 0.33 0.27

Total occupancy 1.00 1.00 1.00 0.68

(7.13)

To sum up the analysis thus far, one may conclude that with the specified shop
capacities for the production of each product there is an ideal mix of the products
which, if produced all the time, will fully utilize the capacity of shops 1, 2, 3 but not
shop 4 which capacity should be modified to achieve its full utilization.

But the ideal mix of the products is not realized week after week since the de-
mand for the various items varies over time. Table 7.2a gives the amounts actually
produced of the various items over a quarter (13 weeks), and Table 7.2b gives the
same date in percentages of the plant capacity. For instance, product A was produced
in quantities 0:81; 1:98; 4:90; 2:61; : : : ; 2:73 tons in weeks 1 through 13; respec-
tively. Other rows of Table 7.2a are interpreted similarly. Assume, for the moment,
that the actual production coincides with the planned production. The bottom row of
Table 7.2a gives the total tonnage (planned and) produced in each of the 13 weeks.

How well is the plant doing in face of varied demand profile for the various
items?

Observe that the total output over the 13 weeks varied from a low of 11.49 tons
to a high of 24.77 tons per week, or by .24:77 � 11:49/=11:49 � 115:47%; which
may raise many eyebrows and be cause for concern. Should it be?

We start by translating the actual production in tons into the proportion of the
nominal plant capacity used by each product in each week. This translation leads to

Table 7.2 Simulated actual demand over one quarter
Product wk 1 wk 2 wk 3 wk 4 wk5 wk6 wk7 wk8 wk9 wk10 wk11 wk12 wk13

A 0.81 1.98 4.90 2.61 1.43 1.86 3.53 0.68 0.99 2.38 1.67 4.11 2.73
B 4.16 0.84 3.37 0.72 3.42 3.74 7.99 5.47 4.17 1.25 5.09 3.22 2.26
C 11.72 13.98 5.97 16.55 14.55 5.89 1.33 15.68 14.38 15.18 16.30 11.94 19.78

16.69 16.79 14.23 19.87 19.40 11.49 12.85 21.83 19.55 18.80 23.06 19.27 24.77
total production = 238.60

(a) Simulated actual production; ton.

Product wk 1 wk 2 wk 3 wk 4 wk5 wk6 wk7 wk8 wk9 wk10 wk11 wk12 wk13
A 0.0538 0.1317 0.3264 0.1740 0.0956 0.1240 0.2354 0.0454 0.0660 0.1584 0.1115 0.2737 0.1818
B 0.3465 0.0697 0.2806 0.0598 0.2850 0.3117 0.6656 0.4562 0.3478 0.1038 0.4241 0.2686 0.1881
C 0.3664 0.4368 0.1864 0.5171 0.4546 0.1842 0.0416 0.4900 0.4494 0.4744 0.5094 0.3732 0.6182

Utilization: 0.7667 0.6381 0.7935 0.7508 0.8351 0.6199 0.9426 0.9916 0.8633 0.7366 1.0451 0.9155 0.9881

(b) Capacity utilization



138 S.E. Elmaghraby

the data given in Table 7.2b. The calculation of this table is simple. For example, the
production of 0.81 tons of A in week 1 represents 0:81=15 D 0:054 (the apparent
error is due to truncation for a more pleasant appearance; the figures are actually,
to six significant figures, 0.807077 and 0.0538051). It can be seen from Table 7.2b
that, almost all the time, the ratios of the actual production is far from the “ideal”
mix specified in the last column of Table 7.1. Similarly, for the other figures; each
evaluated relative to the bottleneck shop that determines the plant capacity for each
product. The sum of the percent utilization of the plant capacity is shown in the row
opposite the “utilization” in Table 7.2b, from which it is seen that the plant’s best
performance was in week 11 with 104.5% utilization (slightly over full utilization)
and its worst was in week 6 with 62% utilization of its nominal capacity.

Variation in production was in response to variation in demand, truncated at
(slightly over) plant capacity. This demand pattern was randomly created assum-
ing a normal distributions for all three products with means and variances as given
in Table 7.3. The fourth column of this table labeled “90% range” gives the expected
range of demand for the product, with confidence of 0.90.
Assuming independence of the demand for the three products, these values imply
that, with probability 90%, the total demand on the plant shall be in the interval
Œ8:82; 35:18� tons/week. Table 7.2a verifies these bounds since the total demand
was well within this interval all the time.

In the absence of knowledge on how the demand was generated, management
would reach the conclusion that each of the products has mean and variance as
shown in Table 7.4. The reason for the smaller means and variances is due to trun-
cation by the firm to fit within capacity.

The message conveyed by this elementary analysis is that for purposes of estimat-
ing demand one must use the actual demand data rather than the actual production
data, because the latter is the filtered demand data to fit the plant bottleneck capacity.
This is important in responding to questions related to the adequacy, or otherwise,
of the existing capacity. Interestingly enough, this simple rule is often ignored in
real life!

We shall assume that the plant has estimated the correct mean and variance of
the demand of each product on the basis of demand data, not the production data,

Table 7.3 Demand
parameters, assuming
normal distribution

Product Mean Variance 90% Range

A 4 6.25 Œ0; 8:11�

B 3 9 Œ0; 7:93�

C 15 49 Œ3:49; 26:51�

Total 22 64.25 Œ8:82; 35:18�

Table 7.4 Demand
parameters as derived
from actual production

Product Mean Variance

A 2.28 1.65
B 3.51 4.09
C 12.56 26.92

Total 18.35 32.66
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and hence it knows Table 7.3. Then it should be aware of the analysis shown in the
right-most column of the table, which gives the range of demand for each product,
and for the plant as a whole. Two remarks are immediately present.

1. The “ideal” product mix would generate 22:39 tons/week and fill the capacity of
three of the four shops. And yet demand not exceeding that magnitude will occur
about 52% of the time! In other words, over 48% of the time the demand will
exceed the shop capacity even if it conformed to the “ideal” product mix, which
it will almost surely not do. In fact, with probability of almost 25% the demand
is no more than 16.5 tons/week. (In Table 7.2a the number of weeks in which
demand did not exceed 16.5 tons/week is 3, yielding .3=13/ D 23:08%:)

2. The expected demand on the plant of 22 tons/week is very close to the demand of
the “ideal” product mix (of 22.39 tons/week). Basing the judgement on averages
would indicate that all is well, which we know is not true. Evidently, it is the
variation in the product mix that causes the variation in capacity utilization.

These two remarks translate into the following. Under the best of conditions
one would expect this shop to be underutilized some 50% of the time and would
be overloaded the other 50%. But even when it is overloaded, the “imbalance” in
the product mix (i.e., its deviation from the “ideal”) would cause some shops to be
severely underloaded. The reader can verify this from Table 7.5 which is abstracted
from Table 7.2a and deals only with the 3 weeks in which the total demand was
“close” to the average. We have selected shop 2 to illustrate our contention; tables
for the three other shops can be constructed in a similar fashion.

Table 7.5 gives the actual (simulated) demand realized in these 3 weeks, while
Table 7.6 gives the proportion of the capacity of shop 2 that was occupied
by each product in each of the 3 weeks. The absolute values of the propor-
tions are of little significance by themselves; only in comparison with the
utilization under the “ideal” product mix do they gain significance. As can be
easily verified, the proportion of the shop used by each product varies wildly
from the “ideal”. For instance, product A varies from 11:35% .D 0:045=0:4/

to 45:44% .D 0:182=0:4/ of the “ideal”, product B varies from 48:43%

Table 7.5 Actual demand
in three weeks, tons

wk 8 wk 11 wk 13

A 0.68 1.67 2.73
B 5.47 5.09 2.26
C 15.68 16.30 19.78

Total 21.83 23.06 24.77

Table 7.6 Capacity
utilization, Shop 2

wk 8 wk 11 wk 13 ‘Ideal’

A 0.045 0.112 0.182 0.400
B 0.342 0.318 0.141 0.291
C 0.413 0.429 0.521 0.309
Total 0.800 0.859 0.843 1.000
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Table 7.7 Limits of shop occupancy, based on 90% confidence

Shop 1 Shop 2 Shop 3 Shop 4

A [0, 0.407] [0, 0.541] [0, 0.386] [0, 0.253]
B [0. 0.567] [0, 0.496] [0, 0.661] [0, 0.378]

C [0.109, 0.828] [0.092, 0.698] [0.097, 0.736] [0.081, 0.617]

.D 0:141=0:291/ to 117:49% .D 0:342=0:291/ of the “ideal”, and product C varies
from 133:66% .D 0:413=0:309/ to 168:66% .D 0:521=0:3091/ of the “ideal”.
Similar analysis can be done for other shops, with the same conclusion: variation
in the product mix plays havoc with the utilization of the available capacities of
individual shops. Table 7.7 gives the bounds, at the 90% confidence level, on in-
dividual shop occupancy by each of the three products. It is determined based
on the 90% ranges of Table 7.3 divided, respectively, by the nominal capacity of
each shop. For instance, shop 2 has capacity of 15 tons/week of product A. The
range of demand for product A is given in Table 7.3 as Œ0; 8:11� which, when di-
vided by 15 gives the range Œ0; 0:541� I etc. As the reader can see, all ranges are
rather wide, varying by several orders of magnitude from their lower to their upper
limits.

7.7.2 The Problem of the Setup Time

Another reason for the inability to provide an accurate measure of the capacity of a
plant, or a shop in that plant, or even a machine within a shop, is that the presence of
a product mix causes a nonmeasurable loss in productivity due to the need for fre-
quent changeovers (note the emphasis on “nonmeasurability”). In particular, since
in any long enough period different items are produced to satisfy market demands,
this necessitates setting up the process when production changes from product to
product. This setup (or changeover) time reduces the available time for production
and, consequently, the operational capacity. And since the production mix varies
from period to period, it is not possible, so the argument goes, to determine the
available capacity of the facility even if the nominal capacity were known.

We readily concede that setups consume machine time that could have
been utilized for production, if demand is there. And we concur with the con-
tention that production planning to satisfy a specified demand and minimize setups
and inventory build-up is indeed a very difficult problem to resolve. Industrial en-
gineers are taught the principles and techniques of “economic production lot sizes”
that achieve the optimal compromise between minimizing setup times and the pil-
ing up of inventory, which should include the sequence in which the products are
produced and the impact of that sequence on the dynamic piling up and depletion
of stocks, as well as on the changeover time between products. Recall that the
minimization of setup times through off-line stand-by jigs and fixtures constituted
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one cornerstone in the triumph of the Japanese production practice over the rest
of the industrialized world so that at least that portion of the total problem can be
ignored.

But there is a pitfall in the above argument that must be avoided; to wit, that
excessive setup times may be self-inflicted since a vicious cycle can easily develop
due to poor production planning. In particular, if the “economic quantity” produced
of a product in any period is large enough to cause the starvation of some other
product (or products), then its “optimal” size is ignored and a smaller lot is produced
to allow other products to be produced to satisfy their demand. This necessitates
new setups which decrease the time available for production which, in turn, require
smaller lots which require further additional setup times, which further reduce the
available capacity, and so on until the plant appears to be in the absurd position of
always being set up for smaller and smaller quantities of the different products!

If one compares the actual expenditure in time in setups with the optimal setups
for the given product mix demanded in each period, determined, for instance, by
any of the mathematical programming models presented in the literature, then one
would gain a clearer indication of the adequacy, or the lack of it, of the production
planning function in the plant. Adding over the periods should give the total time
spent on setups throughout a quarter or a year, and a measure of the overall efficacy
of the production planning function.

The reporting of setup information is thus seen to be important from at least two
points of view.

1. It permits the evaluation of the production control function in the firm relative to
a datum based on its demand pattern.

2. It permits the determination of the “opportunity cost” due to restrictions imposed
on inventory, or on the satisfaction of the customer’s demand, if such restric-
tions are in fact present, which necessitate frequent changeovers in the production
lines.

To render our discussion more concrete, consider the three items mentioned in
Sect. 7.1, and suppose the items were produced in the sequence A–B–C. Assume,
further, that after the completion of the weekly production a maintenance/cleanup
operation is undertaken that sets all the machinery in all four shops back to their
“neutral” position so that a setup is required when production is initiated in the fol-
lowing week. We label the “neutral” state as “state ;”. The setup times are given
in (7.14). The production time/ton is the reciprocal of the production quantities
shown in Table 7.1, assuming nominal capacity of 40 h/week, presented for con-
venience in Table 7.8. The setup times under the sequence A–B–C occupies a total
of 2 C 0:8 C 2:7 C 0:3 D 5:80 h.

Table 7.8 Production times,
h/ton

Product Shop 1 Shop 2 Shop 3 Shop 4

A 2.000 2.667 1.905 1.250
B 2.857 2.500 3.333 1.905
C 1.250 1.053 1.111 0.930
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Setup times, h
Product ; A B C

; 0 2.0 1.5 0.2
A 0.3 0 0.8 1.4
B 0.4 3.0 0 2.7
C 0.3 0.28 2.8 0

(7.14)

For these setup times, the optimal sequence is C – A – B, which occupies a total
of 0:2 C 0:28 C 0:8 C 0:4 D 1:68 h, resulting in a saving of 4.12 h/week, or 10.30%
of the normal capacity of each shop (of 40 h/week). The immediate impact of this
improved setup sequence reveals that the actual shop utilization for production is
even worse than that reported in Table 7.6. This rather shocking result is detailed in
Table 7.9.

The significance of this table is instructive. Had the plant adopted the optimal
sequence it would have saved some 214 h each quarter, or slightly over five shop-
weeks of nominal capacity, which translates into over 20 shop-weeks’ of nominal
capacity per year! This is not an insignificant amount. Put differently, the plant
could have produced at least 20.00 tons of A (D4:12=2:67 � 13) or 16.00 tons of B
(D4:12=3:33� 13), or 42.85 tons of C (D4:12=1:25� 13) more each quarter, which
translate into 80, 64, and 171.40 tons per year, respectively. Since the total produc-
tion of the three items in the quarter were, respectively 29.67, 45.69, and 163.25
tons, for items A, B, and C (secured by adding the production in the simulated
actual demand of Table 7.2) the difference in setup times represent, respectively,
20=29:67 D 67:41%, 16=45:69 D 35:02%, and 42:85=163:25 D 26:25% increase
over current production (assuming the available time in the plant is devoted to the
production of each item).
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WTable 7.9 Comparing the actual utilization of each shop under current (A–B–C) and optimal
setup (C–A–B) sequences

SUMMARY DATA

SHOP 1 Sequence A,B,C
Total hrs: 33.95 29.61 32.67 33.75 36.62 27.57 35.24 33.83 37.68 33.09 37.53 37.04
Sequence C,A,B
Total hrs: 29.83 25.49 28.55 29.63 32.50 23.45 31.12 29.71 33.56 28.97 33.41 32.92

SHOP 2 Sequence A,B,C
Total hrs: 30.69 27.87 33.55 31.97 33.48 26.32 34.74 30.41 34.01 31.23 34.55 35.89
Sequence C,A,B
Total hrs: 26.57 23.75 29.43 27.85 29.36 22.20 30.62 26.29 29.89 27.11 30.43 31.77

SHOP 3 A,B,C
Total hrs: 33.92 27.58 32.68 31.24 35.79 28.06 37.87 33.33 37.28 31.04 37.16 36.27
Sequence C,A,B
Total hrs: 29.70 23.36 28.46 27.02 31.57 23.84 33.65 29.11 33.06 26.82 32.94 32.05

SHOP 4 A,B,C
Total hrs: 25.34 22.56 23.58 25.52 27.34 20.43 24.96 25.41 28.07 24.96 27.81 27.19

C,A,B
Total hrs: 21.12 18.34 19.36 21.30 23.12 16.21 20.74 21.19 23.85 20.74 23.59 22.97

Total Annual Loss due to setup, hr = 824
Percentage of annual capacity = 10.30% of total plant capacity

Sequence

Sequence

Sequence
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7.7.3 The Problem of Varying Efficiency

A third reason given for the inability to measure capacity is that the variation in
product mix from period to period has a subtle and nonmeasurable detrimental
effect on the ability to report on productive capacity: to wit, the efficiency of the
production facility itself varies with the product produced, or the mix thereof, with
the same facility having different production rates for different items, and therefore
it is not possible to report on its capacity. Improved efficiency due to “learning”, for
instance, is absent under such circumstances. Worse still, the loss in efficiency is
indeterminable. If only the plant can produce the same product for “long enough”
time, things would be much better and capacity measurement and its utilization
would be greatly improved, so the argument goes!

Granted that the efficiency of a facility changes with the product produced, due
to different reasons not the least significant of which is varying labor efficiency with
different products, it should still be possible to determine the productivity of the fa-
cility for each product, if it was produced all the time. This, then, represents the
correct capacity of the facility, any of the four capacities listed above, and it is the
figure used on the evaluation of the plant’s capacity. This will have the salutary ef-
fect of identifying the loss, if any, due to the presence of product mix, a loss which
may be corrected by any one of several avenues open to management. One such
avenue, which is certainly not the only one or even the preferred one, is to produce
the same spectrum of output sequentially instead of simultaneously.

To illustrate what is intended here, consider the capacity figures listed in
Table 7.1. The above analysis was based on the simultaneous production of all
three products. By that is meant that in any week all three products are produced –
the products share the available capacity of the plant, leading to loss in productivity
(or so it is claimed). It is also claimed that, if the plant is permitted to concentrate
on one product at a time, its productivity would increase by at least 10%. Can such
a mode of operation be adopted, and would it be more efficient (from the capacity
utilization point of view) if the items were produced sequentially, one after the
other, say in the order A , B , C?

The total tonnage produced under the simultaneous mode of operation of the
three products is 29.67, 45.69, and 163.25 tons for products A, B, C when pro-
duced in that sequence; respectively, which we now augment by 10% to result in
32.63, 50.26, and 179.58 tons. Given the bottleneck capacities one can see that they
requires 2.175,4.188, and 5.611 weeks, respectively, to satisfy all the (augmented)
demand for the three products. Thus the plant shall produce according to the fol-
lowing schedule, in which we allowed week 3 to produce B after completing A and
week 7 to produce C immediately after completing B, assuming with little effect on
efficiency (!).

Week: 1 2 3 4 5 6 7 8 9 10 11 12 Total

A 15 15 2.63 32.63
B 9.89 12 12 12 4.36 50.26
C 20.36 32 32 32 32 31.21 179.58
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Table 7.10 Fractional occupancy of the four shops under sequential production

Shop Capacity Utilization Under Sequential Production
wk 1 wk 2 wk 3 wk 4 wk5 wk6 wk7 wk8 wk9 wk10 wk11 wk12

shop 1 0.750 0.750 0.838 0.857 0.857 0.857 0.948 1.000 1.000 1.000 1.000 0.975
shop 2 1.000 1.000 0.794 0.750 0.750 0.750 0.809 0.842 0.842 0.842 0.842 0.821
shop 3 0.714 0.714 0.950 1.000 1.000 1.000 0.929 0.889 0.889 0.889 0.889 0.867
shop 4 0.469 0.469 0.553 0.571 0.571 0.571 0.681 0.744 0.744 0.744 0.744 0.726

This plan of operation appears to have, in addition to producing 10% more output,
the salutary effect of shortening the manufacturing interval by 1 week, from 13 to
12 weeks!

Surprisingly, from the capacity utilization point of view this schedule, while
better due to increased production, is still disappointing, as can be seen from the
fractional occupancy of each shop shown in Table 7.10. To be sure, each bottle-
neck shop is fully utilized when producing its “favorite” product; otherwise it is
underutilized, and sometimes grossly so. Over the 12 weeks, the imbalance in shop
utilization varies from a low of 71.40% to a high of 100% in the “busy” shops 1, 2,
and 3.

One is driven to conclude that the design of the shop capacity is faulty from
the outset and should be corrected taking into account the mode of operation
(simultaneous or sequential) as well as the variation in the individual product pro-
cessing requirements.

7.7.4 The Problem of Scrap/Dropout

A problem that interferes with the correct estimation of operational capacity stems
from a different dimension, namely, that of a variable proportion of scrap/dropout
which, naturally enough, causes a drop in the output – the plant is rewarded for
good products; bad products are waste of time and resources. The difficulty arising
from this consideration is sometimes subtle, especially when it is concerned with
the estimation of future performance.

Suppose that the industry standards for the different products are known. Then
it should be a simple matter indeed to secure an estimate of the expected dropout
for each product and/or of each shop (if the standards vary from shop to shop),
as well as for the plant as a whole, dependent on the proportion of capacity de-
voted to the production of each product. The industry standard helps in defining
the expected operational capacity, at least the part of it that concerns dropouts.
This, in turn, would give a more precise picture of the performance of the shop.
The subtle difficulty in estimating capacity stems from the fact that, by definition,
the operational (i.e., available) capacity is based on industry standards, while actual
scrap/dropout may be more, or less, than that standard and usually varies over time.
If the actual scrap/dropout is more than the standard in any period, then there is
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little possibility of error or misinterpretation since the plant is performing worse
than what is anticipated, which is easily identified. But if the converse is true, i.e.,
if the firm performs better than the industry average, hence its scrap/dropout is less
than the standard, then one may end up with compensating errors that hide poor per-
formance in some other criterion or, worse still, with actual capacity utilization that
exceeds the operational capacity, which we have ruled out from the outset, by defi-
nition of the various capacities. This would play havoc with the concept of capacity
which we have been trying so hard to define.

To render these considerations more concrete, consider again the example given
in Tables 7.1 and 7.2. Assume that the industry standard of scrap/dropout for product
A is 1.4%, for B is 0.78%, and for C is 1.85, and that the firm’s actual performance
is respectively, 3.9, 2, and 4.20%. The difference is 2.5% for A, 1.22% for B, and
2.35% for C, which translate into 0.772 (D30:44 � 29:67), 0.57 (D46:26 � 45:69),
and 4.00 (D167:25 � 163:25) tons of the products in the quarter, respectively, for
a total of �5.35 ton/quarter, which represents some 2.24% of the plant production
(which would increase from 238.60, which is the actual quantity produced in the
quarter, to 243.95 tons/quarter (2:24 � .243:95 � 238:60/=243:95). This analysis is
summarized in Table 7.11. Of course, the industry “average” is just that – an average.
By the definition of the word “average”, there must be plants with dropout less, and
other plants with dropout more, than the average. The plant’s ambition should be on
the lower side of the industry average, which means that the increased production
determined above constitutes a lower bound on what should be produced.

The scenario presented above was relatively easy to analyze because the plant’s
performance was worse than the industry average. But suppose the plant’s perfor-
mance was better than the industry average, then the plant would have produced
more than was anticipated. Unless data on the scrap/dropout of the products are es-
timated independently from the actual production data, there is the possibility of the

Table 7.11 Dropout Analysis (relative to industry standard)

Summary

Indstry
Actual avge

Actual% Ind.Avge% production production Increase
A 3.90 1.40 29.67 30.44 0.77
B 2 0.78 45.69 46.26 0.57
C 4.20 1.85 163.25 167.25 4.00

total /  qrtr = 238.60 243.95 5.35

Dropout

tons

2 This is the difference between the sums. Individual entries for each product for each week
are evaluated separately. For instance, from Table 7.2 the actual production of A in week 1
was 0.81 tons. Therefore production under industry standards is .0:81=1 � 0:039/ .1 � 0:014/ D
0:83 ton; etc.
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Table 7.12 Estimates of operational capacities

19.22 14.42 20.18 30.75

13.72 15.68 11.76 20.58

30.66 36.40 34.49 41.19

19.72 14.79 20.71 31.55

13.89 15.88 11.91 20.84

31.41 37.30 35.33 42.20

Estimate of plant operational capacity, Current

Estimate of plant capacity, Industry Average

good performance relative to quality camouflaging poor performance on some other
dimension such as the sequence of production relative to setup considerations.

A discussion of scrap/dropout is not complete without consideration of the
input to the process in the form of materiel and other support activities such as
maintenance and replacement. But such considerations would take us far afield from
our main concern with capacity.

To sum up this discussion on scrap/dropout with respect to capacity and its mea-
surement, it is clear that scrap/dropout should be measured independently of the
other measures available, such as the total (or individual) production. Information on
scrap/dropout is invaluable in determining the operational (i.e., available) capacity.
The operational capacities of the plant under current scrap/dropout conditions and
under industry standard are shown in Table 7.12. Though the differences may appear
small, you should remember that this is the difference due solely to scrap/dropout.
It should be considered in conjunction with the other factors that determine the op-
erational capacity. Its availability over time is also invaluable not only relative to the
plant’s practice and progress (or lack of it), but also concerning the plant’s perfor-
mance relative to the industry in general.

7.7.5 The Problem of Semifinished Items or Subassemblies

A remarkable phenomenon occurs when the reported production exceeds the
operational, and sometimes even the nominal, capacity! We say “remarkable”
because we have insisted throughout that the operational capacity forms an upper
bound on availability; and more so for the nominal capacity. Then how is it possible
that actual production exceeds its bound?

The answer lies in the insertion of semifinished products at some point in the
process so that the bottleneck operation(s) is circumvented. Production supervisors
would gleefully cite this device as one more reason for their inability to report “cor-
rect” figures on capacities. Evidently, subcontracting part of the work is another
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device used to boost the actual production beyond available capacity, and thus
make a mockery of the figures accumulated on either the operational or nominal
capacities.

To see the import of these capacity augmenting devices, consider once more
Table 7.1. Suppose that the plant can secure partially processed product A that
requires only shops 3 and 4. Then the old bottleneck, operation 2, has been cir-
cumvented and the plant’s capacity of product A has now jumped to 21 ton/week,
an increase of 40% (D .21 � 15/ � 15) over the old capacity. Put differently, the
plant is now capable of producing close to 21 tons/week which makes it appear to
be performing 40% above its nominal capacity, a magnificent feat indeed for which
the workers would deserve a hefty bonus!

The fallacy lies in the manner in which data are collected. There is no inherent
problem in determining the correct capacity in the presence of semifinished products
or subassemblies. Of course, the data collection method should recognize the pres-
ence of semiprocessed items, which are to be treated as new items with their own
bottlenecks and their own share of the shop time. One more example of the inter-
dependence of all the activities in the production process, this time with the plant’s
information system.

The picture gets more complicated if not all the planned production of a product
is supplied as semiprocessed parts which require a partial set of the total processes.
In this instance, one must be careful lest the total capacity of the plant (or shop) be
underestimated, because of the possibility of simultaneously performing production
on two items that are the same in terms of the end-product, but are different in their
processing requirements.

To exemplify the calculation under such circumstances, consider once more
product A and its production in week 3 of 4.9 tons as shown in Table 7.2. Sup-
pose that in fact some of that tonnage was secured as a partially processed product A
that requires only shops 3 and 4. To be able to distinguish this lot, call it product A1.
Then its bottleneck is shop 3 with nominal capacity of 21 ton/week. If some 32.64%
(abbreviated in Table 7.2 to 33%) of the plant’s capacity is still devoted to the pro-
duction of product A, of which 10% was for product A and the remaining 22.64%
was for product A1, then the plant would produce 0:1 � 15 C 0:2264 � 21 � 6:25

tons and not the mere 4.90 tons previously reported. The difference of 6:25�4:90 D
1:35 tons represents the difference between producing A “from scratch” and inject-
ing A1 in the plant at shop 3. On the basis of the old nominal capacity of the plant,
the 6.25 tons of A, if reported as such, would account for 6:25�15 D 0:4167 of the
plant capacity. Adding this figure to the production of items B and C would result
in total usage equal to 0:417 C 0:281 C 0:186 D 0:884; a hefty increase over the
original value of 0.793. In fact, items A and A1 would have consumed, respectively,
0.1 and 0.2264 of the shop capacity, for a total of 0.3264 as originally envisaged.
The jump in productivity is illusory.

The problem of the use of semifinished products and/or subassemblies to aug-
ment plant of shop capacity poses no particularly difficult problems provided that
the data on which the calculations are based reflect faithfully the processing require-
ments of the items produced. If such capacity-augmenting devices are possible, and
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are in fact used, even on an ad hoc basis, then the data collection system should
include the possibility of reporting such capacity-augmenting devices and distin-
guishing among inputs in view of the fact that outputs are indistinguishable. Here
we encounter once more the need to view the production system in its totality, which
necessarily includes its information system.

7.7.6 Some Sociological/Cultural/Economic Factors

Strange as it may seem, inability to accurately determine the capacity of a productive
facility may have its roots in nontechnical aspects of the issue, namely, the so-
cial/cultural/economic elements of the enterprise. In particular, in an environment
where the faking of data to hide the truth from management is endemic, it seems
odd to insist on correct data for this particular purpose. A plant within a company,
or a shop within a plant, or even a machine operator within a shop, may possess the
correct data and may know how to use those data correctly to measure its capacity
(any of the four), but may not be willing to divulge these data to its management lest
it be deprived of certain benefits or advantages, such as bonus payments when the
planned performance is raised by the firm’s planning office to match its true capa-
bilities. The literature of industrial engineering is replete with examples of reaction
to “time standards” which vary from “soldiering” to outright destruction of product
and equipment to prevent management from having access to such information.

It is well known that information is power, possessed by those who have access
to it. For information to be shared by all, an atmosphere of trust, understanding,
and working for the common good must exist and nurtured by management. The
course of action to create such environment varies with the particular circumstances
of the firm, and there is a vast literature on it, which is well outside the scope of this
chapter. But one can safely state that unless, and until, such environment is fostered
there is no escape from being trapped in an atmosphere of uncertainty of unknown
magnitude.

7.8 A Recipe for the Determination of the Operational Capacity

Section 7.7 detailed why it is difficult to measure capacity (any of the four defined
in Sect. 7.3), and it is time to address the question of: How does one go about
determining its magnitude, assuming the requisite data, uncertain as it may be, is
available?

The most important concept forwarded here is that you should not expect “a
number”, but a “distribution” with probabilities attached to it. The concept of a
random estimate of capacity may be new to industry, but it is inescapable if one
wishes to come up with meaningful results. We use the example data presented in
Tables 7.1 and 7.2 to illustrate the concepts presented.

Our take-off point is the nominal capacity. It is the easiest to determine in case
of machine-controlled production because it is the “rated” output of the machine, or
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facility, declared by the manufacturer of the equipment. In case of labor intensive
operations, matters are not that “crisp” and one must resort to the “official and de-
clared net working hours”. The translation of these hours into the units of output,
such as pounds, yards, dollars, etc., should be statistical in nature.

Consider product A in Table 7.1. The plant’s nominal capacity is given as 15
ton/week based on the bottleneck shop 2. Then, we had made the implicit assump-
tion that production is machine controlled on the basis of 40 h/week of operation,
and that is how we secured the “crisp” number 15. But suppose it is labor inten-
sive; then it would be more meaningful to speak of the nominal capacity as varying
between 12 and 18 ton/week, say, with mean 15. In the absence of any informa-
tion about the variability of the nominal capacity, one can proceed assuming the
uniform distribution between these two limits; otherwise, the known distribution
would be used. For the moment, we shall assume the following values for product A
in all four shops, with all values uniformly distributed between the specified limits.
(In a real-life situation, the analyst should substitute the appropriate distributions.)
Observe that in all cases the average of the distribution is the “crisp” estimate given
in Table 7.1.

Shops nominal capacity of product A, ton/week

Shop: 1 2 3 4

A � U Œ18; 22� � U Œ12; 18� � U Œ18; 24� � U Œ28; 36�
(7.15)

Further, the production engineer should have some information on the various
factors that distinguish the nominal capacity from the operational (or available)
capacity. For purpose of illustration, assume the following information is available
on the product:

quality information: as specified in Table 7.12 under column “Ind. Avge”.
setup information: as specified in the tabulation (7.14)

For simplicity of exposition, suppose that all four shops have identical parameters
for which the following statistics were available from past records, still on the basis
of 40 h/week:

maintenance: regular maintenance D 0:50 h/week.
electric power blackout: there are two factors that behave independently, both

uniformly distributed:

number of occurrences per week NB D 2:0 ˙ 0:36;

duration of blackout per occurrence TB D 1:5 ˙ 0:25 h.

Then one would proceed as follows to calculate the operational (i.e., available)
capacity in the plant. For the sake of brevity, we shall detail the calculations only
for product A in shop 1, product A in other shops as well as product B and C in all
shops can be analyzed similarly. The duration (or length) of the “working week” is
denoted by L, which shall be subscripted by the factor that reduces its value from
the nominal.

As a footnote to our analysis, we would be remiss if we do not mention that
considerations of the decrement in productivity due to maintenance, machine
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breakdowns, and quality yield are also the concern of the area of industrial
engineering labeled “total productivity maintenance” (TPM); seeVenkatesh
(2005)and the references cited therein. The main distinction between the con-
cerns of TPM and our concerns in this chapter are three: (1) TPM is focused only
on machine maintenance activities in a productive system, while we are concerned
with the capacity of the productive system; (2) TPM is a “business-management”
oriented view (as opposed to a “technically” oriented view) of the machine main-
tenance activities in a productive system. The focus on the managerial aspects (as
opposed to the engineering aspects) is evident in their talk about the “5 S” principle.
These are the five Japanese terms for the so-called “pillars” of TPM: Seiri, Seiton,
Seiso, Seiketsu, Shitsuke; (3) TPM is “deterministic” in its analysis, dealing mostly
with averages, while we argue for stochastic considerations.

7.8.1 Accounting for Maintenance Requirements

The maintenance requirements, if performed during the working hours, are actu-
ally random variables (r.v.’s) depending on the condition of the plant facilities at
the time of maintenance. For simplicity of the subsequent analysis, we shall assume
them to be fixed constants. In particular, for illustrative purposes, we assume that
maintenance would subtract 0.50 h each week, thus reducing the nominal work-
ing week to LM D 39:5 h, in which the subscript stands for having accounted for
maintenance.

7.8.2 Accounting for Blackouts

The reader is advised that we use “blackout” as a stand-in for all the unforeseen and
uncontrollable disruptions that interrupt the use of the production facility, such as, in
addition to electric current blackout, machine failure, shortage of tools and fixtures,
labor absenteeism, etc.

In a given time interval, say a week, which we take as our “loading time unit”
the total time lost due to blackouts, denoted by B; is impacted by two factors: the
number of occurrences in a week NB , a r.v., and the duration of each occurrence
TB .n/ ; n D 0; 1; : : : ; assumed to be independent and identically distributed r.v’s.
NB and fTB .n/g are assumed to be two independent occurrences; hence blackout
duration ( D process unavailability) in a week is a random variable equal to the sum

B D
NBX

nD1

TB .n/ :

It is desired to derive the mean and variance of B: Using the relations given in the
Appendix, we know that

E ŒB� D E ŒN � � E ŒTB � ;
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and,

var ŒB� D E �NB�2
TB

�C var ŒNB � E ŒTB ��

D �2
TB

� E ŒNB � C .E ŒTB �/2 � �2
NB

We have that the number of blackouts/week is NB 	 U Œ1:64; 2:36� ; with
E ŒNB � D 2, and var .NB/ D 0:722=12 D 0:0432; and that the duration of a
single blackout is TB 	 U Œ1:25; 1:75� h/occurrence, with E ŒTB � D 1:5 h and
var .TB/ D 0:52=12 D 0:02083. We have that

E ŒB� D 2 � 1:5 D 3 h/week,

and,

var .B/ D 0:02083 � 2 C 1:52 � 0:0432 D 0:13887

) �B D p
0:13887 D 0:37265:

Then, assuming that B is approximately normally distributed, one can assert that
with probability 0.99 the loss in production time due to blackout B lies in the interval

E ŒB� � z0:99�B � B � E ŒB� C z0:99�B ;

in which z D 2:5758; to yield,

2:040 � B � 3:960:

Therefore the net available hours per week lie in the interval

Œ39:5 � .3:960; 2:040/� D Œ35:540; 37:460� :

Thus far the net available time per week is a r.v., call it LM;B (for maintenance and
blackouts), which lies in the interval Œ35:540; 37:460�; i.e.,

LM;B 	 U Œ35:540; 37:460� ; with mean D 36:5 h/week. (7.16)

7.8.3 Accounting for Personal Time

Of the 40 h in the nominal work week, allowance is usually made for meals and
personal needs which amount to some 50 min/day (0.83̇ h), or 4.167 h/week, which
when subtracted from the result in (7.16) yields,

LM;B;P 	 U Œ35:540 � 4:167; 37:460 � 4:167� D U Œ31:373; 33:293� ; (7.17)
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in which LM;B;P stands for the length of available time in a week after accounting
for maintenance, blackouts, and personal needs.

Observe that, so far, the “crisp” value of 40 h/week have been modified into the
interval Œ31:373; 33:293� :

7.8.4 Estimation of Hourly Output

Let XA;nom .1/ denote the nominal hourly production of product A in shop 1. Then

X
.1/
A;nom 	 A.1/

LM;B;P

;

in which A.1/ denotes the nominal capacity of shop #1 of product A, see the plant
nominal capacity table in (7.15), a random variable given as A.1/ 	 U Œ18; 22� and
measured in ton/week. Taking note of the net available capacity per week LM;B;P of
(7.17) after recognizing the loss due to maintenance, blackouts, and personal needs,
one can deduce the distribution of the nominal hourly production. The theoretical
derivation of the exact distribution of X

.1/
A;nom; which is the ratio between two random

variables, is presented in the Appendix to this chapter.
We know from the data in (7.15) and (7.17) that it lies between 18=33:293 �

0:541 and 22=31:373 � 0:701; and we learn from the Appendix that it is not uni-
formly distributed between these two bounds. With abuse of probability and for the
sake of simplicity of exposition, we shall continue to assume that it is approximately
uniformly distributed between these two limits (a quick glance at Fig. 7.A.3 in the
Appendix would convince you that this is really not a bad approximation), then we
have

X
.1/
A;nom 	 U Œ0:541; 0:701� ; ton/h.

7.8.5 Accounting for Scrap/Dropout

We are given that the industry average of the scrap/dropout rate is ps D 0:014.
Therefore, the limits of the expected production rate would be further reduced to
0:537 .1 � 0:014/ � 0:533 and 0:7065 .1 � 0:014/ � 0:691; and we end up with

X
.1/
A;nom 	 U Œ0:533; 0:691� ; ton/h. (7.18)

We therefore conclude that the operational capacity of shop 1 of product A
is a random variable that is distributed between 31:373 � 0:533 D 16:725 ton
and 33:526 � 0:696 D 23:019 ton, with an average of 19.872 ton. In the new
Table 7.13, the interval Œ16:725; 23:019� should replace the single entry of 20 of
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Table 7.13 Operational Capacity/wk, ton for product A

Shop Œl:b:; u:b� Average Estimate� Support�

1 Œ16:725; 23:019� 19.872 20 6.295
2 Œ11:150; 18:834� 14.992 15 7.684
3 Œ16:725; 25:112� 20.918 21 8.387
4 Œ26:016; 37:668� 31.842 32 11.652
� Secured from Table 7.1
� Support Du.b.� l.b. Any discrepancy between the stated value and the arith-
metic operation is due to round-off

Table 7.1 in cell (A, shop1). A reader who insists on exactitude should replace the
uniform distribution in Table 7.13 suggested here with the exact distribution given
in the Appendix.

Without cluttering this chapter with further calculations, the operational capacity
for product A in the other three shops is determined in a similar fashion and the
result for all four shops is as shown in Table 7.13. Recall that these values are ap-
proximations of the exact values, which are not uniformly distributed between their
respective limits. Finally, observe the closeness of the average values to their esti-
mated deterministic equivalents of Table 7.1.

When similar analysis is conducted for the other two products B and C, we shall
have in hand the operational capacity of all products in all shops after accounting
for the four factors: maintenance, blackouts, personal, and scrap/dropout.

7.8.6 The Determination of the Bottleneck Capacity

The bottleneck shop for each product will have a distribution that is given by the
minimum of the four random variables along its row across the shops. This distribu-
tion can be evaluated from the four distributions, which we assumed to be uniform.
To be more precise, Let YA;oper denote the operational capacity of the bottleneck
shop for product A. Then,

F YA;oper .y/ D
4Y

sD1

F XA;oper.s/
.y/ ; ton/week

in which F YA;oper .y/ is the complementary cumulative distribution function

(ccdf), F YA;oper .y/ D 1 � FYA;oper .y/ ; and similarly for F XA;oper.s/ .y/ D
1 � FXA;oper.s/ .y/ : The expected (bottleneck) production is given by

E �YA;oper
	 D

Z 1

yD0

F YA;oper .y/ dy; ton/week.
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To illustrate these calculations, assume, for simplicity, that as far as product A
is concerned the same parameters (maintenance, blackout, and personal allowance)
apply to the other three shops. Then,

F YA;oper .y/ D



1 � max

�
0;

y � 16:725

6:295

�

1 � max

�
0;

y � 11:150

7:684

�

�



1 � max

�
0;

y � 16:725

8:387

�

1 � max

�
0;

y � 26:016

11:652

�
;

with 11:150 � y � 37:668:

It is clear that shop 4 plays no role in the determination of the bottleneck capacity,
since its distribution starts after the completion of the other three distributions.
Further, since the distribution of shops 1 and 3 start at 16.725, the probability
distribution in the interval [11.055, 16.725] is identical to the distribution of the
operational capacity of shop 2, which we assumed to be uniform. In the interval
[16.725, 18:834], shops 1 and 3 may be the bottleneck shop and the distribution is
no longer the simple uniform. The exact cumulative distribution is given by

FYA;oper .y/ D y � 11:150

7:684
; for 11:150 � y � 16:725;

and for 16:725 � y � 18:834 we have,

FYA;oper .y/ D 1 �



1 � max

�
0;

y � 16:725

6:295

�

1 � max

�
0;

y � 11:150

7:684

�

�



1 � max

�
0;

y � 16:725

8:387

�
:

The cumulative distribution of the bottleneck is shown in Fig.7.6 from which it
is seen that one can indeed take the density function to be approximately uniform
between the two limits; i.e., if we denote the bottleneck capacity by YA;oper then it
is approximately uniformly distributed between 11:150 and 18:834:
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Fig. 7.6 The cumulative distribution FA;oper .y/ of the bottleneck operation for product A
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The upshot of this analysis is twofold: first, the bottleneck operational capacity
of the plant for product A varies randomly from as low as 11:150 ton/week to
as high as 18:834 ton/week, and second, the average capacity is (approximately)
11:150 C 18:834=2 � 15 ton/week, as previously suggested (see Table 7.1 under
column “BNC”).

7.9 Conclusions

The concept of capacity in humans and processes is fuzzy and elusive, and is,
unfortunately, often confused with other notions such as performance, output,
throughput, etc. As a consequence, the measurement of “capacity”, which is often
taken as “well known”, has remained uncharted ground.

The folklore of industrial engineering contains the following anecdote.
Four railroad repairmen were on a “platform” on the track fixing some of its
joints when they heard the express train approaching them. They realized that if
they stay on the platform they shall certainly die, and if they jump off the platform
and leave it on the track the train may be derailed and hundreds of passengers shall
certainly be hurt. They had only one option, to remove the platform off the track;
which they did just in time for the express train to pass safely. Afterwards they tried
to put the platform back on the track but could not – it was too heavy for them. It
took 12 men to lift the platform and place it back on the track! Question: what is
human lifting capacity?

It is our contention that there are not one but four kinds of “capacity”, and who-
ever talks about “capacity” should clearly identify which one is referred to; they are:
nominal, operational, planned, and realized capacities. It is also our contention that
in the majority of cases one cannot measure capacity, any one of the four types, by
a crisp number, but that its proper identification requires distribution of values and
a probability statement attached to its values. This view necessitates a different type
of analysis (of existing processes) and synthesis (of proposed ones) that is different
in methodology as well as conclusions.

Knowledge of a plant’s capacity is required for the myriad of uses to which such
knowledge is put, particularly the whole gamut of activities that are related to the
field of production planning and control, from plant location and sizing to the daily
scheduling of operations.

We trust that this chapter will motivate research in at least three important and
related issues.

First, the establishment of a taxonomy of “applicable capacity concepts” in the
various fields of production and logistics. One would expect that the needs of a
“flowshop” in a chemical process are different from those of a “jobshop” in a general
engineering firm.

Second, not all the six factors listed in Sect. 7.7 are at play at any one time, or
are present in the same firm. It is possible that management, if made cognizant of
the role these factors play in determining its capacity, will identify the factors that
are relevant to its particular environment. Management may even be able to go one
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step further and determine, with some degree of confidence, the variability of these
factors and the degree of their impact on capacity. In which case, the construction
and validation of models for the accurate and precise measurement of the combined
impact of these factors, taking stochastic behavior into account and incorporating
the relevant concepts of production engineering relative to the degradation of per-
formance with use and age would be a profitable undertaking. This would certainly
be much preferred to trying to produce a set of separable numbers which represent
the capacity of the facility for each item produced. We gave rather rudimentary ex-
amples of how one can proceed in this arena, but a great deal more needs to be done.

Third, the implementation of such paradigms on select prototype enterprises
that would demonstrate the subtleties and degree of applicability of the proposed
procedures to real-life situations, and perhaps point out the need for other classes of
capacity.

Appendix:
Mathematical Background and Derivations

The Variance of Compound Random Variables

We are interested in the variance of a compound random variable (r.v.). In particular,
we wish to establish a relation between the variance of the r.v. X and its variance
when conditioned on another r.v. Y. We start with a lemma which we use to derive
the desired result.

Lemma 7.1.
var.X/ D E Œvar.X jY /� C var .E ŒX jY �/ : (7.A.1)

Proof.

E Œvar.X jY /� D E
h
E �X2jY � � .E ŒX jY �/2

i
; by definition

D E �E �X2jY �� � E
h
.E ŒX jY �/

2
i

;

D E �X2
� � E

h
.E ŒX jY �/2

i
: (7.A.2)

The second equality is secured by pushing the expectation through the square
bracket, and the third equality follows from the fact that the expectation of the con-
ditioned X2 is the unconditioned expected value of X2 itself.

We also have by the definition of variance,

var.E ŒX jY �/ D E
h
.E ŒX jY �/2

i
� .E ŒE ŒX jY ��/2 ; by definition

D E
h
.E ŒX jY �/

2
i

� .E ŒX�/2 : (7.A.3)
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Adding these two expressions yields

E Œvar.X jY /� C var.E ŒX jY �/ D E �X2
� � .E ŒX�/2 ;

in which the right side is the variance of X, and the result in (7.A.1) follows. ut
Let X1; X2; : : : be independent and identically distributed r.v.’s (each represent-

ing the duration of an interruption) with cumulative distribution function (cdf ) F
having mean E ŒX� D 	X and variance var.X/ D �2

X : Assume that the Xt ’s
are independent of the nonnegative r.v. N (the number of occurrences). The r.v.
S D PN

iD1 Xi is called a “compound r.v.” in which the variance is secured by the
following argument that uses Lemma 7.1. We have that

E ŒS jN D n� D n	X ; (7.A.4)

which

) E ŒS jN � D N	X : (7.A.5)

Upon removing the conditioning, we get

E ŒS� D 	XE ŒN � D E .X/E ŒN � : (7.A.6)

To determine the variance of S, we first condition on N,

var.S jN D n/ D var

 
nX

iD1

Xi jN D n

!
;

D var

 
nX

iD1

Xi

!
D n�2

X :

Therefore,
var.S jN / D N�2

X ;

in which N is a r.v. Hence,

E .var.S jN // D �2
XE ŒN � D var.X/E ŒN � : (7.A.7)

To utilize the result in Lemma 7.1, we need to evaluate var .E ŒS jN �/ ; which is
given as follows:

var .E ŒS jN �/ D var .NE ŒX�/ ; by (7.A.5)

D .E ŒX�/2 var.N /; since E ŒS� is a constant. (7.A.8)
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Using the result in (7.A.1) and substituting from the last two results, we have that

var.S/ D E Œvar .S jN /� C var .E ŒS jN �/

D var .X/ E ŒN � C .E ŒX�/2 var.N /: (7.A.9)

The Compound Poisson Process

An interesting special case which has many applications in practice has N as a
Poisson r.v. Then S D PN

iD1 Xi is called a “compound Poisson r.v.” Because the
variance of a Poisson r.v. is equal to its mean, it follows that for a compound Poisson
r.v. with E ŒN � D �, we have,

var.S/ D ��2 C �	2 D �E �X2
�

;

where X has the cdf F.

The Distribution of a Ratio: A Geometric Argument

Suppose we have two r.v.’s X and Y that are uniformly distributed in the intervals
Œa; b� and Œc; d �, respectively, with 0 < a < b and 0 < c < d . Let W D X=Y . The
problem is to find the cdf of W, FW .w/. Since X and Y are strictly positive r.v.’s, it
is clear that

FW .w/ D Pr .W � w/ D 0 if w <
a

d
or w >

b

c
:

Thus, we may take b=c � w � a=d:

Now,

Pr .W � w/ D Pr



X

Y
� w


D Pr .X � wY / ;

D Pr



Y � X

w


;

D Pr Œ.X; Y / 2 Sw� ;

where
Sw D

n
.x; y/ W a < x < b; c < y < d; y � x

w

o
:

The ratio space as shown in Fig. 7.A.1 [assuming that .da=c/ < .cb=d/] is
divided into three regions.
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a/w1 b/w3

cb/d

c

d

Fig. 7.A.1 Ratio space for geometric development of the distribution of a radio of random
variables

Region I

We seek the value of

Pr Œ.X; Y / 2 Sw� D 1

K

Z da=c

xDa

 Z d

yDx=w
fX;Y .x; y/ dy

!
dx; (7.A.10)

in which
K D .b � a/ .d � c/ :

The probability in (7.A.10) is given by the area of the triangle above the line
x=y D w1; given by (the base) � (the height of the triangle), where the base is
dw1 � a and the height is d � .a=w1/I hence

Pr

�
X

Y
� w1

�
) 1

2K
.dw1 � a/ .d � a

w1

/;

D .dw1 � a/2

2Kw1

I a

d
� w1 � a

c
: (7.A.11)

As a check, Pr ŒX=Y � w1�w1Da=d D 0; as it should be. We shall need the next
value for addition to the results of the other regions,

Pr

�
X

Y
� w1

�

w1D a
c

D a

2Kc
.d � c/2 : (7.A.12)
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Region II

Similar reasoning leads to evaluating the area between the line of slope w2 and the
line of slope a=c; which is a trapezoid of height D .d � c/ and two parallel sides
given by .dw2 � .da=c// and .cw2 � a/, respectively. Hence,

Pr

�
X

Y
� w2

�
) .c C d/

2K

�
w2 � a

c

�
.d � c/ ;

D
�
d 2 � c2

	

2K

�
w2 � a

c

�
I a

c
� w2 � b

d
: (7.A.13)

As a check, Pr ŒX=Y � w2�w2Da=c D 0; as it should be. We shall need the next
value for addition to the results of the other regions,

Pr

�
X

Y
� w2

�

w1D b
d

D
�
d 2 � c2

	

2K



b

d
� a

c


: (7.A.14)

Region III

Similar reasoning leads to evaluating the area between the line of slope w3 and the
line of slope b=d; which is easier to compute as it is equal to the area of the whole
triangle of region III less the lower triangle below the line of slope w3: The area of
region III is,

1

2K



b � cb

d


.d � c/ : (7.A.15)

The triangle below the line of slope w3 has area equal to

1

2K
.b � cw3/



b

w3

� c


: (7.A.16)

The desired probability is the difference between these two expressions,

Pr

�
X

Y
� w3

�
D 1

2K

�

b � cb

d


.d � c/ � .b � cw3/



b

w3

� c

�
;

D 1

2K

"
b .d � c/2

d
� .b � cw3/



b

w3

� c

#
; for

b

d
� w3 � b

c
: (7.A.17)

As a check, Pr ŒX=Y � w3�w3Db=d D 0; as it should be. We shall need the next
value for addition to the results of the other regions,

Pr

�
X

Y
� w3

�

w3D b
c

D b .d � c/2

2Kd
(7.A.18)
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Fig. 7.A.2 Cumulative distribution function of X/Y with both U(0,1]

The final check is the sum of the three regions,

(7.A.12) C (7.A.14) C (7.A.18);

D a

2Kc
.d � c/2 C

�
d 2 � c2

	

2K



b

d
� a

c


C b .d � c/2

2Kd
;

D .d � c/

2K
� 2 .b � a/ D 1; by the definition of K.

If both X and Y are uniformly distributed over the interval .0; 1�, then the cumu-
lative distribution would appear as shown in Fig. 7.A.2.

Application of this theory to our case, the variable X is the capacity and the
variable Y is the operational time per week (referred to in the text as L). In shop #1,
we have the following parameters:

a D 18, a
d

D 0.541

b D 22, a
c

D 0.574

c D 31:373 b
d

D 0.661

d D 33:293 b
c

D 0.701

Substituting these parameters in expressions (7.A.11),(7.A.13) and (7.A.17)
results in the complete specification of the probability distribution function over
the full range of w,

FW .w/ D

8
ˆ̂<

ˆ̂:

0:057 � .33:293w�18/2

w ; 0:541 � w � 0:574,

0:121 C .w � 0:574/ ; 0:574 � w � 0:661,

0:618 � 0:073 .22 � 31:373w/
�

22
w � 31:373

	
; 0:661 � w � 0:701.

The plot of FW .w/ is given in Fig. 7.A.3, which is almost linear except at the
two exterminates (especially between 0.582 and 0.660 where it is D 0:0142/.
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Fig. 7.A.3 Cumulative distribution function (cdf) of hourly rate

The Distribution of a Ratio: An Algebraic Argument
(Contributed by J.R. Wilson)

Suppose that X 	 U Œa; b� and Y 	 U Œc; d � are independent r.v.’s with 0 < a < b

and 0 < c < d .3 Thus, X has probability density function (pdf)

fX .x/ D
(

1
b�a

; for a � x � b,

0, otherwise;
(7.A.19)

and the cdf of X is

FX.x/ D

8
ˆ̂<

ˆ̂:

0, if x < a,
.x�a/
.b�a/

, if a � x � b,

1, if x > b:

(7.A.20)

Similarly, the pdf of Y is given by

fY .y/ D
(

1
d�c

; for c � y � d ,

0, otherwise;
(7.A.21)

and the cdf of Y is

FY .y/ D

8
ˆ̂<

ˆ̂:

0, if y < c,
.y�c/
.d�c/

, if c � y � d ,

1, if y > d:

(7.A.22)

We seek the cdf of W D X=Y . Let

FW .w/ D PrfW � wg; for � 1 < w < 1; (7.A.23)

3 Professor James R. Wilson, Head of the Industrial and Systems Engineering Department, North
Carolina State University, Raleigh, NC 27695-7906, USA.
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denote the cdf in question. We see that

FW .w/ D 0 for w � a

d
and FW .w/ D 1 for w � b

c
: (7.A.24)

For a=d � w � b=c, we compute FW .w/ by conditioning on the value of Y and
applying the law of total probability:

FW .w/ D Pr

�
X

Y
� w

�
;

D
Z d

c

Pr

�
X

Y
� w j Y D y

�
fY .y/dy;

D
Z d

c

PrfX � wyg dy

d � c
(since X andY are independent);

D 1

d � c

Z d

c

FX .wy/dy;

D 1

d � c

"Z minfb=w;dg

maxfc;a=wg
wy � a

b � a
C
Z d

minfb=w;dg
1 dy

#
: (7.A.25)

The limits of integration in (7.A.25) are derived as follows. Observe that since
w > 0, we have

wy � a if and only if y � a

w
(7.A.26)

and

wy � b if and only if y � b

w
I (7.A.27)

and combining (7.A.26) and (7.A.27) with (7.A.20), we obtain (7.A.25). It follows
from (7.A.25) that

FW .w/ D 1

2 .b � a/ .d � c/ w

"

w min

�
b

w
; d

�
� a

2

�
�

w max
n
c;

a

w

o
� a

�2
#

Cd � min fb=w; d g
.d � c/

;

D w

2 .b � a/ .d � c/

"

min

�
b

w
; d

�
� a

w

2

�
�

max
n
c;

a

w

o
� a

w

�2
#

Cd � min fb=w; d g
.d � c/

; (7.A.28)
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for a=d � w � b=c: To get differentiable expressions for FW .w/ on nonempty
open intervals, we have to consider two distinct cases:

Case I: b=a � d=c: In this case, (7.A.28) can be re-expressed as follows:

FW .w/ D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

.dw�a/2

2w.b�a/.d�c/
; for a

d
� w � b

d
,

2dw�.aCb/
2w.d�c/

; for b
d

� w � a
c

,

�b2C2.bd�adCac/w�c2w2

2w.b�a/.d�c/
; for a

c
� w � b

c
:

(7.A.29)

Case II: b=a > d=c. In this case, (7.A.28) can be re-expressed as follows:

FW .w/ D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

.dw�a/2

2w.b�a/.d�c/
; for a

d
� w � a

c
,

w.cCd/�2a
2.b�a/

; for b
c

� w � b
d

,

�b2C2.bd�adCac/w�c2w2

2w.b�a/.d�c/
; for b

d
� w � b

c
:

(7.A.30)

Expressions for the pdf are now easily obtained on each of the subintervals indi-
cated in (7.A.29) and (7.A.30).

Although all this is somewhat tedious, the main point is that both the pdf and
cdf are piecewise rational functions in w and thus are fairly easy to manipulate
numerically so as to compute the moments of W, for example.

Remark 7.A.1. Notice that in both (7.A.29) and (7.A.30) we have equality of the
right-side limit

FW .zC/ 
 lim
w!z
w>z

FW .w/ (7.A.31)

and the left-side limit

FW .z�/ 
 lim
w!z
w<z

FW .w/; (7.A.32)

for all real z; in particular, we have,

FW .z�/ D FW .zC/ for z 2
�

a

d
;

b

d
;

a

c
;

b

c

�
; (7.A.33)

since W is a continuous r.v. and thus FW .z/ must be continuous at every real z.
Moreover, note that FW .a=d/ D 0 and FW .b=c/ D 1 in both (7.A.29) and (7.A.30)
as required.
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The noncentral moments of W are easily computed because X and Y are
independent, so we have

	W D EŒW � D EŒX�E

�
1

Y

�
;

D
"Z b

a

xfX .x/dx

#"Z d

c

y�1fY .y/dy

#
;

D



a C b

2



ln.d/ � ln.c/

d � c


;

D .a C b/ Œln.d/ � ln.c/�

2 .d � c/
(7.A.34)

and for k D 2; 3; : : :, the kth noncentral moment of W is given by

	0
k D E

h
W k

i
D E

h
Xk
i

E
h
Y �k

i
;

D
"Z b

a

xkfX .x/dx

#"Z d

c

y�kfY .y/dy

#
;

D
"

bkC1 � akC1

.k C 1/.b � a/

#"
c1�k � d 1�k

.k � 1/.d � c/

#
;

D
�
bkC1 � akC1

	 �
c1�k � d 1�k

	

.k2 � 1/.b � a/.d � c/
: (7.A.35)

Then the variance and third and fourth central moments of W are obtained in the
usual way,

�2
W D varŒW � D E

h
.W � 	W /2

i
D 	02 � 	2

W ;

E
h
.W � 	W /3

i
D 	0

3 � 3	0
2	W C 2	W

3;

E
h
.W � 	W /4

i
D 	0

4 � 4	0
3	W C 6	0

2	W
2 � 3	W

4I

and then the skewness and kurtosis of W can be computed from

E
h
.W � 	W /3

i

�3
W

and
E
h
.W � 	W /4

i

�4
W

; (7.A.36)

respectively.
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Chapter 8
Data in Production and Supply Chain Planning

Laura Dionne and Karl G. Kempf

8.1 Introduction

Charles Babbage, one of the inventors of mechanical engines capable of calculation,
commented (Babbage 1864): “On two occasions I have been asked, – ‘Pray,
Mr. Babbage, if you put into the machine wrong figures, will the right answers
come out?’ : : : I am not able rightly to apprehend the kind of confusion of ideas that
could provoke such a question.” Roughly 100 years later in the age of electronic
engines capable of calculation, an IBM instructor in New York named George
Fuechsel captured this idea more succinctly when he used “garbage in, garbage
out” as a training mantra.

For the computer programs that form the core of all but the smallest production
and supply chain planning systems, the “garbage in” side of the mantra refers to data
and the “garbage out” to the results of the analysis carried out using the data. This
chapter focuses on issues around data as inputs while most of the rest of this volume
deals with algorithms that use this data to supply analysis leading to decisions. Large
production and supply chain systems are so complex that there is no practical way
to plan them without using computer systems. Unless the users of these planning
systems understand in depth the ramifications of “garbage in,” there is a tendency to
assume “gospel out” by placing far too much confidence in the computer programs
providing the analysis.

To a large degree the practical discussion of data and issues related to data that
follows applies to any computer program, particularly the decision support systems
that are the focus of this book.

Issue A: One must comprehend what data is required to perform the desired analy-
ses to the point of being able to provide precise, unambiguous definitions for each
data element. In a large business organization it is sometimes surprising to find
how many data items must be included in a particular computation to satisfy all
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the personnel involved. It is also surprising how many different, and sometimes
conflicting, definitions may emerge for what would initially appear to be the same
data element.

Issue B: Given a set of data elements with definitions, one must address the com-
pleteness, correctness, consistency, and currency of any data set that is used as input
to any analysis process. Planners involved in day to day practice know that even
with extreme diligence it is impossible to have a perfect data set for any discussion
or decision. The goal is to have as good a data set as possible and a planning system
that can tolerate ever-changing data issues.

Issue C: However good (or bad) the data system, attention must be given to service,
maintenance, performance monitoring, and continuous improvement. Even in the
best of cases, data problems move around the system, the business evolves over
time, and the analysis requirements change as the company, products, customers,
suppliers, and markets grow and mature.

Issue D: While these “technical” issues are engaging and very important, a major
deciding factor influencing the quality and integrity of the corporate data systems is
the corporate culture. It is a simple matter to determine whether a company is truly
data driven by inspection of its data systems. Understanding of and respect for the
concepts of “defined, complete, correct, consistent, and current data” is reflected in
the corporate business processes that supply input data and/or consume output data.

Our discussion will not include the layers of hardware and software needed to
implement high quality data systems. It is our experience that this technology is
easily accessible in today’s marketplace and is not the constraint in building a world
class data system. That dubious distinction belongs to the points listed above and it
is these that we will elaborate. In the spirit of this volume, we will focus on plan-
ning and decision support systems rather than transactional systems, noting that
transactional data is equally important to the smooth and successful operation of the
business, and often overlaps with data needed for planning. Nor will our discussion
include the concept of information, since turning raw data into information through
various forms and layers of analysis is the focus of the majority of chapters in this
volume. We are interested in the foundational data on which analysis, decision mak-
ing, and planning are constructed.

8.2 What Data Is Needed

The data required for planning depends on what questions will be asked in the
planning process for local production planning and global planning in the supply-
demand network. Since there are a practically infinite set of possible questions,
the discussion here will provide illuminating examples without attempting to be
encyclopedic. For the simplest planning problems outlined in the introductory
chapter of this volume, the key questions for the firm included (1) what orders
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to accept, (2) what material to release into the factory, and (3) how to allocate the
finished product among customers. The more sophisticated problems described in
the introduction included additional questions about suppliers and customers across
the distributed organization of the firm.

In practice, asking planning questions and devising answers frequently reduces
to projecting the current state into the future utilizing past experiences. Consider
a production planner addressing the simplest planning problem and trying to an-
swer the “material release” question. The tactical answer would require at least data
concerning the following:

– Orders to be filled over the factory throughput time including volumes and due
dates.

– Finished units in inventory.
– Work in progress (WIP) in the factory along with estimates of:

� How many finished units are expected to result?
� When will the finished units be available for shipment?
� How many more units can the production system accept before becoming

unacceptably congested and negatively impacting factory throughput time?

– Raw material in inventory.

This data would allow the planner to do a time-staged forward projection, balancing
supply that is in inventory and will be leaving the factory against demand ship-
ping to customers to determine the appropriate “material release.” Feasibility checks
would complete the process considering the inventory of raw materials and the level
of congestion that might result from implementing the desired releases.

However, even this simplest data is problematic. Depending on the firm’s policy
on customers changing orders, in volume or due date, data on the amount and timing
of finished goods needed is not necessarily constant. Data on finished goods and
raw material inventories can have multiple sources of error including human error
in placement, retrieval or counting, and loss through aging, spoilage, or pilfering.
Locating and counting the units distributed across the manufacturing process as
WIP is usually accurate, but estimation of remaining throughput time (Backus et al.
2006), yield through final inspection (Nurani et al. 1998), and the impact of raw
material release are difficult (Asmundsson et al. 2006). These estimates required for
the current problem rely on analysis of historical data about factory performance
and may include data on recent trends as well as long-term data.

Consider a more strategic production planner addressing the simple “material
release” question who desires to look forward multiple factory throughput times to
avoid surprises like excess inventory and stock outs. This planner will want access to
historical ordering data from customers to better estimate future demand including
seasonal effects. There will be similar data requests for past performance under
various conditions for raw material suppliers as well as material orders that have
been placed but not yet filled.

Expanding from the academic “material release” problem in the introduction
to the practical “material release” problems solved daily by the firm’s supply
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chain planners requires even more data. The inventory data must now include
many products in many sites, perhaps scattered around the world, including units
consigned to customers and distributors as well as units in transit, magnifying
the difficulties mentioned earlier. The useful historical data on demand for even
a medium-sized firm must cover multiple years over thousands of products and
customers (sometimes tens or hundreds of thousands). The data set would include
both forecasted and realized demand as well as important market events that in-
fluenced (or did not influence) demand. This event history would include pricing
changes, sales and marketing campaigns, and other such data for both the firm and
its competitors with their impact on the firm’s demand. Parameters from past and
present sales contracts may be required. In data-driven firms this very large data set
is maintained and used by the forecasting department, usually within the sales and
marketing group, to provide a demand projection for supply chain and production
planners.

On the supply side of the “material release” question, the useful historical data
again probably covers multiple years over thousands of materials and suppliers (or
tens or hundreds of thousands). Forecasts the firm sent to the supplier as well as
actual quantities purchased with prices would be included in the data set. Respon-
siveness to orders as well as pricing changes is important historical data in the
descriptor set for each supplier. Current materials inventory with all of its atten-
dant data issues is again an important component. The same is true for current and
historical purchase contract parameters and current orders in the pipeline for many
different materials from many different suppliers. The materials purchasing depart-
ment usually maintains and uses this very large data set, calling upon it to respond
to requests from supply chain and production planners.

The firm’s own capacity data completes the set discussed here. On the one hand is
data about the firm’s current equipment set and its short and long-term performance
history. This might be extended to include forward-looking capacity plans for re-
arranging and adjusting capacity based on future product plans and market growth.
On the other hand is data about the firm’s current WIP across multiple factories for
multiple products. It is difficult enough to keep track of the position of each unit in
each factory. Even more difficult is estimating the future yield of saleable final prod-
ucts from the WIP in multiple factories with varying local conditions as it nears the
end of the production line. Most difficult of all is estimating the timing of specific
units of output across multiple products in multiple factories.

In some cases, product identity can be added to yield and timing. In a fan-in sup-
ply chain where many parts are assembled to get to a few final products, individual
parts may be used in multiple products and WIP that was started as a subassem-
bly for one product may be routed into another product if demand changes during
the production lead time. Identity data is even more difficult to disambiguate in
a fan-out supply chain where a common set of starting materials is progressively
differentiated in the production process since material released to support a broad
family of products can be routed to specific individual products during manufacture.
The production engineering department usually maintains this complex data set that
provides capacity estimates for supply chain and production planners.
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The planners’ job is still basically the same as initially described above –
considering the time-phased estimates of customer demand, current and future in-
ventories of raw materials and finished products, and a deep understanding of the
firm’s capacity to decide the material release question. However, in practice this task
requires a data set large enough to require the support of three different departments
in the distributed organization of the firm. Of course there are other basic questions
such as “order acceptance” and “finished product allocation” that require additional
data. But a very large set of questions related to planning can be addressed with the
appropriate data sets on customer demand, raw material supply, and the firm’s ca-
pacity including inventory. The data sets need to incorporate historical and current
(that tomorrow becomes historical) data and as well as forecasts for the future.

8.3 The Necessity and Difficulty of Data Definitions

However large or small the data set, however many or few organizations own the
data, however many uses for the same data element, precise definition is required
to avoid confusion when collecting, storing, retrieving, and using the data (Wang
et al. 1995, Madnick and Zhu 2006). This definitional perspective on data has many
aspects that can be demonstrated on the data used in the simplest planning problems
outlined in the introductory chapter of this volume.

The most rudimentary is the base definition of the atomic data elements or “mas-
ter data.” These are the elements that are directly measured (rather than derived)
and widely used across the enterprise and are the foundation for all analysis and
planning. For example, what is the definition of “work in progress” or WIP data? Is
it all the units in the factory between raw material input and final product output?
Should the engineering units in the factory that are there for some process diagnos-
tic or improvement experiment be counted? Is the WIP only those units that can be
sold, a definition that would make sense to the sales and marketing organization? Or
is the WIP any unit that will use the capacity of a piece of equipment, a definition
that would make sense to the manufacturing organization? Or is it both, a definition
that would make sense to finance since any unit that uses capacity may be thought of
as generating a cost and any unit that can be sold as generating revenue. Or should
there be engineering WIP and production WIP as separate data categories, both us-
ing capacity, generating cost, and influencing congestion, but only the later directly
generating revenue? Within these categories how should units that have been placed
on hold for some processing irregularity be included? These units may be scraped
where they sit (pure cost) or released for further processing and exit as final product
(contributing to cost and revenue).

As another example, how does one define “capacity” data? When considering an
individual machine, the most obvious definition is the number of units that can be
produced during a fixed period of time. But the machines in the introductory chapter
produced different products at different rates. If an average is to be taken, should
the machine that requires some setup change when switching from one product
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to another have that setup time included? In practice, machines require scheduled
maintenance and suffer unplanned breakdowns. Machines are sometimes used for
engineering exercises such as process improvement experiments or functional up-
grades. How long a time period needs to be considered to properly account for the
effect of these activities on production capacity? Considering that some of these
events are stochastic, it would follow that the capacity of a tool can only be defined
as a distribution relying on historical data about detailed machine performance over
a long period of time (Dalvi and Suciu 2007). If capacity data for each machine
in a factory needs to be defined as a distribution, how is the capacity of a factory
defined?

This last question introduces the concept of aggregation in the definition of data.
The example of historical sales data can be used to expand on this concept. Sales
vary by product and by customer over time, and would be considered to be the
atomic data. Manufacturing might find it useful to define an aggregation by prod-
uct over all customers over time for production planning purposes. The detail of
sales quantity and timing by product is useful to manufacturing but by customer is
not. Logistics might define an aggregation over all products for all customers by
geographic region. For transportation planning, geographic detail is useful but cus-
tomer and product may not be (especially if the products are of uniform size and
weight, like semiconductor chips, for example). A definition of an aggregation by
time period to expose seasonality effects might be useful for the finance department
for revenue planning. An aggregation defined over all products by customer might
be useful to sales and marketing, allowing them to rank customers by overall rev-
enue for prioritization in production and supply chain planning. A crucial concept
here is that data held in its atomic form can be aggregated in a large number of ways,
but data held in aggregate form is usually impossible to disaggregate. This must be
taken into account when building data definitions to insure that the lowest levels
are included as well as the various levels of aggregation on various axes (product,
customer, geography, season, etc.).

The reality of practice is that all of the above definitions are useful, each to a
different department for a different reason (Brackett 1994). This means that there
is a need for definition administration. Who is empowered to set new definitions
as need arises and retire old definitions that have passed from usefulness? How are
the definitions documented, stored, distributed, and accessed? To avoid confusion,
the definitions must be enforced. Who is responsible for this enforcement and what
is the enforcement process? It is relatively easy to imagine how to use software tools
to enforce definitions on any agent (human or electronic) that enters or manipulates
data, although it may be argued that any such system can be compromised. Enforc-
ing definitions on agents that access data and use it for various purposes is a much
more difficult problem to solve.

Perhaps the most difficult data definition problem involves “demand.” Since the
definition of demand is such a central concept to production and supply chain plan-
ning, an extended thought experiment is warranted to describe this definitional
conundrum. Consider a firm in a specific situation at the beginning of month M.
The enterprise manufactures two products P1 and P2, each with a manufacturing
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lead time of 1 month that are used by its customers in their products. Six months
ago in M-6, well outside the production lead time, Corporate Sales and Marketing
(CSM) requested that the Corporate Manufacturing Organization (CMO) prepare
itself to supply 150K units of P1 and 150K units of P2 per month. CMO responded
by preparing to supply 160K units of each product. Although CMO committed only
300K total units to CSM, they held a 10K capacity buffer on each product since in
the past (a) CSM had underestimated demand and CMO had been forced to stretch
to cover the shortfall, and (b) CMO occasionally experienced production problems
leading to lost output. CMO has an additional degree of freedom since its capacity
is partially flexible. In the 320K total units, it could actually produce as many as
200K units of P1 (but then only 120K units of P2) or 190K units of P2 (but then
only 130K units of P1). CSM has been given a basic model of this flexibility at the
300K total unit level that CMO has committed.

Based on their tactical econometric models for months M-6 through M-2, CSM
has determined that the total available market (TAM) for P1 is 300K units and they
believe that they should be able to capture a 60% share of market (SOM) against
their weaker competitor. Therefore the CSM goal for P1 is set at 180K units for
month M. Similarly the TAM for P2 has been determined to be 300K units with a
possible SOM of 40% against a stronger competitor for a goal of 120K units for
month M. The setting of these goals was heavily influenced by the CMO committed
production capacity of 300K total units and the flexibility model between P1 and P2.
This plan for month M was passed to CMO at the end of month M-2 to be executed
in month M-1 to supply products in the market in month M.

As depicted in Fig. 8.1, the enterprise sells its products in geographies G1 and
G2. Customers Ca and Cb are located in G1 and place their orders with the enter-
prise’s G1 CSM representative. The enterprise also has a CSM representative in G2
who takes orders from customers Cx and Cy. The CSM representatives are in close
contact with their customers communicating on a weekly basis.

In geography G1, the CSM representative took orders early in month M-2 for
the coming month M. Ca placed orders for 40K units of P1s and 40K units of P2s

Customer Ca     P1,P2

Geography G1

Customer Cb     P1,P2

Customer Cx     P1,P2

Geography G2

Customer Cy     P1,P2

Enterprise
G1 Rep

Enterprise
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Corporate
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Manufacturing
Organization

Econometric
Models

TAM,SOM

Committed
Capacity

Buffer
Capacity

Fig. 8.1 Participants in the demand thought experiment
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while Cb placed orders for 80K units of P1s and 60K units of P2s. Thus the G1
representative had total orders for 120K units of P1s and 100K units of P2s to pass
on to headquarters. But this representative had seen the CSM global estimates of
180K units for P1 and 120K units for P2 and did not feel comfortable passing along
such large orders. Since he felt that Cb was being overly optimistic, as they had
consistently been in the past, he passed 100K P1 and 80K P2 for month M based on
Cb being judged down by 20K units on each of its orders.

The orders that the CSM representative in G2 took early in month M-2 included
Cx orders for 70K units of P1 and 30K units of P2 and Cy orders for 60K units
of P1 and 80K units of P2. The total G2 orders were 130K units of P1 and 110K
units of P2. With knowledge of the CSM global estimates for the two products, and
with sales commissions clearly in mind, the G2 representative passed the customers’
order quantities directly up to headquarters.

The CSM personnel at headquarters combine the judged geography data late in
month M-2. Total orders for month M were 230K units for P1 and 190K units for P2,
well over the committed capacity of CMO as well as the econometric predictions of
CSM. Senior personnel decide to proportionally commit the planned use of CMO
capacity to the orders to maintain a level playing field among the customers. This
meant that early in month M-1 the month M planned production was committed to
the customers through the CSM Geography representatives as shown in Table 8.1.

On the first day of month M as the committed production quantities began ship-
ping, customer Ca contacted the CSM representative in G1 to ask for an additional
10K units of product P1. This request was passed to headquarters. A few days later,
customer Cy contacted the CSM representative in G2 to ask to decrease its order for
product P1 by 25K units. As this was within the terms of Cy’s contract, the repre-
sentative agreed but delayed passing this message to headquarters in case customer
Cx asked for an increased quantity of product P1. This was based on the fact that
Cx initially ordered 70K units of P1, but only 55K units were committed by the
enterprise. In the middle of month M, customer Cb contacted the G1 representative
asking to cancel its entire committed 25K units of product P2 based on the surprise
retraction by one of its customers of a very large order that required the P2s as a
component. This was a relief to CMO who encountered production problems and
would be unavoidably short of P2s by 10K units by the end of month M. Finally at

Table 8.1 Initial orders in the demand thought experiment

Customer Product Requested Judged Committed

Ca P1 40 K 40 K 30 K
P2 40 K 40 K 25 K

Cb P1 80 K 60 K 45 K
P2 60 K 40 K 25 K

Cx P1 70 K 70 K 55 K
P2 30 K 30 K 20 K

Cy P1 60 K 60 K 50 K
P2 80 K 80 K 50 K

Total 460 K 420 K 300 K
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the end of month M, customer Cx contacted the G2 representative to ship back 10K
unused units of P2, and based on the terms of its contract, the appropriate arrange-
ments were made for the return.

This is a simplified but realistic version of a typical month for a firm under
conditions of initial orders exceeding capacity. (Note that an equally interesting ver-
sion could be constructed for conditions of capacity exceeding initial orders.) This
scenario raises many questions. There was enough burst capacity to satisfy more
demand, but as it was hidden from CSM by CMO, commitments were lower than
they could have been. The cancelation in one geography could have been used to
satisfy demand in the other geography but was not.

These are useful questions concerning commitment and execution policies and
dynamic demand fulfillment, but the focus of this thought experiment is demand
identification. In the process of historical data collection for use in future demand
management computations, the important question is “what was the demand in
month M?” A number of candidates must be considered as shown in Table 8.2.

Candidate 1 is simply the initial orders placed by the customers. Candidate 2
includes the judgment of the enterprise’s representatives in the field closest to the
customers. But it would be difficult to consider these an accurate demand signal
since the customers knew that the enterprise was limited on capacity from discus-
sions with the field representatives and understood from past experiences that there
was a “proportion limited capacity according to customer orders” rule in place. This
knowledge induced them to inflate their initial orders. It might be appropriate to
consider the original orders as an upper bound, although in this case it would be a
high bound.

Candidates 3 through 5 represent CMO’s view of the situation and are based on a
doubly pessimistic approach: pessimism about CSM’s ability to predict the market,
and pessimism about CMO’s ability to tightly control its production process.

Candidates 6 and 7 represent CSM’s best efforts to manage the uncertainties in
the market based on their models, understanding of CMO’s capacity, and efforts to
maintain equality in the treatment of their customers. The econometric models of
CSM and the committed capacity of CMO (based on CSM’s econometric models
over a longer time horizon) clearly influence the enterprise’s view of demand.

Table 8.2 Candidates for recording historical demand

Source P1 P2 P1 ˙ P2

1 Initial customer orders 250 K 210 K 460 K
2 Geography judged orders 230 K 190 K 420 K
3 CMO actual capacity 180 K 140 K 320 K
4 CMO realized capacity 180 K 130 K 310 K
5 CMO committed capacity 180 K 120 K 300 K
6 CSM econometric models 180 K 120 K 300 K
7 CSM initial commitments 180 K 120 K 300 K
8 CSM adjusted commitments 165 K 85 K 250 K
9 Shipped product 155 K 95 K 250 K
10 Shipped product less returns 155 K 85 K 240 K
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Candidate 8 represents the firm’s dynamic responses to market activity during
month M (10K units of P1 requested by Ca, 25K units of P1 canceled by Cx, 25K
units of P2 canceled by Cb, 10K units of P2 returned by Cy). Candidates 9 and 10 are
slightly different ways to account for the same adjustments. It might be appropriate
to consider these results as a lower bound on demand.

Although recording all these options is advisable for future forecasting efforts,
assume that the personnel recording demand data select 155K units of P1, 85K units
of P2, and 240K units overall as the official “demand” for month M. Note that these
are 62%, 40%, and 52%, respectively, of what the customers initially ordered and
86%, 71%, and 80%, respectively, of what the econometric models of the CSM
organization originally forecast.

Now consider the enterprise at time M+18. The “demand” data base has the data
entered in month M along with data from a number of months before and all months
after M. A few things have changed from the situation portrayed in Fig. 8.1. Cus-
tomer Cy has acquired customer Cx in geography G2 and the resulting Cxy requires
a different sales and marketing approach because of its size. A new enterprise Cz
has started up in geography G2 and has become a customer, but is difficult to deal
with since it aims to compete on low price. Product P1 has been phased out to be
replaced by product P3 with expanded functionality. Product P2, which had only
been released into the market in month M-4, is now a best seller. The enterprise
representative in G1 has taken a different job and has just finished training his re-
placement. Based on strong enterprise results over the past six quarters, CMO has
expanded their capacity aggressively and currently have roughly 20% more than the
SOM estimated by CSM.

The forecasting cycle for months M+19 through M+24 is beginning. What data
should be used to best support the forecasting process? On the one hand everything
has changed: the customers, the products, the CSM field personnel, and the CMO
capabilities. On the other hand nothing has changed: CSM is running their econo-
metric models, CMO is buffering their capacity, the customers are ordering, and a
tactical commitment and a strategic forecast are needed. Simple projection from the
historical data is risky. The connection between the data in the “demand” data base
and the actual demand at the time it was collected is tenuous on at least two levels.
First, the data recorded in fact concerned what was shipped and has only a loose
relationship to actual demand. Second, little if any of the contextual data associ-
ated with the time period was captured. It is debatable how much of that data it is
possible to capture and how useful it would be even if it was.

All data from the most atomic to the most aggregated needs a crisp and clear
definition agreed upon by all suppliers and customers of that data. Lack of defini-
tion assures confusion across the corporate planning systems. Few definitions are
as easy to develop as might initially appear, and this difficulty increases with the
number of users and uses. Definitions of WIP and capacity are examples of com-
mon atomic elements that are surprisingly difficult to specify. It is not uncommon to
have to define more aggregations of atomic data than there are atomic elements (and
higher level aggregations of lower level aggregations). Sales data provides an excel-
lent example with multiple useful aggregations constructed from the atomic data.
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Finally, some data types are inherently problematic, with demand as an outstanding
example. Consensus on these items is especially difficult across the diverse organi-
zations in the corporation, but especially important to achieve (Brackett 1994).

8.4 Completeness, Correctness, Consistency,
and Currency of Data

Assuming that we have correctly identified all of the data elements needed to support
all production and supply chain planning questions, and we have adequately defined
each element and aggregation, we next apply the concept of “garbage in” to the
broad topic of data quality. We will discuss completeness, correctness, consistency,
and currency although the distinction is contrived considering the broad overlap
between these topics (Wang et al. 2001).

By completeness we simply mean acquiring all of the data required for the next
analysis. From a process perspective, completeness means the data collection sys-
tem is working for each and every data element. The probability of this being true
is inversely proportional to the size and complexity of the firm. Some of the data
collection will be automated, and the chances of all sensors and systems working
flawlessly all the time is vanishingly small. For example, tracking the dynamic loca-
tion of a few million individual units in a few hundred warehouses distributed across
the globe 24 hours a day 365 days per year with bar code readers will inherently in-
volve data incompleteness. Bar code readers have various failure modes, as do the
links connecting them to communication devices, the communication devices them-
selves, and so on. Some of the data collection will be performed by humans, some
employees of the firm, some not. Again the probability of realizing complete data
is vanishingly small since humans also have various failure modes, some physical,
some psychological.

Completeness issues can be improved over time but probably not completely
eliminated. The question therefore becomes that of how to minimize the impact of
incompleteness. Since most analysis algorithms manipulate the data set mathemat-
ically, data fields with no data or zeros usually lead to execution difficulties (i.e.,
divide by zero error messages) or “garbage out.” Program failure is arguably the
best case since there is a clear signal that something is amiss in the data set. Ap-
parently trouble-free program execution producing apparently sound results is the
worst case since the garbage out that results may be treated as gospel in the absence
of any indication of problems.

Data system design can help address this problem by at a minimum detecting, and
at best repairing, incomplete data. Filling up a data structure that initially contains a
nonsense character with respect to the expected data followed by a search for non-
sense can be effective. In the simplest case a report can be generated for personnel
who are responsible for completing the data set (failing to define such responsibil-
ity clearly and unambiguously is a major source of problems for obvious reasons).
With some overhead, default values or moving averages can be maintained for use
in auto-repair, again with notification to the appropriate personnel. In some cases,
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such as slowly changing data, for example, a simple form of auto-repair can be
implemented by making a copy of the old data set and generating the new data set
by overwriting the old. Previous values persist in positions where new data is in-
complete. Checking for and repairing incompleteness is necessary before initiating
analysis using the data. In some cases this may involve a meta-data definition spec-
ifying what data is needed for a particular analysis and what repair approaches are
appropriate.

Detecting and repairing inaccurate data is a much more difficult problem (Dasu
and Johnson 2003). In this case data is present but is wrong in some meaningful
sense. Some type of error has occurred during data collection, perhaps due to sensor
malfunction or human error. For example, a physical count of inventory in a ware-
house could have missed or double counted some units, or the count was correct but
the data entry was flawed, or both.

We have employed various approaches to this problem. One is to exercise human
pattern recognition capabilities by displaying the differences between the current
data set and some reference data set. The reference can be from the previous time
frame or can represent a moving average. The differences can be displayed directly
in a bar chart or can be sorted by size prior to display. Experienced humans can de-
tect changes that are out of the ordinary and investigate. With some overhead, upper
bounds for changes can be stored and applied with violations displayed to experts
for investigation. With even more overhead, upper and lower limits of acceptable
values for data items can be stored and used to check for plausibility (Petrovskiy
2003). This is easy for some elements and can be included in the data definition.
For example total number of units that can be stored in a warehouse must be non-
negative and has a spatially determined upper limit. For other elements this can be
rather difficult. Upper and lower bounds on the weekly output of a factory, for ex-
ample, might have to be specified by product mix. Other elements cannot usefully
be treated in this manner. Bounds on the amount of finished product or raw material
in transit at any point in time may have to be so broad as to be practically useless in
detecting inaccurate data.

Checking consistency in the data set is another way to detect inaccurate data
(Fan et al. 2001). Individual data elements may each pass all completeness and
correctness tests but be inconsistent and hence contain some error. Using another
warehouse example, the quantities of Product A and Product B in a particular ware-
house may each be within bounds, but the sum may be over the storage capacity of
the warehouse as stated in its capacity definition. The error may be in the quantity
of Product A or Product B or the warehouse definition, or some combination of all
these components.

Another root cause of consistency issues can be the currency or timeliness of
data collection and entry (Ballou and Pazer 1995). In the example above, assume
that warehouse data is collected at 9 AM and 9 PM each data and transmitted to
the central data repository. At 9 AM, the quantities of Product A and Product B were
individually and collectively accurate and acceptable. In the daily 1 PM delivery to
the warehouse a large number of Product B arrived, was offloaded onto the dock and
logged into the data system. At 6 PM a large amount of Product A was moved from
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storage onto the dock in preparation for shipment and the space vacated was used to
store the newly arrived Product B. At 10 PM transport for Product A arrived 2 hours
later than scheduled and Product A was loaded and logged out of the data system.
Clearly the 9 PM inventory update would shown a plausible amount or Products
A and B, but an implausible total inventory. Extending this simple example to a
large company doing business across multiple time zones, it is obvious that a wide
variety of data inconsistencies can having timing as their root cause.

The point of this extended (and perhaps tedious) set of issues and examples is
to emphasize the vanishingly small probability of having a complete, correct, con-
sistent, and current data set for production and supply chain planning. A large data
set is susceptible to a very large number of individual errors and errors in various
permutations and combinations. Detection and correction of each and every error is
neither feasible nor economically practical, but planning activities must proceed in
spite of this inherent difficulty.

The best defense is a thorough understanding of the system from the perspec-
tive of data providers, custodians, and consumers. The design and operation of the
system must be based on a clear understanding of (a) the inherent limitations of the
data providers, so that the system can account for detecting and correcting quality
issues and (b) the basic requirements of the data consumers for accessing and uti-
lizing the data (Chengalur-Smith et al. 1999, Jung et al. 2005). This is of course
more easily declared than accomplished. On the one hand, there are a practically
infinite number of data errors possible and the providers need to be aware of them.
On the other hand, there are a practically infinite number of analyses that can be
done on the data. Data consumers need to appreciate the system’s limitations in the
design of their analyses (Wang and Strong 1996, Raghunathan 1999). Of course dif-
ferent groups in the firm may have very different requirements for the same data
element(s). The system designers need to consider both views as well as those of
the custodians who will operate and maintain the system (Jarke et al. 1999, Ballou
and Tayi 1999).

The master data at the bottom of the data hierarchy has the highest quality re-
quirements. Since all aggregations and many calculations are directly based on it, it
deserves the most attention (Loshin 2008). How frequently can it and should it be
sampled? Should it be sampled at high frequency or low frequency, only on demand
or triggered by particular events? With what accuracy can it and should it be sam-
pled? Perhaps most importantly, how can it be captured and entered into the system
with the highest quality? A data system that can avoid taking “garbage in” as much
as possible becomes considerably easier to manage and tremendously more useful
(English 1999). As usual, prevention is superior to detection and correction.

8.5 Service, Maintenance, and Improvement Issues

Identifying and defining data elements and achieving quality of those elements are
necessary but not sufficient. The data is the product, and there are associated services
(Kahn et al. 2002). The custodians of the data system have to provide a variety of
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functions to both the providers and the consumers of the data. The basic services
include ease of use, responsiveness to change, and appropriate security. In our ex-
perience, the more cumbersome the data capture system, the lower the quality of
the input data. Concerning manual entry (that we strive to keep to a minimum), we
expend a great deal of effort with the data providers to understand their environ-
ment and concerns when developing data entry interfaces that focus on ease of use.
Consumers of the data are focused on the analysis that they are developing. The last
thing that they want to spend time on is finding or accessing the data. The data sys-
tem cannot be too easy or too fast for the consumers. The offsetting consideration to
ease and speed of use is security. Allowing indiscriminate access to the data entry
interface risks accidental or malicious corruption of the data system. Clearly, some
of the contents of the system are the most confidential data about the enterprise and
its operations. In a system supporting production and supply chain planning, data
about capacity, supplier contacts, future products, and so on must be protected. But
such protection can slow or stop critical analysis tasks. The balance between ease of
use and protection against misuse is a fundamental system design consideration. So
is responsiveness. The only constant about data systems is change. The basic goal
of the system is to reflect the ever changing world. However, the world changes not
only in the values of the data elements but also in the data elements themselves.
The product portfolio evolves over time, as does the roster of customers. The equip-
ment set changes, and new warehouse locations arise. New data elements are added
and old ones eliminated. New features are requested for data entry. New analyses
must be supported with evolving data queries. Other changes are driven by suppli-
ers, customers, and competitors. The data system has to be responsive to changing
elements, definitions, and use cases while protecting quality.

Maintenance is a related but larger concern. Maintaining completeness, cor-
rectness, consistency, and currency is an ongoing daily concern. This involves
monitoring data quality and since quality issues tend to move around over time this
is a particularly difficult problem (Lee et al. 2002, Pipino et al. 2002, Pierce 2004).
A practical solution is to include specific monitoring procedures in the definition
of data elements. Another is to maintain records tracking elements relative to the
bounds on values included in the definitions for purposes of correction. Injection
and detailed tracking of test data can be useful. The custodians of the data must be
creative in this endeavor considering the wide variety of origins, trajectories, and
uses of the elements in the enterprise system. Maintenance also involves the spec-
trum of software transitions from installing the latest release of the current system
to switching vendors usually impacting the quality of both the data and the service.
This topic is beyond the scope of this chapter but is an issue with all of the software
systems used by any firm.

Continuous improvement is another facet in this set of issues. On the one hand,
providers and consumers of the data can be a source of improvement ideas for qual-
ity of data and service based on their use of the system. Implementing a process to
collect their feedback is a relatively simple exercise that can yield very insightful
suggestions. In our experience, such a process gains momentum if constructive crit-
icism results in rapid and noticeable system improvements, especially if the person
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offering the suggestion is publicly recognized. On the other hand, quality monitors
give a complementary insight. The historical record of identifying and correcting
quality problems can be considered metadata for the continuous improvement effort.
A recurring problem provides an improvement opportunity assuming the root cause
can be identified.

8.6 The Importance of Developing a Data Culture

There are a number of inherent and inescapable technical problems associated with
high quality in data and data services. The solutions to each and every one of these
technical problems are dramatically influenced by the corporate culture. There are
additional problems that have little or no technical component and are solely due to
the corporate culture. The symptoms of these latter problems include lack of align-
ment on definitions, missing data, missing quality monitors, erratic performance
of existing monitors, lack of trust in the data system, long delays in fixing known
quality issues, lack of continuous improvement of the data system, and so on.

Development of a corporate culture around data quality eliminates the latter prob-
lems and supports developing solutions to the inherent technical problems (English
1999, Brackett 2000, Batini and Scannapieco 2006). There is recognition and com-
mitment throughout the corporate hierarchy that data quality is a never-ending
concern of every employee. A focus on data quality is embedded in every process at
every level (Lee et al. 2004). Ownership of data definitions including quality moni-
tors is clear, as are processes for review and improvement. Adherence to definitions
is expected and deviations are not tolerated. Shoddy practices are exposed and ad-
dressed. Monitors are exercised and results are analyzed with appropriate actions
following quickly. Critical success indicators are set for quality of the data and the
services involving collection and use of the data. Expectations are set for continuous
improvement. Reward structures are aligned with high data quality standards.

Constancy of purpose is an especially important component of developing and
maintaining the corporate data quality culture. Progress will not always be steady
but persistence is crucial. Developing a high quality data system is a daunting task.
Developing the processes to maintain a high quality data system in the face of rapid
and unpredictable changes in all facets of the business is the ultimate goal.

Over the past decade progress has been made on these topics using a convenient
analogy. For many years various industries have been forced through competition to
improve the quality of their products. This has resulted in a branch of manufactur-
ing engineering dealing with quality assurance (QA) including quality control (QC).
QA attempts to improve and stabilize production and associated processes to avoid
(or at least minimize) issues that led to quality problems in the first place. In QA it
is important to realize that quality is determined by the intended users or customers,
not by some absolute standard. QA includes regulation of the quality of raw materi-
als, components and sub-assemblies, production and inspection processes, services
related to production, and management. QC as a component of QA emphasizes
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testing of products to uncover defects. There are various specific instantiations of
QA, but all rely on three basic ideas. (1) Manufacturing processes have charac-
teristics that can be measured, analyzed, controlled, and improved. (2) Efforts to
achieve stable and predictable process results are of vital importance to quality. (3)
Achieving sustained product quality, including continuous improvement, requires
commitment from the entire organization, particularly from top-level management.

Since many firms have been forced by the marketplace to adopt this approach
to product quality, including the necessary but extremely painful organizational
changes, some researchers in data quality have advocated a similar approach (Wang
et al. 1998, Ballou et al. 1998, Shankaranarayan et al. 2003). Considering data as a
“product” makes accessible powerful tools from such well-developed and scientifi-
cally sound areas as reliability engineering and statistical process control. There are,
however, difficulties to be overcome by continuing research and lessons from prac-
tical application. Manufacturing processes are based on physics and chemistry and
can be characterized and repeated with precision. While the processes described in
this chapter concerning data in production and supply chain planning involve com-
puter programs that have similar properties, the processes also involve human that
do not. Manufacturing processes result in physical products that can be measured
and characterized using international standards of long standing. The same cannot
be claimed for data.

Summary

During the past few decades developed countries have been expanding from in-
dustrial economies to include information management as a critical capability.
Companies doing business in this environment must not only compete on design,
manufacturing, and distribution but also on their ability to assimilate new infor-
mation and respond appropriately. The information that fuels this new level of
competition is built on a foundation of data. The quality of the tactical and strategic
results obtained by the company reflects in large part the quality of the foundation
data and the derived information. Production and supply chain planning provide a
concrete example.

The danger is that a company will overestimate the quality of its data and un-
derestimate the impact of poor data quality on its success (Redman 1998). From
the perspective of production and supply chain planning, this double misestima-
tion can directly impact financial success. Inside the company, low data quality will
lead to operational inefficiencies (wasted time, materials, and capacity, inappropri-
ate inventory, inefficient distribution, with higher than necessary costs) and poor
decisions (wrong products in the wrong quantities in the wrong places at the wrong
times, with lower than expected revenues). Outside the company, the results will be
frustrated and alienated suppliers and customers. Dissemination of poor quality data
and information up and down the supply chain will result in a loss of credibility for
the company in its ecosystem, putting it at a serious (perhaps terminal) disadvantage
relative to its competition.
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From a different vantage point, building a corporate culture that deeply values
measuring and continuously improving its data quality can supply a formidable
competitive advantage. For production and supply chain planning this includes (a)
comprehending what data is required to perform the desired analyses including
precise definitions for each data element with actionable quality monitors, (b) fo-
cusing on the completeness, correctness, consistency, and currency of every data
element across the all data capture, storage, manipulation, and analysis processes,
and (c) establishing service, maintenance, and improvement processes that are ro-
bust in the face of changing requirements as the company, customers, suppliers,
competitors, and markets morph and grow.

Recent advances in computer hardware, software, and networking provide the
basic power tools to realize these data quality goals. Steady progress on measuring
and improving physical product quality in manufacturing provides an analogical
basis for data quality methods. But there are some crucial differences and therein lies
the motivation for research in this area on technical topics as well as organizational
dynamics.
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Chapter 9
Financial Uncertainty in Supply Chain Models

Aliza Heching and Alan King

9.1 Introduction

In this chapter, we discuss approaches to applying financial markets theory to
address risk and uncertainty, such as uncertainty in pricing or production costs, in
the formulation of supply chain models. Financial parameters such as revenues and
costs are key factors that drive optimal decisions in production planning and sup-
ply chain problems. Yet typically, these factors are the most difficult to capture and
quantify. The values of these parameters may depend on some future “state of the
market,” such as exchange rates, interest rates, or consumer prices, or they may
depend on the behaviors of suppliers, customers, or competitors. Supply chain con-
tracts generally contain provisions that determine revenues and costs based upon
observable indices such as the consumer price index or interest rates. Even when
contracts specify all dependencies, supply chain contracts often include features that
allow either or both parties the flexibility to modify their commitments at a future
date prior to delivery. Thus, significant uncertainty remains.

Financial markets theory addresses the problem of managing future uncertainty
in returns from portfolios of financial securities. The key idea in financial markets
theory is that risks may be hedged by trading securities with similar offsetting pay-
offs. Continuous trading activity acts to provide liquidity and to keep market prices
in a dynamic equilibrium, from which mathematical relationships between security
prices can be derived. Supply chain problems, however, are often of a hybrid type in
which some risks – such as exchange rates or commodities prices – can be hedged
through trading, but other risks – such as demand or production uncertainty – cannot
be hedged away. The application of financial markets theory to supply chain prob-
lems is therefore an exercise in combining two very different application realms.

In this chapter, we present a basic linear programming formulation of trading
that is suitable for adaptation to supply chain problems. We discuss the existing
literature on financial modeling in the supply chain and show how it can be restated
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using this simple framework. We illustrate an application of financial markets theory
to the newsvendor model. Finally, we discuss the significant differences between the
assumptions required to address uncertainty in financial markets and uncertainty in
the supply chain.

The outline of the chapter is as follows. Section 9.2 describes a realistic supply
chain where the decision maker enters into supply chain contracts with various pro-
visions for supply and demand exigencies. We review the significant literature on
supply chain contracts in Sect. 9.3 from the perspective of financial risk modeling.
In Sect. 9.4, we focus on the information that can be derived from financial markets.
We consider the role of risk assessment using extreme risk measures such as value
at risk and conditional value at risk, which are the focus of financial risk regulation.
Next, we present a simple discrete time and space model of market valuation using
the dual formulations of finding a replicating portfolio and identifying a stochastic
discount factor. We discuss calibration of this model and also present the dual role
of utility and penalization.

Section 9.5 applies the basic model of trading to illustrate how it can be used
to unify recent contributions to the literature on financial modeling in the supply
chain. Section 9.6 presents an example of how to incorporate the financial theory-
based models into the traditional newsvendor model. Finally, in Sect. 9.7, we discuss
why the ideas and theory developed in the finance literature may not be so easily
transferable to the production planning setting.

Our exercise in extending supply chain modeling using financial markets theory
highlights some key issues in bringing financial markets practices into the supply
chain, namely: timeliness of market data, correlations, standardization, and trans-
parency. Thus, while the financial markets theory approach may yield some insight
into how the production planning and supply chain problems can be addressed, it
does not readily yield solutions to these challenging problems.

9.2 A Sample Supply Chain Contract

Consider a manufacturer of multiple products. The manufacturing process is cap-
ital intensive. Thus, any investment in manufacturing equipment is a long-term
investment. The manufacturer also has the option to outsource production. The
manufacturer produces custom and standard “off-the-shelf” products. Products are
grouped along categories such as geography, business line, and product type.

The manufacturer has production facilities around the world. Products produced
at each of the facilities are designated to service specific geographic regions. The
manufacturer enters into two types of contracts: (1) long-term procurement contracts
with his supplier to procure the components required to build the products and (2)
contracts with his customers to whom he sells his products.

The procurement contracts are in place over extended periods of time, typically 5
years. When the manufacturer enters into the procurement contract with his supplier,
the procurement price for the current period is known. However, the procurement
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price in future periods is not specified and is determined by the supplier in the future,
as it is a function of prevailing market conditions. Further, volume discounts may
apply and the manufacturer does not know upfront the quantity of component that he
will purchase in the future. Both of these sources of uncertainty present significant
risk for the manufacturer. Similarly, future component availability is unknown.

Over the lifetime of the contract, the manufacturer places firm orders with the
supplier. When a firm order is placed, the price per component is fixed based upon
prevailing market conditions (such as interest rates, exchange rates, etc., as speci-
fied by the terms of the contract), order volume, and component availability. If the
supplier does not have sufficient product available, the manufacturer can turn to out-
side suppliers (or to the spot market) to meet the unmet demand. The manufacturer
does not know what price per component the outside supplier will offer, as he has
no long-standing relationship with the outside supplier.

In the manufacturer’s downstream relationship, the manufacturer signs contrac-
tual agreements with the customers to whom he sells his products. These contracts
are also typically in place over extended periods of time.

Each customer provides the manufacturer with 6-month rolling horizon demand
forecasts. Over time, the customer also requests product from the manufacturer
which, after negotiation between the customer and the manufacturer (regarding
request quantities and ship dates), are converted into firm order quantities (and
equivalent ship quantities) with committed ship dates. Both the customer and man-
ufacturer are bound by these order quantities and ship dates; the manufacturer is
penalized if he does not have sufficient supply available by the committed ship date
and the customer is penalized if he does not purchase enough product. Within a
given time frame, say within each quarter, the manufacturer allows the customer
some flexibility with his actual orders. Namely, at the end of a quarter, the manufac-
turer reviews the customer’s total orders within the quarter. If the customer’s total
actual order quantity within that quarter does not equal the firm orders for that quar-
ter, then the manufacturer ships the difference between the firm orders and the total
actual orders during that quarter. Thus, the manufacturer grants the customer some
flexibility during each quarter with respect to the timing of orders, but by the end of
each quarter the total actual order quantity must equal the total firm order quantity.

The contract contains another element of flexibility, both for the customer and
for the manufacturer: Although the customer order quantities after negotiation are
considered firm, the contract allows for change within a contractually specified per-
centage. More specifically, the contracts are structured to allow for a �% increase or
decrease above or below the firm order quantity. The manufacturer is often allowed
similar flexibility with respect to his committed ship quantities. This flexibility is
sometimes referred to as embedded optionality within supply contracts. Embedded
optionality poses significant risk to both the customer and the manufacturer.

Thus, the manufacturer’s contracts with his suppliers and with his customers
contain various financial parameters whose values are unknown and require es-
timation at the initial contract date. The uncertainty is introduced largely due to
quantity flexibility and/or time flexibility that is built into the supply contracts.
For example, contractual terms that permit customers to vary their order quantities
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can be classified as risk or uncertainty attributable to quantity flexibility. Similarly,
uncertainty associated with contract terms such as per unit price at a future date,
where price is related to prevailing market conditions, can be classified as risk or
uncertainty attributable to time flexibility.

9.3 Financial Modeling in Supply Chain Literature Review

Traditional supply chain literature does not consider using financial markets to
mitigate risk associated with uncertainties; instead, the literature analyzes risk
mitigation and risk transfer within a supply chain framework (see Cachon 2002;
Lariviere 1999; Tsay et al. 1999). There is also substantial literature on real options
theory as a technique for analyzing optionality in business contracts (see Dixit and
Pindyck 1994; Trigeorgis 1996). In this chapter, we focus on the formulation and
analysis of supply chain problems where some part of the risk is related to securities
traded in financial markets.

Kleindorfer and Wu (2003) provide a framework to enhance supplier–
manufacturer interactions using financial markets. In addition, they provide an
excellent literature review, which we do not attempt to replicate here. Birge (2000)
explores the relationships between real and financial options in a stochastic pro-
gramming capacity planning framework. Birge’s basic setup is very close to the
approach described in this chapter. Our contribution can be viewed in part as ex-
tending Birge’s stochastic programming example into a more general framework
that incorporates the dual concepts of calibration and utility. Kamrad and Ritchken
(1991) lay out a basic framework for valuing fixed-price supply contracts under
demand uncertainty that is correlated to financial markets. Smith and Nau (1995)
adopt a discrete-time decision analysis framework for a project investment model.
They first develop results under the assumption of a complete financial market
and then consider the case where financial markets are incomplete. Kouvelis et al.
(2001) discuss the application of foreign exchange market information to own-
ership structures. Gaur and Seshadri (2005) analyze a newsvendor problem: first
assuming demand is perfectly correlated with market securities and then assuming
that demand is partially correlated with market securities. Caldentey and Haugh
(2006) present a fundamental model of a nonfinancial firm that trades continuously
in financial markets.

The literature on financial modeling in the supply chain is quite daunting for
readers with a typical background in the mathematics of operations research. There
is a huge variation in notation, in the level of mathematical sophistication, and
even in the basic conceptualization of the underlying hedging problems. Readers
are required to posess sophisticated knowledge of mathematical financial modeling
concepts to understand how these papers can be related one to another. Our ex-
tension of the Birge (2000) model can be used as a basis to discuss these models.
In Sect. 9.5, we develop the models of Smith and Nau (1995), Gaur and Seshadri
(2005), and Caldentey and Haugh (2006) within this simple framework.
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9.4 Basic Concepts of Financial Modeling

The starting point for discussions of financial modeling is the “market,” which is a
mechanism by which buyers and sellers are brought together to exchange securities,
for example, IBM shares. Options are the right to buy or sell a specified number of
IBM shares, for example, at a fixed (strike) price on some future date. The “market
for IBM securities” refers to the collection of all securities whose value can be
derived from the price of a share of IBM equity (“derivative securities”). The market
“state” is the collection of bid and ask prices in the market for these securities.

The main guiding principles of financial modeling derive from the assumption
that prices of securities move in response to continuous buying and selling activity.
Thus, more activity (“liquidity”) in a given financial market increases the likelihood
that market prices for related securities can be explained by a market equilibrium
model. Market equilibrium implies a condition where supply and demand for se-
curities are relatively equal. In the absence of equilibrium, for example, if demand
exceeds the number of sellers, the price will rise, sellers attracted to this higher price
will enter the market while buyers disinterested in this higher price will exit. This
activity will result in restoration of market equilibrim.

There are two types of calculations that derive from a market equilibrium as-
sumption (1) assessment of risk of a given position, or portfolio, of financial
securities and (2) market valuation of related securities – securities such as options –
whose prices depend on underlying securities such as futures, equities, and bonds.

9.4.1 Risk Assessment

The objective of risk assessment in a financial institution is to determine the re-
quired amount of capital to be held in reserve against losses in its portfolios. Risk
assessment identifies a forecasting methodology for the tail behavior of losses. The
basic risk measurements for portfolio losses are value at risk (VaR) and conditional
value at risk (CVaR). VaR measures the quantile of a portfolio loss distribution over
a specified time horizon and at a given probability level. For example, a portfolio
with a 1-day 95% VaR of $1M has a 5% likelihood that the value of the portfolio
will decline by more than $1M over the next day. CVaR measures the conditional
expectation of losses, given that losses exceed the VaR level. Interest is building in
CVaR because it is a coherent risk measure and because it has convexity properties
that render it more compatible with optimization techniques (see Rockafellar and
Uryasev 2002).

The data for risk measurements such as VaR and CVaR are usually derived from
variances in historical price returns. Portfolio stress testing is a means for identify-
ing unanticipated circumstances that may lead to larger than anticipated portfolio
losses. Stress testing involves information that is not necessarily consistent with the
observed histories. For example, banks model some crises by scenarios in which cor-
relations between asset classes trend near unity – meaning that no diversification is
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possible. Part of their risk exposure calculation might include correlation scenarios
that have been observed in exceptional market situations, such as crashes. Stress
testing would then calculate VaR and CVaR given a market correlation scenario,
and average them over some probability weight assigned to these scenarios. Monte
Carlo simulation is a popular method for performing stress testing.

Financial institutions also measure risks such as operational risk and counter-
party risk. Operational risk is defined as the risk of loss from failed internal pro-
cesses, people, or systems, or from external events. Counterparty risk is the risk of
loss associated with failure of the other parties to meet their contractual obligations.

Supply chain organizations are now attempting to adopt similar methods for
stress testing the supply chain to understand how different events or market scenar-
ios may impact supply chain performance. Similarly, they will analyze worst-case
events that may impact the supply chain and measure the impact of these events on
the supply chain performance. For further discussion and for examples, see Elkins
(2005).

9.4.2 Market Valuation

The theory of pricing contingent claims begins with replicating the cash payoffs of
a contingent claim using a porfolio of traded assets whose prices are known. This
is known as a replicating portfolio. Assuming an efficient market (i.e., prices of
traded assets reflect all known information), the law of one price prevails and the
price of the contingent claim should equal the price of its replicating portfolio. This
approach to pricing is also known as “arbitrage pricing.” Arbitrage means incurring
a positive reward for zero risk, that is, making something for nothing. For exam-
ple, if the market value of the replicating portfolio were less than the cost of the
asset that produced equivalent cash flows, then a trader could buy the replicating
portfolio, sell the asset, and pocket the difference. In practice, the constant search
for arbitrage trading opportunities forces the market to remain in equilibrium, thus
enabling market valuation pricing.

A simple linear programming version of market valuation can be developed (see
Edirisinghe et al. 1993; the approach we follow here appeared in King 2002). To
avoid unnecessary technical complications, we measure time in discrete intervals
t D 0; 1; : : : ; T and require the stochastic process of security prices fSt W t D
0; : : : ; T g to be supported over finitely many states. Suppose the trader wishes to
replicate a security F with cash flows fFtg that are completely dependent on the
same underlying risks as the security prices St , that is, F is a contingent claim.
Denote �t to be the trader’s portfolio allocation at time t . A linear program for
market valuation of F can then be written as

min
�

S0�0

s:t: St�t D St�t�1 � Ft ; t � 1

ST �T � 0: (9.1)
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This system describes a self-financing trading policy f�tg, meaning that purchases of
assets are financed by sales of others so that new funds are not invested. Specifically,
the proceeds from the previous period’s investments, St�t�1, minus the required
payment, Ft , are reinvested into the current portfolio holdings, �t , at current prices,
St . (The equations and inequalities are interpreted as holding with probability 1.) At
the final period, the amount remaining in the trader’s account is required to be non-
negative. So the trading policy is said to “super-replicate” the risky cash flows fFtg.
A super-replicating trading policy generates the required payouts, and in addition
may generate some nonzero positive balances at the end of the time horizon.

Interpreting the major result in financial mathematics (see Harrison and Pliska
1981) to the simple context of the self-financing linear program for contingent claim
F (9.1), we note that by linear programming duality, an optimal market valuation
exists for every dependent instrument F if and only if there is a nonempty set of
risk-neutral discount factors, …, satisfying the dual linear system

… WD
�

� � 0

ˇ̌
ˇ̌ �t St D E Œ �tC1StC1 j St �

�
; (9.2)

in which case, the market valuation is equal to the optimization

max
�2…

TX

tD1

E Œ �t Ft � : (9.3)

The risk-neutral discount factors �t are the multipliers for the self-financing equal-
ities in the linear program (9.1), and represent the marginal value of an additional
unit of value (a dollar, say) in each future state of the stochastic process. This is
a well-known result; the particular argument presented here can be found in King
(2002).

9.4.3 Complete Markets

The equality constraints in (9.2) are sometimes called “martingale equalities.” A se-
curities market is referred to as complete if all contingent claims can be perfectly
hedged (i.e., perfectly replicated by self-financing trading policies with no surplus
remaining under any future scenarios). Dually, a securities market is complete if
there is exactly one risk-neutral discount factor that satisfies the martingale equali-
ties (9.2). The complete markets assumption, while clearly an approximation, is an
important step in the mathematical algorithms used to price contingent claims in
the continuous time settings of security valuation. However, conclusions based on
this property would not be generally applicable outside of extremely liquid financial
markets.
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The basic concern with the complete markets assumption is that it eliminates
incentives to trade. If there were a single risk-neutral measure, then all risk-neutral
participants would use it and they would arrive at identical prices.

There are three real-world market characteristics that tend to contradict the com-
plete markets assumption. First, the martingale property is fragile: imposing realistic
technological restrictions on trading activity (such as transaction costs or execution
delays) weakens the martingale equalities for the dual feasible stochastic discount
factors. Second, market security prices can be driven by many factors. It is highly
unlikely that there are enough liquid options in the market that are sensitive to all
possible factors. It follows that it is quite natural to suppose that there are many
possible risk-neutral discount factors that are consistent with a market equilibrium,
and that even risk-neutral market participants might select different discount factors.
See King (2002) for additional discussion on this point. Finally, securities that are
not frequently traded may have prices that are not consistent with the existence of
a risk-neutral discount factor. This does mean technically that the market is not in
equilibrium at these prices, but such arbitrage opportunities are usually due to the
fact that the securities in question have stale prices. What this means is that these
securities are not traded often and their offered bid or ask prices may be out of date
with the current market equilibrium. When a trader expresses interest in these prices,
the offer will be updated to reflect current market conditions.

These concerns arise particularly when attempting to calibrate a risk-neutral dis-
count factor to market prices, as we now describe.

9.4.4 Calibration

Using the self-financing linear program (9.1), one can price derivative instruments
by a trading program, provided the stochastic process for the underlying asset is
known. When the stochastic process for the underlying asset is unknown, model
calibration is a method for finding the stochastic process, given observations of
related derivative security prices. The dual model (9.3) can be used to calibrate
using observed market data. The calibration problem is the inverse of the contingent
claim pricing problem. However, in the absence of complete markets, this problem
is ill-posed: there may be multiple underlying processes that yield the same prices
as those observed in the market or there may be none.

When the dimensionality of the uncertainty attributed to market securities is low,
a linear programming approach (see King et al. 2005) can be developed to calibrate
the pricing model. Suppose the market has M listed options fC i ; i D 1; : : : ; M g
with observed bid–ask prices C i

b < C i
a , and future payouts C i

t . Then it would be
natural to require that all feasible risk-neutral discount factors satisfy

C i
b �

TX

tD1

E Œ �t Ft � � C i
a ; i D 1; : : : ; M:
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It turns out that this requirement is too strong. Sometimes, there are no discount
factors that satisfy all these constraints, perhaps because some prices are stale. A
better modeling practice is to transform these inequalities into soft constraints and
penalize the constraint violations in the dual objective function, as follows:

max
�2…; ca�0; cb�0

TX

tD1

E Œ �t Ft � � v.ca C cb/

s.t. C i
b � ci

b � �C i � C i
a C ci

a ; i D 1; : : : ; M: (9.4)

The penalty parameter v would be related to some measure of the quality of the
market prices for the listed options – for example, the volume traded during the
current session. The program (9.4) describes the situation of a trader who is selling
the security F . An exactly similar program that minimizes the objective describes
the situation of a trader who wishes to compare the cost of buying the dependent
security as compared to super-replicating it herself.

Let �bF denote the minimum calibrated price and �aF denote the maximum
calibrated price for the dependent security F . The interval

�
�bF ; �aF

�
(9.5)

is called the arbitrage interval. The lower bound of the interval is interpreted as the
maximum price that a risk-neutral trader could extract from the market with F as
collateral, and the upper bound is the minimum price that a risk-neutral trader would
accept in order to replicate the cash flows of F . When the bounds of the arbitrage
interval are relatively tight, we can be confident that market prices indeed do specify
a risk-neutral discount factor for any risks that depend on price movements St of the
underlying security.

However, in many circumstances, these bounds (9.5) may not be tight. One ex-
planation is that the driving stochastic factors for the cash flows come from the tails
of the price movements St . It is a fact that listed option prices do a poor job of esti-
mating the influence of tails, since the options that are influenced by tails are usually
very lightly traded. A second explanation is that the cash flows may depend on un-
certainties that are independent of the market. This phenomenon is highly relevant
to supply chain settings, where market prices may not capture all the relevant factors
that contribute to uncertainty. When the arbitrage bounds are wide, the only alter-
native for model calibration is to develop a nonlinear formulation that provides a
capability to refine the optimal choice of risk-neutral discount factor. From a techni-
cal standpoint, it is easier to develop the nonlinear formulation as a primal problem.
Toward this end, we introduce primal variables �a and �b that correspond to the cal-
ibration error constraints. These can be interpreted as initial positions taken by the
trader in the listed options themselves that will be held until the end of the time
horizon. The nonlinear aspect is modeled by a utility function u.�/ and a probability
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measure P (which until this point has not played a role). The primal version of the
nonlinear calibration problem maximizes the utility of the terminal surplus value of
the hedging portfolio:

max
�;�;V

EP Œ u.ST �T � V / �

s.t. V D S0�0 C .Ca�
a
0 � Cb�b

0/;

0 D Ft C St.�t � �t�1/ C .Ct�
a
0 � Ct�

b
0/;

�a
0; �b

0 � 0; (9.6)

The term V on the left-hand side of the period 0 equation (the wealth balance equa-
tion) is now a variable of optimization. To keep wealth from growing without bound,
we subtract its value from the terminal wealth when calculating utility. The dual
problem turns out to be identical to the calibration problem (9.4) except that the
objective now contains a nonlinear term

�EP Œ u�.�=P / � ; (9.7)

where u�.�/ is the concave conjugate function:

u�.x/ D inf
w

fwx � u.w/g: (9.8)

This conjugate term plays the role of a calibration penalty on the risk-neutral dis-
count factor � relative to the prior P . For example, when u.w/ D �e�w, the
conjugate function is

u�.x/ D x � x log x; (9.9)

for x > 0, so the exponential utility creates a dual problem with a calibration penalty
that is the entropy of � relative to P

�EP Œ u�.�=P / � D E� Œ log.�=P / � : (9.10)

Other utility functions yield different calibration penalties. A utility that we will
refer to below in discussing the supply chain literature is the quadratic utility u.w/ D
w � lw2, for which the calibration penalty is u�.x/ D �x=2l � x2=4l . Additional
discussion and complete proofs of this duality can be found in King et al. (2009).

In summary, adding static positions in listed options to the linear program (9.1)
allows us to calibrate to observed prices of related derivative securities where the
stochastic process of the underlying asset is unknown. If the arbitrage bounds are
too wide, then a utility formulation (9.6) may be required to narrow the gap, in
which case the obtained valuation will depend upon the prior probability P as well
as the utility/calibration penalty. This approach can apply to incomplete models in
finance, as well as to models in the supply chain with uncertainty not captured in
market prices.
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9.5 Financial Modeling Applications in the Supply Chain

In this section, we consider in greater detail some of the main contributions in the
literature integrating supply chain decision making with financial modeling tech-
niques. We show how the basic trading models outlined in the previous section can
be used to apply financial pricing theory to supply chain problems and can be used
to unify the variety in notation and presentation that is found among these different
models.

Smith and Nau (1995) discuss a project investment model where each investment
policy ˛t produces stochastic cash flows Ft .˛t /. The policy decisions are discrete
choices such as “invest,” “defer,” or “decline.” Project cash flows depend on both
market states, Mt , and non-market states, Nt , and it is possible to trade in market
securities. The firm maximizes an additive exponential utility function of the hedged
cash flows:

max
˛;�;W

E

�
�

TX

tD0

kt e
�Wt =�t

�

s.t. Wt D Ft .˛t / � St .�t � �t�1/;

�T D 0: (9.11)

The formulation permits the firm to use market instruments to borrow project in-
vestment funds and to reinvest project earnings.

The terminal condition �T D 0 prevents “borrowing from over the horizon.” It
is common in market models, as a first approximation, to allow the trader to take
negative positions without limit. But if a trader is permitted to borrow unlimited
money in the final period, then it may be possible to hedge all sorts of irresponsible
risk-taking in prior periods. Thus, the choice of T in such a trading model corre-
sponds to some accounting interval, after which it is no longer necessary to model
the borrowing of money.

