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Preface

The generalized area of multiple criteria decision making (MCDM) can
be defined as the body of methods and procedures by which the concern
for multiple conflicting criteria can be formally incorporated into the
analytical process. MCDM consists mostly of two branches, multiple
criteria optimization and multi-criteria decision analysis (MCDA). While
MCDA is typically concerned with multiple criteria problems that have
a small number of alternatives often in an environment of uncertainty
(location of an airport, type of drug rehabilitation program), multiple
criteria optimization is typically directed at problems formulated within
a mathematical programming framework, but with a stack of objectives
instead of just one (river basin management, engineering component
design, product distribution). It is about the most modern treatment of
multiple criteria optimization that this book is concerned.

I look at this book as a nicely organized and well-rounded presentation
of what I view as ”new wave” topics in multiple criteria optimization.
Looking back to the origins of MCDM, most people agree that it was
not until about the early 1970s that multiple criteria optimization con-
gealed as a field. At this time, and for about the following fifteen years,
the focus was on theories of multiple objective linear programming that
subsume conventional (single criterion) linear programming, algorithms
for characterizing the efficient set, theoretical vector-maximum devel-
opments, and interactive procedures. While much important work still
needs to be done in these areas, since about the early 1990s a new wave
of innovative ideas has begun to overlay the field. Included among these
are fuzzy multiple objective programming, multiple criteria heuristics,
evolutionary algorithms in multiple criteria optimization, multiple crite-
ria applications in scheduling, and the integration of data envelopment
analysis from economics into the MCDM picture. Moreover, there have
been recent advancements that have broken through the difficulties that
had been holding back areas such as in interactive nonlinear procedures
and multiple criteria combinatorial optimization, thus now allowing new
bursts in progress on these topics. Capturing these latest ideas and



advancements in the unique bibliographic/source-literature style of this
book, the book should well serve researchers as a comprehensive refer-
ence volume and teachers with an ideal text for courses at the advanced
undergraduate and graduate levels in which research is a focus.

Other aspects of multiple criteria optimization that are reflected across
this book are that the contributions that have built and continue to
sustain the field have come not only from a cross-section of disciplines
(mathematics, engineering, computers, business, operational research,
environmental studies), but also from nations all over the world. We see
this from the affiliations and nationalities of the authors of the papers
listed in the comprehensive bibliographies at the ends of the chapters
as well as from the authors of the chapter contributions to this volume.
In my mind, it is indeed the blend of multidisciplinary and multicul-
tural ideas and perspectives that makes multiple criteria optimization
in general, and this book in particular, so intriguing, fascinating and
rewarding to study. I hope you feel the same and welcome to the new
face of multiple criteria optimization as presented by this book.

Ralph E. Steuer
Athens, Georgia

xiv MULTIPLE CRITERIA OPTIMIZATION



Introduction

Matthias Ehrgott, Xavier Gandibleux

Human beings constantly make decisions. By adopting an optimizing
behavior, their desire is to perform a given task in the best possible way
with respect to some unique criterion to minimize costs or maximize
benefits. In an economic environment this might be, e.g., cost of raw
materials, return on investment, volume of production, delivery time,
etc.

The optimum has remarkable properties. It is unique and proven.
It asserts and imposes itself as the best solution without possibility for
doubt. Consequently, one understands the reasons which motivate deci-
sion makers to be in possession of such an undeniable concept for making
a decision.

Because human culture is often dominated by the exact sciences, de-
cision makers have difficulties to renounce to the concept of optimum.
B. Roy disagrees with this “paradigm of optimization”, which incites
to believe that an optimum must exist in all circumstances. Making a
decision based solely on a single criterion appears insufficient as soon as
the decision-making process deals with complex organizational environ-
ments: It is difficult if not impossible to summarize in a single objective
the complexity of opinions, the motivations and the goals found in orga-
nizations. Thus we may assume that decisions, no matter if made by a
group or an individual, most often involve several conflicting objectives.

It seems, therefore, that in many environments it is more realistic to
endeavor achieving several objectives simultaneously. This observation
implies that real world problems have to be solved optimally according to
criteria which prohibit an “ideal” solution – optimal for each decision-
maker under each of the criteria considered. Consequently, one must
acknowledge the presence of several criteria which are at least partially



contradictory and often noncommensurable, leading to the development
of multicriteria optimization.

Multiple Criteria Decision Making: A Young
Discipline with Tradition
From its first roots, which were laid by Pareto at the end of the 19th cen-
tury the discipline has prospered and grown, especially during the last
three decades. Today, many decision support systems incorporate meth-
ods to deal with conflicting objectives. The foundation for such systems
is a mathematical theory of optimization under multiple objectives.

The subject of multicriteria optimization is, generally spoken, the
selection of good decisions from a set of alternatives with respect to
multiple criteria or objective functions. Therefore it is not surprising
that its origin lies in economic theory. The earliest precursors date back
to the nineteenth century, when economic welfare and utility theory have
been considered first by Walras and others. Edgeworth [10] introduced
utility functions and indifference curves which have been used by Pareto
[24] to define an economic equilibrium. Nowadays such a situation would
be called a local Pareto optimum. Since these early years utility theory
has been studied and developed as a branch of economics.

From a mathematical point of view, multicriteria or vector optimiza-
tion is concerned with the determination of maximal (or minimal) ele-
ments of ordered sets. Therefore vector optimization may also be traced
back to the work of Cantor [5] and Hausdorff [13].

However, the research in the area which is understood today as mul-
ticriteria optimization is much younger. It was necessary to await the
second half of the twentieth century to witness the rise of multicriteria
optimization. The term “efficient” appears in the work of Koopmans [19]
for the first time. The definition of a vector maximum problem has been
given by Kuhn and Tucker [21]. Mathematical investigation in this field
has finally been established by the work on vector optimization prob-
lems in topological vector spaces by Hurwicz [14]. A decade after the
definition of vector maximum problems algorithmic aspects have been
considered for the first time by Charnes and Cooper [7].

At the end of the Sixties the foundations of goal programming have
been laid, an area of research which today is sometimes considered as a
separate field. We refer to [22] for a first monograph on the subject (see
also [16]). The outranking notion and the discrete multicriteria decision-
aid method, ELECTRE [27] appeared in 1968. Almost 20 years later
the first monograph [28] was published (see also [29] for methods and
applications).

xvi MULTIPLE CRITERIA OPTIMIZATION



Introduction xvii

The first interactive methods, the STEM method [4] and the Geoffri-
on-Dyer-Feinberg method [11], have been introduced in the 1970s. The
absence of canonical orders in vector spaces led to the investigation of
efficiency for orders defined by cones [42]. Concerning algorithmic as-
pects the development of methods for the solution of multiple criteria
linear programs by Zeleny [43] and Isermann [17] has to be mentioned.
Multi-Attribute Utility Theory – MAUT – was popularized in 1976 by
Keeney and Raiffa [18].

In 1980, Saaty [30] published his book about the Analytic Hierarchy
Process (AHP). At the end of the 70’s and in the 80’s monographs and
textbooks summarizing the state of the art knowledge in the field ap-
peared for the first time. We only mention the books [6, 9, 12, 15, 33,
36, 39, 44, 31, 34]. The Eighties were also distinguished by the use of
the possibilities offered by micro-computers in the design and implemen-
tation of methods. Visualization and interactivity became subjects of
study [2, 3, 20] (see also [25]). The first encounter between metaheuris-
tics and multiobjective optimization is recorded for 1984, when Schaffer
[32] presented the VEGA method, an extension of genetic algorithms
for problems with multiple objective. Today, thousands of papers give
evidence of the blossoming of the investigation of vector optimization in
the last three decades. A survey of the activities in Multiple Criteria
Decision Making (MCDM) [35] lists 1216 papers between 1987 and 1992.
The same survey mentions a total of 208 books, 31 journal special issues
and 143 conferences concerned with the subject.

Annotated Bibliographies in Multiple Criteria
Optimization

Despite, or because of, this vast body of literature we have noticed the
lack of a reliable guide to provide an access to this knowledge. Over
the years, many literature surveys and bibliographies have been pub-
lished. With the ever rapidly increasing rate of publications in the area
and the development of subfields, these were mostly devoted to partic-
ular aspects of multicriteria optimization, e.g. Multiobjective Integer
Programming [26, 45], Multiobjective Combinatorial Optimization [38],
Vector Optimization [1, 23], Multiobjective Evolutionary Methods [8],
Applications of MCDM [41], MCDM Software [40], Goal Programming
[37].

Eventually we decided that it was a good time to provide a more
comprehensive overview of the literature in multicriteria optimization
that could serve as a state of the art survey and guide to the vast amount
of publications. A collection of annotated bibliographies seemed to be



the ideal format. We contacted experts in various areas of multicriteria
optimization and asked them to contribute to the present volume. The
book on hand is the result of this work.

The chapters in this book roughly follow a thread from most general
to more specific. Some of them are about particular types of prob-
lems (Theory of Vector Optimization, Nonlinear Multiobjective Pro-
gramming, Fuzzy Multiobjective Programming, Multiobjective Combi-
natorial Optimization, Multicriteria Scheduling Problems) the others are
focused on multiobjective methodologies (Goal Programming, Interac-
tive Methods, Evolutionary Algorithms, Data Envelopment Analysis).
All contributing authors invested great effort to produce comprehensive
overviews and bibliographies and to have references that are as precise as
possible. In general, highest importance was given to papers published
in scientific journals and conference proceedings. Occasional references
to technical reports were impossible to avoid, though.

The volume was eventually completed. We were surprised to find that
the nine chapters list an amazing 2217 references on almost 500 pages.
Now it is up to you, as the readers and users of this book, to judge if the
project can be considered a success. We hope that you find this book
(and the efforts of authors and editors) worthwhile.
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Chapter 1

THEORY OF VECTOR OPTIMIZATION

Christiane Tammer, Alfred Göpfert
Department of Mathematics and Computer Science
Martin-Luther University Halle- Wittenberg
D-06099 Halle an der Saale
Germany
{ tammer.goepfert }@mathematik.uni-halle.de

We introduce several solution concepts for multicriteria optimization
problems, give a characterization of approximately efficient elements
and discuss a general scalarization procedure. Furthermore, we derive
necessary and sufficient optimality conditions, a minimal point theorem,
a vector-valued variational principle of Ekeland’s type, Lagrangean mul-
tiplier rules and duality statements. An overview on vector variational
inequalities and vector equilibria is given. Moreover, we discuss the re-
sults for special classes of vector optimization problems (vector-valued
location and approximation problems, multicriteria fractional program-
ming and optimal control problems).

1.

Abstract

Solution Concepts
Keywords: Vector optimization, Approximately efficient elements, Scalarization.

1.1. Minimality Notions in Partially Ordered
Spaces

Many practically important problems can be described by a multicriteria
optimization problem with more than one objective function. In order to
introduce a solution concept for such problems we consider a nonempty
subset M of a linear topological space Y and a reflexive, transitive and
antisymmetric relation on Y (and so also on M) which gives an order
structure (a partial order) on Y (and M). If two elements of M
are comparable with respect to we write or
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With help of such an order relation one is able to define what a minimal
element is:

Normally, is a set which is given (in any way) by the decision
maker. But how to choose really a preference relation is in a wide
sense an interesting question and touches also questions of sensitivity of
the problem dealt with. A vector minimization problem or vector
optimization problem (v.o.p.) is a problem to determine efficient
elements of a certain set in the following sense:

Definition 1 (Efficiency) Given as above, minimal elements
of M with respect to are called efficient and the set (possibly empty) of
all efficient elements on M with respect to is denoted by

It is often the case that a relation on Y is generated by a proper
convex pointed cone Then is
antisymmetric and we write Eff (M, C) for

For a v.o.p. with an objective function and a feasible set
U we write:

(P) Determine the set Eff (f [U], C),

or sometimes simply suppressing the order defin-
ing cone C.

Throughout this chapter Y is a linear topological space, Y* is its
topological dual, is a convex cone, i.e., and

is the dual cone of C and
Furthermore, we assume

that C is pointed, i.e., We denote for a subset B of a
linear topological space Y the topological interior of the set B by int B,
the topological closure of B by cl B and the topological boundary of B
by bd B.

A functional z : is called B-monotone if implies
for all We say that a B-monotone functional z

is even strictly B-monotone if, additionally, implies

The importance of the mentioned general efficiency concept for deci-
sion making was pointed out by Yu [299] for convex cones in (compare
also [11, 195, 283, 284]). Yu’s concept has been extended by various au-
thors to more general spaces (see [136, 137, 138]), and by Gerstewitz and
Iwanow [106] and by Weidner [279] for general sets D. Several efficiency
concepts in stochastic multiple objective programming are given in [41].
For definitions on approximate efficiency see Definition 3.
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Definition 2 (Weak, proper and strongly proper efficiency)
Let Y, M, C as above.

(i) Assume int C is nonempty and If
then is called weakly efficient and we write

(ii) Assume that there is a cone such that
and If then is called

properly efficient on M with respect to C and H and we write
(having H in mind).

(iii) Assume that D is a proper convex cone in Y and a fundamental
system of neighbourhoods of zero in Y such that the pair (C, D) has
the property

then is called strongly proper efficient on M with respect to
C, if We write

Dependant on H and D there are a lot of special proper-efficiency
concepts in the literature, cf. [27, 103, 106, 133, 145, 150, 171, 235, 302].

Obviously

and this chain of inclusions, giving in some sense a set-valued estima-
tion of the wanted set Eff(M, C), justifies Definition 2. Further results
(generalizations of the theorem of Arrow, Barankin and Blackwell) are
given by Jahn [150] and Ferro [97]. But much more can be proved,
so                       often possesses properties like connectedness (cf. Luc
[190]) or closedness (whereas the efficient set does not), and p-Eff (M, C)
permits dependent on the choice of H an interpretation by scalariza-
tion, which can be used for real calculations of elements of Eff (M, C),
compare Section 1.2. Generally, the last two inclusions in (1.2) are not
equalities as can be seen by the following example.

Example 1 Assume

Then C and H are pointed cones and
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A geometrical characterization of weakly efficient elements is given
by Carrizosa and Plastria [50]. Existence results for efficient elements
are shown by Borwein [31, 32], Cesari and Suryanarayana [52], Chew
[66], Corley [70], Dedieu [77], Dolecki and Malivert [84], Gajek and
Zagrodny [101, 102], Ha [127, 128], Hartley [130], Hazen and Morin
[131], Henig [132], Isac [136, 137, 138], Jahn [147], Krasnosel’skij [164],
Luc [189], Postolica [223, 224], Sonntag and Zalinescu [246], Sterna-
Karwat [250, 251], Takahashi [252]. Furthermore, stability results for
set-valued mappings and vector optimization problems are presented by
[9, 13, 14, 15, 84, 95, 96, 135, 160, 166, 167, 191, 205, 206, 213, 214, 216,
217, 218, 238, 239, 243, 248, 249, 258, 268, 270, 303, 304].

1.2. Scalarization Methods and Separation
Theorems

The following separation theorems given in [110] play an important
role in the theory of multicriteria optimization since they permit (un-
der conditions) scalarizing of vector optimization problems, compare
[105, 106, 110, 153, 190, 211, 235, 280]. We give a first separation theo-
rem in linear topological spaces without any convexity assumptions (see
[110]).

Theorem 1 Let us assume that:

(i) Y is a linear topological space;

(ii) is a cone with

(iii) D is a proper subset of Y with non-empty interior such that cl D +

(iv) is a non-empty subset of Y.

Then the following statements are true:

(a) implies that there exists a continuous functional
which is strictly (int C)-monotone with the range

and
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(b)

(c)

(d)

If cl D is a convex set, then the functional z in (a) can be chosen
such that it is also convex.

One can construct the functional z in (a) such that z is B-monotone
for each set with and strictly B- monotone,

If then z in (a) can be chosen such that it is
subadditive on Y.

In the proof of this separation theorem we use a functional
introduced by Gerstewitz [105] (compare also Gerth and Weidner [110])
which is defined for an arbitrary set given by (iii) with

and for a fixed vector in the following
way:

This functional has the following nice properties (cf. [110]):

From Theorem 1 we derive the following corollary.

Corollary 1 Assume that:

(i) Y is a linear topological space;

(ii) is a proper convex cone with non-empty interior;

(iii) is a proper nonempty subset of Y.

Then implies that there exists a continuous sublinear
functional which is strictly int C-monotone with the range
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and

In Theorem 1 and Corollary 1 we deal with strictly int C- monotone
functional. If is a convex cone with non-empty interior, then
the strict int C-monotonicity implies the C-monotonicity.

In Theorem 1 we have supposed that C is a cone with non-empty
interior. This property is not guaranteed in many important cases; for
example, even the usual ordering cone

almost everywhere in has no interior point. There-
fore, we formulate a separation theorem in which the assumptions on D
do not depend on a cone C with non-empty interior. In this case we have
to demand the directedness of Y (this is (iv) in the following theorem)
with respect to the closure of D explicitly.

Theorem 2 (Second Separation Theorem)  Let us assume:

(i) Y is a linear topological space;

(ii) D is a proper convex and open subset of Y;

(iii) there exists an element such that for
each

(iv)

(v) is a non-empty subset of Y.

Then the following statements are true:

(a) implies that there exists a continuous convex func-
tional with the range and

and
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(b)

(c)

(d)

One can construct the functional z in (a) such that z is B-monotone
for each set with

If and then one can construct the
functional in (a) such that it is also strictly B-monotone.

If then z in (a) can be chosen such that it is
subadditive on Y.

The separation theorems generalize assertions by Gerstewitz and Iwa-
now [105] for a not necessarily convex set A and a convex set D which
were proved in another way by using stronger assumptions.

Example 2 Choose

Y, and D meet all the assumptions of Theorem 2 except the convexity
of D. The functional z defined by (1.3) has no finite value in

Example 3 Choose Y, as in the example above and

Y, and D meet all conditions in Theorem 2 except

The functional z constructed in (1.3) takes no finite value in
moreover, it attains nowhere finite values on D.

Scalarization of a given v.o.p. means converting that problem into
an optimization problem (or a family of problems) with a real valued
function to be minimized, cf. [110, 144, 149, 146, 190]. If solutions of
the latter problems (often called scalarized problems) are also solutions
of the given v.o.p., then the scalarization seems to be advantageous in
order to solve the v.o.p. since methods of common “scalar” optimization
(nonlinear programming) can be used.

Mostly advantageous scalarizing is done by using suitable monotone
functionals, where the following propositions serve as theoretical back-
ground.

Proposition 1 Let Y be a linear space partially ordered by a nontrivial
pointed convex cone C, M a nonvoid set in Y and a
functional with If for some
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then if one of the following conditions is fulfilled:

(i)

(ii)

is monotone increasing on M and is uniquely determined,

is strictly monotone increasing on M.

Proof: We consider such that (1.9) is valid. If
then there exists So

and if is monotone increasing, then which
together with (1.9) gives in contradiction to (i).
If is strictly monotone we get a contradiction, too.

So Proposition 1 seems especially to be advantageous if one has strictly
monotone functional. In particular this is the case if Y is a Banach space
and obviously. Then efficiency can even be characterized by
scalarization:

Proposition 2 Let Y be a Banach space, partially ordered by a non-
trivial convex pointed cone with and

iff there are and such that solves the
scalarized optimization problem

Proof: Let be a solution of (1.10), then Otherwise
there exists such that So gives

in contradiction to (1.10) since
i.e. If put Take then

solves (1.10) with the chosen c. Indeed, if there were a feasible such
that it would follow since But also

and so a contradiction.

We assume for the rest of this section

(i) Y is a linear topological space;

(ii) C is a cone in Y with nonempty interior;

(iii) D is a proper subset of Y with nonempty interior such that

The properties of the functional z defined by (1.3) can easily be used
in order to characterize weak efficiency. Theorem 3 is an example of such
a result. Furthermore, if we suppose additional assumptions for the set
D then additional properties follow for z. Theorem 3 and 4 both collect
such results.
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Theorem 3 Suppose additionally to the assumptions given above:

Let be a set with and for which there
exists a cone C with nonempty interior such that

Then if and only if and there exists a con-
tinuous functional which is strictly int C-monotone (even
strictly int D-monotone if D is a convex cone) with the range
and with the properties

If cl D is convex, z can be chosen convex.

If int D is convex, and if there is
with

for each

and

then if and only if and there exists a contin-
uous convex functional with the range such that
(1.11) and (1.12) hold.

Theorem 4 Let be as in Theorem 3. If condition (or
holds, we have for z

(a)

(b)

(c)

(d)

z can be chosen int D-monotone, if there holds

z can be chosen D-monotone, if there holds (or

z can be chosen strictly (int D)-monotone, if

z can be chosen subadditive, if there holds

In some sense the following Theorem 5 is converse to Theorem 4.
Furthermore, the following theorem gives a characterization of properly
efficient elements.
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Theorem 5 Assume that D is as in Theorem 3 and that z is a strictly
D-monotone functional and let be a point in which z attains its
minimum on M. Then, these results hold:

(a)

(b)

(c)

(d)

(e)

(f)

(g)

is an efficient element of M with respect to D.

If z is continuous, there exists an open set with
and

If z is convex, there exists a convex set such that

If z is continuous and convex, there exists an open convex set
with such that

If holds, H in (b), (c), (d) can be chosen such that

If z is linear, there exists a set such that is
a convex cone and

If z is linear and continuous, H in (b) can be chosen such that
is a convex cone.

Example 4 If  then the set H constructed in the proof
of Theorem 5 can fail to fulfill For example, take

and define

z is continuous and strictly D-monotone and attains its minimum on F
in Note that 0 is not a cluster point of the set

Considering properly efficient points instead of weakly efficient ones
one can prove connections to scalarizing functionals z similar as in the
theorems above. As an example we give

Theorem 6 Let be for an open convex set
such that Assume either condition
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There exists an element with for each
and

or condition

Let D be a cone with nonempty interior and

hold. Then the following hold:

(a)

(b)

(c)

(e)

There exists a continuous functional z : with the range
such that (1.11) and (with H instead of D) (1.12) hold.

Under can be chosen convex, under strictly int D-
monotone. In the last case convexity of z follows if cl H is convex.

If z can be chosen such that it is D-monotone.

If z can be chosen such that it is strictly
D-monotone.

the case and with the functional

had been obtained for by Brosowski and Conci [39].

1.3. Approximate Minimality

In the last years several concepts for approximately efficient solutions
of a vector optimization problem were published, compare [79, 80, 118,
119, 120, 134, 139, 159, 185, 201, 202, 208, 247, 253, 254, 258, 274]).
The reason for introducing approximately efficient solutions is the fact
that numerical algorithms usually generate only approximative solutions
anyhow and moreover, the efficient point set may be empty, whereas
approximately efficient points always exist under very weak assumptions.

To find an access to approximate efficiency we will use our concept
given in [108] by means of nonempty subsets M and B of a linear topo-
logical space Y, a proper, convex pointed cone with

and a real number
Relations to some other concepts follow afterwards.

If z can be chosen such that it is subad-
ditive.

Theorems 1 – 6 in full generality stem from a paper by Gerth and
Weidner [110]. But of course special cases of those theorems had been
proved earlier, e.g., scalarization results for weakly efficient points for
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Definition 3 (Approximate efficiency,
An element is said to be on M with respect to B as
above if

We denote the set of points of M with respect to B by
For the case and B = C the set

coincides with the usual set Eff(M , C) of efficient points of M with
respect to C as given in Definition 1.

Obviously for it holds

for any and
Approximate efficiency can also be defined by scalarization:

Definition 4 Let be any C-monotone functional. An ele-
ment is said to be with respect to z if

holds for each We denote the set of such points of M
with respect to z by

Simple examples show that generally So
it seems to be very interesting to study relations between the Definitions
3 and 4 (cf. [258]). We use the functional introduced in
Section 1.2 by (1.3).

Theorem 7 Let with a cone with
and

Then z given in (1.3) is a continuous, strictly int C-monotone.
functional with the range and for any and

we have

for where is again a continuous, strictly int C-
monotone functional with the range

Additionally, if then the functional z (and
hence also) is strictly C-monotone.

Theorem 8 Let us consider a cone with a set
with an element
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and assume that z given in (1.3) is strictly C-monotone, subadditive and

for each then there is an open set with
and such that

Corollary 2

(1)

(2)

Under the assumptions of Theorem 7 it holds:

with and z from (1.3).

Under the assumptions of Theorem 8 it holds:

with z given by (1.3).

1.4. Conclusions

In the last years several concepts of approximately efficient elements
have been introduced, followed, recently, by characterizations of approx-
imately efficient elements and necessary and sufficient conditions for such
elements. In order to describe solution procedures for multicriteria op-
timization problems it is important to discuss useful scalarization pro-
cedures, especially monotonicity properties of scalarizing functionals (or
utility functions). Of course, studies of dependence of solutions if data
of the given problem vary, are always basic tasks.

2. Optimality Conditions

Keywords: Maximal point theorem, Variational principle, Lagrangean multipliers,
Saddle point assertions.

2.1. Maximal Point Theorems and Variational
Principles

Dealing with extremal problems one of the main objectives is to derive
optimality conditions. Therefore very often variational methods are used

continuous on Y. If fulfills the inequality
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skillfully linked with the introduction of a perturbation of the problem.
Important results of duality, optimality and saddle point theory have
been obtained in this way. Since the seventies with Ekeland’s variational
principle and some equivalent results an essentially new approach was
available for deriving optimality conditions.

Ekeland’s variational principle [89] is a momentous assertion about
the existence of an exact solution of a slightly perturbed optimization
problem in a neighbourhood of an approximate solution of the origi-
nal problem. Many authors have published extensions and applications
of Ekeland’s variational principle as well as equivalent statements (cf.
Brezis and Browder [37], Brondsted [38], Rockafellar [229], Oettli [208],
Penot [215], Danes [75], Borwein and Preiss [33], Isac [139], Rolewicz
[230], Georgiev [104], De Figueiredo [78], Takahashi [252], Phelps [221],
Attouch and Riahi [9], Gajek and Zagrodny [102], Göpfert, Tammer and
Zalinescu [121, 122]).

In the background of the mentioned variational principle there exist
conical support points of arbitrary closed sets in the considered spaces.
Of course, conical support points are closely related with supporting of
convex sets by halfspaces, being the base of convex duality as well as the
background of a lot of optimality conditions in convex analysis.

The results of Bishop and Phelps [21] from 1962 concerning supporting
points of (convex) sets can also be seen as a first contribution to the topic
of Ekeland’s variational principle, given in the form of a maximal point
theorem.

Extremal problems do not only exist for goal functional having
as image space but a more general partially ordered space, where chiefly
the order is given by a cone in this space. Such problems are the so
called multiobjective extremal problems. Also for such problems (and
even more general ones, think of set valued or stochastic functions which
may be involved in extremal problems) optimality conditions have been
derived.

Loridan [185] in 1984 was the first who successfully made use of a
special multiobjective variational principle, discovered by himself, to get
optimality conditions. He [185] has presented a vector-valued variational
principle for the finite-dimensional case using a scalarization and Eke-
land’s original result. Further, Chen and Huang [61, 62], Chen, Huang
and Lee [63] Dentscheva and Helbig [79], Göpfert, Tammer, Zalinescu
[121, 122], Huang [135], Isac [139], Nemeth [202], Khanh [159], Tammer
[253] have derived vector-valued variational principles for an objective
function which takes its values in general spaces.

We remember that a Banach space Y is partially ordered if in Y
a reflexive, transitive, and antisymmetrical relation is given. This is
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exactly realized if in Y a convex, pointed cone C with exists, and
this means that exactly the elements of C dominate Therefore,
given a nonempty set A in Y, a point is called a maximal point
of A if

the only point being simultaneously in A as well as in
Using the cone

where is a parameter and X is a Banach space, Phelps showed that
Ekeland’s variational principle [89] is a direct consequence of a maximal
point theorem (Phelps [221]). This maximal point theorem simply says,
that under the given boundedness and closedness conditions for A in the
partial ordering (reflexive, transitive, antisymmetrical) defined by
(i.e. that exactly the elements of dominate any point

of A is dominated by at least one maximal point of A. It
is also possible to interpret Phelps in the form, that solve the
multicriteria optimization problem

where X × R is partially ordered by With other words, there is no
element (x, r ) , which dominates relative to the
cone as in (1.14).

To find an access to vector optimization instead of .R we consider
a more general space Y: Let X and Y be Banach spaces, Y partially
ordered by a given cone where C is convex, pointed and closed
with Furthermore, choose such that
For any with we define

is clearly a cone, it is the hypograph of the mapping
recalling

hypo

is pointed and closed, because C has those properties. The triangle
inequality gives that is convex. Finally, and

Taking Y = R, and (1.16) coincides with (1.14). Given
the second inclusion in (1.16) is fulfilled for a norm bounded

(where               means the set which means that is
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set in X. Otherwise there is a sequence with and
so

but
Of course, conical support points are related to supporting points of

convex sets. An overview can be found in Phelps [221]. Especially, if X
is a Banach space, X* its continuous dual, then taking with

with the cone

is closed, line free, convex and It is just the cone which
was used by Bishop and Phelps to prove density theorems for supporting
points and functionals for convex sets (although the corresponding max-
imal point lemma for the supporting points doesn’t use convexity). The
cone (1.17) is related to the cones in (1.14) and (1.16) in an interesting
kind: For clarifying we consider the cone as above in (1.17))

where C is a convex, pointed cone in X, and
Then is clearly a cone, it is convex (because of

the triangle inequality) and line free. Obviously and if
it follows

that means and if then approximates C, and if
then approximates the jet, given by Now we obtain two

results relative to in (1.18):

(i) If it follows Suppose and
then it holds

and therefore
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that means, comparing with (1.17)

(ii) Using instead of in (1.16) leads to another kind of maximal
point theorems which generalize support properties of sets (see
[118]). In linear functional x* don’t appear, so contrary to
results obtained with help of (1.17), corresponding conical support-
ing points (with help of (1.18)) do not only belong to the convex
hull of A but even to A itself.

Phelps [221] has shown a maximal point theorem in a product space
X × R. The following maximal point theorem in a product space X × Y,
where X and Y are Banach spaces (presented by Göpfert and Tammer in
[119] and under weaker assumptions by Göpfert, Tammer and Zalinescu
in [121] and [122]) says, that under certain conditions for a closed set

and for a cone any point of A is dominated by a
maximal point, where we use the partial ordering defined by the cone
(1.16):

Theorem 9 Assume that A is a closed subset of X × Y, where X and
Y are Banach spaces. Further, suppose that is a pointed, closed,
convex cone with nonempty interior and bounded base, and assume

with
Then for any point there exists such that

and

The essential idea in the proof of Theorem 9 is the following: Consider
a sequence of sets:

Under the given assumptions the sets are closed. Define the sequence
inductively as follows:

When we have obtained then we choose
such that using a cone with

with
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It is possible to show that diam Applying Cantor’s Intersec-
tion Theorem the assertions in the theorem follow.

A variational principle for a vector optimization problem is a direct
consequence of our Theorem 9. This following Theorem is an assertion
about the existence of an efficient solution of a slightly perturbed vector
optimization problem in a certain neighbourhood of an approximately
efficient element of the original vector optimization problem.

Variational principles for vector optimization problems were presented
by Loridan [185], Nemeth [202], Khanh [159], Tammer [253], Göpfert
and Tammer [119], Göpfert, Tammer, Zalinescu [121, 122], Isac [139],
Dentscheva and Helbig [79], Chen and Huang [61, 62, 63], Huang [135]
and others.

In the following X and Y are considered to be real Banach spaces, U
is a nonempty closed subset of X and is a pointed, closed, convex
cone with nonempty interior and bounded base,

Now, we introduce a function and assume that f is
bounded from below. A function is said to be bounded
from below on U if there exists an element with

Theorem 10 Suppose that U is a closed subset of X. Assume that
is bounded from below and the epigraph of f is closed.

Then for any and any there exists an
element with

2.2. Lagrangean Multipliers and Saddle Point
Assertions

Consider a convex vector minimization problem

where and Z are normed spaces, and
are closed convex pointed cones in Z, Y, respectively, and

As in ordinary scalar optimization Lagrange multipliers can be used for
different purposes as for duality, sensitivity, or for numerical approaches
(compare Amahroq and Taa [2], Clarke [68], El Abdouni and Thibault



Theory of Vector Optimization 19

[91], Li and Wang [181], Miettinen, [196], Minami [197], Tanaka [264,
265, 266, 267], Thibault [271], Wang [275]).

In the following we derive existence results for Lagrangean multipliers.
These results extend well known theorems on Lagrange multipliers in
nonlinear programming considerably.

Lemma 1 Let X be a linear space, M a convex subset of X, Y and
Z normed spaces, and are closed convex pointed cones in Z, Y,
respectively, and Assume that the mappings

Then there exist with and it holds

Proof: Consider the following sets:

and

In order to apply a separation theorem for convex sets we show that the
assumptions of the separation theorem are fulfilled.

A is convex since we get for and
corresponding elements

since is a convex cone and f a mapping. Together with

because is a convex cone and g a mapping we can conclude

are respectively, for which the
following regularity assumptions are fulfilled:

(A1)

(A2)
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Moreover, B is convex regarding the convexity of and Under
the assumption (A1) it holds

In order to show we suppose: This
implies there exists with

and

such that we get because of the definition of in (A2)
and since is a pointed convex cone.

Regarding it follows that there are an and
with Especially for

we consider i.e., for some it holds

and

This means and in contradiction to the
definition of in (A2).

Now, it is possible to apply a separation theorem for convex sets. This
separation theorem implies the existence of
such that

and

In the following we show that and
If we suppose i.e., for an element we

get for regarding that is a cone

in contradiction to the separation property (1.22). Analogously we can
show

For all it holds and with we get

Now, consider a sequence in with
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Then we get

such that the equation holds.

Lemma 2 Additionally to the assumptions of Lemma 1 we suppose

(A3) (Generalized Slater condition) There exists an element
M such that for all it holds:

(i) Then there exist elements and with

(ii) If and i.e., then is
also a minimal solution of on M and it holds

Proof:

(i) From Lemma 1 we can conclude that there exist
with and

Under the assumption (A3) we suppose Then we get in
(1.22) with

Regarding it holds and now together with the
assumption (A3) a contradiction:

because of (1.24).

(ii) If and then (1.23) implies
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such that
and

Remark 1 Conversely, if is a minimal solution of the La-
grangean with and
then

follows without regularity assumption:

for all with and regarding

Theorem 11 Suppose that and are fulfilled. Assume
Then it holds:

(i)

Conversely, if there are and such
that the saddle point assertion (1.25) is fulfilled for all and

then

Proof:

(i) Assume Using Lemma 2(ii), we get that
there exist and with

Furthermore, regarding it follows again with Lemma
2(ii),

This yields

Then both inequalities are fulfilled.

If then there exist and
such that the following saddle point assertion is fulfilled:

(ii)
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(ii) Suppose and assume that the saddle point assertion
is fulfilled for Then the first inequality implies

such that we get regarding that is a convex cone

and This implies

since and so Consider now with
then we conclude from the second inequality in the saddle

point assertion

and

This means

Remark 2 A point satisfying the property (1.25) for
an element is called a point of the Lagrangean

The relation (1.25) can be described by

Remark 3 Taking
f = I (identity), we have

and all assumptions of Theorem 11 are satisfied. Then
is a point of the Lagrangean :

since
is only weakly efficient as proved in the theorem. So

we cannot expect a symmetrical assertion of the kind “saddle-point iff
efficiency”.
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2.3. Conclusions

The application of vector-valued variational principles of Ekeland’s type
for the characterization of approximately efficient elements for special
classes of multicriteria optimization problems seems to be a successful
and prospective research direction. Furthermore, the study of set-valued
variants of Ekeland’s variational principle including applications is a
young and growing field.

3. Duality

Keywords: Conjugation, Lagrangean, Axiomatic duality, Dual problem.

It is an old idea to try to complement a given optimization problem
with minimal value I) by a dual problem

with supremal value S, remember the dual variational principles
of Dirichlet and Thompson (cf. Zeidler [305]) or e.g. the paper of K.O.
Friedrichs [98] or simply the pair of dual programs in linear optimiza-
tion. The reasons for the introduction of a useful dual problem are the
following:

The dual problem has (under additional conditions) the same opti-
mal value as the given “primal” optimization problem, but solving
the dual problem could be done with other methods of analysis or
numerical mathematics.

An approximate solution of the given minimization problem gives
an estimation of the minimal value I from above, whereas an ap-
proximate solution of the dual problem is an estimation of I from
below, so that one gets intervals which contain I.

Recalling Lagrange method, saddle points, equilibrium points of
two person games, shadow prices in economics, perturbation meth-
ods or dual variational principles, it becomes clear that optimal
dual variables often have a special meaning for the given problem.

Of course, the just listed advantages require a skillfully chosen dual
program. Nevertheless, the mentioned points are motivation enough to
look for dual problems in multicriteria optimization, too. There are a lot
of papers, which are dedicated to that aim, also a lot of survey papers
(see Jahn [146], Luc [190]). There are different approaches to duality:

Conjugation: Schönfeld [237], Breckner [34, 35], Zowe [306, 307], Nehse
[200], Rosinger [231], Tanino and Sawaragi [269], Brumelle [40],
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Kawasaki [156, 157], Gerstewitz and Göpfert [107], Sawaragi, Na-
kayama and Tanino [233], Luc [190], Zalinescu [300].

Lagrangean: Corley [71, 72], Bitran [22], Gerstewitz and Iwanow [106],
Göpfert and Gerth [116], Nehse [200], Jahn [143, 146, 148], Iwanow
and Nehse [141], Nakayama [198, 199], Sawaragi, Nakayama, and
Tanino [233], Luc [190].

Axiomatic Duality: Luc [190], Luc and Jahn [189].

We explain some ideas and give examples.

3.1. Duality Without Scalarization

Let Y be a linear topological space partially ordered by a convex pointed
cone C, the dual cone to C ,
nonempty subsets of Y, and let us consider the multicriteria problems

We speak of a pair of weakly dual problems, if

Since C is pointed, this is equivalent to
(P) and (D) are called strongly dual, if (1.26) holds together with

or equivalently for all open
neighbourhoods O of zero in Y. So strong duality means that and
touch each other or with other words, and don’t overlap. Otherwise
we speak of a pair of dual problems with a duality gap (in the scalar
case at the beginning of this chapter that would mean I > S). Having
a pair of strongly dual multicriteria programs their feasible elements
respectively give estimations of the set of efficient elements of (P) “from
above and below” (with respect to C).

Lemma 3 Assume (P), (D) to be weakly dual. If there are
such that then is minimal for (P), maximal for (D)

and (P), (D) are strongly dual.

Proof: not minimal means that there is such that
which contradicts (1.26). to be

maximal follows similarly. From it follows that (P) and (D) are
strongly dual.

To construct dual programs one uses – similar to ordinary “scalar”
programming – Lagrange technique. We apply such methods, for other
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approaches compare Jahn [146] and Luc [190]. The question is whether
to apply scalarization methods or not. We present at first duality theo-
rems without taking into account scalarization of the objective function.

Instead of (P) we consider the following multicriteria problem with
side constraints

with

where X is a linear space, M a non-empty set in X, (V, CV) a partially
ordered linear topological space, (Y, C) as above. We add to Y (V) an
element not belonging to the space Y (V), obtaining thus the space

We consider
So a vector optimization

problem is given as usual. To deal with it, we suppose, that for C in Y
we choose an open and convex set such that

In particular, cl B could be a convex cone, such that B contains
because the second inclusion in (1.28) is equivalent to

B. So if dim such a cone B exists provided C is closed (and
pointed).

We introduce the following generalized Lagrangean, having another
set

and assume

for all and for all
Now we are able to write down a problem which can be consid-

ered as dual problem to

with
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where B is as explained above, and

is a so-called Lagrange dual problem to as is easy to see,
if we reduce to the finite dimensional scalar case

and if we take y as linear mapping
Then instead of we get

So, with
M and has the well-known max-

min form:

Lemma 4 (Weak duality) and are weakly dual, i.e.,

A strong duality theorem holds, too. Therefore we assume a condition
(V1):

for all Since one can choose the wrapping set B (or cone B) very
close to C/{0}, (V1) means, that (M) cannot have improperly
efficient elements with respect to C. This is reflected by the formulation
of the next theorem which takes into account only efficient points of (P1)
with respect to a set B which fulfills (1.28) referring to C.

Theorem 12 (Strong duality theorem) For and as given
above, let (V1) be fulfilled and assume to be in

Then

Sometimes results like Theorem 12 are called a strong direct duality
theorem, because a primal optimal solution is shown to be dually opti-
mal. The converse direction is also interesting. This leads to converse
duality theorems. To get such a theorem for our pair of optimization
problems, we state a condition (V2):

(V2) Every solution of is to be dominated by a properly ef-
ficient solution of that means with a set B as in (1.28), for all

there is an such that
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Theorem 13 (Converse duality theorem) Assume that both (V1)
and (V2) hold and Then there are
Y with such that

The duality in the last section is an abstract and nonscalarized La-
grangean formalism for very general optimization problems. In Section
3.3 we will present pairs of dual problems for special classes of vector
optimization problems.

3.2. Duality by Scalarization

Consider (P) in the following form

with

where is a nonempty set in
V and X, Y, V are topological vector spaces, Y Hausdorff, Y partially
ordered by C closed and with nonempty interior. Additionally, Y is to be
directed with respect to i.e., Let
S be the set of sublinear surjective continuous strictly monotone (with
respect to C) decreasing functional Assume S is nonempty.
Again we introduce a generalized Lagrangean

and assume for

Using the functionals we define a dual problem to :

where

It is possible to prove for the pair weak, strong direct and
strong converse duality:

Lemma 5 (Weak duality) The pair  fulfills
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For properly efficient elements i.e., there is an
such that a strong duality
theorem can be proved.

Theorem 14 (Strong (direct)duality))  If          with
is properly efficient for then it is efficient for i.e.,

Under some more conditions also a converse duality theorem holds,
that is, having dually efficient then there is such that is
efficient for In order to prove such a converse duality theorem we
use a characterization of efficient elements by scalarization.

Lemma 6 where
corresponds to h according to the definition of in

Additionally a strong converse duality statement holds.

Theorem 15 (Strong converse duality) Under the conditions given
for the pair and if, additionally, is closed and
if for all such that there is an
with then a dually efficient element is
properly primal efficient.

3.3. Duality Assertions for Vector-valued
Approximation Problems

For special classes of vector optimization problems it is possible to derive
a useful dual problem explicitly. Consider a vector-valued approximation
problems of the following form:

with

where now X is a linear normed space, partially ordered by a cone V
is a reflexive Banach space, a cone in V,
partially ordered by a cone C such that all cones closed,
convex, pointed, and and f may have the form
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with real (i = 1, . . . , p), and a given real
normed space,

although a special case of or contains itself important
special cases:

(i)

(ii)

(iii)

(iv)

(v)

is a semi-infinite linear problem, if

f can be interpreted as Lipschitz perturbed linear problem,

gives a multicriteria location problem.

Consider
Then is a parameterized surrogate problem.

The general multicriteria approximation problem or location prob-
lem (cf. Gerth and Pöhler [109], Jahn [146], Tammer, K. and
Tammer, C. [261] and Wanka [276, 277, 278]).

In order to use the above ideas one introduces a suitable Lagrangean
to for a given

where

and

From this setting and using Jahn’s descalarization result (cf. Jahn [146])
one gets a dual program to with (strong duality if

where
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and

such that

We add some simple scalar examples.

where are as above, and

an example of Then we get a dual problem as a special case
of

follows immediately from since in means
and so for all   because the maximum

norm is suitable as dual norm to a sum of norms.

Example 5 Consider instead of the following scalar optimization
problem

for all                       Since the sum in is really a norm, is
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Example 6 The ordinary scalar classic location problem is contained
in as above, fixed.

Also the following linear scalar approximation problem together with
is a special case of the pair : Let A be a convex closed

subset of X and  fixed.  Consider the problem
Then reduces to

Taking as a closed linear subspace we get

where is the annihilator to

Example 7 We consider the following vector-valued location problem

with

where and

For applications in town planning it is important that we can choose
different norms in the formulation of The decision which of the
norms will be used depends on the course of the roads in the city or in
the district.
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In the following we study the problem with
where denotes the usual ordering cone in the p-dimensional Eu-
clidean space.

Using duality assertions we will present an algorithm for solving
(compare Chalmet, Francis and Kolen [54], Gerth (Tammer) and Pöhler
[109]). In [109] we have derived the following dual problem for

with

where

with

Here denotes the Lebesgue-norm. We can use the conditions
and                         in order to derive an

algorithm (cf. [109]). Consider the following sets with respect to the
given facilities      <               which are related to the structure of
the subdifferential of the maximum norm:

Moreover, we introduce the sets

(r = 5,6,7,8), where denotes the smallest level set of the dual norm
to the maximum-norm (Lebesgue-norm) containing the points
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Now, we are able to describe the following algorithm for solving the
vector-valued location problem (see Gerth and Pöhler [109]):

3.4. Conclusions

There are many papers dealing with duality concepts (conjugation, La-
grangean and axiomatic duality) on the base of scalarization as well as
without scalarization. In order to derive algorithms or inclusions for
solutions (bounds) it is important to have duality assertions for spe-
cial classes of vector optimization problems. Especially, it is essential
to find useful dual problems, corresponding duality assertions and their
application for the construction of primal-dual algorithms in the case of
not necessarily convex multicriteria optimization problems. Very often a
skillful interpretation of found dual solutions or Lagrange variables can
be useful.

4. Vector Variational Inequalities and Vector
Equilibria

Keywords: Existence results, Mathematical Economy, Game theory.
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4.1. Vector Variational Inequalities and Vector
Equilibrium Problems

It is well known that optimization and nonlinear analysis are two bran-
ches of modern mathematics much developed lately. The results ob-
tained in these areas use certain kinds of differentiability (directional
derivative, subgradient, generalized subgradients, etc.), certain general-
izations of convexity, geometrical methods (cone of feasible directions,
normal and tangent cones, etc.), game theory, fixed point theory, topo-
logical degree, etc.

In recent years equilibrium problems have come to play a central role
in the development and unification of diverse areas of mathematics, eco-
nomics and physical sciences. Thus various problems of practical interest
in optimization, variational inequalities, complementarity, economics,
Nash equilibria and engineering involve equilibrium in their description.

The vector variational inequalities have been widely developed in re-
cent years, and various solutions have been characterized and computed.
These were first introduced by Giannessi [111] and further developed by
many authors in different areas.

Recent topics attracting considerable attention are equilibrium prob-
lems for vector-valued mappings. Inspired by the scalar case, such prob-
lems have received different developments depending on the kind of order
space where these have been considered.

There are different approaches to establish the existence of solutions
of equilibrium problems in the vector case. The first one directly used
a generalization of the well known lemma of Knaster, Kuratowski, and
Mazurkiewicz. The second one, as proposed by Oettli, leads to deduce, in
a straightforward way, existence results for vector equilibrium problems
from the results about scalar case. A key tool for the study of such
problems is an appropriate gauge function.

The published papers could be grouped in the following way:

Theory of vector optimization, vector equilibrium problems and
vector variational inequalities (Ansari [3, 4, 5, 6]; Ansari and Sid-
diqi [7]; Ansari, Siddiqi and Yao [8]; Bianchi, Hadjisavvas and
Schaible [19]; Blum and Oettli [25, 26]; Chen and Craven [57, 58];
Conway [69]; Fan [94]; Fu [99]; Konnov and Yao [163]; Lee and
Kum [176]; Lee, G.M., Kim, and Lee, B.S. [172, 173, 179, 180];
Lee, G.M., Kim, Lee, B.S., and Cho [174]; Lee and Kum [178]; Li,
Yang and Chen [182]; Lin [182]; Lin, Yang, and Yao [184]; Noor
[207]; Oettli [209]; Siddiqi, Ansari, and Ahmad [240]; Rapcsak
[228]; Yang [285, 286, 287, 288, 289]; Yang and Chen [290]; Yang
and Goh [291], Yao [293, 294]; Yu and Yao [298]).
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Existence of solutions for generalized vector variational inequalities
and complementarity problems (Chang, Thompson, and Yuan [54];
Chen [55]; Chen and Hou [60]; Chen and Yang [64, 65]; Danilidis
and Hadjisavvas [76]; Isac and Yuan [140]; Kazmi [158]; Lai and
Yao [170]; Yin and Xu [297]; Qun [226]).

Vector variational inequalities and vector equilibrium problems
with set-valued mappings (Ding and Tarafdar [83]; Fu [100]; Parida
and Sen [210]; Siddiqi, Ansari, and Khan [241]; Song [244])

Vector Variational Inequalities, Vector Optimization and Scalar-
ization (Chen, G.-Y. and Chen, G.M. [56]; Chen and Craven [58];
Giannessi, Mastroeni and Pellegrini [112]; Goh and Yang [114];
Lee, G.M., Kim, Lee, B.S., and Yen [175]).

Stability of the solution sets (Yen and Phuong [296] and Yen [295]).

Monotone vector variational inequalities (Chowdhury and Tan [67];
Hadjisavvas and Schaible [129], Ding and Tarafdar [83]; Yen and
Lee [295]).

4.2. Conclusions

Vector variational inequalities, vector equilibrium problems and vector
complementarity problems contain vector optimization or Lagrangean
problems or game theoretical problems as special cases, so they become
more and more important for the modelling of more complicated prac-
tical problems in Economy, Engineering and Biosciences. Many authors
have proved existence theorems for solutions of such problems. In recent
papers generalizations of the vector variational inequalities are consid-
ered. Further research on these topics will concern:

Refinements of the existence conditions for solutions of vector vari-
ational inequalities, vector equilibrium problems and vector com-
plementarity problems;

Solution methods and properties of solution sets such as sensitivity,
stability or a-priori-estimations;

Practical applications, e.g. in Mathematical Economy.

5. Multicriteria Fractional Programming

Keywords: Multicriteria fractional programming, Dinkelbach-transformed problem,
Dialogue procedure.



and to maximize profitability where
can be formulated as the problem to determine the set

of efficient elements of a multicriteria fractional programming problem

with and

For the case of optimization problems with only one fractional ob-
jective function Dinkelbach [83] has proposed a parametric solution ap-
proach. This approach is based on the relation to a special parametric
problem, which is described without the original ratios. However, it
requires, additionally, the generation of that unknown parameter value,
for which equivalence to our original problem holds. Many other authors
have already published results to generalize Dinkelbach’s idea also for
efficient and properly efficient solutions of vector optimization problems
with m fractional objective functions (cf. Bector and Chandra [12], Kaul
and Lyall [155], Tammer, K., Tammer, C., and Ohlendorf [262] and Weir
[282]). But some of those results are not entirely correct.

The aim of this section is to extend the results of Dinkelbach and other
authors to different sets of approximately efficient and properly efficient
solutions of multicriteria fractional optimization problems, which were
introduced by Tammer [253] as well as Dentcheva and Helbig [80]. As a
by-product we obtain the corrected formulations of corresponding results
for the exact solutions.

The main part of this section is devoted to the mentioned relations be-
tween the (approximate) solutions of the original multicriteria fractional
problem and the transformed one. Moreover, we discuss possibilities to
solve the transformed problem by a three-level dialogue approach fol-
lowing ideas of the book [126].

Consider for a vectorial fractional optimization problem
Eff (f(X), C), i.e., the problem

subject to
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5.1. Approximate Solutions in Multicriteria
Fractional Programming

Many aims in real decision problems can be expressed by a fractional
objective function (cf. [234]) so that the field of fractional optimization
is very up to date.

Example 8 The problem in economics to minimize a cost functional
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where

and i = 1, …, m.
We show, that is closely related to a multiparametric vector

optimization problem which we call the corresponding Dinkelbach-
transformed problem, namely

solutions, respectively, of both problems in the case were given by
Bector and Chandra [12], Kaul and Lyall [155], Weir [282] and others.
Note that the formulation as well as the proof of the corresponding
Lemma 1 in [155] and Theorem 4 in [282] are not entirely correct in the
given form. Above all, the authors disregarded the fact that in the case
of proper efficiency it is essential to assume, additionally, that all ratios

are bounded below by positive bounds (and not only by zero).
In the following two theorems we formulate the relations between the

sets of approximate solutions of and

Theorem 16 Let and Then we have
for

For the special case we get the already mentioned result of [12]
and [155] in the corrected form (namely, including the essential condition
(1.33) for which actually was used there in the proofs but had
been forgotten in the formulation of the statement).

Corollary 3 for
according to (1.33) with

We denote the set of approximately properly efficient elements regard-
ing Definitions 2(ii) and 3 (compare [262]) by

where i = 1, …, m and is a parameter
which must be chosen in a suitable way.

The original result of Dinkelbach [83] from 1967 (and also the forego-
ing result of Jagannathan [142] from 1966 for linear fractional problems)
concerns the case m = 1 with only one objective function and says
that a given point is optimal for iff it is optimal for with

Corresponding results for the sets of efficient and properly efficient
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Theorem 17 Let and and assume that there

holds Then we have

assume (as it was done in [155] and [282]) on X for i = 1, …, m,
since then is not excluded.

This can be seen by the following small example. Let n = 1, m =
2,

Then, for instance, yields a properly efficient element
(in the sense of Geoffrion) for with
but is not properly efficient in the
sense of Geoffrion for Similar examples can also be constructed
for the other direction of Theorem 17.

Of course, if all functions are equal or if there are positive lower
and upper bounds for all functions on X, the required boundedness
of all ratios by positive bounds is satisfied.