Smith and Nau develop an integrated rollback algorithm based on two key as-
sumptions. One key assumption, quite common in the financial literature, is that the
martingale conditions (9.2) admit exactly one solution. This is called “the complete
market” assumption. The second key assumption is that the utility is an additive
exponential. The integrated rollback algorithm applies dynamic programming. At
each backward step, risk-neutral pricing is performed at market states Mt , using
the unique risk-neutral density. Effective certainty equivalent pricing is then used
at nonmarket states Nt , using the firm’s private probabilities. Under assumptions
of completeness and exponential utility, Smith and Nau show that the algorithm
produces an optimal investment policy that is decomposed into a hedging part, an
investment part, and a part consisting of unhedgeable cash flows. An important
benefit of the separation achieved by integrated rollback is that nonmarket proba-
bility distributions are specified conditional on market events – there is no need to
develop a complete joint probability distribution. Smith and Nau further argue that
the additive exponential utility is necessary since it evaluates the residual risk Rt

independently of interperiod and wealth effects.
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In the case of incomplete markets, not all risks can be hedged by trading
securities. This situation is relevant in supply chain settings, where often the many
risks faced by members of a supply chain cannot be fully hedged by market secu-
rities. Smith and Nau consider the situation of incomplete markets and show that
the basic options-pricing value approach can be extended to produce bounds for the
valuations of the investment policy decisions. These bounds will be the arbitrage
bounds, as we discussed earlier.

Gaur and Seshadri (2005) analyze a single-period single-item newsvendor model
where demand at time T is correlated with the price at time T of a market security
that is actively traded, such as the S&P 500 index. In our notation, the cash flows of
the newsvendor are Ft .I / for t 2 f0; T g (and Ft .I / D 0 otherwise), where I is the
initial inventory decision. The objective is to maximize utility at time T :

max
I;�

E Œ u.ST �T / �

s.t. Ft .I / D St .�t � �t�1/: (9.12)

Gaur and Seshadri’s formulation is comparable to that of Smith and Nau (9.11),
except that here the utility is applied only to the terminal wealth, which is cap-
tured in the terminal portfolio ST �T . Gaur and Seshadri examine the impact of
static hedging for general classes of utility functions in order to determine whether
hedging increases or decreases initial inventory decisions and utility. The baseline
static hedge is the minimum variance hedge �� that minimizes the squared error
of newsvendor payoffs relative to the span of wealth achievable by trading only on
market information:

min
�

E Œ jFT .I / � ST �T j2 �

s.t. 0 D St .�t � �t�1/: (9.13)

An equivalent expression for ST �T for self-financing trades is to use the gains pro-
cess formulation

ST �T D GT .�/ WD
T �1X

tD0

�t.StC1 � St /: (9.14)

It follows that the hedging process �� that optimizes (9.13) is that which generates
the projection of FT .I / onto the span of the gains processes

GT .��/ D E Œ FT .I / jMT � : (9.15)

This is a calculation that can be performed by conditional integration; however, im-
plementing a minimum variance hedge is complex and requires many trades. Gaur
and Seshadri analyze the impact of two simpler hedges comprised of positions in the
security and in call options. The first is a static hedge that cannot be revised during
the horizon, and the second is a dynamic hedge with one portfolio rebalancing
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period. They perform numerical experiments with demand data and derive
conclusions showing the impact of hedging on the optimal inventory. In gen-
eral, their conclusions are that hedging reduces substantially the investment cost of
the initial inventory and that optimal inventory levels are higher.

Caldentey and Haugh (2006) discuss a model of a nonfinancial firm that can trade
continuously in financial markets. The uncertainty in returns is modeled by two in-
dependent geometric Brownian motions: one models market observables and the
other models nonfinancial, firm-specific uncertainty. As in Gaur and Seshadri, the
terminal wealth is equal to the payoff from operations plus gains generated by a trad-
ing policy. Caldentey and Haugh focus their analysis entirely on quadratic utilities,
such as that in the minimum variance hedge model used as a baseline in Gaur and
Seshadri. The quadratic utility function u.�/, defined over terminal wealth, is of the
form u.w/ D w � lw2. The analysis takes place under two alternative assumptions
concerning the information process. The financial market is assumed complete and
the two assumptions of Caldentey and Haugh apply to the nonfinancial uncertainty.
The first alternative is “incomplete information,” under which uncertain inputs to
the operations are not observed, so the trading process cannot act on them; the sec-
ond is a “complete information” setting in which uncertain inputs to the operations
can be observed in addition to security prices.

Caldentey and Haugh apply the approach of Schweitzer (2001), which first iden-
tifies a minimal risk-neutral measure. The minimal risk-neutral measure, in our
notation, is the risk-neutral discount factor that has smallest quadratic variation rel-
ative to the probability distribution P W

min
�2…

EP Œ .d�=dP /2 � : (9.16)

This problem is dual to the minimum variance problem (9.13). A decomposition
theorem of Schweitzer then provides a stochastic differential equation that can be
solved for the optimal hedging policy. This optimal hedging policy turns out to be
decomposed into the same three parts as in Smith and Nau, namely: a hedging part,
an investment part, and a part consisting of unhedgeable cash flows. In addition,
the decomposition indicates how to integrate the expression for the optimal value –
which expression can then be optimized to find the optimal strategy. Caldentey and
Haugh apply this method to a newsvendor and a production–inventory problem, as
illustrations of the technique.

The approach of Caldentey and Haugh is representative of one of the current
research frontiers in financial mathematics with respect to the treatment of market
incompleteness. The application of these methods in a practical setting requires a
specification of the operational payoffs sufficiently tractable to permit the applica-
tion of Îto’s lemma and to solve the resulting stochastic differential equations. For
problems where operational risk may be modeled by diffusions or Poisson jump pro-
cesses, this type of approach can be very useful, provided the differential equations
can be solved.
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9.6 Application to Newsvendor

The supply chain contract described in Sect. 9.2 encompasses a number of realistic
sources of uncertainties that exist in a supply–demand contracting relationship. For
example, the supplier is faced with cost uncertainty, unknown discount factors, cur-
rent period and future period demand uncertainty, future pricing uncertainty, and
supply uncertainty. Due to these uncertainties, both parties to the contract must
contend with considerable amounts of risk. In this section, we consider how the
traditional linear programming framework for newsvendor models can be extended
to address these sources of uncertainty. Our approach here can be viewed as an ex-
tension of Birge (2000). We utilize the model formulation of Gaur and Seshadri
(2005) as a starting point for this discussion.

We define the following problem variables and parameters:

I W initial inventory to be ordered;

D W future demand;

p W unit selling price;

c W unit cost;
s W salvage price;

r W risk-free interest rate:

(9.17)

The newsvendor has a time 0 cash flow that consists of the cost paid for the initial
inventory of newspapers:

F0.I / D �cI (9.18)

and a time T cash flow that consists of the income from the sold newspapers plus a
salvage term for the unsold inventory:

FT .I / D p minŒD; I � C s maxŒ0; I � D�: (9.19)

At all other intervening times, t 2 .0; T /, there are no newsvendor cash flows,
Ft .I / WD 0. It is assumed that a simple statistical model relates future demand D to
the price at time T of a market-traded security, S :

D D bST C �; (9.20)

where � is a random noise term that is independent of ST . As in Smith and Nau
above, we suppose that Mt describes the observable states for market prices St and
Nt describes the observable states for �. Such a model (9.20) could be constructed
by regression of demand data against the security prices. Substituting for D in (9.19)
and collecting terms yields

FT .I / D pI � .p � s/.I � �/ C .p � s/b
�
ST � maxŒ 0; ST � .I � �/=b �

	
: (9.21)

This equation describes the newsvendor income in terms of .p � s/b units of a long
position in the security S and .p�s/b units of a short position in a “call option” with
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strike .I ��/=b. Gaur and Seshadri then proceed to show how a portfolio consisting
of a short position in the security and a long position in an option can partly hedge
this payout. Deviating slightly from Gaur and Seshadri, we can obtain an equivalent
but slightly more concise expression for the newsvendor income:

FT .I / D pI � .p � s/b
�
.I � �/=b � ST C maxŒ 0; ST � .I � �/=b �

�
; (9.22)

FT .I / D pI � .p � s/b maxŒ 0; .I � �/=b � ST �: (9.23)

This shows that the newsvendor time T cash flow equals the nominal income pI

from selling all the inventory minus .p �s/b units with cash flows that resemble the
payoffs of “put options” with strike price .I � �/=b. This suggests that the optimal
hedge is for the newsvendor to purchase such a put option, were it to exist.

The newsvendor is in the position of a buyer of securities that will be paid for out
of the newsvendor profits, so one can express the risk-neutral newsvendor problem
as follows:

max
I;�;�

S0�0 C .Ca�
a
0 � Cb�b

0/

s.t. Ft .I / D St .�t � �t�1/ C .Ct �
a
0 � Ct�

b
0/;

ST �T � 0;

�a
0; �b

0 � 0; (9.24)

where I � denotes the optimal initial inventory. The optimal value V � is the max-
imum value of a current portfolio in the securities S and the corresponding listed
options C that can be purchased with the payments Ft .I

�/ as collateral. The initial
portfolio holdings .�0; �a

0 ; �b
0 / will be as large as possible such that when the port-

folio is unwound, the uncertainty from the sale of the portfolio will overmatch the
uncertainties in the newsvendor profits. For this reason, this formulation is called
superhedging.

Superhedging models are generally criticized for being too conservative. In this
setting, conservative means that the optimization (9.24) may generate a valuation
V � that is far too low. To check the effect of the conservatism of the superhedging
solution, one computes the upper bound (9.4) with the optimal newsvendor cash
flows Ft .I

�/. If these values are reasonably close, then the superhedging solution
will work as well as any other alternative proposal.

If the comparison of the bounds indicates that the superhedging model leaves too
much on the table, then the only alternative is, by analogy with (9.6), to recast (9.24)
as a utility maximization problem:

max
I;�;�;V

EP Œ u.ST �T � V / �

s.t. V D S0�0 C .Ca�
a
0 � Cb�b

0/;

Ft .I / D St .�t � �t�1/ C .Ct�
a
0 � Ct�

b
0/;

�a
0; �b

0 � 0: (9.25)
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In summary, calibration to externally observed option prices is the way in which
information in the market equilibrium can be used to model financial uncertainty
in the supply chain such as in the newsvendor problem. In models that use the par-
tial completeness assumptions of market prices, such as those used by Smith–Nau,
Gaur–Seshadri, or Caldentey–Haugh, one must estimate the model parameters as a
separate step in the solution process. More recent models used to treat market in-
completeness in finance, where calibration error is part of the problem specification,
are quite naturally adapted to supply chain problems using the linear programming
formulation.

9.7 Difficulties in Adapting Finance Approaches
to Supply Chain

Similar to their financial counterparts, realistic supply chain models need to incor-
porate uncertainties into the basic parameters that drive revenue and costs. There is
a growing literature that adapts market valuation techniques from finance to derive
appropriate discounting factors for supply chain problems. However, many chal-
lenges remain. Fundamental to any market-based approach is the availability of a
liquid market of relevant securities that can be used to hedge the uncertainty in the
problem.

The major difficulty in hedging risk in supply chain problems is the difficulty in
obtaining information that is relevant for this setting. We close with a brief discus-
sion of some significant issues.

9.7.1 Timeliness of Market Information

A fundamental assumption in many financial models is the efficient market
hypothesis. In its strong form, the efficient market hypothesis implies that all
public and private information is already reflected in securities prices. However, in
supply chain settings, there is often a lag between the time that information appears
in the supply chain, such as changes in order or demand forecast quantities, and the
time that this information is reflected in the financial markets. This is in part due to
the nature of the long-term purchasing contracts that are common to supply chain
participants. These contracts distort the view on the nature of true end consumer
demand and hence on the health of the industry and supply chain participants as
a whole. Consequently, attempts by one member of the supply chain to hedge ex-
posures to orders or supplies from another member of the supply chain using that
member’s corporate securities market information may not yield desired results.
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Recent academic literature (see, e.g., Mendelson and Tunca 2007) studies the
balance between spot market trading and long-term contracting for supply chain
members. As the relative use of spot markets increases, the increased participation
by supply chain participants will enable more timely market information.

9.7.2 Correlation Between Markets

Risks from multiple sources are the norm in the supply chain. Calibration is a
powerful technique, but trying to calibrate joint risk measures can quickly lead to
intractable problems. Most articles in this literature in effect ignore correlations.

Froot and Stein (1998) provide an argument for ignoring the correlations. They
argue that it is sufficient to hedge those risks that can be hedged, and to assess the
remaining risk – even if it is correlated – using the implied risk adjustment in the
market for the own-corporation securities. The argument hinges on the interests of
the equity holders. The returns to the equity holders are affected by the various risks
to which the company is exposed. Those risks (such as jet fuel for an airline) that are
hedgeable in financial markets should probably be hedged by the company – since it
is likely cheaper for the company to do this than an individual shareholder. However,
the shareholders do want to be exposed to the nonhedgeable risks, since this is why
they hold the stock in the first place. In setting corporate risk management policy,
then, it seems reasonable to apply the implied risk reflected in the marketplace, for
the equity in the company itself.

9.7.3 Standardization and Transparency

Contracts that are traded on financial exchanges contain standardized terms defining
what is to be traded as well as consequences in the case that a counterparty fails to
deliver on one of the attributes of the contract. This high level of standardization
combined with the limited number of standardized contracts ensures market liquid-
ity. In the supply chain context, contract terms exhibit high levels of customization
that render these contracts difficult to introduce for third-party trade. Further, coun-
terparties to supply chain contracts do not have incentives to reveal information that
is critical for third parties to assess the future value of the contracts. Thus, there
is no real market information that can be derived. This lack of standardization and
transparency results in limited market data for supply chain contracts and is a key
differentiator between risk in supply chain settings and financial settings.

Absent the existence of liquid markets for supply chain information, there is no
possibility for successful calibration or risk hedging of price uncertainty. Moreover,
if the counterparties do not have incentives to reveal information that is critical
for third parties to assess the future risks, then no real market information can be
derived. This lack of standardization and transparency is perhaps the major reason
why market information is difficult to obtain in the supply chain.



202 A. Heching and A. King

This underlines the importance of creating markets in the supply chain, in which
participants have an incentive to collect information and obtain rewards for being
correct. Guo et al. (2006) suggest the creation of macroindices to enable trading in
supply chain information. Some firms (Google, for one) have even set up betting
pools among employees to obtain a virtual market of views on future technology
developments. New Internet technologies can be used to facilitate this development;
however, it will remain very difficult to enforce the transparency required for third
parties to have information that is good enough for risk management in the supply
chain.
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Chapter 10
Field-Based Research on Production Control

Kenneth N. McKay

10.1 Introduction

Field-based research is a form of empirical research and involves actual experiments
or observations. The experiments and observations are often used to support or test
scientific claims. They are also often used to generate insights about a phenomenon
or possible research topics for further analysis (e.g., find a suitable topic for a grad-
uate student). Although we perform field-based research for a number of reasons,
we hope that the results we obtain are sound, scientifically valid, and provide value
to both the field and science. Through field research, we endeavor to understand
and model the business process, or capture the important and salient character-
istics of the problem so that we can include them in modeling and analysis. We
might hope to incorporate findings from field research in automated tools and ad-
vanced algorithms, making them more realistic and useful. In the best situation we
can hope for scientific results that can predict or guide processes to the best pos-
sible outcome. This might be the lowest inventory levels possible, highest quality,
least scrap, the most nimble and responsive reaction to a change in demand, or the
quickest completion of an order. Strong, rigorous science is often associated with
characteristics such as awareness and minimization of bias, inclusion of the neces-
sary and sufficient aspects of the problem, ability to be replicated, evidence-based
reasoning, careful and supported lines of causality, consistency in the use of terms
and definitions, and the ability to be generalized in different ways. The science can
take different forms: descriptive, prescriptive, predictive, or normative. Each type
of science has assumptions and limitations. Each type also has recognized methods
and tests of scientific quality. This chapter discusses various types of field research
and presents ideas and methods for the sound undertaking of each type.

Field-based research requires that a number of methods and concepts used for the
results are considered to be strong and rigorous. If this is not consciously done, the
results might not make any sense whatsoever. To illustrate this point, consider two
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analogies based on real examples in which the analyses were not sound. In the first
case, manufacturing engineers introducing just-in-time and kanbans decided that 25
parts per bin was a good number and that they would use two bins. There was no
mathematical analysis or rationalization for the units per bin except that 25 sounded
good and 25 parts would fit in a bin. There was no justification for the two bins
except that everyone did it that way. These engineers clearly did not understand the
operational concepts behind the use of bins, did not know that methods existed to
derive the number of bins, and did not understand what might happen as a result of
their actions and decisions. They knew machines, welding, and metal fabrication but
did not know the science of inventory management. They were working outside of
their field. It would be fair to say that these engineers were lacking in the appropriate
education and were naively applying methods and ideas that they thought were best.

In the second case, financial personnel in a large factory mandated that the fin-
ished goods level for all parts be set at 3 days instead of 4 because of the cost – as it
appeared on the financial statements. Again, this was a case of people well schooled
in their own discipline working outside of it and naively making decisions with the
best of intentions. They lacked the education and understanding to realize that some
parts might require less or more than any targeted number. They also apparently did
not understand what the finished goods inventory was used for – buffering against
uncertainties in production and demand. They also did not realize that there were
methods which could be used to determine suitable levels for various categories of
parts. Individuals well versed in industrial engineering or operations management
would never dream of making such decisions in these ways. Would they?

Hopefully not. Then why do so many industrial engineering and operations man-
agement researchers and practitioners make similar mistakes when they perform
field-based research? They make the same types of assumptions with the best of in-
tentions and unfortunately obtain the same quality of results – poor quality at best.
They do not realize how bad the science that they are using is, and do not recognize
nor acknowledge the weaknesses in their approach. Before delving into the specifics
and details of field research, there are some general steps to keep in mind:

1. Clearly state and define what the intent or purpose of the field research is. What
type of science or result is sought after? What level of research is striven for?
For example, descriptive or prescriptive?

2. Consider what implicit and explicit assumptions you are making about what you
will observe or gather and what it means. For example, what is your operational
definition of a good schedule? While such assumptions might appear obvious,
the issues are often more complicated than they appear (Kempf et al. 2000).

3. Ensure that you know what the problem that you are trying to study is. If you
do not know, defining this is the first activity to explicitly undertake. Do you
know the necessary and sufficient aspects to capture?

4. Before the study starts, make sure you know when, how, and what to capture
and verify. What is the data and information you need to support your claims
or level of science? Do you know how much data to collect and under what
situations?
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5. Reflect on the boundary and scope of the modifying or context-sensitive factors
which could affect what you are observing and what the observations might
mean. For example, is it a special time of year at the factory? Is something else
happening concurrently (e.g., a new product launch)?

6. Critically examine any field instruments and methods – phrasing of questions,
techniques for gathering the on-site field observations. Do you know how to
avoid bias? Do you know how to build understanding from observations?

7. Make your study testable. Do you know how to make your field research repli-
cable, thorough, and supportable? Could someone else independently repeat
your study and obtain the same insights and results? In a different factory?

8. Establish a baseline measurement for all key factors you will be studying or
making claims about. You need to know what the current situation is if you are
going to make statements about performance or behavior staying the same or
changing during the field study. For example, in a given situation, what was
the theoretical optimal or minimum number of setups, how many were actually
taking place at the beginning of the study, and how many were occurring at
the end of the study? More than one study has on the surface disappointed the
researchers because of less than optimal numbers, but pleased the practitioners
because the results were better than if the science had not been applied. Having
a comparison point is critical for all field-based analyses.

9. During the study, clearly document the status quo and any exceptions to the
status quo – any special decisions which could not be predicted using ba-
sic manufacturing data. Special routings, batch sizes, machine assignments, or
task assignments are clues to context-sensitive situations. Document the normal
policies and then be sensitive to variance.

10. Capture the official plans given to management as well as any verbal or unoffi-
cial instructions supplied by the production control staff to the actual production
workers. Also document what the scheduler expects to happen and what the
scheduler would do if left to his or her own devices. These four observation
points can provide valuable insights into the real constraints and objectives, the
degrees of freedom existing in the system, and how any official schedule is to
be interpreted.

11. Capture and document any other changes introduced just before or during the
field study. For example, were any new policies introduced about inventory
levels or part quality testing just prior to the study? Were any new products
introduced, engineering changes, new vendors, different materials, new crews
hired, etc.

12. Support any documented plans and schedules with actual execution data. That
is, how well did the factory adhere to the plan? During the day? During the next
day or two? During the next week?

While there are many other things to consider, these dozen points constitute an
initial point of departure for any field study. In thinking through these issues and
requirements for strong field research, it is important to critically examine what
proof you might need to exhibit in supporting your claims. Like our misguided en-
gineers and accountants described above, what education, training, and skill can
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be demonstrated? Is your credibility in doing field research above question? The
following sections present taxonomy for classifying field research and discuss vari-
ous issues the researcher must address within each classification.

10.2 Taxonomy for Conducting Field Research
on Production Control

In production control, there are perhaps a number of ways to categorize or group
such research, but for the purpose of this chapter, we will use the following schema.

First, there are two main segments of field research – those involving humans in
some way as subjects and those not involving humans as subjects. This distinction
is used as one dimension in the schema. Once a human participant is involved as
a subject – learning what they do, understanding how or why they do something,
comparing computational results to their results, prescribing what tasks they should
do or how they should do their tasks, or assessing their capability or skill – the line is
crossed and an entirely new set of research methodologies are involved. The human
can be involved as the individual decision maker or as part of a larger organization,
depending on the research focus. Thus, the field research may be focused on individ-
ual tasks and decisions or on a larger business process involving many people. In any
research involving humans, the issues begin with how data is acquired and continue
through how it is analyzed, and what can be said about the results. If the research is
going to discuss how and why someone or a group of people did something, or use
a line of reasoning provided by a human, or discuss how good a human-generated
decision was, there are elements of research that must be incorporated if the conclu-
sions are to be rigorous and scientifically sound. A human as subject or as an active
part of the research does not include those situations where a human is merely op-
erating a machine, moving material, or assembling a part – unless a human factors
analysis is being performed. One of the purposes of this dimension is to clarify situ-
ations where certain methodologies are appropriate because of human subjects and
where they are not.

The purpose of the field research serves as the second dimension in the schema.
Why does someone do field-based research? The purposes can be quite varied
and can include: deriving insights about the problem structure and relationships;
gathering data such as demand patterns and machine behaviors to be used in ex-
periments; testing theories and concepts in order to determine the applicability and
quality of results; applying theories and concepts in order to improve a practical
situation; and training or education of researchers.

The schema for categorizing field research is documented in Table 10.1.
The chapter will use this schema to discuss various types of field research situ-

ations and what might need to be considered. We will briefly deal with the simpler
situations in which humans are not directly involved in the research. The majority
of the chapter will focus on the human or sociotechnical situations as these latter are
the most complex to study.



10 Field-Based Research on Production Control 209

Table 10.1 Field-based research categorization

Human subjects Involved Human subjects not involved

Deriving
Gathering
Testing
Applying
Training

10.3 Technological Situations

In this section, we will focus on production control situations which are not
confounded by the presence of human subject as an active part of the research.
There are still complications, but issues relating to human judgment, decisions,
rationale, etc. are absent. Thus, the first question is whether human study methods
are involved?

There are indeed some clear cases where they are not. For instance, automated
assembly lines, gated or driven by mechanical means with little or no variability,
are examples of what we would easily call technological situations. A comput-
erized flexible manufacturing cell or the study of a single automated machine is
others. If the situation is buffered from external influences such as weather, culture,
and every day looks like any other day, then the human element is likely absent.
In these types of cases, the production control problem comes down to the basics:
demand, bills of material, operations, routings for the operations, resources for the
setup and operation, sequence-dependent constraints for setup, time estimates per
unit of manufacture, inventory controls, movement controls, and possible gover-
nance mechanisms between suppliers and customers. This type of data is sufficient
for effective production control within a plant or a supply chain and the problem
is largely context free. In technologically focused research activities, the various
pieces of data and perhaps their statistical distributions are the major focus of any
acquisition activity. For example, what is the basic business process, what are the
average setup and operation processing times, what is the variance in the processing
times, and what is the sufficient amount of data possible to determine a suitable data
distribution.

If the human element is added in the way of operators, then the problem is still
likely the same unless there are special and unusual characteristics about some (or
all) of the operators that are used to determine significant aspects of the resource
allocation and sequencing, or inventory levels. If the differences are simple skills,
this can be viewed as quantitative data as well and the situation is basically the
same as a technological one. However, if the differences are significant and relate to
factors such as personalities, social situations, social behavior, and attitude shown
during training, then the situation turns into a sociotechnical situation and cannot be
dealt with as a purely technological situation. For example, we have seen examples
of where operator attitude during training was used to select one crew over another
for the initial production run of a new part.
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Thus, a major concern with field research in technological situations is, Is it
really a technological situation? It is important to take a little bit of time and ef-
fort to ensure that it is indeed free of any significant amounts of cultural, personnel,
or environmental constraints or context. There will always be some level of con-
text sensitivity, but the major factors that could affect the problem structure should
be considered. For example, do the objectives change based on the time of the
month? Does the factory concentrate on inventory levels more at the end of the
month because of a corporate measurement metric? Are special or priority parts
flowed through in nonstandard ways? Perhaps certain machines or cells are used
for priority work associated with certain customers who have complained recently.
These types of context-sensitive production control have been observed as standard
routines in several factories. Issues such as these are important to understand if the
researcher is going to observe a situation and comment upon it, or generalize from
it. It is not sufficient to assume that a situation is not context sensitive, it is necessary
to do sufficient investigation and data gathering to confirm that it is not.

Exploratory or preliminary research into deriving the problem formulation or
basic phenomenon typically does not result in general, prescriptive, or normative
claims. Researchers in the early phase of research are looking for the basic ele-
ments and existence proofs. Subsequent research will explore the power and general
nature of the science. If general claims are the intent of the research, then a longi-
tudinal approach provides added visibility and insights – useful in all phases of
deriving, gathering, testing, applying, and training. A longitudinal study is one that
is performed over an extended period of time and is not a single visit or a sin-
gle snapshot of the situation. If it is possible to observe or experiment at different
times (e.g., shifts, time of day, days of the week, weeks, months, and seasons), and
when different activities are happening in the factory (e.g., line upgrades, tours,
plant shutdowns, vacation, line introduction, new product launch, product phase
out, and outsourcing) and NOTHING is different about production control, then the
situation is probably safe to be declared CONTEXT FREE.

The word context is itself a problem. In this chapter, the larger or macrosense
of context is used. Does it matter why the task is done, when the task is done, by
whom, where, and how? An extreme view suggests that everything about produc-
tion planning is context sensitive – there is a due date and this creates a context
for prioritizing, sequence-dependent setup is context, what operations a machine
can perform is also context. However, the minor aspects of context are often easy
to capture, encode, and accommodate within logic while the major aspects of con-
text involve information and issues beyond those normally represented in computer
systems.

Why is it important to worry about context-free research and context-sensitive
research? If the researcher is going to make a claim about why something has hap-
pened, is happening, will happen, or should happen, the researcher should be aware
of when such a claim is valid or invalid. This relates to the power and generalization
of the research. The more situations thoroughly tested, usually the more rigorous
the study.
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Consider the printed circuit board assembly factory studied by McKay (1992).
The lines were highly automated, state-of-the-art, and in what was considered one
of the top factories in a top corporation. On the surface, this factory situation should
have been considered context free. In fact, one researcher associated with the study,
but not deeply involved, predicted that factory would be a situation where context-
sensitive issues would not be found. Contrary to this prediction, there were many
examples of unexpected context found in the study, and one stands out as a nice ex-
ample. Every spring for 1 month, yield would drop by 10%. This occurred because
of the change from central heat to central air conditioning, and there were processes
sensitive to humidity. Each year it took time to restabilize the processes and scrap
was higher than the other times of the year. Not all factories have processes sen-
sitive to humidity in the air, but this one did. If this fact was not noted, consider
what errors might have occurred. If the study period did not include this month,
then expectations and predictions for this month would have been invalid and could
have led management astray. If the study period was only during this odd month,
nonstandard production control would have been observed as the factory tried to
deal with the lower yield and any generalization without additional data would have
been erroneous. If the scheduler was closely observed the month before the ex-
pected drop in yield, the scheduler’s decision process was again unique and would
not be seen during the other 11 months. Interestingly, the noted researcher was not
alone in assuming that this factory was context free. The factory’s information sys-
tems department was constructing an automated scheduling tool that assumed 100%
context-free performance on the factory floor, as dictated by a senior executive.
As a result of the study, that documented roughly 10% of the daily decisions were
actually context sensitive, the project was canceled. Consider what would have hap-
pened if the automated scheduling tool had been finalized and deployed!

It is also possible that context dependencies will sometimes enter into a situation
that was once context free. Consider an automated manufacturing cell with several
machining centers. When the cell was new, it was likely that any of the machines
could work on any part assigned to the cell with equal performance. As the cell
ages, it is possible that unique characteristics will develop for one or more of the
machines and that certain work will have a machine preference. For example, a
certain part might push the tolerances on a machine that has had mechanical prob-
lems or wear points, thus making a different machine a better choice. Observing
nonrandom assignments made by human planners in such cases is useful in detect-
ing these types of context-sensitive issues. This type of issue has been observed at
many factories and is one of the first things to look for. A visit was made several
years ago to a very high-tech manufacturer producing close tolerance parts who was
trying to improve cell efficiency through improved flow and layout. Approximately
six machining centers were in the cell, all with the same specifications and the same
tooling. With automated material handling as well, it certainly looked like a context-
free situation. Unfortunately, it was not. The centers were now 10 years old and had
developed individual personalities – some centers performed better on some parts
than other parts. This had to be taken into account in the analysis.
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A field study that has a single data acquisition may have many stated and unstated
assumptions which limit the descriptive or prescriptive nature of the research. As
long as the claims match the rigor, there is no difficulty. However, if the claims ex-
tend beyond what can be reasonably claimed, there is a problem. For a field study
that uses a single set of data, based on a single observation or experiment, it is
probably safer to discuss everything relative to the single case and not make any
suggestions about other situations. The evidence may suggest that certain relation-
ships may hold elsewhere, but there is clearly no solid evidence to this effect. This
is a general caution. However, if it is possible to state with confidence that the situ-
ation is context free, then a single data point might be sufficient for some powerful
statements. In these cases, good experimentation and sensitivity analysis can pro-
vide insights for what might be and what should be. Any assumption of a situation
being context free should be supported with evidence and solid reasoning.

The following sections will discuss various issues related to the deriving, gather-
ing, testing, applying, and training in context-free situations.

10.3.1 Deriving

In the early phases of scientific inquiry, the researcher is attempting to discover what
to include in the science. What is the essence of the problem? For example, in mod-
eling a surface mounted printed circuit board assembly line for general flow, it might
not be relevant to know if a machine is a pick and place insertion device; but it is
important to know if the machine works on one or two boards at the same time and
is at the start or end of the assembly line (if loading or unloading is performed). The
challenge to the researcher is to include what is necessary – no more, no less. Why
one relationship is included and others are not? This type of analysis is needed if
field situations are going to be used for insight – model building, constraint identifi-
cation, and objective specification. It is never possible to include all factors, so it is
important to identify the dominant factors. Applying key critical thinking processes
(McKay 2000; Browne and Keeley 2004) are usually sufficient to deal with context
free or possibly context-free situations.

10.3.2 Gathering

In a context-free situation, data gathering is more likely to be done with computer
files rather than with pencil and paper or a stop watch. Manufacturing execution
systems (MES) and ERP (sales, sale forecasts, bill of material, material masters,
routing tables, build history, shipped history, inventory history, and yield history)
will be the sources for such data in studies of business processes or specific opera-
tional areas. In some cases, corporate information system support will be required to
gather and extract certain data, but most data should be available at the plant level.
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Questions to consider are:

� What types of data are necessary to gather
� Degree of granularity of the data
� Time period to consider
� Sources of error, types of error, magnitude of error, and implication of error

Completeness and accuracy of the data should also be tested and validated if strong
claims are to be made – it should not be assumed. Validation of data should always
be done, of course, but compromises are often made in exploratory studies – they
should not be made in studies designed for normative or prescriptive results. The
exploratory study might be looking for a basic existence proof and encouragement
for further research, and an extensive study may not be wise or possible initially.
The normative or prescriptive study will use the data for more definitive purposes,
which warrants additional care.

10.3.3 Testing

In this type of field research, the researcher has a theoretical model or theory to test
in an actual situation, or has empirically inspired science to test. This type of activity
also includes test-of-concept implementations or demonstrations of a more practical
nature (e.g., new scheduling software system to deploy).

All field tests, for the strongest claims, should have baselines or benchmarks
for comparative purposes. The researcher needs to present the case for baseline
or benchmark equivalence and also provide the appropriate reasoning for why the
tested science resulted in any difference. It must be clear that the introduced sci-
ence or technology provided the benefit and not something else in the factory. For
example, a company introduced a sophisticated scheduling tool with powerful math-
ematical algorithms and obtained an improvement of 10–15% as a result. It would
have been simple to claim that the mathematical algorithms were responsible for the
gain. The scientists probed deeper and upon investigation, they discovered that the
science did not provide the gain. By introducing the tool, consistency was ob-
tained between shifts with less confusion, and the downtime associated with the
shift changeover was dramatically reduced, producing the 10–15% gain. While it
is not known what this company did about subsequent gains, it is possible to spec-
ulate about what might have been done (or could have been done). For example,
after the system was installed and the environment stabilized, could the mathemati-
cal engine be downgraded to simple heuristics and compared with situations where
the engine was allowed to operate at full power? While not perfect, such ideas can
create some comparison baselines.

Credible experiments in the field are very difficult. In a real factory there are
often many changes introduced and it is almost impossible to create a pure situa-
tion where the science can be guaranteed to be the cause for the effect. Continuous
improvement programs imply that most factories face the challenge of managing
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during change and not management of change. It is a constant variable. Thus, it is
important to investigate, document, and discuss any and all significant differences
between the baseline and the experimental conditions. For example, are the oper-
ators the same? Are the parts the same in terms of complexity, maturity, learning
curves? Have the operators been given the same training on the different equipment?
Has the maintenance schedule been the same for the equipment? Is the demand
profile the same? Objectives the same? Any factor that could introduce substantial
variability in processing time and yield should be thought about, and should not be
dismissed without consideration. For example, tests should be done at the same time
of the month in most factories to control for demand patterns and production objec-
tives. Tests should also avoid the time periods around other substantial or significant
changes to the factory’s profile (processes, methods, and products).

For stronger claims, replication of the tests is important – under different condi-
tions if possible. For the strongest claims, it is also recommended that the field data
be re-examined in the lab and computational experiments be performed to ensure
that results derived from the laboratory experiments match those observed and pre-
dicted. If the results match, there is still not a clear or perfect linkage, but there is
support. If the results do not match, further investigation is warranted.

10.3.4 Applying

There are many case studies in the literature where academic theories and models are
applied in an industrial setting, some interesting results noted, and the results written
up. The purpose is to show possible benefits and discuss underlying factors associ-
ated with the hope for improvement in the situation. There are also case studies or
situations where existing or newly developed production planning aids are deployed
by practitioners. The practitioner activities are in many ways similar. The introduced
technology or new methods are intended to improve the situation and in many cases
proof is needed to support the claims. The client or vendor might have performance
clauses in the contract or claims want to be made about improvements to inventory
levels, flow times, and fill rates.

The same care taken for the basic testing in context-free situations is required.
If the application and analysis is of a single instance, then the same issues noted
above exist. Evidence must be provided for any claims for generality and prescrip-
tion. If the application has replication and a longitudinal research element, then it is
possible to consider stronger claims. First, the situation must be shown to be context
free and then, secondly, the results should be replicated to avoid the initial shock or
introduction of change effect.

For production planning, it is possible to gather and support claims. For example,
it is recommended that any tool or process be developed with a placebo capabil-
ity. If a sophisticated scheduling algorithm is part of the package being applied,
ensure that the system also has a very simple loading or sequencing algorithm.
Then it is possible to run the system with and without the possible contributing
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factor. Just having a system (any system) might be a benefit, so if claims are to be
made about the latest and greatest mathematical logic, the burden is placed upon the
implementer to ensure that claims can be studied and supported. It is also possible to
track the accuracy of planning and the use of the schedule. For several time horizons
(e.g., shift, day, 2 days, week, 2 weeks, etc.), it is possible to keep track of what was
planned, what was changed in the plan, and what the factory actually did. In one
factory studied in the mid-1990s, it was observed that 75% of what was planned 1
day for the next 2 days of production was changed by the next day. In such a situa-
tion, improvements and values can be obtained from various factors, but not likely
from well-tuned sequences.

In order to clarify claims and benefits associated with applied and practical
technology such as advanced planning systems (APS), McKay and Wiers (2004)
introduced a taxonomy. While the full description will not be replicated here, the
basic ideas will be summarized. The possible areas to look for benefit depend on
who might be viewing the situation and include:

� Saving time in the task
� Improving accuracy in task
� Improve quality in task
� Reduce effort in doing task
� Improve gathering of information
� Improve dissemination of information
� Reduce wastage, setups
� Reduce expediting, pre-emptions
� Reduce inventory levels
� Improve work flow through the plant
� Have better sequences

Although this list was specifically for planning and scheduling technology, many
of the same points apply to general business process improvements. The APS fo-
cus will be used to illustrate the general idea. At the start of an implementation or
introduction, it is important to document expectations associated with the various
benefits sought. If possible, it is also important to document the current state of af-
fairs. If this information is prepared in advance of the system introduction, it can be
used in verifying claims and supporting any analysis. The McKay and Wiers tax-
onomy establishes levels of success which can match the expectations. The levels
allow comparisons between implementations and also statements to be made within
the project itself. The five levels of success are:

� Class A – better, more accurate sequences, and exploiting the full potential of the
APS concept and technology

� Class B – determining feasible amounts of work
� Class C – identifying resource conflicts and loading issues
� Class D – improving visibility, communication, and consistency in the plan
� Class E – improving system integrity, cleaning up processes, and addressing data

flows
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Classes A and B have scales associated with the time horizon. For example, an A-1
implementation has a longer horizon (e.g., 2 weeks) during which time optimized
sequences can be followed almost exactly and activities will take place when and
where they were planned. An A-8 rating would provide optimized sequences that
could actually be used for the next hour or two. If optimized logic is not used but the
target is feasible loading, the B rating can be used. A B-1 rating is associated with
good modeling of capacity – understanding what can be done. Thus, it is possible
to talk about an A-8/B-1 situation in which the tool is very good but the ability
to generate and follow the plan is dependent upon other factors, such as demand
changing in the immediate time period.

While this framework is specifically designed for APS, it is possible for re-
searchers to consider additional ways to clarify success and degrees of success in
other applied production control situations. Every attempt should be made to avoid
loose claims of success (or failure) which are not bounded.

10.3.5 Training

Context-free situations are often good examples of advanced manufacturing tech-
niques and concepts. The level of automation is often high and there are few factors
interfering with predicted or normative behaviors. If the situation is context free, the
student or learner does not need to be concerned with field observation techniques
involving human subjects. However, the student should be sensitive to possible
sources of variability in supply, demand, and production. Some such sources might
be machine age, numbers of engineering changes, prototype parts, and the possible
implications associated with each. The student should also be aware that they are
learning in a context-free situation and how that differs from a context-sensitive sit-
uation. They should understand that simple extrapolation and reusing assumptions
can be harmful in a different situation.

The training and learning should include how things start (initiating triggers),
how things move, how things terminate, and how things go wrong and are recov-
ered (e.g., yield and rework). They should learn how and why production processes
merge and diverge, and what orchestrates any merge point – why, when, and how
many. Parallel, sequential, and transfer-in-batch flow controls are also important to
observe and understand. Part of the learning should include probing any situation
that does not match the usual – e.g., Is it always done this way?

New product introduction, product phase out, machine repairs, machine up-
grades, machine introduction, machine decommissioning, process changes, material
changes, product changes, and other such events should be observed if possible and
documented. In a context-free situation, these types of events will have limited and
isolated impact – only on those resources and processes directly impacted and will
not impact other resources or processes in the plant. The student should be aware
of how to identify and respond to such situations when performing other forms of
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field research: deriving, gathering, testing, and applying. If the student has not been
trained in advance, a risk develops that a confounding situation is not identified or
controlled for.

10.4 Sociotechnical Situations

It sounds very easy to do. Go out to the factory and ask the scheduler how they
schedule (their objectives, constraints, and policies) and ask for some sample data.
How hard can that be? All that is needed is a set of simple questions (e.g., How do
you plan? Can you give us a copy of your schedule and input data?). It also sounds
easy when a larger business process is being studied. Hold some focus groups and
document the flow of data denoting who does what where. Unfortunately, it is not
easy to do these types of studies in a scientifically rigorous fashion. How the field
component is viewed will affect what data is collected, the accuracy and quality of
the data, and what can be deduced or induced from the data.

The latter point is very important – what does the data say and what claims can
be stated? In a business process situation, how confident can the researcher be that
the appropriate steps were studied and accurately depicted? Furthermore, what data
was missed in either type of field study? If the field methodology is not valid, the
field results are no more scientifically valid than fireside stories. For example, if ag-
gregate data is gathered on final plans and schedules without tracking transactions,
sequences of transactions, and timing of transactions, it is difficult, if not impossible,
to infer anything detailed about what the human did in reaching the final sequence,
or why they did it. It is certainly difficult to infer anything about skill, knowledge, in-
tent, or reasoning. It might be possible to analyze the final sequence but it is not clear
what conclusions could be reached. To delve deep into the scheduler’s reasoning, it
is important to capture all special decisions or trade-offs – the sequence of decisions,
constraints, and any special reasoning that resulted in changes to setup or processing
estimates or resource allocation. The final sequence shows a static entity, but hides
the process.

To study a business process, it is important to take similar precautions. Would
you trust one or two people to explain how a complete and complex works? Is
it safe to assume that a supervisor of an area knows what the individual workers
do and how they do it? The supervisor might claim to know and might even say
that they taught the workers everything they know. This claim has been made in
almost every field study conducted by the author, and rarely has this been true.
Thus, it is important in business process studies to think through the same issues
and contemplate information sources, and think about what information might be
hidden from view and how you might be able to access it.

To illustrate another aspect of the problem when focusing on schedule genera-
tion, consider the schedule itself. Ask the scheduler for the schedule that is being
used to guide production. It will clearly document work allocation, timing, and se-
quences. At least this will not be a problem. Or, is it? It depends on what will be done



218 K.N. McKay

with the schedule. We would not recommend using this schedule for quantitative
comparisons due to the following reasons. As documented in McKay et al. (1992),
there can be multiple schedules being used by the scheduler simultaneously. For
example, it is possible that this schedule is political in nature; call this schedule
number one. We have observed political schedules which did not correspond to
what the scheduler was directing the factory to do; call this directing schedule num-
ber two. Furthermore, the schedule the scheduler was conveying to the factory floor
did not correspond to what the scheduler actually thought would happen; call this
predictive schedule number three. To top that off, none of the schedules or expected
plans corresponded to what the scheduler wanted to do if left to their own decision
making; not sacrificing quality or cost; call this ideal schedule number four. If the
scheduler’s skill in sequence creation is going to be compared, which schedule will
be used?

If all the scheduler’s constraints used to create the third plan (i.e., what they ex-
pect to happen) are included, then it might be possible or reasonable to compare
schedules. If all the constraints guiding the sequencing are not included, then it
would be best to ask the scheduler to create their dream sequence and not what
is officially known as the schedule. The purpose of the schedule will affect its
construction as the information will be used to craft the resource allocation. The
information used by the scheduler in crafting a sequence is an interesting subtopic.

McKay et al. (1992) noted the existence of enriched data, data not normally in-
cluded in scheduling research or commercial scheduling tools. For example, it was
observed that the schedulers studied planned prototype or new or changed tasks for
Tuesday, Wednesday, and Thursday day shifts, avoiding afternoon and night shifts,
and the weekend. If this information and heuristic is not included in the mathe-
matical representation, it might be possible to claim that a schedule generated with
heuristics is better than that of the human scheduler. It might be better mathemat-
ically, but not better operationally. There is mathematical feasibility where finite
resource constraints are acknowledged and quantitative rules such as shift times
are obeyed. This is different from operational feasibility. If the research is purely
theoretical, then operational feasibility is not an issue. However, any claims about
application and the real world should address operational feasibility as well. In the
above example, operational feasibility dictates the choice of shift for work that is
considered odd or risky. Mondays are not typically good days to do something new
or risky in a factory. For example, on Monday, the factory is recovering from the
end of the previous week, any issues that arose from the weekend, and getting the
week sorted out. Fridays also present challenges as people and organizations deal
with the weekly objectives and prepare for the weekend and upcoming week.

All these issues can create variance and uncertainty. The factory might not have
the right people at the right time to address issues, or their concentration is divided.
On Friday, people are trying to get the week sorted out and prepare for the weekend
and the beginning of the next week. Hence, Friday is also not a good choice for
starting any special work. Afternoon and night shifts are also not good choices for
new or different work processes to be introduced. The engineering and support staff
typically do not work in evenings, and the early morning hours around midnight.
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Some factories want to introduce work only when the support staff is available – else
it is not operationally feasible in their context. Some factories also do not want to
assign new or critical work to a crew who did not pay attention during the training
session. From these examples, it is clear that additional knowledge and data are
used by the planners when making a sequence. There will be some work that is not
sensitive to such issues, but in any dynamic or rapidly changing situation, there will
be some work that is likely to be very sensitive. Some of this data can be teased
out of the corporate databases (e.g., such as repair plans, upgrade histories, changes
in vendor, and changes in material), but other data is culturally based (e.g., attitude
during training). These types of issues can also be observed in business process
studies as not all data or inputs going through the process have the same value or
risk to the factory.

If part of the research goal is to understand or compare a schedule generated by a
human with a schedule generated by an algorithm or heuristic, then the comparison
has to use all the constraints driving the human’s decision. In the example presented,
if the algorithm did not acknowledge the possible risks associated with doing new
or risky work on the second and third shifts, and on the Monday and Friday, the
comparison would be similar to comparing apples and kumquats.

There are certain assumptions that can be made about empirical work involving
schedulers and planners that help design the field methodology. Six assumptions to
consider are:

� Planning and scheduling is a cognitive skill involving various degrees of compe-
tence and expertise. Once this assumption is made, it is then possible to view the
situation as possibly having different levels of scheduler performance. The as-
sumption also helps to view how the scheduler learns and improves. To become
a grand master at a cognitive skill it can take approximately two person decades
of experience and learning. Thus, it is important to recognize that truly expert
schedulers will be scarce and that a journeyman level will be the most common
level of skill for mature, established planners.

� The decision-making process is really about solving problems, avoiding prob-
lems, and minimizing problems. To a scheduler, a late job is a problem, excess
inventory can be a problem, having the right amount of inventory is a problem,
incurring shipping penalties is a problem, and assigning risky work to a less than
desired worker is a problem. Constraints and objectives can all be viewed in the
problem-solving perspective (McKay 1987, 1992).

� The decision making is ongoing and overlapping. The planners and schedulers
do their task every day and come to work with expectations about what was
planned, what was supposed to happen, and knowledge about what happened
and what did not happen yesterday or last week. Unless they are returning from
vacation or a sick day, they do not come to work without memory or expecta-
tions. There is also a great deal of plan revision and review as the time horizon
constantly moves forward. Production control decision making is not the same
as project management; structurally or in execution. It is not the same as plan-
ning a trip to the local grocery. Nor is it the same as planning single major tasks
involving many decision makers or assistants such as docking an aircraft carrier
(e.g., Hutchins 1995).
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� The majority of production control is repetitive and has many instances – orders,
processes, resources, vendors, materials, products, operations, personnel, and so
forth. The decision makers have to deal with hundreds of part numbers, dozens
or hundreds of resources, and many operations per part. They also possibly deal
with hundreds of open work orders, partially completed jobs, and queues of work
at each resource. They live the experience and may be directly involved with
reactive rescheduling and problem solving when any of the operational details
goes awry.

� The decision making may be iterative, partial, and heterogeneous. While it is
possible to find situations where all the plannings are done first, then all the
scheduling, and then all the dispatching, it is also possible to find situations where
this is not the case. It is possible that one person will do one or more of these tasks
and do a little bit of one, then switch to a different planning problem, and then
switch back. The decision maker might also make partial decisions using part
of the input and state information without waiting for all the information to be
delivered. In these cases of mixed decision making, knowledge and decisions at
the dispatch level can guide scheduling decisions which can then guide planning
decisions. Not everything is top down in a nice hierarchy (McKay 2000).

� Decision makers do not exist in isolation. They exist within a culture and organi-
zational structure. The culture will have terminology, explicit and implicit norms
and expectations, and often various parts of the culture are dependent or code-
pendent on each other. The environment will influence the information flows,
decision processes, and the actual decisions.

These six assumptions are supported by initial empirical research in the field
(McKay 1987, 1992) and have been used in subsequent theoretical and field-based
research. They can also be used to critique the validity of simplified laboratory stud-
ies or other claims of equivalence. For example, what is missing from the scheduling
process when a laboratory study is done in which schedulers are brought in and
given a set of inputs and asked to create a sequence? It might be possible to discuss
the laboratory results relative to another laboratory study, but it is not clear what a
laboratory study can say about the real situation of scheduling in the manufacturing
setting.

Sanderson (1989) reviewed 25 years of research on the human role in scheduling.
In the review, two types of studies are discussed: laboratory studies and field stud-
ies. The laboratory studies summarized in Sanderson’s review focused on three main
themes: comparing unaided humans with scheduling techniques, studying interac-
tive systems of humans and techniques, and studying the effect of display types on
scheduling performance. The tasks studied in the research were quite varied, as were
the study methods with few replications or general results. Moreover, the research
questions mainly focused on comparisons of humans and mathematical techniques.
As pointed out in Crawford and Wiers (2001), these laboratory studies lack the rich-
ness and context that define scheduling and that the majority of research conducted
since 1990 on humans and scheduling has been more field based.
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Before discussing the specifics of deriving, gathering, testing, applying, and
training in the context of sociotechnological research, a discussion about back-
ground preparation is required.

10.4.1 Education of the Researcher

It is probably fair to state that most production control researchers have been well
schooled in topics such as operations research, operations management, scientific
programming, algorithmic design, complexity, statistics, computational experi-
ments, simulation, database design, computer science, and artificial intelligence.
On the other hand, how many have studied or have taken courses in survey design,
field methods (e.g., Gummesson 1988; Easterby-Smith et al. 1991), interview meth-
ods, skill and expertise, field data analysis, and ethnographic techniques? Some
like Crawford (2000) have used a background in psychology to then engage in a
study of planners and schedulers, but their initial education was not in industrial
engineering or operations management. Assuming that a researcher has a typical
mathematics or engineering undergraduate student starting graduate studies, what
can be recommended?

If the research is to involve speculation about scheduler skill and expertise, three
topics should be addressed – field methods, social science statistics, and skill and
expertise. For more general field work, the first two topics will possibly suffice. It is
not a perfect situation though. Ideally, two full graduate degrees are almost needed
if the human planner or scheduler is to be studied as the main topic. If the human is
a smaller part of the research, compromises must and will be made.

As noted above, there are two courses or sets of subject material which are
recommended for any field-based empirical work on production planning. The
first is field study methods including ethnographic methods (e.g., Schensul et al.
1999; Grills 1998; Spradley 1979). This area of research provides a solid foun-
dation for how to observe and how to understand a field situation. In addition to
such basic knowledge, additional material on interviewing and survey methods is
recommended (e.g., Lavrakas 1993; Stewart and Cash 2003). Courses and material
can often be found in sociology departments and this type of knowledge is useful
in looking at specific situations or larger processes. While undergraduate material
or courses might be offered, a graduate level course is recommended because of the
emphasis on research and rigor. The focus on ethnographic methods is also very
strong in many sociology and anthropology departments. In the ethnographic ap-
proach, the concentration is on learning from the subjects and understanding their
culture and situation; not on studying them with a previously generated theory
per se. Observer bias is dealt within the methods, and this is important in study-
ing schedulers in the field.

A researcher in an ethnographic setting will likely be a participant with a role to
play. The role may be in the action science sense of introducing a causal effect or
may be passive. For example, a researcher learning what independent spreadsheets
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are used and creating an integrated system to do the same functions is not re-
ally changing or altering the structure of a situation. By way of contrast, moving
from an ad hoc planning activity performed by one person using magnets on a
wall board to separate dispatching and scheduling tasks using specialized software
which alters the order and timing of the daily tasks is in the spirit of action sci-
ence (Argyris et al. 1985). In essence, an ethnographic researcher almost becomes
a member of the community being studied. This is how terminology, the meaning
behind terminology, implicit rules of conduct, factors that influence compromise,
and similar are discovered. References such as Jorgensen (1989), Delaney (2004),
and Yin (1989) provide valuable insights about conducting such research.

The second recommended area of study is that of statistical methods specifically
designed for social science settings. This includes qualitative data analysis and
techniques such as nonparametric methods. Simulation courses and engineering-
oriented courses on statistics teach certain concepts and methods. The social sci-
ences use a different subset. Sources such as Nachmias and Nachmias (1987)
and Siegel and Castellan (1988) provide useful material for field-based empirical
studies.

These two areas of study, field methods and social science statistics, are recom-
mended for any field study that involves humans as subjects and will be using data
from the study. If the research is going to probe or use information pertaining to what
the human decision maker does (the what, the why, and the how), then additional
learning is required from the researcher. This is the third area of study necessary for
rigorous field research and might not be as important for business process studies,
but this will depend on the focus of the study itself. While the following paragraphs
will once again use the scheduler as an example, the points apply equally well to
any knowledge- and skill-rich situation.

In this third case, the researcher should understand something about cognitive
psychology, specifically skill and expertise (e.g., Chi et al. 1988; Ericsson and
Smith 1991). It is possible to find graduate level courses on this topic or arrange for
a directed readings course. There are differences among novices, personnel at the
journeyman level, and true experts. The study of expertise is important to understand
(e.g., see Camerer and Johnson 1991; Colley and Beech 1989; Galotti 2004).
The differences relate to a variety of behaviors ranging from what information is
used, what it is used for, how it is used, and how problems are reasoned through.
It depends if the problem is ill-structured like planning and scheduling, or well-
structured like a chess game (Voss and Post 1988). There are also differences in
how a novice or expert explains their behavior. It is important to know or assess the
level of expertise of a human decision maker. The number of years scheduling is not
sufficient proof of expertise. This is a naı̈ve assumption. The managers call him or
her an expert. This is another naı̈ve assumption. The scheduler knows all the parts
and all the operations and impresses the researcher with their encyclopedic knowl-
edge of the products and processes. Hence, the scheduler is considered an expert –
yet another naı̈ve assumption.

A good memory alone does not make someone an expert in planning and schedul-
ing. There is the problem-solving aspect to consider. For example, how much
anticipating and reading of the situation is done? How are the resources allocated,
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and does the scheduler have strategic and tactical reasoning that guides those deci-
sions? How quickly (and how accurately) can the scheduler size up a situation and
devise a solution? How many times does the scheduler overlook a key constraint in
the process plan? How many unnecessary setups are performed? How many times
resources are primed for work before work arrives? How often are the wrong re-
sources allocated? General techniques for how to capture and analyze expertise in
a situation such as production control are described in Olson and Biolsi (1991) and
specifically explained in the production control context in McKay et al. (1995).

The following sections discuss the deriving, gathering, testing, applying, and
training aspects related to the sociotechnological situations.

10.4.2 Deriving

It is possible that the most difficult research to undertake is that intended to uncover
aspects of the problem and understand subtle and possibly hidden relationships.
In this research, the researcher is not likely to be standing on the shoulders of
others and it will be difficult to leverage existing results in the literature. The re-
searcher will be working from first principles in the actual situation, which will
require the greatest amount of preparation and care. The research will be difficult,
and it will be equally or more difficult to get the work published in credible jour-
nals. The latter is the case because such research is rarely done and even more rarely
done well. Furthermore, the research is likely to be unlike that of other papers pub-
lished in the journal, and the journal will have difficulty in reviewing the paper. In
one case, a submission to a typical operations management style journal was suc-
cessful through the referee and issue editor levels but was rejected as being too
risky for the journal by a senior editor – nothing like it had appeared before. When
faced by such obstacles, the researcher can decide to publish the work based on
a method perspective and publish in cognitive or social science outlets which will
be used to the method and approach. Unfortunately, if the researcher wants others
in production control to be aware of the research, the social science outlets might
not be the best choice. Eventually, it is possible to publish field-based research on
the scheduler and planner in suitable journals, but the process might not be quick
and easy.

There are some steps that will help with this type of research – both in the doing
and in the dissemination of results. Four steps are given as follows:

� First, the researcher must establish credibility in understanding the appropriate
field methodology and human aspects being studied. This may require, for exam-
ple, suitable courses in sociology for field methods and recognized instruction
in cognitive skill acquisition and expertise, if the research is to tackle the hu-
man problem-solving process. It is possible to self-study this material, but this
is risky and is not recommended for the key sciences. Whether it is admitted
or recognized, derivative research is interdisciplinary in many cases and it is
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necessary to establish credentials in each area and to recognize the key research
contributions in each field.

� Second, the field methods and research must have checks and balances to de-
tect bias on the part of the research and method itself. A longitudinal design
is suggested for this purpose with a third, independent party used to check any
interpretations and encodings. A narrow case study of limited duration and fo-
cus is prone to sampling bias since the situation is likely to be context sensitive.
A longitudinal study should pick up organizational linkages as well as the life
cycle phenomena associated with various parts of the puzzle including products,
processes, and resources.

� Third, an ethnographic approach to the initial phases of the research will avoid
premature creation of theories and self-limiting assumptions. Researchers learn
and discover in the initial phases from the people and situation. Going in with a
bank of questions and a fully developed field instrument implies that the science
is already developed and the researcher is actually testing it. The ethnographic
methods also deal with observer–subject relationships and dynamics such as how
to fit into the community and be accepted. For example, if the researcher is study-
ing the scheduler, and the scheduler wears blue jeans and comes into work at 5:30
AM in the morning, the researcher should too. Coming in at 9:30 AM in nice of-
fice clothes is not the way to do it. If the scheduler has to come in Saturday or
Sunday mornings at 7 AM occasionally, the researcher should also come in on
the odd occasion to understand what is different about planning and scheduling
on the weekend.

� Fourth, the derivation must be supported by appropriate data and reasoning; oth-
erwise it is just a nice story. Quick or simple answers need to be carefully thought
through and challenged. It is important to observe the “what” and understand
the “so what?” This is the difference between superficial knowledge or partial
data, and deeper knowledge. Consider one of the over 200 episodes captured in
McKay (1992).

The scheduler was observed to schedule a particular order on a Monday. Based on
the due date and other obvious data, a Tuesday date would have been predicted using
previously observed heuristics. Why was a special decision taken to schedule the
work on a Monday instead of a Tuesday? The work was considered a type of job that
required special attention when it was run. Fine, but why schedule it on Monday?
The scheduler said that the increasing emails about an issue in the factory were the
reason. Why was this the reason? The scheduler said that once the emails start flying
hot and heavy, they usually call a staff meeting. So? The staff meetings are usually
held on Tuesday mornings. So, why is this a problem? All the key supervisors and
technicians are usually called to the staff meeting to discuss such issues. OK, so why
is this a problem? The supervisors and key people will not be on the manufacturing
line and when they are not on the line, quality and other problems often arise. So?
When this part is run, I want all the normal production people around and doing
their jobs and I want to avoid any possible problems with this one part.

Such an example is rich with information. There are trigger events, and signals
about the trigger events. This is the meeting and the clues about a meeting possibly
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being called. There is also the meaning or implication of the event that is predicted
to take place. The implication is a lowered level of supervision and technical support
which, in turn, implies a risk to quality and performance. For any special decision
or heuristic observed, it is important to follow the causal chain and observe the
initiation conditions, execution constraints, and performance implications. Note that
it is possible for a scheduler to start at the key reason and to work back to the initial
clue (e.g., how do you know that this will happen or be a problem?). It is also
possible for a scheduler to start the explanation in the middle of the chain (e.g.,
there will be a meeting on Tuesday morning). The knowledge acquisition must be
flexible enough to move up or down the reasoning chain.

Once captured, there are a variety of ways to encode and analyze such data. With
such data, it is possible to start the construction of reasonable models of what and
perhaps why. Without such data, any model or concept is inherently weak and will
not stand up to rigorous challenge.

While the above four suggestions will not guarantee that a study is rigorous and
done properly, the suggestions address the six assumptions noted earlier and in-
crease the likelihood of good empirical science.

One goal of derivative research is to understand the necessary and sufficient fac-
tors that define the problem or capture a solution. To achieve this, it is necessary
to understand the context or situation, and create sufficient science to defend any
claims of bias, limitations, and generalization. For example, if the study site was a
modern high-tech electronics factory at the start of the supply chain supplying one
major customer with a few parts, will the results apply to a low-tech metal fabricator
supplying many different companies’ assembly plants with a large number of parts
using old equipment? There are many factors to consider when thinking about the
derivation of the problem characteristics and how the situation and solution can be
generalized.

10.4.3 Gathering

The gathering aspect of field research involving human subjects is perhaps a little
less strenuous compared with the derivation purpose, but is still very important. The
derivation aspect deals with major theory or substantial conceptual elements of the
science – e.g., problem structure and solution formulation. In the gathering phase,
the researcher may be seeking information about objectives, constraints, copies of
schedules, input data, statistical information on productivity or execution, or heuris-
tics used for creating sequences. The researcher is seeking data to perhaps guide
research or to be used in creating simulations, numerical experiments, or analyzes.
In general, the problem has already been formulated, and parameters need to be
tuned possibly, or actual data is needed to establish reasonable data distributions
(for claims of applicability).

While the researcher does not need to go undercover and join the community,
other skills are still required from the social sciences. In a number of cases, the
gathering will be of hard numbers from reports and data files – the historical facts.
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There is not much guesswork when it is clear what resource was assigned, how many
hours were taken, and what the yield was. The field methods apply to the interpreta-
tion and understanding of the data gathered. If the data is from a single sample, it is
important to know how representative the data is and how much can be generalized.
That is, is there variance, what does the variance look like, and what causes the vari-
ance? Is variance possible because of a machine upgrade, material substitution, new
work method, product change, poorly maintained equipment, ad nauseam? It is also
important to know if there are any issues with the data and what the scheduler thinks
about the data. For example, how accurate is the shop floor reporting mechanism?
What are the possible errors in the data to be aware of? Being aware of human bias
in interpreting data is critical when asking the scheduler to speculate. This is where
courses or some training in interviewing and field methods can assist. It is impor-
tant to tease out of the process possible bias attributed to recent experiences or other
influences.

If the data being gathered is more speculative or deals with the future, additional
care is needed to process the data. It is desirable to capture the expected value, pos-
sibly bounds for variance, and the normative value with its bounds. If there is a
difference between the normative and expected, the data acquisition process should
probe the reasons why. Similarly, if a heuristic is being gathered for later simula-
tion or analysis, it is important to decompose the heuristic carefully to understand
what logic controls the use or guides the heuristic, and how the heuristic deals with
exceptions.

10.4.4 Testing

One form of field research is taking a theory or idea from the purity of the academic
situation and testing it in a real situation. As in a context-free situation, the strongest
research will establish a benchmark situation as the control point, and then perform
the intervention controlling all other aspects constant. This is very hard to do in
the best situation imaginable and possibly impossible to do where a human is part
of the actual science. For example, is the researcher investigating what heuristic is
used when, and under what conditions by the scheduler? The researcher might have
a theory that predicts when a scheduler will relax a certain constraint. How is this
going to be tested? Alternatively, the researcher might be doing a study to compare
how the mathematical algorithm compares to a human scheduler. First, what sched-
ule is going to be compared against? Second, what is the measure to determine what
is better? Are tardiness or the average number of late jobs going to be used? Was
this the objective used by the scheduler? Perhaps the scheduler’s objective was to
create a schedule that could actually be executed by the shop floor. How can the al-
gorithm be tested? Is it possible to have exactly the same situation twice and try two
different schedules and see how they play out? These were discussed briefly in the
technical or context-free situation, but are also important considerations when the
human is involved.
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It is possible to test for existence of concepts and ideas, but it might be very
hard to test for causal relationships or magnitude of impact when humans are part
of the process. If a completed schedule is part of the experimental design, a classic
problem occurs for which there is no current answer: what is a good schedule? If the
researcher is going to rate and compare schedules where one has a human element in
the construction, the objectives need to clearly stated. It is not appropriate to claim
that a schedule generated by an algorithm is better because the average tardiness
is superior to the schedule generated by the human when the human was creating
a schedule for the end of the month that maximized shipping dollars. Similarly, it
is not valid to use late jobs as a measure when the plant will not have late jobs
planned – creative problem solving is used to avoid any late job. This is the case
in many automotive supply chains where the suppliers do everything possible to
avoid a late delivery to an assembly plant. For these plants, a schedule generated by
a human will NOT show any late jobs and if compromises need to be made on all
other factors, so be it.

If the research is to test the scheduler’s ability and knowledge, then the researchers
need to be skilled in the cognitive skill domain and understand the methods for iso-
lating and analyzing skill and expertise (see Ericsson et al. 2006). There is tacit
knowledge that cannot be conveyed, explicit knowledge that has been codified and
documented, and explicit knowledge that is verbal or culturally maintained. There
are varying degrees of expertise and it is not always appropriate to use the same
methods when dealing with a novice versus a true expert. In general, this type of
research will require the greatest effort to perform, and will also require the most
effort in the analysis phase. For example, true experts and grand masters have great
difficulty (often impossible) in describing how their decisions are arrived at. When
pushed, they will often tell the researcher how they were instructed as a novice
which need not bear any resemblance to the actual practice. Novices will also focus
on superficial data or issues and not see the deeper relationships. In general, novices
proceed from concrete to abstract reasoning while experts proceed from abstract to
concrete.

10.4.5 Applying

The application phase of field research is not the simple testing of ideas in an actual
setting, but the adoption and full use of the ideas. The challenge is similar to the
testing type of research – what is the researcher or practitioner going to say about the
research? Is it possible to claim a descriptive, normative, or predictive relationship?
In a context-free situation with computerized manufacturing, it might be possible to
give credit to the new idea if other factors are controlled for.

If the human is not part of the subject, it is also easier to do, as described in the
technological section of this chapter (10.3). There have been many case studies and
excellent stories written about the application of a certain method or concept. It is
true that in some cases, a gain is very obvious after the application of a new method
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or concept. The situation might have been so bad before that any organized approach
to manufacturing will result in a gain. It might also be true that the new application
was used as an agent of change and allowed other changes to occur. Careful field
work and data gathering can be of immense benefit in these situations. The goal is
to create a clear and justified link between the science and the benefits. The benefits
should also be studied long term to ensure that the science was sustainable. All the
points noted in the technological section (10.3) should be considered as a starting
point.

It does not come as a surprise that the greatest difficulties will be with the re-
search that involves the human as subject. The appropriate field methods from
cognitive science and the social sciences will assist with isolation and control is-
sues. Establishing controls and measurement techniques will be problematic in any
event if any claims are to be asserted. Consider the type of research that could be ap-
plied in production control that involves the human as part of the research material.
One type would be to replace the human element with a technology; eliminating
the human. Another type is a partial or hybrid solution in which the human works
with an enhanced technology to improve production control. Yet another type of
research could attempt to improve the human’s decision making while leaving other
production control technology alone. The researcher has to think about what will
be measured before the application, what can be measured while the new science
is being used, what can be measured at milestones, and what the measurements can
say about the results and causal relationships.

Production control in a factory is a mission critical task and this creates a prob-
lem when a full application of new science is contemplated. If the new science does
not work, what are the possible negative impacts? A field application in the real
sense must have the appropriate procedures in place to detect issues and to control
any negative impact. In the cases where the human is marginalized, the researcher
is also faced by many of the “management of change” issues in acceptance and
deployment. For example, will the scheduler feel threatened by the technology?
Will the scheduler trust it? Will the technology create new work? In one case study
(McKay and Wiers 2004), the initial scheduling technology changed the time hori-
zon being considered, increased expectations about smoothing or capacity loading,
lowered the granularity of analysis (down to the hour from a shift level), and in-
creased expectations about schedule quality. The initial pilot test was a failure and
further development was needed to address the changes imposed upon the scheduler
and provide better support.

10.4.6 Training

Occasionally, it is possible that researchers use a field situation as a training situation
for students to learn about production control and what happens in production con-
trol. If part of the intent of the learning is to understand the schedulers and planners,
what they do and why they do it, then it is necessary to properly train the student
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in advance. The student will need the field study methods’ background to observe
properly and understand what they see. If this is not undertaken, there is a risk
that the observations will not be valid, and weak or erroneous models and solutions
created.

In the cases where the student is then used to further educate the main researcher
(the student represents the extended eyes, ears, and feet of the instructor), it is pos-
sible that erroneous data or misguided observations can further distort science.

10.5 Supply Chains and Interorganizational Research

It is safe to say that the majority, if not all, of the above applies to supply chain
studies, or studies that involve multiple organizations. However, this is not sufficient
for business process studies or those which cross firm boundaries. In this section,
several additional aspects will be discussed which should be considered.

It is important to understand all operational agreements and mechanics that
control the flow of material from suppliers to the customers. This is somewhat ob-
vious, but different organizations will supply firm and forecasted demand patterns
in different ways and with different variances. It is necessary to know when infor-
mation is available and what happened to the data before it arrived. For example,
in the automotive supply chain, the assembly plant forecasts might go through a di-
visional office for review and adjustment before they arrive at the fabricating plant.
This can result in delays and possible alteration (intended and unintended) of the
data. In one case, the sales force accidentally added three zeros to a forecast. Imag-
ine what happened to a related part that had a normal demand of 10,000 per month.
This large error was eventually discovered when the MRP logic was executed and
very large material requirements were noted. However, it is not clear if smaller errors
are ever found in such processes. This example illustrated to the author the impor-
tance of knowing how the demand requirements really move from the customer
to the plant. If the divisional level is monitoring and adjusting the forecasts, how is
the plant expected to make sense of the forecasts? The data moving between orga-
nizations also needs to be analyzed since stated policies and practices may not be
followed. For example, how often do firm forecasts change? To complicate matters,
terminology might change between customers and between suppliers. Care must be
taken to verify all definitions and objectives that will constrain or guide decision
making.

Larger studies imply that the researchers must also be aware of strategic and
tactical issues which might not be obvious in day-to-day operations. For example,
if a factory is supplying multiple assembly plants owned by competing firms, what
policies and promises have been made about factory resources and responsiveness?
These policies might place constraints on schedules and plans which might be taken
for granted or which might only appear when multiple customers increase demand
simultaneously. There might also be an informal corporate policy that one plant
will act as a loss leader to help other plants gain business with a major customer.
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This might not be stated in writing, but it is understood that the one plant will do
everything possible to make the customer happy. This will affect any penalty or
benefit analysis as the numerical value of a decision is not the real business value.

If possible, it is useful to spend time and study both ends of any relationship.
For example, it might be possible to visit and study a supplier. This will aid in un-
derstanding what a supplier needs to know in order to supply the plant in a better
fashion. It can also provide knowledge about how a supplier will respond in differ-
ent situations. It might also help in understanding how the supplier might be able to
supply material or parts in a different state of processing, or in a different configura-
tion or packaging to make the overall situation more cost effective for both parties.
Understanding how a supplier fits within other supply chains involving customers or
sister plants is also vital. For example, it has been observed that large final customers
might negotiate directly with different parts of the supply chain to obtain favorable
prices. This can happen when the supplier supplies materials to multiple fabricating
or assembly plants controlled by the large, final manufacturer. This creates inter-
esting dynamics as the supplier does not have the direct contract or negotiating
position with a receiving plant. This can affect normal business relationships as the
relationships become twisted – the fabricating plant having no power or influence.
For example, the supply emphasis might be placed on a different assembly plant for
the large manufacturer, but the supply chain metrics and performance objectives for
each of the other plants (possibly in different corporations) do not reflect this bias.

In summary, it is not possible to give a definitive set of guidelines for the larger
business process types of studies, but it is important to consider assumptions made
about tactical and operational policies and mechanical processes. When possible,
spend time and study both ends of any relationship and observe how each end of the
relationship relates to other relationships in each organization. For example, study
how one customer is dealt with versus another by a supplier. Obtaining and fol-
lowing a matched set of data following a demand order throughout a chain is also
recommended. This will document the organizations involved and the processes
used by each to fulfill the demand. Use the concepts outlined in the sociotechnolog-
ical section (10.4) when dealing with the individual decision makers.

10.6 Conclusion

In this chapter, a number of topics have been discussed which relate to empirical
research involving production control. The focus has been on the production control
department, but many of the same issues relate to larger business process studies.
A categorization schema was presented to help clarify the situation regarding re-
search involving humans and research not involving humans as subjects. In addition,
five forms of empirical activities were discussed in each case: deriving, gathering,
testing, applying, and training. Each type of empirical activity, with and without
humans as subjects, requires careful planning and careful inspection of assumptions.
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It is easy to dismiss this preplanning and preactivity as being unnecessary. It is also
easy to dismiss the education and training needed to perform field work.

One purpose of this chapter was to present suggestions and rationale for why
care and training is needed if empirical work is to be rigorous. As noted in the
introduction, a goal of scientific endeavor is to make good science, science that can
explain, and science that can predict. Without rigor in the field methods, it is hard
to justify claims of generality or of causality. It is possible to tell good stories and
document good case studies, but that is the limit of informal empirical studies.

If a study is purported to be an empirical study, is it clear what science is actually
being performed and how it was conducted? What biases are possible? How strong
is the study? Were there proper safeguards instituted to ensure that claims could be
made and causal relationships stated? Did the researchers know what to look for,
know how to gather it, know how to analyze it, and know what it indicated? Hope-
fully this chapter has provided some insights into how empirical research can be
conducted and viewed. It is possible to do good empirical research but it does not
happen by accident or by dismissing bothersome field methods as unnecessary. Em-
pirical research is messy and in many ways harder to conduct than pure theoretical
research of a computational nature or simplified laboratory studies. However, the
possible insights into the problem formulation and possible solutions are well worth
the investment.
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Chapter 11
Collaborative Supply Chain Management

Feryal Erhun and Pinar Keskinocak

11.1 Introduction

The management of supply chains has become progressively more complex and
challenging due to higher customer expectations for better service, higher qual-
ity, lower prices, and shorter leadtimes; ongoing demand uncertainty; an increase
in product variation; and shorter product life cycles. The increasing importance
of supply chain efficiency as a key competitive advantage has changed the nature
of many intra- and inter-firm relationships from adversarial to collaborative. An
industry survey by Forrester Research reveals that 72% of firms say supplier col-
laboration is “critical to their product development success” (Radjou et al. 2001).
An AMR Survey at Microsoft Engineering and Manufacturing Executive Summit,
which was conducted with the participation of CEO, CFO, CIO, and Sr. VPs of For-
tune 1,000 companies, shows that 58% of the participants consider collaboration as
a strategic necessity, while another 32% consider it to be very important. 57% of
the participants state that they are directly involved in leading collaboration efforts
(Caruso 2002).

11.1.1 What is Collaboration?

According to Cohen and Roussel (2005), collaboration is “the means by which
companies within the supply chain work together toward mutual objectives through
the sharing of ideas, information, knowledge, risks, and rewards.” Hence, col-
laboration requires that companies in a supply chain work actively together as
one toward common objectives. Collaboration includes the sharing of information,
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Fig. 11.1 Different facets of collaboration

knowledge, risk, and profits/benefits in a consistent fashion for all participants,
and entails understanding how other companies operate, how they make decisions,
and what is important to them. Everyone involved must benefit or it is not true
collaboration.

Collaboration can have many different facets (Fig. 11.1). Intra-enterprise col-
laboration takes place in numerous areas, including procurement, product design,
and logistics. For example, by replacing their decentralized purchasing functions
with centralized procurement, many companies were able to reduce the associated
administrative costs, better utilize their procurement managers’ time, and more im-
portantly, leverage their buying power with their suppliers, resulting in significant
savings. Using centralized procurement, Dial Corp. was able to eliminate $100 mil-
lion in total costs in 5 years (1996–2001) (Reilly 2002), Siemens Medical Systems
cut its costs by 25% over a 3-year period (1998–2001) (Carbone 2001), and Fujitsu
has detailed plans to reduce its spending on components and materials by approxi-
mately $3.85 billion over 2 years.1

These examples illustrate intra-enterprise horizontal collaboration where a com-
pany coordinates or centralizes the activities of multiple entities which are respon-
sible for the same function, e.g., purchasing. Alternatively, a company can achieve
significant benefits by coordinating the decisions of different functional areas, i.e.,
intra-enterprise vertical collaboration. An example of intra-enterprise vertical col-
laboration is the net landed cost approach, where a company coordinates several
functions, such as purchasing and logistics. Traditionally, purchasing’s goal in many
companies has been to procure goods at minimum cost, without necessarily con-
sidering the impact of their decisions on the overall profitability of the company.
Such cost focus sometimes leads to high-volume less-frequent purchases driven by
trade promotions, resulting in excess inventory and increased logistics costs due

1 “Fujitsu cuts procurement costs and suppliers.” Purchasing Magazine Online. February 21, 2002.
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to limited storage space. An extensive survey by Bain & Company shows that
“the cost of excess inventory in stores, driven by ‘silo’ planning and misaligned trade
promotions, amounts to more than 25% of annual sales” (Cook and Tyndall 2001).
The net landed cost approach eliminates such inefficiencies by coordinating the pro-
curement decisions with other functions, such as inventory and logistics, throughout
the enterprise (Erhun and Tayur 2003).

Inter-enterprise collaboration occurs when independent companies work
together, synchronize and modify their business practices for mutual bene-
fits, thereby shifting the nature of traditional relationships from adversarial to
collaborative (Lapide 1998). As in the case of intra-enterprise collaboration,
inter-enterprise collaboration can be horizontal where companies with similar char-
acteristics, which are potentially competitors, collaborate on a particular business
function, such as procurement. Examples include Covisint (founded by Daimler-
Chrysler, Ford, General Motors, and Renault-Nissan) (http://www.covisint.com),
and numerous group purchasing organizations in the health care industry
(http://www.firstmark.com/fmkdirs/gpo hsys.htm). Collaborative procurement
helps the buyers to leverage more value-added pricing, service, and technology
from their external suppliers than could be obtained individually (Hendrick 1997;
Langley 2001). Alternatively, it can be vertical, where partners in a supply chain,
e.g., a supplier and a manufacturer, collaborate to improve the overall efficiency of
the chain.

11.1.2 Why Do We Need Collaboration?

Supply chain management covers a whole spectrum of activities from product
and process design to manufacturing, procurement, planning and forecasting, or-
der fulfillment, and distribution. Managing such complex systems requires complex
tradeoffs. Many times the subsystems rely on local optimization. However, different
entities in the chain may have different and often conflicting objectives. Moreover,
the output of one system is the input of another. Hence even though they are de-
centralized, supply chain activities are interconnected. Therefore, it is essential to
consider the entire system and coordinate decisions (Fig. 11.2).

Given that each participant in a supply chain acts on self-interest and does not
necessarily have access to the same information (e.g., the retailer may have more
information about the end consumer demand compared with the supplier), the in-
dividual choices of the participants collectively do not usually lead to an “optimal”
outcome for the supply chain. That is, the total profits of a typical “decentralized”
supply chain which is composed of multiple, independently managed companies,
are less than those of the “centralized” version of the same chain, if such a chain
could exist and be managed optimally by a single decision-maker to maximize its
profits.

One possible strategy for reducing such inefficiencies is “vertical integration,”
where a company owns every part of its supply chain, including the raw materials,
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factories, and stores. An excellent example of vertical integration was Ford Motor
Co. early in the twentieth century (Swanson 2003). In addition to automobile facto-
ries, Henry Ford owned a steel mill, a glass factory, a rubber tree plantation, an
iron mine, and railroads and ships used for transportation. Ford’s focus was on
“mass production,” making the same car, Model T, cheaper and faster. This ap-
proach worked very well in the beginning. The price of Model T fell from $850 in
1908 to $290 in 1924. By 1914, Ford had a 48% share of the American market, and
by 1920 it was producing half the cars made worldwide. Vertical integration allows
a company to obtain raw materials at a low cost, and exert more control over the
entire supply chain, both in terms of leadtimes and quality. However, we do not see
many examples of vertically integrated companies today. Why? Mainly because in
today’s fast paced economy, where customers’ needs and tastes change overnight,
companies that focus on core competencies and are nimble are more likely to stay
ahead of their competition and succeed. Hence, we see an increasing trend towards
“virtual integration,” where supply chains are composed of independently managed
but tightly linked companies. Innovative practices, such as information sharing or
vendor managed inventory (VMI), are successfully used by some companies such
as Dell Corporation (Magretta 1998) and Cisco Systems to get closer to virtual in-
tegration. All of these steps companies take toward virtual integration fall under the
umbrella of collaboration, which is the main focus of this chapter.

While companies increasingly believe in the potential benefits of collaboration,
most remain reluctant to change their supply chain practices, and in such cases it is
desirable to design contracts (defining the terms of trade) or change the terms of the
existing contracts, to align incentives and reduce inefficiencies. This is known as
“supply chain coordination” and is discussed in Sect. 11.2. Similar concepts ap-
ply to independently managed divisions within a company as well. One should
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Fig. 11.3 A spectrum of collaboration in supply chains. This chapter provides an overview of
concepts in “coordination with contracts” and “collaborative supply chain management”

keep in mind that even though supply chain coordination is a step toward supply
chain collaboration, it does not entail all benefits as well as complications that col-
laborative environments create.

In summary, collaboration may be as simple as sharing information, or as in-
volved as joint product design (Fig. 11.3). Supply chain activities with a high
potential of benefiting from collaboration include new product introduction (plan-
ning, pricing, product design, and packaging), procurement, logistics, replenishment
planning, and demand forecasting. We discuss these activities in some detail in the
following sections.

11.2 Intra-firm and Supply Chain Coordination Through
Incentives and Contracts

In a supply chain (SC), there are multiple firms owned and operated by different
parties, and each of these firms take decisions which are in line with their own goals
and objectives. Similarly, often times large firms consists of multiple “divisions,”
such as marketing, production, procurement, logistics, and finance, each having their
own goals and incentives and focusing on different aspects of the firm’s operations.
As in all decentralized systems, the actions chosen by SC participants or different
divisions of a firm might not always lead to the “optimal” outcome if one considers
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the entire system as one entity. That is, since each player acts out of self-interest,
we usually see inefficiencies in the system, i.e., the results look different than if the
system were managed “optimally” by a single decision-maker who could decide on
behalf of these players and enforce the type of behavior dictated by this globally (or
centrally) optimal solution.

In this section, we take a look at the nature of inefficiencies that may result from
decentralized decision-making within a firm or a supply chain, and if and how one
can design incentive mechanisms or contracts such that even though each player
acts out of self-interest, the decentralized solution might approach the centralized
optimal solution. Such incentive mechanisms and contracts are useful if companies
want to reduce inefficiencies in their supply chains without necessarily engaging in
elaborate collaborative activities. For excellent reviews of the literature on supply
chain contracts and coordination, the reader may refer to Tsay et al. (1998) and
Cachon (2003).

11.2.1 Intra-firm Coordination

Examples of “disconnect” between different divisions (or functional units) or a firm
are abundant. “It’s a familiar scenario. Orders spike and manufacturing can’t keep
up. The people on the manufacturing floor blame purchasing for the production
line shutting down because purchasing didn’t buy enough materials and logistics
didn’t get the materials to the plant in time. Purchasing and logistics look at the
sales organization and say they did not get any forecasting information to pre-
dict a big spike in demand so inventories could be built to cover the demand”
(Hannon 2003).

In addition to communication inefficiencies between different divisions of a firm,
inefficiencies or suboptimal decisions can also arise due to misaligned incentives.
“Rewards and recognition systems misaligned with corporate objectives can result
in behavior that is not anticipated or desired by management. These unanticipated
actions may be personally beneficial to front-line sales reps, manufacturing floor
managers, or even senior executives, yet they move the company away from its
overall goals or cause systemic harm.”2 In an executive roundtable at Tuck School
of Business at Dartmouth, Steve Stone from Lowe’s recalled an oversupply of lawn
mowers pushed out to the stores in an effort to minimize distribution center inven-
tory, only to have them linger unprofitably as Spring arrived unseasonably late.3

Kirk Drummond of Sysco (a leading foodservice distributor) described situations
where salespeople brought in huge last minute orders for next-day fulfillment

2 “Aligning incentives with strategic and operational goals critical to performance management
success” http://www.pharmalive.com/News/Index.cfm?articleidD342812.
3 “Making the link between sales and operations planning.” http://mba.tuck.dartmouth.edu/
digital/Programs/CorporateRoundtables/ElusiveIntegration/Overview.pdf.
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without any advance warning to operations. Staples’ Kevin Holian described an
overenthusiastic promotion where merchants dramatically underestimated potential
demand at a deeply discounted price point.

Misaligned incentives also lead to conflicts in decision-making in an organiza-
tion. For example, sales/marketing is often evaluated based on revenues or sales
volume, whereas manufacturing is often evaluated based on cost or operational
efficiency. When it comes to decisions such as quoting leadtimes to customers, mar-
keting would prefer shorter leadtimes with the goal of attracting more customers
whereas manufacturing would prefer longer leadtimes with the goal of completing
the orders on time, without using overtime or other costly options, and to avoid
delay penalties.

Pekgun et al. (2008) study the incentive alignment between marketing and man-
ufacturing in a setting where marketing is responsible for price and manufacturing
is responsible for leadtime decisions. They find that coordination among these de-
partments can be achieved with a transfer price contract with bonus payments.
Under coordination, both production and marketing are better off, i.e., costs are
lower and revenues are higher, leading to higher overall profitability for the firm.
de Groote (1994) studies product variety versus process flexibility in the market-
ing/operations interface. Balasubramanian and Bhardwaj (2004) model a duopoly
in which firms with decentralized marketing and manufacturing functions with con-
flicting objectives compete on the basis of price and quality. Teck and Zheng (2004),
Chatterjee et al. (2002), and Erkoc and Wu (2002) study the leadtime quotation
problem within the marketing/operations interface.

It is crucial for a firm to adjust the incentives of different divisions so that they are
better aligned with the firm’s overall goals and strategy. While incentive alignment
(or sharing information) by itself is not a cure for all inefficiencies that arise in a
firm, it contributes significantly toward better processes and higher motivation for
collaboration.

11.2.2 Supply Chain Coordination

To illustrate the inefficiencies that might result in a decentralized supply chain
(DSC), we consider a simple stylized two-stage supply chain with one supplier and
one retailer (Fig. 11.4), where the retailer buys goods from the supplier and sells
them in the end market.4

For simplicity, assume that (a) the supplier is uncapacitated and has unit cost of
production c, (b) the retailer faces a market where the price is inversely related to
the quantity sold, (c) there is a linear demand curve P D a � bq where P is the

4 The material in this section is based on Erhun and Keskinocak (2003).
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Supplier Retailer Demand/Price
P=a-bq

c: unit cost
w: wholesale

price 

q: order
quantity

Fig. 11.4 A simple supply chain

Table 11.1 Wholesale price contract

DSC CSC

Supplier’s wholesale price .w/ w D .a C c//2 w
Retailer’s quantity (q/ q D .a � c/=.4b/ Q� D .a � c/=.2b/

Market price .P / P D .3a C c//4 P � D .a C c//2
Supplier’s profit .…S/ …S D .a � c/2=.8b/ …�

S D .w � c/q�

Retailer’s profit .…R/ …R D .a � c/2=.16b/ …�

R D .P � � w/q*
Total SC profits .…/ … D 3.a � c/2=.16b/ …� D .a � c/2=.4b/

market price and q is the quantity sold by the retailer, and (d) all of this information
is common knowledge.5

First, let us consider the simple wholesale price contract where the supplier
charges the retailer w per unit. The supplier’s and the retailer’s profits are …S D
.w � c/q and …R D .a � bq � w/q, respectively. The supply chain’s profits are
… D …S C …R D .a � bq � c/q. Note that the choice of w only indirectly affects
the total SC profits, since the choice of w impacts the choice of q.

Decentralized supply chain: As in most real-world supply chains, suppose that the
supplier and the retailer are two independently owned and managed firms, where
each party is trying to maximize his/her own profits. The supplier chooses the unit
wholesale price w and after observing w, the retailer chooses the order quantity q.
The equilibrium solution for this decentralized supply chain (DSC) is given in the
second column of Table 11.1. In this contractual setting, the supplier gets two-thirds
of the SC profits, the retailer gets only one-third. This is partly due to the first-mover
advantage of the supplier.

Now, let us consider a centralized (integrated) supply chain (CSC) where both
the retailer and the supplier are part of the same organization and managed by the
same entity.

Centralized supply chain: In this case, there is a single decision-maker who is con-
cerned with maximizing the entire chain’s profits … D .a � bq � c/q. The solution
for the CSC is given in the third column of Table 11.1.

From Table 11.1, we see that the quantity sold as well as the total SC profits
are higher and the price is lower in the CSC than in the DCS. Hence, both the

5 Note that in such a deterministic environment, the retailer will always purchase from the supplier
exactly as much as he will sell in the market. The “common knowledge” assumption may imply
some information sharing between the supply chain partners.
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supply chain and the consumers are better off in the CSC. What about the retailer
and the supplier? Are they both better off, or is one of them worse off in the CSC?
What is the wholesale price? How does the choice of w affect the market price,
quantity, and the supply chain profits? A closer look would reveal that w has no
impact on these quantities. Any positive w would result in the same outcome for
the CSC because the firm would be paying the wholesale price to itself! However,
the choice of w in the CSC is still very important as it determines how the profits
will be allocated between the supplier and the retailer. We can interpret w as a form
of transfer payment from the retailer to the supplier. What is the minimum w that
is reasonable? For positive supplier profits, we need w � c. If we set w D c, the
supplier’s profits are zero, whereas the retailer captures the entire supply chain’s
profits. What is the w that splits the SC profits equally between the retailer and the
supplier? If we set w D .a C 3c/=4, w � c D P � w D .a � c/=4 and each party’s
profits are .a � c/2=.8b/. Note that this is the same as the supplier’s profits in the
DSC. Hence, if the supplier and the retailer split the profits equally in the CSC, the
supplier is at least as well off, and the retailer strictly better off, than in the DCS.

In the DSC, the outcomes are worse for all the parties involved (supplier, retailer,
supply chain, and consumer) compared with the CSC because in the DSC both the
retailer and the supplier independently try to maximize their own profits, i.e., they
each try to get a margin, P � w and w � c, respectively. This effect is called double
marginalization (DM).

In a serial supply chain with multiple firms there is coordination failure because each firm
charges a margin and neither firm considers the entire supply chain’s margin when making
a decision.

Spengler (1950)

In this stylized model, the profit loss in the DSC due to DM is 25% (also referred
to as the DM loss). It is clearly in the firms’ interest to eliminate or reduce double
marginalization, especially if this can be done while allocating the additional profits
to the firms such that both firms benefit. This simple model suggests that vertical
integration could be one possible way of eliminating double marginalization. How-
ever, for reasons we discussed at the beginning of this chapter, vertical integration is
usually not desirable, or not practical. Then the question is, can we change the terms
of the trade so that independently managed companies act as if they are vertically
integrated? This is the concept known as supply chain coordination. In this stylized
model, the retailer should choose q� D .a � c/=.2b/ in any coordinating contract.

One can easily think of some very simple alternative contracts to eliminate dou-
ble marginalization:

Take-it-or-leave-it-contract: The supplier offers the following contract to the re-
tailer: Buy q� at the wholesale price w D .a C c//2, or nothing. In this case, the
supplier’s profit is …*, i.e., the supplier captures 100% of the CSC profits.

Marginal pricing: The supplier sets w D c. In this case, the retailer’s profit is …*,
i.e., the retailer captures 100% of the CSC profits.
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Note that the take-it-or-leave-it contract would require a very powerful supplier,
whereas the marginal pricing contract would require a very powerful retailer. In
practice, neither the supplier nor the retailer is so powerful in general to dictate
such contract terms. Hence, we need to consider alternative contracts that coordinate
the supply chain. The following aspects are important in (coordinating) contracts
(Cachon 2003): (a) Profitability: achieve profits close to optimum. (b) Fairness and
flexibility: allow for flexible division of profits. (c) Implementability: should be easy
and low cost to administer.

Revenue sharing contract: In a revenue sharing contract, the retailer pays a unit
wholesale price w to the supplier and shares a fraction ˛ < 1 of his revenues with
the supplier. For the simple supply chain in Fig. 11.4, one can show that the revenue
sharing contract can coordinate the supply chain with a w lower than what is charged
under the wholesale price contract, and ˛ can be chosen such that both the supplier
and the retailer are better off.

A well-known example of the revenue sharing contract has been implemented
between Blockbuster and movie studios.6 Blockbuster is a retailer which purchases
movies from the studios (suppliers) and rents them to customers. The supplier’s
wholesale price impacts how many videos Blockbuster orders and hence, how many
units are eventually rented by customers. Before 1998, the price of purchasing a tape
from the studio was very high, around $65. Given that rental fees are in the order of
$3–$4, Blockbuster could purchase only a limited number of videos which resulted
in lost demand; especially during the initial release period, where the demand was
high (peak demand usually lasts less than 10 weeks), 20% of customers could not
find what they were looking for on the shelf. Hence, the studio’s high wholesale
price impacted the quantity purchased by Blockbuster, and in turn, the revenues
and the profitability of both firms. Seeing this problem, Blockbuster and the studios
went into a revenue sharing agreement. According to this, Blockbuster pays only
$8 per tape initially, but then gives a portion (somewhere around 30–45%) of the
revenues generated from that tape back to the supplier. Since this agreement reduces
Blockbuster’s initial investment in movies, it orders more tapes from the studio, is
able to meet more demand, generates more revenues, and gives back a portion of
those revenues back to the supplier. Blockbuster increased its overall market share
from 25 to 31% and its cash flow by 61% using this agreement. This is clearly a win-
win situation. The supplier might be better off even if he sells each unit below its
production cost. A similar agreement is used between studios and theaters as well.

In case of multiple retailers, it turns out that coordination is not guaranteed under
revenue sharing unless the supplier has the flexibility to offer different contracts to
different retailers (Cachon 2003). Unfortunately, such “discrimination” might not
always be possible due to legal considerations. Another issue is the impact of such
an agreement on the behavior of a retailer who sells competing goods and also sets
prices. In such a case, the retailer may have an incentive to use the goods under rev-
enue sharing agreement as loss leaders, to drive the traffic to the store, and increase

6 “Revenue-sharing contracts boost supply chain performance.” CNet News.com, October 18, 2000.
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the overall sales. Finally, revenue sharing loses its appeal if the revenues depend on
the retailer’s sales effort. For a retailer who is taking only a fraction of the revenues
he generates, the incentive to improve sales goes down. While revenue sharing helps
to ensure that the retailers buy and sell the “right” quantity, it hurts their sales effort.
This is especially true in retail industries such as automobile sales, where a retailer’s
sales effort makes a big difference in the overall sales rate.

Buyback contract: We observed that in the decentralized chain under wholesale
price contract, the retailer orders less than the optimal quantity. This was mainly due
to double marginalization. An additional reason for ordering less than the optimal
quantity could be the risk of excess inventory. For example, consider a newsvendor
type model, where there is a single selling opportunity and the seller needs to pro-
cure/produce before knowing the demand. This is the case for most fashion retailers,
where products need to be ordered months in advance, due to long leadtimes, well
before the demand is known and the actual selling season begins. Whatever is not
sold at the end of the selling season is salvaged, and the retailer bears the cost of
having excess inventory.

In a buyback contract, the retailer can return unsold goods to the supplier at the
end of the selling season and get some money back. Specifically, the supplier pur-
chases leftover units at the end of the selling season for a per unit price that is less
than w. Buyback contracts allocate the inventory risk between the supplier and the
retailer and motivate the retailer to purchase more than what he would in a typical
wholesale price contract, which can benefit both the retailer and the supplier.7 Buy-
back contracts are commonly used in industries with perishable products and short
product lifecycles, such as high-tech industry.

Two-part tariff: In a two-part tariff, the supplier charges a fixed fee F and a whole-
sale price w per unit. The following is an example of two-part tariffs from fractional
aircraft ownership:

For travelers who value flexibility and the increased security of knowing everyone on the
flight, there is a compelling incentive for opting for fractional ownership.. . . Under NetJets’
scheme, a one-sixteenth share of a small Cessna Encore, which seats seven passengers, costs
$487,500 plus a monthly management fee of $6,350 and an occupied hourly fee of $1,390
for each of the allotted 50 hours.

Foster (2001)

For the simple supply chain in Fig. 11.4, one can show that the two-part tariff can
coordinate the supply chain with w D c, and the choice of F determines how the
profits are allocated between the supplier and the retailer.

7 The ability to share the risk of excess inventory is not unique to buyback contracts. In fact, revenue
sharing also allows inventory risk sharing since the retailer in this case commits to a smaller initial
capital expense for inventory.
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Quantity discount contract: In the examples we discussed above, we assumed
that w is fixed per unit. However, in many applications, suppliers offer quantity
discounts.

“We offer a quantity discount for orders of 10 pieces and more of the same products.”
(http://www.decor24.com)

“Quantity discounts on miscellaneous accessories: 0 � 4 D 0%; 5 � 9 D 5%; 10 � 24 D
10%; 25 � 49 D 15%; 50-up D 20%:” (http://www.frye.com)

In quantity discount contracts, if the retailer purchases more units, the unit price
goes down. Therefore, the supplier charges w.q/ where w is a decreasing function of
q. Again, for the simple supply chain in Fig. 11.4, one can show that the quantity dis-
count contract can coordinate the supply chain with the appropriate choice of w.q/.

Our focus in this section was on incentive mechanisms or contracts which par-
tially “align” the incentives of different players in a firm or a supply chain to
achieve results which are better than in a purely decentralized setting. We restricted
ourselves to environments where all players have access to the same information.
However, this is rarely the situation in supply chains. Complex contract structures,
which most probably will be renegotiated,8 may be required in environments with
asymmetric information. Hence, contracts and incentive mechanisms that do not re-
quire true collaboration may have limited effectiveness in complex supply chains.
In the following section, we discuss collaborative practices which usually require
more interaction among participants than setting contractual terms.

11.3 Supply Chain Collaboration

As we discussed earlier, supply contracts are one alternative to eliminate inefficien-
cies in supply chains. Yet another alternative is collaboration. One should note that
collaboration is more than managing relations with written contracts. In the fol-
lowing sections, we discuss collaborative activities that have a high potential for
improving the performance of supply chains.

11.3.1 Collaboration in Design and New Product Introduction

Reducing time-to-market (TTM) and shortening product life cycles are commonly
cited as sources of competitive advantage (Bower and Hout 1988; Brown and
Karagozoglu 1993). By launching new products faster than competitors, firms can
rapidly respond to customer feedback, establish new standards, improve brand

8 Gartner Research estimates that “80 percent of outsourcing relationships will be renegotiated
during lifetime of contract.” (“80 percent of outsourcing relationships will be renegotiated during
lifetime of contract.” AEC Online. April 27, 2005).
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recognition, quickly introduce technical innovations, and capture a bigger share of
the market, resulting in higher profits (Zirger and Hartley 1996). Following this
trend, several companies in different industries have gained market share, increased
profits, and built strong brands. For instance, Intel leapfrogged an entire technolog-
ical generation in 2001 to maintain leadership in the semiconductor manufacturing
industry; the company named its strategy One Generation Ahead (Erhun et al.
2005).

Aberdeen Group reports that companies can reduce costs by nearly 18% by in-
volving suppliers and procurement in new product development processes during
the design inception and development phase compared with companies delaying
such collaboration until the product prototype phase. Early involvement speeds
TTM 10–20%. For example, Microsoft was able to launch the first generation of
XBox in 16 months (6 months shorter than Sony’s PlayStation 2), winning 3.6%
market share in 4 months by creating a collaborative environment with its manufac-
turing partner and nearly 200 component vendors (Shah and Serant 2002). General
Motors (GM) saved $1 billion in information technology (IT) expenses by reducing
its TTM from 48 months to 18 months (Richardson 2003).

Even small steps such as information sharing enable improvements in design and
new product introduction by enabling standardization, eliminating repetition, and
shortening the leadtime of the product without lowering the quality. Such improve-
ments are especially valuable in industries such as apparel, which are characterized
by very short product lifecycles but long development cycles. Boyd Rogers, VF’s
(the world’s largest apparel maker) VP of supply chain and technology states that
“It takes as long as 9 months to design a new pair of jeans and get them on the
shelves.. . . If you look at the cycle times from design to retail shelf, about two-thirds
is spent in product development” (Sullivan 2005). According to Johnson et al. 2004),
the biggest challenges in the apparel industry are: (1) Ensuring that everyone in the
supply chain has an accurate and up to date description of the product. (2) Visibility
of the processes to the entire product and sourcing team with a documented history
of product changes. Long development times, combined with the above problems,
create an excellent environment for collaborative design. For example, VF believes
that collaboration on design and logistics could result in savings of $100 million a
year and significantly reduce the TTM for new designs. Intra-enterprise communica-
tion through a Web-enabled system improves the design process by reducing cycle
times, reducing communication costs and errors, speeding TTM, improving pricing,
and standardizing design process through templates of past designs (Johnson 2002;
Sullivan 2005). Collaboration brings additional improvements by combining the
knowledge bases of partners.

Without doubt, collaborative product design and new product introduction has its
challenges. Trust is a big issue – adversarial relationships may emerge due to lack
of trust and failure to generate win-win solutions. In that sense, partner selection is
a key for achieving the greatest benefits (Mentzer et al. 2000). Partners should be
comfortable with the relationship, as well as their roles and responsibilities within
the relationship, to make collaboration work. Yet another dimension is the avail-
ability of tools and processes to enable collaboration. With vendors such as UGS
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Corp., Dassault Systèmes, Agile Software, MatrixOne, and Parametric Technology,
Product Lifecycle Management (PLM) suites provide such tools and processes and
take their place among other important enterprise software (Malykhina 2005).

The academic literature on collaboration in new product design includes studies
on collaborative prototyping (Terwiesch 2004), value of information exchange
(Browning et al. 1996; Clark and Fujimoto 1991; Krishnan 1996; Krishnan
et al. 1997; Loch and Terwiesch 2005), how to respond to uncertain market con-
ditions (Krishnan and Bhattacharya 2002; Loch and Terwiesch 1998), how to
integrate the development (i.e., new product design) and planning (i.e., supply chain
management) processes (Swink 2006), and negotiation and contracting (Erat 2006;
Plambeck and Taylor 2004). Erat (2006) studies the negotiation and contracting
process in a codevelopment setting with a focus on the information acquisition and
uncertainty resolution characteristics of processes. The author’s goal is to explain
the rationales for delayed contracts in the joint product development process. With
a two-player, two-period model, Erat considers how individual efforts map onto
the final joint value of the development project, features of information acquisition,
and the negotiation process and the type of contracts that may be agreed on. The
contracts increase the effort levels and the performance of the product. However,
the author shows that under conditions of high market or development, uncertainty
firms may still delay signing a contract till at least a part of the uncertainty is
resolved. Plambeck and Taylor (2004) address the question of who should own
the capability to produce in a two-stage, three-player [two OEMs and a single
contract manufacturer (CM)] supply chain, where the OEMs invest in innovation.
The authors analyze two models for capacity investment. In the first model, the
OEMs delegate the capacity investment to the CM, who then allocates capacity
between them. In the second model, the OEMs retain plant ownership and pool
capacity through supply contracts. Plambeck and Taylor show that OEMs might do
better to trade capacity among themselves rather than to outsource to a CM. They
also show that with contract manufacturing an OEM will underinvest in innovation.

Erhun et al. (2007) study new product introductions and provide a framework
and a process to promote the alignment of actions and decisions across different in-
ternal groups and across organizations. The process of managing product transitions
begins by identifying specific market objectives, which might include meeting profit
or market share goals or maintaining technology leadership. Once these have been
selected, companies need to understand the product drivers and risks, and conduct
a factor assessment, which involves monitoring and measuring the factors affect-
ing both old and new products. The process also necessitates a detailed analysis
of the risks arising from interactions between products and the development of a
transition playbook, which amounts to a catalog of primary and contingency strate-
gies for preventing and mitigating transition risks. As market conditions change,
managers need to be prepared to initiate the process again. The framework helps
level expectations and synchronize responses across the various teams involved
in product transitions, thereby improving the company’s ability to anticipate and
react to environmental changes, which is a critical aspect of managing product
transitions.
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The notion of socially responsible and eco-friendly supply chains opens a new
venue for future research in collaborative new product design. Product design forms
the basis of sustainable supply chains and collaboration in design has tremendous
benefits. For example, Toyota did not have the technology for a Nickel Metal
Hydride (NiMH) battery, one of the key components of the Prius, and collabo-
rated with Matsushita on battery development (Carlson and Rafinejad 2006). As
regulations become more stringent, sustainable manufacturing practices will be in-
evitable. Without collaboration, however, companies face serious risks. The incident
of illegal cadmium found in outsourced PlayStation cables in 2001 by Dutch author-
ities (Engardio 2007) caused Sony to miss the Christmas season and lose millions
of dollars as a result (“Reman ENews,” http://www.reman.org/news/2005-05.htm).
The alignment of incentives and responsibilities in new product development under
stringent regulations is one possible research area in this venue.

11.3.2 Collaboration in Planning, Forecasting, and Inventory
Management

The bullwhip effect, which refers to the phenomenon where the order variability
amplifies as one moves upstream in a supply chain from retailers to distributors to
manufacturers to suppliers (Fig. 11.5), is a well-documented source of inefficiency
in supply chains (Lee et al. 1997). There are many factors that contribute to the bull-
whip effect: demand forecasting and inventory management, order batching, price
fluctuation, and rationing and shortage gaming.

In order to eliminate inefficiencies due to demand forecasting and inventory
management, many supply chain partners now rely on collaborative processes such
as Quick Response (QR), Collaborative Planning, Forecasting, and Replenishment
(CPFR), and VMI. QR, which can be viewed as the simplest of all collabora-
tive planning activities, entails suppliers to receive Point-of-Sale (POS) data from
retailers and use this information to improve forecasting, and to synchronize pro-
duction and inventory activities. Well-publicized success stories of QR include Zara
(Ghemawat and Nueno 2003) and Benetton (Heskett and Signorelli 1984). These

Supplier Manufacturer
Distributor/
Wholesaler Retailer Consumer

Time Time Time Time Time

Sa
le

s

Sa
le

s

Sa
le

s

Sa
le

s

Sa
le

s

Fig. 11.5 The bullwhip effect



248 F. Erhun and P. Keskinocak

companies, among others, successfully use QR to operate their effective and respon-
sive supply chains. However, companies can take additional collaborative efforts to
further improve their operations. For example, they can choose to participate in
collaborative forecasting in order to arrive at an agreed upon forecast between all
partners, which is the idea behind CPFR. This requires sharing of additional infor-
mation on future demand, such as pricing, promotions, and release of new products.
Finally, retailers may leave inventory decision to suppliers within agreed-upon lim-
its, as in VMI.

11.3.2.1 Collaboration in Planning and Forecasting

Collaborative forecasting is an iterative forecasting process in which all participants
in the supply chain collaborate to arrive at an agreed upon forecast. It entails sharing
not only forecasts but also information about other factors which affect future de-
mand, such as, pricing, promotions, and release of new products. Such information
sharing significantly reduces, but does not completely eliminate, the bullwhip effect
(Simchi-Levi et al. 2000).

CPFR is a standard set of processes and a protocol, developed by Voluntary Inter-
Industry Commerce Standards Committee (http://www.vics.org), for sharing a wide
range of data over the Internet. It is a platform for negotiation before agreeing on a
forecast (Fig. 11.6). In one of the first CPFR pilots, Wal-Mart and Warner-Lambert
eliminated 2 weeks of inventory and cut cycle times in half for Listerine. On a suc-
cessful pilot by Nabisco and Wegmans, the total snack nut category sales went up
from 11%, as opposed to a 9% decline for other retailers. In particular, Planters
sales went up 40%, as efficient replenishment enabled more promotions and dis-
counting. The warehouse fill rate increased from 93 to 97% and inventory dropped
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by 18%. Henkel KgaA, a German-based manufacturer of household cleaners and
home care products, announced that from October 1999 to March 2000, the number
of forecasts with average error of more than 50% declined from nearly half to 5%
and the number of forecasts with error rate of less than 20% grew from 20 to 75%
as a result of a CPFR implementation (Andraski and Haedicke 2003).

The benefits of CPFR are numerous. For retailers, the benefits include improved
forecast accuracy, better store shelf stock rates and higher sales, lower inventories,
better promotions planning, lower logistics costs, and lower process costs. For sup-
pliers, the benefits include lower inventory costs, smoother demand patterns, faster
replenishment cycles, better customer service, and lower production planning and
deployment costs (CPFR Committee, http://www.cpfr.org). Given these benefits,
the academic literature on collaborative planning and forecasting is flourishing
(Aviv 2007, 2002, 2007; Kurtulus and Toktay 2004; Miyaoka 2003). Sheffi (2002)
provides an overview of the development of collaboration in supply chains and
discusses the possible benefits of collaboration based on case studies focusing
on CPFR.

In a series of papers, Aviv (2007, 2002, 2007) studies the potential value of CPFR
in a cooperative supply chain using stylized models with a single retailer and a single
manufacturer. The author shows that the benefits of collaborative forecasting depend
on (a) the relative explanatory power of the supply chain partners, (b) the supply
side agility, and (c) the internal service rate. He identifies cases where a partnership
does not appear to be valuable to the manufacturer. Miyaoka (2003) considers a
decentralized two-stage supply chain with a single selling season and addresses
the incentive issues associated with implementing collaborative forecasting. She
introduces a concept she calls collaborative forecasting alignment (CFA) that aligns
the parties’ incentives so that demand information can be shared credibly with a
simple transfer price agreement. Kurtulus and Toktay (2004) investigate the condi-
tions that favor the use of collaborative forecasting between a supplier and a retailer
in a newsvendor setting. Both the supplier and the retailer can exert independent,
costly effort to improve the quality of their local demand forecasts. The authors
characterize the existence and stability conditions of an equilibrium in which both
parties invest in improving forecast quality.

An interesting research direction in CPFR is N -tier relationships, i.e., analyz-
ing either multiple partners in one tier or multiple tiers of partners. Mechanisms
that enable truthful information sharing for multiple partners in one tier would be
especially valuable. To that extent, behavioral studies on CPFR would be useful in
understanding the drivers of failure and success in CPFR applications. Current prac-
tices would also greatly benefit from empirical research on the value, adoption, and
success factors of CPFR.

11.3.2.2 Collaboration in Inventory Management

VMI, also called the continuous replenishment program (CRP), is an agreement
between a supplier and a buyer where the supplier is responsible for maintaining
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adequate inventory levels at the buyer’s site (Hausman 2001). Both the academic
literature (Achabal et al. 2000; Axsater 2001; Çetinkaya and Lee 2000; Cheung and
Lee 2002; Disney et al. 2003: Disney and Towill 2003a, b; Fry et al. 2001; Kaipia
et al. 2002) and industrial implementations of VMI (Wheelwright and Gill 1990;
Peleg 2003) are growing at a steady pace.

VMI allows coordination of production and distribution between suppliers and
retailers. There are several benefits of this type of coordination that are documented
by successful implementations. One such success story is due to Campbell Soup
Company. In early 1990s, Campbell Soup Company was enjoying a stable business
environment: only 5% of their products were changing every year and the demand
was predictable. More than 98% of demand was satisfied from stocks of finished
goods. Replenishment leadtime for new products was 1 month and the minimum
market life cycle was 6 months. However, the company suffered from low mar-
gins and in 1991 implemented CRP. They started monitoring demand and inventory
levels daily [via electronic data interchange (EDI) links] and jointly decided on in-
ventory policy and parameters with their retailers. As a result of these changes,
inventory levels went down from 4 weeks to 2 weeks of supply, in-stock availability
went up to 99.2% from 98.5%, and the company recognized the negative impacts of
the overuse of price promotions (Wheelwright and Gill 1990; Hausman 2001). Wal-
Mart and P&G, Kmart and First Brands, Inc., and Kmart and Whitehall Robbins,
who have successfully incorporated VMI into their operations, have observed simi-
lar benefits (Simchi-Levi et al. 2000).

A critical question in any VMI implementation is: Who owns inventory? There
are different ways of handling this issue of ownership. Traditionally in VMI im-
plementations, the retailer owned inventory. This creates obvious incentive mis-
alignments between retailers and suppliers. Recently, we see a movement toward
a consignment relationship where the supplier owns inventory until the goods are
sold. Based on the Institute of Management and Administration’s 2004 Inventory
Management Report Survey, Mullen reports that 37.3% of respondents have con-
signment agreements with their suppliers. In the list of top ten best practices, the
respondents ranked inventory consignment in third place in 2004, up from fifth place
in 2003 and tenth place in 2002 (Mullen 2006). Wal-mart, for example, has such
consignment relationships with some of its suppliers, including most of its grocery
purchases (Taylor 2004). As a part of the E-Chain Optimization Project (eChO),
STMicroelectronics and one of its strategic partners implemented CPFR, based on
a VMI model with consignment, which transformed the collaborative forecasting
process from being superficial to having more depth (Peleg 2003).

The benefits of VMI discussed above have created interest in academia as well.
Mishra and Raghunathan (2004) identify yet another benefit of VMI for the re-
tailer by showing that VMI intensifies the competition between manufacturers of
competing brands due to brand substitution, and the increased competition ben-
efits a retailer who stocks these brands as manufacturers stock more inventories.
Çetinkaya and Lee (2000) analyze a model that coordinates inventory and trans-
portation decisions in a VMI setting. In their model, a vendor, who uses a certain
kind of .s; S/ policy, satisfies demands for several retailers in close proximity. In
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order to benefit from the scale economies in transportation, the vendor may batch
orders. Hence, the vendor’s inventory should take into account the replenishment
frequency. The authors jointly compute the optimum replenishment quantity as well
as dispatch frequency. Cheung and Lee (2002) study the relative benefits of two
VMI-initiatives, i.e., joint/coordinated replenishment systems and joint/coordinated
replenishment systems with stock rebalancing, in a setting close to Çetinkaya and
Lee’s. These authors conclude that shipment coordination and rebalancing reduce
costs as the number of retailers who can participate, i.e., many customers in close
proximity, increases. In a related work, Altintas et al. (2008) show that the increas-
ing burden of transportation costs is forcing suppliers to eliminate transportation
inefficiencies by motivating buyers to place full-truckload orders and suggest dis-
count schemes that suppliers may use to moderate buyers ordering behaviors under
different transportation costs.

Fry et al. (2001) model a type of VMI agreement called a .z; Z/ VMI contract.
In a .z; Z/ VMI contract, inventory at the customer is reviewed periodically. If upon
review, the inventory level is below z, then the supplier has to pay the retailer a
penalty of b�, and if upon review, the inventory level is above Z, then the supplier
has to pay the retailer a penalty of bC. The authors formulate a Markov decision
process (MDP) in which the supplier makes three types of decisions: production
quantity, outsourcing (expediting) quantity, and delivery quantity to the retailer. The
retailer takes the supplier’s optimal policy in the MDP into account, and chooses the
values of z and Z that minimizes the retailer’s expected cost. They show that there
exist values of z, Z, b�, and bC (that could be chosen by a central decision maker)
that would optimize the overall supply chain performance. They also formulate a
MDP model of a conventional retailer managed inventory (RMI) setting, in which
the supplier has complete knowledge of the consumer demand distribution, the re-
tailer’s inventory level, and the retailer’s ordering policy, thus modeling RMI with
complete information sharing. They compare the overall performance of the supply
chain under both settings numerically and show that the results are inconclusive.
They find that depending on the contract parameters (such as b�; bC; and Q) VMI
can lead to overall supply chain performance that can be significantly better or sig-
nificantly worse than RMI. However, by choosing the contract parameters carefully,
the performance of VMI can be improved.

VMI implementations are not always successful, especially when communica-
tion and trust are not built into the partnership. Spartan Stores, a grocery chain,
shut down their VMI program after just 1 year. Buyers did not trust suppliers and
spent no less time in ordering. Suppliers could not incorporate promotional informa-
tion into forecasts, hence, delivery levels were unacceptably low during promotion
times (Simchi-Levi et al. 2000). This example highlights a very common mistake in
VMI implementations. Retailers should always keep in mind that because they no
longer manage the inventory, inventory does not disappear from the supply chain.
Hence, they should not expect suppliers to incorporate big swings in demand to their
operations. Working with suppliers collaboratively can lead to a long-term partner-
ship with mutual benefits, such as reduced inventory throughout the supply chain
(Mullen 2006).
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11.3.3 Collaboration in Production Management

Collaborative production management (CPM) – an application of collaborative
concepts to the factory floor – includes intra- and inter-enterprise collaboration
and real-time information sharing on “production planning, finite scheduling, mate-
rial and recipe management, data collection, document control, lot and work order
tracking, plant floor and enterprise system interfacing, messaging and alarming,
performance analysis, genealogy, dispatching, and workflow management.”9 It thus
“synchronizes, executes, tracks, reports, and optimizes manufacturing processes.”10

One of the dimensions of CPM is collaborative scheduling. According to a
manager of Military Technology and Operations at a multinational aerospace man-
ufacturer, “In order to reduce production cost and customer lead time, it is very
important to coordinate daily manufacturing schedules closely between our own
plants and those of our suppliers. Since our suppliers typically have different ob-
jectives from ours, conflicts often arise and have to be resolved through scheduling
coordination” (Hall 2005).

In a series of papers, Hall and his colleagues study the benefits and challenges
of coordination within supply chain scheduling models. Hall and Potts (2003) and
Dawande et al. (2006) analyze conflict and cooperation issues arising in an arbores-
cent supply chain.11 In Hall and Potts’s model, a supplier makes deliveries to several
manufacturers, who also make deliveries to customers. In Dawande et al.’s model, a
manufacturer makes products which are shipped to customers by a distributor. Hall
and Potts show that cooperation between the supplier and the manufacturer may
reduce the total system cost by at least 20–25% and up to 100%, depending upon
the scheduling objective. Dawande et al. argue that the ideal schedule of the man-
ufacturer and the distributor (determined by cost and capacity considerations) are
in general not well coordinated, which leads to poor overall performance. Hence,
Dawande et al. consider the extent to which one decision maker’s cost is larger than
optimal when the other decision maker imposes its locally optimal schedule. The
authors show that the cost of conflict can be eliminated and the parties benefit from
cooperation when the dominant player agrees not to use its individually optimal
schedule. The authors recommend a perfectly equitable split of the surplus, when
the parties accurately and continuously share all cost data in a verifiable way. Al-
ternately, they recommend negotiation for a transfer payment from the dominated
player to the dominant player. Chen and Hall (2005) study the same issues in an
assembly system where suppliers provide parts to a manufacturer who performs a
nonbottleneck operation for each product. The authors computationally demonstrate
that the cost saving realized by cooperation between the decision makers is signifi-
cant in many cases in assembly systems as well.

9 “Collaborative production management solutions on the rise.” http://www.ferret.com.au/.
10 “Discrete manufacturing CPM market to double; will top $1 billion by 2008.”
http://www.mhmonline.com/.
11 In arborescent supply chains, each player has only one supplier but can act as a supplier to one
or many players.
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According to the ARC Advisory Group, the market for CPM systems for dis-
crete manufacturing will hit $1.4 billion by the end of 2010 (The market was $860.5
million in 2006).12 The benefits of CPM are significant: reduced errors, increased
production rates, improved capacity utilization, increased equipment reliability, im-
proved efficiency and productivity of staffing, improved responsiveness to demand
changes, improved quality, and continuous improvement. To achieve these benefits,
CPM should integrate with business, engineering, and maintenance systems.

11.3.4 Collaboration in Logistics

Recent studies show an increase in logistics costs; the estimated logistics costs in
2005 totaled $1.183 trillion, a $156 billion increase over 2004. The 17th Annual
State of Logistics Report now places logistics expenditures at 9.5% of US’s gross
domestic product (GDP) (Cooke 2006). Since logistics costs constitute 5–50% of a
product’s total landed cost (Hart 2005), it is critical to control these costs in supply
chains and collaborative logistics can provide the means to do that.

According to John Sobczak, the supply chain manager for Cogistics, “the most
interesting and exciting topic in the industry right now is collaborative logistics. The
collaborative approach, in contrast to traditional third-party logistics outsourcing, is
becoming the preferred way of doing business” (Malone 2003). There are several
aspects of collaborative logistics, such as collaborative transportation and collabora-
tive warehousing. For example, Land O’Lakes started a collaborative warehousing
initiative recently. For Land O’Lakes, warehousing constitutes about three-quarters
of their $40 million logistics budget (Stepanek 2003). Hence, sharing warehouse
space can potentially decrease inventory costs and increase their supply chain effi-
ciency considerably. However, “transportation continues to be the biggest compo-
nent of overall logistics cost and accounts, on average, for 6% of a company’s annual
expense budget . . . . Technology and shipper–carrier collaboration are opening new
doors to cost/price reductions in all areas of the transportation process – procure-
ment, planning, execution, and monitoring” (Murphy 2002). Hence, collaborative
practices have seen an increased adoption in the transportation industry in recent
years and we concentrate on collaborative transportation in the rest of this section.