5.2. Possibilities for a Solution Approach

The reason for using models of vector optimization for solving concrete
decision problems is the fact that very often it is impossible to formulate
the interests of the decision maker a priori by only one objective function.
As a natural consequence of such an incomplete knowledge about the
underlying decision problem we can observe the phenomenon that in
vector optimization we get a great number of “solutions”, enjoying a
priori the same rights. Of course, in practical decision problems the
final aim must be to find such a feasible decision which corresponds to
the decision maker’s interests in a certain “optimal” way.

As already described in [126] this can often be realized by organizing
a learning process in form of a dialogue procedure in which one can
compute and compare as many solutions as necessary to help the decision
maker to express his individual interests more precisely. Such a dialogue
procedure is usually a certain kind of a two-level algorithm and needs
essentially a suitable parametric surrogate optimization problem related
to the underlying vector optimization problem.

Theoretically, all these ideas can also be applied directly to the frac-
tional vector optimization problem studied in the foregoing section.
However, there may be computational difficulties to handle problems
with complicated fractional objective functions. Moreover, there are

for and according to (1.33).

Note that the assertion of Theorem 17 does not remain true if we only

is a positive number such that for all i,j= 1,…, m and all it
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also theoretical difficulties to ensure convexity properties of the surro-
gate problem which are to be solved in such a dialogue procedure. Note
that even linear fractionals are not convex but only pseudoconvex and
that for sums of fractionals even generalized convexity properties do not
hold anymore.

For this reason we want to discuss here possibilities to apply a dialogue
procedure not directly to the original fractional problem but to the
corresponding Dinkelbach-transformed problem However, in such
an approach we have to overcome another difficulty, namely the genera-
tion of the essential parameter value satisfying (1.33). Hence, different
to dialogue procedures in the usual case, we propose a three-level dia-
logue procedure for our considered case of fractional vector optimization
problems.

Let us explain our ideas for the mostly used set Eff (f (X), C) of effi-
cient solutions of and the mostly used surrogate problem in
which the artificial objective function is the weighted sum of the original
objective functions. Applied to our parametric surrogate problem
has the form

where µ > 0 and

The already mentioned three levels of a dialogue procedure for may
be characterized in the following way.

Level 1: Compare all stored results and decide to stop the procedure
or not. If not, choose a new parameter vector µ.

Level 2: Find for the value of µ given from Level 1 a vector such that
there exists a solution x of satisfying

Level 3: Find for the values µ and given in the Levels 1 and 2 a
solution x of satisfying and store x together
with additional information on x (especially the vector g(x) / h(x)).
Go to Level 1.

Level 1 is the pure dialogue part in which we have to generate a
new parameter value µ as long as we are not satisfied with the gener-
ated results. Level 3 can often be realized successfully by pathfollowing

subject to
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methods of parametric optimization. Because of the fact that possibil-
ities to realize the Levels 1 and 3 are already described extensively in
several papers (cf. [126]) we concentrate our considerations upon the
second level. The typical difficulty in this level is the fact that the es-
sential equation (1.34) is only given implicitly since the solution x of the
third level is unknown at the time in which we have to solve the second
level.

Let us study Level 2 under the following additional assumption (A).
Here we take the symbol to denote the class of those

-functions for which the derivations of order r – 1 are piecewise
cf. [235, 263].

(A) and
there exists a strongly stable stationary point (x*,u*) of
satisfying condition (1.34).

Proposition 3 Let us assume (A). Then we have:

(1)

(2)

(3)

There are neighbourhoods U of V of µ* and W of (x*,u*) such
that for each problem has a unique station-
ary point in W.

belongs to the class

Obviously, under (A) condition (1.34) can be reformulated in the form

To solve (1.34) we can apply suitable generalizations of the Newton-
method for nonsmooth equations using generalized derivatives. In the
papers [235] and [263] one can find possibilities to generate the general-
ized Jacobian of the vector functions and G. To ensure convergence
to the (of course unknown) point from assumption (A) usually one
needs a suitable initial point in a sufficiently small neighbourhood of

Among the great number of contributions concerning generalizations
of the Newton-method to nonsmooth equations we refer here to the
rather general results given in [168] and [227]. Useful ideas to guarantee
convergence in the second level even in the case that only approximate

The vector function belongs to the class   on U.

The vector function G, defined on U by
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solutions of the third level may be generated (what may often be the
case) can be found in [263].

Applying Lemma 2.1 in [152] the function
belongs to the class and for each it holds

and, hence,

with Hence, for the special case m = 1 (in which we
can put without loss of generality µ = 1) the function G belongs even to
the class with In this way the iteration rule
of the Newton-method has the very simple form

which is nothing else than the iteration rule of Dinkelbach [83], who used
this rule also under other assumptions as given in (A), since convergence
results are very much easier to obtain in the one-dimensional case.

Unfortunately, for m > 1 a formula of the type
does not follow from (1.36).

5.3. Conclusions
Further research on multicriteria fractional programming includes:

Duality assertions;

Dependence of solutions or approximate solutions on variation of
data of the problem;

Solution procedures, convergence properties.

6. Multicriteria Control Problems
Keywords:                         minimum principle, Structure of solutions.

6.1. Formulation of Multicriteria Control
Problems

In control theory often one has the problem to minimize more than one
objective function, for instance a cost functional as well as the distance
between the final state and a given point.
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To realize this task usually one takes as objective function a weighted
sum of the different objectives. However, the more natural way would be
to study the set of efficient points of a vector optimization problem with
the given objective functions. It is well known that the weighted sum
is only a special surrogate problem to find efficient points, which has
the disadvantage that in the nonconvex case one cannot find all efficient
elements in this way.

Necessary conditions for solutions of multiobjective dynamic program-
ming or control problems were derived by several authors, see Klötzler
[160], Benker and Kossert [17], Breckner [36], Gorochowik and Kirillowa
[124], Gorochowik [123, 125] and Salukvadze [232]. It is difficult to show
the existence of an optimal control (see Klötzler [162]), whereas subop-
timal controls exist under very weak assumptions. So it is important to
derive some assertions for suboptimal controls.

An principle in the sense of Pontrjagin for suboptimal
controls of multicriteria control problems is derived by Tammer [260]
applying a vector-valued variational principle.

Consider the system of differential equations

and the control restriction

which must hold almost everywhere on [0, T] with T > 0.
We assume that

(C2) are continuous on

(C3) for some c > 0.

Remark 4 Let be a measurable control. Condition (C2)
and the continuity of ensure that there exists a unique solution x of
the differential equation (1.38) on for a sufficiently small
By using Gronwall’s inequality condition (C3) implies

(C1) is continuous andd         is a compact
set.

The vector x(t) describes the state of the system, u(t) is the control
at time t and belongs to the set U. Furthermore, suppose that
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and, hence, ensures the existence of the solution on the whole time in-
terval [0,T].

Moreover, the last inequality yields

the objective function and suppose that

(C4) f is a differentiable vector-valued function,

(P) Find some measurable control such that the corresponding tra-
jectory satisfies

for all solutions x of (1.38) (the pair is denoted as process
corresponding to (1.38)).

6.2. An Principle for Multiobjective
Optimal Control Problems

It is well known that it is difficult to show the existence of optimal
(or efficient) controls of (P), whereas suboptimal controls exist under
very weak conditions. So it is important to derive some assertions for
suboptimal controls.

An application of a variational principle for vector optimization prob-
lems (see Section 2, Theorem 10) yields an principle for (P),
which is closely related to Pontrjagin’s minimum principle (for

We introduce the space V of controls, defined as the set of all mea-
surable functions with the metric

where denotes the ball of radius Applying Ascoli’s
theorem, we see that the family of all trajectories x of the control system
(1.38) is equicontinuous and bounded and hence relatively compact in the
uniform topology (compare Ekeland [89]).

In order to formulate the multicriteria control problem we introduce

(C5) is a pointed, closed convex cone with bounded base,

Now we formulate the multiobjective optimal control problem un-
der the assumptions (C1) – (C5)
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Then it holds

Lemma 7 (Ekeland [89]) (V , d) is a complete metric space.

Lemma 8 (Ekeland [89]) The function is contin-
uous on V, where x ( . ) is the solution of (1.38) depending on

Theorem 18 Consider the multicriteria control problem under the as-
sumptions (C1) – (C5). For every there exists a measurable
control with the corresponding admissible trajectory such that

(i) for all solutions   of (1.38),

(ii)

for any and almost all where
is the solution of the linear differential system:

Remark 5 If we put then Theorem 18 coincides with the fol-
lowing assertion: Whenever there is a measurable control and the
corresponding admissible trajectory with

(i) for all solutions  of (1.38), then

(ii)

for any and almost all where is the solution
of linear differential system (1.39) (the adjoint system).
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This means that fulfills a minimum principle for multicriteria con-
trol problems in the sense of Pontrjagin (compare Gorochowik and Kir-
illowa [124] and Gorochowik [123, 125]).

Remark 6 Now let us study the special case and put
Then Theorem 18 coincides with the following assertion: Whenever

(i) holds,

then

(ii)

almost everywhere on [0,T], where is the solution of (1.39).

This is the statement of Pontrjagin’s minimum principle. However,
Theorem 18 holds even if optimal solutions do not exist.

6.3. Conclusions
There are only some papers dealing with vector-valued control prob-
lems. It is essential to find results, as for instance a minimum principle
for approximate solutions, in order to have possibilities to analyse the
structure of solutions or approximate solutions. Furthermore, it is im-
portant to consider additionally non-deterministic aspects, that means
multicriteria stochastic optimal control problems, too.
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This chapter provides an annotated bibliography of nonlinear multiob-
jective programming. The list of references comprises more than 500
entries. First we explain some solution concepts which are fundamental
and important in multiobjective optimization. Some basic properties
of the solution sets are also discussed. The next section is devoted to
scalarization techniques and optimality conditions for nonlinear multi-
objective programming problems. The third topic is stability and sensi-
tivity analysis, which discusses the behavior of the set of efficient points
according to the change of parameter values in a nonlinear multiobjec-
tive programming problem qualitatively and quantitatively. The follow-
ing section is devoted to several aspects of duality theory, i.e., Lagrange
duality, conjugate duality and Wolfe type and Mond-Weir type duality
with generalized convexity. Finally vector variational inequalities are
also dealt with.
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1. Introduction

In this chapter we review several theoretical results concerning multi-
objective optimization (vector optimization) or multiobjective program-
ming. Since this volume contains another chapter dealing with vector
optimization in abstract spaces (Tammer and Göpfert, Chapter ), we
mainly concentrate on nonlinear multiobjective programming problems
which are defined on the ordinary Euclidean spaces and have a finite
number of objective functions. In many cases, however, the results were
obtained in more general forms or can be extended to more general
cases. As for the results in more general spaces, the readers may refer
to Chapter in this volume and [116]. Utility theory and several solution
methods such as interactive methods are not included either. Miettinen
provides a review of the latter topic in Chapter 9 of this volume.

Thus we consider the following nonlinear multiobjective optimization
problem in this chapter:

minimize
subject to

Here  is an decision variable, are
objective functions and X is a constraint set in the Eu-
clidean space. Particularly in nonlinear multiobjective programming,
the constraint set X is usually specified by a finite number of inequality
and/or equality constraints as in the following:

This type of problem has been intensively studied in the last few decades
and several books have been published (for example, White [483], Chan-
kong and Haimes [80], Sawaragi, Nakayama and Tanino [397], Yu [508],
Steuer [433], Guddat et al. [162], Jahn [202], Luc [313], Miettinen [332],
Ehrgott [134] and so on). Some books deal with multiobjective program-
ming or vector optimization partially (e.g. Pallaschke and Rolewicz [363]
Chapter 10 and Shimizu et al. [404] Chapter 13).

In this chapter we briefly provide an annotated bibliography of non-
linear multiobjective programming. The contents of this chapter are as
in the following:
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Solution concepts

Scalarization and optimality conditions

Stability and sensitivity analysis

Duality

Vector variational inequality
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2. Solution Concepts

In this section we will discuss some solution concepts in multiobjective
optimization problems and consider properties of solution sets. An ax-
iomatic approach to solution concepts can be seen in [482]. See also the
monographs introduced in the first section and [206].

2.1. Efficiency and Weak Efficiency

An ordinary mathematical programming (or optimization) problem in-
cludes only one objective function, and our aim is to find an element
which minimizes this function. In other words, the objective space is of
one dimension and therefore the ordering in the objective space is trivial
in ordinary mathematical programming. On the contrary, in a multiob-
jective problem, an element which minimizes an objective function does
not generally minimize another objective function. Of course, if there
exists a feasible solution which minimizes all the objective func-
tions simultaneously, it provides a solution to the problem. It is called
the completely optimal solution and is defined formally by the following
relation:

for all

However, the completely optimal solution seldom exists and we introduce
another solution concept. A feasible solution is said to be a
noninferior (a Pareto optimal, or an efficient) solution if there exists no

such that
for all i = 1, . . . , p;
for some

[381, 512]. Moreover, is said to be a weakly noninferior solution
if there exists no such that

for all i = 1, . . . , p.

It is noted that is noninferior if and only if f (x* ) is a minimal
element of the feasible set f(X) in the objective space with respect
to the ordering cone Unfortunately this ordering is not a linear
(total) order, but a partial order and the minimal element is not unique.
Of course, more general domination structures can be considered in the
objective space [42, 53, 59, 507, 508, 509, 510]. Typically, let K be a
pointed convex cone in Then is said to be K-efficient or K-
minimal (resp. weakly K-efficient or weakly K-minimal) if there exists
no such that



For a set we often use the following notations:

Then is K-efficient (respectively weakly K-efficient) if and only
if                      f ( X )             The cone K is
often omitted in the case in those notations.

The above definition provides globally efficient solutions. We may,
of course, define locally efficient solutions as in the case of ordinary
optimization. Any globally efficient solution is locally efficient, but the
converse is true only under appropriate convexity assumptions [73, 318].

A characterization of efficiency and weak efficiency using level sets
is given in [135], along with a new solution concept of strict Pareto
optimality. In a convex multiobjective programming problem, the set of
weakly efficient solutions is the union of the sets of efficient solutions of
problems with parts of the original objective functions [134, 324].

We should also note that the bounds on the efficient set in the objec-
tive space are given by the ideal point and the Nadir point [134, 332].

Moreover, approximate solutions to the multiobjective optimization
problem are considered. For example, an solution is defined
in [303] as a feasible solution x* for which there exists no such
that

where is a vector in Another type of is given in [486].
Studies on approximate solutions can be found in [117, 284, 295, 296,
300, 301, 303, 304, 367, 458, 459, 505].

Recently, a problem of optimizing another objective function over the
(weakly) efficient set of a multiobjective programming problem has been
discussed by several authors [40, 56, 85, 112, 457, 493, 494]. This prob-
lem requires a combination of global optimization and multiobjective
optimization.

2.2. Trade-off Rates and Proper Efficiency
At an efficient point f (x*) we may consider the trade-off rate between
two objectives and which is the change of the value of concerning
the unit change of the value of on the noninferior surface (the set of
noninferior points in the objective space). If this value is infinite we can
improve as much as we like with a small sacrifice of and therefore
such a point might not be appropriate for a solution of the problem. The
concept of proper efficiency is based on this consideration.
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A vector is said to be a properly efficient solution (in the sense
of Geoffrion [152]) if it is efficient and there is some real number M > 0
such that for each and each satisfying there
exists at least one such that and

The concept of proper efficiency was first introduced by Kuhn and Tucker
[250]. It is extended to the case of more general K-efficient solutions
and/or analyzed by several authors [36, 37, 39, 58, 90, 113, 163, 164,
179, 182, 241, 358, 431, 439, 517]. For example, Benson [36] defined x*

to be properly efficient if

where cl denotes the closure, cone denotes the conical hull and Y =
f(X). Relationships among several definitions of proper efficiency can
be found in [134, 397].

Proper efficiency is, of course, a stronger concept than ordinary effi-
ciency, but the set of efficient points is included in the closure of the set of
properly efficient points in the objective space under some assumptions
[173]. [93] proved that every efficient solution is properly efficient under
some mild conditions in pseudolinear multiobjective programming.

Another solution concept, super efficiency, was proposed in [62]. In
finite dimensional spaces, it coincides with Borwein’s proper efficiency
[58]. Super efficiency is also considered in [55] along with the concept of
super infima.

In ordinary scalar optimization, the infimum instead of the minimum
is often considered, because the latter does not always exist. Several au-
thors discussed an extension of the efficiency to the infimum (or supre-
mum) in vector optimization [125, 225, 357, 447, 450]. Some kinds of
closure operation on a set in are introduced and/or the space itself
is extended.
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2.3. Existence, Domination Property and
Connectedness

In any mathematical problem, existence of a solution is the first ques-
tion which should be answered. The existence of efficient solutions has
been discussed in [60, 86, 97, 173, 180, 203, 314, 320]. The simplest
result is a direct extension of the fundamental theorem (Weierstrass’
Theorem) in ordinary scalar optimization: If every is lower semicon-
tinuous and X is a compact set, then there exists an efficient solution.



These conditions guarantee that the feasible set in the objective space
is cone compact. Weaker concepts such as cone semicompactness have
been proposed. Comparison of existence results for efficient points is
given in [426]. Existence of efficient or weakly efficient solutions are also
discussed in connection with scalar optimization in [86, 118, 119]. Ex-
istence of efficient solutions with respect to general binary relations are
stated in [145, 175, 426].

Another question is the following: For each feasible solution
which is not efficient, is there an efficient solution which dom-
inates  (i.e., which satisfies  domination cone)?
The answer to this question depends on the problem. If it is affirmative,
i.e., for the set of feasible values Y = f(X) and the set of efficient values

in the objective space, if the relation

holds, then Y is said to have a domination property (or to be K-
minimally complete or externally stable). The above sufficient con-
ditions for the existence of efficient solutions (lower semicontinuity of

and compactness of X) also guarantee the domination property of
Y. Further researches concerning the domination property are made in
[38, 181, 306, 315]. The concept of dominators is introduced in [72].

The last question considered in this section is the connectedness of the
set of efficient solutions. [348] provided sufficient conditions for the con-
nectedness of the set of efficient values in the objective space. Moreover,
[468] provided sufficient conditions for the connectedness of the set of
efficient solutions in the decision space. Convexity plays an essential role
in their results. [35, 188, 312] refine the results by weakening convexity
to quasiconvexity. [35] also provides a review of connectedness results
for efficiency, see also [134, Section 3.4]. The case of two objective func-
tions is discussed in [456]. Moreover, conditions for the closedness of the
efficient set are discussed in [41, 94].

3. Scalarization and Optimality Conditions
In this section we discuss scalarization of multiobjective optimization
problems and necessary and/or sufficient conditions for efficiency, weak
efficiency and proper efficiency.

3.1. Scalarization

In order to obtain efficient solutions in a multiobjective optimization
problem, we generally transform it into a family of scalar optimization
problems usually with a parameter vector ([148] proposes an approach
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in which the objective functions are not scalarized). Scalarization has
been studied by a number of authors. Some discuss general approaches
to scalarization [150, 151, 154, 199, 309, 311, 364, 467, 471, 481, 488,
489, 504]. As is pointed out in [489], scalarization methods should have
the following two properties:
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1

2

An optimal solution of each scalarized problem is efficient (properly
efficient or weakly efficient).

Every efficient solution can be obtained as an optimal solution
of an appropriate scalarized problem by adjusting the parameter
value.

Typical methods of scalarization are the following:

1 Weighted sum minimization
The weighted sum of all objective functions is taken as a new
aggregated objective function.

minimize

subject to

where is a weighting vector. Each optimal solution
of the above problem is a weakly (resp. properly) efficient solution
of the original multiobjective problem (resp. if    However,
without convexity assumption, we cannot always obtain all efficient
solutions by changing the value of . A further research on this
problem can be seen in [34]. [278, 487] deal with convexification
of a noninferior frontier by applying the to the objective
functions.

2 method [78]
Converting all but one of the multiple objectives to inequality con-
straints leads to the following single-objective programming prob-
lem.

minimize
subject to

Every optimal solution of the above problem is weakly efficient in
the original multiobjective problem. Moreover, we can compute
the trade-off rates through the Lagrange multipliers obtained by

minimize
subject to
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solving the above problem [169]. [127] discusses relationships be-
tween the set of efficient solutions and the set of properly efficient
solutions through the weighted-sum scalarization.

Lin [288, 289] proposed a method of proper equality constraints by
converting objective functions not to inequality constraints but to
equality constraints.

3 Tchebyshev scalarization
A point called reference point or ideal point is chosen in the objec-
tive space. Then we try to find the nearest point to this reference
point in the feasible objective set. The obtained point is often
called the compromise solution [149]. In this case a norm is used
to determine the distance in the objective space [231, 395, 509].
The so-called norm is fundamental and (maximum) norm
is often used because it does not require convexity assumption to
obtain all the efficient points [159, 217, 218, 495]. The Tcheby-
shev scalarizing function is a variant of this norm. The weighted
Tchebyshev scalarization problem is formally described as

minimize

subject to

Since an optimal solution to the above problem provides a weakly
efficient solution, augmented Tchebyshev norm [123], augmented
Tchebyshev scalarizing function or similar functions are usually
used to focus on properly efficient solutions [94, 216, 490]. Dis-
cussions on the trade-off rates based on this type of scalarization
methods are in [219, 220, 279, 355, 503]. This type of scalarization
is fundamental in the reference point method for multiple criteria
decision making [461, 490].

Actually, as can be seen in the above three approaches, proper effi-
ciency and weak efficiency are more closely related to scalarization than
ordinary efficiency [200, 201]. Other methods and studies on trade-off
rates can be found in [183, 255, 393, 394].

3.2. Optimality Conditions

The most fundamental theorem in ordinary nonlinear programming is
the Karush-Kuhn-Tucker theorem [250]. It is extended to the case of
differentiable nonlinear multiobjective programming

minimize
subject to



where equality constraints are omitted for simplicity of description [252].
If is an efficient (or a weakly efficient) solution and an appro-
priate constraint qualification is satisfied at , then there exist nonzero
vectors and such that

Moreover, if is a properly efficient solution, the above can be
taken a positive vector. These conditions are also sufficient for effi-
ciency if the problem is convex, i.e., every function is convex.
This type of optimality conditions (usually under some appropriate con-
straint qualifications) have been investigated by a number of researchers
[79, 81, 106, 170, 288, 321, 322, 410, 440, 480].

Second-order optimality conditions are also studied in [1, 57, 65,
71, 227, 465]. They require second-order approximation sets to the
feasible region and new constraint qualifications. Optimality condi-
tions for nondifferentiable problems are also discussed by several authors
[51, 126, 193, 194, 195, 221, 371, 378, 387, 388, 428]. [193] provides op-
timality conditions in terms of directional derivatives. If all the func-
tions are locally Lipschitz, we obtain the optimality conditions in which
the gradients are replaced with the generalized gradients in the above
KKT-type conditions [95, Theorem 6-1-3], [126, 193, 378]. See also [332,
Chapter 3] and [404, Chapter 13]. In [51] upper Dini derivatives are used
to derive optimality conditions. [230] deals with a partially differentiable
and partially convex case.

For a function the directional derivative of f at in the
direction d is defined by

and the upper Dini derivative of f at in the direction d is defined by

The generalized gradient of a Lipschitz function f at is given by

Optimality conditions for the problems with more general domination
structure (nonconical dominance) can be found in [174, 175, 176].

Optimality conditions for dynamic multiobjective optimization prob-
lems are studied in [63, 233, 234].
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4. Stability and Sensitivity Analysis

Stability and sensitivity analysis aims to analyze qualitative and quan-
titative behavior of the efficient solutions and/or the efficient values
according to changes of parameter values included in the original op-
timization problem. A rather broad review of stability and sensitivity
analysis is made in [451]. See also [147] about stability and [114, 448]
for a survey.

In this section we consider a family of parametrized multiobjective
optimization problems

minimize
subject to

where is a parameter vector in and X can be regarded as a set-
valued mapping from to For each let

be the feasible set of the above problem. Then Y is a set-valued mapping
from to Let the efficient value set of the parametrized problem
be

Then W is another set-valued mapping from to which is called
the perturbation mapping. It is an extension of the perturbation func-
tion (optimal value function or marginal function) in the ordinary scalar
optimization to the case of multiobjective optimization.

Stability, i.e., continuity of this set-valued mapping (or essentially the
same one) is investigated in [143, 349, 368, 369, 453]. Given a set-valued
mapping it is said to be upper semicontinuous at
if and imply On the other hand,
F is said to be lower semicontinuous at  if and imply
the existence of a number K and a sequence such that
for all F is said to be continuous at  if it is both upper and
lower semicontinuous at . Sufficient conditions for the semicontinuity
of the perturbation mapping are considered.

[453] also studies the stability with respect to the change of domina-
tion structure of the decision maker. [215] studies stability of the com-
promise solution, not the whole efficient set. [430] investigates continu-
ous dependence of solutions on a parameter in a scalarization method.
[8] deals with stability of not only Pareto optimal solutions but also

solutions. Well-posedness in vector optimization is dis-
cussed in [31, 120, 189, 305].

80 MULTIPLE CRITERIA OPTIMIZATION



Nonlinear Multiobjective Programming 81

Sensitivity in multiobjective optimization is analyzed by considering
derivatives of the perturbation mapping in [445]. Given a set-valued
mapping and a point the graphical
derivative (or contingent derivative) of F at for is another set-valued
mapping defined by

Here

is the graph of F and denotes the tangent cone of a set S at
i.e.,

Roughly speaking, when

generally and the convexity assumptions guarantee that

Moreover,  can be obtained through the relationship

under some assumptions with
A relationship between the derivative and the Lagrange multiplier

vector is also established in [445]. Tanino [446] refines the results in
convex multiobjective optimization. Shi [402, 403] further investigated
the above results by introducing another set-valued derivative. If we
consider properly efficient solutions or weakly efficient solutions instead
of efficient solutions, we can consider other types of perturbation map-
pings. Kuk et al. [253, 254] provide sensitivity analysis concerning
those perturbation mappings. [12, 13] provides sensitivity analysis in
connection with duality theory in convex multiobjective programming
with right-hand side perturbation. [101] also deals with sensitivity anal-
ysis in multicriteria optimization. [57] discusses differential sensitivity
analysis along with second-order efficiency conditions.

5. Duality
Duality is not only theoretically very important but also practically very
useful in nonlinear programming. Therefore it has been extended to the



multiobjective case by several authors in the last several decades (see,
e.g. [356]). We will concentrate on duality in nonlinear multiobjective
optimization (as to the linear case refer to, e.g., [192, 246]) and briefly
review the Lagrange duality, the conjugate duality, the Wolfe [491] type,
and the Mond-Weir [340] type duality with generalized convexity. Ex-
cept those results, [121] developed nonconvex duality using a character-
ization of Pareto optima by means of generalized Tchebyshev norms.
[331] discussed duality and reciprocity in multiobjective programming.
[329] and [330] deal with other types of duality.

Results on saddle points of a vector-valued function are closely related
to the duality results [444]. Several excellent results have been also
obtained concerning saddle points and minimax theory [141, 142, 319,
359, 390, 441, 442, 443, 518]. See also Section 5.3 below.

5.1. Lagrange Duality
Corresponding to a nonlinear multiobjective programming problem,
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(P)
minimize
subject to

we define the vector-valued Lagrangian function L by

where is a    matrix. (In [452], the dual variable is an
vector as in the ordinary duality. But the second term

of the vector-valued Lagrangian is The dual
set-valued map is defined by

where Min d enotes the set of efficient points in with respect to the
ordering cone The dual problem is formally written by

(D)
maximize
subject to

though is not a function, but a set-valued map.
Unfortunately, generally even under the con-

vexity assumptions, but several interesting relationships are obtained
[452]. [10, 52, 98, 198, 307, 309, 466] also discuss Lagrange duality.
[61, 198, 352, 353, 354] provides geometric considerations of duality in
nonlinear multiobjective programming. [317] dealt with an axiomatic
approach to duality.
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Duality can be understood from the viewpoint of saddle-point theory
as in [283, 386, 444]. In the above setting, a point is a
saddle point of L if

5.2. Conjugate Duality

[454] defined the conjugate map of a set-valued map, which is also a
set-valued map, taking efficient values instead of the minimum value.
Through conjugate maps, they define the conjugate dual problem and
obtain the duality result. The concepts of subgradients and subdiffer-
entials are also introduced. Introduction of the concept of infimum in
multi-dimensional space led to advanced results in conjugate duality
[226, 449]. Let Inf Y (resp. Sup Y) denote the infimum (resp. supre-
mum) of a set where is the extended               Eu-
clidean space. For a set-valued map its conjugate map

is defined by

The biconjugate map of F is defined by

The primal multiobjective optimization problem

with is embedded into a family of perturbed problems

minimize

with satisfying for all . The dual
problem is formally defined as

where though is not a function but a set-valued map.
Moreover, the perturbation map is defined by

Clearly, Inf (P) = W (0). It is proved that Sup (D) = W **(0). More-
over, if W is subdifferentiable at 0, then Inf (P) = Sup (D). Convexity
assumptions essentially guarantee the subdifferentiability of W.



The results in [64] are based on another definition of infimum. Since
[356] provides a concise introduction to conjugate duality, the reader may
refer to it. [161] provides a generalization of Fenchel’s duality theorem
for convex vector optimization. Fenchel duality in vector optimization
is also discussed in [323].

5.3. Generalized Convexity and Duality
Convexity plays a very important role in optimization theory. Various
generalizations of convexity have been made in the literature. In this
subsection we deal with applications of generalized convexity to multiob-
jective programming. For basic definitions, characterizations and prop-
erties of convexity and some of its early generalizations, the reader may
consult Mangasarian [325], Roberts and Varberg [385]. Strict convexity,
strong convexity, strict quasiconvexity, strict pseudoconvexity etc. of
functions, their properties, characterizations, applications to economics
and optimization theory and elaborate lists of references are presented
in books by Schaible and Ziemba [398] and Avriel, Diewert, Schaible
and Zang [9]. See also [105, 242, 370] for a survey of recent advances in
generalized convexity.

Under pseudo/quasiconvexity, duality theory for multiobjective pro-
gramming problems has been studied in [16, 17, 43, 129, 167, 471, 474,
477]. Under pseudolinearity of the components of the functions involved,
[20] establishes duality theory, whereas assuming pseudolinearity of cer-
tain linear forms of the functions involved, [223] gives a fractional pro-
gramming dual of the type of Weir [472].

[462, 463] define the concept of which is satisfied, if for
arbitrary points  and and any value the classical inequality
of convex functions holds up to a term It has been
generalized in [210, 211] and applied to multiobjective programming
problems in [131, 341].

[170] introduced into optimization theory a broad generalization of
convexity for differentiable functions on that for some vector func-
tion the real-valued function f satisfies, for each

and showed that both weak
duality and KKT sufficiency results, in constrained optimization, hold
with the generalized convexity conditions, called invex by [100]. During
the last twenty years, numerous articles have appeared in the literature
reflecting further generalizations and applications in this category.

Duality theory in multiobjective programming problems has been dis-
cussed in [132, 236, 258, 415, 460] under invexity and pseudo-/ quasiin-
vexity. F-convexity has been defined by [171] replacing
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by in the above definition of invexity, where F is a sub-
linear function. Under F-convexity assumptions, applications to gener-
alized F-convexity to multiobjective programming problems have been
investigated in [46, 165, 235]. Other studies on duality in multiobjective
programming can be seen in [418, 476] under preinvexity assumptions
defined by [476] and in [15, 26] under b-invexity assumptions defined by
[30].

[172] defines two new classes of functions called type I and type II
functions. Let f be a real-valued differentiable function and let g be an

vector-valued differentiable function defined on The
functions f and g are called type I with respect to
if for each

[224] considers Wolfe type and Mond-Weir type duality for multiobjec-
tive programming problem involving type I condition. [2] introduced
classes of generalized type I vector-valued functions and derive Mond-
Weir type duality results under generalized type I assumptions. Com-
bining the concepts of type I and univex functions, [391] gives optimality
conditions and duality in various settings (real valued, fractional, mul-
tiobjective). [435] defines generalized d-type I functions for a multiob-
jective nondifferentiable programming problem and derives Wolfe type
and Mond-Weir type duality results.

KKT-type optimality conditions and duality were obtained by [382]
under generalized cone invexity in a subdifferential setting. [383] ex-
tended the invexity to nonsmooth functions by the generalized direc-
tional derivative of Clarke [95] for Lipschitz functions. [261] extended
the results of [383] to multiobjective programming problem involving
nonsmooth Lipschitz invex functions.

[373] introduced generalized which is an extension
of F-convexity defined by [171] and generalized defined by
[462, 463]. Let and such that
for any . A real-valued differentiable function f defined on is said
to be if for each

[373] used the generalized to obtain Wolfe type and
Mond-Weir type duality results for multiobjective programming prob-
lems. [47] defined for nonsmooth functions, an exten-
sion of generalized defined by [373], and [47] derived
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some duality theorems for nonsmooth multiobjective programming prob-
lems. [492] introduced a mixed type dual for multiobjective program-
ming problems and presented duality results under generalized
convexity assumptions.

[212] defined generalized V -invexity of differentiable multiobjective
programming problems which preserve the sufficient optimality condi-
tions and duality results as in the scalar case, and avoid the major diffi-
culty of verifying that the inequality holds for the same function for
the objective functions and the constraints. This relaxation allows us to
treat nonlinear fractional programming problems also. [339, 296] further
extended the results of [212] to nonsmooth multiobjective programming
problems. Applications of generalized V -invexity to composite multi-
objective nonsmooth programming are investigated in [334, 338]. See
[22, 23] for minimax programming problems and [335, 344] for multiob-
jective variational problems involving V -invex functions. [251] defined

using Clarke’s derivatives for locally Lipschitz functions
and established sufficient optimality conditions and duality for nons-
mooth multiobjective programming. See [380] for composite nonsmooth
multiobjective programming problems involving functions.

Other studies on duality in multiobjective programming with gener-
alized convex functions can be seen in [110, 158, 166, 342, 345, 374, 377,
379].

Applications of generalized convex functions to multiobjective frac-
tional programming are discussed in [19, 21, 24, 45, 46, 75, 76, 96, 130,
260, 297, 298, 301, 341, 347, 365, 414, 415, 418, 434, 471, 472, 475].
Duality results for multiobjective variational problems with generalized
convexity are established in [27, 49, 91, 92, 237, 238, 239, 263, 337, 345,
350, 351].

6. Vector Variational Inequalities

In this section we concentrate on the relations between solutions of vector
variational inequalities and solutions of vector optimization problems (or
multiobjective programming problems).

The concept of vector variational inequality in a finite dimensional
Euclidean space was first introduced by Giannessi [155] in 1980.

Let X be a nonempty subset of and let
be vector-valued functions. Let

for every and The scalar product in a Euclidean space
is denoted by The vector variational inequality, defined by the
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function F and the set X, is the following problem:

Find such that for every

The existence theorems for solutions of vector variational inequalities
or generalized vector variational inequalities are studied in [77, 82, 83,
84, 85, 89, 107, 122, 138, 144, 244, 265, 267, 268, 269, 270, 271, 273, 274,
275, 291, 294, 405, 406, 407, 408, 409, 497, 498, 499, 501, 511]. See also
Giannessi [157] and the references cited therein about vector variational
inequalities and their generalizations.

Vector variational inequalities and their generalizations have been
used as a tool to solve vector optimization problems. Several authors
have discussed relations between vector variational inequalities and vec-
tor optimization problems under some convexity or generalized convexity
assumptions.

[272] showed that a necessary condition for a point to be a weakly
efficient solution of a vector optimization problem for differentiable func-
tions is that the point be a solution of a vector variational inequality.

Let be differentiable functions. We for-
mulate the following Stampacchia type vector variational inequality for
gradients:

(SVVI) Find such that for any

[156] considered another type vector variational inequality, which is
called the Minty type vector variational inequality for gradients:

(MVVI) Find such that for any

[156] provided the equivalence between efficient solutions of a differen-
tiable convex vector optimization problem and solutions of a Minty type
vector variational inequality for gradients which is a vector version of
the classical Minty variational inequality for gradients. Moreover, [156]
proved the equivalence between solutions of weak Minty and Stampac-
chia type vector variational inequalities for gradients and weakly effi-
cient solutions of a differentiable convex vector optimization problem.
Following the approaches of [156], [262] studied the equivalence between
nondifferentiable convex vector optimization problems and Minty type
vector variational inequality and Stampacchia type vector variational
inequality, both for subdifferentials as follows:
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Find such that for any and any

where is the subdifferential of

Find such that for any there exists

Let be differentiable functions and let
be a vector-valued function. Then we consider the

following Minty type vector variational-like inequality and Stampacchia
type vector variational-like inequality for gradients:

(MVVLI) Find such that for any

(SVVLI) Find such that for any

[229, 497] established the equivalence between a vector variational-like
inequality with a multiobjective programming problem for generalized
invex functions. The vector variational-like inequality approach was used
in [264, 274] to prove some existence theorems for generalized efficient
solutions of nondifferentiable invex vector optimization problems. The
results in [264, 274] are generalizations of existence results established
in [85, 86] for differentiable and convex vector optimization problems
and in [228] for differentiable preinvex vector optimization problems. [6]
proved the equivalence among the Minty vector variational-like inequal-
ity, Stampacchia vector variational-like inequality, and a nondifferen-
tiable and nonconvex vector optimization problem. [6] also established
an existence theorem for generalized weakly efficient solutions of non-
differentiable nonconvex vector optimization problems by using a fixed
point theorem.

[499] gave the equivalence between solutions of a Stampacchia vec-
tor variational inequality for gradients and efficient solutions of a lin-
ear fractional vector optimization problem of which the numerators of
the objective functions are linear and the denominators of the objective
functions are the same linear functions.

Several existence results of solutions for vector equilibrium problems
can be found in [5, 50, 74, 157, 168, 245] and the references cited therein.
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7. Concluding Remarks

In this chapter we have reviewed a great number of papers concerning
mathematical theory of nonlinear multiobjective programming. As we
mentioned first, we have focused on the nonlinear case. Moreover, many
articles mainly connected with theoretical results in abstract spaces are
either omitted or only listed without citation if they are extended from
those obtained in the Euclidean spaces. We have dealt with neither
practical methods such as interactive methods for solving multiobjec-
tive problems from the viewpoint of decision making, nor multiattribute
utility theory. The topics dealt with are solution concepts, scalarization,
optimality conditions, stability, sensitivity analysis, duality, and vector
variational inequalities. Since some topics have not been explained so
far, we would like to mention a few of them briefly in this section.

[191, 248] demonstrated an equivalence between a linear complemen-
tarity problem with general data and finding a certain subset of the
efficient points of a multiobjective programming problem. A new multi-
objective programming based approach to solving linear complementar-
ity problems is presented.

Recently set-valued optimization is an interesting topic, which is an
extension of multiobjective optimization in a sense. Several results can
be seen in [11, 33, 88, 99, 143, 205, 208, 281, 282, 285, 287, 302, 316, 421,
422, 423, 424, 425, 496] and the references cited therein. In set-valued
optimization, mappings are set-valued. On the other hand some authors
investigated multiobjective problems with set functions where decision
variables are sets [18, 48, 184, 185, 186, 292, 293, 299, 376].

Though we tried to list as many papers as possible, some important
ones might be missing because of the limit of our ability. The authors
would highly appreciate it if the readers would be tolerant of this matter.
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Abstract

Keywords:

This chapter presents a bibliography of goal programming for the period
1990-2000. Goal programming is introduced and the main variants are
defined. An analysis of applications by field is given. A survey of ad-
vances in various goal programming extension areas is conducted. The
integration and combination of goal programming with other solution,
analysis, and modelling techniques is examined. Conclusions are drawn
and suggestions for future research directions are made. A list of over
280 references is presented.

Goal programming, Bibliography, Review.

1. Introduction

Goal Programming (GP) is a multi-criteria decision making technique.
It is traditionally seen as an extension of linear programming to include
multiple objectives, expressed by means of the attempted achievement
of goal target values for each objective. Another way of viewing the re-
lationship is that linear programming can be considered to be a special
case of goal programming with a single objective. All of these considera-
tions place goal programming within the paradigm of multiple objective
programming. Connections can be shown between goal programming
models and compromise programming and reference point models under
certain conditions [163, 191].
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The ethos of GP lies in Simon’s [284] concept of the satisficing of
objectives. Simon conjectures that in today’s complex organisations
the decision makers (DM’s) do not try to maximise a well defined util-
ity function. In fact the conflicts of interest and the incompleteness
of available information make it almost impossible to build a reliable
mathematical representation of the DMs’ preferences. On the contrary,
within this kind of decision environment the DMs try and achieve a set
of goals (or targets) as closely as possible. Although GP was not orig-
inally conceived within a satisficing philosophy it still provides a good
framework in which to implement this kind of philosophy.

The roots of GP lie in a paper by Charnes, Cooper, and Ferguson in
1955 [268] in which they deal with executive compensation methods. A
more explicit definition is given by Charnes and Cooper [267] in 1961 in
which the term ‘goal programming’ is first used. Until the middle of the
1970’s, GP applications reported in literature were rather scarce. Since
that time, and chiefly due to seminal works by Lee [278] and Ignizio
[274], an impressive boom of GP applications and technical improve-
ments has arisen. It can be said that GP has been, and still is, the most
widely used multi-criteria decision making technique [281]. Although
Schniederjans [203] has detected a decline in the life cycle of GP with
regard to theoretical developments, the number of cases along with the
range of fields to which GP has been, and still is, applied is impressive,
as shown in surveys by Romero [281], Schniederjans [283], and Tamiz,
Jones, and El-Darzi [237].

GP models can be classified into a number of variants, each of which
is characterised by a different underlying distance metric or utility func-
tion. Three of the major goal programming variants are classified in the
remainder of Section 1.

1.1. Weighted Goal Programming

In the first variant the unwanted deviations from the target values are
assigned weights according to their relative importance to the decision
maker and minimised as an Archimedean sum. The underlying distance
metric here is the ‘Manhattan’ distance. This variant is known as
weighted or non-preemptive GP(WGP). The algebraic formulation of a
WGP is given as
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subject to,

where is a linear function(objective) of , and is the target
value or goal for that objective. and represent the negative and
positive deviations from this target value. and are the respective
non-negative weights attached to these deviations in the achievement
function These weights take the value zero if the minimisation of the
corresponding deviational variable is unimportant to the decision maker.

is an optional set of hard constraints as found in linear programming.
The function of weighted deviational variables to be penalised is known
as the achievement function.

Each deviational variable included in the achievement function is di-
vided through by a normalisation constant This is needed to over-
come the problem of incommensurability. That is, deviations from ob-
jectives measured in differing units being summed directly. A number
of different types of normalisation constants are available for use depen-
dent on the situation. These are detailed in Romero [281] and Tamiz
and Jones [286].

A weighted goal programming model is used when all the objectives
can be compared directly and the decision maker is willing and able to
assign weights that reflect the relative importance of the objectives in
the situation. Also weighted goal programming should be used when the
decision maker is interested in a solution that gives a pure overall lowest
sum of weighted deviations from the goals rather than an overall bal-
ance between the achievement of those goals. Under these circumstances
weighted goal programming is a powerful tool that gives not only solu-
tions, but a good deal of trade-off information between the objectives.

1.2. Lexicographic Goal Programming

Another major variant of GP is formed when the deviational variables
are assigned into a number of priority levels and minimised in a lexico-
graphic sense. A lexicographic minimisation being defined as a sequen-
tial minimisation of each priority whilst maintaining the minimal values
reached by all higher priority level minimisations. This is known as lexi-
cographic or pre-emptive GP(LGP), as introduced and chiefly developed
by Ijiri [275], Lee [278], and Ignizio [274].

The algebraic representation of a LGP is given as:

Lex min
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subject to,

This model has L priority levels, and Q objectives. The achievement
function a is an ordered vector of these L priority levels. and are
deviational variables which represent the under and over achievement
of the i’th goal respectively,  is the vector of decision variables to be
determined. Any ‘LP’ style hard constraints are placed, by convention,
in the first priority level. A standard (within priority level) function
is given by:

where   and represent inter-priority level weights, as in weighted GP,
a zero weight is given to any deviational variable whose minimisation is
unimportant. If the deviational variables summed inside a priority level
are measured in different units then a normalisation technique can be
applied to overcome incommensurability, as described in the section on
weighted goal programming above.

Lexicographic goal programming models have proved the most con-
tentious in terms of the definition of their underlying utility function.
Romero [281] provides a discussion on this topic as well as good and
poor modelling practices when using lexicographic goal programming.
This variant should be used when the decision maker has a natural or-
dering of the objectives in mind rather than a relativistic comparison.
It is also used when the decision maker is unable or unwilling to provide
the relevant relative importance of the objectives by means of weights.
Lexicographic goal programming is historically the most used goal pro-
gramming variant [237].

1.3. Chebyshev Goal Programming

Another less widely used but theoretically significant variant is that of
Chebyshev Goal Programming, also known as Minmax goal program-
ming. In this variant the maximum deviation from amongst the weighted
set of deviations is minimised rather than the sum of the deviations
themselves. The algebraic formulation of the Chebyshev GP model is
given as:
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subject to,

This model has objectives. is a linear function(objective) of ,
and is the target value or goal for that objective. and represent
the negative and positive deviations from this target value. and
are the respective non-negative weights attached to these deviations in
the achievement function . These weights take the value zero if the
minimisation of the corresponding deviational variable is unimportant
to the decision maker. is an optional set of hard constraints as found
in linear programming. D is the maximum deviation to be minimised
and is the sole component of the achievement function . is the
normalisation constant for the i’th objective as defined in Section 1.1.

Chebyshev goal programming in the form detailed here requires the
use of weights to reflect the importance of the objective to the decision
maker and hence the same comments regarding the use and appropri-
ateness of weights as made for weighted goal programming in Section
1.1 apply. The principle difference is that in Chebyshev goal program-
ming the maximum deviation is being penalised. This leads to a
distance metric minimisation and implies an underlying utility function
of a Rawlsian nature [191, 280]. The practical effect of this is to provide,
as far as is possible, a balance between the levels of the objectives rather
than a strict minimisation of their sum. This is felt to be appropriate to
some extent to many real-life applications. Decision makers should look
to utilize Chebyshev goal programming if their requirements are defined
in terms of balance and fairness.

To conclude, Section 1 has detailed three major variants of goal pro-
gramming. Further sub-variants are considered in the analysis given by
the following Sections.

2. Details of Literature Review

The articles detailed in this chapter are drawn from a variety of sources,
lists, and investigations in the topic of goal programming. The criterion
for inclusion is an article that appears in a refereed journal and uses,
describes, modifies, or advances goal programming in some way. Arti-
cles are drawn from the period 1990-2000. Readers interested in goal
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programming articles before this date are referred to the bibliography in
Romero [281]. Additionally, the 14 articles from the year 2000 probably
do not represent the entirety of the goal programming literature during
this year as there may be some time lag before articles appear in lists
and databases.

The above definition produces some exclusions that must be noted.
Books concerning goal programming are not included. Some books
about goal programming, or with substantial goal programming content,
published in the relevant time period include the works of Romero [281],
Ignizio and Cavalier [274], and Schniederjans [283]. Articles published
as part of conference proceedings are not included either. The interested
reader is refereed to the proceedings of the MOPGP (multiple objective
programming and goal programming) conference series [266, 285] for de-
tails of some of the developmental work on goal programming in the past
decade.

The principle breakdown of goal programming articles in the analysis
of this bibliography is conducted by application area. This is deemed ap-
propriate given the applied nature and wealth of real-world applications
of the goal programming technique. The following sub-section presents
this analysis.

2.1. Analysis of Fields of Application

The articles are sub-divided into 16 fields of application. Each article
is classified into one of these fields. Some articles span more than one
field and could have been classified in either. In this case, the article is
put into what was judged to be its major field (in terms of novelty and
contributions). The fields chosen and the associated articles are detailed
as follows:

Academic Management [12, 14, 77, 82]

Agricultural Management [8, 9, 15, 22, 29, 30, 56, 66, 75, 80, 86,
90, 95, 97, 113, 114, 172, 220, 242, 261]

Classical OR Application [20, 31, 50, 63, 132, 169, 174, 259, 265]

Energy Planning and Production [1, 25, 26, 64, 67, 68, 88, 101,
102, 133, 154, 176, 177, 178, 179, 180, 193, 211]

Engineering (all types) [41, 47, 70, 73, 94, 118, 126, 141, 159, 183,
207, 212, 214, 227, 228, 229, 230, 253, 254]

Environmental and Waste Management [4, 5, 42, 46, 43, 44, 45,
83, 147, 185, 188, 224, 244, 257]
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Finance [16, 52, 107, 173, 209]

Health Planning [34, 74, 106, 116, 125]

Information Technology and Computing [98, 110, 112, 117, 165,
168, 198, 199, 208, 247]

Management and Strategic Planning [57, 60, 78, 89, 103, 104, 127,
162, 205, 204, 206, 218, 219, 223, 260]

Military [71, 105, 160, 250]

Natural Resource Management [6, 21, 33, 48, 53, 54, 62, 85, 115,
122, 131, 135, 136, 140, 150, 155, 156, 161, 170, 171, 187, 225, 226,
252, 255, 256]

Production Planning [3, 7, 13, 17, 19, 27, 28, 69, 79, 91, 108, 119,
134, 142, 146, 157, 158, 166, 200, 210, 221, 222, 231, 248, 249, 258,
264]

Socio-Economic Planning [2, 10, 11, 58, 84, 99, 100]

Theoretical [18, 32, 35, 36, 37, 39, 49, 51, 55, 59, 61, 65, 72, 81, 92,
93, 96, 109, 111, 120, 121, 123, 124, 128, 129, 130, 137, 138, 139,
144, 145, 148, 149, 151, 153, 163, 164, 167, 175, 181, 182, 184, 186,
189, 190, 191, 192, 195, 196, 197, 201, 202, 203, 213, 216, 217, 232,
233, 234, 235, 236, 237, 238, 239, 240, 241, 243, 245, 246, 251, 262]

Transportation and Distribution [23, 24, 38, 40, 76, 87, 143, 152,
194, 215, 263]

Where the ‘classical OR Application’ field includes goal programming
as a solution and analysis tool for models in scheduling, queuing, and
forecasting. Transportation and distribution models are given their own
category. The area of finance is distinguished from the more general area
of management and strategic planning in so much as it concerns mod-
els dedicated to portfolio or financial product composition and control.
Water resource planning is included under the area of natural resource
management.

An overview of the division of articles by subject is given by the Table
3.1.

Table 3.1 shows that goal programming is still advancing and being
used on both the theoretical and practical levels. There continues to be
a healthy range of applications represented. The level of 26.5% theo-
retical advance seems appropriate for a discipline that is now fairly well
established but still being adapted and refined to new technologies and
techniques as they emerge. This theme is expanded upon in Section 4.
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3. Classification of GP Extension Articles

Analysis of the main goal programming variants shows that of the ar-
ticles surveyed that fell into the categories of lexicographic or weighted
goal programming, 59% fell into the lexicographic category and 41% into
the category of weighted goal programming. This is a change from the
findings of Tamiz, Jones, and El-Darzi [237] who, based on a pre-1990
survey, record a split of 75% for the lexicographic category and 25% for
the weighted category. This result excludes models from other variants
and extensions as listed below, which may fall into either category.

Chebyshev goal programming still remains a minor topic in terms of
articles published, with just [59, 252] explicitly using it as the major
variant. However, some Chebyshev GP applications and theory may be
hidden within the categories of fuzzy goal programming and multiple
goal programming detailed below.

Various models and extensions of goal programming exist beyond or
in conjunction with the main variants. These are detailed by extension
and broken down by application area in the remainder of this Section.

3.1. Non-Linear Goal Programming

Under the traditional goal programming formulation all the goals, hard
constraints, and the achievement function are assumed to be linear in
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nature. If any one of these are not then the goal programme is classified
as non-linear. The growth in computing power and sophistication of
solution methods (for example by meta-heuristic techniques as defined
in Section 4.1) have led to greater opportunities for the application,
modelling, and solution of non-linear goal programming in a variety of
disciplines that are intrinsically non-linear. The following list provides
a breakdown of these by application area

Computing and Information Technology [198]

Engineering (all disciplines) [94, 108, 228]

Environmental and Waste Management [44]

Finance [173]

Natural Resource Management [135]

Production Planning [166]

Theoretical [36, 39, 65, 72, 193, 195, 196, 251]

Where (A) denotes the use of simulated annealing as a solution tool
and (B) denotes the use of a genetic algorithm as a solution tool.

3.2. Quadratic Goal Programming
A special case of non-linear goal programming is that of quadratic goal
programming. Here it is assumed that the objectives, hard constraints,
and achievement function are polynomial functions of order at most two.
The survey found quadratic goal programming used in the following
disciplines:

Engineering (all disciplines) [126, 118]

Health Planning [34]

3.3. Fractional Goal Progamming

A further special case of non-linear goal programming is fractional goal
programming. A general case lexicographic fractional goal programme
is defined as:

Lex min

subject to,
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with all notation following the definitions given for lexicographic goal
programming in Section 1.2. The chief advantages of fractional goal
programmes appear to be ease of analysis and separation of the objective
measures and although Romero [189] cites pitfalls associated
with the analysis of fractional goal programmes that can be avoided. The
past decade has seen modest use of fractional goal programming, with
three articles quoting its use [59, 164, 167].

3.4. Integer Goal Programming Models

Standard goal programming models have the same divisibility assump-
tion as linear programming models. That is, all decision variables are
assumed to be able to take any value within their feasible range. If this is
not the case then the model is classified as an integer goal programming
model. The following articles, classified by application area, use integer
goal programming

Academic Management [77]

Engineering (all disciplines) [41, 70]

Environmental and Waste Management [4]

Health Planning [34]

Management and Strategic Planning [223]

Natural Resource Management [122, 225],

Production Planning [69, 142, 223, 248]

Theoretical [39]

3.5. Zero-one Goal Programming Models

A further subset of integer goal programming is that of zero-one goal
programming. Here a subset of the integer decision variables are con-
strained to take either the value zero or one. This condition frequently
represents a decision with two outcomes that needs to be made. The
following articles, classified by application area, use zero-one goal pro-
gramming:

Academic Management [12]

Agricultural Management [66]

Classical OR Application [50]
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Engineering (all types) [73]

Information Technology and Computing [117, 198]

Management and Strategic Planning [162, 206, 260]

Production Planning [79, 158]

3.6. Stochastic Goal Programming Models

The increase in computing power and technology in the decade under
review has led to new possibilities in the area of stochastic goal pro-
gramming. The classical goal programming model assumes that all co-
efficients and relationships are known with certainty. Stochastic goal
programming relaxes these assumptions for a subset of coefficients, ob-
jectives, or goal target values. The following articles make use of stochas-
tic goal programming.

Classical OR Application [63]

Natural Resource Management [48, 171]

Production Planning [258]

Theoretical [92, 93, 128, 129, 130, 148]

Transportation and Distribution [143]

The dominance of theoretical papers in stochastic goal programming
is an indication of the its newness as an accessible goal programming
extension.

3.7. Fuzzy Goal Programming Models

An area of increased popularity is the variant of fuzzy goal program-
ming. This combines the area of fuzzy set theory as defined by Zimmer-
mann [287] with goal programming techniques in order to add modelling
flexibility and accuracy to the goal programming model. Twenty three
articles dealing with or using fuzzy goal programming are found in this
survey. The breakdown by application area is given as:

Engineering (all types) [73, 227]

Environmental and Waste Management [42, 43, 44, 45]

Health Planning [106]

Natural Resource Management [115, 188]
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Theoretical [49, 51, 109, 138, 148, 149, 151, 181, 182, 201, 202, 246]

Transportation and Distribution [22, 23, 40]

Again, the high percentage of theoretical papers is an indication of
the newness of this extension.

3.8. Interactive Goal Programming Models

Goal programming interactive methodology was developed throughout
the two decades prior to the material surveyed in this bibliography. A
listing of these advances can be found in Tamiz and Jones [235]. The
number of papers explicitly using a formal interactive methodology is
quite small, although some level of interaction, whether it is on a formal
or informal level, is implicit in the solution of any real-life goal program-
ming model. The articles that add to the development of interactive goal
programming in the survey are given by Reeves and Hedin [184], Roy
and Wallenius [192], Sasaki, Gen, and Ida [202], and Tamiz and Jones
[235].

3.9. Multiple Goal Programming Variants

A number of articles use more than one goal programming variant and
compare solutions, or are dedicated into the exploration of the differences
and connections between the goal programming variants. Articles in this
category are divided into application areas as follows

Agricultural Management [86]

Theoretical [144, 145, 189, 191, 203, 235, 237, 238, 241]

4. Integration and Combination of Goal
Programming with Other Techniques

An important trend in the past decade has been the integration of goal
programming with various MCDM, Operational Research, Statistical,
and other techniques. This signifies that each technique is no longer
seen as a separate entity that is disconnected from other techniques and
is therefore no longer used and theoretically developed in isolation. A
healthy cross-utilization and fertilization has taken place. Many appli-
cations and theoretical developments have taken place that use a con-
junction of techniques in some way. These are divided into categories
and examined below.
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4.1. Using Other Techniques for Solution of
Goal Programming Models

Traditional linear goal programming methods use simplex-based opti-
mization techniques to find solutions. Efficient algorithms are available
for solution of both weighted and lexicographic cases. Examples of these
include the dual algorithm of Ignizio [273] and the specialized solution
mechanisms of the GPSYS system [276]. Non-linear models traditionally
use non-linear programming methods adapted to a multiple objective
framework.

Recent developments in the field of meta-heuristic methods allow for
the solution of models that are difficult to solve by conventional meth-
ods due to complicating factors. Such complicating factors may include
non-linear or non-convex objectives, many integer or binary decision
variables, stochasticity, or non-standard constraints and/or underlying
utility functions. Meta-heuristic techniques can be effectively used in
goal programming in order to expand the range of models able to be
solved and hence the range of applications. The following articles, clas-
sified by meta-heuristic method, present algorithms or applications that
use meta-heuristics for goal programming solution.

Evolutionary Programming [262]

Genetic Algorithms [72, 130, 128, 232]

Simulated Annealing [19]

Tabu Search [17, 18]

Simulation Techniques are available for models which are unable to be
expressed and solved analytically. Articles that use goal programming
within a simulation environment are [47] and [125].

Network analysis models allow for a further specialised type of solution
algorithm. Articles that use goal programming with network analysis of
a solution tool are given by [169, 213, 214, 215, 243]. In addition to
these, a recent article by Lee and Kim combines goal programming with
the analytical network process [117].

4.2. Goal Programming and the Analytical
Hierarchy Process

The analytical hierarchy process [282] is a well-known technique for the
determination of weights of factors by a series of pairwise comparisons.
This concept leads to a natural combination with goal programming
whereby the AHP is used to determine the weights used in a weighted
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goal programming model. This integration was pioneered by Gass [272]
in the context of a military planning model. Other articles concentrate
on the use of goal programming to make technical improvements to the
method of the AHP. Articles that use a combination of goal programming
and the AHP are divided by application as follows:

Computing and Information Technology [208]

Energy Planning and Production [26, 178, 179, 180]

Environmental and Waste Management [5, 257]

Health Planning [116]

Management and Strategic Planning [205, 223]

Production Planning [13, 263]

Theoretical [32, 59, 96, 175]

4.3. Goal Programming and Data Envelopment
Analysis

Another area of development within the Operational Research frame-
work within the past quarter of a century is that of data envelopment
analysis(DEA) [269]. A number of articles in this survey combine goal
programming methods and DEA in various ways. A breakdown of these
articles by application area is given as follows:

Management and Strategic Planning [78, 218, 219]

Socio-Economic Planning [10, 11]

Theoretical [51, 92, 186, 216]

The dominance of articles in the socio-economic, management, and
strategic planning areas is a reflection on the nature and application of
DEA.

4.4. Goal Programming and Pareto Efficiency
Considerations

A topic that is a cause of considerable concern within the MCDM com-
munity is the ability of goal programming, in its basic form, to give so-
lutions that are Pareto inefficient. One of the underlying assumptions of
multiple-objective theory is that no rational decision maker will choose a
Pareto inefficient solution if a Pareto efficient solution that dominates it
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is available. The essence of this conflict is the fact that goal programming
is based on the Simonan concept of ‘satisficing’ [284], whereas multiple
objective methods in general are based upon the concept of optimising.

However, the past decade has seen advances in goal programming
that allow an inefficient solution to be transformed into an efficient one
in accordance with the decision makers preferences as expressed in the
original model. Details of these modifications are given by Tamiz and
Jones [234]. Integer case extensions are given by Tamiz, Jones, and
Mirrazavi [240]. These approaches effectively integrate the philosophies
of satisficing and optimizing without diminishing the value of either.

The complete list of articles using Pareto analysis in combination with
goal programming, broken down by application area, is given as:

Engineering (all types) [126]

Production Planning and Logistics [3]

Theoretical [234, 240, 251].

With growing awareness of the linkages between goal programming
and the more general field of multiple objective programming, the per-
centage of articles using this type of combination will hopefully increase,
as discussed in Section 5.

4.5. Goal Programming and Statistical
Techniques

It should be noted that goal programming has connections with various
statistical techniques, especially with the technique of regression analy-
sis. The original formulation of goal programming [268] was introduced
in the context of ‘constrained regression’. In fact weighted and Cheby-
shev goal programming models of certain forms can be used to form
regression models for the metrics and respectively. The following
articles use goal programming in a statistical context:

Finance [52]

Theoretical [39, 123, 217]

This list does not include topics which are borderline between Statis-
tics and Operational Research (e.g. Forecasting). Such models can be
found in the ‘Classical OR’ field in the applications breakdown given in
Section 2.
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5. Conclusion and Comment

The last recorded similar analyses of goal programming are given by
Schniederjans [203] and by Tamiz, Jones and Romero [238], although
neither of which in the context of the analysis of a full goal programming
bibliography such as is presented in this chapter. Schniederjans uses life
cycle analysis to conclude that the number of goal programming articles
is diminishing. Tamiz, Jones, and Romero are more optimistic and claim
that the actual rate of publication and breadth of new theory and appli-
cation in goal programming is still impressive. This bibliography shows
an average of 24 articles a year published over the eleven year period in
question. Although it is clear that many of the fundamental questions
regarding goal programming have been answered, there are nevertheless
many avenues for future research in theoretical development and contin-
ual stream of new application areas arising which can benefit from goal
programming analysis. Predicting the future always involves a good deal
of hypothesis and conjecture. However, an analysis of what, in the opin-
ion of the authors, are some of the new challenges for goal programming
is given in this Section.

5.1. Possible Future Research Directions

Further Integration of Goal Programming In the Multi-
ple Objective Programming and Multi-Criteria Decision
Making Paradigms.

An analysis of the articles shows a number of applications that
use goal programming to produce information for another MCDM
technique. Articles found in this category include the following:

Despotis DK [59] the use of goal programming in obtaining
priority and preference information for MCDM

Diaby M and Martel JM [61] preference structure modelling
by goal programming

Martel JM and Aouni B [137] modelling decision maker pref-
erences by goal programming

Gonzalez-Pachon J and Romero C [81]: distance-based con-
sensus methods using goal programming

Islam R, Biswal MP and Alam SS [96] Preference program-
ming and inconsistent interval judgments by goal program-
ming

Lam KF and Choo EU [111] Using goal programming for
preference decomposition
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Moy JW, Lam KF and Choo EU [153] Deriving the partial
values in MCDM by goal programming

This list excludes AHP applications which are listed separately in
Section 4.2

In addition to this, there exist theoretical advances by Romero,
Tamiz and Jones [191] and Ogryczak [163] linking goal program-
ming with other MOP techniques such as compromise program-
ming and the reference point method. The obstacle of Pareto effi-
ciency considerations can be overcome by methods such as those of
Tamiz and Jones [234] which allow conversion from the satisficing
to the optimizing frameworks.

It is hoped that future work in goal programming will be conducted
with a growing awareness of such linkages and a new generation of
hybrid algorithms and formulations can be developed with symbi-
otic advantages for both goal programming and the wider field of
MCDM.

Goal Programming Applications in the Computing and
IT Field and Strategic Management Fields.
It is clear that a major growth area worldwide has arisen with
the communications revolution and the advent of the World Wide
Web. The issues involved give rise to many issues relating to the
field of Operational Research [279]. It is inevitable that many of
these models are going to involve multiple objectives and that a
subset of these will be suitable for analysis and solution using goal
programming methodology. The goal programming community
should therefore look forward to the growth of the ‘Computing and
IT’ application field as goal programming methods are applied to
these new technologies.

It is also likely that goal programming will continue to have a con-
tinuing presence as a strategic management tool to answer ques-
tions posed by the changes mentioned in the previous paragraph.
New businesses and old businesses looking for new strategies in the
rapidly changing markets present good opportunity for goal pro-
gramming to be used, especially in conjunction with other decision
analysis tools and techniques.

Goal Programming in Combination with Other Opera-
tional Research and Statistical Techniques.
Recent years have seen a strong trend towards the use of goal
programming as part of a decision making or analysis framework
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comprising of multiple Operational Research and Statistical tools.
This is the opposite of the traditional ‘stand alone’ image of goal
programming as a solution tool. This trend can be seen in this
chapter by the number of articles combining goal programming
with various methods, as detailed in Section 4. This is a welcome
trend as goal programming can only benefit from such combina-
tions. Combinations with techniques such as the AHP are provid-
ing the solution to questions regarding the setting of weights for
certain models that have long been an issue in goal programming.
It is also noted that a large number of the articles providing such
combinations are from the latter part of the time period analysed,
i.e. they are very recent.

These considerations lead to the conclusion that this trend is set to
continue. The enhanced compatibility of the input and output of
various computerised solution and analysis systems both in general
and in the area of Operational Research should fuel this trend. It is
likely that as new developments are seen in the field of Operational
Research then more and more integration and combination of goal
programming will take place. The area of combining goal pro-
gramming with many existing, established Operational Research
and Statistical techniques also still has many open questions and
potential for future research.

Meta Heuristic Methods for Goal Programming Solution.

As detailed in Section 4.1, there is a growing interest in the use
of various meta-heuristic methods as a solution tool for goal pro-
gramming. This is particularly relevant for ‘hard-to-solve’ goal
programming models as defined in Section 4.1. Whilst the impact
on goal programming is likely to be less than some more compu-
tationally expensive multi-objective techniques such as Pareto set
enumeration, there are nevertheless good opportunities for goal
programming to exploit such advances in solution technology.

A closer examination shows that this topic is in its infancy, with
most of the articles concerning theoretical developments. There
are many open questions regarding the internal structure of the
algorithms in the presence of lexicographic achievement functions
and multiple goals. Most of the development to date is found
in genetic algorithm application to goal programming. There are
newer meta-heuristic methods, such as ant colony optimization
[270], whose application to goal programming has yet to be inves-
tigated.
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The type of model that benefits from meta-heuristic solution (i.e.
hard-to-solve) tends to arise particularly in the fields of engineering
and of finance. It is probable the recently seen goal programming
meta-heuristic theoretical advances will lead to an expansion of
the scope and number of goal programming models in these fields.

Stability and Sensitivity of Goal Programmes.

Issues surrounding the stability and sensitivity of the solutions of
goal programming models is another area for future development.
There now exist many goal programming variants and extensions
to which meta-heuristic methods provide alternative means of so-
lution. There is a need to determine whether these variants and
methods produce solutions that are robust in terms of parameter
changes and imprecise data. The concept of the goal programming
dual is developed by Ignizio [273] but has not received major at-
tention since its introduction. The robustness of various methods
and more ways of exploiting the goal programming dual remain
open for further research.

Goal Programming Distance Metric and Variant Aware-
ness

In order to build effective goal programming models, it is essen-
tial that those using goal programming are aware of the various
variants and extensions that exist and their underlying utility func-
tion representations. This knowledge allows for the correct choice
of goal programming variant, extension, or mix of variants and
extensions. Articles that develop effective means of teaching goal
programming such as those by Lee and Kim [120, 121] are partic-
ularly welcome in this context as they raise decision maker aware-
ness of the goal programming discipline. Furthermore, Web-based
tutorials that teach the major goal programming variants are now
freely available [277].

These developments are expected to lead to a greater diversity and
more discerning use of goal programming variants and extensions.
It is expected that the number of articles using variants such as
Chebyshev goal programming or a mix of Chebyshev and weighted
or lexicographic goal programming in various fields of application
is set to increase.
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In this chapter, for handling and tackling the imprecise nature of human
judgments, multiobjective optimization in a fuzzy environment is dis-
cussed. Starting with several basic definitions involving fuzzy sets, Bell-
man and Zadeh’s approach to decision making in a fuzzy environment,
called fuzzy decision, is outlined. Fundamental notions and methods of
multiobjective, and interactive multiobjective programming are briefly
reviewed. Then multiobjective linear programming and interactive mul-
tiobjective linear programming, both incorporating fuzzy goals of the
decision maker (DM), are explained in detail by putting special empha-
sis on Pareto optimality. Multiobjective linear programming problems
with fuzzy parameters, which reflect the experts’ ambiguous or fuzzy un-
derstanding of the nature of the parameters in the problem-formulation
process, are also formulated. By extending the usual Pareto optimality
concepts, interactive decision-making methods, both without and with
the fuzzy goals of the DM, for deriving a satisficing solution for the DM
efficiently from an extended Pareto optimal solution set are presented.
Finally, attention is focused on two-level linear programming problems
and an interactive fuzzy programming method is introduced. In the
interactive method, after determining the fuzzy goals of the DMs at
both levels, a satisfactory solution is derived efficiently by updating the
minimal satisfactory level of the upper level DM with considerations of
overall satisfactory balance between both levels. Furthermore, the pro-
posed method is extended to deal with two-level linear programming
problems with fuzzy parameters.

Fuzzy programming, Multiobjective programming, Multilevel program-
ming, Interactive methods, Fuzzy goals, Fuzzy parameters.
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Figure 4.1 illustrates the membership function of a fuzzy subset
together with the characteristic function of an ordinary set A.
Observe that the membership function is an obvious extension of the

idea of a characteristic function of an ordinary set because it takes on
values between 0 and 1, not only 0 and 1.

As can be easily understood from the definition, a fuzzy subset is
always defined as a subset of a universal set X. For the sake of conve-
nience, a fuzzy subset is usually called a fuzzy set by omitting the term
“sub.” To distinguish an ordinary set from a fuzzy set, an ordinary set
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1. Fuzzy Decision

1.1. Fuzzy Sets

In 1965, L.A. Zadeh [105] published his famous paper “Fuzzy sets” in
Information and Control providing a new mathematical tool which en-
ables us to describe and handle vague or ambiguous notions. In general,
a fuzzy set initiated by Zadeh [105] is defined as follows:

Definition 5 (Fuzzy sets)
Let X denote a universal set. Then a fuzzy subset of X is defined

by its membership function

which assigns to each element a real number in the interval
[0,1], where the value, of at x represents the grade of membership
of in Thus, the nearer the value of is unity, the higher the
grade of membership of  in

A fuzzy subset can be characterized as a set of ordered pairs of
element and grade and is often written

When the membership function contains only the two points 0
and 1, then is identical to the characteristic function

and hence, is no longer a fuzzy subset, but an ordinary set A.
As is well known, an ordinary set A is expressed as

through its characteristic function
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is called a nonfuzzy set or a crisp set. A fuzzy set is often denoted by
but it is sometimes written as A, B, C,..., for simplicity in

the notation.
The concept of sets serves as an important transfer between

ordinary sets and fuzzy sets. It also plays an important role in the
construction of a fuzzy set by a series of ordinary sets.

Definition 6
The set of a fuzzy set A is defined as an ordinary set for

which the degree of its membership function exceeds the level

Observe that the set can be defined by the characteristic
function

since it is an ordinary set. Actually, an set is an ordinary set
whose elements belong to the corresponding fuzzy set to a certain degree

1.2. Fuzzy Numbers
Among fuzzy sets, numbers such as “approximately ” or “about  ”
can be defined as fuzzy sets of the real line Such fuzzy numbers are
formally defined by Dubois and Prade [16, 17] as follows:

Definition 7 (Fuzzy numbers)
A fuzzy number is defined as any fuzzy set of the real line whose

membership function is



where and are real numbers, and

Figure 4.2 illustrates the graph of the possible shape of a fuzzy number
.

Frequently, a fuzzy number is called positive (negative), denoted by
if its membership function satisfies

From the definition of a fuzzy number it is significant to note
that the set of a fuzzy number can be represented by the
closed interval which depends on the value of as is shown in Figure
4.3. Namely,

where or represents the left or right extreme point of the
set respectively.

1.3. Fuzzy Decision

In their 1970 paper “Decision making in a fuzzy environment,” Bell-
man and Zadeh [2] introduced three basic concepts: fuzzy goal, fuzzy
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(1)

(2)

(3)

(4)

(5)

(6)

A continuous mapping from to the closed interval [0,1].

for all

Strictly increasing and continuous on

for x = .

Strictly decreasing and continuous on 

for all
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constraint, and fuzzy decision and explored the application of these con-
cepts to decision making processes under fuzziness.

Let us now introduce the conceptual framework for decision making
in a fuzzy environment.

Let X be a given set of possible alternatives which contains the solu-
tion of a decision making problem under consideration.

A fuzzy goal G is a fuzzy set on X characterized by its membership
function

A fuzzy constraint C is a fuzzy set on X characterized by its membership
function

Realizing that both the fuzzy goal and fuzzy constraint are desired to
be satisfied simultaneously, Bellman and Zadeh [2] defined the fuzzy
decision D resulting from the fuzzy goal G and fuzzy constraint C as
the intersection of G and C.

To be more explicit, the fuzzy decision of Bellman and Zadeh is the
fuzzy set D on X defined as

Fuzzy Multiobjective and Multilevel Optimization

and is characterized by its membership function

The maximizing decision is then defined as
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More generally, the fuzzy decision D resulting from k fuzzy goals
and fuzzy constraints is defined by

It is significant to realize here that in the fuzzy decision defined by
Bellman and Zadeh [2], the fuzzy goals and the fuzzy constraints enter
into the expression for D in exactly the same way. In other words, in the
definition of the fuzzy decision, there is no longer a difference between
the fuzzy goals and the fuzzy constraints.

However, depending on the situations, other aggregation patterns for
the fuzzy goal G and the fuzzy constraint C may be worth consider-
ing. When fuzzy goals and fuzzy constraints have unequal importance,
Bellman and Zadeh [2] also suggested the convex fuzzy decision defined
by

where the weighting coefficients reflect the relative importance among
the fuzzy goals and constraints.

As an example of an alternative definition of a fuzzy decision, the
product fuzzy decision defined by

has been proposed.
For the convex fuzzy decision or the product fuzzy decision, similar to

the maximizing decision for the fuzzy decision, the maximizing decision
to select such that

and the corresponding maximizing decision is defined as
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or

is also defined.
It should be noted here that among these three types of fuzzy decisions

and the following relation holds:

Example 9 Let be a set of alternatives. Suppose that we
have a fuzzy goal G and a fuzzy constraint C expressed as “  should be
much larger than 10 ” and “ should be substantially smaller than 30 ”
where their membership functions are subjectively defined by

The fuzzy decision, the convex fuzzy decision, and the product fuzzy
decision for this situation are depicted in Figure 4.4.

Further details of the theory and applications of fuzzy sets can be
found in standard texts including Dubois and Prade [17], Kaufmann and
Gupta [24], Klir and Yuan [24], Sakawa [47] and Zimmermann [110, 111].



2. Multiobjective Programming and Solution
Concepts

The problem to optimize multiple conflicting objective functions simulta-
neously under given constraints is called the multiobjective programming
problem and can be formulated as the following vector-minimization
problem:
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where are k distinct objective functions of the decision
vector are m inequality constraints and X is the
feasible set of constrained decisions.

If we directly apply the notion of optimality for single-objective lin-
ear programming to this multiobjective programming, we arrive at the
following notion of a complete optimal solution.

Definition 8 (Complete optimal solution)
is said to be a complete optimal solution if and only if there exists

such that for all

However, in general, such a complete optimal solution that simultane-
ously minimizes all of the multiple objective functions does not always
exist when the objective functions conflict with each other. Thus, instead
of a complete optimal solution, a new solution concept, called Pareto op-
timality, is introduced in multiobjective programming [8, 47, 96, 106].

Definition 9 (Pareto optimal solution)
is said to be a Pareto optimal solution if and only if there does

not exist another such that for all
and for at least one

As can be seen from the definition, a Pareto optimal solution consists
of an infinite number of points. A Pareto optimal solution is sometimes
called a noninferior solution since it is not inferior to other feasible so-
lutions.

In addition to Pareto optimality, the following weak Pareto optimality
is defined as a slightly weaker solution concept than Pareto optimality.

Definition 10 (Weak Pareto optimal solution)
is said to be a weak Pareto optimal solution if and only if

there does not exist another such that

For notational convenience, let denote complete
optimal, Pareto optimal, or weak Pareto optimal solution sets, respec-
tively. Then from their definitions, it can be easily understood that the



Several computational methods have been proposed for characterizing
Pareto optimal solutions depending on the different methods to scalar-
ize the multiobjective programming problems. Among the many pos-
sible ways of scalarizing the multiobjective programming problems, the
weighting method, the constraint method, and the weighted minimax
method have been studied as a means of characterizing Pareto optimal
solutions of the multiobjective programming problems.

The details of multiobjective programming can be found in standard
texts including Zeleny [106], Steuer [96], Chankong and Haimes [8], and
Sakawa [47].

3. Interactive Multiobjective Programming

The STEP method (STEM) proposed by Benayoun et al. [3] seems to be
known as one of the first interactive multiobjective linear programming
techniques, but there have been some modifications and extensions (see,
for example, Fichefet [20]; Choo and Atkins [10]). Essentially, the STEM
algorithm consists of two major steps. Step 1 seeks a Pareto optimal
solution that is near to the ideal point in the minimax sense. Step 2
requires the decision maker (DM) to compare the objective vector with
the ideal vector and to indicate which objectives can be sacrificed, and
by how much, in order to improve the current levels of unsatisfactory
objectives. The STEM algorithm is quite simple to understand and
implement, in the sense that the DM is required to give only the amounts
to be sacrificed of some satisfactory objectives until all objectives become
satisfactory. However, the DM will never arrive at the final solution if the
DM is not willing to sacrifice any of the objectives. Moreover, in many
practical situations, the DM will probably want to indicate directly the
aspiration level for each objective rather than just specify the amount
by which satisfactory objectives can be sacrificed.

Wierzbicki [103] developed a relatively practical interactive method
called the reference point method (RPM) by introducing the concept
of a reference point suggested by the DM which reflects in some sense
the desired values of the objective functions. The basic idea behind
the RPM is that the DM can specify reference values for the objective
functions and change the reference objective levels interactively due to
learning or improved understanding during the solution process. In this
procedure, when the DM specifies a reference point, the corresponding
scalarization problem is solved for generating the Pareto optimal solution
which is, in a sense, close to the reference point or better than that

following relation holds:
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if the reference point is attainable. Then the DM either chooses the
current Pareto optimal solution or modifies the reference point to find a
satisficing solution.

Since then some similar interactive multiobjective programming meth-
ods have been developed along this line (see, for example, Steuer and
Choo [97]). However, it is important to point out here that for dealing
with the fuzzy goals of the DM for each of the objective functions of the
multiobjective linear programming problem, Sakawa, Yano and Yumine
[85] developed the extended fuzzy version of the RPM that supplies the
DM with the trade-off information even if the fuzzy goals of the DM
are not considered. Although the method will be outlined in the next
section, it would certainly be appropriate to discuss here the RPM with
trade-off information rather than the RPM proposed by Wierzbicki.

Consider the following multiobjective linear programming problem:

where

For each of the conflicting objective functions
assume that the DM can specify the so-called reference point

which reflects in some sense the desired values of the
objective functions of the DM. Also assume that the DM can change the
reference point interactively due to learning or improved understanding
during the solution process. When the DM specifies the reference point

the corresponding Pareto optimal solution, which is,
in the minimax sense, nearest to the reference point or better than that
if the reference point is attainable, is obtained by solving the following
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minimax problem:

or equivalently

The case of the two-objective functions in the plane is shown
geometrically in Figure 4.5. For the two reference points
and specified by the DM, solving the corresponding mini-
max problems yields the corresponding Pareto optimal solutions
and

The relationships between the optimal solutions of the minimax prob-
lem and the Pareto optimal concept of the multiobjective linear program-
ming can be characterized by the following two theorems.

Theorem 4.1 (Minimax problem and Pareto optimality)
If is a unique optimal solution of the minimax problem for

any reference point then * is a Pareto optimal solution of the mul-
tiobjective linear programming problem.



It should be noted that only weak Pareto optimality is guaranteed if
the uniqueness of a solution is not guaranteed.

Theorem 4.2 (Pareto optimality and minimax problem)
If is a Pareto optimal solution of the multiobjective linear program-

ming problem, then is an optimal solution of the minimax problem
for some reference point

Now, given the Pareto optimal solution for the reference point speci-
fied by the DM by solving the corresponding minimax problem, the DM
must either be satisfied with the current Pareto optimal solution or mod-
ify the reference point. To help the DM express a degree of preference,
trade-off information between a standing objective function and
each of the other objective functions is very useful. Such a trade-off be-
tween and for each is easily obtainable since it
is closely related to the strict positive simplex multipliers of the minimax
problem. Let the simplex multipliers associated with the constraints of
the minimax problem be denoted by If all for
each i, it can be proved that the following expression holds:

We can now construct the interactive algorithm to derive the satisfic-
ing solution for the DM from the Pareto optimal solution set. The steps
marked with an asterisk involve interaction with the DM. Observe that
this interactive multiobjective linear programming method can be inter-
preted as the reference point method (RPM) with trade-off information.

Interactive multiobjective linear programming

Step

Step

Step

0: Calculate the individual minimum and
maximum of each objective function under
the given constraints.

1*: Ask the DM to select the initial reference point by consid-
ering the individual minimum and maximum. If the DM finds it
difficult or impossible to identify such a point, ideal point

can be used for that purpose.

2: For the reference point specified by the DM, solve the corre-
sponding minimax problem to obtain the Pareto optimal solution
together with the trade-off rate information between the objective
functions.
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Step 3*: If the DM is satisfied with the current levels of the Pareto
optimal solution, stop. Then the current Pareto optimal solution is
the satisficing solution for the DM. Otherwise, ask the DM to up-
date the current reference point by considering the current values
of the objective functions together with the trade-off rates between
the objective functions and return to Step 2.
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It should be stressed to the DM that any improvement of one objective
function can be achieved only at the expense of at least one of the other
objective functions.

Further details of the theory, methods and applications of interactive
multiobjective programming can be found in Steuer [96], Chankong and
Haimes [8], and Sakawa [47].

4. Fuzzy Multiobjective Linear Programming
In 1978, H.-J. Zimmermann [108] extended his fuzzy linear program-
ming approach [107] to the following multiobjective linear programming
problem with k linear objective functions

where
and is an  × matrix.

For each of the objective functions of this
problem, assume that the decision maker (DM) has a fuzzy goal such as
“ the objective function should be substantially less than or equal
to some value ” Then the corresponding linear membership function

is defined as

where or denotes the value of the objective function such
that the degree of membership function is 0 or 1 respectively.

Figure 4.6 illustrates the graph of the possible shape of the linear
membership function.

Using such linear membership functions and
following the fuzzy decision of Bellman and Zadeh [2], the original mul-
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tiobjective linear programming problem can be interpreted as

By introducing the auxiliary variable it can be reduced to the
following conventional linear programming problem:

By assuming the existence of the optimal solution of the individual
objective function minimization problem under the constraints defined
by

Zimmermann [108] suggested a way to determine the linear membership
function To be more specific, using the individual minimum

together with

he determined the linear membership function as in (4.28) by choosing
and For this membership function, it can be easily

shown that if the optimal solution of (4.29) or (4.30) is unique, it is
also a Pareto optimal solution of the multiobjective linear programming
problem.



Unfortunately, with the product operator, even if we use the linear
membership functions, the objective function of this problem becomes
a nonlinear function, and hence, the linear programming method [14]
cannot be applied.

In 1981, by considering the rate of increased membership satisfaction
need not always be constant as in the case of the linear membership
function proposed by Zimmermann, Leberling [29] introduced special
nonlinear functions and showed that the resulting nonlinear program-
ming problem can be equivalently converted to a conventional linear
programming problem.

As another extension of the linear membership function of Zimmer-
mann, in 1981, Hannan [22] proposed a different approach from Leber-
ling. For each of the objective functions of the multiobjective linear
programming problem, assuming that the DM could specify the degree
of membership for several values of he introduced the piecewise
linear membership function. By adopting the piecewise linear member-
ship function to represent the fuzzy goal of the DM for the multiobjective
linear programming problem together with the fuzzy decision of Bellman
and Zadeh [2], the problem to be solved can be converted to the ordinary
linear programming problem.

However, suppose that the interaction with the DM establishes that
the first membership function should be linear, the second hyperbolic,
the third piecewise linear, and so forth. In such a situation, follow-
ing the fuzzy decision of Bellman and Zadeh [2], the resulting problem
becomes a nonlinear programming problem and cannot be solved by a
linear programming method [14].

In 1983, to quantify the fuzzy goals of the DM by eliciting the corre-
sponding membership functions, Sakawa [45] proposed using five types
of membership functions: linear, exponential, hyperbolic, hyperbolic in-
verse, and piecewise linear functions. Through the use of these member-
ship functions including nonlinear ones, the fuzzy goals of the DM are
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In the case where not only fuzzy goals but also fuzzy constraints exist,
using linear membership functions for fuzzy constraints, similar discus-
sion can be made. Zimmermann [110] called the fuzzy decision the min-
imum operator, and for other aggregation patterns than the minimum
operator, he considered the product fuzzy decision. He called the prod-
uct fuzzy decision the product operator, and proposed using the product
operator. In this case, the problem to be solved becomes



quantified. Then following the fuzzy decision of Bellmann and Zadeh
[2], the problem becomes a nonlinear programming problem. However,
it can be reduced to a set of linear inequalities if some variable is fixed.
Based on this idea, Sakawa [45] proposed a new method combining the
use of the bisection method and the linear programming method [14].

5. Interactive Fuzzy Multiobjective Linear
Programming

In the fuzzy approaches to multiobjective linear programming problems
proposed by Zimmermann [108] and his successors [29, 22, 109], it has
been implicitly assumed that the fuzzy decision of Bellman and Zadeh
[2] is the proper representation of the fuzzy preferences of the decision
maker (DM). Therefore, these approaches are preferable only when the
DM feels that the fuzzy decision is appropriate when combining the fuzzy
goals and/or constraints. However, such situations seem to occur rarely
in practice and consequently it becomes evident that an interaction with
the DM is necessary.

In this section, assuming that the DM has a fuzzy goal for each of the
objective functions in multiobjective linear programming problems, we
present an interactive fuzzy multiobjective linear programming method
incorporating the desirable features of the interactive approaches into
the fuzzy approaches.

Fundamental to the multiobjective linear programming is the concept
of Pareto optimal solutions, also known as a noninferior solution.

However, considering the imprecise nature inherent in human judg-
ments in multiobjective linear programming problems, the DM may have
a fuzzy goal expressed as should be substantially less than or equal
to some value

In a minimization problem, a fuzzy goal stated by the DM may be to
achieve “substantially less than or equal to This type of statement
can be quantified by eliciting a corresponding membership function.

To elicit a membership function from the DM for each of the
objective functions we first calculate the individual
minimum and maximum of
each objective function under the given constraints.

Taking into account the calculated individual minimum and maximum
of each objective function together with the rate of increase of member-
ship of satisfaction, the DM must determine the subjective member-
ship function which is a strictly monotone decreasing function
with respect to Here, it is assumed that if

and if
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So far, we have restricted ourselves to a minimization problem and
consequently assumed that the DM has a fuzzy goal such as should
be substantially less than or equal to In the fuzzy approaches, how-
ever, we can further treat a more general multiobjective linear program-
ming problem in which the DM has two types of fuzzy goals expressed
in words such as should be in the vicinity of (called fuzzy
equal), should be substantially less than or equal to (called
fuzzy min) or should be substantially greater than or equal to
(called fuzzy max).

Such a generalized multiobjective linear programming problem may
now be expressed as

where
Here “fuzzy min or “fuzzy max represents the fuzzy goal

of the DM such as should be substantially less than or equal to
or greater than or equal to and “fuzzy equal represents the
fuzzy goal such as should be in the vicinity of

Concerning the membership function for the fuzzy goal of the DM
such as should be in the vicinity of it is obvious that a strictly
monotone increasing function and a strictly monotone
decreasing function corresponding to the left and right
sides of must be determined through interaction with the DM.

Figures 4.7, 4.8 and 4.9 illustrate possible shapes of the fuzzy min,
fuzzy max and fuzzy equal membership functions, respectively.

Having elicited the membership functions from
the DM for each of the objective functions the mul-
tiobjective linear programming problem and/or the generalized multi-
objective linear programming problem can be converted into the fuzzy
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When the fuzzy equal is included in the fuzzy goals of the DM, it is
desirable that should be as close to as possible. Consequently,
the notion of Pareto optimal solutions defined in terms of objective func-
tions cannot be applied. For this reason, we introduce the concept of
M-Pareto optimal solutions which is defined in terms of membership
functions instead of objective functions. M refers to membership.

Definition 11 (M-Pareto optimal solution)
is said to be an M-Pareto optimal solution to the generalized

multiobjective linear programming problem if and only if there does not
exist another such that for all
and for at least one

By introducing a general aggregation function

multiobjective optimization problem defined by

a general fuzzy multiobjective decision making problem can be defined
by



Observe that the value of can be interpreted as repre-
senting an overall degree of satisfaction with the DM’s multiple fuzzy
goals.

Probably the most crucial problem in the fuzzy multiobjective deci-
sion making problem is the identification of an appropriate aggregation
function which well represents the DM’s fuzzy preferences. If
can be explicitly identified, then the fuzzy multiobjective decision mak-
ing problem reduces to a standard mathematical programming problem.
However, this rarely happens, and as an alternative, an interaction with
the DM is necessary for finding the satisficing solution of the fuzzy mul-
tiobjective decision making problem.

In the interactive fuzzy multiobjective linear programming method
proposed by Sakawa, Yano and Yumine [85], after determining the mem-
bership functions for each of the
objective functions for generating a can-
didate for the satisficing solution which is also M-Pareto optimal, the
DM is then asked to specify the aspiration levels of achievement for
the membership values of all membership functions, called the reference
membership levels. The reference membership levels can be viewed as
natural extensions of the reference point of Wierzbicki [103] in objective
function spaces.

For the DM’s reference membership levels the
corresponding M-Pareto optimal solution, which is nearest to the re-
quirements in the minimax sense or better than that if the reference
membership levels are attainable, is obtained by solving the following
minimax problem

or equivalently
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The relationships between the optimal solutions of the minimax prob-
lem and the M-Pareto optimal concept of the multiobjective linear pro-
gramming problem can be characterized by the following theorems.

Theorem 4.3 (Minimax problem and M-Pareto optimality)
If is a unique optimal solution to the minimax problem for

some then is an M-Pareto optimal solution to the
generalized multiobjective linear programming problem.
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Theorem 4.4 (M-Pareto optimality and minimax problem)
If is an M-Pareto optimal solution to the generalized multiobjective

linear programming problem with holding for all i,
then there exists such that is an optimal solution to
the minimax problem.

If all of the membership functions are lin-
ear, the minimax problem becomes a linear programming problem, and
hence, we can obtain an optimal solution by directly applying the sim-
plex method of linear programming [14].

However, with the strictly monotone decreasing or increasing member-
ship functions, which may be nonlinear, the resulting minimax problem
becomes a nonlinear programming problem. For notational convenience,
denote the strictly monotone decreasing function for the fuzzy min and
the right function of the fuzzy equal by and the
strictly monotone increasing function for the fuzzy max and the left
function of the fuzzy equal by Then in order to
solve the formulated problem on the basis of the linear programming
method, convert each constraint of
the minimax problem (4.40) into the following form using the strictly
monotone property of and

It is important to note here that, if the value of  is fixed, it can be
reduced to a set of linear inequalities. Obtaining the optimal solution
to the above problem is equivalent to determining the minimum value
of  so that there exists an admissible set satisfying the constraints of
(4.41). Since satisfies where denotes the
maximum value of we have the following method for
solving this problem by combined use of the bisection method and the
simplex method of linear programming [14]. Here, when
set in view of the constraints for

Step 1: Set and test whether an admissible set satisfying the
constraints of (4.41) exists or not using phase one of the simplex
method. If an admissible set exists, proceed. Otherwise, the DM
must reassess the membership function.

Step 2: Set and test whether an admissible set satisfy-
ing the constraints of (4.41) exists or not using phase one of the



Fuzzy Multiobjective and Multilevel Optimization 191

simplex method. If an admissible set exists, set
Otherwise, go to the next step since the minimum which satis-
fies the constraints of (4.41) exists between and

Step 3: For the initial value of update the value of
using the bisection method as follows:

if an admissible set exists for
if no admissible set exists for

For each test whether an admissible set of (4.41)
exists or not using the sensitivity analysis technique for changes
in the right-hand side of the simplex method and determine the
minimum value of satisfying the constraints of (4.41).

In this way, we can determine the optimal solution Then the
DM selects an appropriate standing objective from among the objectives

For notational convenience in the following without
loss of generality, let it be Then the following linear
programming problem is solved for

The DM must either be satisfied with the current M-Pareto optimal
solution or act on this solution by updating the reference membership
levels. In order to help the DM express a degree of preference, trade-
off information between a standing membership function and
each of the other membership functions is very useful. Such trade-off
information is easily obtainable since it is closely related to the simplex
multipliers of the problem (4.42).

Let the simplex multipliers corresponding to the constraints
of the linear problem (4.42) be denoted by

where is an optimal solution of (4.42). If is a non-
degenerate solution of (4.42) and all the constraints of (4.42) are active,
then by using the results in Haimes and Chankong [21], the trade-off
information between the objective functions can be represented by



It should be stressed here that in order to obtain the trade-off rate
information from (4.45), all the constraints of the problem (4.42), must
be active. Therefore, if there are inactive constraints, it is necessary
to replace for inactive constraints by and solve the corre-
sponding problem to obtain the simplex multipliers.

We can now construct the interactive algorithm in order to derive the
satisficing solution for the DM from the M-Pareto optimal solution set
where the steps marked with an asterisk involve interaction with the DM.
This interactive fuzzy multiobjective programming method can also be
interpreted as the fuzzy version of the reference point method (RPM)
with trade-off information.

Interactive fuzzy multiobjective linear programming
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Hence, by the chain rule, the trade-off information between the mem-
bership functions is given by

Therefore, for each we have the following expression:

Step 0: Calculate the individual minimum and maximum of each ob-
jective function under the given constraints.

Step 1*: Elicit a membership function from the DM for each of the
objective functions.

Step 2: Set the initial reference membership levels to 1.

Step 3: For the reference membership levels, solve the corresponding
minimax problem to obtain the M-Pareto optimal solution and
the membership function value together with the trade-off rate
information between the membership functions.

Step 4*: If the DM is satisfied with the current levels of the M-Pareto
optimal solution, stop. Then the current M-Pareto optimal solu-
tion is the satisficing solution for the DM. Otherwise, ask the DM
to update the current reference membership levels by considering
the current values of the membership functions together with the
trade-off rates between the membership functions and return to
Step 3.
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It should be stressed to the DM that any improvement of one mem-
bership function can be achieved only at the expense of at least one of
the other membership functions.

In the next section, we will proceed to the multiobjective linear pro-
gramming problems with fuzzy parameters as a generalized version of
this section.

6. Interactive Fuzzy Multiobjective Linear
Programming with Fuzzy Parameters

First, recall the multiobjective linear programming (MOLP) problems
discussed thus far. For convenience in our subsequent discussion, con-
sider the MOLP of the following form:

where is an column vector of decision variables,
are  cost factor row vectors, are

dimensional constraint row vectors, and are constants.
In practice, however, it would certainly be more appropriate to con-

sider that the possible values of the parameters in the description of the
objective functions and the constraints usually involve the ambiguity of
the experts’ understanding of the real system. For this reason, in this
chapter, we consider the following multiobjective linear programming
problem involving fuzzy parameters (MOLP-FP):

represent, respectively,
fuzzy parameters involved in the objective function and constraint

These fuzzy parameters, reflecting the experts’ ambiguous under-
standing of the nature of the parameters in the problem-formulation
process, are assumed to be characterized as fuzzy numbers introduced
by Dubois and Prade [16, 17].

We now assume that all of the fuzzy parameters
and in the MOLP-FP are fuzzy numbers the membership func-

tions of which are denoted by ,
and respectively. For simplicity in notation, define
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the following vectors:

Observing that the MOLP-FP involves fuzzy numbers both in the
objective functions and the constraints, it is evident that the notion
of Pareto optimality defined for the MOLP cannot be applied directly.
Thus, it seems essential to extend the notion of usual Pareto optimality
in some sense. For that purpose, we first introduce the set of
the fuzzy numbers and To be more explicit, the
set of the fuzzy numbers and is defined as the ordinary set

for which the degree of their membership functions exceeds
the level

Now suppose that the decision maker (DM) decides that the degree
of all of the membership functions of the fuzzy numbers involved in the
MOLP-FP should be greater than or equal to some value Then for
such a degree the MOLP-FP can be interpreted as the following non-
fuzzy multiobjective linear programming (MOLP-FP(a, b, c)) problem
which depends on the coefficient vector

Observe that there exists an infinite number of such MOLP-FP (a, b, c)
depending on the coefficient vector and the val-
ues of (a, b, c) are arbitrary for any in the sense
that the degree of all of the membership functions for the fuzzy numbers
in the MOLP-FP exceeds the level However, if possible, it would be
desirable for the DM to choose in the MOLP-
FP(a, b, c) to minimize the objective functions under the constraints.
From such a point of view, for a certain degree it seems to be quite nat-
ural to have the MOLP-FP as the following nonfuzzy



It should be emphasized here that, in the the parameters
(a, b, c) are treated as decision variables rather than constants.

On the basis of the sets of the fuzzy numbers, we can introduce
the concept of an optimal solution to the as a natural
extension of the Pareto optimality concept for the MOLP.

Definition 12 optimal solution)
is said to be an optimal solution to the

if and only if there does not exist another
such that with strict inequality

holding for at least one , where the corresponding values of parameters
are called optimal parameters.

Observe that optimal solutions and optimal parame-
ters can be obtained through a direct application of the usual scalarizing
methods for generating Pareto optimal solutions by regarding the deci-
sion variables in the as

As can be seen from the definition of optimality, in general,
optimal solutions to the consist of an infinite number

of points.
In order to derive a satisficing solution for the DM efficiently from an

optimal solution set, interactive programming methods have
been presented by Sakawa et al. [77, 84, 47].

However, considering the imprecise nature of the DM’s judgment, it
is natural to assume that the DM may have imprecise or fuzzy goals
for each of the objective functions in the In a minimization
problem, a goal stated by the DM may be to achieve “substantially less
than or equal to some value This type of statement can be quantified
by eliciting a corresponding membership function.

To elicit a membership function from the DM for each of the
objective functions in the we first calculate
the individual minimum and maximum of each objective function under
the given constraints for and By taking account of the
calculated individual minimum and maximum of each objective function
for and together with the rate of increase of membership

Fuzzy Multiobjective and Multilevel Optimization 195

linear programming problem:



satisfaction, the DM may be able to determine a membership function
in a subjective manner which is a strictly monotone decreasing

function with respect to So far we have restricted ourselves to a
minimization problem and consequently assumed that the DM has a
fuzzy goal such as should be substantially less than or equal to
In the fuzzy approaches, as discussed previously, we can further treat a
more general case where the DM has two types of fuzzy goals, namely,
fuzzy goals expressed in words such as should be in the vicinity of

(called fuzzy equal) as well as should be substantially less than
or equal to or greater than or equal to (called fuzzy min or fuzzy
max). Such a generalized problem may now be
expressed as

where
To elicit a membership function from the DM for a fuzzy goal

like should be in the vicinity of it should be quite apparent that
different functions can be utilized for both the left and right sides of
Concerning the membership functions of the it is reasonable
to assume that and the right side functions of

are strictly monotone increasing and continuous functions with
respect to

Here it is assumed that is a strictly monotone decreasing
continuous function with respect to and is a strictly mono-
tone increasing continuous function with respect to Both may be
linear or nonlinear. and are maximum values of unaccept-
able levels for and     and are minimum values of totally
desirable levels for

When a fuzzy equal is included in the fuzzy goals of the DM, it is
desirable that should be as close to as possible. Consequently,
the notion of optimal solutions defined in terms of objective
functions cannot be applied. For this reason, we introduce the concept of

optimal solutions which is defined in terms of membership
functions instead of objective functions, where M refers to membership.

Definition 13 optimal solution)
is said to be an optimal solution to the

if and only if there does not exist another
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such that  with
strict inequality holding for at least one i, where the corresponding val-
ues of parameters are called optimal
parameters.

Observe that the concept of optimal solutions defined
in terms of membership functions is a natural extension to that of

optimal solutions defined in terms of objective functions when
fuzzy equal is included in the fuzzy goals of the DM.

Having elicited the membership functions from
the DM for each of the objective functions = 1, . . . , k, if we
introduce a general aggregation function a general fuzzy

decision making problem can be defined by

where is the set of optimal solutions and corresponding
optimal parameters to the

Probably the most crucial problem in the is the iden-
tification of an appropriate aggregation function which well represents
the human decision makers’ fuzzy preferences. If can be explicitly
identified, then the reduces to a standard mathematical
programming problem. However, this happens rarely, and as an alter-
native approach, it becomes evident that an interaction with the DM is
necessary.

To generate a candidate for the satisficing solution, which is also
optimal, in our decision making method, the DM is asked to

specify the degree of the set and the reference membership
values. Observe that the idea of the reference membership values, which
first appeared in Sakawa, Yumine, and Yano [87], can be viewed as an
obvious extension of the idea of the reference point in Wierzbicki [103].

Once the DM’s degree and reference membership values
are specified, the corresponding optimal solution,

which is, in the minimax sense, nearest to the requirement or better
than that if the reference levels are attainable, is obtained by solving
the following minimax problem:



Now we can introduce the following set-valued functions
and
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or equivalently

However, with the strictly monotone decreasing or increasing member-
ship function, which may be nonlinear, the resulting problem becomes a
nonlinear programming problem.

For notational convenience, denote the strictly monotone decreasing
function for the fuzzy min and the right function of the fuzzy equal by

and the strictly monotone increasing function for the
fuzzy max and the left function of the fuzzy equal by
Then in order to solve the formulated problem on the basis of the linear
programming method, we first convert each constraint

of the minimax problem (4.54) into the following form using
the strictly monotone property of and

(1)
(2)
(3)

Proposition 4 (Inclusion relations of set-valued functions)

If then and
If then
If then

Using the properties of the sets for the vectors of the fuzzy
numbers and the fuzzy numbers the feasible regions for

and can be denoted respectively by the closed intervals
and

It can be verified that the following relations hold for
and when
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Consequently, using of the results in Proposition 4, we can obtain an
optimal solution to (4.54) by solving the following problem:

It is important to note here that this formulation, if the value of
 is fixed, can be reduced to a set of linear inequalities. Obtaining the

optimal solution  to the above problem is equivalent to determining the
minimum value of  so that there exists an admissible set satisfying the
constraints of (4.57). Since satisfies where
denotes the maximum value of we have the following
method for solving this problem by combined use of the bisection method
and the simplex method of linear programming [14].

Step 1: Set and test whether an admissible set satisfying the
constraints of (4.57) exists or not by making use of phase one of the
simplex method. If an admissible set exists, proceed. Otherwise,
the DM must reassess the membership function.

Step 2: Set and test whether an admissible set satisfy-
ing the constraints of (4.57) exists or not using phase one of the
simplex method. If an admissible set exists, set
Otherwise, go to the next step since the minimum  which satis-
fies the constraints of (4.57) exists between

Step 3: For the initial value of update the value of
using the bisection method as follows:

if an admissible set exists for
if no admissible set exists for

For each test whether an admissible set of (4.57)
exists or not using the sensitivity analysis technique for the changes
in the right-hand side of the simplex method and determine the
minimum value of  satisfying the constraints of (4.57).

In this way, we can determine the optimal solution . Then the
DM selects an appropriate standing objective from among the objectives

For notational convenience in the following without
loss of generality, let it be and Then the following linear



200 MULTIPLE CRITERIA OPTIMIZATION

programming problem is solved for

For convenience in our subsequent discussion, we assume that the opti-
mal solution  to (4.59) satisfies the following conditions:

where and
It is interesting to note that and

are optimal parameters for any
optimal solution.

The relationships between the optimal solutions to (4.57) and the
optimal concept of the can be characterized by the

following theorems.

Theorem 4.5 (Minimax problem and optimality)
If * is a unique optimal solution to (4.57), then  is an

optimal solution to the

Theorem 4.6 optimality and minimax problem)
If  is an optimal solution to the then  is

an optimal solution to (4.57) for some

The proofs of these theorems follow directly from the definitions of
optimality and optimality by making use of contradiction
arguments.

It must be observed here that for generating optimal solu-
tions using Theorem 4.5, uniqueness of solution must be verified. In the
ad hoc numeral approach, however, to test the optimality
of a current optimal solution , we formulate and solve the following
linear programming problem:



Let and be an optimal solution to this problem. If all
then is an optimal solution. If at least one as
discussed previously, it can be easily shown that is an
optimal solution.

Now given the optimal solution for the degree and the
reference membership values specified by the DM by solving the corre-
sponding minimax problem, the DM must either be satisfied with the
current optimal solution and or update the reference mem-
bership values and/or the degree To help the DM express a degree of
preference, trade-off information between a standing membership func-
tion and each of the other membership functions as well as between the
degree and the membership functions is very useful. Such trade-off
information is easily obtainable since it is closely related to the simplex
multipliers of the problem (4.59).

To derive the trade-off information, define the following Lagrangian
function L corresponding to problem (4.59):

Furthermore, using the strictly monotone decreasing or increasing prop-
erty of or together with the chain rule, if and
are differentiable at the optimal solution to (4.59), it holds that
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where and are simplex multipliers corresponding to the
constraints of (4.59).

Here we assume that problem (4.59) has a unique and nondegenerate
optimal solution satisfying the following conditions:

(1)
(2)

Then by using the results in Haimes and Chankong [21], the following
expression holds:
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where and denote the differential coefficients of and
respectively.

Regarding a trade-off rate between and the following
relation holds based on the sensitivity theorem (for details, see, e.g.,
Luenberger [31] or Fiacco [19]):

It should be noted that to obtain the trade-off rate information from
(4.65) and (4.66), all the constraints of problem (4.59) must be active for
the current optimal solution. Therefore, if there are inactive constraints,
it is necessary to replace for inactive constraints by or

and solve the corresponding problem (4.59) for obtaining
the simplex multipliers.

Now, following the above discussions, we can present the interactive
algorithm to derive the satisficing solution for the DM from the

optimal solution set. The steps marked with an asterisk involve
interaction with the DM.