11.3.4.1 Collaboration in Transportation

To transport the shipments of different shippers, a carrier often has to reposition
its assets, e.g., trucks in case of a trucking company and containers in case of an
ocean carrier. A recent industry report estimates that 17 and 22% of all truck
movements in the USA are empty for large and small carriers, respectively,

12 “Collaborative production management for the discrete market grows 15%.” IndustryWeek.
September 12, 2005.
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Fig. 11.7 Collaborative routing example from Nistevo Network

resulting in approximately 35 million empty miles monthly and a loss of billions of
dollars (ATA 2005). These repositioning costs are reflected in the prices paid by the
shipper, and eventually translate into higher prices for the goods sold in the market,
impacting the entire economy. To reduce these costs, shippers and carriers can get
together and collaborate on managing the timing and frequency of the shipments to
better utilize the truck capacity of a carrier. Examples of such collaborative logistics
networks include Nistevo, Transplace, and One Network Enterprises. By participat-
ing in collaborative activities through these networks, a number of companies such
as General Mills, Georgia-Pacific, and Land O’Lakes have been able to identify cost
efficient routes and realize considerable savings (Fig. 11.7). For example, Georgia-
Pacific’s percentage of empty movements decreased from 18 to 3% after forming
collaborative partnerships with other companies in the Nistevo Network, where
each 1% reduction in empty moves corresponds to savings of $750,000 annually
(Strozniak 2003).

For similar reasons as in trucking, collaboration has also been embraced by the
sea-cargo industry. Repositioning empty containers is very expensive: According
to ROI Container Cargo Alliance (July 2002), a 10% reduction in equipment and
repositioning costs can potentially increase profitability by 35–50%. Several ocean
carriers have formed alliances (e.g., Sea-Land and Maersk share vessels in the At-
lantic and Pacific oceans), which allow them to realize economies of scale, extend
customer base, and increase asset utilization (reducing empty container moves)
while providing customers with more frequent sailings and faster transit times
(Agarwal and Ergun 2005).

There are several important issues that need to be addressed for achieving
successful collaborative transportation: (1) How to form routes to reduce empty
moves? (2) How to share costs among the different participants? (3) How to es-
tablish trust among the participants and overcome cultural differences? The third
question is of utmost importance, since collaborative networks cannot exist with-
out trust and agreement among participants. For example, Kellogg’s and General
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Mills, major competitors in food manufacturing, send most of their products to the
same stores and could greatly benefit from sharing truck capacity or routes. How-
ever, they were not able to collaborate because of cultural roadblocks (Strozniak
2003). While we acknowledge the importance of trust, our focus in this section
will be primarily on analytical approaches which can help answer the first two
questions.

Generating collaborative tours: Identifying tours to minimize asset repositioning
costs in a collaborative logistics network can be challenging, especially as the size
of the network (i.e., the number of participants and the number of lanes) grows.
Adding to the challenge are various timing constraints, including: (1) dispatch time
windows, i.e., the time interval in which the load to be moved should be dispatched
to arrive at its destination on time, and (2) Department of Transportation Hours of
Service regulations, which limit the driving and duty hours of truck drivers.

Erhun et al. (2007) discuss optimization methodology for the identification of
repeatable, dedicated truckload continuous move tours, which is relevant for com-
panies that regularly send truckload shipments and are interested in collaborating
with each other. Considering the constraints mentioned above, they focus on the
time-constrained lane covering problem (TCLCP), which is defined as follows: For
a given set of lanes, find a set of tours covering all lanes such that the total duration
of the tours is minimized and the dispatch windows are respected.

Given the large size of practical instances, Erhun et al. focus on developing an
effective and efficient heuristic for TCLCP. They implement a greedy heuristic that
generates a large number of time-feasible cycles (potentially all) and greedily se-
lects a subset of those cycles to cover the lanes based on some criterion measuring
the desirability or attractiveness of a cycle. After all lanes are covered they per-
form a local improvement step to improve the solution. They test their methods
on randomly generated test problems and also conduct a case study for a group
purchasing organization to assess the potential value of collaborative transporta-
tion procurement for individual member companies. In the case study, a typical
all-member instance for a single week involves about 750 locations and 5,500
lanes. The potential savings due to continuous moves are estimated to be in the
order of 9–10%. They observe that the smaller the dispatch window width the
smaller the savings, due to the increased chance of waiting between two consec-
utive moves.

Sharing costs/savings among collaborators: One of the most challenging aspects
of collaboration is devising “fair” mechanisms to allocate the costs/savings among
the participants such that the resulting collaborative arrangement is sustainable.13

According to Kevin Lynch, President and CEO of Nistevo Corporation, “The
key to understanding Collaborative Logistics lies in recognizing how costs are

13 In a stable or fair cost allocation, no coalition of members can find a better way of collabo-
rating on their own. Hence, the grand coalition is perceived as fair and is not threatened by its
subcoalitions. Thus, stability is the key concept that holds a collaboration together.
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Fig. 11.8 Cost sharing in a
simple collaborative network
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distributed in a logistics network” (Lynch 2006). In a recent paper, Ozener and
Ergun (2008) discuss desirable properties of cost allocation mechanisms in collab-
orative transportation.

In current practice, collaborative networks allocate benefits in proportion to the
base cost (cost before collaboration) of the participating shipper’s lanes. That is, the
savings (the difference between the total base cost and the total cost of the collabora-
tive tours) are distributed based on the percentage of the base cost each shipper has
contributed to the collaborative transportation network. The example in Fig. 11.8
(based on Ozener and Ergun) shows that although such “proportional cost alloca-
tion” schemes are easy to implement, they are not fair from a game theoretic point
of view. In this example, suppose that the cost of covering a lane is equal to 1. If
only shippers A and B are in the network, the total cost of covering the lanes is 2,
and the proportional cost allocation method allocates a cost of 1 to each shipper.
With the addition of the new shipper C , the total cost of covering the lanes in the
network becomes 4, and a cost of 4/3 is allocated to each shipper. However, with
this allocation, it is easy to see that shippers A and B (or A and C ) are better off
collaborating on their own with a total cost of 2. Therefore, the proportional cost
allocation in this case is not fair and the grand coalition that consists of all the ship-
pers in the network could be replaced by a subgroup of its members.14 Note that the
only allocation where the grand coalition is not threatened by any subgroup of its
members is the allocation of (0, 2, 2) to shippers A, B , and C , respectively. Since
shipper A creates a positive value for the other two shippers, it is charged less than
B and C . However, charging shipper A nothing makes A a free-rider which may
not be desirable in a collaboration. Furthermore, in the only fair allocation, where
the grand coalition is maintained together, both shippers B and C are allocated their
stand-alone costs, so being in a collaboration brings no positive value for these two
shippers. This simple example illustrates some of the challenges in finding a robust
mechanism for allocating costs and savings in a collaborative framework.

As our simple example indicates that a cross monotonic cost allocation, i.e., an
allocation where no member’s benefit decreases with the addition of a newcomer,
may not exist in the core of the game representing the shipper collaboration problem.
Hence, increased synergies due to the addition of new members to a coalition do not
necessarily create additional benefits for the participants. Therefore, Ozener and
Ergun study cross monotonic and stable allocations that recover a good percentage
of the total cost, even if not the entire cost.

14 Ozener and Ergun (2008) note that due to the costs associated with managing collaborations,
limited rationality of the players and membership fees, a subcoalition might not be formed even
though it offers additional benefits to its members. Therefore, relaxing the stability restriction in a
limited way might be acceptable for a cost allocation method.
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A collaborative game where the players compensate each others’ costs with side
payments is called a transferable payoffs game. A collaborative game is called a
nontransferable payoffs game if positive transfers between members of the col-
laboration are not allowed. In the shippers’ collaboration problem, seeking a cost
allocation method which distributes the total transportation costs corresponds to
a transferable payoffs game, whereas seeking an allocation which only distributes
the asset repositioning costs corresponds to a nontransferable payoffs game. To en-
sure that each shipper pays at least its original lane cost (i.e., to avoid the situation
in the example in Fig. 11.8 where shipper A pays nothing), allocations with non-
transferable payoffs are of interest. Furthermore, it is desirable that each shipper is
guaranteed an allocation less than its stand-alone cost so that being a member of the
collaboration offers a positive benefit. Ozener and Ergun show that when either of
these two restrictions is imposed, it is not possible to have a budget balanced and
stable cost allocation for the shippers’ collaboration problem. Hence, they relax the
efficiency and stability properties in a limited way and develop allocations with the
above two restrictions.

Despite its challenges, collaboration can offer tremendous benefits to its partic-
ipants. In addition to reducing transportation costs, collaborative logistics can also
lower inventories and at the same time eliminate stockouts resulting in lower inven-
tory holding costs and better customer service. Consider AIT, a leading distributor
of industrial products in North America, which operates 450 service centers that sell
maintenance, repair, and operational industrial products to large and small manufac-
turers. By sharing truck space with its partners, AIT has seen its dedicated freight
charges drop by nearly 30%. In addition, since deliveries are now made daily (due
to shared truck capacity) rather than weekly as before, service centers do not have
to carry as much safety stock and can order products as late as 5 P.M. to be deliv-
ered the next day. As a result, customer service has improved and the need for the
company’s service centers to hold safety stock inventory has declined by 15–20%
(Strozniak 2003). In this example, in addition to reducing the transportation costs,
collaboration also helped the company to reduce leadtimes and increase delivery fre-
quencies, resulting in better demand forecasts and allowing the company to better
match demand and supply with less inventory in a timely manner.

Traditionally, supply chain partners have focused their attention on controlling
and reducing their own costs to increase profitability, but now they realize that a
system-wide collaborative focus offers opportunities that cannot be achieved by any
one company alone. Collaborative transportation not only reduces the shipping costs
for the participants, but can also result in major cost savings due to lower inventory
levels, shorter leadtimes, lower stockouts, and better customer service.

11.3.5 Collaboration in Procurement

Collaborative procurement has emerged as one of the many initiatives for achieving
improved intra- and inter-firm coordination and collaboration. With intra-enterprise
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vertical and horizontal collaboration, a company streamlines and coordinates its
procurement functions which can lead to significant savings. For example, by aggre-
gating its spending, Lucent reduced the number of invoices that amount to less than
$1,000 by 23% in 2003, according to Joe Carson, chief procurement executive. In
addition, Lucent has reduced its supplier base by about half, placing a larger part of
its spend with fewer suppliers to leverage its buying power.15 Similarly, by simpli-
fying its supply base, working closely with its key suppliers, leveraging its buying
power with those suppliers across different business units, and developing a system
for implementing innovative cost-savings ideas, Dial Corp. was able to lower its
purchasing costs by $100 million in 5 years (Reilly 2002).

Inter-enterprise vertical collaborative procurement, i.e., collaboration between
buyers and suppliers, has been successfully adopted by companies with world-class
procurement practices. According to the Purchasing Magazine, using supply base
rationalization and partnering with key suppliers, world-class procurement organi-
zations incur procurement costs that are 20% less than typical companies (0.68% of
procurement spending vs. 0.85%) and operate with nearly half the staff (44.9 staff
per $1 billion of spend vs. 89.2).16 One of the best known examples of collaborative
intra-enterprise procurement is between Japanese auto makers and their suppliers,
which are based on long-term purchasing relationships, intense collaboration, cross-
shareholding, and the frequent exchange of personnel and technology (Ahmadjian
and Lincoln 2000).

Quoting a senior executive of a major supplier to Ford, GM, Chrysler, and
Toyota: “Toyota helped us dramatically improve our production system. We started
by making one component, and as we improved, [Toyota] rewarded us with orders
for more components. Toyota is our best customer.” According to Ahmadjian and
Lincoln, Toyota and Honda have built great supplier relationships by consistently
following six steps: they understand how their suppliers work, turn supplier rivalry
into opportunity, monitor vendors closely, develop those vendors’ capabilities, share
information intensively but selectively, and help their vendors continually improve
their processes.

Inter-enterprise horizontal collaboration in procurement has also seen much in-
terest and success in recent years. This practice is also known as cooperative
purchasing, group purchasing, and consortium purchasing, where two or more inde-
pendent organizations (potential competitors) with similar products or services, join
together, either formally or informally, or through an independent third party, for
the purpose of combining their requirements for the purchase of materials, services,
and capital goods.

Group purchasing is not a new concept; cooperatives and other nonprofit orga-
nizations (mainly educational and social) have practiced it for many years. There
are numerous examples of cooperatives and for-profit firms making purchases such

15 “Buyers use more than one way to cut component costs.” Purchasing. March 17, 2005:
http://www.purchasing.com/article/CA510893.html?industryidD2147&nidD2419.
16 “Hackett report finds best procurement orgs see greater ROI.” Purchasing. December 8, 2005:
http://www.purchasing.com/article/CA6289412.html?textDprocurementCspending.
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as office equipment and supplies, tooling, software, engineering and consulting
services, air freight, and other items through purchasing consortia. Group purchas-
ing has been especially prevalent in the healthcare industry, perhaps because de-
creasing supply expenses plays an important role in increasing the already low profit
margins in this industry and offers a unique competitive advantage. The Group Pur-
chasing Organizations (GPO) Directory (http://www.firstmark.com/fmkdirs/gpo
hsys.htm) contains information on more than 700 GPOs and multihospital systems
which own, manage, or provide purchasing services to hospitals. Some of the other
industry sectors where big group purchasing organizations exist are telecommuni-
cations, transportation, and services.

One of the major benefits of collaborative procurement for buyers is reduced
purchasing costs due to the quantity discounts offered by the suppliers. Through
collaborative procurement, multiple customers can combine their orders, present a
single face to supplier, and given that the supplier has to process one large order
rather than several small orders, it can respond with lower prices (Melymuka 2001).
Such collaboration is sometimes enabled through intermediaries or e-markets
(Griffin et al. (2005)). For example, Transplace (http://www.transplace.com), an
Internet-based global logistics alliance formed by six of the largest US-based trans-
portation companies, offers shippers and carriers efficiencies and cost savings from
combined purchasing power on items such as fuel, equipment, maintenance and
repair parts, insurance, and other services. Under its Fuel Program, Transplace
negotiates the price of fuel with suppliers of petroleum products, allowing member
carriers to procure fuel at lower prices at designated fuel stops across the country. In
a quantity discount scheme, the supplier sets price break(s) (Lam and Wong 1996)
or uses continuous pricing (Ladany and Sternlieb 1974; Lal and Staelin 1984; Dave
et al. 1996). Dolan (1987) provides a thorough analysis and categorization of the
studies on quantity discounts.

The extent of actual cost savings due to collaborative procurement may lead
potential members of group purchasing programs to question whether it is actu-
ally worth joining such a program, i.e., whether the savings will justify the efforts
on reshaping the purchasing process. The supplier has parallel concerns: Does
the potential increase in sales volumes justify offering lower prices to GPOs? In
particular, under what market conditions (such as the demand structure and uncer-
tainty, number of buyers and suppliers in the market, the size and market power
of the participants, uncertainty in supply availability and quality, etc.) is collabora-
tion beneficial to each participant? These questions become particularly important
when the collaborating buyers are competitors in the end market (Keskinocak and
Savasaneril 2008).

Despite its increasing adoption in practice, the effects of collaborative pro-
curement on buyer and supplier profitability have not been studied systematically.
Collaboration between multiple buyers who purchase from multiple suppliers is
studied in Mathewson and Winter (1996) and Griffin et al. (2005). Mathewson and
Winter study a problem where a group of buyers negotiates and makes a contract
with a group of suppliers to get lower prices. In turn, the buyer group gets supplies
only from the contracting group which implies a tradeoff between low price and
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low product availability. The authors conclude that as the number of suppliers
increases, the buyer group is more likely to benefit from contracts and the forma-
tion of buyer groups might be welfare increasing or decreasing depending on the
model’s parameters. Griffin et al. study alternative buyer strategies in markets where
procurement costs are affected by economies of scale in the suppliers’ production
costs and by economies of scope in transportation. They consider buyer strategies
with different types of collaboration, namely, (a) no collaboration among buyers or
buyer divisions, (b) intra-enterprise collaboration among the purchasing organiza-
tions of the same buyer enabled by an internal intermediary, and (c) inter-enterprise
(full) collaboration among multiple buyers enabled by a third-party intermediary.
They find that when the potential benefits from economies of scope are high,
intra-enterprise collaboration performs very well. When the potential benefits from
economies of scale are high, they observe that buyer strategies need to consider po-
tential future trades in the market by other buyers while contracting with a supplier.
Their computational analysis indicates that the potential benefits of collaboration
are highest in capacitated markets with high fixed production and/or transportation
costs.

Collaboration between multiple buyers who purchase from a single supplier is
studied in Anand and Aron (2003) and Keskinocak and Savasaneril (2008). Anand
and Aron study the optimal design of an online business-to-customer group-buying
scheme under demand uncertainty. In their model, the buyers arrive and demand
single units, and as the number of units demanded increases the price drops. The
demand function is not known to the supplier before he decides on price-quantity
tuples. Under this setting, the supplier’s benefit from group-buying increases as de-
mand heterogeneity (the difference in the slopes of the demand curves of the buyers)
increases. Furthermore, group-buying outperforms single pricing when the goods
are produced after total demand is realized under scale economies. Keskinocak and
Savasaneril study collaboration in a business-to-business (B2B) setting, where buyer
companies participate in group purchasing for procurement, but produce indepen-
dently and remain competitors in the end market. When the buyers are uncapacitated
and identical in terms of costs, the authors show that buyers and end consumers are
better off under joint procurement as compared to independent procurement, and
rather than selling a large quantity to a single buyer, the supplier is better off by
selling smaller and equal quantities to both buyers. Next, they consider the case
of different size buyers, i.e., buyers with different capacity availability. Intuitively,
one might think that a “large” buyer would have less incentive to collaborate with
a smaller buyer on procurement, since the large buyer already has enough volume
to obtain a good price from the supplier. The “small” buyer, on the other hand,
might prefer to collaborate with a large buyer, since it will obtain additional price
breaks due to the volume of the large buyer. Given these conflicting incentives,
one might expect that joint procurement would occur mainly among roughly equal
size buyers (in terms of capacity and purchase volume). However, the authors find
that depending on the market characteristics, collaboration may occur among dif-
ferent size buyers. Furthermore, depending on the capacity of the large buyer, the
small buyer may not always be willing to collaborate. Similar to Keskinocak and
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Savasaneril, Spiegel (1993) also focuses on competition, by studying production
subcontracting between two rival firms operating at the same horizontal stage in the
supply chain. He shows that this arrangement, if it occurs at all, always increases
production efficiency.

There is still a lot of room for research in advancing our understanding of how
collaborative procurement impacts supply chains and developing decision tech-
nologies to aid companies in effectively utilizing new opportunities provided by
collaboration. Developing models and decision support tools for coordinated re-
plenishment with quantity discounts, buyers’ procurement strategies in the face of
quantity discounts under demand uncertainty, coordinating intra-enterprise collabo-
rative procurement with logistics to simultaneously optimize the net landed cost, and
understanding the dynamics of intra- and inter-enterprise collaborative procurement
under stochastic demand in a dynamic setting are just a few of the many potential
research directions.

11.4 Role of Information Technology in Collaboration

In the last two decades, we have witnessed tremendous changes in how enterprises
manage their intra- and inter-enterprise operations. Up until the 1990s, the main
focus of companies was on improving cost and quality. During 1990s, with the de-
velopment of ERP systems – which are central repositories for information about
an enterprise that facilitate real-time information exchange and transactions within
and between enterprises – companies made huge progress completing their internal
integration and started going beyond internal integration and integrating with their
external business partners. Over the past decade, there has been considerable ad-
vancement on software products, such as instant messaging and virtual network
computing, and enabling technologies, such as Meta Markup Language (XML),
to further support collaborative processes. However, true end-to-end visibility and
collaboration in supply chains can only be possible with the development of com-
mon data standards. According to Vinay Asgekar, an AMR Analyst, “Common
data standards that are readily embraced can let leading companies truly achieve
a streamlined extended supply chain” (Schoonmaker 2004).

EDI is a “communication standard that enables the electronic transfer of routine
documents between business partners” (Turban et al. 2005). EDI enables comput-
ers to talk to each other by sending standardized messages over (traditionally) a
value-added network (VAN) or (more and more) the Internet. EDI facilitates and
fosters collaborative relationships. In addition, it minimizes data entry errors, se-
cures message/data transfer, reduces cycle time, improves inventory management
and increases productivity, and increases customer service. Based on an Aberdeen
Group study, while 90% of all invoices among the Fortune 1,000 companies are
handled by EDI, this is less than 10% of all business invoices. Even though it is
very mature (EDI has been around for more than three decades) and very secure
(through the use of VAN), EDI is also very costly and difficult to afford for most
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medium-sized and smaller companies (Roberts 2001). Thus, the adoption of tradi-
tional EDI has been slower than expected. However, the XML/EDI framework and
the Internet-enabled EDI are closing the gap.

RosettaNet (http://www.rosettanet.org) is a global consortium-based standards
organization, which develops a common XML-based platform for communication
to enable collaboration and automation of transactions in global supply chains.
RosettaNet defines business processes, semantics, and a framework for how data
gets passed over the Internet. According to Joseph Matysik, Materials Manager at
Intel Corporation, Assembly/Test Materials Operations “Intel has significantly ex-
tended its supply chain visibility and agility through its RosettaNet implementations
and process re-engineering efforts” (Schoonmaker 2004). Among the benefits of
RosettaNet (and such standards in general), one can count error-free forecast-to-
cash procurement processes, reduction in manual transactions, reduction in contract
costs, reduction in inventory levels, decrease in change orders, reduction in ad-
ministrative costs, reduction in logistics costs, and reduction in planning time
(http://www.rosettanet.org). Other standards organizations include (Peleg and Lee
(2006)): the AIAG (Automotive Industry Action Group) for the automotive industry
(http://www.aiag.org), the WWRE (WorldWide Retail Exchange) for retailers and
suppliers in the food, general merchandize,17 textile/home, and drugstore sectors
(http://www.wwre.org), the AIA (Aerospace Industries Association of America) for
the defense and aerospace supply chains (http://www.aia-aerospace.org), and the
GS1 for global supply chains across industries (http://www.gs1.org).

In spite of all these advances in IT, the biggest mistake companies can make to-
day is to view the new IT products and tools alone as a silver bullet. IT by itself is
not enough to lead to successful collaboration. Firms must know how to use IT to
reap the benefits of collaboration. Human contribution, through data analysis and
information utilization, is where the true benefits of IT lie. Therefore, the enabling
and supporting role of IT to collaborative processes can only be realized if the tech-
nology is employed effectively. When used effectively, IT enables collaboration by
providing the necessary tools to make it feasible, such as real-time data transfer
and automated communication. IT supports collaborative inter-organizational rela-
tionships by reducing the transaction costs and risks with automated process and
provides the opportunity for outsourcing of processes between partners.

11.5 Concluding Remarks

Any improvement in the design of integrated and collaborative supply chains by
better coordination between involved parties can be expected to have significant
economic and social impacts. The advantages of a successful collaboration are
numerous, including reduced inventory, increased sales, lower costs, increased

17 WWRE is now a part of Agentrics LLC, due to a merger with GNX.
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revenue, better forecast accuracy, improved customer service, and more efficient
use of resources (CPFR Committee, CTM Sub-Committee of CPFR, Cohen and
Roussel 2005). In spite of these well-documented advantages, companies are still
reluctant to open up their supply chains to collaboration. This fact is most obvious
from the AMR Survey at Microsoft Engineering and Manufacturing Executive Sum-
mit: even though only 20% of the participants were concerned about trading partner
acceptance, 44% had concerns about trading partner readiness (Caruso 2002).

There are excellent examples of companies such as Dell, Microsoft, Cisco,
Wal-Mart, who have successfully implemented supply chain collaboration. Even
though there is not a single recipe for such a success, there are several common
factors that we observe:

� Collaboration is about sharing of ideas, information, knowledge, risks, and as-
sociated costs and rewards. In a collaborative environment, unless all parties
benefit, it is not a true relationship.

� Collaboration should not be the new flavor of the month; companies should know
why they want to collaborate. Essentially, the relationship should fit with the
partners’ strategies, processes, and technologies (Matchette and Seikel 2005).

� Many times companies do not effectively collaborate internally (Cohen and
Roussel 2005). However, collaboration should often start with intra-enterprise
collaboration. Based on an AMR study, Sabath and Fontanella (2002) argue that
“Enterprises that have learned to collaborate internally are the most successful in
creating collaborative relationships.”

� The effort required to collaborate with partners means that companies will only
be able to do this with only a handful of strategic partners, hence, it is of key
importance to identify the partners correctly. Partners should trust each other
and should be ready and willing to share practices, processes, and information,
even when this means sharing proprietary information (CTM Sub-Committee of
CPFR, Matchette and Seikel 2005).

� The partners should have a clear understanding of their and others’ roles and
responsibilities in the relationship (Mentzer et al. 2000). To enable this, the ex-
pectations should be set up-front clearly, which requires “a formal, documented
front-end agreement that defines the scope (i.e., the steps, measures, terms, and
protocols that define the nature of the collaboration) and goals (i.e., the spe-
cific benefits that the collaboration is expected to deliver) of the relationship”
(CTM Sub-Committee of CPFR). Sabath and Fontanella (2002) identify mis-
aligned expectations and using different definitions as a cause of disappointment
in collaboration. Unless all parties are open, committed, truthful, and have a stake
in outcome, collaborations are doomed to failure.

� The scope and the goals of collaboration should be open to an evolving collabo-
rative relationship. According to Langley, collaboration “must allow members
to dynamically create, measure, and evolve collaborative partnerships” (Lan-
gley 2001). This will enable companies to learn and adapt, and create new
opportunities for future collaborations.

� As with any implementation, targeting both short-term and long-term objectives
and developing appropriate short-term and long-term performance measures is
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important. This will help people understand the dynamics and value of the
relationship, and potentially increase commitment at every level.

� Making good use of information infrastructure and technology enables a
smoother relationship. By itself, IT will not result in a successful collabora-
tion; however, it is an enabler of collaboration (Mentzer et al. 2000). When
successfully combined with strategies and processes, IT creates an environment
that fosters timely reporting, interaction, and visibility.

While collaboration promises great value, most companies lack the vision on
how it would change their business processes and impact key performance metrics
such as inventory turns, sales, and margins. Currently available academic research
on collaborative supply chain management is still at its infancy, and does not provide
the most needed foundational insights on when and how collaboration would benefit
the participants. Hence, there is a rapidly increasing need for a better understanding
on how to transform businesses into collaborative partners in supply chains, and for
professionals who can work with companies as they sooner or later go through such
transformation.
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Chapter 12
Sequencing Strategies and Coordination Issues
in Outsourcing and Subcontracting Operations

Tolga Aydinliyim and George L. Vairaktarakis

12.1 Introduction

Managing the supply chain has recently been the most significant task for
manufacturing companies toward cost efficiency and customer satisfaction. Global-
ization not only increased the size of supply chains, but also created an environment
where competing suppliers, manufacturers, and distributors need to cooperate. Even
when firms own a significant portion of their supply chain, multiple parties with
different performance measures and goals are involved in the decision-making
processes. Examples from the automotive industry include General Motors, Ford
Motor Company and others. Each division in such organizations tries to reach op-
timal plans for the portion of the overall system under its authority. However, the
extent to which the individual goals are achieved depends on the decisions made
by other parties involved in supply chains. Therefore, the quality of the strategic
decisions made by such decision makers depends on the amount of information they
have regarding other members of the supply chain. The more information is shared
among the decision makers, the greater the resulting coordination benefits.

Realizing the importance of coordination in supply chains, researchers have
worked on problems involving the decisions made by multiple parties within the
supply chain and the effects of coordination among members of the supply chain.
Numerous quantitative models addressing these issues have emerged in recent years,
which include excellent reviews by Lariviere (1998), Cachon (2003), Chen (2003),
and Swaminathan and Tayur (2003). The research methods applied by operations
management researchers addressing supply chain coordination issues include math-
ematical modeling techniques and tools from economics such as game theory.
Game theory is most useful when multiple tiers of the supply chain are involved
in the decision-making process, and the outcome of their decisions depends on the
decisions made by other chain members. In this case, the solution to the capacity
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planning problems requires not only determining the strategies of the players, but
also setting incentives for coordination among supply chain members. For a suc-
cessful review of game theoretical analysis in supply chain issues, see Cachon and
Netessine (2004).

Concepts of coordination have received significant attention since the 1950s,
originally in the context of economics in industrial organization and subsequently
in operations management. Since the 1980s, these concepts are responsible for
a large body of literature on supply chain management where the primary focus
is on coordination of inventories. However, research at the shop floor level is
conspicuously scarce even though supply chain (and inventory) coordination ne-
cessitates the coordination of production activities. Besides, the broad use of the
internet and recent advances in information technologies have created new coor-
dination opportunities at the production planning level by means of centralized
production scheduling and capacity management. Therefore, a significant research
opportunity exists, which should address supply chain coordination issues at an
operational level (Thomas and Griffin 1996).

Most of the models presented in this review focus on coordination issues across
multiple tiers of supply chains, in outsourcing and/or subcontracting contexts. Un-
like large manufacturers of the past century, the most powerful firms of today
are vertically disintegrated, sometimes acting externally as mere coordinators in
the production process of their partners. As a result, subcontracting and outsourc-
ing have recently become prominent business practices across many industries.
Subcontracting of industrial production is generally based on the short-term need for
additional production capacity. When the available production capacity of a manu-
facturing firm is not sufficient to cope with the total volume of production necessary
to execute an order on time, or when further creation of in-house capacity is neither
feasible nor desirable, the main contractor has to depend on a subcontractor (third-
party) to produce the balance of an order. In such situations, firms make outsourcing
decisions after the demand is realized and known with certainty and hence further
research that addresses coordination issues in deterministic outsourcing settings is
needed.

In an attempt to address the aforementioned issues, this chapter focuses on recent
coordination research that focuses on deterministic and operational issues rather
than the stochastic and strategic ones. Specifically, we present models where mul-
tiple agents share a common third resource for part of their operations. Conflicting
interests among the parties result in a serious capacity allocation problem. Hence,
three important questions arise:

1. Can significant benefits be achieved as a result of centralized decision making? In
other words, are coordination benefits worth the effort to achieve centralization?

2. Do all parties involved improve their individual performances under centralized
control? If not, how should the savings due to coordination be allocated so that
individual agents accept the centralized solution?

3. Can centralization be achieved without centralized control, i.e., does there exist
an instrument, e.g., contract, mechanism, priority rule, etc., invoking strategic
decision makers to act the way they would under centralized control?
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Various models presented in this chapter are described in outsourcing and/or sub-
contracting contexts, where a number of manufacturers process part or all of their
operations using the resources of the same third-party. This mode of operation has
become prominent since the 1970s when focused factories created the opportunity
for excellence by capitalizing on a small number of operations done with high qual-
ity and quick response and outsourcing all others that are not core competencies
of the firm. Also, as subcontracting to third-parties is becoming common across
many industries, many powerful third-parties that excel in contract manufacturing
are emerging.

According to Day (1956), subcontracting refers to “the procurement of an item
or service that a firm is normally capable of economic production in its own fa-
cilities.” Outsourcing, on the other hand, is a special case where the firm has no
means to produce on its own. Firms strategically outsource their non-core operations
and focus on their core competencies to enhance their effectiveness in the long-
term (Greaver 1999). In contrast, firms use subcontracting as a short-term solution
to increase their flexibility, reduce their exposure to risk, improve their response
to unexpected increases in demand, and reduce costs. However, it is not easy to
make decisions on when to outsource/subcontract and by how much, because the
contract manufacturers (referred to as third-parties throughout this chapter) have
scarce resources and their limited capacity is to be shared with all of their cus-
tomers demanding timely completion of their outsourced/subcontracted operations.
In an effort to deal with this problem, to leverage cooperation opportunities, and
to provide better service to their customers, many companies make broad use of
information technologies – in particular the internet – by creating secure infor-
mation sharing portals and online capacity booking systems. In what follows, we
demonstrate relevant examples from various industries.

12.1.1 Applications from Industry

Today, many industry sectors have created portals which are used to share key in-
formation among networks of suppliers and manufacturing partners. Such networks
may consist of the divisions of a parent company, the smaller companies of a large
corporation, the customers of a contract manufacturer, or different tiers of the ex-
tended supply chain. These information sharing portals help network members to
cooperate so as to reduce the costs of the entire chain. Using these secure online
platforms, firms achieve end-to-end visibility across the supply chain and are able
to provide their customers with sensitive capacity information. In what follows, we
discuss three such applications.

12.1.1.1 Cisco’s eHub

Cisco Systems is among the first to create an information sharing portal known as
eHub. It is a private trading e-marketplace providing a central point for planning
and execution of tasks across the company’s extended manufacturing supply chain
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Fig. 12.1 Order fulfillment process of the Cisco’s networked supply chain

(Grosvenor and Austin 2001). It also creates opportunities to perform coordinated
planning and production among the members of Cisco’s extended supply chain
and has led to dramatic cost and inventory reductions. By 2001, successful imple-
mentation of eHub had resulted in inventory reductions of 45%, order cycle time
reductions of 70%, and subsequently, productivity across the entire supply chain
increased.

In Fig. 12.1, we explain the flow of orders in Cisco’s network as they relate to
the outsourcing models presented in this section. Customer orders are first stored
in Cisco’s enterprise resource planning (ERP) database and then sent to the related
manufacturing partners over the virtual private network (VPN). Within Cisco’s sup-
ply chain there are supply partners and other contractors who can see information
on the network because their own production systems are also connected to Cisco’s
ERP system. In this framework, one would expect situations where multiple man-
ufacturing partners use the testing services of a common third-party in the same
supply chain. This creates a time-sensitive capacity allocation problem depending
on the outsourcing decisions made by all manufacturing partners as well as the avail-
ability at the testing facility. In Sect. 12.3, we consider such models and discuss
opportunities to coordinate production schedules at the third-party.

12.1.1.2 MyUMC by UMC

MyUMC,1 UMC’s total online supply chain portal, is another example that demon-
strates how a large electronics contract manufacturer (ECM) provides information

1 http://my.umc.com
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sharing and real-time capacity booking to its customers (i.e., the manufactur-
ers who outsource). UMC is a world-leading semiconductor foundry, specializing
in the contract manufacturing of customer designed integrated circuits for high
performance semiconductor applications. Founded in 1980 as Taiwan’s first semi-
conductor company, UMC currently employs over 12,000 people worldwide at its
manufacturing factories and offices in Taiwan, Japan, Singapore, Europe, and the
USA. To facilitate close collaboration with its customers as well as partners through-
out the entire supply chain, UMC developed MyUMC in 1998. This is a full-service
information portal, offering customers 24-h our access to detailed account informa-
tion such as manufacturing, engineering, design, and financial data. In particular,
MyUMC’s capacity booking engine ATP (Available-to-Promise) allows customers
to receive instant capacity availability information and to book production capac-
ity in UMC’s fabs online. Evidently coordinated capacity and production planning
opportunities exist within this framework.

12.1.1.3 SPADE by HKUST

The operational protocol of the Semiconductor Product Analysis and Design
Enhancement (SPADE) Center2 of the Hong Kong University of Science and
Technology provides another concrete example of online capacity booking systems
that are used in the semiconductor industry. SPADE provides various services to
local and nearby semiconductor companies such as analysis and optimization of
designs and products when their silicon prototypes are available in the form of
silicon wafers or silicon dies. SPADE has a group of specialized facilities, includ-
ing Focused Ion Beam, Emission Microscope, ESD Tester, Backside Preparation
System (Chip UnZip), Laser Cutting System, etc., which can be booked at different
prices. Rules of the charging scheme are available to customers,3 and include:

(a) Jobs performed on Sundays and public holidays will be charged at 2 � basic
rate.

(b) Jobs performed during nonoffice hours will be charged at 1.5 � basic rate.

The varying rates correspond to the arbitrary booking prices in some of the outsourc-
ing models discussed in Sect. 12.3. SPADE has also built a mechanism to allow a
user to preempt another one, provided that a higher cost is paid according to the
following scheme:

(c) Jobs preempting other jobs on queue will be charged at 1.5 � basic rate.

This rule reflects a reservation adjustment which can be made by the customers of
the third-party (SPADE in this example). As we will see in the sequel, instead of
price-based preemption, one can devise allocation schemes based on cooperative

2 http://www.ust.hk/spade
3 http://www.ust.hk/spade/pricelist.html
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game theory to achieve coordination among the parties involved and introduce a
notion of fairness (see the discussion on core of cooperative games in Sect. 12.3 and
the dynamic cost allocation model in Sect. 12.4).

12.1.1.4 Subcontracting and Partnership Exchanges

Coordination among multiple manufacturers subcontracting to the same third-party
is more easily achieved when the third-party such as UMC has the internet-based
technologies to provide capacity and production schedule information to his cus-
tomers, or when the manufacturers are members of the extended supply chain of
the same parent company, such as Cisco (Grosvenor and Austin 2001). However,
such opportunities are not always available. Having recognized this fact and the
increasing trend of subcontracting and outsourcing, the United Nations Industrial
Development Organization (UNIDO) has formed Subcontracting and Partnership
Exchanges (SPX).4 SPX’s are technical information, promotion, and match mak-
ing centers for industrial subcontracting and partnership among main contractors,
suppliers, and subcontractors, aiming at the optimal utilization (the most complete,
rational, and productive) of the manufacturing capacities of the affiliated industries.
Today more than 44 SPX’s in over 30 countries facilitate production linkages among
small, medium, and large manufacturing firms and connect such firms with global
markets and supply chain networks.

SPX’s members frequently subcontract to the same third-party if the third-party
is a proven leader because of its expertise, size, or technological capabilities such as
UMC in silicon-on-chip (SoC) designs. In such situations, the manufacturers served
by the third-party are sometimes of equal importance to the third-party, and the
third-party acts as a rational profit maximizer who does not prioritize over cus-
tomers. In case the third-party has limited capacity, the customers compete for a
share of this capacity (see Sect. 12.2 for a review of literature in capacity allocation
in supply chains). Even when the demand for third-party capacity is less than the
available capacity, there is competition for earlier production capacity at the third-
party resulting in a time-sensitive capacity allocation problems which we consider
in Sect. 12.5.

12.1.1.5 Boeing 787 Dreamliner

Another example of many primary contractors subcontracting to the same third-
party can be found within the diverse supply chain of Boeing used in the production
of their newest airplane, 787 Dreamliner. Boeing authorized a team of parts suppli-
ers to design and build major sections of its 787 Dreamliner5 (see Fig. 12.2). The
plan calls for suppliers to ship mostly completed fuselage sections, already stuffed

4 http://www.unido.org/doc/4547
5 Source: “Boeing Scrambles to Repair Problems With New Plane,” Wall Street Journal, December.
7, 2007.
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Fig. 12.2 Manufacturing Sites for Boeing 787 Parts

with wiring and other systems, to Boeing facilities around Seattle so they could be
put together in as few as 3 days. This is a tall order given that the existing pro-
duction methods can keep a plane, the size of the Dreamliner, in the final-assembly
area for a month. Hence, the timely delivery from suppliers is extremely important.
However, many of these suppliers, instead of using their own engineers to do the
design work, farmed out these key tasks to even-smaller companies. Some of those
subcontractors ended up overloading themselves with work from multiple 787 sup-
pliers, and Boeing had to announce delays twice during the second half of 2007.
Therefore, a careful assessment of the time-sensitive subcontracting activities and
the coordination opportunities in this framework is crucial for all parties involved.
The competitive models in Sect. 12.5 highlight the decentralization costs resulting
from such subcontracting activities; and analyze this setting from (a) the common
third-party’s, (b) the primary contractors’, and (c) Boeing’s (the overall performance
of all of Boeing’s primary contractors) point of view.

12.2 Literature Review

In this section, we review research streams related to the models discussed in the
remainder of this chapter. We start our review by discussing cooperative sequenc-
ing games. Specifically, we review literature on games in outsourcing contexts and
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observe that the essence of this research is to find a fair allocation of the central-
ized solution savings among the players involved in the outsourcing situation. We
conclude surveying cooperative game theory models in queues.

Subsequently, we review papers that highlight the value of outsourcing and sub-
contracting, starting with those articles that follow a scheduling approach, and
continuing with articles that focus on coordination issues.

More specifically, our literature review in this section is organized as follows.
Section 12.2.3 is devoted to papers studying coordination issues that arise when
multiple players compete for the efficient use of a common resource. Although our
focus is essentially on outsourcing and subcontracting models, we briefly mention
similar models from economics and the computer science literature, as well as the
supply chain management literature on capacity allocation issues in Sect. 12.2.4.
Then, we extend the capacity allocation discussions to the time-sensitive capacity
allocation problems such as the ones that are observed by the SPX users and the
contractors of Boeing.

In Sect. 12.2.5, we survey scheduling research focusing on mechanism or con-
tract design to achieve centralized supply chain performance. The last category that
we survey is the supply chain scheduling research that focuses on scheduling coor-
dination across multiple tiers of the supply chain. The literature review concludes
with a selection of representative models in Sect. 12.3 through 12.6.

12.2.1 Cooperative Games

12.2.1.1 Sequencing Games

At the interface of cooperative game theory and scheduling, Curiel et al. (1989) was
the first to introduce sequencing games. They considered the simplest case; i.e., a
single machine scheduling situation with no restrictions on the jobs with weighted
flow-time cost criterion. They showed that the corresponding sequencing game is
convex. Thus, the core of the game is guaranteed to be nonempty (Shapley 1971).
For arbitrary regular cost criterion and for a special class of games (referred to as �0

Component Additive Games), Curiel et al. (1994) proposed a core allocation known
as the ˇ-rule.

Hamers et al. (1995) extended the class of single machine sequencing situations
considered by Curiel et al. (1989) by imposing ready times on the jobs. In this case,
the corresponding sequencing game is called an r-sequencing game, and is not con-
vex except for the special subclass with unit processing times or with unit weights.
Instead of ready times, Borm et al. (2002) considered the case with due dates,
i.e. d -sequencing games. For three different due date-related cost criteria, they
showed that the corresponding games have a nonempty core. However, convexity
was proven for only a special subclass. Hamers et al. (2002) imposed precedence
relations on the machines to come up with precedence sequencing situations and
proved that the corresponding game is convex if the precedence relations form a
network of parallel chains.
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Calleja et al. (2004) studied another extension of one-machine sequencing games
where each player might have more than one job to be processed and each job might
be of interest to more than one player. The authors showed that a core allocation is
guaranteed to exist only if the underlying cost functions are additive with respect to
the initial order of jobs. However, convexity does not necessarily hold.

Hamers et al. (1999) considered games with m parallel identical machines and
no restrictions on the jobs. These games are referred to as m-machine sequencing
games. The cost criterion is weighted flow time. The authors prove the existence
of a core allocation for m D 2 and for some special cases when m > 2. Another
extension on multiple machine situations is by Calleja et al. (2002). In their model,
every player has precisely two operations, each processed on a specific machine.
The cost criterion is the maximal weighted completion time of the two operations.
It is shown that the game is not convex but has a nonempty core.

Curiel et al. (2002) present an excellent survey of sequencing games and consider
core allocation and convexity issues up to 2002. Most of the research after this date
was focused on relaxing the constraints imposed by Curiel et al. (1989). van Velzen
and Hamers (2003) studied one such extension where they introduced the concept
of weak-relaxed sequencing games. In their formulation, a weak-relaxed sequencing
game arises when a specific player can switch with any player in a coalition provided
that the players outside this coalition do not suffer from this switch, a move that was
not allowed in earlier sequencing games. The authors showed that a nonempty core
exists even though the cooperative game is not convex. In this direction, Slikker
(2006) made the most significant contribution by relaxing the common assump-
tion of restricting cooperation to players that are connected according to the initial
order and defined the relaxed sequencing games. He proved that relaxed sequencing
games have stable profit divisions, i.e., a nonempty core exists, and proposed using
the concept of permutation games (Tijs et al. 1984) to find a core allocation.

12.2.1.2 Sequencing Games Approach to Outsourcing

Literature on sequencing games is of value for its theoretical contributions, but
application of such concepts to practical real-life applications had not been the
primary focus. However, in most outsourcing situations, the initial capacity reserva-
tions at the third-party can be revisited, and hence a resequencing of the outsourced
workloads leading to a savings game is possible (e.g., see the booking rules and
the pricing scheme at SPADE in Sect. 12.1.1.3). The overall benefits to all supply
chain members are apparent, but individual member performances could improve
or worsen. Therefore, a reallocation of the supply chain savings is essential and the
cooperative sequencing game concept is most applicable.

Applying cooperative sequencing game concepts to a practical outsourcing con-
text motivated by the coordination of manufacturing operations at Cisco’s supply
chain, Aydinliyim and Vairaktarakis (2010) studied a setting where a group of
manufacturers outsource operations to the same third-party whose limited capac-
ity is available in terms of manufacturing windows. Cai and Vairaktarakis (2007)
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considered a similar model where tardiness penalties are considered, and optional
overtime capacity is available for windows booked by the manufacturers. In all these
studies, allocating savings or costs is essential in achieving coordination by using
the concept of the core which is formally defined by Gillies (1959). Further details
of these two models are presented in Sect. 12.3.

12.2.1.3 Cooperation in Queues

Queueing problems are closely related to the sequencing problems. Hence, we
briefly review some of the work in this area that adopts the cooperative game
approach. Maniquet (2003) studied a problem of sequencing agents who require ser-
vice at a common resource. This problem is mathematically equivalent to min-
imizing the total completion time in nonpreemptive single machine scheduling.
The author considered two cooperative game formulations where the value of a
coalition is (1) the total flow time cost incurred if the members of the coalition
collectively arrived first or (2) the total flow time cost incurred if the members of
the coalition collectively arrived last. A cost allocation rule which is shown to be
the Shapley value (Shapley 1953) is proposed as well as an axiomatic character-
ization of the Shapley value. Motivated by Maniquet’s (2003) results, Katta and
Sethuraman (2006) studied the same cooperative game setting, but instead of an
axiomatic approach, they focused on the notion of fairness by proposing two solu-
tion concepts, namely random priority (RP) core and constrained random priority
(CRP) core.

Schulz and Uhan (2007) studied a special class of cooperative games with super-
modular costs, which also included a queueing game with total weighted completion
time as a special case. The notion of supermodularity implies that, as a coalition
grows, the cost of adding a particular agent increases, hence it is not possible to
motivate the formation of a grand coalition. In such situations, it is necessary to
penalize smaller coalitions for defecting from the grand coalition. The minimum
such penalty which ensures the existence of a core solution is called least core
value. The authors developed a fully polynomial time approximation scheme for
computing the least core value of queueing games with supermodular costs.

We believe that the results in the aforementioned articles, can be used to develop
solutions for many practical settings that have been outlined in Sect. 12.1. Similar
adoptions of cooperative game theory can be found in the supply chain manage-
ment literature (e.g., capacity pooling, group buying, and centralized warehousing).
For example, see Yu et al. (2007) for a cooperative game theory model in a ca-
pacity pooling setting, where the authors provided an core allocation rule which
distributes the costs of pooled production among the parties involved. For an exten-
sive review of game theoretic analyses of cooperation among supply chain agents,
the reader may refer to an excellent survey by Nagarajan and Sos̆ic̀ (2008). We
expect similar adoptions in future work that focuses on issues at the interface of
outsourcing/subcontracting and scheduling.
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12.2.2 Value of Outsourcing and Subcontracting

For the most part, literature on outsourcing in supply chains focuses on inventory
management issues. Cachon and Lariviere (2001) provide an overview of various
contracts that allow supply chain members to share demand forecasts credibly under
a compliance regime. Cachon and Harker (2002) presented a model of competition
between two firms that face scale economies and outsource to a supplier by means
of a queueing game and an economic order quantity game.

More closely related to the models in this chapter are articles in which it is
attempted to coordinate the production and subcontracting decisions to assess the
value of outsourcing and subcontracting. In Van Mieghem (1999), the option of sub-
contracting to improve financial performance is considered. The author analyzes a
sequential stochastic investment game. The manufacturer and the subcontractor first
decide independently on their capacity investment levels and then the manufacturer
has the option to subcontract part of his production to the subcontractor. Kamien
and Li (1990) presented a multiperiod competitive model with capacity constraints
on the aggregate production level.

Similarly, Atamturk and Hochbaum (2001) provided a multiperiod treatment
of subcontracting that focuses on the production aspect. They consider the trade-
off among acquiring capacity, subcontracting, production, and holding inventory,
by providing analytical models, structural results on the optimal solutions, and
algorithms that simultaneously optimize these interrelated decisions. Following
a Markov Decision Process approach, Tan (2004) considered a model with a
subcontractor who guarantees long-term availability. Similarly, using a stochastic
optimal control problem formulation, Tan and Gershwin (2004) analyzed the pro-
duction and subcontracting strategies for a manufacturer with limited capacity and
volatile demand where there are a number of subcontractors available.

The focus of this chapter differs from the issues emphasized in the afore-
mentioned studies where the products are assumed to be identical, customers are
assumed to be equally important, and product demand is aggregated into units. The
goal is usually to minimize certain cost that is a function of the production, out-
sourcing, inventory, and backlog orders. In contrast, the models presented in this
chapter are more closely related to the scheduling models where customers’ orders
are differentiated based on the characteristics of the jobs that make up such orders.
Examples of such characteristics include processing times, due dates, weights that
represent relative importance, etc. In what follows, we review such scheduling mod-
els that study decentralized and/or coordinated scheduling models, and attempt to
quantify the value of scheduling coordination in certain outsourcing and subcon-
tracting situations.

12.2.2.1 Scheduling Models that Deal with Outsourcing and Subcontracting

At the interface of scheduling and subcontracting, Bertrand and Sridharan (2001)
considered a make-to-order manufacturing environment with randomly arriving
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orders, which can be processed in-house on a single machine, or subcontracted.
The objective is to maximize the utilization of in-house capacity while minimizing
tardiness in fulfilling orders. The authors propose heuristics the validity of which
is tested by a computational experiment. Lee et al. (2002) considered a multistage
scheduling model where each order requires multiple operations. Each operation can
be processed on a number of alternative machines in-house, or it is subcontracted to
a third-party provider. They proposed genetic algorithms to find schedules that min-
imize the makespan of all the orders. Similar to Lee et al. (2002), Qi (2007) studied
a multistage flow-shop scheduling problem with the option of subcontracting and
considered the makespan objective. Chung et al. (2005) considered the subcontract-
ing costs in a job-shop scheduling problem, where due-dates are imposed on the
orders.

Qi (2008) studied a problem where there is a single in-house machine and a sin-
gle subcontractor with a single machine. Subcontracted orders need to be shipped
back in batches. The objective is to minimize the weighted sum of a delivery lead
time performance measure of orders plus the total subcontracting and transporta-
tion cost. He proposed dynamic programming algorithms for four problems where
the time-based performance measure is total completion time, makespan, maximum
lateness, and number of tardy orders, respectively. Similarly, Chen and Li (2008)
considered a model where a manufacturer receives orders from many customers and
has the option to process these orders in-house or to subcontract them at a different
cost. Their model is more complex than Qi (2008) in the sense that there are parallel
resources both in-house and at the subcontractor and they considered subcontracting
costs subject to a target makespan for all the orders. The authors presented complex-
ity results, developed a heuristic, and compared the performance of the manufacturer
with and without the option of subcontracting.

12.2.2.2 Coordination Issues

The aforementioned models are at the interface of scheduling and outsourcing/
subcontracting, and focus on the optimization problems that arise when there is
an opportunity of outside processing in addition to the in-house resources. Addi-
tional issues that arise when we seek to coordinate production across manufacturers
competing for third-party capacity, include allocation of savings when switching to
a centralized solution, bargaining, and the incentives for truth-telling. Below, we
survey articles that address such issues in a scheduling context. One of the first such
papers that deal with detailed scheduling and outsourcing is by Biskup and Simons
(1999). The authors examined a dynamic total tardiness problem - motivated by a
common repair facility used by multiple computer dealers. In such a case, an in-
centive problem arises as the updated schedules in case of new arrivals may result
in some jobs being late. Hence, in addition to providing optimal algorithms, the
authors focused on cost allocation issues. Details of their analysis are presented in
Sect. 12.4.
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Another treatment of decentralized scheduling is by Chen and Cai (2006) who
considered the problem of two manufacturers who negotiate to partition a set of jobs
that they have jointly been awarded by a customer. Each manufacturer has to take
into account his own processing capacity and the job requirements, while consid-
ering whether a partition is beneficial to him. In their models, the overall objective
is to achieve a partition of the jobs into two subsets, which are considered fair and
acceptable to both players. They applied the Nash bargaining solution (NBS) (Nash
1950) to this problem and provided algorithms that combine the calculations of NBS
and optimal processing schedules. Gan et al. (2007) also applied the NBS concept to
a common due-window (CDW) scheduling problem of jobs on a single machine to
minimize the sum of common weighted earliness and weighted number of tardy jobs
when only one manufacturer processes these jobs. They proposed a novel dynamic
programming algorithm to obtain a reasonable set of processing utility distributions
on the bipartition of these jobs.

12.2.3 Capacity Allocation Problems

The issue of coordination where multiple parties compete for common resources
has also been studied in various fields such as economics, computer science,
and supply chain management. For example, congestion games were introduced
by Rosenthal (1973), where it is shown that congestion games admit a potential
function, therefore a Nash equilibrium (Nash 1951) exists. Congestion games can
be used to model coordination and pricing issues in highways and communica-
tion networks (e.g., Internet pricing). For example, Sandholm (2002) considered a
problem on the efficient use of a highway network and suggested pricing schemes.
Ganesh et al. (2007) developed a congestion pricing mechanism for allocating band-
width in communication networks. On the other hand, literature on load balancing
in communication networks focuses on finding bounds on the ratio between the to-
tal cost of the uncoordinated equilibrium and the cost of the centralized solution.
Papadimitriou (2001) used the term price of anarchy to denote the worst-case ratio
between a Nash outcome and the social optimum. A similar term cost of decentral-
ization is commonly used in supply chain coordination literature (Cachon 2003).

12.2.3.1 Aggregate Capacity Allocation Problems in Supply Chains

Capacity allocation issues in supply chains have been studied extensively. When
many retailers demand limited supplier capacity, competition leads to a serious ca-
pacity allocation problem. In such a situation, the supplier must allocate his capacity
in some manner. For example, Cachon and Lariviere (1999) considered a two-tier
stage supply chain with one supplier and two retailers and analyzed three allocation
schemes: proportional, linear, and uniform. They found that with either proportional
or linear allocation, a retailer receives less than his order whenever capacity binds.
They presented methods to find Nash equilibria in the capacity allocation game with
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either proportional or linear allocation. Despite the discouraging result that a Nash
equilibrium may not exist with proportional or linear allocation scheme, with uni-
form allocation there always exists a unique Nash equilibrium. In a related paper,
Cachon and Lariviere (1999) considered a supply chain with one supplier and sev-
eral downstream retailers. In their model, the retailers are privately informed about
their optimal stocking levels. The most striking finding is that, depending on the
capacity allocation mechanism announced by the supplier, (a) the retailers may ma-
nipulate the system by ordering more than they actually need in order to receive a
favorable allocation and (b) the mechanism may be truth-inducing. However, they
also showed that a coordinating mechanism, i.e., that maximizes the retailers’ profit,
which is also truth-inducing, does not exist.

Motivated by the problem of allocating capacity to product lines at a semi-
conductor manufacturer, Mallik and Harker (2004) considered a similar incentive
problem. They observed that some product managers inflated their demand forecasts
on purpose, in an attempt to gain greater capacity allocation. The authors developed
(a) a capacity allocation and (b) an incentive payment scheme that induces truth-
telling. The proposed allocation rule is a modified lexicographic allocation rule
according to which each product line receives the minimum of the so far unallo-
cated capacity and the product managers’ optimal newsvendor quantity. In addition,
a payment scheme is required to induce truth-telling.

Similar to Mallik and Harker (2004), Karabuk and Wu (2005) studied incentive
issues in capacity allocation for semiconductor manufacturing. They also observed
that product managers have an incentive to inflate their demand estimates to increase
their capacity allocations, hence a specific bonus payment to the product managers is
proposed as a way to resolve the order inflation. The authors modeled the capacity
allocation stage as a noncooperative game. Their main finding is that keeping a
fraction of the available capacity on-hand is both necessary and sufficient for making
the appropriate bonus payments to the product managers.

The aforementioned papers successfully identified the need for an incentive
payment scheme that should accompany capacity allocation decisions. They also
showed that the capacity allocation decisions at the strategic level may be modified
at the tactical level in an attempt to improve the overall performance of all the par-
ties involved, and transfer payments can be used to resolve the incentive issues that
may arise. There has been a lot of research done at this interface, under the broader
domain of hierarchical production planning. The interested reader may refer to a
survey by Bitran and Tirupati (1989) and the book by Miller (2002).

12.2.3.2 Time-Sensitive Capacity Allocation Problems

Among the papers that study capacity allocation issues, of particular interest to us
are the ones that address the timing of the production activities as well. The papers
that we reviewed in the previous subsections analyzed different allocation schemes,
but none of them considered the detailed execution of the allocated amount of
capacity. Specifically, suppose that the available capacity of a resource is allocated
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to parties A, B , and C according to a specific allocation mechanism, say 50% to
party A, 30% to party B , and the remaining 20% to party C: When delivery times to
the customers of A, B , and C matter, the different ways of allocating the available
capacity are not equivalent to each other. Hence, a time-sensitive capacity allocation
problem arises in such situations.

One of the first studies that consider aggregate capacity allocation mechanisms
with scheduling decisions is Hall and Liu (2007). They considered a supply chain
with one manufacturer who receives orders from several distributors. In case the
available capacity at the manufacturer is not enough for all orders, the distribu-
tors are given the opportunity to form coalitions, i.e., a subset of distributors, by
rescheduling all the orders of the coalition within the total capacity allocated to the
coalition. Within this setting they considered three coordination issues by calculat-
ing (a) the benefit to the manufacturer from considering scheduling costs, (b) the
additional profit that the distributors achieve when they share their allocated capac-
ity, and (c) the value of coordination between the manufacturer and the distributors.
In this study, the distributors’ capacity sharing problem is modeled as a coopera-
tive game.

Vairaktarakis (2008) considered a time-sensitive capacity allocation problem in
a competitive subcontracting context. In his model, a number of manufacturers
who are capable of in-house production also have the opportunity to subcontract
part of their workload to common third-party. The objective for each manufac-
turer is to complete his entire workload, on both resources, as soon as possible.
The allocation mechanism by the third-party is not static as in aggregate capacity
allocation mechanisms and depends on the amount of workload subcontracted by
each manufacturer. Hence, manufacturers compete for earlier positions at the third-
party schedule by adjusting their subcontracted workloads. The author derived Nash
equilibrium schedules for three production protocols-overlapping, preemption, and
nonpreemption (see Pinedo 2002)–and four different information protocols.

Vairaktarakis and Aydinliyim (2007) considered the same subcontracting setting
and focused on three additional issues. First, they recognized the conflicts between
the manufcturers’ and the third-party’s objectives, i.e., minimizing the overall
completion time and maximizing the total profit, respectively. Hence, (a) they pro-
vided algorithms to find schedules that maximize the third-party’s workload and
(b) estimated the loss in profits by the third-party when the manufacturers compete
according to the incentive rules suggested in Vairaktarakis (2008). Second, they
allowed the manufacturers to form coalitions and revise their subcontracting strate-
gies, and showed that the corresponding cooperative game is balanced, i.e., a core
allocation of savings exists. They also provided closed-form expressions that would
result in a core allocation and performed a computational study to gain insights on
the value of information in avoiding the costs of the decentralization.

Bukchin and Hanany (2007) also analyzed a competitive subcontracting set-
ting and considered scheduling costs; namely, flow time costs. They formulated a
noncooperative game where a job that belongs to an agent can either be processed on
a common resource, which they referred to as the in-house resource, or be subcon-
tracted at a per-unit subcontracting cost. They estimated the decentralization cost,
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i.e., the ratio between the Nash equilibrium cost and the cost attained at the central-
ized optimum. They derived some of the properties of Nash equilibrium schedules
and subsequently used them to develop bounds on the decentralization costs. Finally,
they proposed a scheduling-based coordinating mechanism that provides incentives
invoking the agents to follow centralized schedules.

The models of Vairaktarakis (2008), Vairaktarakis and Aydinliyim (2007),
and Bukchin and Hanany (2007) as well as their main findings are discussed
in Sect. 12.5.

12.2.4 Coordination by Contracts and Other Mechanisms

12.2.4.1 Coordination by Contracts

Contractual agreements between suppliers and buyers regarding inventory man-
agement issues are heavily studied with emphasis on the cost of the (decentral-
ized) equilibrium solution as compared to the centralized optimal; see Lariviere
and Porteus (2001) for wholesale price contracts, Pasternack (1985) for buy-back
contracts, Tsay (1999) for quantity-flexibility contracts, Taylor (2002) for sales-
rebate contracts, Bernstein and Federgruen (2005) for price-discount contracts,
Cachon and Lariviere (2005) for revenue sharing contracts, etc. Lariviere (1998)
and Cachon (2003) surveyed related results. All these studies are related to inven-
tory management decisions and represent production capacity in aggregate units,
whereas our survey differs from this huge body of literature in that it addresses the
timing of production activities. According to a 2003 survey in Wall Street Journal,
the original equipment manufacturers rated the ability to meet delivery schedules as
the most significant factor in choosing contractors, whereas price was ranked only
fifth (Ansberry and Aeppel 2003). As noted in Anupindi and Bassok (1999), deliv-
ery commitments are of crucial importance. Li (1992) noted that, in semiconductor
manufacturing, the delivery delays for chips provided by subcontractors cause costs
to increase significantly as the production lines need to be shut down when chips
are not available. Therefore, it is of crucial importance to study the contractual
agreements that include delivery time-related terms and penalty clauses. Below is
an example contract with such clauses.

. . . The weekly delivery deadlines agreed on in the binding production and delivery plan
shall be binding. If SWS (Schoeller Wavin Systems AG) shall default in delivery, then SWS,
without exclusion of other rights and claims by Ifco, shall pay the following default penalties
to Ifco:

� for default of 2 weeks (8 to 14 days), 0.05 euros per crate,

� for default of 3 weeks (15 to 21 days), 0.10 euros per crate,

� after the third week (more than 22 days), 0.15 euros per crate.

Ifco (Ifco Systems GmbH) shall only be authorized to invoice these contractual penalties at
the end of the year with the invoices for deliveries by SWS . . .
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In Sect. 12.6, we present a model by Aydinliyim and Vairaktarakis (2010) who
investigate the coordination properties of contracts between a manufacturer and a
third-party contractor. The main finding of this paper is that, by setting the unit pro-
cessing charge and the tardiness penalties appropriately, this two-tier supply chain
can coordinate its actions and achieve the performance of a centralized system.

12.2.4.2 Coordination by Other Mechanisms

Achieving centralized supply chain performance is ideal, but is also costly. Although
contracts are good instruments to manipulate strategic behavior, agreeing upon con-
tract terms or checking to see if the players obey the contract terms may not be easy.
Alternatives such as auction and other mechanisms that approximate centralized
control and/or induce truth-telling by agents are of interest. In this review, we
constrain ourselves to articles that focus on mechanism design in scheduling appli-
cations which is closely related to the time-sensitive capacity allocation problems
on a common resource, as motivated in previous sections.

Hain and Mitra (2004) considered a model where each manufacturer outsources
a single job to a third-party who is committed to process jobs in nondecreasing order
of processing times (or shortest processing time – SPT order). In an effort to gain
processing priority, each manufacturer has the incentive to quote smaller than actual
processing time for his job, the validity of which cannot be verified by the third-
party. To resolve this problem, the authors develop a money transfer mechanism
based on the job durations announced by the manufacturers. The mechanism is such
that every chain member is better off announcing his true processing requirement
thus ensuring the third-party of the SPT order on her facility.

A recent application of decentralized scheduling in a factory environment is by
Wellman et al. (2001). They investigated the existence and the quality of equilib-
rium prices, showed that the price equilibrium and the system optimum coincide
in a class of scheduling problems, and presented auction mechanisms. Their model
is closely related to the capacity booking applications in a subcontracting context,
which is among the focal points of the analysis in this chapter. Details of their study
are presented in Sect. 12.6. Hall and Liu (2008) considered a similar problem where
a number of competing agents each with a job that requires processing for an ar-
bitrary amount of time and has to be processed on a common resource. Agents bid
for capacity according to an ascending auction. The authors provided dynamic pro-
gramming algorithms to find the winning combination of bids from the owner of the
common resource’s perspective.

Prior to the two papers mentioned above, Kutanoglu and Wu (1999) designed a
combinatorial auction mechanism for allocating capacity in a job shop environment.
In a similar production planning setting, Reeves et al. (2005) studied a simple as-
cending auction and showed that straightforward bidding policies and their variants
cannot approximate the optimal solution well. For a survey of the literature of agent-
based allocation mechanisms for intelligent manufacturing systems, for traditional
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scheduling, and for decentralized online machine scheduling problems, the reader
may refer to Shen et al. (2006), Heydenreich et al. (2007), and Heydenreich et al.
(2007), respectively.

12.2.5 Supply Chain Scheduling

A growing number of papers have appeared in the area of supply chain scheduling.
The focus of these papers is to quantify the benefits that can be attained when the
scheduling issues in multiple tiers of the supply chain are handled in a centralized
manner. Although the models differ in terms of the problem setting, the objectives,
and the constraints considered, the approach followed in all supply chain scheduling
papers is similar and requires (a) solving the problem of a single firm in the supply
chain – usually when one party is more dominant than the other, (b) solving the
problem by considering the overall supply chain objective, and (c) comparing the
two settings by a computational experiment.

The first study of supply chain scheduling by Hall and Potts (2003) evaluates the
benefits of cooperative decision making in a supply chain where a supplier makes
deliveries to several manufacturers, who may in turn supply to several customers.
They develop models which minimize the sum of scheduling and batch delivery
costs. Agnetis et al. (2006) study models for resequencing jobs, using limited stor-
age buffer capacity, between a supplier and several manufacturers with different
ideal sequences. They describe efficient solution procedures for a variety of objec-
tives including total interchange cost and the total interchange cost plus buffer costs.
Dawande et al. (2006) study conflict and cooperation issues in a supply chain where
a manufacturer makes products which are shipped to customers by a distributor.
They evaluate conflict and describe efficient solution procedures.

This line of research successfully addressed the inefficiencies that arise in the
supply chain due to the lack of centralization and the conflict of interest among
different members of the supply chain, but does not consider incentive issues. In
particular, the fact that some of the supply chain members may be individually
worse-off in the centralized solution is mostly ignored. In that regard, Chen and Hall
(2007) considered a similar problem in assembly systems and evaluated the cost of
conflict and the benefit of cooperation. Their study is different than the previous
work in this area in the sense that, they not only consider the optimization problem
that arises, but also a compensation scheme that uses the NBS concept (Nash 1950).

12.2.6 This Chapter

In this chapter, we mainly focus on the papers that investigate the scheduling
coordination issues in an outsourcing/subcontracting context. In particular, we want
to survey the time-sensitive capacity allocation problems that arise when multiple
agents seek services at a common third-party resource. Sections 12.3 through 12.6
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Table 12.1 Summary

Sect. 12.3 Sect. 12.4 Sect. 12.5 Sect. 12.6

Scheduling coordination
p p p p

Outsourcing
p p p

Subcontracting
p p p

Time-sensitive capacity allocation
p p p p

Allocation of costs/savings
p p

Cooperative game theory
p p

Competition (non-cooperative game theory)
p

Coordination by incentives
p p

are devoted to recent advances in this area that follow an interdisciplinary approach
by utilizing tools such as mathematical modeling, algorithm design, game theory,
and mechanism design. The chapters differ from one another by the specific cri-
terion used. Some follow cooperative game theory approaches, while others use
noncooperative game theory. Some compare centralized and decentralized solutions
and find ways to allocate savings due to centralization, whereas others address in-
centives and contracts to induce strategic behavior that mimics centralized control.
In Table 12.1, we summarize the similarities and differences among the papers dis-
cussed in the following four sections.

It is clear from the table that, every section reflect at least five of the eight issues
indicated. In contrast, the papers that we surveyed in Sect. 12.2.1 through 12.2.6
reflect at most three issues.6

Next, we describe the organization of the rest of the chapter. In Sect. 12.3, we
discuss the basics of sequencing games and present variants of a cooperative out-
sourcing model. Section 12.4 is devoted to a dynamic outsourcing model for which
an alternative cost allocation scheme is presented. In Sect. 12.5, we consider models
that focus on competition and coordination issues in a subcontracting context. The
cost of decentralized planning and incentive schemes to leverage centralization are
also discussed. In Sect. 12.6, instruments such as price mechanisms, auctions, and
contracts are introduced, which are used to achieve centralization with minimal cen-
tralized control. We conclude the chapter in Sect. 12.7 with possible future research
directions.

12.3 Cooperative Outsourcing Models

In this section, we consider models where a group M of manufacturers book third-
party (3P ) capacity for their operations, say N D fJ1; : : : ; Jj ; : : : ; Jng, with
deterministic processing time requirements pj and job specific parameters such as

6 For example, the “Supply Chain Scheduling Research” focuses on scheduling coordination and
is sometimes about outsourcing, but except for Hall and Chen (2007) who consider cost allocation
issues, the other six criteria are ignored.
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weights wj (the relative importance of the job), and/or due dates dj (a job incurs
a penalty if it is completed later than its due date). These jobs may correspond to
certain industrial finishing processes, testing of mechanical parts, quality control
operations, and some assembly operations.

Consider a supplier in Cisco’s supply chain network that provides subassemblies
to manufacturing partners. We consider a group of manufacturing partners who sole
source from a single supplier. This supplier plays the role of the third-party 3P

in our model. Similarly, one could think of a contractor in the same network as a
firm which performs the testing operations for the assemblies or components pro-
duced by the manufacturing partners. This situation is equivalent to a model where
manufacturing partners M outsource their testing operations to a single contrac-
tor in Cisco’s network. Recall that the production schedules of all parties involved
are transparent to everyone because they are all connected to Cisco’s information
sharing portal. Therefore, coordinated capacity and production planning opportu-
nities exist within this framework. We consider such coordination possibilities and
provide incentive schemes to make everyone benefit from coordination.

First, we describe the sequence of events. The 3P announces its capacity
availability as well as the booking cost for each day of production, referred to
as a manufacturing window of L hours (a measure of capacity or the length
of a shift). The finite set of manufacturing windows is � D fW1; : : : ; WT g,
where T is the number of windows in the next planning period. The booking
price hk of each window Wk for 1 � k � T reflects peak demand periods
or timeliness with respect to the beginning of the planning horizon. Knowing
the availability and the costs of the manufacturing windows, each manufacturer
books 3P capacity for its jobs in Nm, m 2 M , independently in a first-come-
first-served (FCFS) basis, say in order 1; 2; 3; : : : ; jM j, to construct his initial
schedule �0

m with the objective of jointly minimizing his individual costs
expressed as the total internal costs incurred according to a performance mea-
sure, i.e.,

P
Jj 2Nm

cj .�0
m/, plus booking costs which are paid to the 3P , i.e.,P

Wk2W�0
m

hk . Therefore, for each manufacturer, there is a trade-off between

booking expensive early windows and cheap late windows. Let �0
m be the optimal

schedule and W�0
m the collection of windows for manufacturer m 2 M . Note that

the FCFS ordering of the manufacturers implies that:

W�0
m � fW1; : : : ; WT g n .W�0

1 [ W�0
2 [ W�0

3 [ � � � [ W�0
m�1 /: (12.1)

Following the determination of W�0
m for each m 2 M; the 3P reschedules all

jobs in N as if they belong to one party so as to obtain the best schedule �� and
collection W�� of windows. Schedule �� minimizes the total cost over all manufac-
turers and hence is at least as well off as the schedule �0 obtained by concatenating
�0

1; �0
2; �0

3; : : : ; �0
jM j. Manufacturer m 2 M would agree to go along with ��

only if his cost minus a side payment is not greater than that of �0
m. Therefore,

3P must find an allocation of the savings (an incentive scheme) produced by ��
such that every manufacturer is at least as well off. Normally, �� is expected to uti-
lize fewer windows than �0 because of its better utilization of idle times across all
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windows initially booked by manufacturers. On the other hand, the 3P also creates
a mechanism that generates benefits for himself via booking refunds and rebookings.
Specifically, some of the manufacturing windows are emptied due to the coordinated
schedule. The 3P refunds a fraction � (0 � � � 1) of the booking costs of these
windows and keeps the rest for himself in addition to generating additional booking
revenues by reselling released windows.

12.3.1 Variants of the Outsourcing Model

In what follows, we describe possible variants of the aforementioned general
outsourcing model where the internal cost measure cj .�0

m/ (the completion
time-related cost of job Jj of manufacturer m in his initially booked schedule
�0

m) for each manufacturer depends on operational factors such as the cost crite-
rion, the shipment protocol, set-up times between different jobs, and production
capacity at the third-party:

� Cost Criterion

– Total weighted flow time: a widely used measure to evaluate the WIP (work-
in-process) costs of a production schedule.

– Total (weighted) tardiness: a penalty is applied for each job that is completed
after its due date. In case of weighted tardiness, a job-specific penalty is ap-
plied proportional to the amount of time by which a job is past its due date.

– Total delivery time: captures the order-to-delivery time and is a measure of
customer service.

– Total (weighted) earliness and (weighted) tardiness: an earliness or a tardi-
ness penalty is applied for each job that is not completed exactly at its due
date. Tardiness captures late delivery penalties, whereas earliness captures
holding costs for finished goods due to earlier than expected completions.
It is an important performance measure related to the just-in-time production
principles.

� Shipment protocols

– Batch shipment: all jobs in a batch are shipped as a group at the end of the
manufacturing window in which they are finished.

– Immediate shipment: Every job is shipped individually upon completion.

� Set-up times

– Negligible set-up times: set-up times between consecutive jobs from different
manufacturers are negligible or can be done during off-hours without affect-
ing the schedule. Examples include painting, finishing, testing, and certain
assembly operations.

– Significant set-up times: set-up times between jobs that belong to different
manufacturers are large and hence they have to be processed in different man-
ufacturing windows.
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� Production capacity

– Regular production: the regular production costs is included in the booking
cost and does not account for overtime.

– Hourly overtime production: overtime is available up to a daily limit.
– All-or-nothing overtime production: Overtime is booked at the daily limit (or

not used at all) at a fixed cost charged regardless of the amount of overtime
actually utilized.

In what follows we will demonstrate a number of models with some of these
aforementioned operational characteristics. Our analysis will include complexity
results and optimal or heuristic algorithms. Also, we will present structural prop-
erties of the game among the manufacturers as well as incentive payment schemes
according to which the 3P should allocate the savings to leverage coordination.

12.3.2 Cooperative Sequencing Games

Sequencing games have widely been used to study coordination issues in outsourc-
ing. Hence, we first discuss the basic principles related to the sequencing games.
Seminal papers in sequencing games include Curiel et al. (1989) and Curiel et al.
(1994). Given a set of jobs N D fJ1; : : : ; Jj ; : : : ; Jng, an initial permutation of the
jobs �0 and the initial total cost f .�0/, the first problem is to find the best schedule
�� with the minimum total cost of f .��/. Let coalition S � N be a set of jobs and
v.S/ be the maximum amount of savings that can be achieved by coalition S when
Jj 2 S are rearranged. The second part of a sequencing game requires finding an
allocation vector x D fx1; x2; x3; : : : ; xng of the total savings f .�0/ � f .��/ such
that the following core (in)equalities are satisfied:

X

Jj 2N

xj D v.N /;
X

Jj 2S

xj � v.S/ 8 S � N; xj � 0 8 Jj 2 N: (12.2)

The second set of inequalities imply that the savings allocated to each player are
nonnegative, whereas this set of constraints are needed to ensure that every coalition
S is allocated to savings that are at least as much as they can save by themselves.

The first constraint guarantees that all savings generated by coordination are
allocated to the players.

The set of allocations where savings are distributed to players in such a way that
no subset of players can be better off by seceding from the rest of the players or
by acting solely on their own behalf is called the core of a game. Each cooperative
game does not necessarily have a core. Mathematically, it is possible that no such
vector x = fx1; : : : ; xjM jg satisfies the (in)equalities in (12.2). Therefore, one might
consider looking for a structural property that guarantees the existence of the core
of a cooperative game. It is known that convex games have nonempty core (Shapley
1971).
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Definition 12.1. Cooperative game .M; v/ is said to be convex when

8 S; T � M; vfS [ T g C vfS \ T g � vfSg C vfT g:
However, nonconvexity does not necessarily imply that the core is empty, see for
example the permutation games introduced by Tijs et al. 1984. A necessary but not
sufficient property for the existence of the core is superadditivity.

Definition 12.2. Cooperative game .M; v/ is said to be superadditive when

8 S; T � M with S \ T D ;; vfS [ T g � vfSg C vfT g:

Intuitively this means that two disjoint coalitions can do no worse by forming a
larger coalition which is just the union of the two.

Coordinating the operations of various manufacturers provides significant bene-
fits to the manufacturing chain. This coordination can be modeled as a cooperative
game among manufacturers who are willing to trade changes in their schedule for a
larger portion of the resulting savings. In what follows, we describe how we apply
the cooperative sequencing games concept to the outsourcing models we described
eariler. The optimal schedule for all manufacturers, say �� (or ��.M /), can only be
utilized if all manufacturers agree to schedule their jobs as suggested by 3P . For this
to happen, v.M / must be allocated so that all manufacturers are better off following
�� rather than using their previously reserved windows or forming smaller coali-
tions S � M .

Unlike in (12.2) where each job belongs to a different player, in the outsourcing
models presented in this section, each manufacturer m owns a subset Nm of jobs,
i.e., N D fJ1; : : : ; Jng D [m2M Nm. Therefore, a coalition S � M is specified as
a subset of manufacturers in M . Next, we introduce further notation and make some
assumptions:

� W�0.S/ � �; the set of windows utilized in the initial schedule by the members
of S . Mathematically, W�0

.S/ D [m2SW�m
0

.
� W��.S/ � W�0.S/; the optimal set of windows utilized by all manufacturers

in S . Coalition S cannot utilize the windows that do not initially belong to its
members in schedule �0.S/.

� cj .�0.S// and cj .��.S//; the completion time-related costs associated with job
Jj 2 N in �0.S/ (the initial schedule for manufacturers in S ) and ��.S/ (the
optimal schedule for manufacturers in S ), respectively.

� A cooperative game over the set of manufacturers .M; v/ where v : 2jM j ! R,
and

v.S/ D
X

m2S

X

j 2Nm

�
cj .�0.S// � cj .��.S//

�

C� �
"

X

Wk 2W�0.S/

hk �
X

Wk 2W��.S/

hk

#
; 8 S � M (12.3)

where 0 � � � 1 is the refund percentage.
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The value function v.S/ for a coalition S � M is the difference between the initial
total production cost of coalition S due to �0.S/ and the optimal total production
costs of coalition S due to ��.S/ plus a fraction of the difference between the initial
and optimal booking costs for coalition S: Intuitively, v.S/ represents the maximum
amount that the members of coalition S can collectively save by rescheduling the
jobs in NS D [m2S Nm over manufacturing windows W�0

.S/.

12.3.3 The Weighted Flow Time Criterion

The analysis of this section is drawn from Aydinliyim (2007) and Aydinliyim
and Vairaktarakis (2010). The internal costs of each manufacturer are expressed
as a measure of the WIP costs. Manufacturing windows have arbitrary booking
prices, i.e., hk for each window Wk , each representing a regular production capacity
of L hours. Note that, for each manufacturer, there is a trade-off between booking
expensive early windows and cheap late windows. By using the aforementioned
composite objective function, we consider both outsourcing costs incurred by each
manufacturer, i.e., booking costs actually paid to the third-party, and internal costs
that relate to the timeliness of the delivery of the outsourced workload back to each
manufacturer, i.e., the monetary equivalence of holding WIP inventory of nonout-
sourced workload represented as a linear function of the delivery time. Booking
costs make practical sense as it is the current practice for using outside produc-
tion capacity (e.g., SPADE, Cisco, and UMC). For the motivation of the WIP costs,
consider an assembler sourcing a critical component from a third-party. Until the
third-party delivers the critical component to the assembler, the assembler incurs the
WIP costs associated with the production of other components which are not out-
sourced, and this cost is a function of the delivery time – the completion (shipment)
time – of the outsourced jobs at the third–party facility. Throughout this section, we
consider models to schedule jobs that are of similar nature and hence set-up times
during changeovers from one job to another (even they belong to different manu-
facturers) are assumed insignificant. Furthermore, preemptive resume schedules are
considered to allow it for a job to start in one manufacturing window and resume in a
future window without additional processing. Aydinliyim (2007) considers two dis-
tinct shipment protocols for completed jobs, namely batch shipments and immediate
shipments.

12.3.3.1 The Batch Shipment Protocol

In this case, if Jj 2 N is completed during manufacturing window Wk , it incurs a cost
wj Dk where Dk is the completion time of Wk . Minimizing the total weighted flow
time subject to batch shipments is strongly NP-complete. The proof uses a reduction
from 3-Partition (Aydinliyim 2007). Near-optimal schedules can be attained by first
producing a single machine sequence � of jobs in N and then finding the optimal
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collection of windows to process the jobs according to � , resulting in ��. Suppose
Fj

� is the completion time of the job Jj in � . Define ti D i �L as the total processing
capacity of the first i windows booked by the manufacturers and let Bi be the set
of jobs that finish at time Fj

� , ti�1 < Fj
� � ti . We want to partition � in ! D

d.
P

Jj 2N pj /=Le parts, where ! is the minimum number of windows needed to
process the jobs in N , and find the total weight w.i/ of the completed jobs in each
part Bi . Define

w.i/ D
X

Jj 2N

ti�1�Fj
� �ti

wj : (12.4)

Then, given � we obtain batches B1,B2,B3, . . . ,B! . The WIP cost associated with
processing Bi in window Wk is

P
Jj 2Bi

wj � Dk D w.i/ � Dk . Let yj
i be an in-

dicator variable yj
i that shows whether Jj belongs to Bi ; and zi

k is 1 if jobs in
Bi utilize Wk ; 0 otherwise. Therefore, the objective function for the problem of
minimizing total WIP plus booking costs subject to batch shipments can be ex-
pressed as:

min
�

X

Wk2 �

!X

iD1

X

Jj 2 N

wj � Dk � yj
i � zi

k C
X

Wk2 �

hk �
!X

iD1

zi
k (12.5)

Aydinliyim (2007) proposed three heuristics to produce sequence �:

� Heuristic 1: WSPT rule; simply process jobs in decreasing wj =pj order.

� Heuristic 2: !-partition; solve a series of ! � 1 knapsack problems by tak-
ing processing times pj and weights wj for Jj 2 N D fJ1; : : : ; Jng as input
and producing the single machine sequence � , resulting in batches B1,B2,B3,
. . . ,B! .

!-Partition:

(0) Let k D ! � 1, B1 DB2 D B3 D . . . D B! D Ø and N U D N

(1) Solve knapsack problem: M.k/ D max
P

Jj 2 N U

wj � xj s.t.
P

Jj 2 N U

pj � xj �
k�L , xj 2 f0; 1g where xj D 1 if Jj is in the knapsack and 0 otherwise.

(2) Set BkC1 D fJj W xj D 0g, N U DN U � BkC1

If k D 0 then STOP, else set k D k � 1 and go to (1).

� Heuristic 3: !-Ratio-Partition; identical to !-Partition except that the objec-
tive function of the knapsack problem in line (1) now becomes max

P
Jj 2 N U

.wj =pj / � xj .

Let WSPT, Knap, and RKnap denote the heuristic solutions produced by DP (de-
scribed next) when the initial batching is produced by the WSPT rule, !-Partition,
and !-Ratio-Partition, respectively. The application of WSPT takes only O.n log n/

time, whereas !-Partition and !-Ratio-Partition both take O.nT
P

Jj 2N pj / time.
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Given B1; B2; B3; : : : ; B! , the following dynamic programming formulation,
referred to as DP, assigns batches to manufacturing windows. Let fi .k/ be the min-
imum total booking plus WIP costs for B1; : : : ; Bi when Bi is processed in window
Wk , and B1; : : : ; Bi�1 are processed prior to Wk .
Recursive relation:

fi .k/ D min
i�1�r<k

ffi�1.r/ C hk C w.i/�Dkg for i � k � T � ! C i : (12.6)

Boundary condition: f0.k/ D 0 for k D 0 and 1 otherwise.
Optimal value: fopt D min!�k�T ff!.k/g.
The worst-case asymptotic complexity of DP is O.T 3/.

To test the quality of the heuristics, Aydinliyim (2007) proposes two different
lower bound schemes. The first one is a variation of !-Partition called Max-!-
Partition. This scheme is called MaxKnap and is identical to Knap except that
w.i/ in (12.6) is replaced by M.i/ � M.i � 1/ which is obtained by solving the
knapsack problems in line (1) of !-Partition and N U is set to N for all ! � 1

knapsack iterations. Namely, if Ofi .k/ denote the state variables associated with Max-
!-Partition, then

Ofi .k/ D min
i�1�r<k

f Ofi�1.r/ChkCŒM.i/�M.i�1/� � Dkg for i � k � T � ! C i

(12.7)

where M.0/ D 0 and M.!/ D P
Jj 2N wj .

An alternative lower bound can be attained by assuming that each delivery
includes not only the batch completed within a window, but also the completed
portion of a preempted job. Let pjk be the portion of pj completed in Wk . Then
to each job Jj 2 N we assign weight fjk D .pjk=pj wj /. Likewise, we assign
pjk fraction .pjk=Lhk/ of the booking cost of Wk . Equivalently we define cjk

= .wj =pj / � Dk C .hk=L/ as the cost of processing one unit of Jj in Wk . For
any collection of windows, the WSPT rule with respect to weights fjk provides
an optimal batching to process the jobs in N: Aydinliyim (2007) presented results
of an extended computational experiment which evaluates these heuristics against
the two lower bounds. Statistics for 400 instances over 40 parameter combinations
show that the best heuristic result differ from the tightest lower bound by 0:6% on
average. Hence, the heuristics perform well, and the lower bounds are tight.

12.3.3.2 The Immediate Shipment Protocol

In this case, if Jj 2 N is completed during window Wk at time Cj due to single
machine sequence � , it incurs a production cost wj � Cj , where Cj D Dk � L C
Fj

� � ti�1. Adapting the notation from the previous case, the objective function
becomes:

min
�

X

Wk2 �

!X

iD1

X

Jj 2 N

wj � ŒDk�LCFj
��ti�1� � yj

i �zi
kC

X

Wk2 �

hk �
!X

iD1

zi
k : (12.8)
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Minimizing the total weighted flow time subject to immediate shipments is
also strongly NP-complete, which can be proved by a reduction from 3-Partition
(Aydinliyim and Vairaktarakis 2010). Three heuristics have been proposed for the
problem of minimizing weighted flow time plus booking costs subject to immedi-
ate shipments. All three heuristics consist of two steps: finding a batching of the
jobs and then finding an optimal collection of windows to allocate the batches. They
all start by arranging the jobs in WSPT order. Without the loss of generality, sup-
pose J1, J2, J3; : : : Jn is the WSPT order. Finding sequence � can be done by
three procedures adopted from those mentioned in the previous section: WSPT rule,
!-Partition, and !-Ratio-Partition.

Subsequently, a modified version of the dynamic program DP , say DP 0, is
applied where (12.6) is replaced by

Qfi .k/ D min
i�1�r<k

f Qfi�1.r/ C hk C
X

Jj 2N

wj � ŒDk � L C Fj
� � ti�1� � yj

i g

for i � k � T � ! C i :: (12.9)

The resulting heuristics are called WSPT 0, Knap0, and RKnap0, corresponding
to the batching procedures used. Aydinliyim and Vairaktarakis (2007) noted that,
following the statistics obtained by running the heuristics for 400 instances over
40 parameter combinations, the best heuristic result differ from the tightest lower
bound by 3:1% on average. Hence, the heuristics for this shipment protocol also
perform well, and the lower bounds are tight.

12.3.3.3 Coordination Results

This subsection discusses the coordination results related to the models described
in Sect. 12.3.3.1. Before we begin to deal with the specifics, we decompose the
value function (total savings) v.S/, S � M into the booking savings vh.S/ and
the completion time-related internal cost measure savings vc.S/ (referred to as WIP
savings). Then,

vc.S/D
X

m2S

X

Jj 2Nm

Œcj .�0.S//�cj .��.S//�; vh.S/D
X

k2W�0.S/

hk�
X

k2W��.S/

hk:

(12.10)

Therefore,

v.S/ D vc.S/ C � � vh.S/: (12.11)

Note that the windows initially owned by a coalition S of manufacturersW�0
.S/

constitute blocks of windows. Let [a,b] denote the set of windows fWa, WaC1,
WaC2, . . . ,Wbg. One can express W�0

.S/ as Œa1; b1�[ Œa2; b3�[� � �[ Œar ; br � where
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1 � a1 < b1 < a2 < � � � < ar < br � T . Then, Œa1; b1�; Œa2; b2�; etc. are
called maximally connected components of the coalition W�0

.S/ of windows. WIP
savings produced by the windows in Œa; b� is defined similar to vc.S/. Let NŒa;b�

be the set of jobs that complete in windows Wk 2 Œa; b�. Then we can express
!c.Œa; b�/ as follows:

!c.Œa; b�/ D
X

Jj 2NŒa;b�

Œcj .�0.Œa; b�// � cj .��.Œa; b�//�

vc.S/ D
rX

kD1

!c.Œak ; bk �/ (12.12)

Aydinliyim (2007) considers the scenario where 3P does not refund booking
savings to any coalition other than the grand coalition M , i.e., refund percentage
� D 0 unless S D M . The 3P poses such stipulation to leverage his refund policy
so as to affect coordination among all manufacturers and propose to manufacturers
the following allocation of the coordination savings. For 0 � � � 1, let xm

wip and
xm

book be the WIP savings allocation and the booking savings allocation offered by
3P to manufacturer m; respectively, and define

xm
wip D P

Wk2W�0m

Œ�.!c.Œ1; k�/ � !c.Œ1; k � 1�//

C .1 � �/.!c.Œk; T �/ � !c.Œk C 1; T �//� (12.13)

and

xm D xm
wip C �

1

jM j .v.M / � vc.M //: (12.14)

The following coordination results hold true for the outsourcing model with
weighted completion time cost criterion subject to batch shipments:

(1) Games .M; vc/, .M; vh/, and .M; v/ are superadditive but not convex.
(2) Expressions (12.13) and (12.14) provide a core allocations for the games

.M; vc/ and .M; v/, respectively.

Proofs, similar structural results, and an alternative allocation rule for immediate
shipments can be found in Aydinliyim and Vairaktarakis (2010).

12.3.3.4 Value of Coordination: A Numerical Example

The transfer payments in our model are explained in detail via the following exam-
ple. Consider the following instance with three manufacturers each having six jobs
(see Table 12.2). There are 20 manufacturing windows each of length 8 time units
having 16 time units between them (W1 from 0 to 8, W2 from 24 to 32, and so on).
Booking prices take on two values, i.e., hk 2 f2;000; 2;600g, 1 � k � 20 where
W1, W3, W4, W7, W13, W15 and W19 are expensive windows representing peak de-
mand periods. The manufacturers book windows on a FCFS basis and optimize their
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Table 12.2 Parameters for the illustrative example

M 1 2 3
Jobs J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15 J16 J17 J18

wj 9 20 12 12 14 4 19 1 16 9 16 5 9 3 12 7 7 5

pj 6 6 3 4 6 6 6 4 6 2 5 2 6 2 5 4 2 6

schedules to minimize the combined WIP costs plus booking costs. The following
initial schedules and costs are obtained:

� W�0
1 D fW1; W2; W3; W5g; �0

1: J3 ! J4 ! J2 ! J5 ! J1 ! J6, WIP
cost D 2,968, booking cost D 9,200, Total cost D 12,168.

� W�0
2 D fW4; W6; W8; W9g; �0

2: J10 ! J11 ! J7 ! J12 ! J9 ! J8, WIP
cost D 8,088, booking cost D 8,600, Total cost D 16,688.

� W�0
3 D fW7; W10; W11; W12g; �0

3: J17 ! J18 ! J15 ! J16 ! J13 ! J14,
WIP cost D 10,816, booking cost D 8,600, total cost D 19,416.

Therefore, the initial overall schedule �0 is the concatenation of �0
1, �0

2, and �0
3

with WIP cost D 21,872, booking cost D 26,400, and total cost D 48,272. On the
other hand, if all manufacturers accept to cooperate and follow the coordinated 3P

schedule ��, then W12 will be released decreasing the booking cost to 24,400 which
is a reduction of 7.58%.

Also, better sequencing of the jobs and better utilization of the windows will
reduce WIP costs to 17,648 which is an improvement of 19.31%. At the individ-
ual player level, M1’s WIP cost increases by 3,240 (to 6,208 from 2,968), whereas
the WIP costs of M2 and M3 decreases by 3,792 (to 4,296 from 8,088) and 3,672
(to 7,144 from 10,816), respectively. Hence, 3P collects 7,464 (D3;792 C 3;672)
from players M2, and M3, and uses 3,240 to compensate for M1’s losses. The net
savings of 4,224 (D3;792 C 3;672 � 3;240) is allocated to the players according
to the core allocation proposed. Specifically, M1 gets 2,653, M2 gets 1,020, and
M3 gets 546. The rewards are even greater when a fraction of the booking savings
are allocated to manufacturers (2;000=3 more to each manufacturer). After coor-
dination, the overall chain costs are reduced by 6,224 (a 12.89% improvement) as
the total cost decreases to 42,048. As a result, M1 is awarded a bonus of 152%
(D 5;877=3;840) for accepting a WIP loss of 3,840; M2 receives superior perfor-
mance plus a bonus of 3552 (D3840 � 288); and M3 receives superior performance
at 13% discount (D 2;250=15;509).

12.3.4 The Number of Tardy Jobs Criterion

In this section, a variant of the outsourcing model is presented where the internal
costs of the manufacturers are tardiness penalties. If a job Jj 2 N is completed
after its due date dj , then a penalty ˇ is incurred. Let Cj

� denote the completion
time of job Jj in schedule � ; yj

k be the binary variable that takes a value of 1, if
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Jj is completed in Wk D Œak ; bk �, and 0 otherwise; U.z/ be a binary variable which
is 1 if z > 0 and 0 otherwise. Then the objective function for the problem of jointly
minimizing tardiness penalties plus booking costs is:

min
�

8
<

:

j�jX

kD1

2

4hk � U

0

@
X

Jj 2N

yk
j

1

A

3

5C ˇ �
2

4
X

Jj 2N

U.Cj
� � dj /

3

5

9
=

; : (12.15)

A special case of the problem with two booking prices is studied by Cai and
Vairaktarakis (2007). For every window Wk , k D 1; : : : ; j�j the booking cost hk

may only take on the values fh; hPg where h is the booking cost on a regular de-
mand day while hP is the cost on a peak demand day, and hP > h. For every job
Jj 2 Nm; m 2 M , its due-date dj coincides with the end of a manufacturing win-
dow, i.e., dj D bk for some k D 1; : : : ; j�j. This is consistent with practice where
jobs are delivered in batches at the end of the day. The following are some opti-
mal properties of the optimal schedule �� and the optimal collection of ! windows
utilized by ��.

(1) There exists a critical window Wc with booking cost hc D hP such that windows
W1; : : : ; Wc�1 are also booked.

(2) All windows in W�� following Wc have booking cost h.
(3) All windows in W�� except possibly the last are fully utilized.
(4) Nontardy jobs are scheduled in earliest-due-date (EDD) order and precede all

tardy jobs.

Properties (1)–(3) can be proved trivially and Property (4) is true because on any
collection of ! windows, Moore-Hodgson algorithm (MH) (see Moore 1968) deter-
mines the optimal sequence of processing the jobs. The optimal properties suggest
that an optimal collection of windows can be found by comparing at most ! sched-
ules. One can start by utilizing the first ! windows, and then iteratively replace the
latest expensive utilized window with the earliest empty cheap window. At each it-
eration, an optimal sequence can be found by MH in O.nlogn/ time. By comparing
the total costs of the schedules at each iteration, the optimal schedule can be found.
Cai and Vairaktarakis (2007) suggest the following optimal algorithm Regular to
solve the problem of minimizing tardiness penalties plus booking costs.

Algorithm Regular

(0) Book the earliest ! windows with booking price h. If the number of h-windows
is less than !, fill in with early hp-windows. Sequence the jobs according to
MH, let Z� be the total tardiness plus booking costs.

(1) Replace the latest utilized h-window with the earliest free hp-window and se-
quence the jobs using MH. Calculate the total cost. If it is less than Z�, update
Z� and repeat (1); otherwise, STOP.
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12.3.4.1 Optional Overtime Capacity

In this extension, the availability of overtime provides the opportunity to finish more
jobs earlier thus reducing the number of tardy jobs. Each unit of overtime costs ˛

dollars which is assumed to be more expensive than the regular hourly cost in a
peak window, i.e., ˛ > hP=L. This assumption is consistent with practice where
overtime is significantly more expensive than regular production. It is assumed that,
the amount of overtime Ok booked in window Wk is not more than a fixed upper
limit of O hours, i.e., 0 � Ok � O . Furthermore, batch shipment for overtime is
assumed such that the departure time for orders completed during Wk is bkCOk . All
other operational characteristics remain the same as before. In addition to Properties
(1)–(4), the following property holds true for an optimal schedule ��:

(5) In an optimal schedule, there exists a critical window Wf 2 W� which utilizes
overtime, and all preceding windows in W� have Ok D O .

Finding an optimal schedule for the model with optional overtime capacity, one
needs to make use of Regular. Let W��.OT/ be the optimal collection of windows for
the model where overtime is available and ��.OT/ be the corresponding schedule.
Assume that W��.OT/ is known. The following two schedules help obtaining the
optimal schedule ��.OT/.

�R: Optimal schedule when no overtime is used and MH-Algorithm is applied
assuming that the last window in W��.OT/ has unlimited capacity.

�OT: Optimal schedule when the overtime of each window in W��.OT/ is fully
utilized before allocating work to the following window.

Let TR and TOT be the set of tardy jobs for �R and �OT, respectively. The optimal
set of tardy jobs T��.OT/ satisfy TOT � T��.OT/ � TR. Moreover, if Jj 2 TRnTOT

and Jj is nontardy in the optimal schedule ��.OT/, then all jobs with smaller
pj will also be nontardy in the optimal schedule ��.OT/. Using those properties,
Cai and Vairaktarakis (2007) propose the following optimal algorithm that takes
O.n2!2/ time.

Algorithm Overtime

(0) Apply Regular to find W�� and TR. Apply Regular to find W��.OT/ and TOT

when each window has length L C O . Order jobs in TRnTOT in non-decreasing
order of processing times. Set Z� WD 1. Also set jOTj WD 0 and jP j WD
0; these are counters for the number of OT-windows and hp-windows used,
respectively.

(1) If jOTj <D d
�P

Jj 2N pj

�
=.L C O/e then go to (2); otherwise, STOP.

(2) If jP j <D d
�P

Jj 2N pj

�
=.L/e then go to (3). Otherwise, set jOTj WD jOTjC1

and go to [1].
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(3) Find the critical window Wf 2 W��.OT/. Apply MH to determine the sequence.
Delay tardy jobs as much as possible without using additional windows. If the
total cost of the schedule is less than Z�, update Z� and the tardy set T��.OT/.
Set jP j WD jP j C 1 and go to (2).

12.3.4.2 Coordination Results

Recall the definition of production cost savings vc.S/ and booking savings vh.S/

from Sect. 12.3.3.3. Production costs for this variant are expressed as tardiness
penalties, i.e., vc.S/ D vT .S/. Let �.�0.S// and �.��.S// be the number of tardy
jobs in the initial schedule and the optimal schedule for coalition S � M , respec-
tively. Then,

vT .S/ D ˇ � Œ�.�0.S// � �.��.S//� (12.16)

and v.S/ D vT .S/ C � � vh.S/.
The following example demonstrates that for the variant of the outsourcing

general model with tardiness costs, the cooperative game .M; v/ defined in this
section is not convex. Consider the instance where M D f1; 2; 3g, N1 D fJ1g,
N2 D fJ2g, N3 D fJ3g, pj D 2, and dj D 24 for j D 1; 2; 3, j�j D 3, L D 8,
h1 D h2 D 0, h3 D 50, � D 1, and ˇ D 100. There is no idle time between
windows. Before coordination, manufacturers 1 and 2 incur no cost while manu-
facturer 3 incurs cost of 50. No tardiness penalties are incurred as all jobs finish
before their due dates. If all manufacturers cooperate, then all three jobs can be
scheduled in window W1. Consider the coalitions S D f1; 3g and T D f2; 3g. Then,
v.T / D v.S/ D 50 because both release W3 thus earning an refund of 50. The
same is true for coalition S [ T D f1; 2; 3g. However, v.S \ T / D v.f3g/ D 0.
Therefore, v.S [T /Cv.S \T / D 50 < 100 D v.S/Cv.T /, and .M; v/ is not con-
vex. However, Cai and Vairaktarakis (2007) show that cooperative games .M; vh/,
.M; vT / and .M; v/ are superadditive. They define Œa; b� D fa; a C 1; : : : ; bg,
1 � a � b � jM j as a coalition of manufacturers (numbered according to the
FCFS order). With some constraints on the admissible coalitions, they prove that

xT
m D vT .Œm; jM j�/ � vT .Œm C 1; jM j�/ for m 2 M (12.17)

is a core allocation for the tardiness savings game .M; vT / and

xh
m D vh.Œ1; m�/ � vh.Œ1; m � 1�/ for m 2 M (12.18)

is a core allocation for the booking savings game .M; vh/. Combination

xm D xT
m C � � xh

m for m 2 M (12.19)
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is proved to be a core allocation for cooperative game .M; v/. These results are
valid for both the base model and the case where optional hourly overtime capacity
is available at the third-party (see Cai and Vairaktarakis 2007 for further details).

12.4 A Dynamic Cost Allocation Model with Total Weighted
Tardiness Cost

In this section, we present a dynamic total tardiness problem (D-TTP) following the
analysis by Biskup and Simons (1999). Their study is motivated by the operations
at a central repair office serving multiple computer dealers. The customers of the
computer dealers contact them and specify the requirements of their repair needs as
well as the due date. Then an agent transmits this request to the central headquar-
ters. The central repair office then schedules the jobs according to their due dates,
and the importance of the customers. This operational setting is very similar to the
outsourcing model presented in earlier sections. The computer dealers play the role
of the manufacturers, and the central repair facility plays the role of the third-party.

Common business practice calls for the FCFS processing of the repair requests
as they are received at discrete times, say t , over time. However, significant overall
savings are possible if the new jobs and the jobs waiting in the queue at time t are
rescheduled in an attempt to minimize the weighted tardiness costs of all jobs. Over-
all savings are obvious, but it is possible that some jobs are completed unusually late
because it may be frequently delayed by rescheduling. Hence, it is necessary that the
central planner devise a fair cost allocation scheme.

Suppose at any discrete time point, t , a new job arrives when there are already
nt �1 jobs waiting for service at the central repair facility. Each job Jj has a known
processing time pj and a promised due date dj for its completion, as well as an
associated weight wj which reflects the importance of the customer who owns it. Let
c.��.t// be the minimum weighted total tardiness cost incurred by the processing
of these nt jobs on or after time t according the optimal schedule ��.t/, i.e.,

c.��.t// D min
�.t/

8
<

:

ntX

j D1

wj Œmaxf0 ; Cj .�.t// � dj g�
9
=

; (12.20)

where Cj .�.t// denotes the completion time of job Jj according to schedule �.t/.
As noted before, ��.t/ may be optimal for the entire system but it may result to
inferior performance by a collection of jobs. Let Ma.t/ denote the jobs (among
the nt jobs) transmitted by agent a. Also, let �0.t/ denote the schedule obtained
if the job that arrived at time t was placed at the end of the queue of nt � 1 jobs.
If arriving jobs were just scheduled according to the FCFS rule, then no incentive
problem would have occurred. However, due to the lack of optimal rescheduling,
the overall service of the entire repair system would have deteriorated which might
result in excessive financial tardiness penalties and loss of customer goodwill in the
long run. Therefore, compensation amount xa.t/ is allocated to every agent a 2 A.
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The central repair facility is faced with (a) a serious capacity allocation problem and
(b) an incentive problem, which can be jointly formulated as:

min
ntP

j D1

wj Œmaxf0 ; Cj .�.t// � dj g�
s:t:

P
Jj 2Ma.t/wj Œmaxf0 ; Cj .�.t// � dj g� � xa.t/

� P
Jj 2Ma.t/

wj Œmaxf0 ; Cj .�0.t// � dj g� ; 8a 2 A

P
a2A

xa.t/ D c.�0.t// � c.��.t//

(12.21)

The first set of constraints ensure that all agents are better off after rescheduling
either by means of improved tardiness costs or as a result of the compensation that
they receive for giving up earlier positions in the sequence, and hence are called
participation constraints. The second constraint ensures that the system is budget
balanced, i.e., the compensations that are allocated are generated by the cost savings
as a result of rescheduling.

12.4.1 Solving the Scheduling Problem

The D-TTP problem and its static version are well-known scheduling problems.
The static version was shown to be NP-hard by Du and Leung (1990). For optimal
and/or approximate algorithms for the static version, see Emmons (1969), Schrage
and Baker (1978), Potts and van Wassenhove (1982), and others. References for
D-TTP include Baker and Bertrand (1982) and Raghu and Rajendran (1993).

Biskup and Simons (1999) suggested a simple heuristic for the online version. If
the facility is occupied at time t , a waiting queue further builds up until the resource
becomes free. The first arriving job, say J1, is positioned first in the queue. The sec-
ond, J2, is either positioned first or second, whichever costs less. Suppose J2 ! J1

is the least cost sequence. Then J3 can be positioned first, second, or third without
changing the already fixed precedence relation between J1 and J2, i.e., the possible
sequences are J2 ! J1 ! J3, J2 ! J3 ! J1, and J3 ! J2 ! J1. In general,
the i th arriving job is positioned according to the minimum cost sequence, without
affecting the already established precedence relation among the jobs (first arriving
through .i � 1/th arriving) which joined the queue earlier. As soon as the resource
becomes free, the job in first position at the current queue starts processing and is
no longer considered in later rescheduling attempts.

12.4.2 Cost Allocation

The cost allocation suggested by Biskup and Simons (1999) iteratively allocates the
savings or costs, every time a job is inserted in the waiting queue according to the
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algorithm described before. In other words, when job Jk is inserted before job Jj ,
a transfer payment of

xkj D wj Œmaxf0 ; Cj .��.t// � dj g � maxf0 ; Cj .�0.t// � dj g�
C fj Œc.�0.t// � c.��.t//� (12.22)

is allocated from job Jk to job Jj . The first term in xkj ensures that the participation
constraints are satisfied, whereas the second term ensures that a fraction fj of the
overall savings are allocated to the agent that owns the delayed job Jj . Note that 0 �
fj � 1 and

P
Jj 2Bk

fj D 1 where Bk is the collection of jobs that are delayed after
the insertion of job Jj , and hence all the generated savings .c.�0.t// � c.��.t///

are allocated to the resequenced jobs. Also note that job Jj may later be allocated
similar savings, ylk, from job Jl that is inserted to a position before job Jk . Hence
every job Jk holds a cost balance of

Lk.��.t// D wk maxf0 ; Ck.��.t//�dkgC
X

Jj 2Bk

xkj �
X

Jk2fm jm 2Bl g
ylk: (12.23)

Note that
ntX

kD1

Lk.��.t// D c.��.t//

and hence the allocation scheme is budget balanced.

12.5 Noncooperative Subcontracting Models

In this section, we present models related to another popular business model
where multiple manufacturers, each capable of processing his entire workload in
his own facility, have the option to subcontract some of their operations to a
common third-party who has the flexibility of processing the subcontracted jobs
from all manufacturers. Each customer order is delivered when the entire batch
of jobs is completed. Therefore, each manufacturer divides his workload between
his own resource and the third-party resource with the objective of completing
his workload the soonest possible, i.e., minimizing his makespan. This creates an
important time-sensitive capacity problem at the third-party as the sequence in
which the subcontracted workloads are processed would affect the completion of
the work subcontracted by each manufacturer. Currently, in practice, manufactur-
ers book third-party capacity on a first-come-first-served (FCFS) basis using online
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booking systems which serve as information sharing portals.7 Alternatively, the
manufacturers can compete for earlier processing at the third-party while making
their initial bookings. In this case, the third-party should announce the rules of
engagement regarding the use of its capacity. Then the manufacturers, given the
amount of information available from competitors (i.e., other manufacturers com-
peting for the third-party capacity), act strategically and decide on the amount of
workload to subcontract.

Part of the analysis of this section is drawn from Vairaktarakis (2008), who stud-
ies competition in this setting and reports Nash equilibrium outcomes. The strategies
where each manufacturer optimizes locally are not optimal for the entire system, i.e.,
do not minimize the sum of the makespans of all manufacturers. Moreover, subcon-
tracting requires contactual agreements with a third-party who may have conflicting
interests (Kamien and Li 1990). In particular, the aforementioned subcontracting
strategies do not optimize the utilization of the third-party capacity. In most practical
settings, the relationship between manufacturers and providers is usually managed
by price-only contracts due to their simplicity even though they are proven ineffi-
cient in many supply chain settings (see Lariviere and Porteus 2001; Cachon 2003).
Being a rational profit maximizer, the third-party seeks to maximize, his utilization,
i.e., maximize the sum of subcontracted workloads over all manufacturers. This cen-
tralized problem is studied in Vairaktarakis and Aydinliyim (2007) who suggest a
savings allocation rule which is in the core of the corresponding cooperative game.
A similar setting is also studied by Bukchin and Hanany (2007) whose main results
will be discussed shortly.

Vairaktarakis (2008) and Vairaktarakis and Aydinliyim (2007) both study three
production protocols – overlapping, preemption, and nonpreemption (see Pinedo
2002). Consider set M of manufacturers (also referred to as players) each having a
known total workload of Pi W i 2 M . Player i has to determine the amount of work
to be subcontracted to third-party 3P . The remaining amount will be processed on
resource Mi owned by player i 2 M . The subcontracted amount is referred to as
the strategy of player i . Overlapping allows processing parts of a job of player i

simultaneously on Mi and at the 3P . Preemption allows processing part of a job of
player i on Mi and the rest at the 3P , however, not simultaneously. Nonpreemp-
tion stipulates that preemption is not possible for jobs. Four different information
protocols are considered.

(IP1) Value jM j is disclosed to all manufacturers.
(IP2) Values Pi W i 2 M are disclosed to all manufacturers.
(IP3) Values Pi and pi

max W i 2 M are disclosed to all manufacturers.
(IP4) Job processing profiles fpij W j 2 Nig, i 2 M are disclosed to all manufac-

turers,

where Ni denotes the job set of player i 2 M; pi
max is the processing time of a

longest job in Ni , and pij is the processing time of job Jj 2 Ni .

7 See Sect. 12.1 for a discussion of Cisco’s eHub, MyUMC, and SPADE of HKUST.
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In all variants of the subcontracting models described, player i ’s objective is to
minimize his maximum completion time of the in-house and subcontracted portions
of his workload, i.e., the makespan denoted by Ci . All players compete for earlier
processing at 3P who announces the rules of engagement. Possible objectives for
the third-party include optimizing the overall service to manufacturers expressed
as
P

i2M C i . Alternatively, the third-party may look out for her own interest and
seek to maximize the total workload subcontracted by manufacturers in M , i.e.,P

i2M xi .

12.5.1 Incentive Rules to Manage Competition

12.5.1.1 Incentive Rules of Bukchin and Hanany (2007)

Bukchin and Hanany (2007) are the first to study a decentralized, nonpreemptive
scheduling problem and propose incentives that will manipulate strategic behavior
so that all players follow centralized strategies. In their model, the authors consid-
ered the flow time objective, i.e., sum of the completion times of all jobs of a player.
Similar to the aforementioned subcontracting models, they model competition for
the common resource which they refer to as the in-house resource. However, their
alternative resource has unlimited capacity at a constant cost, k per unit processing
time subcontracted. For simplicity, the authors choose k such that 1 � k � jNi j
for all i 2 M . They measure the difference between the centralized system cost and
the overall cost resulting from competition, a ratio they refer to as the decentraliza-
tion cost.

In Bukchin and Hanany (2007), all jobs that are processed on the common
resource (those that are not subcontracted) are processed in the shortest processing
time (SPT) order because this sequence maximizes overall service, (Smith 1956).
Alternatively, each subcontracted job incurs a cost that is a constant multiple of its
processing time, i.e., k � pij regardless of the player who actually owns it. Had all
jobs belonged to a single party, the centralized solution would be to process the k

longest jobs among all jobs in N: Instead, each player assigns a set Mi of jobs to the
common in-house resource and subcontracts the rest implying a different outcome
which may be different than the centralized schedule. This results in an optimality
gap, i.e., cost of decentralization, between the optimal centralized cost and the sum
of the individual players’ cost with competition.

The authors provide heuristics that generate upper bounds on the decentraliza-
tion cost and demonstrate that it could be as high as 20%. On the other hand,
correlated equilibrium bounds are calculated following the framework of Aumann
(1974), which results in 5% gap between the lower bounds and the upper bounds of
the overall cost. This finding suggests that it is possible for players to approximate
centralized system performance without centralized control. However, whether this
outcome occurs in practice is questionable as (a) it requires information sharing
at a very detailed level, (b) calculating correlated equilibrium is computationally
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intractable except for a few small instances with limited number of jobs, and (c) the
correlated equilibrium might be achieved as a result of mixed strategies which does
not reflect practical subcontracting strategies Bukchin and Hanany (2007) proposed
the following scheduling-based coordinating mechanism which they refer to as the
incentive compatible SPT rule (IC -SP T ) to incentivize players to act according to
the centralized schedule.

Definition 12.3. IC-SPT rule: Let JS be the set of shortest jobs of each player i ,
i 2 M . Schedule all jobs in .N nJS / \ [i Mi in SPT order. If j [i Mi j > k or
if there exists a player who subcontracts his longest job which is longer than the
shortest job that has not processed on the common resource, then this job j � will be
processed last.

IC-SPT prevents the players from occupying the common resource for their smaller
jobs. Otherwise, they bear the risk that a considerably cheap-to-subcontract job may
be delayed on the common resource. As a result, IC-SPT makes the Nash strategies
of players perfectly coincide with the centralized solution, i.e., a player subcontracts
all his jobs unless it is among the k longest jobs.

IC-SPT has one important drawback. In order to make it work, there has to be a
centralized controller of the common resource, who keeps track of the jobs that are
subcontracted by each player. One needs to know if there exists a subcontracted job
that is longer than j �. This is very difficult to achieve in practice. A managerially
feasible incentive rule preferably achieves what is intended with the least overhead
possible.

12.5.1.2 Incentive Rules of Vairaktarakis (2008)

In this section, we focus on the models by Vairaktarakis (2008) and Vairaktarakis
and Aydinliyim (2007). Consider an arbitrary order Œ1�; Œ2�; : : : ; ŒjM j� of manufac-
turers. If the 3P announces that player Œ1� will be processed first, then Œ1� will
subcontract as much workload of his as possible to the 3P resource, say F , without
regard to other manufacturers. Similar will be the strategy of the next few manu-
facturers who will occupy all early processing capacity at the 3P . Consequently,
subsequent manufacturers cannot benefit from the services of the 3P and will not
subcontract at all. Therefore, the 3P would like to announce priority rules which
incentivizes manufacturers to compete for its capacity more productively. In prac-
tice, the third-party has the power to impose such policies.8 Player strategies depend
on the information and production protocols which in turn affect the rule-making
process of the 3P . Keeping these rules in mind, the manufacturers determine their
subcontracted workloads fyprod

i W i 2 M g, where prod 2 fO; P; N g refers to the
three production protocols considered.

8 Outsourcing is the act of transferring some of a company’s recurring internal activities and
“decision rights” to outside providers (Greaver 1999).
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To facilitate competition for the processing order at his resource, the 3P

announces the following incentive rules for the protocols O; P; N , respectively:

IRO: If yO
i � yO

k
then player i precedes k on F (i.e., in the shortest processing

time order of outsourced workloads); break ties with smaller Pi .
IRP: Manufacturer workloads will be processed in quasi-SPT order, i.e., player i

precedes k on F if yP
i � yP

k
(break ties with smaller Pi ), unless yP

i D
Pi � pi

max � yP
k

and Pi > Pk .
IRN: Manufacturer workloads yN

i will be processed in nondecreasing order of Pi

subject to the workload constraints yN
Œi�

� fŒi �.maxk<i y
N
Œk�

/; i 2 M;

where fi .w/ is the maximum workload of any subset Ai � Ni that does not
exceed w.

In all production/IP combinations, every player chooses his strategy under the
following assumptions:

(1) every player has complete information of his own job profile,
(2) the workload of all other players is infinitely divisible, and
(3) the total workload of other players is the same as his own.

These three assumptions yield equilibrium strategies for each player that would not
hurt its worst-case makespan performance where “worst” is interpreted in terms of
the (unrevealed portion of the) processing time profile of other players. Evidently,
IP4 corresponds to complete information. However, when overlapping is allowed,
IP2 is equivalent to complete information. When preemption is allowed but over-
lapping is not, then IP3 is equivalent to complete information because detailed job
processing information does not provide additional preemption opportunities. On
the other hand, detailed job information is useful in nonpreemptive schedules. Let
y

prod
i .IP/ denote the equilibrium subcontracted workload amount for player i under

production protocol prod and information protocol IP. In particular, let us denote
yO

i .IP2/ D yO
i , yP

i .IP3/ D yP
i ; and yN

i .IP4/ D yN
i . Then, rules IRO, IRP, and

IRN yield the Nash equilibria summarized in Table 12.3:
Note that the algorithms for obtaining the competitive strategies under perfect

information, i.e., yO
i .IP2/ D yO

i , yP
i .IP3/ D yP

i , and yN
i .IP4/ D yN

i are quite
technical and are beyond the scope of this chapter. See Vairaktarakis (2008) for
details.

Table 12.3 Equilibrium strategies

y
prod
i .IP/ IP1 IP2 IP3 IP4

O Pi

jM jC1
yO

Œi� – –

P min
n
Pi � pi

max;
Pi

jM jC1

o
min

n
Pi � pi

max; yO
Œi�

o
yP

Œi� –

N fŒi�

�
PŒi�

jM jC1

�
fŒi�

�
yO

Œi�

�
W i < jM j fŒi�

�
yP

Œi�

�
W i < jM j yN

Œi�
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12.5.1.3 A Computational Study by Vairaktarakis and Aydinliyim (2007)

Ideally, the incentive priority rules lead to subcontracting strategies that mimic the
centralized schedule. In Vairaktarakis and Aydinliyim (2007), the merits of the
aforementioned incentive rules are measured by the decentralization cost which
results from a comparison of the centralized schedules and the competitive Nash
schedules. It is found that Nash equilibrium schedules under-utilize the third-party
capacity compared to the centralized schedules. The average loss in utilization is
7.5% for complete information. Table 12.4 summarizes the findings from a com-
putational experiment where averages are calculated over ten instances for each
combination of parameters jM j; jNi j; pj . Observe from Table 12.4 that, compared
to the centralized schedules, third-party capacity under-utilization is severe for
IP1 (on average 22.76, 22.76, and 34.70% for O , P , N respectively.), improves
dramatically for IP2 and IP3 (on average 7.05, 7.05, and 14.81% for O , P , N re-
spectively.), and further improves by another 6% for N/IP4 (from 14.81 down to
8.54%). Evidently, advances in information sharing dramatically increase the ben-
efits of competition; however, these benefits dissipate rather quickly. This finding
suggests that a high level of overall service for all players and the third-party uti-
lization under centralization can be achieved by appropriate incentive rules imposed
by the third-party provided that a high level of horizontal information sharing is
achieved among the manufacturers.