Interactive fuzzy multiobjective linear programming with fuzzy
parameters

Step 0: (Individual minimum and maximum)

Calculate the individual minimum and maximum of each objective
function under the given constraints for and

Step 1*: (Membership functions)

Elicit a membership function from the DM for each of the
objective functions.

Step 2*: (Initialization)

Ask the DM to select the initial value of and set the
initial reference membership values

Step 3: optimal solution)



Here it should be stressed to the DM that (1) any improvement of one
membership function can be achieved only at the expense of at least one
of the other membership functions for some fixed degree and (2) the
greater value of the degree gives the worse values of the membership
functions for some fixed reference membership values.

It is significant to point out here that all the results presented in this
section have already been extended by the authors to deal with multiob-
jective linear fractional programming problems with fuzzy parameters.
A successful generalization along this line can be found in Sakawa and
Yano [76], and the interested readers might refer to them for details.

7. Related Works and Applications

So far multiobjective linear programming in a fuzzy environment is
briefly discussed on the basis of the author’s continuing research works.
For further details of multiobjective linear and nonlinear programming
in a fuzzy environment, including interactive computer programs and
some applications, the readers might refer to Sakawa’s 1993 book enti-
tled “Fuzzy Sets and Interactive Multiobjective Optimization” [47].

In addition to this book, the book of Lai and Hwang [28], and Carlsson
and Fullér [6] and the recently published two books of Sakawa [48, 49]
together with the edited volumes of Kacprzyk and Orlovski [23], Verde-
gay and Delgado [101], Slowinski and Teghem [95], Delgado, Kacprzyk,
Verdegay and Vila [15], and Slowinski [94] would be very useful for in-
terested readers.
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For the degree and the reference membership values specified by
the DM, solve the minimax problem and perform the
optimality test to obtain the optimal solution and the
trade-off rates between the membership functions and the degree

Step 4*: (Termination or updating)

The DM is supplied with the corresponding optimal
solution and the trade-off rates between the membership functions
and the degree If the DM is satisfied with the current mem-
bership function values of the optimal solution and
stop. Otherwise, the DM must update the reference membership
values and/or the degree by considering the current values of
the membership functions and together with the trade-off rates
between the membership functions and the degree and return to
step 3.



It is now appropriate to mention some application aspects of fuzzy
multiobjective optimization. As we look at engineering, industrial, and
management applications of fuzzy multiobjective optimization, we can
see continuing advances. They can be found, for example, in the areas of
an air pollution regulation problem [98], media selection in advertising
[102], a transportation problem [100], environmental planning [75], wa-
ter supply system development planning [93], operation of a packaging
system in automated warehouses [85], pass scheduling for hot tandem
mills [53], spatial planning problems [30], profit apportionment in con-
cerns [37], a capital asset pricing model [38], a farm structure optimiza-
tion problem [11], diet optimization problems [12], a forest management
problem [40], quality control [7], wastewater management [18], fuzzy ve-
hicle routing and scheduling [9], flexible scheduling in a machining center
[50], a real size manpower allocation problem [1], multiobjective interval
transportation problems [13], coal purchase planning in electric power
plants [91], fuzzy job shop scheduling [52], and profit and cost allocation
for a production and transportation problem [65].

8. Interactive Fuzzy Two-level Linear
Programming

8.1. Two-level Programming Problems

Two-level programming problems, in which the upper level DM makes a
decision first and the lower level DM makes a decision after understand-
ing the decision of the upper level DM, admit of two interpretations.
They depend on whether there is a cooperative relationship between the
DMs or not.

Consider a decision problem in a decentralized firm as an example of a
decision problem with cooperative DMs. Top management, an executive
board, or headquarters interests itself in overall management policy such
as long-term corporate growth or market share. In contrast, operation
divisions of the firm are concerned with coordination of daily activities.
After headquarters make a decision in accordance with the overall man-
agement policy, each division determines a goal to be achieved and tries
to attain the goal, fully understanding the decision by the headquarters.

As an example of a decision problem without cooperative DMs, con-
sider the Stackelberg duopoly: Firm 1 and Firm 2 supply homogeneous
goods to a market. Suppose Firm 1 dominates Firm 2 in the market,
and consequently Firm 1 first determines a level of supply and then Firm
2 decides its level of supply after it, realizes Firm 1’s level of supply.
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It seems that there exists cooperative relationship between the upper
level DM and the lower level DM in the former problem while each DM
does not have a motivation to cooperate each other in the latter problem.

As the former’s mathematical programming problem, we can model
such a problem as a single-objective large scale mathematical program-
ming problems used the decomposition method or a multiobjective pro-
gramming problem with objective functions of all levels. Bialas and
Karwan remark that the two-level programming formulation is intend
to supplement decomposition approach, not supplant it [5]. Naturally,
the two-level formulation is noteworthy because a hierarchical structure
of the decision problem is explicitly included in a mathematical model.

Studies on the latter have been seen in the literature on game theory.
Such a situation is modelled as a Stackelberg game, in which there are
two players, and one player determines a strategy and thereafter the
other player decides a strategy [92]. Each player completely knows ob-
jective functions and constraints of an opponent and self, and the upper
level DM first specifies a strategy and then the lower level DM specifies
a strategy so as to optimize the objective with full knowledge of the de-
cision of the upper level DM. According to the rule, the upper level DM
also specifies the strategy so as to optimize the objective. Then a solu-
tion defined as the above mentioned procedure is called the Stackelberg
(equilibrium) solution.

The Stackelberg solution has been employed as a solution concept
when decision problems are modelled as two-level programming prob-
lems, whether there is a cooperative relationship between the DMs or
not. Even if the objective functions of both DMs and the common
constraint functions are linear, it is known that the two-level linear pro-
gramming problem is a non-convex programming problem with special
structure. Moreover, it should be noted that the Stackelberg solution
does not always satisfy Pareto optimality because of its noncoopera-
tive nature. For obtaining the Stackelberg solution, a large number of
computation methods have been developed [90].

In 1996, Lai [26] and Shih, Lai and Lee [89] have proposed a solution
concept, which is different from the concept of a Stackelberg solution,
for the two- or multi-level programming problems with cooperative DMs.
Their method [27] is based on an idea that the lower level DM optimizes
an objective function, taking a goal or preference of the upper level
DM into consideration. The DMs elicit membership functions of fuzzy
goals for their objective functions, and especially, the upper level DM
also specifies those of fuzzy goals for the decision variables. The lower
level DM solves a fuzzy programming problem with a constraint on a
satisfactory degree of the upper level DM. Unfortunately, however, there
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is a possibility that their method leads a final solution to an undesirable
one because of inconsistency between the fuzzy goals of the objective
function and those of the decision variables.

By eliminating the fuzzy goals for the decision variables to avoid such
problems in the methods of Lai et al., Sakawa et al. [62] introduced
interactive fuzzy programming for two-level linear programming prob-
lems. Moreover, from the viewpoint of experts’ imprecise or fuzzy under-
standing of the nature of parameters in a problem-formulation process,
they extend it to interactive fuzzy programming for two-level linear pro-
gramming problems with fuzzy parameters [63]. These results are also
extended to deal with two-level linear fractional programming problems
[54, 64] and two-level linear and linear fractional programming problems
in multiobjective environments [61, 57], considering diversity of evalua-
tion by the DMs.

They also develop interactive fuzzy programming for two-level 0-1
programming problems through the genetic algorithms [59, 60]. and for
two-level linear programming problems with multiple DMs at the lower
level [55]. Moreover, these results are applied to real-world decision
making problems [66].

Under these circumstances, in this section, interactive fuzzy program-
ming for two-level linear programming problems [62] is introduced. In
the interactive method, after determining the fuzzy goals of the DMs at
both levels, a satisfactory solution is derived efficiently by updating the
minimal satisfactory level of the upper level DM with considerations of
overall satisfactory balance between both levels.

8.2. Interactive Fuzzy Two-level Linear
Programming

Consider the following two-level linear programming problem:

where is an decision variable column vector;
i = 1,2 is an constant row vector;        is

an constant row vector;    is an m-dimensional constant
column vector; is an constant matrix;
and respectively, represent objective functions of the upper
and the lower levels; and and respectively, represent decision
variable vector of the upper and the lower levels. In the two-level linear
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programming problem (4.68) with cooperative DMs, and
mean that the DMs at the upper and the lower levels seek

to minimize their objective functions under the given constraints.
For the sake of simplicity, we use the following notations:

where is transposition,
and and let DM1 denote the DM at the upper

level and DM2 denote the DM at the lower level.
It is natural that DMs have fuzzy goals for their objective functions

when they take fuzziness of human judgments into consideration. For
each of the objective functions of (4.68), assume that the
DMs have fuzzy goals such as “the objective function should be
substantially less than or equal to some value

Let X denote the feasible region of Problem (4.68). The individual
minimum

and the individual maximum

of the objective functions are referred to when the DMs elicit mem-
bership functions prescribing the fuzzy goals for the objective functions

The DMs determine the membership functions
which are strictly monotone decreasing for consulting the varia-
tion ratio of degree of satisfaction in the interval between the individual
minimum (4.69) and the individual maximum (4.70). The domain of the
membership function is the interval and the DM
specifies the value of the objective function for which the degree of
satisfaction is 0 and the value of the objective function for which the
degree of satisfaction is 1. For the value undesired (larger) than it is
defined that and for the value desired (smaller) than ;
it is defined that

For example, we consider a linear membership function, which charac-
terizes the fuzzy goal of the DM at each level. The corresponding linear
membership function is defined as:

where and denote the value of the objective function such
that the degree of membership function is 0 and 1, respectively, and it
is assumed that the DMs subjectively assess and
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Zimmermann proposed a method for determining the parameters
and of the linear membership function in the following way [108].
That is, using the individual minimum

together with

the DMs determine the linear membership functions as in (4.71) by
choosing

Having elicited the membership functions and
from both DMs for the objective functions and the original
two-level linear programming problem (4.68) can be interpreted as the
membership function maximization problem defined by:

In Problem (4.74), is an decision variable vec-
tor and is divided into two vectors and which are and

decision variable vectors of DM1 and DM2, respectively.
However, because the two DMs make decisions cooperatively, the deci-
sion variable vector is represented simply by without partition.

For deriving an overall satisfactory solution to the formulated prob-
lem (4.74), we first find the maximizing decision of the fuzzy decision
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proposed by Bellman and Zadeh [2]. Namely, the following problem is
solved for obtaining a solution which maximizes the smaller degree of
satisfaction between the two DMs:

By introducing the auxiliary variable this problem can be transformed
into the following equivalent maximization problem:

Solving Problem (4.76), we can obtain a solution which maximizes
the smaller satisfactory degree between those of both DMs. It should
be noted that if the membership functions are linear
membership functions such as (4.71), Problem (4.76) becomes linear
programming problem. Let x* denote an optimal solution to problem
(4.76). Then, we define the satisfactory degree of both DMs under the
constraints as

If DM1 is satisfied with the optimal solution it follows that the
optimal solution  becomes a satisfactory solution; however, DM1 is
not always satisfied with the solution      . It is quite natural to assume
that DM1 would like to subjectively specify a minimal satisfactory level

for the membership function
Consequently, if DM1 is not satisfied with the solution  to Problem

(4.76), the following problem is formulated:

where DM2’s membership function is maximized under the condition
that DM1’s membership function is larger than or equal to
the minimal satisfactory level specified by DM1. It should be also
noted that if the membership functions are linear
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membership functions such as (4.71), Problem (4.78) becomes linear
programming problem.

If there exists an optimal solution to Problem (4.78), it follows that
DM1 obtains a satisfactory solution having a satisfactory degree larger
than or equal to the minimal satisfactory level specified by DM1. How-
ever, the larger the minimal satisfactory level is assessed, the smaller
the DM2’s satisfactory degree becomes when the objective functions of
DM1 and DM2 conflict with each other. Consequently, a relative differ-
ence between the satisfactory degrees of DM1 and DM2 becomes larger
and we cannot expect that the overall satisfactory balance between both
levels is appropriate.

In order to take account of the overall satisfactory balance between
both levels, DM1 needs to compromise with DM2 on DM1’s own minimal
satisfactory level. To do so, a ratio of satisfactory degrees between both
DMs is defined as

which is originally introduced by Lai [26], is useful.
DM1 is guaranteed to have satisfactory degrees larger than or equal

to the minimal satisfactory levels for all of the fuzzy goals because the
corresponding constraints are involved in Problem (4.78). To take into
account the overall satisfactory balance between both levels, we provide
two methods for evaluating the ratio of satisfactory degrees. In the
first method, DM1 specifies the lower bound and the upper bound

of the ratio and the ratio is evaluated by verifying that it is in
the interval The condition that the overall satisfactory
balance is appropriate is represented by

In the second method, DM1 identify a fuzzy goal for the ratio
of satisfactory degrees, which is expressed in words such as “the ratio
should be in the vicinity of a certain value and gives the permissible
level to the membership value of the fuzzy goal. The condition that
the overall satisfactory balance is appropriate is represented by

where denote a membership function of the fuzzy goal
The two methods have relevance to each other by interpreting the

set as the interval Moreover,
in multiobjective two-level programming problems, the ratio is repre-
sented as a fuzzy number as we show in later sections and then we can
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naturally extend the second method. From the relation between the two
method, we explain only interactive procedure with the first method.

At an iteration l, let and re-
spectively denote DM1’s and DM2’s satisfactory degrees, a satisfactory
degree of both levels and the ratio of satisfactory degrees between both
DMs, and let the corresponding optimal solution be The interactive
process terminates if the following two conditions are satisfied and DM1
concludes the solution as an overall satisfactory solution.

Termination conditions of the interactive process

Condition 1: DM1’s satisfactory degree is larger than or equal to the
minimal satisfactory level specified by DM1, i.e.,

Condition 2: The ratio of satisfactory degrees lies in the closed
interval between the lower and the upper bounds specified by DM1,
i.e.,

Condition 1 is DM1’s required condition for solutions, and Condition
2 is provided in order to keep overall satisfactory balance between both
levels.

Unless these two conditions are satisfied simultaneously, DM1 needs
to update the minimal satisfactory level

Procedure for updating the minimal satisfactory level

Case 1: If Condition 1 is not satisfied, then DM1 decreases the minimal
satisfactory level

Case 2: If the ratio exceeds its upper bound, then DM1 increases the
minimal satisfactory level Conversely, if the ratio is below its
lower bound, then DM1 decreases the minimal satisfactory level

Case 3: Although Conditions 1 and 2 are satisfied, if DM1 is not sat-
isfied with the obtained solution and judges that it is desirable
to increase the satisfactory degree of DM1 at the expense of the
satisfactory degree of DM2, then DM1 increases the minimal sat-
isfactory level Conversely, if DM1 judges that it is desirable
to increase the satisfactory degree of DM2 at the expense of the
satisfactory degree of DM1, then DM1 decreases the minimal sat-
isfactory level

If Condition 1 is not satisfied, because there does not exist any feasible
solution, DM1 has to moderate the minimal satisfactory level. For Case
2, DM1 must adjust it so as to meet the bounds.



We are now ready to present an interactive algorithm for deriving an
overall satisfactory solution to Problem (4.68), which is summarized in
the following and is illustrated with a flowchart in Figure 4.11:

Interactive fuzzy two-level linear programming

Step 1: Ask DM1 to identify the membership function of the
fuzzy goal of DM1. Similarly, ask DM1 to identify the membership
function of the fuzzy goal of DM2.

Step 2: Set and solve Problem (4.76), in which a smaller degree
between the satisfactory degrees of DM1 and DM2 is maximized.
If DM1 is satisfied with the obtained optimal solution, the solution
becomes a satisfactory solution. Otherwise, ask DM1 to specify the
minimal satisfactory level together with the lower and the up-
per bounds of the ratio of satisfactory degrees by
considering the satisfactory degree of both DMs and the related
information about the solution.

Step 3: Solve Problem (4.78), in which the satisfactory degree of DM2
is maximized under the condition that the satisfactory degree of
DM1 is larger than or equal to the minimal satisfactory level, and
then propose an optimal solution to Problem (4.78) to DM1
together with and

Step 4: If the solution proposed to DM1 satisfies the termination con-
ditions and DM1 concludes the solution as a satisfactory solution,
the algorithm stops.

Step 5: Ask DM1 to update the minimal satisfactory level in accor-
dance with the procedure of updating minimal satisfactory level.

Step 6: Solve Problem (4.78) and propose the obtained optimal solu-
tion to DM1 together with the related information. Return to Step
4.

Further details including an illustrative numerical example and an
application can be found in Sakawa et al. [62, 66]. Extensions to linear
fractional, nonlinear and 0-1 programming problems can be found in
Sakawa et al. [54, 55, 56, 60].

9. Interactive Fuzzy Two-level Linear
Programming with Fuzzy Parameters

When formulating a mathematical programming problem which closely
describes and represents a real-world decision situation, various factors
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of the real-world system should be reflected in the description of ob-
jective functions and constraints. Naturally, these objective functions
and constraints involve many parameters whose possible values may be
assigned by experts. In the conventional approaches, such parameters
are required to be fixed at some values in an experimental and/or sub-
jective manner through the experts’ understanding of the nature of the
parameters in the problem-formulation process.

It must be observed here that, in most real-world situations, the possi-
ble values of these parameters are often only imprecisely or ambiguously
known to the experts. With this observation in mind, it would be cer-
tainly more appropriate to interpret the experts’ understanding of the
parameters as fuzzy numerical data which can be represented by means
of fuzzy sets of the real line known as fuzzy numbers. The resulting
mathematical programming problem involving fuzzy parameters would
be viewed as a more realistic version than the conventional one [47, 84].

From this viewpoint, we assume that parameters involving in the ob-
jective functions and the constraints of the two-level linear programming
problem are characterized by fuzzy numbers. As a result, a problem with
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fuzzyparameters corresponding to Problem (4.68) is formulated as:

where and are fuzzy parameters. For the
sake of simplicity, we use the following notations:

and .
Assuming that the fuzzy parameters and
are characterized by fuzzy numbers, let corresponding membership

functions be denoted by:

and We introduce the set
of the fuzzy numbers and defined as the ordinary set in
which the degree of their membership functions exceeds the level

Now suppose that DM1 considers that the degree of all of the mem-
bership functions of the fuzzy numbers involved in the two-level linear
programming problem should be greater than or equal to some value
Then, for such a degree Problem (4.82) can be interpreted as the fol-
lowing nonfuzzy two-level linear programming problem which depends
on a coefficient vector [47, 84]:
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Observe that there exist an infinite number of such problems (4.84)
depending on the coefficient vector and the values
of (c, b, A) are arbitrary for any in the sense that
the degree of all of the membership functions for the fuzzy numbers
in Problem (4.84) exceeds the level However, if possible, it would be
desirable for each DM to choose in Problem (4.84) so
as to minimize the objective function under the constraints. Assuming
that DM1 chooses a degree of the from such a point of view,
it seems to be quite natural to have understood the two-level linear
programming problem with fuzzy parameters as the following nonfuzzy

linear programming problem [47, 84]:

It should be noted that the parameters (c, b, A) are treated as decision
variables rather than constants.

Similar to the two-level linear programming problems considered in
the previous section, it is natural that DMs have fuzzy goals for their
objective functions when they take fuzziness of human judgments into
consideration.

After eliciting the membership functions for de-
riving an overall satisfactory solution to the formulated problem (4.85),
we first solve the following maximin problem for obtaining a solution
which maximizes the smaller degree of satisfaction between the two DMs:

By introducing the auxiliary variable this problem can be transformed
into the following equivalent maximization problem:
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Unfortunately, Problem (4.87) is not a linear programming problem
even if all the membership functions are linear.
To solve Problem (4.87) by using the linear programming technique, we
introduce the set-valued functions:

where is a row vector corresponding to the row of the
matrix A. Then it can be easily verified that the following relations hold
for and when

Proposition 5 (Inclusion relations of set-valued functions)
(1)
(2)
(3)

If then
If then
If then

From the properties of the set for the vectors of fuzzy numbers
and the matrix of fuzzy numbers it should be noted that the

feasible regions for and can be denoted respectively by the
closed intervals and

Therefore, through the use of Proposition 5, we can obtain an optimal
solution to Problem (4.87) by solving the following linear programming
problem:

For the problem which maximizes DM2’s membership function under
the condition that DM1’s  membership function is larger
than or equal to the minimal satisfactory level specified by DM1, we
can also formulate the following problem including fuzzy parameters:

From the properties of the set for the vectors of fuzzy numbers,
Problem (4.90) can be also transformed into the following equivalent
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problem:

For the two-level linear programming problem with fuzzy parameters
(4.82), we can provide the termination conditions of the interactive pro-
cess and the procedure for updating the minimal satisfactory level
which are the same with the interactive fuzzy programming for the two-
level linear programming problem (4.68), and give a similar algorithm
with Problems (4.89) and (4.91) for deriving satisfactory solutions.

Further details including an illustrative numerical example can be
found in Sakawa et al. [63]. Extensions to linear fractional, nonlinear
and 0-1 programming problems with fuzzy parameters as a generalized
version of this section can be found in Sakawa et al. [64, 58, 59].

The book “Nondifferentiable and Two-Level Mathematical Program-
ming” of Shimizu, Ishizuka and Bard [90] and the recently published
book by Lee and Shih [27] entitled “Fuzzy and Multi-Level Decision
Making: An Interactive Computational Approach” which covers all of
the major theoretical and practical advances in the wide range of fuzzy
and multilevel decision making would be very useful for interested read-
ers.
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Abstract

Keywords:

An overview of the interactive methods for solving nonlinear multiple
criteria decision making problems is given. In interactive methods, the
decision maker progressively provides preference information so that the
most satisfactory compromise can be found. The basic features of sev-
eral methods are introduced and some theoretical results are provided.
In addition, references to modifications and applications as well as to
other methods are indicated.
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1. Introduction

Nonlinear multiobjective optimization means multiple criteria decision
making involving nonlinear functions of continuous decision variables. In
these problems, the best possible compromise is to be found from an in-
finite number of alternatives represented by decision variables restricted
by constraint functions.

Solving multiobjective optimization problems usually requires the par-
ticipation of a human decision maker who is supposed to have better
insight into the problem and to express preference relations between
alternative solutions. The methods can be divided into four classes ac-
cording to the role of the decision maker in the solution process. If the
decision maker is not involved, we use methods where no articulation of



preference information is used, in other words, no-preference methods.
If the decision maker expresses preference information after the solution
process, we speak about a posteriori methods whereas a priori methods
require articulation of preference information before the solution pro-
cess. The most extensive method class is interactive methods where the
decision maker specifies preference information progressively during the
solution process. Here we concentrate on this last-mentioned class and
introduce several examples of interactive methods.

Many real-world phenomena behave in a nonlinear way. Besides, lin-
ear problems can always be solved using methods created for nonlinear
problems but not vice versa. For these reasons, we here devote ourselves
to nonlinear problems. We assume that all the information involved is
deterministic and that we have a single decision maker. Further infor-
mation about the topics treated here can be found in [105].
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2. Concepts
Let us begin by introducing several concepts and definitions. We study
multiobjective optimization problems of the form

involving objective functions that we want to
minimize simultaneously. The decision (variable) vectors belong to
the (nonempty) feasible region The feasible region is formed
by constraint functions but we do not fix them here.

We denote the image of the feasible region by and call it
a feasible objective region. Objective (function) values form objective
vectors Note that if is to be
maximized, it is equivalent to minimize

We call a multiobjective optimization problem convex if all the objec-
tive functions and the feasible region are convex. On the other hand, the
problem is nondifferentiable if at least one of the objective or the con-
straint functions is nondifferentiable. (Here nondifferentiability means
that the function is not necessarily continuously differentiable but that
it is locally Lipschitz continuous.)

We assume that the objective functions are at least partly conflicting
and possibly incommensurable. This means that it is not possible to find
a single solution that would optimize all the objectives simultaneously.
As the definition of optimality we employ Pareto optimality. A vector is
Pareto optimal (or noninferior or efficient or nondominated) if none of
its components can be improved without deterioration to at least one of
the other components.
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Definition 14 A decision vector is (globally) Pareto optimal if
there does not exist another vector such that for
all i = 1 , . . . , k and for at least one index

An objective vector is Pareto optimal if there does not exist
another vector such that for all i = 1, . . . , k and for
at least one index or equivalently, z* is Pareto optimal if the decision
vector corresponding to it is Pareto optimal.

Local Pareto optimality is defined in a small environment of
Naturally, any globally Pareto optimal solution is locally Pareto

optimal. The converse is valid, for example, for convex multiobjective
optimization problems; see [20, 105], among others.

For the sake of brevity, we usually speak about Pareto optimality in
the sequel. In practice, however, we only have locally Pareto optimal
solutions computationally available, unless some additional requirement,
such as convexity, is fulfilled or unless we have global solvers available.

A Pareto optimal set consists of (an infinite number of) Pareto op-
timal solutions. In interactive methods, we usually move around the
Pareto optimal set and forget the other solutions. However, one should
remember that this limitation may have weaknesses. Namely, the real
Pareto optimal set may remain unknown. This may be the case if an
objective function is only an approximation of an unknown function or
if not all the objective functions involved are explicitly expressed.

Moving from one Pareto optimal solution to another necessitates trad-
ing off. To be more specific, a trade-off reflects the ratio of change in
the values of the objective functions concerning the increment of one
objective function that occurs when the value of some other objective
function decreases (see, for example, [22, 105]).

For any two solutions equally preferable to the decision maker there
is a trade-off involving a certain increment in the value of one objective
function that the decision maker is willing to tolerate in exchange for
a certain amount of decrement in some other objective function while
the preferences of the two solutions remain the same. This is called the
marginal rate of substitution.

Usually, one of the objective functions is selected as a reference func-
tion when trade-offs and marginal rates of substitution are treated. The
trade-offs and the marginal rates of substitution are generated with re-
spect to it.

Sometimes Pareto optimal sets are not enough but we need wider or
smaller sets: weakly and properly Pareto optimal sets, respectively. A
vector is weakly Pareto optimal if there does not exist any other vector for
which all the components are better. Weakly Pareto optimal solutions
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are sometimes computationally easier to generate than Pareto optimal
solutions. Thus, they have relevance from a technical point of view. On
the other hand, a vector is properly Pareto optimal if unbounded trade-
offs are not allowed. For a collection of different definitions of proper
Pareto optimality, see, for example, [105].

Multiobjective optimization problems are usually solved by scalariza-
tion. It means that the problem is converted into one or a family of
single (scalar) objective optimization problems. This produces a new
problem with a real-valued objective function, possibly depending on
some parameters.

Interactive methods differ from each other by the form how the prob-
lem is transformed into a single objective optimization problem, by the
form in which information is provided by the decision maker and by the
form in which information is given to the decision maker.

One way of inquiring the decision maker’s opinions is to ask for satis-
factory or desirable objective function values. They are called aspiration
levels and denoted by They form a vector to be
called a reference point.

The ranges of the set of Pareto optimal solutions give valuable in-
formation to the decision maker about the possibilities and restrictions
of the problem (assuming the objective functions are bounded over S).
The components of the ideal objective vector are the individ-
ual optima of the objective functions. This vector represents the lower
bounds of the Pareto optimal set. (In nonconvex problems, we need a
global solver for minimizing the k functions.) Note that we sometimes
need a vector that its strictly better than the ideal objective vector. This
vector is called a utopian objective vector and denoted by

The upper bounds of the Pareto optimal set, that is, the compo-
nents of a nadir objective vector are much more difficult to obtain.
Actually, there is no constructive method for calculating the nadir ob-
jective vector for nonlinear problems. However, a rough estimate can be
obtained by keeping in mind the points where each objective function
attains its lowest value and calculating the values of the other objec-
tives. The highest value obtained for each objective can be selected as
the estimated component of

It is often assumed that the decision maker makes decisions on the
basis of an underlying value function representing her
or his preferences among the objective vectors [74]. Even though value
functions are seldom explicitly known, they are important in the devel-
opment of solution methods and as a theoretical background. Thus, the
value function is often presumed to be known implicitly.



The value function is usually assumed to be strongly decreasing. In
other words, the preferences of the decision maker are assumed to in-
crease if the value of one objective function decreases while all the other
objective values remain unchanged. In brief, we can say that less is
preferred to more. In that case, the maximal solution of U is assured
to be Pareto optimal. Note that regardless of the existence of a value
function, in what follows, we shall assume that lower objective function
values are preferred to higher, that is, less is preferred to more by the
decision maker.

An alternative to the idea of maximizing some value function is sat-
isficing decision making. In this approach, the decision maker tries to
achieve certain aspirations. If the aspirations are achieved, the solution
is called a satisficing solution.

3. Methods

A large variety of methods has been developed for solving multiobjec-
tive optimization problems. We can say that none of them is generally
superior to all the others. As mentioned earlier, we apply here the clas-
sification of the methods into four classes according to the participation
of the decision maker in the solution process. This classification has
originally been suggested in [64].

Here we discuss interactive methods. We divide these methods into ad
hoc and non ad hoc methods (based on value functions) as suggested in
[180]. Even if one knew the decision maker’s value function, one would
not exactly know how to respond to the questions posed by an ad hoc
algorithm. On the other hand, in non ad hoc methods, the responses
can be determined or at least confidently simulated based on a value
function.

Before describing the methods, we mention several references for fur-
ther information. This presentation is mainly based on [105]. Con-
cepts and methods for multiobjective optimization are also treated in
[15, 22, 39, 40, 64, 157, 165, 175, 179, 184, 196, 200, 225].

Interactive multiobjective optimization methods, in particular, are
collected in [140, 166, 197, 210]. Furthermore, methods with applications
to large-scale systems and industry are presented in [58, 173, 188].

We shall not discuss non-interactive methods here. However, we men-
tion some of such methods by name and give references for further infor-
mation. Examples of no-preference methods are the method of the global
criterion [224, 227] and the multiobjective proximal bundle method [108].
From among a posteriori methods we mention the weighting method
[49, 226], the method [57] and the hybrid method [29, 209]

Interactive Nonlinear Multiobjective Procedures 231
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as well as the method of weighted metrics [227] and the achievement
scalarizing function approach [212, 213, 214, 216]. Multiobjective evo-
lutionary algorithms are also a posteriori in nature, see, for example,
[34] and references therein. A priori methods include the value function
method [74], the lexicographic ordering [45] and the goal programming
[23, 24, 66, 155, 156].

Let us next concentrate on interactive methods. In interactive meth-
ods, a solution pattern is formed and repeated several times. After every
iteration, some information is given to the decision maker and (s)he is
asked to answer some questions or to provide some other type of infor-
mation. In this way, only part of the Pareto optimal points has to be
generated and evaluated, and the decision maker can specify and correct
her or his preferences and selections during the solution process when
(s)he gets to know the problem better. Thus, the decision maker does
not have to know any global preference structure.

There are three main stopping criteria in interactive methods. In the
best situation, the decision maker finds a desirable solution and wants
to stop. Alternatively, the decision maker gets tired and stops or some
algorithmic stopping rule is fulfilled. In the last-mentioned case, one
must check that the decision maker agrees to stop.

In what follows, we present several interactive methods. The idea is
to describe a collection of methods based on different approaches. In
addition, plenty of references are included. Note that although all the
calculations take place in the decision variable space, we mostly speak
about the corresponding objective vectors.

3.1. Interactive Surrogate Worth Trade-Off
Method

The interactive surrogate worth trade-off (ISWT) method is introduced
in [21] and [22], pp. 371–379. The ISWT method utilizes the
problem where one of the objective functions is minimized subject to
upper bounds on all the other objectives:

where and are upper bounds for the other objectives.

Theorem 1 The solution of (5.2) is weakly Pareto optimal. The point
is Pareto optimal if and only if it solves (5.2) for every
where for j = 1 , . . . , k, A unique solution is

Pareto optimal for any upper bounds.
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The idea of the ISWT method is to maximize an approximation of
an underlying value function. A search direction is determined based
on the opinions of the decision maker concerning trade-off rates at the
current solution point. The step-size to be taken in the search direction
is determined by solving several problems and asking the
decision maker to select the most satisfactory solution.

It is assumed that the underlying value function exists and is implicitly
known to the decision maker. In addition, it must be continuously dif-
ferentiable and strongly decreasing. Furthermore, the objective and the
constraint functions must be twice continuously differentiable and the
feasible region has to be compact. Finally, it is assumed that the Pareto
optimality of the solutions of the problem is guaranteed and
that trade-off rate information is available in the Karush-Kuhn-Tucker
(KKT) multipliers related to the problem.

Changes in objective function values between a reference function
and all the other objectives are compared. For each
the decision maker must answer the following question: Let an objective
vector be given. If the value of is decreased by units, then the
value of is increased by one unit (or vice versa) and the other objective
values remain unaltered. How desirable do you find this trade-off?

The response of the decision maker indicating the degree of preference
is called a surrogate worth value. According to [21, 22] the response must
be an integer between 10 and –10 whereas it is suggested in [192] to use
integers from 2 to –2.

The gradient of the underlying value function is then estimated with
the help of the surrogate worth values. This gives a search direction
with a steepest ascent for the value function. Several different steps
are taken in the search direction and the decision maker must select
the most satisfactory of them. In practice, the upper bounds of the

problem are revised based on surrogate worth values with
different step-sizes.

The main features of the ISWT method can be presented with four
steps.

1

2

3

4

Select to be minimized and give upper bounds to the other
objective functions. Set h = 1.

Solve (5.2) to get a solution Trade-off rate information is ob-
tained from the KKT multipliers.

Ask the decision maker for the surrogate worth values at

If some stopping criterion is satisfied, stop. Otherwise, update the
upper bounds with the help of the answers obtained in step 3 and
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solve several problems. Let the decision maker choose
the most preferred alternative and set h = h + 1. Go to step
3.

As far as stopping criteria are concerned, one can always stop when
the decision maker wants to do so. A common stopping criterion is the
situation where all the surrogate worth values equal zero. One more
criterion is the case when the decision maker wants to proceed only in
an infeasible direction.

In the ISWT method, the decision maker is asked to specify surrogate
worth values and compare Pareto optimal alternatives. It may be diffi-
cult for the decision maker to provide consistent surrogate worth values
throughout the decision process. In addition, if there is a large number
of objective functions, the decision maker has to specify a lot of surro-
gate worth values at each iteration. On the other hand, the easiness of
the comparison of alternatives depends on the number of objectives and
on the personal abilities of the decision maker.

The ISWT method can be regarded as a non ad hoc method. The sign
of the surrogate worth values can be judged by comparing trade-off rates
with marginal rates of substitution (obtainable from the value function).
Furthermore, when comparing alternatives, it is easy to select the one
with the highest value function value.

Modifications of the ISWT method are presented in [22, 25, 56, 59].

3.2. Geoffrion-Dyer-Feinberg Method

In the Geoffrion-Dyer-Feinberg (GDF) method, proposed in [50], the
basic idea is related to that of the ISWT method. In both the methods,
the underlying (implicitly known) value function is approximated and
maximized. In the GDF method, the approximation is based on marginal
rates of substitution.

It is assumed that an underlying value function exists, is implicitly
known to the decision maker and is strongly decreasing with respect to
the reference function In addition, the corresponding value function
with decision variables as variables must be continuously differentiable
and concave on S. Furthermore, the objective functions have to be
continuously differentiable and the feasible region S must be compact
and convex.

Let be the current solution. We can obtain a local linear approxi-
mation for the gradient of the value function with the help of marginal
rates of substitution involving a reference function and the other

234
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functions Based on this information we solve the problem

where is the variable. Let us denote the solution by Then,
the search direction is

The following problem is to find a step-size. The decision maker can
be offered objective vectors where steps of different sizes are taken in
the search direction starting from the current solution. Unfortunately,
these alternatives are not necessarily Pareto optimal.

Now we can present the GDF algorithm.

1

2

3

4

5

Ask the decision maker to select Set

Ask the decision maker to specify marginal rates of substitution
between and the other objectives at the current solution

Solve (5.3). Set the search direction If stop.

Determine with the help of the decision maker the appropriate
step-size to be taken in direction Denote the corresponding
solution by

Set If the decision maker wants to continue, go to step
2. Otherwise, stop.

In the GDF method, the decision maker has to specify marginal rates
of substitution and select the most preferred solution from a set of alter-
natives. The theoretical foundation of the method is convincing but the
practical side is not as promising. At each iteration the decision maker
has to determine k – 1 marginal rates of substitution in a consistent and
correct way. On the other hand, it is obvious that in practice the task
of selection becomes more difficult for the decision maker as the number
of objective functions increases. Another drawback is that not all the
solutions presented to the decision maker are necessarily Pareto optimal.
They can naturally be projected onto the Pareto optimal set but this
necessitates extra effort.

The GDF method is a non ad hoc method. The marginal rates of
substitution and selections can be done with the help of value function
information. Note that if the underlying value function is linear, the
marginal rates of substitution are constant and only one iteration is
needed.

Applications and modifications of the GDF method are described in
[3, 36, 38, 44, 46, 61, 64, 69, 104, 106, 107, 124, 147, 158, 162, 175, 219].
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3.3. Tchebycheff Method

The Tchebycheff method, proposed in [175, pp. 419–450] and [178] and
refined in [176], is also known by the name interactive weighted Tcheby-
cheff procedure. The idea in this weighting space reduction method is to
develop a sequence of progressively smaller subsets of the Pareto optimal
set until a final solution is located.

This method does not have too many assumptions. All that is as-
sumed is that the objective functions are bounded (from below) over
S. To start with, a (global) utopian objective vector is established.
Then the distance from the utopian objective vector to the feasible ob-
jective region is minimized by solving the problem

The notation above means that if the min-max problem does not have
a unique solution, the sum term is minimized subject to the obtained
points.

Theorem 2 The solution of (5.4) is Pareto optimal and any Pareto
optimal solution can be found.

In the Tchebycheff method, different Pareto optimal solutions are gen-
erated by altering the weighting vector At each iteration h, the
weighting vector space
is reduced to where At the first iteration, a sample
of the whole Pareto optimal set is generated by solving (5.4) with well
dispersed weighting vectors from (with and
The space is reduced by tightening the upper and the lower bounds
for the weights.

Let be the objective vector that the decision maker chooses from
the sample at the iteration h and let be the corresponding weighting
vector in the problem. Now a concentrated group of weighting vectors
centred around is formed. In this way, a sample of Pareto optimal
solutions centred about is obtained.

We can now present the main features of the Tchebycheff algorithm.

1

2

Set the set size P and an approximation for the number of itera-
tions H. Set and for all i = 1 , . . . , k. Construct
Set h = 1.

Form the weighting vector space and generate 2P dispersed
weighting vectors



The problem (5.4) is solved more that P times so that solutions very
close to each other do not have to be presented to the decision maker. On
the other hand, the predetermined number of iterations is not necessarily
conclusive. The decision maker can stop iterating when (s)he obtains a
satisfactory solution or continue the solution process longer if necessary.

In this method, the decision maker is only asked to compare Pareto
optimal objective vectors. The number of alternatives and criteria affects
the easiness of the comparison. The personal capabilities of the decision
maker are also important. Note that some consistency is required from
the decision maker because the discarded parts of the weighting vector
space cannot be restored.

It must be mentioned that a great deal of calculation is needed in the
method. That is why it may not be applicable for large and complex
problems. However, parallel computing can be utilized when generating
the alternatives.

The Tchebycheff method is a non ad hoc method. It is easy to compare
the alternative solutions with the help of a value function.

Applications and modifications of the Tchebycheff method are given
in [1, 70, 146, 153, 167, 177, 186, 220].

3.4. Step Method

The step method (STEM) [9] is one of the first interactive methods
developed for multiobjective optimization problems. Here we describe
an extension for nonlinear problems according to [41] and [165, pp. 268–
269].

STEM is based on the classification of the objective functions at the
current iteration point In other words, it is assumed that
the decision maker can indicate both functions that have acceptable
values and those whose values are too high, that is, functions that are
unacceptable. Then the decision maker is supposed to give up a little
in the value(s) of some acceptable objective function(s) in
order to improve the values of some unacceptable objective functions

In other words, the decision maker is
asked to specify upper bounds for the functions in
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3

4

5

6

Solve (5.4) for each of the 2P weighting vectors.

Present the P most different of the resulting objective vectors to
the decision maker and let her or him choose the most preferred
among  them.

If h = H, stop.

Reduce to get set h = h + 1 and go to step 2.
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The only requirement in the method is that the objective functions
are bounded over S because distances are measured to the (global) ideal
objective vector. The first problem to be solved is

where as suggested in [41], or  as

suggested in [197].

Theorem 3 The solution of (5.5) is weakly Pareto optimal. The prob-
lem has at least one Pareto optimal solution.

After the decision maker has classified the objective functions, the
feasible region is restricted according to the information of the decision
maker. The weights of the relaxed objective functions are set equal to
zero, that is for Then a new distance minimization
problem

is solved.
The basic phases of the STEM algorithm are the following:

1

2

3

Calculate and and the weighting coefficients. Set h = 1.
Solve (5.5). Denote the solution by

Ask the decision maker to classify the objective functions at
into If the latter class is empty, stop. Otherwise, ask
the decision maker to specify relaxed upper bounds for

Solve (5.6) and denote the solution by Set h = h + 1
and go to step 2.

The procedure continues until the decision maker does not want to
change any component of the current objective vector. If the decision
maker is not satisfied with any of the components, then the procedure
must also be stopped.
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3.5. Reference Point Method

The reference point method [211, 212, 214] is based on vectors formed
of reasonable or desirable aspiration levels. These reference points are
used to derive scalarizing functions having minimal solutions at weakly,
properly or Pareto optimal points.

No specific assumptions are set in this method. The idea is to direct
the search by changing the reference point in the spirit of satisficing
decision making rather than optimizing any value function. It is impor-
tant that reference points are intuitive and easy for the decision maker
to specify and their consistency is not an essential requirement.

Note that specifying a reference point can be considered a way of clas-
sifying the objective functions. If the aspiration level is lower than the
current objective value, that objective function is currently unaccept-
able, and if the aspiration level is equal to or higher than the current ob-
jective value, that function is acceptable. The difference here is that the
reference point can be infeasible in every component. Naturally, trading
off is unavoidable in moving from one Pareto optimal solution to another
but different solutions can be obtained with different approaches.

Scalarizing functions used in the reference point method are so-called
achievement (scalarizing) functions and the method relies on their prop-
erties. We can define so-called order-representing and order-approxi-
mating achievement functions (see [211, 212, 214] for definitions). An
example of a problem with an order-representing achievement function
is

where w is some fixed positive weighting vector. An example of a prob-
lem with an order-approximating achievement function is

In STEM, we are moving from one weakly Pareto optimal solution
to another. The idea of classification is quite simple for the decision
maker. However, it may be difficult to estimate appropriate amounts of
increment that would allow the desired amount of improvement in those
functions whose values should be decreased.

STEM is an ad hoc method because the existence of a value function
would not help in the classification process.

Applications and modifications of STEM are given in [6, 22, 33, 64].
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where w is as above and

Theorem 4 If  the achievement function is order-representing, then its
solution is weakly Pareto optimal. If the function is order-approximating,
then its solution is Pareto optimal and the solution is properly Pareto
optimal if the function is also strongly increasing. Any (weakly) Pareto
optimal solution can be found if the achievement function is order-rep-
resenting. Finally, any properly Pareto optimal solution can be found if
the function  is order-approximating.

The reference point technique of Wierzbicki is very simple. Before
the solution process starts, some information is given to the decision
maker about the problem. If possible, the ideal objective vector and the
(approximated) nadir objective vector are presented. Another possibility
is to minimize and maximize the objective functions individually in the
feasible region (if it is bounded).

The basic steps are the following:

1

2

3

4

5

Select the achievement function. Present information about the
problem to the decision maker. Set

Ask the decision maker to specify a reference point

Minimize the achievement function and obtain a (weakly, properly
or) Pareto optimal solution Present it to the decision maker.

Calculate a number of k other (weakly, properly or) Pareto optimal
solutions with perturbed reference points where

and is the ith unit vector for

Present the alternatives to the decision maker. If (s)he finds one of
the k + 1 solutions satisfactory, stop. Otherwise, ask the decision
maker to specify a new reference point Set h = h + 1and go
to step 3.

The idea in perturbing the reference point in step 4 is that the deci-
sion maker gets a better conception of the possible solutions around the
current solution. If the reference point is far from the Pareto optimal
set, the decision maker gets a wider description of the Pareto optimal
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set and if the reference point is near the Pareto optimal set, then a finer
description of the Pareto optimal set is given.

In this method, the decision maker has to specify aspiration levels and
compare objective vectors. The decision maker is free to change her or
his mind during the process and can direct the solution process without
being forced to understand complicated concepts and their meaning. On
the other hand, the method does not necessarily help the decision maker
to find improved solutions. What has been said about the comparison of
alternatives in connection with the previous methods is naturally valid
here.

The reference point method is an ad hoc method or a method having
both non ad hoc and ad hoc features. On the one hand, a reference point
cannot directly be defined based on a value function. On the other hand,
alternatives are easy to compare when a value function is known.

Let us mention that a software family called DIDAS (Dynamic Inter-
active Decision Analysis and Support) has been developed on the basis
of the reference point ideas of Wierzbicki. It is described, for example,
in [218].

Applications and modifications of the reference point method are pro-
vided in [11, 55, 116, 143, 144, 168, 170, 172, 181, 195, 198, 199, 215, 217].

3.6. GUESS Method

The GUESS method is also called a naïve method [17]. The method is
related to the reference point method.

It is assumed that the global vectors and are available. The
structure of the method is very simple: the decision maker specifies a
reference point (or a guess) and a solution is generated. Then the
decision maker specifies a new reference point and so on.

The general idea is to maximize the minimum weighted deviation from
the nadir objective vector. The problem to be solved is

Notice that the aspiration levels have to be strictly lower than the com-
ponents of the nadir objective vector.

Theorem 5 The solution of (5.9) is weakly Pareto optimal and any
Pareto optimal solution can be found.

The GUESS method has five basic steps.

1 Calculate and and present them to the decision maker. Set
h = 1.
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2

3

4

5

Let the decision maker specify upper or lower bounds to the objec-
tive functions if (s)he so desires. Update the problem, if necessary.

Ask the decision maker to specify a reference point between
and

Solve (5.9) and present the solution to the decision maker.

If the decision maker is satisfied, stop. Otherwise, set h = h + 1
and go to step 2.

In step 2, upper or lower bounds mean adding constraints to the
problem (5.9) but the ideal or the nadir objective vectors are not affected.
The only stopping rule is the satisfaction of the decision maker. No
guidance is given to the decision maker in setting new aspiration levels.
This is typical of many reference point-based methods.

The GUESS method is simple to use and no consistency is required.
The only information required from the decision maker is a reference
point and possible upper and lower bounds. Note that inappropriate
lower bounds may lead into solutions that are not weakly Pareto optimal.
Unfortunately, the GUESS method relies heavily on the availability of
the nadir objective vector, which is usually only an estimation.

The GUESS method is an ad hoc method. The existence of a value
function would not help with reference points or bounds for the objective
functions. The method has been compared to several other interactive
methods in [16, 19, 31] and it has performed surprisingly well. The
reasons may be its simplicity and flexibility. One can say that decision
makers seem to prefer solution methods where they can feel that they
are in control.

3.7. Satisficing Trade-Off Method

The satisficing trade-off method (STOM) [131, 136] utilizes classification
and reference points. As its name suggests, STOM is based on satisficing
decision making. The decision maker is asked to classify the objective
functions at the current solution into three classes: the unac-
ceptable objective functions whose values should be improved the
acceptable objective functions whose values may increase and the
acceptable objective functions whose values are acceptable as they are

(such that
The decision maker only has to specify aspiration levels for the func-

tions in The aspiration levels (that is, upper bounds) for the func-
tions in can be derived using so-called automatic trade-off. In addi-
tion, the aspiration levels for the functions in are set equal to
All the three kinds of aspiration levels form a reference point



Different scalarizing functions can be used in STOM. One alternative
is to solve the problem

where is some sufficiently small scalar.

Theorem 7 The solution of (5.11) is properly Pareto optimal and any
properly Pareto optimal solution can be found.

Here the utopian objective vector must be known globally. However,
if some objective function is not bounded from below on S, then some
small scalar value can be used as

Assuming all the functions involved are differentiable the scalarizing
functions can be written in a differentiable form by introducing a scalar
variable to be optimized and setting it as an upper bound for each
function in the max-term. Under certain assumptions, trade-off rate
information can be obtained from the KKT multipliers connected to the
solution of this formulation. In automatic trade-off, upper bounds for the
functions in are derived with the help of this trade-off information.

Let us now describe the algorithm.

1

2

3

Select the scalarizing function. Calculate Set

Ask the decision maker to specify a reference point such
that for every

Minimize the scalarizing function used. Denote the solution by
Present it to the decision maker.

where the reference point must be strictly worse than the utopian ob-
jective vector.

Theorem 6 The solution of (5.10) is weakly Pareto optimal and any
Pareto optimal solution can be found.

If weakly Pareto optimal solutions are to be avoided, the problem to
be solved is
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4

5

Ask the decision maker to classify the objective functions. If
stop. Otherwise, ask the decision maker to specify new

aspiration levels for    Set for

Use automatic trade-off to obtain new levels (upper bounds)
for the functions in Set and go to step 3.

The decision maker can modify the levels calculated based on trade-
off rate information if they are not agreeable. On the other hand, the
decision maker can specify those upper bounds herself or himself, if so
desired. If trade-off rate information is not available, STOM is almost
the same as the GUESS method. The only difference is the scalarizing
function used.

There is no need to repeat comments mentioned in connection with
STEM, the reference point method and the GUESS method. In all of
them, the role of the decision maker is easy to understand. STOM
requires even less input from the decision maker if automatic trade-off
is used.

As said before, in practice, classifying the objective functions into
three classes and specifying the amounts of increment and decrement
for their values is a subset of specifying a new reference point. A new
reference point is implicitly formed.

STOM is an ad hoc method as all the other classification-based meth-
ods. However, one must remember that the aim of the method is par-
ticularly in satisficing rather than optimizing some value function.

Modifications and applications of STOM are described in [115, 125,
126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 146, 204].

3.8. Light Beam Search
The light beam search [67, 68] employs tools of multiattribute decision
analysis (see, for example, [200]) together with reference point ideas. The
basic setting is identical to the reference point method. The problem to
be solved is

where w is a weighting vector, is the current reference point and

Theorem 8 The solution of (5.12) is properly Pareto optimal and any
properly Pareto optimal solution can be found.



Interactive Nonlinear Multiobjective Procedures 245

The reference point is here assumed to be infeasible. It is also assumed
that the objective and the constraint functions are continuously differen-
tiable and that the objective functions are bounded over S. Furthermore,
none of the objective functions is allowed to be more important than all
the others together.

In the light beam search, the decision maker directs the search by
specifying reference points. In addition, other solutions in the neigh-
bourhood of the current solution are displayed. Thus, the idea is iden-
tical to that of the reference point method. The main difference is in
the way the alternatives are generated. The motivation is to avoid com-
paring too similar alternatives or alternatives that are indifferent to the
decision maker. To achieve this goal concepts of ELECTRE methods (in
multiattribute decision analysis) are utilized (see, for example, [161]).

It is not always possible for the decision maker to distinguish between
different alternatives. This means that there is an interval where indif-
ference prevails. For this reason the decision maker is asked to provide
indifference thresholds for each objective function. The line between
indifference and preference does not have to be sharp, either. The hes-
itation between indifference and preference can be expressed by prefer-
ence thresholds. Finally, a veto threshold prevents a good performance
in some components from compensating for poor values on some other
components.

In the light beam search, outranking relations are established between
alternatives. A vector is said to outrank if is at least as good
as The idea is to generate k new alternative objective vectors such
that they outrank the current solution. In particular, incomparable or
indifferent alternatives are not shown to the decision maker. The alter-
natives to be shown are called characteristic neighbours. The neighbours
are determined by projecting the gradient of one objective function at a
time onto the linear approximation of those constraints that are active
in the current solution.

We can now outline the light beam algorithm.

1

2

3

If the decision maker can specify the best and the worst values for
each objective function, denote them by and respectively.
Alternatively calculate and Set h = 1 and
Initialize the set of saved solutions as Ask the decision
maker to specify an indifference threshold for each objective. If
desired, (s) he can also specify preference and veto thresholds.

Calculate by solving (5.12).

Present to the decision maker. Calculate k Pareto optimal
characteristic neighbours of and present them as well to the



The option of saving desirable solutions in the set B increases the
flexibility of the method. A similar option could be added to many
other methods as well.

The name of the method comes from the idea of projecting a focused
beam of light from the reference point onto the Pareto optimal set. The
lighted part of the Pareto optimal set changes if the location of the
spotlight, that is, the reference point or the point of interest in the
Pareto optimal set are changed.

In the light beam search, the decision maker specifies reference points,
compares alternatives and affects the set of alternatives in different ways.
Specifying different thresholds may be demanding for the decision maker.
Note, however, that the thresholds are not constant but can be altered
at any time. The authors of the method point out that it may be compu-
tationally rather demanding to find the exact characteristic neighbours
in a general case. It is noteworthy that the neighbours can be generated
in parallel.

The light beam search is an ad hoc method because a value function
could not directly determine new reference points. It could, however,
be used in comparing alternatives. Remember that the thresholds are
important here and they must come from the decision maker.

A modification of the method is described in [215].