Table 12.4 The cumulative percentage workload deviation from the centralized schedule

O/P N
jM j jNi j pj IP1 IP2/IP3 IP1 IP2/IP3 IP4

4 5 (1,5) 23.76 6.72 34.55 9.88 6.73
(1,10) 23.20 7.08 35.33 13.49 5.59

10 (1,5) 20.55 8.91 24.14 11.48 8.37
(1,10) 21.33 8.36 23.43 10.10 6.57

15 (1,5) 20.21 9.25 22.81 13.57 15.32
(1,10) 20.48 9.39 21.93 10.40 11.33

6 5 (1,5) 25.62 6.14 54.40 24.55 8.31
(1,10) 25.52 6.59 47.82 20.38 2.14

10 (1,5) 21.69 7.41 28.82 13.78 10.25
(1,10) 23.01 6.53 27.42 9.57 5.46

15 (1,5) 21.00 8.25 26.07 13.26 15.56
(1,10) x x x x x

8 5 (1,5) 26.36 4.96 59.56 19.98 6.44
(1,10) 26.06 5.34 62.26 29.43 2.05

10 (1,5) 22.10 5.15 31.63 13.63 8.34
(1,10) 22.89 5.91 27.82 10.78 5.29

15 (1,5) 20.31 6.83 27.13 12.75 12.41
(1,10) x x x x x

Averages 22.76 7.05 34.70 14.81 8.14
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12.6 Other Mechanisms and Instruments
for Centralized Control

As demonstrated in earlier sections, competition for common resources that are of
interest to multiple parties with conflicting interests create serious capacity alloca-
tion and incentive problems. The increasing outsourcing/subcontracting trend has
brought up these two problems to the attention of numerous manufacturers which
need extra capacity or special expertise for their various operations. This inclina-
tion has increased the demand for contract manufacturing which has led to the
growth of firms with core competence in providing third-party services for a number
of customers in the same industry. Therefore, coordination mechanisms that yield
centralized optimal (or near-optimal) outcomes without centralized control are of
crucial importance. In what follows, we discuss two such instruments.

12.6.1 Price Mechanisms and Auctions

Wellman et al. (2001) consider a decentralized scheduling problem of allocating
resources to autonomous agents. They investigate the existence of equilibrium prices
for some general classes of scheduling problems, the quality of equilibrium solu-
tions, and the behavior of an ascending auction mechanism and bidding protocol.
The following analysis follows from their findings.

Consider a factory with an unscheduled day shift, which might be represented
by a number of 1-hour time slots, say � D f1; : : : ; k; : : : ; T g. These production
slots can be allocated to the production of customer orders that are associated with
different agents. Following the common business practice, assume that each slot has
a booking price referred to as the reserve price qk , representing the minimum price
that the factory is willing to accept in exchange for that time slot. Assume each agent
j , j 2 M , has one job he wants completed. A job is defined by its duration, pj , its
deadline dj , and the value vj (expressed in dollars) that the agent places on the job.
An agent is willing to spend up to this value to complete the job. To do so, the agent
must acquire a number of slots not less than the duration of his job (not necessarily
contiguous), which are not later than the jobs’s deadline. The agent gets no value if
his job cannot be completed before its deadline. The total value of a solution is the
sum of the values of all agents, i.e., the sum of the reserve prices for time slots not
sold plus the value associated with agents who meet their job deadlines.

Given prices p D fp1; : : : ; pk ; : : : ; pT g offered for the time slots in � , each
agent tries to achieve the maximum value by processing his jobs on a collection
X � � of time slots, i.e.,

Hj .p/ D max
X� �

"
vj .X/ �

X

k2X

pk

#
: (12.24)
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Let Fj be the collection of the spots allocated to agent j , and let F0 be the collection
of slots that are not booked by any agent, i.e., � D [j 2M fj [ F0. The owner of the
factory would like to maximize his own benefit, i.e.,

v.�/ D
X

k2F0

qk C
jM jX

j D1

v.j /; (12.25)

which is referred to as the global value of schedule � , and is determined by the
choices Fj of agents fj j j 2 M g. With this in mind, the owner of the factory tries
to find a mechanism which satisfies the following conditions:

� Self-interested agents can make effective decisions based on local private infor-
mation, without knowing the private information and strategies of other agents.

� The method requires minimal communication overhead.
� The method reaches closure in reasonable time at reasonable computational

expense.
� Solutions do not waste resources. If there is some way to make some agents

better off without harming others, it should be done. A solution that cannot be
improved in this way is called Pareto optimal.

To demonstrate the importance of optimal prices on achieving the globally op-
timal solution (the factory owner’s optimal solution), we provide the following
definition.

Definition 12.4 (Price Equilibrium). A solution � is an equilibrium at prices p if
and only if

(1) For all agents j 2 M , vj .Fj / �P
k2Fj

pk D Hj . p/;
(2) For all production slots k 2 � , pk � qk;
(3) For all unbooked production slots k 2 F0, pk D qk .

Then we state the following theorem:

Theorem 12.1. For the decentralized scheduling problem, if there exists a p such
that � is in equilibrium, then � is a globally optimum solution.

However, it is possible that no equilibrium prices exist. In fact Wellman et al. (2001)
show that, one can easily construct such an instance if any job duration requires
more than one production slot. On the other hand, they show that, when each pro-
cessing time requirement equals one production slot – a problem referred to as the
single-unit scheduling problem, then a price equilibrium always exists. Hence, one
needs to look for ways to make the agents propose prices p, that will generate a
price equilibrium schedule for the single-unit scheduling problem.

The authors propose ascending auctions to find equilibrium prices for the single-
unit scheduling problem. According to McAfee and McMillan (1987), an auction
is a market institution with an explicit set of rules determining resource allocation
and prices on the basis of bids from market participants. The rules for the ascending
auctions are fairly simple.
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At any point in time, the bid price in the auction for production slot k, denoted
ˇk , is the highest bid in the auction thus far. If auction has received no bids, ˇk is
undefined. Production slot k’s ask price, denoted ˛k , is ˇk C	, for some fixed 	 (the
bidding increment), if ˇk is defined. Otherwise, the ask price is qk . The ascending
auction rejects any bid less than its ask price. Agents are not allowed to withdraw
bids. An agent may replace its bid with another, but the new bid must be at least
the current ask price. These rules guarantee that prices do not decrease and that the
bidding process terminates.

Even though the ascending auction may fail to generate a global optimum for
the factory owner and equilibrium prices, these values can be approximated with
tight worst-case errors. In particular, according to Wellman et al. (2001), we have
the following two theorems for the single-unit scheduling problem.

Theorem 12.2. The final price of any production slot determined by the ascending
auction protocol will differ from the unique minimum equilibrium prices by at most

	, where 
 D minfj�j; jM jg.

Theorem 12.3. The ascending auction protocol with a given 	 produces a solution
to the single-unit scheduling problem that is suboptimal by at most 
	.1 C 
/.

The authors also suggest combinatorial auctions and generalized vickery auctions
for the multiple-unit scheduling problem, for which ascending auctions may pro-
duce solutions that are arbitrarily far from the optimal.

12.6.2 Contracts

In this section, we discuss the merits of another instrument, contracts, in achiev-
ing system-wide optimal performance in certain subcontracting situations. Cachon
(2003) notes that optimal chain performance is achievable if the firms coordinate
by contracting on a set of transfer payments such that each firm’s objective be-
comes aligned with the supply chain objective. In an excellent survey, he reviews
and extends the supply chain literature on the management of incentive conflicts
with contracts. The focus of his work and many others in the supply chain con-
tracting literature is the coordination of inventories at an aggregate level, with not
much emphasis on the timeliness of the production activities and production chain
coordination possibilities.

In what follows, we present the analysis by Aydinliyim and Vairaktarakis (2007)
who study a subcontracting model where manufacturer m cannot process all his
workload P before the customer due date, d . Therefore, he subcontracts part of
his workload x to a third-party with prior customer commitments y. These prior
commitments follow a general distribution, i.e., y 	 F.�/, and hence the available
capacity at the third-party is uncertain. The manufacturer wants to maximize his ex-
pected profits by partitioning his workload among his in-house production capacity
and the third-party (see Fig. 12.3).
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Fig. 12.3 A typical schedule
for m and 3P
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This is a commonly observed business model, where a manufacturer who is in
need of short-term extra capacity is matched with a third-party (committed to long-
term customers) which is in need of additional customers willing to pay for the
potential extra capacity at 3P . This third-party is sometimes a committed provider
of a significantly important customer (e.g., a small bumper manufacturer who has a
long-term contract with Toyota), and hence the orders coming from this important
customer is always prioritized.

In this section, we present two different contracts that illustrate the relationship
between the manufacturer who subcontracts for extra capacity and the third-party
who is already committed to other customers:

(1) Unit processing charge contracts: The third-party charges u for each unit of m’s
subcontracted workload, i.e.,

T .x; u/ D u x: (12.26)

(2) Tardiness penalty sharing contracts: In addition to the terms of the first contract,
the third-party agrees to share the tardiness penalties incurred due to the delays
on his schedule, i.e.,

T .u; x; �/ D u x � �gm .Ey ŒL3P .x/�/ ; � 2 .0; 1/ (12.27)

where gm is the unit tardiness cost that manufacturer m incurs, � is the penalty
sharing fraction, and Ey ŒL3P .x/� is the expected tardiness incurred at 3P , when
manufacturer m subcontracts x units. The third-party acts as the Stackelberg leader,
decides on the contract type and the contract parameters, and then offers the contract
to the manufacturer as a take-it-or-leave-it deal. If the manufacturer takes the offer,
he responds by subcontracting part of his workload to the manufacturer.

Aydinliyim and Vairaktarakis (2007) show that this production chain cannot
be coordinated under the first contract unless the third-party accepts to merely
break even, i.e., the manufacturer subcontracts x� units which is the amount that
maximizes the total chain profit only when u D c3P where c3P is the unit production
cost at the third-party. On the other hand, under the second contract, coordination is
possible if the unit processing fee and the tardiness sharing fraction are determined
jointly, i.e., the manufacturer subcontracts x� units when

u D c3P C � .gm � cm/;

where gm � cm is the manufacturer’s opportunity cost of not subcontracting a unit
when it is certain that it will incur tardiness. In this case, the coordinating contract
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Pareto dominates noncoordinating contracts, as it allocates the additional chain prof-
its arbitrarily between the manufacturer and the third-party. Moreover, under the
coordinating contract, the tardiness sharing fraction coincides with the third-party’s
share of the additional profits generated by the coordinated chain. So, the coordi-
nating contract can easily be administered for managerial interpretation. However,
the issue of trutfully revealing the cost parameters, and the question of whether the
parties can exactly negotiate the coordinating .u; �/ pair still remain. The authors
show that even when there is coordination failure, the Nash equilibrium strategies
under the second contract achieve a smaller optimality gap (difference between the
optimal chain profit and the total profit at the decentralized equilibrium) than what
the parties would incur under the unit processing charge contract. In supply chain
contracting literature this is equivalent to stating that the tardiness penalty sharing
contracts achieve higher efficiency than the unit processing charge contracts.

12.7 Future Research Directions

To the best of our knowledge, this is a new line of research which combines
scheduling theory with game theory to model outsourcing and subcontracting oper-
ations and investigate coordination opportunities at the production scheduling level.
Various extensions of the models described in this chapter are attracting research op-
portunities including multiple-resource models with many other practical objective
functions and industry-specific restrictions. Also note that, with the recent advances
in information technologies, information sharing capabilities of supply chain mem-
bers have improved substantially. Hence, many coordination problems that had been
studied in supply chain management literature can be revisited to investigate co-
ordination benefits at the detailed scheduling level. In what follows, we provide
some possible directions extending the cooperative and noncooperative game the-
ory models, and the mechanism and contract design problems that are surveyed in
this chapter.

12.7.1 Cooperative Games and Cost Allocation Models

Sequencing games and cooperative outsourcing models assume that the initial book-
ing of the common resource is often times done in a FCFS manner. However,
strategic behavior that takes the resequencing stage into account may yield inter-
esting insights. Another important extension is the consideration of nontransferable
utility. Although side payments are common in practice, current models assume that
one dollar lost in booking costs can be compensated by one dollar worth of improve-
ments in the delivery time, which is an important drawback. With more emphasis on
multicriteria optimization, where sensitivity of agents to monetary costs are differ-
ent than their sensitivity to delivery time performance, one can find Pareto optimal
schedules which explains the trade-offs in a more meaningful way.
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Another important assumption that should be tackled is full information sharing
among players. Bayesian models with asymmetric information, investigating the
benefits of sharing information, and the mechanisms that induce truth-telling by
players are all fruitful directions.

Most manufacturing systems are more complex than the single common resource
models which were almost always common in all cooperative outsourcing models
we surveyed in this chapter. Parallel resource environments, flow-shop, and job-shop
settings should receive more attention in future studies.

Finally, cost sharing is of crucial importance in large and complex projects where
many different contractors are responsible for different group of tasks. In such mod-
els, those that finish their tasks earlier can move their resources to other tasks in
return for some side payments, which can create win-win situations in improv-
ing project completions times and in reducing overall project costs by minimizing
penalties.

12.7.2 Competitive Models of Outsourcing and Subcontracting

Although aggregate capacity allocation issues in supply chains have been studied
extensively, existing research for time-sensitive common-resource capacity alloca-
tion problems is limited. The growing trend of contract manufacturing and the recent
problems of Boeing with its contractors for its 787 Dreamliner project proved that
there is still a lot to be investigated.

Possible directions include but are not limited to the study of dynamic mod-
els of competition for third-party capacity, which is a promising research direction
considering the growing number of online capacity booking systems. This level of
end-to-end visibility requires revising the production and subcontracting decisions
frequently.

Coordinated production, subcontracting, and pricing decisions in case of time-
sensitive competition is a fruitful topic as well. With the recent increases in fuel
prices and high storage costs, coordinating the production and distribution decisions
to reduce finished goods inventory and not to fall behind the delivery schedules at
the least possible cost are more important than ever. Moreover, there are many other
issues such as the subcontracting costs or the technological advantages at the third-
party that should be incorporated in the subcontracting models that we discussed in
Sect. 12.6.2.

Finally, two-staged models that include decisions involving the creation of ca-
pacity and related investments, followed by the production and subcontracting
decisions after the realization of demand have recently begun to gauge inter-
est from researchers. Although, a limited number of studies exist that investigate
single-manufacturer, single-subcontractor models, the issue of competition for the
subcontractor capacity in a time-sensitive manner is a research opportunity that is
yet to be exploited.
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12.7.3 Contract and Mechanism Design

The subcontracting model with uncertain third-party capacity can be extended in
many directions, which include the analysis of the multiple manufacturers’ case
where one can expect competition for earlier capacity at the third-party. Conflicting
interests of the manufacturer and the third-party will create a capacity allocation
subproblem. We believe that the issue of competition with contract design will re-
veal interesting and nonintuitive insights which might help primary contractors to
make more efficient time-sensitive subcontracting decisions. Similarly, the case with
multiple third-parties is also worth considering as it leads to more subcontracting
choices for the manufacturer. One can revisit the supplier selection problem in the
context of a third-party selection problem with more emphasis on the contractors’
timely delivery capabilities. From the third-party’s point of view, one can study the
due-date quotation problem which is a promising direction at the interface of mar-
keting and operations. To capture the effect of more complex penalty structures, one
can study multiple due date contracts with incremental penalties. Finally, one can
investigate the change in the third-party’s scheduling decisions when performance-
based bonus schemes are included in contract terms.

Regarding the issue of designing auctions and pricing mechanisms that rely on
equilibrium concepts, there are significant research opportunities as well. In case the
manufacturers bid for multiple units of production capacity at the third-party, the
combinatorial auctions have to be considered, for which the winner determination
or the optimal bidding problems are computationally intractable. Therefore, devel-
oping heuristic algorithms which utilize simple and practical auction mechanisms
to approximate price equilibrium schedules provide decent research opportunities.
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Chapter 13
Inventory Management: Information,
Coordination, and Rationality

Özalp Özer

13.1 Introduction

Inventory control problems have attracted researchers for many years1. Funda-
mentally, the problem is one of matching supply and demand by efficiently
coordinating the production and the distribution of goods. Recent developments
in information technology have equipped managers with the means to obtain better
and timely information regarding, for example, demand, lead times, available as-
sets, and capacity. Technology has also enabled customers to obtain vast amounts
of information about a product, such as its physical attributes and availability. In
today’s increasingly competitive marketplace, consumers are constantly pressuring
suppliers to simultaneously reduce costs and lead times and increase the quality of
their products. Good inventory management is no longer a competitive advantage.
It is an essential capability to survive in a global market.

An important aspect of good inventory management is effective use of informa-
tion. Knowing how to use information effectively also enables a manager to decide
what data to collect, buy, and store, and what information technology to invest in.
Note that information has no value, if it is not used effectively. For example, an
inventory manager can obtain order progress information through the use of a track-
ing technology. If this information is not used to improve replenishment decisions,
then neither the information nor the technology used to obtain it has any value. In
this chapter, we provide some examples of how information is incorporated into
classical inventory management problems.

The second important aspect of good inventory management is to quantify the
value of information. A manager may need to invest in a technology that collects and
stores information relevant for effective inventory management. The cost of obtain-
ing information is often not difficult to analyze. Quantifying the benefits, however,

1Throughout the chapter, we use the terms inventory/production,control,replenishment/production,
and order/produce interchangeably.
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requires thorough analysis and modeling. Consider, for example, the recent tracking
technology known as radio frequency identification (RFID). Quantifying the cost of
RFID implementation is relatively straightforward. But the benefit of this technol-
ogy for the management of inventory is not clear. Comparing inventory models with
and without the information obtained through RFID enables an inventory manager
to quantify the value of RFID. In this chapter, we provide modeling examples that
illustrate how an inventory manager can quantify the value of information.

The third important aspect of good inventory management is to coordinate de-
centralized operations. The coordination of information and inventory management
has become increasingly more difficult with recent increases in supply chain com-
plexity. Such complexities are the result of dramatic changes in manufacturing and
distribution, including globalization and outsourcing. As a result, independent firms
manage inventory allocated across different parts of the global supply chains. Each
firm in the supply chain individually and myopically sets strategic and operational
goals to minimize inventory- and production-related costs. Firms also maximize
profits by using local information such as local cost structures, profit margins, and
forecasts. As a result, the supply chain is suboptimized and not synchronized.

We have observed in the past that inability to optimize and synchronize these
very complex inventory management issues can lead to catastrophic supply chain
failures that make top business news. In 2001, Solectron, a major electronics man-
ufacturer, had $4.7 billion in excess component capacity due to inflated forecasts
provided by its customers. For exactly the same reason, Cisco, a major telecommu-
nication equipment manufacturer, held $2.1 billion in excess inventory during the
same year. Anticipating such inflation, manufacturers may discount the forecast in-
formation. Unfortunately, this caution, e.g., second guessing the forecast, may also
lead to huge losses. In 1997, Boeing’s suppliers were unable to fulfill Boeing’s large
orders because they did not believe in Boeing’s forecasts. In this chapter, we provide
examples of research that show such catastrophic outcomes are due to misaligned
incentives and lack of coordination. These research works consider the interaction
among multiple inventory managers and illustrate how these managers can align in-
centives through structured agreements and avoid (or mitigate) the adverse effects
of lack of coordination.

Finally, good inventory management requires decision tools that can be embraced
by their users. The formulations and the methodologies developed in multiechelon
production and distribution systems are often very difficult to explain to nonmathe-
matically oriented students and practitioners. In addition, data fed to these tools are
not always accurate. Systems and people are bounded by limited information. In this
chapter, we provide a discussion of some efforts to efficiently control multiperiod,
multiproduct supply chains by developing easy-to-describe, near-optimal, and ro-
bust heuristics that can be implemented on a spreadsheet by solving, for example,
newsvendor type problems.

To summarize, the chapter aims to provide a discussion of various topics and
concepts from the centralized and decentralized inventory management literature.
The emphasis will be on the use of information, and the role of new informa-
tion technologies in inventory management. We provide examples of some ongoing
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research work. Our focus is on the modeling aspect rather than the detailed analysis.
We do not state all the assumptions, the results nor the proofs. We deliberately triv-
ialize and simplify the models so as to make the discussions easier to follow. We
aim to bring together separate but inherently related research in inventory literature.
By doing so, we hope to highlight potential research opportunities that lie on the
boundaries. We focus primarily on the author’s previous work. The chapter does not
aim to provide a review of the rich volume of publications. For that purpose, where
possible, we refer the reader to comprehensive reviews.

The rest of the chapter is organized as follows. In Sect. 13.2, we provide some
examples of how managers can use information to better control inventory. In
Sect. 13.3, we consider the interaction between multiple inventory control managers
and the economics of contracting. In Sect. 13.4, we provide a discussion on large-
scale inventory systems and rationality. In Sect. 13.5, we provide some concluding
thoughts and possible future research directions.

13.2 Information in Centralized Inventory Management

We first discuss the use of information in centralized inventory management sys-
tems. An inventory management system is centralized when the system has access
to credible information collected in a central location and managed by a single deci-
sion maker. Such a system is ideal; it does not have to coordinate disparate decisions
and information. The manager needs to incorporate available information into the
inventory control problem, identify the best replenishment policy and manage the
system accordingly.

There are at least four reasons for studying centralized inventory systems. First,
the results provide a benchmark against which decentralized inventory systems are
measured. Second, the results enable us to quantify and understand the role and
value of information in inventory management. Third, small-scale inventory systems
are often centralized and are common in practice. Hence, it is necessary to know how
to manage these systems. Industry has also learned the importance of centralized
decision making such as the vendor managed inventory (VMI) initiatives. Fourth,
the results also provide building blocks for large-scale systems with decentralized
operations.

To effectively manage inventory, a manager must have access to three funda-
mental sets of information (1) information about demand such as forecasts; (2)
information about assets such as the inventory available for sales, on order and
where they are located; and (3) information about replenishment lead times. In
Sect.13.2.1–13.2.4, we discuss single-location inventory control problems, which
are the minimal building blocks for multilocation centralized inventory systems. We
illustrate how the three fundamental sets of information are incorporated to develop
effective production and inventory policies. We also show how managers can quan-
tify the value of information by means of numerical computations. In Sect.13.2.5,
we provide a discussion on how these single-location inventory control models are
used to study multilocation inventory systems.
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13.2.1 Current Demand Information

We refer to demand information as current when the information is based on current
data such as point of sales information and when it does not provide future informa-
tion such as a promotion scheduled for next period, or advance order information.
Here, we briefly review the classical single-location inventory literature as a bridge
to more recent work that incorporates the dynamic nature of demand information,
such as forecast updates.

Early inventory models addressed the problem of minimizing ordering, holding,
and backlogging costs for a single product at a single location over either a finite or
an infinite horizon. Demand uncertainty is modeled as independent and identically
distributed over time, i.e., demand Dt at each period t is an iid random variable.
This modeling assumption uses current demand information. Historical data, such
as, forecast errors can be used to estimate demand distribution for each period. Here,
we will not provide a discussion on such estimation procedures.

In particular, the sequence of events for such a system is as follows. At the be-
ginning of each period t , the manager reviews on-hand inventory It , any backorders
Bt , and the pipeline inventory. The manager decides whether to produce zt � 0.
She incurs a nonstationary production cost of Ktı.zt/ C ct .zt /, where ı.z/ D 1 if
z > 0, Kt is the fixed production cost, and ct is the variable production cost. The
production initiated at period t � L is added to the inventory, i.e., L periods are re-
quired to complete the production. Demand Dt is observed. The demand for period
t is satisfied through on-hand inventory; otherwise it is backordered. The manager
incurs holding and penalty costs based on end-of-period net inventory.

Completing production takes L periods; hence, the manager needs to protect
the system against uncertain demand during the production lead time, i.e., DL

t DPtCL
sDt Ds . We let

xt W inventory position before the production decision is made

D It C
t�1X

sDt�L

zs � Bt ;

yt W inventory position after the production decision is made

D xt C zt :

The expected holding and penalty costs charged to period t are given by QGt .yt / D
˛LEgtCL.yt � DL

t /, where ˛ is the discount factor and gt .x/ is the single period
holding and penalty cost based on inventory on hand at the end of period t . The ex-
pectation is with respect to the lead time demand DL

t . It is assumed that gt is convex
and coercive for all t .2 These properties are satisfied, for example, when a positive
holding cost is charged per unit of inventory on hand and a positive penalty cost is

2 A function gWR ! R is coercive if limjxj!1 g.x/ D 1.
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charged per unit of backlog. The solution to the following dynamic programming
recursion minimizes the cost of managing this single item, single-location system
for a finite horizon problem with T � t periods remaining until termination.

Jt .xt / D min
yt �xt

fKtı.yt � xt / C Gt .yt / C ˛EJtC1.yt � Dt /g;

where JT C1.�/ � 0 and Gt .yt / D .ct � ˛ctC1/yt C QGt .yt /.3

Scarf (1959) characterizes the optimality of an .s; S/ policy. Under this policy,
the manager orders up to St whenever the inventory position xt falls below a crit-
ical level st . Veinott (1966) proves the optimality of .s; S/ policies under different
conditions. Infinite horizon results are due to Iglehart (1963). When the fixed cost
of ordering is negligible, i.e., K D 0, an optimal policy is the base-stock policy
with base-stock level St . Karlin (1960) and Veinott (1965) generalize the problem
to account for seasonal variations in demand and nonstationary data and prove the
optimality of period-dependent base-stock policy. We refer the reader to Porteus
(1990a) for a review of classical inventory models4.

Such policy parameters can often be obtained by a backward induction algo-
rithm. A remarkable result that significantly reduces the computational burden is
the optimality of a myopic policy that minimizes the current period inventory cost.
Karlin (1960) and Veinott (1965) show that a myopic policy is optimal when the
problem is stationary5; demand is stochastically increasing over time; or the myopic
base-stock levels are increasing6. Morton and Pentico (1995) provide numerical ev-
idence of how a myopic policy performs under various nonstationary environments.
They also propose close-to-optimal, near-myopic policies. Iida (2001) also shows
that myopic policies are effective when data change “slowly”.

Noticing that historical demand information might be used to understand uncer-
tain customer demand, several authors incorporated demand history into inventory
control problems. Three groups of work capture this idea. The first group uses
Bayesian models. Under these models, Bayes’ rule defines a procedure to update
the distribution of demand as new information becomes available. To the best of our
knowledge, Dvoretzky et al. (1952) were the first to use this approach. Scarf (1960),

3 It is often assumed that leftover inventory at the end of the planning horizon T is salvaged for
cT C1 per item. Veinott (1965) shows that the inventory control problem with linear salvage value
can be converted into an equivalent problem with zero salvage. Here we report the result of this
conversion.
4 Notice that the manager controls replenishment decisions to minimize inventory-related costs
given an exogenous demand process. In certain cases, the manager may be able to adjust prices
to shape demand at each period. This requires an inventory manager to have control over both
replenishment and pricing decisions. For more discussion on this topic, we refer the reader to the
reviews by Bitran and Caldentey (2003), Elmaghraby and Keskinocak (2003) and to a more recent
paper by Huh et al. (2008).
5 An inventory problem is said to be stationary if the cost and demand distributions are time
invariant.
6 We use the terms increasing and decreasing in the weak sense. Increasing means nondecreasing.
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Azoury and Miller (1984), and Azoury 1985 extended this approach. The second
group, Johnson and Thompson (1975), Miller (1989), and Lovejoy (1990), real-
ized that the demand over consecutive periods might be correlated and used time
series models to subsume demand dynamics. The third group incorporates Markov-
modulated demand to the above inventory control problem (see, for example, Song
and Zipkin 1993, Beyer and Sethi 1997, Abhyankar and Graves 2001 and Atali and
Özer 2005).

13.2.2 Advance Demand Information

Most businesses rely heavily on demand forecasts for production and inventory
planning. Demand over time can be highly correlated. Forecasting methods can help
identify such patterns. A group of scholars have incorporated the dynamic nature of
forecast revisions into inventory control problems. Papers in this group include those
of Hausman (1969), Graves et al. (1986), Heath and Jackson (1994), Güllü (1996),
and Toktay and Wein (2001). All of these works show that incorporating demand
updates to control problems reduces the cost of managing inventories by proposing
control methods that are responsive to forecast information.

Recent advances in information technology have enabled managers to be more
proactive and obtain advance demand information in addition to improving demand
forecast. Different customers have varying willingness to wait for the orders they
placed. A good example of this concept is Dell’s online Intelligent Fulfillment ini-
tiative, which allows four different levels of response time to customer orders: (1)
standard (conventional or 5 day promised order lead time); (2) value delivery (slower
but lower shipping cost); (3) premium delivery (same day delivery); and (4) preci-
sion delivery (specific date). A portfolio of online customers with differing response
time preferences gives rise to advance demand information (ADI). Comparing in-
ventory models with and without ADI, a manager can quantify the value of demand
information contained in ADI (Özer 2003).

Several plausible strategies can be used to obtain advance demand information.
When people order a customized product, they expect to wait for the product to
be customized to their request. This can be called a built-in ADI. Alternatively, a
discount could be offered for early orders to segment the customer based on their
willingness to wait. If pricing is not an option, special service incentives could be
offered for early orders. For example, a major truck manufacturer in North America
provides free maintenance (up to 10 years) for third party logistic providers (such
as UPS) who purchase trucks a few years in advance of using them. Essentially, we
are seeking those customers who have a high sensitivity to customization, price or
service, and who also have a lower sensitivity to lead time or waiting time. These
are denoted by “A” in Fig. 13.1. They are the possible source of ADI.

Designing effective strategies to collect this information requires one to quantify
the benefit of ADI. To do so, Gallego and Özer (2001a), Özer (2003), and Özer
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Fig. 13.1 Source of ADI

s-N tt-1... ... s s+1

Ds-N,s + ... + Dt-1,s
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observed part:

unobserved part

Fig. 13.2 Observed and unobserved part of the demand

and Wei (2004) show how to use this information optimally. In particular, they
incorporate advance demand information into periodic-review inventory control
problems.

ADI is obtained when a customer places an order in any period t for delivery
in a future period s 2 ft C 1; : : : ; t C N g. From the perspective of the production
manager, the demand stream during period t is a vector:

Dt D .Dt;t ; : : : ; Dt;tCN /;

where Dt;s represents the nonnegative demand for period s placed during period t

and N is the length of the information horizon. Note that when N D 0, the problem
reduces to the inventory problem with current demand information. This is a random
vector and its uncertainty is resolved at the end of period t . Under this demand
model, at the beginning of each period t , demand for a future period s > t can
be decomposed into two parts as illustrated in Fig. 13.2: the observed part Ot;s �Pt�1

rDs�N Dr;s and the unobserved part Ut;s � Ps
rDt Dr;s .

The sequence of events is similar to the one described in the previous section.
Completing production takes L periods; hence, the manager should protect the sys-
tem against the lead time demand. Because of advance demand information, the
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manager knows part of the lead time demand, that is,
PtCL

sDt Ot;s : The expected cost
charged to period t is based on the net inventory at the end of period t C L. Let

xa
t W modified inventory position before the production decision is made

D xt �
tCLX

sDt

Ot;s;

ya
t W modified inventory position after the production decision is made

D xa
t C zt :

Notice that these variables subtract the observed part of the lead time demand, hence
the name modified. In addition to xa

t , the manager also keeps track of observations
beyond the lead time, Ot D .Ot;tCLC1; : : : ; Ot;tCN �1/. At the end of the period t ,
we update the state space by

xa
tC1 D ya

t � Dt;t �
tCLC1X

sDtC1

Dt;s � Ot;tCLC1; (13.1)

OtC1;s D Ot;s C Dt;s : (13.2)

The expected holding and penalty cost charged to period t is given by QGt .yt / D
˛LEgtCL.yt � PtCL

sDt Ut;s/. The solution to the following dynamic programming
recursion minimizes the cost of managing this system for a finite horizon problem
with T � t periods remaining to the termination.

Jt .xt ; Ot / D min
yt �xt

fKtı.yt � xt / C Gt .yt / C ˛EJtC1.xtC1; OtC1/g; (13.3)

where JT C1.�; �/ � 0 and Gj .yj / D .cj � ˛cj C1/yj C QGj .yj /.
Gallego and Özer (2001b) characterize the optimality of (1) a state-dependent

.s; S/ policy for an inventory system with positive fixed (set-up) costs and (2) a
state-dependent base stock policy for an inventory system without set-up costs both
for finite and infinite horizon problems. The policy parameters depend on customer
commitments made beyond the production leadtime. For example, if the production
lead time is four periods, optimal policy parameters depend on the total customer
commitments made today for delivery after four periods. Under this policy, the man-
ager produces up to S whenever the modified inventory position xa

t drops to or
below s. Gallego and Özer provide monotonicity results and characterize conditions
when myopic policies are optimal. They also determine conditions under which ADI
has no operational value. Through numerical studies and by comparing models with
and without ADI, the authors quantify the benefit of inducing and obtaining ADI.

We note that incorporating advance demand information not only yields better
practices through reducing inventories, but also enables companies to have control
policies that are more responsive to changes in demand patterns. This informa-
tion allows a shift from make-to-stock to make-to-order production. There is a
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growing body of research that shows how ADI can be used to improve costs in
a capacity constrained system, continous review problems, or multiechelon struc-
tures (Hariharan and Zipkin 1995; Schwarz et al. 1998; Gallego and Özer 2002;
Karaesmen et al. 2002; Özer 2003; Zhu and Thonemann 2004; Özer and Wei 2004;
Hu et al. 2004; Benjaafar et al. 2005; Marklund 2006; Wang and Toktay 2008;
Gayon et al. 2009). These models can be used to quantify the value of advance
demand information in various settings. Being able to quantify its value, an inven-
tory manager can decide how to optimally acquire advance demand information
through pricing and advance sales and how to use this information in, for example,
capacity decisions (Boyaci and Özer 2004). Such research also bridges the revenue
management literature with the capacity management literature.

ADI and capacity management: We discuss how the results from the ADI litera-
ture were used to quantify the value of capacity and advance demand information
for a global telecommunications equipment manufacturer. During the last quarter
of 2002, this equipment manufacturer explored the strategy of advance selling to
improve long-range forecasting for planning the capacity of a new factory. Ac-
cordingly, before securing the capacity the firm considered preselling wireless base
stations to its regional cellular phone operators.

The traditional view of capacity planning is that capacity is fixed, and lead times
will vary to compensate for surges and gaps in orders. A different viewpoint is that
one can fix and guarantee a lead time; this requires the ability to flex capacity as
needed. Fig. 13.3 summarizes these two approaches. Suppose we had several types
of customers as in Fig. 13.4, where each class had different lead-time requirements.
Then we could guarantee lead times by customer segment, and implement this
through careful scheduling of the facility. This strategy enables the firm to obtain
advance demand information which can be used for better inventory and capacity
planning.

The next issue is the management of the production system given the available
capacity Q and the advance demand information. In order to minimize the cost of

Fig. 13.3 Resource planning: always having capacity
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Fig. 13.4 Resource planning: fixed capacity with advance demand information

managing this production system, the manager maintains a safety stock. Recall that
the manager would also like to satisfy some customers who have short lead times
(even shorter than the production lead time) in addition to those who book well in
advance. Hence one needs to maintain a safety stock. But what is the optimal level
of inventory? More inventory means more money tied up, while less inventory may
result in loss of customers and loss of goodwill. The solution to a dynamic program
similar to the one in (13.3) (but significantly more difficult to analyze) provides the
best level of safety stock that minimizes the cost of underage and overage for a given
planning horizon (see Özer and Wei 2004 for details).

Through an extensive numerical studies one can quantify the benefits gained
through ADI for a capacity constrained system. In Fig. 13.5 we provide one such
example. The x-axis shows the available capacity for production. The y-axis shows
the total inventory management cost (which is rescaled so that the cost of managing
a system with infinite capacity and 100% ADI is zero). The three curves illustrate
different levels of ADI. Curve A is the base case where all customers demand the
product as soon as they place an order, whereas curve C has some customers who
place their orders well in advance, and curve B is in between.

We observe from each of these curves that additional capacity has diminishing
returns. This suggests that there is an optimal level of capacity beyond which in-
creasing capacity has limited operational value in managing this system. We also
observe the reduction in the inventory management cost as a function of ADI and
capacity. The vertical difference between these curves (for example between curves
A and C) depicts the reduction in inventory costs due to employing advance demand
information. Note that this reduction is more valuable when the firm is working un-
der tight capacity.

Consider a capacity expansion (contraction) problem with capacity increment
�Q. The expansion cost C.�Q/ may take several forms, such as linear, power
or step cost function (Luss 1982). If capacity expansion is a one time decision,
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Fig. 13.5 ADI versus capacity

Fig. 13.6 Optimal capacity size

then the manufacturer’s problem is to solve min�QfC.�Q/ C Jt .x; OjQ C �Q/g.
Figure 13.6 provides an example of this problem, when C.�Q/ D 100 � �Q under
two advance demand information scenarios. For this particular example, convinc-
ing customers to place orders in advance reduces the optimal capacity expansion
decision from Q� D 7 to 5 units. This is another example illustrating how advance
demand information can be a substitute for capacity (Özer and Wei 2004).
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13.2.3 Imperfect Asset Information

To effectively manage inventory, a manager must also have access to information
about assets, such as, the inventory available for sales, on order and where they are
located. Recent surveys and empirical work have shown that unaccounted inventory
due to, for example, theft or misplacement, can lead to a significant discrepancy
between inventory records and actual inventory (as documented by empirical studies
such as Rinehart 1960; Raman et al. 2001; ECR Europe 2003). As a result, stock-
outs are widespread at retailers and distributors (Alexander et al. 2002).

Since the early 1980s, the availability of cheaper and faster computation enabled
companies to automate their inventory management processes and to use inven-
tory management softwares. Automatic replenishment systems track the number of
products in stock and place replenishment orders based on the control policies set
by the underlying software. A crucial assumption used by these inventory manage-
ment systems is that inventory record and actual on-hand inventory are identical.
Similarly, the standard inventory control literature has never differentiated between
inventory record and actual inventory. The two have always been considered to be
the same. In the previous sections, we assumed that the manager knows the exact
value of, for example, the inventory position. The implicit assumption was that all
demand sources are visible. Next we provide modeling examples through which
we aim to illustrate the impact of inaccuracies and asset information on effective
inventory management.

Early modeling approach for inventory control under imperfect asset information
is due to Iglehart and Morey (1972). They study the impact of transaction errors
only and do not consider misplacement or shrinkage. They also decompose the error
management problem from inventory management. In particular, they establish the
approximate buffer stock required to hedge against transaction errors independent
of the buffer stock necessary to hedge against paying customer demand. Kang and
Gershwin (2005) consider discrepancy due to shrinkage and its impact on inventory
management through a simulation study. We refer the reader to Lee and Özer (2007)
for a detailed discussion of inaccuracy problems. Through model-based analysis, the
authors quantify the benefit of a tracking technology known as RFID in supply chain
management.

In a recent paper, Atali et al. (2004, 2006) characterize three different kinds of
demand streams that result in inventory discrepancy. Some demand streams result in
permanent inventory shrinkage (such as theft and damage). They refer to this stream
as shrinkage. Some demand streams are temporary and can be recovered by physical
inventory audit and returned to inventory (such as misplacement). They refer to this
demand stream as misplacement. The final type of demand stream (such as scanning
error) affects only the inventory record and leaves actual inventory unchanged. They
refer to this stream as transaction errors. It is necessary to characterize these sources
separately because each of these sources affects the system in a unique way. For
example, misplaced items can be returned back to inventory after an inventory audit,
whereas stolen items cannot.
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Fig. 13.7 Inventory management cases under imperfect asset information

There are four ways to manage an inventory system that faces an inventory dis-
crepancy problem, summarized in Fig. 13.7 (Atali et al. 2004, 2006). The first way
is to ignore the discrepancy problem and use only the point of sales data information
to drive the replenishment process. The second way is to use the statistics about
unobservable demand sources in driving the replenishment process, for example,
by carrying additional buffer stock to hedge against transaction errors. The third
way is to invest in a technology such as RFID that enables complete visibility of
inventory movement and use the actual information (instead of the statistics) to
drive the replenishment process. The fourth way is to go one step further and use
the visibility to prevent or reduce unobservable demand sources, for example, by
locating and reshelving misplaced items as soon as a customer misplaces the item.

Here we discuss the formulation of the third case (RFID I case in Fig. 13.7) and
refer the reader to Atali et al. (2004, 2006) for a detailed treatment of the other cases.
The sequence of events for this case is as follows. At the beginning of period t , the
inventory manager reviews the state of the system and decides to order zt � 0 units
from an outside supplier with ample supply. The replenishment lead time is assumed
to be zero. The cost of ordering is ct per unit. There is no fixed cost for placing an
order. Purchasing customer D

p
t , misplacement Dm

t , shrinkage Ds
t , transaction er-

rors D�
t arrive in any sequence. Note that the realizations of these error sources are

observed because we are considering the third way to manage the inventory system.
At the end of the period, the manager incurs a linear holding cost ht and a linear
lost-sales cost pt based on the end of period physical on-hand inventory. Holding
cost is incurred for the misplaced items even though they are not available for sales.
No lost-sales cost is incurred for unmet demand from nonpaying customers. If the
period is a counting (audit) period, an inventory audit is conducted at the end of
that period. The inventory record is reconciled: error is corrected, and all misplaced
items are returned to inventory. Otherwise, errors continue to accumulate. The plan-
ning horizon is a multiple of counting cycle length, that is, T 2 fN; 2N; 3N; : : :g. At
the end of the planning horizon T , the inventory left over is sold for a linear salvage
value of cT C1.

At the beginning of period t , the manager knows the inventory record xr
t , the

accumulated error terms es
t ; em

t ; e�
t and the number of periods elapsed since the
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last inventory count, it . The state space of such as system can be summarized by
.xt ; em

t ; it /, where

xt D xr
t � em

t � es
t � e�

t

is the sales-available on-hand inventory, and it 2 f0; 1; : : : ; N �1g. The state of the
system evolves according to the following equations.

xtC1 D
�

Œyt � Dt �
C; if it 6D N � 1

Œyt � Dt �
C C em

t C mt ; if it D N � 1
(13.4)

em
tC1 D

�
em

t C mt ; if it 6D N � 1

0; if it D N � 1
(13.5)

itC1 D .it C 1/ mod N; (13.6)

where yt D xt Czt and Dt D D
p
t CDs

t CDm
t and mt is the realized misplacement.

The single period expected holding and penalty cost charged to period t is based on
sales-available on-hand inventory and the accumulated misplacement.

QGt .yt ; em
t / D ht EDt ;mt

.Œyt � Dt �
C C em

t C mt / C pt ED
p
t ;at

.D
p
t � at /: (13.7)

Transaction errors are random observation disturbances and they have no direct im-
pact on the sales-available on-hand inventory xt .

With perfect visibility, the manager optimizes the stock levels in full awareness of
the inventory errors that take place during period t . Let J v

t be the cost of managing
this system for a finite horizon with T � t periods remaining to the end of the
planning horizon. The optimal replenishment policy would be to select the value of
yt that minimizes the following dynamic programming algorithm.

J v
t .xt ; em

t ; it / D min
yt �xt

fGt .yt ; em
t / C ˛EJ v

tC1.xtC1; em
tC1; itC1/g; (13.8)

where J v
T C1.xT C1; : : : ; :/ D 0 and Gt .yt ; em

t / D ct yt �˛ctC1ExtC1C QGt .yt ; em
t /.

The leftovers at the end of the planning horizon T C1 are salvaged for a linear price.
To calculate the aforementioned expectations in the dynamic programming al-

gorithm, one needs to obtain the distribution of sales at and misplacement mt

during any period t . However, the realization of these variables and their distri-
bution depend on the sales-available on-hand inventory xt and the order in which
misplacement, shrinkage, and paying customer demands arrive.

Consider a modified model in which the paying customer demand always arrives
first, demand for shrinkage arrives next and demand for misplacement arrives last.
With this sequence, sales during any period are maximized while misplacement is
minimized. The transaction error can arrive in any where in the sequence because
it does not affect the physical inventory. Given this sequence, the sales and the mis-
placement during period t are
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at D minfDp
t ; yt g; (13.9)

mt D minfDm
t ; Œyt � D

p
t � Ds

t �Cg: (13.10)

The state of the system evolves according to (13.4–13.6), but with mt replaced by
its new definition above. Similarly, the single-period cost function is the same as
in (13.7) but with at and mt replaced by their respective definitions. Using similar
demand prioritization ideas, one can construct bounds and effective solutions for
the above dynamic programming problem. They enable effective inventory control
methods when the manager uses RFID or a similar technology that provides com-
plete visibility of inventory movement in the store.

Atali et al. (2004) characterize efficient replenishment policies for all four cases
in Fig. 13.7. Using these models and comparing the resulting cost of each scenario,
they quantify the true value of visibility provided by RFID. Consider, for example,
the value of visibility. When the system does not use a technology such as RFID, the
manager can use; either the informed policy that corresponds to the smart case, or an
ignorant policy that corresponds to the base case in Fig. 13.7. Recall that in the base
case the replenishment policy is obtained without consideration of the discrepancy
problem, whereas informed policy uses some statistics about discrepancy. The true
value of visibility is given by the cost difference between the informed policy and
the policy that uses visibility, i.e., RFID I or II.

Figure 13.8 compares the resulting cost for a problem instance as a function
of total error with respect to paying customer demand, i.e., total average error
divided by average paying customer demand. The lowest curve is the cost of fol-
lowing an effective replenishment policy when the manager has complete visibility
of inventory and follows an active control strategy. This figure illustrates that by

Fig. 13.8 Value of visibility and active control as a function of total error source
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using an informed policy to compensate for the discrepancy problem, the manager
can reduce costs significantly. The value of visibility also increases with the total
percentage errors. For a particular example, when compared with the ignorant pol-
icy (base case), the visibility enabled system reduces cost by 9:1% and increases
sales by 1:8%. However, when compared with the smart policy, the cost is reduced
by 3:1% and the sales is increased by 0:1%. For this system, assuming that vis-
ibility also enables one to reduce the shrinkage rate by 50%, the manager can
save (the difference between the visibility enabled systems with different shrink-
age rates) an additional 2:6%, and increase sales by 0:1%, both of which can be
interpreted as the value of prevention due to visibility brought by a technology such
as RFID.

Recently, Atali et al. (2006) model demand streams using a random disaggre-
gation model. In particular, let Dt denote the random customer demand during
period t . An arriving customer buys the product with probability �p; misplaces
the item with probability �m; or damages/steals the item with probability �s such
that �p C �m C �s D 1 for all t . Both demand modeling approaches have their
own appeal. Random disaggregation approach simplifies the previous analysis. In
particular, one does not need to construct bounds through demand prioritization.
Calibrating the model and fitting data are relatively simpler as well. However, the
previous approach allows for independent demand streams for paying and nonpay-
ing customers.

13.2.4 Lead-Time Information

Effective management of inventory also requires one to have information about re-
plenishment lead time and products’ location in the supply pipeline. Note that when
replenishment lead time is certain, i.e., when the manager knows the time required
to replenish her inventory with certainty, she can follow methods discussed in pre-
vious sections. In this case, there is really no reason to know where the product is
within the supply pipeline. However, when lead times are uncertain, information on
the location of the supply plays a critical role. Classical inventory models assume
that lead time for an order is independently drawn from a given distribution. Kaplan
(1970) and Ehrdhardt (1984) discuss two assumptions that allow optimal control
policies analogous to classical results with deterministic lead times. These assump-
tions are (1) deliveries of orders cannot cross in time and (2) the delivery lead time
is independent of the number and size of outstanding orders. Anupindi et al. (1996)
provide close-to-optimal, near-myopic heuristics to solve stochastic lead time in-
ventory control problems. Janakiraman and Roundy (2004) provide some convexity
results that enables the use of search procedures to determine optimal base-stock
levels (see Chap. 7 of Zipkin 2000 for a comprehensive review of the stochastic lead
time inventory control problems).

Song and Zipkin (1996) Song and Zipkin (1996) model the supply process as a
Markov chain. The lead time Lt for an order in period t is a Markov chain with a
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finite state space. The transition matrix is such that orders are received in the order
they were shipped (i.e., order cross over is not allowed). They assume that the in-
ventory manager has visibility of the supply process (i.e., the Markov state) at the
beginning of each period. She uses this information to revise the inventory ordering
decision. The authors show that a state-dependent replenishment policy is optimal.
Chen and Yu (2005) consider the problem in which the manager does not know the
status of the system, but knows that the lead time is generated by a Markov process.
They show that the value of lead time information is small for slow-moving items.
However, it can be as high as 40% for fast-moving items. To demonstrate this, they
numerically compare the model in which lead time is observable to that of Song and
Zipkin.

The conventional modeling approaches for stochastic lead times generally as-
sume that the statistical information essentially boils down to the mean and standard
deviation of the lead time, and the safety stock takes into consideration such statis-
tics. Recent information technologies, however, enable a manager to collect some
advanced knowledge about the lead time as the product progresses over intermedi-
ate points, known in logistics as “choke points”. Through tracking technologies and
well-connected computer networks, a manager can follow the progress of a supply
before it reaches the store. Gaukler et al. (2008) quantify the benefit of this supply
progress information. They propose and evaluate a replenishment policy that uses
order progress information for emergency ordering together with the (Q, R) policy.
In particular, the manager places a regular replenishment order of size Q when the
inventory position drops to the reorder level R. They model the sojourn time for a
regular order to move from one choke point to the next with a general nonidenti-
cal distribution and provide additional results for the exponential distribution case.
In addition, the manager also has the option to place an emergency order at a cost
premium K.l/ of size ˛Q, which arrives after a deterministic lead time l . They
characterize the optimality of a state-dependent threshold policy for releasing an
emergency order. In particular, the retailer monitors the outstanding regular orders
location in the supply system, that is, the last choke point where the regular order
was registered (of course, if a regular order is outstanding). If the inventory position
is less than a state-dependent threshold Ny, the retailer places the emergency order.
The threshold depends on where the regular order was registered last. Through a
numerical study, the authors report overall cost savings ranging from 2.8 to 5.5%
due to supply progress information. They show that the emergency ordering option
eliminate up to 99% of the cost due to backlogging a customer. See also Moinzadeh
and Schmidt (1991) and Moinzadeh and Aggarwal (1997) for the use of emergency
ordering in single- and multiechelon inventory systems.

13.2.5 Multi-location Inventory Systems

So far, we discussed the role of three fundamental sets of information (demand, as-
set, and lead time information) in effective inventory management for single-location
systems. Next, we provide a brief discussion on how these single-location inventory
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control models form the foundations for studying multi-location inventory systems.
We still focus on systems that are managed by a single decision maker. There
are three fundamental multi-location systems: locations in series, assembly, and
distribution (arborescence or divergent) systems. In a series system, each location
replenishes its inventory form its immediate predecessor. In an assembly system,
each location replenishes from its immediate predecessors, i.e., from multiple lo-
cations but each location ships its product to only a single-downstream location
(successor). In both series and assembly systems, customer demand is satisfied only
by the last location. In distribution systems, each location can order inventory only
from its immediate predecessor but can ship its inventory to multiple-downstream
locations. Below we provide some references that study these inventory systems
without providing a detailed discussion of the model and problem setup.

Clark and Scarf (1960) initiated the study of multiechelon inventory systems.
They show that a serial system can be optimally decomposed into single-location
problems and characterize the optimality of echelon base-stock policies. Hence,
one needs to know how to manage a single-location problem to effectively man-
age a serial system. Under this policy, a central inventory manager observes the
echelon inventory position of each location and places an order from the outside
supplier if the first echelon’s inventory position is below its base-stock level. The
manager also pushes inventory (as much as possible) to the downstream location j

from its immediate predecessor if location j’s echelon inventory position is less than
its echelon base-stock level. Federgruen and Zipkin (1984c), extend the results for
stationary infinite horizon problems. Chen and Zheng (1994) establish lower bounds
on the average cost and construct feasible policies that achieve these bounds. Unlike
the single-location inventory control literature, the multiechelon in series literature
lacks models that incorporate historical demand information. Chen and Song (2001)
write the first paper to study the serial system with a nonstationary demand process,
which is modulated by a finite state, exogenous Markov chain. Graves et al. 1998
provide heuristic allocation of inventories across a serial system that obtains a fore-
cast over a finite horizon. Gallego and Özer (2003) incorporate advance demand
information into multiechelon, inventory systems in series and prove the optimal-
ity of state-dependent, echelon base-stock policies for finite and infinite horizon
problems. The authors show that under certain conditions a myopic policy is opti-
mal for a finite horizon multiechelon inventory problem in series with and without
advance demand information. This result significantly reduces the computational
burden required to solve such serial systems. Muharremoglu and Tsitsiklis (2008)
prove the optimality of state-dependent base-stock policies for serial systems with
Markov-modulated demand and Markov-modulated stochastic lead times without
order crossing. These systems are also fundamental to the study of assembly and
distribution systems. For example, Rosling (1989) shows how to convert an assem-
bly system to an equivalent serial system. See also Muckstadt (1973), Van Houtum
et al. (1996).

One of the most common multiechelon structures in practice are the distri-
bution systems, which are also known as one-warehouse-multiretailer systems.
Products enter the system from an outside supplier to the warehouse, which in turn
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replenishes various retailers. Stochastic demand is satisfied as much as possible
through on hand inventory at the retailers. Clark and Scarf (1960) show that op-
timal control policies, if they exist, would be very complex for distribution systems.
Since then the research on distribution systems has shifted towards identification of
close-to-optimal heuristics and evaluation of a plausible class of policies. There are
two approaches to solve this problem: approximation by relaxation as by Federgruen
and Zipkin (1984a), Aviv and Federgruen (2001a), Özer (2003) and approximation
by restriction as by Eppen and Schrage (1981), Federgruen and Zipkin (1984b) and
Özer (2003). The first approach considers relaxing a constraint set to obtain a sim-
pler problem with lower-dimensional state space. It develops a heuristic based on
this lower bound problem to solve the original problem. The second approach re-
stricts the policy space to a class of policies and optimizes over this class under
additional assumptions. The restriction approach, unlike the relaxation approach,
does not guarantee any bound on the optimal solution. Other researchers that use
approaches that do not guarantee any bounds include Diks and de Kök (1998).
Comprehensive earlier reviews can be found by Axsäter (1993) for continuous re-
view (also known as pull) and Federgruen (1993) for periodic review (also known
as push) inventory systems.

In distribution systems, the “warehouse” may serve as the coordination center. It
may also help negotiate lower procurement prices. Eppen and Schrage (1981) illus-
trate that the warehouse also serves an important enabler for statistical economies
of scale, commonly known as risk pooling, that is, the portfolio effect of coordinat-
ing inventory decisions and holding inventory at the distribution center rather than
at the retailers. Aviv and Federgruen (2001a) incorporate a Bayesian framework
into the demand process and introduce the concept of learning effect to the bene-
fit of having a central distribution center. The ability to obtain information about
the demand during the first periods enables updating the demand process, result-
ing in improved allocation to retailers. Özer (2003) incorporates advance demand
information structure obtained from customers through each retailer. The author
establishes a close-to-optimal state-dependent replenishment and allocation policy
that responds to the changes in customer demand. The author also provides a closed-
form solution to approximate the system-wide inventory level. Using such explicit
solutions, the model and the heuristic, he quantifies, for example, the benefit of ad-
vance demand information and its impact on allocation decisions and the joint role
of risk pooling and advance demand information. For a review of these approaches,
we also refer the reader to Özer (2003).

The distribution system described here can also be interpreted as a multi-item
production system with a common intermediate product. In this interpretation, the
warehouse represents the differentiation point. During the first phase of the produc-
tion a common batch is produced. At the end of this phase, the manager must decide
on how much of each differentiated item to produce from the batch of the common
intermediate product. This interpretation forms the basis of postponement strate-
gies; see the papers by Lee et al. (1993) and Lee and Tang (1997). We conclude this
section by noting that at the heart of all complex inventory systems lies the single-
location (stage, product, item) model that we addressed in the previous subsections.
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13.3 Information in Decentralized Inventory Management

So far, we discussed the first two important aspects of good inventory manage-
ment: effective use of available information and how to quantify the value of this
information. Here, we focus on the third important aspect of good inventory man-
agement, that is, to coordinate decentralized operations in an extended supply chain.
Global operations involve several locations managed by several inventory man-
agers. The decisions and information are often decentralized. Many experts have
heralded advances in information technology and Internet infrastructure, both of
which enable better visibility and information sharing, as the key to effective man-
agement of inventory. Suppliers and manufacturers can share private information
regarding, for example, costs or forecasts, but will they want to? Firms may be
reluctant to collect, process, and share information because of conflicting incen-
tives. Aligning incentives improves firms profits and sustains the use of information
technology.

Inventory managers can use formal contracts to align incentives and induce in-
formation sharing. There are two forms of information asymmetry. The informed
party may withhold information to gain strategic advantage. In such cases, the un-
informed partner can propose a menu of contracts to extract this information; this
interaction is known as adverse selection or screening. Alternatively, the informed
party may signal his information to gain cooperation. However, he needs to signal
private information in a credible way; this interaction is known as signaling game.
Another form of information asymmetry arises as moral hazard where one partner
influences system profit through an action or choice not observable to the other. The
nonacting partner designs a contract to maximize his own profit (Fudenberg and
Tirole 1991 and Salanie 1997). This section provides examples of such interactions
in inventory management.

We attribute incentive problems in supply chains to lack of credible information
sharing and three major risk imbalances: capacity risk, inventory risk, and quality
risk (Özer 2004). Because of lack of credible information sharing, the adverse ef-
fects of inventory and quality risks are more severe for a decentralized supply chain
than for a vertically integrated supply chain. Here, we discuss some recent and on-
going research in designing contracts to eliminate or mitigate these adverse effects.
We typify a two level supply chain by referring to an upstream member as the sup-
plier and the downstream as the manufacturer.

13.3.1 Capacity Risk

Forecasting demand is inherently difficult due to short product life cycles and long
production lead time. Hence, supply chains face the risk of either excess capacity
due to low demand realization (downside risk) or lack of product availability due
to high demand realization (upside risk). Consider a manufacturer who builds to or-
der and requires the supplier to deliver just in time. To deliver on time, the supplier
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secures component capacity or inventory in advance of a manufacturer order. If
consumer demand turns out to be high, both the supplier and the manufacturer face
upside capacity risk. However, if consumer demand turns out to be low, only the
supplier faces downside capacity risk. Lack of proper risk sharing exacerbates the
cost of capacity risk. Next we provide a model to quantify and illustrate how struc-
tured agreements can be used to align incentives and avoid (or mitigate) the adverse
effects of capacity risk. For a more detailed discussion see Özer and Wei (2006).

Double Marginalization

The severity of capacity risk for each party depends on the contractual agreements.
Under a wholesale price contract, for example, the manufacturer pays a wholesale
price w to the supplier for each unit ordered. The supplier decides on the component
capacity K to maximize his profit prior to observing demand. Let ck be the unit cost
of capacity. This cost could also represent an equivalent annual cost of capacity.
Demand D is realized and the manufacturer places an order. The supplier fills the
order as much as possible, at a unit cost c; that is, he delivers min.D; K/. The
manufacturer receives the order and sells at a fixed price r > 0.7 Suppose unmet
demand is lost without additional stock out penalty, and unsold inventory has zero
salvage value without loss of generality.

Note that demand D is uncertain at the time when the supplier builds capac-
ity. Suppose the demand forecast is such that D D � C �, where � is the mean,
which is a positive constant, and � is a zero mean random variable with a cdf G.�/,
which represents the market or forecast uncertainty. Such information can be con-
structed by using information obtained, for example, through a third-party market
research firm (such as Dataquest services of Gartner group). For a given capacity K ,
the manufacturer’s and the supplier’s expected profit before demand is realized are
given by

…m.K/ D .r � w/E min.D; K/; (13.11)

…s.K/ D .w � c/E min.D; K/ � ckK: (13.12)

The supplier maximizes his profit in (13.12) by setting capacity to

Kw D � C G�1
�w � c � ck

w � c

�
:

7 The manufacturer may carry out some value added operations that cost, say m per unit. She sells
at a fixed unit price r 0 > 0. So her effective sales price is r D r 0 � m. Hence, without loss of
generality, we assume m D 0. Of course, the story would be different if the manufacturer was
building to stock as we will discuss in Sect.13.3.2.
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Next consider the centrally integrated supply chain in which a single firm owns the
manufacturer and the supplier. This centralized firm’s expected profit and its optimal
capacity would be

…cs.K/ D .r � c/E min.D; K/ � ckK; (13.13)

Kcs D � C G�1
�r � c � ck

w � c

�
: (13.14)

Note from (13.12) and (13.13) that the supplier’s marginal profit is less than the
vertically integrated supply chain’s marginal profit. This difference is due to dou-
ble marginalization. The supplier, therefore, secures less capacity than what would
be optimal for a vertically integrated supply chain, that is Kw � Kcs. Note that
…cs.Kcs/ � …m.Kw/ C …s.Kw/. Hence, both the manufacturer and the supplier
are leaving money on the table due to decentralized operations. The magnitude of
this inefficiency depends on the parameters.

The manufacturer may encourage the supplier to build more capacity by provid-
ing some protection against the downside risk, the risk of having excess capacity.
Observe that the manufacturer’s payoff (the realized profit) is always nonnegative,
while the supplier faces the risk of a negative payoff. The manufacturer can share
this risk by providing a payment in case of excess capacity after demand is realized.
One such contract is the payback contract .w; �/, under which the manufacturer pays
the supplier w per unit for its order and � per unit for unused capacity .K � D/C.

The manufacturer’s and supplier’s expected profit functions for this case are

…m.K/ D .r � w/E min.D; K/ � �E.K � D/C;

…s.K/ D .w � c/E min.D; K/ C �E.K � D/C � ckK:

The supplier solves maxK�0 …s.K/. The optimal capacity is K� � � C G�1

..w � c � ck/=.w � c � �//. To achieve channel coordination, we equate K� with
Kcs and solve for � , resulting in � D .r � w/ck=r � c � ck . Hence, the payback
contract .w; �/ can coordinate the channel, that is the sum of the manufacturer’s
and supplier’s profit under this contract is equal to the profit of the centralized firm.
The supplier captures .w � c � ck/=.r � c � ck/ � 100% of the total profit; and
the manufacturer captures .r � w/=.r � c � ck/ � 100% of the total profit. Notice
that arbitrary profit division among the parties is also achievable by changing the
wholesale price w. Therefore, with the appropriate choice of .w; �/ the payback
contract results in mutually beneficial terms, that is, the manufacturer’s and sup-
plier’s expected profits are at least as large as their profits under any wholesale price
contract.8

8 The payback contract provides a reward mechanism that induces the supplier to secure more
capacity. Another mechanism is to penalize the supplier for every unit of order that he is unable to
satisfy due to capacity shortage.
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Asymmetric Forecast Information

Another issue in the aforementioned supply chain is the forecast sharing problem.
The wholesale price is often set during the product design stage, which takes place
long before the manufacturer ramps up the production. Component capacity or in-
ventory commitments, however, are often made closer to production. Hence, the
forecast sharing problem is often decoupled from product design and wholesale
price negotiations. The manufacturer often has better forecast information than the
supplier due to her proximity to consumers. Lee et al. (1997) provide four reasons,
such as order batching, for why the downstream member distorts the demand fore-
cast when sharing it with the upstream member. Özer and Wei (2006) show that
another key reason for the bullwhip is the form of the contract.

Suppose that the aforementioned manufacturer has new forecast information
before the supplier sets the capacity. Let � denotes the manufacturer’s private
information about demand forecast. Suppose � is a deterministically known quan-
tity to the manufacturer. The manufacturer’s new demand forecast information is
D D � C � C �. If the supplier has access to the manufacturer’s private forecast
information �, he maximizes (13.12) by setting the capacity to

Kw D � C � C G�1
�w � c � ck

w � c

�
: (13.15)

However, � is known only to the manufacturer. Can the manufacturer share this
forecast information credibly? The answer is no because the manufacturer has an
incentive to inflate her report of �. This incentive arises because the manufacturer’s
profit in (13.11) is increasing in the supplier’s capacity choice K and the suppli-
ers optimal capacity Kw is increasing in the manufacturer’s forecast information �.
Hence, by sharing an inflated forecast the manufacturer may increase her expected
profit if the supplier believes this information. Anticipating the manufacturer’s in-
centive to exaggerate her forecast, the supplier would not consider the forecast
information to be credible regardless of whether the manufacturer reports accurate
information. Instead, the supplier would resort to his prior belief about the manu-
facturer’s private forecast information. For example, the supplier may perceive � to
be a zero mean random variable that takes values in Œ�; N�� with cdf F.�/.

This concept leads to what is known as asymmetric forecast information. The
supplier and the manufacturer have asymmetric information about � and hence the
overall demand forecast. The manufacturer knows � deterministically, whereas the
supplier has a prior belief about its possible value. Hence, the supplier’s expected
profit is

E�…s.K; �/ D .w � c/E min.� C � C �; K/ � ckK; (13.16)

where the uncertainty is due to both � and �. The supplier maximizes (13.16) by
setting capacity level

Kwa � � C .F ı G/�1
�w � c � ck

w � c

�
; (13.17)

where F ı G is the distribution function of � C �.
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Comparing the supplier’s capacity decision when she has and does not have
access to the manufacturer’s forecast information reveals the source of inefficiency.
The supplier’s capacity choice without having access to � under asymmetric infor-
mation Kwa is not a function of �. Without credible forecast information sharing, the
supplier cannot adjust the capacity to account for the manufacturer’s private fore-
cast. The consequences of this inefficiency could be severe for both parties. When
the manufacturer’s private forecast is very high, both parties may lose sales, result-
ing in lower profits (as the Boeing case in Cole 1997). When the manufacturer’s
private forecast information is low, the supplier may suffer from excess capacity (as
the Solectron case in Hibbard 2003). The remedy for this inefficiency is to induce
credible information sharing.

Özer and Wei (2006) show that the supplier can hold the manufacturer ac-
countable for her private forecast information by requiring a monetary commitment
before securing component capacity. This accountability can be achieved by design-
ing a menu of prices for reserving capacity. The menu should be designed in a way
that the supplier can screen the manufacturer’s forecast information. To do so, the
supplier offers this menu any time before setting the capacity.

The sequence of events is as follows. The supplier provides a menu of contracts
fK.�/; P.�/g for all � 2 Œ�; N��. Both capacity and corresponding payment are func-
tions of private forecast information �. Here, the supplier’s objective is to find the
optimal menu that maximizes his profit. Given this menu, the manufacturer chooses
a particular contract .K. O�/; P. O�// that maximizes her profit. By doing so, she an-
nounces her forecast information to be O�, which could differ from her true forecast
information �. The supplier receives the payment P. O�/ and builds capacity K. O�/ at
unit cost ck . The manufacturer observes demand D and places an order. The sup-
plier produces as much of the order as possible given the capacity constraint; that
is, he delivers min.D; K. O�//. The manufacturer receives the order and sells at unit
price r > 0. Two decisions are the supplier’s choice for the optimal menu of con-
tracts that maximizes his profit; the manufacturers’ choice from this menu is the
optimal contract that maximizes her profit.

By choosing a contract, the manufacturer defines her profit, the supplier’s profit
and the total supply chain profit as

…m.K. O�/; P. O�/; �/ D .r � w/E min.� C � C �; K. O�// � P. O�/; (13.18)

…s.K. O�/; P. O�/; �/ D .w � c/E min.� C � C �; K. O�// C P. O�/ � ckK. O�/: (13.19)

The supplier’s challenge is to elicit truthful information and to maximize his
profit by choosing a menu of contracts while ensuring the manufacturer’s participa-
tion. To identify an optimal menu of contracts, the supplier solves

max
K.�/;P.�/

E…s.K.�/; P.�/; �/

s:t: IC: …m.K.�/; P.�/; �/ � …m.K. O�/; P. O�/; �/; for all O� ¤ �

PC: …m.K.�/; P.�/; �/ � 	m
min; for all � 2 Œ�; N��: (13.20)
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The expectation in the supplier’s objective is with respect to �. The first set of
constraints is the incentive compatibility (IC) constraints. These constraints ensure
that the manufacturer maximizes her profit only by truthfully revealing her forecast
information. The second set of constraints is the participation constraints (PC). They
ensure a minimum profit 	m

min to the manufacturer regardless of her forecast infor-
mation. This minimum profit could be the manufacturer’s profit from her outside
option, or her profit under other contracts. Note that this problem is a difficult one to
solve because it involves optimization over functions. Through obtaining structural
results, this problem can be converted to equivalent but simpler formulations that
are easier to solve (see Özer and Wei 2006)).

The authors provide closed form solutions/formulas as a solution to the the
optimization problem in (13.20). They also show that the optimal P cr.�/ and
Kcr.�/ are monotone in �. Hence, one can construct a function P.K/ by setting
P.K/ D P cr.�/, if K D Kcr.�/. This function can be interpreted as a capac-
ity reservation contract; i.e., pay P.K/ to reserve K units of capacity. Note that
the optimal contract is independent of the manufacturer’s forecast information. The
supplier simply gives this contract as a menu of fees for the corresponding capac-
ity level that the manufacturer may reserve. Essentially, the supplier delegates the
capacity decision right to the manufacturer, who has superior forecast information.

The supplier can also hold the manufacturer accountable for her private fore-
cast information by requiring a quantity commitment before the supplier secures
component capacity. Özer and Wei structure the advance purchase contract under
which the manufacturer pays the supplier wa for each unit she orders before the
supplier secures capacity; hence the name, advance purchase. This agreement pro-
vides an option to the manufacturer to place firm orders at an advance purchase
price before the supplier secures capacity. The advance purchase could be costly to
the manufacturer if the realized demand turns out to be smaller than the advance
purchase quantity. Intuitively, this commitment prevents a manufacturer with a low
forecast from communicating a high forecast. Özer and Wei (2006) show that the
manufacturer can credibly signal her forecast through placing an advance purchase
before the supplier decides the capacity. The authors also show that channel coor-
dination is possible even under asymmetric forecast information by combining the
advance purchase contract with an appropriate payback agreement. The formulation
and analysis of the advance purchase contract leads to a signaling game, whereas
the capacity reservation contract is a screening game. By comparing these models
and analysis, the authors also show analytically when to use these contracts.

Which Contract Form to Adopt?

Özer and Wei (2006) identify two key drivers of the (supplier’s, manufacturer’s, and
supply chain’s) expected profits under different contracts: the risk adjusted profit
margin and the degree of forecast information asymmetry.

Recall that the supplier’s profit margin is less than the integrated supply chain’s
profit margin per unit of capacity investment. Hence, the supplier builds less than the
supply-chain-optimal capacity. Two factors determine the impact of this inefficiency
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on the supply chain: the market uncertainty modeled by �, and the supplier’s profit
margin per unit sold or per unit of capacity built, that is w � c � ck . Hence, this
inefficiency can be measured by the risk-adjusted profit margin .w � c � ck/=
� ,
that is, the supplier’s profit margin per unit sold per unit of market uncertainty.

The severity of supply chain inefficiency also depends on how much the supplier
knows about demand as compared to the manufacturer. This knowledge disparity
is measured by the degree of forecast information asymmetry. Let 
� and 
� be the
standard deviations of F.�/ and G.�/, respectively. Consider a supply chain with

� >> 
� . For this supply chain, the inefficiency due to the lack of credible forecast
information sharing would be large because the supplier’s knowledge of market
demand is much less certain than that of the manufacturer’s. One possible measure
of degree of forecast information asymmetry is the ratio of the standard deviations

�=
�.

Özer and Wei (2006) show that the supplier and the manufacturer can choose
among structured agreements that enable a mutually beneficial partnership de-
pending on the risk-adjusted profit margin and the degree of forecast information
asymmetry. The results are summarized in Fig. 13.9. For example, when forecast
information between the parties is highly imbalanced, and the risk-adjusted profit
margin is high, then their analysis shows that the advanced purchase contract gen-
erates higher profits for both parties. Based on anecdotal evidence and private
conversations with executives from several industries, we conjecture that the indus-
try can also be mapped along the same dimensions. Figure 13.10 maps the level of
these drivers for industries. For example, in the semiconductor industry, compared
to the manufacturer, the supplier knows very little about the manufacturer’s private
forecast. Further empirical and field research is needed to verify Fig. 13.10.
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A Brief Review

Research exploring contracts that coordinate the supply channel under full (or
symmetric) forecast information falls into two groups. In the first group, contracts
align incentives by inducing the supplier and manufacturer to share the risk of low
demand, resulting in excess capacity or inventory. Buyback contracts (Pasternack
1985), quantity flexibility contracts (Tsay 1999), and capacity reservation contracts
(Erkoc and WU 2005) are a few examples. The second category of contracts aligns
incentives by sharing the risk of high demand, resulting in capacity or inventory
shortage. Revenue sharing contracts (Cachon and Lariviere 2000) and quantity pre-
mium contracts (Tomlin 2003) are two examples from this category. Cachon (2003)
provides a comprehensive review of supply chain contracting and coordination9.
The supply chain literature that explicitly models asymmetric information can be
classified into two groups. A group of researchers (Corbett et al. 2001) focus on in-
formation asymmetry in production cost and another group (Porteus and Whang
1991, Cachon and Lariviere 2001, Özer and Wei 2006) focuses on information
asymmetry in market demand and forecasts. Chen (2003) provides an excellent re-
view of the use of these models in supply chains.

9 In this literature, mainly the downstream firm is assumed to face demand uncertainty, while the
upstream firm “builds to order”, unlike the interaction discussed in this section. Nevertheless, the
results are analogous.
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13.3.2 Inventory Risk

Here we provide an example model of how structured agreements can be used to
align incentives to mitigate the adverse affect of inventory risk. To do so, we sum-
marize some results from Lütze and Özer (2008). These authors study the incentive
problems in a multi period, two-echelon supply chain with a manufacturer and a
retailer both of whom build or procure to stock. Note that the manufacturer in this
case faces inventory risk, unlike the previous section’s build-to-order manufacturer.
Both the manufacturer and the retailer hold inventory to satisfy their respective cus-
tomers. They review inventory periodically, i.e., at the beginning of each period t .
The manufacturer produces at a per unit cost cm > 0 and the retailer places an
order at a per unit ordering cost cr > 0. Suppose all cost and demand parameters
are stationary, i.e., independent of period t . There is no fixed cost for production or
placing an order. The manufacturer has ample capacity for production, which takes
L periods to complete. The retailer orders are processed and shipped in l periods.
Customer demand Dt is realized. The retailer satisfies customer demand through
on-hand inventory. Unsatisfied demand is backlogged. Backorders of end customer
demand incur a unit penalty cost pr per period only at the retailer. The manufac-
turer incurs a shortage cost for unsatisfied retailer order based on the contractual
agreement we specify later. The manufacturer and the retailer incur unit holding
cost hm > 0 and hr > 0, respectively, where hm � hr , for any inventory remaining
at the end of each period. Both the retailer and the manufacturer choose an optimal
inventory replenishment policy to minimize their respective total expected inventory
costs over T periods. At the end of period T , leftover inventory (resp., backlog) is
salvaged (resp., purchased) at a linear per unit value of cm and cr , at each stage,
respectively.

The manufacturer needs to protect himself against the retailer’s demand over the
production lead time L, and the retailer needs to protect herself against the consumer
demand during the processing lead time l and supply shortage at the manufacturer.
Hence, to reduce inventory exposure, the manufacturer prefers the retailer to com-
mit to purchase in advance and wait for delivery (commit and wait). However, the
retailer prefers to delay her order and have immediate product availability and de-
livery (now or never). To address these opposing interests, Lütze and Özer consider
a promised lead time contract with two parameters: promised lead time � and corre-
sponding per period lump-sum payment K .

Under a promised lead time contract, when the retailer places an order, the man-
ufacturer promises to ship this order, in full, after � periods. To guarantee this
delivery, the manufacturer arranges an alternate sourcing strategy to fill retailer de-
mand that exceeds the manufacturer’s on-hand inventory. That is, the manufacturer
borrows emergency units from an alternative source and incurs penalty pm per unit
per period until the alternative source is replenished10. The effect of promised lead

10 Similar alternative sourcing strategies are also discussed in Lee et al. (2000) and Graves and
Willems (2000).
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time is to shift the responsibility for demand uncertainty from the manufacturer to
the retailer. Note that if the retailer agrees to a promised lead time L C 1, exceeding
the manufacturer’s production lead time, the manufacturer builds to order for the
retailer and does not carry any inventory.

Under this agreement, each firm independently solves a periodic-review inven-
tory control problem discussed in Sect. 13.2.1. Let x

j
t and y

j
t be firm j 2 fm; rg

inventory position before and after ordering, respectively, in period t , where m and
r stand for the manufacturer and the retailer. The following dynamic program re-
cursion minimizes the cost of managing the inventory system for a finite horizon
problem with T � t periods remaining until termination.

J
j
t .x

j
t j�/ D min

y
j
t �x

j
t

fGj .y
j
t j�/ C ˛EDJ

j
tC1.x

j
tC1j�/g

where J
j
T C1.x

j
T C1j�/ � 0 for j 2 fm; rg, and

Gm.ym
t j�/ D .1�˛/cmym

t CEŒhm.ym
t �DLC1�� /C Cpm.DLC1�� �ym

t /C � and

Gr.yr
t j�/ D .1 � ˛/cryr

t C EŒhr .yr
t � DlC1C�/C C pr .DlC1C� � yr

t /C �:

For the stationary finite horizon inventory control problems, a myopic base stock
policy is known to be optimal (Veinott 1965). These myopic base stock levels for
the manufacturer and retailer are the minimizers of their respective single-period
cost functions and are defined as

Y m.�/ D F �1
LC1��

�
pm � .1 � ˛/cm

hm C pm

�
and

Y r .pr ; �/ D F �1
lC1C�

�
pr � .1 � ˛/cr

hr C pr

�
:

Hence, with promised lead time � , firm j orders up to an optimal base stock level
Y j .�/ if its inventory position x

j
t is below this level at the beginning of period t . The

expected discounted inventory cost over T periods equals the sum of the discounted
single-period costs, that is,

J m.xm
1 jY m.�/; �/ D

TX

tD1

˛t�1Gm.�/;

where Gm.�/ � cm�CE
˚
hmŒY mt.�/ � DLC1�� �C C pmŒDLC1�� � Y m

t .�/�C
�
,

and

J r .xr
1 jY r .pr ; �/; �/ D

TX

tD1

˛t�1Gr .pr ; �/;

where Gr .pr ; �/ � cr� C E
˚
hr ŒY r

t .pr ; �/ � DlC1C� �C C pr ŒDlC1C� � Y r
t

.pr ; �/�C
�
.
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When the manufacturer has full information about the retailer’s inventory-related
costs, she can determine the optimal promised lead time contract .�; K/ by solving
the following problem.

minimize�;K

TX

tD1

˛t�1fGm.�/ � Kg

subject to K C G�
r .pr ; �/ � 	r

max

� 2 f0; : : : ; L C 1g: (13.21)

The constraint ensures that the retailer is not charged a cost larger than her max-
imum reservation cost. Note also that the summation over T periods does not
affect the solution of this problem, hence it can be dropped from the objective
function for optimization purposes. The constraint must be binding at optimal-
ity. Otherwise, we can increase K and reduce the objective function. Substituting
K D 	r

max � G�
r .pr ; �/ one can solve for the optimal contract parameters.

To solve the above problem, the manufacturer needs to know the retailer’s cost in-
formation. He can perhaps estimate hr fairly accurately because he knows the value
of the product. The same may not necessarily be true for pr . Companies often state
penalty cost as a strategic cost parameter never to be revealed. Lütze and Özer show
that the retailer has every incentive to conceal her service level to end consumers (or
equivalently the penalty cost structure). Intuitively, the retailer has an incentive to
exaggerate the service level, thereby shortening the promised lead time for the same
agreed upon price and reducing his expected inventory cost per period. Hence, it is
often not possible for the manufacturer to know the retailer’s penalty cost.

Suppose that there are two types of retailers in the market: one with a low-penalty
cost pL

r and the other one with a high pH
r . Suppose also that the belief is such that

with probability q, she is a high-penalty cost retailer and with probability .1 � q/,
she is a low-penalty cost retailer. To determine the optimal contract mechanism
f.�L; KL/; .�H ; KH /g, the manufacturer solves the following problem.

minimize.�i ;Ki /iDL;H
qŒGm.�H / � KH � C .1 � q/ŒGm.�L/ � KL�

subject to

IC1 W KH C Gr .pH
r ; �H / � KL C Gr .pH ; �L/

IC2 W KL C Gr .pL
r ; �L/ � KH C Gr .pL

r ; �H /

IR1 W KH C Gr .pH
r ; �H / � 	r

max

IR2 W KL C Gr .pL
r ; �L/ � 	r

max

�i 2 f0; : : : ; L C 1g for i D L; H:

The first two incentive compatibility constraints ensure that a retailer with a high-
penalty cost voluntarily chooses the contract .�H ; KH / and the low-penalty cost
retailer chooses .�L; KL/. The next two individual rationality constraints guarantee
the retailer finds a satisfactory contract regardless of his service level. This prob-
lem can be solved once we show certain properties of the cost function Gr and
the result is in closed form solution. For example, IC2 and IR1 imply that IR2 is
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redundant when we show Gr is increasing in pr . Note also that IC2 must be binding
at optimality otherwise the manager can increase KL and reduce the objective func-
tion until IC2 binds. By showing that Gr .pr ; �/ has single crossing property,11 we
can also show that �H � �L. Intuitively, it is optimal to offer a shorter promised
lead time to a retailer that has higher- penalty cost. Together with this observation,
the binding IC2 implies that IC1 is redundant. At optimality

�H D minimizer of qŒGm.�H / C Gr .pH
r ; �H /�

C.1 � q/ŒGr .pH
r ; �H / � Gr .pL

r ; �H /�

KH D 	r
max � Gr .pH

r ; �H /

�L D minimizer of .1 � q/ŒGm.�L/ C Gr .pL
r ; �L/�

KL D Œ	r
max � Gr .pL

r ; �L/� � ŒGr .pH
r ; �H / � Gr .pL

r ; �H /�

Lütze and Özer (2008) discuss properties of optimal promised lead time contracts
and the resulting inventory levels under both full and asymmetric service informa-
tion with multiple discrete types. We caution that the results for mechanism design
problems with multiple discrete types do not simply follow from two-type case. The
study of the more general case requires intricate analysis and may lead to differ-
ent solutions. Lovejoy’s (2006) paper is an excellent reference that clarifies related
issues. Lütze and Özer (2008) also show how the ensuing inventory risk sharing
strategy changes under asymmetric service information. They also compare the per-
formance of a supply chain operating under a central decision maker to one with
independent firms operating under a promised lead time contract. By comparing
different control mechanisms and information scenarios, they provide insight into
stock positioning and how the promised lead time affects the system performance.
They quantify, for example, how much and when the manufacturer and the retailer
over- or under-invest in inventory as compared to centralized supply chain, which
operates as a serial system, discussed in Sect. 13.2.5 and later in Sect. 13.4.

13.3.3 Quality Risk

So far, we discussed the two risk imbalances in supply chains, leading to incentive
problems. They were namely capacity and inventory risk. Next we discuss the third
one: quality risk. The quality literature in operations management focuses mainly
on centralized inventory management problems with random yields. Yano and Lee
(1995) provide a review of more than 70 academic papers, such as the works of
Porteus (1990b) and Pentico (1994). The focus of these papers is on establish-
ing production and stocking policies when production or procurement yields are

11 When f .x; y/ � f .x; y � 1/ is increasing in x, then function f is said to satisfy single crossing
property.
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random. They address, for example, optimal time and size for inspection. Only a
handful of researchers study the effect of product quality in decentralized supply
chains. In Reyniers and Tapiero (1995), the supplier determines the effort invested
in quality, where high effort causes a lower probability of defect. The manufacturer
decides whether to conduct costly inspection. Lim (2001) uses a similar setting, with
asymmetric information on the supplier’s quality type. Baiman, Fischer and Rajan
(2000) analyze the effects of different assumptions regarding the contractibility of
quality and inspection efforts. All of these papers define quality as the percentage
of the products that are not defective.

Today, manufacturers are outsourcing advance functions such as procurement,
design, and even research and development. The manufacturer can use inspection
techniques to measure yield and, hence, can enforce a certain yield in the contract.
However, when the supplier undertakes more advanced tasks, measuring either the
supplier’s quality effort or his cost to achieve the desired quality level is difficult.
This difficulty precludes the manufacturer from enforcing the desired quality level
with a legal contract.

Not being able to foresee all possible contingencies and time to market pressures
are two other reasons that make quality difficult to measure. Quality requirements
may be better understood after the supplier builds a prototype, but this step typically
occurs after an outsourcing agreement is signed. According to a Toshiba manager,
if Toshiba waited until they were absolutely sure of every final detail and then wrote
a complete contract, they would be 6–12 months late to the marketplace. There-
fore, in addition to structured and legally binding agreements, establishing strategic
relationship management systems between the manufacturer and the supplier is
probably a good idea. This strategic relationship may encourage, for example, the
implementation of quality programs such as TQM or Six Sigma.

Kaya and Özer (2004) refer to the adverse effect of inefficiencies caused by the
immeasurability of both quality effort level and the quality cost as the quality risk.
Consider an original equipment manufacturer that outsources the design and pro-
duction of a custom component to a supplier and sells the final product at a price p.
The market demand is a function of the manufacturer’s sales price p, the supplier’s
quality effort e and the market uncertainty �, i.e.,

q D a � bp C e C �;

where a > 0 and b > 0 are the intercept and slope of the downward sloping de-
mand curve. The manufacturer offers a procurement contract to the supplier. If the
supplier accepts the contract, the parties establish a supply chain. Next, the supplier
determines the product’s quality level e by exerting costly quality effort. The qual-
ity cost is the supplier’s private information. The manufacturer determines the sales
price p to maximize her expected profit. The market shock � realizes and the firms
observe the quantity demanded. Finally, the supplier produces to satisfy the manu-
facturer’s order, which is equal to the consumer demand. Note that the manufacturer
cannot verify the quality level set by the supplier due to the market uncertainty �.
Hence, the manufacturer cannot directly link the CM’s compensation to the quality
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level the CM sets. Instead, the manufacturer needs to offer a contract and indirectly
influence the CM’s quality decision. The authors model this interaction as screening
and moral hazard problems embedded into a three stage game.

Kaya and Özer (2004) design procurement contracts that improve the supplier’s
and the manufacturer’s profits by inducing the supplier to exert effort to produce bet-
ter quality products when parties cannot explicitly contract on quality. The authors
answer and quantify broad questions of managerial interest. They quantify the value
of being able to contract on quality. They study the effects of the manufacturer not
knowing the supplier’s cost of quality. They investigate the value of an enterprise-
wide quality management system, a recent information technology tool that enables
accounting of quality-related activities across the supply chain. The authors also
study the effect of the manufacturer’s product-pricing policy on the resulting quality
of the product. They report the outcome of two opposing product-pricing strategies:
setting market price for the final product in the contract terms with suppliers versus
pricing the product after receiving components from the supplier.

13.4 Large–Scale Systems and Rationality

Global supply chains (or perhaps networks) have multiple locations to carry inven-
tory; multiple products to manage; several decisions to coordinate; various sources
and flows of information; and uncertain demand and processes. The management
of inventory and information in such systems is difficult, and reviewing the related
literature is even more so! We refer the reader to the books by Zipkin (2000) and
Muckstadt (2005) for a systematic treatment of fundamental inventory control meth-
ods. First similar models and analysis can be applied to study multilocation systems
and multiproduct systems. Second, by allocating decoupling inventories,12 complex
supply chain structures can be decomposed into fundamental structures, such as
serial systems, of which we have a very good understanding. What is the best (if
not the efficient) way to decompose a complex structure into smaller problems is
an open research question. There is also an extant literature on the supply chain
configuration problem (see, for example, Graves and Willems 2003). Here we will
provide some discussion on how to allocate inventory effectively across two fun-
damental structures, serial and distributions systems, to minimize inventory-related
costs while keeping an eye on rationality.

Despite considerable progress over the years, existing optimization and policy
evaluation algorithms for multiechelon systems remains fragmented and opaque
to nonexperts. The computational methods involved are intricate and require vo-
luminous data. Data fed to these tools are not always accurate, as discussed in
Sect. 13.2.3. Systems and people have limitations. Users are more likely to embrace
decision tools when they understand what is in the black box. Therefore, it is

12 Decoupling stock is used to permit separation of inventory decisions at different locations in
the supply chain. Having a large inventory between two locations would make it possible for the
downstream location to make an inventory decision independent of any supply problem at the
upstream location.
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necessary to develop easy-to-describe, close-to-optimal, and robust heuristics that
can be implemented on a spreadsheet by solving, for example, newsvendor type
problems13. Unlike multiechelon results, the newsvendor problem is widely known,
commonly used in practice and a standard component of any production and opera-
tions curriculum.

The above discussion suggest that heuristics and approximations can collectively
enable better inventory management if they pass all or some of the following tests:
(1) Is it close to optimal? (2) Is it simple to describe and use? (3) Can it be used to
test system design issues accurately? (4) Is it robust? (5) Is it computationally easy?
Note, however, that focusing narrowly on the one criterion overlooks other impor-
tant aspect and leads to a gap between theory and practice (see Özer and Xiong 2008
for more discussions). For example, the computational methods used for exact solu-
tions can be intricate and may require voluminous data. They may require advance
knowledge. They may not provide explicit information regarding the key factors
that drive performance. Recently, researchers have realized this gap and started to
focus on developing easy-to-use, robust heuristics, and approximations that are in-
sightful (see, for example, Lee et al. 1993; Hopp et al. 1997, 1999; Gallego et al.
2007; Shang and Song (2003); Gallego and Özer 2003; Caglar et al. 2004; Watson
and Zhang 2005; Özer and Xiong 2008 and references therein). In the following two
subsections, we provide some examples from Gallego and Özer (2003) and Gallego
et al. (2007).

13.4.1 Serial Systems

Consider a serial system consisting of J stages. Stage j < J procures from Stage
j C 1 and Stage J replenishes from an outside supplier with ample stock. Cus-
tomer demand occurs only at Stage 1 and follows a (compound) Poisson process,
fD.t/; t � 0g with arrival rate �. It takes Lj units of time for a unit to arrive at Stage
j once it is released by its predecessor. Unsatisfied demand is backordered at each
stage, but only Stage 1 incurs a linear backorder penalty cost p, per unit, per unit of
time. We assume, without loss of generality, that each stage adds value as the item
moves through the supply chain, so echelon holding costs he

j are positive. The local

holding cost for stage j is hj � PJ
iDj he

i : The system is operated under continuous
review. The following random variables describe the state of Stage j in equilibrium:
Dj is the lead-time demand, Ij the on-hand inventory, and Bj the backorders. The
total long-run average cost for any policy can be expressed as

E

"
JX

kD1

hkIk C pB1 C
JX

kD2

hkDk�1

#
:

13 This problem is a simple single period, single-location inventory control problem faced by a
newsvendor. The vendor has to decide how much to order from the publisher so as to satisfy
uncertain demand. The model is used to teach the risk of overstocking and understocking.
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Optimality of an echelon base-stock policy .sJ ; : : : ; s1/ for this serial system is well
known (see the original work by Clark and Scarf 1960). Gallego and Özer (2003)
provide the following new recursive algorithm to obtain optimal base-stock levels.
Let c1.s/ D EŒh1.s � D1/C C p.D1 � s/C� and for j D 2; : : : ; J define

cj .s/ D min
x2f0;:::;sg

cj .xI s/

cj .xI s/ D EŒhj .x � Dj /C C cj �1.min.s � x; s � Dj // C hj Dj �1�: (13.22)

Let N D f0; 1; : : : ; g be the set of nonnegative integers and let

s�
j � minfs 2 N W cj .s C 1/ � cj .s/ > hj C1g for j D 1; : : : ; J:

Function cj .s/ is the long-run average cost of optimally managing the subsystem
fj; : : : ; 1g given echelon base-stock level s and s�

j is the optimal base-stock levels.
The recursion is somewhat intuitive. Suppose cj .�/ has been computed and consider
the subsystem fj C1; : : : ; 1g. The goal is to compute cj C1.�/ from the knowledge of
cj .�/. Note the link between the two subsystems. We allocate x units to Stage j C 1

and the remaining s � x units of echelon base-stock to subsystem fj; : : : ; 1g. Given
this allocation, the net inventory at Stage j C1 will be .x�Dj C1/C which accrues at
cost rate hj C1. Since Stage j C1 will face a shortage when Dj C1�x > 0, the effec-
tive echelon inventory for subsystem fj; : : : ; 1g is s�x�.Dj C1 �x/C D min.s�x;

s�Dj C1/. Thus, a finite local base-stock level at Stage j C1 imposes an externality
to the subsystem fj; : : : ; 1g whose expected cost is now Ecj .min.s�x; s�Dj C1//.
As a result, when we allocate x � s units of local base-stock level to Stage j C 1,
the cost of managing a serial system with j C 1 stages is given by (13.22).

Note that the classical recursive formulation presented in Chen and Zheng (1994)
or Gallego and Zipkin (1999) has no intuitive interpretation. Although the above
new algorithm has an interpretation and is intuitive, it is still difficult to explain to
nonexperts. It also does not provide any transparent relationship. Using this formu-
lation, Gallego and Özer provide a fast exact algorithm based on gradient updates
and a close-to-optimal heuristic that requires solving one newsvendor problem per
stage! The heuristic is based on the approximate holding cost rate

hGO
j �

jX

kD1

Lk

L1 C � � � C Lj

hk :

The idea is based on adding the holding cost as the product goes through the stages
without delay and then dividing by the total lead time that it spends before reaching
the end customer. This approximate holding cost minus the cost associated to up-
stream operations that is hj C1, is charged to any excess inventory in echelon j that
faces demand uncertainty over the leadtime L0 C � � � C Lj . This cost is charged per
excess inventory because it is the approximate value that the echelon j is responsible
for. Similarly, the penalty cost p C hj C1 is charged to echelon j because it is the
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approximate opportunity cost. The resulting problem then has a newsvendor type
cost structure of

Qcj .s/ D E

2

4�hGO
j �hj C1

	
 

s�
jX

kD1

Dk

!C
C.p C hj C1/

 
jX

kD1

Dk � s

!
C
3

5 ; (13.23)

sGO
j � min

(
s 2 N W P r

 
jX

kD1

Dk � s

!
>

p C hGO
j

p C hj C1

)
: (13.24)

Gallego and Özer (2003) show that over 1,000 experiments, the optimality gap14

is less than 0:25%. Note that the newsvendor problem is known to be somewhat
robust in that small changes in data would not change the optimal solution signifi-
cantly. This heuristic can easily be implemented with a simple spreadsheet. So, the
heuristic is close-to-optimal, easy-to-describe, and robust.

The authors also consider an approximation by approximating the lead-time de-
mand distribution using Normal with mean � and 
 . This approximation would
be good in particular when the mean of lead-time demand is large. The result-
ing cost cj .s�

j / 	 .p C hGO
j /
�.z/; where z D ˆ�1..p C hj C1/=.p C hGO

j //.
The base stock level is s�

j 	 � C z
 . They are both in closed form. The authors
also provide a distribution free cost upper bound in the approximate sense, that is
cJ .s�

J / � p
p.h1L1 C � � � C hJ LJ /�. The bound does not depend on any distribu-

tion. So it is quite robust with respect to demand parameter estimation. Such bounds,
heuristics, and approximations can also be used to quantify the value of system de-
sign issues. Using these results, it is easy to show, for example, that management
should focus on reducing the lead time at the upstream stages, while reducing the
holding cost at the downstream stages. If process resequencing is an option, the low-
est value added processes with the longest processing times should be carried out
sooner rather than later. More importantly, a manager can easily quantify the impact
of such changes using these simple heuristics and bounds.

13.4.2 Distribution Systems

Consider a two-level distribution system. All items enter the system from an ex-
ternal supplier and proceed first to location j D 0, called the warehouse. The
warehouse in turn supplies J retailers, where the customer demands occur, indexed
by j D 1; : : : ; J . Shipments from the external supplier arrive at the warehouse after
time L0. Shipments arrive at retailer j after time Lj . The retailers satisfy the cus-
tomer demand from on-hand inventory, if possible. Unsatisfied demand at retailer
j is backordered at a linear penalty cost rate bj . All locations are allowed to carry

14 The gap is defined as percentage difference between the optimal cost and the cost of the heuristic.
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inventory. The local holding cost is hj per unit at retailer j . Holding inventory at the
retailer is more expensive than holding it at the warehouse hj � h0 for j > 0. On
the other hand, inventory located closer to the customer enables a quick response,
hence reduces the possibility of a backorder at each retailer. Demand at each retailer
j follows a Poisson process fDj .t/; t > 0g with rate �j , and these are independent
across retailers. The problem is, where to locate the inventory and how to control
the system, so as to minimize the long-run average holding and penalty costs. No
one knows the optimal policy for distribution systems, yet.

Under any policy, the total average cost can be expressed as

h0EŒI0� C h0

X

j >0

EŒITj � C
X

j >0

.hj EŒIj � C bj EŒBj �/;

where Ij is the on hand inventory, Bj is backorders, and ITj is the inventory in
transit at location j at equilibrium.

Gallego et al. (2007) distinguish two modes of control: central and local. Under
central control, all information flows to one point, where all decisions are made. Lo-
cal control means that each location observes local information and makes decisions
accordingly. However, even under local control, a single decision maker provides
operating rules to all locations, which the locations then implement in real time.
The locations do not have their own distinct objectives, as they do in contracting
models of Sect. 13.3.

Here we focus on the local control case and on a class of simple replenishment
policies, base-stock or one-for-one policies (see Gallego et al. 2007 for central con-
trol policies). Under local policy, whenever the inventory position at location j falls
below the local base-stock level sj , the retailer orders from the upstream location
to raise the inventory position up to sj . The sum of the retailers’ orders constitutes
the warehouse’s demand process. The warehouse satisfies the retailers’ requests on
a first-come-first-served basis. Notice that information and control are decentral-
ized or localized, in that each location sees its own demand and monitors its own
inventory-order position. The exact analysis of this system is due to Simon (1971)
and Graves (1985). Graves (1985) derives the steady-state distributions of inventory
levels and backorders by disaggregating the backorders at the warehouse. Axsäter
(1990) provides a recursive method to calculate the average holding and penalty cost
associated with every supply unit that is matched with the demand that triggers it.
The following random variables describe the system at equilibrium.

B0 D ŒD0 � s0�C; (13.25)

I0 D Œs0 � D0�C; (13.26)

Bj D ŒB0j C Dj � sj �C for j > 0; (13.27)

Ij D Œsj � B0j � Dj �C for j > 0: (13.28)
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Here, B0j and Dj are independent, and .B0j jB0/ is binomial with parameters B0

and �j D �j =�0. Given the sj , one can compute the EŒIj � and EŒBj � and thus

c.s0; s1; : : : ; sJ / D h0EŒI0� C
X

j >0

cj .s0; sj /; (13.29)

cj .s0; sj / D hj EŒIj � C bj EŒBj �: (13.30)

Let s� D .s�
j /J

j D0 denote the policy that achieves the minimum average cost c�.
For fixed s0, the total average cost in (13.29) separates into a constant, plus func-

tions cj of one variable each (sj ), each convex in its variable. This separation is
quite useful computationally. On the other hand, the remaining problem is still not
trivial. To compute EŒBj � and EŒIj � requires numerical convolution of B0j and
Dj . Also, the cost c.s0; s�

1 .s0/; : : : ; s�
J .s0// is not convex in s0. Finding the optimal

s0, therefore, requires an exhaustive search.
Gallego et al. (2007) provide various heuristics based on restriction and de-

composition ideas. Note, for example, that restricting the warehouse not to carry
inventory decomposes the system to J retailers facing longer replenishment lead
times, i.e., L0CLj . This heuristic is referred to as cross-docking. To obtain the base-
stock level at each retailer, they solve newsvendor type problems as in (13.23). The
other extreme is to assume that the warehouse always has ample stock. Doing so, de-
composes the system into individual retailers with lead time Lj . The authors solve
for the warehouse’s base-stock level by assuming that the retailers base-stock levels
are fixed to zero. In this case the warehouse’s problem is a newsvendor type. The so-
lution provides the maximum possible stock needed at the warehouse. Hence, they
refer to this heuristic as stock-pooling. Another heuristic allocates zero safety stock
to the warehouse, hence named the zero-safety heuristic. The authors show that a
combination of these heuristics yields asymptotically optimal results, i.e., the com-
bined heuristics yields optimal results as the number of retailer increases. Through
an extensive numerical study involving all plausible distribution system parameters,
the authors show that the optimality gap for the restriction and decomposition-based
heuristic is less than 2%. The authors also provide several other heuristics, bounds,
and approximations both for central and local control systems.

13.5 Ending Thoughts and Future Directions

In this chapter, we provided a discussion around four fundamentals of effective
inventory management. First we discussed how to effectively use information in
centralized inventory systems. Such inventory systems are managed by a single de-
cision maker who possesses all relevant information. As we discussed in Sect. 13.2,
this line of research will always be necessary even though global inventory sys-
tems are decentralized in practice. Advances in technology, cheaper computational,
and storage devices will continue to enable managers to obtain more informa-
tion. Inventory managers would need to quantify the value of information and the
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technology even more so than before. These systems also serve as a benchmark
for decentralized systems. They are the building blocks for large-scale systems as
discussed in Sect. 13.4. How to use and quantify new information in inventory man-
agement will continue to be an important area for future research.

Note also that there are still open questions. For example, we do not know the
impact of imperfect inventory information on multiechelon inventory systems. Intu-
itively, the adverse affect of inventory record inaccuracy will amplify as we go up in
the echelon. Perhaps RFID technology has more value in such systems. But we sim-
ply do not know. Another example is the centralized distribution system, for which
we still do not have an optimal inventory policy. As discussed in Sect. 13.2.1, re-
searchers have realized that an optimal policy would be very complex, if one exists.
Hence, they have developed close-to-optimal heuristics, but none of these heuristics
have worst case performance bounds. Developing such bounds is an interesting re-
search direction. We have started to see recent research in this direction (Levi et al.
2006, 2007).

Designing contracts to align incentives and coordinate inventory decisions will
continue to be an important research area given global supply chains. Decentralized
inventory management systems consist of managers with asymmetric information
and separate objectives. We discussed several inefficiencies due to decentralized op-
erations. Inventory managers need to keep an eye on inefficiencies introduced due
to decentralization. Most of the work in this area consists of single-period interac-
tions between two inventory managers. Future work is needed to consider the effect
of repeated interactions and reputation. This line of work also assumes that inven-
tory managers are responsible for single-location systems. In reality, however, an
inventory manager could be responsible for a serial system or a distribution system
(as discussed in sections Sect. 13.2.1 and Sect. 13.4). Hence, it is also important to
study the interaction between two such managers. For example, the manufacturer in
Lütze and Özer (2004) might offer a shorter promised lead time when he is manag-
ing a multiproduct inventory system due to perhaps the risk pooling effect. Studying
the impact of supply chain design strategies such as postponement on contract terms
would contribute to our understanding of these systems and bring us one step closer
to real systems. The approximations, bounds, and closed form solutions developed
for centralized systems discussed in Sect. 13.4 may also help us to study complex
decentralized inventory systems that are controlled by several managers.

Many years of research also suggest that large-scale, centralized stochastic inven-
tory systems are even more difficult to deal with and are not amenable to a simple
optimal policy. As a research community, we need to develop close-to-optimal,
easy-to-describe, robust heuristics for solving large scale systems. To make a heuris-
tic universally acceptable, we need to test its performance against a lower bound or
an optimal solution. For large-scale systems, however, we lack optimal solutions.
Developing sensible lower bounds could be difficult as well. As an alternative, such
heuristics can be tested on real systems. However, real systems differ from each
other, making it difficult to compare plausible heuristics proposed by researchers.
Perhaps one potential research area is to design test problems that are universally
acceptable to qualify as difficult, real, and large scale.
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Atali A, Lee H, Özer Ö (2004). Inventory control under imperfect information: Bounds, heuristics
and approximations with demand prioritization. Working paper, Stanford University, Stanford,
California.
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Chapter 14
Pricing, Variety, and Inventory Decisions
for Product Lines of Substitutable Items

Bacel Maddah, Ebru K. Bish, and Brenda Munroe

14.1 Introduction and Motivation

Integrating operations and marketing decisions greatly benefits a firm. Marketing
actions drive consumer demand, which significantly influences operations
management (OM) decisions in areas such as capacity planning and inventory
control. On the other hand, the marketing department of a firm relies on OM cost
estimates in making decisions concerning pricing, variety, promotions, etc. In this
chapter, we review recent research on pricing, assortment (or variety), and inventory
decisions in retail operations management, which contribute to the growing liter-
ature on joint marketing/OM models (e.g., Eliashberg and Steinberg 1993; Griffin
and Hauser 1992; Karmarkar 1996; Pekgün et al. 2006, 2008; Porteus and Whang
1991). Other important contributions of the reviewed works account for inventory
costs in pricing and variety models and utilize realistic demand models based on
consumer choice theory. These contributions are discussed below.

Before detailing the contribution of the research surveyed in this chapter, we de-
fine the scope. We focus on retailer settings because of a large number of recent
works, including ours, in retail operations management. In addition, the research in
retail settings is strongly connected to product line design and production planning
problems in manufacturing (see Sect. 14.3). Within the retail setting, we consider
decisions involving a “product line” or a “category,” which refers to a family of
substitutable items that serve the same need for the consumer but differ in sec-
ondary aspects. Thus, a product line may consist of different brands with the same
usage (e.g., different brands of coffee or yogurt) as well as different variants of the
same brand (such as different sizes, colors, or flavors). When faced with a purchas-
ing decision from a product line, consumers select their most preferred item, given
the trade-off between price and quality. Pricing has a major impact on consumers’
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choice among the available alternatives. However, the assortment or variety level, in
terms of the items offered in the product line, and the shelf inventory levels of these
items are equally important.

Under an integrated marketing/OM framework, the retailer sets two or all of the
above decisions simultaneously. This seems to be a successful business practice
for many retailers. For example, JCPenney received the “Fusion Award” in supply
chain management for “its innovation in integrating upstream to merchandising and
allocation systems and then downstream to suppliers and sourcing.” A JCPenney
vice president attributes this success to the fact that, at JCPenney, “assortments,
allocations, markdown pricing are all linked and optimized together” (Frantz 2004).
Canadian retailer Northern Group managed to get out of an unprofitable situation
by implementing a merchandise optimization tool. Northern Group’s chief financial
officer credits this turnaround to “assortment planning” and the attempt to “sell out
of every product in every quantity for full price” (Okun 2004). Moreover, our expe-
rience with Hannaford, one of the largest chains of grocery stores in New England,
on various aspects of pricing, variety, and shelf inventory decisions attests to the
strong interdependence among these decisions.

An important contribution of the reviewed research is to include inventory costs
within pricing and assortment optimization models. Most of the classical litera-
ture along this avenue assumes that demand is known with certainty and therefore
excludes inventory considerations (Dobson and Kalish 1993; Green and Krieger
1989; Kaul and Rao 1995; and the references therein). We believe this is due, in
part, to the complexities introduced by modeling inventory. For example, the review
paper by Petruzzi and Dada (1999) indicates a high level of difficulty associated
with joint pricing and inventory optimization even for the single item case. These
difficulties do not, however, justify ignoring inventory effects in modeling. For ex-
ample, in 2003, the average End-of-Month capital invested in inventory of food
retailers (grocery and liquor stores) in the USA was approximately 34:5 billion $s,
with an inventory/sales ratio of approximately 82% (US Census Bureau). On the
other hand, the net 2003 profit margin in food retailing is estimated to be 0:95%
Food Marketing Institute. These numbers indicate that food retailers can signifi-
cantly increase their profitability by reducing their inventory costs.

In addition to utilizing an integrated approach which accounts for inventory costs,
the reviewed works adopt demand models from the marketing and economics litera-
ture that reflect the actual manner consumers make their buying decisions. These
“consumer choice” models are based on the classical principle of utility maxi-
mization (e.g., Anderson et al. 1992; Ben-Akiva and Lerman 1985; Manski and
McFadden 1981; McFadden 1974).

Given the complexity of the product line problem, most research focuses on two
of the three essential decisions involved (pricing, variety, and inventory), with the
exception of one recent work (Maddah and Bish 2007) that considers an integrated
model involving all three decisions. This chapter is structured to offer a repre-
sentative cross section of this line of research, reviewed in Sects. 14.5–14.7. The
reviewed works are streamlined according to their decision variables (see Table 14.1
for an overview). Note that this review is not intended to be exhaustive. Section 14.2
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Table 14.1 Reviewed papers classified according to their decision variables

Decisions Papers Reviewed in

Inventory and variety Bish and Maddah (2008) Sect. 14.5
Cachon et al. (2005)
Gaur and Honhon (2006)
van Ryzin and Mahajan (1999)

Inventory and pricing Aydin and Porteus (2008) Sect. 14.6
Bish and Maddah (2008)
Cattani et al. (2010)

Inventory, pricing, and variety Maddah and Bish (2007) Sect. 14.7

briefly reviews additional (broadly related) works. Other supporting sections in this
chapter are as follows: In Sect. 14.3, we discuss how the research reviewed here is
related to manufacturing. In Sect. 14.4, we present the key ideas of a set of con-
sumer choice models that are commonly used in developing product line demand
functions. In Sect. 14.8, we present a critique and a comparison of the insights and
methodologies across the different works reviewed in Sects. 14.5–14.7, with a focus
on their connection to practical applications. In Sect. 14.9, we summarize our obser-
vations on the current practice of retail pricing, inventory, and variety management.
Finally, in Sect. 14.10, we conclude and provide suggestions for future research.

We note that Mahajan and van Ryzin (1999) wrote an excellent book chapter on a
similar topic, which we complement by reviewing the research that mostly appeared
after the publication of Mahajan and van Ryzin (1999).

14.2 Background Literature

The decisions considered in this chapter lie at the interface of economics, mar-
keting, and OM disciplines. As a result, there are many other works in these
disciplines, which, although not reviewed here in detail, are nevertheless broadly
related. The economics literature approaches this topic from the point of view of
product differentiation (see Lancaster [1990] for a review) and focuses on develop-
ing consumer choice models that reflect the way consumers make their purchasing
decisions from a set of differentiated products (e.g., Hotelling 1929; Lancaster 1966;
McFadden 1974).

The marketing literature emphasizes the process of fitting appropriate choice
models to data collected on actual consumer behavior (e.g., Besanko et al. 1998;
Guadagni and Little 1983; Jain et al. 1994). Such data are typically compiled from
scanner data (i.e., log of all sales transactions in a store) or panel data (obtained by
tracking the buying habits of a selected group of customers). These are then utilized
to address product line design (i.e., variety) and pricing decisions (see Green and
Krieger (1989) and Kaul and Rao (1995) for reviews). A typical approach utilizes
the data collected on consumer behavior to obtain deterministic estimates of utilities
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for each consumer segment. The deterministic utilities can then be used to formulate
an integer program that gives the optimal assortment and its pricing (e.g., Dobson
and Kalish 1993, 1988; Green and Krieger 1985). See also the two recent papers by
Hall et al. (2010) Yücel et al. (2009) for the utilization of mathematical program-
ming approaches to address the pricing, assortment, and inventory decisions of a
product line but under endogenous demand (rather than demand aggregated from
consumer preferences).

Another important research problem not reviewed here is concerned with shelf
space allocation among substitutable items (e.g., Corstjens and Doyle 1981); some
of this work also integrates assortment planning with shelf space allocation within
a mathematical programming framework. (See Martı́n-Herrán et al. 2006 for a re-
view of research in this area and interesting competitive analysis in a manufacturing
duopoly setting as well as Irion et al. 2006, who propose an efficient linearization
technique).

Finally, the research on single item inventory models with price-dependent de-
mand is also relevant to the research reviewed in this chapter (see Petruzzi and Dada
1999 and Elmaghraby and Keskinocak 2003 for comprehensive reviews).

14.3 Relevance to Manufacturing

While most of the research reviewed in this chapter is presented within the retail-
ing context, this research is relevant to the manufacturer’s product line design and
production planning problems in two important aspects.

First, manufacturers need to make decisions regarding the composition (assort-
ment), pricing, and production planning of their product lines, and these decisions
revolve around similar trade-offs to those discussed in this chapter. As a result, man-
ufacturers can benefit from the models and insights presented here in answering
these questions. In fact, many recent papers address the manufacturer’s problems
in this context (e.g., Alptekinoglu and Corbett 2008; Cattani et al. 2010; Hopp and
Xu 2003, 2005). In addition, consumer choice models (such as the ones considered
in this chapter) are gaining popularity among manufacturers, in an attempt to more
realistically model their demand. We are aware of such efforts at several leading
automotive manufacturers such as General Motors and Honda. On the cost side,
implementing the models presented here in a manufacturing setting may necessi-
tate certain adjustments. This is because the cost structure for a manufacturing firm
may involve additional terms not considered here (e.g., costs related to product de-
velopment, launch, and marketing, and fixed setup costs). A manufacturer also has
capacity constraints for its production resources (e.g., plant, labor), which are of a
different nature than the retailer’s shelf space capacity constraints.

Second, in supply chain settings, manufacturers’ and retailers’ product line de-
sign, pricing, and inventory decisions are intimately related in that they impact
one another. These dependencies are also impacted by cooperation and contrac-
tual agreements on profit sharing between retailers and manufacturers. For example,
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Aydin and Porteus (2009) investigate the dependence between the manufacturer’s
rebates and the retailer’s pricing and inventory decisions in a setting where the re-
tailer’s demand is generated from the multinomial logit model (MNL) reviewed in
Sect. 14.4. Aydin and Hausman (2009) discuss supply chain coordination in assort-
ment planning between a manufacturer and a retailer with end customers making
their purchase decisions based on the MNL choice model.

Another supply chain related issue is the attempt of retailers to benefit from the
manufacturers’ (suppliers’) specialized expertise through adopting “category cap-
tainship” schemes where one lead manufacturer is responsible for managing the
whole category (product line). Kurtuluş and Toktay (2009) discuss in detail the the-
ory and practice of category captainship. Among the works reviewed in Kurtuluş
and Toktay (2009), Kurtuluş and Toktay (2005), and Wang et al. (2003) consider
delegation of pricing decisions to a category captain while assuming exogenous
assortments and ignoring inventory costs (under a deterministic demand assump-
tion), whereas Kurtuluş and Toktay (2006) assume exogenous prices and consider
delegating the assortment decision under random MNL-based demand and limited
inventory. One drawback of category captainship is that the category captain may
make decisions in a way that place the competing manufacturers at a disadvantage,
which raises concerns of violating antitrust legislation. Drake and Swann (2006)
suggest and study “vendor-specific category management” as an alternative which
avoids antitrust issues, where every manufacturer is responsible for managing the
product(s) she supplies.

Finally, the channel selection problem widely studied in the marketing literature
is also related, since it refers to the manufacturer’s problem of what type of retailers
to select for her product line (e.g., Choi 1991).

14.4 Overview of Consumer Choice Models

In this section, we briefly review some of the discrete choice models that represent
the consumer preference as a stochastic utility function. We refer the readers inter-
ested in an in-depth treatment of the choice theory to Anderson et al. (1992) and
Ben-Akiva and Lerman (1985).

Let � D f1; 2; : : : ; ng be the set of possible variants (substitutable items) from
which the retailer can compose her product line. Let S � � denote the set of items
stocked by the store. Demand for items in S is generated from customers arriving
to the retailer’s store. A customer chooses to purchase at most one item from set
S so as to maximize her utility. The consumer utility, Ui , for each item i 2 S , is
assumed to be a random variable with a known distribution. The randomness can
be either due to the fact that the seller does not have access to this information
or due to the differences in tastes among consumers as well as inconsistencies in
individual consumer behavior on different shopping occasions, see Anderson et al.
(1992) for further discussion. A similar assumption is made concerning U0, the
consumer utility for the “no-purchase” option. Then, the probability that a consumer
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buys item i 2 S is qi.S/ D P rfUi D maxj 2S[f0g Uj g. Several consumer choice
models are derived based on the distribution of Ui ; i 2 S [ f0g. We discuss two of
these models in Sects. 14.4.1 and 14.4.2.

14.4.1 The Multinomial Logit Model

The MNL model is among the most popular consumer choice models (e.g.,
Anderson et al. 1992 and Ben-Akiva and Lerman 1985). Interestingly, the MNL has
its roots in mathematical psychology (e.g., Luce 1959 and Luce and Suppes 1965).

Under the MNL, the utility for i 2 S � � is Ui D ui C �i , and the utility for
the no-purchase option is U0 D u0 C �0, where ui (u0) is the expected utility for
item i (the no-purchase option), and �i ; i 2 S [ f0g are independent and identi-
cally distributed (i.i.d.) Gumbel (double exponential) random variables with mean 0

and shape factor �. The cumulative distribution function for a Gumbel random vari-
able is F.x/ D e�e�.x=�C”/

, where � � 0:5772. The Gumbel distribution is utilized
mainly because it is closed under maximization (i.e., the maximum of several inde-
pendent Gumbel random variables is also a Gumbel random variable). This property
leads to closed-form expressions for purchase probabilities, given below, which fa-
cilitate their use in analytical models:

qi .S/ D viP
j 2S[f0g vj

; i 2 S; (14.1)

where vj � euj=�, j 2 S [ f0g.
Another reason for the widespread use of MNL is that it has been shown to

be a good fit to actual store transaction data, and its parameters can be estimated
somewhat easily, especially with the wide use of information systems that track
such transactions (e.g., Guadagni and Little 1983, Hauser 1978, McFadden 1974,
McFadden et al. 1978).

One drawback of the MNL is that it suffers from the independence from irrele-
vant alternatives (IIA) property, i.e., the ratio of purchase probabilities of two items
is the same regardless of the choice set they are in. This implies that MNL is suited
for modeling situations where all items in the product line are “broadly similar”
or “close substitutes,” which is not always the case in practice. For example, in an
ice-cream product line, a chocolate flavor is a closer substitute for other chocolate
flavors than for vanilla flavors. The nested multinomial logit model (NMNL), a vari-
ation of the MNL, has been proposed by Ben-Akiva (1973) as a remedy for the IIA
property.
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14.4.2 Locational Choice Model

This model is attributed to (e.g. Lancaster 1990).1 Items in � are assumed to be
located on the interval Œ0; 1� representing the attribute space, with the location of
product i denoted as bi . Consumers have an ideal product in mind, with location X .
(This location may vary among consumers and is therefore considered a random
variable.) Then, the consumer’s utility for item i is Ui D U � g.jX � bi j/, where U

represents the utility of a product at the ideal location and g.�/ is a strictly increasing
function representing the disutility associated with deviation from the ideal location
(jX � bi j is the distance between the location of item i and the ideal location).
The purchase probabilities of items in � are then derived for a given probability
distribution of X , based on the principle of utility maximization.

In the remainder of this chapter, we present several product line models that
utilize the MNL and locational choice models. We then provide a discussion in
Sect. 14.10 on the attractiveness of utilizing the NMNL model for future research.

14.5 Variety and Inventory Under Exogenous Prices

In this section, we review models that assume that prices of items in the choice set
� are exogenously set. The retailer’s problem is to decide on the subset of items,
S � �, to offer in her product line, together with the inventory levels for items in
S . The papers we review make the following modeling assumptions:

(A1): Demand is generated from consumers arriving to the retailer’s store in a
single selling period, and behaving according to one of the choice models
discussed in Sect. 14.4.

(A2): Inventory costs are derived based on the classical single-period newsvendor
model.

(A3): Demand and cost functions are derived under “static choice” assumptions.
That is, consumers make their purchasing decisions independently of the in-
ventory status at the moment of their arrival, and they will leave the store
empty-handed if their preferred item (in S ) is out of stock.

Assumptions (A2) and (A3) simplify the analysis. Although they are somewhat
restrictive, they can be justified in certain settings. For example, (A2) holds in the
case of retailers utilizing electronic data exchange and computer-assisted ordering,
whereas (A3) holds for retailers who sell based on catalogs or floor models. We refer
the reader interested in a more in-depth discussion of (A2) and (A3) to Smith and
Agrawal (2000) and van Ryzin and Mahajan (1999), respectively. We note here that

1 This model is a generalization of Hotelling (1929). It is based on perceiving a product as a “bundle
of characteristics” rather than only utilizing location and transportation costs as in Hotelling (1929),
(see Lancaster 1990 for details).
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recent works that relax (A3) present numerical evidence suggesting that the static
choice model provides a reasonable approximation. (see Gaur and Honhon 2006;
Mahajan and van Ryzin 2001).

The first works on joint variety and inventory decisions under assumptions (A1)–
(A3) are those of van Ryzin and Mahajan (1999), with exogenous prices, and Smith
and Agrawal (2000). Many recent papers build on the work of van Ryzin and
Mahajan (1999). Bish and Maddah (2008) study a simplified version of the van
Ryzin and Mahajan model by considering a product line of similar items having the
same cost and demand structure but endogenize the pricing decision. Cachon et al.
(2005) focus on the effect of consumer search on the assortment decision in the van
Ryzin and Mahajan framework, and Gaur and Honhon (2006) utilize the Lancaster
consumer choice model (instead of the MNL). In the remainder of this section, we
review van Ryzin and Mahajan’s work, i.e., the basic van Ryzin and Mahajan model
and these subsequent works in detail.

Consider a product line under the MNL consumer choice process within a
newsvendor inventory setting. The probability that a customer buys item i 2 S � �

is given by qi .S/ in (14.1). The mean number of customers visiting the store in the
selling period is �. The demand for item i 2 S is assumed to be a Normal random
variable, Xi , with mean �qi .S/ and standard deviation �.�qi .S/ˇ /, where � > 0

and 0 � ˇ < 1. The reason behind this choice of parameters is to have a coefficient
of variation of Xi that is decreasing in the mean store volume � (this seems to be
the case in practice). The special case with � D 1 and ˇ D 1=2 represents a Normal
approximation to demand generated from customers arriving according to a Poisson
process with rate �.

van Ryzin and Mahajan assume that all items in � have the same unit cost, c, and
are sold at the same price, p (or have the same c=p ratio). This assumption holds,
for example, in the case of a product line having different flavors or colors of the
same variant. On the cost side, items of the product line do not have a salvage value
and no additional holding or shortage costs apply. This cost structure captures the
essence of inventory costs in terms of overage and underage costs. By utilizing the
well-known results for the newsvendor model under Normal demand, the optimal
inventory level for item i 2 S , y�

i .S/ and the expected profit from S at optimal
inventory levels, ….S/, can be written as

y�
i .S/ D �qi .S/ C ˆ�1.1 � c

p
/�.�qi .S//ˇ ; i 2 S ; (14.2)

….S/ D
X

i2S

h
�qi .S/.p � c/ � p	�.�qi .S//ˇ

i
; (14.3)

where 	 � 
.ˆ�1.1 � c=p//, 
.�/ and ˆ.�/ are the probability density function
and the cumulative distribution function of the standard Normal distribution,
respectively.

The retailer’s objective is to find the optimal assortment S� yielding the maxi-
mum profit …�:

…� D ….S�/ D max
S��

f….S/g : (14.4)
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The main factor involved in determining the optimal assortment is the trade-off
between the sales revenue and the inventory cost. High variety leads to a high sales
revenue as well as a high inventory cost (due to “thinning” of item demand). As
a result, the optimal assortment should not be too small (to generate enough sales
revenue) or too large (to avoid the excessive inventory cost). The following result
from van Ryzin and Mahajan (1999) is a consequence of the trade-off between the
sales revenue and the inventory cost.

Lemma 14.1. Consider an assortment S � �. Then, the expected profit from S ,
….S; vi /, is quasi-convex in vi , the preference of item i 2 S .

Lemma 14.1 allows deriving the structure of the optimal assortment, the main
result in van Ryzin and Mahajan (1999).

Theorem 14.1. Assume that the items in � are ordered such that v1 � v2 � � � � �
vn. Then, an optimal assortment is S� D f1; 2; : : : ; kg, for some k � n.

Theorem 14.1 states that an optimal assortment contains the k most popular items
for some k � n. Thus, the structure of the optimal assortment is quite simple.
van Ryzin and Mahajan then study the factors that affect the variety level. As-
suming v1 � v2 � � � � � vn, they consider assortment of the optimal form
Sk D f1; 2; : : : ; kg and use k as a measure of variety. They derive asymptotic
results stating that (1) ….SkC1/ > ….Sk/ for sufficiently high selling price, p;
(2) ….SkC1/ < ….Sk/ for sufficiently low no-purchase preference, v0; and (3)
….SkC1/ > ….Sk/ for sufficiently high store volume, �. For example, (3) implies
that stores with high volume such as “super stores” should offer a high variety.

14.5.1 Inventory and Assortment Decisions with Similar Items

This section is based on Bish and Maddah (2008). Consider the model in van Ryzin
and Mahajan (1999) under the additional assumption that v1 D v2 D � � � D vn D v.
However, now the consumer utility depends on the price by assuming that u1 D
u2 D � � � D un D ˛ � p (equivalently v D e.˛�p/=�), where ˛ is the mean
reservation price (quality index) of an item. Such a structure, which allows a better
understanding of the effect of pricing, is common in the literature (e.g., Guadagni
and Little 1983).

This is a stylized model with “similar” items. It may apply in cases such as a
product line with different colors or flavors of the same variant, where consumer
preferences for the items in the product line are quite similar. The main research
question here is to characterize the optimal assortment size (i.e., the number of
similar items to carry in the store). In addition, this simple setting allows a com-
prehensive study of the factors that affect the variety level through a comparative
statics analysis.

While all the results in Bish and Maddah hold under the general demand model
in van Ryzin and Mahajan, to simplify the exposition, the following results are given



376 B. Maddah et al.

in terms of � D 1 and ˇ D 1=2 (which corresponds to demand generated from a
Poisson process). Then, for an assortment of k items, the optimal inventory level of
each item in (14.2) and the expected profit at the optimal inventory levels in, (14.3)
respectively, reduce to

y�.p; k/ D �q.p; k/ C ˆ�1

�
1 � c

p

�p
�q.p; k/ ; (14.5)

….p; k/ D k
h
�q.p; k/.p � c/ � p	.p/

p
�q.p; k/

i
; (14.6)

where q.p; k/ D .e.˛�p/=�/=.v0 C ke.˛�p/=�/ and 	.p/ � 
.ˆ�1.1 � c=p//.2

Despite the simplified form of the expected profit function in (14.6), it is still
difficult to analyze it because of the complicating term 	.p/. Bish and Maddah
develop the following approximation to simplify the analysis:

	.x/ � ax.1 � x/ ; (14.7)

where a D 1:66. (See Maddah (2005) for more details on this approximation.) With
this approximation, ….p; k/ in (14.6) simplifies to the following:

….p; k/ D k.p � c/
h
�q.p; k/ � a

c

p

p
�q.p; k/

i
: (14.8)

Under a regularity assumption (see Bish and Maddah for details), aimed at elim-
inating trivial cases where demand is too low and the retailer is better off selling
nothing, the expected profit in (14.8) is well behaved in the assortment size k, as the
following theorem indicates.

Theorem 14.2. The expected profit ….p; k/ is strictly pseudo-concave and uni-
modal in k.

Let k�
p � arg maxk ….p; k/. Theorem 14.2 states that the expected profit increases

with variety (k) up to k D k�
p , and then decreases. Thus, Theorem 14.2 implies that

there exists an upper limit on the variety level. This is not the case in the riskless
case (with deterministic demand �q.p; k/ and profit k.p �c/�q.p; k/) where there
is no upper bound on variety in the product line. That is, inventory cost limits the
variety level of the product line. Theorem 14.2 formally proves this last statement.
The intuition behind this result is linked to the trade-off between the sales revenue
and the inventory cost and their implications on variety level discussed above.

Based on Theorem 14.2, one can perform a comparative static analysis on the
optimal assortment size, k�

p , as presented in Theorem 14.3.

2 We write y�.p; k/ and ….p; k/ as functions of both p and k because we will refer to this model
later, in Sect. 14.6.2, to present the pricing analysis.
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Theorem 14.3. The optimal assortment size k�
p is:

(i) Decreasing in the unit cost per item, c;
(ii) Increasing in the expected store volume (arrival rate), �.

Theorem 14.3 states that the higher the unit cost per item, the lower the optimal
variety level. That is, retailers selling costly items should not offer a wide variety.
On the other hand, retailers with low-cost items should diversify their assortments.
This result should not be seen as conflicting with the asymptotic result of van Ryzin
and Mahajan (1999) indicating that the expected profit is increasing in the variety
level at a price that is large enough since high prices are not necessarily based on
high costs. Theorem 14.3 also indicates that a higher store volume allows the retailer
to offer a wide variety. This extends the asymptotic result of van Ryzin and Mahajan.

14.5.2 Inventory and Assortment Decisions
Under Consumer Search

This section is based on Cachon et al. (2005), whose model extends van Ryzin and
Mahajan (1999) by accounting for “consumer search” and by considering a general
concave inventory cost function. Consumer search refers to the phenomenon that
consumers may not purchase their most preferred item in the retailer’s product line
if it is possible for them to search other retailers for, perhaps, “better” items.

The expected profit function considered in Cachon et al. (2005) is a generaliza-
tion of (14.3), with an inventory cost function that is concave and increasing. Cachon
et al. show that the structure of the optimal assortment of van Ryzin and Mahajan
(1999) in Theorem 14.1 continues to hold with this more general cost function.

Cachon et al. present two consumer search models that differ from the “no-
search” model (van Ryzin and Mahajan 1999) in the expressions for the purchase
probabilities. In the “independent assortment” search model, it is assumed that no
other retailer in the market carries any of the items offered in the product line of the
retailer under consideration. This applies, for example, to product lines of jewelry
or antiques. In the “overlapping assortment” model, a limited number of variants are
available in the market, and the same variant can be offered by many retailers. This
applies, for example, to product lines of digital cameras. In this case, the consumer’s
expected value from search decreases with the assortment size. Offering more items
in an assortment reduces the search value for the consumer.3

The purchase probabilities in the independent assortment model are de-
rived based on Gumbel utilities as in Sect. 14.4.1, with an additional utility
from the search, Ur D ur C �r . In addition, the search cost is b. Then, the

3 We are using the term “assortment size” loosely here to refer to variety level in terms of number
of items in an assortment. Cachon et al. use a more precise measure.
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purchase probabilities, qsi
i .S/, are derived as a function of the no-search purchase

probabilities, qi.S/ in (14.1), as

qsi
i .S/ D qi .S/.1 � H.U ; S// ; i 2 S; (14.9)

where U � ur � b and H.U ; S/ D e�.v0CPj 2S vj /e�.U =�C�/
.

In the overlapping assortment model, the purchase probabilities, qso
i .S/, are de-

rived as

qso
i .S/ D qi .S/.1 � H.U .S/; S// ; i 2 S; (14.10)

where U .S/ is the unique solution to
R1

U .S/.x � U .S//w.x; S/dx D b, w.x; S/ is

the density function of U max D maxj …S Uj , and H.�/ is as defined in (14.9).
Cachon et al. show that the independent consumer search model does not change

the structure of the optimal assortment in the no-search (van Ryzin and Mahajan)
model in Theorem 14.1. However, this result does not hold under the overlapping
assortment search model. Nevertheless, Cachon et al. point out that restricting the
search to “popular assortments” having the structure given by Theorem 14.1 pro-
vides reasonable results in most of their numerical test cases.

14.5.3 Inventory and Assortment Decisions
Under Locational Choice

This section is based on Gaur and Honhon (2006). Rather than choosing from a
finite set of variants � in composing the product line, Gaur and Honhon determine
the locations and the number of items to be offered in the Œ0; 1� interval. Specifically,
the problem in Gaur and Honhon (2006) is to determine the number, n, and the
locations of items in an assortment given by b D .b1; : : : ; bn/, where bj 2 Œ0; 1�,
bj < bj C1, is the location of item j . All items have the same unit cost, c, and are
sold at the same price, p (as in Bish and Maddah 2008 and van Ryzin and Mahajan
1999).

The demand function under the locational choice model is derived as discussed
in Sect. 14.4.2 with U D Z � p. The utility of the no-purchase option is assumed
to be zero. The coverage distance of item j is defined as L D maxxfjx � bj j W
Z�p�g.jx�bj j/ > 0g. The first choice interval containing the ideal item locations
for customers who purchase item j (i.e., customers who obtain maximum positive
utility from j ) is then given by Œb�

j ; bC
j �, where b�

j D maxfbj � L; .bj C bj �1/=2g
and bC

j D minfbj C L; .bj C bj C1/=2g. Finally, the purchase probability of item
j is given by

qj .b/ D P rfb�
j � X � bC

j g D FX .bC
j / � FX .b�

j / ;
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where FX .�/ is the cumulative distribution function of X . Gaur and Honhon consider
that the distribution of X is such that its density function is either unimodal or
uniform. Then, similar to Bish and Maddah (2008), demand for item j is considered
to be a Normal random variable with mean �qj .b/ and standard deviation

p
�qj .b/.

Gaur and Honhon derive a newsvendor-type expected profit function similar
to van Ryzin and Mahajan (1999) but they include a fixed cost, f , for adding
an item to an assortment. Gaur and Honhon then determine the product locations
b D .b1; : : : ; bn/; bj 2 Œ0; 1�, together with the number of items to offer, n, so as
to maximize the expected profit. Their main result is that items should be equally
spaced on a subinterval of Œ0; 1�, with the distance between any two adjacent items
equal to 2L. They also derive the optimal number of items to offer, n�, as a function
of b�

1 and propose a line search method to find b�
1 . The main insight here is that the

optimal assortment contains products that are equally spaced, with no substitution
between the products, regardless of the distribution of consumer preference on the
attribute space (given by F.�/). Gaur and Honhon obtain further insights through a
numerical study by showing that, unlike the MNL case (in van Ryzin and Mahajan
[1999]), the optimal assortment may not contain the most popular items. They also
find, contrary to the MNL case (e.g., Theorem 14.2 of Bish and Maddah 2008), that
it is always optimal to cover the entire market (i.e., the [0,1] interval) in the absence
of fixed costs.

14.6 Inventory and Pricing for a Given Assortment

In this section, we review models that assume that the retailer’s assortment is ex-
ogenously determined, and study the retailer’s problem of determining the prices
and inventory levels for the items in the assortment. These models are based on the
papers by Aydin and Porteus (2008), Bish and Maddah (2008), and Cattani et al.
(2010), which, to our knowledge, are the only papers that consider joint pricing and
inventory decisions for substitutable items under consumer choice. All these models
continue to consider a single-period setting and static choice assumptions, as dis-
cussed in Sect. 14.5, and they all consider demand functions generated by the MNL
choice model. In that sense, these papers can be seen as extentions to van Ryzin
and Mahajan (1999), but without considering the assortment decision, as well as
variants to the price-setter newsvendor model (e.g., Petruzzi and Dada 1999).

Bish and Maddah (2008) and Cattani et al. (2010) essentially consider the same
model as van Ryzin and Mahajan, with endogenous prices and price-dependent de-
mand functions derived from the MNL choice model. However, Bish and Maddah
(2008) consider a stylized model with similar items having the same cost and de-
mand structure, and obtain stronger analytical results that lead to useful insights on
the effect of accounting for inventory costs on the pricing of product lines. Aydin
and Porteus (2008) consider a model similar to Cattani et al. (2010), but simplify
the demand function by utilizing a “multiplicative” structure, which assumes that
the coefficient of variation of the demand is independent of pricing. This allows
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establishing important structural properties of the optimal prices of items in the
assortment (the main result is that these prices are the unique solution to the first-
order optimality conditions). Such regularity results could not be derived with the
“mixed multiplicative-additive” demand function in Bish and Maddah (2008) and
Cattani et al. (2010) (where both the standard deviation and coefficient variation of
the demand are functions of prices)4. The multiplicative model of Aydin and Porteus
(2008) is commonly used in the academic literature (e.g., Petruzzi and Dada 1999)
and may be applicable in certain practical situations. However, it does not apply
directly to many practical situations, such as demand being generated from Poisson
arrivals. This is the motivation for the mixed multiplicative–additive model of Bish
and Maddah (2008) and Cattani et al. (2010).5

14.6.1 Inventory and Pricing Decisions with a Multiplicative
Demand Function

Aydin and Porteus (2008) assume that the demand for item i 2 S is given by
Xi D M qi.S; p/�i , where M is a positive constant representing the expected mar-
ket size, and �i ; i 2 S , are i.i.d. random variables with positive support and with a
cumulative distribution function which is IFR6, and qi .S; p/ is the MNL purchase
probability obtained from (14.1) by assuming that uj D ˛j � pj , (similar to Bish
and Maddah model [2008] of Sect. 14.5.1), i.e.,

qi .S; p/ D e.˛i �pi /=�

v0 CP
j 2S e.˛j �pj /=�

; i 2 S; (14.11)

with p D .p1; : : : ; pjS j/ denoting the prices of items in S , with jS j denoting the
cardinality of set S .

Aydin and Porteus write the expected profit at the optimal inventory levels as

….S; p/ D
X

i2S

…i .S; p/ D
X

i2S

pi

Z y�

i
.S;p/

0

xfXi
.S; p; x/dx ; (14.12)

4 In a “multiplicative” demand model, demand is of the form D.p/ D f .p/�, where � is a random
variable and f .p/ is a function of the price, p. In an “additive” demand model, demand is of the
form D.p/ D f .p/ C �. In a “mixed multiplicative–additive” demand model, D.p/ D g.p/ C
f .p/�, where g.p/ is also a function of the price.
5 Another practical setting where the mixed multiplicative-additive demand model is a good ap-
proximation for the actual demand is when the total number of customers visiting the store follows
a Negative Binomial distribution (see Maddah and Bish 2007 for details).
6 F.:/ is IFR if its failure rate, f .x/=.1�F.x//, is increasing in x, where f .x/ is the corresponding
density function.
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where …i .S; p/ is the expected profit from item i 2 S , y�
i .S; p/ is the optimal

inventory level for item i 2 S , i.e., y�
i .S; p/ D F �1

Xi
.S; p; 1 � ci =pi/, with FXi

.�/
and fXi

.�/ respectively, denoting the cumulative distribution function and density
functions of Xi . The objective is then to find the optimal prices,

…� D ….S; p�/ D max
p2�S

….S; p/ ; (14.13)

where �S D f.p1; : : : ; pjS j/ j p1 > c1; : : : ; pjS j > cjS jg.
Under a regularity assumption ensuring that the optimal price vector is an internal

point solution (see Aydin and Porteus 2008 for details), Aydin and Porteus prove the
following result.

Theorem 14.4. There exists a unique price vector p� that satisfies @….S; p/=@pi D
0; i 2 S . Furthermore, p� maximizes ….S; p/.

Theorem 14.4 states that the expected profit is well behaved in the sense that the
optimal prices are the unique solution to the first-order optimality conditions. Aydin
and Porteus also develop comparative statics results on the behavior of the optimal
prices as a function of demand and cost parameters.

14.6.2 Inventory and Pricing Decisions with Similar Items

Bish and Maddah (2008) study the retailer’s pricing decision of a product line within
the setting of their similar items model presented in Sect. 14.5.1, with the expected
profit at optimal inventory levels given by (14.6). In this section, we discuss the
analytical properties of the optimal price, p�

k
D arg maxp>c ….p; k/, assuming that

the assortment size, k, is fixed.
Under a regularity assumption, which ensures that the retailer will not be better

off by not selling anything, Bish and Maddah observe numerically that the expected
profit, ….p; k/, is well behaved (pseudo-concave) in the price, p, for reasonably low
prices where ….p; k/ > 0. Bish and Maddah then focus on developing comparative
statics results on the behavior of the optimal price as a function of the problem
parameters. The following result studies the effect of store volume on pricing.

Lemma 14.2. If p�
k

> 2c (p�
k

< 2c) at some � D �0, then p�
k

is decreasing
(increasing) in � for all �.

Lemma 14.2 asserts that the optimal price as a function of the expected store vol-
ume moves in one direction only, all else held constant. This might be the case of
an expensive store with a low volume where the price decreases as a result of an
increase in volume, or the case of a low-price high-volume store where the price
increases with volume. The condition p�

k
> 2c may be seen as an indicator of the

nature of the marketplace and the store.
Bish and Maddah also compare the optimal “riskless” price when assuming

deterministic demand p0
k

, to the optimal “risky” price, p�
k

. This is an important
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question in the literature on single item joint pricing and inventory problem. For
an additive demand function, Mills (1959) finds that p� � p0, where p� and p0,
respectively, denote the risky and riskless price. On the other hand, for the multi-
plicative demand case, Karlin and Carr (1962) prove that p� � p0. Recall that in
the case of Bish and Maddah model, the demand is mixed multiplicative–additive.

Lemma 14.3. If p0
k

< 2c, then p�
k

� p0
k

. Otherwise, p�
k

� p0
k

.

Lemma 14.3 is based on the insight that the risky price is adjusted from the riskless
price in a way as to reduce demand variability, measured by both demand variance
(�q.p; k/) and coefficient of variation, CV (1=

p
�q.p; k/) (see Petruzzi and Dada

1999.) If p0
k

< 2c, then variability due to demand variance is critical, and, accord-
ingly, p�

k
is adjusted up from p0

k
to reduce variance. Otherwise, variability due to

demand CV is critical, and p�
k

is adjusted down from p0
k

to reduce CV.

14.6.3 Inventory and Pricing Decisions with a Mixed
Multiplicative–Additive Demand Function

Cattani et al. (2010) consider the pricing and inventory (capacity) decisions for two
substitutable products, which can be produced either by a single flexible resource
or by two dedicated resources. Their expected profit function is similar to that of
van Ryzin and Mahajan (1999) in (14.3), but the purchase probabilities are replaced
by those in (14.11). The main finding of Cattani et al. relevant to our discussion
here is a heuristic for setting the prices and inventory levels of a given assortment,
referred to as “cooperative tattonement” (CT). The idea of the CT heuristic is to
develop a near-optimal solution by iterating between a marketing model, which sets
prices, and a production model, which determines the inventory cost. At each iter-
ation of CT, the prices (having equal profit margins at optimality, as Cattani et al.
formally prove) of the marketing model are used to develop the demand for the
production model, and the inventory cost from the production model is utilized to
develop an equivalent unit cost for the marketing model (see Cattani et al. 2010
for details).

Cattani et al. report a good performance of the CT procedure in obtaining near-
optimal solutions. The expected profit from CT is found to be within 0.1% of the
optimal expected profit in many cases. One possible reason behind the good perfor-
mance of the CT heuristic is that the equal profit margin property adopted by this
heuristic does in fact hold, approximately (see Sect. 14.7).

14.7 Joint Variety, Pricing, and Inventory Decisions

Finally, we consider a retailer who jointly sets the three key decisions for her product
line: variety, pricing, and inventory. This is a realistic integrated setting, which is
sought to enhance retailers’ profitability. To the best of our knowledge, the only
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work that addresses this joint setting is the recent paper by Maddah and Bish (2007),
which considers the joint problem under assumptions (A1)–(A3) of Sect. 14.5. We
devote the remainder of this section to the model Maddah and Bish (2007).

The Maddah and Bish model can be seen as an extension to the van Ryzin and
Mahajan (1999) model by endogenizing the prices similar to Cattani et al. (2010).
Maddah and Bish adopt a Normal demand model, which depends on pricing in a
mixed multiplicative–additive fashion, similar to Cattani et al. (2010). With this de-
mand model, the optimal inventory level for item i 2 S , y�

i .S; p/ and the expected
profit from S at optimal inventory levels, ….S; p/, in (14.2) and (14.3) are given by

y�
i .S; p/ D �qi .S; p/ C ˆ�1

�
1 � ci

pi

�p
�qi .S; p/; i 2 S ; (14.14)

….S; p/ D
X

i2S

h
�qi .S; p/.pi � ci / � pi 	i .pi /

p
�qi .S; p/

i
; (14.15)

where qi .S; p/ is given by (14.11). The retailer’s objective of maximizing the ex-
pected profit is then given by

…� D ….S�; p�/ D max
S��

max
p2�S

f….S; p/g : (14.16)

Under a regularity assumption, which guarantees that the retailer will not be bet-
ter off not selling anything, Maddah and Bish develop the following result on the
behavior of the expected profit as a function of the mean reservation price of an item.

Lemma 14.4. Consider an assortment S � �. Assume that prices of items in S

are fixed at some price vector p. Then, the expected profit from S , ….S; p; ˛i /, is
strictly pseudo-convex in ˛i , the mean reservation price of item i .

Lemma 14.4 extends the result of Van Ryzin and Mahajan in Lemma 14.1. The intu-
ition behind this lemma is related to the trade-off between the sales revenue and the
inventory cost discussed in Sect. 14.5. Lemma 14.4, together with intuitive results
on monotonicity in the unit costs, leads to Maddah and Bish’s main “dominance
result” presented next.

Lemma 14.5. Consider two items i; k 2 � such that ˛i � ˛k and ci � ck , with
at least one of the two inequalities being strict, that is, item k “dominates” item i .
Then, an optimal assortment containing i must also contain k.

The number of assortments to be considered in the search for an optimal assortment
can be significantly reduced if there are a few dominance relations like the one de-
scribed in Lemma 14.5 (see Maddah and Bish 2007 for details). In addition, Lemma
14.5 allows the development of the structure of an optimal assortment in a special
case, as stated in Theorem 14.5.

Theorem 14.5. Assume that the items in � are such that ˛1 � ˛2 � � � � � ˛n, and
c1 � c2 � � � � � cn. Then, an optimal assortment is S� D f1; 2; : : : ; kg, for some
k � n.
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The most important situation where Theorem 14.5 applies is the case in which all
items in � have the same unit cost. Theorem 14.5 extends the result of van Ryzin and
Mahajan in Theorem 14.1 to a product line with items having distinct endogenous
prices.

Theorem 14.5 greatly simplifies the search for an optimal assortment in the spe-
cial case where it applies, as it suffices to consider only n assortments out of .2n �1/

possible assortments. For cases where Theorem 14.5 does not apply, one may ex-
pect an optimal assortment to have the k; k � n; items with the largest “average
margin,” ˛i � ci . However, Maddah and Bish present several counter-examples of
optimal assortments not having items with the largest average margins, indicating
that a result similar to Theorem 14.5 does not hold in general. Nevertheless, Maddah
and Bish (2007) also report that popular assortments, consisting of items with the
largest average margins, return expected profits that are very close to the optimal
expected profit.

Maddah and Bish also analyze the structure of optimal prices by exploiting the
first-order optimality conditions. They find (analytically) that the optimal prices
are characterized by approximately equal profit margins (i.e., .p�

i � ci / � .p�
j �

cj /; i; j 2 S�). It is to be noted that in the absence of inventory costs it has been
shown that the profit margins are exactly equal (e.g., Anderson et al. 1992 and Aydin
and Ryan 2002). That is, accounting for inventory costs complicates pricing.

The analytical and numerical results that popular assortments and prices with
equal profit margins are near-optimal motivate an efficient “equal-margin heuristic”
(EMH), which builds on these insights. In particular, EMH exploits a limited num-
ber of assortments utilizing single-variable line searches to determine the optimal
prices. Extensive numerical results presented by Maddah and Bish suggest an ex-
cellent performance of EMH, with an average optimality gap of 0.5% in terms of
the expected profit.

14.8 A Critique and a Comparison of Insights
from the Reviewed Models

Most of the research reviewed in Sects. 14.5–14.7 can be seen as extensions of the
seminal work by van Ryzin and Mahajan (1999). The use of consumer choice theory
to generate the demand function in a realistic manner paved the way for a meaning-
ful integration of marketing and operations decisions in operations research models.
We believe that the works reviewed in Sects. 14.5–14.7 are just the beginning of this
promising stream of research, which is strongly connected to practice (see Sects.
14.1 and 14.9). The applicability and importance of this research particularly holds
in today’s uncertain and unstable business environments.

Assumptions (A2)–(A3), adopted by the papers reviewed here, may seem
restrictive at first. However, the insights gained on the effect of consumers’ pref-
erence and substitution attitude on the retailer’s pricing, inventory, and variety
decisions are valuable as they enhance our understanding of the substitution and
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cross-price effects in isolation of other factors in the complex problem of product
line management. Relaxing these assumptions does not seem to be too challenging
in practice, especially if one is interested in developing practical tools that generate
“good” decisions that are not necessarily optimal. The CT and EMH heuristics
developed, respectively, by Cattani et al. (2010) and Maddah and Bish (2007),
clearly demonstrate how heuristics grounded on a sound theoretical foundation
yield “good” product line management solutions.

All the reviewed models adopt a single-period newsvendor-type framework on
the supply side. The main motivation behind this is analytical tractability (as well
as applicability in certain situations). An exact analytical treatment of other real-
istic stochastic inventory policies, such as the well-known .s; S/ policy, does not
appear to be possible within the integrated framework considered here. (For these
situations, one can develop heuristics that build on the single-period newsvendor
insights.) On the demand side, there is more leeway, however. Indeed, the models in
Sects. 14.5–14.7 are distinguishable mainly by their demand functions. This raises
the important question of which demand model to use. The straightforward answer,
as in any other mathematical modeling situation, is to use the model that best fits the
situation at hand. Ad hoc goodness of fit tests, particularly from the economic and
marketing literature (e.g., Guadagni and Little 1983; Hauser 1978; McFadden 1974;
and McFadden et al. 1978), can help with this process. Nonetheless, the demand
functions based on the MNL logit choice are particularly suited for many situations,
as discussed above. In contrast, the locational choice model utilized by Gaur and
Honhon (2006) appears to be too stylized (e.g., by assuming the availability of a
continuum of products) to be of direct practical use.

An interesting and useful feature of the logit demand functions is that they can
be (somewhat) easily refined to capture additional factors. The adaptation to incor-
porate cross-price effects by Aydin and Porteus (2008), Bish and Maddah (2007,
2008), and Cattani et al. (2010) is borrowed from a vast literature in marketing and
economics (e.g., Anderson et al. 1992 and Guadagni and Little 1983).7 Other inno-
vative adaptations, such as incorporating consumer search by Cachon et al. (2005),
seem to be also possible. Finally, the “classical” objection to logit demands due to
the IIA property can be addressed by another refinement leading to the nested logit
model, as discussed in Sect. 14.4.

Another useful aspect of logit demand models is that the results obtained in
simplified frameworks seem to continue to hold with minor “perturbations” in more
complex settings. That is, logit models are robust. For example, the fundamental re-
sult of van van Ryzin and Mahajan (1999), that an optimal assortment contains the
most popular items, continues to hold, “approximately,” when Cachon et al. (2005)

7 One issue that may wrongly appear as a mere technicality is how to incorporate price sensitivity in
logit demand functions. We prefer natural adaptations based, for example, on assuming a Poisson
or a negative binomial market size, which lead to mixed multiplicative-additive demand models,
as in Bish and Maddah (2007, 2008) and Cattani et al. (2010). Simplified pure multiplicative or
pure additive adaptations, as in Aydin and Porteus (2008), while popular in the academic literature,
seem to be difficult to justify in practice.
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and Maddah and Bish (2007) endogenize consumer search and pricing, respectively.
In fact, these authors find that assortments with the most popular items provide very
good solutions that are close to optimal. A similar observation can be made for
the equal-margin property of the optimal prices that holds exactly in the riskless
case (which ignores inventory); this result also continues to hold “approximately”
when inventory is accounted for, as shown in Cattani et al. (2010) and Maddah
and Bish (2007). Our recent work with nested logit choice also indicates that the
most-popular-item assortments and equal-margin pricing lead to solutions of high
quality (see Kalakesh 2006)8. This robustness property facilitates the development
of effective heuristics for practical purposes.

Finally, some of the reviewed models take the pricing decision as exogenous
and focus on the other two (i.e., variety and inventory), see Sect. 14.5. In practice,
whether or not the pricing decision should be assumed exogenous depends on the
setting. Exogenous pricing is somewhat justified for popular, fast moving, competi-
tive items, for which pricing is a complex matter, see Sect. 14.9. On the other hand,
endogenizing the pricing decision proves to be quite useful for slow movers for
which consumers are less price sensitive. Hence, price optimization is a valuable
tool, especially for retailers with high variety levels that extend beyond the basic
fast movers.

14.9 Current Practice

While a few retailers have started integrating assortment, pricing, and inventory
decisions for their product lines (see Sect. 14.1), most retailers still make these
decisions separately. However, there has been an increase in interest in this type
of integrated decision-making in both the academic community and the retailing
industry. This interest is due to (a) advances in information technology, which
make it possible to collect detailed data on store performance (e.g., sales, inventory
levels) and (b) progress in academic research that is at the interface of marketing,
economics, and OM. In addition to a sequential approach to these decisions, most re-
tailers still use heuristic, rule-of-thumb approaches, rather than optimization-based
methodology to make these decisions. This is because of the complexities involved
(e.g., assessing competition effects, developing demand and cost functions, man-
aging a large number of items, difficulties in obtaining reliable data, etc.). In this
section, we briefly summarize our observations on pricing, inventory, and variety
management based on our experience with Hannaford, a large chain of grocery
stores in the North East of the USA.

In Hannaford, variety, pricing, and inventory management are currently separated
in most stores. However, some stores, with sophisticated inventory systems, are in

8 The robustness of the MNL models seems to be due to the fact that the essential demand splitting
and cross-price effects dominate other factors in most cases.
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the process of incorporating their inventory data into the pricing decision. We first
discuss the pricing practice.

Pricing strategy in a supermarket can be very challenging, mainly due to the
size of the problem. There are thousands of items to price, and the number of new
items continues to increase. Product lines also have a large number of items, which
may be available in different forms, such as frozen biscuits, refrigerated biscuits,
biscuit mix, and bakery fresh biscuits, in the supermarket. The large size of the
problem makes the decision set confusing to both consumers and retailers. On the
one hand, the pricing strategy needs to be tailored to each individual product. On
the other hand, it should be scalable such that it is a manageable task. Furthermore,
there are additional complexities not considered in any of the stylized models dis-
cussed above. For example, the store brand needs to represent a better value than
the national brand, but not so discounted that quality is questionable. Another major
consideration is competition coming from the multiple channels that carry similar
products, i.e., supercenters, dollar stores, other supermarkets, and C-stores.

As a result, pricing strategy in most retailers is done in a rule-of-thumb manner,
and different approaches are used to reduce the size of the problem. For example,
it is typical for retailers to utilize more sophisticated pricing strategies only for a
small portion (100–300) of their items, which includes the best selling and most
price sensitive items. These items are divided into groups (e.g., meat, bread, milk),
and analyst(s) assigned to each group decide on the prices by carefully compiling
available data on competitors’ pricing, historical records, and other aspects.

Items not considered best sellers are typically priced according to a simple rule
(e.g., by applying a constant percentage markup or by using a simple constant price
elasticity model). Line pricing, which refers to the process of grouping hundreds
of SKUs into one master item and charging a common price for the group, is a
means of managing like items. For example, all Pepsi 2-L products may be priced
the same regardless of their individual costs. Private label retails can be managed
simply by using the national brand as a benchmark. For example, a retailer may
decide to price its coffee at 10% below the national brand. Fresh foods (e.g., pro-
duce, deli, and bakery) have the additional consideration of “shrink” (i.e., loss of
inventory mainly due to deterioration and spoilage). Some supermarkets use shrink
estimates in pricing. However, our experience is that it is quite difficult to predict
shrink values, especially at the individual-item level.

As mentioned above, pricing and inventory decisions are typically managed
separately. However, some stores with sophisticated inventory systems that track
inventory levels continuously and present useful statistics are attempting to leverage
the inventory data in pricing. In addition, these inventory management systems can
help the retailer reduce supply chain costs, which can then be reflected in prices.
Inventory decisions for most items are managed in a heuristic manner, depend-
ing on whether they are fast or slow movers and whether they have short or long
leadtimes.

Regarding variety management, this decision is separated from pricing and in-
ventory management. Store assortments are typically determined based on the store
size and layout (there are few formats that are adopted by stores in the chain).
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The store format, in turn, is determined based on the demographical composition of
the area where the store is located as well as the type of competitor stores available.

14.10 Conclusions and Directions for Further Research

In this chapter, we review recent works on pricing, variety, and inventory decisions
for a retailer’s product line composed of substitutable items. This stream of litera-
ture contributes to both the theory and the practice of operations management and
marketing in two aspects. First, demand models are developed in a realistic way
from consumer choice models, based on the classical principal of utility maximiza-
tion. Second, decisions pertaining to traditionally separated departments in a firm
(e.g., inventory and variety, inventory and pricing) are integrated and optimized
jointly, an approach that can eliminate inefficiencies due to lack of coordination
between marketing and operations. We must note, however, that the current retail
practice, for the most part, has not yet caught up with this integrated paradigm that
utilizes sophisticated demand models. Nevertheless, the widespread use of informa-
tion systems and the recent progress made in the academic literature are fueling an
interest in this type of approach.

The area of research considered in this chapter is relatively new and there remain
many open questions. One area for further research is to use more refined (i.e., more
applicable) consumer choice models. Most of the reviewed papers utilize the popular
MNL model. However, as discussed in Sect. 14.4, due to the IIA property, the MNL
model implicitly assumes that items in a product line are broadly similar. Needless to
say, this may not apply in many practical situations. One remedy is to adopt a nested
logit choice (NMNL) model, which, as discussed in Sect. 14.4, overcomes this short-
coming, while maintaining a reasonable level of analytical tractability. Hopp and Xu
(2003) utilize NMNL in a competitive setting to understand the effect of modular
design on variety and pricing competition within a stylized duopoly environment.
They do not address the issue of utilizing the NMNL as a refined choice model
for joint pricing, assortment, and inventory optimization, which we believe is an
important direction for future research. Cachon and Kök (2007) utilize the NMNL
for modeling consumer choice between retailers offering multiple categories in a
competitive duopoly setting, where some customers are “basket shoppers” who buy
items from multiple “complementary” categories. (Agrawal and Smith [2003] con-
sider a similar basket shopping behavior within a monopoly setting and a general
consumer choice model.) While Cachon and Kök (2007) offer an interesting ap-
plication of the NMNL, we believe that there is theoretical and practical value of
studying the NMNL as a refined choice model in monopoly settings.

Another important area for further research (that would make this line of re-
search more applicable) is to develop effective decision tools under fairly general
assumptions. For example, most of the reviewed works assume a “static choice”
setting, where consumers do not substitute another item for their preferred item in
the event of a stock out. While the limited results discussed in Sect. 14.5 indicate that
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solutions based on static choice assumptions do not perform too badly in handling
the dynamic situation, more research is needed in this direction. Specifically, numer-
ically efficient heuristics that can generate good solutions for the dynamic situation
and that can be used in practice are needed.

A promising area for future research involves studying the coordination of retail-
ers’ and manufacturers’ pricing, variety, and inventory decisions in supply chains.
The problem of coordinating order decisions has been widely studied. As discussed
in Sect. 14.3, some research has already started in this direction but more research
is needed.

Finally, further investigation of the analytical properties of the existing models
is also worthwhile. For example, the structural properties of the optimal assort-
ment and prices for the joint problem studied by Maddah and Bish (2007) deserve
more study.
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Chapter 15
Managing Perishable and Aging Inventories:
Review and Future Research Directions

Itir Z. Karaesmen, Alan Scheller-Wolf, and Borga Deniz

15.1 Introduction

Over the years, several companies have emerged as exemplary of “best practices”
in supply chain management; for example, Wal-Mart is frequently cited as us-
ing unique strategies to lead its market. One significant challenge for Wal-Mart
is managing inventories of products that frequently outdate: A significant portion
of Wal-Mart’s product portfolio consists of perishable products such as food items
(varying from fresh produce to dairy to bakery products), pharmaceuticals (e.g.,
drugs, vitamins, cosmetics), chemicals (e.g., household cleaning products), and cut
flowers. Wal-Mart’s supply chain is not alone in its exposure to outdating risks –
to better appreciate the impact of perishability and outdating in society at large,
consider these figures: In a 2003 survey, overall unsalable costs at distributors to
supermarkets and drug stores in consumer packaged goods alone were estimated
at $2.57 billion, and 22% of these costs, over 500 million dollars, were due to ex-
piration in only the branded segment (Grocery Manufacturers of America 2004).
In the produce sector, the $1.7 billion US apple industry is estimated to lose $300
million annually to spoilage (Webb 2006). Note also that perishability and outdat-
ing are a concern not only for these consumer goods, but for industrial products
(for instance, Chen (2006), mentions that adhesive materials used for plywood lose
strength within 7 days of production), military ordnance, and blood – one of the
most critical resources in health care supply chains. According to a nationwide sur-
vey on blood collection and utilization, 5.8% of all components of blood processed
for transfusion were outdated in 2004 in the USA (AABB 2005).

In this chapter, we provide an overview of research in supply chain management
of products that are perishable or that outdate, i.e., products that age over time.
Thus, we largely exclude single-period models which are commonly used to rep-
resent perishable items (with an explicit cost attached to expected future outdates).
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While these newsvendor-type models can convey important insights, they are often
too simple to provide answers to some of the more complex questions that arise
as inventory levels, product characteristics, markets and customer behaviors change
over time. Furthermore, we exclude research that models decay or deterioration of
inventories assuming certain functional forms (e.g., exponential decay). The reader
can refer to Goyal and Giri (2001) and Raafat (1991), which is supplemented by
Dave (1991), for a bibliography and classification of research on that topic. Finally,
we also exclude the research on management, planning or allocation of capacity
which is commonly referred as perishable inventory, for instance, in the airline rev-
enue management literature (see Talluri and van Ryzin (2004), for information on
revenue management). Our emphasis is on models where the inventory level of a
product must be controlled over a horizon taking into account demand, supply, and
a finite shelf-life (which may be fixed or random).

Modeling in such an environment implies that at least one or both of the follow-
ing holds: First, demand for the product may change over time as the product ages;
this could be due to a decrease in the utility of the product because of the reduced
lifetime, lessened quality, or changing market conditions. Second, operational deci-
sions can be made more than once (e.g., inventory can be replenished by ordering
fresher products, or prices can be marked down) during the lifetime of the product.
Either of these factors makes the analysis of such systems a challenge, owing to the
expanded state space.

Our goal in this chapter is not to replicate surveys of past work (such as Nahmias
(1982), Prastacos (1984), and Pierskalla (2004); in fact we refer to them as needed
in the remainder of this chapter) but to discuss in more detail directions for future
research. We provide a selective review of the existing research and focus on those
papers which, in our view, constitute crucial stepping stones or point to promis-
ing directions for future work. We also refer to several papers in the supply chain
management literature that do not specifically study perishable inventories in order
to highlight analogous potential research areas in the supply chain management of
perishable goods.

The chapter is organized as follows: We first provide a discussion of com-
mon challenges in production planning of perishables in Sect. 15.2. We review the
research on single product, single location models in inventory management of per-
ishables in Sect. 15.3. We next focus on multi-echelon and multi-location models in
Sect. 15.4. Research with novel features such as multiple products, multiple-types
of customers and different demand models are reviewed in Sect. 15.5. We conclude
by detailing a number of open research problems in Sect. 15.6.

15.2 Challenges in Production Planning

One of the most comprehensive studies on production planning and perishable
goods is the doctoral dissertation of Lütke Entrup (2005), which focuses on
the use of leading advance planning and scheduling (APS) systems (such as
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PeopleSoft’s EnterpriseOne and SAP’s APO) to manage products with short shelf-
lives. According to Lütke Entrup (2005), the use of APS in perishable supply chains
remains low in contrast to the supply chains of non-perishable goods. He describes
how shelf-life is integrated into the current APS, and identifies particular weak-
nesses of APS systems for perishables by carefully studying the characteristics and
requirements of the supply chains of three different products. Based on these case
studies, he proposes customized solutions which would enable the APS systems
to better match the needs of the fresh produce industry. We refer the reader to
this resource for more information on practical issues in production planning for
perishable goods. In the remainder of this section, we provide an overview of the
analytical research in production planning, focusing mainly on the general body of
knowledge in operations management and management science disciplines.

Capacity planning is one of the key decisions in the production of perishables.
Research on this topic is primarily focused on agricultural products: Kazaz (2004)
describes the challenges in production planning by focusing on long-term capacity
investments, yield uncertainty (which is a common problem in the industries that in-
volve perishables), and demand uncertainty. He develops a two-stage problem where
the first stage involves determining the capacity investment and the second-stage
involves the production quantity decision. Jones et al. (2001) analyze a production
planning problem where after the initial production there is a second chance to pro-
duce, still facing yield uncertainty; Jones et al. (2003) describe the real-life capacity
management problem for a grower in more detail. Allen and Schuster (2004) present
a model for agricultural harvest risk. Although these papers do not model the ag-
ing of the agricultural product once it is produced, they highlight the long term
investment and planning challenges. We refer the reader to Kazaz (2004) for ear-
lier references on managing yield uncertainty and to Lowe and Preckel (2004) for
research directions within the general domain of agribusiness.

In addition to capacity planning and managing yield uncertainty, product-mix
decisions are integral to the management of perishables. Different companies in
the supply chain (producer, processor, distributor, and retailer) face this problem in
slightly different ways. For example, in agribusiness, a producer decides on the use
of farm land for different produce, hence deciding on the capacity-mix. A super-
market can offer a fresh fruit or vegetable as is or as an ingredient in one of their
ready-to-eat products (e.g., pre-packed fruit salad). Similarly, fresh produce can be
used in ready-to-eat, cooked products (e.g., pre-cooked, frozen dishes) or it can be
sold as an uncooked, frozen product. Note that, in these examples, one perishable
component can be used to produce products that have different shelf lives. Consider
another example from blood inventories: whole blood outdates in 42 days, whereas
a critical blood component, platelets, outdate in 5–7 days. Given their prevalence in
practice, the strategic management of interrelated products with explicitly different
shelf-lives stands as an important open problem. We discuss the limited research in
this area in Sect. 15.5.

For perishables, both capacity planning and product-mix decisions are typically
driven by target levels of supply for a final product. In that respect, produc-
tion plans are tightly linked to inventory control models. We therefore discuss
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research in inventory control for perishables in the rest of this chapter, treating
single location models in Sect. 15.3, the multi-location and multi-echelon models
in Sect. 15.4, and modeling novelties in Sect. 15.5. Once again, we attempt to em-
phasize those areas most in need for further research.

15.3 Managing Inventories at a Single Location

Single-location inventory models form the basic building blocks for more complex
models with multiple locations and/or echelons, information flows, knowledge of
market or customer behavior, and/or additional logistics options. The work is pi-
oneered by Veinott (1960), Bulinskaya (1964), and Van Zyl (1964), who consider
discrete review problems without fixed cost under deterministic demand, stochastic
demand for items with a one-period lifetime, and stochastic demand for items with
a two-period lifetime, respectively. We first discuss the discrete review setting, be-
fore expanding our scope to continuous review systems. There is a single product in
all the models reviewed in this section, and inventory is depleted starting from the
oldest units in stock, i.e., first-in-first-out (FIFO) inventory issuance is used.

15.3.1 Discrete Review Models

We provide an overview of research by classifying the work based on modeling
assumptions: Research assuming no fixed ordering costs or lead times is reviewed
in Sect. 15.3.1.1, followed by research on models with fixed ordering costs but no
lead times in Sect. 15.3.1.2. Research on models with positive lead times, which
complicate the problem appreciably, is reviewed in Sect. 15.3.1.3.

Table 15.1 provides a high-level overview of some of the key papers within
the discrete review arena. Categorization of the papers and the notation used in
Table 15.1 are described below:

� Replenishment policy: Papers have considered the optimal control policy (Opt),
base stock policies that keep a constant order-up-to-level for total items in sys-
tem (TIS), summed over all ages, or only new items in system (NIS) (see
Sect. 15.3.1.1), other heuristics (H), and, when fixed ordering costs are present,
the (s,S) policy. When (s,S) policy is annotated with a �; it is implied to be the
optimal replenishment policy based on earlier research (however a formal proof
of optimality of (s,S) has not appeared in print for the model under discussion).

� Excess demand: Excess demand is either backlogged (B) or lost (L).
� Problem horizon: Planning horizon is either finite (F) or infinite (I).
� Replenishment lead time: All papers, save for one, assume zero lead time. The

exception is a paper that allows a deterministic (det) replenishment lead time.
� Product lifetime: Most papers assume deterministic lifetimes of general length

(D) although two papers assume the lifetime is exactly two time periods (2).
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One paper allows for general discrete phase-type lifetimes, (PH), and assumes
that all items perish at the same time, i.e., a disaster model. This latter is denoted
by 2 in Table 15.1. Another permits general discrete lifetimes, but assumes items
perish in the same sequence as they were ordered. This is denoted by 7 in the
table.

� Demand distribution: In most cases, demand in each period has a continuous
density (cont) function. In others, it is discrete (disc), Erlang – which may in-
clude exponential – (Ek) or batch demand with either geometric (geo) or general
discrete phase-type renewal arrivals (PH). Oftentimes the continuous demand
is assumed for convenience – results appear to generalize to general demand
distributions.

� Costs: Costs include unit costs for ordering (c), holding per unit time (h), perish-
ing (m), shortage per unit time (p), or one-time cost for shortage (b) and fixed
cost for ordering (K). The annotation 1 in Table 15.1 indicates papers that allow
the unit holding and shortage costs to be generalized to convex functions. Any
paper that does not list cost parameters is concerned with the general properties
of the model, such as expected outdates, without attaching specific costs to these.

15.3.1.1 Discrete Review Models Without Fixed Ordering Cost or Lead Time

Early research in discrete time models without fixed ordering costs focus on char-
acterizing optimal policies. Fundamental characterization of the (state dependent)
optimal ordering policy is provided by Nahmias and Pierskalla (1973) for the two
period lifetime problem, when penalty costs per unit short per unit time, and unit
outdating costs are present. Fries (1975) and Nahmias (1975a), independently, char-
acterize the optimal policy for the general lifetime problem. Both of these papers
have per unit outdating costs, per unit ordering costs, and per unit per period holding
costs. In addition, Fries (1975) has per unit shortage costs, and Nahmias (1975a) per
unit per period shortage costs; this difference arises because Fries (1975) assumes
lost sales and Nahmias (1975a) backlogging of unsatisfied demand. The cost struc-
ture in Nahmias (1975a) is the “standard” for discrete time models without fixed
ordering cost, and we refer to it as such within the rest of this section, although in
later papers the per unit per period penalty and holding costs are extended to general
convex functions. The incorporation of separate ordering and outdating costs allows
modeling flexibility to account for salvage value; use of only one or the other of
these costs is essentially interchangeable.

Treatment of the costs due to outdating is the crucial differentiating element
within the perishable setting. In fact, while Fries (1975) and Nahmias (1975a) take
alternate approaches for modeling the costs of expiration – the former paper charges
a cost in the period items expire, while the latter charges an expected outdating cost
in the period items are ordered – Nahmias (1977b) shows that these two approaches
were essentially identical, modulo end of horizon effects. The policy structures out-
lined in Fries (1975) and Nahmias (1975a) are quite complex; perishability destroys
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the simple base-stock structure of optimal policies for discrete review models with-
out fixed ordering costs in the absence of perishability.

This complexity of the optimal policy is reinforced by Cohen (1976), who char-
acterizes, the stationary distribution of inventory for the two-period problem with
the standard costs, showing that the optimal policy for even this simple case was
quite complex, requiring state-dependent ordering. To all practical extents, this
ended academic study of optimal policies for the discrete review problem under
FIFO issuance; to find an optimal policy dynamic programming would be required,
and implementation of such a policy would be difficult owing to its complex, state
dependent nature (with a state vector tracking the amount of inventory in system
of each age). Therefore many researchers turned to the more practical question of
seeking effective heuristic policies that would be (a) easy to define, (b) easy to im-
plement, and (c) close to optimal.

Very soon after the publication of Nahmias (1975a), a series of approximations
appeared for the backorder and lost sales versions of the discrete review zero-fixed
ordering cost problem. Initial works (Brodheim et al. 1975; Nahmias 1975b) exam-
ine the use of different heuristic control policies; Brodheim et al. (1975) propose a
fascinating simplification of the problem – making order decisions based only on
the amount of new items in the system; what we call the NIS heuristic. They show
that if a new order size is constant, Markov chain techniques can be used to derive
exact expressions, or alternately very simple bounds, on key system statistics (which
is the focus of their paper). Nahmias (1975b) used simulation to compare multiple
heuristics for the problem with standard costs, including the “optimal” TIS policy,
a piecewise linear function of the optimal policy for the non-perishable problem,
and a hybrid of this with NIS ordering. He found that the first two policies outper-
form the third, effectively disrupting further study of NIS and its variants for a few
decades.

Nahmias (1975c, 1976, 1977a), explicitly treats the question of deriving good
approximation policies (and parameters) for the problem with the standard costs;
Nahmias (1977a) can be considered as the culmination of these initial heuristic ef-
forts. This latter computationally compares the heuristic that keeps only two states
in the inventory vector, new inventory, and inventory over one day old, with both
the globally optimal policy (keeping the entire inventory vector) and the optimal
TIS policy, which is easily approximated using the techniques in Nahmias (1976).
For Erlang or exponential demand and a lifetime of three periods, the performance
of both heuristics is exceptional – always within 1% of optimal, with the reduced
state-space heuristic uniformly outperforming the optimal TIS policy. Note also that
using the two-state approximation eliminates any need to track the age of inventory
other than new versus old, significantly reducing both the computational load and
complexity of the policy.

All of these heuristics consider backorder models. The first heuristic policy for
discrete time lost sales models is provided by Nandakumar and Morton (1993).
They incorporate the properties and bounds on the expected outdates under TIS in
lost sales systems, originally provided by Chazan and Gal (1977), into heuristics fol-
lowing the framework of Nahmias (1976) for the backorder problem. Nandakumar
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and Morton (1993) compare these heuristics with alternate “near-myopic” heuristics
which use a newsvendor-type logic, for the problem with standard costs. They found
that all of the heuristics performed within half a percentage of the optimal, with the
near myopic heuristics showing the best performance, typically within 0.1% of the
optimal. (These heuristics could likely be improved even further, with the use of
even tighter bounds on expected outdates derived by Cooper (2001).)

Note that both the backorder and lost sales heuristics should be quite robust with
respect to items having even longer lifetimes than those considered in the papers:
Both Nahmias (1975a) and Fries (1975) observed that the impact of newer items on
ordering decisions is greater than the impact of older items. (This, in fact, is one of
the factors motivating the heuristic strategies in Nahmias (1977a).) Thus, the stan-
dard single-item, single-location, discrete-time, fixed-lifetime perishable inventory
model, with backorders or lost sales has for all practical purposes been solved –
highly effective heuristics exist that are well within our computational power to cal-
culate. One potential extension would be to allow items to have random lifetimes; if
items perish in the same sequence as they were ordered, many of the fixed lifetime
results continue to hold (Nahmias 1977c), but a discrete time model with random
lifetimes that explicitly permits items to perish in a different sequence than the one
they were ordered remains an open, and likely challenging question. The challenge
arises from the enlarged state space required to capture the problem characteristics –
in this case the entire random lifetime vector – although techniques from continuous
time models discussed in Sect. 15.3.2.1 could prove useful in this endeavor.

15.3.1.2 Discrete Review Models Without Lead Times Having Positive
Fixed Ordering Cost

Nahmias (1978) was the first to analyze the perishable inventory problem with no
lead time but positive fixed ordering cost in addition to the standard costs described
in Sect. 15.3.1.1. In his paper, for the one-period problem, Nahmias (1978) estab-
lished that the structure of the optimal policy is (s,S) only when the lifetime of the
object is two; lifetimes of more than two periods have a more complex, non-linear
structure. Extensions of the two-period (s,S) result to the multi-period problem ap-
peared quite difficult, given the analytical techniques of the time. The fact that the
costs excluding the fixed ordering cost are not convex appears to render hopes of ex-
tending the K-convexity of Scarf (1960) to the perishable domain to be in vain.
Nevertheless, Nahmias (1978) reports extensive computational experiments sup-
porting the conjecture that the general ((s,S) or non-linear) optimal policy structure
holds for the multi-period problem. One possible avenue to prove such structure
could be through the application of recent proof techniques involving decomposi-
tion ideas, such as those in Muharremoglu and Tsitsiklis (2003).

Lian and Liu (1999) consider the discrete review model with fixed ordering
cost, per unit per period holding cost, per unit and per unit per unit time shortage
costs, and per unit outdating costs. Crucially, their model is comprised of discrete
time epochs where demand is realized or units in inventory expire (hence discrete
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time refers to distinct points in time where change in the inventory levels occur) as
opposed to distinct time periods in Nahmias (1978). Lian and Liu (1999) analyze
an (s,S) policy which was shown to be optimal under continuous review by Weiss
(1980) for Poisson demand. The instantaneous replenishment assumption combined
with the discrete time model of Lian and Liu (1999) ensures that the optimal re-
order level s will be no greater than �1 because any value larger than �1 will add
holding costs without incurring any shortage cost in their model. The zero lead time
assumption and cost structure of Lian and Liu (1999) are common in the continuous
review framework for perishable problems (see Sect. 15.3.2.3); it was a desire to
develop a discrete time model to approximate the continuous review that motivated
Lian and Liu (1999). In the paper they use matrix analytic methods to analyze the
discrete time Markov chain and establish numerically that the discrete review model
is indeed a good approximation for the continuous review model, especially as the
length of the time intervals gets smaller.

Lian et al. (2005) follow Lian and Liu (1999), sharing similar costs and
replenishment assumptions. This later paper allows demands to be batch with
discrete phase type interdemand times and lifetimes to be general discrete time
phase type, but requires that all items of the same batch perish at the same time.
They again use matrix analytic methods to derive cost expressions, and numerically
show that the variability in the lifetime distribution can have a significant effect
on system performance. Theirs is a quite general framework, and provides a pow-
erful method for the evaluation of discrete time problems in the future, provided
the assumption of the instantaneous replenishments is reasonable in the problem
setting.

Of great practical importance again is the question of effective heuristic poli-
cies. Nahmias (1978) establishes, computationally, that while not strictly optimal,
(s,S) type policies perform very close to the optimal. Moreover, he also presents two
methods of approximating the optimal (s,S) parameters. Both of these are effective:
On average their costs are within 1% of the globally optimal cost for the cases con-
sidered, and in all cases within 3%. Thus, while there certainly is room for further
refinements of these heuristic policies (along the lines of the zero fixed cost case,
for example), the results in Nahmias (1978) are already compelling.

15.3.1.3 Discrete Review Models with Positive Lead Time

As optimal solutions to the zero lead time case require the use of dynamic pro-
gramming, problems with lead times are in some sense no more difficult, likewise
requiring dynamic programming, albeit of a higher dimension. Thus problems con-
sidering optimal policies for discrete review problems with lead times are also often
considered in the context of other generalizations to the model, for example, differ-
ent selling prices depending on age (Adachi et al. 1999). Interestingly, there is very
little work on extending discrete review heuristics for the zero lead time model to
the case of positive lead times, although many of the methods for the zero lead time
case should in principle be applicable, by expanding the vector of ages of inventory
kept to include those items on order, but which have not yet arrived.
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One possible direction is provided in the work of Williams and Patuwo (1999,
2004) who derive expressions for optimal ordering quantities based on system re-
cursions for a one-period problem with fixed lead time, lost sales, and the following
costs: per unit shortage costs and per unit outdating costs, per unit ordering costs
and per unit per period holding costs. Williams and Patuwo (2004) in fact state
that their methods can be extended to finite horizons, but such an extension has not
yet appeared. Development of such positive lead time heuristics, no matter what
their genesis, would prove valuable both practically and theoretically, making this
a potentially attractive avenue for future research. The trick, essentially, is to keep
enough information so as to make the policy effective, without keeping so much
as to make the policy overly cumbersome. More complex heuristics have been pro-
posed for significantly more complex models with lead times, such as in Haijema
et al. (2005, 2007), but these likely are more involved than necessary for standard
problem settings.

15.3.2 Continuous Review Models

We now turn our attention to continuous review models. These are becoming in-
creasingly important with the advent of improved communication technology (such
as radio frequency identification, RFID) and automated inventory management and
ordering systems (as a part of common enterprise resource planning, ERP, systems).
These two technologies may eventually enable management of perishables in real
time, potentially reducing outdating costs significantly. We first consider continuous
review models without fixed ordering costs or lead times in Sect. 15.3.2.1, models
without fixed ordering costs but positive lead times in Sect. 15.3.2.2, and finally the
models which incorporate fixed ordering costs in Sect. 15.3.2.3.

Tables 15.2 and 15.3 provide a high-level overview of some of the key papers
within the continuous review framework, segmented by whether a fixed ordering
cost is present in the model (Table 15.3) or not (Table 15.2). Categorization of the
papers and the notation used in these tables are described below:

� Replenishment policy: In Table 15.2, base stock policy is denoted by a z. Papers
which focus on characterizing system performance have a blank in the replen-
ishment policy column. In Table 15.3, all papers either use the .s; S/ policy,
annotated with a � when proved to be optimal, with a � when only implied to be
the optimal policy based on earlier research (however a formal proof of optimal-
ity of .s; S/ has not appeared in print for the model under concern) or the .Q; r/

or .Q; r; T / policies when batch sizes are fixed. The .Q; r; T / policy orders when
inventory is depleted below r or when items exceed T units of age.

� Excess demand: Papers may assume simple backlogging (B), some sort of gen-
eralized backlogging in which not all backlogged customers wait indefinitely
.Bg/, or lost sales (L). Two papers assume all demand must be satisfied; this
field is blank in that case.

� Problem horizon: Planning horizon is either finite (F) or infinite(I).
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� Replenishment lead time: In Table 15.2, many papers assume that items arrive
according to a Poisson process, outside of the control of the system manager;
these are denoted by (M). This may be generalized to the case of batch replen-
ishments (batch), the case when the replenishment rates can be controlled (M5),
or are state dependent (M6). Other papers in the no fixed ordering cost regime
assume either exponential (exp) with a single or ample (ample) servers, renewal
(renewal), continuous (cont) or fixed (det) lead times. Most papers in Table 15.3
assume either zero lead time or a deterministic (det) lead time, although some
allow exponential (exp), or general continuously distributed (cont) lead times.

� Product lifetime: Most lifetimes are deterministic (D), possibly with the assump-
tion that the item can be used for a secondary product after it perishes (D0), that
all perish at once, a disaster model, indicated by (D2), or that items within a lot
only begin to age after all items from the previous lot have left inventory (D6).
Item lifetimes may also be exponentially distributed (exp), generally distributed
(gen), Erlang (Ek) and in one case they decay (decay).

� Demand distribution: As we are within a continuous model, this column de-
scribes the assumptions on the demand interarrival distribution. Most are Pois-
son (M), although in some cases they may have rates that can be controlled by the
system manager (M3) or which are state-dependent (M4). Selected papers allow
independent and identically distributed arrivals (iid), continuously distributed in-
terarrivals (cont), some allow arrivals in batches (batch), and others have renewal
(renewal), or general (general) demand interarrival distributions.

� Costs: Typically, the costs introduced in Sect. 15.3.1, Table 15.1 are used. When
demand and interarrival rates can be controlled, there is a cost (cs) for adjusting
these rates. Some models calculate profits, via using a unit revenue (r). One paper
not only charges the standard per unit time holding and penalty costs (h) and (p),
but also per unit time costs based on the average age of the items being held
(h’) or backlogged (p’). Two papers optimize subject to constraints (possibly
with other costs), and several (but not all) that concern themselves only with
characterizing system performance have this column left blank. In addition, one
paper utilizes a Brownian control model with two barriers; it defines shortage
and outdate costs slightly differently to account for the infinite number of hits
of the barriers. This is denoted by 8. One paper calculates actuarial valuations
of costs and expected future revenues, where the latter depend on the age of an
item when it is sold. This is denoted with a 9. Finally, when annotated with a 1,
a paper allows the unit holding and shortage costs to be generalized to convex
functions.

15.3.2.1 Continuous Review Without Fixed Ordering Cost or Lead Time

The continuous review problem without fixed ordering costs is unique in that under
certain modeling assumptions, direct parallels can be drawn between the perishable
inventory problem and stochastic storage processes in general, and queueing theory
in particular. These parallels provide structural results as well as powerful analytical
tools.
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One of the earliest papers to make these connections is written by Graves (1982),
who focuses on characterization of the system behavior, as in the earlier papers.
Graves (1982), without an explicit cost structure or replenishment policy, shows
that the virtual waiting time in an M/M/1 queue with impatient customers and a
M/D/1 with finite buffer can be used to model the inventory in a perishable inven-
tory system with Poisson demands of exponential, or unit size, respectively, with
either lost sales or backlogging. A crucial assumption is that items are replenished
according to what Graves (1982) calls “continuous production”; the arrival of items
into inventory is modeled as a Poisson process, essentially out of the control of the
inventory manager. Under this convention, Graves (1982) notes that the key piece
of information is the age of the oldest item currently in stock, an observation that is
used by many subsequent researchers. For example, Kaspi and Perry (1983, 1984)
model systems with Poisson demand and Poisson or renewal supply, as might be the
case, for example in blood banks that rely on donations for stock. For their analysis
Kaspi and Perry (1983 1984) track what they call the virtual death process, which
is the time until the next death (outdate) if there would be no more demand. This,
of course, is just a reformulation of the age of the oldest item in stock, as used by
Graves (1982).

These papers mark the start of a significant body of work by Perry (sometimes
in conjunction with others) on continuous review perishable inventory systems with
no fixed ordering cost, some sort of Poisson replenishment, and nearly all using the
virtual death process. Only Perry and Posner (1990) and Perry and Stadje (1999)
contain explicit cost functions; the rest of the papers concern themselves solely with
performance characteristics, as in Graves (1982). Perry and Posner (1990) develop
level crossing arguments for storage processes to capture the effects of being able
to control supply or demand rates within the model of Kaspi and Perry (1983); the
limiting behavior of this system was analyzed by Perry (1997) using a diffusion
model and martingale techniques. Perry and Stadje (1999) depart from the virtual
death process, using instead partial differential equations to capture the stationary
law of a system which now may have state-dependent arrival and departure rates
with deterministic or exponential lifetimes and/or maximum waiting times, as well
as finite storage space. This work is generalized in Nahmias et al. (2004a) using
the virtual death process. Likewise using the virtual death process, Perry and Stadje
(2000a, b, 2001) evaluate systems where after perishing the item can be used for
a secondary product (such as juice for expired apples); items may randomly perish
before the expiration date; or, in addition to their fixed lifetime, items may all perish
before their expiration date (due to disasters, or obsolescence). Still using the virtual
death process, Nahmias et al. (2004b) provide actuarial valuations of the items in
system and future sales, when item values are dependent on age. Recently Perry and
Stadje (2006) solved a modified M/G/1 queue and showed how it related, again, to
the virtual death process in a perishable system, this time with lost sales. Thus work
on extensions to what can reasonably be called the Perry model continues.

Note that the work in these papers is concerned with performance analysis of sys-
tems with random input and output. This is in contrast to the models in Sect. 15.3.1
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which typically assume input is completely controllable. Thus most of the papers in
this section do not focus on optimization. However, a few do include the ability to
control the input rate (typically at a cost); see Table 15.2.

15.3.2.2 Continuous Review Without Fixed Ordering Cost Having Positive
Lead Time

A defining characteristic of the Perry model, mentioned in Sect 15.3.2.1, is that the
supply of perishable items arrives according to a (possibly state dependent) Poisson
process. When replenishment decisions and lead times must be included in a more
explicit manner, researchers need to develop other analytical methods.

When lifetimes and lead times are exponentially distributed the problem is
simplified somewhat, as this allows the application of renewal theory, transform
methods, and Markov or semi-Markov techniques, often on more complex ver-
sions of the problem. Pal (1989) looks at the problem with exponential lead times
and lifetimes, Kalpakam and Sapna (1996) allow renewal demands with lost sales,
Kalpakam and Shanthi (2000, 2001) consider state dependent Poisson lead times
and then general continuous lead times, and Liu and Cheung (1997) are unique in
that they consider fill rate and waiting time constraints. All of these papers con-
sider base-stock, or .S � 1; S/ inventory control; Kalpakam and Sapna (1996) and
Kalpakam and Shanthi (2001) consider per unit shortage costs and per unit outdat-
ing costs, per unit ordering costs and per unit per period holding costs. To these
Kalpakam and Shanthi (2000) add a per unit per period shortage cost, while Pal
(1989) also adds the per unit per unit time shortage cost, but disregards the per unit
ordering cost. Liu and Cheung (1997) take a different approach, seeking to minimize
the inventory subject to a service level constraint. In all of these cases, the cost func-
tion appears to be unimodal in S , but no formal proofs have been provided, owing
to the difficulty in proving unimodality. Furthermore, nowhere has the performance
of base-stock policies been formally benchmarked against the optimal, possibly due
to the difficulty in dealing with a continuous state space – time – within the dynamic
programming framework. This remains an open question.

The case of fixed lead times and lifetimes is arguably both more realistic and an-
alytically more difficult. Schmidt and Nahmias (1985) consider a system operating
under a base-stock policy with parameter S , lost sales, Poisson demand, per unit
shortage, outdating and ordering costs, and per unit per period holding costs. They
define and solve partial differential equations for the S -dimensional stochastic pro-
cess tracking the time since the last S replenishment orders. Numerical work shows
that again cost appears to be monotonic in S (in fact convex), although surprisingly,
the optimal value of S is not monotonic in item lifetime.

Perry and Posner (1998) generalize this work to allow for general types of cus-
tomer impatience behavior, using level crossing arguments to derive the stationary
distribution of the vector of times until each of the S items in the system outdate
(reminiscent of their virtual death process). They also show that the distribution of
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the differences between the elements of this vector follows that of uniform order
statistics, which enables them to derive expressions for general customer behavior.
These expressions may, as a rule, require numerical evaluation.

Perry and Posner (1998) are concerned with general system characteristics; they
do not include explicit costs in their paper. While Perry and Posner (1998) provide
rich material for future research – for example exploring how different customer
behavior patterns affect different echelons of a supply chain for perishable products,
– there is still a need for research following the work of Schmidt and Nahmias
(1985), with the aim of minimizing costs in the continuous review setting under
fixed lead times and fixed lifetimes.

15.3.2.3 Continuous Review with Fixed Ordering Cost

Within the continuous review fixed ordering cost model we make a distinction be-
tween those models that assume fixed batch size ordering, leading to .Q; r/ type
models, and those that assume batch sizes can vary, leading to (s,S) type models.
We consider the (s,S) models first.

Initial work in this setting assumed zero lead time, which simplifies the problem
considerably, as there is no need to order until all the items are depleted. In this
case when considering fixed ordering costs, unit revenues, unit ordering and out-
date costs, and convex holding and penalty costs per unit time, the optimal policy
structure under Poisson demand was found by Weiss (1980) who showed that for
the fixed lifetime problem over an infinite horizon, with lost sales or back ordering,
an (s,S) policy is optimal. Weiss (1980) also established that the optimal s value is
zero in the lost sales case, and in the backorder case no larger than �1 (you never
order if you have items in stock). Thus the optimal policy structure was established,
but the question of efficiently finding the optimal parameters is open.

The publication of Weiss (1980) initiated a series of related papers, all having
in common the assumption of immediate supply. Kalpakam and Arivarignan (1988)
treat the lost sales model as Weiss (1980), but assume exponential lifetimes, con-
sider only costs (not revenues), and of these costs disregard the shortage costs as
they are irrelevant, as Weiss shows that the optimal is s D 0. They also show that in
this case the cost, assuming an optimal s value, is convex in S. Liu (1990) takes the
setting of Weiss (1980), assumes exponential lifetimes, disregards the unit order-
ing costs and revenues, but considers penalty costs per unit and per unit time. His
focus is on providing closed-form expressions for system performance, based on
transform analysis. Moorthy et al. (1992) perform a similar analysis using Markov
chains theory under Erlang lifetimes, assuming no shortage is permitted – or equiv-
alently lost sales, as in this case Weiss (1980) shows that it is optimal not to allow
any shortage. Liu and Shi (1999) follow Liu (1990), but now allow for general re-
newal demand. They focus their analysis on the reorder cycle length, using it as a
vehicle to prove various structural properties of the costs with respect to the param-
eters. The assumption of exponential lifetimes is crucial here – the results would be
very unlikely to hold under fixed lifetimes. Liu and Lian (1999) consider the same
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problem as Liu and Shi (1999) and Lian but with fixed, rather than exponential
lifetimes. They permit renewal demands, and derive closed-form cost expressions,
prove unimodality of costs with respect to parameters, and show that the distribution
of inventory level is uniform over (s,S) (as in the non-perishable case).

All of the previous papers make the zero lead time assumption of Weiss (1980),
which simplifies the problem. A few papers include positive fixed lead times, Lian
and Liu (2001) treat the model of Lian and Liu (1999) incorporating batch demands
to provide a heuristic for the fixed lead time case, but a proof in that paper contained
a flaw, which was fixed by Gürler and Özkaya (2003). These papers show how to
efficiently find good (s,S) parameters for the fixed lead time problem, but do not
provide any benchmark against the optimal. Thus while efficient heuristics exist
for the fixed lead time case, they have not as yet been benchmarked against more
complex control policies.

Random lead times have appeared in several papers within the continuous review,
fixed ordering cost framework. Kalpakam and Sapna (1994) allow exponential lead
times, while also assuming exponential lifetimes. As in the fixed lead time case,
this implies that the (s,S) policy is no longer necessarily optimal. They neverthe-
less assume this structure. In addition to fixed ordering costs, they account for unit
purchasing, outdate and shortage costs, as well as holding costs per unit per unit
time. Under the assumption of only one outstanding order at a time, they derive
properties of the inventory process and costs. Ravichandran (1995) permits general
continuous lead times, deriving closed-form expressions for costs under the assump-
tion that only one order is outstanding at a time, and items in an order only begin
to perish after all items from the previous order have left the system. Liu and Yang
(1999) generalize Kalpakam and Sapna (1994) to allow for backlogs and multiple
outstanding orders, using matrix analytical methods to generate numerical insights
under the assumption of an (s,S) policy. For random lifetimes, still within the (s,S)
structure, the most comprehensive work is by Gürler and Özkaya (2006), who al-
low a general lifetime distribution, batch renewal demand, and zero lead time with
a heuristic for positive lead time. Their cost structure follows Lian and Liu (2001);
Gürler and Özkaya (2006) can be thought of as generalizing Lian and Liu (2001) to
the random lifetime case. Gürler and Özkaya (2006) argue that the random lifetime
model is important for modeling lifetimes at lower echelons of a supply chain, as
items arriving there will have already begun to perish. To this end they demonstrate
the importance of modeling the variability in the lead time distribution on costs,
including a comparison to the fixed lifetime heuristic of Lian and Liu (2001).

In general, within the fixed ordering cost model with variable lot sizes, for the
zero lead time case research is quite mature, but for positive lead times and/or
batch demands there are still opportunities for research into both the optimal policy
structure and effective heuristics. These models are both complex and practically
applicable, making this yet another problem that is both challenging and important.

If lot sizes must be fixed, initial work for “decaying” goods by Nahmias and
Wang (1979), using a (Q,r) policy, was followed two decades later by Chiu 1995),
who explicitly considers perishable (rather than decaying) items by approximating



410 I.Z. Karaesmen et al.

the outdating and inventory costs to get heuristic (Q,r) values. Nahmias and Wang
(1979) consider unit ordering and shortage costs, and holding costs per unit per unit
time, as well as unit outdate costs. To these Chiu (1995) adds unit ordering costs.

Tekin et al. (2001) take a slightly different approach; they disregard unit ordering
costs and consider a service level constraint, rather than a shortage cost. They also
simplify the problem by assuming that a lot only starts aging after it is put into
use, for example moved from a deep freezer. To combat the effects of perishability,
they advocate placing an order for Q units whenever the inventory level reaches
r or when T time units have elapsed since the last time a new lot was unpacked,
whichever comes first, giving rise to a (Q,r,T) policy. Not surprisingly, they find that
inclusion of the T parameter is most important when service levels are required to
be high or lifetimes are short. Berk and Gürler (2006) define the “effective shelf
life” of a lot: The distribution of the remaining life at epochs when the inventory
level hits Q. They show that this constitutes an embedded Markov process (as they
assume Poisson demand), and thus via analysis of this process they are able to derive
optimal (Q,r) parameters, when facing unit outdate and penalty costs, holding costs
per unit per unit time, and fixed ordering costs. They compare the performance of
their policy with that of Chiu (1995) and also with the modified policy of Tekin et al.
(2001). Not surprisingly, the optimal (Q,r) policy outperforms the heuristic of Chiu
(1995), sometimes significantly, and is outperformed by the more general modified
policy of Tekin et al. (2001). Nevertheless, this latter gap is typically small, implying
that use of the more simple (Q,r) policy is often sufficient in this setting.

Note that throughout these papers the (Q,r) structure has only been assumed,
and once again there does not appear to be any benchmarking of the performance
of the (Q,r) policy against the optimal, as optimal policies are difficult to establish
given the increased problem complexity the continuous time setting with perishabil-
ity causes. If such benchmarking were done, it would help identify those problem
settings for which the (Q,r) or (Q,r,T) policy is adequate, and those which would
most benefit from further research into more complex ordering schemes. Essentially,
the underlying question of how valuable lifetime information is, in what degree of
specificity, and when it is most valuable, remains.

15.4 Managing Multi-Echelon and Multi-Location Systems

Analysis of multi-echelon inventory systems dates back to the seminal work of Clark
and Scarf (1960); the reader can refer to Axsäter (2000) for a unified treatment
of the research in that area, and Axsäter (2003) for a survey of research on serial
and distribution systems. In serial and distribution systems, each inventory location
has one supplier. In contrast, multi-location models consider flow of products from
various sources to a particular location (possibly including transshipments). See,
for instance, Karmarkar (1981) for a description of the latter problem. Managing
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multi-echelon and/or multi-location systems1 with aging products is a challenge
because of the added complexity in:

� replenishment and allocation decisions, where the age of goods replenished at
each location affects the age-composition of inventory and the system perfor-
mance, and the age of goods supplied/allocated downstream may be as important
as the amount supplied,

� logistics-related decisions such as transshipment, distribution, collection, which
are complicated by the fact that products at different locations may have different
remaining lifetimes,

� centralized vs. decentralized planning, where different echelons/locations may
be managed by different decision-makers with conflicting objectives, operating
rules may have different consequences for different decision-makers (e.g., re-
tailers may want to receive LIFO shipments but suppliers may prefer to issue
their inventory according to FIFO), and system-wide optimal solutions need not
necessarily improve the performance at each location.

Given the complexity in obtaining or characterizing optimal decision structures,
analytical research in multi-echelon and multi-location systems has mainly focused
on particular applications (modeling novelties) and heuristic methods. We review
analysis of replenishment and allocation decisions in Sect. 15.4.1, logistics and dis-
tribution related decision in Sect. 15.4.2, and centralized vs. decentralized planning
in Sect. 15.4.3.

15.4.1 Research on Replenishment and Allocation Decisions

Research on multi-echelon systems has been confined to two-echelons2 except in
the simulation-based work (e.g., van der Vorst et al. (2000)). Motivated by food
supply chains and blood banking, the upstream location(s) in the two-echelon mod-
els typically involve the supplier(s), the distribution center(s) (DC), or the blood
banks, and the downstream location(s) involve the retailer(s), the warehouse(s), or
the hospital(s). In this section, we use the terms supplier and retailer to denote the
upstream and downstream parties, respectively. We call the inventory at the retail
locations the field inventory.

We first classify the research by focusing on the nature of the decisions and
the modeling assumptions. Table 15.4 provides a summary of the analytical work

1 Note that multi-location models we review here are different from the two-warehouse problem
described in Section 10 of Goyal and Giri (2001); that model considers a decision-maker who has
the option of renting a second storage facility if he/she uses up the capacity of his/her own storage.
2 The model of Lin and Chen (2003) has three echelons in its design: A cross-docking facility
(central decision maker) orders from multiple suppliers according to the demand at the retailers and
the system constraints, and allocates the perishable goods to retailers. However, the replenishment
decisions are made for a single echelon: The authors propose a genetic algorithm to solve for the
single-period optimal decisions that minimize the total system cost.
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that determines heuristic replenishment policies for a supplier and retailer(s), and/or
effective allocation rules to ship the goods from the supplier to the retailers; analyt-
ical research has been rather limited, modeling assumptions have varied, and some
problems (such as replenishment with fixed costs or decentralized planning) have
received very little attention.

Notice that the centralized, multi-echelon models with perishables are no differ-
ent from the serial or distribution systems studied in classical inventory theory; the
stochastic models involve the one-supplier, multi-retailer structure reminiscent of
Eppen and Schrage (1981) or the serial system of Clark and Scarf (1960). For the
one-supplier, multi-retailer system with non-perishables, it is known that order-up-
to policies are optimal under the “balance assumption” (when the warehouse has
insufficient stock to satisfy the demand of the retailers in a period, available stocks
are allocated such that retailers achieve uniform shortage levels across the system;
this might involve “negative shipments” from the warehouse, i.e., transshipments
between retailers at the end of that period to achieve system balance), and optimal
policy parameters can be determined by decomposing the system and solving a se-
ries of one-dimensional problems (see e.g., Diks and de Kok (1998)). There is no
equivalent of this analysis with perishable inventories, mainly due to the complexity
of the optimal ordering policy at a single location. Similarly, there is no work that in-
vestigates continuous replenishment policies with perishables for multi-echelons or
multi-locations, although this is a well-studied problem for single-location models
with perishables (see Sect. 15.3.2) and for non-perishables in multi-echelon supply
chains.

15.4.1.1 Analytical Research on Allocation Decisions

All the models listed in Table 15.4 involve no capacity restrictions, and have a single
supplier who receives the freshest goods upon replenishment (although the goods
may not have the maximal lifetime at the time of arrival when lead time is positive).
However, the shipments from the supplier to the retailers can involve stock of any
age depending on the supplier’s inventory. Allocation and/or transshipment deci-
sions are simplified, for instance, when there is a single retailer (see Table 15.4) or
when the supplier’s inventory consists of goods of the same age. The latter happens
in the following two cases: (a) The goods start perishing at the retailer but not at
the supplier, i.e., all retailers are guaranteed to receive fresh goods from the supplier
(see Fujiwara et al. (1997) and Abdel-Malek and Ziegler (1988)). (b) The lifetime
of the product is equal to the length of the periodic review interval. In that case, all
the goods at any location are of the same age and the goods perish at the end of one
cycle, as is the case for the supplier in the model of Fujiwara et al. (1997).

The focus on multi-echelon problems is on allocation decisions when the supplier
is assumed to receive a random amount of supply at the beginning of every period
(Prastacos 1978, 1979, 1981) – we refer to this as the Prastacos model. The random
supply assumption is motivated by the application area – blood products which rely
on donations for supply. Two special distribution systems are considered in these
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papers: (a) A rotation (or recycling) system where all unsold units that have not
expired at the retailers are returned to the supplier at the end of each period – these
units are distributed among the retailers along with the new supply of freshest goods
at the beginning of the next period; (b) A retention system where each retailer keeps
all the inventory allocated. In the Prastacos model, the supplier does not stock any
goods, i.e., all the inventory is allocated and shipped to the retailers at the beginning
of a period, there are no inventory holding costs at any location, and the goal is to
minimize shortage and outdating costs that are uniform across all the retailers.

In a rotation system, the total number of units to outdate in a period depends
only on how the units with only one period of lifetime remaining are allocated in
the previous period, and the total amount of shortage depends only on how the in-
ventory is allocated, regardless of the age. Based on these observations, Prastacos
(1978) proposes the following myopic allocation policy that minimizes one-period
system-wide outdate and shortage costs: Starting with the oldest, the stocks of a
given age are allocated across the retailers so that the probability that the demand
at each location exceeds the total amount allocated to that retailer up to that point
in the algorithm are equalized, and this is repeated iteratively for items of all ages.
Prastacos (1978) also analyzes a retention system where the supplier only ships the
fresh supply to the retailers at the beginning of each period. In the one-period anal-
ysis of the retention system, the amount to outdate at the end of a period depends on
the amount of oldest goods in stock and demand at each retailer, but does not depend
on the supply allocated in that period. Based on this observation, Prastacos (1978)
suggests a myopic allocation rule that equalizes the one-period shortage probability
at each retailer to minimize the one-period system-wide shortage and outdate costs.
Prastacos (1981) extends the analysis of the Prastacos model to the multi-period
setting and shows that the myopic allocation policy preserves some of the proper-
ties of the optimal allocation that minimizes expected long-run average shortage and
outdating costs, and is, in fact, optimal in numerical examples with two retailers and
product lifetime of two periods. Since the cost parameters are the same for all the
retailers, the allocation resulting from the myopic rule is independent of the unit
costs of shortage and outdating.

Prastacos (1979) analyzes essentially the same single-period model assuming
LIFO issuance, as opposed to FIFO in Prastacos (1978). In case of LIFO, the op-
timal myopic allocation policies in both rotation and retention systems depend on
the unit costs of shortage and outdating. In addition, the optimal allocation policies
segregate the field inventory by age as opposed to a fair allocation where each re-
tailer receives goods of each age category. Under segregation, some retailers have
only newer goods and some only older goods so that system-wide expected out-
dates are minimized. The optimal myopic allocation policy under LIFO for both
rotation and retention systems can be determined by solving a dynamic program
with stages corresponding to retail locations. Prastacos (1979) obtains the optimal
allocation rule for specific demand distributions. For rotation, he proposes a heuris-
tic: First, allocate the stock in order to equalize the probability of shortage at each
retailer and then swap the inventory among retailers to obtain field inventories that
are segregated by age.
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There are several practical extensions of the Prastacos model: The assumption
on uniform outdating and shortage costs can be relaxed, shipments/transportation
costs can be added, penalties can be incurred on leftover inventory (e.g., end of pe-
riod holding costs), transshipments among retailers can be enabled, and the supplier
may keep inventory as opposed to shipping all units downstream. The first three of
these issues have been addressed in the literature for only single-period decision-
making: Nose et al. (1983) and Federgruen et al. (1986) generalize the FIFO model
of Prastacos (1978) by assuming that there is a unit transportation cost for each
item shipped from the supplier to the retailers, and the unit outdating, shortage,
and transportation costs are retailer-specific. They both develop convex program-
ming formulations for the single-period inventory allocation problem and propose
algorithms based on the Lagrangean relaxation to determine the optimal allocation.
Their models rely on the observation that the costs are only a function of the amount
of old vs. fresh (i.e., stock that will outdate in one period vs. the inventory that has
more than one period of lifetime remaining) goods allocated to each retailer. In the
rotation system considered by Nose et al. (1983), the retailers are also charged per
unit inventory returned to the supplier at the end of each period (i.e., there is an
end-of-period penalty on leftover inventory at each location).

In the model of Yen (1975) and Cohen et al. (1981a), the supplier uses the
FIFO rule to determine which goods are to be shipped downstream and then uses
one of the following two allocation rules to determine the age-composition of the
shipments to the retailers in each period: (a) proportional allocation and (b) fixed
allocation. In proportional-allocation, each retailer receives a proportion of goods of
each age category based on their share of the total demand. In fixed allocation, each
retailer receives a pre-determined fraction of goods in each period. Both of these
allocation rules are fair in that the shipments to retailers involve goods of each age
category. Yen (1975) and Cohen et al. (1981a) explore the optimality conditions for
the parameters associated with these allocation rules. They show that, under certain
conditions, there exists a fixed allocation rule that yields the same expected shortage,
outdating, and holdings costs as a system operating under the optimal proportional
allocation rule. Their analysis can be extended to include multiple (>2) retailers.
Prastacos (1981) shows that his myopic allocation rule is the same as proportional
allocation for certain probability distributions of demand.

15.4.1.2 Analytical Research on Replenishment and Allocation Decisions

Analysis of optimal replenishment policies for a serial, two-echelon system is pre-
sented in Abdel-Malek and Ziegler (1988) assuming deterministic demand, zero
lead times, and price that linearly decreases with the age of the product. They de-
termine the economic order quantities (EOQs) for the retailer and the supplier by
restricting the order cycle lengths to be no more than the product lifetime.

Under demand uncertainty, several heuristic, discrete review replenishment poli-
cies have been considered and the focus has been on determining the optimal param-
eters for these restricted policies. These heuristic replenishment policies include the
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TIS policies (Yen (1975), Cohen et al. (1981a), Lystad et al. (2006), Fujiwara et al.
(1997) and Kanchanasuntorn and Techanitisawad (2006)), a “zero-or-fixed quan-
tity” ordering policy in Ketzenberg and Ferguson (2006) – denoted as “0 or Q” in
Table 15.4, – and (s,S) policy for the retailers in Kanchanasuntorn and Techaniti-
sawad (2006), analysis which is restricted to the case where the retailers’ demand
is Normal. The replenishment lead times are no longer than one period (i.e., goods
are received no later than the beginning of the next period) with exceptions being
Lystad et al. (2006) and Kanchanasuntorn and Techanitisawad (2006); the latter as-
sumes that the lifetime of the product is a multiple of the replenishment cycle lengths
of the retailers and the supplier, and that the supplier responds to retailers’ orders in
a FIFO fashion (hence allocation decisions are trivial).

Research that analyzes replenishment and allocation decisions jointly is confined
to the work of Yen (1975), its extension in Cohen et al. (1981a), and Lystad et al.
(2006). Yen (1975) and Cohen et al. (1981a) explore the structural properties of the
expected total cost function that includes expected holding, outdating, and shortage
costs, when both the supplier and the retailer use TIS policies to replenish inventory.
They investigate fixed and proportional allocation rules and identify conditions on
the existence of unique target inventory levels. Yen (1975) also identifies conditions
for the optimality of the proportional allocation rule for this system. These condi-
tions are satisfied, for instance, when the lifetime of the product is restricted to two
or three periods, or when the demand at each location and each period is i.i.d and
the target inventory levels of the retailers are the same. However, the analysis relies
on one simplification: the finite lifetime of the perishable product is not taken into
account explicitly, and goods that remain in inventory beyond their lifetime can be
used to satisfy excess demand, but are charged a unit outdating cost. Analysis of
replenishment and allocation policies that explicitly take these factors into account
remains an open problem of theoretical interest.

Lystad et al. (2006) use the myopic allocation rule of Prastacos (1981), and
propose heuristic echelon-based TIS policies. For a given system, they first de-
termine the best TIS policy via simulation. Then, they do a regression analysis
to establish the relationship between the order-up-to levels of this best policy and
two heuristic order-up-to levels: One heuristic is based on the newsvendor-based,
approximate echelon-stock policies for non-perishables and the other is the single-
location heuristic of Nahmias (1976) for perishables. The resulting regression model
is then used in computational experiments to study the effect of the lifetime of
a product on system costs, and to compare the performance of the approxima-
tion against policies that are derived assuming the product is non-perishable. Thus
Lystad et al. (2006) take a first step in developing approximate echelon-based poli-
cies for perishables, and this topic deserves more attention.

Notice that the effectiveness of the proposed allocation rules combined with
good replenishment policies have not been benchmarked in any of these stud-
ies, and various simplifying assumptions have been made to derive the policies.
There is a need for further research on the analysis of replenishment and allocation
decisions in multi-echelon systems. Interesting research directions include investi-
gation of the “balancing” of echelon inventories for perishables (as in Eppen and
Schrage (1981)), analysis of systems without making simplifying assumptions on
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inventory recursions (as in Yen (1975)), analysis of different system designs (e.g.
rotation and retention systems have been studied to some extent), or incorporation
of different cost parameters to the models (e.g. the Prastacos model excludes hold-
ing costs).

15.4.1.3 Simulation Models of Multi-Echelon Inventory Systems

In addition to the analytical research, simulation models have also been used in
analyzing multi-echelon, multi-location systems with perishable goods. For this
complex problem, simulation models present more opportunities in terms of model
richness, which we highlight in this section.

The earlier research (e.g., Yen (1975), Cohen and Pierskalla (1979), Cohen et al.
(1981b)) is motivated mainly by managing regional blood centers; see also Prastacos
(1984) and Pierskalla (2004).

More recently, van der Vorst et al. (2000) describe a discrete-event simulation
model to analyze a fresh produce supply chain with three echelons. Among other
factors, van der Vorst et al. (2000), test the system performance – measured in terms
of inventory levels at the retailers and distribution centers, and product freshness –
using several scenarios. Katsaliaki and Brailsford (2007) present results of a project
to improve procedures and outcomes by modeling the entire supply chain for blood
products in the UK. Their simulation model includes a serial supply chain with the
product flow that includes collection of supply, processing/testing and storage at a
service center, and shipment to a hospital where blood is crossmatched/transfused3

for patients use. The model includes multiple products with different shelf-lives.
Six different policies varying in (a) the type of products that are stocked at the
hospital, (b) the target inventory levels, (c) the time between crossmatching and
release which can influence the amount of unused and still usable inventory that
is returned, (d) the order trigger points for expedited deliveries, (e) the inventory
issuance rules for releases and returns, (f) the order and delivery lead times, and
(g) the number of daily deliveries to the hospital. Performance is measured in terms
of number of expired units, mismatched units, amount of shortage, and number of
routine and expedited deliveries. Note that allocation decisions are not included in
Katsaliaki and Brailsford (2007) because they model a serial supply chain. Mustafee
et al. (2006) provide the technical details of the simulation model and the distributed
simulation environment used in this latter project.

In contrast to Katsaliaki and Brailsford (2007), the simulation model of the sin-
gle supplier, multiple-retailer system in Yen (1975) includes returns of unused units

3 One common practice in managing blood inventories is cross-matching, which is assigning units
of blood from inventory to particular patients. Jagannathan and Sen (1991) report that more than
50% of blood products held for patients are not eventually transfused (i.e., used by the patient).
The release of products that are cross-matched enable re-distribution of inventories in a blood
supply chain. See Prastacos (1984), Pierskalla (2004), and Jagannathan and Sen (1991) for more
information on cross-matching.
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from retailers to the supplier, variations of the fixed and proportional allocation
rules, expedited shipments to retailers, transshipments between retailers, and
limited supply at the supplier. In addition to analyzing the impact of inventory
levels, allocation and transshipment rules on system costs, Yen (1975) also looks
at the impact of magnitude of demand at the retailers, and observes that the system
cost in his centralized model is more sensitive to the sizes of the retailers rather
than the number of retailers. Cohen et al. (1981b) also study different allocation
rules in a centralized system: In the first one, the supplier chooses a retailer and
fills its demand and goes on to fill the demand of the next retailer until all stock
is depleted or all demand is satisfied. In the second one, the supplier uses the pro-
portional allocation rule, and in the third one, the myopic allocation rule. Cohen
et al. (1981b) suggest using the second method in a practical setting because it has
less information needs (i.e., does not need the probability distribution of demand
at each retailer like the third method) and advise against using the first method in
a centralized system because it will lead to an imbalanced distribution of aging in-
ventory. In addition, the outdate probabilities of the retailers will vary significantly
with the first method; this increases the possibility of costly transshipments which
are discussed in the next section.

15.4.2 Logistics: Transshipments, Distribution, and Routing

Other than replenishment and allocation decisions, three of the critical logistics
activities in managing perishables in multi-location systems are transshipments,
distribution and collection (particularly for blood). Research that focuses on these
three decisions has been limited. Within the analytical work cited in Table 15.4, the
rotation system is the only form in which excess inventory is exchanged among
the retailers, and the exchange happens with a one period delay. Rotation sys-
tems are also the basis for the goal programming model developed by Kendall and
Lee (1980). Prastacos and Brodheim (1980) develop a mathematical programming
model for a hybrid rotation-retention system to efficiently distribute perishables in
a centralized system. Both of these papers are motivated by operations of regional
blood centers; see Prastacos (1984) for a review of these and other earlier work on
the distribution and transshipment problems.

Note that rotation encompasses only indirect transshipments among the retail-
ers. The simulation model of Yen (1975) includes transshipments between retailers
after each location satisfies its own demand and serves as a guideline for the prac-
tical inventory control and distribution system described in Cohen et al. (1981b).
Cohen et al. (1981b) suggest using transshipments in this practical setting if (a)
the supplier is out-of-stock, one retailer has an emergency need, and transshipping
units from other retailers do not significantly increase the probabilities of shortage
at those retailers, (b) the difference between the shortage probabilities of two re-
tailers when a unit is transshipped from one to the other is greater than the ratio of
the unit transportation cost to the shortage cost, or (c) the difference between out-
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date probabilities of retailers when a unit is shipped from one to the other is greater
than the ratio of transportation cost to the outdate cost. They use the terms emer-
gency, shortage-anticipating and outdate-anticipating transshipments, respectively,
to denote these three cases. Cohen et al. (1981b) point out that when all the retailers
use optimal TIS policies to manage their inventories, the amount of transshipments
is insignificant based on simulation results. This emphasizes the need for effective
replenishment policies in multi-echelon and multi-location systems.

Federgruen et al. (1986), in addition to their analysis of the allocation decision,
consider the distribution of goods from the supplier to the retailers by formulating
a combined routing and inventory allocation problem. The decisions involve as-
signing each location to a vehicle in the fleet and allocating fresh vs. old products
among the locations. The allocations do not affect the transportation costs and the
routes of vehicles do not affect shortage and outdating costs. They propose exact
and heuristic solution methods. They also compare their combined routing and al-
location approach to a more hierarchical one where the allocation problem is solved
first, and its solution is used as an input to the distribution problem. Based on compu-
tational experiments, the combined approach provides significant savings in terms
of total transportation costs, although these savings may not lead to a significant
decrease in total costs depending on the magnitude of the inventory related costs.
However, the combined approach has significant benefits when the number of vehi-
cles used is few (where the hierarchical approach may yield an infeasible solution).
In addition to inventory levels and allocation, the simulation-based research con-
ducted by Gregor et al. (1982) also examines the impact of the number of vehicles
used in distribution on system-wide costs.

Or and Pierskalla (1979) consider daily vehicle routing decisions as a part of a
regional location-allocation problem where they also determine the optimal number
and location of blood centers, and the assignment of hospitals to the blood centers
that supply the hospitals on a periodic basis. They develop integer programming
models and propose heuristic solution methods. However, their model is designed
at an aggregate level and age of inventory is not considered. A similar problem is
studied by Hemmelmayr et al. (2006) where periodic delivery schedules and vehicle
routes are determined to distribute blood across a region.

Recent research on supply chain scheduling has addressed the need to effec-
tively distribute time-sensitive goods; Chen (2006) provides a survey of research
in this growing area. However, perishability is not modeled explicitly in this lit-
erature, rather production orders are assumed to come from customers along with
information on delivery time windows and delivery due dates. Similarly, there are
several articles that model and solve real-life distribution problems of perishable
products such as dairy products, or food (e.g., Adenso-Diaz et al. (1998), Golden
et al. (2001)) where aging or perishability is not explicitly modeled but is implicit
in the time-windows. More recently, Yi (2003) developed a model for daily vehicle
routing decisions to bring back supply (blood) from collection sites to a central lo-
cation in order to meet the daily target level of platelets (that can only be extracted
within 8 hours of blood donation); this is a vehicle routing problem with time win-
dows and time-dependent rewards.
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Notice that the research in this area has been confined to a single product, or
multiple products without age considerations. Interestingly, the distribution prob-
lem posed by Prastacos (1984) still remains open: How can a distribution plan for
a centralized system be created to include shipments for multiple products, each
with a different lifetime and supply-demand pattern? Katsaliaki and Brailsford’s
(2007) simulation model provides only a partial answer to this question; their model
involves only one supplier and one retailer. Although challenging, analysis of the
centralized problem with multiple retailers and multiple products definitely deserves
attention.

15.4.3 Information Sharing and Centralized/Decentralized
Planning

Information technology paved the way for various industry-wide initiatives includ-
ing Efficient Consumer Response in the grocery industry; these initiatives aim to
decrease total system costs and inventories while improving availability of products
and customer satisfaction. A critical component of these initiatives is the sharing of
demand and product flow information among the suppliers, distributors, and retail-
ers. Fransoo and Wouters (2000) discuss the benefit of sharing electronic point of
sale (EPOS) information for supply chains of two perishable products (salads and
ready-made pasteurized meals). Their empirical analysis suggests that the benefit of
EPOS would be higher for the supply chain of salad because of the magnitude of
the bullwhip effect observed. The reason for the higher bullwhip effect appears to be
the larger fluctuations in the demand for salad (e.g., when there is a sudden increase
in temperature, there is a spike in demand), associated shortage-gaming by the retail
franchisees, and the additional order amplification by the DC.

Information sharing and the value of information has been widely studied in the
general supply chain literature. Chen (2002) provides a survey of research on this
topic by focusing on where the information is coming from (such as the point-of-
sale data from downstream, or capacity information from upstream in the supply
chain), quantity, accuracy and speed of information, and centralized vs. decentral-
ized planning in the supply chain (specifically he considers incentives for sharing
information and whether the environment is competitive or not). However, this rich
literature studies non-perishable goods or single-period models; the unique charac-
teristics of perishables are ignored, except by Ferguson and Ketzenberg (2006) and
Ketzenberg and Ferguson (2006).

Ferguson and Ketzenberg (2006), motivated by the grocery industry, investi-
gate the value of information for a retailer managing inventory. They focus on the
retailer’s replenishment problem and consider an infinite-horizon periodic review
inventory model for a single product with finite lifetime, lost sales, one-period lead
time and no outdating cost (see Sect. 15.3.1.1). The age of all units in a replen-
ishment are the same. The age of stock at the supplier is a random variable, and
its distribution is known to the retailer. In case of information sharing, the retailer
knows exactly the age of stock prior to giving an order. Ferguson and Ketzenberg
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(2006) quantify the value of information on the age of stock under heuristic re-
plenishment policies with FIFO, LIFO or random issuing of inventory. Numerical
experiments reveal profits increase and outdates decrease, on the average, when
information is shared. An interesting finding is that investments that extend the prod-
uct lifetime provides a greater benefit than information sharing.

There are complications associated with different parties operating by different
rules in managing supply chains of perishables: For instance, the supplier can pre-
sumably induce the retailers to order more frequently by adapting an issuance and/or
replenishment policy that leads to more frequent outdates (e.g., using FIFO issuance
and/or having older stock in its inventory will enable the supplier to sell goods that
have a smaller shelf-life to the retailer). This is only mentioned in Ketzenberg and
Ferguson (2006) – but not analyzed – and is ignored by other researchers. In that
paper, Ketzenberg and Ferguson (2006) study the value of information in a two-
echelon setting with one retailer and one supplier. Both parties replenish inventory
heuristically, the retailer’s order quantity in each period is either 0 or Q (which is
an exogenous fixed batch size) and issues inventory in a FIFO fashion, whereas
the supplier uses the same quantity Q in giving orders but need not give an order
every period. In fact, the supplier determines the timing of his replenishments by
considering a safety lead time. The retailer knows the supplier’s inventory state –
including the age of items in stock – and the supplier knows the retailer’s replenish-
ment policy. Ketzenberg and Ferguson (2006) quantify (a) the value of information
regarding the inventory state and replenishment policies in a decentralized system
via numerical examples, and (b) the value of centralized planning. The value of in-
formation for perishables can be significant, and increase in supply chain profit, due
to centralization, is not always Pareto improving for both parties.

Note that all the papers we introduced so far focus on a single decision maker.
Likewise, Hahn et al. (2004) derive the optimal parameters of a TIS policy for a re-
tailer under two different contracts offered by the supplier; however, the supplier’s
optimal decisions are disregarded. Among the few studies that mention decentral-
ized decision-making, Popp and Vollert (1981) provide a numerical comparison of
centralized vs. decentralized planning for regional blood banking. Problems that
involve multiple decision-makers, decentralized planning (vs. centralized) and co-
ordination of supply chains have been widely studied for non-perishables and/or
using single-period models (see, Chen (2002) and Cachon (2003)). In practice, per-
ishable products share the same supply chain structure as many non-perishables, and
decentralized planning and/or coordination issues are just as critical. Furthermore,
there are more challenges for perishables due to cost of outdating, and possibly de-
clining revenues due to aging. However, research in this area has been scarce, and
this issue remains as one of the important future research directions.4

4 There is research on coordination issues in supply chains with deteriorating goods: A permissible
delay in payment agreement between a retailer and a supplier is proposed in the deterministic model
of Yang and Wee (2006) to coordinate the supply chain. Chen and Chen (2005) study centralized
and decentralized planning for the joint replenishment problem with multiple deteriorating goods.
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15.5 Modeling Novelties: Demand and Product Characteristics,
Substitution, Pricing

The research we have reviewed so far includes models where the inventory of a
single product is depleted either in a LIFO or FIFO manner. Analysis of single
location models in Sect. 15.3 is confined to FIFO. Earlier research on single location
models has shown the difficulty in characterizing stationary distribution of stock
levels under LIFO even when the lifetime of the product is only two periods (see the
references and comments in Nahmias (1982)). Nahmias (1982) mentions that when
the lifetime is two periods, the order up to level in a TIS policy is insensitive to the
choice of FIFO vs. LIFO despite the difference in total system costs. Therefore, the
replenishment policies/heuristics developed under FIFO can also be used effectively
for LIFO. However, replenishment and issuance decisions may be interconnected –
hence a more a careful analysis is needed – under more general demand models.

Typically, excess demand is treated via backlogging or lost sales, with some pa-
pers incorporating expedited delivery in their models (e.g., Fujiwara et al. (1997),
Ketzenberg and Ferguson (2006), Yen (1975), Bar-Lev et al. (2005) and Zhou and
Pierskalla (2006)). In practice, there is another way to fulfill the excess demand for a
product: Substitution. In the case of perishables, products of different ages often co-
exist in the market place, and inventory can be issued using rules more complicated
than FIFO or LIFO, allowing items of different ages or shelf-lives to be used as
substitutes for each other. This idea first appeared in the perishable inventory liter-
ature in Pierskalla and Roach (1972) who assume there is demand for any category
(age) and that the demand of a particular category can be satisfied from the stocks
of that category or using items that are fresher. Pierskalla and Roach (1972) show
that FIFO is optimal in this model with respect to two objectives: FIFO minimizes
total backlog/lost sales and minimizes outdates. The model has an important sim-
plification: The demand and supply (replenishment) are assumed to be independent
of the issuing policy. Since issuing can potentially affect demand – fresher goods
could lead to more loyal customers – the study of models in which this assumption
of independence is relaxed will be important.

The motivation for many of the papers that involve substitution and age-
dependent demand streams come from health care. Cohen et al. (1981a) mention
hospitals doing special surgeries get higher priority for fresh blood. Haijema et al.
(2005, 2007) mention that platelets have 4–6 days of effective shelf-life, and 70%
of the patients requiring platelets suffer from platelet function disorder and need
a fresh supply of platelets (no older than 3 days) on a regular basis whereas the
remaining 30% of the patients who may lack platelets temporarily due to ma-
jor trauma or surgery do not have a strong preference with respect to the age of
the platelet up to the maximal shelf-life. For supply chains involving perishable
goods other than blood, substitution usually depends on customers’ choice and/or
a retailer/supplier’s ability to influence customers’ purchasing decisions. In their
empirical research, Tsiros and Heilman (2005) study the effect of expiration dates
on the purchasing behavior of grocery store customers. They conducted surveys to
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investigate consumer behavior across different perishable product categories. They
find that consumers check the expiration dates more frequently if their perceived
risk (of spoilage or health issues) is greater. They also determine that consumers’
willingness to pay decreases as the expiration date nears for all the products in this
study; again finding that the decrease varies across categories in accordance with
customer perceptions. Tsiros and Heilman’s (2005) findings support the common
practice of discounting grocery goods that are aging in order to induce a purchase.
However, they find that promotions should differ across categories and across cus-
tomer groups in order to exploit the differences in customers’ tendencies to check
the expiration dates and the differences in their perceived risks across categories.
In light of these motivating examples and empirical findings, we provide below an
overview of analytical research that considers substitution, multiple products and
pricing decisions.

15.5.1 Single Product and Age-Based Substitution

Research like that of Pierskalla and Roach (1972), where products of different shelf-
lives are explicitly modeled is limited. For a single product with a limited shelf-life,
substitution has been considered to sell goods of different ages: Parlar (1985) an-
alyzes the single-period problem for a perishable product that has two periods of
lifetime, where a fixed proportion of unmet demand for new items is fulfilled by un-
sold old items and vice-versa, but his results do not extend to longer horizons. Goh
et al. (1993) consider a two-stage perishable inventory problem. Their model has
random supply and separate, Poisson-distributed demand streams for new and old
items. Their analysis relies on an approximation and they computationally compare
a restricted policy (where no substitution takes place) and an unrestricted policy
(where stocks of new items are used to fulfill excess demand for old). Consider-
ing only shortage and outdating costs they conclude that the unrestricted policy
is less costly, unless the shortage cost for fresh units is very high. Ferguson and
Koenigsberg (2007) study a problem in a two-period setting with pricing and in-
ternal competition/substitution. In their model, the demand for each product in the
second period is given by a linear price-response curve which is a function of the
price of both products as well as the quality deterioration factor of the old product,
and their decisions include the prices of both products as well as the number of left-
over units of old product to keep in the market. They investigate whether a company
is better off by carrying both or only the new product in the second period.

Ishii (1993) models two types of customers (high and low priority) that demand
only the freshest products or products of any age, respectively, and obtains the op-
timal target inventory level that maximizes the expected profits in a single period
for a product with finite lifetime. The demand of high priority customers is satis-
fied from the freshest stock first, and then inventory is issued using FIFO in this
model. Ishii and Nose (1996) analyze the same model under a warehouse capacity
constraint. More recently, Haijema et al. (2005, 2007) study a finite horizon problem
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for blood platelet production with a demand model of two types of customers similar
to Ishii (1993) and Ishii and Nose (1996). Haijema et al. (2005, 2007) formulate a
Markov Decision Process (MDP) model to minimize costs associated with holding,
shortage, outdating and substitution (incurred when the demand for a “fresh” item
is fulfilled by older stock) costs. They assume inventory for the any-age demand is
issued in a FIFO manner from the oldest stock and fresh-demand is issued using
LIFO from the freshest stock. Haijema et al. (2005, 2007) propose a TIS and a com-
bined TIS-NIS heuristic, i.e., there is a daily target inventory level for total inventory
in stock and also the new items in stock. Computational experiments show that the
hybrid TIS-NIS policy is an improvement over TIS and that these heuristics provide
near-optimal inventory (production) policies.

Deniz et al. (2008) provide a detailed analysis of the interplay between replen-
ishment policies and inventory issuance. Their infinite horizon, periodic review
formulation for a product with two periods of lifetime includes lost sales, holding,
outdating as well as substitution costs (both new-to-old and old-to-new). They as-
sume two separate demand streams for new and old items; demand can be correlated
across time or across products of different ages. Deniz et al. (2008) study different
substitution options: The excess demand for a new item is satisfied from the excess
stock of old, and/or the excess demand for an old item is satisfied from the ex-
cess stock of new, or not, including the no-substitution case. Both LIFO and FIFO
inventory issuance, as is common in the literature, can be represented using this
substitution model. The inventory is replenished using either TIS or NIS in Deniz
et al. (2008), and they identify conditions for the cost parameters under which the
supplier would indeed benefit from restricted (only old-to-new, only new-to-old, or
no substitution) or unrestricted forms of substitution while using a practical replen-
ishment policy. They show that even when substitution costs are zero, substitution
can be economically inferior to no-substitution for a supplier using a TIS policy.
Alternately, even when substitution costs are very high, no-substitution is not guar-
anteed to be superior for a supplier using TIS. These counter-intuitive properties are
the side-effects of the TIS policy which constrains reordering behavior. In contrast,
more intuitive results under the NIS policy exist and conditions on cost parameters
establish the economic benefit of substitution for this replenishment policy.

Deniz et al. (2008) and Deniz (2007) do extensive computational experiments to
quantify the benefits of substitution and to compare TIS and NIS. Deniz et al. (2008)
and Deniz (2007) find that NIS – the policy that uses no information on the level
and age of inventory – proves more effective than TIS and provides lower long-run
average costs except when the demand for new items is negligible. The effectiveness
of NIS in their model is in contrast with the observations in earlier research papers.
This is because inventory is depleted in a FIFO manner – there is no demand for
new items as long as old items are available – in the classical literature. Similar
to the observation of Cohen et al. (1981b) on the limited need for transshipments
(see our discussion in Sect. 15.4.2), Deniz et al. (2008) show that the amount of
substitution is small when inventory is replenished using effective policies. This
latter paper really only begins the consideration of managing age-dependent demand
and effect of different inventory issuance rules (via substitution) for perishable items
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– items with longer lifetimes, other issuance rules, or substitution between different
perishable products within the same category (e.g., different types of fruit) remain to
be investigated. Note that substitution is only modeled as a recourse in these papers,
and dynamic substitution where one strategically sells a product of an age diggerent
from that requested before the stocks of the requested item are depleted, has not
been studied.

15.5.2 Multiple Products

Nahmias and Pierskalla (1976) study the optimal ordering policies for an inventory
system with two products, one with a fixed, finite shelf-life and the other with an
infinite lifetime. The problem is motivated by the operation of a blood bank storing
frozen packed red cells.5 Demand is satisfied from the inventory of perishable prod-
uct first in a FIFO manner, any remaining demand is fulfilled from the inventory
of non-perishable products. Nahmias and Pierskalla (1976) analyze the structural
properties of the expected cost function in a finite-horizon, dynamic, discrete review
system and show that the optimal ordering policy in each period is characterized by
three choices: Do not order, order only product with the finite lifetime, or order both
products. Their results include monotonicity of order-up-to level of the perishable
product, e.g., the decrease in order up-to-level is higher with the increase in the
stock levels of newer items as opposed to old ones. They also show that if it is op-
timal to order both products in a given period, then it is optimal to bring the total
system-wide inventory up to a level that does not vary with the on-hand inventory
levels, but with the time remaining until the end of the planning horizon.

Multiple perishable products are also considered by Deuermeyer (1979, 1980).
Deuermeyer (1979) determines the one-period optimal order-up-to-levels for two
products. In his model, the products are produced by two processes, one of which
yields both products and the other yields only one product. Deuermeyer (1980)
determines the single-period, optimal order-up-to levels for multiple perishable
products, each with a different lifetime. A critical assumption in the latter is the
economic substitution assumption where the marginal total cost of a product is
assumed to be nondecreasing in the inventory levels of other products. Using the
resulting properties of the single-period expected total cost function, Deuermeyer
(1980) is able to obtain the monotonicity results on order-up-to-levels for the single-
period, multi-product problem. His results mimic that of Fries (1975) and Nahmias
(1975a) for the single product problem. Specifically, these results show that the op-
timal order-up-to level of a product is more sensitive to changes in stock levels of
newer items (as discussed above for Nahmias (1976)), and that the optimal order
quantity decreases with an increase in the on-hand stock levels, while the optimal
target inventory level remains nondecreasing.

5 We refer the reader to Prastacos (1984) for earlier, simulation-based research on the effect of
freezing blood products on inventory management.
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15.5.3 Pricing of Perishables

Pricing, in general, has become one of the most widely studied topics in the
operations management literature in the last decade. There is a significant body
of research on dynamic pricing and markdown optimization for “perishables.” One
well-studied research problem in that domain involves determining the optimal price
path for a product that is sold over a finite horizon given an initial replenishment
opportunity and various assumptions about the nature of the demand (arrival pro-
cesses, price-demand relationship, whether customers expect discounts, whether
customers’ utility functions decrease over time etc.). We refer the reader to the book
by Talluri and van Ryzin (2004) and survey papers by Elmaghraby and Keskinocak
(2003), and Bitran and Caldentey (2003), for more information on pricing of per-
ishable products. In that stream of research, all the items in stock at any point in
time are of the same age because there is only one replenishment opportunity. In
contrast, Konda et al. (2003), Chandrashekar et al. (2003), and Chande et al. (2004,
2005) combine pricing decisions with periodic replenishment of a perishable com-
modity that has a fixed lifetime, and their models include items of different ages in
stock in any period. They provide MDP formulations where the state vector includes
the inventory level of goods of each age. Their pricing decisions are simplified, i.e.,
they only decide whether to promote all the goods in stock in a period or not. Chande
et al. (2004) suggest reducing the size of the state of space by aggregating informa-
tion of fresher goods (as opposed to aggregation of information on older goods as
in Nahmias (1977a)). Performance of this approximation is discussed via numeri-
cal examples in Chande et al. (2004, 2005), and sample look-up tables for optimal
promotion decisions are presented for given inventory vectors.6

Based on Tsiros and Heilman (2005) observations on customers’ preferences and
close-substitutability of products in fresh-produce supply chains, it is important to
analyze periodic promotion/pricing decisions across age-groups of products. There
are several research opportunities in this area in terms of demand management via
pricing to minimize outdates and shortages across age-groups of products and prod-
uct categories.

15.6 Summary and Future Research Directions

We presented a review of research on inventory management of perishable and
aging products, covering single-location inventory control, multi-echelon and multi-
location models, logistics decisions and modeling novelties regarding demand and

6 Another paper that considers prices of perishable products is by Adachi et al. (1999). Items of
each age generate a different revenue in this model, demand is independent of the price, and the
inventory is issued in a FIFO manner. The work entails obtaining a replenishment policy via com-
putation of a profit function given a price vector.
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product characteristics. We identified or re-emphasized some of the important
research directions in Sect. 15.2 to 15.5, ranging from practical issues such as
product-mix decisions and managing inventories of multiple, perishable products,
to technical ones such as the structure of optimal replenishment policies with fixed
costs in the single-product, single-location problem. We provide some final com-
ments on possible research topics below.

Multiple products (joint replenishment and product-mix): The research within the
perishable domain has largely been confined to inventory management of a sin-
gle product as the survey in this chapter shows. However, grocery or blood supply
chains involve multiple perishable products with possibly differing lifetimes. Joint
replenishment is a typical practice in these industries, and analytical research that
studies the interaction between multiple items in ordering decisions – focusing on
economies of scale, or substitution/complementarity effects of products with differ-
ent lifetimes and in different categories – has not been studied. These interactions
provide opportunities for more complex control policies, which make such problems
both more challenging analytically, and potentially more rewarding practically.

Considering multiple products, another problem that has not attracted much at-
tention from the research community is determining the optimal product-mix when
one type of perishable product can be used as a raw material for a second type of
product, possibly with a different lifetime, as we mentioned in Sect. 15.2. Decisions
regarding when and how much of a base product to sell/stock as is, vs: how much
to process in order to obtain a final product with a different lifetime or different po-
tential value/revenue are quite common in blood and fresh produce supply chains.
Consideration of multiple products will lead to more realistic decision problems, for
which practical and effective solutions are needed.

Capacity, freshness, disposal, and outdating: A significant majority of the research
on inventory management or distribution of perishable goods disregards capacity
constraints. Models with limited capacity are better representative of the challenges
in practice and require innovative heuristic policies.

The practical decision of when (if at all) to dispose of the aging inventory has not
received much attention even in single location models, possibly because capacity
is assumed to be unlimited and/or demand is assumed to be satisfied with FIFO in-
ventory issuance. However, disposal decisions are especially critical when capacity
is constrained (e.g., a retailer has limited shelf-space to display the products), and
customers choose the products based on their (perceived) freshness/quality. Veinott
(1960), in his deterministic model, included disposal decisions for a retailer of per-
ishable products with fixed lifetime. Martin (1986) studied optimal disposal policies
for a perishable product where demand is stochastic. His queueing model considers
the trade-off between retaining a unit in inventory for potential sales vs. salvaging
the unit at a constant value. Vaughan (1994) models an environment where a retailer
decides on the optimal parameter of a TIS policy and also a “sell-by” date that es-
tablishes an effective lifetime for the product with a random shelf life; this may be
considered a joint ordering and outdating policy. Vaughan (1994) discusses that his
model would be useful for retailers if they were to select suppliers based on their
potential for ordering and outdating, but no analysis is provided.
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When customers prefer fresher goods, disposal and outdating are key decisions
that affect the age-composition (freshness) of inventory, and can influence the de-
mand. Analysis of simple and effective disposal and outdating policies, coordination
of disposal with replenishment policies, and analysis of inventory models where cus-
tomers (retailers) choose among suppliers and/or consider risk of supply/freshness
remain among the understudied research problems.

Inventory issuance and demand models: The majority of research on perishables
assumes demand for a product is either independent of its age, or that the freshest
items are preferred. These typical assumptions motivate the primary use of FIFO and
LIFO issuance in inventory control models. However, one can question how realis-
tic these issuance policies are especially in a business-to-business (B2B) setting. A
service level agreement between a supplier (blood center) and its retailer (hospital)
may not be as strict as “freshest items must be supplied” (motivating LIFO) or as
loose as “items of any age can be supplied” (motivating FIFO), but rather “items
that will not expire within a specified time-window must be supplied”.7 Faced with
such a demand model, and possibly with multiple retailers, a supplier can choose
his/her optimal issuance policy which need not necessarily be LIFO or FIFO. Simi-
larly, Pierskalla (2004) notes that for a regional blood supply chain, FIFO issuance
may not be the most appropriate for a supplier who distributes blood to multiple
locations; if certain locations receive shipments infrequently, then it is better to use
LIFO for those locations to extend the lifetime of the product. To the best of our
knowledge, few researchers have shown an awareness of the heterogeneity among
the customers/locations (see Sect. 15.5.1). For future research on perishables to be
of more practical use, we need demand models and inventory issuance rules that are
representative of the more general business rules and policies today.

Competition: While problems that involve competition (among retailers, suppliers,
or supply chains) have received a lot of attention in the last decade (see, for e.g.,
Cachon (1998)), models that include competition involving perishable and aging
products have not appeared in the literature. One distinct feature of competition in
a perishable commodity supply chain is that suppliers (retailers) may compete not
only on availability and/or price but also on freshness.

Contracting: In the produce industry, a close look at the relationship between
suppliers and buyers reveals several practical challenges. Perosio et al. (2001)
present survey results that indicate that about 9% of the produce in the USA. is
sold through spot markets, and about 87.5% of product purchases are made un-
der contracts with suppliers. Perosio et al. (2001) make the following observation
which is essentially a call for further research: “Despite a number of consider-
able disadvantages, in general, todays buyers and sellers alike appear to be won
over by the greater price certainty that contracting makes possible...However, high

7 We thank Feryal Erhun from Stanford University for bringing this practical issue, which she has
witnessed in blood supply chains, to our attention.
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degrees of product perishability, weather uncertainty and resulting price volatility,
and structural differences between and among produce buyers and sellers create
significant challenges to the design of the produce contract.”

Recently, Burer et al. (2006) introduced different types of contracts used in the
agricultural seed industry and investigated – via single-period models – whether
the supply chain can be coordinated using these contracts. In their ongoing work,
Boyabatli and Kleindorfer (2006) study the implications of a proportional product
model (where one unit of input is processed to produce proportional amounts of
multiple agricultural outputs) on the optimal mix of long-term and short-term (spot)
contracting decisions. We believe further analysis of supplier-retailer relations, and
the design of contracts to improve the performance of a supply chain that involves
perishable products remain fruitful research topics.