3.9. Reference Direction Approach

The reference direction approach [81, 86] is also known by the name
visual interactive approach. It contains ideas from, for example, the
GDF method and the reference point method of Wierzbicki. However,
more information is provided to the decision maker.
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4

decision maker. If the decision maker wants to see alternatives
between any two of the k + 1 alternatives displayed, set their dif-
ference as a search direction, take different steps in this direction
and project them onto the Pareto optimal set before showing them
to the decision maker. If the decision maker wants to save set

If the decision maker wants to revise the thresholds, save them,
set h = h + 1 and go then to step 3. If the decision
maker wants to give another reference point, denote it by set
h = h+1 and go to step 2. If the decision maker wants to select one
of the alternatives or one solution in B as a current solution, set it
as set h = h + 1 and go to step 3. If one of the alternatives
is satisfactory, stop.
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In reference point-based methods, a reference point is projected onto
the Pareto optimal set by an achievement function. Here a whole so-
called reference direction is projected onto the Pareto optimal set. It is
a vector from the current iteration point to the reference point In
practice, steps of different sizes are taken along the reference direction
and projected. The idea is to plot the objective function values on a
computer screen as value paths. The decision maker can move the cursor
back and forth and see the corresponding numerical values at each point.

The points along the reference direction are generated by solving the
problem

where and t has different discrete nonneg-
ative values. The weighting vector can be, for example, the reference
point specified by the decision maker.

Theorem 9 The solution of (5.13) is weakly Pareto optimal.

The algorithm is as follows.

1

2

3

4

5

Find an arbitrary objective vector Set

Ask the decision maker to specify a reference point and
set

Find the set of weakly Pareto optimal solutions with different
values of in (5.13).

Ask the decision maker to select the most preferred  solution
in

If set h = h + 1 and go to step 2. Otherwise, check
the optimality conditions. If the conditions are satisfied, stop.
Otherwise, set h = h + 1 and set to be a search direction
identified by the optimality checking procedure. Go to step 3.

Checking the optimality conditions in step 5 is the most complicated
part of the algorithm. Thus far, no specific assumptions have been set
on the value function. However, we can check the optimality of
if the cone containing all the feasible directions has a finite number of
generators. We must then assume that an underlying value function



exists and is pseudoconcave on Z. In addition, S must be convex and
compact and the constraint functions must be differentiable.

The role of the decision maker is similar in the reference point method
and in the reference direction approach: specifying reference points and
selecting the most preferred alternative. But by providing similar refer-
ence point information, in the reference direction approach, the decision
maker can explore a wider part of the weakly Pareto optimal set. This
possibility brings the task of comparing the alternatives.

The performance of the method depends greatly on how well the de-
cision maker manages to specify the reference directions that lead to
improved solutions. The consistency of the decision maker’s answers is
not important and it is not checked in the algorithm.

The reference direction approach can be characterized as an ad hoc
method as the other reference point-based methods. The aim is to sup-
port the decision maker in getting to know the problem better.

A dynamic user interface to the reference direction approach and its
adaptation to generalized goal programming is introduced in [88]. This
method for linear multiobjective optimization problems is called the
Pareto race and the software system implementing the Pareto race is
called VIG (Visual Interactive Goal programming) [90, 91].

Applications and modifications of the reference direction approach are
described in [10, 81, 82, 83, 84, 85, 87].

3.10. Reference Direction Method

The classification-based reference direction (RD) method [138, 139] is
related to the reference direction approach. In the RD method, a current
objective vector is presented to the decision maker and (s)he is asked
to specify a reference point consisting of desired levels for the objective
functions. The idea is to move around the weakly Pareto optimal set,
which is why some objective functions must be allowed to increase in
order to attain lower values for some other objectives.

As mentioned earlier, specifying a reference point is equivalent to an
implicit classification indicating those objective functions whose values
should be decreased till they reach some acceptable aspiration level,
those whose values are satisfactory at the moment, and those whose
values are allowed to increase to some upper bound. We denote the
three classes by and respectively. Furthermore, we denote
the components of the reference point corresponding to by because
we have upper bounds in question.

Here, as well as in the reference direction approach, steps are taken
in the reference direction However, now, the decision maker
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specifies a priori the number of steps to be taken. The idea is to move
step by step as long as the decision maker wants to. In this way, extra
computation is avoided when only those alternatives are calculated that
the decision maker wants to see.

Alternatives are produced by solving the problem

where is the step-size in the reference direction, for
and                  for

Theorem 10 The solution of (5.14) is weakly Pareto optimal for every
and any Pareto optimal solution can be found.

The steps of the RD algorithm are the following:

1

2

3

4

The RD method does not require artificial or complicated informa-
tion from the decision maker; only reference points and the number of
intermediate solutions are used. Some decision makers may appreciate
the fact that they are not asked to compare several alternatives but only
to decide whether another alternative is to be generated or not.

The decision maker must a priori determine the number of steps to
be taken, and then intermediate solutions are calculated one by one as

Find a starting solution and show it to the decision maker. Set
h = 1.

If the decision maker does not want to decrease any component of
stop. Otherwise, ask the decision maker to specify where

some of the components are lower and some higher or equal when
compared to those of If there are no higher values, set
1 and go to step 3. Otherwise, ask the decision maker to specify
the maximum number of alternatives P (s)he wants to see. Set

Set Solve (5.14) and get Set

Show to the decision maker. If (s)he is satisfied, stop. If
and the decision maker wants to see another solution, go to

step 3. Otherwise, if or the decision maker wants to change
the reference point, set and go to step 2.



250 MULTIPLE CRITERIA OPTIMIZATION

long as the decision maker wants to. This has both positive and negative
sides. On the one hand, it is computationally efficient since it may be
unnecessary to calculate all the intermediate solutions. On the other
hand, the number of steps to be taken cannot be changed.

The RD method is an ad hoc method because a value function would
not help in specifying reference points or the numbers of steps to be
taken. It could not even help in selecting the most preferred alternative.
Here one must decide for one point at a time whether to calculate new
alternatives or not. If the new alternative happens to be less preferred
than its predecessor, one cannot return to the previous solution.

Applications and modifications of the RD method are described in
[53, 111].

3.11. NIMBUS Method
The NIMBUS method is presented in [105, 108, 111]. The name NIM-
BUS comes from the words Nondifferentiable Interactive Multiobjective
BUndle-based optimization System. As its name suggests, NIMBUS can
handle even nondifferentiable problems.

In NIMBUS, it is assumed that the objective functions are bounded
(from below) in S. In other words, we need a (global) ideal objective
vector. If a nondifferentiable single objective solver is used, then we
must also assume that the objective and the constraint functions are
locally Lipschitz continuous.

NIMBUS offers flexible ways of performing interactive evaluation of
the problem and determining the preferences of the decision maker dur-
ing the solution process. Aspiration levels and classification are used as
the means of interaction between the decision maker and the algorithm.

In the classification, the decision maker can easily indicate what kind
of improvements are desirable and what kind of impairments are tol-
erable. The decision maker examines at every iteration h the current
objective vector and divides the objective functions into up to five
classes. The classes are functions whose values

should be decreased

should be decreased to an aspiration level

are satisfactory at the moment

are allowed to increase to a certain upper bound
and

are allowed to change freely

where and
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In addition to the classification, the decision maker is asked to specify
the aspiration levels and the upper bounds. The difference between the
classes and is that the functions in are to be minimized as far
as possible but the functions in only as far as the aspiration level.

The decision maker can tune the order of importance inside the classes
and with optional positive weighting coefficients summing up

to one. If the decision maker does not want to specify any weighting
coefficients, they are set equal to one.

NIMBUS has more classes than STEM, STOM or the RD method.
This means that the decision maker has more freedom in specifying the
desired changes in the objective values. Note that not all of the classes
have to be used. The existence of the class means that some functions
can be left unclassified.

After the classification, a problem

is solved, where for are components of the ideal objective
vector.

Theorem 11 The solution of (5.15) is weakly Pareto optimal if the set
is nonempty and any Pareto optimal solution can be found.

The solution of the problem is denoted by If the decision maker
does not like the corresponding objective vector (s)he can explore
intermediate solutions between This means that we calculate
a search direction and provide more solutions by taking
steps of different sizes in this direction. In other words, we generate
P – 1 new vectors where Their
Pareto optimal counterparts are presented to the decision maker, who
then selects the most satisfying solution among the alternatives.

The NIMBUS algorithm is given below. The search procedure stops
if the decision maker does not want to improve any objective function
value.

1

2

Calculate Choose a Pareto optimal starting point Set

Ask the decision maker to classify the objective functions at
such that                     and If either of the unions
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3

4

5

6

Ask the decision maker to specify the desired number of interme-
diate alternatives P and calculate the vectors. Project them to be
Pareto optimal.

Present the P alternatives to the decision maker and let her or him
choose the most preferred one among them. Denote it by and
set If the decision maker wants to continue, go to step
2. Otherwise, stop.

is empty, stop. Otherwise, ask the decision maker for the aspiration
levels and the upper bounds as well as the optional weights.

Calculate by solving (5.15). If ask the decision maker
whether (s)he wants to try another classification. If yes, set

and go to step 2; if no, stop.

Present and to the decision maker. If the decision maker
wants to see alternatives between them, calculate and go to step
5. If the decision maker prefers set and
and go to step 2. Otherwise, set and go to
step 2.

Since the Pareto optimality of the solutions produced is not guaran-
teed, we can check the final solution in the end by solving an additional
problem [105]. Naturally, the decision maker may check Pareto optimal-
ity at any time during the solution process.

In NIMBUS, the decision maker is free to explore the (weakly) Pareto
optimal set and also to change her or his mind if necessary. The selec-
tion of the most preferred alternative from a given set is also possible
but not necessary. The decision maker can also extract undesirable solu-
tions from further consideration. Unlike some other classification-based
methods, NIMBUS does not depend entirely on how well the decision
maker manages in the classification. It is important that the classifica-
tion is not irreversible. If the solution obtained is not satisfactory, the
decision maker can go back or explore intermediate points. The method
aims at being flexible and the decision maker can select to what extent
(s)he exploits the versatile possibilities available. The calculations are
not too massive, either.

An implementation of NIMBUS is available on the Internet. This
WWW-NIMBUS system is at the disposal of every Internet user at
http://nimbus.mit.jyu.fi/. Positive sides of a WWW implementation
are that the latest version of the system is always available and the user
saves the trouble of installing the software. The operating system used
or compilers available set no restrictions because all that is needed is a
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WWW browser. Furthermore, WWW provides a graphical user inter-
face with possibilities for visualizing the classification phase, alternative
solutions etc. The system contains both a nondifferentiable local solver
(proximal bundle method) (see [99], pp. 112–143) and a global solver
(genetic algorithm). For details, see [110, 112]. (The first version of
WWW-NIMBUS was implemented in 1995. Then, it was a pioneering
interactive optimization system on the Internet.)

Being a classification-based method, NIMBUS is ad hoc in nature. A
value function could only be used to compare different alternatives.

Applications and modifications of the NIMBUS method can be found
in [104, 108, 109, 111, 113, 114].

3.12. Other Interactive Methods
The number of interactive methods developed for multiobjective opti-
mization is large. So far, we have given several examples of them. Let
us next mention references to some more methods. Methods based on
goal programming are introduced in [73, 100, 101, 119, 120, 142, 171,
189, 206].

Methods based on weighted metrics are suggested in [35, 72, 79, 80,
96, 118, 122, 187, 227, 228, 229] whereas methods based on reference
points can be found in [13, 32, 54, 60, 76, 97, 98, 103, 117, 141, 164,
190, 205, 207, 208]. Finally, methods based on miscellaneous ideas are
described in [4, 5, 7, 8, 26, 27, 28, 42, 43, 47, 48, 63, 71, 75, 79, 93, 94,
95, 123, 137, 148, 149, 150, 151, 159, 160, 163, 169, 173, 174, 179, 182,
183, 185, 191, 202, 203, 221, 222, 223, 230, 231].

4. Comparing the Methods

None of the many multiobjective optimization methods can be claimed
to be superior to the others in every aspect. One can say that selecting
a multiobjective optimization method is a problem with multiple ob-
jectives itself. The properties of the problem and the capabilities and
the desires of the decision maker have to be charted before a solution
method can be chosen. Some methods may suit some problems and some
decision makers better than some others.

Let us mention one property of the problem to be considered when
selecting a method, that is, differentiability. Of the interactive methods
described, the Tchebycheff method, STEM, the reference point method,
the GUESS method, the RD method and NIMBUS can all be used to
solve nondifferentiable problems assuming that a nondifferentiable single
objective solver is available.
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A decision tree is provided in [105] for easing the method selection.
The tree is based on theoretical facts concerning the assumptions on the
problem to be solved and the preferences of the decision maker. Further
aspects to be taken into account when evaluating and selecting methods
are collected, for example, in [12, 51, 62, 65, 105, 184, 193, 194].

In addition to theoretical properties, practical applicability also plays
an important role in the selection of an appropriate method. The diffi-
culty is that practical applicability is hard to determine without experi-
ence.

Some comparisons of the methods have been reported in the literature.
They have been carried out with respect to a variety of criteria and
under varied circumstances. Instead of a human decision maker one can
sometimes employ value functions in the comparisons. Unfortunately,
replacing the decision maker with a value function does not fully reflect
the real usefulness of the methods. One of the problems is that value
functions cannot really help in testing ad hoc methods.

Tests with human decision makers are described in [14, 16, 18, 19, 30,
31, 37, 89, 102, 145, 201] while tests with value functions are reported in
[2, 52, 121, 152]. Finally, comparisons based on intuition are provided
in [41, 77, 78, 92, 101, 103, 146, 154, 166, 197, 200].

5. Conclusions

We have outlined several interactive methods for solving nonlinear multi-
objective optimization problems and indicated references to many more.
One of the challenges in this area is spreading the word about the exist-
ing methods to those who solve real-world problems. Another challenge
is to develop methods that support the decision maker even better. User-
friendliness cannot be overestimated because interactive methods must
be able to correspond to the characteristics of the decision maker. Spe-
cific methods for different areas of application that take into account the
characteristics of the problems are also important.

An alternative to creating new methods is to use different methods in
different phases of the solution process. This hybridization means that
the positive features of various methods can be exploited to their best
advantage in appropriate phases. In this way, it may also be possible to
overcome some of the weaknesses of the methods.

The decision maker can be supported by using visual illustrations and
further development of such tools is essential. For instance, one may vi-
sualize (parts of) the Pareto optimal set and, for example, use 3D slices
of the feasible objective region (see [98], among others) and other tools.
On the other hand, one can illustrate sets of alternatives by means of
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bar charts, value paths, spider-web charts and petal diagrams etc. (see,
for example, [105] and references therein), An example of illustrating al-
ternatives is given in Figure 5.1 where five alternatives are depicted with
the help of value paths, bar charts and petal diagrams. The figure has
been generated with the WWW-NIMBUS system described in Section
3.11.
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This chapter presents a review of the most important evolutionary mul-
tiobjective optimization techniques developed to date. Using as a ba-
sis a simple taxonomy of approaches, we briefly describe and analyze
the advantages and disadvantages of each of them, together with some
of their applications reported in the literature. Other important issues
such as diversity and some of the main techniques developed to preserve
it, as well as the need of suitable test functions and metrics that can
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techniques are also addressed. We conclude this chapter with a brief
outline of some potential paths of future research in this area.
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1. Introduction

The idea of using techniques based on the emulation of the mechanism
of natural selection to solve problems can be traced as long back as the
1930s [12]. However, it was not until the 1960s that the three main
techniques based on this notion were developed: genetic algorithms [75],
evolution strategies [142] and evolutionary programming [50]. These
approaches, which are now collectively denominated “evolutionary al-
gorithms”, have been very effective for single-objective optimization
[58, 144, 51].

Evolutionary algorithms seem also particularly desirable for solving
multiobjective optimization problems because they deal simultaneously
with a set of possible solutions (the so-called population) which allows
us to find several members of the Pareto optimal set in a single run of
the algorithm, instead of having to perform a series of separate runs
as in the case of the traditional mathematical programming techniques.
Additionally, evolutionary algorithms are less susceptible to the shape
or continuity of the Pareto front (e.g., they can easily deal with discon-
tinuous and concave Pareto fronts), whereas these two issues are a real
concern for mathematical programming techniques.

The potential of evolutionary algorithms in this field was indicated
in the late 1960s by Rosenberg [132], but the first implementation was
not produced until the mid-1980s [137, 138]. Since then, a considerable
amount of research has been done in this area, now known as evolu-
tionary multi-objective optimization (EMOO for short). The growing
importance of this field is reflected by a significant increment (mainly
during the last five years) of technical papers in international conferences
and peer-reviewed journals, special sessions in international conferences
and interest groups on the Internet1.

The content of this chapter is organized as follows: first, we will define
the terminology that we will adopt and we will describe the general mul-
tiobjective optimization problem. Then, we will give some basic notions
of evolutionary algorithms. After that, we will analyze the main evolu-
tionary multiobjective optimization techniques that have been proposed
in the specialized literature. Each technique will be briefly described and
criticized. We will also provide some sample applications of each. Then,
we will describe some of the main approaches proposed to maintain
diversity, emphasizing the importance that this process has in multiob-

1The  first   author   maintains   an   EMOO   repository   with   over   850   bibliographi-
cal entries at: http://delta.cs.cinvestav.mx/~ccoello/EM00, with mirrors at
http://www.lania.mx/~ccoello/EM00/ and http://www.jeo.org/emo/
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where is the number of objective functions We call
the vector of decision variables. We wish to determine

from among the set of all vectors which satisfy (6.2) and (6.3) the
particular set of values which yield the optimum values of
all the objective functions.

2.1. Pareto Optimality

It is rarely the case that there is a single point that simultaneously
optimizes all the objective functions. Therefore, we normally look for
“trade-offs”, rather than single solutions when dealing with multiob-
jective optimization problems. The notion of “optimality” is therefore,
different. The most commonly adopted notion of optimality is that
originally proposed by Francis Ysidro Edgeworth [44] and later gener-
alized by Vilfredo Pareto [114]. Although some authors call this notion
Edgeworth-Pareto optimality (see for example [152]), we will use the
most commonly accepted term: Pareto optimality.

We say that a vector of decision variables is Pareto optimal
if there does not exist another such that for all

and for at least one
In words, this definition says that is Pareto optimal if there exists

no feasible vector of decision variables which would decrease some
criterion without causing a simultaneous increase in at least one other
criterion. Unfortunately, this concept almost always gives not a single
solution, but rather a set of solutions called the Pareto optimal set. The
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jective optimization. Test functions and metrics proposed for EMOO
techniques are also discussed together with some representative appli-
cations reported in the literature. Finally, we will describe some of the
potential research paths in this area.

2. Definitions

The emphasis of this chapter is the solution of multiobjective optimiza-
tion problems (MOPs) of the form:

subject to the inequality constraints:

and the equality constraints:



vectors corresponding to the solutions included in the Pareto optimal
set are called nondominated. The image of the Pareto optimal set under
the objective functions is called Pareto front.

3. Notions of Evolutionary Algorithms

The term evolutionary computing or evolutionary algorithms is gener-
ically applied to a set of biologically-inspired techniques (inspired by
the Neo-Darwinian theory of natural evolution2. Although three main
paradigms are normally considered (evolutionary programming [50, 51],
evolution strategies [143, 144], and genetic algorithms [76, 58]), nowa-
days it becomes increasingly difficult to distinguish the differences among
them, and researchers tend to use the broader term “evolutionary algo-
rithms” to refer to any technique that is based in the principle of natural
selection (or survival of the fittest) originally defined by Charles Darwin
[29].

In nature, individuals have to adapt to their environment in order to
survive in a process called “evolution”, in which those features that make
an individual more suited to compete are preserved when it reproduces,
and those features that make it weaker are eliminated. Such features
are controlled by units called genes which form sets called chromosomes.
Over subsequent generations not only the fittest individuals survive, but
also their fittest genes which are transmitted to their descendants during
the sexual recombination process which is called crossover.

In general terms, to simulate an evolutionary process in a computer,
we need the following [105]:

2The Neo-Darwinian theory of natural evolution combines the original evolutionary theory of
Charles Darwin (based on the survival of the fittest), the selectionism of August Weismann
and Mendel’s inheritance laws. It is called “Neo-Darwinian”, because it improves the original
proposal of Charles Darwin.

A representation for potential solutions to the problem.

A way to create an initial population of potential solutions (this
is normally done randomly, but deterministic approaches can also
be used).

An evaluation function that plays the role of the environment,
rating solutions in terms of their “fitness”.

Genetic operators that alter the composition of the offspring gen-
erated (normally, crossover and mutation).

Values for various parameters that the evolutionary algorithm uses
(population size, probabilities of applying genetic operators, etc.).
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These elements are important both for single- and for multi-objective
optimization. However, in multi-objective optimization, two more issues
must be kept in mind: how to select individuals so that they correspond
to elements of the Pareto optimal set, and how to keep diversity to avoid
convergence of all the population to a single solution.

4. Classifying Techniques

A considerable amount of EMOO techniques have been developed in
recent years [19, 162]. In an attempt to discuss the most important
approaches proposed, we decided to classify these techniques using the
following scheme:
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Non-Pareto Techniques

Aggregating approaches

VEGA

Lexicographic ordering
The method

Target-vector approaches

Game theory

Pareto-based Techniques

Pure Pareto ranking

MOGA
NSGA

NPGA

Non-generational approaches

Recent Approaches

PAES

SPEA

Micro-Genetic Algorithm

5. Non-Pareto Techniques
Under this category, we will consider approaches that do not incorpo-
rate directly the concept of Pareto optimality (or Pareto dominance).
The approaches discussed in this section are all very efficient (computa-
tionally speaking), but most of them are incapable of producing certain



portions of the Pareto front. Others could be appropriate to handle only
a few objectives. However, their simplicity and efficiency has made them
popular among a certain sector of researchers.

5.1. Aggregating Approaches

Perhaps the most straightforward approach to handle multiple objectives
with any technique is to use a combination of all the objectives into a
single one using either an addition, multiplication or any other combina-
tion of arithmetical operations that we could think of. These techniques
are normally known as “aggregating functions”, because they combine
(or “aggregate”) all the objectives of the problem into a single one. In
fact, aggregating approaches are the oldest mathematical programming
methods for multiobjective optimization, since they can be derived from
the Kuhn-Tucker conditions for nondominated solutions [89].

An example of this approach is a sum of weights of the form:
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where are the weighting coefficients representing the relative
importance of the k objective functions of our problem. It is usually
assumed that

Aggregating functions have been used with evolutionary algorithms
in a number of occasions, with relative success in problems in which the
behavior of the objective functions is more or less well-known.

It is normal practice in aggregating approaches to vary the weight-
ing coefficients used, so that different portions of the Pareto front can
be generated. However, it is important to realize that the weighting
coefficients do not reflect proportionally the relative importance of the
objectives (unless a proper scaling of the objectives takes place), but
are only factors which, when varied, locate elements from the Pareto
optimal set.

5.1.1 Advantages and Disadvantages. The main advan-
tages of this method are its simplicity (it is easy to implement and use)
and its efficiency (computationally speaking). Its main disadvantage is
the difficulty to determine the appropriate weight coefficients to be used
when we do not have enough information about the problem (this is



an important concern, particularly in real-world applications). Also, a
proper scaling of the objectives requires a considerable amount of extra
knowledge about the problem. To obtain this information could be a very
expensive process (computationally speaking). A more serious drawback
of this approach is that it cannot generate certain portions of the Pareto
front when its shape is concave, regardless of the weights combination
used [30]. Nevertheless, aggregating functions could be very useful to
get a preliminary sketch of the Pareto front of a certain problem, or to
provide prior information to be exploited by another approach.
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5.1.2 Some Applications.

Water quality control [15].

Controller design [40].

Design of optical filters for lamps [46].

Improvement of wire-antenna geometries [166].

5.2. VEGA
This is the first actual implementation of an evolutionary multiobjec-
tive optimization technique, which was made by Schaffer [137, 138] in
the mid-1980s. The approach was called the Vector Evaluated Genetic
Algorithm (VEGA), and it basically consisted of a simple genetic algo-
rithm (GA) with a modified selection mechanism. At each generation, a
number of sub-populations were generated by performing proportional
selection according to each objective function in turn. Thus, for a prob-
lem with  objectives, sub-populations of size each would be gen-
erated (assuming a total population size of N). These sub-populations
would then be shuffled together to obtain a new population of size N,
on which the GA would apply the crossover and mutation operators in
the usual way. This process is illustrated in Figure 6.1.

Schaffer realized that the solutions generated by his system were non-
dominated in a local sense, because their nondominance was limited to
the current population, and while a locally dominated individual is also
globally dominated, the converse is not necessarily true [138]. An indi-
vidual which is not dominated in one generation may become dominated
by an individual who emerges in a later generation. Also, he noted a
problem that in genetics is known as “speciation” (i.e., we could have
the evolution of “species” within the population which excel on differ-
ent aspects of performance). This problem arises because this technique
selects individuals who excel in one dimension of performance, without
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looking at the other dimensions. The potential danger doing that is that
we could have individuals with what Schaffer called “middling” perfor-
mance3 in all dimensions, which could be very useful for compromise
solutions, but which will not survive under this selection scheme, since
they are not in the extreme for any dimension of performance (i.e., they
do not produce the best value for any objective function, but only mod-
erately good values for all of them). Speciation is undesirable because
it is opposed to our goal of finding a compromise solution. Schaffer
suggested some heuristics to deal with this problem. For example, to
use a heuristic selection preference approach for nondominated individ-
uals in each generation, to protect our “middling” chromosomes. Also,
crossbreeding among the “species” could be encouraged by adding some
mate selection heuristics instead of using the random mate selection of
the traditional GA.

5.2.1 Advantages and Disadvantages. VEGA is very sim-
ple and easy to implement, since only the selection mechanism of a
traditional GA has to be modified. However, the shuffling and merg-
ing of all the sub-populations that VEGA does corresponds to averag-
ing the fitness components associated with each of the objectives [60].
Since Schaffer used proportional fitness assignment [58], these fitness

3By “middling”, Schaffer meant an individual with acceptable performance, perhaps above
average, but not outstanding for any of the objective functions.



components were in turn proportional to the objectives themselves [53].
Therefore, the resulting expected fitness corresponded to a linear combi-
nation of the objectives where the weights depended on the distribution
of the population at each generation as shown by Richardson et al. [128].
This means that VEGA has the same problems as the aggregating ap-
proaches (i.e., it is not able to generate concave portions of the Pareto
front). Nevertheless, VEGA has been found useful in other domains
such as constraint-handling, where its biased behavior can be of great
help [154, 22].

5.2.2 Some Applications.

Groundwater pollution containment [129].

Optimum placement of aerodynamic actuators for aircraft control
[131, 130].

Design of combinational circuits at the gate-level [22].

Constraint-handling in evolutionary algorithms used for single-
objective optimization [21, 154, 153].

5.3. Lexicographic Ordering
In this method, the user is asked to rank the objectives in order of im-
portance. The optimum solution is then obtained by minimizing the
objective functions, starting with the most important one and proceed-
ing according to the assigned order of importance of the objectives.

Let the subscripts of the objectives indicate not only the objective
function number, but also the priority of the objective. Thus, and

denote the most and least important objective functions, respec-
tively. Then the first problem is formulated as

subject to

and its solution and is obtained. Then the second problem
is formulated as

subject to
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The solution obtained at the end, i.e., is taken as the desired
solution   of the problem.

Fourman [55] suggested a selection scheme based on lexicographic
ordering. In a first version of his algorithm, objectives are assigned
different priorities by the user and each pair of individuals are compared
according to the objective with the highest priority. If this resulted in
a tie, the objective with the second highest priority was used, and so
on. In another version of this algorithm (that apparently worked quite
well), an objective is randomly selected at each run.

5.3.1 Advantages and Disadvantages. This technique ex-
plores objective space unequally, in the sense that priority is given to
solutions performing well in one objective over another(s). Or, in other
words, one objective is optimized at all costs. This approach appears
most suitable only when the importance of each objective (in comparison
to the others) is clearly known.

Selecting randomly an objective (as in the case of Fourman [55]) is
equivalent to a weighted combination of objectives, in which each weight
is defined in terms of the probability that each objective has of being
selected. However, the use of tournament selection with this approach
makes an important difference with respect to other approaches such as
VEGA, because the pairwise comparisons of tournament selection will
make scaling information negligible [53]. This means that this approach
may be able to see as convex a concave trade-off surface, although that
really depends on the distribution of the population and on the problem
itself. Its main weakness is that this approach will tend to favor cer-
tain objectives when many are present in the problem, because of the
randomness involved in the process, and this will have the undesirable
consequence of making the population to converge to a particular part
of the Pareto front rather than to delineate it completely [27]. The main
advantage of this approach is its simplicity and computational efficiency.
These two properties make it highly competitive with other non-Pareto
approaches such as a weighted sum of objectives or VEGA.

and the solution of this problem is obtained as and This
procedure is repeated until all k objectives have been considered. The

problem is given by

subject to
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5.3.2 Some Applications.

Symbolic layout compaction [55].

Tuning of a fuzzy controller for the guidance of an autonomous
vehicle in an elliptic road [56].

5.4. The Method

This method is based on minimization of one (the most preferred or pri-
mary) objective function, and considering the other objectives as con-
straints bound by some allowable levels Hence, a single objective
minimization is carried out for the most relevant objective function
subject to additional constraints on the other objective functions. The
levels are then altered to generate the entire Pareto optimal set. The
method may be formulated as follows:

subject to additional constraints of the form

Find the minimum of the rth objective function, i.e. find   such
that

1

where are assumed values of the objective functions which we
do not wish to exceed.

Repeat 1 for different values of The information derived from
a well chosen set of can be useful in making the decision. The
search ends when the user finds a satisfactory solution.

2

It may be necessary to repeat the above procedure for different indices

To get adequate values, single-objective optimizations are normally
carried out for each objective function in turn by using mathematical
programming techniques (or independent EAs). For each objective func-
tion there is an optimal solution vector   for which

is a minimum. Let be the lower bound on i.e.

and be the upper bound on i.e.



When the bounds  are too low, there is no solution and at least one
of these bounds must be relaxed.

This technique has been hybridized with EAs on several occasions.
The idea is to use only one objective function at a time as the fitness
function of the EA, and keep the others constant (constrained to a single
value). Then, the EA is run several times varying the constrained values,
so that the Pareto front of the problem can be generated.

5.4.1 Advantages and Disadvantages. The main disadvan-
tage of this approach is its (potentially high) computational cost. Also,
the encoding of the objective functions may be extremely difficult or even
impossible for certain applications, particularly if there are too many ob-
jectives. Nevertheless, the relative simplicity of the technique (its main
advantage) has made it popular among some researchers (particularly in
engineering).
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5.4.2 Some Applications.

Preliminary design of a marine vehicle [94].

Groundwater pollution containment problems [149].

Fault tolerant system design [139].

5.5. Target-Vector Approaches

This category encompasses methods in which we have to define a set
of goals (or targets) that we wish to achieve for each objective function
under consideration. The EA in this case will then try to minimize the
difference between the current solution generated and the vector of de-
sirable goals (different metrics can be used for this purpose). Although
target vector approaches can be considered as another aggregating ap-
proach, we decided to discuss them separately because these techniques
can generate (under certain conditions) concave portions of the Pareto
front, whereas approaches based on simple weighted sums cannot.

The most popular techniques included here are hybrids of EAs with:
Goal Programming [32, 170, 135], Goal Attainment [171, 177], and the
min-max algorithm [67, 23].

5.5.1 Advantages and Disadvantages. The main advantage
of these methods is their simplicity and their efficiency (computation-
ally speaking) because they do not require a Pareto ranking procedure.
However, their main disadvantage is the definition of the desired goals
which requires some extra computational effort. Some target vector ap-



proaches have additional problems. For example, Wilson and MacLeod
[171] found that goal attainment could generate, under certain circum-
stances, a misleading selection pressure. For example, if we have two
candidate solutions which are the same in one objective function value
but different in the other, they will still have the same goal-attainment
value for their two objectives, which means that for the EA neither of
them will be better than the other.

An additional problem with these techniques is that they will yield
a nondominated solution only if the goals are chosen in the feasible
domain, and such conditions may certainly limit their applicability.
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5.5.2 Some Applications.

Design of multiplierless IIR filters [171].

Structural optimization [135, 67],

Optimization of the counterweight balancing of a robot arm [25].

5.6. Game Theory

We can analyze this technique with reference to a simple optimization
problem with two objectives and two decision variables whose graphi-
cal representation is shown in Figure 6.2. Let and
represent two scalar objectives and and two scalar variables. It
is assumed that one player is associated with each objective. The first
player wants to select a variable which will minimize his objective
function and similarly the second player seeks a variable which
will minimize his objective function If and are continuous,
then the contours of constant values of and appear as shown in
Figure 6.2. The dotted lines passing through and represent the
loci of rational (minimizing) choices for the first and second player for
a fixed value of and respectively. The intersection of these two
lines, if it exists, is a candidate for the two objective minimization prob-
lem, assuming that the players do not cooperate with each other (non-
cooperative game). In Figure 6.2, the point represents such
an intersection point. This point, known as a Nash equilibrium solution,
represents a stable equilibrium condition in the sense that no player can
deviate unilaterally from this point for further improvement of his own
criterion [110].

This point has the characteristic that
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and

where may be to the left or right of in (6.20) and may lie above
or below in (6.21).

5.6.1 Advantages and Disadvantages. The main advantage
of this approach is that it is very efficient (computationally speaking).
However, under certain circumstances, it could generate a single non-
dominated vector instead of a set of them (as in [117]). Nevertheless,
it is possible to extend this approach to k players (where   is the num-
ber of objectives of a problem), and to have several Nash equilibrium
points, with which the entire Pareto front of a problem can actually be
found, although a cooperative game may be preferred in that case over
a non-cooperative approach [124, 123].



6. Pareto-Based Techniques

The idea of using Pareto-based fitness assignment was first proposed
by Goldberg [58] to solve the problems of Schaffer’s approach [138].
He suggested the use of nondominated ranking and selection to move
a population toward the Pareto front in a multiobjective optimization
problem. The basic idea is to find the set of strings in the population
that are Pareto nondominated by the rest of the population. These
strings are then assigned the highest rank and eliminated from further
contention. Another set of Pareto nondominated strings are determined
from the remaining population and are assigned the next highest rank.
This process continues until the population is suitably ranked. Goldberg
also suggested the use of some kind of niching technique to keep the GA
from converging to a single point on the front [34]. A niching mechanism
such as sharing [60] would allow the EA to maintain individuals all along
the nondominated frontier.

6.1. Pure Pareto Ranking

Although several variations of Goldberg’s proposal have been proposed
in the literature (see the following subsections), several authors have
used what we call “pure Pareto ranking”. The idea in this case is to
follow Goldberg’s proposal as stated in his book [58].

6.1.1 Advantages and Disadvantages. The main weak-
ness of Pareto ranking in general is that there is no efficient algorithm
to check for nondominance in a set of feasible solutions (the conven-
tional process is where is the number of objectives and M is
the population size). Therefore, any traditional algorithm to check for
Pareto dominance exhibits a serious degradation in performance as we
increase the size of the population and the number of objectives. Also,
the use of sharing requires to estimate the value of the sharing factor,
which is not easy, and the performance of the method relies a lot on this
value. However, Pareto ranking is the most appropriate way to generate
an entire Pareto front in a single run of an EA and its main advan-
tage is that the approach is less susceptible to the shape or continuity
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5.6.2 Some Applications.

Truss optimization [37, 125].

Minimization of the backscattering of aerodynamic reflectors [116,
117].



6.2. MOGA

Fonseca and Fleming [52] proposed a scheme called “Multi-Objective
Genetic Algorithm” (MOGA), in which the rank of a certain individual
corresponds to the number of chromosomes in the current population
by which it is dominated. Consider, for example, an individual4

at generation which is dominated by individuals in the current
generation. Its current position in the individuals’ rank can be given by
[52]:

All nondominated individuals are assigned rank 1, while dominated
ones are penalized according to the population density of the correspond-
ing region of the trade-off surface.

Fitness assignment is performed in the following way [52]:

4An individual encodes the decision variables of the problem.
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of the Pareto front, whereas these two issues are a serious concern for
traditional mathematical programming techniques.

6.1.2 Applications.

Optimal location of a network of groundwater monitoring wells
[18].

Pump scheduling [141, 136].

Feasibility of full stern submarines [158].

Optimal planning of an electrical power distribution system [121].

Sort population according to rank.

Assign fitness to individuals by interpolating from the best (rank
1) to the worst in the way proposed by Goldberg
[58], according to some function, usually linear, but not necessarily.

Average the fitness of individuals with the same rank, so that all of
them will be sampled at the same rate. This procedure keeps the
global population fitness constant while maintaining appropriate
selective pressure, as defined by the function used.

1

2

3



As Goldberg and Deb [59] point out, this type of blocked fitness as-
signment is likely to produce a large selection pressure that might pro-
duce premature convergence. To avoid that, Fonseca and Fleming [52]
used a niche-formation method to distribute the population over the
Pareto-optimal region, but instead of performing sharing on the param-
eter values, they have used sharing on the objective function values [150].

6.2.1 Advantages and Disadvantages. It has been indicated
in the literature [150, 31] that the main drawback of MOGA is that it
performs sharing on the objective value space, which implies that two
different vectors with the same objective function values can not exist
simultaneously in the population under this scheme. This is apparently
undesirable, because these are precisely the kind of solutions that the
user normally wants. However, nothing in the algorithm precludes it
from performing sharing in decision variable space, and apparently this
choice has been taken in some of the applications reported below.

The main advantage of MOGA is that it is efficient and relatively
easy to implement [27, 162]. Its main weakness is that, as all the other
Pareto ranking techniques, its performance is highly dependent on an
appropriate selection of the sharing factor. However, it is important to
add that Fonseca and Fleming [52] have developed a good methodology
to compute this value for their approach.
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6.2.2 Some Applications.

Co-synthesis of hardware-software embedded systems [39].

Design of active magnetic bearing controllers [140].

Fault Diagnosis [100, 101, 99].

Plane truss optimization [109, 3].

6.3.  N S G A

Srinivas and Deb [150] proposed the “Nondominated Sorting Genetic
Algorithm” (NSGA). This algorithm is based on several layers of clas-
sifications of the individuals as shown in Figure 6.3. Before selection is
performed, the population is ranked on the basis of nondomination: all
nondominated individuals are classified into one category (with a dummy
fitness value, which is proportional to the population size, to provide an
equal reproductive potential for these individuals). To maintain the di-
versity of the population, these classified individuals are shared with
their dummy fitness values. Then this group of classified individuals
is ignored and another layer of nondominated individuals is considered.
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The process continues until all individuals in the population are classi-
fied. A stochastic remainder proportionate selection was adopted by the
authors. Since individuals in the first front have the maximum fitness
value, they always get more copies than the rest of the population. This
allows to search for nondominated regions, and results in convergence
of the population toward such regions. Sharing, by its part, helps to
distribute the population over this region (i.e., the Pareto front of the
problem).

6.3.1 Advantages and Disadvantages. Some researchers
have reported that NSGA has a lower overall performance than MOGA,
and it seems to be also more sensitive to the value of the sharing fac-
tor than MOGA [27, 162]. Other authors [180] report that the NSGA
performed quite well in terms of “coverage” of the Pareto front (i.e., it
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spreads in a more uniform way the population over the Pareto front)
when applied to the 0/1 knapsack problem, but in these experiments no
comparisons with MOGA were provided.

In any case, Deb et al. [33] have recently proposed a new version of
this algorithm, called NSGA-II, which is more efficient (computationally
speaking), uses elitism and a crowded comparison operator that keeps di-
versity without specifying any additional parameters. The new approach
has not been extensively tested yet, but it certainly looks promising.

6.3.2 Some Applications.

Computational fluid dynamics [98].

Design of multilayer microwave absorbers [169], and thinned an-
tenna arrays with digital phase shifters [168].

Robust trajectory tracking problems [8].

Design of optimal earth orbiting satellite constellations [103].

6.4. NPGA

Horn and Nafpliotis [77, 78] proposed a tournament selection scheme
based on Pareto dominance. Two individuals randomly chosen are com-
pared against a subset from the entire population (typically, around 10%
of the population). When both competitors are either dominated or non-
dominated (i.e., there is a tie), the result of the tournament is decided
through fitness sharing [60].

The pseudocode for Pareto domination tournaments assuming that
all of the objectives are to be maximized is presented below [77]. S is an
array of the N individuals in the current population, random_pop_index
is an array holding the N indices of S, in a random order, and is
the size of the comparison set.

function selection
/* Returns an individual from the current population S */

begin
shuffle(random_pop_index); /* Re-randomize random index array */
candidate_1 = random_pop_index[1];
candidate_2 = random_pop_index[2];
candidate_1_dominated = false;
candidate_2_dominated = false;
for comparison_set_index = 3 to + 3 do
/* Select individuals randomly from S */

begin



comparison_individual =
random_pop_index[comparison_set_index];

if S[comparison_individual] dominates S[candidate_1]
then candidate_l_dominated = true;

if S[comparison_individual] dominates S[candidate_2]
then candidate_2_dominated = true;

end /* end for loop */
if ( candidate_1_dominated AND candidate_2_dominated )

then  return  candidate_2;
else if ( candidate_1_dominatedAND candidate_2_dominated )

then return candidate_1;
else

do sharing;

end

6.4.2 Advantages and Disadvantages. Since this approach
does not apply Pareto selection to the entire population, but only to a
segment of it at each run, its main advantage is that it is very fast and
that it produces good nondominated fronts that can be kept for a large
number of generations [27, 162]. However, its main disadvantage is that
besides requiring a sharing factor, this approach also requires a good
choice of the size of the set against which the two reference individuals
will be compared (i.e., the tournament size), in order to perform well.
This adds an extra parameter to the EA, which is also subject to certain
fine tuning. Also, the NPGA has normally been used with population
sizes considerably larger than usual with other approaches so that the
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Horn and Nafpliotis [77, 78] also arrived at a form of fitness sharing
in the objective domain, and suggested the use of a metric combining
both the objective and the decision variable domains, leading to what
they called equivalent class sharing.

6.4.1 Some Applications.

Fault tolerant system design [139].

Planning of a traffic route [64].

Analysis of experimental spectra and monochromatic images [62].

Partitioning and allocation of objects in heterogeneous distributed
environments [17].



noise of the selection method can be tolerated by the emerging niches in
the population [53].

6.5. Non-generational Approaches

Valenzuela-Rendón and Uresti-Charre [161] proposed a GA that uses
non-generational selection and in which the fitness of an individual is
calculated incrementally. The idea comes from Learning Classifier Sys-
tems (LCS),5 in which it has been shown that a simple replacement of the
worst individual in the population followed by an update of fitnesses of
the rest of the population works better than a traditional (generational)
GA. In the context of multiobjective optimization, what the authors did
was to transform the problem with N objectives into another one with
only two objectives: the minimization of domination count (weighted
average of the number of individuals that have dominated this individ-
ual so far) and the minimization of the moving niche count (weighted
average of the number of individuals that lie close according to a cer-
tain sharing function). Then, this biobjective optimization problem is
transformed into a single objective optimization problem by performing
a linear combination of these two objectives.

More recently, Borges & Barbosa [9] proposed another non-generation-
al GA that reduces all the objectives of the problem to two measures
related to dominance and population distribution. Such measures, how-
ever, are different in this case. The domination measure expresses the
state of domination of a certain individual with respect to the current
population. The neighbor density measure represents the size of the
niche in which a certain individual is in. Fitness is then computed using
a combination of these two measures. This approach presents several dif-
ferences with respect to the previous one. For example, the dominance
and neighborhood measures in this case consider the entire population
instead of using a sampling of the population (as in the previous ap-
proach). Also, the several parameters required by the previous approach
become unnecessary. This approach also compared well with respect to
other EMOO techniques in several test functions.

6.5.1 Advantages and Disadvantages. The approach pro-
posed by Valenzuela-Rendón and Uresti-Charre (1997) is really a more
elaborate version of the weighted ranking techniques used by Bentley
and Wakefield [6] (particularly the technique that they called weighted

5A classifier system is a machine learning system that learns syntactically simple string rules
to guide its performance in an arbitrary environment [58].
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average ranking—WAR). The main advantage of this approach is that
it seems to provide good distributions in an efficient manner using well-
known techniques taken from LCS. However, its main disadvantage is
that it does not seem feasible to incorporate in this approach prefer-
ences of the objectives defined by the decision maker, which may be a
drawback in real-world applications. Also, it does not seem clear how to
define the six additional parameters (two more are fixed by the authors)
required by this algorithm, which apparently require an empirical fine
tuning as the other normal parameters of the GA (e.g., crossover and
mutation rates).

The approach proposed by Borges & Barbosa [9] eliminates most
of the drawbacks of Valenzuela-Rendón and Uresti-Charre’s technique.
However, the use of this approach has not been too widespread and we
are not aware of its performance with a larger amount of objectives and
in constrained search spaces.

6.5.2 Some Applications.

Structural optimization [10].

7. Recent Approaches

Recently, several new EMOO approaches have been developed. We con-
sider important to discuss briefly at least two of them: PAES and SPEA.
Also, we will discuss some of our recent work regarding the use of a
micro-genetic algorithm for multiobjective optimization.

7.1. PAES

The Pareto Archived Evolution Strategy (PAES) was introduced in [85]
by Knowles & Corne. The idea of the approach is very simple. A
(1+1) evolution strategy (i.e., a single parent that generates a single
offspring) is used in combination with a historical archive that records
all nondominated solutions previously found. This archive is used as a
reference set against which each mutated individual will be compared.
This is analogous to the tournament competitions held with the NPGA
[78].

PAES also uses a novel approach to keep diversity, which consists of a
crowding procedure that divides objective space in a recursive manner.
Each solution is placed in a certain grid location based on the values
of its objectives (which are used as its “coordinates” or “geographical
location”). A map of this grid is maintained, indicating the number
of solutions that reside in each grid location. Since the procedure is
adaptive, no extra parameters are required (except for the number of
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divisions of the objective space). Furthermore, the procedure has a
lower computational complexity than traditional niching methods [85].

Since PAES is a very recent approach, only a few applications of it
have been reported in the literature, all of them related to telecommu-
nications problems [84, 85, 86].

7.2. SPEA

The Strength Pareto Evolutionary Algorithm (SPEA) was introduced by
Zitzler & Thiele [181]. This approach was conceived as a way of integrat-
ing different EMOO techniques. SPEA uses an archive containing non-
dominated solutions previously found (the so-called external nondomi-
nated set). At each generation, nondominated individuals are copied to
the external nondominated set. For each individual in this external set,
a strength value is computed. This strength is similar to the ranking
value of MOGA, since it is proportional to the number of solutions to
which a certain individual dominates. The fitness of each member of the
current population is computed according to the strengths of all exter-
nal nondominated solutions that dominate it. Additionally, a clustering
technique called “average linkage method” [107] is used to keep diversity.

SPEA has been used to explore trade-offs of software implementations
for programmable digital signal processors (PDSP) [179] and to solve 0/1
knapsack problems [181].

7.3. A Micro-GA for Multiobjective
Optimization

Currently, we have been experimenting with a a micro-GA (a GA with
small population and a reinitialization mechanism [88]) for multiobjec-
tive optimization [26]. This approach uses two memories: the population
memory, which is used as the source of diversity of the approach, and
the external memory, which is used to archive members of the Pareto
optimal set. Population memory is divided in two parts: a replaceable
and a non-replaceable portion (the percentages of each can be regulated
by the user).

The way in which this technique works is illustrated in Figure 6.4.
First, an initial random population is generated. This population feeds
the population memory, which is divided in two parts as indicated before.
The non-replaceable portion of the population memory will never change
during the entire run and is meant to provide the diversity required by
the algorithm. The initial population of the micro-GA at the beginning
of each of its cycles is taken (with a certain probability) from both
portions of the population memory as to allow a greater diversity.
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During each cycle, the micro-GA undergoes conventional genetic op-
erators: tournament selection, two-point crossover, uniform mutation,
and elitism (regardless of the amount of nondominated vectors in the
population only one is arbitrarily selected at each generation and copied
intact to the following one).



This approach uses three types of elitism. The first is based on the
notion that if we store the nondominated vectors produced from each cy-
cle of the micro-GA, we will not lose any valuable information obtained
from the evolutionary process. The second is based on the idea that if we
replace the population memory by the nominal solutions (i.e., the best
solutions found when nominal convergence is reached), we will gradually
converge, since crossover and mutation will have a higher probability of
reaching the true Pareto front of the problem over time. This notion
was hinted at by Goldberg [58]. Nominal convergence, in this case, is
defined in terms of a certain (low) number of generations (typically, two
to five in our case). However, similarities among the strings (either at
the phenotypical or genotypical level) could also be used as a criterion
for convergence. The third type of elitism is applied at certain intervals
(defined by a parameter called “replacement cycle”). We take a certain
amount of points from all the regions of the Pareto front generated so
far and we use them to fill in the replaceable memory. Depending on
the size of the replaceable memory, we choose as many points from the
Pareto front as necessary to guarantee a uniform distribution. This pro-
cess intends to use the best solutions generated so far as the starting
point for the micro-GA, so that we can improve them (either by get-
ting closer to the true Pareto front or by getting a better distribution).
This also avoids that the content of the replaceable memory becomes
homogeneous.

To keep diversity in the Pareto front, the micro-GA uses an approach
similar to the adaptive grid proposed by Knowles & Corne [85]. The idea
is that once the archive that stores nondominated solutions has reached
its limit, the search space that this archive covers is divided, assigning
a set of coordinates to each solution. Then, each newly generated non-
dominated solution will be accepted only if the geographical location to
where the individual belongs is less populated than the most crowded
location. Alternatively, the new nondominated solution could also be
accepted if the individual belongs to a location outside the previously
speficied boundaries. In other words, the less crowded regions are given
preference so that the spread of the individuals on the Pareto front can
be more uniform.

This approach allows the regulation of the amount of points from the
Pareto front that the user wishes to find through the size of the external
memory. Our preliminary results indicate that our micro-GA is able
to generate the Pareto front of difficult test functions (i.e., disconnected
and concave Pareto fronts) that have been previously adopted to evaluate
EMOO techniques. Furthermore, the approach seems to exhibit a lower
computational cost than the NSGA II and PAES while obtaining Pareto
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fronts of similar quality. However, it also requires certain additional
parameters and the sensitivity of the approach to them is still subject
of ongoing research [26].

8. Diversity

Due to stochastic errors associated with its genetic operators, evolution-
ary algorithms tend to converge to a single solution when used with a
finite population [34], As long as our goal is to find the global optimum
(or at least a very good approximation of it), this behavior is accept-
able. However, there are certain applications in which we are interested
in finding not one, but several solutions. Multiobjective optimization is
certainly one of those applications, because we want to find the entire
Pareto front of a problem, and not only a single nondominated solution.
The question is then how to keep the EA from converging to a single
solution.

Early evolutionary computation researchers identified this convergen-
ce phenomenon of EAs, called genetic drift [36], and found that it hap-
pens in Nature as well. They correctly stated that the key to solve this
problem is to find a way of preserving diversity in the population, and
several proposals, modelled after natural systems were made. Holland
[76] suggested the use of a “crowding” operator, which was intended
to identify situations in which more and more individuals dominate an
environmental niche, since in those cases the competition for limited re-
sources increases rapidly, which will result in lower life expectancies and
birth rate. DeJong [36] experimented with such a crowding operator,
which was implemented by having a newly formed offspring to replace
the existing individual more similar to itself. The similarity between
two individuals was measured in the genotype by counting the number
of bits along each chromosome that were equal in the two individuals
being compared. DeJong used two parameters in his model: generation
gap (G) and crowding factor (CF) [34]. The first parameter indicates the
percentage of the population that is allowed to reproduce. The second
parameter specifies the number of individuals initially selected as can-
didates to be replaced by a particular offspring [36]. Therefore, CF=1
means that no crowding will take place, and as we increase the value of
CF, it becomes more likely that similar individuals replace one another
[36].

Goldberg and Richardson [60] used a different approach in which the
population was divided in different subpopulations according to the sim-
ilarity of the individuals in two possible solution spaces: the decoded pa-
rameter space (phenotype) and the gene space (genotype). They defined
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where normally is a metric indicative of the distance between
designs   and and is the sharing parameter which controls the
extent of sharing allowed. The fitness of a design is then modified as:

where M is the number of designs located in vicinity of the  design.
Deb and Goldberg [34] proposed a way of estimating the parame-

ter in both phenotypical and genotypical space. In phenotypical
sharing, the distance between 2 individuals is measured in decoded pa-
rameter space, and can be calculated with a simple Euclidean distance in
a space, where refers to the number of variables encoded
in the GA; the value of can then be calculated as:

where and are the variables decoded
from the EA.

To estimate the value of Deb and Goldberg [34] proposed to
use the expression:

where is the volume of a hypersphere of radius
and q is the number of peaks that we want the EA to find.

In genotypical sharing, is defined as the Hamming distance be-
tween the strings and is the maximum number of different bits
allowed between the strings to form separate niches in the population.
The experiments performed by Deb and Goldberg [34] showed sharing
as a better way of keeping diversity than crowding, and indicated that
phenotypic sharing was better than genotypic sharing.

It should be added that much further work has been done regard-
ing keeping the diversity in the population. Deb and Goldberg [34]
suggested the use of restrictive mating with respect to the phenotypic
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distance. The idea is to allow two individuals to reproduce only if they
are very similar (i.e., if their phenotypic distance is less than a factor
called This is intended to produce distinct “species” (mating
groups) in the population [106]. Other researchers such as Eshelman
[47] and Eshelman & Schaffer [48] did exactly the opposite: they did not
allow mating between individuals that were too similar (they said to be
“preventing incest”).