Pricing and blood supply chains: Pricing was mentioned as one of the important
research directions by Prastacos (1984) to encourage collaboration between hospi-
tals and blood banks/centers; this is also echoed in Pierskalla (2004). There seems
to be almost no research in this direction to date. According to a recent survey in
the U.S., the mean cost of 250 ml of fresh frozen plasma to a hospital varied from
$20 to $259.77, average costs of blood components were higher in Northeastern
states compared to the national average, and hospitals with higher surgical volume
typically paid less than the national average for blood components in 2004 (AABB,
2005). Given the importance of health care both for the general welfare and the
economy, there is a pressing need for further research to understand what causes
such variability in this environment, and whether pricing can be combined with in-
ventory management to better match demand for perishable blood components with
the supply. The potential relevance of such work reaches well beyond the health care
industry.

Technology: Advances in technology have increased the efficiency of conventional
supply chains significantly; for perishable goods, technology can potentially have
an even greater impact. Not only is there the potential to enable information flow
among different parties in a supply chain, as has proved to be valuable in conven-
tional chains, but there is also the possibility of detecting and recording the age
of the products in stock (e.g., when RFID is implemented). This information can be
used to affect pricing decisions, especially of products nearing their usable lifetimes.
Moreover, advances in technology can potentially increase the freshness and extend
the lifetime of products (e.g., when better storage facilities or packaging equipment
is used). The relative magnitudes of these benefits calibrated to different product
and market characteristics remains an important open problem.

The majority of the work on the analysis of inventory management policies as-
sume that the state of the system is known completely; i.e., inventory levels of
each age of product at each location are known. However, this may not be the case
in practice. While effective heuristic policies, such as TIS and NIS, for inventory
management at a single location reduce the information need and do not require
a complete characterization of the state of the inventory, availability of informa-
tion can be pivotal for applications with features that are not represented in typical
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single-location models (e.g., models that emphasize freshness of inventory and/or
consider disposal). Cohen et al. (1981a) discuss the need for detailed demand and
inventory information to apply shortage or outdate anticipating transshipment rules
in a centralized system, and argue that the system would be better without trans-
shipments between the retailers if accurate information is not available. Chande
et al. (2005) presents an RFID architecture for managing inventories of perishable
goods in a supply chain. They describe how the profile of current on-hand inventory,
including the age, can be captured on a real-time basis, and conclude by stating that
“there is a need for measures and indicators ... to determine ... (a) whether such
development would be beneficial, and (b) when implemented, how the performance
of the system compares to the performance without auto ID enhancements.”

Final Note: With the acceleration of product life cycles, the line between “perish-
able” and “durable” products continues to be blurred. Strictly speaking, goods such
as computers and cell phones obsolesce rather than perish, but many of the same
questions we raised about “perishable” inventory currently are, and will continue to
become increasingly relevant in this category as well.
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Berk E, Gürler Ü (2006) Analysis of the (Q,r) inventory model for perishables with positive lead
times and lost sales. Working paper. Faculty of Business Administration, Bilkent University,
Ankara,Turkey.

Bitran G, Caldentey R (2003) An overview of pricing models for revenue management. Manufact
Serv Ope Manage 5:203–229.

Boyabatli O, Kleindorfer P (2006) Integrating long-term and short-term contracting in fed-cattle
supply chains: Proportional product model. Presented at the INFORMS Annual Meeting,
Pittsburgh, November, 2006.

Brodheim E, Derman C, Prastacos GP (1975) On the evaluation of a class of inventory policies for
perishable products such as blood. Manage Sci 22:1320–1325.



15 Managing Perishable and Aging Inventories 431

Bulinskaya EV (1964) Some results concerning optimum inventory policies. Theory Prob Appl
9:389–402.

Burer S, Jones PC, Lowe TJ (2006) Coordinating the supply chain in the agricultural seed industry.
Working paper. Department of Management Sciences, University of Iowa, Iowa City, IA.

Cachon GP (1998) Competitive supply chain inventory management. In: Tayur S, Ganeshan R,
Magazine M (eds) Quantitative Models for Supply Chain Management, Kluwer, Boston.

Cachon GP (2003) Supply chain coordination with contracts,In: Graves S, de Kok T (eds) Hand-
books in Operations Research and Management Science: Supply Chain Management North
Holland.

Chande A, Hemachandra N, Rangaraj N, Dhekane S (2004) Fixed life perishable inventory prob-
lem and approximation under price promotion. Technical report. Industrial Engineering and
Operations Research, IIT Bombay, Mumbai, India.

Chande A, Dhekane S, Hemachandra N, Rangaraj N (2005) Perishable inventory management and
dynamic pricing using RFID technology. SNadhanNa, 30:445–462.

Chandrashekar K, Dave N,Hemachandra N, Rangaraj N (2003) Timing of discount offers for per-
ishable inventories. In: Rao MR, Puri MC (eds) Proceedings of sixth Asia Pacific operations
research society. Allied Publishers, New Delhi.

Chazan D, Gal S (1977) A markovian model for a perishable product inventory. Manag Sci 23:
512–521.

Chen F (2002) Information sharing and supply chain coordination. In: de Kok T, Graves S (eds)
Handbook of Operations Research and Management Science: Supply Chain Management
North-Holland.

Chen J-M, Chen T-H (2005) Effects of joint replenishment and channel coordination for managing
multiple deteriorating products in a supply chain. J Oper Res Soc 56:1224–1234.

Chen Z-L (2006) Integrated production and outbound distribution scheduling in a supply chain:
Review and extensions. Working paper, Robert H. Smith School of Business, University of
Maryland, College Park. MD.

Chiu HN (1995) An approximation to the Continuous review inventory model with perishable
items and lead times. Eur J Oper Res 87:93–108.

Clark AJ, Scarf H (1960) Optimal policies for a multi-echelon inventory problem. Manag Sci
45:475–490.

Cohen M (1976) Analysis of single critical number ordering policies for perishable inventories.
Oper Res 24:726–741.

Cohen M, Pierskalla WP (1979) Simulation of blood bank systems. ACM SIGSIM Simulation
Digest 10:14–18.

Cohen M, Pierskalla WP, Yen H (1981a) An analysis of ordering and allocation policies for multi-
echelon, age-differentiated inventory systems. TIMS Studies Manage Sci 16:353–378.

Cohen M, Pierskalla WP, Sassetti RJ (1981b) Regional blood inventory control and distribu-
tion. Proceedings of the 1980 conference on the management and logistics of blood banking,
National Heart, Lung and Blood Institute, vol.5 (October 1981), pp 21–88.

Cooper W (2001) Pathwise properties and performance bounds for a perishable inventory system.
Oper Res 49:455–466.

Dave U (1991) Survey of literature on continuously deteriorating inventory models – A rejoinder.
J Oper Res Soc 42:725.

Deniz B, Karaesmen I, Scheller-Wolf A (2008) Managing perishables with substitution: Inven-
tory issuance and replenishment. Working paper, Tepper School of Business, Carnegie Mellon
University, Pittsburgh PA.

Deniz B (2007) Essays on perishable inventory management. PhD dissertation, Tepper School of
Business, Carnegie Mellon University, Pittsburgh, PA

Deuermeyer BL (1979) A multi-type production system for perishable inventories. Oper Res
27:935–943.

Deuermeyer BL (1980) A single period model for a multi-product perishable inventory system
with economic substitution. Naval Res Logis 27:177–185.



432 I.Z. Karaesmen et al.

Diks EB, de Kok AG (1998) Optimal control of a divergent multi-echelon inventory system. Eur J
Oper Res 111:75–97.

Elmaghraby W, Keskinocak P (2003) Dynamic pricing in the presence of inventory considerations:
Research overview, current practices, and future directions. Manage Sci 49:1287–1309.

Eppen G, Schrage L (1981) Centralized ordering policies in A multi-warehouse system with lead
times and random demand. In: Schwarz LB, (ed) Multi-level Production/Inventory Control
Systems: Theory and Practice, North-Holland, Amsterdam.

Federgruen A, Prastacos GP, Zipkin P (1986) An allocation and distribution model for perishable
products. Oper Res 34:75–82.

Ferguson M, Koenigsberg O (2007) How should a firm manage deteriorating inventory? Prod Oper
Manag 16:306–321.

Ferguson M, Ketzenberg ME (2006) Sharing information to improve retail product freshness of
perishables. Prod Oper Manag 15:57–73.

Fransoo JC, Wouters MJF (2000) Measuring the Bullwhip effect in the supply chain. Supply Chain
Manag: An Int J 5:78–89.

Fries B (1975) Optimal ordering policy for A perishable commodity with fixed lifetime. Oper Res
23:46–61.

Fujiwara O, Soewandi H, Sedarage D (1997) An optimal ordering and issuing policy for a two-
stage inventory system for perishable products. Eur J Oper Res 99: 412–424.

Goh C, Greenberg BS, Matsuo H (1993) Two-stage perishable inventory models. Manag Sci,
39:633–649.

Golden BL, Assad AA, Wasil EA (2001) Routing vehicles in the real world: Applications in
the solid waste, beverage, food, dairy, and newspaper industries. In: Toth P, Vigo D (eds)
The vehicle routing problem society for industrial and applied Mathematics, Philadelphia, PA,
pp 245–286.

Goyal SK, Giri BC (2001) Recent trends in modeling of deteriorating inventory. Eur J Oper Res
134:1–16.

Graves SC (1982) The application of queueing theory to continuous perishable inventory systems.
Manag Sci 28:400–406.

Gregor PJ, Forthofer RN, Kapadia AS (1982) Evaluation of inventory and transportation policies
of a regional blood distribution system. Eur J Oper Res 10:106–113.

Grocery Manufacturers of America (2004) 2004 unsalables benchmark report. http://www.
gmabrands.com/industryaffairs/docs/benchgma2004.pdf.
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Chapter 16
Optimization Models of Production
Planning Problems

Hubert Missbauer and Reha Uzsoy

16.1 Introduction

Mathematical programming formulations have been proposed for a wide range of
production-related problems since the 1950s, addressing problems of long-term ag-
gregate production planning, medium-term allocation of capacity to different prod-
ucts, lot sizing and product cycling, and detailed short-term production scheduling.
The range of problems addressed by these methods spans a variety of managerial
levels, problem environments, and time scales, often confusing even experienced
practitioners and researchers as to what exactly is meant by the term “production
planning.” Hence, it is necessary to begin a chapter of this nature by specifying ex-
actly what type of problems we plan to address, especially since an overview of all
related areas is clearly beyond the scope of any single chapter. Indeed, we note in
passing that there appears to have been no effort to collect all the production-related
operations research literature in a single volume since the book by Johnson and
Montgomery (1974), which remains an excellent reference for the basic concepts in
the field.

In this chapter, we shall focus on manufacturing planning and control (MPC)
systems for discrete parts manufacturing, where products are assembled from a va-
riety of components, each of which in turn is produced by a multistage process.
Manufacturing structures of this type occur in many industries, such as mechanical
products, electrical appliances, electronics, and automotive manufacturing. Most fa-
cilities are not dedicated to specific products, and thus may require time-consuming
changeovers when switching from one product type to another. Many insights in
this chapter are also relevant for industries that only partly show these character-
istics (e.g., semiconductor manufacturing). Process industries (e.g., steelmaking,
continuous chemical processing or paper industry) often have substantially different
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characteristics, so we will not address these cases. For a discussion of MPC systems
in process industries, see Gunther and Van Beek (2003); for steel plants as a special
case, see Tang et al. (2001) and Missbauer et al. (forthcoming).

For the types of manufacturing systems under consideration, a planning logic has
evolved over the last 45 years starting from bill-of-material explosion and leading
to the Material Requirements Planning (MRP) (Orlicky 1975) and Manufacturing
Resource Planning (MRPII) systems (Wight 1983), which form the basis for most
of the MPC and supply chain planning systems in industrial use today (Vollmann
et al. 2005). Today’s Advanced Planning and Scheduling (APS) Systems (Stadtler
and Kilger 2008) aim at complementing MPC systems by concentrating on planning
and coordinating the material flow between companies or manufacturing plants,
leveraging the data collection and organization capabilities of the Enterprise Re-
source Planning (ERP) and Manufacturing Execution Systems (MES) used by many
companies today. The chapter by Fordyce et al. in this volume gives an excellent
view of such a system.

The basic problem of production planning in these environments is essentially
one of matching supply to demand. This involves viewing the production system as
a network of resource groups, which we shall refer to as work centers, and allocating
the capacity of production resources at these work centers among different products
over time, coordinating the associated inventories and raw material inputs so that
known or predicted customer demand is met in the best possible manner. The “best
possible manner,” of course, requires more precise definition in order to form the
basis of an optimization model, and can vary widely based on the specific produc-
tion environment being considered. However, the objective functions are generally
aimed at minimizing the total expected costs of production and inventories over the
time horizon considered. There are also a number of models where demand is influ-
enced by management decisions such as pricing, in which case the objective takes
the form of profit maximization.

The decision variables emerging from the production planning activity depend
on the decision structure of the MPC system, mainly on the extent to which detailed
(mainly scheduling) decisions are made at the planning level. In the following, we
assume that detailed scheduling decisions are made on the shop-floor level. This is
the usual MPC structure and is described below in more detail. Given this struc-
ture of the MPC system, the basic decision variables emerging from the production
planning activity are the amount of material (work orders) for each type of prod-
uct that is to be released to each production resource over time, together with the
required due dates. We shall focus on these decisions throughout this chapter since
ultimately these decisions are the only actionable ones resulting from the produc-
tion planning process. Estimates of a number of other quantities, such as production
quantities at each production work center over time and inventory levels over time,
are also obtained from production planning models, but we will take the position
that all these ancillary quantities result from applying the work release decisions
to the constraints defining the operation of the production resources (capacity con-
straints) and the material flows through the production system. We will assume that
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capacity determination over the long term, the domain of the classical literature
on capacity expansion (represented by, e.g., Luss 1982) is not part of this problem
domain.

Due to the complexity of the supply chain, the manufacturing process and the
organization responsible for managing and coordinating them, the MPC task is usu-
ally structured hierarchically (Anthony 1966; Bitran et al. 1981, 1982; Bitran and
Tirupati 1993; Hax and Candea 1984). Essentially two planning levels can be dis-
tinguished as follows:

� Upper level (central MPC): The complexity of the supply chain or manufactur-
ing process is generally addressed by aggregating segments of the production
process into departments or production units (Bertrand et al. 1990). This level
then involves planning of the material flow over the entire logistic chain at an
appropriate level of aggregation, without determining detailed schedules (pro-
duction sequences) within the production units.

� Lower level: Detailed scheduling of the work orders within the production units,
which involves determining the start and finish dates of the operations and their
production sequence at the facilities.

Our specification of these levels follows the use of the terms “goods flow control”
and “production unit control” in (Bertrand et al. 1990). Note that the upper level fre-
quently is hierarchical in itself; see Vollmann, Berry et al. (2005), for its structure in
today’s MPC systems, and Bertrand et al. (1990) and de Kok and Fransoo (2003),
for advanced planning architectures. Many of these concepts date back at least
to the book by Anthony (1966), and an extensive literature has been developed
around these issues (for conceptual issues of hierarchical production planning, see
Schneeweiß 2003). When a hierarchical MPC system is designed, the data and
the decision variables are aggregated with respect to products (aggregating prod-
ucts into product groups or families), capacity (aggregating resources to resource
groups), and time (Stadtler 1996). Decisions taking place at a similar level of detail –
hence often over similar time intervals or frequencies – are considered together in
the same level of the hierarchy, and a mechanism is devised to propagate the im-
plications of these decisions up and down the hierarchy. However, the two levels
outlined above will be sufficient to motivate the work we wish to accomplish in this
chapter.

The essential interface between the two planning levels is order release.
The central MPC system coordinating the production units issues work orders
that specify the particular product or component type to be produced, the amount to
produce, and the due dates of the orders. Control over the work order then passes to
the lower, detailed scheduling level within the production unit concerned. Clearly
this approach requires coordination norms between the planning levels, which is
most commonly implemented using planned lead times. The upper level creates its
plans based on some assumptions as to the lead time, the time between the order
being released into production and its being completed. The production unit must
behave in a manner consistent with this assumption. The most common approach is
for the upper level to assume a constant lead time for the released orders, which the
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production unit commits to meeting, at least as long as capacity utilization remains
within reasonable limits. Thus the management of lead times by the production
unit, and of the norms defining the upper level’s view of the defined lead times, are
of utmost importance.

In any hierarchical planning system, the upper level can evaluate its decision
alternatives accurately only if it has access to a model that predicts the behavior of
the system controlled by the lower level. Thus this anticipation function of the upper
level (Schneeweiß 2003, p. 33 ff.) is a crucial element, allowing the upper level to
anticipate the consequences of its decisions for the lower level(s). In our case, the
central MPC system at the upper level needs a model that predicts the performance
indicators of the manufacturing system (work in process inventory, flow time, due-
date performance, etc.) resulting from an order release plan. The formulation of
mathematical programming models for the upper level of the MPC system described
above that use a variety of different anticipation functions is the central topic of this
chapter.

Perhaps the most obvious consequence of shortcomings in the design of the upper
level of the MPC system with respect to the anticipation of the dynamic behavior
of the manufacturing system is insufficient management of lead times and work-
in-process (WIP). In both Europe and the USA, a considerable body of work has
approached these issues using the terminology of workload control. This type of
approach usually implements the hierarchy discussed above, with the upper level
(central MPC) performing order acceptance and deciding what demand will be
served and which demand will be delayed in order to balance load and capacity
in the medium term. The tradeoff between low flow times and high throughput is
managed by the release of work into the production units over the short term based
on some statistics reflecting the state of the production system.

In the following, we describe the workload control concept that provides the
basis for Order Review and Release (ORR) systems that usually do not incorporate
optimization models. In the subsequent sections we concentrate on optimization
models for planning the aggregate material flow and order release in MPC systems.

16.2 Nonoptimization Workload Control

Since most of the MPC systems in industrial use today have largely evolved in
practice (see McKay chapter in this volume) and have not been designed from an
underlying theoretical basis, it is not surprising that their approaches to lead time
management are often problematic. A well-known example is the lead time syn-
drome (Wight 1983, p. 108 ff.) that in extreme cases can inflate lead times beyond
any arguable level. This can occur when lead time is considered to be a forecast
variable, which is the usual practice in MRP systems: Lead times are estimated
from realized values from the past, rather than being determined by the state of the
production system. It is a crucial insight that lead times are workload-dependent and
thus should be regarded as control variables (for this comparison, see Tatsiopoulos
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and Kingsman 1983): Lead times are determined mainly by the waiting times at
the work centers which are determined by the utilization level of the resources,
which are determined by the amount of released work. This insight, supported by
a very extensive literature on queuing models of manufacturing systems (Hopp and
Spearman 2001; Buzacott and Shanthikumar 1993), motivates the workload control
(WLC) concept as a way to improve lead time management.

The workload control (WLC) concept considers flow times as output vari-
ables that can be controlled by the manner in which work is released into the shop
over time. If the amount of work released (measured, e.g., in standard hours) is
large, this leads to longer queues at the work centers and hence to longer waiting
times and flow times. Reliable flow times can only be maintained if the amount of
work released into the system and its output (determined by the available capacity)
are balanced such that the queues of work in process inventory (WIP) at the work
centers, usually measured in hours of work, are kept at a predefined level. This
makes order release an essential decision function and a core component of WLC.
Implementing any form of WLC thus requires the solution of two subproblems:
(1) determining the target WIP level and (2) determining the release dates of orders,
i.e., how work will be released into the shop over time.

The target WIP level must be a compromise between the goals of maintaining
low WIP level and short flow times on the one hand and high output on the other.
A high output requires an average level of WIP (queues at the work centers) that
prevents idleness of the work centers, buffering against variability in the material
flow between stations (see Hopp and Spearman 2001, p. 287 ff., for the “corrupt-
ing influence of variability”). This can be formalized as a functional relationship:
Once the average WIP level is determined, the average flow time and the output
(capacity utilization) are also determined, given the order and shop characteristics.
The functional relationships between average WIP and other important performance
indicators are usually expressed as characteristic curves that are often determined
by simulation. Figure 16.1 shows an example. For this figure the manufacturing sys-
tem has been simulated several times with different average levels of WIP in the
shop. The average WIP levels were obtained by simulating the load-oriented order
release approach of Wiendahl (1995) with different target WIP levels. The realized
mean WIP values are shown on the x-axis, and the mean flow time and output on
the y-axis.

It is important to note that the characteristic curves in Figure 16.1 are not
completely determined by the technical properties of products and manufacturing
system. They also depend on sequencing rules, lot sizes, capacity flexibility, order
release frequency, etc., that is, they are a result of the long-term characteristics of
the planning system. Thus WLC can be considered as a means of complexity re-
duction: the specification of long-term decision rules in the MPC system leads to
stable operational characteristics of the manufacturing system it controls (expressed
as characteristic curves), which, in turn, provide the basis for order release deci-
sions that maintain the desired flow times. Consequently, WLC is an architecture
for the entire MPC system (for conceptual issues, see Bertrand et al. 1990; Zäpfel
and Missbauer 1993b; Missbauer 1998).
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Fig. 16.1 Curves for output and mean flow time per operation with change in the work-in-process
Wiendahl (1995, p. 246)

The decision problem of determining how to release work over time to maintain
a predetermined target WIP level has been a research topic since the 1970s. Two
main approaches can be distinguished as follows:

(a) WLC order release mechanisms that determine the work orders to release for a
short planning horizon. We use the term “traditional WLC order release mecha-
nisms” since this has been an essential part of WLC research in the last 20 years
(Land 2004; Stevenson and Hendry 2006). We describe this general approach
and its limitations in the following subsection.

(b) Order release planning procedures based on an explicit model of the material
flow and the time-dependent WIP level over a longer planning horizon, usually
divided into periods. This approach, its present state, and research topics are



16 Optimization Models of Production Planning Problems 443

described in Sects. 16.3 and 16.4. The focus of this chapter is very much on
order release methods that are explicitly based on the WLC concept and that are
applicable for complex product/process characteristics.

16.2.1 Traditional Order Release Methods Based
on Workload Control

Based on the insights described above, a number of short-term order release
mechanisms have been designed, mainly in the 1980s and 1990s. Examples
are CONWIP (Spearman et al. 1990), load-oriented order release (Wien-
dahl 1995), and the order release stage of the LUMS approach (Hendry and
Kingsman 1991; Stevenson and Hendry 2006) and the method of Bertrand and
Wortmann (1981). In the following, we describe the general concept of these
methods. Overviews can be found in Bergamaschi et al. (1997), Land (2004)
and Fredendall et al. (2010). Kanban, which can also be considered as a Work-
load Control technique, is based on more restrictive assumptions and is not
included here. Drum-Buffer-Rope is based on a more detailed schedule of the
bottlenecks (“drum beat”) and thus is different from the hierarchical MPC
concept that provides the basis for this chapter (for a discussion of MPC con-
cepts, see Zäpfel and Missbauer 1993a; for Drum-Buffer-Rope, see Cohen 1988;
Gupta 2005).

The order release mechanisms described in this section usually are based on the
following situation: The work orders in the MPC-system are generated from cus-
tomer orders or from the MRP system from net requirements, lot sizing, and infinite
capacity loading. Since in WLC order release is a decision function, the work orders
are initially held in an order pool of unreleased orders. These orders are specified
by product or component type, lot size, and required due date. A planned start date,
derived from the required due date and a planned flow time that is consistent with
the WIP norm, is usually available. Orders from the pool are released according to
their planned start dates and the load situation in the shop. All orders should be fin-
ished on time, and the WIP norms should be maintained. When an order is released,
control over the order is transferred to the scheduling level of the production unit,
which has to meet the required due date.

We define a traditional WLC order release mechanism as follows (see also the
basic release procedure described in Land (2004, p. 36 ff.)); we roughly follow the
classification framework in (Bergamaschi et al. 1997). Order release is load limited,
that is, a load limit is determined for each work center or for the shop as a whole,
based on the characteristic curves of Fig. 16.1, and the order release mechanism pre-
vents the load limits from being exceeded (in some cases with minor tolerance). The
planning horizon is one period (in practice, usually 1 day to 1 week), and there is
usually no order release plan for multiple periods. The capacities of the work cen-
ters are usually fixed, although some mechanisms consider capacity adjustments.
The timing of order release may be event-driven in continuous time, or periodic at
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the beginning of each planning period; both options can be used simultaneously.
An order is released if its release does not violate these workload norms, defined as
upper and/or lower bounds. The subset of orders to be released within these con-
straints is usually selected heuristically (e.g., according to a priority following the
urgency of the order), but integer programming can also be used, as in, for example,
Irastorza and Deane (1974). When order release is performed, the feasibility of re-
leasing the selected orders is checked against the load limits. This feasibility check
requires the definition of how WIP is to be measured (e.g., in number of orders or
in hours of work) and what WIP is to be considered in the decision (WIP for the
entire shop, for each work center separately or just for the bottleneck work centers).
Many of these issues of how to aggregate and measure WIP will also arise in our
discussion of clearing functions in Sect. 16.5.

If a target WIP level is defined for individual work centers, then controlling the
load at the work centers (direct load) is the most detailed technique. The future value
of this direct load has to be estimated because the work input to the WIP level at a
work center is controlled by sequencing decisions at the upstream work centers and
is not known at the time of order release. Alternatively, only the aggregate load of
the work centers, defined as the released work in the shop that has to be processed
by a work center irrespective of its current position, is controlled, which avoids
estimation of the order arrival patterns at the work centers.

When an order release mechanism is designed, the design options mentioned
above must be specified. Figure 16.2 summarizes a well-known classification of
these design options.

Once the order release mechanism has been designed by specifying the design
options discussed above, its realized performance is determined by the parameter
settings. The most important parameters are as follows:

� Target WIP (WIP norms) at the work centers. This parameter, which is closely
related to the target value of the average flow time, can be expressed in different
ways depending on the order release mechanism (e.g., load limit or load percent-
age in load-oriented order release) and specifies the compromise between output
and WIP-flow time.

� A time limit that prevents the premature release of orders whose planned start
date is far in the future. This parameter plays an important role in determining
the extent of production smoothing (see below).

Other parameters are the length of the planning period and the order release
frequency if order release is performed periodically (Perona and Portioli 1998).

Most of the order release mechanisms developed since 1980 follow this logic
and can be obtained by specifying the design options above. We call these methods
traditional because they share a common structure and have formed the main-
stream of the research on WLC-based order release mechanisms in the last 25
years. They have also been tested extensively and are partly available in standard
software. A stream of such methods and their interactions with shop-floor dispatch-
ing has been explored by a body of work focusing on the semiconductor industry,
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Dimensions Options

Order release mechanism Load limited
Time phased

Timing convention Continuous
Discrete

Workload measure Number of Jobs
Work quantity

Aggregation of workload measure Total shop load
Bottleneck load
Load by each workcentre

Workload accounting over time Atemporal
Probabilistic
Time bucketing

Workload Control Upper bound only
Lower bound only
Upper and lower bounds
Workload balancing

Capacity planning Active
Passive

Schedule visibility Limited 
Extended

Fig. 16.2 Design options in traditional order release mechanisms (Bergamaschi et al. 1997)

as discussed in Uzsoy et al. (1994). For a comprehensive description of order re-
view/release methods, which is beyond the scope of this chapter, see Land (2004),
Bergamaschi et al. (1997) and Philipoom and Fry (1992).

Order release mechanisms of this type have a short planning horizon, but the
release decisions determine the order arrivals at the work centers for a period that
equals the flow times of the orders and also influence the options available to future
release. Thus it is important to gain insight in how order release mechanisms work
and how the goal of maintaining a stable WIP level can be achieved over a longer
time horizon. Three topics are relevant here as follows:

� Order release determines the start dates of the orders and thus the extent of
workload smoothing if (e.g., seasonal) demand variations occur.

� The workload norms must be consistent with the desired output, which in turn
can depend on the extent of workload smoothing.

� Especially in the case of multiple products with different routings and resource
requirements, the order release mechanisms should be able to perform load
balancing among work centers. That is, the sequence of order releases should
avoid temporary over- or underloading of certain routes or work centers. This is
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essential for achieving high throughput and low WIP at the same time without
just shifting the waiting time to the job pool.1

These tasks require the capability to look ahead beyond the short planning hori-
zon of the release mechanisms. There are two ways to accomplish this as follows:

� Short-term release mechanisms can be complemented by a medium-term plan-
ning level that balances load and capacity and thus determines the required output
over time. The release mechanisms perform short-term control that keeps WIP
and shop flow times under control. This shifts much of the planning task to the
medium-term level, and especially if flow times are long (e.g., semiconductor
manufacturing with hundreds of operations per order), integration of medium-
term planning and short-term order release can be difficult.

� The dynamic behavior of order release mechanisms and the material flow that
results from release decisions can be controlled by the design of the release mech-
anisms and by the parameter setting (especially WIP norms and time limit). For
instance, if load leveling over a longer horizon is desired, the time limit should be
long, which allows early release of orders in periods with low demand. If utiliza-
tion is low, the time limit should be short, because this prevents early release and
completion of orders, etc. (see Zäpfel et al. 1992). Research, mainly by simula-
tion, has accumulated a body of knowledge on decision rules that provide support
for design and parameter setting of release mechanisms for specified material
flow structure, demand pattern, etc. (for reviews, see Land 2004; Stevenson and
Hendry 2006). Hence the traditional order release mechanisms can be regarded
as a rule-based approach to optimize the material flow through a production unit
as discussed in Missbauer (2009).

In the following sections we focus on optimization models that determine the
optimal aggregate material flow through a production unit, assuming that demand
forecasts are available at least at an aggregate level (groups of products). This op-
timized aggregate material flow forms the basis for order release that leads to this
planned material flow. It can be expected that the potential of optimization mod-
els that determine order release is higher than the potential of release mechanisms
that are controlled by appropriate parameter setting. If no reliable demand forecasts
are available (especially in the case of customer order-driven production), order
release planning might be difficult. In this case, the essential problem is to coor-
dinate customer enquiry/order acceptance and order release/WIP control (for this
topic, see Hendry and Kingsman 1991; Stevenson and Hendry 2006). The planning
models described in the remainder of the chapter perform many of the functions of

1 Simulation results indicate that traditional order release mechanisms can in fact reduce average
total throughput time of orders (pool waiting time plus shop flow time) and do not just shift the
waiting time from the shop to the pool, possibly increasing total flow time due to reduced shop
capacity (for this critique, see Kanet 1988). A possible reason is the load balancing effect. A good
order release mechanism limits the shop load, but it also aims at keeping the level of WIP at the tar-
get level for each work center, thus balancing the load among the work centers by releasing orders
with different routing. (For simulation results on total throughput time reduction, see Land 2004.)
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order release mechanisms (WIP control, load leveling, load balancing) and thus can
potentially replace the release mechanisms to a large extent. However, depending on
the level of detail of the models, implementation of the order release plans by means
of a traditional release mechanism may still be necessary or useful. In this case, the
traditional order review and release mechanisms discussed in this section will oper-
ate in the very short term as part of the lower, detailed scheduling level of the MPC
hierarchy described in Sect. 16.1. When applied in this way, the release mechanisms
take as input the quantity of work that is required to be released over some planning
period, say a week or a month, and control releases to the shop floor based on the
state of the system in close to real time. Applying multiperiod optimization mod-
els to determine optimal time-varying parameter settings for release mechanisms
(Zäpfel and Missbauer 1993a) might be a serious alternative but remains largely a
topic for future research.

In the following section, we give a brief historical review of the development of
optimization models for aggregate material flow planning in MPC systems.

16.3 Historical Review

While production planning has obviously been executed in some form since the
beginning of even craft production, the development of quantitative methods for
these problems has surprisingly of recent origins. The chapter by McKay in this
volume gives an overview of the historical development of production planning
since the beginning of the Industrial Revolution. While the well-known work of
Harris (1915) launched the area of inventory modeling, it was not until the 1950s
that this became a major research area. Similarly, the use of optimization mod-
els for planning production over time has its origins in the work of Modigliani
and Hohn (1955), although the roots of this work reach back to the activity-based
economic models developed by economists such as Leontief and Koopmans (e.g.,
Koopmans et al. 1951). The area of sequencing and scheduling also had its pio-
neering papers in this period, notably those of Jackson (1955) on single machine
scheduling problems and Manne (1960) on job shop scheduling. However, we will
focus the discussion here on production planning, leaving detailed discussion of the
extensive field of sequencing and scheduling to specialized volumes in that area
(Pinedo 1995; Pinedo and Chao 2005; Parker 1995).

It is interesting to note that the basic formulations of most classical production
planning-related problems were essentially in place by 1960, when the book by Holt
et al. (1960) collecting their previous work appeared. Hence, it is worthwhile exam-
ining these early papers in some detail to gain insight into why these formulations
developed the way they did, and what the implications of these are relative to the
current situation.

The work of Modigliani and Hohn (1955) views the problem of production plan-
ning over time as that of trading off production costs against inventory holding costs.
Production costs are assumed to be convex, with increasing marginal production



448 H. Missbauer and R. Uzsoy

costs, while inventory holding costs are approximated by the time average of the
ending period inventories, leading to a linear cost function. The problem is for-
mulated on discrete time periods, the cost function is assumed to be stationary over
time, demand in each period is known with certainty, and no backlogging is allowed.
The monotone increasing marginal production cost makes it more economical to
meet periods of high demand by producing in prior periods of low demand and
holding inventory, giving the basic tradeoff in the problem. The authors develop
an optimal solution based on calculus that essentially identifies planning horizons,
allowing the problem to be decomposed along the time horizon into subproblems
consisting of a certain number of consecutive periods that can be solved indepen-
dently. This approach forms the basis for the later work of Holt et al. (1955, 1956),
which subsequently led to the HMMS book (Holt et al. 1960). It is also inter-
esting that in Chap. 6 of their book they explicitly address the extension of their
decision rules to an environment with uncertain demand, and show that under a
quadratic objective function of the type they assume, the deterministic equivalent
of the stochastic problem is achieved by using expected demand values in their de-
terministic rule, which is equivalent to assuming an unbiased demand forecasting
procedure. This insight appears to have motivated the heavy focus on determin-
istic models, although the proof they provide is valid for the specific case of a
quadratic objective function. An interesting discussion of this body of work is given
by Singhal and Singhal (2007).

A number of interesting points emerge from this work. It is interesting that capac-
ity constraints are not modeled; the implicit assumption appears to be that capacity
can be varied in the short run, and the costs of doing this contribute to the increasing
marginal cost of production. This discussion is made more explicit in the context of
labor costs by Charnes et al. (1955). It is also interesting that while the cost func-
tion is explicitly built up from holding production and fixed costs independent of
production volume there is no discussion of how one might actually estimate these
costs from existing business records. Finally, the basic paradigm is that of modeling
the physical flows in the problem – production and inventories – and assigning costs
to these, rather than modeling the cash flows explicitly as a means of capturing the
financial impact. This paper also seems to have motivated the idea that in problems
over time, perfect information of the entire planning horizon is not necessary, but
rather just the first few periods on a rolling horizon basis is quite close to optimality.
This has led to a long stream of papers using these and related ideas, including the
well-known dynamic lot sizing model of Wagner and Whitin (1958).

In the mid-1950s, it began to be realized that the emerging linear programming
technology could be applied to production planning problems quite directly. In par-
ticular, researchers realized that models of the type addressed by Modigliani and
Hohn (1955) and Holt et al. (1956) could be formulated as linear programs. The two
principal papers that appear to have accomplished this independently of each other
are Hanssmann and Hess (1960), whose title very much resonates with the HMMS
work, and Manne (1957). Another notable early paper is that of Bowman (1956),
which appears to be one of the earliest to identify the extensive presence of network
structure in production planning models.
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At this point, the principal characteristics of the mathematical programming
models used for production planning problems were now in place. The decisions
cover a planning horizon that is divided into a number of discrete time periods, each
of which has an associated set of decision variables reflecting the decisions made in
that period. The decision variables represent the physical flows of material through
the different production resources; the objective function is generally that of mini-
mizing the variable costs of production, inventories and backlogs over the planning
horizon, and capacity constraints on the production resources in each period are sat-
isfied at an aggregate level. In the following section we shall investigate the basic
assumptions of these models in more detail, focusing on the manner in which they
model the dynamics of capacitated production resources.

16.4 Optimization, Planning, and Work Release

It is interesting to note that although the decisions made in well-known optimization
models are referred to almost uniformly as “production” decisions, in reality these
models usually are work release models; in hierarchical manufacturing planning and
control systems as described in Sect. 16.1, the only way they can be implemented
is through the release of work orders with specified due dates into the production
facility being modeled. As such, these models are closely related to the extensive
stream of work on work release, order review/release (ORR), and workload control
discussed in the previous section. They also address the basic problem of planning
time-phased work releases addressed by the well-known and extensively imple-
mented Material Requirements Planning (MRP) procedure (Vollmann et al. 1988;
Baker 1993) and related techniques. Finally, it is worth noting that these problems
have also been addressed in several research streams out of the artificial intelligence
community (e.g., Smith 1993; Zweben and Fox 1994).

The vast majority of the mathematical programming models of interest to this
chapter approach the problem in the same manner. The time horizon being consid-
ered is divided into discrete time periods, usually but not necessarily of the same
length. Decision variables are associated with each period, and the objective is
to minimize the total cost, which may be defined in different ways depending on
the specific environment being considered, over the planning horizon. Following
Hackman and Leachman (1989), we can view these models as containing three ba-
sic sets of constraints:

1. Inventory or material balance equations, which capture the flows of material
through both space and time. These will also enforce the satisfaction of demand,
which is viewed as a flow of material from the production system to an external
demand source.

2. Capacity constraints, which model how the production activities capture and
consume production resources.

3. Domain-specific constraints reflecting the special structure and requirements of
the particular production environment being modeled.
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The first two sets of constraints are critical to the accurate reflection of the actual
behavior of the production system, which in turn is essential to the optimality and
feasibility of the production plans obtained from the model. Following the discus-
sion in Sect. 16.1, their aggregate nature requires these models to use some type
of anticipation function that predicts the effect of their decisions on the detailed
scheduling level of shop operation. As discussed in Sect. 16.1, the manner in which
production lead times (also referred to as cycle times or flow times)2 are treated is
a crucial aspect of this anticipation function, affecting both the capacity and flow
balance constraints above. We now examine several different models of lead times
used in production planning models, starting from the simplest, and discuss their
advantages and disadvantages.

16.4.1 Fixed Delays Independent of Workload

The simplest model of lead times that is encountered quite commonly in inventory
models is one of instantaneous replenishment where the quantity ordered at a given
point in time becomes available immediately upon ordering. The closest equiva-
lent to this in the domain of mathematical programming models is to assume that
lead times are approximately equal to one period, i.e., that the quantity of material
Rt that is released into the system at the start of period t is available to meet de-
mand at the end of that period. In order to ensure continuity of the solution between
periods, we need to model the flows of material in and out of the finished goods
inventory, which yields the system dynamics equations

It D It�1 C Rt � Dt (16.1)

where It denotes the finished goods available on hand at the end of period t and Dt

the demand at the end of that period.
However, this is clearly often not realistic, and a more commonly encountered

model in both inventory and the mathematical programming literature is a fixed,
deterministic replenishment lead time that is independent of the quantity ordered or
released. The stochastic equivalent of this model is a random lead time with a time-
stationary probability distribution that is independent of the order quantities, such
as the case treated by Eppen and Martin (1988), or the class of models discussed in
Chap. 7 of Zipkin (1997). In this case, the amount Qt ordered at the start of period t

becomes available at the beginning of period t C � , where the integer � denotes the
fixed lead time. In a production system, the amount Rt released into the system at the
start of period t becomes available for use at the start of period t C � . If we denote

2 In general, we use the term flow time when we consider this time span from a manufacturing
perspective, and the term lead time when it is considered from a planning perspective; see Hopp
and Spearman (2001, p. 321). The terms are not always clearly distinguished in the literature.
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the output of the production system in period t by Xt , we have the relationship
Xt D Rt�� . The system dynamics are now described by the relationship

It D It�1 C Xt � Dt D It�1 C Rt�� � Dt : (16.2)

We note in passing that this is exactly the model of lead times used in MRP in
its backward scheduling phase. It is common both in the literature and in practice
to assume that the fixed lead time � corresponds to an integer number of planning
periods; Hackman and Leachman (1989) present a straightforward method for man-
aging lead times that correspond to a fractional number of planning periods, which
we will discuss later.

The difficulty with this model in the context of production systems is that it
assumes that there is no limit on the amount of material the system can produce
in the given lead time. Hence, most optimization models of capacitated production
systems will limit the total output of the system in a given period by imposing a con-
straint of the form Xt � Ct , where Ct denotes the maximum possible output of the
production system in a given period. For exposition, let us assume that each unit pro-
duced requires one time unit of the resource, and the resource capacity is expressed
in terms of time units available per planning period. There is now the question of
reconciling the capacity constraint with the system dynamics constraint, which in-
volves determining at what point in time releases into the system in period t occupy
the capacity of the resource. Three logical constructions can be distinguished here:
(1) “lag before” models that assume that the resource capacity is occupied at the end
of the lead time of this operation, (2) “lag after” models where the resource capacity
is occupied at the beginning of the lead time, and (3) models that allocate the pro-
duction date (and the resource requirements) within the lead time and hence allow
production smoothing within the lead time. For “lag before” and “lag after” models
we refer to Hackman and Leachman (1989); models of type (3) are formulated in de
Kok and Fransoo (2003). For the discussion of the treatment of WIP, in the follow-
ing we describe the “lag before” models that assume that the releases Rt in period
t occupy the resource capacity in the period that the output is produced, implying
Xt D minfRt�� ; Ctg. This corresponds to the “lag before” models in Hackman and
Leachman (1989).

We can thus describe the behavior of this system in a given period t with the set
of constraints

Xt D Rt�� ;

It D It�1 C Xt � Dt ;

Xt � Ct : (16.3)

The first constraint is explicitly included for exposition; clearly in practice we would
make the substitution to eliminate one of the two variables from the formulation.
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Most common LP models for production planning will refer to “production”
variables Xt , but these generally correspond to releases into the production system,
with resource capacity being occupied � periods after the release has taken place.
Note that the amount of production that can take place in a given period is limited
by both the capacity Ct and the amount of work available for processing, given by
past releases Rt�� per the first constraint. Hence the amount of WIP Wt available
for the resource to process in period t is simply Rt�� . However, if we define WIP as
the inventory literature defines on-order inventory, as orders that have been released
but not yet completed, at the end of period t the production system in this model
will have a WIP level of

Wt D
tX

kDt��C1

Rk �
tC�X

kDtC1

Xk (16.4)

units of product. It is interesting to note that this quantity does not generally appear
in the constraints or objective functions of most common LP models of production
planning, although as seen above it is not difficult to model; an exception is the
model of Riaño et al. (2003). It is also interesting to note that only a portion of this
WIP, given by Rt�� , is actually available to the resource for processing in period t .

The deficiency of this model is rooted in its treatment of WIP. Essentially it
assumes that WIP will not accumulate in the system over time; the releases in period
t � � constitute the entire WIP available to the resource for processing in period t .
The releases are implicitly constrained not to exceed the capacity, so the system is
always able to process all its available WIP in a single period. The remainder of the
WIP, given by

tX

kDt��C2

Rk ; (16.5)

has no effect on the cycle time of the resource, which is always equal to the prespeci-
fied parameter � , and, as far as this model of production capacity goes, is completely
unrelated to the capacity Ct of the resource in a given period. All the lead time �

accomplishes is to delay the arrival of work at the resource after its release into the
system; it does not describe the behavior of the resource itself, which is assumed
in the capacity constraint to be able to process any amount of material up to the
capacity limit Ct in a given period. This also explains an interesting anomaly with
this type of model that positive dual prices for capacity constraints result only when
the capacity is fully utilized. However, queuing models repeatedly show that system
performance, especially as related to WIP levels and cycle times, often begins to
degrade at utilizations substantially below 1, implying the existence of situations
where even though a resource is not fully utilized, additional capacity at the re-
source might be beneficial to system performance, although adding that capacity
would not necessarily be economically desirable.
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To summarize this discussion, the conventional view of production capacity used
in MRP and most mathematical programming models results in an LP of the fol-
lowing form:

minimize
tX

tD1

.htIt C ct Rt / (16.6)

subject to

It D It�1 C Rt�� � Dt ; for t D 1; : : : ; T; (16.7)

Rt�� � Ct ; for t D 1; : : : ; T; (16.8)

Rt ; It � 0; for all t D 1; : : : ; T: (16.9)

As pointed out by Hackman and Leachman (1989), most LP models encountered in
practice will involve additional constraints specific to the application domain under
study, but the model above represents the essentials of inventory balance between
periods and aggregate capacity within periods. Note that because all rates are uni-
formly distributed over a planning period, ensuring nonnegative inventory levels
at the boundaries between periods is sufficient to ensure inventory is nonnegative
throughout the period.

Models that involve lot-sizing considerations may involve integer variables, but
the basic view of system capacity and lead times is usually not very different from
this. We have chosen a simple objective function, that of minimizing the sum of
production and inventory holding costs over the planning horizon. Clearly far more
elaborate objective functions are possible, but our emphasis in this chapter is on the
representation of production capacity and system dynamics. Finally, we note that
backlogging of any form is not allowed, again in service of our focus on the ability
of different sets of constraints to accurately represent the actual capabilities of the
production system.

We now examine some other approaches that have extended this basic model
without fundamentally altering its treatment of lead times.

16.4.2 Formulations Based on Lead Time Distributions

The basic assumption of a fixed lead time equal to an integer number of planning
periods has been relaxed by a number of authors. Leachman and his coworkers
(Hackman and Leachman 1989; Hung and Leachman 1996) have proposed mod-
els where the lead time associated with each planning period can be a fractional
number of planning periods. Their approach is essentially equivalent to assuming
a deterministic lead time distribution for the input in period t , which specifies the
fraction wit� of the amount of product i released in period t that will emerge as fin-
ished product in period � i.e., will have a lead time of � � t . An alternative approach
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is to consider the wi t� values as random variables whose probability distribution
depends on the state of the production system. We shall begin our discussion with
the workload-independent approach of Hackman and Leachman (1989), which has
formed the basis for several industrial implementations in the semiconductor in-
dustry (Leachman 1993; Leachman et al. 1996) and a number of other refinements
(Kim and Leachman 1994; Kim et al. 1996; Dessouky and Leachman 1997). A
number of authors have taken related approaches based on the use of planned
lead times (Spitter et al. 2005a, b). We shall then discuss the workload-dependent
model of (Riaño 2003; Riaño et al. 2003), and some related approaches (Voss
and Woodruff 2003; Lautenschläger and Stadtler 1998). The recent review paper
by Pahl et al. (2005) is also a good source for some of this material, in addition
to its discussion of the clearing function related methods presented in the next
section.

16.4.3 Workload-Independent Lead Time Distributions

In order to present the basic approach to modeling workload-independent lead time
distributions, we shall use the work of Hung and Leachman (1996) as the focus
of the discussion, although the approach was originally proposed by Hackman and
Leachman (1989). The basic formulation used is essentially the Step-Separated for-
mulation of Leachman and Carmon (1992), which requires estimated lead times
Lij required for a lot of product i to reach operation j after being released into
the plant. However, instead of fixed lead times that remain constant over the entire
planning horizon, the authors associate values of the lead time parameters with the
start of each planning period. In the following t D 0 is the start of period 1, t D 1

is the start of period 2, etc., that is, a time unit is the period length. The lead time
parameters are defined as follows:

Lijt Lead time required for a lot of product i to reach operation j if the lot reaches
operation j at the end of period t.D at time t/.

These lead times are allowed to take on fractional values. It is interesting to think
how one might estimate these time-dependent lead time parameters in the absence
of a production plan that defines the workload of the production resources over time.
The iterative technique of Hung and Leachman (1996) discussed below addresses
this issue directly.

Given these lead times, the loading of the production resource in period t is de-
fined by releases occurring in the time interval Q D Œ.t � 1/ � Li;j;t�1; t � Lijt�,
assuming planning period t starts at time .t � 1/. There are two cases to consider
here. In the first, simpler case, the time interval Q lies within a single planning
period

˙
.t � 1/ � Li;j;t�1

� D ˙
t � Lijt

�
where the dxe notation denotes the small-

est integer greater than or equal to x. In this case, the proportional share of the
amount released in period

˙
.t � 1/ � Li;j;t�1

�
arrives at operation j in period t .

This is consistent with the basic assumption of linear programming models that
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activity intensities are uniformly distributed over the planning period, as discussed
by (Hackman and Leachman 1989). Hence the amount Yijt of product i loading
resources at operation j in period t is given by

Yijt D
 

.t � Lijt/ � �
.t � 1/ � Li;j;t�1

�

�

!
eijtRi;d.t�1/�Li;j;t�1e (16.10)

where � denotes the period length (which we set to 1 by definition), eijt denotes the
overall yield of product i from the start of the process to step j in period t . If, on
the other hand, the time interval Q spans multiple planning periods, we allocate the
load due to releases in that period in proportion to the fraction of that period’s total
duration included in the interval Q (again assuming uniform release rates within the
planning periods). This yields

Yijt D
 �d.t � 1/ � Li;j;t�1

�e � ..t � 1/ � Li;j;t � 1/

�

!
eijtRi;d.t�1/�Li;j;t�1e

C
dt�Lijt�1eX

�Dd.t�1/�Li;j;t �1eC1

eij�Ri�

C
�

.t � Lijt/

�
dt � Lijt�1e

�
eijtRi ; dt � Lijte (16.11)

The operation of this approach is illustrated in Fig. 16.3, from Hung and
Leachman (1996). The upper part of the figure shows the uniform release rates
in each planning period, while the lower graph shows the resource loading that
results from these releases arriving at the resource after the specified fixed lead
times. Releases in periods 2 and 3 contribute to the work input in period 3 at the
work center performing operation j corresponding to the first and the third term

Release
Rate

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6

Output
Rate

Fig. 16.3 Relationship between releases and loading with time-dependent lead times
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in (16.11); the second term is not relevant here because the release interval Q

only spans the two periods 2 and 3. Note that the lead times are associated with
the boundary points between periods at the work center (not the boundary points
between the release periods), and hence the lead time at the start of a period may not
be the same as that at the end. The coloring indicates the correspondence between
the releases and the arrival of the material at the resource.

Note that with this approach, we can write the output of product i in period t ,
denoted Yit, as

Yit D
TX

�D1

Ri�wi� t (16.12)

where the wi� t values denote the fraction of releases in period � that contribute
to output in period t . This results in a linear constraint. Note that if we were able
to obtain the wi� t values correctly, we would no longer need an explicit capacity
constraint of the form

NX

iD1

aijYit � Ct (16.13)

since the weights wi t� would reflect the ability of the resource to produce output over
time. However, queuing theory tells us that these weights depend on the resource
utilizations, which are determined by both the WIP profile in the system and the
releases that are determined by the planning model in use.

An obvious solution to this dilemma is to embed the LP models using these lead
times in an iterative scheme where the releases obtained from the solution to the pro-
duction planning models are fed into a simulation model of the production facility to
evaluate the realized lead times they would impose on the production system. Such
approaches have been suggested in the literature, which we shall discuss below.

16.4.4 Iterative Approaches

The formulations described above based on workload-independent lead time distri-
butions suggest an iteration scheme where an initial set of lead time estimates is
used to create a plan, and the flow times that will be realized by the execution of
the plan are predicted using a simulation or queuing model. These predictions of the
realized flow times are then used to generate a new set of lead time estimates, with
the procedure continuing until the change in lead time estimates from one iteration
to the next is within some specified tolerance.

Specifically, recall that the output of product i in period t is estimated as

Yit D
TX

�D1

Ri�wi� t (16.14)
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where the wi� t values denote the fraction of releases in period � that contribute
to output in period t and are computed based on the lead time estimates Lit. At
the k’th iteration of the procedure, lead time estimates Lk

it are used to compute
weights wk

i� t : The execution of the resulting plan is then simulated to obtain a new
set of lead time estimates, and the procedure continues until convergence. It is worth
noting in passing that similar iterative techniques have been used in the job shop
scheduling literature to develop dispatching rules that consider the remaining time
until completion of a job at an intermediate stage of processing (Vepsalainen and
Morton 1987, 1988; Lu et al. 1994).

Hung and Leachman (1996) tested this iterative scheme using the workload-
independent lead time distribution described above and a simulation model of a
wafer fabrication facility. They examined the rate of convergence of the flow time es-
timates to the actual flow time values in the simulation, and found that convergence
to the correct expected flow time values can be quite rapid, but that the procedure can
fail to converge in some cases which are not fully understood. Irdem et al. (2008)
present an experimental study of the convergence of the method, which suggests
that for production systems at high utilization levels it can be difficult to confirm
convergence. This approach has the advantage of combining two off-the-shelf mod-
eling techniques, linear programming and simulation, that practitioners are likely to
be familiar with, in an iterative scheme that addresses the complex interdependency
of releases and lead times. However, the need for a simulation model of the facility
being planned requires both large amounts of data to construct and validate, and
also increases run time significantly. The authors discuss several ways to reduce the
computational burden of the simulation by focusing on highly utilized work cen-
ters. Hung and Hou (2001) substitute an analytical flow time prediction model for
the simulation in the iterative scheme, and report results that compare favorably
in convergence performance with those of the scheme using the simulation model.
Byrne and Bakir (1999) use an iterative technique (iterations between the produc-
tion planning model and a simulation model) to determine realistic estimates for
the available capacities, Byrne and Hossain (2005) present an extended production
planning model within this framework. Kim and Kim (2001) simultaneously update
flow times and available capacities using this iteration scheme.

A rather different iterative technique has been proposed by Riaño(Riaño 2003;
Riaño et al. 2003), where the wi� t values are estimated using a model of the transient
behavior of a queuing network. In order to present the basic idea of the approach, we
shall consider its application to a work center consisting of a single server; the exten-
sion of this model to multiple stages and servers is discussed in Riaño et al. (2006).

Riaño’s approach is to consider the system from a queuing perspective. A job
released into the production system at time s will see Q.s/ jobs ahead of it in the
queue or in process. Hence the flow time of that job will be given by

W.s/ D
Q.s/X

kD2

Sk C S1; (16.15)
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where Sk; k D 2; : : : ; Q.s/ denote the processing times of jobs ahead of this job
in the queue, and S1 the residual (remaining) processing time of the job currently
in process. The distribution function of the flow time of the job introduced into the
system at time s is then given by

G.s; t/ D
1X

nD0

F1 � F n�.t/P fQ.s/ D ng; (16.16)

where F1 denotes the distribution function of the residual processing time of the
job currently in process, “�” denotes convolution, and F n� the n-fold convolution
of the processing time distribution F at the server. Note that G.s; t/ describes a
state-dependent flow time distribution that depends on the number of jobs Q.s/ in
the system at the time s the job was released. We wish to develop an approximation
to this function that will allow us to calculate approximate values of the weights
wst that relate the input in the s-th interval with the cumulative output by time t .
These weights can be used to estimate the output of the resource under a particu-
lar release pattern. To develop such an approximation, the author assumes that this
time-dependent lead time distribution will have the same form as the steady-state
distribution function of the waiting time for an M /G/1 queue, which is given by

.1 � �/

1X

nD0

�nF n�
e .t/; (16.17)

where Fe is the equilibrium residual processing time distribution, derived assuming
that the time a new job enters the system is uniformly distributed over the service
time. This suggests an approximation of the form

G.s; t/ D F1 � .1 � ˇ.s//

1X

nD0

ˇ.s/nF n�
e .t/; (16.18)

where ˇ.s/ denotes a time-dependent traffic intensity. Noting that if we assume the
service time distribution to be phase-type, then G.s; t/ will also be phase type, the
author suggests heuristic estimates of ˇ.s/, obtaining an approximation for G.s; t/

that depends only on the expected WIP level at time s, denoted by �.s/ and its
time derivative �0.s/. Hence, to make the approximation to G.s; t/ we now need
a viable technique for estimating �.s/ and �0.s/. This clearly depends on the pat-
tern of releases into the production system, and so a recursive technique is used.
Given a release pattern, we can compute estimates of �.t/ for every planning pe-
riod t in a recursive manner, starting from period t D 1 and moving forward in time.
If the processing time distribution at the server is phase-type (see, e.g., Neuts 1981),
the author shows that these computations can be performed in an efficient manner.
The resulting approximation to G.s; t/ yields approximate values of the wst , which
now correspond to the probability that a job released in period s will complete in
period t . The author suggests a successive approximation method to compute the
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weights, where for a given release pattern the weights are first estimated and then a
planning problem is solved to estimate WIP levels. These new WIP levels are used
to estimate new weights until the estimates of weights converge.

The larger pattern of the iteration is now clear: we begin with an initial release
pattern and calculate initial estimates of the wst . We then calculate a new release
pattern using these weights, and repeat until, hopefully, convergence is achieved.
As with the approach of Hung and Leachman (1996), the convergence behavior of
this procedure is not well understood; when it converges, it converges quite rapidly
but in other cases it can cycle through a limited number of solutions. Further ex-
perimental and theoretical work is necessary to understand this convergence issue,
but the overall approach stands as a very interesting and novel approach to modeling
workload-dependent lead times in production planning, with a strong theoretical un-
derpinning. Interesting discussions in this direction are given by Hackman (2008).

16.4.5 Workload-Dependent Lead Time Models

A major disadvantage of the approaches with fixed lead times or lead time distri-
butions is their failure to consider the relationship between resource utilization and
lead times. The iterative approaches described above attempt to restore this relation-
ship by using a simulation or queuing model of the plant to estimate the effects of
the planned releases on the lead times, but the underlying optimization formulation
retains this basic flaw. A number of authors have developed models that allow lead
times to vary according to the resource utilization, where the models include some
mechanism that selects an appropriate lead time for each planning period based on
the resource loading in that period.

An interesting area that is closely related to production planning but has not been
widely explored in this context is that of dynamic traffic assignment models (Peeta
and Ziliaskopoulos 2001). The objective of these models is to manage the routing
of vehicles through a road network in order to optimize some measure of perfor-
mance. Clearly, individual traffic links (road segments) are subject to congestion,
and hence considerable effort has been devoted to developing formulations that cap-
ture this characteristic, as well as mathematical models of the relationship between
the volume of flow on a traffic link and the velocity of that flow.

One way to model congestion in traffic links is time–space links (Carey and
Subrahmanian 2000). If two nodes i and j of a traffic network are connected by
a spatial link (e.g., a road segment), this two-node-network can be expanded over
time, which yields a network of time–space nodes (see Fig. 16.4). A time–space link
is a connection between time–space nodes. The flow through a time–space link rep-
resents the numbers of vehicles that pass the nodes at the respective times and hence
require the respective traversal time.

If congestion is modeled as a link traversal time that increases with flow through
the link, this can be represented as capacities of the time–space links leaving node
i at time t (maximum flow on time–space link (i; t)) that depend on the flow
through node i at time t , i.e., the inflow to the time–space links leaving node (i; t).
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Fig. 16.4 Conservation of flows xjt� on a time expanded network (Carey and Subrahmanian 2000)

In the model of Carey and Subrahmanian (2000) the capacities of two time–space
links leaving node (i; t) are usually greater than zero and the other time–space links
are closed for the given inflow. As the inflow increases, the time–space links with
positive capacities move to higher traversal times, implying a flow-dependent traver-
sal time distribution that is stationary over time for a given inflow. The traversal time
through a spatial link can be considered analogous to the flow time at a work center,
and models with similar structure have been developed for order release planning in
manufacturing.

A similar approach is described in Lautenschläger (1999). In order to consider
load-dependent lead times for master production scheduling, the model determines
the fraction of the planned production in a period t that has to be started one period
ahead, in period .t � 1/. This fraction is a function of the planned utilization. Thus
production on a resource can be performed in two modes, one with lead time of
zero periods and the other with lead time of one period. The maximum production
volumes that can take place in each mode are limited, which leads to a utilization-
dependent lead time distribution.

Another related model has been proposed by Voss and Woodruff (2003). These
authors assume a steady-state relationship between the utilization of a resource and
the expected lead time at that resource. The basic idea is to discretize this curve and
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use integer variables to construct constraints that ensure that only one segment of
the discretized curve is active in a given time period.

In order to implement this formulation, the relationship between utilization and
expected lead time is evaluated at discrete utilization levels BPr , r D 1; : : :, R. Let
Lr denote the expected lead time value associated with the r’th utilization level BPr ,
i.e., the expected lead time of the resource is assumed to be Lr while the utilization
level is between BPr and BPr�1. The authors suggest setting the breakpoints BPr

such that each lead time Lr corresponds to an integer number of periods. If we now
define the fraction of the available capacity of the resource required for one unit of
product j , j D 1; : : : , P , as aj , and Rjt to be the amount of product j released in
period t , the workload (utilization) of the resource in period t is given by

�t D
PX

j D1

aj Rjt: (16.19)

We now define binary variables ytr that select a particular lead time value Lr to be
active in a given period t as follows:

Lt D
RX

rD1

ytrLr ; for all t; (16.20)

RX

rD1

ytr D 1; for all t: (16.21)

Additional constraints of the form

RX

rD1

BPrytr �
PX

j D1

aj Rjt; for all t (16.22)

are required to ensure that the lead time selected is consistent with workload. In
addition, for any given period t , we require Lt –LtC1 � 1, giving

RX

rD1

yt;rLr �
RX

rD1

ytC1;rLr � 1; for all t: (16.23)

This latter constraint is interesting in that it restricts the decrease in lead time from
one period to the next to at most one period to avoid overtaking, i.e., material re-
leased into the system at a later time emerging before material released earlier.
Similar difficulties arise in dynamic traffic assignment problems (e.g., Carey and
Subrahmanian 2000).

To complete the formulation, the authors present an objective function that in-
cludes an explicit holding cost for WIP, based on Little’s Law (see, e.g., Hopp and
Spearman 2001), leading to the term

TX

tD1

PX

jD1

hjt

RX

rD1

ytrLrRjt: (16.24)
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This objective function is now nonlinear due to the product of the ytr and Rjt ,
leading to a formulation that is computationally hard to solve.

16.4.6 Discussion of Models Based on Lead Time Distributions

While these models address the load-dependent nature of lead times directly, there
are several shortcomings of these models:

� All the models described above assume the existence of a well-defined relation-
ship between the workload or utilization of a resource and the expected lead time
of that resource in that period. However, given that the planning models assume
discrete planning periods of a fixed length and that the releases of work into the
resource are varying over time, it is quite possible that the lead time incurred
by work released in a given period may deviate quite substantially from that sug-
gested by a long-run steady-state average relationship. The work of Riaño (2003)
is a significant exception, explicitly addressing the transient nature of the queues
involved, and thus merits further study.

� If the amount of work released decreases sharply from period t to period t C 1,
the estimated lead time for the orders can decrease by more than one period from
t to t C 1, implying overtaking (Voss and Woodruff 2003, p. 165; Carey and
Subrahmanian 2000). This is unlikely to occur in practice and indicates that the
models can lead to unrealistic results. Voss and Woodruff (2003) add a constraint
that keeps the lead time from decreasing by more than one time bucket from t

to t C 1, but this excludes decision alternatives and is not satisfactory from a
theoretical point of view.

A number of researchers have proposed alternative approaches to these problems
by developing formulations that do not consider the relationship between lead times
and resource utilization explicitly, but instead use a relationship between the ex-
pected WIP level of a resource and its expected output in a given planning period.
These clearing function based models will be discussed in the next section.

16.5 WIP-Based Models

The models discussed in the previous section all approach the problem of model-
ing the behavior of the production resource by computing a distribution of the lead
times, a relationship between the time the work is released into the facility and the
time it becomes available for consumption by the next stage. The distinguishing
feature of this approach is the presence of a set of constraints implementing a lead
time distribution used across different time periods, specifically in the material bal-
ance constraints. We now turn our attention to models where the lead time behavior
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of the production resources is not represented in the balance constraints, but by
introducing nonlinear terms in the constraints or the objective function. The former
class of models introduce nonlinear constraints (that may be linearized for com-
putational purposes) representing the relationship between some measure of the
expected WIP level (including jobs in queue and in process) in front of the pro-
duction resource in question over a planning period and the expected output of the
resource over the planning period. These formulations, which we shall term Clear-
ing Function models, are discussed extensively in the next section, and generally
result in models with linear objective functions and convex nonlinear constraint
sets. The latter, which we shall term WIP Cost formulations, use queuing analy-
sis to develop an expression for the expected WIP holding cost which is then added
to the objective function of the model. These formulations, by contrast, tend to yield
models with convex nonlinear objective functions.

A fundamental difference between these models and those discussed up to this
point is their explicit representation of WIP. In the LP formulations discussed until
this point, although it is possible to recapture planned WIP levels as the difference
between cumulative releases and cumulative output, the WIP level has no effect
on the behavior of the production resource. The exception to this is the transient
queuing-based approach of Riaño (Riaño 2003; Riaño et al. 2003) and the respective
simulation-based approaches, but even in this case the WIP enters the formulation
only through its role in determining the lead time distribution. The WIP-based mod-
els, on the other hand, explicitly represent the WIP level in front of the resource in
a planning period with distinct material balance equations, in addition to the bal-
ance equations for finished goods inventory (FGI) included in the conventional LP
formulations.

We believe that this explicit distinction between WIP and FGI leads to substan-
tially richer models, since the two types of inventory serve different purposes and
are controlled in different ways. If we anticipate a seasonal surge in demand in the
future, our production planning model must ensure that we have sufficient FGI in
place in time to meet the demand. Thus, FGI levels can be planned, and are an out-
put of the planning process. On the other hand, the WIP levels are a consequence
of our release decisions, and determine to a great extent the flow time and through-
put performance of the production resource. WIP levels must be managed to ensure
timely production at minimum cost, while FGI must be planned to ensure effective
satisfaction of demand at minimum cost. Thus the explicit separation and model-
ing of these two different types of inventory offers the potential for significantly
richer production planning models. The separation of WIP and FGI also has impli-
cations for developing production planning models that consider uncertainties, since
in practice some of the functions of safety stocks can be assumed by WIP; we shall
discuss this aspect in more detail in Sect. 16.8.

The models described in this section explicitly represent the flow of WIP through
a production unit. They differ from the previous models in that they relate the out-
put from a resource in a given planning period to some measure of the WIP level
at the resource during the period. Thus the nonlinear relationships between decision
variables arising from the presence of congestion are represented in the constraints
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rather than in the objective function. We first describe the generic structure common
to most models of this type and then concentrate on the technique used to incorpo-
rate the relationship between WIP, flow time, and output.

In models of this type, work centers are represented explicitly, and the material
flow from order release through the required work centers and to the inventory of
the final products or SKU’s is represented by inventory balance equations. As in all
models considered until now, material is modeled as a continuous medium, com-
parable to a fluid. Thus the approach is similar to fluid approximation in queuing
theory (Kleinrock 1976, p. 60; Chen and Mandelbaum 1991) and to fluid relaxation
in job-shop scheduling (Bertsimas and Sethuraman 2002; note that these fluid re-
laxation models are in continuous time and are usually deterministic). The planning
horizon is again divided into discrete planning periods.

A variety of authors have discussed the relationship between system through-
put and WIP levels. This is usually in the context of queuing analysis, where the
quantities being studied are the long-run steady-state expected throughput rate and
WIP levels. An example of this work is that of Agnew (1976), who studies this type
of behavior in the context of optimal control policies. Spearman (1991) presents
an analytic congestion model that describes a clearing function for closed pro-
duction systems with processing time distributions with increasing failure rates.
Standard texts on queuing models of manufacturing systems, such as Buzacott and
Shanthikumar (1993), can be used to derive the clearing function – if not analyt-
ically, then at least numerically. Hopp and Spearman (2001) provide a number of
illustrations of clearing functions for a variety of systems; for example, the rela-
tionship between WIP and throughput given in their practical worst case analysis
represents a particular type of clearing function. Srinivasan et al. (1988) derive the
clearing function for a closed queuing network with a product form solution. It is in-
teresting to note that the concept of the clearing function has much in common with
concepts developed in the dynamic traffic assignment literature. One such concept
is that of the exit function, which defines the output of a traffic link in a time period
as a function of the amount of traffic on the link at the start of the period (Merchant
and Nemhauser 1978a, b; Carey 1987).

While the basic concept of a clearing function is quite intuitive, defining and im-
plementing this concept in a rigorous and theoretically consistent manner is subject
to some quite subtle difficulties that are not straightforward to resolve. Hence we
will first discuss how optimization models of production planning problems may be
formulated using clearing functions, assuming a valid clearing function can be gen-
erated. We shall then discuss the issues involved in estimating the clearing functions
themselves.

16.5.1 Clearing Function Formulations

In its usual form the clearing function yields the expected aggregate output of a work
center (e.g., hours of work, aggregated over the products) as a function of a suitable
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measure of WIP, aggregated over the products. This WIP measure can be the average
WIP of the period, the average WIP over a longer time (e.g., two periods), or the
total available work of the period (termed load, defined as initial WIP plus input
during the period). It is commonly assumed, based on both theoretical and empiri-
cal arguments discussed in the next section, that the clearing function is a concave
nondecreasing function of the WIP measure used to define it. Our discussion in this
section will closely follow the development by Asmundsson et al. (2009).

To illustrate this approach, we begin by extending the single-product single-stage
formulation of Karmarkar (1989) to multiple products, which can be stated using the
following notation:

Xi t D number of units of item i produced in period t ,
Ri t D number of units of item i released into the stage at the beginning of period t ,
Wi t D number of units of item i in WIP inventory at the end of period t ,
OWi t D WIP measure used for the clearing function and defined in separate constraint

(e.g., OWi t D Wi;t�1 C Ri t ),
Ii t D number of units of item i in finished goods inventory (FGI) at the end of

period t ,
�i t D time required to produce one unit of item i at the resource.

Let ft . OW / denote the clearing function that represents the resource in period t ,
with W denoting the WIP measured in units of time (i.e., Wt D P

i �it OWit),
and Dit the demand for item i (in units) in period t . Then a naive extension of
Karmarkar (1989)’s single-product formulation to multiple products is

min
X

t

.�i tXi t C !i tWi t C �i tIi t C �i t Ri t /; (16.25)

subject to

Wi t D Wi;t�1 � Xi t C Ri t ; for all i; t; (16.26)

Ii t D Ii;t�1 C Xi t � Di t ; for all i; t; (16.27)

X

i

�i tXi t � ft

 
X

i

�i t
OWi t

!
; for all t; (16.28)

Xi t ; Wi t ; Ii t ; Ri t � 0; for all i; t; (16.29)

where �i t ; !i t ; �i t , and �i t denote the unit cost coefficients of production, WIP
holding, finished goods inventory holding, and releases (raw materials) respectively,
and �i t the amount of the resource (machine time) required to produce one unit of
product i in period t . Note that the argument of the clearing function in constraint
(16.28) is the total WIP level over all products i expressed in units of time (or,
equivalently, workload). The first two sets of constraints enforce flow conserva-
tion for WIP and FGI separately. Since the formulation distinguishes between WIP
and FGI, flow conservation constraints are required for both. Constraints (16.28)
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represent the capacity constraint. Another interesting characteristic is that lead times
do not appear in the formulation; they are represented implicitly by the nonlinear ca-
pacity constraints (16.28).

While this formulation appears intuitive, it can create significant modeling prob-
lems when applied in multiple product environments. Consider a situation where
the system produces two products A and B, which consume capacity at the pro-
duction resource in different amounts. The capacity constraint can be expressed as
XA C XB � f . OWA C OWB/.

A solution with
XA > 0; XB D 0; OWA D 0; OWB > 0

may exist, despite the fact there is no WIP in the system that can be converted into
finished product A. Hence the optimal solution to this formulation can maintain
high WIP levels of the product for which it is cheapest to do so, using the capacity
generated by this device (i.e., the high value of the clearing function attained by
holding high WIP of the cheap product) to hold very low or no WIP of all other
products. An alternative way of expressing this difficulty is that there is no link
between the mix of WIP available in the period and the output mix during the period.

Asmundsson and his coauthors (Asmundsson et al. 2006, 2009) propose an ap-
proach in which the no-passing requirement is enforced on average rather than at the
level of individual jobs. To do this, they assume that the mix of output will reflect
the mix of WIP. This is equivalent to assuming a service discipline at the queue rep-
resenting the production resource where no product is given priority over another.
After some analysis described in detail in Asmundsson et al. (2009) this yields the
following formulation:

min
X

t

.�i tXi t C !i tWi t C �i tIi t C �i t Ri t /; (16.30)

subject to

Wi t D Wi;t�1 � Xi t C Ri t ; for all i; t; (16.31)

Ii t D Ii;t�1 C Xi t � Di t ; for all i; t; (16.32)

�i tXi t � Zi tft

 
�i t

OWi t

Zi t

!
; for all i and t; (16.33)

X

i

Zi t D 1; for all t; (16.34)

Xi t ; Wit; Ii t ; Ri t ; Zi t � 0; for all i; t: (16.35)

This formulation will be referred to as the Allocated Clearing Function (ACF)
model. The Zi t variables denote the fraction of the maximum possible output de-
fined by the clearing function allocated to product i in period t . The intuition is that
we wish to obtain a constraint that links the production of a given product to the
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WIP level of that product alone, but the clearing function is defined in terms of the
total WIP at the resource. This is, of course, what causes the difficulty described
above: a high total WIP may result in a high maximum output level for the resource
in a period, and the model may allocate this output in a manner that violates con-
tinuity of material flow. Assuming that all products at a resource will see the same
expected lead time allows us to estimate the total WIP at the resource by the expres-
sion given as the argument of the clearing function in (16.33). The Zi t variables thus
serve the dual purposes of scaling up the WIP for product i inside the parentheses
of (16.33) to obtain a surrogate for total WIP on which the clearing function can
operate, and then computing a fractional capacity for product i by multiplying the
results. Asmundsson et al. (2009) prove that the total production of individual prod-
ucts will not exceed that suggested by the aggregate clearing function as suggested
by (16.28).

The above formulation is a convex nonlinear program, due to the concave nature
of the clearing function on the right hand side of constraints (16.33). However, an
interesting and useful consequence of the partitioned formulation above arises when
the concave clearing function is approximated using outer linearization. Since we
assume the clearing functions are concave, they can be approximated by the convex
hull of a set of affine functions of the form

˛c
X

i

�i t
OWi t C ˇc (16.36)

as
f . OWt / D min

c
f˛c OWt C ˇcg: (16.37)

The c D 1; : : :; C index represents the individual line segments used in the approx-
imation. In order to represent the concave clearing functions appropriately, we shall
assume that the slopes of the line segments are monotonically decreasing, i.e.,

˛1 > ˛2 > : : : > ˛c D 0: (16.38)

The slope of the last segment is set to zero to indicate that the maximum throughput
capacity of the node has been reached, and adding WIP cannot increase throughput
any further. To ensure that production cannot take place without some WIP being
present, we impose the condition ˇ1 D 0 to ensure that the first line segment will
pass through the origin. The capacity constraint in the CF formulation can now be
replaced by the set of linear inequalities

X

i

�i tXi t � ˛c OWt C ˇc ; for all c and t: (16.39)

Using this outer linearization to approximate the PCF model yields the following LP:

min
X

t

X

i

.�itXit C !itWit C hitIi t C �itRit/; (16.40)
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subject to

Wit D Wi;t�1 � Xit C Rit; for all i and t; (16.41)

Iit D Ii;t�1 C Xit � Dit; for all i and t; (16.42)

�itXit � ˛c�it OWit C Zitˇ
c ; for all i; t; and ; c; (16.43)

X

i

Zit D 1; for all t; (16.44)

Zit; Xit; Wit; Iit � 0; for all i and t: (16.45)

Notice that summing the set of constraints (16.43) over all i gives constraint (16.39),
guaranteeing that the original constraint is satisfied. A consequence of the partition-
ing of the clearing function is that the clearing function constraint becomes linear,
even with the Z-variables that were originally in the denominator since

Zitf

 
�it OWit

Zit

!
D Zit min

c

(
˛c �it OWit

Zit
C ˇc

)
D min

c
f˛c�it OWit C ˇcZitg: (16.46)

In their experimental implementation, Asmundsson et al. (2006) assume the clear-
ing function depends on the average WIP level over the time period, which they
approximate as

OWit D 1

2
.Wi;t�1 C Wit/:

16.5.2 Extensions to Multistage Systems

So far the clearing function formulations have been presented for a single-stage
production system. In order to extend this to a multistage system, a number of ex-
tensions must be included. Since the model requires explicit modeling of WIP at
each stage in order to compute the clearing function at each stage, we must repre-
sent the movement of material between stages; the output of one stage flows into
the WIP of another. Another worthwhile enhancement is to distinguish between
work centers that are potential bottlenecks and those that are unlikely to encounter
significant congestion phenomena. The former can be represented explicitly using
clearing functions, while the latter can be modeled using some form of workload
independent delay, such as a fixed lead time, or a higher order delay as suggested by
(Missbauer 2002a). While we assume in this model that groups of similar products
are aggregated into product groups of families, the basic structure of the formulation
remains the same if products are modeled individually, although, of course, a much
larger formulation may result. We use the following notation:
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Variables:

Wjmt – Work of product group j waiting at work center m at the end of period t .
Ijt – Finished goods inventory of product group j at the end of period t .
Rjt – Released work of product group j in period t .
Xjmt – Output of product group j from work center m in period t .

Note that for exposition we avoid the constants � of the above formulation and
measure the variables in units of time (e.g., hours of work). Hence Ijt and Rjt are
measured in hours of work, and Wjmt and Xjmt are measured in hours of work at
work center m.
Parameters:

Djt – Demand for product group j in period t (measured in hours of work).
Cmt – Capacity of work center m in period t .
Qpjim� Average amount of work arriving at work center m when one unit of product

group j is finished at work center i .
zjim� – Proportion of the output of product group j from work center i to work

center m that arrives at m in � periods after completion at i . These are not in-
cluded to capture congestion-related lead times, but rather to represent delays
such as shipping or flow through non-bottleneck work centers that are not sub-
ject to significant congestion effects, similar to those modeled by Hackman and
Leachman (1989).

As for the single stage models, this formulation requires separate flow balance
equations for WIP and FGI at each stage

Wjmt D Wj;m;t�1 C
MX

iD1

1X

�D0

Xj;i;t�� Qpjimzjim�

C
1X

�D0

Rj;t�� Qpj0mzj0m� � Xjmt; for all j; m; t: (16.47)

These constraints model the flow of WIP at the bottleneck work centers. The sources
of input are the output of the other work centers and the release of orders. The
work input can be delayed by transportation, non-bottlenecks (see below), etc. Work
center i D 0 denotes the beginning of the line where order release takes place. The
finished goods inventory is then represented as

Ijt D Ij;t�1 C
MX

mD1

1X

�D0

Xj;m;t�� Qpjm0zjm0� � Djt; for all j and t: (16.48)

Note that inflows into FGI can also be delayed after completing their last production
operation. Work center index 0 in p and z denotes the completion of the product.

Constraints (16.47) and (16.48), together with an appropriate objective function,
the clearing function-based capacity constraints (16.43) for the bottleneck work
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centers and the partitioning constraints (16.44), constitute a complete clearing
function-based formulation for a multiproduct, multistage production system.
Asmundsson et al. (2006, 2009) give a slightly different formulation that is based
on Hackman and Leachman (1989), where an additional set of decision variables
is added to represent material transfer between stages; note the formulation above
assumes that material transfer to the next stage begins directly upon completion of
processing at the current stage.

The computational results obtained using the clearing function formulations are
quite promising, although more experimentation is clearly needed to be able to draw
strong conclusions. Probably the most complete studies of these formulations at
present are those of Asmundsson et al. (2006, 2009). The later study examines the
performance of clearing function formulations in simple serial production systems,
and concludes that when the clearing function is correctly estimated the clearing
function formulations produce production plans that are much more aligned with the
ability of the plant to execute them compared to models with fixed lead times. This
study describes a systematic procedure for estimating the clearing functions from
simulation data and fitting to the functional form (16.58) below using a nonlinear
optimization algorithm. Asmundsson et al. (2006) compare the performance of the
clearing function formulations to that of a conventional LP model in a reentrant line
derived from a semiconductor wafer fabrication facility, and find that even when
a simple visual technique is used to fit the clearing functions to the data, the CF
models yield significantly better on time delivery than the LP models with fixed
lead times.

16.5.3 Estimation of Clearing Functions

The reader will have noted that until now we have described formulations that make
use of the clearing function concept but have not discussed how the clearing func-
tions are estimated. In this section we provide a more formal definition of clearing
functions and discuss this very important issue.

A clearing function, introduced by Graves (1986), can be defined as either the
expected or maximum output of a work center (a relatively homogeneous group of
production resources scheduled as a unit) in period t as a function of some measure
of WIP (e.g., average WIP or planned available work) in period t and the maximum
capacity of the work center Cit. In the following discussion we shall use as the WIP
measure the load of work center i in period t , denoted by Ai t , defined as the WIP at
the beginning of period t plus the planned work release Rit in period t3. Thus, the
load (total available work) at work center i in period t is given by

3 This assumes a production unit consisting of a single work center, which we assume for exposi-
tion. For a multistage system as in Sect. 16.5.2, the work release Rit is replaced by the work input
from release and from the other work centers as in (16.47).
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	it D Wi;t�1 C Rit: (16.49)

The clearing function for work center i is then a functional relationship of the form

Xit D fi .Wi;t�1 C RitI Cit/ (16.50)

Note that in conventional LP models, only the maximum capacity Cit would be
considered in a capacity constraint.

This approach has been followed by the majority of researchers proposing mod-
els of this type (e.g., Karmarkar 1989; Missbauer 2002a; Selçuk et al. 2007). The
clearing function models the impact of the fact that the actual load (available work)
is a random variable at the time of planning and thus can be lower than the planned
value, and work arriving during the period can arrive later than expected and thus
cannot be processed during the period. Uzsoy and his coworkers (Asmundsson
et al. 2006; Hwang and Uzsoy 2005) have adopted a slightly different approach
where the clearing function is defined as a function of the expected, time–average
WIP level during the planning period (see Sect. 16.5.1). While this difference in
approaches requires some modifications to the details of the formulations and the
procedures used to estimate the clearing functions, the basic structure of the ap-
proach remains the same.

Figure 16.5, derived from Karmarkar (1989), depicts several examples of clear-
ing functions considered in the literature to date, where X denotes the expected
throughput in a planning period. The “constant proportion” linear clearing function
of Graves (1986) and Parrish (1987) allows unlimited output in a planning period,
but ensures fixed lead time. This type of clearing function is not generally applica-
ble to order release models, because it can yield capacity-infeasible output levels
at high levels of WIP. Alternatively, it requires an assumption that the production
rate of resources can be managed such that the fixed lead time is always maintained.

WIP

X

X = W/LX =W/p

X=C
CF

Fig. 16.5 Examples of clearing functions (from Karmarkar 1989)
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However, by linking production rate to WIP level, it differs from the fixed delays
used in most LP models, where the output of a production process is simply the
input shifted forward in time by the fixed lead time. Orcun et al. (2006) illustrate the
differences in the transient behavior of the production system under this and several
other clearing function models.

The horizontal line XD C corresponds to a fixed upper bound on output over
the period, but without a lead-time constraint it implies that production can oc-
cur without any WIP in the system if work input and production are synchronized.
This is reflected in the independence of output from the WIP level, which may
constrain throughput to a level below the upper bound by starving the resource.
This approach is implemented in, for example, the MRP-C approach of Tardif
and Spearman (1997) and most LP approaches such as that of Hackman and
Leachman (1989), but is supplemented with a fixed lead time as described in
Sect. 16.3. The linear clearing function of Graves (1986) is represented by the
X D W=L line, which implies a lead time of L periods that is maintained in-
dependently of the WIP level. Note that if WIP and output are measured in the
same time units (e.g., hours of work), the slope of the proportional part of the func-
tion is 1=L, where L is the average lead time. However, as seen in the figure, this
model may suggest infeasible output levels when WIP levels are high. If a fixed
lead time is maintained up to a certain maximum output, we have the relationship
X D minfW=L; C g. When the parameters of the Graves clearing function are set
such that the lead time is equal to the average processing time, with no queuing
delays at all, we obtain the line X D W=p; where p denotes the average process-
ing time. Assuming that lead time is equal to the average processing time up to a
maximum output level gives the “Best Case” model X D minfW=p; C g described
in Chap. 7 of Hopp and Spearman (2001). It is important to note that the workload-
independent fixed lead time discussed in Sect. 16.4 differs from the linear model of
Graves in that the former does not link output to WIP, while the latter does. Orcun
et al. (2006) illustrate the differences between these models using system dynamics
simulations.

It is apparent from the figure that the clearing function always lies below the
X D W=p and X D C lines. For most capacitated production resources subject
to congestion, limited capacity leads to a saturating (concave) shape of the clearing
function. It is important to note that the nonlinear shape of the clearing function is
not purely due to the presence of random variability in arrival and service processes
at the production resource but can arise even in completely deterministic capacitated
production systems, as shown in Karmarkar (1993). A number of recent papers (e.g.,
Asmundsson et al. 2009; Selçuk 2007) provide analytical support for the concave
shape of the clearing function (see Sect. 16.5.3.1).

We now discuss techniques for estimating the clearing function associated with
a set of production resources.
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16.5.3.1 Analytical Approaches

A common approach to estimating clearing functions is to derive them using
steady-state queuing analysis. It can be shown that for the M=G=1 model in steady
state, the average throughput E.X/ is related to the expected WIP level E.W / as
follows:

E.X/ D C � E.W /

E .W / C k
(16.51)

where

k D 
�2

2
C 1

2

(16.52)

Here 1=
; �2 denote the mean and variance of the processing time distribution and
C the maximum capacity per period of the resource in hours of work. This is the
same functional form as in Karmarkar (1989) (16.57 below), but (16.57) relates the
output of the resource in period t to its load in period t , and the functional form of
(16.57) is not supported by queuing models. (Missbauer 2002a) shows that for the
M=G=1 model in equilibrium, the expected output EŒXt � and expected load EŒ	t �

of a work center are related as follows:

EŒXt � D 1

2
.C C k C EŒ	t �

�
p

C 2 C 2C k C k2 � 2 C EŒ	t � C 2k EŒ	t � C EŒ	t �2: (16.53)

The parameter k can be calculated analytically using (16.52) for the M=G=1 model,
but can also be determined from empirical data or from simulation results.

For single-server work centers it seems reasonable to use (16.53) as a regression
function with k and possibly also C as parameters. This need not be the case for
multiple-server work centers, because in this case the first derivative of the aver-
age flow time with respect to the average WIP level is very low for low levels of
WIP, where servers can be expected to be idle and the average waiting time is close
to zero; this shape can be seen in Fig. 16.1). In this region the clearing function is
nearly linear; the average flow time being insensitive to WIP implies a linear clear-
ing function according to Little’s Law (see Graves 1986 for the proof for the case
of a discrete-time clearing function), which is not covered by (16.53). If the clear-
ing function is approximated by piecewise linearization as discussed in the previous
section, this is not a big problem.

The clearing function formulation (16.53) is derived from a steady-state model,
which is a severe limitation. Selçuk (2007) derive a clearing function for a pro-
duction resource with exponentially distributed service times, assuming the work
available for the period is available at the time it is required for processing, without
requiring steady state. They prove that this clearing function, which they refer to
as a short-term nonlinear clearing function, is concave in the resource load defined
above. Asmundsson et al. (2009) generalize this result. The general problem of de-
termining a theoretically consistent clearing function for a single period without
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steady-state assumption for stochastic arrival and departure processes is largely
unsolved and an important research topic, which we discuss further in Sect. 16.5.4.

Based on this discussion, we will be interested in clearing functions of the form
Xit � fi .	it) with the following properties:

fi .	it/ � 	it for 	it � 0 (16.54)

dfi .	it/

d	it
� 0; for	it � 0; (16.55)

lim
�it!1 fi .	it/ D Cit: (16.56)

The use of nonlinear clearing functions requires consideration of the optimization
technique used to obtain solutions to the resulting formulations. Piecewise lin-
earization is frequently used (Missbauer 1998, 2002; Asmundsson et al. 2006). If
the clearing function is nonlinear and concave, models of a reasonable size can
be solved by nonlinear programming since they generally result in formulations
with convex constraints and objective functions. Hwang and Uzsoy (2005) dis-
cuss a clearing function model of this type including lot sizing, while Srinivasan
et al. (1988) discuss possible solution techniques for their model that involves non-
linear clearing functions. Continuous-time models that assume a deterministic flow
at the work centers (fluid relaxation) can be solved either by exact methods (e.g., for
the makespan objective, see Bertsimas and Sethuraman (2002) or heuristically (e.g.,
for the holding cost objective; see Bertsimas et al. (2003). Continuous-time models
are not considered because the integration of clearing functions into these models
has not yet been studied and remains a topic for future research.

Empirical work to date (e.g., Asmundsson et al. 2009) suggests that optimiza-
tion models of aggregate material flow can be quite sensitive to the properties of
the clearing function, especially when at high WIP levels the maximum output de-
creases. This is often encountered in modeling traffic flows, where it takes the form
of a flow-density relation as seen in Fig. 16.6 that relates the density of the traffic on
the link to the flow velocity of traffic through the link. In our production planning
context, density corresponds to WIP and flow velocity to output rate. The chapter in
this handbook by Armbruster and Lefeber presents a number of models where this
type of approach is used to develop continuum models of flow through a manufac-
turing system in a manner analogous to that used to study traffic flows.

In manufacturing systems a decrease in output at high WIP levels can occur in
two cases: (1) when workers work less efficiently under high pressure or (2) when
long queues, and hence long average flow times, threaten due-date performance
and require preemptive sequencing rules in order to pull ahead urgent orders re-
ducing capacity due to additional setups. This can lead to solutions that must be
considered infeasible if an appropriate arrival rate control policy is not applied. Van
Ooijen (1996, p. 139 ff., especially pp. 144–146) describe the effect on system be-
havior, while Van Ooijen and Bertrand (2003) present an arrival rate control policy
for this case. Haxholdt et al. (2003) demonstrate the possibility of oscillating be-
havior and chaos under more sophisticated assumptions on the arrival and departure
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Fig. 16.6 Flow-density-relation (Cassidy 2003, p. 183)

process of queuing systems. The chapter by Elmaghraby in this volume also dis-
cusses possible shapes of clearing functions that may apply in this type of situation.
Therefore, the shape of the clearing function has to be considered carefully in every
case. In particular, a service rate that decreases if the level of WIP exceeds a cer-
tain threshold value can have extreme consequences on the system behavior, so this
possibility has to be excluded or considered carefully when the clearing function
is estimated. A literature review on the relationship between worker behavior and
inventory level, especially in flow lines, can be found in Powell and Schultz (2004).

16.5.3.2 Empirical Estimation Techniques

A number of authors have suggested an empirical approach to estimating clearing
functions, where a functional form with the desired properties is postulated, and
then fit to data obtained either from an industrial facility or a simulation model using
some form of regression analysis. Karmarkar (1989) uses the following functional
form for the clearing function:

Xt D min

�
Ct

	t

	t C k
I 	t

�
; (16.57)

where Xt denotes the output in period t; 	t the load of the resource at the start
of period t , and Ct the maximum capacity of the resource available in period t .
The shape parameter k is estimated by the user. The functional form of (16.53)
above is an adaptation to models in discrete time. Srinivasan et al. (1988) suggest
an alternative functional form

f .	t / D Ct.1 � e�k�t / (16.58)
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where k is again a user-estimated shape parameter. Asmundsson et al. (2009) use
this latter functional form, and give an extensive discussion of various issues in
collecting simulation data for the purpose of fitting this type of clearing function.
Asmundsson et al. (2006) use a visual fit of linear segments to simulation data to
develop a clearing function formulation for a scaled-down semiconductor wafer fab-
rication facility with unreliable equipment and reentrant flows. There appears to be
very little published literature using industrial data to fit clearing functions: the only
paper we are aware of is Fine and Graves (1989), which motivated Graves’ work on
linear clearing functions.

If a saturating clearing function can be assumed, the estimation of the clear-
ing function from empirical or simulated data (combinations of WIP or load and
output for several periods) is essentially a curve-fitting procedure. The problem
can be formulated as estimating the parameter values of a nonlinear function such
as (16.58). If the clearing function is approximated by a set of N tangents, the
parameters of the tangents can be derived from a nonlinear regression function
(Missbauer 1998, p. 410 ff.), obtained directly from the observed data by numer-
ical methods (Missbauer 1998, p. 407 f.) or by visual methods of curve fitting
(Asmundsson et al. 2006). Estimating the clearing function can be difficult if the
data include effects of machine downtimes. In this case, for some periods the av-
erage WIP is high and the output is low (because the work center has been down
and the WIP could not be processed), and a simple curve fitting procedure would be
misleading. Some sample data generated by simulation is shown in Fig. 16.7, which
plots total throughput in a period against the average WIP in the period.

Asmundsson et al. (2006) describe a way to correctly estimate the clearing func-
tion in this case using multiple replications of simulation experiments. However,
even in this case intuitive approaches can give poor results.

Fig. 16.7 Curve fitting in the case of machine downtimes – throughout vs. average WIP
(Asmundsson et al. 2006)
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Fig. 16.8 Ideal clearing function for a paced flow line with four work centers (following Hopp
and Spearman 2001, p. 221ff.)

An alternative way to determine the clearing function is the following: It is
reasonable to assume that for very low WIP levels the clearing function is linear,
and beyond a certain WIP level (that acts as buffer against variability) the work
center can operate at full capacity. In an idealized situation, such as a determinis-
tic paced flow line with equal processing times at each work center, the clearing
function consists of these two parts (see Fig. 16.8).

In most practical cases the output will be lower for a certain range of WIP levels,
and the problem of estimating the clearing function can be viewed as that of esti-
mating the deviation of the clearing function from the ideal shape. Methods for this
estimation are described in Nyhuis and Wiendahl (2003, p. 61 ff). Selçuk (2007)
follows a similar approach and controls the shape of the clearing function by a pa-
rameter that reflects whether a more optimistic (overestimating throughput for a
given WIP level) or conservative approach is applied (p. 115 f.).

The clearing function models described so far can become quite large if the
number of work centers and product groups are large. If piecewise linearization of
the clearing function is used, the number of linear constraints can be very high.
If a reduction in model size is necessary, the non-bottleneck work centers can
be eliminated from the model if a linear clearing function can be assumed for
these work centers. In this case the non-bottlenecks can be represented as load-
independent delay distributions (for the mathematical proof, see Missbauer 1998,
p. 267 ff). This technique is similar to the delay functions in system dynamics mod-
els (Forrester 1962, p. 86 ff.).

16.5.4 Limitations of Clearing Function Models

It is evident from the last section that if the model of a clearing function as defined
above is accepted, there are a number of open questions for future research. In this
section, we examine the limitations of a clearing function that relates the expected
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or maximum output of period t to the planned WIP or load in period t . As discussed
above two different approaches have been used to estimate these functions. Em-
pirical methods postulate a particular functional form having the “right” properties
and fitting a curve of this form to data obtained from historical observations of
the production system or from simulation. Other researchers have used steady-state
queuing models to derive closed-form expressions for clearing functions. Both these
approaches implicitly assume that the form of the clearing function can be treated
as invariant over at least a range of system operating conditions; in empirical meth-
ods, over the range of environmental conditions represented in the data set used to
fit the clearing function, while in steady-state queuing methods, over the entire life
of the system. Another way of phrasing this problem is that both these approaches
to estimating clearing functions produce a clearing function that maps the expected
value of one random variable describing the WIP level (at the start of the period,
or the expected WIP level over the period) to the expected value of another, the to-
tal output of the resource in a given period, and this relationship is assumed to be
time-invariant.

The two different approaches suffer from different difficulties under this
paradigm. When empirical methods are used, it is assumed that the clearing func-
tion that is obtained from empirical or simulated data as the estimated functional
relationship between the actual WIP and output is a valid estimation of the func-
tional relationship between the planned WIP and expected or maximum output in
the context of the planning model (Missbauer, forthcoming). The possible problems
resulting from this are still not well understood today.

Next, there is a classical sampling issue – we assume that the fitted clearing
function will be able to represent the behavior of the system under conditions not
encountered in the data sets from which the function was generated. In addition,
experimental work to date has shown that fitting clearing functions to empirical
data is by no means a straightforward exercise. Asmundsson et al. (2009) present
a detailed procedure for estimating clearing functions from simulation output, and
apply their procedure to a production system with significant machine failures. Their
approach consists of three basic stages: collect the simulation data, fit a functional
form to this data using least-squares regression, and then piecewise linearize the
resulting concave function using a nonlinear optimization model to minimize the
deviation of the linearized model from the original concave function. An example
of the data obtained in this experiment is shown in Fig. 16.9 below.

The profusion of points on the WIP axis, denoting periods in which WIP was
present but the machine was unable to produce output due to being down, results
in a least-squares approach giving a poor fit. (Note that the least-squares approach
yields the mean value of the output conditional on the WIP level; see Davidson and
MacKinnon 1993, p. 41.) Inspection of this figure, specifically the point at which
the fitted line reaches its maximum, suggests that the fitted function significantly
underestimates the amount of WIP required for the resource to achieve its maxi-
mum output as approximately 50 units as opposed to a reality of about 400 units.
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Fig. 16.9 CF data (WIP vs. TH) for a Work center from a Simulation Study

The effect of this error on the planning model is disastrous: it consistently releases
too little material into the line too late, resulting in significant backlogs and missed
demand.

In order to remedy this situation, the authors adopted an alternative fitting ap-
proach where they sought a curve such that a specified percentage of the data points
fell above the curve, i.e., the fitted curve represents a percentile of the data, which
corresponds to a quantile regression. The results of this approach for different per-
centile values are shown in Fig. 16.10. As the percentage of data points required
to lie above the fitted curve increases, the fitted curve shifts to the right, providing
a more realistic representation of how much WIP is required at this work center
to achieve maximum output, based on the simulation results, and resulting in a
planning model that yields better backlog results than an LP model. This heuris-
tic approach proposed clearly needs a better theoretical justification, even though it
works quite well in these experiments. These results highlight how a poorly fitted
clearing function can result in poor performance of the planning models derived
from it.

It is important to remember that the clearing function as defined in this paper is
defined with relation to a planning period of a specific duration. When steady-state
queuing models are used to derive an expression for the clearing function, we are
assuming that the planning period is long enough that the behavior of the production
resource being modeled is represented by a steady-state model to an acceptable de-
gree of accuracy. However, in the production planning environment we are changing
the releases, and therefore the workload, of the system in each planning period,
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Fig. 16.10 Alternative percentile-based CF curves

calling into question whether the production resources ever attain the steady state
required by conventional queuing analysis. We examine this question by comparing
clearing functions derived for an M=M=1 queuing system in transient and steady
state.

We consider an M=M=1 queuing system and define as a time unit the average
operation time of an order, hence the service rate 
 D 1 without loss of generality.
Hence the arrival rate � is equal to the traffic intensity �. The length of a planning
period is ! D 5 time units. The clearing function for an arbitrary period t can be
derived by recalling that the utilization ut of the server in period t is the fraction of
the period in which there is at least one order in the system and is given by

ut D 1 � 1

!

!�tZ

!.t�1/

p0.�/d� (16.59)

where pn.�/ denotes the probability of n customers in the system at time � , while
!.t � 1/ and ! � t denote the beginning and the end of period t . The expected output
EŒXt � in period t is then

E ŒXt � D ut � ! (16.60)
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and the expected number of orders in the system at time � , denoted E ŒLs.�/�, is4;5

E ŒLs.�/� D
1X

nD0

n pn.�/: (16.61)

This is also the average WIP, measured in units of time, at time � , because the
average service time of the orders in the queue is 1, and the expected remaining
service time of the order at the server is also 1 due to the exponentially distributed
service time. The expected load in period t , denoted by EŒ	t �, is the average WIP
at the beginning of period t plus the average input during period t :

E.	t / D E ŒLs.!.t � 1//� C �! (16.62)

The time-dependent state probabilities pn.�/ for an M=M=1 system starting at the
origin can then be calculated as (Stange 1964):

po.�/ D 1 �
�Z

o

e�.�C1/y

y
� p

� Bessel I1.2
p

�y/ dy (16.63)

pn.�/ D
Z �

0

e�.�C1/y

y

h
n�

n
2 Bessel In � .n C 1/�

nC1
2 Bessel InC1

i
dy; for

n > 0: (16.64)

The expressions for the conditional probability of j customers in the system at
time t given i customers in the system at time 0 can be found in Cohen (1969,
p. 82 ff., p. 178).

The clearing function in period t can be calculated as a parametric curve with the
average load in period t , EŒ	t � (16.61–16.64) on the x-axis and the expected output
in period tEŒXt � (16.59, 16.60, 16.63) on the y-axis. The arrival rate � D � is the
control variable that yields the values for EŒ	t � and EŒXt �. The arrival rate is as-
sumed to be the same from time � D 0 to the end of the period under consideration.
Figure 16.11 shows the clearing functions for periods 1 and 2 and for a period after
steady state has been reached. Note that in Fig. 16.11 the arrival process is stochastic
for all work available. If work definitely will be available (e.g., at the beginning of
the first planning period, where the actual WIP is known), the shape of the clearing
function will be more extreme because the expected output cannot be lower than the
minimum of the available work at the start of the period Wt�1 (which we assume
to be known) and available capacity. It can be shown (Missbauer, forthcoming) that

4 Due to the computational complexity, the summation in (16.61) has been performed for n D
0,. . . , 80 in the numerical examples below. This ignores at most 1.5% of the cases (for � D 0:95

in steady state), in most cases the error is close to zero.
5 The index for the periods (discrete time) is denoted as subscript, the continuous time is denoted
in parenthesis.
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Fig. 16.11 Clearing functions for periods 1 and 2 and for a steady-state period of an M/M/1 sys-
tem starting at the origin. 
 =1, length of a period ! D 5. Note that identical values for EŒ	t �

correspond to different values for the arrival rate � for different periods

the shape of the clearing function (i.e., the functional relationship between expected
load and expected output, with the expectation defined at the time of planning)
depends on the variance of the initial WIP and of the planned input.

Figure 16.11 shows that if the system is not in steady state or in a specified
transient phase there is no fixed functional relationship between expected load and
expected output. The relationship changes with the phase of the transient state. This
leads to a planning circularity that must be considered as a substantial problem of
clearing function models. The estimated clearing function is based on assumptions
about the dynamic behavior of the system. Hence, any order release plan derived us-
ing the clearing function can affect the dynamic behavior of the system, and hence
the shape of the clearing function it is based on. This implies that order release
determines the validity of the assumption it is based on. There is no evidence that
the assumed shape of the clearing function is consistent with the observed shape(s)
of the clearing function since the shape can change over time as seen in Fig. 16.11.
We do not even know whether a consistent solution is possible, but it can be ex-
pected that this is not the case, because clearing function models assume that the
clearing function is the same for each period, which need not be the case if tran-
sient/stationary phases occur during the planning horizon. Therefore the clearing
function model can lead to systematic errors, and it is an empirical question whether
or not the level of accuracy provided by the models is acceptable in practice. The ex-
perimental results of (Asmundsson et al. 2009) suggest that under some conditions
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Fig. 16.12 Results of an optimization model for one work center and idealized underutilization

the performance of a planning model based on clearing functions can be very sensi-
tive to how well the clearing function represents the actual system, which suggests
caution in using these models until these issues are better understood.

Another limitation of clearing function models is that due to their use of discrete
planning periods, they ignore any transient effects that arise at the boundaries be-
tween periods. While this limitation is shared with all planning models based on
discrete time periods, it is worthy of note, and as far as we are aware has not been
the subject of extensive research, as will be discussed further below.

Some characteristics of clearing function models can be seen from Fig. 16.12
which is an optimization result for one work center. The demand oscillates between
3,000 and 4,000 min of capacity per period, which is below the capacity (4,500
units/period). The variations in the planned output are much lower because of the
nonlinear increase in the amount of WIP that is required. But the amount of released
work exaggerates the demand variation. Figure 16.12 exhibits nervous behavior that
has been reported as a property of optimization models if steady-state properties are
assumed to hold for short periods (Lautenschläger 1999). Karmarkar (1993, p. 317),
also states that “what happens in the transition between periods is not clear.” In
Fig. 16.12 it is difficult to decide whether this behavior is truly optimal, because
this would require a model that incorporates the actual characteristics of the tran-
sient state.

Figure 16.13 exhibits the due-date deviations achieved by the clearing function
model of Missbauer (2002a) for a highly utilized production unit with five bot-
tleneck work centers. The average due-date deviation is quite low – lower than
for load-oriented order release (Wiendahl 1995), which is used as reference, but
the earliness/lateness of a small number of orders is high. A number of fac-
tors may contribute to this – only the aggregate clearing function is used (no
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Fig. 16.13 Distribution of the due-date deviations (l.o.o.r.: load oriented order release)

partitioning; see Sect. 16.5.1), and non-bottlenecks are represented as delay func-
tions (Missbauer 1998, p. 267 ff). However, since the clearing function only partly
reflects the dynamic characteristics of the system and leads to counter-intuitive op-
timization results, it can be assumed that the due-date deviations in Fig. 16.13 are
at least partly due to the shortcomings of the clearing function and the resulting
nervousness. Future research must clarify to what extent this conclusion holds.

It is reasonable to assume that the performance of clearing function models can
be improved if the history of the arrival and departure of orders at the work centers
is analyzed in more detail – the clearing function aggregates the history to one di-
mension. Andersson et al. (1981) decompose the expected load into two parts: the
expected WIP at the beginning of period t and the expected input in period t . A
two-dimensional clearing function is formulated as:

Xt D  Wt�1 C ˇRt ; (16.65)

if production does not exceed available capacity. Production, WIP and released work
are measured in units of value. It can be argued that the expected WIP at the be-
ginning of the period is actually available in period t with higher probability than
the expected input during the period, which seems to be the reasoning behind this
formulation. Numerical experiments based on analytical expressions for the tran-
sient M=M=1 queue confirm this (Missbauer, forthcoming) but the linear function
in (16.65) is not derived explicitly from theory.

Conceptually, a clearing function expresses the expected WIP level that is re-
quired to obtain a certain output rate given the system variability and the production
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control policies that are applied. (Anli et al. in press) present a model for order re-
lease planning that takes into account load-dependent lead times that result from the
stochastic material flow, and also considers lower bounds on the finished goods in-
ventory that are required to maintain a desired service level in the face of stochastic
demand process. The lower bound on the finished goods inventory (FGI) for each
SKU is a nonlinear function of the planned production volumes (production targets)
of the facilities that produce and require this SKU, and of parameters representing
system variability and control policies. Likewise, the expected WIP level for each
unfinished SKU, facility, and period is a nonlinear function of the planned produc-
tion volumes (of all SKU’s) of the facility and the variables representing system
variability and control policies. Both nonlinear functions can be estimated either
by simulation or by queuing models. Anli et al. (in press) present their paper as a
proof-of-concept study and use queuing models, namely mean value analysis. The
Queuing Network Analyzer is used in Caramanis et al. (2001). Optimization is per-
formed iteratively. In each iteration the linear constraint set of the planning model is
augmented using hyperplanes tangent to the nonlinear functions. These tangents are
obtained from the tentative production targets (from the previous iteration) and from
the required WIP and FGI levels and their sensitivities with respect to the production
targets. The authors state that this iterative refinement of the local approximations
leads to convergence under mild convexity or quasi-convexity conditions.

The approach can be classified as a WIP-oriented model since it traces the flow
of WIP through the facilities and does not assign flow times to the orders. The
functional relationship between WIP and the production targets (volumes) can be
interpreted as a sophisticated clearing function formulation that addresses the prod-
uct mix problem for which we have already presented the partitioning approach
(see Sect. 16.5.1) However, the model is limited to steady-state relationships and
does not consider transient effects. The paper provides optimization results, but no
simulation experiments. It remains to be seen whether the approach can be applied
efficiently in an environment where analytical models of the manufacturing system
cannot be applied.

Our discussion of the limitations of clearing function models has been limited
so far to single-stage systems. Another set of complications emerges when multiple
stage systems are considered. Let us assume that we wish to derive a clearing func-
tion for a work center that is part of a multistage production system – i.e., the pattern
of arrivals at the workstation over time depends on production and release decisions
at other work centers. Jackson (1957) in his seminal paper showed that in an open
Jackson queuing network in steady state each work center can be treated as an in-
dependent M=M=s queuing system, but real-world manufacturing systems often do
not meet these assumptions. Therefore, in a multistage production system there are
likely to be correlations between the decisions at upstream stages and the pattern
of arrivals at a downstream center, which will influence the shape of the clearing
function. To illustrate the point, consider a single resource that can be modeled as a
G=G=1 queuing system in steady state. The expression (16.66) describes the aver-
age number in system EŒLs� as a measure of the expected WIP for a single server
where the coefficient of variation for interarrival time and service time are denoted
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by ca and cs ; respectively (see Medhi (1991) for the derivation), and � denotes the
utilization of the server.

EŒLs � D c2
a C c2

s

2

�2

1 � �
C � D c2�2

1 � �
C � (16.66)

Solving for � and assuming c D c2
a C c2

s >1, we obtain utilization as a function of
WIP as:

� D
p

.EŒLs � C 1/2 C 4EŒLs �.c2 � 1/ � .EŒLs � C 1/

2.c2 � 1/
(16.67)

If we consider the utilization as a surrogate measure of output, Fig. 16.14 illustrates
the relationship for different c values, where c combines the coefficients of variation
of the arrival and service (production) processes as seen in (16.67).6 For a fixed c

value, utilization, and hence throughput, increases with WIP but at a declining rate.
This is because as WIP increases, the server becomes less likely to starve. Utiliza-
tion decreases as c increases, due to variability in service time and interarrival time,
which causes queues to build up and throughput to slow as customers are trapped
behind a customer with an unduly long service time, or the number of customers ar-
riving in a small time interval is unexpectedly high. Note that in a multistage system,
the coefficient of variation of the arrival stream ca will be determined at least in part
by the production and lot sizing decisions made at the upstream stages (e.g., giving
priority to orders with low WIP at the next work center). Thus the decisions made by
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Fig. 16.14 Utilization (�) as a function of average WIP for different c values

6 We are aware of the similar GI=G=1 approximation by Krämer and Langenbach-Belz (1976) that
distinguishes between c2

a � 1 and c2
a > 1 (Tijms 1994), where ca and cs are not additive.
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the model at one stage of the system affect the shape of the clearing function faced
by the model at another stage. Clearing functions determined by empirical means
are less susceptible to this criticism, as the correlations are captured at least in part
in the data to which the functions are fitted.

16.6 Modeling Capacity with Multiple Products: Extensions
to the Basic Model

In many production environments there are a number of alternative processes by
which a product can be produced. These generally arise from the presence of a num-
ber of alternative machines that are capable of performing a given operation required
by a product. In general, the costs of production may depend on the specific choice
of equipment made for each stage. In addition, not all alternative machines for a
given operation are equally efficient; a typical scenario is that there is newer equip-
ment that can perform a given operation faster than the older equipment. Another
typical scenario in high-technology industries such as semiconductor manufacturing
is that the newer equipment can perform a wider range of operations than the older
equipment, since the older equipment is incapable of meeting the finer tolerances
that the newer equipment can handle.

In this situation, determining the optimal allocation of products to equipment
over time becomes a complex decision. The dependence of costs on the particu-
lar sequence of operations followed means that a model must keep track of how
much work is allocated to each possible sequence of operations, i.e., each possi-
ble path that a product can follow through the plant, as illustrated in Fig. 16.15.
This figure represents a production system with four stages and a number of alter-
native machines, represented by the boxes. The decision variable Rij denotes the
amount of product i released for processing on operation sequence j: These can be

Ri1 Xi2

Xi3

Xi4

Xi1

Ri2

Ri3

Ri4

Fig. 16.15 Path-based formulation of alternative resources
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considered path-based formulations, since we are explicitly specifying the amount
of each product that will be launched on each possible path through the production
system in each period.

These types of models, referred to as process selection models by Johnson and
Montgomery (1974), have been known for quite some time, but have the obvious
drawback that in a production system of any complexity, the number of possible
paths through the system that a product can follow, and hence the number of decision
variables in a time period, grows exponentially in the number of alternatives at each
stage and the number of stages. As pointed out by Leachman and Carmon (1992),
they also give us a great deal of redundant information. In order to implement the
results of this model, all we need to know is the total releases of each product into
the line in each period; we do not need to know the specific allocation of work to
individual machines, since this is likely to change as the shop floor reacts to local
circumstances and reallocates work among alternative machines. Hence a number
of authors have developed models that are more compact in terms of the number of
decision variables. It is not surprising that much of this work has been motivated
by applications in the semiconductor industry, where a product may require several
hundred unit processes, all of which may have a significant number of alternative
machines.

Much of the work in this area takes as its starting point the LP models with fixed
time lags treated by Hackman and Leachman (1989). Leachman and Carmon (1992)
present a series of models that address this issue. We shall focus on this paper in
some detail, and then outline the extensions proposed by other authors. We define
the following notation:
Parameters:

aijk D time to process one unit of product i at step j on machine type k.
Ckt D capacity in time unit of machine type k in period t .
Dit D maximum cumulative demand for product i in period t , made up of the

forecast and confirmed orders.
dit D minimum cumulative demand for product i by time t (firm orders).
pit D estimated net discounted cash flow from selling one unit of product i in

period t .
hit D estimated unit holding cost for product i in period t .
Li D average flow time for product i from beginning to end of its entire process,

i.e., the cycle time for the entire process.
Lij D average lead time for product i from start of production process until start of

step j .

The decision variables, which are common to all the three formulations presented,
are as follows:

Rit D number of units of product i to be released in period t .
Iit D units of product i in inventory in period t .
Bit D shortfall of cumulative production vs. cumulative max demand for product i

in period t .
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The first model, referred to by the authors as the Step-Separated Formulation,
introduces additional decision variables Wijkt that denote the amount of workload
of each product type i in each process step j that is assigned to machine type k in
period t . The model can now be stated as follows:

max
nX

iD1

TX

tD1

ŒpitRi;t�Li
� hitIit�; (16.68)

subject to

Ri;t�Lij
D

X

k2P.i;j /

Wijkt

aijk
; for all i; j; t; (16.69)

X

f.i;j /jk2P.i;j /g
Wijkt � Ckt; for all k; t; (16.70)

tX

�D1

Ri;��Li
� Iit C BitD Dit; for all i I for all t � T � 1; (16.71)

TX

�D1

Ri;��Li
C BiT D DiT ; for all i; (16.72)

Bit � Dit � dit; for all i; t; (16.73)

Rit; Bit; Iit; Wijkt � 0: (16.74)

The critical constraints for the purposes of modeling capacity and workload are the
first two. The first set of constraints converts the releases in period t � Lij into
the current workload on the resources k in period t . The second set of constraints
then ensures that no resource is loaded in excess of its capacity. Note that accu-
mulation of WIP within the production process is not modeled at all; only finished
goods inventory is represented in the decision variables. The objective function is to
maximize the difference between the discounted revenue from sales and inventory
holding costs. Note that a product is credited as producing revenue as soon as it is
produced, even if it may not be sold immediately. Also note that in the last two con-
straint sets, output aimed at meeting forecasts may be delivered late, but firm orders
must be met on time. This effectively creates two hierarchical demand classes, with
the demand from firm orders having absolute priority over forecast demand in terms
of allocating limited output to meet demand. Production costs are not considered, as
they are independent of production routing and the revenue is assumed to be much
greater than unit production cost, as is the case in much of the semiconductor indus-
try. Hence the emphasis of the model is on allocating production capacity to meet
demand, and thus maximize revenue.

This formulation is inefficient in that it gives a detailed allocation of workload to
individual stations (the Wijkt variables), even though all we really need is the total
releases Rit of each product in each period. In order to arrive at a more efficient
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formulation, the authors make the additional assumption of uniform processing
times across machines in a work center, i.e., aijk D a0

ijSk , where a0
ij denotes the

processing time of product i at step j on the standard machine whose speed is
used as a baseline for the others. The available capacity of each set of alternative
machines can then be rescaled in a similar manner, C 0

kt D Ckt=sk . Now since all
workloads are expressed in terms of the baseline machine, we only need to track
the total workload at step j that is assigned to machine type k. In order to do this,
we define unique sets Sm of alternative machine types, and additional variables Zm

kt
that denote the workload on machine set Sm assigned to machine type k in period
t . Defining the set P.i; j / as the set of machines capable of processing step j of
product i , this yields the following formulation:

max
nX

iDl

nX

iDl

Œ�itRi t�li
� hitIit�; (16.75)

subject to

X

f.i;j /jk2P.i;j /g
a0

ijRi;t�Lij D
X

k2Sm

Zm
kt ; for all m; t; (16.76)

MX

mD1

Zm
kt � C 0

kt
; for all k; t (16.77)

tX

�D1

Ri;t�Li
� Iit C Bit D Dit; for all i I for all t � T � 1; (16.78)

TX

�D1

Ri;t�Li
C BiT D DiT ; for all i; (16.79)

Bit � Dit � dit; for all i; t; (16.80)

Rit; Bit; Iit; Zm
kt � 0: (16.81)

Using these assumptions, the authors construct a formulation where all allocation
variables are eliminated, and capacity constraints are written for sets of alterna-
tive machines whose capacity is likely to be binding on the optimal solution. The
structure of these sets depends on the problem data, and hence this formulation is
not always the most compact in terms of the number of variables and constraints,
but in many industrial situations yields substantially smaller formulations. The sets
S of alternative machines for whom capacity constraints will be written are de-
termined based on cut sets in the bipartite graph representing operation-machine
requirements. The authors provide a procedure to identify the dominant cut sets
whose time complexity is linear in the number of operations ij and the cardinal-
ity of the alternative machine sets, but exponential in the number of machines that
occur in the connected component of the bipartite graph. Thus, if there are a very
large number of machines that can process a large number of steps as alternatives,
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the time complexity of generating this formulation may be quite high, but such
instances seldom arise in industrial data sets. Once the dominant cut sets S have
been obtained, we can write capacity constraints for each set and each period of the
form X

ij2S

aijRi;t�Lij �
X

k2S

Ckt: (16.82)

The complete formulation is now as follows:

max
nX

iD1

X

tD1

T
ŒpitRi;t�Li

� hitIit�; (16.83)

subject to

X

ij2S

aijRi;t�Lj
�
X

k2S

Ckt; for all generated sets S and periods t; (16.84)

tX

�D1

Ri;t�Li
� Iit C Bit D Dit; for all i I for all t � T � 1; (16.85)

tX

�D1

Ri;��Li
C BiT D DiT ; for all i; (16.86)

TX

�D1

Ri;��Li
C BiT D DiT ; for all i; (16.87)

Rit; Bit; Iit � 0: (16.88)

The authors analyze the number of decision variables and constraints in their dif-
ferent formulations and show that when alternative machine sets have a nested
property, which occurs frequently in semiconductor manufacturing, this Direct
Product Mix formulation provides a very compact model compared to alternative
formulations. The nested property arises when a work center has machines of several
technological generations, where each newer generation can perform all operations
the previous generations could, as well as some additional new ones.

A drawback of the Direct Product Mix formulation developed above is its
reliance on the assumption of uniform processing times across alternative ma-
chines as described above. Bermon and Hood (1999), in their study of production
planning for IBM’s semiconductor manufacturing operations, noted that this as-
sumption was violated in their environment. Hung and Cheng (2002) extend the
work of Leachman and Carmon (1992) by developing a formulation that does
not require the uniformity assumption. In order to do this, they define a new set
of partitioning variables that allocate the capacity of machines shared between
machine sets to which they belong. Their computational experiments show that
when the uniformity assumption on processing times holds, the Direct Product
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Mix approach of Leachman and Carmon (1992) is preferable. However, when the
uniformity assumption is violated, the Partition formulation developed by the au-
thors remains valid.

Bermon and Hood (1999) present a slightly different model aimed at capacity
planning that also addresses the problem of determining capacity in situations with
alternative machine sets. Hung and Wang (1997) apply an approach similar to that
of Leachman and Carmon (1992) to situations where alternative products can be
used to meet a given demand, as by downgrading in electronics manufacturing.

16.7 Lot Sizing Models

As we have seen, the clearing function reflects the variability of the arrival and
departure process. If a work center produces multiple products in lots, lot sizing
determines the operation times of the orders and thus strongly influences the vari-
ability of the operation times. It also determines the total setup time during a period
and thus influences the maximum output of the work center. Hence the lot sizes
influence the average flow times and the WIP level at the work centers.

Considering the impact of lot sizes on average flow time and WIP means to
anticipate consequences that become visible at the scheduling level. One way to
achieve this is simultaneous lot sizing and scheduling. This economic lot scheduling
problem (ELSP) has been studied extensively (for reviews, see Elmaghraby 1978;
Graves 1981; Drexl and Kimms 1997; Pinedo and Chao 2005). Drum-Buffer-Rope-
OPT, which has been described extensively in the 1980s, also performs simultaneous
lot sizing and scheduling for the bottleneck work centers, distinguishing between
transfer and (often larger) process batches. See Zäpfel and Missbauer (1993b) for
related literature on OPT.