Smith et al. (1993) [148] proposed an approach, modelled after the
immune system, that can maintain the diversity of the population with-
out the use of an explicit sharing function. This approach has been
actually used by Hajela et al. [66, 68] to handle constraints in structural
optimization problems.

Poloni and Pediroda [119] proposed an interesting alternative to pre-
serve diversity. They called their approach “local Pareto selection”, and
it basically consists of placing the population on a toroidal grid and
choosing the members of the local tournament by means of a random
walk in the neighborhoods of the given grid point.

Kita et al. [83] proposed the so called “Thermodynamical Genetic
Algorithm” (TDGA) to maintain diversity when using a Pareto ranking
technique for multiobjective optimization. The TDGA is inspired by the
principle of minimal free energy used in simulated annealing [82]. The
idea is to select the individuals for a new generation in such a way that
the free energy F is minimized, and
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where is the mean energy of the system, H is the entropy and T
is the temperature. The diversity of the population is controlled by
adjusting T according to a certain schedule (as in simulated annealing).
Presumably, T is less sensitive to the population size and to the size of
the feasible region than traditional sharing functions [156].

Goldberg & Wang [61] proposed a coevolutionary adaptive niching
scheme inspired on the economic model of monopolistic competition.
The idea is to create two populations, one of businessmen and another
one of customers. The population of customers is in fact the population
of solutions to our problem (e.g., members of the Pareto optimal set) that
will try to maximize a certain set of criteria, whereas the businessmen
will try to locate themselves in such a way that their “profit” can be
maximized. Customers will create niches according to their own criteria
being optimized. Businessmen will then have to adapt to the current
fitness landscape so that they can serve as many customers as possible.
By enforcing a competition between these two populations, a uniform
spread of the population of customers is expected to emerge.



Tan et al. [157] proposed the use of a dynamic sharing distance.
The idea is to approximate the curvature of the trade-off curve formed
by the nondominated solutions in objective space. The procedure then
attempts to perform a uniform distribution of points along the Pareto
front without requiring any prior parameters (the information required
to bias the search is obtained from the evolutionary process itself).

Deb et al. [33] proposed the use of a crowding distance measure which
represents the amount of solutions that lie within a certain neighborhood
(in objective space). This approach is more efficient (computationally
speaking) than traditional fitness sharing and does not require an extra
parameter (i.e., ).

Several other proposals exist (see [96] for a more detailed review of
approaches to keep diversity). In fact, some researchers tend to develop
their own variation of a certain technique or (in a few cases) to design
an entirely new approach.

9. Test Functions
A very important aspect of this research area that has been generally
disregarded in the technical literature is the use of appropriate test func-
tions. In the early days of evolutionary multiobjective optimization,
many researchers tested their approaches only with the two classic test
functions provided by Schaffer in his seminal work on EMOO [138].
These functions are not only very simple (they have only two objec-
tives), but are also unconstrained and do not show any of the most
important aspects that would be interesting to analyze using an EMOO
approach (e.g., ability of the algorithm to deal with concave or discon-
tinuous Pareto fronts).

In recent years, several researchers have addressed the design of stan-
dard benchmarks against which any EMOO algorithm can be validated.
Deb [31] has proposed ways to create controllable test problems for evo-
lutionary multiobjective optimization techniques using single-objective
optimization problems as a basis. Under this proposal, some problems
that have been of great interest in evolutionary computation could be
transformed into multiobjective optimization problems (e.g., deceptive
and massively multimodal problems). Recently, this study has been ex-
tended to constrained multiobjective optimization problems [35].

Van Veldhuizen and Lamont [164, 165] have also proposed some guide-
lines to design a test function suite for evolutionary multiobjective opti-
mization techniques (mainly combinatorial optimization problems). In
more recent work, Van Veldhuizen [162] has also summarized most of
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the test functions that have been previously suggested in the specialized
literature.

Nevertheless, a more complete test suite is still required. Such a
suite should contain problems of different degrees of difficulty (both
constrained and unconstrained) and some real-world applications. If
possible, good approximations of the true Pareto front of each problem
should also be included. Furthermore, the test suite should be easily
accessible (i.e., through the Internet), so that anyone interested in using
it could use it. Such a test suite would become an important benchmark
to validate any new EMOO technique developed.

10. Metrics

Closely related to the previous issue is the importance of defining good
metrics to assess the effectiveness of an EMOO technique. The definition
of such metrics is not an easy task since it is difficult to compare two
vectors. Three are normally the issues to take into consideration to
design a good metric in this domain [178]:
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1

2

3

Minimize the distance of the Pareto front produced by our algo-
rithm with respect to the true Pareto front (assuming we know its
location).

Maximize the spread of solutions found, so that we can have a
distribution of vectors as smooth and uniform as possible.

Maximize the amount of elements of the Pareto optimal set found.

There are several interesting proposals in the specialized literature
that take into consideration at least one of these issues. The main pro-
posals will briefly be described next:

1 Enumeration: Van Veldhuizen & Lament [164, 162] have pro-
posed the use of parallel processing techniques to enumerate the
entire intrinsic search space explored by an EA. This obviously al-
lows to obtain the Pareto front that is global with respect to the
granularity used. Knowing the global Pareto front of the problem,
we can compare results against it, and devise different metrics for
estimating how well our EA is performing.

This approach might work with relatively short binary strings (Van
Veldhuizen & Lamont [164] report success with strings
but might not be suitable when using alphabets of higher cardi-
nality (e.g., real-coded GAs) or longer binary strings.



Spread: Srinivas and Deb [150] proposed to measure the “spread”
of points along the Pareto front using a statistical metric such as
the chi-square distribution. This metric also assumes knowledge
of the true Pareto front, and emphasizes the good distribution of
points (determined through a set of niches) rather than a direct
comparison between our Pareto front and the true Pareto front.

Attainment Surfaces: Fonseca and Fleming [54] proposed to
draw a boundary in objective space separating those points which
are dominated (by a certain set of points) from those which are
nondominated. Such boundary was called “attainment surface”.
This attainment surface could then be used to determine the qual-
ity and the distribution of the nondominated points found by an
EMOO approach. Multiple runs would then have to be performed
and standard non-parametric statistical procedures would have to
be applied to evaluate the quality of the nondominated vectors
found. Several EMOO approaches can then be compared using
this approach, but it is unclear how we can really assess how much
better a certain approach is with respect to others [178].

Generational Distance: Van Veldhuizen & Lamont [163] pro-
posed the use of a metric that estimates how far our current Pareto
front is from the true Pareto front of a problem. This metric uses
the Euclidean distance (measured in objective space) between each
vector and the nearest member of the true Pareto front. Similar
metrics have also been proposed by Schott [139], Rudolph [133],
and Zitzler et al. [178]. The problem with this metric is that only
distance to the true Pareto front is considered and not uniform
spread along the Pareto front.

Coverage: Zitzler and Thiele [181] proposed two measures: the
first concerns the size of the objective value space area which is
covered by a set of nondominated solutions and the second com-
pares directly two sets of nondominated solutions, using as a metric
the fraction of the Pareto front covered by each of them. The first
metric combines the three issues previously mentioned (distance,
spread and amount of elements of the Pareto optimal set found)
into a single value. Therefore, sets differing in more than one cri-
terion could not be distinguished. The second metric is similar to
the attainment surfaces of Fonseca & Fleming and it also has the
same drawbacks.

In more recent work, Zitzler et al. [178] proposed several addi-
tional metrics for EMOO algorithms and also performed a detailed
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comparative study using such metrics. More work in this area is,
however, still needed.

11. Applications

An analysis of the evolution of the EMOO literature reveals some in-
teresting facts. From the first EMOO approach published in 1985 [138]
up to the first survey of the area published in 1995 [53], the number of
published papers related to EMOO is relatively low. However, from 1995
to our days, the increase of EMOO-related papers is exponential. To-
day, the EMOO repository registers over 850 papers, from which a vast
majority are applications. Given the large number of EMOO papers
that currently exist, we will not attempt to produce a detailed review of
applications in this section. Instead, we will delineate the most popular
application fields, indicating some of the specific areas within them in
which researchers have focused their efforts.

Current EMOO applications can be roughly classified in three large
groups: engineering, industrial and scientific. Some specific areas within
each of these groups are indicated next.

We will start with the engineering applications, which are, by far,
the most popular in the literature. This should not be too surprising,
since engineering disciplines normally have problems with better un-
derstood mathematical models which facilitates the use of evolutionary
algorithms. A representative sample of engineering applications is the
following (aeronautical engineering seems to be the most popular sub-
discipline within this group):

Electrical engineering [159, 108, 122]

Hydraulic engineering [141, 136, 174]

Structural engineering [95, 24, 173]

Aeronautical engineering [72, 111, 167]

Robotics [41, 57, 112]

Control [40, 97, 42]

Telecommunications [104, 86, 175]

Civil engineering [49, 5, 81]

Transport engineering [120, 2, 93]

Industrial applications occupy the second place in popularity in the
EMOO literature. Within this group, scheduling is the most popular



The above distribution of applications indicates a strong interest for
developing real-world applications of EMOO algorithms (something not
surprising considering that most problems are of a multiobjective na-
ture). Furthermore, the previous sample of EMOO applications should
give a general idea of the application areas that have not been explored
yet, some of which are mentioned in the following section.

12. Future Research Paths

Despite the noticeable increment in the amount of EMOO research in
the last few years, there are still several open research areas. Some of
them will be described next.
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subdiscipline. A representative sample of industrial applications is the
following:

Design and manufacture [63, 127, 113]

Scheduling [155, 4, 14]

Management [11, 87, 43]

Finally, we have a variety of scientific applications, from which the
most popular are (for obvious reasons) those related to computer science:

Chemistry [170, 74, 90]

Physics [115, 117, 62]

Medicine [176, 145, 92]

Computer science [147, 13, 7]

New Approaches: Several new techniques have been proposed
in the last few years. However, only a fistful of them have been
adopted by a significant portion of the scientific community. In
fact, some of these techniques widely used are already undergoing
updates. MOGA [52], for example, has been recently hybridized
with neural networks to improve its efficiency [42]. The NSGA
[150] has undergone significant changes in its algorithmic struc-
ture and its diversity preservation approach, in order to make it
more efficient [33]. But this may be only the beginning. We believe
that the next few years will witness the development of many other
new approaches (and updates of those currently in use). However,
the focus of these developments will be different. Right now, for
example, efficiency is the main issue. Researchers try to defeat



the inherent inefficiency associated with Pareto ranking and with
traditional niching in order to produce new approaches whose com-
putational cost is lower and therefore more suitable to be scaled to
larger (real-world) problems. The use of local search with archival
memories [85, 79, 26] and parallel selection strategies [104, 99, 73]
are two of the alternatives currently explored, but several others
are also possible. For example, little attention has been paid to
the data structures used to store nondominated vectors in the cur-
rent EMOO literature. In contrast, operational researchers have
used efficient data structures for discrete multiobjective optimiza-
tion (e.g., domination-free quad trees where a nondominated vector
can be retrieved from the tree very efficiently). Checking if a new
vector is dominated by the vectors in one of these trees can also
be done very efficiently [65].

We also believe that multiobjective extensions of other heuristics
will become popular in the next few years [102, 71, 28, 146, 126,
160, 16], as well as the hybridization of EAs with other heuristics
(particularly to deal with multiobjective combinatorial optimiza-
tion problems) [91, 38].

New Applications: Despite the large amount of applications re-
ported in the literature, many other domains remain practically
unexplored. For example, the coordination of distributed agents is
a problem that frequently involves globally conflicting solutions to
multiple (local) objectives and it therefore lends itself naturally to
a multiobjective optimization approach [118]. Other domain areas
such as shape design [151] and constraint-handling [20] seem also
very appropriate for testing new EMOO techniques. Additionally,
EMOO researchers have not paid enough attention to multiob-
jective combinatorial optimization problems, which are not only
challenging, but have also been studied in great depth [45]. Few
EMOO researchers have actually used well-studied combinatorial
optimization problems such as the 0/1 knapsack problem to val-
idate EMOO approaches [181, 79, 80]. Finally, more real-world
applications of EMOO techniques are also lacking in the current
literature.

Theory: There is a noticeable lack of research in theoretical issues
related to EMOO. Most of the current studies available deal with
convergence issues of EMOO algorithms [133, 134, 69, 70, 163], or
with ways to compute niche sizes [52, 78]. However, many other
important areas have not been studied. It would be very inter-
esting to study, for example, the structure of fitness landscapes
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in MOPs [172, 1]. Such study could provide some insights re-
garding the sort of problems that are particularly difficult for EAs
and could also provide clues regarding the design of more power-
ful EMOO techniques. Furthermore, there is a need for detailed
studies of the different aspects involved in the parallelization of
EMOO techniques (e.g., load balancing, impact on Pareto conver-
gence, performance issues, etc.), including new algorithms that are
more suitable for parallelization than those currently in use.

Benchmarks: We have mentioned some of the current work re-
garding the design of test functions that can be properly used to
validate EMOO approaches. Despite these recent efforts, more
work in this area is still necessary. Other domains such as con-
straint handling in the context of single-objective optimization
could be used to validate in a more quantitative way the perfor-
mance of EMOO approaches [20, 153]. A more systematic way of
designing test functions is also required, focusing on the aspects
that are more important to evaluate from an EMOO algorithm
(e.g., its ability to deal with concave, discontinuous and highly-
constrained search spaces). Closely related to this issue is the no-
torious lack of comparative studies in the current literature. Also,
it is necessary to have more in-depth studies of metrics appropri-
ate to evaluate the performance of EMOO techniques. Some of the
efforts in that direction have also been discussed in this chapter,
but more work is still required.

13. Summary

This chapter has reviewed some of the most important research
done in evolutionary multiobjective optimization. We have dis-
cussed the main EMOO techniques currently in use, together with
their advantages and disadvantages and some of their applications.
Also, we have discussed the importance of diversity in the context
of multiobjective optimization, reviewing some of the most impor-
tant proposals found in the literature. Then, we have included
a brief discussion of test functions and metrics used to validate
EMOO techniques, addressing their importance to estimate (in a
quantitative way) how good a certain technique is with respect to
others. Finally, we have provided a representative sample of the
types of applications of EMOO algorithms reported in the litera-
ture.
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In the last section of this chapter, we have discussed some potential
research areas that would be interesting to explore in more depth
in the next few years. Some of them are already being studied, but
others have not been addressed by any EMOO researchers. We ex-
pect that the general view of this relatively new field presented in
this chapter can be of some use to the newcomers who want to
become familiar with the research in this area in order to identify
some possible research topic. Additionally, we also expect mature
researchers and practitioners interested in evolutionary multiob-
jective optimization to find enough pointers as to allow them to
initiate work in this area. As we mentioned before, this research
discipline still has several open areas and possible application do-
mains for those who may be interested.
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Abstract

Keywords:

Multiple criteria decision analysis has been studied for helping deci-
sion makers to make their final decisions in MCDM (Multiple Criteria
Decision Making) problems. One of the main tasks in this research is
how to incorporate value judgments of decision makers in decision sup-
port systems. If decision makers can make their decisions by seeing
efficiencies (or inefficiencies) of alternatives, the idea of DEA(Data En-
velopment Analysis) can be applied to MCDM problems. In this event,
it is important to know what value judgment the domination structure
of each DEA model reflects. Moreover, a model which can treat a wide
range of value judgments of decision makers is required. To this end,
in this chapter, a generalized DEA model is proposed and discussed for
practical use in MCDM problems.

Data envelopment analysis, Multiple criteria decision making, DEA
model, Generalized DEA model.
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1. Introduction

Consider decision making problems with multiple criteria
which are to be maximized. Let S denote the set of alternatives. For
this problem, or is said to be Pareto efficient if and
only if there does not exist such that Usually,
a Pareto efficient solution is not necessarily uniquely determined, but
there are several Pareto efficient solutions. In practical decision making,
therefore, we have to determine a solution among the Pareto efficient
solutions. To this end, value judgments of decision makers are intro-
duced. The multi-attribute utility (value) analysis provides some mathe-
matical form for these value judgments of decision makers. On the other
hand, interactive multi-objective programming techniques search a deci-
sion making solution eliciting partial information (see Chapter 9 of this
volume) on value judgments of decision makers. In any case, the final
solution strongly depends on the value judgment.

The idea of data envelopment analysis(DEA) can be applied to multi-
ple criteria decision making(MCDM) problems, if a final decision making
solution is determined by seeing efficiencies (or inefficiencies) of alterna-
tives. Let decision making units (DMUs) be identified with alternatives
in MCDM problems. Then, it should be noted that efficiencies in DEA
also depend on value judgments. It should be emphasized that the ratio
of output to input is merely one of these value judgments. In many
production activity analyses, the ratio of output to input is naturally
adopted as such a value judgment. In applying DEA to a wide range
of practical problems, however, there are some cases in which the ratio
value judgement is not adequate. In other words, in some cases a DMU
is not necessarily judged to be inefficient even though it is inefficient by
the CCR model, which was named after Charnes, Cooper and Rhodes
[8, 9].

The additive value may be represented by a linear weighted sum of
each criterion. Under this circumstance, a value judgment is reflected
by a set of weights to criteria. If a DMU maximizes a weighted sum
of criteria, it can be regarded as efficient in terms of the value judg-
ment. Therefore, a DMU can be said to be additive value efficient if it
maximizes a weighted sum of criteria. The set of additive value efficient
DMUs is identical to the set of efficient DMUs in the BCC model (or
the additive model of DEA by Charnes et al. [8, 9]) which was named
after Banker, Charnes and Cooper [3].

Depending on the situation, value judgments of decision makers can
not necessarily be represented by a weighted sum of criteria. Nonlinear
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value functions can be used for more general value judgments of decision
makers (e.g., pseudo-concave value functions by Halme et al. [17]). The
notion of efficiency without introducing any value judgment is the Pareto
efficiency. We call this “the value free efficiency”. The set of value free
efficient DMUs is identical to that of the FDH (free disposable hull1)
model [29]. In this chapter, we describe generalized DEA models which
embed these value judgments in a unified model. The key idea of the
model is to introduce a domination structure with one parameter varying
from the value free structure to a ratio value structure.

2. Data Envelopment Analysis

DEA was suggested by Charnes, Cooper and Rhodes, and built on the
idea of Farrell [13] which is concerned with the estimation of techni-
cal efficiency and efficient frontiers. The CCR model [8, 9] generalized
the single output/single input ratio efficiency measure for each DMU
to multiple outputs/multiple inputs situations by forming the ratio of a
weighted sum of outputs to a weighted sum of inputs. DEA is a method
for measuring the relative efficiency of DMUs performing similar tasks in
a production system that consumes multiple inputs to produce multiple
outputs.

The main characteristics of DEA are that (i) it can be applied to an-
alyze multiple outputs and multiple inputs without preassigned weights,
(ii) it can be used for measuring a relative efficiency based on the ob-
served data without knowing information on the production function and
(iii) decision makers’ preferences can be incorporated in DEA models.
Later, Banker, Charnes and Cooper suggested a model for distinguish-
ing between technical efficiency and scale inefficiency in DEA. The BCC
model [3] relaxed the constant returns to scale assumption of the CCR
model and made it possible to investigate whether the performance of
each DMU was conducted in regions of increasing, constant or decreasing
returns to scale in multiple outputs and multiple inputs situations. In
addition, Tulkens [29] introduced a relative efficiency on the non-convex
free disposable hull of the observed data, and formulated a mixed integer
programming problem to calculate the relative efficiency for each DMU.
In addition to basic models as mentioned above, a number of extended
models have been studied, for example, a cone ratio model [10], a poly-
hedral cone ratio model [7], Seiford and Thrall’s model [24], Wei and
Yu’s model [30], and so on.

1The free disposable hull (FDH) by Deprins et al. [12] is a non-convex hull consisting of any
points that perform less output with the same amount of input as the observed data, and/or
those that perform more input with the same amount of output.
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Relationships between DEA and multiple criteria decision analysis
have been studied from several viewpoints by many authors. Belton
[4] and Belton and Vickers [5] measured efficiency as a weighted sum
of input and output. Stewart [25] showed the equivalence between the
CCR model and some linear value function model for multiple outputs
and multiple inputs. Joro et al. [18] proved structural correspondences
between DEA models and multiple objective linear programming using
an achievement scalarizing function proposed by Wierzbicki [31]. Es-
pecially, various ways of introducing preference information into DEA
formulations have been developed. Golany [15] suggested a so-called tar-
get setting model, which allows decision makers to select the preferred
set of output levels given the input levels of a DMU. Thanassoulis and
Dyson [28] introduced models that can be used to estimate alternative
output and input levels, in order to render relatively inefficient DMUs
efficient. Zhu [32] proposed a model that calculates efficiency scores in-
corporating the decision makers’ preference informations, whereas Ko-
rhonen [20] applied an interactive technique to progressively reveal pref-
erences. Halme et al. [17] evaluated efficiency of a DMU in terms of
pseudo-concave value functions, by considering a tangent cone of the
feasible set at the most preferred solution of the decision maker. Agrell
and Tind [1] showed correspondences among the CCR model [8], the
BCC model [3] and the FDH model [29] and an MCDA model according
to the property of a partial Lagrangean relaxation. Yun, Nakayama and
Tanino [33] suggested a concept of “value free efficiency” in the observed
data. They have proposed a generalized model for DEA, the so-called
GDEA model, which can treat basic DEA models, specifically, the CCR
model, the BCC model and the FDH model in a unified way. The GDEA
model makes it possible to evaluate the efficiency of DMUs incorporat-
ing various preference structures of decision makers. Furthermore, a dual
approach to GDEA can reveal domination relations among all
DMUs.

The next section introduces notations used in this chapter and pre-
sents brief explanations on basic DEA models. In Section 3, the GDEA
model based on a parametric domination is introduced. Section 4 pre-
sents a dual approach to GDEA, that is, the model based on
a production possibility set. In Section 5, we compare the efficiency
of GDEA and several DEA models for each DMU through illustrative
examples. Finally, Section 6 applies GDEA models to multiple criteria
decision making problems.



DMUs is denoted by X. and
are amounts of inputs and outputs of DMUo, which is evaluated. In
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2. Basic DEA Models

In the following discussion, we assume that there exist DMUs to be
evaluated. Each DMU consumes varying amounts of different inputs
to produce  different outputs. Specifically, DMU consumes amounts

of inputs             and produces amounts
of outputs For these constants, which generally take
the form of observed data, we assume for each
and for each Further, we assume that there are
no duplicated units in the observed data. The output matrix for
the DMUs is denoted by and the input matrix for the

addition, is a small positive number (“non-Archimedean”) and

and in will be used.

but

So far, a number of DEA models have been developed. Among them,
the CCR model [8, 9], the BCC model [3] and the FDH model [29]
are well known as basic DEA models. These models are based on the
domination structure in the primal form, and moreover these are char-
acterized by how to determine the production possibility set in the dual
form: the convex cone, the convex hull and the free disposable hull for
the observed data, respectively.

2.1. The CCR Model

The CCR model, which was suggested by Charnes, Cooper and Rhodes
[8], is a fractional linear programming problem and can be solved by
being transformed into an equivalent linear programming one. There-
fore, the primal problem (CCR) with an input oriented model2 can be

2The CCR model, the BCC model and the FDH model are dependent on the orientation.
For instance, in an input orientation, one focuses on maximal movement toward the efficient
frontier through proportional reduction of inputs, whereas in an output orientation one fo-
cuses on maximal movement via proportional augmentation of outputs. In this chapter, to
condense the text, we deal with only the input oriented model for simplicity.

is a vector of all ones.

For convenience of explanation, the following notations for vectors
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formulated as the following:

(CCR)

The dual problem to the problem (CCR) is given by

The ‘efficiency’ in the CCR model is introduced as follows:

Definition 1 (CCR-efficiency) A DMUo is CCR-efficient if and only

Definition 2 A DMUo is if and on-
ly if for the optimal solution to the problem
the following two conditions are satisfied:

(i)
(ii)

is equal to one;

the slack variables and are all zero.

Otherwise, the DMUo is

Note that the above two definitions are equivalent due to the well
known duality of linear programming.

Additionally, the production possibility set in the dual form of the
CCR model is the convex cone (or conical hull) generated by the observed
data, which implies that the scale efficiency of a DMU is constant, that
is to say, constant returns to scale. Namely, can be denoted by

if the optimal value to the problem (CCR) equals one. Oth-
erwise, the DMUo is said to be CCR-inefficient.
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and the definition of CCR-efficiency can be trans-
formed into the following:

Definition 3 DMUo is said to be Pareto efficient in if and only if
there does not exist such that
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It is readily seen that the Pareto efficiency in is equivalent to the
CCR-efficiency. Fig. 7.1 shows a geometric interpretation on the relation
between the primal form of the CCR model and the dual one.

2.2. The BCC Model

The BCC model of Banker et al. [3] is formulated similarly to that for
the CCR model. The dual problem for the BCC model is obtained by
adding the convexity constraint to the dual problem
and thus, the variable appears in the primal problem. The efficiency
degree of a DMUo with respect to the BCC model can be measured by
solving the problem.

The dual problem to the problem (BCC) is formulated as
follows:

The ‘efficiency’ in the BCC model is given by the following two def-
initions which are equivalent to each other due to the duality of linear
programming.

Definition 4 (BCC-efficiency) A DMUo is BCC-efficient if and only if
the optimal value to the problem (BCC) equals one.
Otherwise, the DMUo is said to be BCC-inefficient.

Definition 5 A DMUo is if and on-
ly if for an optimal solution to the problem the
following two conditions are satisfied:
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(i)

(ii)

is equal to one;

the slack variables and are all zero.

Otherwise, the DMUo is said to be

The presence of the constraint in the dual problem
yields that the production possibility set in the BCC model is the con-
vex hull generated by the observed data. Therefore, can be obtained
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as

and the definition of can be transformed into the fol-
lowing:

Definition 6 DMUo is said to be Pareto efficient in if and only if
there does not exist such that

It is readily seen that the Pareto efficiency in is equivalent to the
BCC-efficiency. Fig. 7.2 shows a geometric interpretation of the relation
between the primal form of BCC model and the dual one.

2.3. The FDH Model

The FDH model by Tulkens [29] is formulated as follows:

Here, it is seen that the problem is a mixed integer programming
problem, and hence the traditional linear optimization methods cannot
apply to it. An optimal solution, however, can be obtained by means of
a simple vector comparison procedure.

For a DMUo, the optimal solution to the problem is equal
to the value defined by

where and Therefore,
takes the place of showing the efficiency degree for DMUo in the

FDH model. The ‘efficiency’ in the FDH model is given by the following.

Definition 7 (FDH-efficiency) A DMUo is FDH-efficient if and only if
If  the DMUo is said to be FDH-inefficient.

Definition 8 A DMUo is if and on-
ly if for an optimal solution to the problem the
following two conditions are satisfied:
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(i)

(ii)

is equal to one;

the slack variables and are all zero.

Otherwise, the DMUo is said to be .

It can be seen that the above two definitions are equivalent to each
other, and the production possibility set which is a free disposable
hull, is given by

Besides, the definition of FDH-efficiency can be
transformed into the following:

Definition 9 DMUo is said to be Pareto efficient in if and only if
there does not exist such that

Fig. 7.3 shows a geometric interpretation on the relation between the
primal form of the FDH model and the dual one.

3. GDEA Based on Parametric Domination
Structure

In this section, we formulate a GDEA model based on a domination
structure and define a new ‘efficiency’ in the GDEA model. Next, we
establish relationships between the GDEA model and basic DEA models
mentioned in Section 2.

3.1. Relationships between GDEA and DEA

The generalized DEA model can be formulated by employing the aug-
mented Tchebyshev scalarizing function [22]. Namely, the GDEA model,
which can evaluate the efficiency in several basic models as special cases,
is the following:
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where and is a positive

number.

Note that when  the right-hand side of the inequality constraint
in the problem (GDEA) is zero, and hence its optimal value is not greater
than zero. We define ‘efficiency’ in the GDEA model as follows.
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Definition 10 For a given positive number DMUo is
defined to be if and only if the optimal value to the problem
(GDEA) is equal to zero. Otherwise, DMUo is said to be

We here summarize theoretical properties on relationships among ef-
ficiencies in the basic DEA models and that in the GDEA model. For
detailed proofs of the following theorems, see Yun et al. [34].

Theorem 1 DMUo is FDH-efficient if and only if DMUo is
for some sufficiently small positive number

Theorem 2 DMUo is BCC-efficient if and only if DMUo is
for some sufficiently large positive number

Theorem 3 DMUo is CCR-efficient if and only if DMUo is
for some sufficiently large positive number when regarding the problem
(GDEA) as the problem in which the constraint

is added to the problem (GDEA).

where and is a positive

number.

From the stated theorems, it is seen that the CCR-efficiency, BCC-
efficiency and FDH-efficiency for each DMU can be evaluated by varying
the parameter in the problem (GDEA).

3.2. An Illustrative Example

In this subsection, we explain the in the GDEA model
with a simple illustrative example and reveal domination relations among
all DMUs by GDEA. Assume that there are six DMUs which consume
one input to produce one output, as seen in Table 7.1.
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Table 7.2 shows the results of efficiency in the basic DEA models and
in the GDEA model. It can be seen in the upper half part

of Table 7.2 that a DMU is efficient if the optimal value is equal to one
in the CCR model, the BCC model and the FDH model, respectively.
The lower half part of Table 7.2 shows the by changing
parameter It can be seen that if the of each
DMU is the same as the FDH-efficiency. If the of
each DMU is the same as the BCC-efficiency, and moreover if in
the problem then the is equivalent to the CCR-
efficiency. Furthermore, Figure 7.4 – Figure 7.6 represent the efficient
frontier generated by varying in the GDEA model.

Through this example, it was shown that by varying the value of pa-
rameter various efficiencies of the basic DEA models can be measured
in a unified way on the basis of this GDEA model, and furthermore the
relationships among efficiency for these models become transparent.
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4. GDEA Based on Production Possibility

In this section, we consider a dual approach to GDEA introduced in
Section 3. We formulate a model based on the production
possibility set and define ‘efficiency’ in the model. Next, we
establish relationships between the model and dual models to
basic DEA models mentioned in Section 2.
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To begin with, an output-input vector of a DMU  and
output-input matrix Z of all DMUs, respectively, are defined by

In addition, we define a matrix by :=
where o is index of the DMU to be evaluated.

The production possibility sets in the CCR model, the BCC model
and the FDH model in Section 2 are reformulated as follows:

and the ‘efficiencies’ in these models are redefined:

Definition 11 DMUo is said to be Pareto efficient in if and only if
there does not exist such that

Definition 12 DMUo is said to be Pareto efficient in if and only if
there does not exist such that

4.1. Relationships between and DEA
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Definition 13 DMUo is said to be Pareto efficient in if and only if
there does not exist such that

Remark 1 [18] Here, Definitions 11-13 correspond to CCR-efficiency
BCC-efficiency     and FDH-

efficiency respectively.

The dual problem to introduced in Section 3 is formulated
as follows:

where and  is a given positive number. A
matrix is obtained by replacing the components
of by 0 except for the maximal component in each row (if
there exist plural maximal components, only one is chosen from among
them). Especially, it is seen that when is fixed at 0, becomes
the dual problem to (GDEA) since is a dual variable to the second
constraint in

We define an ‘efficiency’ for a DMUo in the model as follows:

Definition 14 For a given positive DMUo is said to
be if and only if the optimal solution                             to the
problem satisfies the following two conditions:

(i)
(ii)

is equal to zero;

the slack variable is zero.

Otherwise, DMUo is said to be

It should be noted particularly that for an optimal solution
to problem is not greater than zero because of the

strong duality of (GDEA) and (in linear programming terms),
and the ‘non-Archimedean’ property of

Here, we summarize theoretical properties on relationships among ef-
ficiencies in basic DEA models and the model. For detailed
proofs of the following theorems, see Yun et al. [34].
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Theorem 4 Let be fixed at 0 in DMUo is Pareto efficient
in if and only if DMUo is for some sufficiently small
positive number

Theorem 5 Let be fixed at 0 in DMUo is Pareto efficient
in if and only if DMUo is for some sufficiently large
positive number

Theorem 6 DMUo is Pareto efficient in if and only if DMUo is
for some sufficiently large positive number

From theorems stated above, it is also seen that the
and for each DMU can be evaluated

by varying the parameter in the problem

4.2. Optimal Solutions to

In this subsection, we explain the meaning of optimal solutions
to gives a measure of relative efficiency for DMUo. In

other words, it represents the degree how inefficient DMUo is, that is,
how far DMUo is from the efficient frontier generated with the given

represents a domination relation between DMUo and
other DMUs. That is, it means that the DMUo is dominated by
if for some is positive. represents the surplus of inputs and

the slack of outputs for performance of the DMUo.
Consider an illustrative example as shown in Table 7.3. The Ta-

ble shows the results of the CCR-efficiency, BCC-efficiency and FDH-
efficiency, respectively, in the example. Table 7.4 shows the optimal so-
lution to when is given as
and is fixed at 0. Table 7.5 shows the optimal solution
to when is given by 10 and is fixed at 0. Fi-
nally, Table 7.6 shows the optimal solution to

when is given as 10.
Here, we can see that the FDH-efficiency, BCC-efficiency and CCR-

efficiency are equivalent to the with
and respectively, from the result of

Table 7.4 – Table 7.6 and Figure 7.7 – Figure 7.9. In other words, the
FDH-efficiency, BCC-efficiency and CCR-efficiency can be obtained by
changing the parameter in the model.

Now, we interpret a meaning of optimal solutions to
Note that gives a measure of relative efficiency for DMUo.

In other words, it represents the degree how inefficient DMUo is, that
is, how far DMUo is from the efficient frontier generated with the given

represents a domination relation between DMUo
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and another DMUs. That is, it means that the DMUo is dominated by
DMU if for some is positive.

For example, as is seen in Table 7.4, the optimal solution for the DMU
D is and and hence DMU D is dominated by DMU
B and DMU E. (See Figure 7.7.) In addition, in Table 7.5, the optimal
solution for the DMU E is and and hence DMU
E is dominated by a linear combination of DMU B and DMU C. (See
Figure 7.8.) As is seen in Table 7.6, the optimal solution for the DMU
C is and hence DMU D is dominated by a point on the line
through DMU B and the origin. (See Figure 7.9.) represents the
slack of inputs and does the surplus of outputs for performance of the
DMUo. For instance, DMU G has the optimal solution
and DMU G is because is not equal
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to zero although It implies that DMU G has a larger surplus
amount of input than DMU E with the same output.

5. Comparison between GDEA and DEA
Models

Now, we compare the efficiency in basic DEA models and the GDEA
model for data for thirteen Mexican commercial banks in two years
(1990–1991) from Taylor et al. [27]. As is shown in Table 7.7, each
bank has the total income as the single output. Total income is the
sum of a bank’s interest and non-interest income. Total deposits and
total non-interest expense are the two inputs used to generate the out-
put. Interest income includes interest earned from loan activities. To-
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tal non-interest income includes dividends, fees, and other non-interest
revenue. The total deposits input variable includes the bank’s interest
paying deposit liabilities. Total non-interest expense includes person-
nel and administrative costs, commissions paid, banking support fund
contributions and other non-interest operating costs. Thus, we evaluate
the efficiency for each bank with the annual data, that is, consider

corresponding to several values (only
1991) and Therefore, Table 7.8 and Table 7.9 represent the results
of analyses by the basic DEA models and the GDEA model.

As is shown in the tables, the GDEA model with provides
FDH efficiency. It means that there is no change in DMUs for
smaller than 0.1. In addition, the GDEA model with yields
BCC efficiency in Table7.8,while does in Table 7.9. Also, there is
no change in of DMUs, even if taking greater than 10 or 15.
Moreover, CCR-efficiency can be conducted by taking sufficientlylarge
in the model. From this fact, we see that the number of efficient
DMUs decreases as parameter increases in general. Particularly, note
the for and This represents an intermediate
efficiency between FDH-efficiency and BCC-efficiency. In practice, there
are decision making problems which cannot correspond to a special value
judgment such as “ratio value efficiency” in the CCR model, “sum value
efficiency” in the BCC model, and so on. In contrast to the existing
DEA models, the GDEA model can incorporate various value judgments
of decision makers by changing a parameter and then several kinds
of efficiency of the basic DEA models can be measured in a unified way
on the basis of the GDEA model. Furthermore, the relationships among
efficiencies for these models become transparent by considering GDEA.

6. GDEA for Multiple Criteria Decision Making

6.1. Generation of Efficient Frontiers
In multi-objective optimization problems, there does not necessarily ex-
ist the solution that optimizes all objective functions, and then the con-
cept which is called Pareto optimal solution (or efficient solution) is
introduced [22]. Usually, there exist a number of Pareto optimal so-
lutions, which are considered as candidates for final decision making
solution [19]. It is an issue how decision makers choose one from the set
of Pareto optimal solutions as the final solution. Consequently, interac-
tive multi-objective optimization methods have been developed to this
end. In many practical problems such as engineering design problems,
however, criteria functions can not be given explicitly in terms of design
variables. Under this circumstance, values of criteria functions for given
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values of design variables are usually obtained by some analyses such as
structural analysis, thermodynamical analysis or fluid mechanical anal-
ysis. These analyses require considerable computation time. Therefore,
it is not unrealistic to apply existing interactive optimization methods
to those problems.

Recently, multi-objective optimization methods using genetic algo-
rithms (GA) have been studied actively by many authors [2, 11, 14, 16,
23, 26]. Genetic algorithms are useful for generating efficient frontiers
with two or three objective functions. Decision making can be easily
performed on the basis of visualized efficient frontiers. This is described
in Chapter 5.1 of this book in more detail. We discuss here how we can
utilize the GDEA effectively to generate efficient frontiers.

To begin with, we give a brief explanation on the ranking method
[14]. Consider an individual at a generation which is dominated by
individuals in the current population, then its rank is given by
From this, we can see that all non-dominated individuals are assigned
rank 1. In Fig. 7.10, each number in parentheses represents the rank of
each individual and the curve represents the exact efficient frontier. The
ranking method based on the relation of domination among individuals
has a merit to be computationally simple. However, the ranking method
has a shortcoming in the need to assess a large number of generations,
since non-dominated individuals in the current generation such as C
and G in Fig. 7.10 are often kept alive long, even though they are not
Pareto optimal solutions in the final generation. Moreover, it is difficult
to generate a smooth efficient frontier by the stated ranking method.
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Arakawa et al. [2] suggested a method using CCR-efficiency in order
to overcome the shortcomings of the methods stated above. That is,

The optimal value to the above problem represents how far is
from the CCR-efficient frontier. We see that only when is equal to one,

is located on the CCR-efficient frontier. Selection is performed by

In other words, this method investigates the relation of domination
among individuals with respect to the shaded region (see Fig. 7.11). In
Fig. 7.11, the solid curve represents the exact efficient frontier and the
dotted line represents the CCR-efficient frontier at a generation. As the
figure shows, individuals C and G are removed fast, and then a good
approximation of the exact efficient frontier can be obtained efficiently.
Therefore, when the efficient frontier is convex3, non-Pareto solutions
can be removed at a young generation. However, when the efficient

orthant. Then we say the efficient frontier is convex if is a convex set. Otherwise,
the efficient frontier is said to be non-convex.

the fitness of an individual           is given by solving the
following linear programming problem:

3Let be an efficient frontier in the objective space and let be a non-negative
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frontier is non-convex, the sunken part of it can not be generated by
Arakawa et al.’s method [2].

6.2. Utilization of Generalized Data
Envelopment Analysis

Utilizing the GDEA model instead of the traditional DEA models, we
can overcome the shortcomings of both the ranking methods and Araka-
wa et al.’s method. In applying GA to problems with constraints, we
introduce an augmented objective function using penalty functions im-
posed on constraints. Here, an augmented objective function of

in the problem (MOP) is given by

where is a penalty coefficient,  is a penalty exponent and

As a result, the initial problem (MOP) can be converted into a prob-
lem to minimize the augmented objective function
Here, we need to prepare the data set in order to evaluate the degree
of of an individual in the current population. Let inputs
and outputs in GDEA be substituted by the value of Then the
problem (GDEA) reduces to the following problem (P).

where is a sufficiently small

number. is the value of a monotonically decreasing function with
respect to the number of generations.

Practically, is given by

where and N are positive fixed numbers. is determined
to be sufficiently large as 10, and N (the number of generations
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until the termination of computation) is given by the time limitation for
decision making. For given and is chosen by solving the equation

(i.e., nearly equal to 0).
The degree of of an individual in the current population

is given by the optimal value to the problem (P), and is considered as
the fitness in GA. Therefore, the selection of an individual is determined
by the degree of i.e. if equals to zero, the individual
remains at the next generation. With making the best use of the stated
properties of GDEA, it is possible to keep merits of ranking methods
and the method using DEA, and at the same time, to overcome the
shortcomings of existing methods. Namely, taking a large can remove
individuals which are located far from the efficient frontier, and taking
a small can generate non-convex efficient frontiers. (See Fig. 7.12.)

Finally, the algorithm based on GDEA and GA is summarized as
follows:

Step 1. (Initialization)
Generate p-individuals randomly. Here, the number of is given
prior.

Step 2. (Crossover and Mutation)
Make  pairs randomly among the population. Making crossover
each pair generates a new population. Mutate them according to
the given probability of mutation.
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Step 3. (Evaluation of Fitness by GDEA)
Evaluate the GDEA-efficiency by solving the problem (P)

Step 4. (Selection)
Select individuals from the current population on the basis of
the fitness given by GDEA-efficiency.

The process Step 2 – Step 4 is continued until the number of genera-
tions attains a given number.

6.3. Examples: Two-objective Optimization
Problems

We consider the following example with two objective functions.

Example 1

The efficient frontier in Example 1 is non-concave and non-convex.
In order to show the effectiveness of the GDEA method, we compare
the results by the (a) ranking method, (b) DEA method and (c) GDEA
method. Parameters in GA and the problem (P) are set as follows:

(i)

(ii)

(iii)

(iv)

(v)

the number of generations : 10, 20, 30

the size of population : 80

the representation of chromosome : 10 bits

the probability of crossover : 1
the probability of mutation : 0.05

termination at 10 generations
termination at 20 generations
termination at 30 generations

The elitist preserving selection [16] is adopted. The results are shown
in Fig. 7.13. The horizontal axis and the vertical axis indicate the values
of objective functions and respectively. The symbol represents a
Pareto optimal solution among all generations, and represents a non-
dominated individuals at some generation but not Pareto optimal among
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all generations. Note here that non-dominated individuals depend on the
domination structure of each method: For example, individuals with
rank 1 are non-dominated in the ranking method, the ones with
are non-dominated in the DEA method. In the GDEA method, non-
dominated individuals are identical with ones.

(a) Ranking method

The ranking method produced relatively many Pareto optimal so-
lutions. However, there are also many non-Pareto optimal solu-
tions among non-dominated individuals at each generation. More-
over, it is usually difficult to generate smooth efficient frontiers as
shown in (a) of Fig. 7.13.
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(b)

(c)

DEA method

Many non-dominated individuals at each generation become finally
Pareto optimal among the whole generation in (b) of Fig. 7.13,
while the obtained Pareto optimal solutions are fewer than by the
ranking method. However, the sunken parts of efficient frontier can
not be generated by this method, and therefore, the DEA method
cannot be applied to multi-objective optimization problems with
non-convex functions.

GDEA method

In (c) of Fig. 7.13, the largest number of Pareto optimal solutions
are obtained among the stated methods. Moreover, efficient fron-
tiers generated by the proposed method are smooth, even though
they are non-convex. In addition, it is seen that almost all non-
dominated individuals at each generation become the final Pareto
optimal solutions.

In particular, it should be noted in the ranking method that non-
dominated individuals obtained at intermediate generations are often
not Pareto optimal solutions. In practical problems, we do not know
when to stop the computation in advance. Usually, the computation is
terminated at a relatively early generation due to the time limitation. It
is an important requirement, therefore, that non-dominated individuals
at intermediate generations are finally Pareto optimal solutions. The
GDEA method has a desirable performance from this point of view.

7. Conclusions
In this chapter, we discussed several DEA models in multicriteria deci-
sion making. In particular, it has been observed that the GDEA model
makes it possible to evaluate efficiencies of several DEA models in a
unified way, and to incorporate various preference structures of decision
makers. Through a numerical example, it has been shown that the mu-
tual relations among all decision making units can be grasped by varying

in the GDEA model. Furthermore, interpreting the meaning of an op-
timal value to the model based on production possibility as
a dual approach to the GDEA, it is possible to make a quantitative
analysis of inefficiency on the basis of surplus of inputs and slack of
outputs. Moreover, through an illustrative example, it has been shown
that can reveal domination relations among all decision making
units. Finally, it was shown that GDEA can be effectively applied to
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drawing efficient frontiers in multi-objective (in particular, two objec-
tive) decision making problems. It is expected from the obtained results
in this study that GDEA is useful for evaluating the efficiency of complex
management systems in business, industry and social problems.
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This chapter provides an annotated bibliography of multiple objective
combinatorial optimization, MOCO. We present a general formulation
of MOCO problems, describe their main characteristics, and review the
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1. Introduction

Combinatorial Optimization is a field extensively studied by many re-
searchers. Due to its potential for application in real world problems it
has prospered over the last few decades. A good survey of the state of
the art is provided by [74]. But as far as real world decision making is
concerned, it is also well known, that decision makers have to deal with
several – usually conflicting – objectives. The growth in the interest in
theory and methodology of multicriteria decision making (MCDM) over
the last thirty years as documented by the chapters in this volume, the
survey of the activities in the field [366] and a bibliography of MCDM
applications [421] is witness of this fact.

Thus it is somewhat surprising that a combination of both, i.e. mul-
ticriteria or multiobjective combinatorial optimization (MOCO) has not
been studied widely. A few papers in the area have been published in
the seventies, then the classical problems have been investigated in the
eighties. Only in recent years – approximately since 1990 – a profound
interest in the topic is evident. Since then several PhD theses have been
written, specific methodologies have been developed, and the number of
research papers in the field has grown considerably.

In this chapter we intend to give an overview over the literature in the
field of multiobjective combinatorial optimization. In the following sec-
tions, we first present a brief introduction to the field, including a general
problem formulation, description of several types of MOCO problems,
and the most important theoretical properties of these problems (Sec-
tions 2 and 3). In Section 5 we explain the classification of literature
that we used. This consists first of a classification of the problem treated
and secondly of the methodology applied to solve it. Then we review
existing methods to solve MOCO problems in Section 4. The main part
of the chapter is devoted to the annotation of the literature (Section 6).
The chapter is concluded by a brief discussion of open questions and
areas of future research (Section 7).

Let us now describe the focus of this chapter. We compiled the lit-
erature on multiobjective combinatorial optimization accessible to us.
We mainly consider papers that deal specifically with MOCO problems,
thus our bibliography is certainly not complete on 0-1 programming with
multiple objectives, and exclude most of the literature on general multi-
objective integer programming. A similar statement can be made with
respect to scheduling. Scheduling problems are specific problems with
their own theory and methodology, which we will not describe in detail,
but refer to Chapter 7.3. We should also mention, that there exist earlier
survey papers related to MOCO, one general [398], and two specifically
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devoted to multiobjective network design, [53, 54]. Our bibliography
contains all the relevant literature listed there. However, it is more com-
plete, e.g. we could include the new direction of using metaheuristics
for MOCO problems. However, we are aware of the fact, that despite
our best efforts the list will not be complete, so we apologize for any
omissions.

The aim of the bibliography is twofold. First we want to provide a
starting point for researchers and students interested in the field, giving
a brief introduction and commenting on, thus guiding through, existing
literature. For the experienced researcher the list is intended as struc-
tured overview of the field.

2. Multiple Objective Combinatorial
Optimization Problems

The feasible set of a (multiobjective) combinatorial problem is defined
as a subset of the power set of a finite set .
For example, consider the minimum spanning tree problem. G = (V, A)
is a graph with node set V and edge set A, the feasible set is the set of
spanning trees of G and is a spanning tree of G}.

Typically, in combinatorial optimization two types of objective func-
tions are considered, namely the sum and the bottleneck objective:

With this definition It is therefore equivalent to speak
about feasible solutions as subsets of A or about their representations by
binary vectors. Accordingly S will be represented by a subset of

In terms of the feasible set, this definition comprises (multiobjec-
tive versions of) the shortest path, minimum spanning tree, assignment,
knapsack, travelling salesperson, or set covering problems, to mention
only a few.
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where and is some weight function.
A combinatorial problem can also be formulated in terms of binary

variables. For this purpose we introduce a variable for each element
Then, a feasible solution can be represented by a binary

vector if we define



where the meaning of “min” has still to be defined.
Most often the minimization in (MOCO) is understood in the sense

of efficiency (or Pareto optimality). A subset is called effi-
cient if there does not exist another feasible solution such that

for all with strict inequality for at least one
of the objectives. The corresponding vector
is called nondominated. The set of Pareto optimal (efficient) solutions
of (MOCO) will be denoted by E, the set of nondominated vectors by
ND throughout the chapter. Sometimes we shall use the the term non-
dominated frontier for the set of all nondominated vectors.

However, besides efficiency, there are other definitions of the “min”
term in the formulation of (MOCO). For example, one could consider
lexicographic minimization, when objective vectors are compared lexico-
graphically: where j is the smallest
index such that This could be done with respect to
one, or all permutations of the objective functions

Another possibility is to minimize the worst objective function, i.e.

372 MULTIPLE CRITERIA OPTIMIZATION

In a multicriteria combinatorial problem several weight functions
are given, yielding several objective functions

(usually of the sum or bottleneck type). The problem is then to solve

We call this the max-ordering problem (following [94]) in order to dis-
tinguish it from the single objective bottleneck problem (note that both
are often called min-max problems, which may create confusion).

A combination of the latter two is the lexicographic max-ordering
problem, where the vector of objective values z(S) is first resorted in
a nonincreasing order of its components, and the resulting vectors are
compared lexicographically, see [83, 85] for details.

In a real world decision context, finally a compromise has to be made
among the many efficient solutions that (MOCO) may have. This is
the reason why often the existence of a utility function is implicitly or
explicitly assumed. A utility function assigns each criterion vector z(S)
a scalar overall utility. Then methods are developed to find a solution
of maximum utility. This is a typical approach in interactive methods
described later.

Closely related to combinatorial problems are multiobjective integer
programming problems. These can be formulated as follows.



Here C is a objective matrix, A is an constraint matrix, and
There is a considerable amount of literature on these problems.

We refer to some surveys that exist but will not consider the literature
in detail. In this respect, [43, 381, 429] provide surveys of techniques to
find efficient solutions for (MOIP), [380] gives an overview of interactive
methods for (MOIP), and [313] surveys (MOIP) with binary variables.

In general, combinatorial optimization problems can be considered as
special cases of integer (in particular binary) programming. A MOCO
problem is distinguished by a specific set of constraints, that provides
a structure to the problem. We focussed on such problems and do not
intend to review literature on general multiobjective binary or integer
programming.

To conclude this section, let us mention one particular case, namely,
when the set of feasible solutions is an explicitly given finite set, e.g.
X = A. In this case, all problems discussed above are efficiently solvable.
Algorithms can be found in [86, 87] and [218]. For this reason, these
problems are mathematically not particularly interesting and we omit
them from further discussion.

To summarize, (MOCO) is a discrete optimization problem, with
variables objectives and a specific
constraint structure defining the feasible set X.

3. Properties of MOCO Problems
In this section we discuss some of the properties of MOCO problems. It is
in order to mention here that there is a considerable number of erroneous
statements, even in papers published in international standard refereed
journals. We will point out the most important of these throughout the
chapter, in the appropriate places.

By its nature, multiobjective combinatorial optimization deals with
discrete, non continuous problems, although the objectives are usually
linear functions. An essential consequence of this fact when trying to
determine the set of all efficient solutions (or nondominated vectors in
objective space) is, that it is not sufficient to aggregate the objectives
through weighted sums.
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the set of efficient solutions is exactly the set of solutions that can be
obtained by solving LP’s

where see e.g. [183]. But the discrete
structure of the MOCO problem makes this result invalid. Thus there
usually exist efficient solutions, which are not optimal for any weighted
sum of the objectives. This is true even in cases where the constraint
matrix is totally unimodular, contrary to a proposition in [216] (see [399]
for an example). These solutions are called nonsupported efficient solu-
tions NE, whereas the remaining are called supported efficient solutions,
SE. In early papers referring to MOCO, NE was usually not consid-
ered. Most authors focussed on scalarizing the objectives by means of
weighting factors

Nevertheless, the set NE is important. With more than one sum
objective there are many more nonsupported than supported efficient
solutions, see e.g. [413] for numerical results. But empirical results
show that this is not necessarily the case when at most one objective is
of the sum type and the others are bottleneck objectives [259, 261, 262].

Moreover, the nonsupported solutions contribute essentially to the
difficulty of MOCO problems. Below, we shall briefly discuss the con-
cepts of computational complexity of (MOCO). For introductions to the
theory of and we refer to [128] and
[407, 408, 409], respectively. These notions deal with the difficulty of
finding a, respectively counting the number of solutions of a (MOCO).

In order to transfer the notions of and to MOCO we first
introduce a decision problem related to (MOCO) in a straightforward
manner:
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It is long known that for multiobjective linear programming problems

Given constants
does there exist a feasible solution D(MOCO)

such that

The corresponding counting problem is:
How many feasible solutions

do satisfy #(MOCO)



It turns out that the respective versions of (MOCO) in the sense
of finding or counting efficient solutions are in general and
complete, respectively. This is true even for problems which have effi-
cient algorithms in the single objective case. We refer to [102, 347] and
[89] for results in this respect. Therefore the development of heuristics
with guaranteed worst case performance (bounded error) is interesting.
However, not much is known in this regard: [89] gives some general re-
sults on approximating the efficient set by a single solution, [303] uses
a Tchebycheff metric to measure the error, and [326, 327] consider the
existence of such algorithms. Some specific results about flow problems,
shortest path, knapsack problems, and the TSP are discussed in Section
6.

Another aspect related to the difficulty of MOCO is the number of
efficient solutions. It turns out that it may be exponential in the prob-
lem size, thus prohibiting any efficient method to determine all effi-
cient solutions. Such results are known for the spanning tree, matroid
base, shortest path, assignment, and travelling salesperson problems (see
[103, 149, 349] for details). Consequently such problems are called in-
tractable. Even the size of the set SE may be exponential, see [324].
However, numerical results available on the knapsack problem [413] show
the number of supported solutions grows linearly with the problem size,
but the number of nonsupported solution grows following an exponential
function. However, other investigations indicate that for problems with
bottleneck objectives (at most one sum objective), the ratio between the
size of SE and NE is independent of the problem size in the asymmetric
TSP [261], and that the number of efficient solutions decreases with in-
creasing number of constraints for multi-constrained knapsack problems
[262].

As far as the other definitions of optimality in (MOCO) are con-
cerned, we note that the max-ordering problem with sum objectives is

in general (see [41]), but can be reduced to a single objective
problem in the case of bottleneck objectives [86]. Bounds and heuris-
tic methods for the former problem have been investigated in [307]. At
least one solution of the max-ordering problem is always efficient, but
possibly nonsupported. Similarly, a lexicographic max-ordering solution,
although always efficient and optimal for the max-ordering problem may
be nonsupported, [86].

For lexicographic optimization it is known that a lexicographically op-
timal solution is always efficient, and even a supported efficient solution,
see [149]. Lexicographic optimization can also be viewed as a special
case of algebraic optimization, see [428].
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In view of the new trend to apply metaheuristics and local search
in MOCO problems (see Section 4 below), it is interesting to consider
the issue of neighbourhoods of feasible solutions, and their relations to
efficient solutions. Using a neighbourhood corresponding to Simplex
basis pivots for the shortest path problem and exchanges of one edge
for the spanning tree problem it was shown in [92, 93] that the set of
efficient solutions can be an unconnected subset of X with respect to the
neighbourhood. So it is possible that local search methods (in principle)
cannot find all efficient solutions.

4. Solution Methods for MOCO Problems

In the context of multiobjective programming (MOP), it is usual to dis-
tinguish the methods following the role of the decision maker in the
resolution process. Information provided by the decision maker often
concerns his preferences. In “a priori mode”, all the preferences are
known at the beginning of the decision making process. The techniques
used seek for a solution on the basis of these parameters. The best ex-
ample is given by goal-programming methods. In “a posteriori mode”
the set of all efficient solutions is generated for the considered problem.
At the end, this set is analyzed according to the decision maker’s prefer-
ences. Many approximation (heuristic) methods are conceived following
this resolution mode. In the “interactive mode”, the preferences are
introduced by the decision maker during the resolution process. The
methods involve a series of computing steps alternated with dialogue
steps and can be viewed as the interactive determination of a satisfying
compromise for the decision maker. Thus they require a high partici-
pation level on the part of the decision maker. Practical problems are
often resolved according to the interactive mode.

The appropriate resolution mode is chosen considering the situation
of the decision process. The method involved in the process could be
exact or approximation methods.

4.1. Exact Methods
Here we discuss some of the methods used to solve MOCO problems.
Many of these essentially combine the multiple objectives into one single
objective. The most popular, and the one used first, is weighted sum
scalarization. The problem solved is
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where and Varying the weights, it is known that
all supported efficient solutions can be found, using results from [183]
and linear programming [132]. The advantage of the method (especially
for problems where the single objective version is solvable in polynomial
time) is that for each the problem (with sum objectives) is only
as difficult as the single objective counterpart of (MOCO). Parametric
programming can be used to solve the problem for all

The approach has been applied to many MOCO problems: see [166,
420] for shortest path, [7, 77, 78, 184, 363] for the transportation prob-
lem, [69] for assignment, [202, 227, 248] for network flow, [149, 341, 342]
for spanning tree, [81, 321] for knapsack and [245] for location problems.
In many of these papers, the existence of nonsupported efficient solu-
tions was either not known, or ignored. When a sum and a bottleneck
objective are present, the minimization of the sum of the objectives has
been discussed in [266] and [306] for general combinatorial optimization
problems.

Besides weighted sum scalarization the most important method for
multiobjective programming involves constraints on some objective val-
ues. The problem, described in detail in [35], is the following

Its usefulness for MOCO problems depends on the objective function
type. With more than two sum objectives, the problem is
often see e.g. [128, problem ND30] for constrained shortest
path. If, however, at most one sum objective is present, the constraints
can be applied to the bottleneck objectives, and simply imply the exclu-
sion of feasible solutions containing elements with for
some Moreover, assuming integer weights, the values of can be
restricted to all integers between and Ap-
plications of the method to such cases are described for assignment, span-
ning tree, and 1-tree problems in [259, 260, 262], for asymmetric TSP
in [261], and for knapsack problems in [264]. Recently a modification of



the method has been used to solve large scale bicriteria set-partitioning
problems (with sum objectives) arising in airline crew scheduling [95].

Another well known approach in multicriteria optimization is the com-
promise solution method [424], where one tries to minimize the dis-
tance to an ideal point or to a utopian point where

is the vector of all ones, and The ideal point
is defined according to the individual minima of each objective

and then

The ideal point and Nadir point define lower
and upper bounds on the objective values of efficient solutions. Then
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Usually, the Tchebycheff norm is used as distance measure:

Unfortunately, when we consider sum objectives, this type of problem
is usually see e.g. [277] for references on the shortest path
problem. This explains why it is rarely used, even though, theoretically
the whole of the efficient set can be found, see e.g. [332]. Using another
norm, e.g. an norm, leads to nonlinear objectives, and
we found only one reference [405] using norms for MOCO. Note that
for the compromise solution method coincides with the weighted
sums approach.

A special approach to multiobjective optimization is goal program-
ming, see e.g. [179, 229] and Chapter 7 for details. Here, for each of
the objectives a target value (goal) is specified by the decision maker.
The overall aim is to minimize the deviation from the specified goals.
This approach is very popular and although it is sometimes considered
a different field from multiobjective optimization we list the references
here.

One approach that is popular for bicriteria problems is the use of
ranking methods. First, define



starting from a solution with and finding second best, third
best, . . . , K-best solutions with respect to the first objective until is
reached, the efficient set can be determined. The approach has been used
for the shortest path problem [44, 255] and the transportation problem
[77]. Note that computation of the Nadir point in the bicriteria
case essentially means the solution of two lexicographic optimization
problems.

A generalization of this approach to more than three objectives is
not possible without knowledge of the Nadir point, which is difficult to
obtain when see [214]. Note that a generalization of (8.4) (stated
without proof in [255]) does not necessarily provide an upper bound on
objective values of efficient solutions. Not even considering lexicographic
optimization with respect to all permutations of objectives is guaranteed
to produce upper bounds on objective values of efficient solutions, see
[97, 98] for a recent discussion.

Moreover, the ranking approach can be effectively used to solve max-
ordering problems with any number of criteria. First a weighting vector
is chosen, then K-best solutions are created according to the com-
bined objective When for the first time

where is a cost function depending on the state variable and control
variable at stage Theoretically, this recursion can easily be adapted
to the multiobjective case. Therefore dynamic programming algorithms
appear most often for problems, where they have been established for
the single objective versions earlier. These are the shortest path problem

an optimal solution is among We refer to [84, 146], and
[149] for applications to the uniform matroid, network flow problem, and
spanning tree problem, respectively and [96] for a general procedure.

Let us now look at methods adapted from single objective combi-
natorial optimization. Among the very well established procedures is
dynamic programming [21]. The method applies to sequential decision
problems, which admit a recursion formula such as
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[34, 165, 166, 215, 311, 319, 330, 358, 384], the knapsack problem [33, 38,
81, 199, 200, 201], the TSP [112, 391] and the transportation problem
[123].

An implicit enumeration algorithm, which is widely used to solve hard
combinatorial optimization problems is branch and bound. Its philos-
ophy is to partition the problem into mutually disjoint and jointly ex-
haustive subproblems. Bounds are computed for subproblems and the
process continues until an optimal solution is found. Much to our sur-
prise, we could only find a few papers applying branch and bound for
MOCO – to the knapsack problem, [396, 400, 413], the max-ordering
shortest path problem, [311], and the cutting stock problem [210], The
adaptation of branch and bound poses one difficult problem. Since we
deal with nondominated vectors, bounds play the role of ideal/Nadir
points for subproblems. Thus they may be difficult to compute, or bad,
i.e. not discarding enough feasible, nonefficient solutions. Research on
replacing single points as bounds by bound sets to better reflect the mul-
ticriteria nature (efficient frontier) has recently been initiated in [90].

Many authors used available single objective methods for a particular
problem and adapted them to the multiobjective case. The more natural
such a generalization is, the bigger the number of papers pursuing such
an approach. We note the following.

Finally, we explain a general framework for the exact solution of the
problem of determining the efficient set for bicriteria (MOCO), the two
phases method. The name goes back to [396] and [399] and is telling: In
the first phase SE is found using the scalarization technique, and solving
single objective problems. The necessary weights are easy to compute
using information generated in the process. The second phase consists

Shortest Path: [157, 251] for label setting and [26, 50, 52, 272, 356,
392, 393, 411] for label correcting methods

Spanning Tree: [49, 149] for adaptations of Prim’s algorithm and
[341, 347] for the greedy algorithm

Assignment: [247, 396, 399] for the Hungarian method

Network Flow: [88, 226, 227, 228] for the out-of-kilter algorithm
and [31, 109, 305, 345] for the network simplex method

TSP: [89] for Christofides’ algorithm
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of finding the nonsupported efficient solutions by problem specific meth-
ods, using bounds, reduced costs, etc. In fact, most of the algorithms
known to the authors (with exception of the shortest path problem)
that are capable of determining the whole of E are some modification of
the two phases method, e.g. [88, 228, 346] (Network Flow), [396, 413],
(Knapsack), [399] (Assignment) and [310](Spanning Tree).

4.2. Approximation Methods

The last two decades have been highlighted by the development and
the improvement of approximative resolution methods, usually called
“heuristics and metaheuristics”. In the context of combinatorial op-
timization, the term heuristic is used as a contrast to methods that
guarantee to find a global optimum, such as the “Hungarian method”
for solving the assignment problem, or Johnson’s method for 2-machine
sequencing, or implicit enumeration schemes such as branch and bound
or dynamic programming.

A heuristic is defined by [316] as a technique which seeks good (i.e.
near-optimal) solutions at a reasonable computational cost without be-
ing able to guarantee optimality (or feasibility), or even in many cases
to state how close to optimality a particular feasible solution is. Often
heuristics are problem-specific, so that a method which works for one
problem cannot be used to solve a different one.

In contrast, metaheuristics are powerful techniques applicable gener-
ally to a large number of problems. A metaheuristic refers to an iterative
master strategy that guides and modifies the operations of subordinate
heuristics by combining intelligently different concepts for exploring and
exploiting the search space [134, 289]. A metaheuristic may manipulate
a complete (or incomplete) single solution or a collection of solutions at
each iteration. The family of metaheuristics includes, but is not limited
to, constraint logic programming, genetic algorithms, evolutionary meth-
ods, neural networks, simulated annealing, tabu search, non-monotonic
search strategies, greedy randomized adaptive search, ant colony sys-
tems, variable neighbourhood search, scatter search, and their hybrids.
A comprehensive list of 1380 references on the theory and application
of metaheuristics is presented in [289]. The success of these methods is
due to the capacity of such techniques “to solve in practice” some hard
combinatorial problems. As in the single objective case, a reasonable
alternative to exact methods for solving large-scale instances of MOCO
problem is to derive an approximation method. Such methods yield a
good tradeoff between the quality of an approximation of the efficient
solutions set denoted by and the time and memory requirements.
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The introduction of metaheuristic techniques for the solution of MOP
problems has mushroomed over the last ten years. This activity has
given birth to multiobjective metaheuristics (MOMH), aiming to ap-
proximate the (sub)set of Pareto-optimal solutions. Chronologically,
the literature reports methods based on genetic algorithms (GA, Schaf-
fer 1984), artificial neural networks (ANN, Malakooti 1990), simulated
annealing (SA, Serafini 1992), and tabu search (TS, Gandibleux 1997).

Two characteristics are found in the first methods: They are inspired
exclusively either by evolutionary algorithms, or by neighborhood search
algorithms. Future researchers may see methods which are inspired si-
multaneously by the two schools. Also, the pioneer methods were a
direct derivation of single objective optimization metaheuristics. They
have small adaptations in order to integrate the concept of efficient so-
lution to optimize multiple objectives.

Evolutionary Algorithms. Evolutionary algorithms (EA) make use
of a population of solutions. By maintaining a population of solu-
tions such a method can search for many efficient solutions in par-
allel via self adaptation and cooperation mechanisms. Self adapta-
tion means that the individuals evolve independently while cooperation
implies an exchange of information among the individuals. Here the
whole population contributes to the evolution process toward the effi-
cient set. The generation mechanism is parallel along the frontier and
we talk about “global convergence-based methods”. This characteristic
makes population-based methods very attractive for solving multiobjec-
tive problems with the advantage of being independent of the problem.

The first to introduce a multiobjective metaheuristic was Schaffer
[337, 338]. He developed Vector Evaluated Genetic Algorithm (VEGA),
which was an extension of Grefenstelle’s GENESIS program [140] to in-
clude multiple objective functions. The vector extension concerns only
the selection procedure. The main idea of VEGA is to divide the popu-
lation into equal sized subpopulations. Each subpopulation is entrusted
with optimization of a single objective. The selection procedure is per-
formed independently for each objective while evolution (crossover and
mutation operators) are performed on the union of subpopulations. As
VEGA selects individuals who excel in one dimension of performance
without looking at the other dimensions the speciation problem can arise
from this approach. It implies that individuals with balanced perfor-
mance on all objectives will not survive under this selection mechanism.
Although some serious drawbacks are known, VEGA has had a strong
influence up to now, and was at the origin of the Multiobjective Evolu-
tionary Algorithms (MOEA) wave. Most MOMH are based on MOEA.
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A list maintained on the web [48] counts several hundred papers only
for multiobjective genetic algorithms, see also Chapter 5.1.

For a long time, the problems investigated were often unconstrained
bi-objective problems with continuous variables and non-linear func-
tions. EA are appreciated by the communities of engineers. This can
explain the large number of applications of MOEA (in mechanical de-
sign, electronics, etc.) for solving real world problems. Surprisingly, few
MOEA have been applied to solve MOCO problems. One only finds
[130, 131] (Transportation Problem), [426] (Spanning Tree Problem),
[188] (Travelling Salesperson Problem) [2, 127] (Knapsack Problem),
[432] (Multi-constraint Knapsack Problem), [237] (Set Covering Prob-
lem), [390] (Containership Loading Design) and [271, 291, 379] (Schedul-
ing Problems).

Neighborhood Search Algorithms. In neighborhood search algo-
rithms (NSA) the generation relies upon one individual, a current solu-
tion and its neighbours Basically, starting from an
initial solution and a weight vector the procedure approximates
a part of the nondominated frontier corresponding to the search direc-
tion A local aggregation mechanism of the objectives, often based
on a weighted sum, produces the effect to focus the search on a part of
the nondominated frontier. It defines a sequential generation implying
a local convergence, i.e. a convergence located in an area of the efficient
frontier. The principle is repeated for several search directions to approx-
imate completely the nondominated frontier. NSA present an aggressive
convergence due to less dispersion of the search. However, they need
more effort in diversification to cover the efficient frontier completely.

The comparison of with according to objectives
raises three possible situations. If is

the difference between solution and in the objective

All the objectives are improved for solution dominates
the current solution and is always accepted.

and An improvement and a deterioration
occur simultaneously for different criteria. Both solutions    and

are potentially efficient.

All objectives are deteriorated with at least one strict
inequality. Solution is dominated by

For the two last cases a scalarizing function is often used
to project the multidimensional objective space into a monodimensional
one using Such a function allows to produce a “local agregation”
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of the objectives in order to compute the “weighted distance”
between z ( x ) and

The majority of the methods developed on the principle of NSA were
applied to bi-objective problems with discrete variables, linear functions
and linear constraints (combinatorial optimization).

Recent methods are more and more hybridized. For example, a pop-
ulation of solutions comes into NSA based methods [62, 153]. This cou-
pling aims at breaking the independent character of each search process,
inherent to the sequential generation principle, by exploiting information
available in the population.

4.2.1 Multiobjective Evolutionary Algorithms (MOEA).
Since VEGA, significant progress concerns corrections of shortcomings
observed in previous algorithms and propositions of new algorithmic
primitives to generate a better approximation of E (like the use of non-
domination ranking suggested by Goldberg [136]). Among the elements
playing a significant role in a MOEA one finds the elite solutions. Zit-
zler underlines that recent studies suggest the use of elitism to improve
MOEAs [223]. The results of numerical experiments show that the use of
elite solutions must come with a strong rate of mutation in order to pre-
vent a too fast specialization of the population. The contribution of elite
solutions in the generation of the efficient frontier in the case of MOCO
problems has been investigated by Gandibleux et al. [127, 271]. For
the knapsack problem the use of greedy solutions or efficient supported
solutions in the population has clearly shown a much better aptitude of
the algorithm to generate the efficient solutions.

In the continuation of VEGA a lot of methods have contributed to
the methodologic development of MOEAs. The most outstanding among
them are briefly mentioned. Readers can find a complete survey on these
methods in [46, 47, 114, 194].

[113]: Multiple Objective Genetic Algorithm (MOGA93) by Fon-
seca and Fleming, 1993. MOGA93 uses a ranking procedure where the
rank of an individual is equal to the number of solutions which dominate
this individual.

[361]: Nondominated Sorting Genetic Algorithm (NSGA) by Sri-
nivas and Deb, 1994. NSGA implements Goldberg’s ranking idea where
the rank of an individual is equal to its domination layer computed by
ranking the population on the basis of domination.

[172]: Niched Pareto Genetic Algorithm (NPGA) by Horn, Nafpli-
otis and Goldberg, 1994. NPGA combines the Pareto dominance princi-
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ple and a Pareto tournament selection where two competing individuals
and a set of individuals are compared to determine the winner of the
tournament.

[275]: Multiple Objective Genetic Algorithm (MOGA95) by Mu-
rata and Ishibuchi, 1995. MOGA95 is not based on the Pareto ranking
principle but on a weighted sum of objective functions to combine them
into a scalar fitness function using weight values generated randomly in
each iteration.

[431]: Strength Pareto Evolutionary Algorithm (SPEA) by Zitzler
and Thiele, 1998. SPEA takes the best features of previous MOEAs and
includes them in a single algorithm. Using the multiobjective multi-
constraint knapsack problem as benchmark, SPEA shows advantages
over the other MOEA under consideration in convergence to the efficient
frontier [432].

[205]: Pareto Archived Evolution Strategy (PAES) by Knowles and
Corne, 1999. PAES is an evolution strategy employing local search for
the generation of new candidate solutions using a reference archive to
compute the solution quality.

Other Methods Related to Evolutionary Algorithms: [20, 47, 48,
152, 151, 190].

4.2.2 Simulated Annealing. Serafini [348] was the first to use
simulated annealing as a technique for multiobjective optimization prob-
lems. All multiobjective simulated annealing-based methods since then
are still closely related to the original single objective method. They
extend the single objective algorithm to cope with the notion of effi-
ciency [396], The most recent methods include dynamic diversification
mechanisms exploiting the set of potential efficient solutions to drive the
approximation process [62, 295].

The methods presented subsequently are differentiated primarily by
four points: (1) the rule for acceptance of a new solution with some
probability depending on the temperature; (2) the scheme of decreasing
the temperature; (3) the mechanism which guides the browsing of the
efficient frontier; (4) the use of information drawn from a population of
individuals. Often the authors tested various forms and definitions of
acceptance rules. A lot of them have been suggested and discussed in
[348].

[396]: Multi-Objective Simulated Annealing (MOSA) by Ulungu,
1993. The method uses a predefined set of weights. An independent SA
process is then executed for each weight value. Each process generates a
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set of potential solutions, which are then merged and filtered to provide
the final approximation. Other references: [100, 241, 382, 394, 401, 402,
403].

[62]: Pareto Simulated Annealing (PSA) by Czyzak and Jaszkiewicz,
1996. PSA introduces the use of a sample of solutions which are simulta-
neously optimized toward the efficient frontier while they are dispersed
over the whole frontier. Other references: [63, 64, 161, 159, 160, 161,
162, 163, 187, 191, 193].

[105, 295]: The revised Engrand method. This method is not based
on a principle of search directions, and it does not need an aggregation
mechanism for the objectives. Each objective is considered separately.
Advanced strategies using the population of potential efficient solutions
drive the approximation mechanism ensuring the detection of the whole
efficient frontier. Other references: [106, 373, 374].

Other methods related to Simulated Annealing. The trip plan-
ning problem [135], interactive method for 0-1 multiobjective problems
[5], bicriteria scheduling problems on a single machine [209].

4.2.3 Tabu Search. Metaheuristics dealing with multiple
objective optimization problems are sometimes presented wrongly as
MOMH. This occurs when multiobjective problems are solved with a
single objective strategy, looking for a unique compromise solution. In
this case the original multiobjective problem is transformed or managed
as the optimization of one or several single objective problems. It is the
case for the first papers describing the use of TS as technique for solving
MOP [289]. In [66] a family of problems are solved to generate a
subset of In [168] the method consists in solving a sequence of single
objective problems considering in turn each objective associated with
a penalty term. Methods able to generated an approximation of the
efficient solutions have been introduced later.

[126]: Multiobjective Tabu Search (MOTS) by Gandibleux et al.,
1997. Its principle is based on a scalarizing function driven by a tabu
search mechanism to browse, in an equilibrium way, the nondominated
frontier. Intensification, diversification and tabu daemon are designed
for the multiobjective case. Two tabu memories are used, one on the
decision space, the second on the objective space. The former is an
attribute-based tabu list preventing return to already visited solutions.
The latter is connected with the objectives and based on an improvement
measure of each objective. It is used for updating of weights using the
pseudo criterion concept to diversify the search in the objective space.
Other references: [124, 125].
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[369]: Interactive procedure using Tabu Search by Sun, 1997. It
is an interactive procedure for general multiple objective combinatorial
optimization problems. The procedure works in a way similar to that of
the Combined Tchebycheff/Aspiration Criterion Vector Method [365].
Tabu search is used to solve subproblems in order to find approximately
efficient solutions. Other references: [3].

[153]: Tabu Search approach inspired by PSA method (MOTS*)
by Hansen, 1998. A set of “generation solutions”, each with its own
tabu list is considered. These solutions are dispersed along the objective
space in order to allow a search in different areas of the nondominated
frontier. Weights are defined for each solution to force the search into
a direction of the nondominated frontier and away from other current
solutions that are efficient with respect to it. Diversification is ensured
by the set of generation solutions and a drift criterion. Other references:
[154, 410].

[18]: TS algorithm for finding Pareto optimal solutions by Bayka-
soglu et al., 1999. A candidate list is introduced as an opportunity to
diversify the search. The components of the method are designed to
handle any type of variables (integer, zero-one, continuous and mixed).
Other references: [16, 17].

Other methods related to Tabu Search. A hybrid resolution pro-
cess based on TS and GA [2], a hybrid and interactive resolution process
based on SA and TS [5], the trip planning problem [135], scheduling
problems [240].

4.2.4 Other Approaches and New Developments. At
the beginning of the Nineties, the first works using Artificial Neural
Networks (ANN) to solve MOP were published. However, the ANN
approach remains marginal [244, 370, 371]. The first links of ant colony
systems to MOMH are recent, meriting thus their presence in this section
[182, 138, 351]. [207] presents a dedicated heuristic and [377] a stochastic
search method. We mention also a paper concerning a comparison of
neighbourhood search techniques for MOP [249].

Several aspects concerning MOMH and MOCO were discussed during
recent international conferences. One finds new adaptations of meta-
heuristic such as GRASP, scatter search, ant systems, etc. Also, MOCO
problems rarely tackled hitherto are now studied. One can find time-
tabling problems, space allocation problems, multi-period distribution
management problems, vehicle routing problems, etc. Finally, aspects
related to the computer are them also examined. Efficient data struc-
tures, such as the quad-tree have proven their efficiency to manage non-
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dominated criterion vectors [142, 372]. Reusable software as object-
oriented frameworks for multiobjective local search is in development.
These new trends promise a lot of forthcoming papers.

5. Classification of the Literature

In this section, we describe the classification scheme we used below to
annotate the references. We classify a paper according to four categories,
namely combinatorial structure, objective function type, problem type,
and method applied. The first three pertain to the description of the
problem discussed in a given paper.

As indicated in Section 2, to classify a certain paper, we first have
to identify the problem discussed. This consists of the combinatorial
structure (i.e. shortest path, knapsack, etc.), the type and number of
objectives (i.e. sum, bottleneck, or occasionally something else), and
the type of problem (e.g. finding the efficient set, max-ordering, lexico-
graphic).

In addition to the identification of the problem, we give the method-
ology used in the paper. We can distinguish between exact and approx-
imation (or heuristic) methods, where exact means that the optimal
solutions mentioned in the problem description are found, whereas ap-
proximation means that only some solutions representing this set, not
necessarily optimal, are found.

So, we introduce a classification using positions

Pos1/Pos2/Pos3/Pos4:.

Below, we provide tables where the different entries for each position are
listed.

Entries for Pos2 do not need a table, they simply define the number
and type of objective functions considered. We could restrict ourselves to
the sum and bottleneck objectives, with occasional exceptions explained
where appropriate. Most of the papers that deal with other types of
objectives are listed separately, because almost each of them would have
required its own entry here. Note that N stands for an arbitrary number
of objectives.

We remark that sometimes two entries appear in one position. This
means that one paper falls under two categories or that the approach
applied in the paper is a combination of two methods. It may also
happen that a single paper appears under several classifications if more
than one problem was considered, or several methods proposed.
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6. Annotation of the Literature Problem by
Problem

In this section we will give an annotated overview over the literature.
We found it most convenient to organize the section according to the
combinatorial structure of MOCO problems. Thus, we introduce eleven
subsections, dealing with the most important combinatorial problems, in



terms of the number of papers available. In a last subsection we briefly
mention other MOCO problems that have appeared in papers, but to a
definitely smaller extent.

As an exception to this order, we briefly mention PhD theses in the
subject, since they are also witness of the growing research efforts in
the field. An increasing number of dissertations have been written on
MOCO in recent years. Those that we found were not all dedicated to
MOCO specifically, but use some MOCO problems in another context:
[52] deals with the multiobjective shortest path problem for routing of
hazardous material, [238] contains information about bicriteria spanning
trees, [45, 204, 274, 430] are about evolutionary techniques in multiob-
jective optimization, and [86] presents some general results for certain
general MOCO problems. Among those which are specifically dedicated
to MOCO problems we mention [108] and [226] on the flow problem,
[171] and [385] in scheduling. [153, 191] explores the use of metaheuris-
tics for MOCO, and [396] introduces the two-phases method and devel-
ops it for the assignment and knapsack problem. [135] introduces the
“Trip Planning Problem”, as a preferences-based multiobjective travel-
ling salesman problem with activity and lodging selection. [100] uses the
MOSA method to solve a multiple objective Vehicle Routing Problem
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with time windows. Finally fast approximation algorithms for MOCO
problems are discussed in [326].

6.1. Shortest Path Problems

The multiobjective shortest path problem consists in finding in a network
with vector weights on the edges “optimal” paths. The papers we found
usually consider the problem with specified starting and ending node, or
from a given starting node to all other nodes. The shortest path problem
belongs to the most widely studied MOCO problems. There exists a
survey on the topic [397], a bibliography on the Internet containing an
abstract collection [254], and a classification of algorithms [355]. Our
list contains all papers mentioned there, too.

Most problems in this category are See [347] for the ef-
ficient paths problem with two sum objectives, [157] for intractability of
the same problem. In [157] ten bicriteria shortest path problems are in-
troduced and analyzed. In [92] an example shows that a result from [251]
about the connectedness of efficient solutions is wrong,
of the max-ordering problem is mentioned in [277]. However, the multi-
criteria shortest path problem is an exceptional kind of problem, because
a fully polynomial time approximation scheme is known, as presented in
[415].

A variety of algorithms based on dynamic programming (e.g. [166,
215, 358]), label setting [157, 251] and label correcting methods (e.g.
[26, 272, 356]) are available, with computational experiments [26, 174,
356] comparing different methods. In the biobjective case an algorithm
based on ranking paths has also been proposed, [44, 255]. The general
idea is also applicable to other MOCO problems with two objectives, as
explained in Section 4.

Besides, several papers present formulations of specific problems in
terms of multicriteria shortest paths, or consider other variations of the
classical problem.
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1Any nondominated objective vectors.
2Weights are time-dependent nonnegative functions
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Other particular multiobjective path problems: [56, 57, 58, 59, 60,
75, 76, 143, 331, 422]

Problems formulated as multiobjective shortest path problems, or
where these appear as subproblems: [4, 250, 253, 256, 357]



Total unimodularity of the constraint matrix guarantees that an op-
timal integer solution is found by linear programming methods, when
only a single objective is considered. With the Hungarian method (see
e.g. [279]), a very efficient algorithm is available.

The (MOAP) literature is again focussed on the determination of
(supported) efficient solutions. In fact, (MOAP) belongs to the first
MOCO problems studied. However, the first papers only deal with SE,
using convex combinations of objectives [69], or goal programming [36].
However, nonsupported efficient solutions exist [399], and the problem is

[347] and [283] and an exponential number
of efficient solutions may exist.

Exact algorithms to determine the whole set E [247, 399] have been
developed. They make use of single objective methods and duality prop-
erties of the assignment problem. Recently we can also observe the ap-
plication of metaheuristic techniques for the problem [394]. Quite a few
papers deal with a special version of the problem: [19, 36, 419]. Other
papers deal with variations of the problem or applications. These cannot
really be classified according to the problem and methodology applied
or discussed in detail. We list them separately.
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6.2. The Assignment Problem

The multiobjective assignment problem is the following

“min” Cx

(MOAP).



6.3. Transportation and Transshipment
Problems

Both are generalizations of the assignment problem, where the right
hand side of the constraint may take positive integer values, and the vari-
ables any nonnegative integer. The transshipment problem has trans-
shipment nodes in addition to demand and supply nodes. The trans-
portation problem is given below.

The transshipment problem has transshipment nodes in addition to
supply and demand nodes. Again, in the single objective case total uni-
modularity and integer right hand sides imply that an optimal solution
of the linear relaxation is also an optimal solution of the problem itself.
Making use of this fact, most of the papers use a scalarization by means
of weighted sums or goal programming approaches.

“min” Cx

(MOTP)
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Papers related to assignment models: [9, 13, 14, 19, 181, 225, 230,
235, 257, 258, 276, 298, 299, 419, 425]



where A is the node-arc incidence matrix of a network. It is well known
that with a single objective there always exist integer optimal solutions of
the LP, due to the unimodularity of A, which is the reason for considering
it a combinatorial problem.

In the multiobjective case we have to distinguish between the linear
and the integer case. In the linear case, we know that SE = E. We
deal with the papers in their relevance for the integer case. [324] demon-
strated that an exponential number (in the number of node of the net-
work) of extreme points among SE may occur. Most of the algorithms
in the literature generalize methods for the single objective flow prob-
lem, e.g. the out-of-kilter method [227, 248] or elements from network
simplex [31, 305, 345]. The algorithms for MO and lexMO problems
[88, 146] are based on ranking approaches. For linear bicriteria network
flow problems algorithms approximating the efficient set to any given
precision are presented in [27, 121, 325] and generalized to bicriteria
quadratic network flow problems in [423].
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6.4. Network Flow Problems

The network flow problem is a problem that actually is on the borderline
between combinatorial and linear optimization. Its formulation is

“min” Cx

(MOFP)

Other related problems and applications: [8, 203, 206, 224, 234,
287, 301, 314, 376, 378, 395]



6.5. The Spanning Tree Problem

The spanning tree problem is to find among all spanning trees of a
given graph one that is “minimal” with respect to the edge weights.
This problem appears in network design. It is known that the prob-
lem to find efficient solutions is [32] and intractable [149].

also holds for the max-ordering problem [149]. The
complexity status of a variety of multiobjective spanning tree problems,
involving other than the typical sum and bottleneck objectives is studied
in [32, 72, 73]. The algorithms that have been proposed to find efficient
trees range from minimizing weighted sums [308, 341, 342] over gener-
alizations of Prim’s [49] and Kruskal’s [342] method to approximation
[149] and genetic algorithms [426], A counterexample to a sufficient con-
dition for a spanning tree to be efficient [49] has been given in [149]. As
far as local search methods are concerned, it is important to note that,
defining trees to be adjacent if they have     edges in common, can
imply that the set of efficient spanning trees is not connected [92].
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1-max, 2-max/E, [259, 260, 263]

2-max, 3-max/E, [262,263]

Other spanning tree problems with different objectives: [72, 73,
177, 178, 344]

6.6. Matroids and Matroid Intersections

The matroid base problem is a generalization of the spanning tree prob-
lem. With a single objective it can be solved by the greedy algorithm.
A generalization of this result for finding efficient bases is given in [347]:
For each efficient basis B, there exists a topological sorting of the ele-
ments (e.g. edges of a graph), such that the greedy algorithm finds B.
A topological sorting is a total or linear order that respects the partial
order given by the vector weights. The problem is as was
shown e.g. in [84, 347]. A matroid intersection problem is to find a set
of minimal weight which is independent with respect to two matroids.

Few papers deal with these problems in the multiobjective case. We
identified the following, mostly presenting exact algorithms, theoretical
properties [137, 414], and complexity issues [84, 347].

6.7. The Travelling Salesperson Problem

In combinatorial optimization, the TSP is widely studied. To find a
shortest tour among cities is even with one objective,
for both the sum and bottleneck case. Moreover, the number of efficient
solutions is expected to be exponential, see [103]. For approximation
results, we refer to [89], where limits on the possibility of approximating
efficient solution by one heuristic solution are derived and generalizations
of the tree and Christofides heuristic are analyzed.

These might be reasons why investigation of the multiobjective version
is not so common, and why research concentrates on exact algorithms



based on dynamic programming as well as heuristics. Some papers dis-
cuss special versions or generalizations of the TSP, such as various for-
mulations of vehicle routing problems.

where all parameters are assumed to be positive integers. All papers
that we found deal with the problem to identify or approximate SE
or E. Finding E or SE are obviously too. Thus it is
not surprising that the algorithms proposed are either based on implicit
enumeration methods such as dynamic programming [81, 199, 200, 201],
branch and bound [396, 400] or apply heuristic procedures, especially

3 denotes an objective defined by the products of weights.

6.8. Knapsack Problems

The knapsack problem is one of the fundamental combi-
natorial optimization problems. Its multiobjective formulation is

“min” Cx

(MOKP)

398 MULTIPLE CRITERIA OPTIMIZATION



Multiobjective Combinatorial Optimization 399

metaheuristics to approximate E [125, 153, 328, 329]. Recently a poly-
nomial time approximation scheme was developed in [107]. Some pa-
pers also deal with an extension to time-dependent knapsack problems
[200, 201]. An interactive decision support system for the capital bud-
geting problem is proposed in [383]. Metaheuristics have been used to
solve multi-constraint knapsack problems [189, 432].



6.9. Multiobjective Scheduling Problems

The scheduling problems constitute a particular category. Although
these problems can often be formulated using 0-1 variables, they have
generally no particular structure. Moreover, they have a usual classifica-
tion defined according the shop organization which they refer to (single
machine, parallel machines, flow shop, job shop, open shop, etc.). Also,
the usual objective functions in scheduling have a specific sense (the
makespan, the total flow time, the tardiness, etc.).

For example we look at [212]. Let us consider jobs to be processed
on a single machine at time zero. Let and denote the processing
time and the due date of job i respectively. Let

and f is any arbitrary nondecreasing function of and
This problem is denoted by A sequence is

efficient with respect to total flowtime and maximum tardiness if there
does not exist a sequence with and
with at least one of the above holding as a strict inequality.

We observe a constant interest on multiobjective scheduling problems
during the last years, because the consideration of more than one ob-
jective is more in line with the real context of such practical problems.
In a recent survey [388] and Chapter 7.3 more than one hundred papers
are classified according to the usual notation introduced by Graham and
extended by T’Kindt and Billaut to the multiobjective case. Also, the
approximate resolution algorithms for scheduling problems and related
problems (like [161, 209, 271, 379, 410]) often are inspired by multiobjec-
tive metaheuristic methods developed for MOCO problems. For these

400 MULTIPLE CRITERIA OPTIMIZATION

: completion time of job in schedule
: total flowtime of jobs in schedule

: maximum tardiness of schedule

: set of all possible sequences.

Then the objective is to find a schedule such that

where



6.10. Location Problems
Location planning is an active area of research. The objective in a
location problem is to find one (or more) locations, such that some ob-
jective, usually related to the distance to a set of existing facilities is
minimized or maximized. These objectives usually are the weighted
sum or maximum of individual distances. Moreover, location problems
can be divided into three categories, namely planar, network and dis-
crete problems. In planar location, the feasible set is (a subset of) the
Euclidean plane. Network location problems deal with a network of
nodes and arcs, new facilities can be built either on the nodes only, or
also on arcs. Finally, for discrete location problems a set of potential
sites is specified. Problems of the latter category are usually formulated
as mixed integer programs. From the point of few of MOCO, we will
consider only network and discrete location problems. For details about
planar problems and single objective location problems, we refer to the
specialized literature, e.g. [222, 221] for surveys. We refer also to two
reviews on the topic in MOCO context, [55] and [317]. Most of the
applications use a goal programming approach.
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reasons, we mention actual developments for this category of problems
but for more details about multiobjective scheduling problems we refer
to Chapter 7.3 and [37, 171, 385, 388].

Single machine problems:

[12, 207, 208, 212, 213, 417], (SCH/2/Ê/SA);

[209, 271, 328] (SCH/2/Ê/GA);

[379] (SCH/Q/Ê/GA);

Multiple machine problems: [25, 175, 269, 336, 386, 389];

Surveys: [387, 388];

PhD theses: [171, 385];

Papers on other scheduling or production management problems:
cell formation problem (SCH/Q/CS/TS) [168] and resource con-
strained project scheduling (SCH/Q/Ê/SA,TS) [410].



where if element is contained in subset and all coefficients of
C are assumed positive.

The SCP has applications in the location of emergency facilities. Sup-
pose there are sites of potential emergency and potential locations
for emergency facilities, incurring cost to build this site. Then the
aim is to select – at minimal cost – enough sites to cover all risks.

The multiobjective set partitioning problem (MOSPA) requires equal-
ity constraints and the multiobjective set packing problem con-
straints (MOSPP). Other applications of set covering and set partition-
ing problems arise in scheduling and rostering.

402 MULTIPLE CRITERIA OPTIMIZATION

6.11. Set Covering and Partitioning Problems

The set covering problem is concerned with selecting subsets of a set that
cover all elements of the set at minimal cost. The variables are binary
variables for each subset that may be chosen. Thus, the IP formulation
of this problem is given as follows:

“ min ” Cx

(MOSCP)



6.12. Other MOCO Problems

In the previous sections we have discussed the most important mul-
tiobjective combinatorial optimization problems. Besides these there is
some literature on other problems: Some classical problems have been
discussed only in a few papers, others deal with problems that are so
specific that they would require their own category. All of these are
discussed summarily here.

In [145] a lexicographic flow problem is used to determine minimal
cuts with a minimal number of arcs in a network. [354] deals with the
one dimensional cutting stock problem with two objectives in a lexi-
cographic context (priorities on the objectives). Both an exact and a
heuristic algorithm are given. In [210] a branch and bound procedure
to find all Pareto-optimal solutions is given, and [39] use a combination
of objectives. In [1] an interactive approach is proposed to solve the
multiobjective cutting stock problem.

We also found few references [185, 243] on the quadratic assignment
problem (QAP) in a multicriteria context. This is closely related to
the facility layout problem which is discussed in a number of papers.
They actually propose approaches based on the quadratic assignment
problem: [79, 115, 242, 320, 404]. Other references on the facility layout
problem (FLP) are [185, 217, 350, 416]

Many of the papers listed in the surveys [53] and [54] about mul-
tiobjective transportation and routing problems also are among these
specific problems. A variety of multiobjective routing problems is also
discussed in [23], [100], and [135]. For network design problems we re-
fer to [116, 117, 118, 119, 120, 129, 180, 186, 239, 284, 297]. Another
problem which is combinatorial in nature has been discussed in [66]
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(MOSCP) and (MOSPA) have not gained much attention in the lit-
erature, and we found no references for (MOSPP). The main results in
one of the references [333] are wrong. [164] deals with a particular prob-
lem. Note also that some of the problems discussed in the shortest path
section 6.1 above and in the other MOCO problems section 6.12 below
deal with aspects of “covering”.



(the channel minimization problem). In [273] a GA based heuristic is
proposed to solve an extended formulation of the nominal airline crew
rostering problem with two objectives.

The problem of minimizing several functions over the set of all per-
mutations of a finite set is discussed in [104].

[28] presents a two step approach for a multicriteria timetabling prob-
lem. First, high quality timetables are generated with respect to each
criterion separately. Second a compromise solution is searched. In [29],
a hybrid heuristic using a population is described. Results are reported
for a real instance of a biobjective space allocation problem.

[259] considers, among others 1-tree problems with one sum and one
bottleneck objective or two bottleneck objectives. 1-trees are important
as relaxations of the TSP. A 1-tree is a spanning tree on nodes 2,... ,
together with two edges incident on node 1.

7. Open Questions and Conclusions

Our survey of the state of the art in multiobjective combinatorial opti-
mization clearly identifies potential areas of research and weak points in
the existing literature. We briefly outline these below.

404 MULTIPLE CRITERIA OPTIMIZATION

7.1. General Remarks

(a)

(b)

(c)

Three is more than two plus one. Many of the existing methods
concern the biobjective case (to various extents, depending on the
problem). The multiobjective case is still hard to be solved, not
only due to the computational complexity, but also due to the
higher number of more efficient solutions of the MOCO problem.

Theoretical results. Very few theoretical results are available about
the properties of MOCO problems, like characterization of efficient
solutions, the number of efficient solutions (supported and nonsup-
ported) both in the worst case or on average, the topology of the
nondominated frontier, the elicitation of lower and upper bounds,
etc. Taking into account the fact that MOCO problems are almost
always very hard in terms of computational complexity the need
for a thorough theoretical understanding of MOCO problems is all
the more evident. It is also clear that a better theoretical com-
prehension of these problems will contribute to the development
of efficient solution methods.

Adaptation of well known methods versus new methods. Many of
the current extensions of methods useful for single objective opti-
mization to the multiobjective situation have exhibited some diffi-



culties for finding E. One such example is the the VEGA method.
MOCO problems have specific properties and need specific tech-
niques to cope in an efficient way with these. Some adaptations
such as MOSA, PSA, etc. could produce good results on a partic-
ular problem like the knapsack problem. The question is, whether
such method show good performance when applied to other prob-
lems. From the evolution of these methods over the last years,
one can have some doubts. No comparative studies on the per-
formance of solution strategies like branch and bound or dynamic
programming on a variety of problems are available.

Applications of MOCO. Few papers refer to practical application
of MOCO problems. Moreover, when the MOCO problem is ex-
tracted from a practical context, the resolution is often reduced
to a single objective problem. For example, this is the case to
the channel minimization problem of [66], but also for a lot of
scheduling problems (see [385]). Thus there is a need to attract
the attention of decision makers to the area of MOCO and solve
the problems arising in practice in a real multicriteria context.

(d)

7.2. Remarks on Exact Methods

(a)

(b)

(c)

Two versus many criteria. Especially for exact methods, i.e. those
identifying the whole of E there is a huge gap between the bicriteria
and the general case. Many procedures have been developed espe-
cially for bicriteria problems and cannot be modified to deal with
the general case, a remark that is especially true for the two phases
method. This gap is probably caused by the lack of theoretical un-
derstanding of MOCO problems with three or more objectives, as
pointed out above.

The two phases approach. As far as we know there are no proce-
dures to compute supported efficient solutions in the multiobjec-
tive case. This would be of course the first step to an application
of the two phases method in three or more criteria MOCO. Some
difficulties are pointed out in [96] for max-ordering problems and
in [360] for finding supported efficient solutions.

Computation of bounds. For the effective adaptation of some bi-
criteria methods to the general case, knowledge of good lower and
upper bounds on the efficient set is needed. The computation of
the Nadir point (which is pretty easy in bicriteria problems) is an
unsolved problem in general. Another research area would be to
consider the computation of sets of solutions that constitute a set
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of lower and upper bounds on E. The lack of such results makes it
impossible to adapt certain procedures to general MOCO at this
time. Some preliminary results are presented in [90].

Problems not treated as MOCO. There is a wide variety of combi-
natorial problems that have not or hardly ever been investigated
in a multicriteria context, as is evident from the problems list in
Section 6.

Level set approach. An important concept in MOP is that of level
sets. It can be seen as a general framework for MOP, which allows
a characterization of efficient solutions [91], as well as interactive
procedures. Applications to MOCO could be promising but are
not existing now.

(d)

(e)

7.3. Remarks on Heuristic Methods

(a)

(b)

(c)

A real multiobjective metaheuristic for MOCO. Closely related to
the remark about adaptation of single objective methods is the
question of multiobjective metaheuristics to solve MOCO prob-
lems. We are not convinced of the efficiency of a real metaheuristic
in the sense of a meta-method able to solve efficiently any MOCO.
Each problem has its own specifics and a general MOMH cannot
cope with all of these.

Methods for obtaining quickly a first approximation of E. If a
heuristic method defined according to the “a posteriori mode” is
available, it is easy and alway possible to transform it to the “in-
teractive mode”. The main challenge for heuristic methods is then
how to obtain very quickly a good approximation of the whole
nondominated frontier. With such an approximation, the proce-
dure could then be to continue either in increasing the approxi-
mation quality for the nondominated frontier or in focusing the
approximation on a part of the nondominated frontier following
the preference of a decision maker in the context of an interactive
procedure.

The quality of approximated solutions. This is an important ques-
tion in the context of approximation methods: How to measure
and compare approximations, and how to evaluate the quality
of an approximation, especially for problems with multiple objec-
tives? Ideas have been put forward in [156, 335, 394, 198]. Some
attributes like coverage, uniformity and cardinality to judge the
approximation to be satisfactory or not by a decision maker have
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been defined. Such attributes are also useful when defining stop-
ping rules in approximation methods, and again when the tuning
of heuristic algorithms is examined. New attributes are then espe-
cially welcome.

Using bounds and domination conditions to reduce the search
space. In the continuation of the previous remark, all available
information to bracket and reduce the decision space is welcome.
Such information could be used for scanning the “core” of the prob-
lem, identifying and discarding irrelevant aspects of the problem
investigated. Information could be derived from the decision space
as well as from the objective space.

Combination of exact and heuristic methods. For some MOCO
problems, the resolution could be decomposed in several steps.
For example, in a first step the procedure could try to identify the
supported efficient solution using an exact method. Information
could be extracted from the first results to reduce the search space
and in a second step try to identify the nonsupported solutions by a
heuristic method. Such a “semiexact” method is especially attrac-
tive for problems that can be efficiently solved as single objective
combinatorial problems.
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MULTICRITERIA SCHEDULING
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Abstract We examine the problem of scheduling jobs on machines to minimize
multiple conflictuous criteria. This problem is considered in the con-
text of Multicriteria Optimization Theory. After having introduced the
foundations, we define Multicriteria Scheduling Problems (MSP) and we
present a framework for solving them. We review the literature on MSP,
providing both complexity results and comments on recent advances.

Keywords: Scheduling, Multiple criteria, Complexity, Typology.

Introduction
Scheduling Theory appears in the mid 1950s. So far, problems increas-
ingly become complex mainly due to underlying industrial applications.
Considered workshop configurations are more and more tight to real
ones since a lot of problems deal with pools of machines, with multi-
purpose machines, with multiprocessor tasks, etc. In the same way, the
considered constraints become closer to real situations where orders have
different release dates, due dates, and so on.

Unfortunately, most of the problems dealt with in the scheduling liter-
ature involve only one criterion to measure the quality of solutions. Nev-
ertheless, along the planning levels different criteria may be considered.
At a strategic level, at which the long term planning is determined, the
goals are mainly to minimize costs related to material, financial and hu-



man investments. At a tactical level, a mid-term planning is established
minimizing costs related to goods storage, supply chain and production
system. At a scheduling level or short-term planning level, production
costs, work-in-process costs as well as delivery delays have to be min-
imized. Even if other reasons can lead to considering a Multicriteria
Scheduling Problem (MSP), it is clear enough that such a problem can
have numerous practical issues.

Hence, taking multiple criteria into account allows to compute a more
realistic solution for the decision maker [91]. This is emphasized while
solving a practical scheduling problem. Multicriteria problems have been
extensively studied in the literature, whatever the interest field. Synthe-
ses on MSP already exist [30, 40, 56, 78] but they are mostly restricted
to single machine problems. Moreover, none consider MSP within the
context of multicriteria analysis although numerous works have been de-
voted to MultiCriteria Decision Aid/Making (MCDA/M). The purpose
of this chapter is to fill that gap and to review recent advances in the
last decade on MSP.

The remainder is organized as follows. Firstly, we introduce in Section
1 the basics of Scheduling Theory and in Section 2 that of Multicriteria
Optimization Theory. Afterwards, a framework for solving MSP is pre-
sented in Section 3. Section 4 contains a synthesis of complexity results.
The rest of the chapter is dedicated to the review of MSP according
to the workshop configuration. Section 5 is devoted to single machine
problems, Section 6 to parallel machines problems and Section 7 to shop
scheduling problems.

1. Scheduling Theory
Numerous books present a synthesis of results concerning scheduling
problems. We can cite for instance [11, 14, 86]. Several definitions of a
scheduling problem are presented in the literature:

Scheduling is the allocation of limited resources to tasks over time. It
is a decision-making process which involves the optimization of one or
several objectives. [86]

We assume that jobs have to be processed on resources. Each job is
composed of one or several operations, that can be processed in a given
order. The resources are either renewable (like machines, men, files,
etc.) or non-renewable (like money, raw materials, etc.). Renewable
resources can be disjunctive (one operation is performed at a time) or
cumulative (limited amounts of operations can be performed simulta-
neously). Sometimes, similar resources are gathered into stages which
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leads to consider an assignment problem in addition to the scheduling
problem.

1.1. Some Application Fields

Lee, Lei and Pinedo [69] present recent advances in scheduling theory
and in scheduling practice.

Undoubtedly, numerous scheduling problems come from the produc-
tion field and we generally consider that resources are machines. In
Flexible Manufacturing Systems, machines have finite capacity input and
output buffers, and transporters are needed to handle operations from
one machine to another. Recent works related to this field are robotic
cell scheduling and scheduling of Automated Guided Vehicles (AGV).
Similarly, the hoist scheduling problem, that involves cyclic scheduling
problems of hoists subject to time-window constraints, has its own char-
acteristics. Besides, it has numerous practical issues as for instance in
electroplating and chemical industries, printed circuit boards and indus-
trial connectors production.

Jobs can also be considered as tasks and resources as processors. In
this case, we meet different problems depending on the number of avail-
able processors. Tasks are often subject to deadlines and the problem
of simply finding a feasible schedule is a hard one.

Many other applications like time-tabling problems, project schedul-
ing under resource constraints, scheduling with batching, with lot-sizing,
etc., can be dealt with.

Once we have a scheduling problem issued from a practical situation,
it may be not easy to know how to solve it. First, we have to know if the
problem - or a neighbourhood problem - has already been solved and if
not, how to solve it. In order to refer to any scheduling problem, the
notation introduced by Graham, Lawler, Lenstra and Rinnooy Kan [47]
is commonly used. It consists in three fields where refers
to the configuration of the resources, to the constraints, and to the
optimized criterion.
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1.2. Resource Environments

The resource environment of a scheduling problem is described in the
of the problem notation. This field can be decomposed into

with the type of resource environment and the number of resources
if it is known, if the number of resources is not known but
is fixed, and if the number of resources is arbitrary. Several
environments (noted in field are possible depending on whether there
is an assignment problem or not.
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1.2.1 Scheduling Problems.

Single machine problems There is only one resource and
each job to perform is made up of only one operation. We say that
jobs are mono-operation.

Flowshop problems The workshop is composed of m re-
sources and each job is made up of operations (multi-operation).
The jobs have the same routing, i.e. they visit the resources of the
workshop in the same order.

Jobshop problems The workshop is composed of
resources and each job is made up of operations. The jobs have
their own routing in the workshop.

Openshop problems The workshop is composed of
resources, each job is made up of operations. The routing of the
jobs is not fixed.

Mixed shop problems These problems are a combination
of jobshop and openshop problems.

1.2.2 Scheduling and Assignment Problems. We assume
that similar resources are gathered into stages. Accordingly, we assume
that resources belonging to the same stage are able to process the same
operations. For a given stage, different configurations are possible:

resources are identical parallel machines ( ): the operation pro-
cessing time does not depend on the performing resource;

resources are uniform parallel machines ( ): the operation pro-
cessing time depends on the speed of the performing resource;

resources are unrelated parallel machines ( ): resources have dif-
ferent speeds that depend on the operations. Hence, the operation
processing time depends on the performing resource.