In accordance with the hierarchical structure of the manufacturing planning and
control system that we assume throughout the chapter, detailed scheduling is per-
formed locally within the production units. Thus we do not consider simultaneous
lot sizing and scheduling or cyclic production. We assume that lot sizing passes the
lots (production orders) to the order release function where they are released to the
production units that perform sequencing. In this context, stochastic models of the
manufacturing system are appropriate to anticipate the consequences of lot sizes on
flow times and WIP.

Assuming a stationary state of the system, we can examine the relationship be-
tween the lot sizes and the long-term clearing function of a work center by means of
an M=G=1 model producing products with identical data. We define m as the total
demand rate (sum of the identical demand rates of the products), a the processing
time per unit, r the setup time per lot, � and v the standard deviation and coefficient
of variation of the service times of the orders, x the lot size. a; r; and x are identi-
cal for all products. We assume that a setup is necessary for each lot. Considering
setup time savings obtained by sequence optimization is described in Kekre (1984),
Kekre (1987) and Missbauer (1997).
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For simplicity we assume a given value for the coefficient of variation of
the service times v that is independent of the common lot size x. This is suf-
ficient for showing the structural properties. Missbauer, (2002b) and Karmarkar
et al. (1985a, 1985b) discuss the relationship between lot sizes and the coefficients
of variation of service times in the multi-product case. We also assume a Poisson
arrival process, which is a rather strong assumption in the single-product case (see
Kistner (1999) for a critique), but in the multi-product case with identical products
this assumption is well justified (Missbauer 1999). Based on these assumptions we
compute the arrival rate

� D m

x
(16.89)

and the mean service rate


 D 1

r C ax
: (16.90)

The mean waiting time EŒWq� by the Pollaczek–Khinchine formula is then

E
	
Wq


 D �2 C �2�2

2�.1 � �/
(16.91)

with � D �=
 D m.a C r=x/, and the mean flow time

EŒWs � D EŒWq� C 1=
: (16.92)

Substituting (16.89) for �, (16.90) for 
 and � D v.r C ax/ into (16.91), we get
the average waiting time as

EŒWq� D m.v2 C 1/.ax C r/2

2Œx.1 � am/ � mr�
: (16.93)

Because of the assumption of Poisson input and the PASTA (Poisson arrival see time
averages) property (Buzacott and Shanthikumar 1993, p. 54; Tijms 1994, p. 73 ff.)
the average waiting time of the customers EŒWq� must be identical to the average
WIP at the server, measured in hours of work, given by the average remaining work
EŒLw�/. So we can write

EŒLw� D EŒWq �: (16.94)

The average output in hours of work as a function of the average WIP E.Lw/ can
be calculated from (16.93) and (16.94) as follows:

Output D m � a D 2axEŒLw�

.ax C r/ Œ2EŒLw� C .v2 C 1/.ax C r/�
(16.95)
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Fig. 16.16 Output as a function of WIP (16.95) for different values for the lot size x.a D 5,
r D 15)

From (16.95) we see that a higher variability of the service times decreases the
output for a given average WIP. The clearing function for different lot sizes is shown
in Fig. 16.16.

This adds an important aspect to the lot sizing problem. Lot sizing should not
only consider setup and inventory holding costs but also its impact on the clearing
function, which can be regarded as capacitated lot sizing considering congestion
effects. There are two ways to accomplish this

� Determination of standard lot sizes or lot sizing rules that take into account the
impact of lot sizes on the clearing function (and hence on WIP and flow times that
result from order release). The clearing function that results from the lot sizes is
used for order release. In the extreme case lot sizes can be determined such that
average flow time or WIP is minimized for the required output. (Note that usually
this is in conflict with the traditional goal of minimizing the sum of setup and
holding costs). Starting with (Karmarkar et al. 1985a, b; Karmarkar 1987) the
majority of the literature on this topic is based on this idea (Missbauer 2002b).

� Defining a multi-dimensional clearing function with output as a function of WIP
and lot sizes as independent variables:

Xit � fi .Wit; x1t ; x2t ; : : : ; xNt / : (16.96)

In this case the order release model optimizes the time-varying lot sizes and
the amount of released work for all periods simultaneously. This recent research
direction is presented in (Hwang and Uzsoy 2005). Note that the steady-state
assumption implies that the changes in the characteristics of the arriving orders
affect the clearing function within the same period.

Since lot sizes influence lead times, they also influence the lead time demand
distribution, which in turn influences optimal safety stocks and reorder points. For
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this aspects, see Lambrecht et al. (1996) and Vaughan (2006). Little is known about
multistage lot sizing considering congestion effects. For a model exploring this is-
sue, see Missbauer (1999, 2002b).

16.8 Models Incorporating Uncertainty

Until this point we have treated all parameters of our various optimization formu-
lations as deterministic, although in some cases they represent the expectation of
a performance measure derived from an underlying stochastic system. However,
in any industrial application all parameters of an optimization model, such as the
cost estimates used in the objective function, the technological coefficients defining
resource consumption by products, and especially the forecasts of future demand,
are subject to significant uncertainties. The explicit treatment of uncertainty in opti-
mization formulations of production planning problems is very much in its infancy,
so we will focus on illustrating the issues in one particular area – that of uncertainty
in demand forecasts, which requires the system to hold a certain amount of safety
stock to maintain a given level of customer service.

It is well known that the amount of safety stock that needs to be held in a par-
ticular location to maintain a specified level of customer service is related to the
distribution of the demand forecast over the replenishment lead time. To illustrate
this relationship, consider a simple newsvendor model where the lead time is a ran-
dom variable with mean 
L and variance �2

L, and the demand rate has a mean of

 and a variance of �2. It is well known (e.g., Eppen and Martin 1988) that the
optimal order level can be approximated by


L
 C z˛

q

L�2 C �2

L
2; (16.97)

assuming that the lead time is normally distributed. Note that in the term under the
square root, which denotes the standard deviation of the demand over the lead time,
both the mean and the variability of the lead time interact with the mean and vari-
ability of the demand to influence the amount of safety stock required. However, the
lead times, in turn, are determined by the utilization levels of the resources. While
several approaches described in the previous section address this issue in terms of
planning models, there have been few efforts to address this directly in the planning
literature, although several stochastic models linking queues with inventory models
have been proposed (e.g., Zipkin 1986; Liu et al. 2004).

In most current approaches in industry, many of which have their origin in the
MRP literature, the amount of safety stock to be held in a particular location in a
particular planning period is calculated outside of the planning model using actual
or estimated parameters of the demand or demand forecast distribution. The plan-
ning model is then constrained to maintain this quantity of safety stock. Examples
of such models are described at length by Wijngaard and Wortmann (1985) in the
context of MRP systems, where the amount of safety stock to be maintained results
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in the release of additional orders to the system. Lambrecht et al. (1984a) show
that the problem of determining the amount of safety stock in multistage production
systems can be formulated as a Markov decision process or a dynamic program,
but the size of the state space renders these approaches impractical from a compu-
tational point of view. They propose a number of heuristics, and conduct extensive
computational experiments that examine the amount of safety lead time and safety
stock required. Lambrecht et al. (1984b) perform computational experiments with
the Markov decision process and examine the form of the optimal policies. Yano
and Carlson (1988) propose a heuristic for setting safety stock in an assembly-type
production system and examine its performance using simulation.

Graves (1986, 1988) develops an intriguing model that expressly links safety
stock levels to the ability of the production system to react to changes, using a
model that separates WIP and FGI and uses the proportional clearing function in
Fig. 16.5 to model the production behavior of the facility based on planned lead
times. However, his model assumes a stationary demand distribution, and the pro-
portional clearing function may produce capacity-infeasible solutions at high WIP
levels. He points out that distinguishing between WIP and FGI is significant since in
many production systems WIP can serve some of the function of safety stock. This
indicates the desirability of making safety stock decisions endogeneous in a pro-
duction planning model that combines a realistic aggregate model of the behavior
of congestion-prone capacitated production systems (such as that given by the clear-
ing function formulations) with the explicit modeling of WIP and FGI as separate
entities. We conjecture that such a model might well be capable of maintaining a
given service level with significantly less safety stock in the form of finished goods
between stages, since it would be able to recognize that WIP in the line would be-
come available to meet demands, reducing the need for stocks of finished goods.

Leachman (1993) presents a large-scale linear programming framework for pro-
duction planning in the semiconductor industry where safety stocks are addressed
through the use of demand classes. Production required to replace safety stocks is
modeled as a class of demand that has lower priority than firm customer orders, and
capacity is allocated to these orders only if this will not compromise the ability of the
system to meet firm customer orders. He suggests simulation of the production plan
to obtain estimates of the variability of the resulting lead times this plan will impose
on the system. These estimates of variability can then be used to determine safety
stock levels to protect against variability in lead times. Hung and Chang (1999)
elaborate further on this approach and give computational experiments examining
its performance.

In the domain of production planning models, the chance-constrained (CC)
formulations of Charnes and Cooper (1963) can be used to obtain determinis-
tic equivalents to a number of production planning problems involving random
variables. In the simplest version of this approach, consider demand to be the only
source of uncertainty, and assume that demand in period t has a cumulative distribu-
tion function Ft : Note that It is a random variable due to the demand being random.
Let us define Ut to be a target inventory level such that in each period t we produce
Xt D Ut � It�1 units if Ut > It�1 and otherwise do not produce in that period.
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Then we can write chance constraints of the form P fIt � 0g � 1 � ˛, where ˛ de-
notes the acceptable probability of stockout in a period. The optimization problem
is to determine the Xt . Defining gt D Ut � Ut�1, implying Xt D gt C Dt�1, yields

It D I0 C
tX

�D1

.X� � D� / D I0 C
tX

�D1

g� � Dt : (16.98)

This allows us to write the chance constraint as

P

(
I0 C

tX

�D1

gt � Dt

)
� 1 � ˛ (16.99)

implying

It D I0 C
tX

�D1

g� � F �1.1 � ˛/; (16.100)

where the right-hand side is now a constant. Most existing CC production plan-
ning models are uncapacitated, and do not model WIP in any form. The chance
constraints are thus developed to ensure that the finished goods inventory at the
end of each period is positive with a given probability, corresponding to the ser-
vice level desired. The most common approach to developing an objective function
is to assume that the probabilities of constraint violation are sufficiently small that
backorder costs can be neglected, as suggested by Bookbinder and Tan (1988) and
Johnson and Montgomery (1974). Similar CC formulations of chance-constrained
problems are given by Bookbinder and H’ng (1986), Gupta and Sengupta (1977),
Sengupta (1972), Sengupta and Portillo-Campbell (1973), and Rakes et al. (1984),
among others.

This approach does not appear to have been used much in recent years; stochastic
programming (see, e.g., Birge and Louveaux 1997) has been preferred, for strong
reasons related to the difficulties of the chance-constrained approach in modeling
recourse actions (Blau 1974; Hogan et al. 1981; Charnes and Cooper 1983). The
stochastic programming formulation is mathematically more complete in terms of
its ability to model multiple stage decision problems with recourse actions pos-
sible at each stage. However, the large number of decision stages, corresponding
to the time periods in planning problems encountered in industry, renders the use
of stochastic programming computationally challenging, as suggested by Peters
et al. (1977). The CC formulation has a number of difficulties – the desired probabil-
ities of constraint violation need to be specified a priori, and the degree to which the
constraints are violated is not accounted for in the objective function. From a prac-
tical perspective, the models are infeasible if it is not possible to satisfy all chance
constraints with the desired probabilities, without providing the user any means of
trading off service levels between products. In order to obtain tractable constraint
sets, distributional assumptions must be made about the random variables on the
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right hand sides of the constraints. Extensive discussions of these issues can be
found in, for example, Prekopa (1993) and Lejeune and Prekopa (2005).

However, the CC formulations also offer a number of advantages for practical
implementation relative to stochastic programming, The first of these is that with
varying degrees of approximation, depending on the degree to which the distri-
butional assumptions on the random variables are violated, these models can be
implemented using extensions of the LP formulations with which both practition-
ers and researchers are familiar. While pre-specifying the probabilities of constraint
violation may be problematic in many application domains, in the context of produc-
tion planning that we consider, the probability of constraint violation has a natural
interpretation as the probability of a stockout. The need to pre-specify stockout prob-
abilities may actually be an advantage in practice, as it forces users to think in terms
of service levels, perhaps based on aggregating products into product families or
customers into priority classes.

A specific kind of demand uncertainty can emerge in production planning models
that decide on aggregate sales, production and inventory, usually over the seasonal
cycle (sales and operations planning; see Vollmann, Berry et al. 2005, p. 60 ff.). Typ-
ically the products are aggregated into groups or families of products with similar
demand pattern and resource requirements, and the decision variables are defined at
this aggregate level. Since stockouts are defined at the level of individual products,
nonnegativity of the aggregate inventory is not a sufficient condition for a feasible
production plan. If the aggregate demand is considered as deterministic and the de-
mand of individual products is uncertain with lower and upper bounds, the task is
to find a robust aggregate production plan that allows a feasible solution at the level
of individual products (disaggregation to obtain a feasible master production sched-
ule). For this topic, see Lasserre and Mercé (1990) and Gfrerer and Zäpfel (1995).

16.9 Conclusions and Future Directions

The problems discussed in this chapter, of managing the release of work into a
production system and allocating resource capacity among different products, con-
stitutes one of the earliest applications of operations research to industrial planning
and control problems, with literature dating back more than five decades. When
viewed as part of a production planning and control hierarchy, the workload con-
trol approaches developed over the years focus on maintaining predictable lead
time and throughput behavior in a stable demand environment, where the system
can be expected to produce at a relatively constant rate. Traditional order release
mechanisms, complemented by suitable methods for order acceptance and due date
setting, are also recommended for make-to-order production where demand fore-
casts are difficult to obtain. This implies that the objective of these methods is to
maintain a desirable pattern of aggregate material flow through the facility, which
these techniques try to accomplish mainly by heuristic means with relatively little
unifying theoretical support. The lack of a strong theoretical understanding of this
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area is evidenced by the fact that most of the existing knowledge from this type
of research is in the form of results from simulation studies, which are sometimes
contradictory, and often hard to generalize beyond the specific production system
topology in which they were tested.

Focusing on optimization of aggregate material flows through the production
system motivates the discussion of the second, higher level of the planning hier-
archy, where a more aggregate plan for work release and capacity allocation take
place. These models generally take a more aggregate perspective, with time being
divided into discrete planning periods and material flows being viewed as a contin-
uous medium as opposed to discrete jobs that must be handled as an integral unit.
We have focused in particular on the rich literature on mathematical programming
models of these problems, almost all of which can trace their ancestry to the work of
Holt, Modigliani and their collaborators in the 1950s (Holt et al. 1955, 1956, 1960;
Modigliani and Hohn 1955). It is interesting to note that until very recently, there has
been a hiatus in research on these models; between the late 1970s and the late 1990s
there are relatively few papers on formulation and modeling aspects of these prob-
lems, with the work of Leachman and his coworkers (Hackman and Leachman 1989;
Leachman and Carmon 1992; Hung and Leachman 1996; Dessouky and Leach-
man 1997) being a significant exception. It is also interesting to note that the 1974
book by Johnson and Montgomery is still one of the best available references for
most of the classical work in this area. One is left with the feeling that for many
years this area was perceived as a “solved” problem with no further interesting re-
search issues.

We hope that the discussion in this chapter will stimulate wider interest in both
industry and academia in this area. While widely taught in academia and used in in-
dustry, the classical linear programming models have a number of limitations arising
from their very aggregate, static approach to modeling production capacity. It is
heartening that in recent years a growing number of researchers have begun to
explore these problems anew (Pahl et al. 2005). The new approaches differ sub-
stantially from the classical approaches in their efforts to achieve solutions that are
consistent with the queuing behavior of production systems, which is well stud-
ied (Buzacott and Shanthikumar 1993; Hopp and Spearman 2001), and thus tend
to have nonlinear structure which, in many cases, can be addressed effectively in
computational procedures.

A number of important research directions have been outlined in the chapter,
but are worth summarizing again. The new nonlinear approaches, among which
the clearing function approach appears to be the most studied, show considerable
promise but need to be better understood both empirically and theoretically. The
issues of how to derive clearing functions analytically in multistage systems when
decisions at one stage affect the variability of arrivals, and hence the shape of the
clearing function, at downstream stages needs to be examined. There also needs to
be a better understanding of the implications of using steady-state queuing results to
develop clearing functions for use in a dynamic, nonstationary environment, where
the purpose of the planning process is to change release rates over time. A closely
related and not well-understood issue is that of how changes in decision variable
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values at the boundaries between planning periods affect the implementability and
execution of the plans obtained. To what extent insights on the transient behavior
of queuing systems should be integrated into the models is not known today. In
terms of empirical estimation of clearing functions, we have experimental results
demonstrating that a simple least-squares fit to empirical data may result in very
poor planning models, but there is no theoretically justified alternative approach
available as yet.

The main alternative to clearing function models are lead time-oriented models.
Fixed lead times do not recognize the load-dependence of the lead times in the case
of time-varying capacity load. A fixed relationship between lead time distribution
and capacity load in a period can lead to substantial modeling errors since it does
not capture the dynamic characteristics of lead times. The iterative approaches of
Hung and Leachman (1996) and Riaño et al. (2006) are very interesting, but their
computational performance, especially their convergence characteristics, have not
been tested extensively.

Similar concerns hold for most of the other approaches that have been suggested
as alternatives. While both stochastic programming and chance constraint formula-
tions have been proposed for addressing the issue of uncertainty inherent in most
industrial applications, effective computational procedures are not available, and
the implications of the formulations are not well understood. Most research on
lot-sizing has focused on developing effective solution procedures for the result-
ing fixed-charge integer programming models, but the majority of these models use
the same model of capacity as the classical linear programming models, and there
is clearly much work to be done here.

Finally, from the point of view of industrial applications, it is notable that many of
the proposed new approaches are significantly more complex in both their data and
their computational requirements, and especially load-dependent lead times may
complicate coordination between manufacturing departments. It is by no means ob-
vious that the proposed new models are always superior to the classical models in
all industrial environments. This requires developing a better, theory-based under-
standing of the conditions under which the additional complexity of the new models
is justified over the well-understood classical models that have been the mainstay of
industrial practice for several decades.
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Chapter 17
Aggregate Modeling of Manufacturing Systems

Erjen Lefeber and Dieter Armbruster

17.1 Introduction

Manufacturing systems can be modeled in several ways. In particular, during the
design of a manufacturing system, discrete event modeling is an often used ap-
proach, cf. Banks (1998) and Cassandras and Lafortune (1999). Discrete event
models often include a high level of detail. This high level of detail can be used
to investigate the effect of all kinds of variables on the possible performance of the
manufacturing system. However, when a manufacturing system is in operation, this
model usually contains too much detail to keep all parameters up-to-date with the
evolving current system. In addition, certain parameters cannot even be measured.
Furthermore, running one scenario using a discrete event model takes several hours.
Usually, discrete event models are only tailer made for answering specific problems.
These models only contain part of the manufacturing system.

Another option might be to derive a less detailed model, in particular, for man-
ufacturing planning and control or supply chain control. In this chapter, we discuss
three classes of models, each at a different level of aggregation. We start with less
detailed discrete event models based of effective process times (EPTs), where each
workstation is modeled as a node in a queuing network. Next, in particular for the
purpose of planning and control, we abstract from events and replace all discrete
event queues with discrete time fluid queues. In addition, the throughput of each
workstation is limited by a nonlinear function of the queue length, the clearing
function, see also Chap. 16 of this book. Finally, we abstract from workstations and
model manufacturing flow as a real fluid using continuum models. These models
are scalable and suitable for supply chain control.
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17.2 Effective Process Times

Building a discrete event model of an existing manufacturing system can be
cumbersome, as manufacturing systems are prone to disturbances. Even though
many disturbances can be modeled explicitly in highly detailed discrete event
models, it is impossible to measure all sources of variability that might occur in
a manufacturing system. In addition, highly detailed discrete event models are
unsuitable for decision making due to their time-consuming simulation runs.

Instead of measuring detailed information, like raw process times, setup times,
times to failures, times between repairs, operator behavior, etc., one can also try to
measure the clean process time including other sources of additional waiting. This is
the so-called effective process time (EPT), which has been introduced in Hopp and
Spearman (2000) as the time seen by lots from a logistical point of view. In order
to determine the EPT, they assume that the contribution of the individual sources of
variability is known.

A similar description is given in Sattler (1996) where the EPT has been defined as
all flow time except waiting for another lot. It includes waiting due to machine down
time and operator availability and a variety of other activities. In Sattler (1996), it
was also noticed that this definition of EPT is difficult to measure.

Instead of taking the bottom-up view of Hopp and Spearman (2000), a top-down
approach can also be taken, as shown in Jacobs et al. (2001) and Jacobs et al. (2003),
where algorithms have been introduced that enable determination of EPT realiza-
tions from a list of events. That is, instead of measuring each source of disturbances
individually and derive an aggregate EPT distribution, one can also derive this EPT
distribution from manufacturing data directly. In the remainder of this section, we
illustrate for several situations how these EPTs can be measured from manufactur-
ing data.

17.2.1 A Single Lot Machine, No Buffer Constraints

Consider a workstation consisting of one machine, which processes single lots (i.e.,
no batching) and assume that the Gantt chart of Fig. 17.1 describes a given time
period.

� At t D 0, the first lot arrives at the workstation. After a setup, the processing of
the lot starts at t D 2 and is completed at t D 6.

� At t D 4, the second lot arrives at the workstation. At t D 6 this lot could have
been started, but apparently there was no operator available, so only at t D 7 the
setup for this lot starts. Eventually, at t D 8, the processing of the lot starts and
is completed at t D 12.

� The fifth lot arrives at the workstation at t D 22, processing starts at t D 24, but
at t D 26 the machine breaks down. It takes until t D 28 before the machine has
been repaired and the processing of the fifth lot continues. The processing of the
fifth lot is completed at t D 30.
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Fig. 17.1 Gantt chart of five lots at a single machine workstation
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Fig. 17.2 EPT realizations of five lots at a single machine workstation

From a lot’s point of view we observe:

� The first lot arrives at an empty system at t D 0 and departs from this system at
t D 6. Its processing took 6 units of time.

� The second lot arrives at a nonempty system at t D 4 and needs to wait. At t D 6,
the system becomes available and hence from t D 6 on there is no need for the
second lot to wait. At t D 12, the second lot leaves the system, so from the point
of view of this lot, its processing took from t D 6 till t D 12; the lot does not
know whether waiting for an operator and a setup is part of its processing.

� The third lot sees no need for waiting after t D 12 and leaves the system at
t D 17, so it assumes to have been processed from t D 12 till t D 17.

Following this reasoning, the resulting FPTs for lots are depicted in Fig. 17.2.
Notice that only arrival and departure events of lots to a workstation are needed for
determining the EPTs. Furthermore, none of the contributing disturbances needs to
be measured.

In highly automated manufacturing systems, arrival and departure events of lots
are being registered, so for these manufacturing systems, EPT realizations can be
determined rather easily. These EPT realizations can be used in a relatively simple
discrete event model of the manufacturing system, in this case a simple infinite
FIFO queue. Such a discrete event model only contains the architecture of the
manufacturing system, buffers, and machines. The process times of these machines
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are samples from their EPT-distribution as measured from real manufacturing data,
or most often from the distribution fitted to that data. There is no need for incorporat-
ing machine failures, operators, etc., as this is all included in the EPT-distributions.

Furthermore, the EPTs are utilization independent. That is, EPTs collected at a
certain throughput rate are also valid for different throughput rates. Also, machines
with the same EPT-distribution can be added to a workstation. This makes it possible
to study how the manufacturing system responds in case a new machine is added, or
all kinds of other what-if-scenario’s.

Finally, since EPT realizations characterize operational time variability, they can
be used for performance measuring as explained in Ron and Rooda (2005). Note
that overall equipment effectiveness (OEE), which is widely used to quantify ca-
pacity losses in manufacturing equipment, directly relates to utilization, i.e., the
fraction of time a workstation is busy. However, the performance of manufacturing
systems is not only determined by utilization, but also by the variability in pro-
duction processes. By only focusing on utilization, one may overlook opportunities
for performance improvement by a reduction of variability. These opportunities are
provided by measuring EPTs.

17.2.2 A Single Batch Machine, No Buffer Constraints

EPTs for equipment that serves batches of jobs have first been studied in Jacobs
(2004) and Jacobs et al. (2006). Consider a workstation consisting of one machine,
which processes batches of jobs and assume that the Gantt chart of Fig. 17.3 de-
scribes a given time period. As we know from the previous section, only arrivals

0 5 10 15 20 25 30

lot 1

lot 2

lot 3

lot 4

batch 1

batch 2

EPT 1 EPT 2

Fig. 17.3 Gantt chart of four lots (two batches) at a batch machine
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B1 B2 Mlots batches batches batches

Buffer

Fig. 17.4 Model of batch formation and queuing in front of a batch machine

and departures from jobs matter for determining EPTs, so in Fig. 17.3 we already
abstracted from most disturbances. The only remaining issue is how to deal with
the batching. For that purpose, we make a distinction between the policy for batch
formation and the EPT of a batch. An other way of putting this is to assume that the
buffer consists of two parts. A first part, B1, in which lots are waiting to become
batches, and a second part, B2, where batches are queuing in front of the worksta-
tion, as depicted in Fig. 17.4. Taking this point of view, we can interpret Fig. 17.3
in the following way. At t D 0, the first lot arrives at the workstation in buffer B1,
waiting to become a batch with the third lot. At t D 5, the second lot arrives at the
workstation in buffer B1, waiting to become a batch with the fourth lot. At t D 10,
the third lot arrives at the workstation in buffer B1, resulting in the first batch to be
formed. So at t D 10, the first batch moves from buffer B1 to buffer B2. At t D 15,
the fourth lot arrives at the workstation in buffer B1, resulting in the second batch
to be formed. So at t D 20, the second batch moves from buffer B1 to buffer B2.

When we now look at the system consisting of buffer B2 and the batch machine
M , we have a system as we studied in the previous example. A system to which
batches arrive, and which processes batches. The first batch arrives to this system at
t D 10 and leaves the system at t D 20, the second batch arrives to this system at
t D 15 and leaves the system at t D 30. Therefore, the first EPT runs from t D 10

till t D 20, the second EPT runs from t D 20 till t D 30.
Notice that using this approach, EPTs for batches only start as soon as a batch

has been formed, or to be more precise: the batch that is processed finally. The pe-
riod from t D 0 till t D 10, lot 1 was in the system and could have been processed
as a batch of size 1. Therefore, one could argue that from the point of view of this
lot, its EPT starts at t D 0. Also, one might say that as soon as lot 2 has arrived,
a batch consisting of lots 1 and 2 could have been started, so the first EPT should
have started at t D 5. This is not what we do, since we view batch formation as
part of the way the system is controlled, not as a disturbance. As a result, we not
only need to determine EPTs for batches, we also need to characterize the policy for
batch formation. One way to deal with this is to include the policy for batch forma-
tion in the discrete event model which is actually being used in the manufacturing
system under consideration. Another way to deal with this is to try to characterize
the policy for batch formation in one way or the other, i.e., derive some “effective
batch formation policy.” The latter is still subject of current research.

As mentioned above, EPTs can also be used as performance measure. Notice that
in case of batching, EPTs do not characterize capacity loss completely. Only the
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capacity loss given by the batches is characterized, including variability. Capacity
loss due to a bad policy for batch formation is not captured in the EPT. This should
be derived by analyzing the (effective) batch formation policy. Notice that again only
arrival and departure event of lots are needed for determining the EPTs of batches.

17.2.3 A Multimachine Workstation, No Buffer Constraints

So far, we only considered workstations consisting of a single machine. However,
workstations consisting of several machines in parallel can also be dealt with, see,
e.g., Jacobs et al. (2003), Jacobs (2004) and Jacobs et al. (2006). We do this in a
similar way as we handled batching. That is, we view the decision of which lot is
served by which machine again as part of the control system of the manufacturing
system.

Consider a workstation consisting of two machines in parallel which both process
single lots (i.e., no batching) and assume that the Gantt chart of Fig. 17.5 describes a
given time period. Note that we abstracted from most disturbances like we did when
we considered batching.

� At t D 0, the first lot arrives at the workstation. This lot is processed by Ma-
chine 1 and leaves this workstation at t D 15.

� At t D 5, the second lot arrives at the workstation. Even though Machine 2 is
available, or at least not serving any job, this job is also processed by Machine 1
and leaves the workstation at t D 25.

� At t D 10, the third lot arrives at the workstation. This lot is processed by Ma-
chine 2 and leaves the workstation of t D 30.

The way we view this system, and is depicted in Fig. 17.6. We assume that the
buffer consists of a dispatcher D which decides to which machine each lot will go.
We assume that lots do not wait in this dispatcher, but immediately move on to a
buffer in front of the machine at which they will finally be processed.

0 5 10 15 20 25 30

lot 1

lot 2

lot 3

M1 : EPT 1

Machine 1

Machine 2

M1 : EPT 2

M2 : EPT 1

Fig. 17.5 Gantt chart of three lots at a workstation with two machines in parallel
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Fig. 17.6 Model of dispatching and queuing at a multimachine station

Using this abstraction, the EPTs as depicted in Fig. 17.5 follow straightforwardly
for each separate machine. Notice again that the only data we need for determining
the EPTs are arrival and departure event of lots. Also, we do not only need to de-
termine the EPTs, but we also need to know the dispatching strategy. Either this
policy is known from reality and can be implemented in the discrete event model, or
an “effective dispatching policy” needs to be derived from manufacturing data. The
latter is still a subject of current research. Furthermore, multimachine workstations
with equipment that serves batches can easily be dealt with combining the results
presented so far.

17.2.4 Finite buffers

In the preceding sections, we assumed infinite buffers or at least buffers that are
large enough. This enabled us to analyze workstations in isolation. If buffer sizes
are small and cannot be neglected, as for example in automotive industry, buffer
sizes will explicitly be taken into account in the aggregate discrete event model.
Therefore, the effect of blocking, will be explicitly taken into account by means of
the discrete event model. Therefore, this disturbance should not be included in the
EPT. To take into account the effect of blocking, a third event is needed. So far,
we only needed arrival and departure events from lots. Or to be more precise: we
needed actual arrival (AA) and actual departure (AD) events. For properly dealing
with blocking we also need possible departure (PD) events, see also Kock et al.
(2005, 2006a,c).

Consider a line of two machines in series, machine Mj �1 and machine Mj , and
assume that there is no buffer between these two machines. Let the Gantt chart
of Fig. 17.7 describes a given time period, where we again abstracted from most
disturbances.

� At t D 0, the first lot arrives at Machine Mj �1. At t D 9, this lot has been
completed and moves to Machine Mj . Both the possible and actual departure at
Machine Mj �1 are at t D 9. Processing of the first lot at Machine Mj completes
at t D 22.
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Fig. 17.7 Gantt chart of 2 lots at two sequential, unbuffered machines

� At t D 10, the second lot arrives at Machine Mj �1. At t D 19, this lot has been
completed, but cannot yet move to Machine Mj . The possible departure for this
lot is at t D 19. As Machine Mj only becomes available at t D 22, the actual
departure at Machine Mj �1 is at t D 22. The actual arrival at Machine Mj is at
t D 22 for the second lot, and the actual departure at Machine Mj is at t D 30.

From the measured events, the EPTs follow readily. Since Machine Mj �1 cannot
help it to become blocked, the EPT for the second lot stops at t D 19, i.e., at the
possible departure event. If we denote the j th EPT realization at Machine i as
EPTi;j we obtain

EPTi;j D PDi;j � max
�
AAi;j ; ADi�1;j

�
; (17.1)

where AAi;j < PDi;j � ADi;j denote, respectively, the actual arrival, possible
departure, and actual departure event at Machine i for lot j . By measuring only
these three events at each machine, one is able to derive EPTs for each single job
workstation in the manufacturing system.

17.2.5 Multilot Machines

By means of the results presented above, one is able to deal with both finite and
infinite buffered multimachine workstations serving batches of jobs. In particular,
multi might be one and batch sizes can also be one, so any kind of equipment can
be dealt with which processes a single job at the time.

However, certain machines can start serving the next job before the previous one
has left the machine. Typically these machines are some minifactories themselves.
For these machines, we cannot use a simple queuing model. Therefore, for those
machines, we cannot use the relation (17.1) to derive EPTs. A different aggregate
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model is needed for those kind of machines. First attempts for an aggregate model
for multiple lot machines have been made in Eerden et al. (2006) and Kock et al.
(2006b). In particular, these models can also be used for aggregating parts of a
manufacturing system. For the most recent results in this area, the interested reader
may refer to Veeger et al. (2009) and http://se.wtb.tue.nl/�sereports.

17.3 Clearing Function Models

In the previous section, we derived how less detailed discrete event models can
be build by abstracting from all kinds of disturbances like machine failure, setups,
operator behavior, etc. By aggregating all disturbances into one EPT, a complex
manufacturing system can be modeled as a relatively simple queueing network.
Furthermore, the data required for this model can easily be measured from man-
ufacturing data.

Even though this approach considerably reduces the complexity of discrete event
models for manufacturing systems, this aggregate model is still unsuitable for man-
ufacturing planning and control. Therefore, in this section, we introduce a next level
of aggregation, by abstracting from events. Using the abstraction presented in the
previous section, we can view a workstation as a node in a queueing network. In this
section, we assume that such a node processes a deterministic continuous stream of
fluid. That is, we consider this queue as a so-called fluid queue. In order not to loose
the steady-state queueing relation between throughput and queue length, we impose
this relation as a system constraint, the clearing function as introduced in Graves
(1986), see also Chap. 20 of this book.

As an example, consider a manufacturing system consisting of two infinitely
buffered workstations. Assume that Machine i has a mean EPT te;i with a coefficient
of variation ce;i , i.e., a standard deviation of ce;i � te;i for i 2 f1; 2g. Let u0.k/

denote the number of jobs started during the kth time period. Let u1.k/ and u2.k/

denote the utilization of Machines 1 and 2, respectively, during the kth time period.
Furthermore, let x1.k/ and x2.k/ denote the buffer contents in workstations 1 and
2, respectively, at the beginning of the kth time period (i.e., the jobs in both buffer
and machine), and let x3.k/ denote the stored completed jobs or backlog at the
beginning of the kth time period. Finally, let d.k/ denote the demand during the
kth time period. Then we can write down the following discrete time fluid queue
dynamics for this system

x1.k C 1/ D x1.k/ C u0.k/ � 1

te;1

u1.k/;

x2.k C 1/ D x2.k/ C 1

te;1

u1.k/ � 1

te;2

u2.k/;

x3.k C 1/ D x3.k/ C 1

te;2

u2.k/ � d.k/: (17.2)
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Consider a workstation that consists of m identical servers in parallel which all have
a mean effective processing time te and coefficient of variation ce. Furthermore,
assume that the coefficient of variation of the interarrival times is ca and that the
utilization of this workstation is u < 1. Then we know from the queuing theory of
Takahasi and Sakasegawa (1977) that in steady state the mean number of jobs in
this workstation is approximately given by

x D c2
a C c2

e

2
� u

p
2.mC1/

m.1 � u/
C u: (17.3)

In Fig. 17.8, this relation has been depicted graphically. In the left-hand side of this
figure, one can clearly see that for an increasing utilization, the number of jobs in
this workstation increases nonlinearly. By swapping axes, this relation can be un-
derstood differently. Depending on the number of jobs in the workstation, a certain
utilization can be achieved, or a certain throughput. This has been depicted in the
right-hand side of Fig. 17.8. For the purpose of production planning, this effective
clearing function provides an upper bound for the utilization of the workstation de-
pending on the number of jobs in this workstation. Therefore, in addition to the
model (17.2) we also have the constraints

c2
a;1 C c2

e;1

2
� u1.k/2

1 � u1.k/
C u1.k/ � x1.k/;

c2
a;2 C c2

e;2

2
� u2.k/2

1 � u2.k/
C u2.k/ � x2.k/:

(17.4)

The clearing function model for production planning consists of the model (17.2)
together with the constraints (17.4). When we want to use this clearing function
model for production planning, we need the parameters ce and ca. In the previous
section, we explained how EPTs can be determined for each workstation, which
provides the parameter ce for each workstation. In addition, for each workstation,
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Fig. 17.8 Effective clearing function of (17.3) with ca D ce D m D 1
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Fig. 17.9 Manufacturing system consisting of two workstations

the interarrival times of jobs can also be determined from arrival events, which pro-
vides the parameter ca for each workstation. Therefore, both parameters can easily
be determined from manufacturing data.

However, when applying this approach for production planning, one should
carefully derive the EPTs. In particular, if the manufacturing execution system au-
thorizes jobs for processing. In that case, the EPT of a lot cannot start before it has
been authorized.

To illustrate this, consider the case depicted in Fig. 17.9. Assume that processing
times of the workstations are exponentially distributed with means of, respectively,
0.21 and 0.23 h. Let an MPC production planning scheme be applied with time steps
of 1 day (24 h) and a prediction horizon of 5 days. That is, consider a production
planning scheme where each day a planning for the next 5 days is generated of
which only the desired production levels for the first day are provided as targets
(since the planning will be adjusted for the modified circumstances the next day).
For this planning, the model (17.2) is used together with the constraints (17.4) and
the obvious constraints that buffer contents and utilizations have to be nonnegative
for each time period. We do allow for backlog, so x3 is allowed to become negative.
Assume that the goal is to minimize a linear cost function of the jobs in the system
where the following customer demand is given:

d.k/ D 90 C 10 sin
k�

25
:

That is, a periodic demand with a period of 50 days (1,200 h) where demand
varies between 80 and 100 jobs per day. This means that the bottleneck requires a
utilization between 77 and 96%. Finally, assume that the shop floor implementation
of meeting the required targets is by authorizing jobs equally distributed over time.
So, if for a certain day a target of 96 jobs is set, every 15 min a new job is authorized.

Next, we consider two ways of determining EPTs. For the first (incorrect)
method, we use (17.1) where the actual arrival event AA is the event of the arrival
of a lot in the buffer. For the second (correct) method, we also use (17.1) for deter-
mining the EPTs, but in this case we use for the actual arrival event AA the latest of
the following two events: the arrival of a lot in the buffer or the authorization of that
lot for processing. In the latter case, we say that even when a lot has completed the
service at the previous workstation, if it has not yet been authorized for processing,
it cannot join the queue for processing and therefore actually has not yet arrived to
that queue.
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The difference in performance between these two ways of determining the actual
arrival event AA is depicted in Fig. 17.10, where we see the evolution of the amount
of jobs in the buffers and of the backlog. At the left-hand side of this figure, we see
that every now and then wip levels explode. For example, around t D 40;000, we
first see a backlog of about 400 lots and a little later the buffer contents in the first
workstation reaches almost 5,000 lots. However, at the right-hand side of this figure,
we see that the wip in the first workstation remains between 1 and 3 lots, the wip in
the second workstation stays even between 2 and 3 lots, and no backlog occurs.

An explanation for this large difference in behavior can be understood if one
looks at the EPT realizations. For the first method, the derived EPTs are presented
in Fig. 17.11. Since we did not include any disturbances in our model, we know that
the (mean) EPTs of the workstations should be 0.21 and 0.23, respectively. However,
this is not what we see in Fig. 17.11. In the left-hand side of this figure, we see large
EPT realizations every now and then. Also, we see periodic fluctuations in the EPT,
implying that the realizations are utilization dependent, which they should not be.
Recall that EPTs should be utilization independent. This periodic behavior becomes
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Fig. 17.10 (a) Resulting wip levels using incorrect EPT measurements. (b) Resulting wip levels
using correct EPT measurements
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ments (zoomed area)
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Fig. 17.12 (a) Correct EPT measurements (complete time horizon). (b) Correct EPT measure-
ments (zoomed area)

even more clear when we zoom in on the first 7,000 time units, as depicted in the
right-hand side. Furthermore, we see that the EPT realizations are also a little bit
too large.

The explanation of these results is in the way EPTs are determined and the effect
that this has on the production planning system. Assume that lots are waiting in the
buffer and have not yet been authorized for production. Then they have to wait, even
when the machine is idle. As a result, the EPT realization becomes larger. But larger
EPT realizations imply that apparently less capacity is available at this machine.
Therefore, for the next period, less jobs can be authorized for production. In this
way, the planning system enters a viscous circle resulting in large excursions.

Indeed, if one uses as AA-event the moment when the lot has both arrived in
the buffer and been authorized for production, better results are obtained, as seen
in Fig. 17.12, In this figure, we see correct estimation of the EPT, where small
fluctuations are only due to stochasticity. Also when we zoom in on the first 7,000
time units, no utilization dependency of EPT realizations can be found anymore.

17.4 Continuum Models

17.4.1 A Continuum of Production Stages

EPT and clearing function models can be developed for any arbitrary part of the pro-
duction line. In particular, they can also be used to describe the aggregate behavior
of a whole factory, replacing all the details of its production by, e.g., a clearing func-
tion relation that determines the outflux as a function of the current work in progress
(WIP) in the factory. This will work well, if the associated cycle times through the
factory are small and hence the change in WIP during a cycle time is also small (see
Chap. 16 for a discussion for the proper timing of a clearing function). However,
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if the changes in influx are on a shorter timescale than the cycle time, we need to
keep track of the time already spent in the factory by a given lot at a particular place
in the production line. This can be done by adding delays into ordinary differential
equation models or by modeling the flow of WIP through a factory explicitly via a
transport equation.

Specifically, the fluid models that use EPT and clearing functions’ approaches
discussed in the previous sections are really a misnomer. While individual lots are
aggregated into a continuum of products, we still consider individual machines or
individual machine groups where a true fluid is characterized by two continuous
independent variables, a time variable and a space variable. The appropriate spatial
variable for a production flow characterizes the production stages or the degree of
completion. We denote this variable with x and arbitrarily restrict it to the interval
Œ0; 1�. Hence the fundamental variable that we consider is the product density (lot
density) �.x; t/. Note that dW.0; t/ D �.0; t/dx is the WIP at the beginning of the
factory, while dW.1; t/ D �.1; t/dx is the WIP at the end of the production line.
For almost all manufacturing processes, especially for semiconductor fabs where
lots leaving the factory have yet to be tested for their functionality, the fundamental
equation describing the transport of a continuum of product through a continuum of
production stages is given by a conservation equation for the product �.

@�.x; t/

@t
C @F.�.x; t/; x; t/

@x
D 0 (17.5)

where F.�.x; t/; x; t/ is the flux at position x and time t which depends in a func-
tional manner on � and possibly on the exact location x and time t . The influx is
then given by

F.�.0; t/; 0; t/ D �.t/ (17.6)

the outflux is given by
F.�.1; t/; 1; t/ D �.t/ (17.7)

and an initial WIP distribution is characterized as

�.x; 0/ D �0.x/ (17.8)

Note that (17.5), (17.6) and (17.8) form an initial boundary value problem for a par-
tial differential equation. If we are defining the flux as F.x; t/ D �.x; t/v.x; t/ with
v the fluid velocity then (17.6) is Little’s law (Little 1961) averaged on timescales t

and lengthscales x where �.t/ is the average influx rate, �.x; t/ is the average WIP,
and v.x; t/ is the inverse of the average cycle time.

Equations (17.5), (17.6) and (17.8) are a deterministic description of the flow of
products through a factory. The resulting PDE is typically nonlinear and possibly
nonlocal, however it is defined just on one spatial dimension. The computational
effort to solve such a PDE is minimal. Hence this description is a candidate for
a real-time decision tool simulating, e.g., the network of factories that make up a
complicated supply chain or that describe the possible production options for a large
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company. The PDE models allow a user to explore different scenarios by varying the
parameters that define the network of PDEs in real time. In addition, the PDE mod-
els are inherently time dependent allowing the study of non-equilibrium or transient
behavior. The price paid for the convenience of fast time-dependent simulations is
that the PDE solutions describe the average behavior of a certain factory under the
conditions that define the simulation. Many production scenarios are highly volatile
and the variances of output of WIP are as big or bigger than the means of the pro-
cesses. In that case, a tool that predicts the mean behavior is not very useful but
one can argue that such production processes are inherently unpredictable and that
individual sample paths generated by a discrete event simulation are just as mean-
ingless as the time evolution of the mean behavior. However, any process where the
time dependence of the mean by itself provides useful information is a candidate for
a successful description by partial differential equations. In the following, we will
present short descriptions of the basic model and its refinements to capture more and
more of the stochasticity of the process and of the detailed decision issues in pro-
duction systems. References to more in-depth discussions are given. In Sect. 17.5,
we will present open problems and directions for further improvements.

The fundamental reference for the idea of modeling production flow as a fluid
is in Armbruster et al. (2006a). Daganzo (2003) uses the idea of discrete kinematic
waves to describe the inventory replenishment process in a supply chain. A recent
paper (Göttlich et al. 2005) extends the idea to supply chain networks.

17.4.2 Flux Models

The fundamental modeling effort has been to find the right flux function F as a
function of the WIP �.x/. Several first principle, heuristic and experimental attempts
to find a good flux model have been discussed. Almost all of them are quasistatic
or adiabatic models in the sense that the flux is not evolving in time but has a fixed
functional relation to the WIP in the factory (a state equation) usually describing the
functional dependence of outflux as a function of WIP in steady state. Hence any
disturbance away from the state equation through, e.g., an increase in WIP caused by
an increase in influx will lead to an instantaneous relaxation to the new throughput
given by the state equation. The flux is written as F D �veq, veq D veq.�/ D
1=�.�/ with veq the steady-state velocity and � the average cycle time in steady
state. Typical models are

� A traffic flow model (Greenshields 1935) with the equilibrium velocity

vLW
eq D v0

�
1 � �

�max

�
:

Here v0 is the “raw” velocity describing the flow through an empty factory, �max

is the density at which nothing moves any more in steady state and hence the
density will increase without bounds (cf. a traffic jam). Note that the velocity
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at stage x depends only on the WIP at stage x. Such a property is valid for
traffic models and for a-cyclic production systems where every production step
is performed on a single dedicated machine set.

� A model describing the whole factory as an equivalent M/M/1 queue. In that case,
we have the PASTA property and the cycle time becomes � D 1=v0.1CW / with
W the length of the queue which here is W D R 1

0
�.x/dx, i.e., total WIP. The

equilibrium velocity therefore becomes

vQ1
eq D v0

1 C W
A:

Notice that the M/M/1 model describes a re-entrant factory: since the equilibrium
velocity is the same for all parts in the queue, any change in the length of the
queue will affect all WIP in the factory uniformly. This is a crude model of a
highly re-entrant factory where any increase in starts will lead to a slowdown
everywhere inside the factory.

� A more sophisticated re-entrant factory model is given through the use of inte-
gration kernels w.x; �/

vQ2
eq .x; t/ D v0

1 C R 1

0 w.x; �/�.�; t/d�

The kernels w.x; �/ describe the influence of the competition for capacity from
the product located at stage � on the product located at position x. E.g., assuming
a re-entrant production with two passes through the same machines, then for
x 2 Œ0; 0:5�

w.x; �/ D 0:5ı.� � x/ C 0:5ı.� � .x C 0:5// and

vQ2
eq .x; t/ D v0

1 C 0:5�.x; t/ C 0:5�.x C 0:5; t/
;

with v
Q2
eq .x; t/ D v

Q2
eq .x C 0:5; t/.

� Detailed discrete event simulations can be used to determine the state equa-
tion through simulation. Given a DES model, we can determine average WIP
in steady state for different throughputs. Assuming a clearing function model or
a queuing model, we can then use least squares fits to parameterize the equilib-
rium throughput or the equilibrium velocity as veq D ˆ.WIP/.

Figure 17.13 shows three different clearing functions for a line of 100 identical
machines and an arrival process that is identical to the first machine process. The
difference between the three different curves is due to different levels of variances.
Notice that the capacity of the line, i.e., the horizontal asymptote for the clearing
function as well as its curvature depends crucially on the stochasticity of the line.
The interpolation is a least squares fit to an exponential model for the throughput �

as a function of the WIP W , � D �1.1 C exp.�kW // (Asmundsson et al. 2002).
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Fig. 17.13 Throughput as a function of WIP in steady state. From top to bottom, the three datasets
represent coefficients of variations c2 D 0:1; 1; and 6. Least squares interpolations are made for
an exponential clearing function

It is obvious that the exponential decay is not a very good fit for moderate and
high variances, suggesting that a low-order polynomial fit or a Pade approximation
might work better. Nevertheless, only a few sets of discrete event simulations are
necessary to get a general outline of the graph of the clearing function, allowing
us to predict WIP and throughput times for arbitrary influxes. However, it is worth
noting here that a clearing function characterizes the full state of a system—any
change of the system may lead to a different clearing function. While this is obvious
for the addition or removal of machines in the factory, the state is also characterized
by the variances of the machines and the policies in the factory, in particular, by
dispatch policies.

The major advantage of partial differential equation models is the fact that they
are able to model time-dependent processes, e.g., transients. Figure 17.14a shows
the average throughput for a seasonally varying input (sinusoidal) with a period of
about 1 year. The noisy line comes from averaging 1,000 discrete event simulations
of a model of a semiconductor factory (Perdaen et al. 2006). The continuous line
shows the PDE simulation for the same experiment, where the PDE simulation is
generated through a quasistatic model. The PDE simulation is quite good due to the
fact that the influx varies slowly. Figure 17.14b shows the same experiment for a
sinusoidal input that varies ten times faster. Now the PDE simulation seems to lag a
bit relative to the discrete event simulation.
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Fig. 17.14 Throughput as a function of time for a sinusoidally varying input (a) period of about
one year, (b) period of about 1/10 of a year

17.4.3 Higher-Order Models and Extensions

Moment expansions. The quasistatic or adiabatic model is the zero order equation
of a hierarchy of moment expansion models (Armbruster et al. 2004a). Moment
expansions follow the approach of turbulence modeling or gas-dynamic modeling
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of transport processes (Cercignani 1988). Here, the fundamental quantity is a
probability density distribution f .x; v; t/ where

f .x; v; t/dx dv dt D Pr f� 2 Œx; x C dx�; 	 2 Œv; v C dv�; � 2 Œt; t C dt �g

describes the probability to find a particle in an x-interval with a speed in a particular
v-interval in a certain time interval. The time evolution of this probability density
leads to a Boltzmann equation. That Boltzmann equation is equivalent to an infinite
set of equations for the time evolution of the moments of the probability distribution
with respect to the velocity v. As usual a heuristic cutoff is used to reduce the infinite
set to a finite set. A two moment expansion is given as

@�

@t
C @�v

@x
D 0;

@v

@t
C v

@v

@x
D 0:

Boundary conditions

�.t/ D �.0; t/v.0; t/;

v.0; t/ D v0

1 C W.t/
;

reflect the idea that a lot that arrives at the end of the queue has an initial expecta-
tion of a cycle time given by the length of the queue in front of it. Assuming that
the velocity is constant over the whole space interval we get that @v=@t D 0 and
hence v D veq.�/ D v0=1 C W , i.e., we have the explicit closure that leads to the
quasistatic approach.

Diffusion. The quasistatic approach incorporates the influence of the stochasticity,
in particular, the variances of the stochastic processes, only through a shift of the
means (e.g., mean capacity, mean cycle time, etc.). A typical model that includes
the variances explicitly is given through an advection diffusion equation

@�

@t
C @F

@x
D 0; (17.9)

F D veq� � D
@�

@x
; (17.10)

where the advection process describes the deterministic evolution of the means and
the diffusion process, parameterized through the diffusion coefficient D, models
the behavior of a Brownian motion superimposed on these means. Armbruster and
Ringhofer (2005) derive such an equation from first principles, based on a trans-
port process that randomly updates the transport velocity from a density-dependent
probability distribution. To model the re-entrant influence, the velocity is random
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Fig. 17.15 Paths of 920 lots through an INTEL factory

in time but constant over all stages. A expansion based on an infinite number of
machines and an infinite number of velocity updates of the associated Boltzmann
equation leads to (17.10).

It is easy to show the presence of diffusion in real factory data as well as in
discrete event simulations. Any state of the art production facility will be able to
determine the exact location of any lot that goes through the factory at any given
time. Figure 17.15 shows a crude approximation to the paths of 920 lots through
a real INTEL factory. By starting all lots at the same place and time, the result-
ing fan in Fig. 17.15 is an indication of the diffusion process. Slicing the data in
Fig. 17.15 at fixed times, we can generate histograms of the number of lots as a
function of position in the factory. Figure 17.16 shows that, as expected from the
central limit theorem, the distribution of WIP toward the end of the factory is rea-
sonably well approximated by a normal distribution. Standard fitting procedures
will allow us to determine the state equation veq and the diffusion coefficient D in
(17.10) (Armbruster et al. 2004b).

17.4.4 Control of Production Lines

Having a differential equation model for a production line opens up the field of
continuous control (see also Lefeber 2004; Göttlich et al. 2006). While there are
still many open questions, two initial attempts have been successful.
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Fig. 17.16 Histograms of positions of the lots in the factory at time t D 20, t D 30, and t D 40

17.4.4.1 Control Via the Push-Pull Point

The cycle time through a semiconductor fab is several weeks. Hence, typically the
starts into the fab are done “to plan” while the delivery out of the fab is “to orders.”
This reflects itself in the dispatch policies at the re-entrant machines. At the begin-
ning of the factory, we have a push policy, favoring lots requiring early production
stages over lots waiting for high production stages, whereas at the end of the factory
we have a pull policy which tries to affect output by favoring the final steps over
earlier steps. Somewhere in the middle of the factory there is a production stage
where the push policy changes into a pull policy. That stage is called the push-pull
point and it is one of the few possible control actuators inside the factory that might
influence the output of the factory. In Perdaen et al. (2006), we have studied the use
of changing the push-pull point to affect the tracking of a demand signal in a dis-
crete event simulation of a semiconductor fab. We assume that we have a demand
curve as a function of time, and a time interval in which the demand is of the order
of magnitude of half of the total WIP of the factory. We then place the push-pull
point in such a way that the demand over that time interval matches the total WIP
downstream from the push-pull point.
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The final result is that a push-pull control algorithm will not significantly improve
the factory output for an open system where the WIP is uncontrolled. If we are using
the push-pull algorithm together with a CONWIP policy, then the demand-outflux
mismatch over a fixed time interval is reduced by a factor of 5�6, for a demand
signal with a coefficient of variation c D 
=� D 0:4.

This control algorithm and its implementation have nothing to do per se with
a continuum model of the factory. However, a continuum description provides a
framework to understand the DES result: since the average cycle time for a lot
under a pull policy is shorter than for a lot produced under a push policy, the asso-
ciated average velocity for a pull policy is higher than for a push policy. Assuming
for this argument a uniform velocity in the factory in steady state, the WIP profile
�.x/ D �=v will be constant, independent of x and t . We consider the upstream
part of the production line as a homogeneous push line and the downstream part
as a homogeneous pull line, each with its own constant velocity with vpush < vpull.
Since the throughput is the same everywhere and since �v D � has to hold, we get
a jump in the WIP profile at the push-pull point by the amount

�push

�pull
D vpull

vpush
: (17.11)

Figure 17.17a shows the constant throughput and the discontinuous WIP profile.
When we now instantaneously move the PPP upstream by an amount �x then the

queues that were just upstream of the PPP and hence had the lowest priority on the
line move up in priority and therefore speed up. Hence the product of �pushvpull >

�, i.e., we create a flux bump. Similarly we create a flux dip by moving the PPP
downstream. Keeping the PPP at its new location, the flux bump is downstream
from the PPP and hence moves downstream with the constant speed vpull pulling a
WIP bump with it until they both exit the factory. During the time they exit, they will
increase the outflux. Figure 17.17b, c shows this time evolution. After the WIP/flux
bump has exited, the total WIP in the factory is lower and hence in order to satisfy
the same demand, the push-pull point will have to move yet further upstream driving
it toward the beginning of the factory.

In contrast, the time evolution of the flux bump for the PPP-CONWIP policy is
illustrated in Fig. 17.18.

As the CONWIP policy is implemented by matching the starts to the outflux,
once the WIP bump moves out of the factory, the starts will be increased to create a
new WIP bump. In that way, the total throughput will stay high until the PPP point
is moved downstream again. That will happen when the backlog has moved to zero
and the sum of actual backlog and actual demand has decreased. In that way we
have a policy that reverts all the time to a match between demand and outflux.

17.4.4.2 Creating an Arbitrary WIP Profile

One problem that represents a step to the practically more interesting problems (see
Sect. 17.5) is the following: given a WIP profile �1.x/; 0 � x � 1 and a quasistatic
model of a production system determined by veq D ˆ.WIP/, what is the influx �.t/
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Fig. 17.17 Stages of creating a flux bump (a)–(d) show subsequent snapshots of the flux and WIP
profile. For details and interpretation, see text

to generate a desired new WIP profile �2.x/, subject to a time evolution determined
by the PDE

�t C veq�x D 0; x 2 .0; 1/ ; t > 0:

�.t/ D v.t/�.0; t/; t > 0:

An implicit analytical solution involves the simple idea of letting the initial profile
travel out through the right boundary while the new profile travels in through the
left boundary.

�.x; t/ D
�

�1.x � R t

0
v.s/ds/ if

R t

0
v.s/ds � x � 1

�2.1 C x � R t

0 v.s/ds/ if 0 � x <
R t

0 v.s/ds � 1:
(17.12)

From (17.12), we can determine the influx �.t/ D v.t/�2.1�R t

0
v.s/ds/. The transit

time T for the initial profile �1.x/ is defined by 1 D R T

0
v.s/ds. Note that (17.12) is
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Fig. 17.18 Stages of creating a flux bump for a PPP-CONWIP policy (a)–(d) show subsequent
snapshots of the flux and WIP profile. For details and interpretation, see text

a general solution for all time-dependent functions of velocity, especially including
those based on the load

R 1

0
�.x; t/dx. Furthermore, it is an implicit solution as the

density �.x; t/ and hence the influx �.t/ depend on the velocity v.�.x; t/; x; t/ and
its history.

A feasible numerical method to find an explicit solution for �.x; t/ and �.t/

consists of the following steps:

1. Discretize in space and initialize �.xj ; 0/ to �1.xj / for all space points j D
1 : : : N .

2. Determine �.xj ; tn C ıt/ by using a hyperbolic PDE solver and evaluate v D
v.tnCıt/. Integrate

R tnCıt

0 v.s/ds and set �.0; tnCıt/ D �2.1�R tnCıt

0 v.s/ds/.

Set �.tn C ıt/ D v.tn C ıt/�.0; tn C ıt/. Repeat until
R tnCıt

0
v.s/ds D 1

Figure 17.19a shows a starting profile �1.x/ and an end profile �2.x/.
Figure 17.19b shows the influx �.t/ that generates the new WIP profile for the
state equation v.t/ D v0=.1 C R 1

0
�.x; t/dx/.
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17.5 Conclusions and Open Problems

We have presented three approaches to aggregate modeling of production lines:
EPTs, clearing functions, and continuum models (PDEs). EPT is a tool to separate
waiting for the availability of a machine from all other sources of variability that
extend the processing time. EPTs are easy to measure and allow the development
of discrete event simulations that aggregate many different and hard to characterize
stochastic processes into one processing time. Alternatively, we can use EPTs to
develop relatively simple queueing networks. We have shown that EPTs are utiliza-
tion independent and that they can be defined for machines that work in parallel, for
production lines with finite buffers, and for batch processes.

The next level of aggregation treats the products as a continuum and in that way
loses the concept of an event. The resulting model consists of ordinary differential
equations that reflect the queues in front of machines and their dynamics driven
by the balance of influx and outflux. Together with the loss of the event, clearing
function models also lose the stochastic behavior – a clearing function is a input-
output relation that reflects the average behavior of the system that it is modeling.
Simple queues allow an exact determination of the clearing function relationship
but most networks require either off-line simulations or queueing approximations to
determine the shape of the clearing function numerically.

Continuum models treat the whole production process as a continuum in prod-
ucts and a continuum in production steps. The resulting partial differential equations
are typically hyperbolic and describe the movement of products through a factory
as a WIP-wave. Different levels of scale and accuracy have been presented. The
lowest level of accuracy is represented by a quasistatic approach that connects the
PDE models to the clearing function models by using the clearing function as a
state equation. The major advantage of continuum models is that they are scale in-
dependent, i.e., their simulation does not depend on the number of lots produced
nor the number of stages that the lot is going through. A second advantage is
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that they allow the study of nonequilibrium and transient effects, something that
can rarely be done in queueing models. Like the clearing function approach they
are deterministic and typically represent the mean transport behavior, although the
time evolution of higher-order moments can in principle be studied. PDE models
can be extended to networks of factories (supply chains) (Armbruster et al. 2006a;
Göttlich et al. 2005) and they can be set up to include policies (dispatch or global)
(Armbruster et al. 2006b).

An interesting study for further research would be to compare the computational
efforts as well as the performance of the four modeling approaches.

A major open problem for the continuum model approach is the following:

� In Armbruster and Ringhofer (2005) we have derived an advection diffusion
equation from first principles that describe the mean time evolution of a certain
stochastic production process. However, the process we used involved stochasti-
cally varying spatially homogeneous velocities which are not easily related to the
usual characterization of the stochasticity of production. The latter is typically
described through stochastically varying capacity reflecting the tool manufac-
turer’s characterization of a machine through its time distribution for failure and
its time distribution for repair. We are working on developing PDEs whose pa-
rameters are determined by a priori given distributions for those times.

Other open problems involve control and optimization of production:

� What is the influx �.t/ that moves a production line from an equilibrium state
with throughput d1 to a new equilibrium state with throughput d2 in shortest
possible time.

� Given an initial WIP profile �0.x; t0/ and a demand signal d.t/ for t0 � t � t0 C
T for some time interval T . What is the input �.t/ that minimizes the difference
between the output and the demand over that time interval.

We are currently exploring variational methods analogous to optimal control prob-
lems for parabolic equations (Göttlich et al. 2006) to solve these optimal control
problems.
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Chapter 18
Robust Stability Analysis of Decentralized
Supply Chains

Yanfeng Ouyang and Carlos Daganzo

In the supply chain literature, the term “bullwhip effect” refers to a phenomenon
where the fluctuations in order sequence are usually greater upstream than down-
stream of the chain. Empirical observations have found that the orders placed by a
supplier are often more variable than the actual quantities sold, and in multiechelon
chains, even very steady customer demand can generate wildly fluctuating supplier
orders several stages upstream (Lee et al. 1997a,b).

The bullwhip effect is of much practical importance. The term was originally
coined by the Procter & Gamble Corporation to describe their empirical observa-
tions. In business schools, “beer games” are widely used to demonstrate its existence
and pernicious effects (Goodwin and Franklin 1994; Kaminsky and Simchi-Levi
1998; Sterman 1989). The bullwhip effect is important because it results in huge op-
erating costs for upstream suppliers because of operating inefficiencies (high costs)
or lack of responsiveness (poor customer service and loss of customer goodwill), or
both. Empirically, the bullwhip effect is estimated to inflate supply chain operating
costs by 12.5–25% (Lee et al. 1997a,b). If the bullwhip effect is eliminated, the US
grocery industry alone could save on the order of 30 billion dollars each year (Cooke
1993; Lee et al. 1997b).

The bullwhip effect phenomenon is first recognized in the 1950s (Forrester 1958,
1961; Magee 1956; Magee and Boodman 1967), and is also evident in macroeco-
nomic data (Blinder 1986; Holt et al. 1960; Kahn 1987; Naish 1994; Ramey 1991).
Later, simulations and games (Goodwin and Franklin 1994; Sterman 1989) reveal
that it arises persistently, even if the games are unstructured. Recent research reveals
that it is the suppliers, rationality that causes the bullwhip effect. To this end, a com-
mon and intuitive practice has been to analyze the bullwhip effect parametrically for
one supply chain stage, by comparing the variances of the orders placed by the sup-
plier and the customer. Lee et al. (1997a; 1997b) identified four operational causes
of the bullwhip effect (demand forecast updating, order batching, rational shortage
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gaming, and price fluctuation) and quantified their impacts for one retailer with an
AR(1) customer demand process. Similar efforts, e.g., Baganha and Cohen (1998);
Chen et al. (2000a,b); Graves (1999); So and Zheng (2003), were later made to study
variants of the problem for other families of stationary and nonstationary demand
processes (e.g., ARMA with or without a time trend). It has also been shown that
in multiechelon chains, if the customer demand is ARMA or ARIMA, the upstream
orders will also be ARMA or ARIMA (with different parameters) when suppliers
follow certain ordering policies (Gaur et al. 2005; Gilbert 2005; Graves 1999; Zhang
2004). Aviv (2003) derives further results for order-up-to policies and general corre-
lated demand processes. All these studies provide useful insights regarding the im-
pact of the assumed demand processes and ordering policies on the bullwhip effect.

18.1 Need for Robust Analysis

In summary, most analyses in the literature have focused on (i) families of station-
ary and nonstationary customer demand processes (e.g., AR, ARMA, and ARIMA);
(ii) specific inventory policies; and dominantly (iii) a single stage of a supply chain
(Baganha and Cohen 1998; Chen et al. 2000a,b; Gaur et al. 2005; Gilbert 2005;
Graves 1999; So and Zheng 2003). In reality, however, customer demand is hard
to specify. Very often we do not know, and therefore cannot control, the customer
demand. What’s more, supply chains often contain multiple echelons, and the oper-
ating environment (e.g., supplier behavior and logistics systems) may be uncertain.
We find it important to answer the following questions:

1. Can the conclusions for single supply chain stages and specific scenarios be gen-
eralized to long and complicated supply chains?

2. Can we separate the influences of the policies from those of the demand? If yes,
are there robust policies that will avoid the bullwhip effect for arbitrary demand?

3. Very often supply chain operations are uncertain; suppliers may alter ordering
policies based on economic growth, or lead times may be random. How do these
additional uncertainties influence the bullwhip effect?

The answers to these questions are not trivial. The specialized knowledge we
have accumulated for single-stage chains and preassumed demand processes does
not generalize well to complicated multiechelon chains with arbitrary demand. The
following example, taken from Ouyang and Daganzo (2006a), explains the reason.

Suppose the suppliers in a homogeneous multiechelon chain (e.g., retailer,
wholesaler, manufacturer, and raw material provider) use the kanban-type “general
replenishment rule” proposed in Dejonckheere et al. (2003),1 which reduces the
bullwhip effect for several AR demand processes. Now assume that the customer

1 This linear policy utilizes current inventory position, current in-stock inventory, and past orders
received. It is similar to the generalized kanban policy in Zipkin (2000). For more details see
Dejonckheere et al. (2003), pages 582–584.
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Fig. 18.1 Fluctuations of orders placed by members of a supply chain: (a) customer; (b) retailer;
(c) wholesaler; and (d) manufacturer (Source: Ouyang and Daganzo, 2006a)

demand, u0.t/, exhibits both seasonal fluctuations (with amplitude 1:0 and angular
frequency 0:05�) and short-term variations (with amplitude 2:0 and angular fre-
quency 0:88�); see Fig. 18.1(a). Applying the parameter values in Dejonckheere
et al. (2003), we find that the amplitudes of the two wave components change by
factors of 1:464 and 0:282, respectively, each time they pass through a supplier.
Application of the policy at the first echelon results in the retailer orders u1.t/ of
Fig. 18.1(b). We see that the fluctuations indeed decrease for the first echelon, i.e.,
the retailer places orders more smoothly. Does this imply that the bullwhip effect
does not exist in the chain?

A simple simulation at other echelons yields the wholesaler and manufacturer
orders, u2.t/ and u3.t/, shown in Fig. 18.1(c)–(d), respectively. Note how the vari-
ance of the order sequences decreases for a few suppliers, and then increases. The
reason is that the policy dampens the initially larger short-term fluctuations but
amplifies the initially smaller seasonal fluctuations. This rather extreme example,
however, leads to rather broadly applicable conclusions for practical customer de-
mand processes. It clearly illustrates that variance amplification predictions obtained
for single-echelon chains cannot be trivially extrapolated to multiechelon chains.
It also suggests that in multiechelon chains, the bullwhip effect can be avoided only
if fluctuations of all types (seasonal, short-term, etc.) are dampened. Hence, it is
important to address our questions in the context of multiechelon chains, and em-
phasize robust results that would hold for all types of customer demand.

This chapter summarizes recent results on robust supply chain stability.
Section 18.2 addresses questions 1 and 2, following Daganzo (2001, 2003, 2004);
Ouyang (2005); Ouyang and Daganzo (2006a). It first introduces basic notation
for deterministically operated chains, and then presents two “frequency domain”
approaches for the study of stability: harmonic analysis (Daganzo 2001, 2003,
2004) and transfer function analysis (Ouyang 2005; Ouyang and Daganzo 2006a).
We show that these two approaches are based on the same concept and produce
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the same results. Section 18.2 also shows that all operationally efficient (rational)
inventory control policies trigger the bullwhip effect, independently of the demand
process. Finally, the section demonstrates that if one allows for advance demand
information (ADI) by introducing future order commitments then the bullwhip ef-
fect can be eliminated without giving up efficiency. Numerical examples are given.
Section 18.3 then develops a formulation in the time domain for stochastically
operated chains (Ouyang and Daganzo 2006c). Randomness in this case arises from
unpredictably varying factors in the operating environment, such as supplier behav-
ior and transportation lead times, in addition to those in the customer demand. This
addresses the third question. The section introduces analytical conditions to predict
the existence of the bullwhip effect and bound its magnitude. Numerical examples
are also presented. Finally, Sect. 18.4 gives some conclusions.

18.2 Deterministically Operated Chains

18.2.1 System Dynamics

Consider a multiechelon chain with i D 1; 2; : : : ; I C 1 suppliers and one fi-
nal customer (treated as supplier i D 0), as shown in Fig. 18.2. Every supplier
(i D 0; 1; 2; : : : ; I ) orders ui .t/ items from its upstream neighbor at discrete
times t D : : : ; �2; �1; 0; 1; 2; : : :, and receives the items after a constant lead
time li D 0; 1; 2; : : :.2 Physical shipments arrive at the beginning of every time
period; suppliers inspect their inventories during the period; replenishment orders
are then placed at the end of the period and received by the upstream neighbors
immediately.

The conservation equations for the supplier’s inventory position at time t , xi .t/

and for the in-stock inventory at time t , yi .t/ are:

xi .t C 1/ D xi .t/ C ui .t/ � ui�1.t/; 8i D 1; 2; : : : ; (18.1)

Customer
0

orders shipments

uI (t) uI-1(t) ui(t) ui-1(t) u1(t) u0(t)

Supplier
I+1

xI+1(t), yI+1(t)

Supplier
1

x1(t), y1(t)

Supplier
I

xI(t), yI(t)

Supplier
i

xi (t), yi (t)

Fig. 18.2 A supply chain representation (Source: Ouyang and Daganzo 2006b)

2 This constant lead time assumption is also used in the literature, e.g., Chen et al. (2000a,b);
Gavirneni et al. (1999); Lee et al. (2000). It is relaxed in Sect. 18.3.
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and
yi .t C 1/ D yi .t/ C ui .t � li / � ui�1.t/; 8i D 1; 2; : : : : (18.2)

We focus on decentralized supply chain where suppliers act independently, plac-
ing orders based on private information; i.e., on all the inventory records and the
histories of orders received and placed. Ouyang and Daganzo (2006a) shows that all
the information available to supplier i at time t can be encapsulated in the following
information set:

Ii .t/ WD f xi .t/; xi .t � 1/; � � � ; xi .�1/I yi .t/; yi .t � 1/; : : : ; yi .�1/I
ui�1.t � 1/; ui�1.t � 2/; : : : ; ui�1.�1/g:

The most general linear and time-invariant (LTI) ordering policy can be written as
follows:

ui .t/ D �i CAi .P /xi .t/ CBi .P /yi .t/ CCi .P /ui�1.t � 1/; i D 1; 2; : : : ; (18.3)

where parameter �i is a real number, and Ai .�/; Bi .�/; Ci .�/ are polynomi-
als with real coefficients. The symbol P is a backward lag operator; i.e.,
P kx.t/ D x.t � k/; 8k D 0; 1; 2; : : :. The polynomials Ai .P / and Bi .P / in-
dicate the influence of inventory history, and Ci .P / the history of orders received.
Various definitions of polynomials Ai .P /; Bi .P /, and Ci .P / then represent all LTI
policies. Here, we give several examples.

Example 18.1 (Order-up-to with moving average demand forecasting). An order-
up-to policy, where the “up-to level” is forecasted by a moving-average of orders
received over ri periods can be generally written as

ui .t/ D �xi .t/ C li

ri

Œui�1.t � 1/ C � � � C ui�1.t � ri /� :

This policy can be denoted by:

Ai .P / D �1; Bi .P / D 0; Ci .P / D li

1

ri

�
1 C P C � � � C P ri �1

�
: (18.4)

Example 18.2 (Generalized kanban). The general replenishment rule in
Dejonckheere et al. (2003), or generalized kanban policy in Zipkin (2000), can
be generally written as

ui .t/ D axi .t/ C byi .t/ C c

1X

kD0

˛kui�1.t � k � 1/;

where �1 � a < 0, �1 � b � 1; c > 0, and 0 < ˛ < 1. Note that in-stock
inventory partly influences ordering decisions. This policy can be represented by

Ai .P / D �a; Bi .P / D b; Ci .P / D c.1 C ˛P C ˛2P 2 C � � � /: (18.5)
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Example 18.3 (Order-based). A family of “order-based” policies is defined in
Daganzo (2001):

Nui .t/ D ˛ Nui .t � 1/ C
1X

kD1

ˇk Nui�1.t � k/; 8i; t: (18.6)

It can be shown that this policy is represented by

A.P / D ˛ � 1; B.P / D 0; C.P / D
1X

kD0

ckP k ; and ck D ˛ � 1 C
kC1X

k0D1

ˇk0 :

18.2.2 Steady-State Properties

Equations (18.1)–(18.3) are combined to define the system dynamics. We assume
that suppliers use “proper” policies; i.e., such that if the customer places orders
of a constant size u1, then a steady state (or equilibrium) arises from the system
dynamics where all the suppliers of the chain also place orders of the same size,
u1, and maintain steady inventory positions x1

i and in-stock inventories y1
i . We

also assume that the system is in this equilibrium for all t � 0.
These steady-state variables reflect the supplier’s inventory management phi-

losophy. For every u1, a set of inventories x1
i and y1

i should be uniquely
defined; i.e., the supplier should know exactly the amount of inventories it wants
to keep when the demand is u1. Then any sustained small change in the equilib-
rium demand, du1, should be reflected by a change in the equilibrium inventory
position, dx1

i .
Obviously, the equilibrium variables .u1; x1

i ; y1
i / must satisfy the system dy-

namics. Inserting these variables into (18.1)–(18.3), and after a few manipulations,
we find

dx1
i

du1 D 1 C Bi.1/li � Ci .1/

Ai .1/ C Bi .1/
: (18.7)

This quantity, called the “gain” in Daganzo (2001) and the “inventory gain” in
Ouyang and Daganzo (2006a), is the marginal change in the equilibrium inven-
tory position for a unit change in the equilibrium demand. Positive inventory gain
means that the supplier will increase its inventory level if it perceives an increase
in demand, and vice versa. This behavior is economically rational in most appli-
cation contexts. (See Daganzo (2003, 2004) for more details.) In Sect. 18.2.5.1,
it is shown that this rational behavior significantly influences the existence of the
bullwhip effect.
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18.2.3 A Robust Metric

The system dynamics can be equivalently expressed, following Ouyang and
Daganzo (2006a), as homogeneous equations in terms of deviations (errors) from an
equilibrium. Let Nxi .t/ WD xi .t/�x1

i ; Nyi .t/ WD yi .t/�y1
i , and Nui .t/ WD ui .t/�u1.

Note that Nxi .t/ D Nyi .t/ D Nui .t/ D 0 for all t D �1; : : : ; 0 since the system is
assumed to start from equilibrium. The system dynamics become:

Nui .t/ D Ai .P / Nxi .t/ C Bi .P / Nyi .t/ C Ci .P /Nui�1.t � 1/; i D 1; 2; : : : ; (18.8)

Nxi .t C 1/ D Nxi .t/ C Nui.t/ � Nui�1.t/; i D 0; 1; : : : ; (18.9)

Nyi .t C 1/ D Nyi .t/ C Nui .t � li/ � Nui�1.t/; i D 0; 1; : : : : (18.10)

Note the similarity and equivalence between (18.8)–(18.10) and (18.1)–(18.3),
except for the absence of the intercept term. Note from (18.8)–(18.10) that any re-
alization of customer demand fNu0.t/g1

tD0 defines a unique upstream order sequence
fNuI .t/g1

tD0.
A straightforward bullwhip effect metric is the ratio of the root mean square

errors (RMSE) of (i) the order sequence received by the most upstream supplier,
fNuI .t/g1

tD0, and (ii) the customer demand, fNu0.t/g1
tD0. This metric is directly analog

to the conventional variance amplification measures. It, however, depends on the
character of the input sequence.

Recall that it is desirable to investigate the bullwhip effect for customer de-
mand with all possible types of fluctuations. When the customer demand is not well
known, we propose using the worst-case RMSE amplification factor, WI , across all
possible customer demand sequences to certify (with the condition WI � 1) that the
RMSE is not amplified under any circumstances whatsoever; i.e., that the bullwhip
effect does not arise. This is what we mean by robust analysis. We formalize this
idea as follows:

Definition 18.1. Supplier I C 1 .I > 0/ in a supply chain described by (18.8)–
(18.10) is said to experience no bullwhip effect if

WI WD sup
8fNu0.t/g¤0

2

4
�P1

tD0 Nu2
I .t/

� 1
2

�P1
tD0 Nu2

0.t/
� 1

2

3

5 � 1: (18.11)

The quantity WI is also called the L2 gain in the control literature.3 Obviously,
if WI satisfies (18.11), the supply chain is robust with respect to the bullwhip effect.
This robustness idea has proven valuable in the design of complex machinery that
has to operate reliably in unpredictable environments. By focusing on the worst-
case scenario, engineers can separate the influence of the design (on which they
focus their attention) from that of the environment. In our case, we can separate the

3 This is unrelated to the “gain” or “inventory gain” defined earlier.
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influence of the policy from that of the customer demand. This approach will help
us design a robust supply chain, and thus address our second question. A robust
design, i.e., one satisfying (18.11), will avoid the bullwhip effect and its pernicious
economic consequences no matter what the customer does.

18.2.4 Frequency Domain Analysis

It is challenging to directly exhaust all arbitrary input-order sequences to find the
worst RMSE amplification, as required by (18.11), especially when the supply
chain is long and complex. Fortunately, we can simplify the task for LTI chains,
by working in the “frequency domain” by means of transforms. The general idea
is to decompose the customer orders into a set of sinusoidal waves (with specific
amplitude for each frequency). When each of these waves is fed into the linear time-
invariant supply chain, the output would also be sinusoidal with the same frequency.
Then by superposing the sinusoidal output components, the upstream supplier order
sequences can be obtained and analyzed. The goal is to find policies that do not in-
crease the amplitude of any wave because, as should be intuitive, the RMSE of the
output can exceed that of the input only if the amplitude of (at least) one wave is am-
plified by the policies – if the amplification property (18.11) is missing. The analysis
in the frequency domain is much easier than checking (18.11) in the time domain
because we only have to test the amplification factors over a range of frequencies.
The second advantage is that the complexity of analyzing a multiple-stage chain is
not significantly larger than that for a single supplier stage. We briefly show below
two approaches that have been used in the literature to do this: harmonic analysis
(Daganzo 2001, 2003, 2004) and transfer function analysis (Ouyang 2005; Ouyang
and Daganzo 2006a). The two approaches are essentially the same, except for the
specific transform used.

18.2.4.1 Harmonic Analysis

Daganzo (2001, 2003, 2004) first apply harmonic analysis to homogeneous supply
chains, exploiting the fact that the system dynamics is a set of linear and homoge-
neous difference equations. The references examine an important subset of our LTI
policies, present a simple test for properness and then examine the bullwhip effect
with von Neumann’s stability test.

The sequence fNu0.t/g1
tD0 is decomposed by a discrete Fourier transform (DFT)

into a set of pure harmonic components, A0.w/e�j wt (where j D p�1), each with
an angular frequency w 2 Œ0; 2�/ and a complex amplitudeA0.w/ 2 C; i.e., Nu0.t/ D
1

2�

R 2�

0
A0.w/ej wt dw. The formula for the amplitudes of the sequence fNu0.t/g is

A0.w/ D P1
tD�1 Nu0.t/e�j wt D P1

tD0 Nu0.t/e�j wt .
Because (18.8)–(18.10) are linear and time-invariant, the following two things

hold : (i) For any harmonic component, the output from each supplier stage of the
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linear chain is also harmonic with the same frequency but a different amplitude,
Ai .w/e�j wt ; i D 1; 2; : : : ; I ; (ii) the combined output, fNuI .t/g1

tD0, is the superpo-
sition of the harmonic outputs at the final stage, AI .w/e�j wt .

When the supply chain is homogeneous, all suppliers are alike. Every supplier
stage amplifies the amplitude of the frequency component by the same factor; i.e.,
there exists �.w/ 2 C such that Ai .w/

A0.w/
D Œ�.w/�i ; 8i . The system dynamics equa-

tions (18.8) – (18.10) are known to have solutions (called modes or waves) of the
form

Nxi .t/ D �.w/ � 1

e�j w � 1
Œ�.w/�i�1e�j wt ; Nyi .t/ D �.w/ej wl � 1

e�j w � 1
Œ�.w/�i�1e�j wt ;

Nui .t/ D Œ�.w/�i e�j wt ; 8w; i: (18.12)

Each w now represents a mode; if

j��j WD sup
w2Œ0;2�/

j�.w/j � 1; (18.13)

there is no bullwhip effect. This is the von Neumann’s stability test. As an example,
insert the modes, Nui .t/ D Œ�.w/�i e�j wt , into (18.6), and solve for �.w/; this yields:

�.w/ D
P1

kD1 ˇkej wk

1 � ˛ej w
: (18.14)

Thus, for policy (18.6), the bullwhip effect does not arise if:

j��j WD sup
w2Œ0;2�/

ˇ̌
ˇ̌
ˇ

P1
kD1 ˇke�j wk

1 � ˛e�j w

ˇ̌
ˇ̌
ˇ � 1: (18.15)

This condition can be easily checked for any given ˛ and fˇkg. Daganzo (2004)
and Ouyang and Daganzo (2006a) also show that for practical customer demand
sequences,

lim
I!1

2

4
�P1

tD0 Nu2
I .t/

� 1
2

�P1
tD0 Nu2

0.t/
� 1

2

3

5
1=I

D j��jI (18.16)

i.e., that j��j describes the average amplification across stages for sufficiently long
homogeneous chains.

18.2.4.2 Transfer Function Analysis

More recent work (Ouyang and Daganzo 2006a) applies conventional control theory
to the complete set of LTI policies (18.3) and inhomogeneous supply chains. It uses
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the z-transform instead of the Fourier transform.4 The z-transform of the order error
sequence Nui .t/ will be denoted as Ui .z/ WD ZfNui .t/g; 8i . In general, Ui .z/ 2 C
while z 2 C. Note that the z-transform of a given discrete sequence ff .t/g1�1 is de-
fined by Zff .t/g WD P1

�1 f .t/z�t . It is essentially the DFT after the substitution
z D ej w. Note that Ui .z/ and Ai .w/ are related by Ui .ej w/ D Ai .w/; 8i . We define
the “stage-i transfer function,” Ti�1;i.�/, as the counterpart to the amplification fac-
tor �i�1;i .�/5 to describe the way supplier i transforms its input into an output; i.e.,

Ti�1;i.e
j w/ WD Ui.ej w/

Ui�1.ej w/
D Ai .w/

Ai�1.w/
D �i�1;i .w/: (18.17)

Clearly, Ui .z/ D Ti�1;i.z/Ui�1.z/. Then, the “transfer function” from customer de-
mand input to supplier I order output, TI .�/, satisfies

�I .w/ WD TI .ej w/ WD AI .w/

A0.w/
D AI .w/

AI�1.w/
� � � Ai .w/

Ai�1.w/
� � � A1.w/

A0.w/

D
IY

iD1

Ti�1;i .ej w/; (18.18)

where

UI .z/ D TI .z/U0.z/: (18.19)

We can additionally define the “average transfer function”, OTI .�/ representing the
“average” amplification per stage, as:

OTI .ej w/ WD ŒTI .ej w/�
1
I ; 8w 2 Œ0; 2�/:

In the homogeneous case, OTI D T1 D �.
Ouyang and Daganzo (2006a) show that for our general LTI policy (18.3):

Ti�1;i .z/ D z�1Ci .z�1/ � .z � 1/�1ŒAi .z�1/ C Bi .z�1/�

1 � .z � 1/�1ŒAi .z�1/ C z�li Bi .z�1/�
; 8i: (18.20)

The policy of supplier i is proper (stable in time) if all the poles of Ti�1;i .z/ are
within the unit circle of the complex plane, fz W jzj < 1; z 2 Cg. It will avoid the
bullwhip effect if (see (18.11)):

sup
8w2Œ0;2�/

jTI .ej w/j D j��
I j � 1: (18.21)

4 This is largely a matter of taste. The same results are obtained with both approaches. See
Appendix A in Daganzo (2003) for more details.
5 Subscripts are added to capture inhomogeneity.
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Compared with the equivalent expression (18.11), formulae (18.15) and (18.21)
have the advantage of minimizing functions over a real interval, whereas (18.11)
involves a minimization over a set of infinite-dimensional realizations. Note again
that in homogeneous chains, WI D W I

1 D ��
I D .��/I . Thus,

OTI .ej w/ D �.w/ D T0;1.ej w/:

Therefore, if a policy avoids the bullwhip effect with the robust metric for one stage,
it avoids it for many. In other words, the robust metric avoids the problem illustrated
by Fig. 18.1.

18.2.5 Analytical Formulas and Tests

This subsection discusses some additional results and managerial implications.

18.2.5.1 The Role of Inventory Gain

It was shown in Daganzo (2001, 2003, 2004) using concepts from the field of
“conservation laws”, that the bullwhip effect arises in a homogeneous chain if the
inventory gain (common to all suppliers) is positive; i.e., if

dx1

du1 D 1 C B.1/l � C.1/

A.1/ C B.1/
> 0; (18.22)

where the subscript i has been omitted. The result is interesting because it shows
that rational supplier behavior must lead to the bullwhip effect in long chains. The
result has been extended for inhomogeneous chains as follows:

Theorem 18.1. (Ouyang and Daganzo 2006a) Supplier I C 1 in an LTI supply
chain described by (18.8)–(18.10) experiences the bullwhip effect if the average
inventory gain of all the suppliers is positive; i.e., if

IX

iD1

dx1
i

du1 D
IX

iD1

1 C Bi .1/li � Ci .1/

Ai .1/ C Bi .1/
> 0: (18.23)

18.2.5.2 Quantification of the Bullwhip Effect

For ergodic processes, the time average of a statistical measure equals the ensem-
ble average over the state space. If the customer demand is ergodic, the z-transform
Ui .z/ for the orders placed by the i th supplier, obtained from (18.18)–(18.20), fully
characterizes all the statistics of that order stream. For example, Ui .z/ yields a
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formula for the variance: since variance equals mean square error for an ergodic
sequence, by Parseval’s Theorem we have

Theorem 18.2. (Ouyang and Daganzo 2006a) If the customer demand is ergodic,
the mean square error (variance) of orders placed by supplier i , Vi , is

Vi WD Var .Nui / D 1

2�

Z �

��

Ui .e
j w/ � Ui .e

�j w/ dw; 8i: (18.24)

This formula is exact, but depends on the character of the input process, U0, as
can be seen from (18.18)–(18.20). This information, U0, is obtained by taking the
z-transform of the process fu0.t/g.

Example 18.4 (Order-up-to with moving average demand forecasting). Ouyang and
Daganzo (2006a) shows an example of the order-up-to policy, (18.4), where the
“order-up-to level” is adjusted based on a two-period moving-average of orders re-
ceived. In terms of errors, the policy is:

Nui .t/ D � Nxi .t/ C Nui�1.t � 1/ C Nui�1.t � 2/; 8i; t: (18.25)

Its polynomials are: A.P / D �1, B.P / D 0, and C.P / D 1 C P . If the customer
demand follows a standard i.i.d. Gaussian process, i.e., where U0.z/ D 1; 8jzj D 1,

then Ui .z/ D
�

.2z2�1/

z3

�i

, and

Vi D 1

2�

Z �

��

Ui .ej w/ � Ui.e�j w/ dw

D 1

2�

Z �

��

Œ5 � 4 cos.2w/�i dw; 8i:

This gives the exact variance of supplier order sequences at various stages.

18.2.5.3 Effect of Advance Demand Information

Theorem 18.1 established a relationship between the bullwhip effect and positive
inventory gain. To eliminate the former, we must restrict the latter. As explained in
Daganzo (2001), efficient suppliers like to operate with positive gain, and this could
be why the bullwhip effect is so prevalent. Thus, it is important to design policies
that allow for arbitrary inventory gains without introducing the bullwhip effect.

Advance demand information (ADI) is found to effectively change the gain-
bullwhip effect relationship. It has been first shown in Daganzo (2001) that order-up-
to policies with ADI can avoid the bullwhip effect for any desired inventory gain.6

6 Just-in-time chains can operate in this mode.
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Then, Ouyang and Daganzo (2006a) found similar encouraging results for other LTI
policies. Now, following Ouyang and Daganzo (2006a), we discuss the possibility
of developing robust ordering policies that will allow suppliers to operate with any
inventory gain while avoiding the bullwhip effect for any customer demand.

To provide ADI, suppliers inform their immediate upstream neighbors of the or-
ders they will place in some future periods and commit to these quantities with a
contract. Consider a generic supplier i . We assume that when it generates its com-
mitment with supplier i C1 for the order ui .t/ will be placed at time t (and delivered
at t C li ), it has also received commitments from supplier i � 1 up to time t C hi ,
where hi is a positive integer. Thus, when supplier i commits to order quantity ui .t/

it has access to the following information:

Ii .t/ WD f xi.t/; xi .t � 1/; : : : ; xi .�1/I yi .t/; yi .t � 1/; : : : ; yi .�1/I
ui�1.t C hi � 1/; : : : ; ui�1.t/; : : : ; ui�1.�1/g:

Suppose that these contracts are always fulfilled, and that the commitments received
by suppliers are integrated into their policies to generate commitments for orders
placed with their upstream neighbors, then the most general policy based on Ii .t/

now is:

ui .t/ D �i C Ai .P /xi .t/ C Bi .P /yi .t/ C Ci .P /ui�1.t C hi � 1/; 8i; t: (18.26)

Note this is the same as (18.3) except that committed future orders have been incor-
porated into the policy.

It is easy to see that the incorporation of ADI into a policy characterized by
polynomials fAi ; Bi ; Ci g does not change the relationship between xi and ui in the
steady state. Thus, the inventory gain of the ordering policy remains the same. It is
shown in Ouyang and Daganzo (2006a) that properness does not change either, and
that the transfer function (18.20) becomes

QTi�1;i.z; hi / D z�1Ci .z�1/ � z�hi .z � 1/�1ŒAi .z�1/ C Bi .z�1/�

1 � .z � 1/�1ŒAi .z�1/ C z�li Bi .z�1/�
: (18.27)

It is also shown that Theorem 18.1 becomes:

Theorem 18.3. Supplier I C 1 in an LTI supply chain with ADI policy (18.26)
experiences the bullwhip effect if

IX

iD1

1 C Bi .1/li � Ci .1/

Ai .1/ C Bi .1/
>

IX

iD1

hi : (18.28)

Note that the left-hand side of (18.28) is the same summation of inventory gains
as that in (18.23), while the right-hand side changes from zero to the summation
of ADI levels. Thus, when

PI
iD1 hi > 0, the supply chain may possibly be op-

erated with the same inventory gain as before while avoiding the bullwhip effect.
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And indeed, numerical examples suggest that introducing certain amount of ADI
into a policy (with (18.26)) avoids the bullwhip effect for many practical policies.
This opens the door for developing robust and economically appealing policies that
are guaranteed to avoid the bullwhip effect for any possible customer demand. More
details on the structure of such policies and practical implementation mechanisms
have been studied in Ouyang and Daganzo (2006b).

18.2.6 Numerical Examples

Still following Ouyang and Daganzo (2006a), we now apply the above analyti-
cal results to three types of policies: (i) “order-up-to,” (18.25); (ii) “generalized
kanban,” (18.5); and (iii) “order-based” (18.6). We assume a multiechelon homoge-
neous chain with lead time l D 2 at every stage. Since the chain is homogeneous,
we can invoke Theorem 18.1 and use W1 (for one-echelon) to test for the bullwhip
effect. The results are summarized in Table 18.1.

The table shows that for both the order-up-to policy and generalized kanban poli-
cies, inventory gains are positive. This immediately says without the need for further
analysis that the bullwhip effect exists for these two policies. Indeed, the amplifica-
tion versus frequency plots in Figs. 18.3(a) and 18.3(b) (i.e., the relation jT0;1.ej w/j
given by the transfer functions) have maxima W1 D 3:00 and 1:68, respectively,
confirming that the bullwhip effect arises. The last column in Table 18.1 gives one-
stage transfer function when h periods of ADI are available. It is found by plotting
the amplification factor (18.27) of the order-up-to policy that introducing ADI with
h D 2 eliminates the bullwhip effect; while for the generalized kanban policy, we
require h D 3.

For the order-based policy, the inventory gain is negative. Therefore, we cannot
judge from this inequality whether the bullwhip effect arises. The definitive answer
is found from the transfer function for one stage and the plot shown in Fig. 18.3(e).
Note that W1 D 1:00. Thus, the bullwhip effect does not arise with this policy for
any realization of demand and for chains with any number of stages.

Figures 18.3(a)–18.3(f), taken from Ouyang and Daganzo (2006a), are simula-
tions that illustrate these results. We use four customer demand processes:

� a family of three stationary AR(1) processes with i.i.d. Gaussian error terms ".t/

of mean 0 and variance 1:

u0.t C 1/ D �u0.t/ C .1 � �/".t/; 8t I

with � D 0; 0:4; 0:8; and
� a time-dependent process obtained by superposing our AR(1) process with � D

0:4 and a sinusoidal wave:

u0.t C 1/ D 0:4u0.t/ C 0:6".t/ C 7 sin.0:95�t/; 8t:
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Fig. 18.3 Numerical results: (a) amplification factor for order-up-to policy; (b) simulated RMSE
amplification at each stage for order-up-to policy; (c) amplification factor for kanban policy;
(d) simulated RMSE amplification at each stage for kanban policy; (e) amplification factor
for order-based policy; (f) simulated RMSE amplification at each stage for order-based policy.
(Source: Ouyang and Daganzo, 2006a)
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Of note:

1. In all cases (demand processes and policy), and as predicted by (18.24), the
RMSE amplification factor at stage i , ŒVi=Vi�1�

1
2 , and thus the average RMSE

amplification factor per stage, ŒVi =V0�
1
2i , both converge from below to W1 as

i ! 1. This happens because the frequency component corresponding to W1

becomes dominant upstream of the chain. This also justifies why in multiechelon
chains we should be concerned with the worst-case.

2. For every policy, the curves are far apart for the first several stages (i � 5).
But, as i increases, the curves converge. Thus, customer demand influences the
RMSE amplification factor, but mostly in the stages just upstream of the cus-
tomer. Farther upstream, where the bullwhip effect is most significant, the critical
contributing factor is the policy.

18.3 Stochastically Operated Chains

In reality, supply chain operations are often uncertain. For example, the transporta-
tion network may suffer from unexpected congestion and hence yield random lead
times. Price discounts may be offered from time to time, and as a result suppliers
may alternate between aggressive and conservative policies. Earlier research, e.g.,
(Lee et al. 1997a,b), finds that suppliers’ stochastic gaming behavior and price fluc-
tuations exaggerate the bullwhip effect for specific ordering policies and customer
demand processes.

This section addresses our third question; i.e., how would operational uncertain-
ties affect the bullwhip effect for general supplier policies and customer demand?
In order to do so, we need to cast the system dynamics in a way that will allow us
to treat the system parameters (i.e., lead time li and the coefficients of Ai ; Bi ; Ci )
as random variables. We assume that the stochasticity in these parameters can be
captured by a Markovian jump linear system (MJLS). For background on this
topic, see for example (Mariton 1990; Swaroop and Hedrick 1996; Seiler 2001).
More specifically, we assume (i) that the parameters fAi ; Bi ; Ci ; lig jump ran-
domly among a finite set of modes, M D f1; 2; : : : ; M g; and (ii) that the modes
evolve as a Markov chain f�.t/g. Figure 18.4 illustrates the behavior of such supply
chains. When the system is in mode �.t/, we can write the system parameters as
fAi;�.t/; Bi;�.t/; Ci;�.t/; li;�.t/g. Obviously, if there is only one mode (i.e., M D 1),
then the supply chain reduces to the case studied in Sect. 18.2.

Following Ouyang and Daganzo (2006c), we present below the robust analyti-
cal conditions to diagnose the bullwhip effect. The impact of stochastic operating
environment will be demonstrated using the MJLS framework.

We first analyze single-echelon chains in Sects. 18.3.1 and 18.3.2, and then gen-
eralize the results to multiechelon chains in Sect. 18.3.3.
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...

Fig. 18.4 Stochastic supply chain, represented as a Markovian jump linear system

18.3.1 Preliminaries: Choice of Metric

We assume for now that there is a single retailer (I D 1); thus the subscript i is
momentarily dropped. Note that any realization of customer demand fNu0.t/g1

tD0

yields a random retailer order sequence fNu1.t/g1
tD0 that is dependent on the Markov

chain f�.t/g1
tD0. Thus, a robust metric for the bullwhip effect could be the maximum

ratio of the RMSE of fNu1.t/g1
tD0 and fNu0.t/g1

tD0, for all possible realizations of
customer demand and the Markov chain; i.e.,

sup
8fNu0.t/g¤0;8f�.t/g

�P1
tD0 Nu2

1.t/P1
tD0 Nu2

0.t/

� 1
2

; (18.29)

where fNu0.t/g is square summable. This metric bounds the RMSE measure (L2) of
order sequences. Another possible metric would be the worst-case ratio between the
maximum absolute order magnitudes; i.e.,

sup
8fNu0.t/g¤0;8f�.t/g

max1
tD0 jNu1.t/j

max1
tD0 jNu0.t/j : (18.30)

These two metrics have a nice scalability property similar to that of WI . Specifi-
cally, if the bullwhip effect is avoided for one echelon of a homogeneous multieche-
lon chain, then it is avoided for all. These metrics are very robust, since they assume
nothing about the random process underlying the chain operations, but if such pro-
cess is known (and Markovian) it may be reasonable to evaluate the supremum of
the expected RMSE amplification factor across the possible demand sequences. We
propose the following:
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� � W WD sup
8fNu0.t/g¤0

"
E
�P1

tD0 Nu2
1.t/

�
P1

tD0 Nu2
0.t/

# 1
2

; (18.31)

where fNu0.t/g is square summable. The expectation in the numerator of (18.31) (and
all expectations without subscripts in this section) are taken across realizations of
the Markov chain f�.t/g.

Clearly, W allows us to certify (with the condition W � 1) that the RMSE is
not amplified under any customer demand whatsoever, subject to the scenarios rep-
resented in the Markovian operating modes. The choice among (18.29)–(18.31) is
largely a practical matter. An advantage of (18.29) and (18.30) is that the supreme
operation is commutative. Therefore, we can write (18.30), for example, as

sup
8f�.t/g

(
sup

8fNu0.t/g¤0

�
max1

tD0 jNu1.t/j
max1

tD0 jNu0.t/j
�)

: (18.32)

Therefore, if for a specific policy one can prove that the inner supremum is less than
one, for all realizations of f�.t/g one is guaranteed that the bullwhip effect will not
arise. Note that the analysis of the inner supremum is purely deterministic and that
this method of proof can be applied even if f�.t/g is non-Markovian, and the policy
is nonlinear.

The advantage of (18.31) is that the expectation of RMSE is more closely related
to economic costs. Furthermore, some systematic results for linear time-invariant
chains with a known Markovian structure have already been derived for linear time-
invariant chains with a Markovian structure (Ouyang and Daganzo 2006c). The rest
of this section describes these results, following Ouyang and Daganzo (2006c). But
the job is far from done. Further research on metrics (18.29) and (18.30) may help
expand the scope of problems that can be analyzed.

18.3.2 System Dynamics and Major Results

With our assumed operational uncertainty, mapping the problem into the frequency
domain is no longer advantageous. Thus, we work in the time domain.

The dynamics of each mode of the chain, for a fixed value of �.t/, have a form
similar to (18.8)–(18.10), characterized by fA�.t/; B�.t/; C�.t/; l�.t/g. Ouyang and
Daganzo (2006c) show that (18.8)–(18.10) can be expressed in a form that directly
relates order sequences fNu1.t/g and fNu0.t/g, by eliminating the inventory variables.
The result is:

Nu1.t C 1/ D ˆ�.t/.P /Nu1.t/ C ‰�.t/.P /Nu0.t/; (18.33)
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where ˆ�.t/ and ‰�.t/ are polynomials related to A�.t/; B�.t/; C�.t/; l�.t/ by

ˆ�.t/.P / WD Œ1 C A�.t/.P / C P l�.t/B�.t/.P /� and ‰�.t/.P /

WD Œ.1 � P /C�.t/.P / � B�.t/.P / � A�.t/.P /�:

We assume that both ˆ�.t/.P / and ‰�.t/.P / have finite degrees across all modes;
i.e., that

K WD max
˚
deg ˆ�.t/.�/; deg ‰�.t/.�/ W 8�.t/

� � 1:

The coefficients of P k in ˆ�.t/ and ‰�.t/, denoted by ˛k;�.t/ and ˇk;�.t/, respec-
tively, k D 0; 1; : : : ; K , are obviously functions of the system parameters; i.e., of
l�.t/ and the coefficients of A�.t/; B�.t/, and C�.t/.

We now eliminate the dependence of (18.33) on history prior to t , by augmenting
the state into a .K C 1/ � 1 column vector:

ui .t/ WD ŒNui .t/; Nui .t � 1/; � � � ; Nui .t � K/�T ; i D 0; 1: (18.34)

The stochastic system dynamics then become:

u1.t C 1/ D R�.t/ � u1.t/ C S�.t/ � u0.t/; 8t > 0; and

ui .t/ D 0; 8t � 0; i D 0; 1: (18.35)

Here, R�.t/ and S�.t/ are .K C 1/ � .K C 1/ matrices of known constants that fully
represent the dynamics of mode �.t/:

R�.t/ WD

2
666664

˛0;�.t/ ˛1;�.t/ � � � ˛K�1;�.t/ ˛K;�.t/

1 0 � � � 0 0

0 1 � � � 0 0
:::

:::
: : :

:::
:::

0 0 � � � 1 0

3
777775

;

S�.t/ WD

2

6664

ˇ0;�.t/ ˇ1;�.t/ � � � ˇK;�.t/

0 0 � � � 0
:::

:::
:::

:::

0 0 � � � 0

3

7775 ; (18.36)

When �.t/ D m 2 M, the system is in mode m, and we shall use Rm WD R�.t/

and Sm WD S�.t/ to denote the matrices of that specific mode. Note that the stochas-
ticity of our supply chain can be represented by a matrix pair fR�.t/; S�.t/g that
changes randomly over time, as per the rules of our Markov chain. The transi-
tion probability matrix of the chain is defined as P D Œpmn�M�M ; i.e., pmn D
Prf�.t C 1/ D nj�.t/ D mg; 8m; n 2 M.
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We define properness of a system governed by (18.35) as follows:

Definition 18.2. (Properness) For the system described by (18.35) with u0.t/ � 0;

8t , the equilibrium state at u1.t/ D 0 is proper if for every possible value of the
initial state fu1.0/; �.0/g,

lim
t!1 E fku1.t/k2 ju1.0/; �.0/g D 0;

where k � k denotes the Euclidean norm and the conditional expectation is taken
across possible realizations of the Markov chain.

For deterministic chains, Definition 18.2 matches our definition of properness in
Sect. 18.2. The following result, proven in Ouyang and Daganzo (2006c), can be
used to certify properness and estimate the bullwhip effect:

Theorem 18.4. A supply chain is proper and has bounded amplification W < � for
some positive value � if and only if: (i) system (18.35) is weakly controllable; i.e., for
some �.0/ 2 M, there exists a feasible transition sequence �.0/; �.1/; � � � ; �.� �1/

with � < 1, such that

rankŒS�.��1/; R�.��1/S�.��2/; � � � ; R�.��1/ � � � R�.1/S�.0/� D K C 1I

and (ii) there exist .K C 1/ � .K C 1/ positive definite matrices, Gn > 0; n 2 M
and H > 0, that satisfy either of the following linear matrix inequality sets:

(a)

�
Gn 0

0 �2H

�
�

MX

mD1

pnm

�
Rm Sm

E 0

�T �
Gm 0

0 H

� �
Rm Sm

E 0

�
> 0; 8n 2 M;

(18.37)
(b)

�
Gn 0

0 �2H

�
�
�

Rn Sn

E 0

�T � NGn 0

0 H

� �
Rn Sn

E 0

�
> 0;

NGn WD
MX

mD1

pnmGm; 8n 2 M; (18.38)

where E is the identity matrix.

A restricted but very useful version of the theorem also applies without the con-
trollability requirement. In this case, either (18.37) or (18.38) suffice to bound the
amplification from above, but they are not necessary conditions. Weak controllabil-
ity plays a role in the necessary part of the theorem because if the system is not
weakly controllable (i.e., u1 does not strongly depend on u0) one can construct ex-
amples where u1 cannot be made to vary enough in relation to u0 (i.e., so that the
amplification is bounded by � ) even if (18.37)–(18.38) are violated.
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To implement this result, we need to verify weak controllability and solve a
feasibility problem with matrix variables subject to linear matrix inequalities; i.e.,
(18.37) or (18.38). The search for feasible matrices Gn .8n/ and H can be con-
ducted by convex optimization. For example, for any � (e.g., � D 1) we can solve
the following optimization problem:

min 1

s.t. .18.37/ or .18.38/

Tr.H/ D 1 (scaling)

Gn > 0; 8n 2 M
H > 0: (18.39)

If this problem is feasible, then W < � . For any given � , problem (18.39) has
.MC1/

2
.KC1/.KC2/ scalar variables and is solvable in polynomial time with ellip-

soid and interior-point algorithms. To determine the tightest bound, we can conduct
a binary search for the minimum feasible � . This approach is applied to solve the
following problems in Ouyang and Daganzo (2006c).

Example 18.5 (Varying policies).
Suppose the business environment exhibits alternating seasons of recession

(mode m D 1) and growth (mode m D 2), then according to an exogenous Markov
chain with transition probability matrix we have

P D
�

0:9 0:1

0:2 0:8

�
:

The long-run probabilities for the two modes are p1
1 D 2=3; p1

2 D 1=3. Suppose,
in recession, the retailer uses a conservative order-based policy (18.6), i.e.,

Nu1.t C 1/ D 0:5Nu1.t/ C 0:3Nu0.t/ C 0:2Nu0.t � 1/:

We know from Sect. 18.2.6 that this policy does not incur the bullwhip effect in LTI
chains; i.e., W D 1 for this policy. During economic growth, the retailer uses an
order-up-to policy (18.25) that yields:

Nu1.t C 1/ D 2Nu0.t/ � Nu0.t � 2/:

Section 18.2.6 has shown that this policy incurs the bullwhip effect in LTI chains
with W D 3. We now apply Theorem 18.4 to the full MJLS.

We define u1.t/ D Œu1.t/; u1.t � 1/; u1.t � 2/�T and u0.t/ D 	
u0.t/; u0.t � 1/;

u0.t � 2/

T

. Then
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R1 D
2

4
0:5 0 0

1 0 0

0 1 0

3

5 ; S1 D
2

4
0:3 0:2 0

0 0 0

0 0 0

3

5 ; R2 D
2

4
0 0 0

1 0 0

0 1 0

3

5 ; S2 WD
2

4
2 0 �1

0 0 0

0 0 0

3

5:

It is trivial to verify that this system is weakly controllable. Given the data, we
cannot find matrix variables to satisfy the conditions in Theorem 18.4 with � D 1;
the bullwhip effect will exist. A search over the solutions of (18.39) with different
� quickly reveals that the worst-case bound for RMSE amplification is � D 2:7054.
Interestingly, this exceeds the long-term average of the bounds of the deterministic
modes, .1 � p1

1 C 32 � p1
2 /1=2 D 1:91.

Example 18.6 (Stochastic delivery delay).
We consider a simple case where transportation congestion randomly causes the

lead time to vary from l D 2 (on-time) to l D 3 (delayed). The delay influences
physical flow of items and hence the performance of policies based on in-stock
inventory; e.g., the example of the generalized kanban policy:

Nu1.t/ D � Nx.t/=8 � Ny.t/=8 C Nu0.t � 1/=2 C Nu0.t � 2/=2; 8t:

There are four possible cases that would affect the in-stock inventory, depending
on whether the orders scheduled to arrive in the previous and the current periods
arrive on time or not. In each of these cases, the in-stock inventory is governed by a
different dynamic equation:

Case 1. Previous and current arrivals both on-time. The in-stock inventory changes
according to (18.2) with l D 2:

y1.t C 1/ D y1.t/ C u1.t � 2/ � u0.t/I

Case 2. Previous arrival on-time and current arrival delayed. No shipment arrives
from upstream of the chain:

y1.t C 1/ D y1.t/ � u0.t/I

Case 3. Previous arrival delayed and current arrival on-time. Two shipments arrive
at the same time:

y1.t C 1/ D y1.t/ C u1.t � 2/ C u1.t � 3/ � u0.t/I

Case 4. Previous and current arrivals both delayed. The in-stock inventory changes
according to (18.2) with l D 3:

y1.t C 1/ D y1.t/ C u1.t � 3/ � u0.t/:
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Suppose each shipment delay occurs independently with probability p D 0:1. Then,
Cases 1–4 vary over time as a Markov chain with the following transition probability
matrix:

P D

2
664

0:9 0:1 0 0

0 0 0:9 0:1

0:9 0:1 0 0

0 0 0:9 0:1

3
775 :

The long-term probability for the system to be in these fours modes are
0:81; 0:09; 0:09; and 0:01, respectively.

One can think of these cases as the modes of an MJLS. Then, its R and S matri-
ces, defined by (18.36), are:

R1 WD

2
664

7=8 0 �1=8 0

1 0 0 0

0 1 0 0

0 0 1 0

3
775; R2 WD

2
664

7=8 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

3
775; R3 WD

2
664

7=8 0 �1=8 �1=8

1 0 0 0

0 1 0 0

0 0 1 0

3
775;

R4 WD

2
664

7=8 0 0 �1=8

1 0 0 0

0 1 0 0

0 0 1 0

3
775 ; S1 D S2 D S3 D S4 WD

2
664

3=4 0 �1=2 0

0 0 0 0

0 0 0 0

0 0 0 0

3
775 :

We know that in LTI chains with modes 1, W D 1:6763; see Sect. 18.2.6. In LTI
chains with modes 2–4, W D 2:0000; 2:2:4395; 1:8716, respectively.

It is trivial to verify that the MJLS system is again stochastically stable and
weakly controllable. Given the data, we cannot find matrix variables to satisfy the
conditions in Theorem 18.4 with � D 1; the bullwhip effect will exist. A search
quickly reveals that the bound for RMSE amplification is � D 1:6970, which in this
case is smaller than the long-term average of the bounds of the deterministic modes,
.1:67632 � 0:81 C 2:00002 � 0:09 C 2:43952 � 0:09 C 1:87162 � 0:01/1=2 D 1:7909.
In fact, when p varies between 0 and 1, the MJLS bound � never exceeds the long-
term average; see Fig. 18.5.

The above numerical examples show that the magnitude of the bullwhip effect in
a stochastic chain is not trivially related to its magnitude in any of the modes, nor to
its simple long-term average. Furthermore, operational uncertainties often degrade
system performance. Theorem 18.4 can be used to quantify all these effects.

18.3.3 Multiechelon Stochastic Chains

The framework of Sect. 18.3.2 can be extended to multiechelon chains with I C 1

suppliers and a customer. We define the bullwhip effect metric for the most upstream
order sequence fNuI .t/g as
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Fig. 18.5 RMSE bounds for supply chain with varying lead time

WI WD sup
8fNu0.t/g¤0

"
E
�P1

tD0 Nu2
I .t/

�
�P1

tD0 Nu2
0.t/

�
#1

2

:

We also define based on (18.34) the state vector of the entire chain:

UI .t/ WD 	
uI .t/T; uI�1.t/T; : : : ; ui .t/

T; : : : ; u1.t/T

T

and the demand vector:

U0.t/ WD 	
u0.t/T; 0T; : : : ; 0T


T
:

The system dynamics at every stage should be similar to (18.35); i.e.,

ui .t C 1/ D Ri;�.t/ � u1.t/ C Si;�.t/ � u0.t/; 8i D 1; 2; : : : ; I; (18.40)

where the state space of Markov chain f�.t/g now has multiple dimensions
that capture the stochasticities at all supplier stages; i.e., as in matrix pairs
f.RI;�.t/; SI;�.t//; :::; .R1;�.t/; Si;�.t//g. Then it is trivial to show that the system
dynamics of the entire chain, with uncertainty, can be represented by

UI .t C 1/ D R�.t/ � UI .t/ C S�.t/ � U0.t/; (18.41)
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where

R�.t/ WD

2

666664

RI;�.t/ SI;�.t/

RI�1;�.t/ SI�1;�.t/

: : :
: : :

R2;�.t/ S2;�.t/

R1;�.t/

3

777775
;

S�.t/ WD

2
666664

0 0 � � � 0
0 0 � � � 0
:::

:::
:::

0 0 � � � 0
S1;�.t/ 0 � � � 0

3
777775

:

This is the type of history-less system to which Theorem 18.4 applies. Therefore,
all the results for single-echelon chains in previous sections continue to hold, if only
R.�/; S.�/, and H.�/ are replaced by R.�/;S.�/, and a diagonal block matrix

H.�/ WD

2

6664

H.�/
0

: : :

0

3

7775 :

18.4 Conclusions

In this chapter, we have demonstrated the importance of robust analysis in multiech-
elon chains where customer demand is uncertain. We have shown how to determine
if policies used in a multistage chain prevent the bullwhip effect under all circum-
stances. We have also shown policies that will avoid the bullwhip effect independent
of the customer demand.

We first presented analytical tests for deterministically operated chains. These
chains were modeled and analyzed in the frequency domain, and analytical results
were obtained for scenarios with or without the knowledge of customer demand.
It was shown that different frequency-domain approaches in the literature are equiv-
alent. The chapter also described the effect of ADI on the bullwhip effect. Finally,
we allowed additional randomness to arise from unpredictably varying factors in the
operating environment, such as supplier behavior and transportation lead times. Lin-
ear matrix inequality formulae enabled us to predict the bullwhip effect and bound
its magnitude. Several numerical examples are shown.

The work presented in this chapter on robust analysis can and should be extended
in several directions. First, the results in the chapter pertained to decentralized serial
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chains producing a single good, but general multicommodity networks with some
level of coordination and information sharing among suppliers can be treated with
similar approaches. Interesting effects can arise when the supplier-nodes can pro-
cure the same parts from different nodes. Second, randomness in the operating
environment was assumed to be Markovian, stationary, and exogenous, but it should
be possible to relax some of these assumptions. Finally, and very importantly for
complex networks, attention should be given to the development and further study
of robust market mechanisms to internalize the costs of order sequences; e.g., by
buying and selling “bits” of order variability and ADI as mentioned at the end of
Sect. 18.2.5.3. To ensure robustness, the metrics discussed in Sect. 18.3.1 should
probably be used to measure these bits. Some exploratory research has recently
been underway along these directions (Ouyang 2007; Ouyang and Li 2010).

Some recent research, however, also shows some evidence to suggest that the
bullwhip effect is not as empirically prevalent as thought (Cachon 2007), or that its
existence does not necessarily lead to a higher cost under certain conditions (Ridder
et al. 1998). Obviously, further study is required to identify and systematically un-
derstand the mechanisms that are allowing some industries to avoid the disbenefits
of the bullwhip effect.
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Chapter 19
Simulation in Production Planning:
An Overview with Emphasis on Recent
Developments in Cycle Time Estimation

Bruce E. Ankenman, Jennifer M. Bekki, John Fowler, Gerald T. Mackulak,
Barry L. Nelson, and Feng Yang

19.1 Introduction

Based on the time horizon under consideration, production planning can be
classified into strategic, tactical, and operational planning. Virtually, all manufactur-
ing managers want on-time delivery, minimal work in process, short customer lead
times (cycle times), and maximum utilization of resources. The goal of production
planning is to strike a profitable balance among these conflicting objectives.

The challenges and benefits of using discrete-event simulation (DES) to model
modern manufacturing systems were discussed in the earlier chapter by Fischbein
et al. As a tool for production planning in these types of manufacturing systems,
DES has been used in three primary ways: First, and most naively, it is used as a pri-
mary planning tool by simulating various possible production plans and picking the
one that works best. In the second approach, DES is used in production planning to
determine whether a production plan developed by a spreadsheet or a mathematical
programming model is actually executable or is likely to provide acceptable perfor-
mance, particularly in terms of cycle times. The third approach iterates between a
mathematical programming model and the DES model until the variables describing
the system (i.e., cycle time) estimates converge. The limitations of these approaches
will be discussed in detail in the next section on traditional roles for simulation in
production planning.

Rather than trying to cover the entire topic of simulation in production planning,
the remainder of the chapter considers the single issue of using DES for cycle time
planning. More specifically, we focus on the efficient generation of cycle time as
a function of throughput in single-product environments (we briefly discuss exten-
sions for multiple product environments). The chapter starts by briefly discussing
why cycle time is important to manufacturers today and why it is important to be
able to accurately estimate cycle times. Next, we describe the tools and techniques
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that can be used to estimate cycle times, specifically historical averages, queueing
models, and DES models, with the focus primarily on the advantages that simulation
can provide.

The usefulness of cycle time estimates can be greatly enhanced through the de-
velopment of cycle time–throughput (CT–TH) curves that describe the cycle time
of the factory as a function of the factory throughput. The latter part of the chapter
presents state-of-the-art techniques for efficiently and accurately generating these
curves for a single product and a static product mix (PM) and then briefly de-
scribes ongoing research for creating cycle time surfaces for multiple products with
a changing PM.

19.2 Importance of Cycle Time Estimates

In today’s business environment, cycle time is a critical measure of performance,
and accurate cycle time estimation is a key component of successful production
planning. Cycle time is important regardless of whether a company is in a make to
order or make to stock production environment. The importance is rather obvious
in the make to order environment because the customer must wait for the product
to be manufactured and will change to another supplier if the quoted lead time is
too long. In a make to stock environment, cycle time is important because long
cycle times lead to an increased risk of product quality due to the fact that it will
generally take long to detect manufacturing problems. Additionally, in the context
of the entire supply chain, the mean and variability of product cycle times are of
great importance to the production facility, as they impact the amount of safety
stock that must be held. It is critical in all production environments to be able to not
only shorten average cycle times but also accurately estimate cycle times and reduce
cycle time variability.

Accurate cycle time estimation results in a more stable production environment
(Chung and Lai 2006), and reducing cycle time variability makes planning easier
and reduces the need for safety stocks in the supply chain. Moreover, shorter and
less variable cycle times result in the production of a higher quality product, man-
ufactured with improved responsiveness to customer needs and greater flexibility
(Hopp and Spearman 2000). For service-driven manufacturing industries with intri-
cate supply chains, accurate estimation of cycle time and timely delivery of product
to both end customers and customers within the supply chain is as crucial as cost
and product quality. A specific example of the importance of cycle time reduction to
a complex manufacturing industry is given in the 2006 update of the International
Technology Roadmap for Semiconductors (ITRS 2006). It states that the improve-
ment of cycle time targets must be met in order to prevent slowing of the industry’s
growth. Cycle time reduction is listed in the roadmap as a difficult challenge for
both the near term and the long term, and further evidence of the importance of
cycle time reduction specifically to the semiconductor manufacturing industry is
given in Nemoto et al. (2000), who demonstrate that significant financial benefits
come from cycle time reduction in the ramp-up phases of manufacturing.
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Within the published literature focused on cycle time and production planning, a
wide variety of topics exist. Many papers present methods for reducing cycle times
or cycle time variability of manufacturing systems based on lot release. For exam-
ple, Ehteshami et al. (1992), e.g., illustrate the impact of hot lots on the cycle time
distribution and Sivakumar and Chong (2001) perform a simulation-based study
examining how selected input variables affect the 0.98 quantile of the cycle time
distribution in a semiconductor backend manufacturing facility. They show that lot
release to the first operation has the greatest impact on the cycle time distribution
and found that reducing the variation in this factor yields a less variable cycle time
distribution. Ko et al. (2004) followed up this work and proved that for M/G/1 and
M/M/s systems, the cycle time is the lowest when the service rates do not vary.

Another area of the literature focuses specifically on manufacturing resources
and their impact on cycle time. Recent examples of this are shown in Delp
et al. (2005, 2006). In these papers, the availability adjusted x-factor and complete
x-factor, both normalized system cycle time measures, are used to identify capacity-
constraining machines in an effort to reduce mean cycle time. Schultz (2004), on
the other hand, builds models for how spare parts inventory affects machine up-time
and cycle time, while Sze et al. (2001) develop integer programming models to
minimize the cycle time of printed circuit board assembly by determining the best
assignment of components to machines.

In addition to papers that focus specifically on methods for reducing cycle time,
a number of papers develop methodologies to more accurately predict cycle times.
Liao and Wang (2004), e.g., present a neural network approach specifically for esti-
mating cycle times for 300-mm semiconductor manufacturing systems with priority
lots and material handling operations. Agrawal et al. (2000) highlight the downside
of poor cycle time estimation, pointing out that underestimation results in over-
worked resources and overestimation in excessively long lead times and excess
Work in Process (WIP) costs. To address the problem, they introduce a procedure
based on accurate estimation of product cycle times using a backward scheduling
approach, with an objective of minimizing cycle time. Cochran and Chen (2002),
on the other hand, use a genetic algorithm to develop a daily production plan that si-
multaneously optimizes on-time delivery, bottleneck utilization, and effective Work
in Process (WIP) for complex manufacturing facilities.

Recent research has also included the development of tools that incorporate ac-
curate cycle time estimation in the job release portion of production planning. An
example of this can be found in Asmundsson et al. (2006), who present a mathemat-
ical programming model for production planning based on functions, estimated via
simulation, that estimate the expected output of a given resource over time. Their
approach is able to capture the impact of slight increases in congestion on cycle time
and results in a predicted plan, which closely matches the realized plan of the man-
ufacturing system. Approaches combining DES with analytical approaches, such
as those suggested by Asmundsson et al. (2006), have proven particularly effective
for production-planning problems based on the accurate estimation of cycle time
and cycle time parameters. The chapter by Missbauer and Uzsoy on optimization
models in production systems provides a detailed review of related literature.
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The wide body of published work on the importance of cycle time in production
planning clearly illustrates the significance of the topic. Attention by researchers
has been paid not only to directly reducing cycle times but also to accurately esti-
mating cycle times for input into production planning systems. The most common
approaches for estimating cycle times include the use of historical averages, queue-
ing models, and simulation models. Each of these approaches has advantages and
disadvantages in terms of the speed with which the cycle time estimates are obtained
and hence the fidelity of the results.

When using historical averages, companies typically quote a customer delivery
date as the historical average plus a safety margin of some kind. The safety margin
is intended to take into account variability in the cycle time. Estimates based on
historical averages are very quick to obtain, but are often inaccurate. For example,
they do not consider increases in cycle time estimates that must be made based on
increases in system utilization. Moreover, as product life cycle length decreases and
product variability increases, historical averages are less useful, as they will not be
accurate enough to predict the cycle time for the changes in PM that will result from
the introduction of a new product (Herrmann and Chincholkar 2001).

For simple systems, queueing models provide a significant step up in sophis-
tication from historical averages. They allow the incorporation of distributional
considerations to account for the random nature of manufacturing and also take into
account the utilization level of the system. For steady-state behavior, queueing mod-
els of simple systems allow analytical cycle time results to be obtained very quickly.
Furthermore, since these results are generally point estimates, the comparisons be-
tween systems are very straightforward. Largely because of these advantages, a
wide variety of literature exists on the application of queueing theory to manu-
facturing systems. Three examples include Papadopoulos and Heavey (1996) and
Shantikumar et al. (2007), who give reviews of the application of queueing models
to the manufacturing industry, and Connors et al. (1996) give a queueing network,
designed to provide fast results for the analysis of semiconductor manufacturing
facilities. By their nature, queueing models generate approximations of long-run
(steady-state) cycle times that can be updated as plant conditions change. In the
chapter of this book by Fischbein et al., the authors indicate that “there is never
a time frame (or period) where a leading edge factory is ever in a ‘steady state’.”
However, these approximations can still be useful in factory decision making.

If it is possible to develop a queueing model that is a reasonable representation of
the original system, then it is generally a superior approach to simulation. However,
there are many cases in which the system is too complex for accurate cycle time es-
timates using a queueing model. Simulation models allow the modeling of features
such as complex routings, transient behavior, and dispatching policies, which are
difficult (at best) to adequately capture in queueing analysis, making them the most
commonly used tool for obtaining estimates of cycle time and other performance
measures in complicated industries such as the semiconductor industry (Connors
et al. 1996).

Simulation models have the ability to capture any desired level of detail about
a production system, potentially yielding very accurate estimates of cycle time.
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However, with increasing detail comes increased time for model development,
maintenance, and execution. Fischbein et al. point out in their chapter of this hand-
book that the level of detail at which to build and validate a simulation model of a
manufacturing system is a critical and often difficult decision. Too little detail re-
sults in a model that cannot answer the question it was built to answer; too much
detail often results in a model that requires an unrealistic amount of data from the
factory to provide meaningful results. Models with too much detail may take hours
to run, limiting the types of “what-if” questions that can be answered in a reason-
able time period. Additionally, highly detailed models require that a great deal of
effort is spent for data collection, analysis, and maintenance. Fischbein et al. give
suggestions for the level of detail that may be appropriate for modeling manufac-
turing systems (and estimating cycle times from those models), depending on the
purpose and scope of the model.

Even with the difficulties of simulation modeling, it is still the most appropriate
modeling choice for estimating cycle times in many complex manufacturing situa-
tions. However, given the potential difficulties of determining the appropriate level
of model detail, long-run times, statistical significance of results, etc., attention must
be paid to using simulation intelligently and efficiently.

19.3 Traditional Role of Simulation in Production Planning

Different methodologies and tools are available to support the planning of pro-
duction, and these approaches can be broadly classified into two groups: analytic
methodologies and simulation-based methodologies. Modeling techniques such as
queueing networks, Markov chains, and mathematical programming are included
in the first group. It is widely acknowledged that analytical techniques typically
require high levels of abstraction and may not be able to represent some real-world
situations. DES techniques address these issues and, as a result, provide a promising
alternative for production planning. The major advantage of simulation is that it can
provide accurate and highly detailed information on system performance. However,
with this added detail and accuracy comes the disadvantage that detailed model or
models must be constructed and maintained, making the process of performing a
simulation study potentially time consuming. Yücesan and Fowler (2000) list the
steps involved in simulating a manufacturing system as follows:

1. Model Design: (a) Identify the issues to be addressed; (b) plan the project; and
(c) develop a conceptual model.

2. Model Development: (a) Choose a modeling approach; (b) build and test the
model; and (c) verify and validate the model.

3. Model Deployment: (a) Experiment with the model; (b) analyze the results; and
(c) implement the results for decision making.

Using these steps, the best decision/solution is selected through comparison of
a moderate number of simulation scenarios defined from several combinations of
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input variables. This process may be very time consuming, as models of complex
manufacturing systems may take several hours to complete a single run (Fowler and
Rose 2004), limiting our ability to uncover the best decisions in critical practical
settings. This limitation arises because a simulation “is not inherently optimizing;
rather it is descriptive of the performance of a given configuration of the system”
(Conway et al. 1959). To make simulation an effective tool for production planning,
hybrid approaches that integrate analytical methods and computer simulation have
been proposed in an effort to achieve the advantages of both while avoiding their
disadvantages. We distinguish three major themes in the literature: simulation op-
timization, metamodeling, and the integration of mathematical programming and
simulation. We review the second of these themes below. Both simulation optimiza-
tion and the integration of mathematical programming and simulation are covered
in the chapters of this handbook by Missbauer and Uzsoy and Fischbein et al.,
respectively.

19.4 Simulation and Metamodeling

A metamodel is a mathematical approximation of the input–output relationship that
is implied by the simulation model, and it can be represented by y D g.x; “/. Here,
x and y are vector-valued input and output, respectively, “ is the vector of un-
known parameters, which will be estimated based on simulation data, and g could
be, for instance, the expected-value surface. When the metamodeling is successful,
the resulting fitted metamodel provides a functional relationship between decision
variables (input) and performance of interest (output) while possessing the high fi-
delity of DES.

Four general goals of metamodeling are identified by Kleijnen and Sargent (2000)
for simulation and metamodeling: (a) Understanding the problem entity; (b) pre-
dicting values of the output or response variable; (c) performing optimization; and
(d) aiding verification and validation. Here, we primarily address goals (b) and (c).
Once a metamodel is in hand, optimization can be carried out using deterministic
optimization procedures (Fu et al. 2005). However, as pointed out by Nelson (2004),
metamodels provide a stronger support for planning than simulation optimization
does in a broad range of decision-making contexts. In many situations, an objective
function representing the optimization goal is very difficult to formulate, which
hinders the use of optimization methods, whereas a metamodel provides a compre-
hensive response surface over the feasible region of decision variables and allows
for tradeoff analysis and evaluations of system performance.

The major issues in metamodeling include: (a) the choice of a functional form for
the metamodel; (b) the design of experiments (DOEs) to collect data via simulation;
and (c) the assessment of the adequacy of the fitted metamodel. See Barton (1998)
and Kleijnen et al. (2005) for details.

The traditional techniques for constructing a metamodel have been based on
parametric polynomial response surface (PRS) approximations. Kleijnen (1993)
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applied a polynomial metamodel on a case study concerning a decision sup-
port system for production planning in metal tube manufacturing. In Shang and
Tadikamalla (1993), PRS models are used to optimize the yield with respect to
various input factors including lot size, input buffer capacity, etc. The application of
metamodels to flexible manufacturing system (FMS) design has been demonstrated
by Kleijnen (1988), and Lim and Cochran (1990) used metamodels in the context
of shop floor control.

Metamodeling approaches include polynomial regression, splines, radial basis
functions, neural networks, spatial correlation models, and frequency–domain ap-
proximations (Barton 1998). Here, we briefly review the use of neural networks
as a metamodeling tool in production planning in light of its wide application and
demonstrate effectiveness in terms of providing response predictions in diverse areas
(Vellido et al. 1999). Sabuncuoglu and Touhami (2002) conducted an investigation
of the potential use of neural networks as simulation metamodels in manufactur-
ing. Chyssolouris et al. (1990) proposed a neural network approach for the design
of manufacturing systems: The neural network was developed to map from de-
sired performance measures to suitable design parameters such as the number of
resources for each work center of a job shop. Mollaghasemi et al. (1998) applied a
neural network metamodel to a real-world application involving the test operations
of a major semiconductor manufacturing plant and suggested a suitable design in
terms of scheduling rules and the number of testers to achieve a set of performance
goals.

19.5 CT–TH Evaluation via Simulation on Demand

Many man-hours are invested in developing and exercising simulation models of
manufacturing systems – models that include critical details that are difficult or im-
possible to incorporate into simple load calculations or queueing approximations.
Unfortunately, simulation models can be clumsy tools for tactical decision making.
Models of complex manufacturing systems often take several hours for a single run;
however, even if a simulation model could be executed in just a few minutes of
elapsed time, it would often require hours to perform the necessary experimentation
to produce an accurate and precise solution. Optimization via simulation (where
some combination of simulation outputs is maximized or minimized) is even more
problematic as a tactical decision-making tool. The analyst must develop an objec-
tive function incorporating tradeoffs that are not easily quantified.

The difficulties discussed above have motivated researchers to pursue meth-
ods for increasing the efficiency of model building and model execution (Fowler
et al. 2001, 2005; Mackulak et al. 2005; Park et al. 2002). Incorporating simulation
into both a tactical and an operational role within manufacturing operations requires
significant reductions in both run time and experimentation effort. Unfortunately,
most of these studies have not obtained an order of magnitude improvement to what
remains the most serious impediment to tactical simulation usage in manufacturing:
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It still takes too long to get useful simulation results from a full-sized factory model,
particularly when one is interested in obtaining cycle time estimates for a variety of
start-rate scenarios.

The simulation on demand concept directly addresses this fundamental weak-
ness of simulation within manufacturing. “Simulation on demand” focuses on the
efficiency of obtaining useful simulation results when needed rather than on the ef-
ficiency of a single simulation replication. The premise is to exploit the availability
of large quantities of idle computer resources by running a simulation model as a
background process on lightly used computer(s) or overnight (or over a weekend)
when computers and simulation software licenses are often idle. The simulation will
execute a series of carefully selected design points that enable an accurate response
surface map of the output to be created. After a sufficient number of design points
have been created, the model of the output can be used to produce an interpolated
estimate of a design point that has never been simulated. This approach builds a
complete response surface map (cRSM) over the area of interest and represents a
bridge between the flexibility of simulation and the insight provided by analytical
queueing models.

While the cRSM approach to simulation on demand clearly encounters some of
the challenges (i.e., poor data systems) raised in the earlier chapter by Fischbein
et al., the concepts underlying the cRSM approach are predicated on a large body of
research conducted on the efficient and accurate generation of CT–TH curves. The
following sections will provide the fundamental concepts behind the usefulness and
application of CT–TH curves.

19.5.1 The Implied CT–TH Curve

CT–TH curves are often employed as decision-making tools in manufactur-
ing settings (Atherton and Dayhoff 1986; Spence and Welter 1987; Bitran and
Tirupati 1989; Brown et al. 1997). A CT–TH curve displays the projected average
cycle time plotted against throughput rate, or start rate, with cycle time defined as
the time from entering to leaving the system. These curves are useful for planning
at both the strategic and tactical levels.

Decisions regarding the impact on cycle time of a 2% increase in start rate can be
widely different depending on the shape of the curve and the distance from the knee.
For example, if a semiconductor wafer fab has a curve as illustrated in Fig. 19.1 and
is operating at the level of 22,000 wafer starts per month, it will experience only a
minor change in average cycle time by ramping up an additional 440 wafer starts.
Alternatively, if the factory is operating on the same curve but is at 22,500 wafer
starts per month, a 440 wafer start increase drastically alters cycle time. In both
cases, we called for a 440 wafer start increase, but drastically different outcomes
resulted from what seemed to be the same action. Management therefore needs to
develop CT–TH curves, if they are interested in predicting the impact of start rate
changes on average cycle time.
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Operational CT-TH Curve
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Fig. 19.1 A sample cycle time–throughput (CT–TH) curve

Although all factories have a CT–TH curve, the operation of a factory occurs at a
specific point on the curve. While it is common to have a predicted cycle time asso-
ciated with a specific start rate, it is uncommon for a manager to understand whether
changes in cycle time result from moving along the curve or from shifting from one
curve to another. A factory operates on only one curve at a time, but shifts from one
curve to another occur when changes to the factory are made such that the average
cycle time for a given number of wafer starts changes. Examples of such changes
include changes to scheduling or dispatching policies or changes in the capacity of
critical resources. For example, in the curve shown in Fig. 19.1, the average cycle
time at 23,000 wafer starts per month is approximately 15. If additional capacity
was added to the bottleneck, the average cycle time at the same 23,000 wafer starts
would be reduced, causing the factory operations to shift to a new curve. The ability
to review the curves associated with factory operations and the impact of jumping
from one curve to another has motivated a deeper investigation into the creation and
use of these curves as more than strategic planning tools.

Unfortunately, the simple collection and analysis of past throughput history is
insufficient for curve generation. It is unlikely that an operating factory has experi-
enced a sufficient number of changes along the same curve to allow creation of the
curve. For example, a factory seldom operates on the flat portion of the curve where
equipment utilizations are in the less than 50% range. It is also unlikely that the fac-
tory has carefully ramped up production start rates over the most rapidly changing
portion of the curve, so the estimation of the shape in this region becomes problem-
atic. In fact, as described previously, every time the factory changes dispatch policy
or adds more equipment, it may not just be moving along the curve but may in fact be
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Fig. 19.2 Precision along a CT–TH curve using equal allocation of simulation effort

shifting to an entirely new curve. The technique of CT–TH curve generation requires
the collection of large amounts of representative data; often, even when data have
been collected, they have not been maintained in an appropriate manner to permit
such an analysis. As a result, other than for the simplest of systems, simulation is
the preferred method of data generation.

Several different design points must be simulated to generate a CT–TH curve.
A careful selection of the design points can lead to minimal simulation expense.
Various authors have discussed methods for generating a CT–TH curve and how to
select these design points (see Park et al. 2001; Fowler et al. 2001; Yang et al. 2007).
Other authors have presented methods for determining an appropriate allocation of
simulation effort to the design points of the CT–TH curve being simulated, so as to
obtain nearly equal absolute or relative precision (Leach et al. 2005).

The method commonly used by practitioners to generate a CT–TH curve via
simulation is to allocate an equal amount of simulation effort to each throughput rate
being simulated (Fig. 19.2). As throughput rate approaches capacity, the cycle time
and the variance of the cycle time increase. Figure 19.2 illustrates that by equally
allocating simulation effort to all design points, we will have a CT–TH curve that is
less precise as we approach capacity, a clearly undesirable characteristic.

19.6 Building Single-Product CT–TH Curves via Simulation

The earlier chapter by Fischbein et al. points out that in modern manufacturing
industries, single-PM factories are no longer common. However, even with a rapidly
changing PM, decisions still need to be made, and often the best option is to make
those decisions based on the current PM. In this section, we present issues that
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arise when estimating CT–TH curves via simulation and some methods for resolving
those issues. To carefully define the problems and solutions requires a mathematical
treatment.

We begin by considering single-product CT–TH curves in detail. Note that when
we say “single product,” we could be considering a CT–TH curve of a facility
that produces only one product or focusing on one product out of many provided
that the relative “mix” of the various products (as defined below) remains the same
at all levels of system throughput (i.e., the facility is producing products to fulfill
a projected mix of customer demands). Here, PM refers to the relative throughput
of different existing products, not the introduction of new products or the phasing
out of older products. The section concludes with discussions of emerging areas,
including estimating CT–TH–PM (product mix) surfaces, modeling capacity expan-
sion/reallocation, and accounting for batching.

Throughout this section, we represent a manufacturing system as a (possibly
complex) network of queues (work centers, material handling equipment, etc.), the
products as customers flowing through that network, and cycle time as the end-to-
end time from product release to completion.

Define the following:

œ D .�1; : : : ; �K/vector of start rates for K products (products/time),

x D utilization of the bottleneck station(s) in the facility, 0 < x < 1; and

’ D .˛1; : : : ; ˛K/ product mix vector where ˛k D �k=

KX

hD1

�h:

Without loss of generality, we will only consider the cycle time of product 1,
and denote its steady-state cycle time as C.œ/ D C.x; ’/, a random variable with
unknown distribution that depends on the start rates. Notice that if we know the
processing capacity of the bottleneck station, then specifying .x; ’/ is equivalent
to specifying œ. We will drop the dependence on ’ in the single-product case. For
the CT random variable to have a limiting distribution (“steady state”), among other
things, the system logic and driving inputs must not be changing over time. As with
queueing models of cycle time, “steady state” is only a useful approximation to aid
decision making since real manufacturing systems change frequently, and in some
wafer fabs may not actually be reached due to long cycle times and short product
life cycles. Often, these approximations can be helpful in factory decision making.
When they are not particularly helpful and one is interested in reasonably short-term
behavior, clearing functions can be very useful. These are discussed in detail in the
chapter by Missbauer and Uzsoy.

Generically, let cr .œ/ D cr .x; ’/ D EŒC r .x; ’/�; r D 1; 2; : : : be noncentral
moments of the steady-state CT; we drop the subscript r when we refer to the mean
(first moment). For the marginal variance of CT, let �2.x; ’/ D VarŒC.x; ’/� D
c2.x; ’/ � c.x; ’/2, and let the asymptotic variance (defined below) of the r th
moment be �2

r .x; ’/. Denote the pth percentile of CT by cp%.x; ’/. To obtain
percentiles, we will argue later that it is better to estimate them indirectly via
moment-based approximations, rather than directly via order statistics, which is why
we need to define cr .x; ’/:
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To estimate moments of CT, we will make one or more replications of a (typically
large) number of individual product CTs. Let Cij.x; ’/ be the j th observed CT from
the ith replication, for i D 1; 2; : : : ; m.x; ’/ and j D 1; 2; : : : ; l.x; ’/: Our “steady
state” assumption corresponds to requiring that Cij.x; ’/ converges in distribution
to C.x; ’/ as j ! 1 for any i . Examples of conditions in which the assumptions
are met are relatively easy to find, but in cases where this convergence assumption
is not met, the results may not be accurate.

19.7 Point-by-Point Estimation of Single-Product
CT–TH Curves

Perhaps the most straightforward way to generate a CT–TH curve via simulation
is to select a fine grid of throughputs, say 0 < x1 < x2 < � � � < xd < 1, and
run simulation experiments at each one to estimate cr .x/. We could, equivalently,
select a grid of release rates � (which correspond to throughput in steady state).
However, when we fit CT–TH curves to data, there are a number of advantages to
standardizing TH, so that system capacity always corresponds to a TH of 1. We shall
adopt this convention from this point.

Unfortunately, even this approach has pitfalls, which are perhaps easiest to under-
stand by examining a simple queueing model. Suppose that a manufacturing facility
could be represented as an M/M/1 queue with service rate � D 1. Then it is well
known that

c.x/ D 1

1 � x

implies that the mean CT increases dramatically as the TH approaches system ca-
pacity. Similarly,

�2.x/ D 1

.1 � x/2

shows that the variance of the CT also explodes as x ! 1. Higher moments have
similar behavior.

More importantly for estimating CT moments, however, we have the following:
Consider making one or more long replications and averaging the observed CTs

from each one to estimate c.x/. For the i th replication, let C i .x/ D
l.x/P
j D1

Cij.x/=l.x/

be the sample mean CT, where l.x/ is the total number of observed cycle times from
replication i . Then it can be shown that the asymptotic variance of the sample mean
for the M/M/1 queue for x near 1 is

�2.x/ D lim
l.x/!1

l.x/VarŒC i .x/� / 1

.1 � x/4
:
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The asymptotic variance is useful because we can argue that for long enough run
length l.x/

VarŒC i .x/� � �2.x/

l.x/
;

and therefore that

VarŒC .x/� � �2.x/

l.x/m.x/
;

where C.x/ is the average of the m.x/ replication averages. Thus, to maintain a
constant relative error across the entire grid of x points, the quantity

s
�2.x/

l.x/m.x/

c.x/

must remain constant over x. This implies that the run length or the number of
replications must grow proportional to 1=.1 � x/2 as we approach system capacity.
Naively making replications of equal length, or an equal number of replications, at
each design point x will lead to mean CT estimates of widely different quality, and
the problem only gets worse for higher moments. In Sect. 19.8, we present experi-
mental design tools that address this issue. In the next few subsections, we assume
that .l.x/; m.x// are somehow given and focus on how we use the data.

19.7.1 Point-by-Point Moment-Based Percentile Estimates

DES models have traditionally been used to generate estimates of average cycle
time, and much work has been done on reducing the simulation run time for large-
scale production systems to obtain these estimates more quickly. However, even
with decreasing run times, there are still no efficient and easily implemented meth-
ods for obtaining accurate estimates of cycle time percentiles. Much of the reason
for this is that percentiles are more difficult to compute than simple averages and
can require excessive data storage.

A direct percentile estimate is one in which the estimate is a function of the
raw data itself. Order statistics are traditionally used for this purpose. To obtain a
cycle time percentile estimate from a discrete event simulation model using order
statistics, the cycle time values are simply collected and ordered from low to high.
The desired percentile is then directly selected from the sorted data. For example,
to estimate the 95th percentile of cycle time from 100,000 observations, select the
95,000th smallest data point. Clearly, a drawback of this solution technique is that
all the observations must be sorted and then stored to obtain the estimate. Even
with rapidly increasing computing power, sorting and storing hundreds of millions
of samples required to estimate some percentiles is still unreasonable (Chen and
Kelton 2001).
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An indirect percentile estimate is one in which the estimate is a function of data
parameters (i.e., sample mean, sample variance, etc.) rather than the raw data itself.
Indirect estimation techniques have the advantage of requiring less data storage, but
may also be less accurate or have higher variance than the direct estimation tech-
niques. One method for indirectly estimating cycle time percentiles was presented
in McNeill et al. (2003). Their technique is a moment-based approach for estimat-
ing cycle time percentiles at a given throughput level and PM and is based on the
Cornish–Fisher expansion (CFE) (Cornish and Fisher 1937). It utilizes the first four
terms of the CFE and takes into account the first four moments of the cycle time
distribution, allowing accurate percentile estimates to be generated for a variety of
cycle time distributions found in manufacturing systems.

The CFE is an asymptotic series used to approximate normalized percentiles
from any distribution, given a percentile from the standard normal distribution and
the distribution’s moments. The principle behind the CFE is that if a set of mo-
ments of a true and fitted distribution agree, the percentiles of the fitted distribution
can be regarded as an approximation to the percentiles from the true distribution.
The percentiles from the fitted distribution are expressed as an asymptotic series.
The terms of the expansion are polynomial functions of the corresponding standard-
ized percentile of the normal distribution, and the coefficients are functions of the
standardized moments. In essence, the CFE is a moment-based correction for a non-
normal random variable, and when sample moments are used in place of theoretical
moments, the approximation becomes an estimator. In such cases, it is important to
have accurate, low-variance estimators of the sample moments. Equations for con-
sistent moment estimates can be found in Kenney and Keeping (1954) and are also
given in Bekki et al. (2006).

Since the CFE is an asymptotic series, it is important to determine the appropriate
number of terms to include. Adding additional terms to the CFE requires estimating
higher and higher moments, which are, in turn, more and more difficult to estimate.
Bekki et al. (2010) found that using the first four terms of the expansion clearly
yields the best results for the widest variety of percentiles. Equation (19.1), given
below, gives the first four terms of the CFE, where O� is the sample mean, O� is the
sample standard deviation, O�1 is the sample standardized central skewness, O�2 is the
sample standardized central excess kurtosis, and z˛ is the ˛ percentile from the stan-
dard normal distribution. Here, y˛ represents the desired percentile estimate from
the original sample distribution, while w˛ represents the corresponding percentile
estimate from the standardized distribution:

y˛ D O� C O�w˛;

w˛ D z˛C1 =6
�
z2
˛ � 1

� O�1C1 =24
�
z3
˛�3z˛

� O�2�1 =36
�
2z3

˛�5z˛

� O�2
1 : (19.1)

To obtain a percentile estimate of the cycle time distribution from a DES model
using the CFE, running totals of the appropriate sums of squares, sums of cubes,
etc., must be kept at each simulated throughput x to calculate the moment es-
timates during each simulation run. At the conclusion of each simulation run,
(19.1) is used in conjunction with the moment estimates to obtain a percentile
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estimate Oy˛ . Detailed descriptions of the percentile estimation procedure, including
an approach for building confidence intervals around percentile estimates, can be
found in McNeill et al. (2003) and Bekki et al. (2010).

Bekki et al. (2010) used this approach successfully in extensive experiments
specialized to the kind of data we expect to find in manufacturing. Experimental
systems ranged in complexity from a single M/M/1 queue to a model representing a
full semiconductor manufacturing factory. First-in-first-out dispatching was used at
all workstations. Their results show that the CFE technique provides accurate and
precise results, is easy to implement, and requires storage of only five values used
to calculate sample moments, regardless of the number of cycle time observations
collected. Additionally, if there is a need to collect additional data, adding these new
data to moment estimates for indirect estimation is much easier than adding the data
to a sorted list of cycle time observations used for direct estimation. Finally, the
approach has the advantage of being able to generate multiple percentile estimates
from a single set of simulation runs by simply changing the z˛ value in (19.1).

Figure 19.3 illustrates one of the benefits to the decision maker of generating
multiple percentile estimates from a single set of simulation runs. This plot was
generated from the output of a single set of runs and gives the complete range of
cycle time percentiles for a model representing a full semiconductor manufacturing
factory at 90% loading. The figure gives an estimate of the inverse of the cycle time
distribution’s cumulative distribution function at this traffic intensity and provides
a valuable tool for quoting lead times. For example, it illustrates that if the factory
was being run at 90% loading, a lead time of 1,400 hours could be met approxi-
mately 90% of the time, while a quoted lead time of 1,300 hours could only be met
approximately 50% of the time.
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Fig. 19.3 Complete range of percentile estimates for a model of a semiconductor manufacturing
facility at 90% loading
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Finally, additional publications on moment-based cycle time percentile estima-
tors indicate that the CFE-based approach in McNeill et al. (2003) and Bekki
et al. (2010) requires modification in settings where non-FIFO dispatching rules are
employed. Approaches combining data transformations with the CFE are proposed
in McNeill et al. (2005), Bekki et al. (2006), and Bekki et al. (2009). The approach in
Bekki et al. (2009) combines a power transformation with the CFE and was shown
to provide a viable method for cycle time percentile estimation from DES models of
manufacturing systems employing non-FIFO dispatching rules. Moreover, results
showed that as models become larger and closer to today’s complex manufactur-
ing environments, the approach yielded even better accuracy and greater robustness
to changes in the cycle time distribution. The transformation-based approach har-
nesses the benefits of the original CFE approach, making it a very attractive cycle
time percentile estimation procedure for models of manufacturing systems.

19.7.2 Interpolation Between Points

A repercussion of point-by-point CT–TH curve estimation is that some sort of in-
terpolation is needed to estimate CT properties at throughputs x that were not
simulated. If the grid points are packed closely enough, then a simple linear interpo-
lation may be adequate. However, as the M/M/1 example illustrated, exceptionally
long runs may be required at the higher levels of TH, which argues against running
simulations at a very fine grid. In Sect. 19.8, we describe methods for fitting models
motivated by queueing theory to a very small set of carefully selected design points.
In this section, we briefly discuss an intermediate strategy: using a sophisticated
interpolation scheme.

In a series of papers, Kleijnen and van Beers (Kleijnen and van Beers 2004,
2005; van Beers and Kleijnen 2003, 2004) describe how the interpolation method of
kriging can be adapted to the output of discrete-event, stochastic simulations in gen-
eral, and queueing simulations in particular. In its simplest form, kriging estimates
c.x/ by a weighted average of the estimated mean cycle times at the grid points
x D .x1; x2; : : : ; xd /; i.e.,

Oc.x/ D
dX

hD1

Ǒ
h.x; x/C .xh/;

where C .xh/ is the average of all the observations of CT obtained at utilization xh,
dP

hD1

Ǒ
h.x; x/ D 1 and Ǒ

h.x; x/ is a weight that depends on the throughput x to be

interpolated, the grid x and the simulation outputs themselves. Loosely speaking,
the kriging estimator gives more weight to CT estimates at grid points xh that are
closer to the point x to be interpolated.
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The power of kriging comes from treating the unknown function – c.x/ in
this case – as a realization of a random function, say c.x/ D Z.x/ C ".x/,
where Z.x/ is the “signal” function we are interested in deducing, and ".x/ is
a noise process representing the inherent output variability of the simulation at any
throughput x. The random function Z.x/ is assumed to exhibit spatial covariance
Cov.Z.x/; Z.x0// D R.x; x0/, which is typically treated as only depending on the
distance jx � x0j. By specifying a parametric form for this covariance function, its
parameters can be estimated from the output data, and, given the spatial covariance
function, the optimal (in a precise statistical sense) weights Ǒ

h.x; x/ can be derived.
Thus, kriging is a data-driven interpolation.

The difficulty introduced by stochastic simulation is the addition of output noise
".x/, which is in a sense confounded with the uncertainty represented by Z.x/ and
may itself depend on the throughput x (in fact, we know from the above M/M/1
example that the variance of CT differs dramatically across the range of x). See
Kleijnen and van Beers (2005) for an analysis of this issue.

Because kriging is an interpolation method, it favors a finer grid (more design
points x) than the queueing-motivated models we describe below. There is also
no guarantee that the kriging estimator will exhibit known properties of the re-
sponse function (that c.x/ is nondecreasing in x, for instance). However, kriging
has the advantages that it is general purpose, it will not be subject to the lack of
fit inherent in a poorly chosen metamodel, and it works largely without change for
interpolating higher moments than the mean. Further, kriging extends naturally to a
multidimensional independent variable, like the PM ’. Good additional references
include Barton and Meckesheimer (2006) and Santner et al. (2003).

19.7.3 Efficient CT–TH Curve Generation

Fowler et al. (2001) investigate the use of two common variance reduction tech-
niques (common random numbers and antithetic variates) in efficiently generating
CT–TH curves that linearly interpolate a set of (TH, CT) points. In their paper, the
term “efficient” reflects the capability to provide a simulation-based CT–TH curve
with an acceptable precision and accuracy using limited available resources. The
goal was to generate CT–TH curves more economically, so that the cost of anal-
ysis could be reduced, allowing companies to make better manufacturing capacity
management decisions. The experimentation in this paper included simulating an
M/M/1 queueing system and a system with five stations in series (a special case of
a Jackson queueing network). The results showed that common random numbers
were effective when there was an adequate computing budget, but introduced too
much bias when the computing budget was not large enough. On the other hand, the
results showed that antithetic variates were effective for small or large computing
budgets.
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19.8 Building CT–TH Curves by Design

19.8.1 Model-Based Designs

One of the primary approaches to designing an experiment is to select the location
of design points to optimize some criterion function; this is often called optimal de-
sign of experiments (see Pukelsheim 2006). Typically, this criterion is related to the
variance/covariance matrix of the parameters in the model. The most popular opti-
mization criterion is D-optimality, which seeks to minimize the volume of the joint
confidence region of all the parameters in the model. Park et al. (2002) use the
D-optimality criterion to choose design points for building the CT–TH curve. Since
it concerns the confidence interval of the parameters of a model, D-optimality as-
sumes that a model is specified for the response curve. Park et al. (2002) suggest
two nonlinear regression models. The first accounts for the presence of batching in
the factory, which is common in industries such as semiconductor manufacturing.
The presence of batching changes the shape of the CT–TH curve from the one sim-
ilar to that shown in Fig. 19.1 to a bowl-shaped curve, with dramatic increases in
cycle time both at very low frequencies of wafer starts (in these cases, lots wait a
long time for batches to be formed) as well as at very high frequencies of wafer
starts. The first nonlinear regression model, suggested by Park et al., is appropriate
when using batching policies, such as the full batch policy or the minimum batch
size policy with a minimum greater than 1, that increase the cycle time at low levels
of throughput. The second model suggested by Park et al., which has cycle time
as a monotonically increasing function of the throughput, is used when there is no
batching or a greedy batch policy is employed. The two models are shown below.
Notice that both models have the cycle time exploding as the throughput, x, nears
the capacity (ˇ2/. If the throughput is normalized to the capacity, then ˇ2 D 1.

c.x/ D ˇ1x

ˇ2 � x
� ˇ3; (19.2)

c.x/ D ˇ3

x
C ˇ1x

ˇ2 � x
� ˇ4: (19.3)

Both these models are generalizations of the CT–TH curve of a G/G/1 queue.
The experimental design for fitting these models is a selection of throughput

values at which exhaustive simulations are conducted and the average steady-state
cycle time is recorded. Nonlinear regression is used to estimate the parameters, and
thus the linear approximation to the variance/covariance matrix is used to approx-
imate the D-criterion. The candidate design points are placed at regular intervals
from zero throughput to one, where one represents full capacity. The experimental
design procedure recommended is a sequential procedure that starts with the min-
imum number of design points, which are required to support the model [three in
the case of model (19.2) and four in the case of model (19.3)]. The D-criterion can
be expressed as a function of the location of the design points. The initial points are
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selected as the set of three [or four in the case of model (19.2)] candidate points
that maximize the D-criterion. All the other candidate points are then ranked ac-
cording to the D-criterion for entry into the design if needed. After simulations are
conducted at the initial points, the model parameters are estimated. Each additional
candidate point is added sequentially in the predefined order until the parameter
estimates no longer change by an appreciable amount (1% was used as a stopping
criterion). This method was validated through construction of a CT–TH curve for a
semiconductor wafer fabrication facility.

Another approach to building CT–TH curves was proposed by Cheng and
Kleijnen (1999), hereafter CK, where they generalized the CT–TH curve of the
M/M/1 curve as shown below:

c.x/ D f .x/

tX

lD0

ˇl x
l C ".x/ D

Pt
lD0 ˇl x

l

1 � x
C ".x/; (19.4)

where f .x/ D 1=.1 � x/ and it is assumed that throughput, x, is scaled from zero
to one (again x D 1 represents full capacity). CK only deal with the case of no
batching or a greedy batch policy and thus the model in (19.4) is a more general
form of the Park et al. (2002) model in (19.2). To fit (19.4) to the simulation data,
CK develop a linear regression model since the only nonlinear part of the equation,
f .x/, is known and can be dealt with through a transformation. The variance of the
error term in (19.4) depends on x as

VarŒ".x/� D Œh.x/��2; (19.5)

where h.x/ is assumed to be known from asymptotic theory or other considerations.
The design of the experiment consists of the location of the design points x D

.x1; x2; : : : ; xm/ and the fraction of a total of N replications assigned to those points
  D .�1; �2; : : : ; �m/. The design is constructed to minimize a criterion called
PM , which is a scaled version of the weighted-average variance of the estimated
expected response over the throughput range of interest.

The CK procedure for fitting the model (19.4) can be summarized as follows.
Given f .x/, h.x/, a maximum value of t and a fixed budget of N replications, find
the optimal design .x;  / by minimizing PM . With the design points x fixed, carry
out simulation experiments sequentially and adjust the allocation x. Once the total
number of runs has been exhausted, use backward selection to decide the appropriate
polynomial order of model (19.4) and obtain the fitted curve.

The CK method leaves open the question of how to specify f .x/ and h.x/, which
affect the design of the experiment and, more importantly, the adequacy of model
(19.4) to represent the true CT–TH curve. When these two functions are known,
CK is highly effective and efficient, and works within a fixed budget. However,
for complicated manufacturing systems, there is not likely to be sufficient informa-
tion to infer such characteristics. In other words, obtaining good choices for f .x/

or h.x/, although not impossible, is difficult in practice. Further, we have strong
empirical evidence (Allen 2003; Johnson et al. 2004) that the f .x/ and h.x/ used
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by CK can be far from correct in realistic manufacturing simulations. Since model
(19.2) used in Park et al. (2002) is a specific instance of (19.4), the same weakness
can be attributed to their method as well.

In summary, the procedures by Park et al. (2002) and CK are both interesting
and useful methods of experimental design for fitting a model such as that given
in (19.4), but cases may arise in practice where these models are not sufficiently
accurate to produce useful CT–TH curves.

19.8.2 Fixed Budget Variance-Based Designs

Practitioners commonly allocate an equal amount of simulation effort to each of
several throughput rates when generating a CT–TH curve; this is referred to as naive
sampling. In the case of a CT–TH curve, where cycle time variance is known to
increase rapidly as throughput approaches capacity, naive sampling is likely to lead
to widely varying precision at the throughput rates simulated. Since CT–TH curves
support start-rate decisions, it is reasonable to assume that widely varying precision
along the curve is undesirable.

In Leach et al. (2005) and Fowler et al. (2008), several different traffic intensities,
i.e., design points are simulated in order to generate a CT–TH curve. Let D be the
set of design points. The objective of these papers is to determine the allocation of a
fixed budget of simulation effort to the design points being simulated that achieves
nearly equal absolute or relative precision along the curve. The papers differ in
the method of estimating the variance of the mean response estimates. In Leach
et al. (2005), an approximation to the asymptotic variance is used and in Fowler
et al. (2008) pilot runs are used.

The percentage of replications allocated to design point j for the absolute preci-
sion case using asymptotic variance �2.j / is

�.j / PD
�
t1�˛=2;m.j /�1

�2
�2.j /

P
k2D

��
t1�˛=2;m.k/�1

�2
�2.k/

� : (19.6)

The percentage of runs allocated to design point j for the absolute precision case
using the sample variance from pilot runs .S2

X
.j // is

�.j / PD
�
t1�˛=2;m.j /�1

�2
S

2

X
.j /

P
k2D

��
t1�˛=2;m.k/�1

�2
S

2

X
.k/
� : (19.7)

The asymptotic variance approach has the advantage of requiring only one stage
of simulation runs, but it requires approximating the asymptotic variance of cycle
time at each design point, which can be difficult for complex systems. The pilot run
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approach does not have this limitation, but it requires two stages: the pilot runs and
the production runs. In both papers, the proposed method is shown to outperform
naive sampling.

19.8.3 Precision-Based Design

A precision-driven DOE strategy was proposed in Yang et al. (2007) to sequentially
build up simulation experiments for the efficient generation of CT–TH curves. It
allows the user to specify a precision level and is able to provide a fitted curve with
desired precision by running simulation. We summarize the method in this section.

The estimation of the CT–TH curve is based on two statistical regression models
(19.8) and (19.9), the forms of which are both motivated by heavy traffic queueing
analysis and supported by extensive investigation of realistic manufacturing sys-
tems. One is called the expected cycle time (ECT) model:

c.x/ D EŒC i .x/� D
Pt

lD0 ˇl x
l

.1 � x/p
; i D 1; 2; : : : ; m.x/ (19.8)

which characterizes the relationship between the expected cycle time and normal-
ized throughput x over a range of interest ŒxL; xU �. Unknown parameters are the
polynomial coefficients “, polynomial order t , and the exponent p. As explained
earlier, the sample mean CT, C i .x/, obtained from the i th simulation replication
performed at x will be used as the data points to which the CT–TH models are fit.
The variance of C i .x/ depends on x and is represented by the following variance
model:

VarŒC i .x/� D �2

.1 � x/2q
: (19.9)

Both �2 and q are unknown parameters. With the sample mean CT data fC i .x/;

i D 1; 2; : : :; m.x/g at different values of x, the sample variance of C i .x/ can also
be estimated over x, from which the variance model (19.9) can be fitted. With the es-
timated parameter Oq, transforming the response C i .x/ by multiplying with .1 � x/q

will yield a constant variance and results in a standard nonlinear regression model:

c.x/�.1�x/q D EŒC i .x/�.1�x/q� D .1�x/q�p

tX

lD0

ˇl x
l D .1�x/r

tX

lD0

ˇl x
l ;

(19.10)

where “, t , and the exponent r are unknown parameters. Thus, given a fC i .x/; i D
1; 2; : : :; m.x/g dataset, model fitting is performed in two steps: (a) Fit the vari-
ance model (19.9) and obtain the q estimate and (b) use estimated parameter Oq to
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stabilize variance for the original observations C i .x/ and then fit model (19.10).
The estimators of the ECT model (19.8) are obtained indirectly by noting that the
coefficients “ in model (19.8) coincide with those in (19.10), and p is estimated by
the difference between the q and r estimates.

The goal is to obtain a precisely estimated CT–TH curve that helps manufacturers
decide at what throughput they should run the system. Thus, Yang et al. (2007)
evaluate the goodness of the fit by the relative error achieved on the ECT response
estimators. Since the curve fitting is based on the nonlinear regression performed
on models (19.9) and (19.10), variance estimates can be obtained on the estimated
parameters in (19.9) and (19.10). Yang et al. (2007) let the user specify a target
precision, say �%, which is defined as the relative error on the ECT estimator:

�% D
p

VarŒ Oc.x/�

Oc.x/
� 100:

Once fitted curves have been obtained, the relative error of the ECT estimate Oc.x/

can be approximated for any throughput x over ŒxL; xU �. The user can choose to
check the precision achieved at a throughput level of particular interest, or at a num-
ber of points in ŒxL; xU � before they declare that a fitted curve with desired precision
has been generated.

For efficient estimation of the CT–TH models presented above, DOE methodolo-
gies are developed to collect simulation data sequentially. The experiment design
consists of the location of design points, the throughput levels at which simulations
will be executed, the allocation of computational effort, and the number of simula-
tion replications assigned to each design point. The best choice of experiment design
depends on the true ECT and variance curves, which are unknown at the stage of
designing experiments. In light of this, Yang et al. (2007) developed the YAN pro-
cedure to approach the DOE problem in a sequential manner. The model curves are
estimated ever more precisely as more simulation data are obtained, and further ex-
perimentation is guided by the current best estimate of the models. This design and
modeling process is continued until the prespecified precision �% is achieved on
the ECT response estimator.

To demonstrate the effectiveness of the YAN procedure, Yang et al. (2007) ap-
plied it to a number of systems to generate their corresponding CT–TH curves.
The systems explored included analytically tractable queueing models and re-
alistic semiconductor manufacturing systems. For simple queueing models such
as M/M/1/FIFO, M/M/1/SPT (nonpreemptive shortest processing time first), and
M/M/1/LPT (nonpreemptive longest processing time first), the true CT–TH curves
can be derived analytically, and hence the quality of the simulation-based model
estimation can be evaluated easily. The real wafer fab considered is provided by the
Modeling and Analysis for Semiconductor Manufacturing Lab at Arizona State Uni-
versity (www.eas.asu.edu/�masmlab/). Since the true underlying curve is unknown
in this case, “nearly true” ECT estimates were obtained by intensive simulation
(running simulation until the standard error of the expected cycle time estimate was
essentially zero). All the numerical experiments show that YAN is able to generate
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high-quality CT–TH curves with desired precision. Comparisons were also per-
formed, which show that YAN can be more efficient than the procedure proposed
by Cheng and Kleijnen (1999).

19.9 Multiproduct CT–TH Curves

The focus of this chapter has been on CT as a function of TH. However, especially in
today’s complex manufacturing environments, PM can also affect CTs, even if the
overall system throughput is unchanged. However, fitting CT–TH–PM surfaces via
simulation is a much more challenging problem and is a focus of current research
by the chapter authors.

To see why the problem is difficult, consider perhaps the simplest nontrivial mul-
tiproduct queueing model, a multiproduct M/G/1 queue. For this model, the overall
product release rate is �, while the release rate for product k is �k D ˛k�. If the
service time for product type k has mean 1=�k and variance &2

k
, then we can show

that for, say, product 1

c.x/ D ˇ0 C
PK

kD1 ˇk˛k

1 � x
; (19.11)

where x D �
PK

kD1
˛k

�k
D PK

kD1
�k

�k
, ˇ0 D 1

�1
and ˇk D �

2

�
1

�2
k

C &2
k

�
. Unfor-

tunately, a realistic manufacturing system consisting of multiple work stations will
exhibit behavior that is more like what one would expect from a sum of functions
of the form (19.11), implying a model with lots of parameters that will be difficult
to fit by observing only the overall product cycle times. In addition, the bottleneck
stations that are actually operating at utilization x will change if x is held fixed but
the PM changes, introducing sharp ridges in the response surface.

Hung et al. (2003) attacked this problem by attempting to fit polynomials in the
release rates �k . Realizing that such models could not provide a good global fit over
the entire release-rate space, they used classification and regression trees to produce
a data-driven partition of this space into subregions that are well represented by
low-order polynomials in �k .

If a capacity model exists, then a system-driven partitioning of the TH-PM space
into regions of constant bottleneck may be attained. Within these regions, it may be
possible to interpolate between CT–TH curves fit for a collection of fixed PMs, using
either a general-purpose interpolator such as kriging or a model-based interpolation
suggested by (19.11).

Clearly, precisely modeling a high-dimensional CT–TH–PM surface will require
many more runs of (perhaps) very complex simulation models, which will not
be feasible if runs are made one at a time with a human analyst’s intervention.
Fortunately, modern, distributed computing environments are making it easier to
distribute simulations of distinct cases to idle computers and collect the results.
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This may eventually force a change in traditional software licensing arrangements
that charge “per CPU” used, which would be a substantial impediment to the
paradigm described here.

19.10 Future Research

Production planning was one of the early areas of application for DES. However,
until recently, DES has been used primarily to evaluate proposed production plans,
often in an ad hoc manner and generally to estimate cycle times. In this chapter,
we have described some recent efforts to use simulation more directly in pro-
duction planning and focused on the estimation of CT–TH curves via simulation.
A significant limitation of the work we discussed was that it has focused on char-
acterizing the steady-state behavior of manufacturing systems, and the resulting
CT–TH curves are particularly suitable for supporting long-term decision making in
manufacturing (e.g., capacity expansion). For medium-term production planning
over a time horizon of weeks or months, it has long been recognized that station-
ary behavior may not be indicative of the system performance (Uzsoy et al. 1992;
Papadopolous et al. 1993): due to factors such as short product life cycles and fre-
quent change of technologies, manufacturing systems may never be operated in its
steady state (see the chapter by Missbauer and Uzsoy in this handbook and the paper
by Shanthikumar et al. 2007). Nevertheless, time-dependent behavior is rarely con-
sidered in the context of production planning due to the fact that transient analysis
of real systems is notoriously difficult.

As with steady-state performance, the existing literature has used both com-
puter simulation and analytical models to address the transient behavior of queueing
systems. The former frequently becomes too computationally demanding as men-
tioned earlier. The analytical methods for transient analysis, on the other hand,
have focused on developing numerical solutions to a set of time-dependent ordi-
nary differential equations (ODEs) describing the system’s dynamic behavior (see
the review of Ingolfsson et al. 2007); the construction of these ODEs relies heavily
on restrictive assumptions such as the Markov property, and solving the typically
large set of ODEs is also computationally challenging.

We believe that to accurately capture the transient performance, a metamodel-
ing approach is also able to overcome the limitations of simulation and analytical
methods. As opposed to mapping a static regression model representing the sys-
tem’s steady-state behavior, here, a number of transfer function models (TFMs) can
be estimated through simulation, thus quantifying the time-dependent performance.
The resulting TFMs are difference equations, like the discrete approximations of the
ODEs provided by an analytical approach. Thus, they embody the high fidelity of
simulation and allow for prompt “what-if” analysis.

In the near future, we expect to see the development of methods that allow the
capacity of the factory to be changed and methods for nongreedy batching policies
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(such as full batch policies) that lead to a complete response surface mapping that
is not monotonically increasing. Finally, we anticipate the development of methods
that determine revenue maximal production plans with cycle time constraints.
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Sabuncuoǧlu I, Touhami S (2002) Simulation metamodeling with neural networks: an experimental

investigation. Int J Prod Res 40(11): 2483–2505.
Santner TJ, Williams BJ, Notz WI (2003) The design and analysis of computer experiments.

Springer-Verlag, NY.
Schultz C (2004) Spare parts inventory and cycle time reduction. Int J Prod Res 42:759–776.
Shang JS, Tadikamalla PR (1993) Output maximization of a CIM system: simulation and statistical

approach. Int J Prod Res 31(1):19–41.
Shantikumar JG, Ding S, Zhang MT (2007) Queueing theory for semiconductor manufacturing

systems: a survey and open problems. IEEE Trans Automat Sci Eng 4(4):513–522.
Sivakumar AI, Chong CS (2001) A simulation based analysis of cycle time distribution, and

throughput in semiconductor backend manufacturing. Comput Ind 45:59–78.
Spence AM, Welter DJ (1987) Capacity planning of a photolithography work cell in a wafer manu-

facturing line. In Proceedings of the IEEE international conference on robotics and automation,
Raleigh, NC, Piscataway, NJ, pp 702–708.

Sze MT, Fi P, Lee WB (2001) Modeling the component assignment problem in PCB assembly.
Assembly Autom 21:55–60.

Uzsoy R, Lee CY, Martin Vega L (1992)A review of production planning and scheduling in the
semiconductor industry, part I: system characteristics, performance evaluation, and production
planning. IIE Trans 24(4):47–61.

van Beers WCM, Kleijnen JPC (2003) Kriging for interpolation in random simulation. J Oper Res
Soc 54:255–262.

van Beers WCM, Kleijnen JPC (2004) Kriging in simulation: a survey. In: Ingalls RG, Rossetti
MD, Smith JS, Peters BA (eds) Proceedings of the 2004 winter simulation conference. IEEE,
Piscataway, New Jersey, pp 113–121.

Vellido A, Lisboa PJG, Vaughan J (1999) Neural networks in business: a survey of applications
(1992–1998). Expert Syst Appl 17:51–70.

Yang F, Ankenman BE, Nelson BL (2007) Efficient generation of cycle time-throughput curves
through simulation and metamodeling. Naval Res Logist 54:78–93.
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Chapter 20
Simulation-Optimization in Support of Tactical
and Strategic Enterprise Decisions

Juan Camilo Zapata, Joesph Pekny, and Gintaras V. Reklaitis

20.1 Introduction

The modern enterprise has developed highly complex supply chains in order to
efficiently satisfy demand while remaining competitive. Supply chains have become
distributed global networks that encompass not only the manufacture and deliv-
ery of goods but also the activities associated with their development. Moreover,
local “here and now” decisions must be made in the presence of future uncertainty
while also considering their global and long-term implications. This coupling of
wide problem scope with multiple sources of internal and external uncertainties,
such as production line breakdowns, raw material availability, market demand, ex-
change rate fluctuations, developmental failures, etc., has resulted in supply chain
decision-making processes that are of high complexity and a very large scale (Zapata
et al. 2008).

The need for techniques capable of determining the optimal set of decisions
for this kind of systems has motivated the development of stochastic program-
ming, stochastic dynamic programming, and simulation optimization. Stochastic
programming and stochastic dynamic programming rely on the ability to articulate
a tractable mathematical formulation of the system, which can be very difficult for
complex supply chain applications. Furthermore, owing to the large size of problem
spaces, nonlinearity of objective functions and constraint, and the discrete nature of
many decisions, the resulting stochastic program may not always be solvable using
state-of-the-art stochastic programming methods. Hence, the focus of this chapter
is on simulation optimization, which couples the flexibility of discrete event simu-
lation to accommodate arbitrary stochastic elements and model the dynamics and
complexities of real-world systems without the need to develop formal mathemat-
ical models, and the ability of optimization schemes to systematically search the
decision space. However, similar to stochastic programming and related techniques,
simulation optimization can easily become computationally very demanding, and
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thus requires that a range of sometimes rather subtle issues be addressed effectively
to obtain a viable trade-off between solution time, modeling effort, and solution
quality.

The chapter is organized as follows. Section 20.2 provides a summary of the
different simulation-optimization methods that are available, aimed at guiding the
reader in the selection of the most adequate technique for his/her particular problem.
Section 20.3 presents two industrial case studies in which simulation optimization
was used to support the decision-making process. Finally, concluding remarks are
presented in Section 20.4.

20.2 Simulation-Optimization Solution Strategies

This section reviews the existing simulation-optimization methods, including their
strengths and weaknesses. The aim of the review is to explain at a conceptual level
the underlying algorithms and provide relevant references. To facilitate the presenta-
tion of the different methods we start by formalizing the problem in a mathematical
sense. The problem to be solved can be expressed as

min.max/
�2‚

J .�/; (20.1)

where � is the decision vector of p parameters, the feasible region ‚ � <p is the
set of possible values of the parameter � , and J.�/ D E ŒL.�; !/� represents the
expected value of a performance measure L.�; !/. Notice that L.�; !/ is a ran-
dom variable that can take different values depending on the specific realizations
of the stochastic effects of the system, !. Therefore, the problem exhibits not only
the typical challenges of finding an optimal solution but also those of estimating the
performance measure.

In general, simulation-optimization methods are classified based on the contin-
uous or discrete nature of the decision space (Fu 1994). In addition, methods for
discrete variables are further cataloged according to the number of feasible solu-
tions (small or large (including infinite)), and the ordered (i.e., represents different
levels or degrees of the underlying characteristic (e.g., safety inventory level)) or
unordered (i.e., represents categories that cannot be quantified (e.g., queue disci-
pline)) nature of the variables. Figure 20.1 shows the classification scheme and the
methods that fall in each class. It is important to highlight though that different
classes of methods are often used in combination within a single computational
scheme. On the continuous side, methods that mix response surface methodologies
(RSM) and stochastic approximation (SA) have been developed (Ho 1992). In the
case of discrete variables, hybrid approaches that combine different methods within
a class, as well as methods in different classes, have been proposed. For exam-
ple, Hall and Bowden (1996) combine metaheuristics with pattern search; Nozari
and Morris (1984) combine ranking and selection (R&S) and pattern search, and
Pichitlamken and Nelson (2003) combine R&S and metaheuristics.
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• Stochastic approximation (SA)
• Response surface methodology (RSM)
• Sample path optimization (SPO)
• Heuristics and metaheuristics
• Model-based methods

• Ranking and selection (R&S) and
  Multiple comparisons (MC)

• Random search
• Heuristics and metaheuristics
• Ordinal Optimization
• Sample path optimization (SPO)

Optimization problem

Discrete decision space

Continuous decision space

Large number of feasible solutionsSmall number of feasible solutions

Fig. 20.1 Classification of simulation-optimization techniques

20.2.1 Small Number of Discrete Feasible Solutions: Ranking
and Selection (R&S) and Multiple Comparisons (MCs)

The techniques available for problems with a small number of feasible solutions
focus on the exhaustive comparison of all feasible solutions rather than on the search
algorithms (Fu 2002). The presence of uncertainties transforms the comparison pro-
cess into an inference exercise that uses the statistical machinery developed for the
calculation of confidence intervals.

The basic concept behind Multiple Comparisons (MC) is very simple. The
differences in performance measure, OJ .�i/ � OJ ��j

�
, for some kind of pairwise

comparison of the possible solutions are estimated from simulations. Then, the cor-
responding confidence intervals are examined in search of an absolute winner (i.e.,
in the case of an all-pairwise comparison, the �i whose confidence intervals in regard
all other possible solutions are strictly negative (strictly positive)). However, it is
not possible to guarantee a solution a priori since the confidence intervals may not
be tight enough. Therefore, all the techniques in this class are aimed at exploiting
the opportunities presented by simulation to reduce variance (e.g., common random
numbers) and hence tighten the confidence intervals using the minimum possible
number of simulations (Fu 1994).

Ranking and selection also uses confidence intervals but within the context of
the correct selection concept. These methods measure in some way how far the
chosen solution is from the optimal one. In general, two approaches have been pro-
posed to measure that “distance.” The first is known as the indifference zone. In this
case, the objective is to obtain a solution that is within a certain range (indifference
zone), ı, of the optimal solution, ��, with a specified probability of correct selection
(PCS), P �, (i.e., P fJ .�i / � J .��/ < ıg � P �). The second approach, referred to
as subset selection, guarantees that with a certain probability, a particular group of
solutions chosen from the original set will contain at least one solution, �s , that is
within a specified indifference zone (i.e., P fJ .�s/ � J .��/ < ıg � P �).
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From an implementation perspective, R&S methods follow two formulations
(Fu et al. 2005), which are as follows:

1. Minimize the number of simulations subject to the PCS exceeding a given level
(a traditional approach that offers little control over computational requirements).

2. Maximize the PCS subject to a given simulation budget constraint.

The latter formulation is also known as optimal computing budget allocation, and
manages the computational effort by sacrificing the predictability of the confi-
dence levels. Swisher et al. (2004) and Kim and Nelson (2006) provide extensive
lists of references for both R&S and MC methods. These two classes of methods
were originally considered to be two different strategies (Fu 1994), but Nelson and
Matejcik (1995) established the connection between the two by showing that most
indifference zone procedures can also provide confidence intervals for a certain type
of multiple comparison method.

20.2.2 Large Number of Discrete Feasible Solutions

20.2.2.1 Random Search

Random search methods move successively from one feasible solution to a neigh-
boring one based on probabilistic arguments. All methods in this class (see the
review by Banks (1998)) follow the same algorithmic structure as follows:

1. Initialization with a feasible solution
2. Probabilistic generation of a new decision vector, obtained from a set of neigh-

boring feasible solutions
3. Estimation of performance measures and comparison with the values from the

previous iteration
4. Evaluation of stopping criteria and return to Step 2 if not satisfied

The methods in this class are characterized by the definition of the neighborhood
(the set in which the algorithm can move from one solution to another in a sin-
gle iteration), the selection strategy of the next decision vector, and the manner in
which the optimum is chosen. A representative example of this class of methods
is simulated annealing, which attempts to achieve a global optimum by allowing
moves leading to nonimproving solutions with a certain probability that depends on
the stage of the procedure. Nonimproving moves leading to a poorer solution are
more likely to be accepted early in the process; as the search progresses towards a
global optimum, the probability of accepting non-improving moves tends to zero.
A step-by-step description of a version of the method for a minimization problem is
as follows (Alrefaei and Andradottir 1999):

Step 1. Initialize the decision variables, �0, the number of iterations, n D 0, the
optimal solution, ��

0 D �0, and A0 .�/ D C0 .�/ D 0 for each � , where
Ai .�/ is the sum of all the estimates of the performance measure J.�/,
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OJ .�n/, obtained from simulations in the i first iterations and Ci .�/ is the
number of replicates in the i first iterations.

Step 2. Generate a neighbor solution, � 0
n, of the current point �n based on the chosen

transition probability matrix, R.�; �/. This means that for all � 2 N.�n/,
where N.�n/ is the neighborhood of �n the probability of being selected in
the next iteration is given by P.� 0

n D �/ D R.�n; �/.
Step 3. Estimate OJ .�n/, and OJ .� 0

n/, using simulation. If OJ .� 0
n/ � OJ .�n/, then let

�nC1 D � 0
n. Otherwise, sample a uniform distribution Un � U Œ0; 1� and an

exponential distribution en � exp
h OJ .�n/ � OJ �� 0

n

�
= T

i
, and if Un � Pen

then let �nC1 D � 0
n. Otherwise let �nC1 D �n. Notice that T (known as

the temperature) is the iteration-dependent parameter used to decrease the
probability of accepting nonimproving moves as the number of iterations
increase.

Step 4. Let n D n C 1, An.�/ D An�1.�/ C OJ .�/, and Cn.�/ D Cn�1.�/ C 1, for
� D �n or � 0

n, and An.�/ D An�1.�/ and Cn.�/ D Cn�1.�/ for all � that
have been explored but are different from �n and � 0

n

�
� 2 ‚En f�n or � 0

ng� :

Finally, select the � associated with the smallest average value of the per-
formance measure, An.�/ = Cn.�/, from the set of decisions explored, ‚E ,�

min
�2‚E

An.�/ = Cn.�/

�
:

Ideally, the method returns to Step 2 and the algorithm is repeated until conver-
gence is reached. However, resource and time limitations may require the use of a
user-defined stopping criteria, such as number of iterations, a threshold value for the
performance measure, etc.

The advantages of random search methods are their model independence (i.e., no
explicit mathematical model of the system needs to be developed) and the existence
of theoretical convergence proofs under certain conditions. However, in practice,
convergence can be slow and dependent on the selection of the neighborhood struc-
ture (Banks 2005) and does not scale well with the number of variables in the
decision space.

20.2.2.2 Ordinal Optimization

These methods are based on the observation that in most cases it is much easier,
in terms of computation, to directly find the ordering among candidate solutions
than it is to estimate the performance measure of each candidate solution and rank
the solutions based on this measure. This idea can be explained with the following
simple example (Fu et al. 2005). Assume that there are only two possible decision
vectors �1 and �2, and the decision maker wants to know which of the two results in
the smallest expected value of the performance measure .J.�1/ < J.�2/ or J.�1/ >

J.�2//. One approach can be to estimate each of the expected performance measures
independently, OJ .�1/ and OJ .�2/, until the standard error for each estimate is less
than the indifference amount, ", and compare the resulting values. On the other
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hand, an ordinal optimization method would define a variable X D L.�1/ � L.�2/

and determine whether EŒX� is positive or negative. The latter strategy is more
efficient because the estimation of EŒX� requires lesser number of simulations when
compared with the estimation of OJ .�1/ and OJ .�2/. Swisher et al. (2004) provide an
extensive list of references for this technique.

20.2.3 Continuous Decision Variables

20.2.3.1 Stochastic Approximation (SA)

Stochastic approximation refers to a group of methods that attempt to mimic the
gradient search method traditionally used in deterministic optimization. As in its
deterministic counterpart, SA searches for a local optimum to the problem given by
(20.1), that satisfies the first-order condition

OrJ.�/ D 0; (20.2)

where OrJ.�/ represents the estimated gradient of the performance function. The
analogy to the deterministic case also applies to the general structure of SA algo-
rithms which are based on the following iterative form:

�nC1 D
Y

‚

�
�n � an

OrJ.�n/
�
: (20.3)

Here �n is the solution vector at the beginning of iteration n, fang is a positive
sequence of step sizes, and

Q
‚ represents some projection back into the feasi-

ble set ‚ when the iteration leads to a solution outside the set. Similar to that in
the deterministic case, the algorithm determines at each iteration the value of the
decision vector based on the gradient and the step size values calculated for that
iteration and the value of the decision vector in the previous iteration. Algorithms
referred to as Robust SA algorithms differ slightly in that they use the iterative
process based on (20.3), but instead of returning the final value of the decision vec-
tor as the optimum, they return an average (e.g., moving horizon or exponentially
weighted moving average) of a certain number of iterates to reduce the variance
in the estimation (Fu 2002). The set of constraints that determine the feasible re-
gion also exhibit some differences when compared with the deterministic case. In
general, the feasible region is determined by a mix of deterministic and probabilis-
tic constraints. Probabilistic constraints limit the probability of constraint violations
but not the magnitude of the violations. They are expressed as follows:

P .f .�; !/ � 0/ > 1 � ˛; (20.4)

where f is the random vector representing the left hand side of a set of con-
straints whose realizations depend on the set of decisions � , and the presence of
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uncertainties !: P is the vector of probabilities of violating the constraints, and
˛ .˛ 2 .0; 1// are the tolerance levels of the decision maker to these violations.
Notice, however, that only a few algorithms can handle this kind of constraint (see
Andradottir (1998) and Kushner and Yin (2003) and references hereafter).

For all SA algorithms to properly converge it is required that the step size goes
to zero at a rate that is not too fast (to avoid premature convergence to a suboptimal
solution), and not too slow (to ensure eventual convergence). Mathematically, these
conditions are commonly represented as

P1
nD1 an D 1 and

P1
nD1 a2

n < 1. In ad-
dition, it is required that the bias of the objective function gradient estimate, OrJ.�/

in (20.3), goes to zero (Fu 1994). In theory, the appropriate step size rate can be
achieved using a simple harmonic series .an D a=n/, but in practice this choice re-
sults in slow convergence rates. Since the performance of any SA algorithm is quite
sensitive to this sequence, researchers have developed different strategies aimed to
speed up convergence. Heuristic decrements in step size have been proposed (e.g.,
Chapter 9 in Banks (1998) and references therein), as well as the use of a constant
step size in the early stages of the iterative process followed by heuristic decrements
(Fu 2002).

The need to obtain unbiased estimates of the objective function gradient in an
efficient manner has motivated most of the different techniques used in SA. The
remainder of this section provides an introduction to each of these developments
and a summary of their main strengths and limitations.

Finite Differences (FD)

Similar to that in numerical differentiation the idea is to use a secant as an approx-
imation to the gradient (a tangent). Therefore, the value of OrJ.�/ at iteration n is
given by

OrJn D
h Or1Jn : : : OrpJn

i
; (20.5)

where Ori Jn can be calculated using forward differences as follows:

Ori Jn D
OJ .�n C cnei / � OJ .�n/

cn

(20.6)

or central differences as follows:

Ori Jn D
OJ .�n C cnei / � OJ .�n � cnei /

2cn

: (20.7)

Here ej denotes the i th unit vector (e.g., ei D .0; : : : ; 0; 1; 0; : : : 0/) and cn a small
positive number that can take a different value at each iteration. The use of forward
or central differences is driven by the trade-off between estimation bias and compu-
tational burden. The calculation based on central differences requires the simulation
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of 2p sets with �n˙cnei values, while the one based on forward differences requires
only p+1 simulations. However, the estimators obtained using central differences
usually have smaller bias than those obtained using forward differences, which of-
ten leads to a smaller number of iterations, n.

When finite differences are used to obtain the gradients for (20.3), the SA tech-
nique is called the KieferWolfowitz algorithm (Kiefer and Wolfowitz 1952). This
algorithm has the following two important advantages with respect to other SA
techniques: (1) implementation is straightforward due to its simplicity, and (2) it
is not model-dependent (i.e., no explicit mathematical model of the system needs to
be developed, which means that this technique can be applied to systems with any
level of complexity). However, the KieferWolfowitz algorithm converges to the true
local optimum only when very small cn values (i.e., cn ! 0) are used. The problem
of using small cn values is that the estimated gradients, OrJn, exhibit large variances
that often slow down the convergence rate. This limitation has been addressed in
some situations by using common random numbers (Fu 1994).

Simultaneous Perturbation (SP)

This technique as well as the other gradient estimation techniques in the remain-
der of this section was developed in response to the significant computational
requirements of methods based on finite differences. SP uses the same conceptual
framework of finite differences, but reduces the number of simulations required by
perturbing all components of the decision vector simultaneously. Specifically, the
value for any OriJn can be obtained from the results of the simulations for just two
sets of � values, .�n C cn�n/ and .�n � cn�n/, with the following expression:

OrJn D
OJ .�n C cn�n/ � OJ .�n � cn�n/

2cn�n

; (20.8)

where �n D �
�n1; : : : ; �np

�
represents a vector of independent identically dis-

tributed (i.i.d.) random perturbations with zero mean. Though the elements of �n

may be assigned different kinds of distributions according to the specific charac-
teristics of the problem at hand (Spall 1999). Sadegh and Spall (1998) showed that
the optimal distribution for these elements, based on asymptotic distribution results,
is a symmetric Bernoulli (i.e., the probability of success is 0.5). In a more recent
development, deterministic perturbation sequences have been proposed to enhance
the convergence rate of the stochastic approximation method based on simultaneous
perturbation (SPSA) (Bhatnagar 2003).

Spall (1992) found that the SPSA method was superior (i.e., the difference be-
tween the actual minimum value and the estimated one was smaller for the same
amount of computational effort) to the KieferWolfowitz algorithm for a fairly
complicated numerical study. He also proved that both approaches have the same
asymptotic convergence rate in spite of SPSA’s significantly lower computational
requirements at each iteration. In theory, the superiority of the SPSA method grows
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with the dimension p of the decision vector as the computational burden of SPSA
is independent of its dimension. However, this potential for higher efficiency can
only be realized if the number of iterations required to converge to the global op-
timum does not increase to a level that exceeds the savings obtained by reducing
the number of simulations in each iteration. To realize as much of that potential as
possible, not only must the selection of an in (20.3) be carefully made (as in any
other SA technique), but also that of cn and �n in (20.8). Though the selection is
problem-dependent and there are no universal rules, Spall (1998, 1999) provides
some recommendations as a starting point.

Perturbation Analysis (PA)

Though the name may lead one to think that there is some kind of connection
between PA and SP, these two techniques use completely different conceptual
frameworks. PA does not explore through simulation the region around the decision
vector �n to determine in which direction to move for the next iteration; instead, it
determines such a direction by using only the output of the simulations with the cur-
rent value of �n. Hence PA infers the behavior of the system with �n C ��n, where
��n is a small perturbation, from the information obtained with �n, and uses it to
estimate the gradient for the next iteration. This may seem a little too “magical;”
in the words of the developers of the technique (Ho and Cao 1991): “At first this
may sound counterintuitive, stemming from the philosophical belief that one cannot
get something for nothing. A more concrete and equally intuitive objection is that
sample paths of the simulation under �n and �n C��n will in general sooner or later
become totally different as they evolve in time even for very small ��n”. However,
all the techniques belonging to the PA class accomplish this seemingly impossible
objective by using some kind of sample path analysis. The pioneering technique in
the field is known as infinitesimal perturbation analysis (IPA). The basic idea be-
hind IPA is that it is possible to reconstruct a perturbed path from a nominal one by
keeping track of the changes in the timing of events, if the sequence of events in the
simulation do not change (the critical timing path stays constant). The relevance of
IPA is that it is capable of simultaneously implementing such an accounting exer-
cise for a multitude of perturbations, and when applicable is highly efficient (i.e.,
exhibits fast convergence) (Ho and Cao 1991). However, it is only suitable for con-
tinuous performance measures and requires complete knowledge of the underlying
model, that is, an explicit model that relates inputs and outputs has to be available.
In broad terms, the method can be described in three steps. The first step consists in
developing a recursive (e.g., indexed by the number of customers arriving) explicit
mathematical model that relates the outputs of the simulation that are part of the per-
formance measure (e.g., inventory levels and total time of a customer in the system)
with those random variables (e.g., quantity produced and service time at the teller)
which depend directly on the decision variables (e.g., base stock and mean value of
service time). Next, the model is differentiated with respect to the decision variables
and the results are substituted into the function that represents the expected value
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of the performance measure gradient. Finally, the differentials of the random vari-
ables with respect to the decision variables are substituted based on the perturbation
generation rule and the gradient is calculated using simulation outputs The pertur-
bation generation rule allows one to obtain the changes on the random variable, !,
caused by changes in the decision variables in terms of the information collected
from simulation runs with �n. The perturbation generation rule is given by

d!

d�
D dF �1 .�; �/

d�
; (20.9)

where F.�; !/ is the cumulative distribution function of � with parameter � , and
random variable !; and � is a random variable independent of � (e.g., if ! is
exponentially distributed, with mean � , ! D F �1.�; �/ D � ln.1 � �/�� and
� � U Œ0; 1//. However, from an implementation perspective, it is more convenient
to use an equivalent formula that does not require the form of the inverse function:

d!

d�
D dF.�; !/ d�

dF.�; !/ d!
: (20.10)

To clarify the method let us consider a very simple problem (Fu 1994) (For a more
complex case in the context of inventory management refer to Tayur et al. (1999)).
Find the mean service time � of a first come first serve single server M/M/1 queue,
which minimizes the sum of expected mean time in the system over a given number
of customers served, L:

min
�2‚

E

"
1

N

NX

iD1

Ti

#
; (20.11)

where Ti is the time in the system for the i th customer and N is the number of
customers served. Note that Ti is the only output of the simulation that is part of

the performance measure, L D
h
1=N

PN
iD1 Ti

i
. Under the conditions described,

Ti satisfies the recursive Lindley equation

TiC1 D !iC1 C
(

Ti � AiC1 if Ti � AiC1

0 if Ti < AiC1

; (20.12)

where !i is the service time for the i th customer and Ai is the interarrival time be-
tween the .i � 1/ th and the i th customers. Notice that !i is the random variable that
depends on the decision variable, which implies that (20.12) is the explicit model
referred to in the first step of the method. Continuing with the method, (20.12) is
differentiated to obtain

dTiC1

d�
D d!iC1

d�
C
(

dTi= d� if Ti � AiC1

0 if Ti < AiC1

: (20.13)
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and expression (20.13) is substituted recursively into itself for each customer, and
the resulting expressions in terms of d!i = d� are substituted into the expression for

the expectation of the gradient of L, E ŒdL = d�� D E
h
1 =N

PN
iD1 dTi = d�

i
; to

obtain

E

�
dL

d�

	
D

SX

sD1

2

4 1

ns

nsX

iD1

iX

j D1

d!.j;s/

d�

3

5 (20.14)

where S is the number of simulations, ns the number of customers served in sim-
ulation s, and the .j; s/ subscript denotes the j th customer in the sth simulation.
Alternatively, the expectation can be estimated with the output from a single sim-
ulation. This is possible because the system is regenerative, which means that at
random times 0 D t0 < t1 < t2 < � � � the future of the stochastic process becomes
a probabilistic replica of itself. Therefore, instead of using results from multiple
simulations, it is enough to extend the duration of only one run and split it into
i.i.d. periods (regenerative cycles). In this case, the expression for the expectation is
given by

E

�
dL

d�

	
D 1

N

MX

mD1

nmX

iD1

iX

j D1

d!.j;m/

d�
; (20.15)

where M is the number of regenerative cycles, nm the number of customers served
in the mth regenerative cycle, and the .j; m/ subscript denotes the j th customer in
the mth busy period, i.e., .j; m/ D j CPm�1

iD1 ni :

The final step of the method requires the substitution of the random variable
differentials. As !i is exponentially distributed, by using (20.10), it can be shown
that d!.j;s/ = d� D !.j;s/ = �n: Therefore, the final expression for the expectation
of the gradient is given by

E

�
dL

d�

	
D

SX

sD1

2

4 1

ns

nsX

iD1

iX

j D1

!.j;s/

�n

3

5: (20.16)

The use of IPA to estimate the performance measure gradients in the SA approach
provides a framework that converges faster than that based on finite differences.
However, it has the following two important drawbacks: (1) it is model-dependent
and (2) it estimates E ŒdL = d�� instead of the desired dEŒL� = d� . Clearly, the
second aspect is not an issue when the expectation (integration) and differentia-
tion operators can be interchanged. However, in most cases this is only possible
when L is almost surely continuous with respect to � (Ho and Cao 1991). From
an implementation perspective this means that it has to be possible to develop a
“transformation” that allows one to represent the system in terms of random vari-
ables whose distributions do not depend on decision variables, and the performance
function based on the transformation has to be continuous in � for almost every !.
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In addition, as mentioned above, if the CPT changes or the performance measure is
discontinuous, IPA is not valid. Though this problem has been addressed for some
conditions using the same conceptual framework (Fu and Hu 1997), such extensions
are not as straightforward as IPA.

Likelihood Ratio (LR)

As in the case of PA, LR methods, which are also known as score function (SF)
methods, use only the output of the simulations with the current value of the decision
vector �n to estimate the gradient of the expected value of the performance measure.
The methods in this class require milder continuity requirements for the perfor-
mance measure L.�; !/; than those stipulated by PA. This is possible as the gradient
is calculated by differentiating the probability distribution function of the perfor-
mance measure instead of the performance measure itself. However, applicability
of this idea is limited to problems whose decision variables � are parameters of the
distributions that represent the uncertainty in the system. This means that decision
variables that are not part of the characterization of the uncertainties, such as re-
ordering points and safety inventory levels, cannot be part of � . To overcome this
limitation, Rubinstein and coworkers (Kleijnen and Rubinstein 1996; Rubinstein
and Shapiro 1993) have proposed transformations for some types of problems that
move the parameters lying outside the characterization of the probability distribu-
tions into them.

LR methods are strongly connected to the importance sampling concept, com-
monly used to derive estimators with a reduced variance. The basic idea behind LR
methods can be illustrated by deriving the gradient of the performance measure for
static systems (i.e., a system that does not evolve in time, such as reliability prob-
lems) with probability density functions that only depend on a single parameter.
In this case, the expected value of the performance measure has the form

EŒL� D
Z

L.!/dF.�; !/ D
Z

L.!/f .�; !/d!; (20.17)

where F.�; !/ represents the cumulative distribution of ! and f .�; !/ the density
function. Differentiating (20.17) with respect to � , interchanging integration and
differentiation, and multiplying and dividing by f .�; !/ we obtain

@EŒL�

@�
D @

@�

Z
L.!/f .�; !/d! D

Z
L.!/

@f .�; !/

@�
d!

D
Z

L.!/
@f .�; !/

@�

f .�; !/

f .�; !/
d! D

Z
L.!/

@ ln f .�; !/

@�
f .�; !/d!

D E

�
L.!/

@ ln f .�; !/

@�

	
D E

h
L.!/S .1/.�; !/

i
(20.18)
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where S .1/ is called the efficient score function. Notice that multiplication and
division by f .�; !/ are necessary to obtain an expression that has the mathemat-
ical form of an expectation. The expectation form is convenient because it allows
the estimation of the desired quantity from simulated data by averaging it over a
given set of realizations. Therefore, (20.18) can be expressed as

dEŒL�

d�
D 1

N

NX

iD1

L.!i /S
.1/.�; !i / (20.19)

where N is the total number of simulations, and L.!i / and S .1/.�; !i / are particular
realizations of L.!/ and S .1/.�; !/; respectively. Though (20.19) is readily imple-
mentable, it usually does not result in the fastest possible convergence. Equation
(20.18) can be improved from a variance reduction perspective by exploiting the
ideas behind importance sampling. Specifically, by multiplying and dividing the in-
tegrand in (20.17) by g.!/; where g.!/ is a probability distribution whose support
(set of values of ! for which g.!/ is strictly greater than zero) is included in the
support of f .�; !/ for every � , the gradient of EŒL� can be expressed as

dEŒL�

d�
D
Z

L.!/
@W.�; !/

@�
dG.!/ D E

�
L.Z/

@W.�; Z/

@�

	
(20.20)

where G.!/ is the cumulative probability distribution of g.!/, W.�; !/ D
f .�; !/ = g.!/, Z is a random variable with density g.!/, and @W.�; Z/ = @� D
W.�; Z/S .1/.�; Z/. Notice that the change in the random variable is not more that a
change in notation to emphasize that the expectation is with respect to g.!/; instead
of f .�; !/: The estimator of the gradient in this case is given by

dEŒL�

d�
D 1

N

NX

iD1

L.Zi /W.�; Zi /S
.1/.�; Zi /: (20.21)

Though it is a common strategy to select g.!/ D f .�0; !/ for some fixed value �0,
the accuracy of the estimator is determined by its variance, which depends on g.!/.
Therefore, the selection of g.!/ and the calculation of the estimator’s variance are
integral parts of this technique. Rubinstein and Shapiro (1993) provide a complete
presentation of this methodology in the context of static as well as for dynamic
systems (e.g., queuing networks).

In terms of strengths and weaknesses, the use of gradients estimated with LR
for SA can result in very rapidly converging algorithms because LR exploits the
structure of the performance measure. However, it requires complete knowledge of
the density function of the uncertainties, careful selection of g.!/; and the satis-
faction of certain regularity conditions which guarantee the interchangeability of
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the differentiation and integration operators in (20.18). Specifically, a function h.!/

with finite Lebesgue integral that satisfies

jL.!/@f .�; !/ = @.!/j � h.!/ (20.22)

has to exist.
Finally, it is important to note that LR often works in systems where IPA fails

and can be more easily extended to higher derivative estimates for higher order
Newton-like methods than (20.3). However, when IPA works, the gradients usually
have much lower variances than those obtained with LR methods (Fu 1994).

Frequency Domain Analysis

Frequency domain analysis (FDA) estimates the gradient of the expected value
of the performance measure by using harmonic analysis. The method is based on
the idea that the change in the magnitude of the performance measure, caused by
perturbing the vector of decision variables � , with sinusoidal functions allows the
determination of the sensitivity of the system to each of those variables in a single
simulation. In theory, the use of distinct frequencies for �i makes possible the esti-
mation of each variable’s contribution to the performance measure. In this method,
� is perturbed according to

�.t/ D � C ˛ sin.wt/; (20.23)

where � is a vector of nominal values for the decision variables, ˛ is the vector of
oscillation amplitudes, w is the vector of oscillation frequencies, called the driving
frequencies, and t D 1; 2; : : : ; T is a “time” index. Notice that t is rarely the sim-
ulation time, instead it is a problem specific discrete label for the transient entities
processed through the simulation (e.g., number of customers).

Conceptually, the method exploits the orthogonality (i.e., if g and f are two func-
tions, they are orthogonal if

R b

a
f .x/g.x/dx D 0/ of the harmonic basis (i.e., sine

and cosine), to isolate the impact of each decision variable on the performance mea-
sure gradient. Specifically, the method assumes that the performance measure can be
approximated by a polynomial meta-model that can be transformed into a trigono-
metric (harmonic) one using (20.23). The polynomial meta-model is obtained by
assuming that the relationship between L and �.t/ can be locally approximated
around � by a second-order Taylor expansion:

L .t j�.t// D L.�/ C
pX

j D1

1X

�D�1
gj .�/.�j .t � �/ � �j /

C
pX

j D1

1X

�D�1
gjj.�/.�j .t � �/ � �j /2
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C
p�1X

j D1

pX

mDj C1

1X

�D�1

1X

�D�1
gjm.�; �/

�
�j .t � �/ � �j

�

�
�
�m.t � �/ � �m

�
C O

�


�.t/ � �





3

1

�
C " .t j�.t// (20.24)

where p is the number of decision variables; k � k1 the infinity norm, O.�/, the
order of magnitude of the error generated by the truncation of the Taylor series,
" .t j� .t// represents the stochastic part of the model, and g are the so called memory
filters that weight past values of �.t/. The Taylor expansion is advantageous as the
summations of filters in each term of (20.24) can be obtained through regression
analysis from simulation results, and can be associated with the gradient and higher
order differentials of the expected value of the performance measure, J.�/: The
relationship can be derived by setting �.t/ D � in (20.24) and differentiating it with
respect to the decision variables:

1X

�D�1
gj .�/ D @J.�/

@�j

;

1X

�D�1
gjj.�/ D @2J.�/

2@�2
j

;

1X

�D�1

1X

�D�1
gjm.�; �/ D @2J.�/

@�j @�m

(20.25)

It is important to note that the following three assumptions are behind this deriva-
tion: (1) ".t j� .t// has a stationary covariance (i.e., it is fixed for all t) with
mean 0, 2. The summation of covariances from all the time periods is bounded,
and (3) J.�/ is relatively smooth (i.e., twice continuously differentiable) (Ho and
Cao 1991).

By substituting (20.23) into (20.24), the following form of the meta-model is
obtained:

L .t j� .t// D L.�/ C
pX

j D1

1X

�D�1
gj .�/ aj sin

�
wj .t � �/

�

C
pX

j D1

1X

�D�1
gjj.�/a2

j sin2
�
wj .t � �/

�

C
p�1X

j D1

pX

mDj C1

1X

�D�1

1X

�D�1
gjm.�; �/ aj am sin

�
wj .t � �/

�

� sin .wm .t � �// C O

�


 Q�.t/ � �





3

1

�
C " .t j �.t// (20.26)
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where Q�.t/ � � D �
a1 sin .w1t/; a2 sin .w2t/; : : : ; ap sin .wpt /

�
: Equation (20.26)

can be further manipulated using trigonometric identities and some algebra to derive
the following more convenient form:

L
�
t j Q� .t/

�
D B.0/ C

pX

j D1

�
A.w j / sin .w j t / C B.w j / cos .w j t/

�

C
pX

j D1

�
A.2w j / sin .2w j t/ C B.2w j / cos .2w j t /

�

C
p�1X

j D1

pX

mDj C1

�
A.w j ˙ w m/ sin ..w j ˙ w m/t /

�C B.w j ˙ w m/

� cos..w j ˙ w m/t/ C O

�


 Q�.t/ � �





3

1

�
C ".t j Q� .t// (20.27)

where the coefficients A.w j /; A.2w j /; A.w j ˙ w m/; B.0/; B.w j /; B.2w j /;

and B.w j ˙ w m/ are in terms of the memory filters and sinusoidal functions; for

instance, A.w j / D a j

1P
�D�1

gj .�/ cos .w j �/: Therefore, by taking the limit as

w j ! 0 and using the results in (20.25) it can be proved that the gradient and higher
order derivatives of the performance measure can be obtained from the estimates of
these coefficients (Jacobson and Schruben 1999). Specifically, the estimate of the
ith component of the gradient has the following form:

@EŒL�

@�i

D 2

ai T

TX

tD1

L
�
�
�
t j Q� .t/

��
sin .w i t/; (20.28)

where i D 1; : : : ; p, and t j Q� .t/ denotes that L.�/ is sampled at each “time” t from
a simulation in which the input for the decision vector is given by (20.23). From a
theoretical perspective, the main advantage of the FDA method is the combination
of model independence (excluding the indexing issue) and minimum simulation re-
quirements. However, the determination of the specific values of the frequencies
wi is not a trivial task as they have to be selected in such a way that aliasing (i.e.,
the effect that causes different signals to become indistinguishable) is prevented,
and the need to make them tend to 0 (w ! 0) translates into very long simu-
lation horizons. In addition, the method is limited to systems in steady-state and
exhibits an unavoidable trade-off between the variance of the gradient estimator (the
larger ˛ the better) and its bias (the smaller ˛ the better) (Jacobson and Schruben
1999).

Finally, regarding the indexing issue, it is important to note that although simple
indices based on the concept of transient entities processed are limited to very simple
systems (Fu 1994), Hazra et al. (1997) have suggested a strategy to discretize the
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global simulation clock of the simulation and used it as a “time” index that can fit
any kind of system. However, this approach can be difficult, if not impossible, to
implement in some commercially available discrete event simulation software.

20.2.3.2 Response Surface Methodology (RSM)

RSM encompasses two types of strategies. The first consists of the use of regres-
sion techniques to construct an approximate functional relationship (meta-model)
between the decision variables and the performance measure that fits the entire de-
cision space, ‚; or a subset of ‚, and the subsequent use of optimization methods
on the meta-model to analytically estimate an optimum (Wan and coworkers (2006)
provide an example of this technique in the context of the pharmaceutical industry).
The second strategy, known as sequential RSM, follows a philosophy similar to SA,
consisting of three steps that are repeated iteratively until a convergence criterion is
satisfied. First, a meta-model in the region surrounding the decision vector obtained
in the previous iteration is constructed. Next, the meta-model is differentiated to
obtain a functional form of the gradient, and substituted into

�nC1 D �n � an
OrJ.�n/: (20.29)

Finally, the next iterate for the decision vector is computed from (20.29) through a
line search. In spite of the similarities between sequential RSM and the SA meth-
ods discussed above, RSM differs due to its inability to mathematically show an
asymptotical convergence, and the use of functional forms for the gradient instead
of numerical values.

In the literature, the most commonly found RSM algorithm is a mix of the two
philosophies described above, which uses a two-phase design of experiments based
polynomial regression strategy (Fu 1994). In Phase I, first-order experimental de-
signs (i.e., consider only linear (main) effects) are used iteratively until the linear
response surface becomes inadequate (i.e., the interaction effects become larger
than the main effects), while in Phase II, a quadratic response surface (fitted us-
ing second-order experimental designs) of the area identified in Phase I is used to
analytically determine the optimum.

The most important considerations in the implementation of any RSM method
are the inclusion of variance reduction techniques (e.g., common random variables,
control random variables, etc.) and the selection of the experimental designs. Every
type of design provides a different trade-off between variance (due to sample vari-
ation) and bias (due to poor model fit), which results in a particular performance
of the algorithm. Jacobson and Schruben (1989), Safizadeh (1990) and Kleijnen in
Banks (1998) provide an exhaustive set of references for RSM strategies, including
algorithms that allow the inclusion of deterministic constraints.

The attractiveness of conventional RSM methods is rooted in their applicability
to any kind of system. However, its “black box” nature that does not allow rigorous
convergence analysis, its typical blind search of the solution space (which usually
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leads to the excessive use of simulation runs in unimportant areas), and the limited
ability of low-degree polynomials to fit complex functions (which can provide poor
results when the performance measure is represented by functions with sharp ridges
and flat valleys (Azadivar 1999)) has limited its use to simple problems. Though
the last two shortcomings have been addressed with the use of better model fitting
methods (e.g., Wan et al. (2005) show that RSM may perform considerably better
than SPA when support vector machines are used for model regression), these tech-
niques are considerably more involved from a statistical perspective than traditional
regression techniques.

20.2.3.3 Sample Path Optimization (SPO)

Conceptually, the methods in this class use an approach similar to the first type of
RSM strategy described above. Specifically, the system is sampled multiple times,
and the information collected is used to generate a functional approximation of the
performance measure that is optimized using deterministic optimization tools. The
main difference between SPO and RSM is that the latter uses regression techniques
to obtain the functional approximation, whereas the first uses an explicit model ob-
tained from first principles (like IPA and LR), or completely avoids the need for an
explicit model by exploiting the structure of the problem. Though there are no spe-
cific rules to derive the explicit model (the key step in SPO), the basic idea is to be
able to generate expressions in which the expected value of the performance mea-
sure is explicitly represented in terms of decision variables and random variables
independent of the decision variables:

OJ .�/ D 1

N

NX

iD1

h.�; �i /; (20.30)

where N is the number of simulations and �i the i th realization of the � independent
random variables. In some cases, a model with this kind of structure can be directly
derived, but in most of real-world problems that is not possible. Therefore, similar
to that in IPA, transformations have to be implemented to obtain objective functions
with underlying random variables independent of � . This means that any model
suitable for IPA can be solved with SPO. Alternatively, for some problems in which
the effect of the decision variables only enters the problem through the distribution
of the underlying random variables, approximations based on likelihood ratios and
importance sampling have been developed to obtain the required functional form
of the performance measure (e.g., Banks (1998), Rubinstein and Shapiro (1993),
and Shapiro (1996) and references therein). Finally, in some cases it is possible to
develop routines that do not require the derivation of an explicit model. A very sim-
ple example of this subgroup of problems is the allocation of a fixed amount of
buffer space among a group of servers such that the time to overflow the system
is maximized. The SPO strategy is to run the simulation multiple times with the



20 Simulation-Optimization in Support of Tactical and Strategic Enterprise Decisions 611

buffers between the servers unconstrained until the total availability of buffer space
is exhausted and then to chose the most frequent allocation. Healy and Fu (1992,
1997) and Healy and Schruben (1991) provide a complete presentation of this ex-
ample and more involved problems, including cases with discrete decision spaces.

In general, SPO has several important advantages, which are as follows: (1) the
strategy that uses explicit models can deal with problems in which the decision
variables are subject to constraints of the type E Œk.�/� < 0, where k.�/ can be
derived in the same way as the performance measure, (2) it can be easily imple-
mented in commercial simulators, due to its modularity (i.e., first simulation and
second optimization), and (3) it can be applied to some problems with discrete de-
cision spaces. However, it also has considerable limitations such as the following:
(1) it is restricted to systems that have reached a steady state, (2) it usually requires
a lot more evaluations than SA (Azadivar 1999; Fu and Healy 1992), (3) similar to
IPA and LR, it is problem-specific (due to the need explicit models), (4) its effec-
tiveness is highly dependent on the ability to develop explicit models that allow the
calculation of first- and second-order derivatives (usually required by deterministic
nonlinear optimization techniques), and (5) The solutions provided by SPO methods
may not be optimal as this technique solves the problem: EŒmin

�2‚
L.�; !/� instead of

the desired problem: min
�2‚

E ŒL.�; !/�.

20.2.4 Metaheuristics

A metaheuristic is a general framework consisting of black-box procedures that can
be applied to different kinds of problems without significant changes. The applica-
bility of these techniques to problems with continuous or discrete decision spaces is
dictated by the particular structure of the method and the way in which it is adapted
to the problem at hand. Metaheuristics are the dominant strategies used in commer-
cial optimization software for simulation optimization (Fu 2002), as well as in the
solution of large-scale problems. This is due to the fact that many of the methods
mentioned above are model-dependent and/or require a high level of expertise for
their implementation. In this section, we provide a short description of the meta-
heuristics available for simulation optimization and a set of relevant references.
Special attention is given to the most commonly used methods, genetic algorithms
(GA), tabu search (TS), and scatter search (SS).

20.2.4.1 Pattern Search

Pattern search methods are sequential algorithms that move from iteration to itera-
tion based on some characteristic or pattern in the observations, instead of relying
on gradients or randomization. Conceptually, these techniques try to use some form
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of memory but at a very basic level and are mentioned here mostly for historical
purposes. The most important techniques in this class are:

1. The Hooke and Jeeves method (1961), which is based on the idea that if a direc-
tion has produced an improvement in the estimated performance measure, then
one should continue moving in that direction,

2. The simplex method (Jacobson and Schruben 1989) and references therein),
not to be confused with the classical algorithm for linear programming, which
compares the estimated performance measures from an initial set of possible so-
lutions, eliminates the worst performer, and replaces it by a new one determined
by the centroid of the remaining solutions, and

3. The complex method (Azadivar (1999) and references therein), which is the sim-
plex method modified to handle constrained problems.

20.2.4.2 Genetic Algorithms (GA)

The set of GA is one of a class of algorithms inspired by the biological principles of
evolution known as evolutionary algorithms. This technique searches for the optimal
decision vector, � , based on a performance measure (fitness function, in GA termi-
nology), by iteratively updating a population of good decision vectors. The decision
vector associated with each member of the population is encoded as a string of sym-
bols (genes) that form a chromosome, and is generated from the members of the
population in the previous iteration through random genetic operators (Sect. 20.3.2
provides a specific example). In general, the algorithm can be described as follows:

Step 1. Initialize the population with a set of members generated using previous
knowledge of the problem and/or a random process, and estimate their
performance according to the chosen fitness function. The number of simu-
lations required for the estimation of the performance measure is determined
by a stopping criterion such as confidence intervals, convergence efficiency,
or computational budget.

Step 2. Create new chromosomes (reproduction) by using genetic operators. The
best known operators are crossover and mutation. Crossover consists in the
random exchange between two members (parents) of part of their chromo-
somes, and mutation is a random alteration of some of the genes in a given
member.

Step 3. Estimate the fitness function of the newly created chromosomes and select
from this group and the population in the previous iteration (generation) the
members of the next generation based on the superiority of their estimated
performance measures.

Step 4. Check for “convergence”: stop or go to Step 2. Genetic algorithms are not
guaranteed to converge; therefore, the definite termination condition is usu-
ally specified as a maximal number of generations or an acceptable fitness
level for the best individual.
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It is important to note that though the general structure of the algorithm always
follows these steps, specific procedures for encoding, initialization, reproduction,
and selection can be chosen based on the problem at hand to enhance the perfor-
mance of the algorithm. Reeves and Rowe (2003) provide an excellent guide to the
GA technique.

20.2.4.3 Scatter Search (SS)

Similar to GA, scatter search is a population-based evolutionary algorithm. How-
ever, it uses a completely different approach for the generation of new population
members (decision vectors). Specifically, the members of the population (called the
reference set) are combined in a systematic way, instead of randomly. The combi-
nation strategies are generalized forms of linear combinations that consider at least
all pairs of members in the reference set. SS also differs from GA in the size of the
population; reference sets tend to be small compared with the populations used in
GA. In general, SS algorithms can be described as follows (Laguna 2003):

Step 1. Generate a starting set of decision vectors as diverse as possible and apply
heuristics to these vectors in an attempt to improve their performance. From
the resulting population, choose the vectors with the best estimated perfor-
mance to be part of the initial reference set. Notice that the notion of “best”
is not only limited to the value of the performance measure; a solution may
be added to the reference set if it improves the diversity of the set, regardless
of the performance measure.

Step 2. Create new members consisting of systematic generalized linear combina-
tions of two or more members of the current reference set.

Step 3. Apply the heuristic process used in Step 1 to improve the members created
in Step 2.

Step 4. Extract a collection of the “best” improved solutions from Step 3 and use
them to replace the worst performing members in the reference set. If the
reference set does not change, stop. Otherwise go to step 2.

Laguna (2003) provides a complete presentation of this methodology, including
the different member combination strategies available and their suitability according
to the type of problem at hand.

20.2.4.4 Tabu Search (TS)

As in random search (Sect. 20.2.2.1), TS explores the solution space by moving suc-
cessively from one feasible solution to a neighboring one. However, instead of using
probabilistic arguments to guide the search, it uses a strategy based on the ideas of
adaptive memory and responsive exploration. This means that TS redefines the solu-
tion neighborhood at each iteration based on the information previously collected to
avoid visiting already explored areas or areas characterize by poor performance.
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The method accomplishes this by selecting certain attributes or combination of
attributes that cannot be part of the new solutions (are tabu). The memory structure
used in TS uses two types of information, namely, explicit and attributive. The ex-
plicit part is captured by recording good solutions or highly attractive but unexplored
neighborhoods of those good solutions; while the attributive part records informa-
tion about solution attributes that change in going from one solution to another (e.g.,
increase in the risk level of a portfolio of projects). Glover and Laguna (1997) pro-
vide an exhaustive presentation of the concepts and applications of TS.

20.2.5 Other Methods

In addition to the methods just described, there are simulation-optimization tech-
niques which, in spite of not being widely used at present, could be viable options
for specific problems or could become so as they are further developed. This group
of methods includes neural networks (Glover et al. 1999), branch and bound for dis-
crete systems (Norkin et al. 1998), nested partitions (Shi and Olafsson 2000), and
the collection of algorithms known as model-based methods. Model-based methods,
instead of generating actual solutions, construct probability distributions for the so-
lution space that can be used to estimate where the best solutions are located. The
following techniques belong to this group: swarm intelligence, estimation of dis-
tribution algorithms (EDAs), the cross-entropy (CE) method and model reference
adaptive search (Fu et al. 2005).

20.3 Two Industrial Problems

In this section two case studies based on actual industrial problems are presented
to illustrate the potential of simulation optimization as a decision support tool. The
presentation of each case study includes a short description of the problem, a dis-
cussion supporting the selection of a specific simulation-optimization method, and
a summary of the implementation of the method and the results obtained.

20.3.1 Inventory Management

Any enterprise that manufactures products faces uncertainties in a range of factors
such as demand, prices and availability of raw materials, production lead times, cur-
rency exchange variability, etc. Some of these factors directly affect the profitability
of the enterprise by limiting the operating margins, while others have an indirect
impact such as inability to meet customer needs or the accumulation of excess in-
ventory. The inability to meet customer needs results in both loss of “here and now”
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and long-term profit as poorly served customers may not come back. Therefore, in
any industrial setting, customer satisfaction level (CSL; the expected value of the
ability to meet customer demand) is recognized as an important performance mea-
sure. A high level of customer satisfaction can be achieved by maintaining high
inventories to hedge against uncertainty (e.g., fluctuations in demand or availabil-
ity of raw material). However, additional inventory entails increased holding cost
(including opportunity cost of invested capital and warehouse space). Decision mak-
ers attempt to minimize the impact of this trade-off between customer satisfaction
and inventory holding cost on the profitability of the enterprise by specifying differ-
ent safety stock levels for each product across the supply chain.

A great deal of work has been done to develop analytical strategies that allow
the determination of the optimal allocation of safety stocks (Jung et al. 2004). How-
ever, those strategies fall short when the enterprise manufactures multiple products
that share production facilities with limited capacity and scheduling constraints, ex-
perience significant queue effects and lead times, and faces uncertain demand from
several customers. This kind of environment is common to many industrial and phar-
maceutical manufacturers, including the particular case we were confronted with.

We looked into the operation of the supply chain of a major US polyethylene
producer whose main source of uncertainty is demand and who wanted to reach
specific levels of customer satisfaction. The company uses a decision-making strat-
egy in which CSLs are specified by top management according to certain strategic
considerations and aggregated data, while minimization of the cost of delivering the
products is left to planners and the people in operations. Thus, the problem to be
addressed is the determination of how much, where and when to produce, and the
safety stock levels for each product. The company has two production sites, which
have different layouts and capacities that directly supply the seven sales regions into
which USA is divided. It produces five types of polyethylene (A, B, C, D, and E) in
ten different grades (0–9), in two types of packaging (box or bag) for a total of 100
(5 types � 10 grades � 2 packages) stock keeping units (SKUs). The demand for
each SKU is characterized as a normal distribution, whose mean value changes on
a weekly basis according to internal forecasting models.

The first step in developing a simulation-optimization strategy for a problem is
to determine which group of techniques (continuous or discrete, and small or large
number of feasible solutions) is appropriate according to the characteristics of the
solution space and the limitations of each method. In this case, it is clear that the
inventory levels can take any integer value, which due to the combinatorial nature
of the problem rules out any of the algorithms that fall under the “small number of
discrete feasible solutions” class. The discrete character of the decision space could
be also used to disregard the methods for systems with continuous decision spaces,
but the levels of inventories required by an operation like the one here considered
are high enough that the use of such techniques in conjunction with rounding needs
to be considered as they may provide near optimal solutions. In the remaining class,
“large number of discrete feasible solutions,” ordinal optimization and SPO can
be ignored. The first method is disregarded due to the size of the decision space,
and the second due to our inability to develop an explicit model that characterizes
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the performance measure (customer service level). The lack of an explicit model
is also the reason to disregard the methods for continuous decision spaces SACPA
and SACLR. The SACFDA also has to be disregarded as it requires the system
to reach steady state, a condition that is not achievable in this problem due to the
seasonal demand fluctuations. This leaves us with the following set of potential
solution methods: random search, SACFD, SACRSM, metaheuristics, and any of
these four methods in combination with one of the methods under the “small number
of discrete feasible solutions” class.

Once the options have been narrowed down based on the solution space and the
limitations of the methods, the selection process has to be driven by the strengths
of the remaining options with regard to the problem at hand. For the problem con-
sidered here it is important to understand the connection between CSL, defined as
service level, the production strategy, and the safety stock level of a product under
uncertain demand. Over a given range of demand variance there are three possible
operational regimes. In regime I, production facilities have sufficient spare capac-
ity to cope with any change in demand. Therefore, in this regime, a relatively low
or even zero safety stock level may be sufficient to achieve the desired customer
satisfaction. In regime II, the production capacity maybe quite strained when the
demand for different products spike at some point in time. In this regime, if there
is not enough safety stock, the CSL for some products sharing production facilities
may fail to reach their target values. Finally, in regime III, the capacity available
cannot satisfy the combined expected demands of the different products. In this
regime, the safety stock and production resources must be assigned strategically
to meet the demands of some customers in preference to the others. For the prob-
lem at hand, the sites owned by the company have enough capacity to operate in
regimes I and II. This means that no customer priority has to be used to allocate
production capacity and therefore any desired level of inventory for each product is
realizable. Notice that this condition and the hierarchical decision-making strategy
used by the company (i.e., tactical decisions such as service level dictate opera-
tional goals) allows for the use of a decomposition strategy. The idea is to use a
multilevel optimization approach instead of an integrated approach in which pro-
duction quantities along the time horizon and safety inventory levels are considered
together in a massive stochastic program. The multilevel strategy is composed of a
simulation-optimization strategy that determines the optimal stock levels based on
long-term customer satisfaction, and deterministic (expected values) rolling horizon
planning and scheduling optimizations, embedded in the simulation, which allo-
cate production resources by minimizing cost. Figure 20.2a illustrates the “outer”
optimization on the safety stock levels, and Fig. 20.2b the inner problem in which
the simulation of the system constantly interacts with the planning and schedul-
ing models in a rolling horizon fashion. The planning model is formulated as an
LP for a 3-month horizon that takes into account production, transportation, inven-
tory holding, and shortage costs; whereas the schedule is generated for 40 days
using the VirtECS scheduling software (Advanced Process Combinatorics Inc.,
2004).
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Fig. 20.2 Configuration of simulation and optimization strategies

The outer optimization problem can be mathematically represented as follows:

min
�
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where �i is the penalty for missing the target CSL for product i, � D .�11; : : : ; �is/

is the decision vector including the safety stock levels of each product i in each
production facility s, Li .�/ is the CSL (expected value of the probability of fully
meeting every demand for product i), and L�

i .�/ is the deviation with respect to
the target CSL, L

target
i : Notice that the CSLs are the only variables in the objective

function (20.31). This condition combined with the fact that the level of customer
satisfaction is a monotonic increasing function of � (the larger the safety stock the
higher the customer satisfaction), implies that the best local adjustment to each
decision variable has to be inversely proportional to the magnitude of the penalty
resulting from deviating from the target CSL, �i

ˇ̌
L�

i .�/
ˇ̌
. Though the adjustment

is local in the sense that it does not consider the effects and constraints associ-
ated with the embedded planning and scheduling problems, the monotonic nature
of CSL(�) guarantees convergence to a global optimal solution if the estimator of
Li .�/ is unbiased. Therefore, an efficient simulation-optimization strategy for this
problem should be capable of exploiting the fact that if the performance measure
improves in a particular direction, then one should continue moving in that direc-
tion. The only method in the shortlisted group capable of doing that is the pattern
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search metaheuristic. This metaheuristic was then selected and implemented in the
recursive algorithm below:

Step 1. Initialize safety stock levels, �n
is , where n D 0 for all i and s

Step 2. Estimate Ji .�n/ and L�
i .�n/ using simulation

Step 3. Check for convergence of the estimated performance measure - ifˇ̌
ˇ OJ .�n/ � OJ .�n�1/

ˇ̌
ˇ � " stop. Otherwise, continue

Step 4. Calculate the new safety stock level

�nC1
is D �n

is C ˛ˇis

�
�i

OL�
i .�/

�

where ˛ is a step size factor that can be adjusted by trial and error, and ˇis

is the distribution factor, which represents the ratio of product supply from
each production site in the previous iteration

Step 5. Check for convergence, if
ˇ̌
ˇ OJ .�n/ � OJ .�n�1/

ˇ̌
ˇ � " stop. Otherwise, go to

Step 2.

The algorithm was used to solve a case in which the coefficient of variation of the
different demands was assumed to be 30%. Figure 20.3, where Ai � x denotes the
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final product of type A and grade i packaged in facility x, shows the iterative process
for the safety stocks of the type A products in one of the production facilities when
the starting values are zero. It is important to note that four products, A0-bag, A0-
box, A1-box, and A1-bag, make up 80% of the demand for type A and the rest, from
A2-bag to A9-box, make up the remaining 20% (the same is true for the rest of the
polyethylene types). As expected, the products with a larger demand need higher
safety stocks in order to cope with the 30% variability. Figure 20.4 summarizes the
estimated CSLs without safety stock, OLi .�0/, and after nine iterations of the algo-
rithm OLi .�9/, showing the efficiency of the computational framework in solving
the outer optimization problem. Notice that the change is more pronounced in the
group of major products (the first four type-grade-package triplets that take 80%
of the demand) which go from the 0.6–0.8 range to levels very close to the 0.95
target, and in some of the minor products that show lower CSLs in the presence
of safety stock. The latter counterintuitive result can be attributed to the additional
strain imposed on production by the increase in the safety stock levels of the major
products.

20.3.2 Portfolio Selection of New Compounds to be Developed
in the Pharmaceutical Industry

The hierarchical decision-making strategy mentioned in the previous problem
is not only used when dealing with tactical (e.g., set service level) and opera-
tional decisions (e.g., set safety stock levels), but also when strategic decisions
need to be made. This means that strategic decisions are usually made based on
aggregated data, representing the capacity of the organization at lower levels,
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and those decisions are pushed down as fixed goals. Though such a hierarchical
approach provides solutions close to the optimal one when the system has low levels
of uncertainty; that is rarely the case in highly uncertain and constrained environ-
ments. A good solution at the tactical and operational levels can be obtained for
the specific goals dictated by the strategic decision makers, but the quality of these
goals with respect to the attainable optimum remains unknown. Such a situation
does arise in the context of pharmaceutical products development.

The selection of a portfolio of drugs to be developed is a strategic decision that
has uncertain financial implications on the order of billions of dollars which are
only realized over the long term (decades). This decision-making process is further
complicated by the low probability of success of new compounds (high attrition
rates), unpredictable changes in regulations, technologies and health trends, depen-
dencies between projects (drugs) from a variety of perspectives, uncertainties in
terms of duration and cost in each stage of the development process, and limited
human and capital resources. In addition, as in any other kind of portfolio there
are solutions that have the same exposure to risk, but a different level of rewards.
Therefore, the problem to be addressed consists in choosing a prioritized portfo-
lio on the reward-risk-efficient frontier (i.e., the portfolios with the maximum level
of rewards for a given level of risk) for the level of risk considered acceptable by
the enterprise. Notice that such a selection, in addition to being influenced by all the
uncertainties mentioned above, is constrained by the limited amount of renewable
(e.g., equipment) and nonrenewable resources (e.g., budget for clinical trials), and
the strategies used by decision makers at the tactical and operational levels to allo-
cate them. Therefore, the optimization strategy has to be able to capture the impact
of these constraints on the behavior of the system.

There are three major stages in the lifecycle of a new drug, which are: discovery,
development and commercialization. The discovery stage tends to be highly un-
predictable and case specific, while the other two follow a well-defined path. This
situation, coupled with the limited availability of the renewable and nonrenewable
resources necessary to simultaneously develop all the compounds rated as promising
by discovery (lead molecules), has directed all the attention, from a modeling and
optimization perspective, to the development and commercialization stages. Once a
molecule is promoted to the status of a lead molecule, it goes through a network of
tasks similar to that shown in Fig. 20.5. Though small variations in the drug devel-
opment lifecycle occur from company to company, Fig. 20.5 depicts a fairly realistic
model of what happens in this kind of industry. In the figure, tasks are represented
by rectangles, while decision points are presented as diamonds. In general, these
tasks can be classified into two groups, evaluation and commercialization, and man-
ufacturing. The purpose of the tasks in the first group (upper row in Fig. 20.5) is to
determine the safety and efficacy of the drug and satisfy all requirements to make it
commercially available if these two aspects are favorable. The second group (lower
row in Fig. 20.5) encompasses all the tasks necessary to scale up the laboratory pro-
cedures into commercial size manufacturing facilities. A complete explanation of
the activities covered by each task can be found in Blau et al. (2004). We examined
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the portfolio of a US-based pharmaceutical company that had a total of nine lead
compounds with a 20-year patent protection whose development process can be ap-
proximated by the model in Fig. 20.5.

As in the previous case study, the first step in determining a suitable simulation-
optimization method for the problem is to narrow down the options based on the
characteristics of the solution space. The fact that a group of compounds and
their corresponding priorities need to be selected from a finite set eliminates all
techniques under the “continuous decision space” class. The number of potential
strategies can be further reduced by taking into account the combinatorial nature of
the problem. The nine compounds and their priorities can be mixed and matched
into almost one million different permutations, ruling out any strategy in the “small
number of feasible solutions” class, and ordinal optimization. SPO is also disre-
garded due to our inability to develop a model that characterizes the performance
measure in terms of the decision variables. This leave us with the following set of
potential strategies: random search, metaheuristics, and any of these two in combi-
nation with one of the methods under “small number of discrete feasible solutions.”
The final choice of a method is driven by the strengths of the remaining options
relative to the problem at hand. In portfolio problems, the desired outcome is not
just a single optimal point but a characterization of the efficient reward-risk fron-
tier. Hence, the use of a random search method, though feasible, would be highly
inefficient as it would be necessary to run it multiple times to construct the efficient
frontier. With this point of departure, a trial and error process was implemented to
find a metaheuristic capable of solving the problem. Tabu search was examined, but
was discarded as it was not possible to stop the method from getting stuck in certain
areas of the solution space. In the second iteration, a GA was tested with excellent
results. This method was selected not only because it provided the desired output
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(i.e., an efficient frontier), but also because it allowed a natural representation for
the decision variable, a vector of prioritized projects. There is currently no formal
structured way to select a metaheuristic; it is more an art than a science. Though
some directions are provided in the references provided in this chapter, the black
box nature of these approaches makes their performance unpredictable.

Before describing the GA in detail, it is important to point out the modeling
assumptions and simplifications used in the case study. The model only consid-
ers the uncertainty generated by the probabilities of success/failure at the end of
the clinical trials, which are modeled by Bernoulli distributions. The rest of the
potentially uncertain variables (costs, sales per year, and task durations) are ap-
proximated with their mean values. These model simplifications were necessary not
due to limitations in the optimization framework but due to the lack of reliable in-
formation to characterize those uncertainties. The model also captures four types
of dependencies between projects, which are as follows: (1) resource dependen-
cies, (2) manufacturing cost dependencies, (3) financial return dependencies, and
(4) technical success dependencies. Learning curve effects frequently lead to re-
source dependencies. A common example occurs when the development times are
reduced for the trailing candidate of two functionally similar drug types. Cost de-
pendencies occur when the combined cost of a development activity for two drug
candidates is less than the sum of their individual costs because of resource shar-
ing. For example, it may be possible to use the same production facilities for two
chemically or biologically similar drug candidates. Financial return dependencies
occur when there is synergism or competition in the marketplace. For example,
cannibalization can occur when two drug candidates are aimed at developing prod-
ucts that compete with each other in the marketplace. Technical dependencies occur
when the technical success or failure of a drug candidate affects the probability of
technical success of an as-yet-untested trailing drug candidate. For example, two
drug candidates might be developed to release an active ingredient in a controlled
fashion. If the precedent candidate is successful, the probability of success of the
as-yet-untested second candidate will be increased. The specific realizations of the
dependencies considered in this problem are described by Blau et al. (2004).

The final consideration for the model is the representation of the strategy used to
allocate and reallocate resources after a project failure and at the end of each year.
The resource allocation policies were obtained following the framework conceived
by Varma (2005), which uses a simulation of the task network in Fig. 20.5 and an
observer. The simulation includes an integer program (IP) for short-term resource al-
location that can assign three different levels of resources (associated with specific
durations) to each task, namely, most likely (ML) value, and a certain percentage
below and above of the most likely value. The observer tallies each of the outputs
from the IP and determines the allocation policies by relating the most frequent de-
cisions observed to the corresponding realization of the pipeline state space. This
minimizes the size of the state space (composition of the portfolio and development
stage of each compound) while keeping as much information as possible by break-
ing it into drug states Si D fDSi ; NLEVi ; NHEVi g, where DSi is the development
stage of drug i, NLVEi, the number of drugs having lower expected value than drug
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i in the same development stage, and NHEVi is the number of drugs having a higher
expected value than drug i in the same development stage.

The optimization problem to be solved by the GA can be mathematically ex-
pressed for the specific case in which rewards are measured by the expected
positive net present value (EPNPV) and risk by the probability of losing money
.P .NPV.�/ < 0// as:

min
�

J .�/ D EPNPV .�/ (20.33)

subject to

P.NPV.�/ < 0/ < ˇ (20.34)

where NPV is the net present value, � is the prioritized portfolio of drugs, and ˇ is
the upper bound for the probability of losing money that needs to be varied in the
.0; 1/ interval to obtain the efficient frontier.

The GA is encoded such that each gene contains the number of a drug candidate
(with 0 indicating that a project was not selected), and its position in the chromo-
some represents the priority given to the compound. For example, the chromosome
203000400 corresponds to a portfolio that consists of three compounds: 2, 3 and 4,
of which compound 2 has the highest priority. A fitness function Zk of the following
form is used:

Zk D ˛

�
EPNPVk � EPNPVmin

EPNPVmax � EPNPVmin C 	

�
C .1 � ˛/

�
Riskmax � Riskk

Riskmax � Riskmin C 	

�

(20.35)

where EPNPVmin and EPNPVmax are the minimum and maximum expected pos-
itive net present values, respectively, in the current population; Riskmin and Riskmax

are the maximum and minimum risk levels in the current population, measured as
the probability of losing money, 	 is a small positive number that prevents division
by zero, and ˛ weights the present value vs. the level of risk in a convex linear
combination. The GA proceeds to find chromosomes that improve the fitness func-
tion by generating new chromosomes through the use of some genetic operators and
estimating the fitness function values using simulations of the model in Fig. 20.5
(Zapata et al. 2008). Notice that the NPV and PNPV for each simulation can be
calculated from the discounted development costs accumulated as the compounds
move through the pipeline and the returns realized when the drug hits the market.

The GA was run for different percentages of the amount of resources that can
be allocated above or below the ML value, including a base case in which real-
location of resources was implemented based on the original priorities given by
the GA sequence (i.e., no information about realized uncertainties and the state
of the pipeline is used) and no flexibility in the quantity of resources was consid-
ered. Figure 20.6 presents the results for the base case. All the points corresponding
to the maximum EPNPV for a given level of risk are linked to form an approxi-
mate reward-risk-efficient frontier. At first sight, it looks like its shape reflects the
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general form found by Markowitz in financial portfolios (Luenberger 1998), but a
closer look reveals that the direct correlation between rewards and risk is violated
in the middle section; the depression in the efficient frontier implies that there are
efficient portfolios which bear more risk but result in lower rewards). This coun-
terintuitive result was not observed when flexibility in allocating resources was
considered. Figure 20.7 shows the dominating portfolios for the three different dy-
namic resource allocation cases considered. The compositions of the portfolios on
the efficient frontier in the base case and those with dynamic resource allocation
are remarkably different in the region where the depression is found. These re-
sults are significant as they reveal that it is not possible to decouple the strategic
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and tactical decision-making processes without becoming substantially suboptimal.
Therefore simulation-optimization strategies like the one here presented are essen-
tial to be able to accurately model the system and optimize it to improve the quality
of the decisions made.

However, it is important to highlight that the computational burden required to
solve the problem was very high. It took between 3 and 5 days on a 64 bit Sun-Sparc
Ultra-Enterprise with 25, 400 MHz processors, and 8 M CPU cache per processor to
run each case. This burden is bearable if we consider that these kinds of decisions are
commonly made every 6 months, but would be unacceptable in a decision-making
process that has to be repeated with a much greater frequency.

20.4 Conclusions

A summary of the simulation-optimization methods currently available was pro-
vided. Our discussion was organized by classifying methods into those intended
for small discrete, large discrete, and continuous decision spaces. In the first cat-
egory, the number of feasible solutions is small and therefore the focus of the
methods is on the exhaustive comparison of possible solutions through statistical
inference. The size of large discrete and continuous decision spaces shifts the focus
to methods based on search algorithms, with the exception of ordinal optimiza-
tion that uses statistical inference to exhaustively compare possible solutions. The
majority of the methods in these two categories are model-independent and there-
fore can be applied to any problem. However, this very advantage is responsible
for slow convergence rates (random search), unpredictable convergences (RSM and
metaheuristics), and high computational burden (SA with FD and RSM). Though in
principle two methods, SA with SP (for any system) and SA with FDA (for systems
in steady state), are immune to these issues, the difficulty in parameterizing them
results for the most part in slow convergence rates during execution. By contrast,
the three model-dependent methods, SA with PA and LR and some types of SPO,
tend to exhibit a faster convergence but are applicable to a limited number of very
simple problems. At the end, the selection of a method for most problems is more
an art than a science and requires a significant amount of trial and error. This situa-
tion has led practitioners to mainly use metaheuristics (especially GA and SS) and
RSM due to their flexibility to accommodate any type of problem and their relative
simplicity.

The chapter also presented two industrial case studies, in which simulation-
optimization methods were successfully used. The case studies served to illustrate
not only the implementation of a few methods, but also to highlight some of the
considerations that are relevant in the selection of a method. From these case stud-
ies and the initial discussion in this chapter is evident that simulation optimization
is the right tool to support several complex industrial decision-making processes.
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However, in general, simulation optimization requires a significant level of technical
sophistication from the user, especially in the area of statistics, as well as large
amounts of computational resources.
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Özer, Ö., 96, 323, 328, 330–335, 338–343,

345–350, 352–361
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