Besides, different scheduling and assignment problems can be dealt
with depending on the following resources configurations:

Parallel machines There is only one type
of resources, that are gathered in one stage and jobs are mono-
operation.

Hybrid Flowshop The workshop is composed of
stages and each job is made up of operations. The jobs have the
same routing through the stages.



pmtn indicates that preemption is allowed, e.g. it is possible to
interrupt the processing of a job and to resume it later, even on
another machine.

prec indicates precedence relations between jobs. Usually, prece-
dence relations are represented by a graph G. If job precedes
job it means that operation cannot start before the com-
pletion of operation If G is a particular graph (a tree, a
chain, etc.), prec is replaced by tree, chain, etc.,

no – wait is used for the multi-operation case. For each job
it means that the start time of operation is equal

to the completion time of operation

nmit stands for “no machine idle-time”. This constraint imposes
that when processing begins of the first job on a resource, process-
ing continues uninterrupted until all jobs are completed on that
resource.
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Generalized Jobshop and Openshop The work-
shop is composed of stages. The jobs visit the stages according
to their own routing or in a non specified order, respectively.

1.3. Constraints and Notations

We note the set of n jobs to schedule and the
number of resources. Operation of job is noted and the number
of operations of job is noted (generally,

The characteristics of the problem are specified in the of the
notation. However, some implicit constraints are not mentioned in this
field. For example, we consider that resources are disjunctive, hence it
is not possible to schedule more than one job on a resource at a time.
When dealing with project scheduling problems, a particular notation is
proposed by Herroelen, Demeulemeester and De Reyck in [55]. Further-
more, if job is made up of several operations, operation can not
be scheduled before the completion of operation

Constraints related to the completion of jobs are of two types: due
date or deadline. A due date is a date before which job has to be
completed. However, the job can be late if needed. A deadline is a
due date for which tardiness is not allowed. Sometimes, such a problem
may have no solution. Conversely, we define a release date as a date
before which it is not possible to start the processing of job

Numerous characteristics of jobs can be included in the field      The
most common are the following:



Each of these criteria is a function of the set of jobs completion times.
In their general form, a criterion Z can be noted

is the makespan, is
the maximum lateness, and is the maximum
tardiness,

is the sum of job completion times or the total com-
pletion time, is the total tardiness, and
is the total number of tardy jobs. These criteria can also be de-
fined in a weighted form, if a weight is associated with each job

For example, we have and and in the
same way.

Two types of objective function are used to evaluate a schedule: the
“maximum” objective function and the “sum” objective function. The
most common criteria considered in the scheduling literature are the
following:

the lateness of job

the tardiness of job

the earliness of job

otherwise, the unit penalty associated
with a tardy job

More details can be found in [11] for the constraints description.

1.4. Criteria

We note the completion time of job For each job we define the
following functions:

In some scheduling applications, setup times and removal times are
not negligible and have to be considered. These durations depend
on the job sequence (color transitions for example), or not. We
refer to and as the non sequence dependent setup times
and removal times, respectively. and refer to the sequence
dependent setup times and removal times, respectively.

Sometimes all the jobs share some characteristics as for instance a
common due date, noted or a common job processing time
noted If there is a common due date and if the due date
has to be determined, the constraint is noted
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Definition 1 We say that a criterion Z is a regular criterion if for
any schedule S and implies that

with
and the completion time of job in S and in respectively.

Definition 2 We say that a schedule S is an active schedule, when it
is not possible to find a schedule such that

with at least one strict inequality.

For any regular criterion, the set of active schedules dominates the
set of schedules, e.g. there always exists an optimal schedule which is
an active schedule.
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2. Overview of Multicriteria Optimization
Theory

Multicriteria Optimization Theory (MOT) has been extensively studied
in the literature. Generally, few hypotheses on the set of feasible solu-
tions are assumed and the aim is to provide general results for optimizing
criteria [32]. MSP are particular multicriteria optimization problems for
which specific assumptions are made on that set, which emphasizes the
need for considering MSP within the context of MOT.

Minimizing several conflicting criteria changes the way scheduling
problems are dealt with. In most cases, one solution that optimally
minimizes all the considered criteria does not exist. It implies that a
new definition of optimality must be considered, namely Pareto opti-
mality. In fact, two main definitions are encountered in multicriteria
optimization literature: the definitions of Pareto optimality and of weak
Pareto optimality.

Definition 3 Let us consider K conflicting criteria to be minimized.
is the set of solutions and its image in the criteria space,

is a Pareto optimum (or an efficient solution) such
that with at least one strict inequality.
E is the set of all Pareto optima and its image in the criteria space
(i.e. the set of non dominated criteria vectors).

Definition 4 Let us consider K conflicting criteria to be minimized.
is the set of solutions and its image in the criteria space. is

a weak Pareto optimum (or a weak efficient solution)
such that WE is the set of all weak
Pareto optima and its image in the criteria space (i.e. the set of
weakly non dominated criteria vectors). One has



A subset of set E is sometimes considered in the literature. It is called
the set of proper Pareto optima and is noted PRE [46]. In the view of
MSP, considering these solutions is useless since we mainly deal with
problems with a finite number of linear constraints, for which we have
PRE = E.

The decision maker is only interested in the Pareto optima, but unfor-
tunately results available mostly allow computation of a subset (or the
entire set) of W E. Roughly speaking, the computation of one Pareto op-
timum is done by aggregating the criteria into a new objective function,
and hence by introducing new parameters like weights, goals or bounds.
The optimal solutions of this new “single criterion” problem are Pareto
optima. We briefly review, in the remainder of this section, methods to
compute Pareto optima.

The method which is undoubtedly the most well known, involves the
minimization of a convex combination of criteria. The impact in terms
of computed Pareto optima depends on wether we have zero weights
or convexity assumptions. The basic and more general result is due to
Geoffrion [46]. It states a necessary and sufficient condition to compute
proper Pareto optima, once we have a convex set convex criteria

and strictly positive weights. If the convexity hypothesis does not
hold, some proper Pareto optima can not be computed by minimizing a
convex combination of criteria, whatever the considered strictly positive
weights. Such solutions are called non supported proper Pareto optima,
whilst the ones that are minima for a convex combination of criteria
are called supported. In the same way, conditions for computation of
weak Pareto optima can be stated by considering that some, but not all,
weights can be zero.

One of the most powerful methods is referred to as the parametric ap-
proach. A basic result [98] states a necessary and sufficient condition for
computing Pareto optima, once a strictly increasing real valued function

over the criteria has been defined. Consider the minimization prob-
lem of function g with the additional constraints
where are bounds. Then if and only if it exists a bounds vector
such that is an optimal solution of the corresponding minimization
problem.

Another classical method in MOT which is one of the most used for
solving MSP is called the approach. We consider the min-
imization problem of a criterion, namely whilst the others are
subject to bound constraints, i.e. For
a given criterion and a fixed bounds vector, the optimal solutions
of the corresponding problem are weak Pareto optima. Unfortu-
nately, some weak Pareto optima can not be computed by solving all the

452 MULTIPLE CRITERIA OPTIMIZATION



Multicriteria Scheduling Problems 453

possible problems being fixed or not. One result states that if
the same criterion is always minimized, the set of optimal solutions
of the possible problems is a subset of W E that contains E even if
no convexity hypothesis is assumed.

Other classical methods are related to the introduction of goals. By
considering a function (usually a metric) measuring the distance of a
solution to the goals, we can derive results for the computation of Pareto
optima. Moreover, goals are data that can be understood quite easily
by a decision maker. The most used distance functions belong either to
the Tchebycheff metric family, or to the metric family. We refer to
[32] for more details on these methods.

In some situations no tradeoff is allowed between the criteria. It
means that decreasing the value of a criterion is not allowed if it leads
to increase a more important one. For these problems, no information is
required from the decision maker once the order between the criteria is
defined. We refer to this approach as the lexicographical, or hierarchical,
approach. Let the criteria order be that of the indices, i.e.

and
The lexicographical minimization problem is equivalent

to find a solution Solution is a Pareto optimum and all
solutions belonging to a set are weak Pareto optima.

The choice of a method for computing one Pareto optimum mainly
depends on the information available from the decision maker. Never-
theless, it is not sufficient to solve the defined multicriteria optimization
problem since it remains to choose when the information is given by the
decision maker. As a matter of fact, he has to decide, among the set of
Pareto optima, the one he prefers since none can be established as the
ideal solution. The moments at which the decision maker can give this
information lead to distinguish three classes of resolution contexts [36].
Consider that a method for computing Pareto optima has been obtained.
If the values of the resulting parameters can be set with certainty by the
decision maker, we fall in the class of a priori resolution contexts. If
the decision maker has a partial idea of what are these values, he may
want to interactively change them and test several Pareto optima before
retaining one. In this case, we are in the class of interactive resolution
contexts. The last case occurs when the decision maker has no idea of
how to set the parameter values. It leads to the class of a posteriori
resolution contexts, where the whole set of Pareto optima is computed
and presented to the decision maker.

Besides the choice of a method for computing Pareto optima and of
a resolution context, the algorithm designed to solve the multicriteria
optimization problem can always be separated, from a practical point of



view, into two procedures. The first one, called the taking criteria into
consideration procedure, aims to do the interaction with the decision
maker following the chosen resolution context. Each time parameter
values are fixed, a solution procedure is run with these values as input
arguments. It returns to the former procedure a Pareto optimum. For
MSP, the solving procedure is called the scheduling procedure.

For instance, consider the case where one Pareto optimum is com-
puted by minimizing a convex combination of criteria in an interactive
resolution context. First, initial weight values are set by the taking
criteria into consideration procedure and the solution procedure is run.
The returned Pareto optimum is shown to the decision maker who can
change the weight values according to his preferences. With these new
values, the execution of the solving procedure is iterated. This interac-
tive process can be performed until the decision maker decides to stop.

3. Solving Multicriteria Scheduling Problems

3.1. A Definition of Multicriteria Scheduling
Problems

Despite the fact that MSP are more and more studied in the last decade,
no formal definition has been introduced. Thus, we may be a bit confused
when dealing with some MSP. For instance, are problems involving a
lexicographical order of criteria, MSP? Can we consider that the problem
of minimizing a convex combination of criteria is an MSP, since only one
objective function is involved? This kind of questions highlights the need
for a definition of MSP.

Considering MCDA/M and MOT, it is clear that we are faced with an
MSP when the problem definition exhibits multiple conflicting criteria.
The notion of criterion is only related to a measure used by the decision
maker to evaluate a solution and hence, to take a decision, without
considering the relative importance of that criterion against the other
ones. Together with the foundations seen in Section 2, it leads the
following definition, illustrated in Figure 9.1.

Definition 5 A Multicriteria Scheduling Problem consists in computing
a Pareto optimal schedule for several conflicting criteria. This problem
can be decomposed into three sub-problems:
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(a)

(b)

A modelling problem, whose resolution leads to define the MSP,
i.e. the workshop configuration, the constraints and the optimized
criteria.

A taking criteria into consideration problem, whose resolu-
tion leads to choose a resolution context and a method to compute
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a Pareto optimum. We therefore provide a taking criteria into con-
sideration procedure dedicated to interact with the decision maker.

A scheduling problem, whose resolution leads to find a schedule
that optimizes the objective function defined at the previous step.
We therefore provide a scheduling procedure dedicated to solve the
problem once all additional parameters are fixed (see Section 2).

The modelling problem [91] is done according to the decision maker
and firstly consists in choosing the relevant criteria. We assume they
are conflicting, which means that the minimization of one criterion does
not imply the minimization of others. Secondly, we exhibit the machine
environment in which the MSP occurs, i.e. the resources (machines, men,
etc.) available for processing of jobs and their organization. Thirdly, we
identify the particular constraints related to the problem (see Section
1): job preemption, release dates, precedence constraints between jobs,
etc.

Undoubtedly, the taking criteria into consideration problem
does not exist in single criterion scheduling problems. For solving this

(c)



problem we need to get the decision maker’s preferences, that are the res-
olution context and the method used to compute one Pareto optimum.
Among all the possible choices, we usually choose the most relevant ac-
cording to the information the decision maker can give us. If no tradeoff
between criteria is allowed, he has to provide their optimization order.
Otherwise, to express the tradeoffs that are allowed he may give some
weights, goals to be reached or bounds not to be exceeded. These param-
eters are set according to the resolution context. If the decision maker
is able to define the exact parameter values, an a priori resolution can
be used. If he has an idea of these values but wants to try different
ones, he may prefer an interactive resolution. At last, an a posteriori
resolution is chosen if the decision maker has no idea of the value of the
parameters. Therefore, he may want to have all the Pareto optima to
choose the one he prefers. For instance, if he can give a weight for each
criterion but he is not sure of their exact value, we may choose to com-
pute a Pareto optimum by minimizing a convex combination of criteria
in an interactive resolution context.

Once the resolution of the previous problem has been completed, we
have to provide an algorithm that solves the scheduling problem defined
when the parameter values are known. The scheduling problem can
be described using the three-field notation presented in Section 1. The
optimal solutions for the problem at hand are Pareto optima for the
related MSP.
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3.2. Extension of the Three-Field Notation for
Multicriteria Scheduling Problems

The three-field notation mainly applies to single criterion problems, al-
though some survey papers on MSP provide extensions [18, 30]. The
framework presented in Section 3.1 highlights numerous possibilities for
the criteria field of the notation, depending on the decisions taken while
solving the taking criteria into consideration problem. Thus, the exten-
sions quoted above may be quite restrictive and need to be revised.

We distinguish two levels and consequently, two possible notations for
MSP. As mentioned in Definition 5, an MSP can be decomposed into
three sub-problems. Once the modelling problem has been solved the
MSP considered is well defined. Accordingly, it can be classified using
the notation presented in Section 1 with the list of criteria in
the separated by commas. For instance, a 2-machine flowshop
with the total tardiness and the total earliness criteria, can be noted:



Once the taking criteria into consideration problem has been solved,
a scheduling problem, whose optimal solutions are Pareto optima, is
defined. It can be useful to refer to this problem since the schedul-
ing procedure designed solves it. Depending on the decisions previously
taken and so on the method used to compute one Pareto optimum, dif-
ferent values for the field can be introduced in a second-level notation.
We summarize them below:

Multicriteria Scheduling Problems 457

Z, if the aim is to minimize one single criterion. As usual, Z stands
for etc.

refers to the minimization of a convex combination
of the K criteria.

refers to the minimization of a non decreasing func-
tion over the K criteria, subject to upper bound constraints. This
is the parametric analysis approach.

refers to an problem with
one criterion being minimized subject to upper bound con-
straints for the others.

and refer to the
problems of minimizing, respectively, a Tchebycheff metric, wei-
ghted Tchebycheff metric and weighted augmented Tchebycheff
metric. For these problems the decision maker introduces goals.

refers to the maximization of a particular distance
function. It belongs to the goal-attainment approach [112].

refers to the lexicographical minimization of the K
criteria. The order considered is specified between the parenthesis.
With this problem, no tradeoff between the criteria is allowed.

refers to the Goal Programming approach where
the aim is not to minimize criteria but to find a solution satisfying
defined goals.

refers to the problem of enumerating all the Pareto
optima without using a special objective function. This notation
is always related to an a posteriori resolution context where the
provided algorithm proceeds by enumerating all the solutions in
order to retain the Pareto optima.

For instance, it is possible to solve the multicriteria schedul-
ing problem, by iteratively solving either the problem, or



the problem, etc. In the rest of this chapter MSP will
be mostly referred using the second level notation, i.e. the one of the
scheduling problem involved.

4. Complexity Results

Complexity of MSP has been considered in surveys [18, 19, 56, 70, 78,
102], mostly related to single machine problems. In this section, new
complexity results are investigated, depending on the kind of the objec-
tive function and depending on the criteria. Reduction trees are pro-
posed to summarize the results and later used to deduce the complexity
of some scheduling problems.

We note if problem A “Turing reduces” to problem B [44] and
we note the optimization problem associated to criterion
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4.1. Results Depending on the Objective
Function

The MSP definition introduced in Section 3, highlights that for a given
MSP scheduling problems with different objective functions can be solv-
ed. Hence, it might be interesting to tackle the links in terms of complex-
ity between these problems. Both existing and new results are provided.
Proofs are only given for new results. We denote as the problem of
computing only one Pareto optimal solution.

Consider the problem of minimizing a lexicographical order of criteria,
noted and defined as follows.

Data: Let S be the set of feasible solutions.

Problem: Find a solution such that

Proposition 1 We have (1.a) [18] and (1.b)

Proof: We prove the second reduction (1.b). The solution for problem
is a Pareto optimum, which is also a solution for problem

Consider the problem defined as follows.

Data: Let be the set of feasible solutions, the first criterion
and K – 1 values

Problem: Find a solution in such that

with
and



Proposition 2 We have (2.a) and (2.b) if is polynomially
solvable and K = 2, then

Proof: (2.a) Consider an algorithm A which solves problem by solv-
ing with where M is a sufficiently big number.

(2.b) Consider an algorithm A which solves problem by solving
with the optimal value of criterion

Consider problem defined as follows.

Data: Let be the set of feasible solutions, and

Problem: Find a solution in such that:

Proposition 3 We have (3.a) and (3,b)

Proof: (3. a) With the proper choice of weights, problem can be used
to generate a solution to the lexicographical problem [32]. Therefore,
a polynomial time algorithm for can give a solution to the
problem, which proves the result.

(3.b) Consider an algorithm A which solves problem by solving
problem with and
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4.2. Application to Scheduling Problems
4.2.1 Existing Results. In multicriteria scheduling literature,
authors generally consider that criteria are either gathered in a linear
combination considered in a lexicographical order

or subject to bounds Sometimes, the general
multicriteria problem, related to the enumeration of the set of Pareto
optima is tackled.

Chen and Bulfin [18, 19] provide complexity results for some bicri-
teria scheduling problems on a single machine and on traditional mul-
tiple machines scheduling problems including parallel machines, flow-
shop, jobshop or openshop. The criteria they consider belong to

Chen and Bulfin consider problems and and show that
Besides, most of the scheduling problems are shown

to be
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A simple reduction tree concerning scheduling criteria is well known
(Figure 9.2). It is possible to extend this tree to bicriteria lexicographical
problems.

Proposition 5 For all it exists a polynomial Tur-
ing reduction such that

4.2.2 Bicriteria Lexicographical Scheduling Problems.

Proposition 4 Forall
for all it exists a polynomial Turing reduction such

that

Proof: The algorithm which solves the problem can
be used to solve the corresponding problem with all
the weights equal to 1. The returned solution is optimal for criterion

and minimizes We obtain the reduction trees presented in Figure
9.3.
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Proof: The reductions can be referred to as
The proof we give holds for The

algorithm which solves the problem can be used to
solve the problem with all the due dates equal to 0,
because criterion do not take the due dates into account. Hence, the
returned solution is optimal with regards to criterion and minimal
for criterion

Proposition 6 For all it exists a polynomial Tur-
ing reduction such that

Proof: The proof is similar to the proof of the Turing reduction of the
single criteria decision problems and [14].

The results of propositions 5 and 6, are summarized in the reduction
tree presented in Figure 9.4.

4.3. Synthesis

We summarize in Table 9.1 the complexity of some well-known single
criterion and single machine scheduling problems. We note “H” a

problem, “H+” if it is in the strong sense, and “H–” if it

and
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is in the ordinary sense. “P” refers to a polynomial problem
and “O” to an open problem. Most of the scheduling problems
with and are in
the strong sense.

We present in Table 9.2 some complexity results concerning single ma-
chine bicriteria scheduling problems of type that we extend to
criteria belonging to The references given for each
refer either to a paper (“[n]”), to a proposition in this chapter (“(n)”)

problem

or to a trivial proof (“tr”).

Notice that the problem is polynomially solvable,
even if the problem is in the strong sense. Remember
that the problem of minimizing the first criterion only in the lexicograph-
ical order reduces to that of lexicographical minimization (Proposition
1.a).

From Table 9.2 and the literature, we produce Table 9.3, where results
concerning single machine bicriteria scheduling problems of type are
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presented. Similarly, Table 9.4 provides results for problems of type
We can note that the latter table is symmetric.

Notice that numerous bicriteria single machine scheduling problems
involving criteria and are open.
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All the multiple machines scheduling problems of type with
are in the strong sense, with any

criterion Z of leading to the conclusion that they are in the
strong sense with more than one criterion. Only problems of type
with are polynomially solvable. We present in Table 9.5
complexity results for problems of type Since these
problems are the problems with a number of machines greater
or equal to 2 are also and the parallel machines scheduling
problems with uniform or unrelated parallel machines are also

Under some assumptions, an scheduling problem can be sim-
plified and may become polynomially solvable. We present in Table 9.6
the complexity results of some lexicographical single machine problems
with unit processing times (Section 5.1). For a given problem appear-
ing in this table, sr stands for “simple reduction”, since if the problem
with arbitrary processing times is polynomially solvable, then the same
problem with unit processing times is also polynomially solvable.
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5. Single Machine Problems

Single machine scheduling problems have been extensively studied in
the literature. They have practical issues, like scheduling in computers,
and they provide basic models from which a lot of theoretical results
and algorithms can be deduced for solving multiple machines problems.
This is also valid for the multicriteria single machine problems, that are
mainly encountered in literature on MSP. More accurately, works have
been mostly dedicated to the bicriteria case and some surveys [30, 40,
56, 78] are devoted to this area.

We review the literature according to the complexity of the problems.
We distinguish the ones that are polynomially solvable, the
problems and those for which the complexity is unknown. We also con-
sider problems according to the criteria. The first problem class contains
those dealing with the minimization of K ascending functions of the job
completion times. Problems related to the minimization of the sum of
job completion times or to the minimization of the weighted sum of job
completion times, with other criteria, are investigated. Problems where
one criterion measures setup time costs as well as those with one crashing
time costs criterion are also considered. The two last classes of problems
dealt with concern problems with either only due date based criteria or
Just-in-Time criteria. The latter are seldom considered as multicriteria
problems in the literature even though they undoubtedly involve at least
two criteria: one for measuring the earliness and the other for measuring
the tardiness.
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5.1. Polynomially Solvable Problems

5.1.1 Minimization of K Ascending Functions of Comple-
tion Times. Hoogeveen [57] deals with the problem of minimizing
K functions of the completion times, noted and assumed to be
ascending. For a schedule S, we have

where is an ascending function. For the problem,
referred to as two cases are investigated and
a posteriori algorithms are proposed. The first case occurs for K = 2
and Hoogeveen shows that a modification of Lawler’s algorithm [68],
which solves the problem, leads to an optimal polynomial
algorithm for the bicriteria problem once the value is fixed. This algo-
rithm requires time and the number of Pareto optima is at most

Therefore, the enumeration of the whole set E requires
time.

The second considered case occurs for K > 2. The number of Pareto
optima is at most and Hoogeveen proposes an ex-
tension of the previously mentioned enumeration algorithm to the multi-
criteria case. The obtained algorithm requires time, with
K > 2.
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5.1.2           Minimization of the Sum of Completion Times.
The minimization of the sum of job completion times, with other criteria
has been extensively studied in the literature. The
problem is surely among the most studied MSP and various a priori
algorithms [54, 97] as well as a posteriori algorithms [80, 107] have been
provided.

Besides, if a general ascending function of the job completion
times is minimized instead of the criterion, Emmons [34] produces
an a priori algorithm for the problem. This algorithm
is based on Lawler’s algorithm [68] for the problem.
John [63] deals with the enumeration of the Pareto optima, namely the

problem. The proposed algorithm starts with an opti-
mal schedule for the problem as a seed sequence and
performs job permutations to get the whole set E. John shows that the
number of Pareto optima is lower than if

is even, where and stand for the maximum and minimum
processing times, respectively and lower than oth-
erwise. The time complexity of the proposed algorithm is in

Hoogeveen and Van de Velde [59] consider the problem
for which they propose an a posteriori algorithm. They also provide a



tighter bound for the number of Pareto optima than John’s one, since
they show that it is at most equal to

5.1.3 Minimization of the Weighted Sum of Completion
Times. Chen and Bulfin [17] deal with numerous problems with
criterion i.e. the weighted sum of job completion times, and when
jobs have unit processing times. Such models may have potential appli-
cations in computer science or, as mentioned by Chen and Bulfin, in car
production.

The problems, where
can be solved in time by greedy algorithms based on

the WSPT rule: jobs are sorted in ascending order of the ratio and
ties are broken according to the second criterion.

The problems, where
can be transformed into special assignment problems, solved in

time. A greedy algorithm requiring time, can be
produced for the problem: jobs are sorted in
ascending order of their due date di and ties are broken according to the
WSPT rule.

Problems where a convex combination of criteria is minimized are also
dealt with. Chen and Bulfin reduce the prob-
lems, where to particular assignment problems.
These reductions can be used to enumerate the set of supported Pareto
optima.

The problem is also investigated and an a
posteriori algorithm is provided.

5.1.4 Minimization of Setup Time Costs. The problem
of minimizing costs of changing tools with job classes and orders has
been tackled by Gupta, Ho and Van der Veen [49] and can be stated as
follows. orders made up of jobs, have to be scheduled on one
machine. It is assumed that jobs can also be separated into classes
and we have Moreover, if
job is processed immediately before job with
a setup time occurs between the processing of these two jobs. In
order to minimize the makespan, the sum of the setup times has to be
minimized. This setup time costs criterion is defined by:

where and is the value of the setup time between
jobs in position and + 1 in the schedule under consideration. Besides,
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This cost represents the storage of partially processed orders while wait-
ing for their completion. Gupta, Ho and Van der Veen consider the two
possible lexicographical problems.

The 1 | classes, orders, problem can be solved by a
time algorithm. An optimal schedule for the criterion

can be obtained by successively scheduling all the jobs belonging to
the same class. Hence, only the scheduling of classes has to be done.
Concerning the second criterion, jobs have to be re-arranged inside each
class in order to minimize the criterion.

The resolution of the 1 |  classes, orders, problem
leads to a O( ) time algorithm. The criterion is minimized by
successively scheduling all the jobs belonging to the same order. For
each order, the first scheduled job is the one with the greatest value of
the processing time plus the setup time whatever the next scheduled job.
The minimization of criterion is done by scheduling the orders and
the remaining jobs inside the orders. It can be performed by solving a
particular case of the traveling salesman problem, solvable in polynomial
time.
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we are also interested in minimizing the carrying cost, which is defined
by:

5.1.5 Minimization of Crashing Time Costs.  These prob-
lems are also known as problems with controllable processing times, since
each job has a processing time which has to be determined,
where and are fixed bounds. The crashing time costs criterion is

therefore defined by It has been considered
in the literature together with the criterion [106, 109] or the
criterion [109].

5.1.6 Minimization of Due Date Based Criteria. Among
the problems with unit processing times tackled by Chen and Bulfin [17],
several problems with only due date based criteria are dealt with.

The problems, where , as
well as the and
problems, where can be reduced to an assignment prob-
lem solvable in time. This also holds for the

and problems, with



Multicriteria Scheduling Problems 469

When the sum of job tardiness is involved, that is for the 1
problems, with a greedy algorithm based

on the EDD rule can be applied: the jobs are scheduled in ascending
order of their due date and ties are broken according to the second
criterion.

For problems involving the minimization of a convex combination of
criteria, that is the 1 and 1

problems, with Chen and Bulfin propose
reductions to particular assignment problems, that can be used to enu-
merate the set of supported Pareto optima.

5.1.7 Minimization of Just-in-Time Criteria.  Just-in-
Time (JiT) scheduling has been emphasized thanks to numerous prac-
tical issues. From a chronological point of view, it first appeared in the
framework of car production. So far, numerous scheduling models with
one machine have been considered with the purpose of minimizing a
convex combination of the sum of earliness and the sum of tardiness.

Hoogeveen [58] considers two problems where each job has a target
start time and a due date The jobs’ tardiness is measured in com-
parison with the due dates but not the jobs’ earliness since a particular
kind of earliness is defined, namely the job promptness. Let be the
start time of job in a schedule S. The promptness of job is defined
by The purpose is to minimize the maximum promptness,
that is criterion and the maximum lateness noted

We assume that and the two considered
problems differ depending on whether machine idle time is allowed or
not. They can be referred to as 1
and problems.

For a given value constraint leads to consider only the
minimization of criterion together with job release dates

When the nmit constraint holds, a time
a priori algorithm is presented, whilst otherwise the time complexity
becomes

For the 1 problem an a
posteriori algorithm is provided and Hoogeveen shows that the number
of Pareto optima is at most n.

Kondakci, Emre and Koksalan [65] study problems with unit process-
ing times, for which the earliness is defined in comparison with due dates.
They focus on the minimization of the number of late jobs as a mea-
sure of the tardiness. No machine idle time is allowed although it might
allow to decrease the earliness of some jobs. Problems dealt with can
be noted 1



and nmit where As
jobs have unit processing times and no machine idle time is allowed,
the aim becomes to determine the scheduled job for each position in the
sequence, once the bound on criterion is fixed. Hence, we can build
for each scheduling problem an assignment problem with the additional
upper bound constraint on criterion A posteriori algorithms based
on the enumeration of all relevant values, are proposed.

Ahmed and Sundararaghavan [2] tackle a problem with a non restric-
tive common due date and particular symmetrical weights. A common
due date is said to be non restrictive if the optimal solution of the dummy
problem obtained by increasing this common due date by one unit is no
better than the optimal solution of the original problem. We have sym-
metrical weights if jobs have weights and if for each job the weight for its
earliness is equal to the one for its tardiness. Ahmed and Sundararagha-
van consider that the weights are equal to the job processing times and
the tackled problem can be noted where

As all the due dates are equal, inserting
machine idle times, after the start time of the first job, is not interest-
ing. For the optimal schedule of the problem for which all the jobs are
processed continuously, idle time insertion does not lead to a decrease of
the objective function value. A greedy algorithm, based on LPT rule is
presented: jobs are sorted in descending order of their processing time.
Starting from this sequence, schedules are built considering that
the job in position in completes at time . The schedule with the
lowest value of the objective function is the optimal solution.

The unknown, nmit problem, with the criteria
function is probably one of the basic prob-
lems with common due date and no machine idle time. As the value of

is unknown, the optimal solution of this problem is such that is non
restrictive. From a theoretical point of view, problems with non restric-
tive common due date and unknown common due date are equivalent.
Panwalker, Smith and Seidmann [85] propose for the previously quoted
problem an time algorithm. Chen [20] considers an extension
of this problem, where jobs can be grouped into classes for delivery. All
the jobs completed early or on-time are set into the same class and are
delivered to the customer at time . Other classes are made up of tardy
jobs and accordingly the aim is to minimize the number of these tardy
classes, noted This unknown, nmit, classes
problem can be solved by a dynamic programming algorithm requiring

time.
When we deal with non regular criteria, such as criteria or

it might be interesting to insert machine idle time, in order to decrease
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their value. Therefore, two problems have to be solved: the first one
concerns the sequencing of jobs, whilst the second one is related to the
computation of job start times once the job sequence is fixed. The latter
is referred to as the optimal timing problem. Although it depends on
the criteria and objective function, it is usually polynomially solvable
since it can be modelled as a linear program. The basic work on optimal
timing is due to Garey, Tarjan and Wilfong [45] and is related to a
particular objective function. Szwarc and Mukhopadyay [101] consider
the problem and propose a decomposition into blocks
to solve the optimal timing problem. Assume that the job sequence is
that of the job index. Two consecutive jobs and belonging to
the same block are such that Accordingly, it is only
necessary to insert machine idle time between blocks and an algorithm
requiring O(cn) time is presented, where c is the number of blocks. This
algorithm is faster than that of Davis and Kanet [28]. Problems with up
to 500 jobs are solved within 2 seconds.

5.2. Problems
5.2.1 Minimization of the Sum of the Completion Times.

Most of the problems involving the minimization of crite-
rion date back to the 1980s. Azizoglu, Kondakci and Koksalan [65]
investigate the resolution of the nmit problem which
is strongly like the nmit problem. An
a priori heuristic algorithm is presented and afterwards extended to an
a posteriori heuristic algorithm to compute a subset of set WE. No
computational experiments are reported.

5.2.2 Minimization of the Weighted Sum of the Completion
Times. An extensively studied MSP in the literature relates to the
minimization of criteria and The problem
is strongly, since the problem is, too [56].
For the former, special cases have been investigated [8, 16, 33, 97]. A
priori heuristic algorithms have been provided both by Heck and Roberts
[54], Burns [15] and Miyazaki [77].

5.2.3 Minimization of Setup Time Costs. Bourgade,
Aguilera, Penz and Binder [12] deal with a scheduling problem related
to glass bottle production. Sequence dependent setup times occur when
switching from the processing of a job to the processing of the follow-
ing and the aim is to minimize the sum of the setup times, noted
Two problems, with different objective func-
tions F, are tackled. For each one, a mixed integer linear programming
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formulation is proposed with one of two following objective functions:

with the optimal value of criterion for the
problem, and and given weights. As the problem
is the two investigated problems are also Branch
and bound algorithms to solve the two bicriteria problems, once and

are known, are also presented. Computational experiments exhibit
that optimal solutions for the first objective function may be dominated
solutions for the criteria and

5.2.4 Minimization of Just-in-Time Criteria. One of the
basic JiT scheduling problems is certainly the problem
which has been considered in a priori resolution contexts. A schedule for
this problem can be decomposed into blocks of jobs such that machine
idle time occurs only between these blocks, and jobs within a block are
continuously processed. Szwarc [100] investigates the sequencing of two
consecutive jobs without inserted machine idle time. He proposes suffi-
cient conditions for scheduling jobs within the blocks, once the schedule
decomposition is known. A branching scheme to be used in an enumer-
ative algorithm like a branch and bound algorithm, deduced from that
sufficient conditions is proposed.

The problem, where is studied by
Kim and Yano [64] who provide heuristic and exact algorithms to solve
it. The different heuristic algorithms first build jobs sequences, using
priority rules and afterwards apply Garey, Tarjan and Wilfong’s optimal
timing algorithm [45] to deduce schedules. If only two conflicting jobs
and have to be sequenced, i.e. jobs such that Kim and
Yano show that is sequenced before either if
or if they can be scheduled before and or if they are scheduled
after max and Otherwise, job is sequenced
before job These results are particular cases of the results presented
by Szwarc [100]. Kim and Yano afterwards present two lower bounds
and a branch and bound algorithm in which the previous results are
used as dominance conditions. Computational experiments report that
the exact algorithm solves problems with up to 20 jobs.

The same problem is also tackled by Fry, Armstrong, Darby-Dowman
and Philipoom [39] who provide a branch and bound algorithm based
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on a decomposition into blocks schedule. This exact algorithm is able
to solve problems with up to 25 jobs.

When the jobs earliness is no longer measured in comparison with the
job due dates but with target job start times, Koulamas [66] proposes
both exact and heuristic algorithms to solve the
problem. Criterion refers to the sum of the job promptness and is
defined by where and is the real
start time of job Computational experiments report that among the
seven proposed heuristic algorithms, two give near optimal solutions.

When no machine idle time is allowed, Azizoglu, Kondakci and Kirca
[5] propose an adaptation of Ow and Morton’s heuristic [84], initially
designed for the nmit problem, to solve the

problem. A branch-and-bound algorithm is also presented and
computational experiments report that it can solve problems with up to
20 jobs, in the best case.

The generalized problem with weighted criteria,
has been studied a lot. Fry, Armstrong and Blackstone [38, 41] pro-
pose heuristic algorithms as well as a mixed integer linear program of
the problem. Two Tabu Search algorithms are provided by James and
Buchanan [61, 62]. The first one works on jobs sequences and each time
a schedule has to be evaluated, the optimal timing problem is solved
using the linear program proposed in [38]. The second Tabu Search al-
gorithm considers a particular jobs sequence encoding and a heuristic
procedure is used to built a feasible schedule from a coded sequence.

The no machine idle time case of the generalized problem with wei-
ghted criteria, denoted nmit has been dealt with
by Ow and Morton [83, 84]. For this problem, once the jobs sequence
is known, a schedule is built by starting jobs as early as possible. Ow
and Morton provide a sequencing rule, noted EXP-ET and different
filtered beam search algorithms to compute near optimal schedules. A
filtered beam search is a heuristic procedure based on a branch and
bound scheme in which a priori bad nodes are cut, thus limiting the size
of the search tree. Computational experiments report that the average
deviation of the best heuristic from lower bounds is between 5% and
10%.

Li [73] proposes a neighborhood based heuristic algorithm where at
each iteration the neighbors are obtained using -NAPI (Non Adjacent
Pairwise Interchange), = 0,..., – 1, operators on a seed sequence.
The initial seed sequence is obtained by sorting the jobs according to
the EXP-ET rule. At a current iteration, the 0-NAPI operator is used
to build neighbors: each corresponding schedule is obtained by con-
sidering the swapping of two jobs with 0 job between them. Among the
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neighbors that are better than the seed sequence, the best one is chosen
as the new seed sequence and the 0-NAPI operator is used once again
until no neighbor improves the seed sequence. At this time, the 1-NAPI
operator is considered and so on. Once no improved sequence obtained
by the ( – 1)-NAPI operator has been computed, the current itera-
tion process is repeated. Li also provides a branch-and-bound algorithm
where lower bounds, based on Lagrangean relaxation, are used to prune
nodes. Computational experiments report that problems up to 25 jobs
are optimally solved within 100 seconds.

Liaw [75] presents heuristic and exact algorithms close to Li’s ones.
The heuristic algorithm is also based on a neighborhood search where the
seed sequence is obtained by the EXP-ET rule. No computational ex-
periments comparing this heuristic with Li’s one are reported. A branch
and bound algorithm in which the lower bounds are based on Lagrangean
relaxation, is provided. Nevertheless, computational experiments show
that it does not strongly outperform Li’s exact algorithm.

Almeida and Centeno [4] also produce heuristic algorithms for the
nmit problem. They consider different Tabu Search,

Simulated Annealing and local search algorithms. Computational ex-
periments only report comparisons between these heuristic algorithms.

When all the jobs share the same common due date, Van den Akker,
Hoogeveen and Van de Velde [105] investigate the problem denoted

We refer to as the unit
earliness weight of job in the objective function and as its unit
tardiness weight. They restrict their search for an optimal schedule to
the dominant class of schedules such that one job completes at time d,
all the early jobs are sorted in descending order of the ratio and all
the tardy jobs are sorted in ascending order of the ratio An exact
algorithm combining column generation and Lagrangean relaxation is
presented and computational experiments report that problems up to
125 jobs can be solved within few minutes.

Azizoglu and Webster [6] investigate that problem once jobs classes
are defined and setup times occur between two jobs belonging to different
classes processed successively. This problem can be noted

Azizoglu and Webster show that
the schedule class which is dominant for the problem tackled by Van
den Akker, Hoogeveen and Van de Velde ([105]) is also dominant for the
problem with setup times. A branch-and-bound algorithm is presented
as well as a heuristic procedure based on a filtered beam search.

Webster, Job and Gupta [111] consider the problem denoted =
unknown, nmit, for which inserting machine idle

times does not improve the best schedule. A genetic algorithm is pro-

474 MULTIPLE CRITERIA OPTIMIZATION



vided and computational experiments report that it outperforms Azi-
zoglu’s and Webster’s branch-and-bound limited to one hour of CPU
time.

Dileepan and Sen [31] deal with the problem,
where Criterion usually reflects
holding costs and is sometimes considered in JiT scheduling problems.
Dileepan and Sen present a branch-and-bound algorithm and computa-
tional experiments.

5.3. Open Problems

Few open problems have been considered and mostly date back before
the 1990s. Fry and Leong [42] have tackled the problem
for which they provide a mixed integer linear programming formulation.
Vickson [108] deals with a scheduling problem with controllable job pro-
cessing times, the problem and presents a
branch-and-bound algorithm. The problem of minimizing criteria and

has been investigated by Shantikumar [95] who proposes a branch-
and-bound algorithm to solve the problem. Later
on, Nelson, Sarin and Daniels [80] propose an a posteriori algorithm for
the problem which computes a subset of the set of
weak Pareto optima. A heuristic procedure is also described.

Adamopoulos and Pappis [1] consider an open JiT scheduling prob-
lem, noted unknown, nmit Besides, they assume
that the weights of jobs both for earliness and tardiness are functions of
the processing times. Branch-and-bound algorithms are presented.

6. Parallel Machines Problems

When jobs are mono-operation and resources are of the same type, we
have to solve a parallel machines scheduling problem. As in Section 5,
we review the literature according to problem complexity.

6.1. Polynomially Solvable Problems
6.1.1 Minimization of the Maximum Completion Time.
Leung and Young [71] consider identical parallel machines with job pre-
emption allowed and the minimization of the makespan subject to an
optimal total completion time value. This problem is a lexicographical
minimization problem that can be noted The
authors show that it can be solved in polynomial time. Notice that both

problems are polynomially solvable.
Leung and Young suppose that the number of jobs is equal to ×
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and that jobs are numbered according to SPT rule. The ( – 1) ×
first jobs are scheduled and assigned according to SPT-FAM rule, that is
“Shortest Processing Time on First Available Machine first” rule. Then,
Sahni’s algorithm [92] is used to schedule the m remaining jobs. The
algorithm runs in time.

Mac Cormick and Pinedo [76] consider uniform parallel machines and
the problem is to find the set E of Pareto optima for the makespan and
the total completion time criteria. The problem is noted

The preemption of jobs is allowed. An approach
is used to compute one Pareto optimum. The enumeration of set E is
conducted by solving all relevant problems defined as follows:

s.t. and

This problem is noted Mac Cormick and
Pinedo propose an algorithm to solve problem by using rules to
schedule jobs and to assign them to resources. This algorithm requires
O( ) time.

T’Kindt, Billaut and Proust [103] consider an industrial problem that
tackles the scheduling of glass bottle production on unrelated parallel
machines. The authors suppose that job preemption is allowed and
that the tools changing costs are negligible. However, an order cannot
be processed on different machines at the same time, since this would
induce the multiplication of expensive equipment. Hence, job splitting
is not allowed. Processing one job on one machine allows to realize
a margin and changing the color associated to one furnace implies to
stop the production on all the associated machines. So, the objective
is to maximize the margin and to minimize the difference of machine
workloads. The aim is to propose to a decision maker an algorithm which
allows to select the Pareto optimum he prefers. This selection is done in
an interactive way. Using a linear programming model of the problem,
the authors solve the problem noted
By modifying the weights associated to the criteria, either all the Pareto
optima can be obtained (in an a posteriori method), or only the most
interesting for the decision maker (in an interactive method).

6.1.2 Minimization of Just-in-Time Criteria. Sundara-
raghavan and Ahmed [99] consider identical parallel machines and jobs
with a non restrictive common due date . The authors suppose that
it is not possible to introduce idle times on machines and the objec-
tive is to minimize the sum of the total earliness and the total tardi-
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ness. The problem is noted non restr, nmit with
and the authors propose an algorithm that generalizes

the algorithm for the nmit problem (see Section
5). The authors build a V-shaped solution by scheduling and assigning
iteratively jobs on machines. A V-shaped schedule is such that the early
and on-time jobs are sequenced in descending order of their processing
time whilst the tardy jobs are sequencing in the ascending order of their
processing time.

A more general problem is the problem noted unknown,
nmit with This problem is solved
by Emmons [35] who proposed an algorithm that builds a V-shaped
schedule on each machine. The decision to put each job in the set of
early jobs or in the set of tardy jobs of one machine depends on the value
of and

If processing times are equal to a common value it is possible to in-
troduce the due date d in the objective function and the problem remains
polynomial. Cheng and Chen [22] study the unknown, _ =

nmit problem  with The
authors remark that if then the problem is equivalent to the poly-
nomial problem If then the authors define two
classes of resources: class A which contains the  first resources, each
performing jobs and class B which contains the remaining resources
each performing jobs, with defined by and
Some coefficients allow to determine the common due date, the starting
time of processing on class A machines and on class B machines.

Alidaee and Ahmadian [3] consider a problem with unrelated parallel
machines, jobs with processing times as variables, with a common due
date and a criterion defined by a linear combination of total tardiness,
total earliness and total weighted compression costs. The problem can
be noted unknown with

denoting the weighted cost of reducing job processing times. This
problem is equivalent to a transportation problem and can be solved in

time.

6.2. Problems
6.2.1 Minimization of the Maximum Completion Time.
Gupta and Ruiz-Torres [51] consider identical parallel machines and the
problem to minimize the makespan given that the total completion time
is minimum. If preemption is allowed, we have seen that the prob-
lem is polynomially solvable [71]. Gupta and Ruiz-Torres consider that
preemption is not allowed and the problem becomes The
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problem can be noted The authors propose first a
heuristic algorithm called U with complexity O(nlog(n) + nm) and sec-
ond a heuristic called M inspired by algorithm “Multifit” of Coffman,
Garey and Johnson [26] for the problem. Algorithm M runs
in time, with K a fixed number of iterations.

6.2.2 Minimization of Just-in-Time Criteria. In [10],
Biskup and Cheng consider a problem with identical parallel machines
and they are interested in two objectives: achieving small deviations
from a common due date and short flowtimes. The problem considered
is noted They show that the problem is .

for  =2.  Then,  they  study some polynomially solvable cases with
given and After that, the authors propose a

heuristic algorithm, that calls an LP solver.
Li and Cheng [72] consider jobs with a common due date and no

machine idle time allowed. The objective is to minimize a function
defined by The problem can be
noted non restr, nmit The authors show that
the problem is strongly and they propose a heuristic algorithm
H with a worst case bound of the performance ratio

Chen and Powell [21] consider jobs with a given common due date
unrestrictively large and associated to each job an earliness penalty
weight and a tardiness penalty weight. The problem is noted =

non restr The authors propose an integer programming
formulation of the problem and a branch-and-bound algorithm, that can
solve problems with up to 60 jobs within reasonable cpu time.

Balakrishnan, Kanet and Sridharan [7] consider a problem with uni-
form parallel machines, with sequence dependent setup times on ma-
chines, to switch from one job to another job and with ready times
associated to jobs. The problem can be noted
The authors propose a mixed-integer formulation for the problem and a
relaxation of the model used as an approximate method.

6.3. Open Problems
6.3.1 Minimization of the Sum of Completion Times.
Alidaee and Ahmadian [3] consider a problem with unrelated parallel
machines and controllable job processing times. The problem is noted

with the total weighted com-
pression cost. The authors show that there exists an optimal schedule
and optimal processing times such that a job is either at the maximum

478 MULTIPLE CRITERIA OPTIMIZATION



processing time value or at the minimum processing time value

(fully compressed time).

6.3.2 Minimization of Just-in-Time Criteria. The
unknown, nmit problem has several optimal solutions,

and Emmons [33] considers two extensions of this problem. The first
one is the = dunknown, nmit problem and
the second one is the unknown, nmit problem.
The complexity of these problems is unknown and the author proposes
polynomial algorithms to determine a solution.

7. Shop Problems
In this Section we discuss about shop scheduling problems. These prob-
lems are used for modeling production processes. The multicriteria
scheduling literature concerning shop problems is composed essentially
of flowshop scheduling problems. Hence, the section is divided in three
subsections as follows: first a survey on two-machine flowshop problems,
then on multiple machine flowshop problems and finally on the other
shop scheduling problems.

7.1. Two-Machine Flowshop Problems
We consider that the shop is composed of two machines noted and

Each job has to visit machine first and then machine and
jobs are processed in the same order on each machine. The problem is
to find a sequence of jobs that minimizes the criteria.

The most common criteria involved for this problem are criteria
and

Rajendran [87] considers the problem This
problem is in the strong sense [19] and the author proposes
two heuristics and a branch-and-bound algorithm. This algorithm allows
to solve problems with up to 10 jobs. For the same problem, Nepalli,
Chen and Gupta [81] propose a genetic algorithm. Gupta, Neppali and
Werner [50] propose nine heuristic algorithms and study polynomially
solvable cases of this problem. Gupta, Hennig and Werner [48] imple-
ment several neighborhood techniques like Tabu Search and Simulated
Annealing. More recently, T’Kindt, Gupta and Billaut [104] propose
one heuristic algorithm and different branch-and-bound algorithms. The
most efficient branch-and-bound can solve problems with up to 27 jobs.

Nagar, Heragu and Haddock [79] consider a linear combination of
these criteria. The problem is noted This
problem is strongly too and the authors propose a heuris-
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tic algorithm and a branch-and-bound algorithm. For this problem,
Sivrikaya-Serifoglu and Ulusoy [96] propose another heuristic algorithm
and three branch-and-bound procedures. The most efficient branch-
and-bound can solve problems with up to 18 jobs. Yeh [114] propose a
heuristic algorithm and a branch-and-bound procedure limited to prob-
lems with 14 jobs. If release dates are specified for each job, the problem
is noted For this problem, Chou and Lee
[24] present an integer linear programming formulation of the problem
and a heuristic algorithm of Beam Search type.

Sayin and Karabati [93] consider the problem to obtain the Pareto
optima. The problem is noted To obtain the
Pareto set, the authors use an approach and the problems
to be solved are noted These problems are
proved to be strongly and the authors propose two branch-
and-bound algorithms. Problems with less than 20 jobs can be solved.

Daniels and Chambers [27] consider criteria and and search
the set of Pareto optima. This problem is noted

The authors propose a branch-and-bound algorithm with
associated dominance conditions and a heuristic procedure.

Liao, Yu and Joe [74] consider criteria and and search the set
of Pareto optima. It is not difficult to show that this problem is
in the strong sense. The authors propose a branch-and-bound procedure
with some dominance conditions. The experimentations show that the
algorithm can solve problems with up to 20 jobs and that the average
number of Pareto optima is less than 2. This leads to the conclusion
that the criteria are not conflicting. Then, the authors consider criteria

and The authors search the set of Pareto optima. This prob-
lem is strongly and the authors propose a branch-and-bound
algorithm, that can solve problems with up to 30 jobs.

7.2. Machine Flowshop Problems

We consider now that the shop is composed by machines. Each job
has to visit the machines from machine to machine

Selen and Hott [94] and Wilson [113] consider criteria and in a
lexicographical order. They suppose that jobs are processed in the same
order on each machine. The problem is noted
This problem is strongly and the authors present an inte-
ger programming formulation of problem

For the same criteria, Gangadharan and Rajendran [43] and Rajen-
dran [88, 89] propose a method to find any Pareto optimum.
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Daniels and Chambers consider criteria and and search
the set of Pareto optima. The authors propose a heuristic procedure and
show that 50% of the Pareto optima can be found by their algorithm.

Zegordi, Itoh and Enkawa [115] consider a just-in-time flowshop sched-
uling problem noted This problem is
strongly and the authors propose a Simulated Annealing al-
gorithm, that gives near optimal solutions.

Nowicki [82] considers the problem noted

This problem is and the author propose
a heuristic algorithm. Cheng and Shakhlevich [23] consider a similar
problem where all the operations of one job have the same process-
ing time: Processing time are controllable and
the authors search the set of Pareto optima. The problem is noted

This problem is polynomially
solvable and the authors propose an enumeration algorithm based on a
linear programming model.

7.3. Other Shop Scheduling Problems
7.3.1 Scheduling Problems. The literature contains few
papers on jobshop and openshop multicriteria scheduling problems.

Huckert, Rhode, Roglin and Weber [60] consider a jobshop problem
with five criteria. They propose an interactive algorithm, like STEM
method [9], that calls a greedy algorithm to find a solution to the jobshop
problem.

Deckro, Herbert and Winkofsky [29] consider a jobshop scheduling
problem with four criteria. The authors consider the goal programming
approach to solve the problem.

Gupta and Werner [52] consider a two-machine openshop problem,
with criteria and in a lexicographical order. The problem is
noted The authors show that if the makespan
is given by the largest job then the
problem can be solved in polynomial time. Otherwise, the authors
propose a heuristic algorithm. For the same problem, Kyparisis and
Koulamas [67] study several polynomially solvable cases and propose
different heuristic algorithms. The authors consider the three-machine
openshop problem with the same objective function. The problem is
noted and the authors consider a polynomial solv-
able case.

7.3.2 Assignment and Scheduling Problems. When ma-
chines are duplicated and gathered into stages, the problem is to find a
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starting date and a performing machine for each operation. Some papers
in the literature deal with the multicriteria hybrid flowshop problem.

Fortemps, Ost, Pirlot, Teghem and Tuyttens [37] consider an indus-
trial problem in a chemical firm. They define some equipments that are
used for the production of jobs. The workshop can be considered like
a three-stage hybrid flowshop, with a set of constraints and the follow-
ing criteria: the makespan, a penalty proportional to the tardiness of
the jobs and a penalty reflecting the violation of the availability period
of some equipments. The authors propose two metaheuristics: a Tabu
Search algorithm and a Simulated Annealing algorithm.

Riane, Meskens and Artiba [90] consider a k-stage hybrid flowshop,
with criteria and gathered into a linear combination. The
problem is noted F H , This problem
is strongly and the authors propose a mixed integer linear
programming (MILP) formulation of the problem and a Tabu Search
algorithm. The authors consider also the problem with the
approach, i.e. the problem noted FHk,
The authors propose a MILP formulation and a Tabu Search algorithm.

Vignier, Billaut and Proust [110] consider a k-stage hybrid flowshop,
with the hypothesis that at each time and at each stage, at most one
machine may not be available for processing a job. This unavailabil-
ity period may correspond for instance to a maintenance activity. The
authors suppose that jobs can not start before a ready date and the
criteria they consider are and The problem can be noted
FH , and the authors propose a bran-
ch-and-bound algorithm based on the branch-and-bound of Brah and
Hunsucker [13]. Different lower bounds are proposed and compared.
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